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Editorial on the Research Topic

Revolutionizing life sciences: the nobel leap in artificial intelligence-
driven biomodeling
s

1 Artificial intelligence’s impact on biomolecular
modeling

Within the research world, 2024 will be remembered as the year of Nobel Prizes for
Artificial Intelligence (AI). The one for Physics, awarded to John Hopfield and Geoffrey
Hinton for foundational discoveries and inventions that enablemachine learningwith artificial
neural networks, has sealed the connection between physics and information science, now
officially mating on a strongly interdisciplinary frontier field after over 50 years of fruitful
interaction (Artificial, 2024). More specifically, connecting AI to biomolecular modeling
relates to the Nobel Prize in Chemistry awarded to David Baker for computational protein
design and to Demis Hassabis and John Jumper for protein structure prediction.

Numerous statistics illustrate the influence of artificial intelligence in the field of
biomodeling. An inquiry conducted in scientific literature databases employing AI-related
keywords pertinent to the computermodeling of biomolecules yields approximately 120,000
results (approximately 6,000 results if the search is confined to the abstract, as illustrated
in Figure 1). The exponential rise observed starting from 2018–19 was the prelude to
the Nobel, and approximately coincides with the appearance of the two software suites,
AlphaFold (Senior et al., 2019) and RosettaFold (Humphreys et al., 2021), which implement
themethods for proteins folding and proteins de novo design developed byHassabis/Jumper
and Baker, respectively.

Receiving a Nobel Prize just a few years after the awarded research is quite rare,
but certainly not accidental. The methods for protein structure prediction based on
homology modeling were developed starting in the 1990s and implemented in popular
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FIGURE 1
Number of publications on machine learning in biological modeling and simulation from 2000-present. The search was performed using the keywords
(computer modeling OR simulation) AND (machine OR deep OR automatic learning OR neural networks) AND (proteins OR nucleic acids OR
biomolecules) either in the full text (∼120K items since 2000) or only in the abstract (∼6,000, analyzed and shown data) both in Scopus and WoS
database (shown data are from WoS, 2024 incomplete). Colors of the histograms are described in the legend (purple is for generic bio-modeling not
already included in the drug or protein design, in green and orange respectively). The colors in the conceptual map correspond to that of the
histogram, with additional shades of purple for different generic biomodelling tasks other than protein or drug design. Horizontal arrows illustrate
when the main keywords related to AI (gray) and to AI-based protein modeling (red) become statistically relevant in the literature.

software suites, including the early version of Rosetta
(Bowers et al., 2000) and others [e.g., SWISS-MODEL (Guex
and Peitsch, 1997)]. These methods heavily depend on statistical
data. They involve aligning and ranking sequences and structures
and parameterizing scoring functions through extensive analysis
of sequence and structure databases. This process culminates
in distilling the information into a few optimal structures or
interaction models (Wang et al., 2019). Over the years, the
growing volume of statistical data has necessitated the automation
of tasks, particularly in searching and comparing information.
Advancements in hardware architecture and storage capacity have
supported this shift.

Meanwhile, automatically trained neural networks (NN)
have emerged as a natural solution for the “distillation” of
this data (Kanada et al., 2024). During the second decade of
2000s, the co-evolution of computer performance and algorithms
led to the transition from machine learning (ML) to deep
learning (DL). This shift involved adding layers to the neural
networks, resulting in qualitative and quantitative predictive power
improvements. The combination of an established supportive
environment, the availability of big data, and the rise of DL
has significantly contributed to the success of AI methods in
bio-modeling.

Specifically regarding protein structure,AlphaFold nowachieves
an impressive 99% accuracy in predicting single-chain proteins,
rendering the CASP challenge—historically focused on structure
prediction—less relevant.

Besides the modeling of protein structures, a significant domain
of artificial intelligence application elucidated by statistical analysis
pertains to drug development. In particular, ML is used to address
structure-activity relationships (Gupta et al., 2021) and uptake-
toxicity of the drug (De Carlo et al., 2024), virtual screening, and
structure-based design. While not claiming to cover all potential
applications, we note that optimizing force fields for low-resolution
models of biomolecules significantly benefits frommachine learning
(Kanada et al., 2024; Majewski et al., 2023; Mirarchi et al., 2024),
whereas the application of graph neural networks for calculating
molecular dynamical trajectories is a cutting-edge approach (Husic
et al., 2020).

2 AI’s impact on biological modeling
and simulation in Frontiers in
Molecular Biosciences

Frontiers in Molecular Biosciences (FMB) has witnessed
an exponential rise of publications with the exact timing and
similar topical distribution, currently counting several hundreds of
publications onAI related topics.The section of BiologicalModeling
and Simulation (BMS) is one the most involved, having issued
several Research Topic Collections (Research Topics, RT) on the
diverse applications of neural networks in biomolecular simulations,
on the prediction of protein structure and conformation, or focusing
on data-driven applications, on drug design, even combined with
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molecular studies of metabolic pathways also in relation to the
cancer treatment.

A deeper look into the BMS section also reveals more
specific topics out of the mainstream, such as the prediction of
protein-protein interactions and the study of the conformation
of intrinsically disordered proteins. Indeed, these are two aspects
where ML algorithms show their weakness (Abramson et al., 2024),
displaying decreased accuracy. This is attributed to the under-
representation within the training dataset of crucial features, such
as the conformational variability of disordered proteins and protein-
protein interfaces (Saldano et al., 2022), especially when combined
with sequence variability, e.g., in the study of antibodies (Yin et al.,
2022). The decreased accuracy and predictive power in cases “too
far” from those included in the learning dataset is considered one of
the main drawbacks of automatic learning-based methods.

2.1 Beyond the stream and into the niches
of AI applications

To explore unconventional AI methods for bio-modeling and
showcase niche applications and challenging or problematic areas,
we have compiled 15 “orphan” papers in this Research Topic.
These papers, which are not part of any existing topical collection,
have been published in the sections of Biological Modeling and
Simulation or Structural Biology of FMB.

In the review by Zhang et al. it is noted that AlphaFold,
along with other similar AI methods for structure prediction, such
as RoseTTaFold and EMSFold, is widely used in various fields
of biomedical research. In addition to drug design, the authors
highlight its applications in immunology, particularly in predicting
and designing immunoglobulin structures or developing structure-
based vaccines. The work also emphasizes the development of
biomarkers, the study of protein-protein and protein-nucleic acid
interactions, and the investigation of missense mutations. However,
the review points out some limitations of these methods, specifically
the decreased accuracy in predicting the relative positioning of
large protein domains and their intrinsically disordered regions
and challenges in differentiating between various environmental
conditions. In this regard, alternative approaches like AminoBERT,
described in Zhang et al., demonstrate better performance in de
novo design or when few homologous sequences are available.
This improvement is achieved by omitting the multiple sequence
alignment step and instead incorporating residue-based chemical
and geometric information.

The absence of specific protein information in the training data
and the resulting bias towards the included proteins are two sides
of the same coin, which makes the neural network predictions
contingent on the dataset’s composition. Sala et al. transformed
the challenge into an opportunity by introducing a controlled bias
in AlphaFold2 toward specific user-defined subsets of structures.
This can be achieved by incorporating genetic information to
enhance accuracy for particular protein families. The algorithm has
demonstrated improved performance on CPCRs and kinase protein
families, which are notably difficult due to their multiple active
conformations. Additionally, the capability of AlphaFold to address
different or multiple structures was discussed in the mini-review by
Hunter et al.This study focused on examining the structure of ALAS

synthase, specifically highlighting a predicted divergence in the C-
terminal domain of the protein and its connection to the proposed
allosteric regulation of protein activity.

2.2 Integrating AI and simulation
techniques: advancing biomolecular
structure prediction and drug discovery

Utilizing a diverse array of methods has demonstrated
remarkable effectiveness in accurately predicting the structures
of biomolecules. The structure predicted by AlphaFold, along with
Molecular Dynamics (MD) simulations, served as the reference
for evolutionary studies. Just to cite a few ones highlighting this
link, the study by Bug et al. on the ribonuclease Dicer1 involved in
miRNA biogenesis and hematological cancers progression, and that
by Meller et al. to generate the structure of the unknown protein
PPM1D phosphatase, an important marker in oncology involved
in the regulation of DNA damage response. In these cases, the
structure was combined with a graph convolutional network model
trained over activity data, and with MD simulations to enhance
the drug docking task, revealing an allosteric “cryptic” pocked,
not immediately accessible and therefore escaping the structural-
only analysis. Belviso et al. used Alphafold and MD in combination
with small-angle X-ray scattering to characterize the C-terminal
region of NSD3 histone lysine methyltransferases, a marker in
oncogenesis, showing that combined modeling techniques can
be used to augment the low resolution experimental structural
characterization techniques.

2.3 Advancing drug discovery: integrating
AI, simulations, and experimental methods
for targeted therapeutics

Drug design increasingly benefits from interdisciplinary
approaches combining advanced computational techniquesand ML
with experimental validation to accelerate therapeutic discovery
and innovation. Zeng et al. used a cascade of structure-based drug
design methods combining MD and metadynamics of the drug-
target complex with ML-based virtual screening and QSAR and
ADMET evaluation. Combined with experimental procedures, this
approach identified inhibitors of fibroblast growth factor receptors
that were also tumor suppressors.

Drug design represents a promising frontier for advancing NN
development, particularly at the algorithmic level. The complexity
of molecular interactions, coupled with the need to predict
binding affinities, toxicity, and pharmacokinetics, provides a fertile
ground for refining and innovating NN architectures. Emerging
techniques, such as graph-based neural networks and attention
mechanisms, are poised to address these challenges by enabling
more accurate modeling of molecular properties and interactions,
paving the way for breakthroughs in computational drug discovery.
Ni et al. developed a model of a Graph Convolutional Network
with a layer attention mechanism and trained it to predict the
association of small molecules to target miRNA. Despite the
large number of hidden layers and advanced mechanisms to cope
with data redundancies and reduce the noise, the authors claim
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dissatisfaction with the specific task, possibly due to insufficient
variability in the dataset. Wu et al. combined an NN with docking
and virtual screening to repurpose drugs for Alzheimer’s disease,
which allows the optimization of a multi-target approach capable
of identifying the network of proteins interacting with the receptor
S1R, considered as the starting target, and subsequently identifying
several leads, tested by docking andADMETprediction. To a similar
scope of finding effective combinations of drugs for multifactorial
diseases, Hong et al. develop a different NN approach independent
of structures and based on the Pathway Interaction Network
(PINet), which was tested on acute myeloid leukemia, where it
correctly predicted midostaurin and gemtuzumab as effective drug
combinations and proved particularly effective when the training
dataset is limited.

We should pay attention to the early research on antivirals
targeting the main protease of SARS-CoV-2 in the context of
structure-based drug design. Lau et al. combinedmolecular docking
and MD with a convolutional neural network and spatial graph
model trained on ligand-protein data, used to predict the ligand-
protein score and identify from a library of 26 million molecules
possible candidate compounds to target RBD domain of the Spike
protein or Mpro. Using biolayer interferometry for the spike
protein and a FRET-based reporter, their effective binding was
tested. Samad et al. considered as the target the chymotrypsin-
like protease (3CLPRO) and used machine learning-based virtual
screening of 4,000 phytochemicals. The Random Forest model,
displaying 98% accuracy on the train and test set, identified
several molecules that were subsequently docked into the target
and analyzed by MD. The procedure identified 26 potential
inhibitors.

Finally, wemention a couple of applicationswithin the biological
modeling area that are out of the mainstream, not on molecular
modeling but on using images for diagnostics. Bigler et al. use
a deep learning approach with transfer learning of a pre-trained
convolutional neural network to identify pathological patterns in
skeletal muscle biopsies, using transmission electron microscopy
images showing that the learned network is proven superior in the
classification concerning commonly used morphometric analyses.
More specifically, Qi et al. trained an NN to automatically diagnose
suppurative otitis media and middle ear cholesteatoma, proving a
handy tool to help physicians discern these two chronic diseases
displaying similar CT medical images.

3 Perspectives

In the last decade, AI has produced a massive acceleration in
biomolecular modeling, making several tasks previously requiring
a long time and specific expertise fast and easy. These are, in
particular, those involving analyzing and synthesizing information
from large amounts of data. The case of AlphaFold is an exemplar:
the current version allows even nonexperts in the field to have a
prediction of the fold of a protein from the sequence in minutes, a
task which required weeks with the traditional homology modeling
procedure, and reaching comparable or superior accuracy in most
of the cases.

Despite its remarkable progress, AI-driven biomolecular
modeling faces significant challenges highlighting the need for

caution and critical evaluation. One major issue lies in the bias
and incompleteness of training databases. This risks to produce
results that reflect the limitations or skewed composition of the
input data, potentially leading to inaccurate predictions and
amplifies the risk of “hallucinations” – outputs that are highly
ranked, but scientifically invalid–possibly due to overfitting and
extrapolation beyond known data. Beyond hallucinations, we
already commented on the cases of disordered structures and
inter-domain interface prediction, whose low confidence the ML
models can autonomously evaluate. In addition,AI-driven platforms
like DeepMind’s AlphaFold have predicted novel drug candidates
for various diseases, but still, several of these compounds need
to be sufficiently followed up regarding their pharmacokinetics,
such as IC50 values (the concentration needed to inhibit 50%
of a target) or their ability to be administered effectively. In
some cases, promising compounds identified by AI have yet to
pass crucial stages in drug development, such as formulation
stability, bioavailability, or FDA approval. A notable case is the
identification of AI-generated inhibitors for the SARS-CoV-2 virus,
which, while initially promising, failed to meet the necessary
clinical standards and were ultimately not pursued for broader
therapeutic use.

Furthermore, the need for explainability in many AI models
compounds these challenges. Without transparent mechanisms to
trace how predictions are made, it becomes difficult for researchers
to assess their reliability or identify potential errors. This opacity
raises concerns about the reproducibility and trustworthiness of
AI-generated insights, particularly in high-stakes fields like drug
discovery or biomolecular engineering. Adding explainability to
the method, and not only in the biomodelling field, is currently
one of the main challenges for developing automatic learning
algorithms. On the technical level, one way to address this problem
as far as that of (explicit or not) low reliability and bias, is
to reduce the complete automatism by re-introducing into the
procedure elements of symbolic artificial intelligence based on
deductive rules into a hybrid approach known as neuro-symbolic AI
(Bhuyan et al., 2024).

On a philosophical level, the growing reliance on AI may
inadvertently foster excessive trust in its outputs, sometimes
at the expense of scientific scrutiny. This overconfidence could
lead to a diminished critical sense, where the technology's
predictions are only accepted without adequate validation.
For instance, some AI-predicted compounds have led to
follow-up studies that overlook crucial aspects like side
effects, toxicity, or long-term efficacy, which must be fully
captured in the initial models. To mitigate these risks, fostering
interdisciplinary collaboration, emphasizing data quality, and
developing interpretable AI systems are essential to ensure
that AI remains a robust and reliable tool for advancing
biomolecular research.

In conclusion, while it is true that AI presents challenges
and risks, it also offers transformative opportunities when wielded
responsibly. We are at a juncture where AI is no longer just
an optional tool but a cornerstone of modern modeling and
problem-solving. Like any tool, its effectiveness depends on the
skill and wisdom of its user. By combining the power of AI
with the irreplaceable intuition and common sense of human
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judgment, we can harness its potential for innovation and progress,
ensuring a future where technology enhances, rather than replaces,
our humanity.
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A rapid response is necessary to contain emergent biological outbreaks before they can
become pandemics. The novel coronavirus (SARS-CoV-2) that causes COVID-19 was first
reported in December of 2019 in Wuhan, China and reached most corners of the globe in
less than two months. In just over a year since the initial infections, COVID-19 infected
almost 100 million people worldwide. Although similar to SARS-CoV and MERS-CoV,
SARS-CoV-2 has resisted treatments that are effective against other coronaviruses.
Crystal structures of two SARS-CoV-2 proteins, spike protein and main protease, have
been reported and can serve as targets for studies in neutralizing this threat. We have
employed molecular docking, molecular dynamics simulations, and machine learning to
identify from a library of 26 million molecules possible candidate compounds that may
attenuate or neutralize the effects of this virus. The viability of selected candidate
compounds against SARS-CoV-2 was determined experimentally by biolayer
interferometry and FRET-based activity protein assays along with virus-based assays.
In the pseudovirus assay, imatinib and lapatinib had IC50 values below 10 μM, while
candesartan cilexetil had an IC50 value of approximately 67 µM against Mpro in a FRET-
based activity assay. Comparatively, candesartan cilexetil had the highest selectivity index
of all compounds tested as its half-maximal cytotoxicity concentration 50 (CC50) value was
the only one greater than the limit of the assay (>100 μM).

Keywords: COVID-19, molecular simulations, machine-learning, protein assays, FRET, live virus, main protease,
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INTRODUCTION

In December 2019, the first cases of a novel coronavirus (SARS-
CoV-2) were reported in Wuhan city, Hubei province of China
(World Health Organization, 2020). Symptoms of the first
patients were flu-like and included fever, dry cough, headache,
and myalgia, but with a tendency to develop into potentially fatal
dyspnea and acute respiratory distress syndrome (Huang et al.,
2020). Within a matter of weeks this coronavirus had spread to
many parts of China and preliminary evidence suggests its ability
to pass between people without showing outward symptoms
(Rothe et al., 2020). Additionally, its transmissibility is higher
than that of SARS-CoV (Xia et al., 2020). These features and likely
others in the coronavirus as well as the ease of international travel
has allowed the outbreak to reach every populated continent.
Many countries have taken the extraordinary measure of locking
down cities with populations in the millions to slow the spread of
the virus. As of this writing, over 98,000,000 people have
contracted SARS-CoV-2 with more than 2,100,000 fatalities
worldwide (WHO Coronavirus Disease, 2020). Phylogenetic
analysis of the genomic sequence of SARS-CoV-2 has shown
that it is a member of the betacoronavirus genus and related to
SARS-CoV andMERS-CoV (Letko et al., 2020). SARS-CoV-2 has
so far has been shown to be resistant to treatments developed for
its related viruses although the compound remdesivir has shown
some promise and has been approved for emergency use (Beigel
et al., 2020).

A concerted effort worldwide has been placed on solving
protein structures from SARS-CoV-2 to better understand the
lifecycle of the virus and to provide targets for vaccines and drugs
(Scudellari, 2020). The trimeric spike protein was the first protein
from SARS-CoV-2 to be solved and was shown to be very similar
in structure to the homologous protein in SARS-CoV (Wrapp
et al., 2020). Coronaviruses utilize the spike protein to recognize
binding sites on cells and anchor themselves to invade their host
(Belouzard et al., 2012). The spike protein has been solved by
X-ray crystallography and cryo-electron microscopy with its
receptor binding domain (RBD) in complex with the human
receptor protein angiotensin-converting enzyme 2 (ACE2) (Lan
et al., 2020; Wrapp et al., 2020). The binding of RBD to human
ACE2 that allows the virus to enter the cell is very strong at
4.7–14.7 nM but surprisingly the binding interaction does not
occur over a large surface area (Lan et al., 2020; Wrapp et al.,
2020). Many of the ACE2-RBD interactions are located within
two large loop regions in the RBD and primarily through
sidechain-sidechain interactions.

The other solved protein structure from SARS-CoV-2 used in
this study is the main protease (Mpro). The Mpro is a cysteine
protease with a catalytic dyad consisting of Cys145 and His41.
The dimeric main protease is ubiquitous in coronaviruses and
plays a pivotal role in viral gene expression and replication
through proteolytic processing of replicase polyproteins
(Ullrich and Nitsche, 2020). The SARS-CoV-2 Mpro structure
has recently been solved with the covalent inhibitor N3 and
released in the Protein Data Bank (PDB, 6LU7) (Jin et al., 2020).
A second structure of the SARS-CoV-2 Mpro was made available
without a bound inhibitor (6Y84) (Owen et al., 2020). The main

protease has a large gorge that binds and cleaves polypeptides that
are critical for maturation of the virus and is an attractive site for
new inhibitors.

The RBD domain of the spike protein andMpro are promising
targets for in silico small molecule studies to find molecules with
inhibitory properties. We have performed a combined molecular
docking, molecular dynamics simulation, and machine learning
study in an effort to identify molecules that may bind to the RBD
domain and/or Mpro. These bound molecules may attenuate or
neutralize the effects of this virus. These predicted ligands were
then tested experimentally for their ability to bind their partner
protein using biolayer interferometry for the spike protein and a
FRET-based reporter substrate for Mpro. Compounds that were
found to bind were further tested in virus-based assays to
determine their ability to neutralize SARS-CoV-2.

MATERIALS AND METHODS

Molecular Dynamics Simulations of the
Apo-Proteins of the RBD of Spike and Main
Protease
Classical molecular dynamics simulations were performed using
the program OpenMM (Version 7.4) (Eastman et al., 2017). The
AMBER force field was used for the proteins in the system (Maier
et al., 2015). The individual proteins (RBD of the spike protein or
the dimer of the main protease) were solvated in a TIP3P water
box (Jorgensen et al., 1983) and the appropriate numbers of ions
(Na+ or Cl−) were added to neutralize the system. Mpro was
modeled as its biologically-appropriate dimer. AM1-BCC charges
(Jakalian et al., 2002) were used to model the thiolate of Cys145
and His41 was modeled as protonated in Mpro. The density of the
water was simulated at 1.0 g/ml. The energy of the system was
minimized before dynamics. The molecular dynamics
simulations were performed in an NPT ensemble using the
Langevin integrator (Salomon-Ferrer et al., 2013b). The system
was coupled to a Monte Carlo thermostat at 300 K. Non-bonded
interactions were cutoff at 8 Å. The electrostatics was treated
using Particle Mesh Ewald summation with an 8 Å real space
cutoff and a 1 Å grid (Darden et al., 1993). SHAKE was used to
constrain bonds containing hydrogens (Ryckaert et al., 1977). A
2.0 fs timestep was used and each simulation was run to 100 ns.
The temperature of the system was increased in increments of
50 K for 100 ps. Positional constraints were placed on backbone
atoms (C, N, and CA) with a force constant of 1 kcal/mole•Å2

while the temperature was increased. Once the system has
reached 300 K, an additional 1.5 ns of dynamics was
performed with the positional constraints, after this time
period 100 ns of dynamics was performed without the
constraints.

Molecular Docking and Rescoring
Calculations
The in-house ConveyorLC toolchain (Zhang et al., 2014; Zhang
et al., 2017) was used to automate the docking and rescoring of
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compounds against each of the four binding sites identified (two
spike sites and two Mpro structures/conformations). This
toolchain comprises four parallel programs for protein
preparation (CDT1Receptor), ligand preparation
(CDT2Ligand), molecular docking (CDT3Docking), and
Molecular Mechanics/Generalized Born-Solvent Accessible
Surface Area (MM/GBSA) rescoring (CDT4mmgbsa). The
ConveyorLC toolchain depends on a number of external
libraries, including the Message Passing Interface (MPI)
library, the C++ Boost library, the Conduit library, the HDF5
library, and several molecular simulation packages, including
Autodock Vina, (Trott and Olson, 2010) the AMBER
molecular simulation package (Salomon-Ferrer et al., 2013a),
and MGLTOOLS (Morris et al., 2009). Computational results
are aggregated and saved in a series of HDF5 files. A few auxiliary
tools are included in the toolchain to query and extract data in the
HDF5 files.

Over 26 million compounds were selected from four publicly
available compound libraries for docking. The ZINC database
(Sterling and Irwin, 2015) FDA-approved and “world-not-FDA”
drugs were assembled into a “world-approved 2018” set. From
ChEMBL, approximately 1.5 million unique compounds were
used (Gaulton et al., 2012). From Emolecules, approximately
18 M compounds were used (eMolecules, 2020). The remaining
compounds were selected from the Enamine “REAL” database of
over 1.2 billion enumerated structures of drug-like compounds
predicted to be synthetically feasible (Enamine, 2020).

The CDT3Docking in the ConveyorLC toolchain is based on
Autodock Vina (Version 1.1.2) and uses MPI and a
multithreading hybrid parallel scheme (Trott and Olson, 2010;
Zhang et al., 2013). The docking grids of the binding sites were
determined by the protein preparation program in the toolchain.
Compounds were prepared for docking in the following manner.
SMILES strings and 2D SDF structures were imported into the
Molecular Operating Environment (MOE) [Molecular Operating
Environment (MOE), 2020] for removal of salts and metal-
containing ligands, protonation states were set to the
dominant form at pH 7, 3D structures were created and
minimized, and relevant MOE descriptors were calculated. The
final structures were exported from MOE as SDF files. These
structures were then further processed by the ligand preparation
in the toolchain by utilizing antechamber and the GAFF force
field from the AMBER simulation package (Salomon-Ferrer et al.,
2013a).

The over 26 million compounds described above were
individually docked into each binding site for a total of more
than 100 million docking simulations. An exhaustiveness of 16
was used for ligand pose sampling. The top 10 poses were kept for
each docking calculation. Compounds that had a docking score
equal to or better than −7.5 kcal/mole were saved in HDF5 files
for further study. Using this score threshold, we selected ∼1% of
total compounds or approximately 1 million protein-compound
complexes for each binding site.

The selected protein-compound complexes were rescored
using CDT4mmgbsa in the ConveyorLC toolchain. A total of
∼10 million poses were rescored for each binding site because
each complex typically had 10 docking poses. CDT4mmgbsa

employs a master-worker parallel scheme, where the master is in
charge of job dispatching and each worker receives jobs from the
master and performs an MM/GBSA calculation using the
AMBER sander program. The AMBER force field
(amberff14SB) (Maier et al., 2015) was used for the proteins;
the apo proteins’ MM/GBSA energies were previously
determined in the CDT1Receptor step. Partial atomic charges
for the compounds were computed by antechamber using the
AM1-BCC method (Jakalian et al., 2002); each compound’s
charges were previously calculated by the CDT2Ligand step.
An energy minimization–1,000 steps of steepest descent and
1,000 additional steps of conjugate gradient–was performed on
each docked compound-protein complex using the modified
generalized Born model of Onufriev, Bashford, and Case with
model 2 radii (igb � 5) (Onufriev et al., 2000) with a nonbonded
cutoff of 25 Å. The MM/GBSA energy of the minimized protein-
compound complex structure was calculated using an infinite
cutoff (999 Å) and a protein dielectric constant of 4. The binding
affinity was computed by MM/GBSA energy of the complex
subtracted from the sum of the MM/GBSA energies of the apo
protein and the isolated compound.

Molecular Dynamics Simulations of
World-Approved 2018 Co-Complexes
Molecular dynamics (MD) simulations were performed for
each of the world-approved 2018 complexes down-selected
from the top 1% of docked compounds (see Supplementary
Table S1). The best scoring single-point MM/GBSA co-
complex structure was selected as a starting conformation
for the MD simulations. The MD simulations were
performed using the pmemd_cuda program in AMBER
(Salomon-Ferrer et al., 2013b). The catalytic dyad (His41-
Cys145) of the main protease was modeled as charged
residues. Charges for the thiolate of Cys145 were obtained
from AM1-BCC calculations (Jakalian et al., 2002). The
General Amber Force Field (GAFF) was used to model the
ligands (Wang et al., 2004). The ligand-protein complex was
solvated into a truncated octahedron of TIP3P water
(Jorgensen et al., 1983), 50 Na+ ions with a neutralizing
number of Cl− ions were added to the solution. The system
was energy minimized with 500 steps of steepest descents and
1,500 steps of conjugate gradients. Initial equilibration was
performed with NVT dynamics at 300 K for 200 ps with
positional constraints (K � 1 kcal/mole•Å2) on the CA
atoms in residues. Electrostatic interactions were treated
using Particle Mesh Ewald (PME) summation (Darden et al.,
1993). The nonbonded interactions were cut off at 8 Å. Further
equilibration was performed with NPT dynamics for 4.8 ns.
The pressure was set at 1 atm using a Monte Carlo barostat
(Salomon-Ferrer et al., 2013b). The positional constraints were
reduced to 0.5 kcal/mole•Å2). Production dynamics was
performed for 200 ns without positional constraints. The
MM/GBSA energies were calculated using MMPBSA.py
(Miller et al., 2012) utilizing the Generalized Born model of
Onufriev, Bashford, and Case (igb � 5) (Onufriev et al., 2000)
on coordinates saved every 20 ps.
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Machine Learning
To assist in determining promising compounds that may have
missed the energy cutoff and complement MM/GBSA rescoring,
we utilized our Structure-Based Deep Fusion Inference models.
We will only briefly describe the Fusion methods, which is
described in detail in a previous publication (Jones et al., 2021).

The Deep Fusion models are based on 3D convolutional
neural network (3D-CNN) and spatial graph (SG-CNN)
models trained independently on ligand-protein co-crystal
structure data from PDBBind 2016 (Liu et al., 2017). Two
types of fusion models are then built on top of the CNN
layers. In the “Mid-Fusion” model, the intermediate CNN
features extracted from each model are combined using a
series of fully connected layers and then used to predict a
ligand-protein binding score. Batch normalization and ReLU-
based non-linearities are applied in each fully connected layer. In
the “Late-Fusion” model, we combined the constituent CNN
models’ predictions rather than their features to produce the final
prediction. We used the two fusion models along with the two
component CNN models to rank compounds for spike and Mpro

inhibition.
We used the 3D configurations from the docking calculations

in our pipeline as input for our structure-based deep learning
methods. Since these models are trained using the protein binding
pocket coupled with the ligand, it was necessary to develop a
protocol to extract binding pockets from the SARS-CoV-2
proteins. We considered multiple volumes for the bounding
box centered on the ligand centroid. We validated our choices
by considering correlation (Pearson and Spearman) of the model
predictions across bounding box size for all structure-based
machine learning methods while additionally considering
consensus with the MM/GBSA rescoring method via Pearson
and Spearman correlation. Our results showed that given these
metrics, the optimal bounding box configuration varied
significantly and suggested that the optimal approach would
be to combine results across all configurations.

Using these methods, we computed rankings of the SARS-
CoV-2 protein inhibitors by scoring each compound for each
target for each candidate bounding box. The predictions were
then averaged across all bounding boxes to produce the final score
for each protein-ligand combination. Then, for each of the
models, the compounds were sorted according to predicted
activity and ranked in descending order. The sum of the
reciprocal rankings was then used to aggregate the rankings
across all methods. The top five unique spike protein
inhibitors along with the top 25 unique Mpro inhibitors were
then chosen for experimental validation.

The pharmacokinetic and safety properties of the 26 million
compounds used in this study were predicted with the ATOM
Modeling PipeLine (AMPL) (Minnich et al., 2020), a data-driven
pipeline for drug discovery, and the Maestro workflow manager
(Di Natale, 2017). Chemical descriptors were computed with
MOE and Mordred from 2D and 3D structures and graph
(Ramsundar et al., 2019) and fingerprint representations. Fully
connected neural networks, graph convolution, and random
forest models were considered, and the best models selected
using AMPL. A total of 30 models with 23 distinct targets

were used for property prediction and are summarized in
Supplementary Table S2. Results for the 9 models trained on
public data are available at https://covid19drugscreen.llnl.gov.

Spike RBD and ACE2-Fc Protein Production
and Purification
The gene for the SARS-CoV-2 spike protein (NC_045512.2) was
codon-optimized for expression in mammalian cells and
subcloned into pcDNA3.4 with the native secretion signal and
a C-terminal His8 tag. The plasmid was transfected into Expi293
cells and cultured for 5 days according to the manufacturer
(ThermoFisher Scientific). Cells were harvested by
centrifugation and the spike-containing culture medium was
sterile-filtered, pH adjusted to 7.4 using PBS, and captured on
a HisTrap Excel (Cytiva) using the Akta Pure FPLC system. The
column was washed with wash buffer (20 mM sodium phosphate,
300 mM sodium chloride, 40 mM imidazole, pH 7.4) and eluted
with wash buffer containing 500 mM imidazole. Fractions
containing spike RBD were pooled and concentrated using a
10 kDa MWCO centrifugal concentrator (ThermoFisher). The
concentrated protein was loaded onto a Superdex 200 Increase
10/300 GL equilibrated with PBS, pH 7.4. Fractions containing
spike RBD were pooled and concentrated as before.

The ACE2-Fc fusion construct was made by subcloning the
ectodomain of the human ACE2 gene (Sino Biological) into the
pCR3-Fc vector, which contains the CH2 and CH3 domains of
human IgG1 as previously described (Negrete et al., 2006). The
ACE2-Fc containing plasmid was transfected into ExpiCHO cells
and cultured for 7 days according to the manufacturer
(ThermoFisher Scientific). Cells were harvested by
centrifugation and the ACE2-Fc-containing culture medium
was sterile-filtered, pH adjusted to 7.4 using PBS, and
captured on a MabSelect PrismA column (Cytiva) using the
Akta Pure FPLC system. The column was washed with wash
buffer (50 mM sodium phosphate, 150 mM sodium chloride, pH
7.4) and eluted with 100 mM sodium citrate pH 3. Fractions
containing ACE2-Fc were pooled and concentrated using a 10
MWCO centrifugal concentrator (ThermoFisher). The
concentrated protein was loaded onto a Superdex 200 Increase
10/300 GL equilibrated with PBS, pH 7.4. Fractions containing
ACE2-Fc were pooled and concentrated as before.

Biolayer Interferometry Competition Assay
for Spike Protein binding Compound
The competitive binding assays were performed by biolayer
interferometry using the Octet RED96 system (FortéBio). All
experiments were performed using 96 well microplates (Greiner
Bio-One) at 30°C with the shaking speed of 1,000 rpm and
samples were diluted in kinetic buffer (PBS containing 0.02%
Tween 20, 0.1% bovine serum albumin). Octet anti-human Fc
(AHC) biosensors were pre-equilibrated in biosensor buffer
[kinetic buffer (KB) containing 10 µg/ml biocytin] for 30 min
before use in experiments. SARS-CoV-2 RBDwas pretreated with
candidate compounds for 30 min prior to assay start. Human
ACE2-Fc protein was immobilized on the surface of the AHC
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biosensor tip and followed by a baseline step of 120 s in KB.
ACE2-captured biosensors were immersed in wells containing
different concentrations (5–100 µM) of small molecule and
SARS-CoV-2 RBD for 180 s followed by dissociation step for
200 s. The raw data was analyzed using Octet Data Analysis High
Throughput software (FortéBio). Binding sensorgrams were
aligned at the beginning of the binding cycle, double reference
subtracted and Savitzky Golay filtered data were globally fit to a 1:
1 binding model. A total of 32 compounds (see Supplementary
Table S3) were tested against the RBD. All compounds were
purchased from TargetMol at 97% purity or higher and used
without further purification.

Mpro and FRET Substrate Protein
Production and Purification
The gene for the SARS-Cov-2Mpro (fromGenbankMN908947.3)
was codon-optimized for expression in E. coli and subcloned into
a pET-32 vector, with a N-terminal GST tag connected by an
auto-cleavage sequence and a C-terminal His6 tag. The plasmid
was transformed into BL21 DE3 E. coli and streaked onto
ampicillin plates. Individual colonies were picked and used to
inoculate 50 ml starter cultures, which were grown in lysogeny
broth (LB) containing ampicillin overnight at 37°C. The 50 ml
starter cultures were then used to inoculate 1 L of LB, which was
incubated at 37°C until OD � 0.6 to 0.9, at which point IPTG was
added to a final concentration of 400 µM and cells were incubated
with gentle shaking at 16°C overnight. Cells were then pelleted,
flash frozen in liquid nitrogen, and stored at −80°C. The pellet
from 100 ml of culture was thawed, resuspended in 10 ml
BugBuster master mix (Millipore Sigma), and gently inverted
at 4°C for 1 h to lyse. The insoluble fraction of the lysate was then
spun down and the supernatant was sterile-filtered prior to
capture on a Ni NTA column. The lysate was diluted with
Buffer A (20 mM Tris, 100 mM NaCl, 5 mM Bme, pH
8.0), and Ni NTA Buffer B (20 mM Tris, 100 mM NaCl, 5 mM
Bme, 500 mM imidazole, pH 8.0) was added to a final
concentration of 10 mM imidazole. The lysate was then loaded
onto a 5 ml HisTrap Ni NTA column (GE Healthcare) using an
FPLC system (Bio-Rad), and eluted with Ni NTA Buffer B.
Fractions containing the eluted protein were pooled and spin-
exchanged into Buffer A using 10 kDa MWCO Amicon Ultra
centrifugal filters (Millipore Sigma). The C-terminal His6 tag was
then cleaved off by incubating the concentrated protein with
30 µg of N-terminally His-tagged HRV-3C protease (Sigma-
Aldrich) overnight at 4°C. The digested protein was applied
again to the Ni NTA column, and the flowthrough was
collected and used directly for ion exchange chromatography.

The flowthrough was loaded onto a 5 ml High Q anion
exchange column (Bio-Rad) and proteins were eluted with a
linear gradient of IEX Buffer B (20 mM Tris, 1 M NaCl, 5 mM
Bme, pH 8.0). To our surprise, the Mpro was found in the
flowthrough rather than the eluted fractions. The flowthrough
was collected, buffer exchanged into storage buffer (20 mM Tris,
150 mM NaCl, 1 mM TCEP, pH 7.8), flash-frozen, and stored at
−80°C. Purity appeared to be >99% by SDS-PAGE and staining
with SimplyBlue SafeStain (ThermoFisher).

The fluorescence resonance energy transfer (FRET)-based
Mpro substrate was cloned into pET bacterial expression vector
starting from a pcDNA.31-Clover-mRuby2 plasmid with a cloned
linker sequence FGAARAVLQSGFRAADP between the Clover
and mRuby2 FRET protein pairs. The cloned linker sequence is a
protease substrate and cleaves the peptide backbone between
residues QS. pcDNA3.1-Clover-mRuby2 was a gift from Kurt
Beam (Addgene plasmid # 49089; http://addgene.org/49089;
RRID:Addgene_49089). The kanamycin-resistant pET plasmid
was transformed into BL21(DE3) cells (NEB) and cultures were
induced with IPTG (0.5 mM) at 15°C overnight with gentle
shaking (150 RPM). The FRET substrate was subsequently
purified by standard Ni-NTA affinity techniques, as
described above.

Mpro FRET-Based Activity Assay
Mpro inhibitor screening and half maximal inhibitory
concentration (IC50) analysis were performed in 384 well assay
plates, in 25 ml final volumes using 1875 ng of substrate and
375 ng of Mpro diluted in assay buffer (0.0033% Triton-X100,
50 mM Tris-HCl, 150 mM NaCl, pH 7.4). All compounds were
diluted with DMSO to volumes of 2.5 μl to obtain a 10% final
concentration of DMSO in the 25 μl reaction. Percent cleavage of
the FRET substrate was measured on a Tecan Spark®.
Fluorescence emission at 620 nm was measured for each well
using excitations at 560 nm (excite mRuby2, emit mRuby2), and
485 nm (FRET from Clover to mRuby2). The FRET signal was
normalized to the fluorescence of mRuby2 for each well. All
assays were run in technical replicates and averaged. This data
was then normalized to the average of the -protease wells (16
replicates per plate). The data was then analyzed in GraphPad
Prism 9, wherein the “Normalize” tool was used to set the %FRET
values for the +protease control to 0 and the–protease controls to
1.0. Both protease controls utilized 16 replicates per plate. The
Z-factor is calculated using the + and -protease control wells
(Zhang et al., 1999). This sets the min/max signals for
normalization. All wells had DMSO, as compounds were in
DMSO. Complete reactions were run on SDS-PAGE gels to
assess protein cleavage independently of FRET measurements.
Gel densitometry analysis (analyzed using ImageJ) justified the
100 and 0% cleavage in the +protease and –protease controls,
respectively, at the time points used for analysis. In each
experiment, measurements were taken at several time points,
however only end-point data (at which time the +protease control
reactions have gone to completion) has been presented herein, at
about 4 h post addition of protease. A total of 91 compounds (see
Supplementary Table S4) were tested against Mpro. All
compounds were purchased from TargetMol at 97% purity or
higher and used without further purification.

Viral Infection Assays
A pseudotyped, replication-competent vesicular stomatitis virus
(VSV) expressing the SARS-CoV-2 spike gene (VSV-SARS2) in
place of its own VSV-G gene was provided by Dr. Sean Whelan
(Case et al., 2020) and used to screen compounds predicted to
target the SARS-CoV-2 spike. VSV-SARS2 also expresses GFP
allowing for rapid analysis of infection based on reporter
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expression under BSL-2 containment. Initial drug screening was
performed by incubating the compounds at 10 µM with VSV-
SARS2 or VSV-GFP (VSV) as a specificity control for 30 min
prior to their addition to Vero cells seeded in a 96-well plate.
Infection was performed for 1 h with a multiplicity of infection
(MOI) of 0.5 for VSV-SARS2 and 0.1 for VSV. The infection
media was subsequently removed, replaced with fresh media and
fluorescent protein measurements were collected 18–24 h post-
infection. Down-selected compounds were subjected to
IC50 analysis using dilutions of drug starting at 100 mM
concentrations following a similar infection protocol against
VSV-SARS2 under BSL-2 containment or recombinant SARS-
CoV-2 expressing the mNeon reporter gene (provided by Dr. Pei
Yong Shi) (Xie et al., 2020) under BSL-3 containment. The
compounds were screened starting at 100 μM using an 8-
point, 1:2 dilution series with infections being performed at a
MOI of 0.2. In addition, Presto-Blue cytotoxicity assays were
performed using a similar dilution series in uninfected cells to
determine relative cell viability to drug-only treatments.
Fluorescent values were background subtracted using no-
infection controls and normalized to no-treatment infection
values. IC50 curves and values generated using GraphPad Prism 9.

RESULTS AND DISCUSSIONS

Computational Predictions
Molecular dynamics simulations were performed on both the
RBD of the spike protein and the Mpro to identify alternative
conformations from the crystal structure (PDB, 6M0J) (Lan et al.,
2020). For the RBD structure, a total of twelve 100 ns simulations
were performed (aggregate 1.2 µs of dynamics). The structures
from the last 20 ns from each simulation was collected and
clustered. There were only slight changes in the conformation
of residues that would form interactions with ACE2. The most
variable region within RBD was located at the opposite end of the
protein relative to the ACE2 binding sites. The stability of the
ACE2 binding regions likely is not surprising given the high
binding constant of RBD to ACE2 and relatively small contact
region (Lan et al., 2020). The dynamics of the Mpro dimer shows
the residues near the active site are stable except for the loop

formed by residues Cys44-Pro52 (Bzowka et al., 2020). This loop
shifts position in both monomers and moves the associated
residues further from the active site.

We identified two binding sites within the RBD of the spike
protein and within the Mpro proteins binding sites as shown in
Figure 1. In the RBD, two sites were chosen that are proximal to
critical residues that bind human ACE2. Both sites in the RBD are
formed by stable loop areas. The first site is in the proximity of a
beta-turn formed by residues 501–505 and denoted spike1 below.
This region forms several interactions with ACE2 and the
corresponding residues in the SARS-CoV-2 spike protein form
the major recognition site for neutralizing antibodies. We used
the crystal structure (PDB, 6M0J) for docking to this site since the
protein conformations sampled from MD simulations did not
significantly differ from the crystal structure. The second site is
stabilized by a disulfide (Cys480-Cys488) that connects the loop
at the end of the receptor-binding motif (RBM) and denoted
spike2 below. These two regions include the two key mutations of
the variants of concern–E484K and N501Y (Voloch et al., 2020;
Fiorentini et al., 2021). During the MD simulations, it was
observed that the sidechains of residues Lys458 and Glu471
become solvent-exposed. In the crystal structure, these two
residues are in close proximity and divide a potential binding
site into two small sites. In the MD structure, these residues are
solvent-exposed and a single larger binding site is present
(Figure 1B). We used the MD structure for docking to this
site. We limited our drug discovery efforts on the spike protein to
two sites in the proximity of the RBD-ACE2 interface where the
small molecule would directly interfere with formation of the
protein complex. There are likely other drug binding sites within
the spike protein that can affect ACE2 binding (Olotu et al., 2020;
Verkhiver, 2020) but determining their locations experimentally
is non-trivial.

The main protease is a cysteine protease with a catalytic dyad
consisting of Cys145-His41. To accommodate its natural
polypeptide substrates, a large gorge is present on the surface
of the enzyme. The covalent inhibitor N3 is based on the
tripeptide Ala-Val-Leu and reacts with the thiolate of Cys145.
Two crystal structures of Mpro have been solved recently. The
6LU7 crystal structure was solved with the covalent inhibitor N3
in the active site (denoted protease1 in the text) (Jin et al., 2020).

FIGURE 1 | Panel (A) shows the docking site on the RBD of the spike protein in red (by residues 501–505) that are at the interface with ACE2 (show in green) and
denoted spike1 in the text. A smaller secondary binding site (denoted spike2) in the spike protein in receptor binding motif domain was detected and used for docking
studies (B). Panel (C) and (D) show the binding site of the Mpro with the N3 inhibitor removed (6LU7) is protease1 and the apo protein (6Y84) is protease2. The S2 binding
pocket is below the sidechains of Met49 and Gln189 and is not visible in the picture.
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A second structure 6Y84 (denoted protease2 in the text) was
solved as an apo protein in a different space group relative to
6LU7 (Owen et al., 2020). This crystal structure’s active site differs
from 6LU7 with N3 removed. The sidechains of Met49 and
Met165 change positions depending upon having N3 present.
The shifts in positions of these methionine residues enlarge the
active site. In the MD simulations, Met49 shifts position away
from the active site to also enlarge this region.We chose to use the
crystal structure of 6Y84 as another site for docking since the
changes relative to 6LU7 are small but the positional change in
Met49 changes/enlarges the active site. In Figures 1C,D we show
the two conformations of the active site, one from each of these
crystal structures of Mpro, were used for our docking study.

We docked over 26 million compounds to these four sites
(two spike sites and two Mpro structures/conformations) to find
possible binders that could either interfere with protein binding
(RBD of spike protein) or inhibit substrate binding (Mpro).
Although all the compounds docked to these four sites are
supposed to be commercially available or can be synthesized, to
expedite experimental testing we will focus our discussion on
the world-approved 2018 set. The computational results on the
other 26 million compounds docked to the four sites are freely
available online at https://covid19drugscreen.llnl.gov. The
docking score energy cutoff of–7.5 kcal/mole reduced the
number of compounds to 136 in the spike1 site and 50 in
the spike2 site in the RBD of the spike protein. The larger
binding site of the main protease had a greater number of
ligands for further testing, 916 for the protease1 site of the main
protease2 site. All these compounds were interrogated for
activity using our ML Fusion model and MM/GBSA single
point calculations to identify the most promising
compounds. Each compound bound to its respective site was
ranked from highest to lowest by energies for Vina docking
score, MM/GBSA energy, and Fusion model. The final ranking
of the compounds in their respective sites were inverted (i.e., 1/
rank) and weighted by 1.2•(MM/GBSA) + 1.0•(Fusion model)
+ 0.8•(Vina docking). We believe the physics-based MM/GBSA
to be our most accurate method and molecular docking the least
predictive method relative to experiment. Because of the modest
number of compounds remaining after the energy cutoff,
molecular dynamics simulations were performed on all the
ligand-protein complexes to obtain an average MM/GBSA
energy and to investigate whether the protein dynamics were
altered by formation of the complex.

Disruption of RBD binding to ACE2 would prevent infection
by SARS-CoV-2. Docking to the spike1 site on the RBD puts the
ligand in direct conflict with ACE2 binding when the protein
complex is formed. A relatively small number of compounds were
able to make the MM/GBSA rescoring energy cutoff for further
molecular dynamics simulations since this binding site is
relatively shallow. 134 compounds were simulated in the
spike1 site using their five lowest-energy docking poses and
their average MM/GBSA was determined from the ligand-
protein conformations from the MD trajectory. The root mean
squared deviation (RMSD) of the protein backbone from the
crystal structure was used as an additional criterion to determine
the stability of the ligand-protein complex. To successfully

disrupt formation of the protein complex, the compounds
must have a low MM/GBSA binding energy and be stable
within the binding site. Twenty-eight compounds had an
average MM/GBSA below −30 kcal/mole and an RMSD 4 Å or
less (recentering and was only performed on the protein) for at
least one of their simulations. Some compounds on this list that
are of additional interest additional interest are accolate,
tasosartan, and olmesartan medoxmil. Accolate is used to
control and prevent symptoms of asthma such as wheezing
and shortness of breath. Tasosartan is an angiotensin II
receptor agonist. Olemsartan medoxomil is an angiotensin II
receptor blocker. Several studies have pointed to improved
outcomes when COVID19 patients have used angiotensin II
receptor blockers/inhibitors (Meng et al., 2020; Sanchis-Gomar
et al., 2020; Zhang et al., 2020).

The spike2 binding site is located in the receptor binding
motif (RBM) of the RBD. This binding site does not directly
interfere with formation of a protein-protein complex, however
it is in close proximity with a group of aromatic residues
(Phe456, Tyr473, and Tyr489) that form interactions with
ACE2. We speculated that having a bound compound
proximal to these residues might disrupt the positioning of
these aromatic residues and affect ACE2 binding. From an
initial 134 compounds, only 50 compounds had a MM/GBSA
below −30 kcal/mole and an RMSD less than 4 Å during at least
one of the simulations. Interestingly, several of the best binding
compounds are diuretics or metabolites (glucuronides). The
considerable number of polar and charged residues in the
vicinity makes this a favorable environment for the
glucuronic acid.

In docking calculations of the main protease, two different
crystal structures were utilized for docking because the
sidechain positions of Met49 and Met165 in the active site
vary due to one structure had the ligand N3 (6LU7) present
while the other was empty (6Y84). Although the shape of the
active site differs, there were 535 compounds that were common
to both structures out of the more than 900 compounds that
made the initial −7.5 kcal/mole single point energy cutoff for
each protein structure. Since there is no indication which
structure is preferred, the compounds were ranked by the
sum of their average MM/GBSA energies. Several of the top-
scoring compounds that bind to both active site conformations
are described here. Cefoperazone is a semi-synthetic beta-
lactam antibiotic. Irinotecan is a plant alkaloid that acts as a
topoisomerase inhibitor used to treat colon and small-cell lung
cancers. Its relatively rigid structure allows it to span the length
of the active site. Rutin is a citrus flavonoid consisting of
quercetin and the disaccharide rutinose and used as an
alternative medicine. Several compounds are protease
inhibitors or metabolites of drugs. AFN911 is a metabolite of
imatinib (benzylic hydroxylation). Losartan n2-glucuronide is
the metabolite of losartan (an angiotensin II receptor
antagonist). Saquinavir is an antiretroviral drug (protease
inhibitor) used to treat HIV/AIDS. Teniposide is a
topoisomerase II inhibitor used for treatment of several
childhood cancers. Cabozantinib is a tyrosine kinase
inhibitor that is used as mediation for medullary thyroid
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cancer and renal cell carcinoma. Intriguingly, the angiotensin II
receptor blocker olmesartan medoxomil was also predicted to
bind well to the spike protein. The compounds rutin, losartan,
imatinib, saquinavir, and tenposide have been seen in other
computational screens (Bello et al., 2020; Huynh et al., 2020;
Pant et al., 2020; Nejat and Sadt, 2021). Losartan and imatinib
have undergone clinical trials with COVID19 patients (Aman
et al., 2021; Puskarich et al., 2021). Most of the metabolites

found in the computational screens unfortunately were not
available for purchase.

Experimental Validation
Experimental testing of the predicted binders for Mpro was
performed by utilizing a fluorescence resonance energy
transfer (FRET) based activity assay (Figure 2A). This FRET
assay consisted of a substrate composed of two fluorescent

FIGURE 2 | Predicted Mpro drug inhibitors screened using a FRET-based protease assay with five down-selected hits. (A) A schematic of the FRET-based SARS-
CoV-2 main protease assay is shown along with the hit identification overview. (B) Purified Mpro and FRET substrate proteins were incubated in the presence of 100 μM
of drugs from a library of computationally predicted Mpro inhibitors. No drug, no protease, and Ebselen were used as controls to calculate the Z-factor for each plate and
an average score is displayed above. Red dots indicated no drug (0% inhibition) or no protease (100% inhibition) conditions, while the black dots are the ordered
percent inhibition values. (C) Identified hits from the primary screen were re-screened at 100 μM and the FRET values were normalized as percent inhibition values in the
bar graph. Experiments were performed in duplicate and the presented results are the average values. (D) Verified compounds form rescreening were subjected to half-
maximal inhibitory concentration (IC50) analysis. Presented values are averaged from technical duplicate experiments. Black lines and values represent normalized data
from FRET values while the red lines and values represent normalized data from gel electrophoresis (Supplementary Figure S1) and densitometry.
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proteins, Clover and mRuby2, linked through aMpro recognition
sequence. Supplementary Figure S1 shows the advantage of a
protein-based substrate over standard peptide-based methods
was to allow for verification of FRET values by independent,
FRET-independent gel electrophoresis. The assay was optimized
using a positive control compound called Ebselen, a low
micromolar Mpro inhibitor (Jin et al., 2020). Supplementary
Table S4 shows the results from our initial screen, from which, 19
compounds were down-selected and tested in a secondary screen
where four compounds were found to completely inhibit the
activity of Mpro at 100 μM concentrations and are shown in

Figure 2C. These identified compounds included candesartan
cilexetil, FAD, tigecycline and tetracycline (see Figure 3).
Candesartan cilexetil is an angiotensin II receptor antagonist
prodrug. Flavin adenine dinucleotide is a redox-active coenzyme.
Tigecycline is a glycylcycline antibiotic and closely related to
tetracycline. These were the only two compounds that bind Mpro
and had a similar molecular structure. In Figure 2Dwe show that
these four compounds were relatively weak inhibitors of Mpro
compared to Ebselen as the IC50 values were calculated to be
67.4 µM for candesartan cilexetil, 42.5 µM for FAD disodium,
21.5 µM for tigecycline, and 20.8 µM for tetracycline. The IC50

FIGURE 3 |Molecular of structures for compounds that have a repressive effect on some aspect of the virus activity: (A) candesartan cilexetil, (B) flavin adenosine
dinucleotide, (C) lapatinib, (D) tetracycline, (E) tigecycline, (F) imatinib, (G) icotinib, (H) adapalene, and (I) gestrinone.
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values were comparable to gel electrophoresis-based analysis of
the cleaved substrate products with the exception of FAD as
shown in Figure 2D and Supplementary Figure S1. Importantly,
candesartan cilextetil has been previously identified as a Mpro
inhibitor with a IC50 of 2.8 µM (Li et al., 2020) although the
fluorogenic substrate used was slightly shorter than the substrate
utilized in this study. Additionally, candesartan cilexetil has
inherent fluorescent properties that make determining its
cleavage inhibition difficult.

The compounds computationally predicted to target the
SARS-CoV-2 spike protein RBD were screened by
pseudotyped virus assay and biolayer interferometry
competitive assay (BLI). Compounds were tested for their
ability to inhibit ACE2-spike binding via BLI competitive
assays on Octet RED96 platform (Forte Bio). In this assay,
human ACE2-Fc was immobilized on AHC biosensors and
binding to soluble SARS-CoV-2 RBD was detected. The RBD
was pre-treated with candidate compounds at increasing
concentrations prior to assay. In Figure 4, we show an
inhibitor concentration-dependent decrease in ACE2-RBD
binding in samples pretreated with adapalene, imatinib,

lapatinib, gestrinone, and icotinib. Adapalene is a topical
retinoid used to treat acne. Icotinib and lapatinib are
inhibitors of the tyrosine kinase EGFR. Imatinib is used to
treat chronic myelogenous leukemia (CML). Gestrinone is a
synthetic steroid used to treat endometriosis. An imatinib
metabolite (AFN911) has previously been identified in this
study as also a possible Mpro inhibitor.

In parallel, the computationally-predicted spike binding
compounds were screened using a cell-based infection assay.
The spike compound library set was screened against a BSL-2
surrogate virus encoding the SARS-CoV-2 spike protein that
mimics ACE2-dependent SARS-CoV-2 fusion and cell entry
(Case et al., 2020). The replication-competent pseudotyped
virus, termed VSV-SARS2 (see Methods), expresses a GFP
reporter upon cell infection and replication that was used as
an indicator of infection in the drug screen. From the initial
library set of 32 compounds, only imatinib and lapatinib were
found to inhibit VSV-SARS2 at 10 μM at ∼50% or greater efficacy
as shown in Figure 5A and Supplementary Table S3. To check
for specificity, the compounds were screened against VSV and
none were found to have a significant impact on infection thus

FIGURE 4 | Inhibition of ACE2-RBD binding after pre-treatment with 50 μM compound measured by Biolayer interferometry.
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indicating the two hits were spike-dependent. The IC50 values of
imatinib and lapatinib were 6.9 and 7.1 μM against VSV-SARS2,
respectively (Figure 5B).

Finally, to further validate the anti-viral effects of identified
Mpro and spike hits, the compounds were evaluated under BSL-3
containment using a SARS-CoV-2 reporter virus expressing
mNeon (Xie et al., 2020). Figure 6 shows the plotted IC50
and half-maximal cytotoxicity concentration 50 (CC50) graphs
for four compounds where virus inhibition was not simply due to
the cytotoxicity induced by the drug alone. Imatinib, adapalene
and candesartan cilexetil had IC50 values of approximately
10 μM against SARS-CoV-2 in a cell-based assay, while
lapatinib had an IC50 value of 31.1 µM. The best scoring
conformation of these four compounds with their target
protein is shown in Figure 7. Comparatively, candesartan
cilexetil had the highest selectivity index of all four
compounds as its CC50 value was the only one greater than
the limit of the assay (>100 μM, Figure 6). Similar results for
candesartan cilexetil were obtained against Vero-E6 cells
(Alnajjar et al., 2020). Interestingly, candesartan cilexetil is
only effective as the prodrug. Candesartan cilexetil is rapidly
ester hydrolyzed in the gastrointestinal tract into the angiotensin
II receptor antagonist candesartan. Candesartan was tested in the
FRET-based activity assay and found to have no effect. The active
agent against the virus is either the intact prodrug or just the
cyclohexyl-1-hydroxylethyl carbonate is required. Additionally,

to our knowledge, this is the first time the retinoid adapalene has
been shown to be effective against SARS-CoV-2.

CONCLUSION

The COVID19 pandemic is the worst in the last century and has
highlighted the critical need for a rapid response for identifying
inhibitors to combat biological outbreaks before they become
unmanageable. Leveraging high performance computing, we
combined molecular simulations and machine learning to
identify compounds that could possibly bind to the selected
protein targets. Yet, computational identification of possible
compounds is only the first step to finding an inhibitor. The
viability of these selected compounds to inhibit protein function
is critical and must be tested in vitro and in vivo. Through
experimental binding assay studies between the identified
compounds and the selected proteins and virus assays, four
compounds (candesartan cilexetil, imatinib, lapatinib, and
adapalene) have been shown to inhibit SARS-CoV-2 virus
in vitro. Interestingly, compounds predicted to bind to the
spike protein affected the virus more strongly than the
predicted Mpro inhibitors even though the binding site of
Mpro is deeper and better defined than the spike binding site.
Imatinib, adapalene and candesartan cilexetil had IC50 values of
approximately 10 μM against SARS-CoV-2 in an in vitro cellular

FIGURE 5 | Predicted spike drug inhibitors screened using a VSV-SARS2 infection assay reveals two promising hits. (A) Individual drugs from the library set were
used at 10 μM to treat GFP reporter viruses, VSV-SARS2 and VSV, for 30 min prior to infection of Vero cells at 0.5 MOI or 0.1 MOI respectively. The infection media was
replaced with fresh media at 1 h post-infection and fluorescent reporter values were measured the next day. (B) Half-maximal inhibitory concentration (IC50) curves and
values were obtained for Imatinib (compound 20) and Lapatinib (compound 19) using the same VSV-SARS infection assay performed for library screening. All data
were normalized as percent infection or inhibition for drug-treated conditions vs. no-treatment control. The values are means, with error bars displaying standard
deviation between the triplicate wells.
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FIGURE 6 | Percentage inhibition and percentage cytotoxicity graphs form SARS-CoV-2 infection studies that show large therapeutic indexes in three hits. Varying
concentrations of imatinib, lapatinib, and adapalene were used to treat virus for 30 min prior to infection in Vero cells, while candesartan cilexetil was added directly to
cells without pre-treatment to virus. Infections were performed using SARS CoV-2mNeon at an MOI of 0.2. At 1 h post-infection, the media was removed and replaced
with fresh media. Fluorescent reporter values were recorded 18 h post-infection. Similarly, Vero cells were treated with varying concentrations of indicated drugs,
incubated for 18 h prior to analysis by Presto-Blue assays to assess cytopathic effect. Data were normalized to percent inhibition or percent cytotoxicity for drug-treated
cells vs. no-treatment control. The values are means, with error bars displaying standard deviation between the triplicate wells. Half-maximal inhibitory concentration
(IC50) curves and values are represented in black while half-maximal cytotoxicity concentration 50 (CC50) curves and values are represented in red.

FIGURE 7 |Best-scoring pose from docking for (A) lapatinib, (B) imatinib, and (C) adapalene to the receptor binding domain of the spike protein (spike1 site). Panel
(D) shows the best-scoring dock pose for candesartan cilexetil to Mpro. Labels identify protein residues neighboring the docked compounds.
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infection assay, but the prodrug candesartan cilexetil shows the
most promise as its selectivity index is greater than the limit of
the assay.
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An Extended C-Terminus, the Possible
Culprit for Differential Regulation of
5-Aminolevulinate Synthase Isoforms
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5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-
dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in
metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and
is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the
key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally
positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational
studies demonstrated that the overall enzyme reaction is limited by subtle conformational
changes of a hairpin loop gating the active site. These findings, coupled with structural
information, facilitated early prediction of allosteric regulation of activity via an extended
C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently
supported by the discoveries that mutations in the extended C-terminus of the erythroid
ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not
by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular
modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate
by modulating conformational flexibility of the active site loop. However, the precise identity
of any such molecule remains to be defined. Here we discuss the most plausible allosteric
regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures
and suggest how the mystery of the mechanism whereby the extended C-terminus of
mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be
unraveled.

Keywords: 5-aminolevulinate synthase, pyridoxal 59-phosphate, heme regulatory motif, allostery, redox sensor,
porphyrin, regulation, AlphaFold

INTRODUCTION

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) catalyzes the initial and key regulatory step of heme
biosynthesis in metazoa, fungi, and the α-subclass of proteobacteria (Stojanovski et al., 2019; Taylor
and Brown, 2022). Pyridoxal 5′-phosphate (PLP) is an essential cofactor for the reaction, which
involves the condensation of the α-carbon of glycine with the succinyl group of succinyl-Coenzyme
A (SCoA) to produce 5-aminolevulinate (ALA), carbon dioxide, and Coenzyme A (Hunter and
Ferreira, 2011) (Supplementary Figure S1). In metazoa and fungi, ALAS is translated as a precursor
with an N-terminal signal sequence that codes for import into the mitochondrial matrix. Following
import, the signal sequence is cleaved, and the mature enzyme has access to the substrate SCoA,
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which is produced in mitochondria as part of the citric acid cycle.
The requirement of SCoA as a substrate integrates heme
biosynthesis with oxidative respiration, and as a result the two
pathways are synchronized under normal healthy conditions.
ALAS activity is additionally synchronized with cellular iron
transport as porphyrin biosynthesis and iron transport unite
in the final step of heme production wherein the enzyme
ferrochelatase inserts ferrous iron into protoporphyrin IX to
yield heme (Kafina and Paw, 2017; Poli et al., 2021). As a
result of the central position of ALAS in these fundamental
biochemical pathways ALAS activity is highly regulated and
new modes of ALAS regulation continue to be discovered
(Tanimura et al., 2016; Zhang et al., 2017; Liu et al., 2018;
Peoc’h et al., 2019; Bailey et al., 2020; Nomura et al., 2021;
Rondelli et al., 2021).

Vertebrate genomes encode two chromosomally distinct
copies of the ALAS gene: ALAS1, which acts as a

“housekeeping” gene and initiates heme biosynthesis in all
cells for production of cytochromes and other heme-binding
proteins, and ALAS2, which is expressed only in developing
erythrocytes and produces, almost exclusively, the much larger
quantities of heme required for hemoglobin formation (Riddle
et al., 1989; Peoc’h et al., 2019). The catalytic cores of human
ALAS1 and ALAS2 are 75% identical and 94% similar in terms
of amino acid sequences, suggesting gene duplication and
similar enzymology despite the different metabolic
functionalities of the gene products. The high degree of
similarity in the catalytic cores of ALAS1 and ALAS2 is
lessened in the extended N- and C-termini of the enzymes
(Supplementary Figure S2) but the precise extent to which the
mature mitochondrial enzymes might be differentially
regulated is still an open question. The monomeric primary
structures of prokaryotic and vertebrate ALASs are illustrated
schematically in Figure 1A.

FIGURE 1 | (A). Schematic representation of ALAS monomeric structure. In vertebrate species the ALAS gene is duplicated, and the protein catalytic core (light
blue) observed in prokaryotes is bracketed by extended N- and C-termini. The mitochondrial targeting sequence is illustrated in light purple, while the intrinsically
disordered N-terminal extension (IDR) is in magenta, and the C-terminal extension is in dark red. Five conserved Heme Regulatory Motifs (HRMs, colored in cyan) are
conserved in vertebrate ALAS isozymes, as is a CXXC motif (yellow) in the extended C-terminus. The position of the active site lysine residue that binds PLP in the
active site is denoted by a white line, and the loop that gates the active site is represented by a dark blue line. (B). The position corresponding to the heme-binding site in
C. crescentus ALAS modeled into mammalian ALAS2. AlphaFold-predicted structures for human (light blue and gold; AlphaFold entry P22557) and murine (dark blue
and gold; AlphaFold entry P08680) ALAS2were aligned with R. capsulatus ALAS crystal structure (PDB code 2bwn; not shown) using Pymol. Themodeled site depicted
in yellow here is not expected to bind heme in mammals due to evolutionary divergences, and this site is illustrated solely for perspective on its spatial relationship to the
mammalian ALAS2 active site loop (purple), the C-terminal extension (shades of gold), and HRMs 4 and 5 (red). Additionally, the CXXC motifs are in green with the
cysteines shown as sticks.
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The ALAS-catalyzed reaction not only represents the first
committed step of heme production, but also the rate-
determining step of porphyrin biosynthesis, as most
poignantly evinced by the consistent observation that
exogenous ALA administration to mammalian cells leads to
rapid protoporphyrin IX accumulation (Hunter and Ferreira,
2011; Nokes et al., 2013). This is clinically important because
it means aberrations in ALAS activity can change the overall rate
of porphyrin production and cause porphyrin biosynthesis to
decouple from oxidative respiration and iron transport, resulting
in metabolic imbalances (Taylor and Brown, 2022). For instance,
certain liver toxins, such as allylisopropylacetamide, have long
been known to elevate ALAS1 activity beyond the rate of iron
transport, resulting in porphyrin accumulation and chemically
induced porphyria (Goldberg and Rimington, 1955; Granick,
1966). Conversely, genetic defects in ALAS2 that lead to lower
enzymatic activity have been identified as the basis for X-linked
sideroblastic anemia, a condition characterized by accumulation
of iron in erythroblast mitochondria (Abu-Zeinah and DeSancho,
2020). Remarkably, however, loss-of-function mutations are not
the only cause of ALAS2-associated metabolic disorder. A limited
number of mutations causing premature truncation or
frameshifts in the extreme C-terminal extension of ALAS2
lead to variants with increased catalytic efficiencies and a
disorder known as X-linked protoporphyria (Whatley et al.,
2008; Ducamp et al., 2013; Wang et al., 2020). Interestingly,
mutations in ALAS1 have not been associated with any disorder
(Stenson et al., 2003).

5-AMINOLEVULINATE SYNTHASE IS A
FOLD TYPE I PYRIDOXAL
59-PHOSPHATE-DEPENDENT ENZYME
WITH A DISTINCT ACTIVE SITE LOOP

PLP-dependent enzymes are structurally classified into seven
different fold types, of which fold type I, sometimes referred
to as the transaminase family, is by far the largest, with over 170
different Enzyme Classification numbers currently assigned
(Percudani and Peracchi, 2009). Like other members of the
PLP-dependent fold type I family ALAS is a homodimer with
the active site buried near the center of the enzyme at the interface
between the two monomers, with residues from each monomer
being critical for substrate recognition (Brown et al., 2018;
Stojanovski et al., 2019). Even though fold type I PLP-
dependent enzymes have very little overall primary sequence
similarity the active sites are highly conserved and facilitate
phylogenetic analyses demonstrating function-based
evolutionary relationships (Catazaro et al., 2014). It is thus
informative to compare the structure of aspartate
aminotransferase (AATase), which has been extensively
characterized and is generally considered to be a model for the
fold type I family (Toney, 2014), with the ALAS catalytic core, as
seen in Supplementary Figure S3. The aligned structures of
AATase in the open and closed conformations reveal the
structure collapses inwards towards the PLP cofactor upon

substrate binding (McPhalen et al., 1992a; McPhalen et al.,
1992b) A short active site loop (green and gold in
Supplementary Figure S3A) closes inward over the active site
cleft upon substrate binding, culminating in an arginine residue
that is highly conserved in fold type I enzymes, and functions to
form an ionic bond with the carboxylate group of the amino acid
substrate (Tan et al., 1998; Liang et al., 2019). In AATase, this
arginine is one of only two amino acids that has been designated
as a “closure-inducing residue”, meaning it is essential for
substrate-induced conformational change from the open to the
closed state in which catalysis is optimized (Hayward, 2004).
Comparison of these structures to analogous structures of
Rhodobacter capsulatus ALAS (Supplementary Figure S3B)
reveals that in ALAS substrate-induced conformational
changes are largely limited to the active site loop, which has
become longer and is turned more inward over the active site cleft
relative to AATase.

Detailed mutational, kinetic, and molecular modeling studies
have found that the rate of ALAS catalysis, and hence the rate of
porphyrin production, are controlled by the slow opening of this
active site loop, which allows the products to rapidly dissociate
from the enzyme (Hunter and Ferreira, 1999; Hunter and
Ferreira, 2011; Hunter et al., 2007; Stojanovski et al., 2019).
This rate-dependence on conformational dynamics would
seem to be an ideal situation for allosteric feedback inhibition
of the heme biosynthesis pathway via a mechanism wherein
effector binding to ALAS would modulate the active site loop
conformational dynamics, as we previously suggested (Hunter
et al., 2007).

5-AMINOLEVULINATE SYNTHASE
STRUCTURAL FEATURES REVEAL
IMPORTANT CLUES TO THE POSSIBILITY
OF ALLOSTERIC REGULATION

Feedback inhibition of ALAS activity by heme has been known
for over 50 years (Granick, 1966), and since then this regulation
has been found to occur at a variety of levels, including gene
transcription (Yamamoto et al., 1982), transport into
mitochondria (Lathrop and Timko, 1993; Munakata et al.,
2004), and targeting for degradation (Cable et al., 1996;
Yoshino et al., 2007; Tian et al., 2011; Nomura et al., 2021).
However, as of this writing direct binding of heme leading to
allosteric feedback inhibition of ALAS has only been reported for
the enzyme from the prokaryote Caulobacter crescentus, in which
axial heme binding by H340 and C398 near the C-terminus of the
enzyme causes PLP dissociation (Ikushiro et al., 2018)
(Figure 1B). While the authors reported that these residues
are conserved in some other α-proteobacteria and did confirm
that recombinant R. capsulatus ALAS could also be isolated as a
mixture of PLP- and heme-bound forms, these residues are not
conserved in eukaryotes, so if allosteric feedback inhibition of
ALAS in higher species occurs it must be via a different site. The
recently resolved crystal structure for human ALAS2 revealed
that the extended C-terminus might act as an autoinhibitory
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element by folding directly over the active site cleft, clearly
implying the existence of some allosteric modulator that alters
the conformational dynamics about the C-terminus to allow
substrates to access the active site (Bailey et al., 2020), and yet
the identity of this effector remains a mystery.

Each of the vertebrate ALAS isozymes contains five heme-
regulatory motifs (HRMs), consensus sequences containing a
cysteine-proline dipeptide with the cysteine functioning as a
ligand to Fe3+-heme (Figure 1A) (Carter et al., 2017;
Fleischhacker et al., 2020). HRMs are important in regulating
the activity of a wide variety of enzymes controlling gene
transcription (Hou et al., 2006; Fleischhacker et al., 2018;
Arunachalam et al., 2021), protein synthesis (Igarashi et al.,
2008), circadian rhythms (Yang et al., 2008), iron homeostasis
(Nishitani et al., 2019), signal transduction (Shen et al., 2014;
Schmalohr et al., 2021), and heme degradation (Fleischhacker
et al., 2015; Fleischhacker et al., 2018). The first two ALAS HRMs
reside in the mitochondrial import signal sequence, where they
are positioned to bind excess labile heme and form a complex that
is not imported into mitochondria, thus providing a form of
feedback inhibition (Lathrop and Timko, 1993; Munakata et al.,
2004). Following import the signal sequences are proteolytically
removed to produce mature enzymes with intrinsically
disordered N-termini (Stojanovski et al., 2016; Nomura et al.,
2021). This N-terminal extension contains a third conserved

HRM that feedback inhibits ALAS1 by binding heme to form
a complex targeting ALAS1 for proteolysis by the matrix
peptidase chaperone subunit ClpX (Nomura et al., 2021).
ClpX also controls ALAS2 turnover (Rondelli et al., 2021), and
since HRM 3 is conserved in ALAS2, it seems likely that HRM 3
also mediates ClpX degradation of ALAS2 in a heme-dependent
fashion, although this remains to be conclusively demonstrated.

The catalytic core of mammalian ALAS, which is
approximately 44 kD in size, contains two additional
conserved HRMs, which we designate HRMs 4 and 5. To the
best of our knowledge, no studies have yet examined their
potential biochemical significance. Along with the human
ALAS2 crystal structure, the mammalian ALAS1 and
ALAS2 AlphaFold-predicted structures reveal that even though
HRMs 4 and 5 are ~132 amino acids apart in the primary
sequence, in the three-dimensional structures the cysteine α-
carbons are only 11 Å apart, and most importantly, they are near
or at the enzyme surface in proximity to both the active site loop
and the extended C-terminus, in conspicuous positions for heme-
mediated feedback regulation of the mature enzyme (Figure 2).
The positions of HRMs 4 and 5 in the AlphaFold-predicted ALAS
structures are virtually indistinguishable from those in the human
ALAS2 crystal structure (Figure 2B).

There are, however, important differences in the relative
positions of the extended C-termini of the ALAS1 and ALAS2

FIGURE 2 | AlphaFold structures for mammalian ALAS1 and ALAS2 reveal C-terminal divergences from the human ALAS2 crystal structure. (A). Alignment of
AlphaFold-predicted structures of ALAS1 from human (UniProt accession # P13196), orangutan (UniProt accession Q5R9R9), bovine (UniProt accession A6QLI6),
beluga whale (UniProt accession Q9XS79), mouse (UniProt accession Q8VC19), and rat (UniProt accession # P13195). (B). Alignment of human ALAS2 crystal and
AlphaFold-predicted structures. AlphaFold-predicted structure (UniProt accession # P22557; blue) and crystal structure (PDB code 6HRH; beige with red
C-termini). (C). Zoom of panel (A). (D). Zoom of panel (B).
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isozymes as it relates to HRMs 4 and 5. As seen in Figures 2A,C,
all six of the currently available AlphaFold-predicted structures
for mammalian ALAS1 position the extended C-terminus such
that the CXXCmotif forms a hairpin loop that brings the cysteine
sulfur atoms within ~ 3.5 Å of each other, suggesting disulfide
bond formation and a possible redox sensing role. Furthermore,
the CXXC loop is positioned almost directly over HRM5.

In contrast to the consensus positioning of the ALAS1
extended C-terminus over HRMs 4 and 5, the AlphaFold-
predicted mammalian ALAS2 structures have more
conformational heterogeneity about the C-terminal extension
(Figures 2B,D). Moreover, none of the ALAS2 C-terminal
extensions align with the ALAS1 C-terminus. Instead, the
ALAS2 C-terminal extensions fall into one of three different
conformations. In the AlphaFold-predicted structures for
orangutan, bovine, beluga whale, and rat ALAS2s, the
extended C-terminus folds over the active site to form an
“autoinhibited” structure, in excellent alignment with the
recently solved human ALAS2 crystal structure (Bailey et al.,
2020), but the AlphaFold-predicted human ALAS2 structure
places the extended C-terminus away from the catalytic core
in what would presumably correspond to an active enzyme
conformation. Meanwhile, in the mouse ALAS2, the extended
C-terminus adopts a conformation between these two extremes.
In all cases the cysteines of the ALAS2 CXXC motifs, like those of
the ALAS1 CXXC motifs, are in sufficient proximity to reversibly
form disulfides, and thus potentially act as redox sensors. But
unlike ALAS1, HRMs 4 and 5 of ALAS2 are not occluded by the
C-terminal extension and are thus more available to bind heme in
what would presumably be a feedback-inhibited complex.

A CASE FOR DIFFERENTIAL REGULATION
BY THE C-TERMINAL EXTENSIONS

Remarkably, in ten out of twelve different mammalian ALAS
mitochondrial import presequences AlphaFold predicts the side
chains of the cysteines in HRMs 1 and 2 to be almost ideally
positioned to act as axial ligands for heme (Supplementary
Figure S4). This agrees with experimental evidence
demonstrating HRMs 1 and 2 bind heme to feedback inhibit
mitochondrial import (Lathrop and Timko, 1993; Goodfellow
et al., 2001; Munakata et al., 2004). Further, it leads us to suggest
that the predicted conformational differences in the extended
C-termini might in turn be experimentally revealed to be accurate
predictors of important structural/functional divergences
between the two ALAS isozymes.

The AlphaFold structural database currently has nearly a
million protein structures available, including complete
proteomes for Homo sapiens and 47 other species (Jumper
et al., 2021; Tunyasuvunakool et al., 2021). These structures are
rapidly facilitating an unprecedented understanding of
structural biology (Hegedus et al., 2022; Porta-Pardo et al.,
2022; Varadi et al., 2022; Wehrspan et al., 2022). Yet, the
accuracy of AlphaFold in terms of predicting otherwise
unsolved structures is relatively untested since it only
became publicly available less than a year ago. AlphaFold is

reported to accurately predict not just the highly organized
structures observed in crystallized proteins, but also the extent
of conformational dynamics or even intrinsic disorder in
individual residues or peptides by calculating a per residue
confidence score referred to as a predicted local distance
difference test (pLDDT) (Tunyasuvunakool et al., 2021).
The current interpretation of this score is that it predicts
the extent to which a residue is unstructured, meaning a
low score should be seen not so much as an indication the
structure is inaccurate, but more as an accurate indication of
greater conformational dynamics. Because of this AlphaFold
should provide important insight into dynamic regulatory
structures that have been difficult to crystallize.

The ALAS1/2 conserved CXXC motif is of particular interest
since similar motifs act as allosteric redox switches via reversible
formation of a disulfide bond in many enzymes, including the
PLP-dependent enzymes cystathionine β-synthase and human
mitochondrial branched chain aminotransferase (Conway et al.,
2004; Wouters et al., 2010; Niu et al., 2018; Herbert et al., 2020).
The CXXCmotif-containing region was only partially resolved in
the human ALAS2 crystal structure, implying a high degree of
conformational mobility. The AlphaFold pLDDT scores for the
six mammalian ALAS2 (and six ALAS1) structures in the public
database agree, as they drop from very high confidence to low or
even very low for the corresponding amino acids in all species
except human ALAS2 (Supplementary Figure S5), in which the
extended C-terminus adopts what is presumably an activated
enzyme conformation. In this “activated” ALAS2 structure the
scores for the CXXC motif are mostly confident, indicating
greater structural organization, and with the cysteine side
chain sulfur atoms within 3.7 Å of each other, disulfide bond
formation is possible. Given all these considerations, if the CXXC
motif in the extended C-terminus of ALAS2 acts as a redox switch
we would predict that the “activated” structure would be oxidized
to the disulfide, while the more disordered autoinhibited
structure would be reduced.

The positioning of the human ALAS2 extended C-terminus
over the active site leads us to raise the questions as to what the
active conformation might look like and how the interconversion
between the inhibited and activated conformations might be
triggered. The corresponding AlphaFold structure appears to
provide a plausible answer to the first of these two questions,
but only hints at the answer to the second. Binding of the β-
subunit of succinyl-CoA synthetase (Furuyama and Sassa, 2000;
Bishop et al., 2012; Bishop et al., 2013) and/or other heme
biosynthetic enzymes might promote activation (Medlock
et al., 2015). A novel, but certainly not mutually exclusive,
possibility supported by the structures analyzed here is that
the CXXC motif acts as a redox sensor to modulate
conformational dynamics about the extended C-terminus.

In contrast to ALAS2, a crystal structure for ALAS1 has not yet
been reported, and the AlphaFold-predicted structures indicate
only one conformation for the ALAS1 extended C-terminus. Yet,
the CXXC motif is conserved in ALAS1, and if it has a redox
switching function then some degree of conformational
perturbation presumably occurs to form an autoinhibited
conformation or to alter the dynamics about the active site
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loop, which controls the catalytic rate. This latter possibility is
attractive as it would be consistent with the anti-correlation
between the active site loop and C-terminal extension of
ALAS2 during molecular dynamics simulations (Na et al.,
2018). Additionally, the shielding of the otherwise solvent
exposed HRMs 4 and 5 by the ALAS1 C-terminal extension
suggests an alternative conformation that would allow heme
access to feedback inhibit the enzyme. Given these
considerations we posit that the ALAS1 structures represent
an activated form wherein the CXXC motif is oxidized to the
disulfide and positioned to prevent allosteric feedback inhibition
by heme. Reduction of the CXXC motif would then facilitate a
conformation change allowing heme to allosterically feedback
inhibit ALAS1 via HRMs 4 and/or 5. A more prominent role of
redox sensing in ALAS1 is in part attractive due to the role of
ALAS1 in producing heme specifically for hemoproteins
catalyzing redox chemistry, such as cytochrome P450 enzymes,
catalase, and superoxide dismutase.

CONCLUSION AND OUTLOOK

In summary, based upon the alignment of the ALAS1 structures
we put forth the following postulates: 1) HRMs 4 and/or 5
facilitate feedback inhibition of ALAS1; 2) under oxidizing
conditions, the CXXC motif forms a disulfide bond that causes
the C-terminal extension to fold over HRMs 4 and 5 such that it
sterically prevents hemin binding and feedback inhibition; 3)
under non-oxidizing conditions, the CXXC motif is reduced and
adopts an alternative conformation wherein HRMs 4 and 5 are
exposed to provide feedback inhibition by excess heme. Stated
more concisely, feedback inhibition of ALAS1 by heme is
dependent upon cellular redox status.

Based on the alignment of the ALAS2 structures we put forth
the following postulates: 1) the C-terminal extension of ALAS2
adopts two different conformations, neither of which prevents
feedback regulation via heme binding to HRMs 4 and 5. 2) In

ALAS2 oxidizing conditions cause disulfide bond formation in
the CXXC motif and movement of the extended C-terminus not
over HRMs 4&5 but instead to a more equatorial and activated
position relative to the enzyme, thereby relieving the
autoinhibition observed when the extended C-terminus folds
over the active site. Stated more succinctly, heme and redox
status independently regulate ALAS2 activity.

These postulates are not incompatible with the possibility
of protein-protein interactions regulating activity. Of course,
experimental data will be required to further support or refine
the views presented here, but whatever the outcome the
remarkably divergent structures discussed here will likely
represent a key test of the capacity of AlphaFold to discern
fine structural differences and facilitate prediction of
allostery in all enzymes, including those dependent upon
PLP for functionality.
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PINet 1.0: A pathway
network-based evaluation of
drug combinations for the
management of specific diseases

Yongkai Hong, Dantian Chen, Yaqing Jin, Mian Zu*† and
Yin Zhang*†

Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing,
China

Drug combinations can increase the therapeutic effect by reducing the level of

toxicity and the occurrence of drug resistance. Therefore, several drug

combinations are often used in the management of complex diseases.

However, due to the exponential growth in drug development, it would be

impractical to evaluate all combinations through experiments. In view of this,

we developed Pathway Interaction Network (PINet) biological model to

estimate the optimal drug combinations for various diseases. The random

walk with restart (RWR) algorithm was used to capture the “disease state”

and “drug state,” while PINet was used to evaluate the optimal drug

combinations and the high-order drug combination1. The model achieved a

mean area under the curve of a receiver operating characteristic curve of 0.885.

In addition, for some diseases, PINet predicted the optimal drug combination.

For example, in the case of acute myeloid leukemia, PINet correctly predicted

midostaurin and gemtuzumab as effective drug combinations, as demonstrated

by the results of a Phase-I clinical trial. Moreover, PINet also correctly predicted

the potential drug combinations for diseases that lacked a training dataset that

could not be predicted using standard machine learning models.

KEYWORDS

pathway, gene, drug combination, network pharmacology, random walk with restart

1 Introduction

Compared with the “one disease, one gene” drug paradigm, drug combinations can

more effectively cope with multifactorial diseases such as infections, cardiovascular

diseases, and tumors (Bayat Mokhtari et al., 2017) (Huffman et al., 2017). Drug

combinations can also delay the development of drug resistance and are often used in

the treatment of acquired immunodeficiency syndrome (AIDS) and multi-drug resistant
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bacteria (Liu et al., 2021) (Cihlar and Fordyce, 2016). Network or

multi-pharmacology involves the combinations of several drugs

used for different targets to create a synergistic effect that can

perturb the biological networks and thus increase the clinical

benefits (Jia et al., 2009).

The development of optimal drug combinations typically

involves three stages: the intuition phase, the clinical trials

phase, and the biological data mining phase. However, since

the development of the current drug combination is based on

the researchers’ intuition and expertise, the process is often

inefficient. As a result, it is now gradually being replaced by

the high-throughput screening method (Shinn et al., 2019).

Nevertheless, as the number of approved drugs increases, the

number of drug combinations requiring high-throughput

screening verification has increased exponentially,

eventually leading to a significant prolongation of the

verification process and research costs. Machine learning

and deep learning, which can mine the correlation between

massive amounts of biological data, are increasingly being

used in the discovery of effective drug combinations (Shi et al.,

2018) (Li et al., 2020) (Kim et al., 2021) (Zagidullin et al.,

2021). Since machine learning depends on training datasets, it

is mostly used for tumors. However, for diseases that lack

training datasets, the model is difficult to optimize because it is

not possible to fit the parameters into the model. In addition,

the results provided by the machine learning algorithms are

often difficult to explain, and therefore clinicians find it

difficult to apply the machine learning solution in clinical

practice. An alternative approach to the data-driven machine

learning method is to use theory-driven methods based on the

knowledge of biological systems and networks (Wang et al.,

2021) (Jafari et al., 2022). Compared with data-driven

methods, theory-driven methods are more explanatory, and

their performance is not affected by the quality of the training

dataset. The limitation of theory-driven methods is that they

rely on the accurate generation of a theoretical hypothesis.

(Yang et al., 2008) define two network biological states: the

disease and normal states. According to (Yang et al., 2008), the

transition from the disease state to the normal state is achieved

through the perturbation of specific target combinations within

the arachidonic acid network (a kind of inflammation-related

network). This approach has several limitations. First of all,

there is a lack of uniform standards to define the disease and

normal states. Therefore, the definition of these states often

requires the subjective input of expert professionals. In

addition, not all disease targets have corresponding drugs

available, and more than one pathway may be involved in

the development of a specific disease (Geva-Zatorsky et al.,

2010). found that the protein responses to drug combinations

can be accurately described by a linear superposition (weighted

sum) of each protein’s response to each specific individual drug.

Based on this finding (Lee et al., 2012), made use of gene set

enrichment analysis to convert the gene expression profile of

specific cancers (non-small cell lung cancer and triple-negative

breast cancer) into related signaling pathways. The data about

the linear drug superposition combinations was combined with

the disease pathways data to obtain the optimal drug

combination. Through this method (Lee et al., 2012), found

two combination drug pairs with a synergistic effect on lung

cancer cells. However, this method still has a number of

shortcomings since it ignores the relationship between

pathways. Moreover, the theory of linear superposition does

not fit all kinds of protein. Because drugs acting on the same

pathway through different targets or drugs regulating a

relatively small number of highly-connected pathways are

more likely to produce synergistic effects (Chen et al., 2016),

proposed a “pathway to pathway interaction” network model to

predict the therapeutic effect of synergistic drug combinations.

This model resulted in an area under the curve (AUC) of a

receiver operating characteristic curve of 0.75. The method

proposed by (Chen et al., 2016) still has some shortcomings.

This method ignores the disease condition, and only the

pathway associations of gene overlap are retained, while the

pathway associations of protein interactions and function

associations are discarded. In addition, the drug

combinations are evaluated based on the shortest path

without considering the global topology features2. Therefore

(Cheng et al., 2019) quantifyied the network-based relationship

between drug targets and the diseased human protein to protein

interaction. Although this method revealed the existence of six

distinct potiential drug combinations, only one of these six drug

combinations correlated with therapeutic effects. Eventually, a

beneficial therapeutic effect was noted when the drug targets hit

the same disease module located in separate neighborhoods.

Still, the application of this model is limited as it ignores the

pathway information and uses the shortest path to evaluate the

optimal drug combinations without considering the global

topology features.

In view of this, we constructed a Pathway Interaction

Network (PINet) model to overcome the limitations of the

models described in previous studies (Table 1). This new

model abstracts the human body as a two-layer network

containing gene and pathway information and describes the

influence of a disease or drug on the human as a probability

distribution in the network, which is called “disease state” and

“drug state.” In addition, it predicts the optimal drug

combinations by combining “disease state” and “drug state”.

The main advantage of the PINet model over the other

models is that it can evaluate 5-drug combinations, while

most models can only evaluate 2-drug combinations. In

addition, PINet is also sensitive to various diseases.

2 The regulatory distance of upstream targets to downstream targets
may exceed the shortest path (usually 3).
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2 Dataset

PINet is composed of four types of entities and eight types of

relationships3: The four types of entities include pathways, genes,

drugs and diseases, while the eight types of interactions include

pathway to pathway, pathway to gene, gene to gene, drug to gene,

disease to gene, disease to pathway, drug to disease and drug to

pathway. Except for drug to disease, other data come from databases

(Table 2). The specific data cleaning and processing methods are

described in the Supplementary Material S1.1; Supplementary

Material S1.2.

Databases include KEGG (Kanehisa et al., 2021), STRING

(Szklarczyk et al., 2021), DrugBank (Wishart et al., 2018),

TABLE 1 Optimization of previous research.

Inadequacies of predecessors Improvement measures

Ignore global topology features Chen et al. (2016), Cheng et al. (2019) Analyzing networks using RWR

Ignore pathway information Yang et al. (2008), Cheng et al. (2019) Building a two-layer heterogeneous network

It is difficult for users to select indicators Yang et al. (2008) Redefine disease states without user selection

Only applicable to 1 or 2 diseases Yang et al. (2008), Lee et al. (2012) Chen et al. (2016),
Cheng et al. (2019)

The new model incorporated multiple diseases and the sensitivity of the specific
disease was validated

TABLE 2 Data source.

Data Number Source

Pathway 345 KEGG

Gene 18,532 STRING, KEGG, HVIDB, DrugBank, BindingDB, CTD

Drug 6,259 DrugBank, BindingDB

Disease 8 CTD, KEGG

Pathway-pathway 1,659 KEGG

Pathway-gene 34,426 KEGG

Gene-gene 5,680,317 STRING, HVIDB

Drug-gene 39,805 DrugBank, BindingDB

Drug-pathway 57,067 KEGG enrichment analysis

Disease-gene 683 CTD

Disease-pathway 10 KEGG

Drug-disease 257 Clinical guidelines (Table 3)

TABLE 3 Disease-specific drug combinations.

Disease Drug
combinations

Clinical guidelines References

acquired immunodeficiency
syndrome (AIDS)

13 Office of AIDS Research Advisory Council
(OARAC)

https://clinicalinfo.hiv.gov/en/guidelines/adult-and-
adolescent-arv

inflammatory bowel disease (IBD) 34 The American Gastroenterological
Association (AGA)

Terdiman et al. (2013), Ko et al. (2019), Feuerstein et al.
(2020), Feuerstein et al. (2021)

Diabetes* 32 the American Diabetes Association (ADA) American Diabetes (2021)

Atherosclerosis 63 the American College of Cardiology (ACC) Grundy et al. (2019), Kumbhani et al. (2021), Virani et al.
(2021)

acute myeloid leukemia (AML) 25 The National Comprehensive Cancer
Network (NCCN)

https://www.nccn.org/guidelines/category_1

Breast cancer 60

Non-small cell lung cancer (NSCLC) 30

Diabetes including type 1 and type 2 diabetes.

3 Relationship between drugs is predicted by the model. So it does not
appear in the model. We assume that the patient has only one disease,
so the relationship between diseases does not exist in the model.
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BindingDB (Gilson et al., 2016), CTD (Davis et al., 2021) and

HVIDB (Yang et al., 2021).

3 Methods

3.1 The theoretical basis of the model

The theoretical basis of the model was built based on the

findings of four studies (Yang et al., 2008). Showed that

perturbing the targets can shift the disease state to the

normal state. Based on this study, we introduce the

probability distribution of different drugs or diseases in the

network as drug states or disease states and the higher

degree of overlap between the drug state and the disease

state, the better the efficacy of the drug. Chen et al. (2016).

showed that the effect of a disease or drug on the body is

achieved through the manipulation of genetic pathways.

Therefore, our model included information on the genes

and pathways. We also made use of the work of Geva-

Zatorsky et al. (2010), which simplified the drug

combinations as a linear summation of drug targets. The

targets of drug A within our model were denoted as (a1, a2,

and a3), and the targets of drug B were denoted as (b1, b2).

Based on the study of (Geva-Zatorsky et al., 2010), the drug

state of the combination of drugs A and B was deemed to be

equivalent to the drug state of the virtual drug V, of which

targets are (a1, a2, a3, b1, b2). Finally, to narrow down the scope

of potential drug combinations and reduce the computational

power costs, we used the research of Cheng et al. (2019),

which demonstrated that drug synergy is more likely to occur

when the drugs act on different disease targets at the

same time.

3.2 Construct network model

PINet consists of seven networks4 (pathway to pathway,

gene to gene, pathway to gene, drug to gene, drug to pathway,

disease to pathway, disease to gene), each stored in an

adjacency matrix (Figure 1). The main part of the PINet

model was based on the restart random walks (RWR)

algorithm built on the pathway to pathway, gene to gene,

and pathway to gene networks. Further details about the

model constructions are provided in the Supplementary

Material S1.3.

3.3 Capturese state

The effect of a drug or disease on the body can be

represented by a vector that contains both pathway and

genetic information, which is called a drug state or disease

state. These two states were obtained by selecting specific initial

nodes on the model to perform the RWR, and the stable

probability distribution was defined as the drug or disease

state. The specific state capture is described in more detail in

the Supplementary Material S2.

3.3.1 Random walk with restart
Biological systems can be simplified into heterogeneous

networks, and the RWR algorithm is widely used in the

analysis of heterogeneous networks (Cho et al., 2016) (Luo

et al., 2017). The RWR algorithm was developed by

determining the initial probability, the transition matrix, and

the stable probability distribution threshold as follows. More

detail about the RWR algorithm is available in the

Supplementary Material S2.

3.3.1.1 Determination of the initial probability

The initial nodes were composed of disease or drug-related

genes and pathways. The initial probability in a specific network

was composed of the initial gene to gene and pathway to pathway

networks and can be calculated according to a specific node. For

example, in the case of influenza, the initial gene was associated

with influenza, and the initial pathway path: hsa05164 was

identified from the KEGG database and was fixed to 1. On

the other hand, for a drug, the original gene was considered

as the drug target, the initial pathway was identified through

pathway enrichment analysis, and the number of potential initial

pathways was not fixed.

FIGURE 1
The network model of PINet. PINet model consists of four
entities and seven relationships. The genes and pathways were
directly related to RWR, and the drugs and viruses were integrated
with the RWR algorithm through indirect connections.

4 The drug-disease relationship is the data used to evaluate the model.
So it doesn’t appear in the model.
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The initial probability of the pathway to pathway network a0
was formed so that equal probabilities were assigned to the initial

nodes in the pathway to pathway network, and the sum of the

nodes’ probabilities was equal to 1. Therefore if the probabilities

of non-initial nodes are 0, then the initial probability of the gene

to gene network b0 is the same. This relationship is summarized

by the equation.

p0 � 0.5[ a0
b0

] (1)

Whereby a0 is the pathway initial probability, and b0 is the gene

initial probability. Both a0 and b0 are vectors.

3.3.1.2 Determination of the transition matrix

The transitionmatrix describes the transition characteristics of all

nodes within the network model. There are four transfer modes in

PINet: pathway to pathway, pathway to gene, gene to gene, and gene

to the pathway. Each transfer mode requires a transition matrix. The

description of the PINet transition node requires a large transition

matrix M composed of four small transition matrices Mi.

The (t) th probability distribution was obtained by mapping

the (t-1) th probability distribution through the transition matrix

as follows:

(1 − r)[M1 M2

M3 M4
][ at

bt
] + rp0 � [ at+1

bt+1
] � pt+1 (2)

Whereby M1 is the pathway to pathway, M2 is the gene to

pathway,M3 is the pathway to gene, andM4 is the gene to gene. r

is the restart probability which is generally equal to 0.5.

3.3.1.3 Determination of the stable probability

distribution threshold

The initial node was selected to perform the RWR. As the

number of iterations increased, the probability distribution

gradually became stable. When the difference in the

probability distribution between the (n)th and the (n+1)th

was less than the given threshold, the (n)th probability

distribution was considered to be a stable probability

distribution, and the threshold was generally set to 10–10.

3.3.2 Capturing the disease state
The disease state was then captured through the

identification of the initial nodes of the disease in the pathway

to pathway network and, subsequently, the gene-gene network.

The initial probability p0 of the disease was constructed, and then

RWR was performed until the probability distribution became

stable. The stable probability of the disease site pn was then

captured for the disease state.

3.3.3 Capturing the drug state
The drug state was captured through the identification of

the virtual drug corresponding to the drug combination. The

initial probability p0 of the drug was determined according to

the target and enrichment pathway of the virtual drug. Finally,

RWR was performed until the probability distribution became

stable, and the stable probability pn was captured for the drug

state.

3.4 The drug combination score

Since the drug combinations have certain indications, we

evaluated the drug combinations under specific disease

conditions by “drug state” and “disease state.” The same drug

combinations have different scores on different disease

conditions in PINet. The absolute drug score value was

obtained by calculating the difference between the “drug state”

and the “disease state”.

score � |Sdi − Sdr| (3)

Sdi is the disease state, Sdr is the drug state.

A lower score indicates a higher likelihood of a synergistic

drug combination. Further details on the calculation of the drug

combination score can be found in Supplementary Material S3.

3.5 Evaluation of pathway interaction
network

During the development of PINet, it was assumed that the

drug combination contained two types of information: the drug

composition and the indication. Therefore two tests were

performed to evaluate the sensitivity of PINet to detect disease

and drug quantity. The disease sensitivity analysis assessed

whether PINet can correctly identify the indications for the

different drug combinations. For example, whether PINet will

wrongly judge a drug designed to treat AIDS as a drug used to

treat cancer. The drug quantity sensitivity analysis evaluated the

ability of PINet to identify the n-drugs combination (n = 2, 3, 4,

and 5).

3.5.1 Disease sensitivity
The drug combination highlighted in the clinical guidelines

of each disease was regarded as the positive gold standard

treatment. The clinical indications of the drug combinations

used to manage a specific disease were then modified to represent

a negative example, i.e., another disease. All positive and negative

examples were entered into the PINet for scoring, and the AUC

under the ROC was calculated for each example. An AUC below

0.5 indicates that the PINet model was not sensitive enough to

detect the disease and corresponding drug combinations, and

these were therefore excluded from the model. The remaining

diseases and drug combinations in the clinical guidelines were

evaluated again in the next step.
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3.5.2 Drug quantity sensitivity
The drug combinations may include four possible options

with 2, 3, 4, or 5 drugs. The sensitivity of PINet to different drug

combinations was calculated as follows. First, the drug

combination in the clinical guidelines was used as a positive

example, and the randomly generated drug combination was

used as a negative example. Subsequently, the drug status and

disease status were calculated according to the drug

composition and indications, respectively, as explained in

Section 3.3. Then, the score for each drug combination was

calculated, as explained in Section 3.4. Finally, based on the

calculated score, the AUC was calculated for each drug

combination.

3.6 Prediction of the drug combinations

3.6.1 Primary potential drug combination
Outliers of disease state are identified by Quartile, and these

outliers are key genes and key pathways of the disease. The

potential drugs were selected if the target of the drug had an

intersection with the key gene of the disease and the enriched

pathway of the drug had an intersection with the key pathway of

the disease. We assumed that for N potential drugs, there are Ci
N

primary potential drug combinations (i is the number of drugs in

the drug combination. Refer to Figures 2A–C). More detail about

Quartile is available in the Supplementary Material S4.

3.6.2 Secondary potential drug combinations
The drug combinations with overlapping drug targets were

removed from the primary potential drug combination to obtain

the secondary potential drug combination (Figure 2C).

3.6.3 Evaluation of the potential drug
combinations

To improve the prediction accuracy of the model, we used the

score corresponding to the false positive rate of 10% on the ROC of

the “Drug quantity sensitivity” as the threshold. The scores of the

secondary potential drug combinations were calculated, and those

below the threshold were classified as synergistic drug combinations.

4 Results

4.1 Disease sensitivity

The PINet had a high sensitivity for NSCLC, AML, breast

cancer, and IBD and low sensitivity for diabetes type 1, diabetes

type 2, AIDS, and atherosclerosis (Figure 3).

4.2 Drug quantity sensitivity

Figure 4 illustrates the drug quantity sensitivity after

excluding the diseases with a low PINet sensitivity. The

FIGURE 2
The construction of the potential drug combinations. Taking the key genes of diseases as an example, the key pathways are the same. (A)Genes
above the upper limit are key genes. (B) Eliminate drugs that do not have intersections with key disease genes. (C) A drug combination is constructed,
and if the drugs in the combination have the same target, the combination is eliminated.
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sensitivity of PINet increased as the order of drug combinations

increased. PINet also achieved good results in the identification

of high-order drug combinations. However, since the sample was

too small (2 positive cases and 58 negative cases in the fifth-order

drug combination), the ROC may not be accurate.

4.3 Prediction accuracy

Since PINet had the highest sensitivity for predicting AML,

we decided to use PINet to predict the optimal drug

combinations for this disease. PINet was first used to identify

the key genes and pathways of AML. Subsequently, the drugs

based on these genes and pathways were identified and used to

construct the primary drug combinations. This revealed a total of

26,106 possible primary drug combinations. The drug

combinations with the same target were eliminated, and the

remaining drug combinations (n = 17,713) were scored to

identify the optimal drug combinations (n = 2,590). After

excluding the unapproved drugs, 1,221 possible drug

combinations were identified. The efficacy of two of the drug

combinations identified by PINet has been validated in clinical

trials or in vivo studies. Röllig et al. (2021) demonstrated the

synergy between gemtuzumab ozogamicin and midostaurin in

newly diagnosed AML in a phase-I clinical trial. Tian et al. (2018)

found that Emricasan and Ponatinib can synergistically reduce

ischemia-reperfusion injury in rat brains.

5 Discussion

As the development of new drugs continues to increase, there

is a need to develop novel methods to identify optimal drug

combinations for managing specific diseases. In this study, we

proposed a novel model PINet to make it easier for clinicians to

identify optimal drug combinations. When compared with other

machine learning models, PINet has several advantages and

limitations.

5.1 Advantages of pathway interaction
network

5.1.1 Interpretability
PINet is a theory-driven method for evaluating drug

combinations based on the assumption that “drugs can

correct disease states.” A low PINet score means that the drug

combination is more applicable to a specific disease. This simple

scoring system used in PINet is easily understood by researchers

in the non-data science fields, making PINet easy to generalize.

FIGURE 3
Disease sensitivity of PINet.

FIGURE 4
Drug quantity sensitivity of PINet.
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5.1.2 Non-training set dependency
Unlike machine learning, there is no need to fit all parameters

in PINet, and therefore, PINet does not require a training dataset.

This is crucial for drug combination prediction for some diseases

that lack a training dataset.

5.1.3 High-order drug combinations
Most drug combination prediction models focus on 2-drug

combinations since high-order drug combinations are

computationally expensive to calculate. PINet takes the same

time to evaluate 2-drug combinations as higher-order drug

combinations by narrowing the range of candidate drugs

based on theory to maintain the computational power

consumption within an acceptable range.

5.1.4 Applicable to multiple diseases
A variety of diseases are already included in PINet, and the

model’s effectiveness in predicting optimal drug combinations in

breast cancer, IBD, AML, and NSCL has already been verified.

With the advancement of disease pathway research in KEGG, the

applicability of PINet will be extended to more diseases.

5.2 Disadvantages of pathway interaction
network

5.2.1 Poor sensitivity to some diseases
The sensitivity of PINet in some diseases, such as AIDS and

diabetes, was found to be low in our study. A possible explanation

for this could be that the effect of these diseases on genes is

expressed as either an up-regulation or down-regulation gene

expression. However, PINet simplifies the relationship between

diseases and genes to 0 or 1, resulting in the loss of information.

Furthermore, most anti-infective drugs target pathogens, and the

targets of these drugs do not have corresponding genes in KEGG.

5.2.2 Drug antagonism is not considered
The drug-to-target relationship was simplified to 0 or 1, and

the antagonist effects of drug combinations were not considered

when assessing the drug sensitivity on PINet. This means that

PINet cannot distinguish between synergy and antagonism.

Although we avoided competitive antagonism by narrowing

down the drug candidates, this does not solve the problem on

a theoretical level.

5.2.3 Poor validation
The validation of PINet is not sufficient for the following

reasons: Various theoretical models are suitable for different

diseases, and there are certain differences in the range of drugs

that can be selected, so it is difficult to make an objective

comparison (Table 4). In fact, the drug combinations in PINet

1.0 are all derived from clinical guidelines, and many of these

drugs lack transcriptome data and cannot be evaluated by the

method of (Lee et al., 2012). There are differences between other

methods (Cheng et al., 2019) (Chen et al., 2016) (Yang et al.,

2008) and PINet1.0 in the indication, which makes it impossible

to compare. On the other hand, due to a lack of experimental

conditions, it was not possible to validate the accuracy of the

PINet predictions.

5.3 Recommendations for future practice

Several aspects can be improved on PINet to increase its

prediction accuracy and applicability.

5.3.1 Differentiate between synergies and
indications for drug combinations

In PINet, we evaluate drug combinations by comparing

disease states and drug states, considering both synergy and

indications of the drug combination together. First, we found

that PINet has moderate disease sensitivity but can accurately

distinguish synergistic drug combinations from random drug

combinations, during the evaluation of the model. In addition,

the combination of drugs predicted to treat AML is suitable for

ischemia-reperfusion injury, which may be related to the multi-

targets phenomenon of drugs and multi-phenotypes

phenomenon of diseases (Tian et al., 2018). Furthermore,

synergy was identified by relying only on the shortest path in

the pathway network without disease information (Chen et al.,

2016). Based on the above facts, we suggest that synergy and

indication should be two relatively independent attributes of a

drug combination and these attributes are relatively independent

and may provide a new theoretical basis for the development of a

TABLE 4 Comparison of different models.

Yang et al. (2008) Lee et al. (2012) Chen et al. (2016) Cheng et al. (2019) PINet1.0

Indicationsaa inflammation NSCLC; TNBC \ hypertension Breast cancer; NSCLC; AML; IBD

order of drug combinationbb 2 2 2 2 ≥2

drug rangecc ++ ++ +++ +++ +++

aa: Applicable diseases of the model. bb: The number of drugs in a specific drug combination. cc: Drugs within the model. (Yang et al. (2008) only considered targets and ignored the multi-

target phenomenon of drugs. Lee et al. (2012)’s drug relied on transcriptome data). NSCLC, non-small cell lung cancer; TNBC, triple-negative breast cancer; AML, acute myeloid leukemia;

IBD, inflammatory bowel disease.
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repository for the rapid identification of drug combinations. If

the conjecture is correct, PINet could be used in the future to

evaluate drug combinations independently of the disease state,

eventually increasing the scope of application of the model. As a

result, the indications can be isolated and analyzed separately in

finer divisions according to the drug function (e.g., anti-

inflammatory, or anti-viral) rather than the entire disease.

We plan to elucidate the synergistic effect of drug

combinations through information theory. This will enable

us to locate key pathways and key genes to define the

indications of drug combinations and verify whether the

conjecture is correct.

5.3.2 Increase disease sensitivity
The relationship between diseases and genes can be

optimized as −1, 0, and one to achieve differentiation of

different diseases, thereby improving the disease sensitivity of

PINet.

5.3.3 Identify antagonism
The drug-to-target relationship can also be optimized to −1,

0, and one to simulate the antagonistic relationship between

drugs. In follow-up studies, we will additionally evaluate the

ability of PINet to identify antagonistic drug combinations. Chen

et al., 2012, Hopkins, 2008, Hsieh et al., 2021, Zhang et al., 2021.
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Identifying SM-miRNA
associations based on layer
attention graph convolutional
network and matrix
decomposition
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Software, Changzhou University, Changzhou, China

The accurate prediction of potential associations betweenmicroRNAs (miRNAs)

and small molecule (SM) drugs can enhance our knowledge of how SM cures

endogenous miRNA-related diseases. Given that traditional methods for

predicting SM-miRNA associations are time-consuming and arduous, a

number of computational models have been proposed to anticipate the

potential SM–miRNA associations. However, several of these strategies failed

to eliminate noise from the known SM-miRNA association information or failed

to prioritize the most significant known SM-miRNA associations. Therefore, we

proposed a model of Graph Convolutional Network with Layer Attention

mechanism for SM-MiRNA Association prediction (GCNLASMMA). Firstly, we

obtained the new SM-miRNA associations by matrix decomposition. The new

SM-miRNA associations, as well as the integrated SM similarity and miRNA

similarity were subsequently incorporated into a heterogeneous network.

Finally, a graph convolutional network with an attention mechanism was

used to compute the reconstructed SM-miRNA association matrix.

Furthermore, four types of cross validations and two types of case studies

were performed to assess the performance of GCNLASMMA. In cross validation,

global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed LOOCV, SM-

fixed LOOCV and 5-fold cross-validation achieved excellent performance.

Numerous hypothesized associations in case studies were confirmed by

experimental literatures. All of these results confirmed that GCNLASMMA is a

trustworthy association inference method.
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microRNA, small molecule, deep learning, association prediction, matrix
decomposition

OPEN ACCESS

EDITED BY

Irina Sousa Moreira,
University of Coimbra, Portugal

REVIEWED BY

Panagiotis Alexiou,
Central European Institute of
Technology (CEITEC), Czechia
Congshan Jiang,
Xi’an Children’s Hospital, China

*CORRESPONDENCE

Jiuzhen Liang,
jzliang@cczu.edu.cn

SPECIALTY SECTION

This article was submitted
to Biological Modeling and Simulation,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 05 August 2022
ACCEPTED 03 November 2022
PUBLISHED 23 November 2022

CITATION

Ni J, Cheng XL, Ni TG and Liang JZ
(2022), Identifying SM-miRNA
associations based on layer attention
graph convolutional network and
matrix decomposition.
Front. Mol. Biosci. 9:1009099.
doi: 10.3389/fmolb.2022.1009099

COPYRIGHT

© 2022 Ni, Cheng, Ni and Liang. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 23 November 2022
DOI 10.3389/fmolb.2022.1009099

43

https://www.frontiersin.org/articles/10.3389/fmolb.2022.1009099/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1009099/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1009099/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1009099/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1009099/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.1009099&domain=pdf&date_stamp=2022-11-23
mailto:jzliang@cczu.edu.cn
https://doi.org/10.3389/fmolb.2022.1009099
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.1009099


1 Introduction

As a form of non-coding RNA (ncRNA), MicroRNA

(miRNA), is roughly 22 nucleotides in length (Bartel, 2004;

Hammond, 2015; Lu and Rothenberg, 2018). Lin-4 was the

first human miRNA identified in1993 by Lee et al. in

Caenorhabditis elegans (Lee et al., 1993; Wightman et al.,

1993). With the advent of high-throughput sequencing

technologies, an increasing number of miRNAs with

important functions in human gene expression have been

identified (Denzler et al., 2016; Tagliafierro et al., 2017;

Thomou et al., 2017; Gam et al., 2018; Ghini et al., 2018; Liu

et al., 2018). Specifically, miRNAs can attach to the 3′
UnTranslated Region (3’ UTR) of target messenger RNAs

(mRNAs) via base-pairing to control the degradation of target

mRNAs and limit the translation of target mRNAs, hence

regulating gene expression (Gorbea et al., 2017). In the

control of target mRNA gene expression by miRNA, one

miRNA may regulate many target mRNAs, or numerous

miRNAs regulate one target mRNA (Saikia et al., 2020; Iwata

et al., 2021; Zhong et al., 2021). Several studies demonstrated the

role of miRNAs in the maturation of immune cells (Kumar

Kingsley and Vishnu Bhat, 2017). Since the profound impact of

miRNAs on biological development became apparent, numerous

miRNA types have been identified to be involved in biological

evolutionary processes (Rupaimoole and Slack, 2017; Cristino

et al., 2019).

Small Molecule (SM) drugs are mostly composed of

molecules with molecular weights typically fewer than 1,000 g/

mol. More than 98 percent of today’s drugs are SMs (Geng and

Craig, 2021). The development of SMs that target miRNAs is a

current trend in drug research (Dai and Tan, 2015; Yu et al.,

2020). In previous drug development, protein enzymes and

receptors were typically employed as therapeutic targets. Over

80 percent of drug development was intimately tied to protein

enzymes and receptors (Deyle et al., 2017; Yekkirala et al., 2017;

Nair et al., 2018; Lai-Kwon et al., 2021). In recent years, more

scientific experiments have proven inextricable linkages between

SMs and miRNAs (Healy et al., 2012; Monroig et al., 2015; Haniff

et al., 2021).WhenmiRNAs fail to regulate the gene expression of

an organism, specific disorders such as cardiovascular diseases,

neurological diseases and cancers may develop (Kumari et al.,

2018; Xia et al., 2019; Dragomir et al., 2021). In addition, SMs are

effective in regulating miRNA dysregulation to treat linked

endogenous disorders, and numerous SMs have been created

for clinical therapy of these diseases (Dragomir et al., 2021).

The development of novel SMs is facilitated by the accurate

identification of miRNA-related SMs. Recent studies have

focused on discovering possible associations between SMs and

miRNAs (Chen et al., 2021; Li et al., 2021; Wang et al., 2021).

Early identification approaches used high-throughput screening

methods, such as mass spectrometry, fluorescence and reporter

genes (Seth et al., 2005; Parsons et al., 2009; Carnevali et al., 2010;

Chen et al., 2012). The most frequent method for discovering

potential SM-miRNA associations is the reporter genes. On the

basis of the reporter genes, a functional novel drug screening

method capable of screening lead compounds was proposed. By

substituting biomacromolecules with tiny organic compounds,

the screening process for drugs could be expedited dramatically.

The use of tiny organic compounds throughout the screening

procedure could provide information on the functional responses

of cells. (Wen et al., 2015). In drug screening research, luciferase

reporter genes satisfy the requirements for high sensitivity, target

specificity and high throughput (Thorne et al., 2010).

However, it was discovered that biological screening

approaches are stochastic and time-consuming. With the

proliferation of bioinformatics databases, the number of

known SM-miRNA associations increased, as did the

calculational methodologies for SM and miRNA similarity.

Consequently, machine learning techniques obtained more

precise prediction outcomes (Qu et al., 2019).

Bioinformaticians have begun to employ machine learning

techniques to predict probable SM-miRNA associations to

circumvent time-consuming and labor-intensive biological

investigations (Wang and Chen, 2019; Wang et al., 2019).

Among the previous methods for predicting probable SM-

miRNA associations, (Qu et al., 2018), developed a model titled

Triple Layer Heterogeneous Network based Small Molecule-

MiRNA Association prediction (TLHNSMMA). TLHNSMMA

first merged the known SM-miRNA associations, SM similarity

and miRNA similarity into a three-layer heterogeneous network.

The three-layer heterogeneous graph was then implemented with

an iterative updating algorithm. Finally, the reconstructed SM-

miRNA association matrix was obtained using an iterative

propagation approach that made extensive use of global data.

Based on the establishment of a three-layer SM-miRNA

heterogeneous network, (Liu et al., 2020), suggested a novel

model for potential SM-miRNA association prediction called

Random Walk with Negative Samples (RWNS). Firstly, RWNS

obtained integrated similarities of SM and miRNA. Then, Liu

et al. devised a Credible Negative Sample extraction method

(CNSMiRS) to extract plausible negative SM-miRNA samples

under the premise that dissimilar SMs/miRNAs are unlikely to be

associated with each other’s related miRNAs/SMs. Finally, the

reconstructed SM-miRNA association matrix was obtained by

implementing a random walk algorithm on the constructed small

molecule-disease-miRNA association network. However, the

performance of TLHNSMMA and RWNS is dependent on the

known SM-miRNA association adjacency matrix. Consequently,

(Yin et al., 2019), suggested a model of Sparse Learning and

Heterogeneous Graph Inference for Small Molecule-MiRNA

Association prediction (SLHGISMMA). Yin et al. first used

matrix decomposition on known SM-miRNA associations to

obtain the new SM-miRNA associations. Then, the new SM-

miRNA associations, integratedmiRNA similarity and integrated

SM similarity were incorporated into a heterogeneous network.
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Finally, the reconstructed SM-miRNA association matrix was

obtained using heterogeneous graph inference. Chen et al. (2021)

recently proposed the Bounded Nuclear Norm Regularization for

SM–miRNA Associations prediction (BNNRSMMA), which

treated the problem of potential SM-miRNA association

prediction as a matrix complementation problem. In addition,

BNNRSMMA included a regularization term to remove the

negative effects of data noise.

In recent years, improvements have been made to machine

learning techniques, and deep learning has emerged as one of the

brightest new stars (Wang et al., 2020). Deep learning has

achieved exceptional results in traditional classification tasks,

such as handwritten font recognition (Singh et al., 2021),

computer vision (Borges Oliveira et al., 2021) and

computational biology (Angermueller et al., 2016). In

addition, deep learning has substantially affected the field of

potential association prediction. For example, zeng et al.

proposed a computational framework termed AOPEDF based

on drug-target network and deep forest algorithm to predict

potential drug-target associations (Zeng et al., 2020). AOPEDF

attained excellent performance in identifying molecular targets

among known drugs on two external validation datasets by

comparison to other machine learning methods. Therefore, we

proposed a model of Graph Convolutional Network with Layer

Attention mechanism for SM-MiRNA Association prediction

(GCNLASMMA). To evaluate the performance of

GCNLASMMA, we used two types of cross validation,

namely, 5-fold cross-validation and Leave-One-Out Cross

Validation (LOOCV). Additionally, we also utilized two types

of case studies to confirm the effectiveness of GCNLASMMA in

identifying potential miRNAs for investigated SMs. The results

showed that GCNLASMMA could accurately and effectively

predict the SM-miRNA pairs most likely to be potentially

associated.

2 Materials and methods

2.1 SM-miRNA associations

We named two datasets used in our work after dataset1 and

dataset2. Eight hundred and thirty-one SMs in dataset1 were

downloaded from three databases, namely SM2miR, DrugBank

(Knox et al., 2011) and PubChem (Wang et al., 2009). Five

hundred and forty-one miRNAs were downloaded from four

databases, namely SM2miR, HMDD (Li et al., 2014),

miR2Disease (Jiang et al., 2009) and PhenomiR (Ruepp et al.,

2010). Six hundred and sixty-four known SM-miRNA

associations were downloaded from a database, namely

SM2miR V1.0 (Liu et al., 2013). On the basis of dataset1, we

removed the SMs andmiRNAs that did not constitute any known

association. Then, we obtained dataset2 which included

286 different miRNAs, 39 different SMs and 664 known

SM-miRNA association pairs. Specifically, the known SM-

miRNA association Aij between the ith SM and the jth
miRNA was stored as follows.

2.2 Integration of SM similarities

The integrated SM similarity was calculated by (Lv et al.,

2015). In his method, a total of four SM similarities were used,

namely SM side effect similarity (Gottlieb et al., 2011), gene

functional consistency-based similarity for SMs (Lv et al.,

2012), SM chemical structure similarity (Hattori et al.,

2003) and disease phenotype-based similarity for SMs

(Gottlieb et al., 2011). In Lv’s article, the side effect

properties of SM were first downloaded from SIDe Effect

Resource (SIDER) and calculated by Jaccard score to obtain

SMs side effect similarities (Gottlieb et al., 2011). The

calculation of gene functional consistency-based similarities

for SMs was implemented on the target genes of SMs obtained

from the DrugBank and Therapeutic Targets Database (TTD)

(Liu et al., 2011). The Gene Set Functional Similarity (GSFS)

method was given in the previous article (Lv et al., 2012).

Specifically, we downloaded the SM chemical structure

information. Then, a graph-based method, SIMilar

COMPound (SIMCOMP) (Lv et al., 2012), was applied to

obtain SMs’ chemical structure similarities. Finally, the

disease phenotype-based similarities for SMs were obtained

by calculating the data downloaded from the DrugBank and

TTD with the Jaccard score method.

After obtaining all four SM similarities, we named them after

SS1, SS2, SS3 and SS4, respectively. Then, the scores of the four

SM similarities were integrated by the following formula,

SSM � ∑iαiSSi∑i αi
, (i � 1, 2, 3, 4) (1)

where α represents the weights of SM similarities. All of the

measures are important in terms of biology. Thus, we set the

values of all α to 1, which means that each SM similarity made an

equal contribution to constituting the integrated SM similarity

(Li et al., 2004). Finally, the integrated SM similarity SSM(si, sj)
between the ith and jth SMs was obtained after normalization as

follows.

SSM(si, sj) � SSM(si, sj)�������������∑ns
l�1SSM(si, sl)

√ �������������∑ns
l�1SSM(sl, sj)

√ (2)

2.3 Integration of miRNA similarities

Two miRNA similarities, gene function consistency-based

similarity (Lv et al., 2012) and indication phenotype-based

similarity (Gottlieb et al., 2011), were used to obtain
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integrated miRNA similarity. Specifically, we downloaded the

target scores of each miRNA from the database TargetScan

(Agarwal et al., 2015) and obtained gene function consistency-

based similarity using the GSFS method (Lv et al., 2012). The

indication phenotype-based similarity was obtained from the

Human MicroRNA Disease Database (HMDD) version 2.0 (v

2.0), miR2Disease and PhenomiR databases using the GSFS

method. Then, we combined the gene function consistency-

based similarity and the indication phenotype-based similarity

using the Jaccard score. Then, we named the two kinds of miRNA

similarities after SM1 and SM2, respectively. Moreover, the

integrated miRNA similarity SMR was obtained by the

following equation,

SMR � ∑jβjSMj

∑j βj
, (j � 1, 2) (3)

where β1 and β2 represent the weights of miRNA similarities.

Also, we set the values of β1 and β2 to 1, which means each

miRNA similarity made an equal contribution to constituting the

integrated miRNA similarity. Finally, the integrated miRNA

similarity SMR(mi,mj) between the ith and jth miRNAs was

obtained after normalization as follows.

SMR(mi,mj) � SMR(mi,mj)���������������∑nm
l�1SMR(mi,ml)

√ ���������������∑nm
l�1SMR(ml,mj)

√ (4)

2.4 GCNLASMMA

GCNLASMMA was separated into two steps. The known

SM-miRNA association A was initially decomposed and

reconstructed to obtain the new SM-miRNA association A*.

The reconstructed SM-miRNA association matrix A′ was then
obtained by calculating the new SM-miRNA associationA* using

a graph convolutional network with an attention mechanism.

More specifically, we obtained the new SM-miRNA associations

by matrix decomposition. Then, the new SM-miRNA association

matrix, integrated SM similarity and integrated miRNA

similarity were constructed into a heterogeneous network.

Finally, the graph convolutional network with layer attention

mechanism was applied to obtain the reconstructed SM-miRNA

association matrix. GCNLASMMA is a model of a neural

network with more hidden layers than other networks. The

multi-layer calculation thoroughly considered the known

FIGURE 1
The flow chart of potential SM-miRNA association prediction based on GCNLASMMA. Firstly, the matrix decomposition is applied to obtain the
new SM-miRNA associations. Then the new SM-miRNA associations, integrated SM similarity and integratedmiRNA similarity are constructed into an
SM-miRNA association heterogeneous network. Finally, a graph convolutional network with layer attention mechanism is applied to obtain the
reconstructed SM-miRNA association matrix.
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features and avoided overfitting. Moreover, the attention

mechanism extracted significant information from each layer,

thereby improving the accuracy of association prediction (Niu

et al., 2021). The specific flow chart of GCNLASMMA is shown

in Figure 1.

2.4.1 Matrix decomposition
The existence of noise in known SM-miRNA associations

tends to reduce prediction accuracy. Prior research has

demonstrated that hidden features with considerable value can

be extracted by applying dimension-reduction and noise-

reduction to the data (Vidal, 2011). A low-rank matrix is a

tool for efficiently obtaining hidden features with significant

values (Peng et al., 2012). Therefore, we used matrix

decomposition to learn a low-rank matrix from the known

SM-miRNA association A. The decomposition of A was

performed as follows:

A � A × X + E (5)

Since the above equation contains an infinite number of

solutions, we applied the constraint to turn it into:

min
X,E

‖X‖p + α‖E‖2,1 s.t. A � A × X + E (6)

where ‖X‖p � ∑iσ i, (σ i is the singular value ofmatrixX),
‖E‖2,1 � ∑n

j�1
���������∑m

i�1(Eij)2
√

. In Eq. 6, the nuclear norm and

sparse norm were applied to constrain X and E, which

allowed X and E to be low-rank and sparse matrices,

respectively. The balance parameter of low-rank and sparse

matrices α was set to 0.1. According to earlier research, if A

in Eq. 6 is transformed into an identity matrix, then the model is

degenerated to the Robust Principal Component Analysis

(RPCA), a convex optimization problem with constraints

(Chandrasekaran et al., 2009).

min
X,E,J

‖J‖p + α‖E‖2,1 s.t. A � A × X + E,X � J (7)

Based on the previous work (Meng et al., 2014), Eq. 7 can be

converted into an unconstrained optimization problem.

Therefore, the problem can be resolved using the Exact

Augmented Lagrange Multipliers (EALM) algorithm.

L � ‖J‖p + α‖E‖2,1 + tr(YT
1 (A − A × X − E)) + tr(YT

2 (X − J))
+δ
2
(‖A − A × X − E‖2F + ‖X − J‖2F) (8)

In Eq. 8, the penalty parameter δ ≥ 0. According to the

Inexact Augmented Lagrange Multipliers (IALM) algorithm

(See Table 1), we fixed other variables and solved the

minimum value of J, X and E by updating the Lagrange

multipliers Y1 and Y2. Moreover, we defined X* and E* as

the solution of Eq. 8. X* represents the similarity matrix of

miRNA or SM. E* represents the noise matrix. Then, the new

SM-miRNA association A* was expressed as:

A* � A × X* (9)

2.4.2 SM-miRNA heterogeneous network
In this study, the new SM-miRNA association A*,

integrated SM similarity SSM and integrated miRNA

similarity SMR were combined into a heterogeneous

network. There would be a known association between the

ith SM and the jth miRNA if element Aij
* in A* equaled 1.

SSM(i, j) represented the integrated similarity between the ith
SM and the jth SM. SMR(i, j) represented the integrated

similarity between the ith miRNA and the jth miRNA. The

specific equation of the heterogeneous network AH

construction is as follows:

AH � [~ SMR A*
A*T ~ SSM

] (10)

where A*T represents the transpose matrix of A*. In Eq. 10, we

normalized the similarity matrix of SM and miRNA by ~ SSM �
D

−1
2

s SSMD
−1
2

s and ~ SMR � D
−1
2

m SMRD
−1
2

m , respectively.

Specifically, Ds � diag(∑jSSMij) and Dm � diag(∑jSMRij).

2.4.3 Graph convolutional network
As classic network models, Long-Short Term Memory

(LSTM) and Convolution Neural Network (CNN) are only

applicable to grid-structured data. Nevertheless, the Graph

Convolutional Network (GCN) can manage data with

generalized topological graph structures and deeply explore

the features of the data (Habib and Qureshi, 2020). In this

paper, we constructed GCNLASMMA, which is a model for

graph convolution of biological information. Specifically, GCN

was implemented on the SM-miRNA heterogeneous networkAH

that was constructed by the known SM-miRNA associations, SM

similarities and miRNA similarities. GCN is a neural network

TABLE 1 The illustration of the IALM algorithm.

Algorithm: Inexact augmented lagrange multipliers

Input: Known SM-miRNA association matrix A and α � 0.1

Initialize:
X � 0, E � 0, Y1 � 0, Y2 � 0, μ � 10−4 , max μ � 1010 , ρ � 1.1, ε � 1010

While true

1. Fix others and J � argmin 1
μ‖J‖* + 1

2‖J − (X + Y2/μ)‖2F
2. Fix others and X � (I + ATA)(ATA − ATE + J + (ATY1 − Y2)/μ)
3. Fix others and E � argmin α

μ‖E‖2,1 + 1
2‖E − (A − AX + Y1/μ)‖2F

4. Update Y1 � Y1 + μ(A − AX − E); Y2 � Y2 + μ(X − J)
5. Update μ � min(ρμ, max μ)
If ‖A − AX − E‖∞ < ε and ‖X − J‖∞ < ε
End while

Output: X* and E*
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structure consisting of an input layer, an output layer and many

hidden layers that can represent nodes in a low-dimensional

manner. Each hidden layer of GCN takes the output of the

previous layer as input. The graph convolutional network

propagation rule is as follows:

H(l+1) � f(H(l), G) � σ(D−1
2GD−1

2H(l)W(l)) (11)

In Eq. 11,H(l) andH(l+1) denote the embeddings of nodes in the

lth and (l + 1)th layers, respectively. D � diag(∑jGij) is a

diagonal matrix of input graph G, W(l) represents the

trainable weight matrix with a layer-specific value, σ(·)
denotes the nonlinear activation function.

In the encoder part, to learn low-dimensional representations

of miRNAs and SMs, we combined the new SM-miRNA

association, integrated SM similarity and integrated miRNA

similarity into SM-miRNA association heterogeneous network

AH. Firstly, we set a penalty factor μ in the input graph G during

the propagation process as follows:

G � [ μ ~ SMR A*
A*T μ ~ SSM

] (12)

Then, we initialized the input layer embeddings as:

H(0) � [ 0 A*
A*T 0

] (13)

In this way, we obtained the propagation formula for the first

layer from Eqs 11, 13:

H(1) � σ(D−1
2GD−1

2H(0)W(0)) (14)

In Eq. 12, W(0) is a weight matrix that acts only between the

input layer and the first hidden layer. H(1) is the first-layer

embeddings of the heterogeneous network AH, k is the

dimension of the embeddings. Similarly, the propagation rules

for the subsequent layers of the GCN encoder followed Eq. 11,

where l � 1, 2,/, L. After L iterations, we obtained L k −
dimensional embeddings from different graph convolution

TABLE 2 Validation of the random 50 SM-miRNAs associations. The first column records the random 1–25 associations. The second column records
the random 26–50 associations.

SM miRNA Evidence SM miRNA Evidence

CID 4116 hsa-mir-329-2 unconfirmed CID 2662 hsa-mir-330 unconfirmed

CID 60726 hsa-mir-216b unconfirmed CID 7028 hsa-mir-592 unconfirmed

CID 4760 hsa-mir-520c unconfirmed CID 5656 hsa-mir-646 32083545

CID 3052 hsa-mir-193a unconfirmed CID 3520 hsa-mir-1266 unconfirmed

CID 444036 hsa-mir-199a-2 unconfirmed CID 43008 hsa-mir-519a-1 unconfirmed

CID 3198 hsa-mir-216a unconfirmed CID 3343 hsa-mir-1469 unconfirmed

CID 157922 hsa-mir-1260a unconfirmed CID 5566 hsa-mir-548a-3 unconfirmed

CID 3698 hsa-mir-2110 unconfirmed CID 5493444 hsa-mir-1285-2 unconfirmed

CID 4212 hsa-mir-219-2 unconfirmed CID 60843 hsa-let-7d unconfirmed

CID 8223 hsa-mir-98 unconfirmed CID 110635 hsa-mir-216b unconfirmed

CID 19861 hsa-mir-659 unconfirmed CID 2801 hsa-mir-744 unconfirmed

CID 71329 hsa-mir-100 unconfirmed CID 216239 hsa-mir-1273e unconfirmed

CID 47641 hsa-mir-150 unconfirmed CID 71398 hsa-mir-526a-1 unconfirmed

CID 443980 hsa-mir-760 unconfirmed CID 4201 hsa-mir-153-2 unconfirmed

CID 5574 hsa-mir-512-2 unconfirmed CID 5281040 hsa-mir-548a-2 unconfirmed

CID 8969 hsa-mir-543 unconfirmed CID 444020 hsa-mir-320a unconfirmed

CID 5282415 hsa-mir-619 unconfirmed CID 3025 hsa-mir-24-1 unconfirmed

CID 65833 hsa-mir-760 unconfirmed CID 3019 hsa-mir-1226 unconfirmed

CID 1775 hsa-mir-520f unconfirmed CID 1125 hsa-mir-27a unconfirmed

CID 3749 hsa-mir-1285-2 unconfirmed CID 1349907 hsa-mir-642a unconfirmed

CID 2905 hsa-mir-96 unconfirmed CID 656719 hsa-mir-611 unconfirmed

CID 3180 hsa-mir-148a unconfirmed CID 2795 hsa-mir-711 unconfirmed

CID 5566 hsa-mir-646 unconfirmed CID 23994 hsa-mir-614 unconfirmed

CID 4212 hsa-mir-18a 31063487 CID 4099 hsa-mir-708 unconfirmed

CID 82146 hsa-mir-490 unconfirmed CID 5281106 hsa-mir-1302-6 unconfirmed
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layers. Exponential linear elements were used as nonlinear

activation functions in the graph convolution layer, which

sped up the learning process and significantly improved the

generalization performance.

In addition, we tried several different combinations of

parameters from the range α ∈ {400, 600, 800, 1000},
lr ∈ {0.00700, 0.00725, 0.00750, 0.00775, 0.00800}. By adjusting

the parameters empirically, we set the dimensions of embeddings

k � 64, the number of layers L � 3, the initial learning rate of

optimizer lr � 0.00725, the total training epochs α � 600, the two

dropout rates β � 0.6 and γ � 0.4, the penalty factor μ � 6 on both

dataset1 and dataset2.

2.4.4 Layer attention mechanism
In addition, the layer attention mechanism was added to this

model by introducing an attentionmechanism between each layer

and storing the position information in AH. As a help for the

attention mechanism, we extracted the pertinent information

straight from the source data when constructing the

embeddings of each layer output during the decoding process.

Through this mechanism, we obtained the final SM embeddings

and final miRNA embeddings from the fully connected layer:

[Hm

Hs
] � ∑ alHl, where Hm represents the final embeddings of

miRNA, Hs is the final embeddings of SM. The neural network

automatically adjusted the value of al by the initial input value
l

(l+1), l � 1, 2,/, L. Finally, we obtained the reconstructed SM-

miRNA associationmatrixA′ by an activation function as follows,

A′ � sigmoid(HmW′HT
s ) (15)

whereW′ is a trainable matrix. The corresponding element Aij
′

is the potential correlation score between miRNA mi and

SM sj.

3 Results

To evaluate the performance of GCNLASMMA, we used two

types of cross validation, namely, 5-fold cross-validation and

Leave-One-Out Cross Validation (LOOCV). The two different

datasets include the same known 664 SM-miRNA associations.

Specifically, dataset 1 has 831 SMs and 541miRNAs. On the basis

of dataset1, we removed the SMs and miRNAs that did not

constitute any known association. Then, we obtained

dataset2 which has only 286 different miRNAs, 39 different

SMs. In this study, the Area Under the receiver operating

characteristic Curves (AUCs) obtained under 5-fold cross-

validation based on dataset1 and dataset2 were 0.9721 ±

0.0018 and 0.8393 ± 0.0047, respectively. The global AUC and

local AUC obtained under LOOCV based on dataset1 were

0.9751 (global LOOCV), 0.9746 (miRNA-fixed LOOCV) and

0.5014 (SM-fixed LOOCV), respectively. Based on dataset2, the

AUCs of GCNLASMMA were 0.8504 (global LOOCV), 0.8490

(miRNA-fixed LOOCV) and 0.6398 (SM-fixed LOOCV),

respectively. Additionally, we utilized two types of case studies

to confirm the effectiveness of GCNLASMMA in identifying

FIGURE 2
The left half of the figure shows the comparison of GCNLASMMAwith two comparison algorithms under global LOOCV based on dataset1. As a
result, GCNLASMMA, SLHGISMMA and SMiR-NBI achieve AUCs of 0.9751, 0.9273 and 0.8843, respectively. The right half of the figure shows the
comparison of GCNLASMMA with two comparison algorithms under global LOOCV based on dataset2. As a result, GCNLASMMA, SLHGISMMA and
SMiR-NBI achieve AUCs of 0.8504, 0.7897 and 0.7264, respectively.
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potential miRNAs for investigated SMs. Specifically,

GCNLASMMA has predicted the potential miRNAs associated

with 5-Fluorouracil (5-Fu, CID: 3385), 5-Aza-2′-deoxycytidine
(5-Aza-CdR, CID: 451668) and 17β-Estradiol (E2, CID: 5757).

For 5-Fu, the results showed that 9, 16 and 39 out of the top 10,

20 and 50 potential related miRNAs in the first type of case

studies, 8, 15 and 39 out of the top 10, 20 and 50 potential related

miRNAs in the second type of case studies were validated in other

FIGURE 3
The left half of the figure shows the comparison of GCNLASMMA with two comparison algorithms under miRNA-fixed LOOCV based on
dataset1. As a result, GCNLASMMA, SLHGISMMA and SMiR-NBI achieve AUCs of 0.9746, 0.9553 and 0.8837, respectively. The right half of the figure
shows the comparison of GCNLASMMA with two comparison algorithms under miRNA-fixed LOOCV based on dataset2. As a result, GCNLASMMA,
SLHGISMMA and SMiR-NBI achieve AUCs of 0.8490, 0.8106 and 0.7846, respectively.

FIGURE 4
The left half of the figure shows the comparison of GCNLASMMA with two comparison algorithms under SM-fixed LOOCV based on dataset1.
As a result, GCNLASMMA, SLHGISMMA and SMiR-NBI achieve AUCs of 0.5014, 0.7702 and 0.7497, respectively. The right half of the figure shows the
comparison of GCNLASMMA with two comparison algorithms under SM-fixed LOOCV based on dataset2. As a result, GCNLASMMA, SLHGISMMA
and SMiR-NBI achieve AUCs of 0.6398, 0.6565 and 0.6100, respectively.
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literature or databases, respectively. For 5-Aza-CdR, the results

showed that 8, 13 and 26 out of the top 10, 20 and 50 potential

related miRNAs in the first type of case studies, 8, 14 and 28 out

of the top 10, 20 and 50 potential related miRNAs in the second

type of case studies were validated in other literature or databases,

respectively. For E2, the results showed that 6, 14 and 29 out of

the top 10, 20 and 50 potential related miRNAs in the first type of

case studies, 4, 11 and 29 out of the top 10, 20 and 50 potential

related miRNAs in the second type of case studies were validated

in other literature or databases, respectively.

3.1 Performance evaluation

In 5-fold cross-validation, all known SM-miRNA

associations were randomly separated into five subsets of

nearly comparable size. Then, each subset was in turn

considered as the test sample, and the rest four subsets were

treated as training samples. Moreover, all unknown SM-miRNA

pairs were regarded as candidate samples. Subsequently, we

obtained a predicted association score matrix by

GCNLASMMA, and ranked the scores of each test sample

against those of the candidate samples. This partition-

prediction-ranking procedure was repeated 100 times to

obtain a sound estimate of the mean and variance of

GCNLASMMA’s prediction accuracy. Finally, the prediction

of a test sample was deemed successful if the sample’s rank

was higher than the given threshold. Therefore, we utilized the

threshold to calculated the false positive rate (FPR, 1-specificity)

and the true positive rate (TPR, sensitivity). The FPR and TPR

represented the percentage of candidate samples that lower than

the threshold and the percentage of test samples that higher than

the threshold, respectively. Then, we regarded FPR and TPR as

horizontal and vertical axis. The Receiver Operating

Characteristic (ROC) curve were plotted. Finally, we attained

the Area Under the ROC Curve (AUC) by computing the area

under the ROC curves. In this investigation, GCNLASMMA

achieved the AUCs of 0.9721 ± 0.0018 and 0.8393 ± 0.0047 under

5-fold cross-validation based on dataset1 and dataset2,

respectively.

LOOCV was further classified as either global and local.

Then, the local-LOOCV was subdivided into miRNA-fixed

TABLE 3 Validation of the top 50miRNAs associated with 5-Fu in the first type of case studies. The first column records the top 1–25 relatedmiRNAs.
The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-126 26062749

CID 3385 hsa-miR-195 21947305 CID 3385 hsa-miR-128-1 23220571

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-337 unconfirmed

CID 3385 hsa-miR-195 21947305 CID 3385 hsa-miR-181c unconfirmed

CID 3385 hsa-miR-125a 23220571 CID 3385 hsa-miR-30c-1 unconfirmed

CID 3385 hsa-miR-345 unconfirmed CID 3385 hsa-miR-27a 23220571

CID 3385 hsa-miR-16-1 26198104 CID 3385 hsa-let-7a-1 23220571

CID 3385 hsa-miR-24-1 26198104 CID 3385 hsa-miR-139 27173050

CID 3385 hsa-miR-23b 23220571 CID 3385 hsa-miR-302b 26457704

CID 3385 hsa-miR-1226 26198104 CID 3385 hsa-let-7b 25789066

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-26b 23220571

CID 3385 hsa-miR-132 23220571 CID 3385 hsa-miR-221 27501171

CID 3385 hsa-125b-1 unconfirmed CID 3385 hsa-miR-338 28928082

CID 3385 hsa-let-7e 23220571 CID 3385 hsa-miR-130a unconfirmed

CID 3385 hsa-miR-19a 23220571 CID 3385 hsa-miR-10b 22322955

CID 3385 hsa-miR-181a-1 unconfirmed CID 3385 hsa-miR-204 27095441

CID 3385 hsa-miR-181b-1 unconfirmed CID 3385 hsa-miR-26a-1 unconfirmed

CID 3385 hsa-miR-25 23220571 CID 3385 hsa-miR-92a-1 23220571

CID 3385 hsa-miR-106a 23220571 CID 3385 hsa-miR-299 31786874

CID 3385 hsa-miR-200c 23220571 CID 3385 hsa-miR-107 26636340

CID 3385 hsa-miR-22 25449431 CID 3385 hsa-miR-181a-2 24462870

CID 3385 hsa-miR-20a 23220571 CID 3385 hsa-miR-205 24396484

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-23a 23220571

CID 3385 hsa-miR-34b unconfirmed CID 3385 hsa-miR-199b unconfirmed

CID 3385 hsa-miR-205 24396484 CID 3385 hsa-miR-93 23220571
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LOOCV and SM-fixed LOOCV. In LOOCV, each known SM-

miRNA association was in turn considered to be the test sample

and the others were treated as the training samples. Moreover, all

unknown SM-miRNA pairs were treated as candidate samples. In

miRNA-fixed LOOCV and SM-fixed LOOCV, test samples and

training samples were chosen similarly. However, in SM-fixed

LOOCV, only unknown SM-miRNA pairs containing the

selected SM were regarded as candidate samples. Similarly, in

miRNA-fixed LOOCV, candidate samples only included those

involving the chosen miRNA. Then, we ranked the score of the

test sample against those of the candidate samples. Finally, the

prediction of a test sample was deemed successful if the rank of

this test sample was higher than the given threshold. Based on

dataset1, GCNLASMMA attained the AUCs of 0.9751,

0.9746 and 0.5014 under global LOOCV, miRNA-fixed

LOOCV and SM-fixed LOOCV, respectively. Based on

dataset2, GCNLASMMA attained the AUCs of 0.8504,

0.8490 and 0.6398 under global LOOCV, miRNA-fixed

LOOCV and SM-fixed LOOCV, respectively.

The AUC comparison figures based on dataset1 (dataset2)

were plotted to determine the differences between

GCNLASMMA and other models’ outcomes. AUC =

0.5 would suggest that the model was only capable of

random prediction, whereas AUC = 1 would indicate that

all test samples were accurately predicted. Figure 2

demonstrates that the results of GCNLASMMA under

global LOOCV are significantly better than that of SMiR-

NBI. Figures 3, 4 show that the results of GCNLASMMA

under miRNA-fixed local LOOCV and SM-fixed local

LOOCV were significantly better than those of

SLHGISMMA and SMiR-NBI. Furthermore, the AUC of

miRNA-fixed local LOOCV based on dataset1 is 0.9746,

which means almost all potential SM-miRNA associations

in dataset1 were predicted successfully.

3.2 Case studies

To further illustrate the GCNLASMMA’s applicability to

identify potential miRNAs, we conducted two types of case

studies on three essential SMs, namely 5-Fluorouracil (5-Fu,

CID: 3385), 5-Aza-2′-deoxycytidine (5-Aza-CdR, CID:

TABLE 4 Validation of the top 50 miRNAs associated with 5-Fu in the second type of case studies. The first column records the top 1–25 related
miRNAs. The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-195 21947305

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-27a 23220571

CID 3385 hsa-miR-205 24396484 CID 3385 hsa-miR-204 27095441

CID 3385 hsa-miR-181a-2 24462870 CID 3385 hsa-miR-181a-1 unconfirmed

CID 3385 hsa-miR-23a 23220571 CID 3385 hsa-miR-25 23220571

CID 3385 hsa-miR-1226 26198104 CID 3385 hsa-miR-199b unconfirmed

CID 3385 hsa-miR-181c unconfirmed CID 3385 hsa-miR-139 27173050

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-195 21947305

CID 3385 hsa-miR-26a-1 unconfirmed CID 3385 hsa-miR-132 23220571

CID 3385 hsa-miR-26b 23220571 CID 3385 hsa-miR-20a 23220571

CID 3385 hsa-miR-130a unconfirmed CID 3385 hsa-miR-126 26062749

CID 3385 hsa-miR-345 unconfirmed CID 3385 hsa-125b-1 unconfirmed

CID 3385 hsa-miR-128-1 23220571 CID 3385 hsa-miR-200c 23220571

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-299 31786874

CID 3385 hsa-miR-181b-1 unconfirmed CID 3385 hsa-miR-30c-1 unconfirmed

CID 3385 hsa-miR-205 24396484 CID 3385 hsa-miR-24-1 26198104

CID 3385 hsa-miR-125a 23220571 CID 3385 hsa-miR-93 23220571

CID 3385 hsa-miR-22 25449431 CID 3385 hsa-let-7e 23220571

CID 3385 hsa-miR-16-1 26198104 CID 3385 hsa-let-7b 25789066

CID 3385 hsa-miR-106a 23220571 CID 3385 hsa-miR-221 27501171

CID 3385 hsa-miR-23b 23220571 CID 3385 hsa-miR-19a 23220571

CID 3385 hsa-miR-338 28928082 CID 3385 hsa-miR-92a-1 23220571

CID 3385 hsa-miR-10b 22322955 CID 3385 hsa-miR-302b 26457704

CID 3385 hsa-let-7a-1 23220571 CID 3385 hsa-miR-107 26636340

CID 3385 hsa-miR-337 unconfirmed CID 3385 hsa-miR-34b unconfirmed
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451668) and 17β-Estradiol (E2, CID: 5757). On the basis of all

known SM-miRNA associations, the first type was applied to

forecast potential miRNAs for investigated SMs. As the training

set, we utilized the known SM-miRNA associations from

dataset1. Then, for each investigated SM, we ranked all

candidate miRNAs according on their predicted scores. The

second type was used to forecast potential miRNAs for

investigated SMs without any known SM-miRNA association.

Therefore, we removed all verified associations related to the

investigated SMs before the prediction and ranked them as the

first type of case studies. After ranking all candidate miRNAs for

each investigated SM based on their predicted scores, the top

50 predicted miRNAs were picked out and verified in other

literature or databases. Moreover, we selected 10, 20 and

50 associations randomly from all potential associations to

further demonstrate the validity of GCNLASMMA. The

results show that only 0, 0 and 2 out of random 10, 20 and

50 associations are confirmed in other literature or databases (See

Table 2), which significantly worse than the top 10, 20 and

50 miRNAs related to investigated SMs.

3.2.1 5-Fu
5-Fu, one of the earliest anticancer drugs, can be fully absorbed by

tumor cells. Moreover, 5-Fu can decrease tumor cell proliferation by

interfering with the formation of DeoxyriboNucleic Acid (DNA) and

RiboNucleic Acid (RNA) in tumor cells. It has been demonstrated

that 5-Fu has considerable inhibitory effects on various cancer cells.

Therefore, 5-Fu is frequently used as a positive control in anticancer

drug effect experiments and clinical adjuvant treatment of gastric

cancer (Longley et al., 2003). The first type of case studies’ results show

that 9, 16 and 39 out of the top 10, 20 and 50 potential 5-Fu-associated

miRNAs are confirmed in other literature or databases (See Table 3).

The second type of case studies’ results show that 8, 15 and 39 out of

the top 10, 20 and 50 potential 5-Fu-associated miRNAs are

confirmed in other literature or databases (See Table 4). For

example, 5-Fu is the most common chemotherapeutic agent for

colorectal cancer. On the one hand, over-expression of hsa-miR-

23a causes the resistance to 5-Fu in microsatellite instability colorectal

cancer, which results in a diminished effect of 5-Fu chemotherapy

(Shang et al., 2014). On the other hand, Ectopic expression of hsa-

miR-23a increased the viability and survival of microsatellite stability

TABLE 5 Validation of the top 50 miRNAs associated with 5-Aza-CdR in the first type of case studies. The first column records the top 1–25 related
miRNAs. The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 451668 hsa-miR-20a 23220571 CID 451668 hsa-miR-30a unconfirmed

CID 451668 hsa-miR-320a 26198104 CID 451668 hsa-miR-107 23220571

CID 451668 hsa-miR-125a 23220571 CID 451668 hsa-miR-199b 24659709

CID 451668 hsa-miR-182 23220571 CID 451668 hsa-let-7a-1 unconfirmed

CID 451668 hsa-miR-204 unconfirmed CID 451668 hsa-miR-92a-1 unconfirmed

CID 451668 hsa-miR-200b 23626803 CID 451668 hsa-miR-181a-1 23220571

CID 451668 hsa-miR-23a unconfirmed CID 451668 hsa-let-7e 22053057

CID 451668 hsa-let-7f-1 23220571 CID 451668 hsa-miR-26a-1 unconfirmed

CID 451668 hsa-let-7b 26708866 CID 451668 hsa-miR-1233-1 unconfirmed

CID 451668 hsa-miR-200c 23626803 CID 451668 hsa-miR-130a 23220571

CID 451668 hsa-miR-25 23220571 CID 451668 hsa-miR-30c-1 unconfirmed

CID 451668 hsa-miR-128-1 27705931 CID 451668 hsa-miR-22 23220571

CID 451668 hsa-miR-145 26198104 CID 451668 hsa-miR-301a unconfirmed

CID 451668 hsa-miR-221 unconfirmed CID 451668 hsa-let-7g 23220571

CID 451668 hsa-miR-19b-1 unconfirmed CID 451668 hsa-miR-195 23333942

CID 451668 hsa-miR-197 unconfirmed CID 451668 hsa-miR-302b unconfirmed

CID 451668 hsa-let-7i 23220571 CID 451668 hsa-miR-26b unconfirmed

CID 451668 hsa-miR-181b-1 unconfirmed CID 451668 hsa-miR-205 unconfirmed

CID 451668 hsa-miR-338 unconfirmed CID 451668 hsa-miR-218-1 unconfirmed

CID 451668 hsa-let-7d 26802971 CID 451668 hsa-miR-93 23220571

CID 451668 hsa-miR-139 unconfirmed CID 451668 hsa-miR-124-1 unconfirmed

CID 451668 hsa-miR-328 unconfirmed CID 451668 hsa-miR-15b unconfirmed

CID 451668 hsa-miR-126 23220571 CID 451668 hsa-miR-10b unconfirmed

CID 451668 hsa-miR-17 23220571 CID 451668 hsa-miR-128-2 unconfirmed

CID 451668 hsa-miR-19a 23220571 CID 451668 hsa-miR-27a 23220571
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colorectal cancer cells, thereby leading to the apoptosis of colorectal

cancer cells (Li et al., 2015).

3.2.2 5-Aza-CdR
5- Aza-CdR can bind to DNA methyltransferases to reduce

methylation levels, reducing the biological activity of

methyltransferase inhibitors and regulating gene expression.

In clinical usage, 5-Aza-CdR is frequently used in clinical

settings to treat diseases caused by gene variants (Do Amaral

et al., 2019). Additionally, 5-Aza-CdR can suppress tumor cell

proliferation via demethylation, making it one of the most potent

inhibitors currently available in vitro (Lemaire et al., 2008).

Meanwhile, 5-Aza-CdR can enhance the sensitivity of targeted

drugs in non-small cell lung cancer chemotherapy, inhibit cell

proliferation, accelerate the apoptosis of cancer cells, induce cell

differentiation and activate quiescent anticancer cells in the

human body. The first type of case studies’ results show that

8, 13 and 26 out of the top 10, 20 and 50 potential 5-Aza-CdR-

associated miRNAs are confirmed in other literature or databases

(See Table 5). The second type of case studies’ results show that 8,

14 and 28 out of the top 10, 20 and 50 potential 5-Aza-CdR-

associated miRNAs are confirmed in other literature or databases

(See Table 6). For example, quantitative methylation-specific

Polymerase Chain Reaction analysis showed hypermethylation

of the choline phosphoglyceride island adjacent to hsa-let-7e, and

demethylation treatment with 5-Aza-CdR or transfection of pYr-

let-7e-shRNA plasmid containing unmethylated hsa-let-7e DNA

sequence could restore hsa-let-7e expression and partly reduce

the chemoresistance (Cai et al., 2013).

3.2.3 E2
In addition to stimulating the growth and maintenance of the

reproductive system, E2 exerts protective effects on cardiovascular

and other organs. Specifically, E2 can reduce blood cholesterol levels

by decreasing Low-Density Lipoprotein (LDL), increasing High-

Density Lipoprotein (HDL) and boosting apolipoprotein content

(Oh et al., 2019). Moreover, researchers are payingmore attention to

the anti-inflammatory, antioxidant and anti-apoptotic properties of

E2 on cardiovascular diseases such as coronary heart disease and

atherosclerosis, are getting more attention from researchers (Tse

TABLE 6 Validation of the top 50miRNAs associated with 5-Aza-CdR in the second type of case studies. The first column records the top 1–25 related
miRNAs. The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 451668 hsa-miR-20a 23220571 CID 451668 hsa-miR-92a-1 unconfirmed

CID 451668 hsa-miR-181b-1 unconfirmed CID 451668 hsa-miR-125a 23220571

CID 451668 hsa-miR-205 unconfirmed CID 451668 hsa-let-7b 26708866

CID 451668 hsa-miR-19a 23220571 CID 451668 hsa-miR-302b unconfirmed

CID 451668 hsa-miR-181a-1 23220571 CID 451668 hsa-miR-30a unconfirmed

CID 451668 hsa-miR-130a 23220571 CID 451668 hsa-miR-23b 23220571

CID 451668 hsa-let-7g 23220571 CID 451668 hsa-miR-199b 24659709

CID 451668 hsa-miR-200b 23626803 CID 451668 hsa-miR-128-2 unconfirmed

CID 451668 hsa-miR-126 23220571 CID 451668 hsa-miR-15b unconfirmed

CID 451668 hsa-miR-320a 26198104 CID 451668 hsa-miR-124-1 unconfirmed

CID 451668 hsa-miR-30c-1 unconfirmed CID 451668 hsa-miR-26b unconfirmed

CID 451668 hsa-miR-328 unconfirmed CID 451668 hsa-miR-128-1 27705931

CID 451668 hsa-let-7e 22053057 CID 451668 hsa-let-7a-1 unconfirmed

CID 451668 hsa-miR-10b unconfirmed CID 451668 hsa-miR-218-1 unconfirmed

CID 451668 hsa-let-7f-1 23220571 CID 451668 hsa-miR-200c 23626803

CID 451668 hsa-miR-221 unconfirmed CID 451668 hsa-miR-26a-1 unconfirmed

CID 451668 hsa-miR-182 23220571 CID 451668 hsa-miR-338 unconfirmed

CID 451668 hsa-let-7i 23220571 CID 451668 hsa-miR-93 23220571

CID 451668 hsa-miR-195 23333942 CID 451668 hsa-miR-139 unconfirmed

CID 451668 hsa-miR-27a 23220571 CID 451668 hsa-miR-145 26198104

CID 451668 hsa-miR-204 unconfirmed CID 451668 hsa-miR-107 23220571

CID 451668 hsa-miR-25 23220571 CID 451668 hsa-let-7d 26802971

CID 451668 hsa-miR-23a unconfirmed CID 451668 hsa-miR-19b-1 unconfirmed

CID 451668 hsa-let-7f-1 23220571 CID 451668 hsa-miR-22 23220571

CID 451668 hsa-miR-17 23220571 CID 451668 hsa-miR-197 unconfirmed
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et al., 1999; Rachoń et al., 2002). The first type of case studies’ results

show that 6, 14 and 29 out of the top 10, 20 and 50 potential E2-

associated miRNAs are confirmed in other literature or databases

(See Table 7). The second type of case studies’ results show that 4,

11 and 29 out of the top 10, 20 and 50 potential E2-associated

miRNAs are confirmed in other literature or databases (See Table 8).

For example, hsa-miR-23a could be negatively regulated by E2 in

both myocardium and cultured cardiomyocytes. Moreover, hsa-

miR-23a could directly down-regulate peroxisome proliferator-

activated receptor γ coactivator-alpha (PGC-1α) expression in

cardiomyocytes via binding to its 3′-untranslated regions, which

implied that hsa-miR-23a could be critical for the down-regulation

of PGC-1α under E2 deficiency (Sun et al., 2014).

4 Discussion

Deep learning offers a wide range of applications in major areas

of computer science, such as computer vision, natural language

processing and machine translation. More effective models can be

obtained by adding hidden layers to standard neural networks. Deep

learning also contributes to medication development and precision

medicine by predicting potential SM-miRNA associations.

Furthermore, deep learning models have more hidden layer

nodes than conventional neural networks. The number of hidden

layers can even reach ten for extremely complex problems. After

multiple layers of calculation, the results of deep learning-based

algorithms are often closer to the actual situation than those of

traditional machine learning-based algorithms. Initially, we utilized

matrix decomposition to reduce noise from known SM-miRNA

associations. Then, the layer attentionmechanismwas introduced to

the deep learning model, which significantly improved the

performance of our model by integrating the SM-miRNA

association feature vectors used for calculation.

GCNLASMMA is a model of a neural network with

numerous hidden layers. Multiple layers computations allowed

the results to completely consider known features and avoid

overfitting. The attention mechanism extracted vital information

from each layer of the neural network. Besides, the matrix

decomposition module reduced the noise of known SM-

miRNA associations, significantly enhancing GCN’s

performance. GCNLASMMA was an attempt to identify

TABLE 7 Validation of the top 50 miRNAs associated with E2 in the first type of case studies. The first column records the top 1–25 related miRNAs.
The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 5757 hsa-miR-183 unconfirmed CID 5757 hsa-miR-181b-1 unconfirmed

CID 5757 hsa-let-7g 23220571 CID 5757 hsa-miR-19b-1 unconfirmed

CID 5757 hsa-miR-181a-2 unconfirmed CID 5757 hsa-miR-141 unconfirmed

CID 5757 hsa-miR-125a 21914226 CID 5757 hsa-miR-15a unconfirmed

CID 5757 hsa-miR-107 23220571 CID 5757 hsa-miR-17 23220571

CID 5757 hsa-miR-26b 24735615 CID 5757 hsa-miR-10b 23220571

CID 5757 hsa-miR-19a 29416771 CID 5757 hsa-miR-30a 29331043

CID 5757 hsa-miR-195 unconfirmed CID 5757 hsa-let-7f-1 23220571

CID 5757 hsa-miR-128-2 23220571 CID 5757 hsa-miR-302b 23220571

CID 5757 hsa-miR-181a-1 unconfirmed CID 5757 hsa-miR-199b unconfirmed

CID 5757 hsa-miR-128-1 23220571 CID 5757 hsa-miR-181c unconfirmed

CID 5757 hsa-miR-130a unconfirmed CID 5757 hsa-miR-106b 28422740

CID 5757 hsa-miR-338 22996663 CID 5757 hsa-miR-23a 23220571

CID 5757 hsa-let-7e 23220571 CID 5757 hsa-miR-9-2 23220571

CID 5757 hsa-miR-20a 21914226 CID 5757 hsa-miR-182 28678802

CID 5757 hsa-miR-200c 23220571 CID 5757 hsa-miR-139 unconfirmed

CID 5757 hsa-miR-27a 23220571 CID 5757 hsa-let-7b 23220571

CID 5757 hsa-miR-200b 23220571 CID 5757 hsa-miR-25 unconfirmed

CID 5757 hsa-miR-221 21057537 CID 5757 hsa-miR-218-1 unconfirmed

CID 5757 hsa-miR-151a unconfirmed CID 5757 hsa-miR-22 24715036

CID 5757 hsa-miR-204 29789714 CID 5757 hsa-miR-15b 23220571

CID 5757 hsa-miR-106a unconfirmed CID 5757 hsa-miR-130a unconfirmed

CID 5757 hsa-miR-205 unconfirmed CID 5757 hsa-miR-23b 23220571

CID 5757 hsa-miR-92a-1 unconfirmed CID 5757 hsa-miR-26a-1 unconfirmed

CID 5757 hsa-miR-130b unconfirmed CID 5757 hsa-miR-30c-1 23220571
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potential SM-miRNA associations using deep learning. The

advantages above enabled GCNLASMMA to accurately

anticipate potential SM-miRNA associations.

Deep learning’s spectacular performance is contingent on a

vast number of known SM-miRNA associations. The number of

known SM-miRNA associations utilized in this investigation was

apparently insufficient to fulfill GCNLASMMA. Therefore, the

performance of GCNLASMMA was still unsatisfactory. In

addition, the parameters used in GCNLASMMA may not be

ideal. Moreover, the construction of heterogeneous networks will

yield better results if other biological information, such as long

non-coding RNA or disease, is utilized. These factors will

motivate researchers to develop more effective deep learning

models to predict potential SM-miRNA associations using more

trustworthy biological datasets.
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TABLE 8 Validation of the top 50miRNAs associatedwith E2 in the second type of case studies. The first column records the top 1–25 relatedmiRNAs.
The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 5757 hsa-miR-183 unconfirmed CID 5757 hsa-miR-19a 29416771

CID 5757 hsa-miR-30c-1 23220571 CID 5757 hsa-miR-19b-1 unconfirmed

CID 5757 hsa-miR-15a unconfirmed CID 5757 hsa-miR-125a 21914226

CID 5757 hsa-miR-181a-1 unconfirmed CID 5757 hsa-miR-15b 23220571

CID 5757 hsa-let-7f-1 23220571 CID 5757 hsa-miR-128-2 23220571

CID 5757 hsa-miR-181b-1 unconfirmed CID 5757 hsa-miR-20a 21914226

CID 5757 hsa-miR-205 unconfirmed CID 5757 hsa-miR-26b 24735615

CID 5757 hsa-miR-181a-2 unconfirmed CID 5757 hsa-miR-10b 23220571

CID 5757 hsa-miR-9-2 23220571 CID 5757 hsa-miR-181c unconfirmed

CID 5757 hsa-miR-23a 23220571 CID 5757 hsa-miR-22 24715036

CID 5757 hsa-miR-128-1 23220571 CID 5757 hsa-miR-139 unconfirmed

CID 5757 hsa-let-7e 23220571 CID 5757 hsa-miR-106a unconfirmed

CID 5757 hsa-let-7b 23220571 CID 5757 hsa-miR-141 unconfirmed

CID 5757 hsa-miR-130a unconfirmed CID 5757 hsa-let-7g 23220571

CID 5757 hsa-miR-338 22996663 CID 5757 hsa-miR-107 23220571

CID 5757 hsa-miR-30a 29331043 CID 5757 hsa-miR-23b 23220571

CID 5757 hsa-miR-302b 23220571 CID 5757 hsa-miR-195 unconfirmed

CID 5757 hsa-miR-130b unconfirmed CID 5757 hsa-miR-27a 23220571

CID 5757 hsa-miR-106b 28422740 CID 5757 hsa-miR-25 unconfirmed

CID 5757 hsa-miR-199b unconfirmed CID 5757 hsa-miR-204 29789714

CID 5757 hsa-miR-200b 23220571 CID 5757 hsa-miR-221 21057537

CID 5757 hsa-miR-182 28678802 CID 5757 hsa-miR-151a unconfirmed

CID 5757 hsa-miR-26a-1 unconfirmed CID 5757 hsa-miR-218-1 unconfirmed

CID 5757 hsa-miR-17 23220571 CID 5757 hsa-miR-130a unconfirmed

CID 5757 hsa-miR-200c 23220571 CID 5757 hsa-miR-92a-1 unconfirmed
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Determining the three-dimensional structure of proteins in their native functional
states has been a longstanding challenge in structural biology. While integrative
structural biology has been the most effective way to get a high-accuracy structure
of different conformations and mechanistic insights for larger proteins, advances in
deep machine-learning algorithms have paved the way to fully computational
predictions. In this field, AlphaFold2 (AF2) pioneered ab initio high-accuracy
single-chain modeling. Since then, different customizations have expanded the
number of conformational states accessible through AF2. Here, we further
expanded AF2 with the aim of enriching an ensemble of models with user-
defined functional or structural features. We tackled two common protein
families for drug discovery, G-protein-coupled receptors (GPCRs) and kinases.
Our approach automatically identifies the best templates satisfying the specified
features and combines those with genetic information. We also introduced the
possibility of shuffling the selected templates to expand the space of solutions. In our
benchmark, models showed the intended bias and great accuracy. Our protocol can
thus be exploited for modeling user-defined conformational states in an automatic
fashion.

KEYWORDS

AlphaFold, GPCRs (G-protein-coupled receptors), kinases, structure prediction, protein
function

Introduction

X-ray crystallography and cryogenic electron microscopy (cryo-EM) are two widely used
techniques for determining the detailed structures of biomolecules at the atomic level (Vénien-Bryan
et al., 2017; Wang and Wang, 2017). For structure-based drug discovery and design, having at least
one high-accuracy structure is essential (Congreve et al., 2020). Despite recent advances in
technology have made more protein structures available (Callaway, 2020), their experimental
determination is still a difficult and costly process with a high risk of failure (Lyumkis, 2019). In fact,
experimental protein structures represent only a small fraction of the complete set of known protein
sequences (The Uniprot Consortium, 2019; Burley et al., 2021). Furthermore, one structure only
represents a snapshot of a certain protein state, and may not necessarily be sufficient to understand
the overall mechanism of operation. This limitation has important implications for drug discovery,
especially for common drug targets such as G-protein-coupled receptors (GPCRs) and kinases,
which are known to modulate cellular behavior by switching among multiple structurally different
functional states (Attwood et al., 2021; Yang et al., 2021).
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The 14th edition of Critical Assessment of protein Structure
Prediction (CASP14) has recognized AlphaFold2 (AF2) for its
impressive accuracy in predicting monomeric protein structures de
novo (Jumper et al., 2021). AF2 makes it straightforward to predict a
protein structure from a protein sequence and has provided millions of
protein models with estimated accuracy (Tunyasuvunakool et al., 2021).
Since the emergence of AF2, a number of deep learning-based methods
have been developed with the same goal of predicting protein structures at
experimental accuracy (AlQuraishi, 2021; Baek et al., 2021; Chowdhury
et al., 2022; Lin et al., 2022). Among them, RoseTTAFold was the first
approach that was able to predict both active and inactive GPCR
conformations by using templates in a uniform functional state,
outperforming comparative homology modeling methods (Baek et al.,
2021). This achievement has sparked interest in developing workflows to
predict multiple native conformations of a protein target with the state-of-
the-art AF2 implementation.

To date, a number of AF2 customizations that adopted different
concepts are available (Del Alamo et al., 2022; Heo and Feig, 2022;
Stein and Mchaourab, 2022; Wayment-Steele et al., 2022). Del Alamo
and co-authors took advantage of a shallow multiple sequence
alignment (sMSA) to collect an ensemble of structures, among
which multiple native conformations of GPCRs and transporters
were identified (Del Alamo et al., 2022). Alternatively, SPEACH_
AF (hereafter SPEACH) masked multiple positions in the multiple
sequence alignment (MSA) to switch the prediction toward alternative
conformational states that were less represented in theMSA (Stein and
Mchaourab, 2022). Another protocol removed the MSA (noMSA) and
prepared a local database of state-annotated GPCRs to perform
AF2 template-based modeling (Heo and Feig, 2022). These
methods for sampling conformational changes in proteins have
shown great potential, but also have some limitations, such as a
reduced breadth of sampled conformations or a high dependence
on the structural features of selected templates.

Here, we update our previous protocol (sMSA) to facilitate the
collection of templates with user-defined functional or structural
properties of GPCRs and kinases. Templates are automatically
filtered and retrieved from an annotated database in accord with

the specified functional or structural criteria. Through a calibrated
balancing of genetic and template-based features, our protocol
samples equal or better active GPCR states than all the peer-
reviewed methods for sampling alternative states. On a difficult
target, randomizing templates to explore the available structural
space significantly improved accuracy. In modeling kinase
conformations, our protocol enriched the predicted ensemble with
models carrying user-defined structural features.

Methods

We updated our previous modified ColabFold version (Del Alamo
et al., 2022; Mirdita et al., 2022) and our python interface to allow users
to specify functional or structural properties of templates for modeling
GPCRs and kinases. The new implementation and accompanying
documentation can be found at https://github.com/meilerlab/AF2_
GPCR_Kinase.

GPCRs benchmark

Target PDBs for Lutropin-choriogonadotropic hormone receptor
(LSHR), Melatonin receptor type 1A (MTR1A), Prostaglandin E2
receptor EP4 subtype (PE2R4), Beta-1 adrenergic receptor (ADRB1),
Parathyroid hormone/parathyroid hormone-related peptide receptor
(PTH1R) and Frizzled-7 (FZD7) were 7FII, 7VGY, 7D7M, 7JJO,
6NBF and 6WW2 respectively (Su et al., 2020; Duan et al., 2021;
Nojima et al., 2021; Wang et al., 2022). The protein regions
corresponding to transmembrane helices (TM-RMSD) were retrieved
from GPCRdb (Kooistra et al., 2021). Four workflows were evaluated to
predict the active state of GPCRs: ActTemp+sMSA was run with eight
sequence clusters and 16 extra cluster sequences combined with the
automatic detection of “Active” templates not belonging to the same
subfamily. Those number of sequences were chosen to provide evolution-
based structural information without changing the activation state
inferred from templates. In particular, the script takes the

SCHEME 1
Schematic representation of themethod. The protein sequence is used to collect MSA and templates. A subset of sequences and templates are collected
by randomly subsampling the MSA and by interrogating webservers to filter templates with user-defined structural properties. The predicted ensemble of
structures is biased toward the intended conformation.
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AF2 generated list of templates ranked by sequence identity and filters out
all the PDBs not matching the user-defined activation state in accord to
GPCRdb annotation. Here, the top 4 templates were used. For LSHR,
MTR1A, PE2R4, ADRB1, PTH1R and FZD7 those were (sequence
identity in parenthesis): 6H7L_A (20.6%)-6IBL_A(15.9%)-6K41_
R(23.1%)-6K42_R(23.7%), 6H7L_A(26.6%)-7P00_R(23.7%)-6IBL_
A(19.9%)-7RMG_R(22.7%), 7E32_R(21.9%)-7CKY_R(20.4%)-7CKW_
R(19.2%)-7JVP_R(20.4%), 6MXT_A(37.1%)-7CKY_R(36.8%)-7CKW_
R(36.8%)-7JVP_R(37.4%), 7F16_R(35.8%)-6M1I_A(26.0%)-6P9Y_
R(30.5%)-6VN7_R(32.0%) and 6XBM_R(25.7%)-6XBK_R(19.0%)-
6OT0_R(27.2%)-7D76_R(18.3%) respectively. Other AF2 parameters

were kept as in our previous pipeline - named sMSA - that used
16 sequence clusters and 32 extra cluster sequences without any
template and no recycling (Del Alamo et al., 2022). To remove the
MSA (noMSA run), the same implementation published previously was
adopted (Heo and Feig, 2022). These runs were then carried out using the
GPCRdb API (Application Programming Interface) rather than a local
GPCR database to avoid mismatches between the pool of available
templates. The SPEACH protocol was applied with a sliding window
of 10 masked residues (Stein andMchaourab, 2022). Thus, the number of
models collected with SPEACH was higher than the 50 models collected
with other protocols. Unfolded models were discharged.

FIGURE 1
AF2 accuracy in predicting active state GPCRs with different protocols. ActTemp+sMSA was predicted with templates in the active state and a shallow
MSA, sMSA with a shallow MSA only, noMSA without a MSA for templates aligned regions, SPEACH with a sliding window masked MSA. TM-RMSD between
experimental active and inactive structures is shown as a dashed line.
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To assess the impact of randomizing templates, the inactive state
structure of Leukotriene B4 receptor 1 (LT4R1, PDB 7K15) was used
as a target (Michaelian et al., 2021). The MSA for the aligned regions
was removed, and 50 models were generated with and without
randomizing templates. The templates used for the models without
randomization were 6VI4_A(27.5%)-4ZUD_A(20.0%)-4YAY_
A(20.1%)-4N6H_A(20.2%).

EIF2AK4 kinase benchmark

All the experimental structures available were absent from the
AF2 training set. Models were predicted by using exactly the same
ActTemp+sMSA protocol adopted for GPCRs predictions but with
20 templates instead of 4. The DFG, aC_helix, and Salt bridge KIII.17

and EαC.24 structural features as well as the activation loop orientation
used to collect templates were defined according to the KLIF database
(Kanev et al., 2021). Unfolded models were discarded.

Results

The original pipeline that was developed to sample alternative
conformations was expanded to improve the prediction of GPCRs and
kinases in a specific conformational state. Here, templates are selected
through structural filters and the resulting structures are combined
with genetic information coming from a subset of the MSA to predict
models carrying the desired structural properties at high accuracy
(Scheme 1). In particular, users can now specify the activation state of
GPCRs and the script will look for templates that match that state or
are bound to a signaling protein. To do so, one of the following labels
must be declared: “Active”, “Inactive”, “Intermediate”, “G protein”,
“Arrestin”. For kinases, users can select specific structural feature
values and the script will search for templates that match those criteria.
Allowed values for the corresponding structural feature are 1) DFG:
“out”, “in”, “out-like”, “all”; 2) aC_helix: “out’, “in”, “all”; 3) Salt bridge
KIII.17 EαC.24: “yes”, “no”, “all” (McClendon et al., 2014). Optionally, the
list of templates that pass the sequence and structural filters can be
randomized to explore the available structural space.

In the sections below, we demonstrate how selecting templates in
accord with functional or structural properties and combining those
with genetic information can influence the predicted structural
features of the models. We also show the results of randomizing
templates on a difficult target.

Combining a shallow MSA with state-
annotated templates achieves state-of-the-
art accuracy in predicting GPCRs active state

Our new pipeline was used to predict GPCRmodels by combining
a very shallow MSA with the automatic detection of the best 4 active
templates from GPCRdb (ActTemp+sMSA). The benchmark set of
these GPCRs consisted of six proteins: LSHR, MTR1A, PE2R4,
PTH1R, FZD7 and ADRB1. The first three class A receptors were
predicted with the lowest accuracy in a broad benchmark in which the
active state was modeled without MSA (Heo and Feig, 2022). PTH1R
and FZD7 are members of class B and class F family, respectively.
Instead, the active state of ADRB1 was included because the inactive

state was part of the neural networks training set. Thus, we targeted the
active state with the specific aim of assessing the ability of our
implementation to overcome the neural networks preference for
the inactive state. For each method, we measured the accuracy as
Cα-RMSD (root-mean-square deviation) of the transmembrane
helices (TM-RMSD) as well as of the loops with respect to the
experimentally determined structure. Our implementation was
compared to AF2 workflows designed to sample alternative protein
conformations. ActTemp+sMSA consistently generated models with
near or subangstrom accuracy for all the GPCRs TM helices, showing
state-of-the-art accuracy (Figure 1). Interestingly, our approach and
noMSA were the only methods able to overcome the ADRB1 inactive
state bias and accurately model the active state with an average
accuracy of 0.5 Å on TM helices and 1 Å on loops. On the
remaining targets, loops were in general better modeled by
protocol leveraging on genetic information than those on
templates. In particular, SPEACH—that does not reduce the MSA
depth—has shown a consistent good accuracy. By comparing the two
methods that leverage on templates (ActTemp+sMSA and noMSA),
loops were on average better modeled by the former probably due to
the contribution of genetic information compensating for missing or
poorly conserved loops in the selected templates.

Given the separated evaluation of TM helices and loops accuracy,
we measured the pTM score per model and assessed Spearman
correlation between pTM and global RMSD for each ensemble
(Figure 2). Overall, ActTemp+sMSA generated equally or better
active state models than noMSA mainly due to higher accuracy in
loops modeling. Within each ensemble, correlation is often reasonable
and more importantly the best models are often assigned with the
highest pTM scores with very few exceptions. However, pTM scores
between the two protocols do not seem correlating well with accuracy.
In other words, pTM scores often cannot correctly discriminate which
protocol generated best active structures.

Shuffling templates in a homogenous
functional state can improve accuracy

Given that subsampling the sequence space (i.e., the MSA) returns
different models, we hypothesized that randomly selecting a subset of
templates can potentially yield more accurate models. To test this, we
removed the genetic information within the AF2 pipeline and generated
50 models with and without randomizing inactive templates. For each
model, our script selected 4 random inactive state structures from
GPCRdb that passed the sequence similarity filter. Accuracy was
measured as TM-RMSD from the inactive state structure of LT4R1
(PDB 7K15). The exploration of the structural space defined by the
ensemble of all the inactive templates resulted in more accurate models
compared to using the top 4 templates (Figure 3A).

The superposition of the best model in the two ensembles shows
improved fitting of the long TM7 helix and better modeling of
TM1 and TM6 when using random templates (Figure 3B).

User-defined structural features to bias
kinase modeling

The concept of allowing users to define structural features of
GPCR templates was also applied to kinases using the KLIF webserver
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(Kanev et al., 2021). We implemented the possibility to choose
templates differing on three conformational properties: DFG, αC-
helix (ac_H), and salt bridge KIII.17EαC.24. The script automatically
selects and retrieves templates satisfying user-defined values for these
three structural criteria. We assessed the effect on the predicted
conformations by modeling the EIF2AK4 (GCN2) kinase. We
generated four ensembles of 50 models each with the following

templates biased features: 1) “DFG=all/ac_H=all”, i.e. all templates
are allowed; 2) “DFG=in/ac_H=in” and 3) ‘DFG=in/ac_H=out’ which
differ in the αC-helix position regardless of its rotation, i.e. templates
have DFG=in but differ in the ac_H conformation; 4) “DFG=out/ac_
H=all”, all the selected templates have DFG=out but ac_H is allowed in
any conformation. Because DFG is a multi-criteria parameter, instead
of measuring whether the predicted DFG corresponds to the selected

FIGURE 2
Correlation between pTM and global RMSD per target. Spearman correlation for each ensemble is indicated below each violin plot.

FIGURE 3
Accuracy in predicting the LT4R1 inactive state with and without randomizing templates. (A) TM-RMSD distribution of models. TM-RMSD between
experimental active and inactive structures is shown as a dashed line. (B) Superposition of the best model from the random templates ensemble (green) and
without randomizing templates (orange) to the experimental structure (gray).
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DFG templates bias, we evaluated the activation loop (a_loop) position
which is well-defined and mostly corresponds to DFG. Without
biasing the prediction (DFG=all/ac_H=all), most of the models
were found in the “a_loop=in/ac_H=out” conformation, while 20%
of the pool was in the “a_loop=in/ac_H=in” conformation, and only
one model was found with “a_loop=out” (Figure 4A). By biasing the
prediction through the selection of ac_H=in and ac_H=out templates
in two different ensembles (DFG=in/ac_H=in and DFG=in/ac_
H=out), AF2 generated most of the models in agreement with the
templates ac_H position. Accordingly, “DFG=in” templates generated
only “a_loop=in” conformations (blue and orange bars) while in the
only “DFG=out” ensemble we found a significant number of models
carrying the “a_loop=out” conformation (green bar). The
superimposition of “a_loop=out” and “a_loop=in” models onto the
corresponding experimental “DFG=out” (PDB 7QWK) and
“DFG=in” structures (PDB 7QQ6) shows an excellent fitting of
DFG loops, with a small discrepancy for ‘DFG/a_loop=out’ likely
due to the presence of the inhibitor in the experimental structure
(Figure 4B) (Maia de Oliveira et al., 2020).

Discussion

The prediction of user-defined conformational states of proteins
has been a challenge even after the advent of AF2. Previous
workflows attempting to solve this problem either do not
explicitly predict user-defined structural properties or require the
creation of state-annotated local structure databases (Del Alamo
et al., 2022; Heo and Feig, 2022; Stein and Mchaourab, 2022;
Wayment-Steele et al., 2022). In this work, we propose a pipeline
that biases AF2 predictions toward the intended functional state of
GPCRs or specific structural properties of kinases. One key aspect of
our method is its simplicity in use. By leveraging on the API
(Application Programming Interface) of two popular web servers,
GPCRdb and KLIFS (Kanev et al., 2021; Kooistra et al., 2021), our

script filters templates according to pre-defined structural or
functional parameters, allowing for a fully automatic selection of
templates without the need for manual inspection or for
downloading and updating of databases.

Our results in predicting the active structures of several
challenging GPCRs show that combining a shallow multiple
sequence alignment (MSA) with templates in a user-defined
activation state (i.e. structure annotated as Active, Inactive or
Intermediate) outperforms existing AF2 workflows. A direct
comparison with models predicted without an MSA (noMSA)
suggests that the balanced combination of genetic (MSA) and
structural (templates) features may be crucial for achieving high
accuracy, especially on loops that are usually less conserved and
feature higher structural variance. This balanced mixture enables
structural refinement of the desired conformational state while
avoiding the overwhelming effect coming from a deep MSA, as
previously reported (Del Alamo et al., 2022). Another advantage of
a balanced mixture of genetic and structural information is its reduced
sensitivity to neural network biases, i.e. the conformational preference
of the neural network. In our benchmark, target conformations were
four class A and one class B1 GPCRs for which inactive structures were
more prevalent than active ones in the AF2 training set. Furthermore,
the inactive structure of ADRB1 was directly part of the AF2 training
set, thus representing a very strong bias. Indeed, protocols relying
solely on genetic information (sMSA and SPEACH) were on average
less accurate and completely missed the target conformation for
ADRB1. On the other side, ActTemp + sMSA and noMSA depend
on the presence of high-accuracy templates. Indeed, ADRB1 was
predicted with an astonishing low RMSD value due to the high
accuracy of the active state templates on both TM helices and loops.

Shuffling templates to predict the inactive state structure of
LT4R1 generated better models than by taking the top four
sequence identity templates in the inactive state. Regions that were
better modeled were indeed different in the top four templates.
Suggesting that despite a lower sequence identity, templates

FIGURE 4
(A) Enrichment of eif2k4 kinase models with structural properties corresponding to the biased template features used. The four ensembles were
calculated with a different “DFG/ac_H” templates bias. For each ensemble, the number of models with the three “a_loop/ac_H” conformational feature
combinations are shown with a different color bar. (B) Superposition of two models with a_loop=in and a_loop=out to the two corresponding “DFG=in” and
“DFG=out” experimental structures. DFG residues of models with “out” and “in” orientations are shown in green and orange, respectively. Experimental
structures of eif2k4 are shown in gray.
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randomly chosen from the remaining pool of inactive state structures
may have been more suitable to model this conformational state. This
kind of approach can be used to expand sampling without changing
the desired structural features, like the activation state of a GPCR.

Our efforts to bias the prediction of a kinase toward user-
defined structural properties exploited two important structural
components that define its activation state: DFG and αC-helix.
While the latter was easier to direct toward the intended position,
the former was more difficult likely due to the neural network bias
in the training set composition. Despite this, we successfully
generated multiple models with “DFG=out” conformation.
Given that “DFG=out” structures are needed for structure-based
drug design and discovery of type-II inhibitors (Ung and
Schlessinger, 2015), our script is well positioned to generate
models carrying this crucial structural feature. Frequency of
sampling the desired structural features may change protein by
protein due to multiple factors such as neural network biases,
templates features and MSA composition.

Our work expands the portfolio of AlphaFold2 customizations
developed with the aim of predicting multiple conformational states of
proteins. Our python interface facilitates the prediction of intended
functional or structural properties of GPCRs and kinases and can be
further extended to include more properties as needed. We also
emphasize the importance that structure- and function-annotated
databases had for this work. The expansion of existing databases to
include additional annotations and the development of new protein
family-based databases would improve or enable automatic calibrated
modeling, respectively. This is particularly relevant for receptors and
transporters that are known to span multiple conformations in their
functional cycle. Together, curated databases and machine learning
offer a powerful combination for high throughput modeling at high
accuracy and, ultimately, for structure-based drug discovery (Sala
et al., 2022).
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The new coronavirus SARS-COV-2, which emerged in late 2019 from Wuhan city of
China was regarded as causing agent of the COVID-19 pandemic. The primary
protease which is also known by various synonymous i.e., main protease, 3-
Chymotrypsin-like protease (3CLPRO) has a vital role in the replication of the virus,
which can be used as a potential drug target. The current study aimed to identify
novel phytochemical therapeutics for 3CLPRO by machine learning-based virtual
screening. A total of 4,000 phytochemicals were collected from deep literature
surveys and various other sources. The 2D structures of these phytochemicals were
retrieved from the PubChem database, and with the use of a molecular operating
environment, 2D descriptors were calculated. Machine learning-based virtual
screening was performed to predict the active phytochemicals against the SARS-
CoV-2 3CLPRO. Random forest achieved 98% accuracy on the train and test set
among the different machine learning algorithms. Random forest model was used to
screen 4,000 phytochemicals which leads to the identification of 26 inhibitors
against the 3CLPRO. These hits were then docked into the active site of 3CLPRO.
Based on docking scores and protein-ligand interactions, MD simulations have been
performed using 100 ns for the top 5 novel inhibitors, ivermectin, and the APO state
of 3CLPRO. The post-dynamic analysis i.e,. Root means square deviation (RMSD), Root
mean square fluctuation analysis (RMSF), and MM-GBSA analysis reveal that our
newly identified phytochemicals form significant interactions in the binding pocket
of 3CLPRO and form stable complexes, indicating that these phytochemicals could be
used as potential antagonists for SARS-COV-2.
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1 Introduction

SARS-CoV-2 is a single-strand RNA, positive sense, and enveloped
beta coronavirus that causes respiratory, nervous, hepatic, and human
gastrointestinal diseases (Tahir ul Qamar et al., 2020) Wuhan, a city in
China, was the first city to be infected by the virus in December 2019
(Zhu et al., 2019; Zhou et al., 2020). COVID-19 outbreak was declared a
pandemic by the World Health Organization (WHO). The infection
spreads rapidly across the World. By the end of October 2020, more
than 60 million people were infected by COVID-19, resulting in more
than 1.4 million fatalities. The number of patients and fatalities was
rising, posing a major threat to global health. High temperature,
coughing, shortness of breath, and severe cases that can result in
renal failure and even death are some of the symptoms of COVID-
19 infections (Rothan and Byrareddy, 2020; Asif et al., 2022), until now,
there is no effective treatment available yet.

SARS-CoV-2 is a member of the beta coronavirus family (Marty
and Jones, 2020), usually, during the process of transcription, beta
coronaviruses produce an 800 kDa polypeptide (Xu et al., 2020). The
genome of the novel SARS-CoV-2 was recently sequenced and
compared with those of existing coronaviruses (CoVs) by Wu et al.
who identified that the novel SARS-CoV-2 belonged to the β-CoVs,
which were initially discovered in bats and have now evolved to infect
humans (Wu et al., 2020a). The SARS-CoV-2 genome is approximately
30 kb in size and is comprised of at least six open reading frames (ORFs)
which are responsible for encoding the whole proteome of the virus. The
coding RNA contains the structural, non-structural protein (Nsps)
coding regions and the accessory protein-coding region (Durojaiye
et al., 2020). The genes on the 3′-terminus encode the four
structural proteins including the spike protein, membrane, envelope,
nucleocapsid, and many accessory proteins. The membrane, envelope,
and nucleocapsid protein protect the virus before entering the host cell.
The Spike protein of SARS-CoV-2 comprises S1 and S2 subunits. The
receptor-binding domain is a part of the S1 subunit that plays role in the
attachment of the virus with the receptor while viral cell membrane
fusion is mediated by the S2 subunit, thus facilitating the virus entry
(Alanagreh et al., 2020; Jackson et al., 2021). The SARS-CoV-2 virus’s
replication and ability to spread are facilitated by numerous crucial
proteins and enzymes. Two essential proteases, main protease (3CLPRO)
and papain-like protease (PLpro) are necessary for viral replication
(Huang et al., 2020; Mouffouk et al., 2021). The non-structural proteins
nsp1, nsp2, and nsp3 are known to be cleaved by PLpro, while the
remaining 13 are cleaved by 3CLPRO (Klemm et al., 2020). The 3CLPRO

cleaves polypeptide sequences after a glutamine residue, making it a
perfect drug target as no human host-cell proteases with this cleavage
specificity are identified (Hilgenfeld and Hilgenfeld, 2014; Ullrich and
Nitsche, 2020).

The structure of the 3CLPRO comprises three important domains,
domain-I ranges from 8–101, while domains-II corresponds to position
102–184, followed by the connecting loop from 185–200, which links
domain-II and domain-III, domain-III has a total number of
103 residues which lies after the connecting loop from 201–303 (Wu
et al., 2020b). Furthermore, the His-41 and Cys-145 form an essential
catalytic dyad (Kneller et al., 2020). Small compounds that target
conserved viral proteases, such as the major protease, may thus be
able to inhibit crucial phases of the SARS-CoV-2 life cycle while causing
few adverse effects (Mengist et al., 2021). Approved drugs have been
developed for viral infections such as those caused by Hepatitis C virus
and human immunodeficiency virus for the target’s serine proteases and

aspartyl protease respectively which employ that viral proteases are well-
established therapeutic targets (Agbowuro et al., 2018). Antiviral drugs
are required in this situation to prevent infection in high-risk
populations as well as to treat infected patients. Developing
inhibitors that stop coronavirus replication can recover millions of
people globally. In the clinical investigations, efforts to repurpose the
majority of approved drugs have discovered several promising
candidates (such as remdesivir and hydroxychloroquine) but these
drugs had little to no effect on mortality and the duration of
hospital stay (Luttens et al., 2022). Hence, it is crucial to find new
drug candidates that would target various SARS-CoV-2 proteins for
increased COVID-19 therapeutic effectiveness (Elmaaty et al., 2022).
Despite the significant cost and time required for the development of the
new drug, clinical trials only yield a 13 percent success rate, while in
40%–60% of cases, drugs failed to reach themarket because of the lack of
optimum pharmacokinetic properties (Gurung et al., 2021).

The use of computer-aided drug discovery (CADD) tools helps to
accelerate the process of drug discovery and to reduce costs (Macalino
et al., 2015) In addition, the advent of supercomputing facilities,
algorithms, and tools has enhanced lead identification in
pharmaceutical research (Macalino et al., 2018). Artificial intelligence
(AI) and machine learning approaches have substantially assisted the
analysis of pharmaceutical-related large data in the drug discovery
process (Floresta et al., 2022). Furthermore, the structure-based drug
development method is specific and successful in identifying lead
compounds and optimizing them, and it has aided in the
understanding of disease at the molecular level (Yang et al., 2022).
In the current study, we employed different machine learning (ML)
models for the virtual screening of phytochemicals against the 3CLPRO

drug target in SARS-CoV-2. The active hits obtained from ML-based
were passed through an electronic filter called PAINS filter and their
ADMET (absorption, distribution, metabolism, excretion, and toxicity)
properties were examined. The active phytochemicals that passed
through the PAINS filter and have enhanced properties were further
considered for the molecular docking analysis. Furthermore, the
stability and binding energy of these compounds in the active site of
3CLPRO were investigated by 100 ns of MD simulations. Based on our
findings we suggest these phytochemicals as potent inhibitors of SARS-
CoV-2 3CLPRO, In vitro evaluation of these compounds, is essential for
the understanding of their action and mechanism to cope with such a
pandemic.

2 Methodology

The overall workflow of the current study, from the collection and
preparation of the dataset of active and inactive compounds, screening
of compounds, molecular docking, and binding energy calculations
are represented in Figure 1.

2.1 Preparing and cleaning the dataset

From the binding DB database (Sandhu et al., 2022) a total of
101 molecules were retrieved for 3CLPRO (3C like protease) a drug
target in SARS-CoV-2. A total of 500 decoys molecules, which are
considered to be inactive, were generated using the DUDE database
(Mysinger et al., 2012) Out of the total 601 compounds
(Supplementary Table S1), 101 compounds from the binding DB
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database were labeled as “1” active, and the 500 decoys were labeled as
“0” inactive. The Pandas library of python was used for data
preprocessing and data cleaning (Santos et al., 2020). The dataset
was split into train set (70%) and a test set (30%).

2.2 Features calculation

The 2D features of all the compounds were calculated using MOE
(2016) software (Wadood et al., 2022a). Total 206 features were
calculated. Feature with 0 or null values were removed from the
dataset to reduce the computation time.

2.3 Principal component analysis (PCA)

The dataset was uploaded to iRaPCA v1.0 implemented in the
LideB tool in CSV format. The optimum subsets of descriptors were
selected from the dataset. The dimensionality was reduced by
performing the PCA. The process is based on the principle of
feature bagging (Prada Gori et al., 2022). The conventional
feature extraction and data representation method used
extensively in the fields of pattern recognition is principal
component analysis (PCA), generally called as Karhunen-Loeve
expansion. PCA is a method for reducing high-dimension data to
low-dimension while preserving the majority of the relevant data.
The main benefits of PCA are its low noise sensitivity, lower capacity
and memory requirements, and increased performance
(Karamizadeh et al., 2013).

2.4 Machine learning models

2.4.1 K nearest neighbor model
The distance-based classification algorithm is called k-Nearest

Neighbors (kNN), which is an effective and simple machine learning
algorithm widely used for the classification of active and inactive

compounds in the dataset (Wadood et al., 2022b). The accuracy of the
kNN model depends entirely on the quality of the data. One of the
most difficult parts of KNN is figuring out how many neighbors to
consider. The KNN can be used for both classification and regression
(Sarker, 2021a).

2.4.2 Support vector machine (SVM)
SVM is generally used for the classification of data. SVM is based

on the principle of calculating margins between two classes. This
classifier reduced the error by drawing the margins in a manner where
the distance between the margin and the classes is as large, as possible
(Noreen et al., 2016). The SVM classifier depends on the kernel
function and is more effective for high-dimensional data
classification. When the dataset contains additional noise, such as
overlapping target classes, SVM does not perform effectively (Sarker,
2021b).

2.4.3 Random forest
Random forest (RF) is an ensemble algorithm made up of

several decision trees, similar to how a forest is made up of many
trees (Breiman, 2001). To train, the decision trees of a random
forest various subsets of the training dataset are used. To classify a
new sample, the sample’s input vector must be passed down from
each decision tree of the forest. This algorithm classifies the data
using majority voting. In terms of performance, RF performs
better than a decision tree. For huge datasets, it works
effectively. The classifier also calculates which variables or
attributes are most significant in the classification (Ul Hassan
et al., 2018). The sklearn library of python was used for developing
the three machine learning models.

2.4.4 Naïve bayes
The naive Bayesian algorithm is based on the Bayes theorem and is

a reliable classification method. A data set can be classified by NB
classifier assuming that every feature contributes equally and
independently (Patel et al., 2020). In this study, the NB classifier
was built using python v.3.9.

FIGURE 1
Overall workflow ofmachine learning based virtual screening, molecular docking, and MD simulation study for 3CLPRO (3C like protease) a validated drug
target in SARS-CoV-2.
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2.4.5 Cross-validation and performance evaluation
We used 10-fold cross-validation in this study. The performance

of the models was accessed by using several statistical parameters
including accuracy, sensitivity, specificity, F1 score, MCC (Ahmad
et al., 2021).

2.5 Virtual screening of the asian
phytochemicals

A list of Asian plants with notable therapeutic properties was
compiled, and then a thorough literature search was performed to
determine the phytochemical contents. The compound collection was
carried out using Google Scholar, PubMed, MEDLINE, and other
web-based resources. A total of 4,000 phytochemical libraries was
generated, and the 2D structure of these phytochemicals was retrieved
from the PubChem database. Before adding to the library all these
phytochemicals were cleaned and energy minimized using the
mmff94 force field.

2.6 PAIN filter

Pre-filtering large databases using appropriate molecular
properties is a typical approach to reduce computing and get rid of
unwanted compounds (Baell and Holloway, 2010). All the active hits
were filtered by an online tool PAINS (Wadood et al., 2022c) and only
those compounds were further selected for docking that was passed
from the PAINS filters.

2.7. Molecular docking study

2.7.1 Preparation and validation of target protein
The 3D structure of SARS-CoV-2 3CLPRO (PDB ID: 6LU7;

Resolution: 2.16 Å; Organism: SARS-CoV-2; Method: X-ray
diffraction) was downloaded from the RCBS Protein Data Bank
(Hatada et al., 2020). There are two chains in the crystal structure: A
and C. The macromolecule chain A was chosen as the target receptor.
Pymol was used to remove water molecules and heteroatoms from the
protein structure (Janson et al., 2017). The structure was then energy
minimized using ff14sb implemented in the molecular operating
environment (MOE) (Ashraf et al., 2021). The PROCHECK
(Laskowski et al., 1996) and ERRAT (Colovos and Yeates, 1993) tools
from the Structural Analysis and Verification Server (SAVES) (http://
nihserver.mbi.ucla.edu/SAVES) were used to validate the crystal structure.
The stereo chemical quality of the protein structure was evaluated using
PROCHECK.

2.7.2 Molecular docking protocol
All the phytochemicals predicted as active by the machine

learning method were docked into the active site of a SARS-CoV-
2 3CLPRO for molecular interaction studies. The crystal structure of
the SARs-CoV-2 3CLPRO (PDB ID: 6LU7) is complex with an
N3 inhibitor was retrieved from the PDB database. The Inhibitor
N3 is linked to the protease at site one of this crystal structure, which
contains five cavities for ligand binding (Das et al., 2021). We used
the N3 binding site (site 1) for virtual screening of these
phytochemicals’ library. For the molecular docking study, MOE

v2016 was used to run a docking protocol using rigid and ligand-
based docking parameters. The Triangular Matching docking
method (default) was used and a total of ten poses were
generated for each Phytochemical (Thuy et al., 2020). The best S
score hits against 3CLPRO were considered for the molecular
interactions study and their 3D images were generated by PyMol
software. A total of 05 top-ranked compounds were shortlisted for
further molecular dynamic simulations analysis based on the
docking score. These phytochemicals are structurally diverse,
effective, and new inhibitors for the main protease, according to
the docking score, binding mode, and visual ligand interaction.

2.8 MD simulations

Molecular dynamics simulation is a powerful tool to understand the
dynamics and interaction behavior of the reference complex and the
selected top hits were used. The ff14SB protein force field in Amber
20 package was employed (Salomon-Ferrer et al., 2013a). For solvation
of each system, the tip3p water model with box dimension 8.0 was used.
All of the systems were adequately solvated and neutralized by adding
four Na + ions to counterbalance the charges on the systems. Afterward,
energy minimization for 6,000 steps of neutralized complexes was
carried out using the steepest descent minimization algorithm, then
progressively heated to 300 K before equilibrating density for 2 ns with
weak constraints. The whole system was equilibrated at constant
pressure for another 2 ns. A Langevin thermostat was used to
control the temperature 300 K. Further, a 100-ns MD was
performed on the equilibrated systems. For long-range electrostatic
interactions, Particle Mesh Ewald (PME) algorithm was used (Darden
et al., 1998). For covalent bonds including hydrogen, the SHAKE
algorithm was utilized. Finally, a 100 ns MD simulation of all
equilibrated complexes at constant pressure and temperature was
carried out by using PMEMD.cuda (Salomon-Ferrer et al., 2013b).

2.9 DCCM

The dynamic cross-correlation analysis is useful for explaining the
correlation among the residues represented by a three-dimensional
matrix. The cross-correlation was calculated by the formula (Junaid
et al., 2018)

Cij � 〈Δri.Δrj〉/ 〈Δri2〉〈Δrj2〉( ) 1/2( ) (1)

Where the mean position of ith and jth atom is represented by Δri, Δrj
respectively. Where the angular brackets are used to measure the average
time of the entire trajectories produced as a result of MD simulations.
Positive Correlated movement such as movement in the same direction is
represented by the positive value of Cij, while the negative value of Cij
reflects strong anti-correlation movements between the residues. Cpptraj
was used to perform DCCM analysis while origin 2021 was used for
graphical representations (Perez-Lemus et al., 2022).

2.10 Binding affinity calculations

To study the interaction between protein and ligand, binding free
energy calculations play an important role. Using MMPBSA. PY
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script, the binding free energy between main protease and
phytochemicals inhibitors was calculated (Gul et al., 2021). The
following equation was used to calculate the free energy of each
energy term:

ΔGbind � ΔGcomplex − ΔGreceptor + ΔGligand[ ] (2)

In the equation, ΔGbind represents the total binding free energy,
ΔGcomplex denotes the free energy of complex, ΔGreceptor and
ΔGligand represents the free energy of receptor protein and ligand
respectively. The following equation was used to calculate the
individual free energy of complex, protein and ligand.

GX � EMM – TS( ) + Gsolvation( ) (3)
Where x denotes complex, protein or ligand, the average molecular
mechanic potential in a vacuum is given by EMM, the entropic and
temperature contribution is represented by TS, while the free energy of
the solvation is given by Gsolvation.

3 Results

3.1 Data preparation

A total of 101 molecules were retrieved from the binding databank
database for 3CLPRO a drug target in SARS-CoV-2. The 101, molecules
were categorized as active molecules. The remaining 500 decoys
molecules were labeled as inactive. The dataset was split into a
train set (70%) and test set (30%). Out of the total 601 molecules,
the train set contains 420 compounds while the test set contains
181 compounds. The active and inactive compounds of the train and
test set are present in Table 1.

3.2 Principle component analysis

Total 208 2D features were calculated with the help of MOE
software. The feature with 0 values were removed. As, not every
extracted feature will necessarily depict the optimal properties of
molecules. Therefore, optimization was carried out to get rid of
duplication. Additionally, after applying the PCA the features that
have higher significance were used to train the models (Araki et al.,
2016). After applying PCA the data size (N) of the dataset was
decreased. To evaluate how the PCA manages to maintain the
dominant properties throughout the classification tasks. The models
were generated by using the entire dataset without optimum features
selection and the performance of themodels was evaluated. It was found
that the accuracy of SVM was very low as 61% and the MCC was 0.27.
The accuracy of KNNmodel was 70% with anMCC value of 0.58 while
the accuracy of RF model was 90% with an MCC value of 0.78.
However, after the optimum features selection and the reduction of

the dimension of the dataset the performance of all the models was
greatly improved. If we want to reveal variance in a dataset having x-y
coordinates, PCA finds a new coordinate system in which x, y
coordinates have a different value. A new coordinate is created by
the axes PC1 and PC2. These are combinations of the x-y coordinate
system. Figure 2 shows the scatter plot of PC1 vs. PC2 for K = 4.

3.2.1 Chemical space and diversity analysis
The machine learning model’s accuracy is predicted by the chemical

diversity of the samples from the training and test sets. The applicability of
machine learning models is restricted by a small number of samples. As a
result, in the present study’s physiochemical distribution analysis of the
training set and test set for the molecular weight (MW) and LogP was
conducted (Figures 3, 4) with MW ranging from 50 to 800 Da and LogP
ranging from −2 to 15.

3.3 Models generation and validation

Machine learning algorithms such as kNN, SVM, RF and GNB
were used for the classification of the active inhibitors against 3CLPRO.
The sklearn library of python was used for developing the models. All
the models were trained on the dataset downloaded from the binding
DB database. The performance of the models was accessed by using a
number of statistical parameters including accuracy, sensitivity,
specificity, and MCC. Table 2 displays the over-all performance of
the models on the train set while Table 3 displays the performance of
all the models on the test set.

Compared to other machine learning models random forest
model achieved better accuracy and MCC value. Model
performance is proportional to the area under the curve (AUC).
RF has the highest AUC, followed by SVM on the training and test
set Figures 5, 6. Further, we used RF model to classify the active
phytochemicals against the 3CLPRO enzyme. Out of
4,000 phytochemicals, a total of 26 phytochemicals were
predicted as active against the 3CLPRO.

3.4 PAIN filter

Using the online PAINS tool all the hits were examined for their
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) (Supplementary Table S2) properties. A total of seven
compounds were passed from the PAINS filter and only two

TABLE 1 Train and test set used in the study.

Dataset Inhibitors Non-inhibitors Total

Train 32 388 420

Test 33 148 181

FIGURE 2
Scatter plot of PC1 vs. PC2 for subset 23 and K 4.
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FIGURE 3
The chemical space and diversity distribution of the train set. The molecular weight and LogP define the chemical space.

FIGURE 4
The chemical space and diversity distribution of the test set. The molecular weight and LogP define the chemical space.
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compounds were out of the limit. The structure of compound along
with IUPAC name of the compounds passed from the PAIN filter are
given in Table 4.

3.5 Molecular docking analysis

The hits obtained fromML based virtual screening were further used
for molecular docking study. The crystal structure of the SARs-CoV-2

3CLPRO (PDB ID: 6LU7) is complex with an N3 inhibitor was retrieved
from the PDB database. PROCHECK tool was used to assess the 3D
model’s quality of the 3CLPRO structure using the Ramachandran plot
(Figure S2a). The Ramachandran plot for the 3CLPRO structure showed
that 84.5% of residues were in the most favored region, while 14.3% were
in the additional allowed region, 1.1% residues were in the generously
allowed region and 0% residues were in the disallowed region
demonstrating the high quality of the 3CLPRO structure. For non-
bonded atomic interactions, ERRAT is also known as the “overall
quality factor,” with higher scores reflecting the high quality. For a
high-quality model, the accepted range is > 50 (Messaoudi et al.,
2013) The ERRAT server predicted an overall quality factor of
85.90 for the 3CLPRO structure used in our study (Figure S2b). The
interaction of top hits and the reference compound were analyzed, and it
was found that all of the compounds have potent inhibitory effects on
3CLPRO. In order to study the interactions of these compounds in detail,
the 3D visualization and compound interaction analysis was carried out.
According to the interaction details Table 5, Compound 1 has stronger
interaction among all of the docked compounds, it has 04 hydrogen bond
donor interactions with the active site residues i.e., CYS145, SER46, and
MET49, with four hydrogen bond acceptor interactions with HIS41,
LEU141, and HIS163, along with one π-stacking interaction with residue
THR25 with the docking score of −12.0321. Similarly, the interactions
details of Compound 2 reveal that it shares five hydrogen bond donor
interactions with key active site residues of the main protease i.e., THR26,
MET49, ASN142, CYS145, and MET165, and two π-H interactions with
residues with SER46 and THR90 respectively. The interaction table
indicates that Compound 3 forms 6 hydrogen bond interactions with
His41, Met49, Cys145, His163, and Gln189, and one π-H interaction with
Leu 141. Compound 4 shows 04 hydrogen bond donor interactions with
the catalytic residues i.e., Thr 25, Thr26, Met49, and His164, and one

TABLE 2 Overall performance of machine learning models on the train set.

Model Accuracy (%) Sensitivity Specificity MCC

KNN 97 0.88 0.99 0.91

SVM 98 0.90 0.99 0.93

RF 98 0.97 0.99 0.96

GNB 94 0.83 0.96 0.79

TABLE 3 Performance of models on the test set.

Model Accuracy (%) Sensitivity Specificity MCC

KNN 94 0.75 0.98 0.78

SVM 96 0.82 0.99 0.87

RF 98 0.95 0.99 0.95

GNB 96 0.86 0.98 0.85

FIGURE 5
The ROC-AUC curve of all the models on the train set. The graph shows the TP against FP rate.
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hydrogen bond acceptor interaction with Gly143, with one π−π
interaction with residue His41. Afterward, we analyzed the interaction
of Compound 5, the finding of interaction analysis indicates that
Compound 5 interacts via four hydrogen bond donor interactions
with the key residues including Thr26, Met49, Asn142, and Gln189,
while Thr26, and His41 were found in hydrogen bond donor interactions
with Compound 5 with a docking score of −10.7164. It has recently been
demonstrated that ivermectin inhibits SARS-CoV-2 by up to 5000-fold
in vitrowith an IC 50 value of ~ 2 μM(Jan et al., 2021; Kaur et al., 2021). In
the docking study, ivermectin was selected as a standard reference
inhibitor. The interaction details for the control compound are listed
in Figure 7H. The control compound forms 05 hydrogen bonds with the
key catalytic residues of main protease Asn119, Cys145, andMet165. The
co-crystallized ligand (PDB ID; 6LU7) was removed from the active site
and re-docked into thde binding site of 3CLPR in order to evaluate the
precision of MOE-Dock. The RMSD value between the top-ranked
docked conformation and the co-crystallized ligand was 0.6532 (Figure
S3), indicating the strong accuracy of theMOE-Dock procedure (Wadood
et al., 2022c).

3.6 MD simulation analysis

3.6.1 Root means square deviation
Root means square deviation (RMSD) analysis was performed to

calculate the stability of the top five phytochemicals and reference
compound (ivermectin) in the active site of the main protease. We
examined and compared the stability of these compounds with the
reference and APO protein. The RMSD finding indicates that all these

five phytochemicals show stable behavior but someminor deviation. For
all the systems the averaged RMSD ranges between 1 and 3 Å. The
average RMSD for ivermectin was initially 2.0 Å. Then a small increase
was observed in RMSD up to 40 ns, soon after reaching 40ns the system
acquired stability and remained stable for the rest of the simulation
period. The complex Compound 1 shows significant stability as can be
observed, however after 60 ns, the system briefly displayed a small
variation. Then the system achieved stability and moved into the
production phase. For Compound 2, RMSD reveals that the system
shows highly stable behavior in the entire period of simulation, at 20ns
minor fluctuations from its mean position were observed, afterward, the
system gained stability and no more significant deviations were
observed with the average RMSD value of 1.7 Å. For complex
Compound 3, the system initially shows stable behavior, at around
15 ns a gradual increase in the RMSD curve was observed followed by a
slight decrease in the RMSD curve at 20 ns. After that the system
equilibrates with an average RMSD value of 2.1 Å as shown in Figure 8.
The Compound 4 complex RMSD analysis reveals that the system
initially shows an increase in the RMSD curve but soon after reaching
25 ns the system equilibrates and no significant fluctuations were
observed for the rest of the simulation period which indicates the
stable binding of Compound 4 compound in the catalytic pocket of
3CLPRO with the average RMSD value of 1.4 Å. Afterward, we analyzed
the RMSD of Compound 5 in the active site of 3CLpro, the RMSD curve
of the corresponding complex has minor fluctuations at different time
intervals, with an average RMSD value of 1.7 Å. The backbone RMSD
for the phytochemical bound 3CLPRO was slightly lower than the control
indicating the stable binding of these phytochemicals which was further
validated by RMSF and MM-GBSA analysis.

FIGURE 6
ROC-AUC curve of all the models on the test set. The graph shows the TP against FP rate.
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TABLE 4 PubChem ID of the compound, IUPAC name of compound and the PAIN filter result of the compounds.

Compound ID Structure IUPAC name PAINS
filter

91895373
(Compound 1)

[(2R,3R,4S,5R,6R)-3,5-dihydroxy-6-[2-(3-hydroxy-4-methoxyphenyl) ethoxy]-4-
[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl] oxyoxan-2-yl] methyl (E)-3-(4-

hydroxy-3-methoxyphenyl) prop-2-enoate

Passed

10606127
(Compound 2)

[(2S,3S,4R,5R)-2-[[(E)-3-(3,4-dihydroxyphenyl) prop-2-enoyl] oxymethyl]-4-hydroxy-5-
(hydroxymethyl)-2-[(2R,3R,4S,5R,6R)-6-(hydroxymethyl)-5-[(E)-3-(4-hydroxyphenyl) prop-
2-enoyl] oxy-3,4-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxy]

oxan-2-yl] oxyoxolan-3-yl] benzoate

Passed

5318857
(Compound 3)

(5R,10S,13R,16R,19S)-10-[(4S,5S)-4-[(4S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-
[(2S,3R,5S)-3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxyoxan-2-yl] oxy-3,5-

dihydroxyoxan-2-yl] oxy-16,19-dihydroxy-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo
[18.2.2.01,18.04,17.05,14.08,13] tetracos-17-en-22-one

Passed

457885
(Compound 4)

[(2R,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-chromen-3-yl] (3S)-5-(3,4-
dihydroxyphenyl)-3-hydroxypentanoate

Passed

44256914
(Compound 5)

[(3S,4S,6S)-3,4,5-trihydroxy-6-[5-hydroxy-2-[4-hydroxy-3,5-bis[[(2S,5S,6R)-3,4,5-trihydroxy-
6-[[(E)-3-(4-hydroxyphenyl) prop-2-enoyl] ox methyl] oxan-2-yl] oxy] phenyl]-3-[(2S,5S)-
3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxychromenylium-7-yl] oxyoxan-2-yl] methyl

(E)-3-(4-hydroxyphenyl) prop-2-enoate

Passed

(Continued on following page)
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3.6.2 Root mean square fluctuation
The individual amino acid fluctuations of the main protease in

complex with ligands were computed by RMSF analysis to assess the
stability of the active site residues toward the compounds in the entire
100 ns MD trajectories (Figure 9). The RMSF of the main protease in the
APO state, reference compound, and all five phytochemicals bounds to
the main protease were analyzed and compared to each other, the black
line in each plot represents the apo state while the red line indicated the
residual flexibility of reference compound bounds to the target protein.
Figure 9 shows that residues 51 and 250–260 show higher fluctuations. All
these fluctuating residues were not found in the active site and these
residues were far away from the active site indicating the stable binding of
phytochemicals in the active site of the target protein.

3.6.3 Radius of gyration
The radius of gyration is useful for exploring the compactness and

folding of the protein, Higher Rg values are indicative of less compactness
(more unfolded), while lower Rg values indicate more structural rigidity
and strong compactness. The MD simulation study serves to illustrate the
effects of inhibitors binding upon the conformation of protein molecules.
As illustrated in Figure 10 the results of Rg analysis indicate that these
phytochemicals bound to 3CLPRO have less radius of gyration values
compared to the apo state, which demonstrates the 3CLPRO, stability,
and compactness after ligand binding. The reference compound,
Compound 1, and Compound 4 have almost similar Rg values, with
an average Rg value of 22–22.3 and 22–22.4 Å while Compound 2,
Compound 3, and Compound 5 showed an average gyration of
22–22.5, 22–23.3 and 22–22.4 Å respectively. The compactness of the
protein was significantly affected by the binding and unbinding of these
phytochemical inhibitors.

3.6.4 Dynamic cross-correlation matrix (DCCM)
analysis

The extent of correlation motion between the residues imposed by the
binding of compounds in the active site of 3CLpro was elucidated by the
inter-residue correlation analysis. The results indicate that compound 1 in
complexwith the receptor active site residues showed significantly stronger
parallel correlations motions in comparison with the control compound,
which further validates that these positive correlation motions may be
induced by the acquired interaction of these compounds with the key
residues (25–50, 141–145,163), like hydrophilic, hydrogen and
hydrophobic. Overall, the DCCM findings demonstrate that the control
compound and our identified compound displayed comparable patterns of
highly positive correlation. Furthermore, for compound 3 and compound

5 the nearby loops regionswere also found in strong positive correlations as
shown in Figure 11. The dark green color demonstrates a positive
correlation in residues of protein while the dense brown color indicates
a negative correlation between the protein residues. The negatively
correlated residues move in an anti-parallel direction while the
positively correlated residues move in a parallel direction.

3.7 GBSA results

3.7.1 MM-GBSA analysis
Protein-ligand complexes from the MD simulation trajectories

were used to calculate the energy parameters to assess the energetics of
3CLPRO to the ligands. The binding free energies of each system were
calculated using theMM-GBSAmethod. Table 6 display the computed
average binding free energies and specific energetic contribution
components of the final 500 frames. As can be observed,
compound 1 has smaller free energy (−56.94 kcal/mol) followed by
compound 2 (−55.65 kcal/mol), compound 3 (−53.58 kcal/mol), and
compound 4 (−46.95 kcal/mol). It was observed that, as compared to
the control system, all the ligands in complex with 3CLPRO revealed
high binding affinity demonstrating that all the systems are stable. Out
of all, the binding affinity of system one was very high for the receptor.
This outcome is consistent with the conclusion drawn from the earlier
RMSD and docking analysis i.e., compound 1 showed stable dynamic
behavior and established a greater number of non-covalent
interactions (Figure 8A; Table 5).

4 Discussion

The increased mortality rate of SARS-CoV-2 has created a pandemic
situation globally, no effective drugs and treatments are available to treat
COVID-19, however, many clinical trials are undergoing. New infectious
agents, like SARS and MERS, have emerged in the last 20 years and have
created epidemics. The functional significance of 3CLpro in the viral life
cycle and the lack of closely comparable human homologsmake 3CLpro an
attractive target for the development of antiviral medications (Jin et al.,
2020). By targeting the 3CLpro most of the natural compounds play a
significant role in the treatment of COVID-19 infections (Jin et al., 2020;
Mengist et al., 2020). In vitro, animalmodels, and clinical trials are all used
to study natural compounds that are extracted from medicinal plants,
animals, and marine species for the treatment of COVID-19 (Wu et al.,
2019; Wei et al., 2020; Sahoo et al., 2021). One of the most promising and

TABLE 4 (Continued) PubChem ID of the compound, IUPAC name of compound and the PAIN filter result of the compounds.

Compound ID Structure IUPAC name PAINS
filter

6321424 (Reference
compound)

(1R,4S,5′S,6R,6′R,8R,10E,12S,13S,14E,16E,20R,21R,24S)-6’-[(2S)-butan-2-yl]-21,24-
dihydroxy-12-[(2R,4S,5S,6S)-5-[(2S,4S,5S,6S)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy-

4-methoxy-6-methyloxan-2-yl]oxy-5′,11,13,22-tetramethylspiro[3,7,19-trioxatetracyclo
[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene-6,2′-oxane]-2-one

Passed
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TABLE 5 Docking score and interaction of top five hits against the 3CLpro.

C. No Docking score Ligand Receptor Residues Interaction Distance Energy (kcal/mol)

Compound 1 −12.0321 O 4 SG CYS 145 H-donor 4.06 −0.5

O 8 SG CYS 145 H-donor 4.04 −0.8

O 14 OG SER 46 H-donor 2.96 −0.6

C 28 SD MET 49 H-donor 3.89 −0.8

O 2 NE2 HIS 41 H-acceptor 3.29 −0.7

O 8 NE2 HIS 163 H-acceptor 3.05 −0.7

O 9 NE2 HIS 163 H-acceptor 3.28 −1.8

O 11 CA LEU 141 H-acceptor 3.49 −0.6

6-ring CA THR 25 π -H 4.07 −0.6

Compound 2 −11.4527 O 13 SG CYS 145 H-donor 4.40 −0.7

O 15 SD MET 49 H-donor 3.84 −0.5

O 18 O THR 26 H-donor 2.86 −1.4

O 21 OD1 ASN 142 H-donor 2.84 −0.6

O 25 SD MET 165 H-donor 3.60 −1.2

O 12 NE2 HIS 41 H-acceptor 2.96 −0.8

O 19 NE2 HIS 163 H-acceptor 3.07 −1.9

6-ring N SER 46 π-H 4.24 −1.4

6-ring N THR 90 π-H 4.33 −0.6

Compound 3 −11.2783 O 8 SD MET 49 H-donor 3.79 −0.5

O 22 SG CYS 145 H-donor 3.19 −1.1

C 26 OE1 GLN 189 H-donor 3.13 −0.9

O 22 NE2 HIS 41 H-acceptor 3.15 −1.0

O 23 NE2 HIS 163 H-acceptor 3.19 −1.0

6-ring CA LEU 141 π-H 3.80 −0.5

Compound 4 −10.9628 O 4 O THR 26 H-donor 2.80 −2.2

O 6 ND1 HIS 164 H-donor 2.95 −1.8

O 9 OG1 THR 25 H-donor 3.05 −1.6

C 13 SD MET 49 H-donor 3.81 −0.6

O 5 N GLY 143 H-acceptor 3.16 −2.7

6-ring 5-ring HIS 41 π-π 3.27 −0.0

Compound 5 −10.7164 O 10 OD1 ASN 142 H-donor 3.11 −1.9

O 15 O GLN 189 H-donor 3.07 −1.0

O 18 O THR 26 H-donor 3.01 −1.8

C 57 SD MET 49 H-donor 3.94 −0.6

O 18 N THR 26 H-acceptor 2.95 −0.9

O 30 NE2 HIS 41 H-acceptor 3.10 −0.6

IVERMECTIN −9.5398 O 5 SG CYS 145 H-donor 3.77 −0.6

O 6 O ASP 187 H-donor 2.91 −0.4

C 35 SD MET 165 H-donor 3.81 −0.5

C 45 SD MET 49 H-donor 3.49 −0.2

O 13 ND2 ASN 119 H-acceptor 3.43 −0.6
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effective strategies for combating the current pandemic is still seen to be
the use of natural products (ying et al., 2001). Extractions frommedicinal
plants and their secondary metabolites frequently show strong antiviral
properties. Some in vitro studies showed that PSM and viral incubation
had direct interference. The viral protein, its lipid layers, and the cell’s lysis
can be destroyed by the plants’metabolites (Akram et al., 2018). There are
about six to seven thousand different plant species in Pakistan, of which
700 are regularly used as medicines (Khan et al., 2022). The SARS CoV
2 RdRp was chosen as a receptor for computational drug development in
the previous study in which 200 phytochemicals were used for virtual

screening. The top 10 ligands among 200 total ligands were chosen based
on drug discovery criteria such as S-score, ligand interactions,
hydrophobic interactions, and drug-likeness (Mahrosh and Mustafa,
2021).

Developing a new drug against the virus is time-consuming and
costly. The ability of computer-aided drug design, on the other hand,
to screen a large library of small molecules quickly and accurately
may help the researcher to develop a new therapeutic agent against
SARS-CoV-2 (Wang, 2020). The virtual screening workflow has
made it possible to screen the enormous, diverse chemical library for

FIGURE 7
(A) All the three domains of 3CLPRO, (B) active site of the main protease and (C) indicates the interaction of Compound 1 in the active site of 3CLPRO, (D)
represents the 3D interactions of Compound 2, (E) indicates the 3D interaction of Compound 3, (F) indicates interactions of Compound 4, (G) indicates the
interaction of Compound 5, (H) indicating the three-dimensional interactions of the Control compounds (Ivermectin) with the 3CLPRO.
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the identification of powerful inhibitors (Neves et al., 2018). In the
drug development processes, machine learning (ML) techniques are
frequently used to categorize compounds as potentially active or
inactive against a given protein target (Patel et al., 2020). Structure
and ligand-based virtual screening frequently yield a high proportion
of false positive hits (Deng et al., 2015). To reduce the false positive
hits in this work, we used to machine-learning-base virtual screening
for the prediction of new inhibitors against the 3CLpro. K-nearest
neighbor (KNN), support vector machine (SVM), and Random
Forest (RF) algorithm three of the most popular ML algorithms
were chosen for virtual screening workflow. In general, classifier

performance is evaluated in terms of accuracy. KNN achieved 0.93%
accuracy SVM achieved 0.96% accuracy, whereas RF produced
0.99% accuracy on the train set. Our results revealed the best
performance of the RF model, so we used the RF model to
classify the Asian phytochemicals. Out of 4,000 phytochemicals, a
total of 26 phytochemicals were predicted as active against the
3CLpro. These active hits were further docked into the active site
of the main protease. Among the 26 docked compounds, Compound
1 was found as the most potent with a docking score of −12.03 and it
formed four H-donor interaction with CYS145, SER46, MET49, and
four H-acceptor interactions with HIS41, HIS163, LEU141 one pi-H

FIGURE 8
RMSD plots of the APO form (Black color), reference complex (Red color) and the top active phytochemicals (A) Compound 1 (B) Compound 2 (C)
Compound 3 (D) Compound 4 and (E) Compound 5 bound to 3CLPRO.

FIGURE 9
RMSF plots of the APO state (Black), control (Red) and the potent phytochemicals (A) Compound 1 (B) Compound 2 (C) Compound 3 (D) Compound
4 and (E) Compound 5.
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interaction with THR25 active site residues. Compound 2 was found
as the secondmost potent hit with a docking score of −11.45 followed
by Compound 3. Compound 2 formed a total of five hydrogen bonds
donor interactions with the active site residues including CYS145,
MET49, THR26, ASN142, MET165, and two H-acceptor

interactions with HIS41, and HIS163. The docking scores as well
as interactions of Compound 3, 4 and 5 were also good as compared
to the standard compound. The docking score of reference
compound ivermectin was −9.53 and it formed a total of four
H-donor interactions with CYS 145, MET 165 and one

FIGURE 10
Rg plots of Apo (Black), red (reference), and Compound 1-5 are labeled different colors as (A–E) Respectively.

FIGURE 11
DCCMof the APO state, Compound 1, Compound 2, Compound 3, Compound 4, Compound 5, and ivermectin (control) bound to 3CLPRO. The positively
correlated movement is represented by green color, while negatively correlated motion is indicated by deep brown color.

Frontiers in Molecular Biosciences frontiersin.org14

Samad et al. 10.3389/fmolb.2023.1060076

80

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1060076


H-acceptor interaction with ASN 119 active site residue.
Additionally, dynamics simulation was carried out to comprehend
and support the molecular docking study. For all the systems the
averaged RMSD was found between 1 and 3 Å. The averaged RMSD
for ivermectin was 2.0 Å, initially, up to 40 ns the system undergoes
raised up in the RMSD value up to 40 ns, and soon after reaching
40 ns the system acquired stability and remained stable for the rest of
the simulation period. The complex Compound 1 shows significant
stability as can be observed, however after 60 ns, the system briefly
displayed a tolerable variation. The system thereafter became stable
and moved into the production phase. For Compound 2, the finding
of the stability index in terms of RMSD reveals that the system shows
highly stable behavior in the entire period of simulation, at 20 ns
minor fluctuations from its mean position were observed, afterward,
the system gained stability and no more significant deviations were
observed with the average RMSD value of 1.7 Å. For complex
Compound 3, the system initially shows invariant behavior, up to
15 ns a gradual increase in the RMSD curve was observed followed by
a slight decrease in the RMSD curve at 20 ns afterward the system
attains the equilibrated with the averaged RMSD value of 2.1 Å. The
protein structure’s compactness as a function of time can be
evaluated by the radius of gyration (Ajmal et al., 2022). The RoG
analysis revealed compound 1, and compound 4 have almost similar
Rg values, with an average Rg value of 22–22.3 and 22–22.4 Å while
compound 2, compound 3, and compound 5 showed an average
gyration of 22–22.5, 22–23.3 and 22–22.4 Å respectively. The Rg
analysis of all the simulated complexes revealed that these
phytochemicals formed stable and compact complexes with
3CLPRO. All the short-listed phytochemicals revealed good binding
affinity for 3CLPRO. Compound 1 has smaller free energy
(−56.94 kcal/mol) followed by compound 2 (−55.65 kcal/mol),
compound 3 (−53.58 kcal/mol), and compound 4 (−46.95 kcal/
mol). It was observed that, as compared to the control system, all
the ligands in complex with 3CLPRO revealed high binding affinity
demonstrating that all the systems are stable. The RMSF analysis
revealed that Domain II had a stable behavior, whereas Domain I and
Domain III’s amino acid residues had more flexibility in the helix
and turn regions. The overall finding of RMSD and binding energy
indicates that our novel phytochemicals have higher binding
capacity toward the active site of the main protease. ML-based
workflow combined with molecular docking and molecular
dynamics approach reveals that the predicted new active
phytochemicals may disrupt the SARS-CoV-2 3CLpro function.

5 Conclusion

We used in silicomachine learning tools for drug designing against
the SARS-CoV-2 3CLpro. The phytochemical dataset with more than
4,000 chemicals derived from the PubChem database was used for
virtual screening against 3CLpro. Furthermore, the compound’s
inhibitory potential was explored using the molecular docking and
MD simulation study. Using these advanced approaches, we found
high-potential therapeutic compounds that can possibly inhibit SARS-
CoV-2 pathogenesis. The virtual screening process, which includes
MM-GBSA methods assists in reducing the list from over
4,000 possible lead compounds to 26 compounds. This research
relies only on various computational tools and further it is
recommended to evaluate the in-vitro inhibitory potential of these
short-listed compounds. Successful assessment and in vitro
evaluation of these compounds will help us to use them as a
therapeutic option to treat and cope with COVID-19.

Data availability statement

Data will be provided upon reasonable request from the
corresponding author of this manuscript. Requests to access these
datasets should be directed to awadood@awkum.edu.pk.

Author contributions

AS, AJ, and SMJ performed experiments, analyzed data, and
drafted the manuscript. AM and BK analyzed data, interpreted the
results, drafted the manuscript, and revised the manuscript. AM, PL,
AR, AA, MU, and PH revised the manuscript, drafted the methods,
performed proofreading and improved discussion. MU and AS draw
figures and tables. HJ, AM, and AW, designed, conceptualized, drafted
the manuscript, analyzed and interpreted the results and revised the
manuscript.

Acknowledgments

The authors would like to thank the Deanship of Scientific
Research at Umm Al-Qura University for supporting this work by
Grant Code: (22UQU4331128DSR60).

TABLE 6 Represents MMGBSA Binding Free Energy (kcal/mol) calculation for the selected phytochemicals and control compound.

S. No Compound name VDWAALS EEL EGB ESURF -TΔS DELTA TOTAL

1 Compound 1 −83.4745 −20.3304 56.6693 −9.8094 −18.4312 −56.9450

2 Compound 2 −79.3325 −20.6400 52.7843 −8.4635 −17.8254 −55.6517

3 Compound 3 −73.1537 −19.5693 51.8532 −8.5177 −19.2984 −53.5835

4 Compound 4 −64.4348 −16.3432 41.7462 −6.8571 −13.9835 −46.9500

5 Compound 5 −42.2227 −4.3191 13.2240 −4.7141 −10.8921 −38.0319

6 Ivermectin −38.9027 −6.3834 20.7589 −4.3827 −14.5924 −28.9100

vdW = the van der Waals energy, EEL, electrostatic energy; ESURF, surface areas energy; EGB, the electrostatic contribution to the solvation free energy calculated by GB.
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Virtual screening is a widely used tool for drug discovery, but its predictive power
can vary dramatically depending on how much structural data is available. In the
best case, crystal structures of a ligand-bound protein can help find more potent
ligands. However, virtual screens tend to be less predictive when only ligand-free
crystal structures are available, and even less predictive if a homology model or
other predicted structure must be used. Here, we explore the possibility that this
situation can be improved by better accounting for protein dynamics, as
simulations started from a single structure have a reasonable chance of
sampling nearby structures that are more compatible with ligand binding. As a
specific example, we consider the cancer drug target PPM1D/Wip1 phosphatase, a
protein that lacks crystal structures. High-throughput screens have led to the
discovery of several allosteric inhibitors of PPM1D, but their bindingmode remains
unknown. To enable further drug discovery efforts, we assessed the predictive
power of an AlphaFold-predicted structure of PPM1D and a Markov state model
(MSM) built frommolecular dynamics simulations initiated from that structure. Our
simulations reveal a cryptic pocket at the interface between two important
structural elements, the flap and hinge regions. Using deep learning to predict
the pose quality of each docked compound for the active site and cryptic pocket
suggests that the inhibitors strongly prefer binding to the cryptic pocket,
consistent with their allosteric effect. The predicted affinities for the
dynamically uncovered cryptic pocket also recapitulate the relative potencies
of the compounds (τb = 0.70) better than the predicted affinities for the static
AlphaFold-predicted structure (τb = 0.42). Taken together, these results suggest
that targeting the cryptic pocket is a good strategy for drugging PPM1D and, more
generally, that conformations selected from simulation can improve virtual
screening when limited structural data is available.

KEYWORDS

allosteric inhibition, cryptic site, molecular dynamics simulation, markov state models,
deep learning, virtual high throughput screening (vHTS)
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Introduction

Virtual screening is a common tool for identifying novel
inhibitors of proteins with known structures (Wallach et al.,
2015; Lyu et al., 2019; Bender et al., 2021). Conventional,
structure-based virtual high throughput screening approaches
use an empirical- or force-field-based scoring function to dock
ligands to mostly rigid receptors and rank compounds (Trott and
Olson, 2010). Docking to structures that deviate from the ligand-
bound state can result in inaccurate predictions of the bound
complex and poor compound ranking. For example, it is often
difficult to recover active compounds when docking against
ligand-free experimental structures (e.g., an apo state), or when
the cognate ligand is small (Abagyan et al., 2010). Even worse,
experimentally derived structures are unavailable for many targets
with disordered or flexible domains. AlphaFold (AF) has the
potential to accelerate drug discovery thanks to accurate
structure prediction for such proteins (Jumper et al., 2021).
However, these are still just rigid structures, and their utility
will be limited if they do not represent bound-like structures
(Vijayan et al., 2015; Wankowicz et al., 2022).

Phosphatases are a protein family with many potential
therapeutic targets, but few are currently drugged (Mullard, 2018;
Köhn, 2020) owing to a highly conserved and charged active site.
Phosphatases are distinguished by different functional domains that
can be exploited for the design of selective therapeutics (e.g.,
SH2 domain in SHP2(Chen et al., 2016)). Often, these domains
are highly flexible (Miller et al., 2022). Human protein phosphatase,
Mg2+/Mn2+ dependent 1D PPM1D, also known as Wip1, is an
important therapeutic target in oncology (Pecháčková et al., 2017).
PPM1D negatively regulates p53 and other components of the DNA
damage response pathway (Lu et al., 2008). Overactivation of

PPM1D, either through duplication or loss of its degradation
domain, is present in several human cancers, including breast
cancer (Li et al., 2002), ovarian clear cell carcinoma (Tan et al.,
2009), and brain cancers (Castellino et al., 2008).

Several allosteric inhibitors of PPM1D have been discovered
through experimental screens (Gilmartin et al., 2014), but they
remain difficult to improve upon because PPM1D has defied
structure determination. A dual biophysical and biochemical
screen targeting PPM1D revealed a novel class of inhibitors
called the capped amino acids (CAA) (Gilmartin et al., 2014).
These compounds selectively and non-competitively inhibit the
phosphatase activity of PPM1D towards FDP and natural
substrates. Efforts to crystallize PPM1D alone or PPM1D in
complex with these inhibitors were repeatedly unsuccessful, likely
due to a highly disordered loop or a flexible flap domain.

In the absence of this structural information, two distinct
binding modes have been proposed based on indirect evidence.
Photoaffinity labeling experiments suggested that the allosteric
compounds bind at the PPM1D flap domain, in the vicinity of
P219 andM236 (Figure 1). (Gilmartin et al., 2014) In support of this
model, the authors demonstrated that swapping the flap domain of
PPM1D into another phosphatase rendered that protein sensitive to
the PPM1D inhibitors. However, this finding was later disputed by
several experiments that implicated the hinge domain in the binding
of the allosteric compounds (Miller et al., 2022). Deletion of the flap
domain did not have an impact on the thermal shift, binding affinity,
or the deuterium exchange profile caused by one of the allosteric
compounds. Conversely, deletion of the hinge contributed to a
substantial decrease in binding affinity and inhibition (i.e., an
increase in IC50). Thus, the lack of experimental structures as
well as competing binding modes makes PPM1D a uniquely
challenging target for computational drug design.

FIGURE 1
PPM1D phosphatase is allosterically inhibited by the capped amino acid (CAA) compounds, but the precise binding site is unknown. (A) The capped
amino acid compounds have a common amino acid-like substructure, and small differences in their chemical structure (i.e., the absence of a carbonyl)
can contribute to very large differences in their potency. (B) The AlphaFold-predicted structure of PPM1D highlights key regions that have been
implicated in the binding of the capped amino acid compounds. The active site is shown in salmon sticks while two residues identified as proximal to
the binding site based on photolabeling experiments are shown in blue sticks. The flap domain, a region hypothesized to be the primary CAA compound
binding site, is shown in cyan. Another region hypothesized to be the primary CAA compound binding site, the hinge, is shown in orange.
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Here, we use AlphaFold, molecular dynamics simulations
(Karplus and McCammon, 2002; Hollingsworth and Dror, 2018),
and machine learning to generate distinct conformations of PPM1D
to investigate the molecular mechanisms of allosteric inhibition.

Results

PPM1D’s AlphaFold structure lacks high
scoring pockets at the flap and the hinge

Given the lack of available PPM1D experimental structures, we
first tested if a structure predicted by AlphaFold (AF) could help
determine the preferred binding site for its allosteric inhibitors. The
high accuracy of AF predictions (Jumper et al., 2021) suggests that
structures predicted by AF can be used for determining binding sites
and conducting virtual high throughput screening campaigns.
Therefore, we analyzed the PPM1D AF structure to determine if
there were binding sites with a high probability of ligand binding.

The PPM1D AlphaFold structure lacks clear pockets at the flap
and the hinge, which are the two binding sites proposed in the
literature. In contrast to previous homology models constructed for
PPM1D, the AF structure of PPM1D includes a structured flap
domain. The predicted local distance difference test (pLDDT) score,
a useful proxy for how ordered a region is (Wilson et al., 2022), is
high in the flap domain (Supplementary Figure S1). Despite the
structured nature of the flap domain, there are few obvious pockets
for an allosteric inhibitor to bind. Using the P2rank algorithm
(Krivák and Hoksza, 2018), we evaluated pockets on the protein
surface and found two pockets with high scores (Supplementary
Figure S2). One is at the active site, which cannot be the preferred
binding mode for the capped amino acid compounds given the non-
competitive nature of PPM1D inhibition. The second high scoring
pocket is found opposite the flap domain where helix 323–326 and
helix 347–360 interface with one of the β-strands in the PPM1D β-
sandwich (Supplementary Figure S1). This pocket has no overlap
with either of the proposed binding sites found in the literature for
the PPM1D allosteric compounds. Both the flap and the hinge lack
high scoring pockets in their vicinity. Similarly, when we searched
for pockets using the LIGSITE algorithm (Hendlich et al., 1997), we
do not find pockets at either of the proposed binding sites
(Supplementary Figure S3). These findings suggest that the
binding site of the allosteric inhibitors is possibly cryptic or
transient, or simply not captured by the AlphaFold
structure—thus posing a challenge for a successful docking
campaign. Hence, we decided to investigate whether molecular
dynamics simulations might reveal cryptic pockets at the flap or
the hinge.

PPM1D apo simulations reveal a cryptic
pocket at the flap-hinge interface

Next, inspired by recent success in capturing cryptic pocket
formation in molecular dynamics simulations, (Hollingsworth et al.,
2019; Sztain et al., 2021; Zimmerman et al., 2021; Cruz et al., 2022;
Meller et al., 2023b; Meller et al., 2023c), we tested whether
simulations launched from the AF structure could reveal cryptic

pockets that encompass the flap or the hinge. We used an adaptive
sampling algorithm FAST (Zimmerman and Bowman, 2015) to
search for cryptic pockets. FAST balances exploration with
exploitation to efficiently search conformational space for
conformations with desired traits. FAST does this by launching
swarms of simulations and then selecting the most promising states
as evaluated by an objective function for further simulations. In our
case, we defined an objective function that included LIGSITE pocket
volume to favor states with large pockets and another term to reward
conformations which had been rarely observed (see Methods).
Following each round of simulations, we created Markov State
Models (MSMs) (Pande et al., 2010; Bowman et al., 2015) of the
protein’s conformational ensemble after clustering conformations
using C-α RMSD as a distance metric.

In our simulations, the flap domain is extremely dynamic,
sampling closed and highly open conformations (Figure 2A). An
MSM-weighted distribution of flap domain to active site distances
reveals two modes, one centered roughly on the distance found in
the AF starting structure (~23 Å) and another around 27 Å
(Figure 2A). In the closed conformations with a small active site-
flap distance, the flap domain approaches a helix (residues 346–361)
whose minimum distance to the flap domain in the AF structure is
11 Å (structure I in Figure 2B; Supplementary Figure S4). This
behavior is consistent with experiments which showed that flap
deletion leads to an increase in deuterium incorporation, implying
an increase in backbone solvent exposure, at peptides spanning
residues 328–362. (Miller et al., 2022). Not only can the flap close in
on the active site, it can also dissociate dramatically as seen in the
long tail on the right of the active site-flap distance distribution
(structure iii in Figure 2B). In this extended conformation, K218 and
other residues involved in substrate recognition are far from the
active site (i.e., the distance between K218s sidechain to D105s
sidechain grows from 9 Å in the AF structure to as much as 29 Å in
simulations). The two peaks seen in the flap domain to active site
distance distribution are consistent with both hydrogen deuterium
exchange mass spectrometry and sedimentation velocity
ultracentrifugation experiments (Miller et al., 2022), which
showed that PPM1D exists in an equilibrium between two
different flap domain conformations.

The highly dynamic nature of the flap domain is not captured in
the AlphaFold predictions. As predicted by the high pLDDT
estimates for the flap domain, the β-strands in the flap remain
structured as β-strands throughout the simulations (Supplementary
Figure S5). However, neither AF’s pLDDT nor the predicted aligned
error for the flap domain suggest that flap domain dissociation is
possible or likely. We speculate that AF underestimates flap domain
flexibility because it is trained with static structures from the Protein
Databank (PDB), and thus simulations are a useful means to identify
functionally important excited states.

Our simulations revealed a cryptic pocket at the flap-hinge
interface between the two proposed binding sites. We calculated
pockets for each structure in the MSM using P2Rank (see Methods).
We then found the difference in each residue’s maximum ligand-
binding probability in the ensemble and its ligand-binding
probability in the AlphaFold structure. This analysis revealed that
the flap domain, especially a flap domain loop (residues 276–290), is
enriched for residues with large increases in ligand-binding
probability (Supplementary Figure S6, S7). To visualize this flap
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domain cryptic pocket, we found the simulation structure with the
largest increase in predicted ligand-binding probability relative to
the AlphaFold structure. This structure shows conformational
changes in the orientation of the central β-strand in the flap as
well as the loop spanning residues 269–295 (Figure 3A). Collectively,
these lead to the formation of a deep pocket (Figures 3B,D) with a
P2Rank-predicted ligand-binding probability of 0.87. There are
other regions of the protein with increases in predicted ligand-
binding probability, including the hinge (Supplementary Figure S8)
and the photoaffinity labeling sites, (Supplementary Figure S8), but
these increases are not as substantial as those in the flap domain
loop. Taken together, these results suggested that relevant binding
modes for the PPM1D allosteric compounds may be hidden in the
ground state AlphaFold structure.

The AtomNet PoseRanker neural network
predicts a single preferred cryptic binding
site between the flap and hinge

To help determine which cryptic site was the most likely binding
site, we docked the PPM1D allosteric compounds across the
ensemble of structures in our MSMs. Traditional rigid body
docking can often produce high quality poses (root mean square
deviation from a crystal pose less than 2 Å), but these methods
struggle to rank the poses correctly (Su et al., 2019); the highest
quality poses rarely correspond to the highest scoring poses. To
circumvent this limitation, deep learning methods often re-rank

conventional docking poses and achieve improved performance. We
used one of these methods, AtomNet PoseRanker (ANPR), to re-
rank the poses frommolecular docking (Stafford et al., 2022). ANPR
was trained on existing data on the PDB and demonstrated to have
an implicit understanding of physical interactions and protein
dynamics. ANPR is trained as a binary classifier, and outputs a
probability score between 0 and 1 (scores greater than 0.5 are usually
indicative that ANPR has confidence that the pose in question is of
high quality). We hypothesized that correctly assigned binding sites
for ligands would admit better poses than incorrect sites. We
therefore used ANPR scores to evaluate and identify the most
likely binding site of the PPM1D allosteric inhibitors. We
expected the most likely binding site to have higher ANPR scores
across the simulated conformations with a relevant cryptic pocket.

We docked compounds to all states from the PPM1D MSMs
using CUina (Gniewek et al., 2021; Stafford et al., 2022), a GPU-
efficient implementation of smina (Koes et al., 2013), and evaluated
the quality of the resulting docked poses with ANPR. For every state
from the MSM, we used P2Rank to identify possible binding sites in
that state’s representative structure. A significant number of
conformations presented a cryptic pocket between the hinge and
the flap. A smaller number of conformations presented a
pocket almost exclusively at the hinge. We used the pockets
identified by P2Rank to design a box centered around these
pockets. We padded the box by 5 Å on each dimension, and we
used that box to define the search space of our molecular docking
runs. As a control, two additional bounding boxes were created for
the active site and photolabeling site described in the Gilmartin

FIGURE 2
The distribution of flap domain to active site distances from MD simulations highlights that the flap is a highly flexible domain that can adopt more
open conformations than seen in the AlphaFold-predicted structure. (A) The MSM-weighted distribution of average distances between the flap domain
(defined as residue 219–295) and the active site (residues 105, 192, 314, and 366) backbones shows two peaks as well as long tails that highlight low
probability highly closed and highly open conformations. The dashed red line indicates the same distance measured for the AlphaFold-predicted
structure. (B) These structures depict a highly closed, an intermediate, and a highly open MSM cluster center. The flap domain is colored in cyan. Circles
with Roman numerals indicate where these structures fall in the distribution.
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publication by defining the boundaries based on the catalytic
residues or the photo labeling residues respectively. These boxes
were also padded by 5 Å in each dimension (see Methods). In total,

we docked nine capped amino acid compounds against four possible
sites (two proposed sites around the hinge, the photolabeling site,
and the active site as a negative control). These compounds were

FIGURE 3
PPM1D apo simulations reveal a cryptic pocket at the flap-hinge interface. (A) The AlphaFold-predicted PPM1D structure and a simulation structure
where each residue is colored by its P2Rank-predicted ligand-binding probabilities show an increase in ligand-binding probability at the flap domain near
the hinge. This simulation structure was selected because it had the largest increases in ligand-binding probability relative to the starting structure across
the ensemble of states. Active site residues are shown in sticks. Arrow indicates the backbonemotion that is required to form the cryptic pocket. (B)
Mesh representation of the cryptic pocket shows that it forms between a flap domain loop (residues 276–279), two of the β-strands in the flap (residues
243–247 and 268–271), and a flap domain helix (residues 227–234). (C) Surface representation looking onto the AlphaFold structure and the open
simulation structure highlights that a deep trench forms between the flap domain and hinge. The surface is colored by P2Rank-predicted ligand-binding
probability. (D) A zoom-in of the surface representation of the open state reveals that the cryptic pocket lies in a deep groove. The orange spheres are the
pocket grid points identified by P2Rank.

FIGURE 4
The AtomNet PoseRanker neural network predicts that poses found at the flap-hinge interface are more crystal-like. (A) A PPM1D AlphaFold
structure colored by the frequency with which residues participate in high-quality poses indicates that residues needed for high-quality poses are found
at the flap-hinge interface. Residues in dark red most frequently contact the GSK2830371 compound in its high-quality poses. High-quality poses were
those poses that received a PoseRanker score of 0.5 or higher. A contact was defined when a ligand heavy atom was within 4 Å of a protein heavy
atom. (B) The MSM-weighted AtomNet PoseRanker (ANPR) predictions across different binding sites show that the flap-hinge interface receives higher
ANPR scores. Each point represents a different CAA compound. When there were multiple poses in one of the binding site categories, we selected the
pose with the highest ANPR score. We defined the hinge as residues 150–166 and the flap as residues 219–295.
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docked against all MSM states where the relevant cryptic pocket was
detected by P2Rank. For each compound + binding site pair, we re-
ranked the top 64 poses (as ranked by the vina scoring function)
using ANPR. The pose for each compound and binding site with the
highest ANPR ranking was selected for subsequent analyses.
Interestingly, none of the poses where PPM1D allosteric
compounds were docked to the AF structure scored above 0.5,
indicating that these were unfavorable poses (Supplementary Table
S1). This corroborates our pocket assessment results, suggesting that
the static AF structure is not amenable to docking of the PPM1D
allosteric inhibitors.

Across the PPM1D MSM ensemble, we found that ANPR
assigns the highest scores to poses where the compounds bind
between the flap and hinge. For each compound, we assessed
which poses were given a ANPR probability score greater than
0.5. We defined those as predicted high-quality poses. We found that
residues found at the interface of the hinge and flap domain are most
likely to make contacts with high-quality poses (Figure 4A).
Specifically, residues in the flap domain loop from D277 to
V289 are most likely to form contacts with these poses. When
we overlayed all high-quality poses of the compounds onto the AF
starting structure, we found that they cluster in a single region
between the flap and hinge (Supplementary Figure S10). Next, we
classified poses by the protein contacts that they form into the
following categories: flap domain only, hinge only, flap-domain
interface, and active site (see “Pose classification” in Methods).
There are no high-quality poses that form contacts only with the
hinge and rarely did any high-quality poses form contacts with the
active site. This is true across all compounds. Considering that the
PPM1D allosteric inhibitors are non-competitive, our negative
control results (docking against the active site) bolster our
confidence that the ANPR probability scores can distinguish
between correct and incorrect sites. We used the equilibrium
probabilities from the MSM to calculate a weighted average of
the ANPR score across the PPM1D ensemble (Supplementary
Figure S12). We find that the ensemble-weighted ANPR
probability is highest at the flap domain and flap-hinge interface
(Figure 4B; Supplementary Figure S12). Thus, these ANPR
predictions strongly suggest that PPM1D allosteric compounds
bind between the flap and hinge.

Combining MSM-docking with pKi
predictions from a neural network
accurately ranks compounds

While an estimate of pose quality might be helpful in virtual
screening, the decision to select compounds for synthesis and testing
with in vitro assays relies on an estimate of a compound’s bioactivity
or affinity. The deep learning-based pKi predictor AtomNet has been
shown to be physics-aware and to be sensitive to pose perturbations.
(Wallach et al., 2015; Gniewek et al., 2021). Considering that the CAA
compounds have known affinities, we can assess whether MSM-
docking (Meller et al., 2023b) can have an impact on the
retrospective performance of the AtomNet pKi predictor.

We applied the AtomNet pKi predictor to each of the docked
poses in our MSM ensemble. The AtomNet pKi predictor was
trained using a combination of public and proprietary structural

data. It outputs a value for the predicted pKi of a compound for a
particular target given a particular pose provided as input. We
docked each compound to several sites for each structure in the
ensemble.We used the ANPR score to select the highest scoring pose
per compound-structure pair in the ensemble (Figure 5A). We then
passed that compound-state pair as input to the AtomNet pKi
predictor, resulting in one prediction of the compound’s potency
per MSM state.

We find that taking an ensemble perspective that accounts for
cryptic pockets outperforms results for the static AF structure. We
first established a baseline by evaluating how well docking scores rank
PPM1D allosteric compounds by potency. Docking scores for the AF
structure alone and MSM-weighted docking scores for the ensemble
(seeMethods) generated very poor predictions of compound potency,
demonstrating that ranking these compounds is a non-trivial task. In
fact, compounds with better docking scores were less potent in general
(Kendall τb = −0.59, Figure 5B); we noticed negative correlation
between docking scores and their measured potency. On the other
hand, the AtomNet pKi predictor ranks more potent compounds
higher using docked poses against the AF structure alone (τb = 0.42,
Figure 5B). The ability to rank compounds based on their predicted
affinity further improves when we dock to all MSM states and weight
the pKi predictions based on the equilibrium probability of each state
(seeMethods). Indeed, we achieve an impressive τb of 0.70when using
MSM-weighted pKi predictions (Figure 5B). Thus, combining MSMs
with the AtomNet pKi predictor may improve the performance of
virtual screening.

Discussion

Protein phosphatases are a challenging class of drug targets that
broadly illustrate the advantages of using allosteric compounds (Köhn,
2020). There are nearly 200 phosphatases in the human genome, and
many are implicated in human diseases, including diabetes (Krishnan
et al., 2018), neurodegeneration (Vieira et al., 2017), and multiple
cancers (Pecháčková et al., 2017). Phosphatases are downstream
targets of several signaling pathways that integrate various cellular
signals (Lu et al., 2008). This suggests that targeting of phosphatases
may be useful across numerous cancer subtypes caused by mutations of
upstream proteins or in cases where tumors develop resistance to
upstream therapies. However, to the best of our knowledge, there
are no approved therapies that target phosphatases. Previous drug
discovery efforts have focused on active site inhibitors. Targeting the
active site has proved challenging because high sequence conservation
limits the selectivity of compounds. Furthermore, compounds targeting
the active site need to be highly charged, limiting their bioavailability.
Hence, allosteric compounds, like the CAA compounds that target
PPM1D and novel allosteric inhibitors of SHP2 (Chen et al., 2016), may
be needed to successfully inhibit phosphatases in clinical settings.

Definitively establishing the binding site of the PPM1D allosteric
compounds remains challenging, but our results predict a plausible
binding site that agrees with most previous experiments.
Photoaffinity labeling experiments and flap swap experiments,
which showed that introducing the PPM1D flap domain can
sensitize other phosphatases to the PPM1D allosteric inhibitors,
strongly implicate the flap domain as the primary compound
binding site. Our proposed binding site at the flap-hinge
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interface is consistent with these results. Though our proposed
binding mode does not directly involve the points of covalent
attachment (i.e., P219 and M236), we speculate that the large
photoactivatable benzophenone groups that were added to the
compound scaffold enable compounds with these groups to bind
at our proposed site but still reach these residues. Furthermore,
Gilmartin et al. showed that residues 247–268 in the flap are not
essential for PPM1D allosteric compound binding (Gilmartin et al.,
2014). Consistent with these results, our proposed binding site does
not involve these residues with the minor exception of K247. On the
other hand, Miller et al. demonstrated that deletion of the hinge
causes a ~1000-fold decrease in binding affinity and a 100-fold
increase in IC50 for one of the allosteric compounds. Our proposed
binding site has substantial involvement from hinge residue
L157 and an adjacent residue W154. As a result, our proposed
binding site is consistent with the hinge deletion experiments.
However, given that residues in the flap, especially residues
D277 to V289, are commonly involved in high-quality poses, we
cannot explain why Miller et al. report that flap deletion (specifically
residues 219–287) has no effect on binding affinity or binding
kinetics. We speculate that it may be possible for the allosteric
inhibitors to bind even when most of the flap is deleted, but our
analysis suggests further experiments are needed to disentangle the
relative contributions of the flap and hinge to compound binding.

Furthermore, our results highlight the advantages of explicitly
accounting for protein conformational heterogeneity when using

deep learning methods for predicting compound affinity. The
AtomNet pKi predictor is designed and trained to be pose-
sensitive (Wallach et al., 2015; Gniewek et al., 2021; Stafford
et al., 2022). Its performance at ranking compounds varies widely
between target structures in the MSM (Supplementary Figure S14).
We noticed that even when the poses are likely of poor quality (e.g.,
the AF structure where the cryptic pocket is not present), we still
often see relatively good predictive performance for the pKis. While
some of the predictive power of the AtomNet pKi predictor is driven
by the pose, we hypothesize that the ligand features might also play a
part in and influence the predicted pKis that AtomNet pKi predictor
outputs. For the cases where the pose is poor (e.g., docking against
AF structure), we get a baseline for how well a ligand-based model
would perform. The boost in performance seen with MSM-docking
is likely due to better poses resulting from docking to structures with
open cryptic pockets.

Our results also provide insight into how ligand features
contribute to differences in predicted affinity. We inspected top-
scoring poses for the compounds shown in Figure 1A to assess why
these compounds have significantly different binding affinities despite
differing by just a carbonyl (Supplementary Figure S14). While we
cannot single out a specific interaction formed by this differing
carbonyl across the inspected top poses, this moiety was
consistently in contact with residues Y281 to F284. For certain
states, we observed additional polar interactions between the
carbonyl-containing compound and the protein. We also observed

FIGURE 5
A neural network trained to predict pKi accurately ranks allosteric compounds by potency when applied to structures from a PPM1D ensemble. (A)
Schematic highlighting the procedure that was used for selecting a single pose for each PPM1D cluster center in the MSM. For each MSM cluster center,
we defined multiple docking boxes based on the active site, residues involved in photolabeling experiments, and P2Rank pockets at the flap and hinge.
After performing docking, we selected a best pose per MSM state using the PoseRanker neural network. Finally, we fed this best docked pose to the
AtomNet pKi predictor. (B)MSM-weighting of the pKi predictions from the AtomNet pKi predictor outperforms docking-basedmethods as well as a single
pKi prediction based on the AlphaFold-predicted structure. For each scatter plot, we show the line of best fit in black as well as the 95% confidence
interval based on bootstrapping in translucent grey bands. We report the Kendall rank correlation coefficient, a statistic that measures the ordinal
association between the predited pKi and the measured pKi and whose maximum value is 1.

Frontiers in Molecular Biosciences frontiersin.org07

Meller et al. 10.3389/fmolb.2023.1171143

90

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1171143


that in states where the pKi prediction strongly favored the carbonyl-
containing compounds, the carbonyl-containing compound buried
substantially more protein solvent accessible surface area in its docked
pose (Supplementary Figure S14). However, we acknowledge that
comparing docked poses does not provide definitive insight into why
the AtomNet pKi predictor makes higher predictions for active
compound poses.

While a traditional docking scoring function does not accurately
rank compounds based on their binding affinity (Figure 5B), it is
well established in the literature that docking can be used to sample
good binding poses. That is the case even though the poses that best
capture the correct binding mode are usually not the best-ranked or
highest-scoring ones. We and others have shown that this issue can
be mitigated by sampling multiple poses and re-ranking them with a
deep learning model (Stafford et al., 2022), often yielding sufficiently
accurate poses for applications such as the one included in this
manuscript. Recent advances in molecular docking (Corso et al.,
2022) have led to docking tools that do away with explicitly defined
docking scoring functions. If these tools could be run at the scale
needed to generate training data for the AtomNet pKi predictor, it is
possible that the model could achieve better predictive performance.

Non-etheless, our results show that MSMs can address some of
the limitations of rigid docking against AlphaFold predicted protein
structures. Rigid docking has lower performance when the protein
structure(s) being used for docking corresponds to an apo or
unbound state (Abagyan et al., 2010). Deep learning-based (DL-
based) protein structure prediction methods like AlphaFold, are
trained using all available data on the PDB, and there is data to
support that output structures are somewhere in between apo and
holo. (Saldanõ et al., 2022). Docking efforts against AlphaFold
structures show lower performance than against holo structures
available on the PDB. (Díaz-Rovira et al., 2022; Wong et al., 2022).
Here, we show that this can be mitigated by considering
conformational heterogeneity using MSMs. Using a highly
flexible system, we can sample conformations and identify cryptic
pockets that can be successfully used in downstream virtual
screening applications. While our work was based off a single AF
structure as a starting point, we are aware of efforts to use these DL
protein structure prediction tools to sample multiple conformations,
thus better capturing protein flexibility (Saldanõ et al., 2022; Meller
et al., 2023a). To our knowledge, these methods have not been
compared against MSM approaches and more research would be
needed before conducting a similar analysis as described herein with
a DL-generated structural ensemble.

Despite these encouraging results, there are notable limitations to
our approach. Firstly, most of our pKi analyses included nine capped
amino acid compounds. This is not a particularly large dataset, and we
acknowledge that this is somewhat restrictive in terms of establishing
robust statistical significance for our results. Ranking based on docking
scores output by CUina does suggest that this is not a trivial ranking
problem, and that achieving good predictive performance at random,
despite the small data set size, is statistically unlikely. While in an ideal
scenario we would hope to have a larger number of data points to
validate our findings, affinity data is often relatively sparse at early
stages of the pharmaceutical pipeline, so estimating the performance of
virtual screening can be difficult. Secondly, our data suggests that the
AtomNet pKi predictor tends to regress to the mean. Even though the
ranking metrics are good, the dynamic range of predicted vs. observed

pKis differ significantly. We hypothesize that this is likely due to a data
imbalance in the training data of the AtomNet pKi predictor, as data
points in the extremes of the pKi distribution (either very high or very
low) are rare, and our sampling strategy during training does not
stratify on that property. Still, given that model accurately ranks
compounds by potency, our approach represents a promising
strategy for novel virtual screening campaigns.

Conclusion

In summary, we have uncovered a cryptic pocket at the PPM1D
flap-hinge interface that improves the ability to predict the potency
of PPM1D inhibitors. AlphaFold predicts a PPM1D structure that
lacks high scoring allosteric pockets at proposed binding sites based
on an analysis conducted using the P2Rank and LIGSITE pocket
detection algorithms. Though the AF-predicted structure lacks
allosteric pockets, molecular dynamics simulations of ligand-free
PPM1D capture a cryptic pocket at the flap-hinge interface. A neural
network trained to evaluate the quality of docked poses predicts that
this site is the most likely binding mode for the PPM1D allosteric
inhibitors. Finally, by docking compounds to this pocket and using a
structure-based pKi predictor, we demonstrate that aggregating pKi
predictions across a MSM is superior at ranking compounds than
using docking scores or using the single predicted AlphaFold
structure. Thus, our methodology provides a promising template
for structure-based drug discovery and in silico binding site
prediction.

Methods

Molecular dynamics simulations

The AlphaFold predicted structure (AF-O15297) was used as an
initial structure for PPM1D simulations since no structures were
available in the PDB. However, because several PPM1D domains
(C-terminus domain and an internal loop stretching from residue
39–92) are predicted to be disordered (pLDDT <70) and because we
were primarily interested in flap domain dynamics, we removed
residues 39–92 and truncated the C-terminus (residue 396-end).

GROMACS (Abraham et al., 2015) was used to prepare and to
simulate PPM1D using the CHARMM36m force fields (Huang et al.,
2016). The protein structure was solvated in a dodecahedral box of
TIP3P water (Jorgensen et al., 1983) that extended 1 nm beyond the
protein in every dimension. Thereafter, sodium and chloride ions were
added to the system to maintain charge neutrality and 0.1 M NaCl
concentration. The system was minimized using steepest descents until
the maximum force on any atom decreased below 1,000 kJ/(mol x nm).
The system was then equilibrated with all atoms restrained in place at
310 K maintained by the Bussi-Parinello thermostat (Bussi et al., 2007)
and the Parrinello-Rahman barostat (Parrinello and Rahman, 1998).

Production simulations were performed in the CHARMM36m
forcefield. Simulationswere run in theNPT ensemble at 310 Kusing the
leapfrog integrator, Bussi-Parinello thermostat, and the Parrinello-
Rahman barostat. A 12 Å cutoff distance was utilized with a force-
based switching function starting at 10 Å. Periodic boundary conditions
and the PME method were utilized to calculate the long-range
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electrostatic interactions with a grid density greater than 1.2 Å-3.
Hydrogen bonds were constrained with the LINCS algorithm (Hess
et al., 1997) to enable the use of a constant integration timestep of 2 fs

Adaptive sampling

We used the Fluctuation Amplification of Specific Traits (FAST)
algorithm (Zimmerman and Bowman, 2015) to explore a diverse
ensemble of states with cryptic pockets. We performed 5 generations
of simulations; each generation consisted of 10 parallel simulations
40 ns in length (total aggregate simulation time: 2 microseconds of
adaptive sampling). After each completed generation, we selected
seeds for the next round based on an objective function. We used an
objective function that rewarded states based on their total pocket
volume as measured by LIGSITE (Hendlich et al., 1997). The
following LIGSITE parameters were used: a minimum rank of 7,
a minimum cluster size of 3, and a probe radius of 0.14 nm. Our
ranking function also included a term that penalizes states
conformationally similar to others already selected (the width
parameter for this term was 1.5 times the cluster radius)
(Zimmerman et al., 2017). We performed k-centers clustering
after each round of FAST with the RMSD of C-alpha positions
of the entire protein as the distance metric. Clustering continued
until the maximal distance from each point to its nearest cluster
center was a maximum of 2 Å C-alpha RMSD. The top 10-scoring
cluster centers based on the LIGSITE objective function were then
selected for the next round of FAST.

To generate Markov state models from the MD simulations, we
applied a 1/n pseudocount to each element of the transition counts
matrix and then performed row normalization to generate a
transition matrix as recommended in (Zimmerman et al., 2018).
Markov state models were generated using the enspara software
package (Porter et al., 2019).

P2Rank pocket detection

We used P2Rank v2.4 (Krivák and Hoksza, 2018) with default
parameters to identify pockets across all of the representative states
(cluster centroids) from our simulations. For subsequent analyses,
we consider only pockets with a permissive pocket probability (as
output by P2Rank) greater than 0.2.

Docking

We docked compounds using a proprietary GPU-enabled
docking engine, CUina. CUina (Stafford et al., 2022) is a
proprietary implementation of smina (Koes et al., 2013), which
has been parallelized and refactored to operate more efficiently on
a GPU. The scoring function (Vina scoring function) and sampling
routines of CUina are analogous to those in smina. CUina requires
a bounding box to restrict its search space. We defined four
bounding boxes representing each of the three proposes binding
sites for CAA compounds, and one negative control (active site).
For the first two boxes, we used the coordinates of the pockets
identified by P2Rank in the vicinity of the flap or the hinge of

PPM1D (where available). The minimum and maximum
coordinates of the voxels output by P2Rank were used to define
the box, and we padded these coordinates by 5 Å along each
dimension. A third box was defined using the coordinates of
the two residues (P219 and M236) that were part of the
photolabeling experiment described by Gilmartin et al. The
fourth and final boxed was defined based on the active site: we
used the coordinates of all the catalytic residues to define the box.
The box boundaries were calculated by taking the minimum and
maximum coordinates of all photolabeling or catalytic residues
and padding by 5 Å along each dimension.

We docked nine CAA compounds to all states (i.e., a
representative structure for each MSM state) resulting from the
MSM effort described above. For each compound, we dock the best
(minimized) ligand conformation against all four proposed binding
sites. In the MSM states where P2Rank failed to identify one of the
pockets, docking against that pocket was omitted.

For each docking operation corresponding to a binding site +
MSM representative structure + compound, we output 64 poses and
imposed a 1 Å RMSD similarity cutoff, thus ensuring that the poses
output are sufficiently different from one another.

Pose classification

Following docking, poses were classified based on the contacts
that they formed. Specifically, we found residues whose heavy
atoms were within 4 Å of a ligand heavy atom. Next, we classified
poses into the following categories based on their list of contact
residues: flap domain only, hinge only, flap-domain interface, and
active site. The active site was defined as residues 18, 22, 23, 105,
106, 192, 218, 314, and 366 based on the annotation in (Gilmartin
et al., 2014); the flap domain was defined as residues 219–288; and
the hinge domain was defined as residues 150–167, which includes
both a loop and half the helix spanning residues 136–158. If the
compound made contacts with both a hinge domain and a flap
domain residue, it was classified as binding in the flap-hinge
interface.

pKi model predictions

We used AtomNet’s pKi predictor to perform pKi
predictions using the poses generated and selected by our
pose generation pipeline (CUina + ANPR). AtomNet’s global
pKi model uses a graph-based convolutional neural network to
regress over pKi.

Data: This model was trained using a combination of public and
proprietary data, spanning more than 4,000 targets for which
activity measurements were available. In total, several million
activity data points were used to train the model. PPM1D was
not part of the training data for the model, but the training set did
include a number of other phosphatases.

Architecture
AtomNet’s global pKi model uses the GRAPHite architecture

(previously described in (Stafford et al., 2022). The GRAPHite
architecture is a directed Graph Convolutional Network (GCN)
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comprised of four graph convolutional layers. The first two
layers include both ligand and receptor features, whereas the
last two layers are ligand-only. Nodes in the graph represent
ligand and receptor atoms. Only receptor atoms within 7 Å of
any ligand atom were used as part of the graph. Edges were
defined by atoms within 4 Å of each other and edge weights were
distance-dependent. The final layer is sum-pooled into an
embedding. This embedding is then passed through two
(independent) multilayer perceptrons to predict two outputs:
the ANPR pose quality score, and the Vina docking score. Those
outputs are then concatenated to the embedding and passed
through a third multilayer perceptron which outputs the
predicted pKi.

More details about the method and parameters can be found in
(Gniewek et al., 2021; Stafford et al., 2022).

MSM-weighting of docking and pKi
predictions

To determine an overall MSM-weighted pKi prediction from
pKi predictions for each MSM state, we first selected a single
highest scoring pose for each state based on the AtomNet
PoseRanker predictions. Next, we converted the predicted pKi
value to an association constant. Then, we found a macro-
association constant from the individual mico-association
constants:

Ka � ∑
i

πiKai

We use association constants because this ensures that large
contributions to the sum come from states with either a high
equilibrium probability, a large association constant (i.e., favor
ligand binding), or both. States that have small association
constants or low equilibrium probabilities will have a minimal
contribution to the overall association constant. Finally, we
convert the overall association constant to a pKi by taking the
-log10 of its inverse.

For docking scores which are in units of kcal/mol, we follow a
similar procedure. Given there were multiple poses for each MSM
state, we selected the pose with the highest ANPR prediction for
that state. Docking scores are then converted to association
constants:

Ka � e
−ΔGdocking

RT

Then we follow the same aggregation procedure:

Ka � ∑
i

πiKai

Finally, we convert this overall association constant into a pKi by
taking the -log10 of its inverse.
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Alzheimer’s disease (AD) is a neurodegenerative disease that primarily affects
elderly individuals. Recent studies have found that sigma-1 receptor (S1R) agonists
can maintain endoplasmic reticulum stress homeostasis, reduce neuronal
apoptosis, and enhance mitochondrial function and autophagy, making S1R a
target for AD therapy. Traditional experimental methods are costly and inefficient,
and rapid and accurate prediction methods need to be developed, while drug
repurposing provides new ways and options for AD treatment. In this paper, we
propose HNNDTA, a hybrid neural network for drug–target affinity (DTA)
prediction, to facilitate drug repurposing for AD treatment. The study
combines protein–protein interaction (PPI) network analysis, the HNNDTA
model, and molecular docking to identify potential leads for AD. The HNNDTA
model was constructed using 13 drug encoding networks and 9 target encoding
networks with 2506 FDA-approved drugs as the candidate drug library for S1R and
related proteins. Seven potential drugs were identified using network
pharmacology and DTA prediction results of the HNNDTA model. Molecular
docking simulations were further performed using the AutoDock Vina tool to
screen haloperidol and bromperidol as lead compounds for AD treatment.
Absorption, distribution, metabolism, excretion, and toxicity (ADMET)
evaluation results indicated that both compounds had good pharmacokinetic
properties and were virtually non-toxic. The study proposes a new approach to
computer-aided drug design that is faster andmore economical, and can improve
hit rates for new drug compounds. The results of this study provide new lead
compounds for AD treatment, which may be effective due to their multi-target
action. HNNDTA is freely available at https://github.com/lizhj39/HNNDTA.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that
mainly affects elderly people and whose etiology remains unclear.
The symptoms of patients include a decline in cognitive abilities and
a weakening of memory and thinking abilities (Hung and Fu, 2017;
Srivastava et al., 2021; Briggs et al., 2016). Although there are some
drugs currently used to treat AD, their effectiveness is limited.
However, drug repurposing (DR) has provided a new approach
and selection for the treatment of AD (Padhi and Govindaraju, 2022;
Ihara and Saito, 2020). This method involves reanalyzing the
biological effects of known drugs and applying them to new
areas of disease treatment. DR can accelerate the development of
new drugs, provide more treatment options, and reduce the risk of
drug development.

Previous studies have suggested that sigma-1 receptor (S1R) has
neuroprotective effects and that its physiological function has a
direct impact on endogenous neuroprotective mechanisms
(Voronin et al., 2023). As a protein chaperone, S1R locates on
specialized lipid rafts of mitochondria-associated endoplasmic
reticulum membranes (MAMs), which are known to form
mitochondrial endoplasmic reticulum contacts (MERCs) with the
outer mitochondrial membrane and play a role in various
biochemical processes, such as autophagosome formation, cellular
energy production, and maintenance of IR3R3-dependent calcium
homeostasis. Thus, disruption of this structure is now considered an
early stage in the pathogenesis of neurodegenerative diseases,
including AD. Activation of S1R using agonists has been shown
to maintain the structural and functional stability of MAMs and
MERCs, thereby enhancing autophagic activity, restoring
mitochondrial function, and regulating intracellular calcium
balance (Barazzuol et al., 2021; Leal and Martins, 2021; Wilson
and Metzakopian, 2021; Weng et al., 2017). In AD models, such as
PS1-KI and APP-KI, dendritic spines of hippocampal neurons are
lost both in vitro and in vivo, indicating that the loss of mushroom-
shaped “memory spines” reflects cognitive decline, learning, and
memory deficits in AD (Ryskamp et al., 2019; Fisher et al., 2015),
suggesting the involvement of reduced S1R in AD pathology. The
mixed muscarinic/S1R agonist AF710B stabilizes mature mushroom
spines in hippocampal cultures derived from ADmice in vitro, while
pridopidine, an S1R agonist, stabilizes mushroom spines in an
Alzheimer’s mouse model through its action on S1R. S1R
agonists have demonstrated preclinical efficacy in AD animal
models (Ryskamp et al., 2019; Fisher et al., 2015). Donepezil, a
potent acetylcholinesterase inhibitor used for AD treatment, is also a
high-affinity S1R ligand. Precise pharmacological studies on the
interaction between donepezil and S1R suggest that the drug exerts
anti-amnesic effects primarily through S1R activation against
scopolamine, β-amyloid, or carbon monoxide-induced memory
impairments (Hassan et al., 2017). Overall, S1R agonists exhibit
neuroprotective effects and modulate synaptic plasticity, making
S1R a potential target for AD treatment.

In the past decade, the “one disease–one target–one drug”
paradigm has dominated the approach to drug discovery.
However, this paradigm has certain limitations, and recent
advances in systems biology have shifted the focus from “single-
target drugs to “multi-target drugs” (Noor et al., 2023). When
treating a particular disease, it is not feasible to rely solely on a

single target to identify drugs. Instead, a range of targets within an
imbalanced pathway in the complex biological network must be
considered as inhibiting a single enzyme alone may lead to cancer
cells compensating by activating other enzymes (Ryskamp et al.,
2019; Fisher et al., 2015; Hassan et al., 2017). Zhi et al. utilized
network pharmacology and molecular docking to reveal
dihydroorotate dehydrogenase (DHODH) as a therapeutic target
for small-cell lung cancer. Subsequently, they constructed a
prediction model using graph neural networks (GNNs) and
traditional machine learning methods to screen for potential
DHODH inhibitors (Noor et al., 2023; Zhi et al., 2021). Cantini
et al. introduced a multi-network strategy by integrating multiple
genomic information layers, particularly gene co-expression and
protein–protein interactions, to identify cancer-related targets. They
employed consensus clustering algorithms in a predictive network,
revealing CD46, BTG2, ATF3, HDGF, and F11R as driver genes in
cancer (Noor et al., 2023; Cantini et al., 2015).

In drug repurposing, artificial intelligence (AI) plays an
important role. By analyzing data on existing drugs and diseases
using machine learning and deep learning methods, potential drugs
can be quickly and efficiently screened (Cheng and Cummings,
2022; Yin and Wong, 2021; Vatansever et al., 2021). In addition,
simulating the interactions between drugs and proteins can predict
drug activity and affinity, guiding drug repositioning research. In
recent years, researchers have successfully screened many promising
drugs using AI methods (Selvaraj et al., 2021; Malandraki-Miller and
Riley, 2021; Patel et al., 2020). These studies indicate that drug
repositioning has important clinical application prospects, and AI
methods can provide more powerful support for drug repositioning.

The affinity between drugs and targets is the basis for drug
action, and predicting the affinity between drugs and targets is an
important part of drug repurposing (Pushpakom et al., 2019; Parisi
et al., 2020). Traditional experimental methods have disadvantages
such as high cost and low efficiency, making it necessary to develop a
fast and accurate prediction method. In recent years, with the
development of deep learning technology, using neural networks
to predict the affinity between drugs and targets has gradually
become a research hotspot (Thomas et al., 2022; Choudhury
et al., 2022; Jiang et al., 2022; Wang and Dokholyan, 2022).
Neural networks are powerful computational tools with the
ability to deal with non-linear problems and have achieved some
success in predicting the affinity between drugs and targets.

In recent years, more and more researchers have begun to
explore the use of neural networks to construct computational
models for drug repositioning prediction to screen drugs for
treating AD (Chyr et al., 2022; Wu et al., 2022; Siavelis et al.,
2016). Some related studies have made some progress. For
example, Zhou et al. Fang et al. (2022) proposed an integrated
network-based AI method that can quickly translate genome-wide
association study findings and multi-omics data into genotype-
based therapeutic discoveries in AD, and identified pioglitazone
as a potential new method for treating AD using AI methods. Tsuji
et al. (2021) developed a deep learning-based computational
framework that can extract low-dimensional representations of
high-dimensional protein–protein interaction network data and
infer potential drug target genes using latent features and state-
of-the-art machine learning techniques. The study inferred that
tamoxifen, bosutinib, and dasatinib could serve as repositionable
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candidate compounds against the disease. Rodriguez et al. (2021)
proposed a machine learning framework, DRIAD (drug
repositioning in AD), which quantifies potential associations
between the pathological severity of AD and molecular
mechanisms encoded in a list of gene names, and identified a
ranked list of repositioning candidates for treating AD from
80 FDA-approved and clinically tested drugs.

Using AI methods for drug repurposing has become an
important approach in AD drug research, providing important
ideas and directions for new drug discovery. Although many
studies have used neural networks to predict drug–target affinity,
their application in the field of AD treatment is still relatively
limited. This study aims to use neural networks to predict
drug–target affinity and screen potential drugs for the treatment
of AD, providing new ideas and choices for AD treatment. At the
same time, we will compare and analyze different neural network
models to find the best prediction model.

In this paper, we propose HNNDTA, a hybrid neural network
for drug–target affinity prediction, thereby enabling drug
repurposing for the treatment of AD. As shown in Figure 1,
starting from the pathogenic target of AD, S1R, we conducted
protein–protein interaction (PPI) analysis, screened out proteins
related to S1R, and constructed a dataset based on inhibitors of S1R
and related proteins. Subsequently, we used the HNNDTAmodel to
train the dataset, combined with network pharmacology analysis to
screen FDA-approved drugs, and obtained a batch of candidate
drugs. Then, we use the molecular docking of candidate drugs with
S1R and its related proteins to find potential effective lead

compounds, and predict their pharmacokinetics and toxicity to
ensure the pharmacokinetics of these candidate drugs. The
academic characteristics meet the requirements. Through this
series of studies, we have obtained some lead compounds with
potential therapeutic effects, which provide new ideas and options
for the treatment of AD.

2 Materials and methods

2.1 Dataset

2.1.1 Target
STRING (Szklarczyk et al., 2023) is a database of known and

predicted PPIs. We used STRING to get the PPI network of S1R,
as shown in Figure 2A; we marked the correlation scores of
proteins related to S1R in the network, among which the scores of
dopamine D2 receptor (DRD2) and binding-immunoglobulin
protein (BIP) are highest, 0.983 and 0.990, respectively, so we
picked them as primary targets for network pharmacology
analysis. We obtained the sequences of S1R (Q99720), DRD2
(P14416), and BIP (P11021) from the UniProt repository
(Consortium, 2019). In addition, we obtained S1R (PDB ID:
5HK1) (Schmidt et al., 2016), DRD2 (6 PDB ID: LUQ) (Fan
et al., 2020), and BIP (PDB ID: 3LDN) (Macias et al., 2011) from
the RCSB Protein Data Bank (PDB) (Berman et al., 2000), which
are 2.51 Å, 3.10 Å, and 2.20 Å, respectively, and their structures
are shown in Figure 2A.

FIGURE 1
Flowchart of the overall process. In this paper, we started with the AD pathogenic target S1R and conducted PPI analysis to obtain S1R-related
proteins. Based on the inhibitors of S1R and related proteins, we constructed a dataset. Subsequently, we trained the dataset using the HNNDTA model.
Combining the prediction results of the HNNDTAmodel and network pharmacology analysis, we screened FDA-approved drugs and obtained candidate
drugs. Finally, we performed molecular docking on these candidate drugs, identified lead compounds with potential efficacy, and predicted their
ADMET properties.
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2.1.2 Inhibitors
The half-inhibitory concentration (IC50) refers to the

concentration of the drug or inhibitor required to inhibit half of
the specified biological process, and the inhibition constant Ki
reflects the inhibitory strength of the inhibitor on the target. The
smaller the value, the stronger the inhibitory ability. pIC50 is the
negative logarithm of the IC50 value, which is usually used to
characterize the activity of molecules in drug screening. The
formula for converting IC50 values to pIC50 values is

pIC50 � −log10 IC50( ). (1)
We obtained data on inhibitors of S1R, DRD2, and BIP and their

binding abilities to their targets from the ChEMBL database
(Gaulton et al., 2012). Although both IC50 and Ki can reflect the
activity of the inhibitor, for data consistency, we screened the
inhibitor data with IC50 as the subsequent drug–target affinity

(DTA) training data on the HNN. Similarly, under the premise
of ensuring the number of datasets, we screened the data whose
source description was scientific literature and excluded other data.
Figure 2B shows the simplified molecular input line entry system
(SMILES) length distribution and binding force distribution of the
three protein inhibitors. The inhibitor distribution of S1R and
DRD2 showed a Gaussian distribution trend, while the inhibitor
distribution of BIP was relatively sparse.

2.1.3 Molecules for drug repurposing
The drug screening library used in this study comes from FDA-

approved drugs in the DrugBank database (Wishart et al., 2008).
DrugBank is a comprehensive pharmaceutical knowledge bank that
provides pharmacists, pharmacologists, health professionals, and
drug researchers with free academic resources to help advance drug
development and clinical practice. We chose DrugBank as the

FIGURE 2
PPI network of S1R and related proteins, DRD2 and BIP, and the distribution of their inhibitor datasets. (A) The PPI network of S1R was obtained using
STRING, and the 3D structures of themost related proteins BIP andDRD2. (B)Distribution of SMILES string lengths andDTA values of the inhibitor datasets
for S1R, DRD2, and BIP.
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screening bank because it contains extensive drug information and a
list of FDA-approved drugs, which can be used to screen potential
drugs for the treatment of AD. These drugs have been proven to be
safe and effective treatments in human clinical trials, so they are
expected to be used in the treatment of AD. We selected FDA-
approved drugs in the DrugBank database as screening libraries, and
a total of 2509 drug molecules were available for drug repurposing
studies.

2.2 HNNDTA

2.2.1 Overview of the framework
The overview of the HNNDTA framework proposed in this

study is shown in Figure 3. First, we used a network pharmacology
approach to find other targets in the same pathway as the AD target
S1R, namely, DRD2 and BIP. We searched the ChEMBL website for
inhibitor data for these three targets. The target protein is encoded as
a one-dimensional target embedding, and the drug molecule is
encoded as a one-dimensional drug embedding. The two
encoding vectors are spliced in zero dimension, and after the
calculation of the deep neural network (DNN), the final DTA is
obtained, which can be expressed as follows:

DTA � DNN cat vp, vd( )[ ], (2)

where the function cat(a, b) represents the splicing operation of the
1D a and b vectors, and vp and vd represent the encoding vectors of
the target protein and the drug molecule, respectively. In this paper,
there are 13 kinds of target encoders and 9 kinds of drug encoders,
all of which are built by DeepPurpose (Huang et al., 2020). A suitable

combinedmodel will produce better prediction accuracy. During the
training phase, the dataset was randomly divided into independent
training, validation, and test sets in a ratio of 7:1:2. The training set
was used to train the model, while the validation and test sets were
used to evaluate its performance. Due to the nature of our HNNDTA
framework, which was trained on datasets specific to individual
targets, it exhibits higher predictive accuracy for single targets. We
have observed that models trained on single targets exhibit higher
accuracy than those trained on mixed-target datasets.

2.2.2 Drug encoding network
The drug encoder receives SMILES sequences as input. The

Morgan encoder first uses the ECFP (Rogers and Hahn, 2010)
algorithm to generate the feature representation sequence of the
circular substructure of the drug, with a length of 1,024 bits. Amulti-
layer perceptron (MLP) then processes the sequence of feature
representations to obtain a vector representation that can be fed
into a neural network. The Morgan encoder is expressed as follows:

fmorg SMILES( ) � MLP ECFP SMILES( )( ). (3)

Similar to the Morgan encoder, the daylight encoder also uses
the ECFP algorithm to generate a feature sequence based on the
channel substructure of the drug, which is used as the input of the
multi-layer perceptron to generate a feature sequence with a length
of 2048 bits. The daylight encoder is represented as follows:

fday SMILES( ) � MLP ECFP SMILES( )( ). (4)

The PubChem encoder (Kim et al., 2019) generates feature
sequences using handcrafted important substructures and then
generates a feature sequence with a length of 881 bits through a

FIGURE 3
HNNDTA network framework. The framework consists of drug encoding, target encoding, general encoding, and decoding networks. The encoding
networks are used to encode the SMILES of drugs and the sequences of proteins to obtain corresponding embeddings. Then, the embeddings are
decoded through DNNs to obtain the prediction results of DTA.

Frontiers in Molecular Biosciences frontiersin.org05

Wu et al. 10.3389/fmolb.2023.1227371

99

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1227371


multi-layer perceptron. The PubChem encoder is represented as
follows:

fpub SMILES( ) � MLP Substructure SMILES( )( ). (5)

The rdkit_2d_normalize encoder (Reczko and Bohr, 1994)
generates a feature sequence with a length of 200 bits according
to the global pharmacophore of the drug and then normalizes the
feature sequence by fitting the cumulative density function of a given
molecule sample. The rdkit_2d_normalize encoder is represented as
follows:

frdkit SMILES( ) � MLP Normalize Feature( )( )
Feature � GlobalPharmacophore SMILES( ). (6)

The extended reeb graph (ErG) method (Stiefl et al., 2006) mixes
the simplified graph and the binding attribute pair to generate a
feature sequence and uses the node description of the drug carrier
type to encode the relevant molecular properties; the encoded
features are obtained after the MLP calculation vector. The ErG
coder is expressed as follows:

ferg SMILES( ) � MLP Graph Feature( )( )
Feature � Scaffold − BasedNodeDescriptor SMILES( ). (7)

MLP obtains the output value through feedforward propagation
and updates the model parameters through reverse transmission so
that the model output value gradually approaches the real value. The
output of the MLP forward propagation is expressed as follows:

y � AC ∑Ml

i�1
ωi,l•AC ∑Ml−1

i�1
ωi,l−1• . . .( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (8)

where AC is the activation function and the typical activation
function is the modified linear unit ReLU; Ml is the number of
neurons in the lth layer network, ωi,l is the weight of the ith neuron
in the lth layer network; and the termination condition of (. . .) in
the aforementioned formula is the first layer of the neural network,
that is, the input layer. The reverse transfer uses the Adam optimizer
to update the model weights. The underlying algorithm is the
gradient descent method. The update on the weight of ωi,l can be
expressed as follows:

ωi,l ← ωi,l − η
zE

zωi,l
, (9)

where E is the difference between the predicted value and the real
value, zE

zωi,l
is the partial derivative of E to ωi,l, and η is the

learning rate.

2.2.3 Target encoding network
The input to a target encoder is the amino acid sequence of the

target. The signature sequence generated by the amino acid
composition (AAC) coder is 8420 positions in length, where each
position is consistent with the maximum length of overlapping
subsequences (k-mers) of one amino acid. The amino acid
composition coder is expressed as follows:

AACi � fi

L
, i � 1, 2, . . . , 20, (10)

where fi represents the number of occurrences of amino acid i in the
protein and L represents the length of the amino acid sequence. The

AAC encoder concatenates 20 AAC values for each position in the
amino acid sequence to obtain a signature sequence of
8420 elements in length.

The pseudo amino acid composition (PseAAC) encoder adds
the hydrophobic and hydrophilic pattern information on the
protein based on AAC to generate a 30-bit feature vector
representation. The pseudo-amino acid composition encoder is
expressed as follows:

PseAACi,j � ∑L
k�1fk,iwk,j

∑L
k�1fk,i

,

i � 1, 2, . . . , 20; j � 1, 2, . . . , 30,

(11)

where fk,i represents the frequency of amino acid i in the kth position
in the protein sequence and wk,j represents the weight of the pattern
of the kth amino acid and the relative position j. The PseAAC
encoder concatenates 30 PseAAC values for each position in the
amino acid sequence, resulting in a feature vector of 30 elements in
length.

The conjoint triad (ConTriad) encoder (Shen et al., 2007) forms
a 7-letter alphabet based on amino acid triplet features, generating a
feature vector with a length of 343 elements. The ConTriad encoder
is expressed as follows:

ConTriadi �
∑7

j�1fj,iwj

L − 2
, i � 1, 2, . . . , 3430, (12)

where fj,i indicates that the three adjacent amino acids in the protein
sequence are converted into a number according to the 7-letter
alphabet, the ith element indicates the frequency of the jth triplet
appearing in the protein sequence, and wj is the weight of the jth
triplet. The ConTriad encoder concatenates 343 ConTriad values for
each position in the amino acid sequence, resulting in a feature
vector of 343 elements in length.

The quasi-sequential encoder consists of a 100-element feature
vector of quasi-sequential descriptors (Chou, 2000). The feature
vectors generated by the aforementioned manual feature encoder
will be further processed as input to MLP to obtain the feature vector
of the target. The quasi-sequential encoder is expressed as follows:

QuasiSeqi � ∑ j � 1( )Nρj
dij

, i � 1, 2, . . . , 100, (13)

where ρj represents the weight of the jth quasi-sequential
descriptor and dij is the distance between the ith amino acid
and the jth sequence descriptor. The quasi-sequential encoder
concatenates 100 QuasiSeq values for each position in the amino
acid sequence, resulting in a feature vector of 100 elements in
length.

2.2.4 General encoding network
The aforementioned drug and target feature extraction methods

are based on prior chemical knowledge and manual transformation,
so these encoders cannot be mixed. The encoders introduced in this
section are general-purpose encoders based on DNNs, including
convolutional neural networks (CNNs) (Krizhevsky et al., 2017),
gated recurrent units (GRUs) (Chung et al., 2014), long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997), and
transformers (Vaswani et al., 2017). These neural networks treat
amino acid sequences as one-dimensional data.
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The CNN encoder is a multilayer 1D CNN (Krizhevsky et al.,
2017). After encoding the amino acid sequence character by
character, the obtained deep feature vector will pass through
multiple 1D convolutional layers and finally pass through the
one-dimensional maximum pooling layer to obtain the output of
the target feature vector. The output of the 1D convolutional layer is
the result of convolving the input with the convolution kernel, which
can be expressed as follows:

out � input ⊗ kernel, (14)
where ⊗ represents a convolution operation. Assuming that the
convolution kernel size is 2k + 1, k ∈ N+, the ith convolution output
can be expressed as follows:

outi � ∑i+k
j�i−k

∑2k+1
a�1

inputj•kernela. (15)

GRU and LSTM encoders are types of recurrent neural
networks. In both networks, each node will get an output
based on the state at the last moment and the current input
and update the state of the node. This can solve the problem of
traditional convolutional networks without long-term memory
to a certain extent. Specifically, the SMILES sequence or amino
acid sequence will first pass through the CNN for feature
extraction and then use the output of the CNN as the input of
the recurrent network.

The transformer encoder applies a self-attention mechanism
(Vaswani et al., 2017). Due to the computational time and
memory cost of the transformer, amino acid sequences are
decomposed into moderately sized protein substructures, such
as motifs, and each segmentation is then treated as a token and
fed into a self-attention-based encoder. If a SMILES sequence or
amino acid sequence is treated as a sentence, cut into several
meaningful phrases, and encoded into several vectors with the
same number of phrases, denoted as x, then the output of the
transformer can be expressed as

x1 � norm x + attn x, mask( )( ),
out � norm x1 + feedforward x1( )( ), (16)

where attn is a self-attention function,mask is a Boolean value about
whether the input x is eliminated, feedforward is a feedforward
neural network, and norm is a layer normalization operation.

2.2.5 Evaluation metrics
In mathematical statistics, mean-squared error (MSE) is a

method used to measure the difference between the predicted
and real values. It calculates the mean of the squared difference
between predicted and true values, which is the expected value of the
squared difference between predicted and true values. The smaller
the value of the MSE, the higher the prediction accuracy of the
prediction model. Assuming there are n samples, MSE can be
expressed by the following formula:

MSE � 1
n
∑n
i�1

yi − ŷi( )2, (17)

where yi and ŷi are the true and estimated values of the ith sample,
respectively. In this paper, the MSE is used to evaluate the accuracy
of the model to predict the binding affinity of the drug to the target.

Harrell’s C-index (also known as the concordance index, CI)
is a widely used metric for evaluating the performance of risk
models. It is commonly employed in survival analysis, especially
when dealing with censored data (Harrell et al., 1982). The
C-index measures the degree of concordance between
predicted and observed rankings of survival times. It serves as
an indicator of the model’s accuracy with values closer to 1,
indicating a higher level of consistency between the predicted
outcomes and the actual observed outcomes.

Suppose the data are represented by vectors
(T̃i,Δi, Xi1, . . . , Xip), i � 1, . . . , n, where T̃i is a possibly right-
censored continuous survival time and (Xi1, . . . , Xip)T is a vector of
predictor variables. It is assumed that T̃i is the minimum of the true
survival time Ti and an independent continuous censoring time Ci.
The variable Δi≔I(Ti < = Ci) indicates whether Ti has been fully
observed (Δi = 1) or not (Δi = 0). A one-dimensional score ηi ∈ R is
estimated for each observation i = 1, . . ., n, by averaging the
cumulative hazard estimates over all trees and all time points.
The concordance index is given by

C � ∑i,jI T̃i > T̃j( ) · I ηj > ηi( ) · Δj

∑i,jI T̃i > T̃j( ) · Δj

, (18)

where the indices i and j refer to pairs of observations in the sample
(Schmid et al., 2016).

2.3 Network pharmacology

Network pharmacology (NP) (Hopkins, 2008) is a new drug
development method based on systems biology. It reveals the
multi-target action mechanism of drugs by integrating protein
interaction and drug compound networks. To construct a
network pharmacology-based analysis, we mapped
protein–protein and protein–drug interaction networks (Hasan
et al., 2020). We fetch the PPI network from the STRING
database and select the protein most related to the target we
need to study. We then used the HNNDTA model to predict the
binding forces between these proteins and compounds. To
identify the best compounds, we picked the top 20 most
binding proteins for each protein and mapped them into a
protein–compound network. We use Sankey diagrams (Lee
et al., 2019) to visualize drug–protein interaction networks to
better understand and analyze the mechanism of action of drugs
in biological systems. In this network, we can identify which
compounds may be the most promising drug candidates by
analyzing the interactions between proteins and compounds.
In particular, for those compounds that bind strongly to
multiple proteins, we can select them as our drug candidates.

2.4 Molecular docking

In molecular docking tasks, AutoDock Vina (Eberhardt et al.,
2021) is one of the widely used docking engines in AutoDock Suite,
and its open-source code and fast docking speed are favored. We use
AutoDock Vina 1.1.2 for molecular docking experiments. First, we
obtained the 3D molecular structure files of all receptor molecules
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and processed them to remove crystal water and hydrogenate them
to generate preprocessed receptors. Next, we first removed the
crystal water and the original ligand, then added hydrogen and
charge distribution, and manually set the active site area of the
receptor as the grid box according to the feature information on the
protein in UniProt. For the ligand file, we obtained its structure from
PubChem (Kim et al., 2019) and then performed hydrogenation and
charge addition to obtain the preprocessed ligand file. Then, we used
AutoDock Vina for docking; exhaustiveness is set to 32; a total of
10 docking poses are generated; the top 5 best poses are kept, and
finally, the binding energy value (in k/mol) of the best pose is used as
the docking score. The results of molecular docking were output in
pdbqt format and visualized and analyzed using PyMOL molecular
visualization software. The docking results are evaluated by factors
such as hydrogen bonds, van der Waals forces, and electron static
energy.

3 Results

3.1 Performance evaluation

The HNNDTA framework was constructed using 13 drug
encoders and 9 target encoders. We fixed the target encoder as
AAC and constructed 13 different drug encoder models. The MSE
and CI of the test models are shown in Figures 4A, B. The orange
column is the test result of the ligand dataset of the S1R protein, and
the sky blue column is the test result of the ligand dataset of the
DRD2 protein. The smaller the MSE and the larger the CI, the
smaller the difference between the predicted results of the model and
the real results, and the higher the accuracy of the model. In the
figure, the MSE value of the Morgan encoder is the smallest and the
CI value is the largest, indicating that the Morgan encoder will make
the model perform better, and the Morgan encoder should be

FIGURE 4
Performance comparison of drugs and encoders. (A, B) Comparison of MSE and CI of drug encoders. (C, D) Comparison of MSE and CI of target
encoders.
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considered in the subsequent grid search for the best drug
encoder–target encoder combination. We fixed the drug encoder
as Morgan, constructed nine models with different target encoders,
and compared the MSE and CI of the test models, as shown in
Figures 4C, D. The MSE values of each encoder are basically at the
same level because there is only a very small amount of target data in
the dataset, and the difference in information provided by the target
is less.

We have a total of 117 models of 13 drug encoders and 9 target
encoders, and conduct a grid search on the ligand datasets of the
three targets of S1R, DRD2, and BIP to find the best models. After
testing, there are eight models with both MSE and CI in the top 10,
as shown in Figure 5; Table 1. Among them, theMorgan encoder has

the best encoding effect on drugs, and the transformer and
PseudoAAC encoders have better encoding effects on protein
targets. Overall, the performance of these eight models is
comparable and complements each other. In the next step of
screening candidate drugs, the average of the votes predicted by
the eight models is taken as the drug–target interaction score.

3.2 Virtual screening of HNNDTA and
network pharmacology

In this study, 2506 FDA-approved drugs were used as drug
candidates for the AD target protein S1R and other targets of the

FIGURE 5
Fit plot of the best-performing model.
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same pathway, DRD2 and BIP. For S1R and DRD2, the respective
models were trained using ligand datasets obtained from the
ChEMBL website. For BIP, due to the lack of ligand data on BIP
on the ChEMBL website, it is not enough to train a good model. We
can pre-train the model with a large amount of ligand data for the
same pathway target of S1R and then fine-tune the model with the
ligand data on BIP itself.

The HNNDTA model was used to predict the activities of FDA-
approved drugs and targets S1R, DRD2, and BIP, and the 20 drugs

with the highest binding activities to these three targets are shown in
Figure 6A. On the left side of the Sankey diagram are the three target
proteins, and on the right side are the 20 drugs with the highest
binding activity to these three targets. At the intersection, there are a
total of 40 drugs. The prediction results show that most drugs can
only have high activity with one or two targets, while the seven drugs
DB13928, DB06287, DB00626, DB09265, DB00502, DB12401, and
DB01369 have high binding activity with three targets, indicating
that they can simultaneously inhibit these three AD-related targets.
Therefore, these seven drugs can be used as alternative drugs for the
treatment of AD. The DTA values of the aforementioned seven
candidate drugs and S1R, DRD2, and BIP are shown in Figure 6B.
The DTA values of these seven drugs and three targets stand out
among more than 2,000 FDA drugs. The two drugs, DB00502 and
DB12401, have the highest combined affinity for the three targets
and are expected to become candidate drugs for the treatment
of AD.

3.3 Benchmark testing

To assess the accuracy of the model predictions and validate the
efficacy of the drugs identified through network pharmacology
(i.e., haloperidol and bromperidol), benchmark testing was
conducted. Known high-affinity ligands for S1R, DRD2, and BIP

TABLE 1 Best-performing model.

Drug encoder Target encoder MSE CI

Morgan Transformer 0.332 0.816

Morgan PseudoAAC 0.335 0.822

Morgan LSTM 0.353 0.818

Morgan Conjoint_triad 0.353 0.813

Morgan AAC 0.356 0.817

Morgan CNN 0.363 0.811

Morgan GRU 0.366 0.814

Morgan ESPF 0.383 0.815

FIGURE 6
Sankey diagram of the DTI network for the top 20 drugs with the highest affinity to S1R, DRD2, BIP, and DTA heatmaps of the candidates. (A) Sankey
diagram of the drug–target interaction network is shown, with the sky-blue nodes indicating the selected candidates. (B) Binding affinity heatmap of the
candidates with S1R, DRD2, and BIP. Red represents the highest DTA value, while gray represents the lowest DTA value. Both DB12041 and
DB00502 exhibit high affinity to S1R and DRD2.
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were collected from the ChEMBL and BindingDB databases for
validating the docked scores of the screened drugs as being higher
than or comparable to the known high-affinity ligands. Conversely,
known low-affinity ligands were gathered to demonstrate that the
docked scores of the screened drugs are superior to them. The
information on known ligands and their affinities is presented in
Table 2.

First, the HNNDTA model was utilized to predict the binding
affinities (pIC50) of the collected ligands to the three targets. The
prediction results are shown in Table 3, where the green boxes and
red boxes represent known high- and low-affinity drug–target pairs,
respectively. Overall, the predicted affinities in the green boxes are
higher than those in the red boxes, indicating that our model can
accurately differentiate between high and low affinities among
drug–target pairs. Subsequently, blind docking of ligand–protein
was performed using QuickVina-W software (Hassan et al., 2017),
and the docking scores are presented in Table 4. Lower docking
scores indicate smaller binding energies and higher binding affinity.
The docking scores in the green boxes are generally lower than those
in the red boxes, suggesting the effectiveness of the docking
procedure.

Our screened drugs, haloperidol and bromperidol, exhibit lower
overall docking scores with the three targets compared to most other
drugs. Furthermore, the docking scores of the screened drugs are
comparable to those of known high-affinity ligands and significantly
lower than those of known low-affinity ligands. This indicates that
the HNNDTA model successfully identified high-affinity drugs
suitable for multiple targets. It is worth noting that Table 4
shows that the drug pimozide has the best multi-target docking
score. However, molecular docking requires manual preprocessing
of 3D structures and is computationally time-consuming, making it
difficult to apply to high-throughput drug target screening in
network pharmacology. The HNNDTA model can expedite this
process and successfully screen multi-target high-affinity drugs,
even if it may represent a suboptimal solution.

TABLE 2 Collected known drug–target pairs with high and low binding
affinities.

Target Inhibitor Affinity Type

S1R Haloperidol 8.54 Ki

S1R Donepezil 7.84 Ki

S1R Fluvoxamine 7.44 Ki

S1R Corticosterone 4.45 Ki

S1R Cocaine 5.05 Ki

DRD2 Haloperidol 8.76 Ki

DRD2 Pimozide 7.93 Ki

DRD2 Amisulpride 7.90 Ki

DRD2 Procaterol 4.07 Ki

DRD2 Isoproterenol 4.32 Ki

BIP CHEMBL462871 7.22 Kd

BIP CHEMBL516197 4.85 Kd
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3.4 Virtual screening of molecular docking

Small molecules have smaller molecular weights, which favor better
pharmacokinetics and less toxicity. The molecular weight of antibiotics
is large, and the metabolic process affects the drug’s efficacy. Small
molecules have good medicinal properties, such as high bioavailability,
good tissue specificity, and low toxicity and side effects, and are suitable
for drug research and development. Therefore, we only choose small
molecules with a weight of less than 500 as lead compounds. In
AutoDock Vina docking, we use the binding energy value of the
best pose as the docking score and tabulate the results in Table 5.
The molecules of DB09265 and DB13928 are very large, beyond the
active site region of the receptor, causing errors in Vina, which indicates
that the binding between the two ligands and the receptor is difficult.
Since Vina uses binding energy as a docking score, a smaller score
indicates tighter binding between the two molecules, which generally
indicates better docking. However, when the score is positive, it means
that docking is difficult to produce. Both of these conditions can
indicate a docking failure. Table 5 shows that although the ligands
DB01369 and DB06287 have good docking effects on DRD2 and BIP
receptors, they are difficult to bind to S1R receptors. Ligands DB00502
(bromperidol) and DB12401 (haloperidol) have good binding abilities
to the three receptors, and themolecular weight is less than 500,meeting
the screening requirements, so they may become potential drugs
for AD.

3.5 Explanatory analysis of DTA

Figure 7 shows the 2D chemical structures of haloperidol and
bromperidol, and the 2D poses resulting from docking with the target
S1R. As shown in Figure 7A, their chemical structures are very similar,
differing only by one halogen atom: haloperidol with a Cl atom and
bromperidol with a Br atom. They are both high-affinity ligands for S1R,
with only slight differences. This may be caused by the different
interaction distances between the halogen atoms in the bromperidol
molecule and the six amino acids of S1R. As shown in Figure 7B, both
drugs produced hydrogen bondswith SER34, SER99, and LEU100 amino
acids of S1R, and produced π − π interactions with TRP29, HIS72,
LEU214, and TYR217 amino acids of S1R. The two molecules stabilize
the association between them through their interaction with S1R.

In order to further observe the docking poses of haloperidol and
bromperidol with S1R, we also plotted the 3D docking simulation
results, as shown in Figure 8. Both haloperidol and bromperidol
dock at the S1R surface and interact with surrounding S1R amino
acids. As shown in Figures 8A, B, the docking poses of haloperidol
and bromperidol are very close to S1R, which is related to their
similar chemical structures. They jointly participate in the stable
combination with S1R and produce more interactions.

To evaluate the ADMET, of haloperidol and bromperidol, we
evaluated them using the ADMETlab 2.0 tool (Xiong et al., 2021), as
shown in Figure 9. The evaluation results of haloperidol and bromperidol
are roughly similar, except for logD and logP, and their compound
properties are distributed between the upper and lower limits. This shows
that haloperidol and bromperidol have better pharmacokinetic
conditions and almost no toxicity. Haloperidol is an antipsychotic
drug used to treat schizophrenia and other psychotic disorders, as
well as symptoms of agitation, irritability, and delirium. BromperidolTA
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is used to treat schizophrenia and other psychotic symptoms and has
been used in trials investigating the treatment of dementia, depression,
schizophrenia, anxiety disorders, and psychosomatic disorders, among
others. It further illustrates the accuracy of our HNNDTA screening by
finding a trial that is already in the treatment of AD and, at the same time,
screening a new potential drug for the treatment of AD.

4 Discussion

Alzheimer’s disease is a significant age-related illness that has
garnered widespread attention in society. In this article, we propose
a drug-screening framework that combines network pharmacology

and hybrid neural networks to discover potential drugs for treating
Alzheimer’s disease. Existing evidence supports S1R as a potential
therapeutic target for Alzheimer’s disease. Initially, we conducted
protein–protein interaction analysis using the STRING database to
identify the most relevant targets associated with S1R, including
DRD2 and BIP. These targets were then utilized in network
pharmacology for drug screening. We developed a hybrid neural
network framework to predict the binding affinity between targets
and ligands, enabling the prediction of multi-target interactions for
drug candidates. Benchmark testing was performed using a
collection of known ligands with high and low affinity,
demonstrating our model’s ability to differentiate between high-
and low-affinity ligands. Furthermore, our model identified two

TABLE 5 Overview of candidate compounds and their docking scores with S1R, DRD2, and BIP proteins. The docking scores were calculated using the molecular
docking software application AutoDock Vina, with higher scores indicating stronger interactions.

DrugBank ID Generic name Summary Docking score

S1R DRD2 BIP

DB00502 Haloperidol Antipsychotic −8.856 −7.265 −8.585

DB00626 Bacitracin Antibiotic −7.979 −6.412 −6.35

DB01369 Quinupristin Antibiotic - −9.455 −9.689

DB06287 Temsirolimus Antineoplastic - −9.674 −9.858

DB09265 Lixisenatide GLP-1 receptor agonist - - -

DB12401 Bromperidol Antipsychotic −8.516 −7.031 −8.245

DB13928 Semaglutide Peptide 1 receptor agonist - - -

The bold values indicate the docking scores of the top two drugs with the highest docking scores for a specific target.

FIGURE 7
2D chemical structures of haloperidol and bromperidol and their 2D poses generated by docking with the target S1R. In the 2D chemical structures
(A) and 2D docking poses (B), the chemical structures of haloperidol and bromperidol are shown on the upper part and their 2D poses generated by
docking with S1R are shown on the lower part. Although their chemical structures are very similar, their affinities to S1R differ when binding to it. This may
be due to the different interaction distances between the halogen atoms in the bromperidol molecule and the six amino acids of S1R.
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drugs, haloperidol and bromperidol, with overall higher docking
scores than other drugs, thereby validating the effectiveness of our
proposed framework.

In PPI analysis, our results indicated that BIP and DRD2 have a
higher combined score than other proteins related to S1R. A substantial
body of evidence suggests that S1R, in combination with BIP, a

FIGURE 8
Simulation results of 3D docking of haloperidol and bromperidol with the target S1R. Through docking simulation, we demonstrated the surface and
3D docking poses of haloperidol (A) and bromperidol (B)with S1R. In the 3D docking poses, green represents hydrogen bonding and pink represents π − π
interactions. The two molecules stabilize their binding through interactions with S1R.

FIGURE 9
Results of the ADMET evaluation of haloperidol and bromperidol by the ADMETlab 2.0 tool. The evaluation results of haloperidol (A) and bromperidol
(B) are generally similar, with compound properties distributed between the upper and lower limits, except for logD and logP.
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regulator of endoplasmic reticulum stress (ERS), plays a pivotal role in
the ERS pathway, which is a component of cellular stress and a core
mechanism underlying synaptic loss and neurodegeneration in AD
pathology (Ortega-Roldan et al., 2013; Venkataraman et al., 2022).
S1R-dependent neuroprotection is likely to be mediated by the
regulation of the unfolded protein response (UPR) in ERS (Voronin
et al., 2023). Under ERS conditions, S1R agonists promote the
dissociation of S1R-BIP calcium ion-sensitive chaperone complexes,
resulting in enhanced chaperone activity of BIP toward misfolded
proteins and S1R binding to client protein IRE1α. The regulatory effect
of S1R agonists can increase the expression of BIP and brain-derived
neurotrophic factor (BDNF) and decrease the expression of pro-
inflammatory interleukin-6 (IL-6) (Hayashi and Su, 2007; Rosen
et al., 2019; Zhemkov et al., 2021). Thus, S1R agonist regulation
presents a viable strategy for the neuroprotective treatment of AD,
aimed at reducing ERS and neuroinflammation while enhancing
neural plasticity (Voronin et al., 2023).

It should be noted that the HNNDTAmodel does not differentiate
between ligands as agonists or antagonists of the targets. Unfortunately,
the existing literature reports that haloperidol is an antagonist of S1R
(Maurice and Su, 2009), while S1R agonists are potential drugs for
treating AD. Therefore, haloperidol is not suitable for the treatment of
AD. On the other hand, bromperidol, which was selected by the
HNNDTA model, may be the optimal candidate drug for AD
treatment. The existing literature has discussed the potential of
antipsychotic drugs, including bromperidol, on multiple targets
related to AD (Kumar et al., 2017).
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Molecular property prediction is a crucial task in various fields and has recently
garnered significant attention. To achieve accurate and fast prediction of
molecular properties, machine learning (ML) models have been widely
employed due to their superior performance compared to traditional methods
by trial and error. However, most of the existingMLmodels that do not incorporate
3Dmolecular information are still in need of improvement, as they aremostly poor
at differentiating stereoisomers of certain types, particularly chiral ones.
Also,routine featurization methods using only incomplete features are hard to
obtain explicable molecular representations. In this paper, we propose the Stereo
Molecular Graph BERT (SMG-BERT) by integrating the 3D space geometric
parameters, 2D topological information, and 1D SMILES string into the self-
attention-based BERT model. In addition, nuclear magnetic resonance (NMR)
spectroscopy results and bond dissociation energy (BDE) are integrated as extra
atomic and bond features to improve themodel’s performance and interpretability
analysis. The comprehensive integration of 1D, 2D, and 3D information could
establish a unified and unambiguous molecular characterization system to
distinguish conformations, such as chiral molecules. Intuitively integrated
chemical information enables the model to possess interpretability that is
consistent with chemical logic. Experimental results on 12 benchmark
molecular datasets show that SMG-BERT consistently outperforms existing
methods. At the same time, the experimental results demonstrate that SMG-
BERT is generalizable and reliable.

KEYWORDS

molecular property prediction, chemical feature fusion, unambiguous molecular
descriptor, molecular representation learning, molecular stereoscopic information

1 Introduction

The prediction of molecular properties is one of the fundamental tasks in chemistry
(Wieder et al., 2020) and deserves special attention. Traditional computational methods,
such as density functional theory (DFT) or field experiments, are time-consuming and
poorly scalable with size (Chen et al., 2021). This could cause inevitable and serious moral
and ethical issues with experimental testing involving animals or humans in vivo. Recently,
Machine Learning (ML), including Deep Learning (DL), has emerged as a powerful data-
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driven approach for establishing a connection between molecular
structure and properties (Chen et al., 2021). ML methods can often
deliver results that are comparable to DFT in terms of accuracy while
being significantly faster by approximately 3-5 orders of magnitude
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965).

A key component/challenge in applying ML to molecular
science is molecular featurization. This transforms molecular
structures into machine-readable formats (Wu et al., 2018) and
therefore dictates the embedded chemical information into final
representations (Raghunathan and Priyakumar, 2021). Effective
molecular representations are essential for a variety of molecular
prediction tasks, such as property prediction (Du et al., 2023a),
retrosynthesis (Segler et al., 2018; Zhang et al., 2022), generative
molecular design (Moret et al., 2020), and so on (Dral and Barbatti,
2021). Current molecular representations can be categorized into
three different classes: molecular fingerprints based on molecular
topological substructures encoded as a sequence of bits, sequence-
based representations by SMILES, and graph-based representations
(Fang et al., 2022). However, current featurization methods still have
certain shortcomings, as they only focus on extracting various
hierarchical molecular information, which makes it challenging
to thoroughly integrate the molecular information and achieve
effective generalization among potential chemical compounds. In
this study, one-dimensional (1D) SMILES strings, two-dimensional
(2D) topological structures, and three-dimensional (3D) geometric
structures are the intuitive expressions of molecular information at
different levels. SMILES strings could naturally be used as input to
some NLPmodels such as Transformer (Tetko et al., 2020; Schwaller
et al., 2021) and BERT (Wang et al., 2019; Zhang et al., 2021) to
reach high performance, no matter if for a molecular generation
(Moret et al., 2020) or property prediction (Chen et al., 2021; Du
et al., 2023a), However, these methods tend to lose the chemical
context during preprocessing, as they often remove essential
chemical symbols such as “#” and “( )”, from the SMILES string.
Moreover, only 1D information would inevitably lose adjacency
information (Du et al., 2023b). The 2D topological structure is one of
the most important chemical representations, which was expertly
developed and has been used for centuries as a crucial carrier for the
exchange, dissemination, and transmission of chemical knowledge.
However, it is difficult to distinguish stereochemistry molecular
features such as cis-trans isomerism, chirality, and other
enantiomers only based on adjacency matrices (Stärk et al., 2021;
Fang et al., 2022). Therefore, 3D information is an important and
non-negligible piece of knowledge that the model needs to master to
solve stereochemical problems (Chen et al., 2021; Du et al., 2023b).
Each of these three modalities focuses on different aspects, and all
are fundamental to molecular featurization.

On the other hand, interpretability is also an obstacle to the
widespread application of deep learning models. Current ML models
mainly focus on the prediction task of compound properties, but only
a few ML methods are interpretable (Wang et al., 2021). Therefore,
there is often a trade-off between predictive performance and the
ability to interpret ML models (Rodriguez-Perez and Bajorath, 2021).
Although causal analysis theories such as contrastive explanations or
counterfactuals, feature perturbation (sensitivity analysis), and
gradient-based methods could obtain feature importance analysis
to a certain extent, interpretable results still need to be improved
to match the actual chemical logic for individual explanations

(Prosperi et al., 2020; Wang et al., 2021). Attention mechanisms
have been widely adopted for visualizing molecular prediction results,
as they allow for intuitive visualization and human-friendly
explanations (Ross et al., 2022). However, to the best of our
knowledge, current attention mechanisms rarely embed basic
chemical intuitions or expert prior knowledge to enhance
interpretability. Chemical properties are ultimately determined by
intrinsic properties (Zhang et al., 2022), and most of these are
determined by the electron density and electronegativity of
neighboring atoms, which could be represented by NMR chemical
shifts and bond dissociation energy (BDE). Thus, we could consider
them perfect candidates for ML descriptors to improve model
interpretability.

In this paper, we propose a stereo molecular graph BERT (SMG-
BERT) by integrating the 3D space geometric parameters, 2D
adjacency information, and 1D SMILES representation into a self-
attention-based BERT model. SMG-BERT could generate accurate
chemical representations for various molecules, including chiral
molecules, which provides assurance for precise property
prediction results and expands the application scope. Meanwhile,
SMG-BERT incorporates the NMR chemical shifts and bond
dissociation energies (BDEs) as chemical descriptors using a
transformer encoder to improve interpretability. This results in
visualizations that conform to chemical logic and are more
convincing. A series of experimental results show that SMG-BERT
can consistently outperform previous state-of-the-art molecular
property prediction models on 12 benchmark molecular datasets.

2 Methods

In this section, we describe in detail the data preprocessing
process, model structure, and loss function in three parts. In the data
preprocessing process, the model could obtain an input
representation that consists of three components: a molecular
representation z is generated solely from the atomic and NMR
sequence by the embedding layer, which lacks topological
information and thus can be regarded as 1D information. The
bond dissociation energy matrix B, which not only provides
topological information but also includes vital chemical
knowledge about bond energies. Finally, the distance fraction
matrix D, based on the distance matrix Draw, could be regarded
as 3D information. We present the implementation details of our
model architecture, which is based on the transformer-encoder
architecture and introduces multiple modal information of the
molecules. Meanwhile, various learning tasks are presented in the
pre-training phase to enhance the representation capabilities of the
model.

2.1 Data preprocessing

In the pre-training process, the dataset was collected from
PubChem (Kim et al., 2023). Although increasing the amount of
pre-training data could potentially further improve the performance
of the model, the improvement in model performance became less
significant after a 480 k training size (Supplementary Figure S1).
Considering the balance between training time and effect, we
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randomly selected 480 k molecules (SMILES). Three preprocessing
tasks were performed, including generating: (1) input representation
z of the molecules (2) the bond dissociation energy matrix B,(3) and
the distance fraction matrix D.

The input representation z of the molecules: we used RDKIT
to transform each SMILES into an atomic sequence SA �
[A1,A2,/,An] of length n and generate the corresponding
NMR sequence SN � [N1,N2,/,Nn] for the atomic sequence SA
by a DL model with six message-passing neural networks (MPNN)
layers and two fully connected network layers as in our previous
work (Zhang et al., 2022) (continuous NMR was transformed into
discrete). Then, 80% of Atom/NMR in the two sequences were
randomly selected and replaced by <M> (which stands for
MASKL); 10% were replaced by another Atom/NMR one, and
the rest were left unchanged. In addition, we added a global
node <G> at the beginning of the sequence, which represents
the global representation of the whole molecule. Finally, two
independent embedding layers were used to map the two new
input sequences S′A and S′N to a continuous input
representation z � [z1, z2,/, zn]:

z � EA S′A( ) ‖ EN S′N( )
where EA is the embedding layer of the atomic sequence, EN is the
embedding layer of the NMR sequence, and ‖ denotes the
concatenation operation.

The bond energy matrix: we generated the bond energy
matrix B by an additional DL model with four MPNN layers
and two fully connected network layers according to the
method in our previous work (Zhang et al., 2022), and
normalized it:

Bnorm � Norm B( ) � B − Bmin

Bmax − Bmin

where Bmax is the maximum value of matrix B and Bmin is the
minimum value of matrix B.

Distance fraction matrix D′: the ground state 3D structure of
the molecule can be obtained by the RDIKT package. Based on this,
we were able to obtain the atomic distance information and generate
the original distance matrix Draw. Then, the distance matrix Draw

was transformed by a transformer encoder layer into the distance
fraction matrix D.

D � Trans Draw( )
whereDraw represents the 1, 2,/, n− th column vector ofDraw, and
Trans is a transformer encoder module.

2.2 Modified attention mechanism

Our model is based on the self-attention mechanism. For our
task, the input representation z was first mapped onto the query
matrix Q, the key matrix K, and the value matrix V using the
projection matrices Wq,Wk,Wv, respectively:

Q � Wqz

K � Wkz

V � Wvz

The attention score matrix A could then be calculated from the
Q,Kmatrix. Specifically, we computed the dot products of the query
with all keys, divided each by dk, and applied a softmax function to
obtain the weights on the values.

A � sof tmax
QKT��
dk

√( )
where dk is the dimension of the key.

However, the global attention score matrix, A, is difficult to
optimize because it requires considering the relationships among all
the atoms, resulting in a high degree of freedom. To address this
problem, we introduced an adjacency matrix to constrain the global
attention score matrix:

M � Binary B( )
A2d � A ⊙ M + λNorm Bnorm( )

where " Binary” is a binarization operation that transforms the
bond-energy matrix into an adjacency matrix M, ⊙ denotes an
element-wise product, and λ is a balancing hyperparameter between
themask attention score matrix and the bond-energy matrix. Here, λ
is set to 0.2. The hyperparameters are provided in Supplementary
Tables S1, S2.

Furthermore, to incorporate 3D information, we brought the
distance matrix D into the attention score matrix to reflect the
interaction strength of atoms:

A3d � A2d +D

Once the final correlation matrix A3d is obtained, we multiplied
it with the value matrix V to obtain the output sequence z:

z � A3dV

In addition to the attention sub-layers, the transformer encoder
layer also contains a position-wise feed-forward network:

ri � FFN zi( )
where ri denotes the final output representation of the i− th atom.
We wrote the representation of the whole sequence of atoms as r �
[r1, r2,/, rn].

2.3 Loss function

During the pre-training stage, we aimed to increase the richness
of information contained in the atomic representation sequence r.
To achieve this, we propose three self-supervised learning (SSL)
tasks: atomic and NMR reconstruction, bond energy prediction, and
3D information reconstruction.

Atomic and NMR reconstruction: During data preprocessing,
some atoms in the atomic sequence are randomly replaced by the
special token "<M>". The task of atomic reconstruction involves
predicting the correct class of these masked atoms. Specifically, given
the representation ri of the masked atom, the model outputs the
predicted class probability pi after passing through the MLP and
SoftMax layers.

pi � sof tmax MLP ri( )( )
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The cross-entropy loss is used as the loss function, which
computes the difference between the predicted probability pi and
the ground truth label yi of the masked atom:

LA � − 1
m
∑m
i�1
yilogpi

where m is the total number of masked atoms.
Similarly, the NMR reconstruction task is consistent with the

atomic reconstruction principle, which we denoted as LN .
Bond energy prediction: The bond representation can be

determined by the nodes connected at both ends. The predicted
bond energy qij between the atomic representation ri and rj can
then be obtained by running the bond representation through
the MLP.

qij � MLP ri ‖ rj( )
where ‖ denotes the concatenation operation. Mean Squared Error
(MSE) is the loss function and yij is the ground truth:

LB � ∑n
i�1
∑n
j�1

yij − qij( )2

3D information reconstruction: To avoid the complexity of
modeling direct prediction of atomic coordinates, which requires
translation-rotation invariance and order invariance, we use
intermediate quantities that reflect 3D information, such as
interatomic distances, bond angles, and torsion angles, to predict
atomic coordinates. Specifically, the atomic representation r is
mapped to a new representation r′ using the projection matrix Wr

, with a vector length of 3 to represent the coordinates in 3D space.

r′ � Wrr

The interatomic distances d̂, bond angles θ̂, and torsion angle φ̂
predicted by the model can be calculated directly:

d̂ � r′i − r′j
					 					2

θ̂ � cot−1
r′i · r′j

< r′i , r′j >
⎛⎝ ⎞⎠

φ̂ � cos−1
nα · nβ∣∣∣∣ nα| |∣∣∣∣ · ∣∣∣∣|nβ|∣∣∣∣( )

where i and j refer to two different atoms, r′i and r′j indicate the
coordinate vectors of atoms i and j, nα and nβ correspond to the
normal vector of the α and β planes.

Finally, we used the mean squared error (MSE) as the loss
function to compute the difference between the predicted values and
the corresponding ground truth values for atomic distances d, bond
angles θ, and torsion angles φ.

L3D � d − d̂( )2 + θ − θ̂( )2 + φ − φ̂( )2
Loss functions: To balance the different objective functions

represented by LA, LN, LB, and L3D, it is necessary to consider their
relative importance. The σ1, σ2, σ3, and σ4 are the learnable
parameters as the proportion of LA, LN, LB, and L3D in the total
loss (Kendall et al., 2017), and are optimized through
backpropagation to appropriate values. This enables the model to

effectively learn from all four SSL tasks while ensuring that the
different losses are appropriately weighted.

L � 1
σ21
LA + 1

σ22
LN + 1

σ23
LB + 1

σ24
L3D + logσ1 + logσ2 + logσ3 + logσ4

2.4 Baseline model and test data sets

Several advanced models in recent years were selected for
comparison as the baseline, namely, GAT (Veličković et al.,
2017), GIN (Xu et al., 2018), D-MPNN (Yang et al., 2019),
GROVER (Rong et al., 2020), GraphMVP (Liu et al., 2021a), and
AttentiveFP (Xiong et al., 2019). Among them, GIN, GAT,
D-MPNN, and AttentiveFP are all non-pre-training methods
based on GNN. GAT introduced the attention mechanism into
GNN and adaptively learned the weight of nodes. GIN was derived
from the Weisfeiler-Lehman graph isomorphism test degree and
exhibited almost the same representation ability as the WL test
D-MPNN utilizes messages that are associated with directed edges
(bonds) rather than atom nodes. AttentiveFP presents a novel graph
neural network architecture that incorporates an attention
mechanism to extract nonlocal effects at the intramolecular level
for molecular representation. GROVER and GraphMVP employ a
pre-training process. GROVER can effectively learn rich structural
and semantic information about molecules from a large volume of
unlabeled molecular data by performing SSL tasks at the node, edge,
and graph levels. Meanwhile, GraphMVP uses an SSL approach to
achieve correspondence and consistency between 2D topological
structures and 3D geometric views.

A total of 12 datasets (seven for regression and five for
classification) were selected from MoleculeNet (Wu et al., 2018)
and ADMETlab (Dong et al., 2018) to conduct downstream
experiments. According to this benchmark (Rong et al., 2020; Liu
et al., 2021b), we split these datasets with scaffolds according to the
molecular substructure, as this splitting method is more challenging
and better evaluates the generalization ability in out-of-distribution
data. In the testing process, we randomly selected 80% of the samples
as the training set, 10% as the validation set, and the remaining 10%
as the test set. Five independent runs were executed for eachmethod,
and the mean and standard deviation of the metrics were reported.
ROC-AUC, RMSE, and R2 are used as evaluation indicators for
classification and regression tasks, respectively.

3 Results and discussion

3.1.1 Model architecture of SMG-BERT

The architecture of our model is shown Figure 1, consisting of
one embedding layer, six transformer encoder layers, and one output
layer. The model processes 1D, 2D, and 3D information separately.
The 1D information includes both the atomic sequence obtained
from the SMILES string using the RDKIT package (Landrum, 2019)
and the NMR sequence generated (Zhang et al., 2022) (the predicted
NMR values are discretized). Each sequence is independently
masked by about 20% (as a hyperparameter) and then embedded
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in a high-dimensional vector space through two separate embedding
layers. For the 2D information, we introduced the bond energy result
(B matrix in Figure 1) to provide differentiation information about
the bond connection. The B matrix is fused into the global attention
score matrix (A matrix in Figure 1) at the transformer encoder layer.
As for the 3D geometric information, we calculated the interatomic
distances, bond angles, and torsion angles in the ground state
conformations using the RDKIT package (Faber et al., 2017;
Lubbers et al., 2018). The distance matrix was then processed by
an additional transformer encoder module to obtain the distance
fraction matrix (D matrix in Figure 1) as the final 3D information,
where the farther distance could have a smaller value. These three
modal inputs, along with multiple self-supervised learning tasks,
which include masked atom inference and 3D geometric feature
reconstruction, allow for a multimodal representation of model
learning.

The resulting molecular representation would be used for
downstream tasks and would adopt the fine-tuning method.
Specifically, after pre-training, the atom representation of the
global super-node “<G>” is the final molecular representation,
with a 512-dimensional vector. This would be fed into a two-
layer, fully connected network with random initialization, which
yields the final prediction results. The network uses ReLU as the
activation function and sets the dropout ratio to 0.1. Considering
that catastrophic forgetting issues could occur as the model targets
specific downstream tasks that are completely different from the
pre-training process (Kirkpatrick et al., 2017), we would retain the
pre-training loss as a regular term, which would maintain the
chemical information and spatial characteristics learned in the
pre-training process In addition, our model is a flexible,

comprehensive feature fusion framework that supports multi-
dimensional information removal and fusion. For specific
downstream tasks, 3D or chemical information could be
considered a super parameter, and we could dynamically adjust
or increase the available input features according to the target.

3.2 Model validation results on common
datasets

Table 1 shows that compared to no pre-training, the RMSE
index decreased by 12.71%, while the ROC-AUC improved by 20.7%
on the classification task. And R2 increased by 5.07% in
Supplementary Table S3. These results demonstrate the
importance and necessity of pre-training in our strategy.
Moreover, a noteworthy trend is that the smaller the dataset,
such as FreeSolv and ESOL, the higher the improvement effect to
some extent, which demonstrates the excellent generalization ability
of the pre-trainedmodel. Besides, Table 1 also records the prediction
results and the performance of our model with several advanced
models. SMG-BERT outperforms six out of eight baselines and
achieves a close second in the other two (Tox21 and HIV).
Specifically, in all four regression datasets, SMG-BERT achieves
the SOTA results and has an overall relative improvement of 15.3%
on average compared to previous SOTA results. Relatively, only
5.81% is achieved on average for the AUC-ROC score in
classification tasks, which could be due to the regression tasks
being more relevant to the 3D geometric information of
molecules (Fang et al., 2022), such as the label of water-soluble
or hydration-free energies in ESOL and FreeSolv dataset, which is

FIGURE 1
The model architecture of SMG-BERT. 2D topology graphs and 3D ground state conformations are generated by SMILES. A is an attention score
matrix and B is a binding energy matrix. D is an adjusted distance matrix between atomic pairs by a basic transformation model.
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closely related to the molecular polarity, which is in turn the
geometric symmetry concept of the 3D conformation of a
molecule. Especially on the QM7, QM8, and QM9 datasets, the
improvement results are more significant, reaching an average of
20.7%. The properties in these datasets are directly related to the 3D
geometric information.

On the other hand, stereochemical molecules deserve our special
attention because they are a rarely studied class of molecules in
nature. Current DL models often overlook chiral pair
discrimination, leading to inaccurate predictions (MacKenzie and
Stachelek, 2021; Cho et al., 2023). Although chiral analysis is
fundamental to many fields, limited datasets restrict our ability to
study it. Nonetheless, we conducted a macromolecule chiral
classification task to evaluate SMG-BERT’s prediction and
generalization capabilities. A protein-chiral ligand binding dataset
was used in this case, where each enantiomer of the ligand could
demonstrate significantly different binding affinities. In this dataset,
a chiral pair was defined as two enantiomers measured in the same
biochemical binding assay, which is a common occurrence in
biochemistry referred to as a “chiral cliff” (Schneider et al., 2018)
(Figure 2A). The dataset contained approximately 3,800 chiral pairs
with a more complex structure that included a diverse range of
atoms and elements, such as C, H, O, N, B, Br, Cl, and so on
(Figure 2B).

This dataset was divided into training, validation, and test sets in
a ratio of 8:1:1. As shown in Figure 2C, SMG-BERT could effectively
discriminate between chiral molecules, achieving an AUC score of
0.75, which is about 12.81% higher than the other models on
average. The PRC curve also shows that our model outperformed
the other models (Figure 2D). Obviously, including 3D geometric
information models such as GraphMVP or GROVER is better than
using models based on 2Dmolecular graphs since the left- and right-
handed versions of enantiomers have identical connectivity (Du
et al., 2023b). Additionally, as we can see, without the pre-training
process, the classification accuracy of the model would drop
significantly, approaching 50%. This level of accuracy is virtually
meaningless, given that the problem is a binary classification task.
3D information is relatively difficult to capture and is especially
important in 3D-related downstream tasks. During pre-training, our
model focuses on learning the complete 3D stereo geometric
information of the molecules by incorporating interatomic
distance, angle, and dihedral angle, which is a critical factor
contributing to the superiority of our model over other models.
In addition, the explicitly introduced distance information is also
more conducive to the interpretability of the model and better
reflects the correlation between the atoms.

3.3 Interpretability analysis

In the final phase of our study, we examined the attention matrix
generated by SMG-BERT to reveal the chemical insight acquired
during pre-training. We calculated the similarity between
attentional scores for atoms at different levels of information
integration, using the benzophenone molecule (C15H12O) as a
case study. We also presented visualization results for several
molecules.
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Figure 3A shows that the molecular representation obtained solely
from 1D SMILES string information in pre-training for the
benzophenone molecule (depicted in Figure 1) is relatively vague. The
similarity between different atoms is within 0.001, indicating a lack of
learned explicit chemical information and atomic differences (Figure 3A).
However, after incorporating 2D information, the overall correlation
between atoms increased, and some regions became more pronounced
(Figure 3B). Notably, the current high correlation is closely related to the
adjacency matrix, especially the higher attention scores of the atoms
themselves, while the correlation in other unrelated regions is relatively
low. This suggests that the model initially pays sufficient attention to
adjacency information, but it is still not the chemically logical result we
expected. Furthermore, the addition of 3D geometric information led to
significant changes in themodel’s attention scores, with atoms themselves
receiving a score of 0 due to the 3D information matrix values, and two
nearly symmetrical rectangular regions emerging (Figure 3C). This is
because benzophenone has two symmetrical phenyl rings on its left and
right sides with nearly identical geometric information. These findings are
consistent with expectations and demonstrate that 3D information
significantly enhances the model’s output representation, making it
more consistent with chemical spatial geometric information. After
incorporating the chemical information, noticeable differences are seen
in the roughly similar phenyl ring regions compared to the previous
results (Figure 3D). This phenomenon could be attributed to the ketone
group (C=O), as a strongly polar group, having a stronger electron cloud-
attracting ability than the phenyl ring, which disrupts the original large π

bond conjugation system of the phenyl ring and re-forms a stable
conjugated structure. In this case, the chemical information clearly
reflects the influence of the chemical environment on the atoms, such
as chemical shifts in NMR. This clearly shows that the added chemical
information effectively improves the interpretability of the model and
makes the results of the attention matrix more in line with chemical
knowledge.

Here we present another six molecules to represent the pre-
training results of SMG-BERT (Figure 3E). The model can
effectively capture the weight results of different atoms and even
differentiate between symmetric substructures in molecules such as
benzophenone. Our results highlight the integration of spatial
structure information and chemical priors in the model.

3.4 Ablation experiment

In this section, we present various ablation analyses of SMG-BERT
to gain insight into its remarkable performance. To understand the
impact and confirm the importance of explicit information, we
performed a series of ablation analyses by removing the
corresponding modal components from SMG-BERT. This new
variant removes either 3D information and/or chemical information
and serves as a comparison to the vanilla version. We conducted
10 random tests on eight datasets for classification and regression
tasks. First, we compared the variant without chemical information in

FIGURE 2
Performance of the SMG-BERTmodel in discriminating chiral molecules. (A) A pair of chiral molecules of L-proline and R-proline as an example. (B)
Atom count distribution of the chiral molecule dataset. (C) ROC and (D) PRC curves of CFFN compared with other random classification models in
discriminating enantiomeric pairs. PT: Pre-training.
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terms of changes in classification and regression tasks. Overall, SMG-
BERT exhibited varying degrees of performance degradation after
removing chemical information, especially in more challenging
regression tasks where its RMSE increased by approximately 10%
(Figures 4A and 4B). Conversely, removing chemical information
had only a small impact on classification tasks, with a decrease of
approximately 5% (Figure 4C). This demonstrates that incorporating
chemical knowledge can enhance the model’s expressive power and
improve its performance. Furthermore, we removed 3D information on
this basis (without 3D & Chem) and found that the model’s results
became worse, with an average increase in RMSE errors of
approximately 7%. This also illustrates the effectiveness and
importance of 3D information.

Explicitly adding 3D and chemical information introduces a
new problem: an increase in complexity. However, with more
complete guidance, unsupervised large-scale models are more
likely to learn detailed molecular/atomic features and output
precise molecular representations. 3D information increases
the model’s attention to the relationship between atoms and
unbound atoms, while chemical information supplements the
influence of the surrounding groups on atoms. This information
can provide guidance for the model’s important domain
knowledge, resulting in superior performance. The ablation
analysis results of the three sets of experiments undoubtedly
confirm the accuracy and robustness of our model. And the
importance of 3D and chemical information.

FIGURE 3
Visualization of molecular representations for benzophenone in SMG-BERT with varying degrees of features. (A)Only 1D information is considered.
(B) 1D + 2D information is considered. (C) 1D+ 2D+ 3D geometric information is considered. (D) 1D + 2D + 3D + chemical information is considered. The
red squares are the positions of the two benzene rings. (E) Attention maps for (left column, from top to bottom) benzophenone, propranolol, betahistine,
ofloxacin, betahistine, hexitol, and amiloride. Greener areas represent higher weight values.

FIGURE 4
Results of the ablation experiment on regression and classification datasets. Test results on (A)QM7, QM8, and QM9 datasets; (B) on FreeSolv, Lipo,
LogS, and ESOL datasets; and (C) on BACE, Tox21, HIV, BBBP, and SIDER datasets.
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4 Conclusion

Molecular representations play an important role in determining
both the performance and the interpretability of machine learning
models. While most explanatory methods can be applied regardless of
the features or descriptors used, the interpretability of features is
critical for effective explanations. In particular, features should be both
understandable and chemically intuitive whenever possible. For
instance, if a specific atom or functional group strongly influences
the prediction of high metabolic clearance, a medicinal chemist may
consider replacing it. Thus, it is essential that key descriptors are
actionable to understand the process by which a prediction is made,
which can increase model transparency, facilitate the integration of
expert knowledge, enable model tuning for specific applications, and
uncover valuable insights, such as learned QSPR patterns.

In this study, we introduced a novel model, called stereo
molecular graph BERT (SMG-BERT), which integrates a number
of molecular features, including 3D spatial geometric parameters,
2D adjacency information, and 1D SMILES representation, into a
self-attention-based BERT architecture. Additionally, SMG-BERT
incorporates NMR chemical shifts and BDEs as chemical
descriptors through a transformer encoder, which improves
interpretability and results in visualizations that are chemically
consistent and more compelling As the result shows, SMG-BERT
generates accurate chemical representations for various molecules,
including chiral molecules, ensuring precise property prediction
results and expanding the scope of applications. In contrast, our
work focuses exclusively on chiral pairs, meaning that only
compounds with a chiral center were considered, while chiral
centers in sulfur or phosphorus were excluded. Diastereomers
and atropisomers were not taken into account in this work, as
diastereomers are not mirror images, and the conformation of
atropisomers is typically not described in most activity databases.
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NSD3 is a member of six H3K36-specific histone lysine methyltransferases in
metazoans. Its overexpression ormutation is implicated in developmental defects
and oncogenesis. Aside from the well-characterized catalytic SET domain,
NSD3 has multiple clinically relevant potential chromatin-binding motifs, such
as the proline–tryptophan–tryptophan–proline (PWWP), the plant
homeodomain (PHD), and the adjacent Cys-His-rich domain located at the
C-terminus. The crystal structure of the individual domains is available, and
this structural knowledge has allowed the designing of potential inhibitors, but
the intrinsic flexibility of larger constructs has hindered the characterization of
mutual domain conformations. Here, we report the first structural
characterization of the NSD3 C-terminal region comprising the PWWP2, SET,
and PHD4 domains, which has been achieved at a low resolution in solution by
small-angle X-ray scattering (SAXS) data on two multiple-domain
NSD3 constructs complemented with size-exclusion chromatography and
advanced computational modeling. Structural models predicted by machine
learning have been validated in direct space, by comparison with the SAXS-
derived molecular envelope, and in reciprocal space, by reproducing the
experimental SAXS profile. Selected models have been refined by SAXS-
restrained molecular dynamics. This study shows how SAXS data can be used
with advanced computational modeling techniques to achieve a detailed
structural characterization and sheds light on how NSD3 domains are
interconnected in the C-terminus.

KEYWORDS

nuclear receptor-binding SET domain protein 3, small-angle X-ray scattering,
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1 Introduction

Nuclear receptor-binding SET domain (NSD) proteins are three protein lysine
methyltransferases that are predominantly mono- and di-methylate lysine 36 of histone
3 (H3K36) (Kuo et al., 2011). They are called NSD1, NSD2 (also known as WHSC1 or
MMSET), and NSD3 (also known as WHSC1L1) and are critical in maintaining chromatin
integrity. Their overexpression or mutation is implicated in developmental defects and
oncogenesis. In addition, the dysfunction of their methylation activity results in epigenomic
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aberrations, which are relevant for oncogenesis. Thus, reducing NSD
activity through specific lysine-HMTase inhibitors appears
promising for epigenetic cancer therapy (Vougiouklakis et al., 2015).

NSD2 is an oncoprotein that is aberrantly expressed, amplified,
or somatically mutated in multiple types of cancer (Vougiouklakis
et al., 2015). Notably, the t (4; 14) NSD2 translocation in multiple
myeloma and the hyperactive NSD2 mutation E1099K in a subset of
pediatric acute lymphoblastic leukemia result in altered chromatin
methylation that drives oncogenesis (Keats et al., 2003; Jaffe et al.,
2013). NSD3 is involved in several varieties of cancers as it
contributes to tumorigenesis by interacting with the
bromodomain-containing protein 4 (BRD4) and the
bromodomain and extra-terminal (BET) protein, which are
potential therapeutic targets in acute myeloid leukemia (Han
et al., 2018).

NSD2 and NSD3 have multiple protein–protein interaction
domains that may be clinically relevant and arranged in a
conserved sequence that contains two
proline–tryptophan–tryptophan–proline (PWWP) domains,
which are assumed to be critical for binding to methylated H3-
histone and the DNA molecule, four plant homeodomains
(PHDs)—which appear essential for interactions with other
methylated histones—an associated with SET (AWS) domain, a
catalytic SET domain, and a post-SET domain—including a Cys-
His-rich region (C5HCH) (Angrand et al., 2001).

The first PWWP domain (PWWP1) of NSD2 binds in vitro
H3K36me2, presumably through a conserved aromatic cage
composed of three orthogonally positioned aromatic side chains
(Y233, W236, and F266) that can engage in cation−π and
hydrophobic interactions with the ammonium group of the
methylated lysine (Qin and Min, 2014). However, the
contribution of the PWWP domains and the role in histone
methylation of the aromatic residues in the cage mentioned
above is not established yet. For example, the F266A mutation at
the aromatic cage, known to inhibit cancer proliferation, appears to
affect chromatin/NSD2 binding without significantly affecting
H3K36 dimethylation (Sankaran et al., 2016). Studies have
revealed that AWS, SET, and post-SET domains also play a
critical role in recognizing and methylating molecular targets of
histones H3 and H4 in vitro, particularly in the case of NSD3
(Morishita et al., 2014).

High-resolution structural knowledge of individual domains
from X-ray crystallography is available for NSD2 and NSD3 and
has been used to design small-molecule inhibitors. The crystal
structure of the SET domain supported the design and
characterization of N-alkyl sinefungin derivatives for NSD2 (Tisi
et al., 2016) and a norleucine-containing inhibitor peptide derived
from the histone H4 sequence for NSD3 (Morrison et al., 2018). The
crystal structure of the NSD2-PWWP1 enabled both the discovery
of a small-molecule antagonist with a Kd of 3.4 μM, which abrogates
histones containing H3K36me2 binding in cells (de Freitas et al.,
2021), and the characterization of its interactions with methylated
histone peptides and dsDNA (Zhang et al., 2021). Moreover, the
crystal structure of PWWP1 of NSD3 allowed a fragment-based
discovery of a potent, selective, and cellular active antagonist
(Bottcher et al., 2019). Binding assay studies of the region,
including the PHD closest to the C-terminus and the C5HCH
motif of the NSD3, along with the crystal structure of such

regions, revealed a histone-binding specificity of the PHD
domain between the three members of the NSD family (He et al.,
2013). Recently, cryo-electron microscopy has made available
structures of the SET domain for NSD2 and NSD3 bound to
mononucleosomes (Li et al., 2021; Sato et al., 2021), thus
providing molecular insights into nucleosome-based recognition
and histone-modification mechanisms.

Although both NSD2 and NSD3 are attractive therapeutic
targets, efforts to target their domains with small-molecule
inhibitors have so far met with little success (Morishita et al.,
2017; Shen et al., 2019). On the other hand, drug design
initiatives targeting NSD2 and NSD3 have been severely
hampered by the lack of structural knowledge about mutual
interactions between domains. The high-resolution structure of
NSD2 or NSD3 constructs comprising PWWP, SET, and PHD
domains is still missing, likely due to the high flexibility of these
proteins that make them recalcitrant to obtain good-quality crystals
for the structural solution by X-ray diffraction.

Here, we present the first structural investigation of the
C-terminal region of NSD3, comprising the second PWWP
domain (PWWP2), the SET domain, and the PHD closest to the
C-terminus (PHD4), in solution, determined by small-angle X-ray
scattering (SAXS) combined with advanced computational
modeling. In particular, the molecular envelope determinations
from SAXS data were complemented with structural predictions
based on artificial intelligence, which is in line with a recent trend in
the field of SAXS data analysis (Receveur-Bréchot, 2023), and with a
molecular dynamics flexible-fitting approach, which has recently
proven effective even for highly flexible proteins (Belviso et al.,
2022). The mutual conformation of interacting domains in solution,
thus not affected by the typical artifacts due to sample preparation
for X-ray diffraction and cryo-EM, i.e., crystal packing or
vitrification effects, respectively, was disclosed.

2 Materials and methods

2.1 NSD3 construct expression and
purification

Two constructs for the C-terminal region of the NSD3 (UniProt
code Q9BZ95) protein were designed: the first including PWWP2,
AWS, SET, and PostSET domains, comprising residues from 942 to
1,318, and named NSD3-PWWP2-SET, and the second including
AWS, SET, PostSET, and PHD4 domains, comprising residues from
1,070 to 1,423, and named NSD3-SET-PHD4. The conformed
pTYB12-NSD construct plasmids were transformed into
Escherichia coli BL21 (DE3) cells. The culture was incubated in
an LB medium containing 100 mg/L ampicillin at 37°C, 180 rpm,
until OD600 reached around 0.6. Then, 125 μM isopropyl 1-thio-
D-galactopyranoside (IPTG) was added to induce the recombinant
expression of the target construct proteins for 16 h at 12°C. Cells
were harvested and frozen at −80°C for 2 h minimum. The frozen
cells were re-suspended and lysed (shaking) for 30 min in IMPACT
buffer (500 mMNaCl, 20 mM Tris pH 8.0, and 0.1 mM EDTA) with
0.1% Triton and 10 mM phenylmethanesulfonyl fluoride (PMSF),
followed by 20 cycles of sonication (2.5 min at 85 Amp) on ice. After
removing the cell debris, the lysate containing CBD (chitin-binding
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domain)-intein-target protein was loaded onto a chitin resin column
and then flashed with 1 L IMPACT buffer with 0.1% Triton X-100
(45–60 column volumes) to remove other proteins and impurities
and 0.5 L IMPACT buffer (25–30 column volumes) to remove the
detergent Triton. Cleavage of the intein tag was induced by
incubation in IMPACT buffer supplemented with 50 mM 2-
mercaptoethanol at 4°C for 40 h. The pure target protein was
eluted in 65 mL IMPACT buffer, concentrated, and washed with
IMPACT buffer using 10K Amicon Ultra centrifugal filters.

2.2 SAXS measurements

Small-angle X-ray scattering (SAXS) measurements were
performed at the beamline B21 of the Diamond Light Source
(Didcot, UK), a beamline devoted to bioSAXS measurements and
equipped with an EIGER 4M detector (Dectris) and in-line size-
exclusion chromatography (SEC-SAXS). Protein samples were
buffer exchanged against 0.5 M NaCl, 20 mM Tris-HCl (pH 8.5),
and 5 mM DTT using an Amicon-4 Centrifugation Unit (cutoff
10 kDa) and concentrated up to 4.3 mg/mL just before data
collection to avoid sample aggregation and/or degradation. The
protein concentration was determined using a NanoDrop
spectrophotometer Thermo 2000c. For both constructs, the
extinction coefficient (ε) and molecular weight (MW) were
calculated by the ExPASy ProtParam server (Gasteiger et al.,
2005) based on their sequence (Supplementary Table S1). SEC-
SAXS data collections were performed at 20°C by loading 50 μL of
the sample onto a 4.6-mL high-performance Shodex
403 chromatographic column (10–700 kDa MW resolution
range) connected to an Agilent 1200 HPLC system (Waters)
and equilibrated with the same buffer as that used for the
buffer-exchange step. Three different sample concentrations
were loaded on the column (0.6, 1.6, and 3.8 mg/mL in the
case of NSD3-PWWP2-SET and 1.0, 1.6, and 4.3 mg/mL in the
case of NSD3-SET-PHD4), each prepared by diluting the protein
stock solutions concentrated at 4.3 mg/mL. For such
measurements, the integration time per frame was set to 3 s,
and data were collected in the range of momentum transfer (q)
from 0.0026 to 0.340 Å-1.

2.3 SAXS data analysis

Raw SAXS 2D images were processed by the DAWN processing
pipeline (Wilhelm et al. 2027) to produce normalized and radially
integrated SAXS curves. They were processed by SCÅTTER
(Rambo, 2017) to yield chromatograms and Rg value estimates.
Background subtraction and Guinier analysis were performed by the
program PRIMUS of the ATSAS package (Manalastas-Cantos et al.,
2021). The FIND_Dmax tool of SCÅTTER was used with the default
parameters (suggested Dmax and alpha ranges, Moore model, and
usage of background information for P(r) determination) to
estimate the best value of the maximum momentum transfer
q-value (qmax) to be used in data analysis (Tully et al., 2021).
Original SAXS profiles were re-binned using the DATREGRID
command of ATSAS to improve their signal-to-noise ratio and
then to increase the qmax values.

The particle distance distribution function P(r) was determined
using GNOM (Svergun, 1992) in the q-value range from the
beginning of the Guinier region to qmax (Supplementary Table
S2). The AMBIMETER program (Petroukhov and Svergun, 2015)
was used to determine the number of shape topologies compatible
with the P(r) curves and predict the uniqueness of the ab initio
reconstructions.

Ab initio molecular envelope determination was performed on
the best dataset for each construct, selected according to the values of
qmax and the quality of the P(r) profile. A total of 20 models of the
molecular envelope were generated for each dataset using the
annealing procedure in the fast mode of the DAMMIF program
(Franke and Svergun, 2009). They were spatially aligned based on
the normalized spatial discrepancy calculated by the SUPCOMB
program (Kozin and Svergun, 2001) and subsequently averaged,
bead occupancy-weighted, and volume-corrected using DAMAVER
(Volkov and Svergun, 2003). Additional refinement to the SAXS
data using DAMMIN/DAMSTART in the slow mode (Svergun,
1999) was performed to generate a final dummy-atom
representation of the shape and volume of each protein. The
protein molecular mass was estimated from SAXS data using the
consensus Bayesian assessment (Hajizadeh et al., 2018)
implemented in the program PRIMUS.

2.4 Homology modeling

Homology modeling was performed following two strategies
using SAXS data as the lever arm to adjust the structural predictions.
In the first strategy, which follows a bottom–up approach, individual
domains were independently generated and assembled a posteriori
based on the agreement with SAXS data. Homology models of the
following domains/regions belonging to the C-terminal region of
NSD3 were generated by the Phyre2 server (Kelley et al., 2015): the
core of the PWWP2 domain (942–1,025); the link connecting
domains PWWP2 and SET (1,026–1,056); the region containing
AWS, SET, and postSET (1,070–1,318); the core of the SET domain
(1,070–1,289); the link connecting the SET and PHD4 domains
(1,290–1,310); and the PHD4 domain (1,319–1,423). These models
were manually placed into molecular envelopes calculated from the
SEC-SAXS datasets to obtain starting models for rigid body fitting
that has been performed by SASREF (Petoukhov and Svergun,
2005). In the second strategy, a structural prediction of the whole
C-terminal region from PWWP2 to PHD4 was performed,
following a top–down approach that ensures compatible
modeling of the NSD3-PWWP-SET and the NSD3-SET-
PHD4 constructs. In the first instance, the AlphaFold prediction
about the whole NSD3 protein was downloaded from the AlphaFold
protein structure database (Jumper et al., 2021), entry n. Q9BZ95,
the fourth version of the model, was considered. In the second
instance, ColabFold (Mirdita et al., 2022), RaptorX (Xu et al., 2021),
and I-Tasser (Zheng et al., 2021) servers were used as the predictors,
each supplying the five most probable structural models. They all
make use of a machine learning approach; specifically, the first
combines the fast homology search of MMseqs2 (Steinegger and
Söding, 2017) with AlphaFold2 (Jumper et al., 2021) or
RoseTTAFold (Baek et al., 2021), the second integrates deep
learning and co-evolutionary analysis by means of convolutional
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residual neural networks, and the third combines contact maps from
deep neural network learning with fragment assembly simulations.
A mixed-strategy approach was also followed, where individual
domains extracted from the AlphaFold prediction were used for
SAXS-based rigid body modeling performed by the program
CORAL (Petoukhov et al., 2012).

The quality of structural predictions has been assessed by
comparison with SAXS data: each predicted model has been
split in an NSD3-PWWP2-SET and NSD3-SET-PHD4 part,
which has been separately fitted with SAXS data both in
reciprocal and direct space. The validation parameter of the
model in reciprocal space is the χ2 of the least-square fit with
raw SAXS data, as determined by the CRYSOL program (Svergun
et al., 1995), and that in direct space is the normalized spatial
discrepancy with respect to the molecular envelope determined ab
initio from SAXS data. This latter quantifier tends to be 0 for
similar objects, is less than 1 among different DAMMIF/N model
reconstructions of the same SAXS dataset, and is expected to be
less than 3 when comparing SAXS-derived dummy-atom models
with full-atom atomic models.

2.5 SAXS-driven optimization of
structural models

The best-quality homology modeling models were subjected
to molecular dynamics (MD) restrained by the SAXS-derived
molecular envelope using the molecular dynamics flexible
fitting (MDFF) tool (Trabuco et al., 2008), which implements
the fitting of flexible atomic structures into a density map. The
molecular envelopes determined by SEC-SAXS data were used as
reference density maps, from which external potentials were
generated and added to molecular dynamics. Simulations were
performed by NAMD (NAnoscale Molecular Dynamics) (Phillips
et al., 2020), and simulated data were analyzed by VMD (visual
molecular dynamics) (Humphrey et al., 1996). MD simulations
were run with an explicit solvent. Long-range electrostatic
interactions were treated with the particle-mesh Ewald method
(Darden et al., 1993). A 1.0 nm cutoff was used for van der Waals
interactions and the real-space part of the electrostatic
interactions. All bond lengths were constrained with the
LINCS algorithm, and the time step was set to 1 fs. MDFF
simulations were run with an implicit solvent, while targeted
molecular dynamics (TMD) was used to maintain the internal
consistency of the PWWP, SET, and PHD4 domains with respect
to their experimental structures. Both the values of the dielectric
constant and the scaling factor of the MD external potential
generated from the SAXS density map were fine-tuned by
optimizing the a posteriori agreement of the MD models with
SAXS data. They were finally set to 100 and 0.08, respectively.

MDFF simulations were monitored by calculating the cross-
correlation coefficient (CORR) between the target density map and
each frame of the MDFF trajectory and the root-mean-square
deviation of the Cα atoms (RMSD) for the initial structural
model. The structural models were prepared for MD by setting
the histidine protonation state to that expected at the pH used in the
SAXS data collection (8.5), as predicted by the H++ server
(Anandakrishnan et al., 2012), by adding Zn ions guided by their

positions in the experimental models (four of them were positioned
in the zinc-finger domain PHD4 and three in the SET domain) and
deprotonating the closest cysteine residues to form expected S–S
bonds. The metal coordination in the seven Zn sites was restrained
using the NAMD extraBonds command, with a spring constant of
50 kcal/mol and a reference distance of 2.5 Å from Cys S or His
N atoms.

MD trajectories were analyzed by extracting the region’s NSD3-
PWWP2-SET and NSD3-SET-PHD4 from each frame and
separately fitting them against SAXS data.

The structural models were compared using a descriptor based
on the backbone dihedral angles. It is named the protein angular
value (PAV) (Liuzzi et al., 2017), which is defined as follows:

PAVi � 180
π

cos−1 cos ψi + φi( )( ), (1)

where ψi and ϕi are the backbone dihedral angles of the ith residue.
The PAV values range between 0° and 180° and represent the ψi+ϕi
values expressed in degrees. Equation 1 avoids the problem of range
definition connected with the circular nature of the angular
variables. PAV profiles of each structure were calculated through
the script TPAD (Caliandro et al., 2012) run on VMD (Humphrey
et al., 1996). PAV profiles from different structures were separately
analyzed using principal component analysis (PCA) and hierarchic
clustering implemented in the program RootProf (Caliandro and
Belviso, 2014).

Details about SAXS samples, data collection, analysis, and 3D
modeling are summarized in Supplementary Table S2.

3 Results

3.1 Analysis of the SEC-SAXS data

SEC-SAXS analyzed NSD3-PWWP2-SET and NSD3-SET-
PHD4 constructs at a concentration of protein loaded in the
column of 0.6, 1.6, and 3.8 mg/mL for NSD3-PWWP2-SET and
1.0, 1.6, and 4.3 mg/mL for NSD3-SET-PHD4. A whitish precipitate
appeared at higher protein concentrations, suggesting the onset of
protein aggregation effects. SEC profiles and radius of gyration per
frame (Rg) are shown in Figures 1A and B. The presence of two peaks
characterizes both SEC profiles, hereinafter named p1 (the peak at
lower elution time) and p2 (the peak at higher elution time). SEC
also shows a shoulder of p1 (at a lower elution time than the peak)
for each dataset, which is particularly evident in the case of NSD3-
PWWP2-SET (Figure 1A). However, a visual inspection of the Rg
values suggests that only the p2 peak of both constructs is related to a
homogeneous species and, therefore, is the only region of the
chromatogram that is suitable for data analysis.

Frames under the p2 peak were selected for averaging using the
standard deviation of the Rg values (σ<Rg> in Supplementary Table
S3). For each construct and protein concentration, we chose a set of
adjacent frames that minimizes σ<Rg> while keeping the number of
frames as high as possible. The similarity among datasets of the same
construct has been assessed by a reduced χ2 statistic test, which
showed that all datasets of the same construct are compatible with
the same distribution (each pair of datasets shows a calculated
p-value higher than a significance level α = 0.01 in
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FIGURE 1
SEC profile and the Rg calculated by SCÅTTER for each frame (A, B), experimental (dots) and calculated from the reciprocal space fit of P(r) to the data
(full gray line) scattering intensity, with a scaled off set applied for presentation purposes (C, D), and P(r) functions (E, F) are shown for NSD3-PWWP2-SET
(first column) and NSD3-SET-PHD4 (second column) constructs. Red and yellow colors are used, respectively, for the samples at the lowest and higher
protein concentrations, and green and black colors are used for the samples at 1.6 mg/mL. Correlation plot (G) between the shape ambiguity score,
related to the number of shape topologies compatible with a given P(r) curve (vertical axis), and the quality score of the P(r) fit (horizontal axis). Points
related to NSD3-PWWP2-SET and NSD3-SET-PHD4 are represented in orange and cyan color, respectively. Optimal values correspond to lower shape
ambiguity (values lower than 1 correspond to potentially unique 3D reconstructions) and a higher quality score of the P(r) fit (maximum value is 1). Datasets
1_3, 1_4, 2_1, and 2_3 were linearly rebinned, and the others were log-rebinned.
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Supplementary Figure S1). The lowest p-values (still higher than
0.01) were found while comparing the datasets at the lowest and
highest protein concentrations, suggesting a lower probability that
these datasets are comparable with each other concerning the
other cases.

The Guinier analysis provided Rg values (in the reciprocal space)
ranging from 31 to 34 Å for NSD3-PWWP2-SET and from 33 to
35 Å for NSD3-SET-PHD4 (Table 1). Regarding the maximum
momentum transfer at which SAXS data analysis can be
performed (qmax), it is expected that its values increase with the
protein concentration as a consequence of a higher signal-to-noise
ratio. However, we found a non-negligible correlation only in the
case of the NSD3-SET-PHD4 construct (Pearson coefficient =
0.6) (Table 1).

Given the limited resolution of available data (Table 1), we re-
binned the SAXS profiles by reducing the number of points on a
linear or a log scale in q. The degree of data reduction was optimized
for each dataset based on the new value of qmax and the quality of the
pair distance distribution function P(r) obtained. An example of the
dependence of qmax on the number of points is given in
Supplementary Figure S2. The re-binned profiles are shown in
Figures 1C and D, and the corresponding P(r) curves were
calculated for each dataset by selecting a range from the
beginning of the Guinier region to qmax (Figures 1E and F). The
related geometrical parameters (Rg direct space andDmax in Table 1)
confirmed the slightly smaller dimensions of the NSD3-PWWP2-
SET construct with respect to the NSD3-SET-PHD4 one. A good
agreement between real and reciprocal Rg values is present for each
dataset. The molecular weight values estimated in Table 1 are in fair
agreement with those expected based on the primary sequence
(42.5 and 44.5 kDa for NSD3-SET-PHD4 and NSD3-PWWP2-
SET, respectively).

3.1.1 Dataset selection
Dataset selection has been performed using the quality of the

P(r) function determination, which was assessed by considering
the quality estimation score supplied by GNOM and the shape

ambiguity score supplied by the AMBIMETER program
(Petoukhov and Svergun, 2015), which is related to the number
of shape topologies compatible with a given P(r) curve
(Figure 1G). Their values indicate that datasets 1_1 and 2_
1 are the best ones for the NSD3-PWWP2-SET and NSD3-
SET-PHD4 constructs, respectively, since their representative
points in the scatter plot of Figure 1G are in the region of the
lowest shape ambiguity and higher fit quality. In particular,
dataset 1_1 has a very low shape ambiguity score (0.82),
indicating a unique ab initio 3D reconstruction. In contrast,
dataset 2_1 has a very high fit quality (0.84, the maximum is
1), indicating a reliable estimate of the pair distribution function.
Both the selected datasets correspond to samples with lower
protein concentrations. They have been obtained by re-binning
the SAXS profiles on a log-scale to 800 points (1_1) or joining
every third point (2_1). Further indications that corroborate this
choice are the following: dataset 2_1 has a lower difference
between direct and reciprocal Rg values, and dataset 1_1 shows
the lowest difference between the estimated molecular weight
(43.7 kDa) and the expected one (44.5 kDa) (Table 1). From
Figure 1G, it can be noted that representative points of NSD3-
SET-PHD4 have a systematically lower P(r) quality estimation
score than those of NSD3-PWWP2-SET.

3.1.2 Molecular envelope determination
The molecular envelopes determined for each dataset are shown

in Figure 2 for each dataset. They have a similar elongated shape for
both constructs, apart from datasets 1_2 and 1_3, for which the
superposition of the 20 envelopes calculated by DAMMIF was not
optimal, which is in agreement with the fact that these datasets have
the highest shape ambiguity scores (Figure 1G).

The selected SAXS data relative to the NSD3-PWWP2-SET and
NSD3-SET-PHD4 samples (datasets 1_1 and 2_1, respectively) have
been deposited in the SASBDB database (Kikhney et al., 2020) in
entries n. SASDNL8 and SASDNK8, respectively. All individual
models and fits of the molecular envelope are available in these
entries as additional information.

TABLE 1 Data and model parameters estimated for each dataset collected in the SEC-SAXS mode for NSD3-PWWP2-SET and NSD3-SET-PHD4 constructs.
Protein concentration, maximum momentum transfer (qmax) estimated before and after re-binning the data, radius of gyration (Rg) from Guinier analysis
(reciprocal space), P(r) function determination (real space), maximum inter-particle distance (Dmax), and molecular weight (MW) are shown.

After re-binning

Construct ID Protein
concentration

(mg/mL)

qmax (Å
-1) qmax (Å

-1) Rg (Å)
reciprocal space

Rg (Å)
direct
space

Dmax

(Å)
MW (kDa)

NSD3-PWWP2-SET 1_4 3.8 0.16 0.23 36.7 36.8 139.4 53.1

1_3 1.6 0.21 0.23 31.3 31.4 108.0 50.8

1_2 1.6 0.13 0.24 34.1 34.2 120.0 48.7

1_1 0.6 0.23 0.23 33.2 33.3 112.0 43.7

NSD3-SET-PHD4 2_4 4.3 0.20 0.29 36.2 36.3 134.6 42.8

2_3 1.6 0.16 0.29 35.8 36.0 138.0 40.2

2_2 1.6 0.14 0.30 36.7 36.8 137.0 40.2

2_1 1.0 0.18 0.29 36.5 36.6 132.0 41.9
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3.2 Structural modeling

3.2.1 Homology modeling and validation
Figure 3 shows the domain organization of the whole

NSD3 protein. In such a figure, the regions used in the
homology modeling processes exploited in this work are colored
in cyan (PWWP2), green (AWS, SET, and postSET), and red
(PHD4). The models produced by the top–down modeling
strategy (the one based on the entire sequence from PWWP2 to
PHD4) are shown in Supplementary Figures S3A–D. Peculiar
differences can be observed among the models as follows: the
AlphaFold model shows the highest content of secondary
structure elements (Supplementary Figure S3A), the ColabFold

models constantly maintain the orientation of the PWWP2-SET
and SET-PHD4 linkers concerning the SET domain (Supplementary
Figure S3B), the I-Tasser models show a compact arrangement of
individual domains and their linkers (Supplementary Figure S3D),
and RaptorX provides a large variability in the orientation of PWWP
and PHD4 domains with respect to the SET domain
(Supplementary Figure S3C).

In the case of the bottom–up strategy, individual domains
generated by Phyre2 (Supplementary Figure S4) have been used
to build NSD3 models able to fit the envelopes of selected SAXS
datasets, i.e. 1_1, related to NSD3-PWWP-SET injected at 0.6 mg/
mL, and 2_1, related to NSD3-SET-PHD4 injected at 1.0 mg/L.
Although such a strategy allows using SAXS data from an early stage,

FIGURE 2
Final molecular envelope models for SEC-SAXS datasets of NSD3-PWWP2-SET (first row) and NSD3-SET-PHD4 (second row) constructs. The color
code is the same as of Figure 1.

FIGURE 3
NSD3 domain organization. Domains are shown as rectangles, and those of interest for this work are represented in cyan (PWWP2), green (AWS, SET,
and postSET), and red (PHD4). The numbers of residues delimiting the domains are reported together with the range of residues covered by the two
constructs under investigation (bottom).
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it has the drawback that it does not guarantee the overlap between
the common region between the two NSD3 constructs, as occurred
in the case of top–down modeling (Supplementary Figure S3E).

The best predictions resulting from such modeling processes
(those showing the lowest χ2 against SAXS data and normalized
spatial discrepancy values against the SAXS envelope) for both
constructs have been obtained for the AlphaFold model
(Figure 4). Second, there are the first two models generated by
RaptorX, which mainly differ in how the linkers are structured and
in the plane in which they interact (they are rotated by about 90°, as
shown in Supplementary Figure S3C). The compact configuration of
the I-Tasser models is a systematic disagreement with SAXS.
Considering the two constructs in Figure 4 separately, it is worth
noting that NSD3-SET-PHD4 has the lowest χ2 and NSD scores for

AlphaFold, while NSD3-PWWP2-SET is best modeled by the
ColabFold model 2. Based on this evidence, we have created an
AlphaFold mixed model by combining the best regions from the two
models, considering the common region among the two constructs
as the lever arm for the superposition (Figure 5A). Notably, this
operation brings the PWWP and PHD4 domains close to each other,
although they were far away in the two starting models. As expected,
the validation parameters of the so-obtained mixed model are
improved with respect to the original models (Figure 5B).

A further approach to generate an atomistic model of the
NSD3 C-terminal involved the use of CORAL to place individual
domains, as predicted by AlphaFold, guided by the agreement with
the SAXS profile. This procedure is heavily influenced by the choice
of even loose restraints about contacting residues. The best model

FIGURE 4
Validation of the homology models by means of SAXS data on the dataset 1_1 (NSD3-PWWP2-SET injected at 0.6 mg/mL) and 2_1 (NSD3-SET-
PHD4 injected at 1.0 mg/mL) in reciprocal (A) and direct (B) spaces. Predictions of web servers AlphaFold, ColabFold, RaptorX, I-Tasser, and Phyre2 have
been assessed by fitting them with SAXS data in reciprocal space (A) and by measuring their normalized spatial discrepancy (NSD) with respect to the
corresponding SAXS molecular envelopes in direct space (B). The validation parameters NSD and χ2 obtained for each generated model are shown.
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obtained by combining the results of the procedure applied
separately to the NSD3-PWWP2-SET and NSD3-SET-
PHD4 regions is shown in Supplementary Figure S5 together
with the related validation parameters.

3.2.2 Optimization of the best models against
SAXS data

The best homology model was refined against SAXS data by
making them flexible through molecular dynamics (MD).
Experimental data were included in the simulation using the
technique known as molecular dynamics flexible fitting (MDFF),
where the MD is restrained by the experimental molecular envelope,
which represents an additional potential that drives the simulation.
An additional restraint from high-resolution data from X-ray
diffraction or NMR was introduced using the targeted molecular
dynamics approach, which was applied to the PWWP, SET, and
PHD4 domains, considering their respective experimental
structures as targets. The SAXS restraints were not applied
separately to NSD3-PWWP2-SET and NSD3-SET-PHD4 regions
since this would have led to final models of the two regions that are
not compatible with each other and would have involved performing
MD on partial models, leading to approximate results. Instead, the
SAXS restraints were applied by overlapping them on the initial
conformation of the homology model. In this way, the two
experimental envelopes of the two constructs were combined to
form a unique restraint that can be used for local optimization of the
whole homology model driven by MD.

The MDFF procedure was applied to the AlphaFold mixed
model, which showed the best validation parameters among the
full-atom models generated. For comparison, it was also applied to
the AlphaFold model and the RaptorX model 1 (the latter was

preferred to the RaptorX model 2, which shows a similar mutual
positioning of the PWWP and PHD4 domains because it holds a
more structured linker between PWWP and SET). Instead, it was
not possible to apply the MDFF procedure to the CORALmodel due
to the incomplete modeling of their linkers.

Results of the MDFF optimization of the AlphaFold mixed
model are reported in Figure 6, where the model conformations
before and after the MDFF run are shown together with the
experimental molecular envelopes applied as a restraint during
the simulation. The initial model partially covered by the
envelope (Figure 6A) is well-fitted within it at the end of the
simulation (Figure 6B), where the biggest variations concern the
linker between SET and PHD4. As a result, the cross-correlation
coefficient between the experimental and calculated envelopes
(CORR) and the mean Cα deviation with respect to the initial
model (RMSD) both increase during the MDFF run
(Supplementary Figures S6A and B). Considering the NSD3-
PWWP2-SET and NSD3-SET-PHD4 regions separately, it can be
found that the first slightly decreases its size, while the second
increases it by about 0.5 Å (Supplementary Figures S6C and D). The
direction of these changes is consistent with the information given
by the experimental assessment of the radius of gyration (Table 1),
since the Rg of the NSD3-PWWP2-SET region of the AlphaFold
model (35.0 Å) is above its SAXS-derived value in direct space
(33.3 Å), while the contrary occurs for the Rg of the NSD3-SET-
PHD4 region (32.9 Å of AlphaFold model versus 36.6 Å for the
experimental value). In the reciprocal space, the initial and final
models, considered separately for the two regions, produce different
calculated SAXS profiles (Figures 6C and D). The a posteriori
assessment of the agreement between the experimental and
calculated SAXS profiles as a function of the simulation time

FIGURE 5
Structural model obtained by combining the NSD3-SET-PHD4 region of the AlphaFold model with the NSD3-PWWP-SET region of the ColabFold
model 2 (A). Values of validation parameters NSD and χ2 obtained for the original models and the mixed one, separately considering the NSD3-PWWP-
SET and NSD3-SET-PHD4 regions (B).
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(Supplementary Figures S6C and D) indicates that the simulation
rapidly converges toward best models, reaching χ2 values of 1.07 for
NSD3-PWWP2-SET and 1.23 for NSD3-SET-PHD4.

Analogous results are obtained by applying the MDFF
optimization to the AlphaFold model (Supplementary Figure S7),
although a higher value of χ2 (1.74) is reached for the NSD3-PWWP-
SET region with respect to the AlphaFold mix model. Instead, in the
MDFF optimization of the RaptorX model 1, a better fit of the model
in the direct space does not turn into an overall improvement of the
model in the reciprocal space. In particular, the NSD3-SET-
PHD4 region has an opposite behavior with respect to the
previous cases as it decreases its radius of gyration while
increasing the χ2 of the fit (Supplementary Figure S8).

3.2.3 Comparative analysis of the
generated models

A comparative analysis of the structural solutions obtained was
performed by considering the structural diversity, as measured by
the residue-by-residue backbone dihedral angles, and the agreement
of the model with SAXS data, which was assessed in the direct space
by the normalized structural discrepancy with the ab initio
molecular envelope and in the reciprocal space by the χ2 of the
fit with the SAXS profile. This analysis, detailed in Supplementary
Material (Supplementary Figures S9, S10), indicates that the
structural variations introduced by MDFF are not covered by
other homology modeling tools and that the solution obtained by

MDFF on the AlphaFold mix model is the best one since the
agreement with SAXS data is improved in both the NSD3-
PWWP2-SET and NSD3-SET-PHD4 regions. The resulting
model shows better agreement with SAXS data than those
generated by AlphaFold, Raptor X (model 1), or even CORAL.

The AlphaFold-derived models optimized by MDFF relative to
the selected NSD3-PWWP2-SET and NSD3-SET-PHD4 samples
have been deposited in the SASBDB entries n. SASDNL8 and
SASDNK8, respectively.

3.2.4 Analysis of the full-length C-terminal model
The added-value of this structural investigation is to supply a

complete characterization of the NSD3 C-terminal region comprising
the PWWP2, SET, and PHD4 domains. The most plausible model,
i.e., the one obtained by the MDFF refinement applied to the
AlphaFold mix model, is given in Figure 7A and confirms the
presence of a fully structured linker between PWWP and SET and
a partially structured linker between SET and PHD4, where an α-helix
is present in the residues ranging from 1,292 to 1,311.

The superposition of this model with the known structural
models of individual NSD3 C-terminal domains is shown in
Figure 7B. The SET domain characterized in this study is in a
good overlap with that from the crystal structure with the PDB code
6CEN (RMSD = 0.9 Å over 217 aligned residues) and from the cryo-
EM structure 7CRR (RMSD = 1.6 Å over 240 aligned residues); the
PWWP2 domain is in fair overlap with those of the NMR model

FIGURE 6
Results of the MDFF optimization applied to the AlphaFold mix model. Initial (A) and final (B) models superposed to the molecular envelope
calculated from SAXS data and their fit with SAXS profiles for the NSD3-PWWP2-SET (C) and NSD3-SET-PHD4 (D) regions. The molecular envelope is
shown as the transparent gray surface, and themodels are shown in graphical representation, with the following color code: PWWP2 (cyan), PWWP2-SET
linker (blue), SET (green), and PHD4 (red). Observed SAXS profiles (blue dots) and those calculated before (gray line) and after (brown line) application
of MDFF are shown.
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2DAQ (RMSD = 1.0 Å over 72 aligned residues) and the crystal
structure 4RXJ (RMSD = 0.9 Å over 73 aligned residues), while the
PHD4 domain overlaps with the crystal structure 4GNE (RMSD =
0.9 Å over 95 aligned residues). However, none of the existing
experimental structures can cover the full-length PWWP2-SET-
PHD4 segment, so the mutual arrangement of individual domains
can only be inferred by using the SAXS-derived structural model. It
is interesting to note that the α-helix connecting the PWWP2 and
SET domains actually adopts two opposing directions in the 2DAQ
and 4RXJ models, so our investigation resolves this controversy by
indicating 2DAQ as the model that best fits the actual conformation
adopted by the helix when the full C-terminal region is considered.

The superposition of our SAXS-derivedmodel with the cryo-EM
structure 7CRR, comprising the NSD3 AWS, SET, and POST-SET
domains interacting with the H3, H4, H2A, and H2B histone and the
nucleosomal DNA, is shown in Figure 7C. We observe that no

clashes occur between the two structures, i.e., the NSD3 C-terminal
reconstructed by SAXS data is fully compatible with the high-
resolution structure of the NSD3 catalytic core bound to
mononucleosome. In particular, we note that alternative
conformations of the NSD3-PWWP2-SET and NSD3-SET-
PHD4 constructs, for example, those assumed by the CORAL
model (Supplementary Figure S5A), would not be compatible
with the cryo-EM structure due to clashes with the histone
proteins bound to NSD3s. Thus, the proximity of the
PWWP2 and PHD4 domains, a peculiar feature of the SAXS-
derived model, is in line with the function performed by the
protein. We can envisage that the presence of mononucleosomes
could induce a conformational change of the NSD3 C-terminal that
leads the PWWP2 and PHD4 domains to interact with the DNA.

4 Discussion

Several crystal structures of individual C-terminal domains of
NSD3 are present in the Protein Data Bank. However, no structural
information is available about the C-terminal region from
PWWP2 to PHD4, despite many efforts to crystallize such a
region. Here, we performed a structural investigation at a low
resolution (>20 Å) of such a region using the SAXS technique
coupled with size-exclusion chromatography and complemented
by advanced computational modeling.

Two constructs whose sequences overlap for 247 residues were
considered: one covering the region from PWWP2 to SET and the
other related to the region from SET to PHD4 (Figure 3). Datasets
obtained by measuring at different concentrations were selected
based on two quality parameters: the shape ambiguity of their
molecular envelope and the quality of the P(r) fit of their
SAXS profile.

Homology modeling was performed using state-of-the-art
procedures that strongly rely on machine learning approaches to
predict the three-dimensional structure of the full-length
NSD3 C-terminal region comprising the region from PWWP2 to
PHD4. SAXS data on the individual constructs were then used for
model validation and refinement. This top–down strategy has
proven more effective than the bottom–up approach of building
separate models of the two constructs driven by SAXS data and
trying to put them together to form a full-length model.

Model validation was performed in direct and reciprocal space
using the following two quality metrics: the normalized spatial
discrepancy between the atomic model and the molecular
envelope, and the agreement between calculated and observed
SAXS profiles. This dual-space approach improved the sensitivity
of the SAXS data, benchmarked the predicting tools adopted, and
allowed the selection of the full-atommodel of the NSD3 C-terminal
that was in best agreement with the SAXS data. This model, obtained
as a combination of two different models generated by AlphaFold,
predicts closely spaced PWWP and PHD4 domains, a feature that is
shared by two other well-scored models (RaptorX 1 and 2).

Model refinement was carried out on the full-length homology
models by adopting molecular dynamics (MD) to introduce
flexibility based on a priori physicochemical knowledge in the
context of a complex fitting procedure. The SAXS-derived
molecular envelope and experimental structural knowledge about

FIGURE 7
Structural models for the NSD3-PWWP2-SET and NSD3-SET-
PHD4 regions obtained by the MDFF optimization of the AlphaFold
mixmodel, shown in graphical representation with the following color
code: PWWP2 (cyan), PWWP2-SET linker (blue), SET (dark green),
SET-PHD4 linker (light green), and PHD4 (red). Zn ions are shown as
gray spheres (A). The same model is shown superposed to the crystal
structures 6CEN, 4GNE, and 4RXJ to the NMR model 2DAQ and the
chain I of the cryo-EM structure 7CRR (B), and the entire structure
7CRR, comprising histones and nucleosomal DNA (yellow) (C).
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individual domains were then introduced as restraints in MD. This
flexible fitting approach, called MDFF, improved not only the
agreement with SAXS data in direct space, ensuring better
coverage of the ab initio molecular envelope, but also the
agreement in reciprocal space, as verified by a posteriori fit of the
SAXS profile, with those calculated from the MD frames.

A comparative analysis of the MDFF results was carried out by
considering (i) the minimum spatial discrepancy with the SAXS-
derived molecular envelope in direct space, (ii) the agreement
between observed and calculated SAXS profiles in reciprocal
space, and (iii) the mutual orientation of individual residues
allowed to select of the best models for the NSD3-PWWP2-SET
and NSD3-SET-PHD4 constructs and build a consistent model of
the NSD3 C-terminal region that sheds light into the mutual
arrangement of the PWWP2, SET, and PHD4 domains.
Alternative generated models predicting different mutual
orientations of PWWP2 and PHD4 domains were ruled out by
this analysis, thus enforcing the evidence that these models are
closely spaced, thus interacting with each other in solution. Known
crystallographic, NMR, and cryo-EM structures of the PWWP2,
SET, and PHD4 NSD3 domains cannot be located relative to each
other without using this new SAXS-derived structural knowledge.
Moreover, the structural model of the NSD3 C-terminal obtained
here is compatible with the binding of NSD3 to mononucleosomes.

This study discloses the mutual arrangement of the PWWP2, SET,
and PHD4 domains in the NSD3 C-terminal, which is not accessible by
high-resolution structural techniques due to the intrinsic flexibility of
this protein region. Such results could provide implications for the
mechanism of functional diversity of NSD proteins and the
underexplored biological function of the PWWP2 domain.
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Introduction: Chronic Suppurative Otitis Media (CSOM) and Middle Ear
Cholesteatoma are two common chronic otitis media diseases that often
cause confusion among physicians due to their similar location and shape in
clinical CT images of the internal auditory canal. In this study, we utilized the
transfer learningmethod combinedwith CT scans of the internal auditory canal to
achieve accurate lesion segmentation and automatic diagnosis for patients with
CSOM and middle ear cholesteatoma.

Methods: We collected 1019 CT scan images and utilized the nnUnet skeleton
model along with coarse grained focal segmentation labeling to pre-train on the
above CT images for focal segmentation. We then fine-tuned the pre-training
model for the downstream three-classification diagnosis task.

Results: Our proposed algorithm model achieved a classification accuracy of
92.33% for CSOM and middle ear cholesteatoma, which is approximately 5%
higher than the benchmark model. Moreover, our upstream segmentation task
training resulted in a mean Intersection of Union (mIoU) of 0.569.

Discussion: Our results demonstrate that using coarse-grained contour boundary
labeling can significantly enhance the accuracy of downstream classification tasks.
The combination of deep learning and automatic diagnosis of CSOM and internal
auditory canal CT images of middle ear cholesteatoma exhibits high sensitivity and
specificity.

KEYWORDS

chronic suppurative otitis media (CSOM), middle ear cholesteatoma, CT images,
computer-aided diagnosis (CAD), transfer learning (TL)

Introduction

Otitis media is a prevalent ear disease that affects a significant portion of the global
population, with an estimated 65 to 350 million individuals affected worldwide (World
Health Organization, 2004). In developing countries, the prevalence of Chronic Suppurative
Otitis Media (CSOM) ranges from 0.4% to 33.3% (Kaur et al., 2017). Our study mainly
focuses on non-invasive temporal bone CT images, in order to help clinicians quickly get a
relatively accurate preliminary diagnosis and lay the foundation for further judgment of
whether patients need surgical treatment.
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Otitis media is classified into three categories: acute otitis media,
chronic otitis media (COM), and middle ear cholesteatoma. Chronic
otitis media typically exhibits more pronounced pathological changes
on CT images due to its protracted course, whereas acute otitis media
does not usually display this characteristic. Consequently, it is often
recommended that patients with chronic otitis media undergo internal
auditory canal CT scan to assess their condition. Chronic otitis media is
further divided into two subcategories: chronic non-suppurative otitis
media and chronic suppurative otitis media (CSOM) (Schilder et al.,
2017). CSOM and Middle Ear Cholesteatoma are two typical otitis
media diseases that are diagnosed primarily through temporal bone CT
scans (Fukudome et al., 2013; Lustig et al., 2018). CSOM typically occurs
following improper treatment of acute otitis media, often resulting in
tympanic membrane perforation and persistent middle ear purulence
(Ahmad et al., 2022). Middle ear cholesteatoma, on the other hand, is
the pathological outcome of abnormal accumulation of keratin
squamous epithelium, primarily composed of keratinized, exfoliated
epithelium. It often accumulates in the middle ear, with a tendency to
erode the ossicular chain, tympanic wall, and/ormastoid area (Sun et al.,
2011; Jang et al., 2014).

Clinicians usually identify CSOM and middle ear cholesteatoma
through CT scanning of the internal auditory canal. However, CT
reports of these two types both show erosion and/or loss of the ossicular
chain with diffuse abnormal soft tissue shadow (Madabhushi and Lee,
2016). Theoretically, the two types differ in bone erosion margins and
soft tissue shadow contours: The soft tissue shadow of cholesteatoma
has a smooth, clear outline, while that of CSOM lacks a clear outline and
is often accompanied by pus accumulation. In addition, the edge of the
bone erosion caused by CSOM is serrated, while bone destruction
caused by cholesteatoma is frequently surrounded by a ring of sclerosis.
Therefore, our group proposed using deep learning to differentiate
between CSOM and cholesteatoma to achieve more accurate clinical
diagnoses based on the theoretical differences between these two
diseases (Kemppainen et al., 1999; Yorgancılar et al., 2013).

Deep learning techniques have seen widespread use in the medical
field in recent years, enabling the extraction of key features from patients
to facilitate predictivemodeling (Elfiky et al., 2018). Transfer learning is a
deep learning technique that involves leveraging knowledge gained from
solving one problem to address another related problem. It is particularly
useful when the amount of labeled data for the target task is limited. By
leveraging transfer learning, a pre-trained model developed for one task
can be fine-tuned and adapted for another task with different data but
similar features. This approach enables the model to benefit from the
knowledge learned by the pre-trained model on a larger dataset and
adapt it to the new task by making only minor adjustments to the
model’s architecture or parameters. A bunch of researches have
uncovered that superiority of transfer learning over traditional
strategy. S. Deepak implement brain tumor classification using deep
CNN features via transfer learning (Deepak and Ameer, 2019). For
tuberculosis detection, a VGGNet based model had been proposed
combining transfer learning (Ahsan et al., 2019). Dube S presented an
automatic content-based image retrieval system for brain tumors on
contrast-enhanced MRI (Dube et al., 2006).

Given the small morphological differences between various
types of otitis media, the challenge of manual identification, and
the unclear contour of lesions, we sought to establish a transfer
learning framework by integrating coarse-grained labeled contour
information as pre-trained data and employing the CNN model

skeleton to extract high-level features from internal auditory canal
CT images. Specifically, the deep representation of images obtained
through pre-training was utilized to accurately classify CSOM,
middle ear cholesteatoma, and normal samples in downstream tasks.

In conclusion, this paper’s key contributions are:

1. We propose a transfer learning-based framework that utilizes
coarsely annotated segmentation data as input for pretraining
the model. The proposed model effectively extracts implicit
information from the data and can subsequently be used for
classification prediction.

2. We propose an end-to-end learning model that can effectively
improve the accuracy of middle ear infection classification
prediction. Our proposed model outperforms non-pretrained
models in all metrics.

3. In the field of deep learning combined with medicine, we look
forward to replacing the heavy and repetitive manual labeling
task with more mature machine automated labeling.

4. Our combination of otological diseases and computer learning
can increase the coverage of related research and provide more
precise and diversified help for clinicians in diagnosis
and treatment.

Materials and methods

Data acquisition

We conducted a retrospective study at Zhongshan Hospital
Affiliated to Xiamen University to investigate patients diagnosed
with otitis media and middle ear cholesteatoma from 2012 to 2021.
This study was approved by the ethics committee and informed
consent was waived due to the retrospective nature of the study. The
inclusion criteria for the study were based on pathology or medical
history, ear examination, audiogram, and imaging examination of
the surgical side of the ear. We referred to the previous medical
records of the hospital to obtain specific diagnosis results. A total of
6,967 axial high-resolution CT images of temporal bone were
collected from 180 patients, including 27 female patients with
middle ear cholesteatoma, 31 male patients with middle ear
cholesteatoma; 50 female patients and 51 male patients with
chronic otitis media, including 40 females and 39 males with
CSOM, and Chronic otitis media with effusion, including
10 females and 12 males. Besides, there were 15 normal controls
(6 females and 9 males), and 2 children with middle ear
cholesteatoma, 2 children with CSOM (less than 10 years old),
and 2 normal controls. Except for children, the patients collected
were between 30 and 80 years of age. All the patients information
has been shown in Table 1.

The CT features of chronic otitis media with effusion (COME)
are often very similar to those of chronic suppurative otitis media
(CSOM), with both conditions typically presenting with varying
degrees of effusion in mastoid cells. As such, we excluded a total of
412 axial CT data from 22 patients diagnosed with COME. For each
patient, we selected approximately 10–20 CT images that showed
well-defined lesions. Ultimately, we used 410 CSOM CT images,
398 middle ear cholesteatoma CT images, and 211 normal CT
control images for our analysis.
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CT scanner settings

Temporal bone CT is derived from GE LightSpeed 64-row
volume CT. Its detector is the core technology of multi-slice
spiral CT. The detector arrangement adopts 64 × 0.625 mm
detector unit to ensure the maximum coverage of 40 mm/circle
at present, and at the same time, it can also perform sub-millimeter
thick scanning in any mode. The isotropic resolution is up to
0.30 mm, which ensures a large range of volume acquisition and
high resolution acquisition. The CT imaging parameters used were
as follows: CT collimator 128 × 1.0 mm, field of view 220 × 220 mm,
matrix size 1,024 × 1,024, voltage 120 kV, current 240 mAs, and
axial CT slice number 30–50 per scan.

Data marking

The CT findings of chronic suppurative otitis media are often
difficult to distinguish frommiddle ear cholesteatoma. To accurately
identify middle ear cholesteatomas, we marked local or isolated
cholesteatomas in the erosion area of the incudostapedial joint or
hammer-incus joint in the rotation plane of the middle tip of the
cochlea. We also highlighted areas of bone destruction within the
tympanic sinus, epitympanic region, or mastoid process in other
levels. Additionally, we marked any irregular soft tissue shadows
with smooth edges on any plane. In contrast, when marking CT
images of suppurative otitis media, we identified the soft tissue
shadow around the auricle in the tympanic cavity, the sclerotic

TABLE 1 The collected patients information.

Female
(30–80 years
old)

Male (30–80 years old) Pediatric patients (<10 years old)

Middle Ear Cholesteatoma 27 31 2

CSOM 40 39 2

Chronic Otitis Media with Effusion 10 12 0

Normal 6 9 2

Totall 83 91 6

Data sources: Zhongshan Hospital Affiliated to Xiamen University.

Note: numbers represent the quantity of patients.

FIGURE 1
Schematic representation of labeling and pre-trained model predictions for middle ear cholesteatoma and CSOM. ((A, B) are cholesteatomas, and
(C, D) are CSOM).
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hyperplasia part of the mastoid, and the bone with uniform density
and serrated edge in the tympanic sinus at the vestibular level. These
characteristics helped distinguish them from the sclerosing ring that
is formed by the compression of a cholesteatoma. At the apical spiral
layer of the cochlea, we marked the hammer-incus joint of the
ossified epitympanic, the “ice cream cone-like structure,” and the
serrated bone around the mastoid cavity and sinus. At the bottom
spiral level of the cochlea, we marked the thickened mucosa on the
promontory surface. Finally, at the mastoid level, we marked the
erosion of the mastoid bone and the thickening of the mucous
membrane caused by suppurative effusion (Gomaa et al., 2013;
Zelikovich, 2004). We provide visual examples of typical lesion
markers and predictions for these two diseases in Figure 1.

The original data was stored in the Dicom format, which we
converted into PNG image data using MicroDicom software. This
step allowed us to separate the patient’s personal information from
the image, thereby ensuring patient privacy.

To mark the lesion area on each image, we enlisted the help of a
team consisting of five professional otolaryngologists and two
radiologists. They used polygonal markers on LabelMe software
to eliminate background interference and generate unified
coordinates for each lesion area.

Data pre-processing

To improve the robustness of our model, we applied various
image data augmentation and processing techniques during the
training process. Specifically, we randomly transformed the input
images by performing horizontal and vertical translations, flipping,
rotation, slight scaling, and adjustments to hue, contrast, and
numerical values.

In order to balance the size of our training model and the time
required for training, we scaled all images to a uniform size of 224 ×
224 using bilinear interpolation. This allowed us to efficiently process
and train on a large dataset of images while still maintaining a high level
of accuracy and performance in our final model.

Model architecture and training strategy

We utilized the nnUnet (Isensee et al., 2021)architecture as the
foundation for our deep learning model to extract critical features
from CT images. This model has demonstrated exceptional
performance in various medical image segmentation tasks. Our
model consists of two branches: coarse-grained segmentation task
and exact classification task.

In our workflow, we first pre-trained a model for lesion
segmentation, which includes the nnUnet skeleton and a
pixel-level prediction head that outputs three classification
results for each pixel: CSOM, middle ear cholesteatoma, or
normal samples. On the back of the above-mentioned process,
our goal was to acquire a well-trained backbone that could extract
underlying information containing pixel-level features, which
would then be fine-tuned for picture-level classification. We
trained this model using the gradient descent algorithm until
convergence was achieved.

The nnUNet model is composed of an encoder and a decoder. The
encoder reduces the image size layer by layer while capturing features of
varying granularity fromdifferent images. It consists of seven layers, each
containing {1, 3, 4, 6, 6, 6, 6} blocks, with each block containing two
convolutional layers, two activation layers, and two normalization layers.
Successive layers are directly connected with a pooling layer, which
reduces the image size by half. The first layer of the encoder contains
32 features, and the number of features in each subsequent layer doubles
but does not exceed the maximum number of features, which is 512.

The decoder has six layers, each consisting of {2, 2, 2, 2, 2, 2}
blocks. These layers use linear interpolation upsampling to increase
the image size. The encoder and decoder are connected using
residual layer hopping. The decoder outputs the hidden variables
of the image as inputs to both the pixel-level projection head and the
image-level projection head for further processing.

Once the model was successfully trained, we extracted the
hidden variables before the pixel-level prediction head of the
image as inputs for the downstream classification prediction
head. This allowed us to efficiently classify images with high
accuracy by leveraging the previously extracted features.

We employed a five-fold cross-validation approach to train and
evaluate our model (see Figure 2). Given that a series of adjacent CT
images from the same subject tend to exhibit strong similarities, we
took care to avoid overfitting due to data leakage. Specifically, during
the training process, we randomly divided the dataset into a training
set and validation set at a ratio of 4:1, based on the subject’s name.
This ensured that CT images from the same subject were assigned to
either the training or validation set, but not both.

Our models were compiled using Python 3.8, trained with
PyTorch version 1.10, and accelerated with Nvidia A100 high-
performance GPUs. During the training process, we set the
maximum training epoch to 500 epochs, with a training batch
size of 8 samples. We used Adam as the model optimizer, with
an initial learning rate of 0.001. The dynamic learning rate decreased
gradually with each increase in training batch until it reached 10e-5.
For pre-training optimization, we utilized the cross-entropy of each
pixel classification of the image. Downstream training utilized the
cross-entropy of the image classification as the loss function. Our
specific workflow is depicted in Figure 3 for further visualization.

(The pre-training phase uses the pixel-level labels of route A to
train the CNN, and the pixel predictor is responsible for output the
category of each pixel. When performing the downstream picture
classification task, according to route B, the pre-trained model is
used to fine-tune the neural network through the category classifier,
and the final picture prediction result is output.)

Result

In the upstream segmentation task, our deep learning model
achieved a mean Intersection of Union (mIoU) index of 0.5376,
indicating excellent performance in accurately removing
background noise. Subsequently, we employed this well-
performing model for the downstream fine-tuning step, where we
aimed to classify otitis media into three distinct categories. Our
model achieved a micro-f1 index of 92.33%, a significant
improvement of 4.83% compared to the benchmark model.
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On the other hand, the pre-trained model exhibits an overall
area under the receiver curve of 0.9689, which is slightly higher
than that of the benchmark model which reach 0.9603. As is
depicted in Figure 4, it can be observed that the performance in
distinguishing chronic suppurative otitis media (CSOM) is the
best, by a margin of 8.15%, as is showed in Table 2. These results

indicate that the pre-trained model has a superior ability to
accurately classify CSOM cases compared to the benchmark
model. These results highlight the potential of deep learning
technology in medical image analysis and its ability to
significantly improve diagnostic accuracy and
treatment outcomes.

FIGURE 2
Schematic diagram of five-fold cross validation.

TABLE 2 Comparison of results.

Accuracy Auc

nnUnet Normal vs. the others 0.8732 ± 0.1694 0.9558 ± 0.0454

CSOM vs. the others 0.8619 ± 0.0776 0.9695 ± 0.0212

Cholesteatoma vs. the others 0.9013 ± 0.0394 0.9555 ± 0.0242

p_nnUnet Normal vs. the others 0.8873 ± 0.1593 0.9530 ± 0.0526

CSOM vs. the others 0.9434 ± 0.0343 0.9916 ± 0.0069

Cholesteatoma vs. the others 0.9290 ± 0.0170 0.9622 ± 0.0316

p represents the fine-tuning results after using the pre-trained model. The above results are the means after five-fold cross-validation. The mIoU index is used to describe the average ratio of

intersection and union of all pixel categories in the image segmentation task. In this experiment, the background normal tissue categories were removed to obtain more accurate prediction

results. mIoU is described as follows.

FIGURE 3
Transfer learning strategy.
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mIoU � 1
D| | ∑i∈D

TPi

TNi + FPi + FPi

Note: In the above equation, FN is the false negative class, FP is
the false positive class, FP is the true class, and D represents the
CSOM and cholesteatoma set.

On the other hand, we demonstrate the disparity in accuracy
between AI models and manual diagnosis by clinicians. We
intentionally randomized and combined a total of 1013 CT images of
middle ear cholesteatoma, CSOM, and normal control images, while
effectively concealing the actual diagnostic labels. These images were then
distributed to both the manual diagnosis group and the model diagnosis
group for a double-blind evaluation of diagnostic accuracy. The
comprehensive test results are shown in Tables 3, 4, and it can be
observed that CSOMand cholesteatoma exhibit a highmisdiagnosis rate.

Our experimental results show that in the otitis media
classification task, the use of contour boundary labeling can well
improve the accuracy of downstream classification tasks, and the
area under the receiver operating characteristic curve is better than
that of the non-pre-trained model shown in Figure 4. These results
indicate that the predictive power of our model on this task has the
possibility of real-world application.

(p-represents the fine-tuning results after using the pre-
trained model. In the multi-classification ROC curve, the
positive samples belong to a particular category while the
negative samples belong to all other categories combined.
Based on this distinction, the true positive rate and false
positive rate have been accurately calculated).

Discussion

Otitis media is characterized by a prolonged course of illness,
high incidence, easy recurrence, conductive deafness, and potentially
fatal intracranial infection (Otten and Grote, 1990; Hutz et al., 2018).
A case analysis conducted in a public hospital in the United States
revealed that the incidence of postoperative complications
associated with complex chronic otitis media with middle ear
cholesteatoma was similar to that observed in developing regions
(Greenberg and Manolidis, 2001). As a result, early diagnosis,
intervention measures, and clinical management of this disease
are especially crucial, regardless of whether one resides in
developed or developing regions. In our study, we utilized CT
images of CSOM and middle ear cholesteatoma labeled by

FIGURE 4
Receiver curves for each category of the model.

TABLE 3 Diagnostic accuracy results of manual diagnostic group.

The clinical experts (n = 3)/Real diagnose (n = 3,039) COSM (n = 1,182) Cholesteatoma (n = 1,224) Normal (n = 633)

CSOM 948 (80.20%) 489 (39.95%) 48 (7.58%)

Cholesteatoma 222 (18.78%) 708 (57.84%) 9 (1.42%)

Normal 12 (1.01%) 27 (2.20%) 576 (90.99%)

The horizontal represents the actual diagnosis results, while the vertical represents the manual diagnosis results.
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medical experts as the training set for our algorithmic model. Our
algorithm model accurately predicted unlabeled CT images with a
high degree of precision, achieving excellent agreement between
predicted lesion types and actual clinical findings.

So far, CT scan and Endoscopy of ear, as the classical methods
for the diagnosis of various types of otitis media, are still the latest
diagnostic methods (Gomaa et al., 2013; Zelikovich, 2004). The
golden standard for the diagnosis of CSOM and middle ear
cholesteatoma is intraoperative histopathological examination.
However, it takes a long time to make a preliminary diagnosis of
one single patient. Despite efforts to reduce the prevalence of
Chronic Suppurative Otitis Media (CSOM) in underdeveloped
areas, clinical diagnosis, treatment, and prognosis of the disease
remain suboptimal. Recent epidemiological investigations have
shown that CSOM has shifted to a population dominated by
adults, despite a decrease in overall prevalence during the past
2 decades (Orji et al., 2016). Additionally, an Australian survey
highlighted the high incidence of CSOM and middle ear
cholesteatoma among impoverished individuals and the need for
early diagnosis (Benson and Mwanri, 2012).

Deep learning has emerged as a valuable tool in various medical
fields. A substantial amount of research on deep learning applied to
clinical datasets, using high-quality medical examination images,
has showcased its efficacy in defining patient categories, identifying
and locating lesions, and other relevant tasks (Wang et al., 2020).
With our transfer learning model, medical researchers can avoid the
time-consuming and resource-intensive process of training models
from scratch, while also benefiting from the wealth of knowledge
captured in existing non-medical datasets. In the field of
computational vision, pre-trained models have become a
commonly used tool in many applications, particularly in
addressing medical imaging challenges. These challenges can
arise from imaging modalities such as X-ray, Magnetic
Resonance Imaging (MRI), CT scan, and Ultrasound data. Many
works have demonstrated the potential of pre-trained models to
improve diagnostic accuracy, reduce processing time, and assist in
the development of automated diagnosis systems. Our transfer
learning model could also be used in other diseases which need
CT scan or endoscope or any examinations that take images as the
method to diagnose. Once the medical examination images are too
similar to find the differences, our model could give several
suggestions in differential diagnosis based on the previous history
image labels.

Among the different types of otitis media, there are varying
methods for diagnosis and treatment. However, the CT image
features tend to be similar across these types, which can pose
challenges for clinicians in terms of differential diagnosis. Such
challenges can lead to delays in proper treatment, and potentially
result in errors or overmedication. Moreover, the COVID-19

patients were found to have relationship with Otitis media (Choi
et al., 2022), they demand to be diagnosed earlier than before, as
otitis media always intend to recurrence and even cause
Sensorineural-hearing-loss (Xia et al., 2022). As a result,
achieving rapid differential diagnosis for otitis media is crucial to
ensure optimal patient outcomes, in this situation, an efficient
diagnosis can be given using our transfer learning model.

However, our transfer learning models have shown some
limitations in classifying certain ear diseases. For instance, when
differentiating between secretory otitis media and suppurative otitis
media, deep learning models tend to confuse the two because their
CT scans are very similar. This could be attributed to inadequate
data sets. As such, there is a need for more comprehensive and
diverse medical data to improve the accuracy of diagnostic models
used to differentiate between various ear diseases. Moreover, our
model showed significant differences in lesion information
extraction. For instance, some predicted lesions would perform
fewer or more lesions compared to those marked by medical
experts. Also, in images with unclear lesions, there were
discrepancies in identifying the lesion. For example, the images
of the mastoid layer of chronic suppurative otitis media often have
varying degrees of mucosal thickening due to chronic inflammation,
while the images of the mastoid layer of chronic secretory otitis
media show fluid levels caused by chronic effusion. These conditions
are quite similar, with only slight differences in the contour of the
mucosal within the mastoid bone. In most cases, our transfer
learning networks could detect and label prominent lesions such
as large soft tissue shadow of middle ear cholesteatoma, eroded bone
structure surrounded by soft tissue shadow, and eroded bone
structure of chronic suppurative otitis media. Unfortunately, the
CT images of chronic otitis media with effusion (COME) do not
have the typical erosive features of CSOM and middle ear
cholesteatoma. Therefore, our research group excluded the CT
images of chronic secretory otitis media and focused solely on
collecting CT images of middle ear cholesteatoma and chronic
suppurative otitis media as the objects of our study. In the
future, when the amount of data collection is large enough, we
will continue to promote the application of new migration models to
this type of classification project.

What’s more, due to the limited clinical applications of deep
learning and the laborious, time-consuming nature of acquiring
supervised data such as lesion regions, our research group aims to
identify alternative weakly supervised signals for model transfer
learning pre-training. “Human-in-the-loop” is an effective
interactive mode between doctors and models, which can provide
weakly supervised signals and ensure continuous learning of the
model. This approach also represents a practical scenario for the
clinical application of the model. This can help reduce manual
labeling costs and improve overall prediction performance. In the

TABLE 4 Diagnostic accuracy results of model diagnosis group.

The AI model/Real diagnose (n = 1,013) COSM (n = 394) Cholesteatoma (n = 408) Normal (n = 211)

CSOM 336 (85.28%) 16 (3.92%) 7 (9.52%)

Cholesteatoma 44 (11.17%) 336 (82.35%) 2 (0.95%)

Normal 14 (3.55%) 20 (4.90%) 188 (89.52%)

The horizontal represents the actual diagnosis results, while the vertical depicts the diagnostic outcomes of the deep learning model.
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future, we hope to replace the repetitive, cumbersome task of manual
labeling with more advanced machine automated labeling
techniques in the field of deep learning combined with medicine.

Regarding the types of otological diseases combined with deep
learning models, there are few studies on using detection results of
acoustic immittance, acoustic reflex, and pure tone hearing
threshold to achieve accurate predictions, prognosis, and
treatment. Additionally, while otitis media and vertigo have
received significant research attention, other diseases such as
otosclerosis, ear tumors, and sudden neurotropic hearing loss
remain understudied. Future research on combining otological
diseases with computer learning may increase the coverage of
relevant studies and provide clinicians with more precise and
diverse tools for diagnosis and treatment.
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Deep learning-based
classification of the capillary
ultrastructure in human
skeletal muscles

Marius Reto Bigler1* and Oliver Baum2

1Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,
2Institut für Physiologie, Charité–Universitätsmedizin Berlin, Berlin, Germany

Background: Capillary ultrastructure in human skeletal muscles is dynamic and
prone to alterations in response to many stimuli, e.g., systemic pathologies such
as diabetes mellitus and arterial hypertension. Using transmission electron
microscopy (TEM) images, several studies have been conducted to quantify
the capillary ultrastructure by means of morphometry. Deep learning
techniques like convolutional neural networks (CNNs) are utilized to extract
data-driven characteristics and to recognize patterns. Hence, the aim of this
study was to train a CNN to identify morphometric patterns that differ between
capillaries in muscle biopsies of healthy participants and patients with systemic
pathologies for the purpose of hypothesis generation.

Methods: In this retrospective study we used 1810 electron micrographs from
human skeletal muscle capillaries derived from 70 study participants which were
classified as “healthy” controls or “patients“ in dependence of the absence or
presence of a documented history of diabetes mellitus, arterial hypertension or
peripheral arterial disease. Using these micrographs, a pre-trained open-access
CNN (ResNet101) was trained to discriminate between micrographs of capillaries
of the two groups. The CNN with the highest diagnostic accuracies during
training were subsequently compared with manual quantitative analysis of the
capillary ultrastructure to distinguish between “healthy” controls and patients.

Results: Using classification into controls or patients as allocation reference,
receiver-operating-characteristics (ROC)-analysis of manually obtained BM
thickness showed the best diagnostic accuracy of all morphometric indicators
(area under the ROC-curve (AUC): 0.657 ± 0.050). The best performing CNN
demonstrated a diagnostic accuracy of 79% (sensitivity 93%, specificity 92%).
DeLong-Test of the ROC-curves showed a significant difference (p < 0.001)
between the AUC of the best performing CNN and the BM thickness. The
underlying morphology responsible for the network prediction focuses mainly
on debridement of pericytes.

Conclusion: The hypothesis-generating approach using pretrained CNN
distinguishes between capillaries depicted on electron micrographs of
“healthy” controls and participants with a systemic pathology more accurately
than by commonly used morphometric analysis.

KEYWORDS

capillaries, skeletal muscle, transmission electron microscopy, convolutional neural
networks, deep learning
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GRAPHICAL ABSTRACT

Introduction

Capillaries are the sections of the vascular system with the most
narrow diameter (Tuma et al., 2011). They branch from arterioles
to meander through the tissues and then drain into collecting
venules and ensuing veins. According to the law of Hagen-
Poisseuille, which states that the blood flow velocity is
proportional to the fourth power of the vessel radius, this
transition from the arterioles into the capillary network is
accompanied by a significant reduction in the velocity of the
blood flow. Of note, as the transition into smaller vessels results
in a significant increase in the overall diameter of the arterial
vascular system, the total blood flow remains constant, i.e., the
cardiac output. The reduction of the blood flow velocity in the
capillary system ensures that the red blood cells release ample
oxygen amounts to supply the surrounding tissues during their
microcirculation passage and, in addition, facilitates the essentially
balanced exchange of energy substrates and metabolic end
products between the vascular system and the tissue.

As most clearly visualized using transmission electron
microscopy (TEM), capillaries are of simple structure.
Endothelial cells (ECs) close together as the vessel wall in such a
way that a capillary lumen is formed. The abluminal surface of the
ECs is covered by a continuous basement membrane (BM) mainly
consisting of collagen type IV and other extracellular matrix (ECM)
components such as laminin, heparan-sulphate proteoglycans
(HSPGs) and nidogen/entactin (Kalluri, 2003). Pericytes (PC) are
embedded in this BM and wrap their protrusions abluminally
around the ECs. These contractile cells may influence the
capillary blood flow in many tissues and communicate with the
underlying ECs to influence the functional integrity of the capillaries
(Armulik et al., 2011; Yamazaki and Mukouyama, 2018).

The capillary phenotype is dynamic. Inflation of the ECs volume
during ischemia highlights the structural versatility of capillaries
(Egginton and Hudlická, 1999). Furthermore, the thickness of the
peri-capillary BM in human skeletal muscles increases in common
cardiovascular diseases such as peripheral arterial disease (PAD),
diabetes mellitus or arterial hypertension (Baum et al., 2020), but
decreases in response to physical activity (Williamson et al., 1996).
Strikingly, the BM thickening is accompanied by significant changes
in the pathophysiology of the capillaries (Baum and Bigler, 2016).

Sophisticated methodological approaches have been developed
in recent years that significantly improved the ultrastructural
analysis by means of TEM been applied for more than 50 years.
However and despite some simplifications (e.g., tablet-based image
analysis (TBIA) (Bigler et al., 2016)), the quantitative evaluation of
the images is still largely manually performed, posing a challenge for
the morphometric processing of large amounts of data. In addition,
the morphometry rules stipulate that the morphological features to
be assessed are defined in advance, which means that changes in the
capillary structure related to the pathophysiology could remain
undetected during the analysis due to a selection bias. In
contrast, deep learning methods such as convolutional neural
networks (CNN) are not affected by this selection bias. Instead,
the algorithm tries to find patterns in data sets to solve a pre-defined
task without observer guidance (LeCun et al., 2015; Goodfellow
et al., 2016).

We hypothesized that a deep learning-based approach with
transfer learning of open-available, pre-trained CNN allows the
identification of morphometric patterns that differ between
capillaries in muscle biopsies of healthy participants and patients
with systemic pathologies for the purpose of hypothesis generation.
Thus, the aim of the study was to train a CNN and subsequently
visualize its activation patterns to demonstrate the triggering
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morphology for the network prediction. In a second step, we
compared the results obtained applying the deep learning-based
approach with data based on classic morphometry (i.e., the
conventional method).

Methods

Study participants and muscle biopsies

For this retrospective study electron micrographs of capillaries
were used, that were taken by transmission electron microscopy on
biopsies of the vastus lateralis muscle (VL). The biopsies were derived
from human participants of five studies conducted at the Department
of Anatomy, University of Bern (Rosler et al., 1986; Suter et al., 1995),
the University of Copenhagen (Nyberg et al., 2012; Winding et al.,
2018), or the University of the sunshine Coast, Australia (Walker
et al., 2016).Written informed consent was obtained in each case prior
to the study beginning. In all investigations, the criteria and ethical
guidelines for treatment of human participants conform to the
principles outlined in the Declaration of Helsinki were fulfilled.
Each study protocol was approved by the local ethics committee
responsible for supervision at the time of study execution, as described
earlier (Rosler et al., 1986; Suter et al., 1995; Nyberg et al., 2012; Hoier
et al., 2013; Walker et al., 2016; Winding et al., 2018).

The VL muscle biopsies were taken by authorized medical
practitioners using Bergstroem needles after local subcutaneous
analgesia and immediately fixed in 6.25% (v/v) glutaraldehyde
buffered with 0.1 M sodium cacodylate–HCl (pH 7.4) to be stored
at 4°C until analysis. Ultrathin sections of the muscle biopsies were
prepared and subjected to TEM analysis to record electron
micrographs, as previously described in detail (Baum et al., 2020).

For this analysis, participants were classified as “healthy”
controls or ‘patients’ in dependence of the absence or presence of
a documented history of diabetes mellitus, PAD or arterial
hypertension. Application of these criteria resulted in 42 controls
and 28 patients, providing a total of 1810 electron micrographs of
capillary profiles. In the patient group, 9 patients had a documented
history of arterial hypertension, 10 patients had diabetes mellitus
and 9 patients had clinically relevant PAD.

Capillary morphometry

Study parameters were adopted from the original studies, i.e., lumen
radius (in nm), thickness of the endothelial cell (in nm), thickness of the
BM (in nm) as well as capillary radius (in nm). Furthermore, all study
parameters including pericyte cells were calculated as fraction of the
capillary area (in %) (Baum and Bigler, 2016).

General principle of the applied deep-
learning based method

The construction and training of a complex CNN architecture
requires a large dataset and training over a considerable period of
time, even for the establishment of general pattern recognition. To
streamline this process, we employed openly accessible pre-trained

CNN models that were trained using an extensive dataset from the
ImageNet Large Scale Visual Recognition Challenge (Deng, 2009;
ILSVRC; http://www.image-net.org/challenges/LSVRC/).
Consequently, this approach enables the utilization of a complex
network architecture even with a limited dataset. However, a
drawback of this method is the pre-defined input layer, which
requires data adjustments such as resizing to match the selected
networks. In a next step, the output layers of these pretrained CNN
are replaced to fit the new task. After the training phase during
which the CNN learns to perform the new task, its performance is
evaluated using a new dataset. Subsequently, in the final step, the
CNNs exhibiting the highest performance are subjected to
additional analysis in order to visualize the specific regions
within the images that contribute to the CNN’s decision-making
process (i.e., the trigger morphology).

Computational hardware

Network training was simultaneously performed on two
computers (Intel® Core™ i7-7700 CPU@3.60GHz, 8GB RAM
respectively Intel® Core™ i7-8550U CPU@1.80GHz, 8GB RAM)
using customized software (written in Matlab R2019b and R2020a).

Randomization, image allocation and
preparation

Initially, randomization on participant level intro training,
validation and examination data (75% respectively 25% (validation +
examination) as recommended by Goodfellow et al. (Goodfellow et al.,
2016)) was performed using a random number vector to avoid
overfitting of single participants, resulting in 52 participants in the
training group, 13 in the validation group and five in the examination
group. Electron micrographs (Figure 1 upper panel) were then plotted
in Matlab, saved as jpg-images with predefined image size (224 × 224 ×
3 pixels, Figure 1 lower panel) and stored in group-specific folders
(880 control and 930 pathologic images).

Prior to each training iteration, all training images were
randomly shuffled and processed by adding data noise to prevent
overfitting (Goodfellow et al., 2016; Trask, 2020). Therefore, the
images were randomly rotated in a range between ±45° and
translocated ±10 pixels in each direction.

Selection and preparation of the pretrained
convolutional neural networks

For this study, we applied ResNet101, a 101 convolutional layer
deep CNN developed by He et al. (He et al., 2015). ResNet101 uses a
special residual learning framework allowing the training of a deeper
and thus more accurate network compared to other network
architectures (i.e., GoogLeNet (Szegedy et al., 2014)) in terms of
diagnostic accuracy.

To prepare for the transfer learning process, the last three layers
of the networks responsible for the network prediction had to be
replaced for the new task, i.e., classification of electron micrographs
into either the control or the pathologic group. In addition, a
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dropout layer was added to prevent the network from overfitting
(Srivastava et al., 2014). The remaining layers accounting for pattern
recognition and feature extraction were not changed. General
learning rate was chosen low while the new layers received a
learning rate weight factor of 10 (i.e., 10-fold the normal learning
rate) to improve and accelerate their training process.

Training of the neural networks

Hyperparameter optimization of the transfer learning process
was performed for three parameters, i.e., learning rate, dropout
probability and minibatch size, using Bayesian optimization
technique (Bengio, 2000) and the adaptive moment estimation
learning rate algorithm, ADAM (Diederik and Ba, 2014)).
Validation of the network performance was performed every ten
iterations. Further, a preliminary termination term was added to the
algorithm, which terminated the training process when the validation
and the training performances diverged twenty times in a row.

Network performance analysis

Networks performing above the arbitrary threshold of 60%
classification accuracy (i.e (true positive + true negative)/(true
positive + true negative + false positive + false negative)) on the

validation data during the training process were stored for in-depth
evaluation with determination of diagnostic accuracy on each subset
(i.e., the validation data and the examination data) as well as the
combined data sets. Based on the results of this evaluation, the best
three networks were further evaluated with class activation mapping
(CAM) (Zhou et al., 2015; Selvaraju et al., 2017), i.e., parametric
visualization of their activation patterns to find the morphology
responsible for the network prediction using ten characteristic
electron micrographs (Supplementary Figure S2). When multiple
networks showed similar performance, the network with the
smallest discrepancy between validation and examination data
was selected.

Statistical analysis

Two study groups (“healthy” and “patients” based on the above
mentioned classification in controls or patients in dependence of the
absence or presence of a documented history of diabetes mellitus,
PAD or arterial hypertension were formed. Between-group
comparison of continuous study parameters was performed by an
unpaired Student’s t-test. Network performance was analyzed by
determination of classification accuracy (i.e., correct classified
images/all images) using a 4-field matrix and calculation of
sensitivity, specificity and F1-score (harmonic mean of sensitivity
and positive predictive value). Nonparametric receiver operating

FIGURE 1
Input data for the neural networks. Upper panels (A, B): Original transmission electron microscopy images of the human skeletal muscle capillaries.
(A) capillary of a healthy participant, (B) capillary of a patient with diabetes mellitus. Lower panels (C,D): Input images for the convolutional neuronal
networks after required adjustment of the dimension. Please note the loss of resolution. The scale was not available for the networks and later added for
better visualization. RBC = red blood cell PC = pericytes, EC = endothelial cell, BM = basement membrane.
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characteristics (ROC) analysis was performed for accuracy
assessment of differentiating between electron micrographs of
controls or patients by manually obtained study parameters
(continuous) and the CNN prediction (dichotomous).
Comparison of the area under the ROC curves was performed
using the DeLong-Test.

Statistical significance was defined at a p-level of <0.05.
Continuous variables are given as mean ± standard deviation. All
analyses were performed using SPSS version 25 (IBM Statistics,
Armonk, New York) or MedCalc for Windows, version 19.1
(MedCalc Software, Ostend, Belgium).

Results

1810 electron micrographs from 70 participants were included in
the study, among these 880 micrographs were derived from muscle

biopsies of 42 healthy control subjects and 930 from those of
28 patients. 1,347 were used for the training and 463 electron
micrographs for the performance evaluation of the CNN (Table 1).
Most of the participants were male (69%) with a mean age of 49.2
years (range 23–75 years). Of note, participants included in the patient
group were significantly older than participants in the control group
(57.6 years versus 43.9 years, p < 0.001).

Descriptive statistics

Descriptive statistics of the study parameters grouped according
to the classification “healthy” and “patients” are presented in
Table 1; Figure 2 (respectively Supplementary Table S1;
Supplementary Figure S1 for the fraction values). Overall,
endothelial cell thickness and BM thickness were significantly
different between the groups in each data set.

TABLE 1 Study parameters.

Controls Patients p-value

Overall, n 880 930 -

Lumen radius (nm) 1,589 ± 421 1.452 ± 460 p < 0.001

Thickness of the endothelium (nm) 421 ± 303 481 ± 290 p < 0.001

Thickness of the basement membrane (nm) 218 ± 69 308 ± 118 p < 0.001

Capillary radius (nm) 2,406 ± 356 2,429 ± 440 p = 0.226

Training data 691 656 -

Lumen radius (nm) 1,589 ± 427 1,443 ± 464 p < 0.001

Thickness of the endothelium (nm) 423 ± 317 485 ± 294 p < 0.001

Thickness of the basement membrane (nm) 215 ± 67 319 ± 123 p < 0.001

Capillary radius (nm) 2,400 ± 361 2,442 ± 422 p = 0.047

Validation data 159 231 -

Lumen radius (nm) 1,576 ± 407 1,459 ± 459 p = 0.012

Thickness of the endothelium (nm) 419 ± 248 456 ± 276 p = 0.190

Thickness of the basement membrane (nm) 232 ± 79 287 ± 98 p < 0.001

Capillary radius (nm) 2,425 ± 342 2,388 ± 497 p = 0.411

Examination data 30 43 -

Lumen radius (nm) 1,672 ± 352 1,558 ± 393 p = 0.212

Thickness of the endothelium (nm) 375 ± 228 524 ± 290 p = 0.021

Thickness of the basement membrane (nm) 211 ± 50 252 ± 99 p = 0.037

Capillary radius (nm) 2,452 ± 304 2,449 ± 377 p = 0.971

Validation + Examination data 189 274 -

Lumen radius (nm) 1,591 ± 400 1,477 ± 449 p = 0.006

Thickness of the endothelium (nm) 412 ± 245 469 ± 279 p = 0.030

Thickness of the basement membrane (nm) 229 ± 75 281 ± 99 p < 0.001

Capillary radius (nm) 2,429 ± 336 2,397 ± 480 p = 0.428
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Receiver-operating characteristic curves

Complete data
Using classification into controls or patients as allocation

reference, receiver-operating-characteristics (ROC) analysis of the
lumen radius showed an area under the ROC-curve of 0.592 ± 0.027
(p < 0.001; Figure 3). AUC for endothelial thickness was 0.588 ±
0.027 (p < 0.001), for BM thickness 0.743 ± 0.023 (p < 0.001) and for
the capillary radius 0.511 ± 0.027 (p = 0.419).

DeLong-Test of the ROC-curves showed a significant difference
of AUC for BM thickness in comparison to all other parameters (p ≤
0.0001). There was no significant difference between the AUCs of
the lumen radius and endothelial thickness (p = 0.844), but a
significant difference of these parameters and capillary radius
(p = 0.013 respectively p ≤ 0.001).

Validation and examination data

Using classification into controls or patients as allocation
reference, ROC analysis of the lumen radius showed an area

under the ROC-curve of 0.580 ± 0.054 (p = 0.004). AUC for
endothelial thickness was 0.574 ± 0.055 (p = 0.009), for BM
thickness 0.657 ± 0.050 (p < 0.001) and for the capillary radius
0.532 ± 0.053 (p = 0.235).

Regarding the optimum cut-off of the study parameters, a
lumen radius of 1,332 nm distinguished best between control
and patient, sensitivity 36%, specificity 80%. The best cut-off
point for endothelial thickness was 368 nm (sensitivity 58%,
specificity 88%), for BM-thickness 314 nm (sensitivity 32%,
specificity 91%) and for capillary radius 2,182 nm (sensitivity
36%, specificity 80%). Of note, lumen and capillary radius
decreased with presence of pathologies. Thus, the optimum cut-
off points for these parameters were inversely set (i.e., pathologic
below 1332nm respectively 2,182 nm). Using these thresholds
obtained in the validation and examination data, diagnostic
accuracy was calculated to allow a comparison with the CNN
(Table 2). Of note, due to missing data for all but BM data, different
(lower) diagnostic accuracies are shown than presented in the ROC
analysis. Further, absolute numbers of the study parameters are
dependent on biopsy fixation and storage and are not generally
representative.

FIGURE 2
Histograms representing the frequency distribution of the study parameters grouped by the absence or presence of systemic pathologies. The
morphometric values for the capillary structure of 880 electron micrographs from control participants (blue bars) and 930 electron micrographs from
patients (red bars) were taken from the original studies listed in Materials/Methods. They were determined using tablet-based image analysis and
represent mean ± standard deviation.
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Study parameter and network performance

Prediction of the study parameters and the three best
performing networks including their accuracy, sensitivity and
specificity are presented in Table 2. Using participant allocation
as reference for the ROC analysis, the three best-performing
networks showed a diagnostic accuracy of 79% (RN1: sensitivity
93%, specificity 92%, AUC 0.779 ± 0.023), 77% (RN2: sensitivity
88%, specificity 96, AUC 0.745 + 0.024) and 75% (RN5: sensitivity
89%, specificity 95%, AUC 0.725 + 0.025; Figure 4). By
visualization of the activation patterns on ten characteristic
electron micrographs, it could be shown that the underlying
morphology responsible for the network prediction focuses
primarily on debridement of pericytes and to a lesser extent on
the structure of the endothelium. These network activation
patterns are depicted in Figure 5, and in detail in
Supplementary Figure S2.

Comparison of study parameter and
network performance

Based on the performance of the different morphologic
parameters as well as missing data for lumen radius, endothelial

thickness and capillary radius, only a comparison with BM thickness
was performed.

DeLong-Test of the ROC-curves (Figure 4) showed significant
difference of AUCs between BM thickness and the three networks
(RN1: p < 0.001; RN2: p = 0.002; RN5: p = 0.015). Further, there was
a significant difference between the AUCs of RN1 and RN5
(p = 0.003).

Discussion

In the present project, we used a deep learning-based
approach with transfer learning of open-available pre-trained
CNN to identify morphometric patterns that differ between
capillaries in skeletal muscle biopsies of healthy participants
and patients with systemic pathologies. Our most relevant
findings were: 1. Electron micrographs of skeletal muscle
capillaries from healthy controls and participants with a
systemic pathology are more accurately distinguishable by
CNN than by commonly used morphometric analysis. 2. The
underlying morphology responsible for the network prediction
focuses primarily on debridement of pericytes and to a lesser
extent on the structure of the endothelium.

FIGURE 3
Nonparametric receiver-operating characteristic curve of the study parameters using the complete data set. Of note, all parameters but capillary
radius were higher in samples of pathologies. As consequence, the data set for capillary radius is below the reference line (dashed black line).
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TABLE 2 Prediction and performance of the study parameters and the networks.

Data Validation Data Examination Data Validation + Examination Data

Parameter True Normal Pathologic Accuracy True Normal Pathologic Accuracy True Normal Pathologic Accuracy

Predicted Predicted Predicted

Lumen radius Cut-off: ≤1332nm Normal 122 120 55.90 Normal 27 33 50.68 Normal 149 153 55.01

Pathologic 37 77 Pathologic 3 10 Pathologic 40 87

EC-Thickness Cut-off: ≥368nm Normal 86 82 56.64 Normal 22 17 65.75 Normal 108 99 57.98

Pathologic 72 113 Pathologic 8 26 Pathologic 80 139

BM-Thickness Cut-off: ≥314 nm Normal 141 155 55.64 Normal 30 31 57.53 Normal 171 186 55.94

Pathologic 18 76 Pathologic 0 12 Pathologic 18 88

Capillary radius Cut-off:
≤2182 nm

Normal 127 144 54.87 Normal 24 32 47.95 Normal 151 176 53.78

Pathologic 32 87 Pathologic 6 11 Pathologic 38 98

ResNet1:L4.4e-5_D0.69_M8 Normal 106 22 80.77 Normal 30 22 69.86 Normal 136 44 79.05

Pathologic 53 209 Pathologic 0 21 Pathologic 53 230

ResNet2:L4.8e-5_D0.32_M13 Normal 92 16 78.72 Normal 26 21 65.75 Normal 118 37 76.67

Pathologic 67 215 Pathologic 4 22 Pathologic 71 237

ResNet5:L1e-4DO51M31 Normal 82 13 76.92 Normal 25 19 67.12 Normal 107 32 75.38

Pathologic 77 218 Pathologic 5 24 Pathologic 82 242

Order according to accuracy. L = learning rate, D = dropout rate, M = minibatch size.

Of note, there were missing data for lumen radius, EC-Thickness and Capillary radius resulting in a smaller total number of cases.
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FIGURE 4
Nonparametric receiver-operating characteristic curve of the basement membrane thickness and the network predictions using the validation and
examination data. Of note, network prediction provides a dichotomous output (“healthy control” respectively “patient”), resulting in a triangular ROC-
curve. Hence, there is only one combination of sensitivity and specificity possible for each CNN. Dashed black line = reference line.

FIGURE 5
Visualization of network activation patterns of the best performing CNN (A) Capillary of a healthy participant, (B) capillary of a patient. Red regions
contributed most to the network class prediction. Hence, the electron micrograph of the patient was recognized by the debridement of the pericyte
(lower red region) and the thickness of the endothelium cell (upper red region). Of note, the scale was later added for better visualization.
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Classification of electron micrographs by
established morphometric parameters

Ever since the initial observation that certain pathologies are
associated with morphological changes of the peri-capillary BM in
skeletal muscles, there have been fundamental discussions regarding
the methodology for the quantitative determination of this entity.
Originally, the scientific debate was driven by methodological
approaches developed by two research groups. Siperstein et al.
(Siperstein et al., 1968) determined the capillary basement
membrane thickness (CBMT) by calculation the mean of
20 measurements of the distances between the abluminal EC
surface and the endomysium that do not intersect a PC profile
(”20-line measurement”). On the other hand, Williamson et al.
(Williamson et al., 1969) preferred the measurement of the CBMT at
the two sites of the capillary profile where the BM appeared smallest
(“two-minimum-point technique”). However, both morphometric
methods are characterized by a time-intensive nature and exhibit
specific technical limitations as previously discussed (Baum and
Bigler, 2016). Therefore, given the technological advancements, a
novel tablet-based image analysis (TBIA) methodology was
developed to facilitate the precise quantitative assessment of
CBMT (Bigler et al., 2016). Application of this approach allowed
not only accurate and reproducible analysis of the CBMT, but also
the assessment of numerous other structural indicators
simultaneously during the same analysis. As a result, our study
group could not only confirm the direct correlation between
hypertension, diabetes mellitus, PAD or age with CBMT (Bigler
et al., 2016), but also corroborate the favorable impact of physical
exercise on CBMT with a partial reduction (Baum and Bigler, 2016).

Application of deep-learning on
morphometric data/electron micrographs

An increasing number of research groups have applied deep-
learning based methodologies in basic science. There, its application
has spanned a wide spectrum, encompassing the identification of
gold nanoparticles in TEM images of tumor cells (Kaphle et al.,
2023), deep-learning assisted segmentation of atomic structures
(Sadre et al., 2021), and translational research involving the
correlation of deep learning-based kidney histomorphometry
with patient data (Ginley et al., 2023). The wide array of
applications underscores the versatility of this approach.
However, to the best of our knowledge, this study presents the
first application of a pretrained CNN-approach on TEM-images of
the capillary ultrastructure in human skeletal muscles.

Comparison of CNN and established
morphometric parameters

The primary finding of this study is that transfer learning of a
pretrained CNN is accurate for allocating electron micrographs of
human skeletal muscle capillaries to healthy controls or participants
with a systemic pathology. Noteworthy, its diagnostic accuracy for
this allocation is higher than the methods previously used and
established morphometric indicators for the evaluation of

capillary ultrastructure. Using parametric visualization of the
activation patterns, we could demonstrate that CNN focuses on
distinctive features of the capillary ultrastructure, in particular
debridement of pericytes.

Our findings are in agreement with the current hypothesis on
the etiology of capillary BM thickening according to Tilton et al.
(Tilton et al., 1981) and Vracko et al. (Vracko and Benditt, 1970).
Based on their observation of widespread cellular debris within the
thickened BM, they independently proposed a disturbed and
incomplete turnover of cells associated with the capillaries
including apoptosis and replacement of the degenerated cells by
new pericyte precursor cells, which then differentiate and generate a
new BM layer. Consequently, the inadequately regulated turnover of
PCs results in an accumulation of BMmaterial during each cycle. Of
note, this hypothesis would provide an explanation for the
frequently observed lamellar structure of the BM in capillary
profiles of diabetic patients (Baum and Bigler, 2016), akin to
growth rings of trees.

Despite this established hypothesis, a comprehensive
quantitative assessment of cellular debris and its correlation with
BM thickness have yet to be conducted. Hence and in light of the
recent reaffirmation of this pathophysiological explanation by the
present study, further quantitative analysis with focus on this
phenomenon are required.

Limitations

The present study has several limitations. First, the
categorization of the study participants into the distinct groups
“healthy” and “patients” introduced heterogeneity into the data.
Based on this dichotomy with its potential complexities, it is
conceivable that there exists the potential for undetected arterial
hypertension or incipient diabetes in the former group with already
initiated microvascular changes. Conversely, pathological cases
exhibiting optimal medical management may result in minimal
pathophysiological alternations. In summary, variability could
lead to a considerable degree of overlap between the groups.
Nevertheless, due to the retrospective nature of the study design,
the adjustment for these factors was not feasible.

Second, age was the only variable not accounted for by the study
design excluding relevant co-morbidities during enrollment in the
original studies. However, in a preliminary study by our research
team, we could demonstrate that most markers of capillary
ultrastructure exhibit only non-significant changes (p > 0.05)
with age, except for the basement membrane thickness. This
exception was attributed rather to an increase in age-related
comorbidities (such as hypertension and diabetes), than to the
aging process itself (Bigler et al., 2016).

Third, the utilization of transfer learning of a pretrained CNN
facilitated the implementation of networks with a high capacity for
small data. However, this advantage came at the cost of predefined
inputs. In the presented study, this constraint led to a notable
reduction in input dimensions and consequently, image
resolution. As a result, it is conceivable that nuanced
morphological patterns may have escaped detection by the network.

Fourth, the applied strategy with transfer-learning of a
pretrained CNN without further adjustments to the output is
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insufficient for the development of a diagnostic model. Therefore,
analysis of the probabilities rather than the binary output, inclusion
of the morphometric features as covariates as well as cross-
validation would be required to gain prediction stability.
Nonetheless, given that the aim of our study is to generate
hypotheses that necessitate subsequent validation, the study
design offers significant benefits in terms of its simplicity and
ease of application.

Last, application of CNN results in a “complicated interconnected
hierarchical representations of the training data to produce its
predictions” (Lundervold and Lundervold, 2019). Thus,
interpretation of these predictions remains intricate, even with the
assistance of class activation maps, which provide insight into the
general distinction procedure. In this study, the CNN exhibited an
astonishing diagnostic accuracy, surpassing that of conventional
morphometric parameters. Notwithstanding these results, the
depicted activation maps demonstrated a diffuse activation pattern
leading to indistinct predictions, which complicates the interpretation
even further. However, the CNN’s performance remained consistent
across various datasets and, importantly, the results substantiate a
biologically plausible underlying pathophysiological mechanism.

Implications

In this study, the morphometric patterns employed by the CNN
for distinguishing between TEM images of capillaries in muscle
biopsies from healthy participants and patients with systemic
pathologies were innovative, yet rooted in a plausible
pathophysiological mechanism. This underscores the feasibility of a
hypothesis-generating process using transfer learning of pretrained
CNN on a small data set employing single CPU computers. Of note,
this approach does not replace the conventional scientific method and
further studies, i.e., the quantitative analysis of pericyte debridements
across different pathologies, are required to validate the presented
findings. However, the study highlights the feasibility of the proposed
approach, making it applicable to a diverse range of
scientific problems.

Conclusion

The presented hypothesis-generating approach using pretrained
CNN distinguishes electron micrographs of healthy controls and
participants with a systemic pathology more accurately than
established morphometric analysis. Of note, in addressing this
task, the CNN primarily concentrates on debridements of
pericytes and thus, a biological plausible mechanism. Hence,
demonstrating the feasibility of the hypothesis-generating
approach in pretrained CNN on a small data set. However,
further quantitative and prospective analyses are required to
validate these findings.
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Active and machine
learning-enhanced discovery of
new FGFR3 inhibitor, Rhapontin,
through virtual screening of
receptor structures and
anti-cancer activity assessment
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Introduction: This study bridges traditional remedies and modern pharmacology by
exploring the synergy between natural compounds and Ceritinib in treating Non-Small
Cell Lung Cancer (NSCLC), aiming to enhance efficacy and reduce toxicities.

Methods: Using a combined approach of computational analysis, machine
learning, and experimental procedures, we identified and analyzed PD173074,
Isoquercitrin, and Rhapontin as potential inhibitors of fibroblast growth factor
receptor 3 (FGFR3). Machine learning algorithms guided the initial selection,
followed by Quantitative Structure-Activity Relationship (QSAR) modeling and
molecular dynamics simulations to evaluate the interaction dynamics and stability
of Rhapontin. Physicochemical assessments further verified its drug-like
properties and specificity.

Results: Our experiments demonstrate that Rhapontin, when combined with
Ceritinib, significantly suppresses tumor activity in NSCLC while sparing healthy
cells. The molecular simulations and physicochemical evaluations confirm
Rhapontin’s stability and favorable interaction with FGFR3, highlighting its
potential as an effective adjunct in NSCLC therapy.

Discussion: The integration of natural compounds with established cancer
therapies offers a promising avenue for enhancing treatment outcomes in
NSCLC. By combining the ancient wisdom of natural remedies with the
precision of modern science, this study contributes to evolving cancer
treatment paradigms, potentially mitigating the side effects associated with
current therapies.
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1 Introduction

Lung cancer, in its various forms, poses a severe global health
challenge. Accounting for approximately 85% of all lung cancer cases,
non-small cell lung cancer (NSCLC) reigns as the most prevalent form
of this malignancy (Sung et al., 2021). As per recent global statistics,
NSCLC maintains a distressingly high mortality rate, cementing its
position as one of the leading contributors to cancer-related deaths
worldwide (Siegel et al., 2024). Concurrently, the incidence rate for
NSCLC continues on an upward trend. Despite significant strides in
diagnostic technologies and therapeutic methodologies, the prognosis
forNSCLC remains bleak, with a 5-year survival rate barely reaching the
20% threshold (de Groot et al., 2018). The persistence of this grim
statistic highlights the urgency for development of more effective
therapeutic strategies in the battle against NSCLC.

A potentially promising approach in ameliorating treatment efficacy
involves sensitizing cancer cells to extant therapeutic agents. Amidst the
plethora of targets, the spotlight has recently shifted towards the
Fibroblast Growth Factor Receptor 3 (FGFR3) (Turner and Grose,
2010). FGFR3, part of the larger fibroblast growth factor receptor
family, has been implicated in numerous cellular processes, including
cell proliferation, survival, and differentiation (Wesche et al., 2011).
Recent studies suggest that modulation of FGFR3 activity could
potentially augment the effectiveness of existing treatments, such as
Ceritinib—an ALK (Anaplastic Lymphoma Kinase) inhibitor (Tang
et al., 2008; Zhang et al., 2013). Despite this promising insight,
therapeutic combinations incorporating FGFR3 inhibition to augment
sensitivity of NSCLC cells to Ceritinib remain largely unexplored.

Historically, the drug development process has heavily leaned on
experimental methodologies. Whilst these approaches have their merit,
they come saddled with a suite of limitations. For instance, these
traditional strategies often prove to be labor-intensive and time-
consuming (Munos, 2009). Moreover, their applicability to high-
throughput screening is limited, thereby underscoring the need for
more efficient methodologies (Paul et al., 2010). Enter the realm of
computational biology, which offers a more expedient alternative to
traditional strategies. With the ability to conduct in silico screenings of
expansive compound libraries, computational approaches promise
significant savings in terms of both time and resources (Ekins et al.,
2007; Green, 2008). These techniques enable prediction of interactions
between small molecules and protein targets, thus providing
preliminary insights into the potential efficacy and toxicity of
candidate inhibitors. Complementing this, molecular dynamics
(MD) simulations furnish a more granular understanding of the
behaviour of protein-ligand complexes over time, thereby enhancing
our grasp of the binding process (Dror et al., 2012; Arnittali et al., 2019).

Herein, we propose a melding of virtual screening and MD
simulations as an integrative approach to identifying prospective
FGFR3 inhibitors. Our overarching goal is to enhance the sensitivity
of NSCLC cells to Ceritinib, offering a potentially viable strategy to
circumvent the common therapeutic resistance observed in NSCLC.
This innovative methodology presents a novel angle to the design of
inhibitors, potentially paving the way for breakthrough combination
therapies for NSCLC (Brown and Toker, 2015; Colmegna et al.,
2018). By boosting the efficacy of treatment regimens, such
therapeutic strategies have the potential to significantly enhance
the prognosis for NSCLC patients, impacting a large patient
population worldwide.

2 Method

2.1 Structure relaxation

In the pursuit of FGFR3 inhibitors, structure-based
computational methodologies were employed, utilizing the
FGFR3 crystal structure (PDB code: 6LVM) in complex with
Pyrimidine Derivative 37b was selected as the receptor protein
(Kuriwaki et al., 2020). All molecular dynamics (MD)
simulations presented in this study were conducted using the
GROMACS 23.1 package (https://www.gromacs.org/). The
AMBER 99SB-ILDN (Lindorff-Larsen et al., 2010) and explicit
solvation were employed, and each system was placed in a
rectangular box of SPC water molecules with a minimum
distance of 10Å between any solute atom and the edges of the
periodic box. Counter ions were added to neutralize the total charge
of the system. The system underwent an energy minimization
process using the steepest descent method, with the maximum
set to 1000.0 kJmol−1nm−1. Subsequently, the system was
equilibrated in two steps: 1) canonical ensemble (NVT, 1ns) and
2) isothermal–isobaric ensemble (NPT, 1ns). Following
equilibration, the MD simulations were run for 500ns. To ensure
numerical stability, all bonds involving hydrogen atoms were
constrained using the default linear constraint solver algorithm
(LINCS) (Hess, 2008). The Vrescale thermostat and
Parrinello–Rahman barostat were utilized with the temperature
set at 300 K and pressure at 1.0bar, with time constants of 0.
1 and 2ps, respectively. The Particle-Mesh Ewald (PME) method
was employed to handle long-range interactions, and a 10Å cutoff
was utilized for van derWaals interactions (Darden et al., 1993). The
time step was set to 2 fs, and a snapshot was collected every 1.0 ps
The free energy landscape (Malmstrom et al., 2015) was obtained by
means of covariance matrix construction and principal component
analysis (PCA) (Campitelli et al., 2021) to explore the local
conformational landscape and return to a local energy minimum.

2.2 Protein preparation

The Schrödinger Protein Preparation Wizard was employed to
meticulously prepare the complex, involving various steps such as
adding missing hydrogen atoms, correcting metal ionization states,
enumerating bond orders in HET groups, determining ligand
protonation states and associated energy penalties, optimizing
histidine residues’ protonation states, rectifying potentially
transposed heavy atoms, optimizing the protein’s hydrogen bond
network, and performing a restrained minimization. The binding
region within the 3D receptor structure, where the Pyrimidine
Derivative 37b binds, was identified as the screening ligands’
target site, and a corresponding grid was created.

2.3 Active learning based virtual screening

Active Learning Glide will generate a receptor grid from a
prepared protein and prepare the TargetMol Natural Compound
Library, which contains approximately 190,000 compounds. All of
these compounds are available for purchase. It will also dock a subset
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of these ligands using Glide SP (Friesner et al., 2004). Active
Learning workflows train a machine learning (ML) model on
physics-based data, such as FEP+(Wang et al., 2015) predicted
affinities or Glide docking scores, iteratively sampled from a full
library using Schrödinger’s deep-learning powered QSAR platform,
DeepAutoQSAR (https://www.schrodinger.com/science-articles/
benchmark-study-deepautoqsar-chemprop-and-deeppurpose-admet-
subset-therapeutic-data). 3 iterative training rounds were set. After
all the ligands have been screened using the last model, a selection of
the top ligands will then be docked using Glide SP.

2.4 Machine learning principles
using AutoQSAR

AutoQSAR is a machine-learning algorithm provided by the
Schrödinger suite that builds and applies QSAR models through
automation (Dixon et al., 2016). In order to build a predictive model,
AutoQSAR takes the one-, two-, and three-dimensional structural
data of a molecule along with a IC50 property to be modeled as an
input. It will then compute the fingerprints and descriptors, using
machine-learning statistical methods to create a predictive QSAR
model. The process utilizes multiple regression algorithms,
including optimal subset multiple linear regression (MLR), partial
least squares regression (PLS), kernel-based least squares regression
(KPLS), and principal component regression (PCR), to construct
numerical models. The predictive accuracy of the model is evaluated
using various parameters such as ranking score, root mean square
error (RMSE), standard deviation (SD), Q2, and R2 values (de
Oliveira and Katekawa, 2018). It is worth mentioning that the
present analysis utilizes a series of Pyrimidine Derivative 37b
(Kuriwaki et al., 2020) and some clinically oriented medicines
from Drugbank for predictive model development.

2.5 Binding pose metadynamics

The metadynamics simulations employed a hill height of
0.05 kcal/mol and a width of 0.02 Å. RMSD calculations were
performed by considering a distance of 3 Å between protein
residues and ligands. Prior to the metadynamics simulations, the
system underwent preparation in an SPC water box, followed by
energy minimization, constraint application, and a gradual
temperature increase to 300 K. The last 0.5 nanoseconds of an
unbiased MD simulation served as the reference for the
subsequent metadynamics protocol.

Three BPMD scores, namely, PoseScore, PersScore, and
CompScore, were utilized to assess the stability of ligand binding.
PoseScore represented the average RMSD from the ligand’s initial
pose, where a steeper increase indicated instability in ligand binding.
A PoseScore below 2 Å was considered indicative of a stable ligand-
protein complex (Fusani et al., 2020). PersScore quantified the
persistence of hydrogen bonds (HB) during the metadynamics
simulations, with higher values indicating greater stability. Finally, the
CompScore, a composite score, was obtained by linearly combining the
PoseScore and PersScore (Jin et al., 2023). Lower CompScore values were
associated with more stable ligand-protein complexes.

2.6 Physicochemical property and medicinal
chemistry property prediction

The most promising compounds, identified through structure-
based virtual screening, underwent further evaluation using
ADMETlab 2.0 (Xiong et al., 2021). The analysis aimed to
provide valuable insights into the compounds’ pharmacokinetic
properties, bioavailability, and overall suitability as potential drug
candidates.

2.7 Molecular dynamic simulation
of desmond

In the initial phase, all-atom molecular dynamics (MD)
simulations were conducted using the Desmond module of the
Schrödinger software package. The simulations were performed
within Maestro, starting with docked complexes that were placed
in a cubic water box with a buffer distance of 10 Å. The systems were
solvated with SPC water models, and a 0.15 M NaCl salt
concentration was introduced for physiological relevance. To
maintain system neutrality, additional Na+ and Cl− ions were
included. Long-range electrostatic interactions were computed
using the particle-mesh Ewald method, while short-range van der
Waals and Coulomb interactions were cutoff at 9.0 Å.

Following solvation, the systems underwent minimization and
equilibration using the default Desmond protocol in Maestro. This
involved restrained simulations in both the NVT (constant number
of particles, volume, and temperature) and NPT (constant number
of particles, pressure, and temperature) ensembles. After
equilibration, a 100 ns MD simulation was performed in the
NPT ensemble with periodic boundary conditions. The
OPLS4 force field was employed to describe interatomic
interactions. The temperature was maintained at 300 K using the
Nosè-Hoover chain thermostat, and the pressure was kept at 1 atm
using the Martyna-Tobias-Klein barostat method.

2.8 Cell culture

Two distinct cell lines were employed for the experimentation:
A549 cells, characterized as an adenocarcinoma human lung
epithelial cell line, and BEAS-2B cells, identified as a human
bronchial epithelial cell line. These cell lines were sourced from
iCell Bioscience Inc. Located in Shanghai, China. Both A549 and
BEAS-2B cell lines have been authenticated using short tandem
repeat (STR) analysis. A549 cells were nurtured using Ham’s F-12K
(Kaighn’s) medium, while BEAS-2B cells were cultivated in
Dulbecco modified Eagle’s medium (DMEM). In both cases, the
culture mediums were supplemented with 10% exosome-depleted
fetal bovine serum (EXO-FBS-50A-1) from System Biosciences, Palo
Alto, CA, to eliminate potential interference from bovine exosomes.
Additionally, a 1% penicillin-streptomycin solution (Tianhang
Biotechnology, Hangzhou, China) was added. The cells were
incubated under controlled conditions at 37°C within a 5% CO2

atmosphere (Exosomes of A549 Cells Induced Migration, Invasion,
and EMT of BEAS-2B Cells Related to let-7c-5p and miR-181b-5p).
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2.9 Cell viability detected by CCK8

After co-cultured for 24 h, cell proliferation was detected with
CCK8 detection kit. Each well was incubated with 10 μL
CCK8 detection reagent at 37°C for 2 h. The OD value of each
well was detected with the microplate reader at 450 nm wavelength
to calculate cell viability.

3 Results

3.1 Relaxation of FGFR3 structure

During the virtual screening process, the identification of
compounds with the closest and most stable interactions with the
target is crucial to selecting potential drug candidates. Molecular
dynamics simulations of the target’s lowest energy conformation offer
valuable insights into compounds with favorable binding affinities,
providing crucial guidance for subsequent experimental screenings. To
achieve this, a 500 ns molecular dynamics simulation was performed to
explore FGFR3’s lowest energy conformation after releasing the

Pyrimidine Derivative 37b, ensuring comprehensive sampling and
equilibrium attainment for subsequent pocket-based virtual screenings.

To assess the convergence of the simulation, RMSD, Rg, and
SASA of FGFR3 were calculated. As shown in Figure 1A, during the
500 ns simulation, both the RMSD and Rg of FGFR3 exhibited
minimal fluctuations, indicating an early attainment of stability.
Regarding Figure 1A, the high RMSD observed likely results from
significant conformational changes in the FGFR3 protein following
the removal of the ligand from its binding site.While SASA showed
some dynamic changes, it oscillated around the average value after
100 ns, suggesting a continuous periodic thermal motion of
FGFR3 rather than a lack of equilibrium. Based on these
parameters, the system was considered to reach equilibrium and
achieve thorough sampling of FGFR3 after releasing the Pyrimidine
Derivative 37b.

Subsequently, Gibbs free energy was statistically analyzed during
the simulation, and a free energy landscape was constructed using
the first and second eigenvectors, as shown in the Figure 1B. Three
energy basins were identified, with the highest energy basin
corresponding to the state when FGFR3 was bound to the
Pyrimidine Derivative 37b, and the lowest energy points

FIGURE 1
Dynamic Behavior and Free Energy Landscape of FGFR3. (A) The graph displays the time-dependent dynamics of FGFR3, including RMSD and Rg
shown on the left y-axis, and SASA shown on the right y-axis. The dashed line represents the average SASA value after a sharp decrease. (B) The 3D free
energy landscape of FGFR3 is depicted, with the energy minima indicated by the red dot. A 2D projection of the landscape provides an overview of the
conformational space explored by FGFR3. (C) Resting state of FGFR3.
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distributed in the remaining two smaller-volume basins. The
transition state connecting these two states was determined.
Notably, the lowest energy point emerged at 175 ns and
remained stable until 500 ns, smoothly connecting the initial and
final states. Based on this, we concluded that the 500 ns simulation
successfully sampled FGFR3 after releasing the Pyrimidine
Derivative 37b and the lowest energy point in the free energy
landscape represented the resting state of FGFR3, as shown in
Figure 1C. Building upon this information, subsequent pocket-
based virtual screenings will be conducted.

3.2 Virtual compound screening and activity
forecasting through active learning

Machine learning and deep learning have revolutionized drug
discovery by powering applications such as structure-based virtual
screening, efficiently sifting through compound libraries to identify
potential hits, and activity prediction models leveraging molecular
features to accurately estimate compound bioactivity.

As the iterations progressed, the models consistently exhibited
improved performance, as shown in Figures 2A–C. In the initial
iteration, the coefficient of determination (R2) value was 0.55,
accompanied by root mean square error (RMSE) and mean

absolute error (MAE) values of 1.02 and 0.7, respectively.
Notably, the second iteration displayed an enhanced R2 of 0.64,
alongside reduced RMSE (0.96) and MAE (0.7) values, indicating
improved model accuracy. The third iteration showed the most
significant advancement, achieving an R2 value of 0.68. Additionally,
the RMSE decreased to 0.93, and the MAE reached 0.68, suggesting
an increasingly precise parameter prediction.

Through meticulous analysis, incorporating a comprehensive
evaluation of Docking Score, State Penalty, Ligand Strain Energy,
and MMGBSA ΔG Bind, three compounds—PD173074 (Lamont
et al., 2011), Isoquercitrin (Valentova et al., 2014), and
Rhapontin—emerged as promising candidates. A detailed list of
scores is presented in Table 1. PD173074 demonstrated
exceptional binding affinity with a Docking Score of −10.3, and
exhibited optimal receptor conformation with a State Penalty of 0,
alongside a favorable Ligand Strain Energy of 2.1 kcal/mol and a
MMGBSA ΔG Bind of −56.5 kcal/mol. Isoquercitrin also presented a
strong case, with a Docking Score of −11.1, State Penalty of 0, Ligand
Strain Energy of 9.1 kcal/mol, and aMMGBSAΔGBind of−94.4 kcal/
mol. Rhapontin, while displaying a slightly higher Docking Score
of −10.2, maintained a State Penalty of 0, a Ligand Strain Energy of
5.0 kcal/mol, and a MMGBSA ΔG Bind of −68.6 kcal/mol, ensuring
its position as a candidate of interest. These stringent criteria ensured
the selection of compounds not just with strong binding affinities, but

FIGURE 2
Active Learning-Assisted Virtual Screening and Activity Anticipation. (A–C) Three rounds of pre-training iterations for active learning docking. (D)
Distribution of screened compounds on the surface of FGFR3. (E–G) 2D interaction plots of Rhapontin, Isoquercitrin, PD173074. (H) Evaluation of
predictive performance of the QSAR model.
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also with optimal receptor conformations and stability, providing a
solid foundation for the subsequent stages of our analysis and future
experimental validation.

Then, we explored interactions between Isoquercitrin, PD173074,
and Rhapontin with FGFR3 residues, as shown in Figures 2D–G.
Crucial binding residues, such as Lys-508 (ATP-binding site) and
Asp-617 (active site), were identified. Isoquercitrin engaged
FGFR3 residues Ala-558, Ala-559, Lys-508, and Asp-635, indicating
potential modulation of the ATP-binding pocket and its vicinity.
PD173074s interactions encompassed Arg-621, Asn-562, Asp-635,
Glu-525, and Ala-558, pointing to involvement with the active site
and neighboring domains. Rhapontin’s interactions spanned Glu-525,
Asp-635, Asn-622, Arg-621, Asn-562, and Ala-558, showcasing its
adaptable binding capacity across critical regions.

Our Quantitative Structure-Activity Relationship (QSAR)
modeling efforts yielded compelling results, as shown in Figure 2H.
The training set exhibited a Q2 of 0.2402 and an R2 of 0.8980,
confirming the model’s ability to capture intricate activity
relationships within the dataset. During external validation, the
testing set demonstrated an RMSE of 0.2171 and a Q2 of 0.9069,
attesting to the model’s robustness. Furthermore, the model

demonstrated predictive prowess by estimating IC50 values for
Isoquercitrin, Rhapontin, and PD173074. The calculated
values—18.45 nM, 17.46 nM, and 11.67 nM—underscore the model’s
potential to anticipate compound activities across different chemical
entities. The notably close alignment between the predicted IC50 for PD
Compound and experimental IC50 in the RT112 cell line targeting
FGFR3 (Lamont et al., 2011) bolsters the model’s theoretical reliability.

3.3 Investigating binding mode and stability
based on md simulation analysis for
potential binding candidates

The results obtained from virtual screening required validation
through molecular dynamics simulations to assess their dynamic
behavior and interaction stability within the biological system,
providing crucial theoretical guidance for further confirmation of
potential drug candidates’ efficacy and safety in drug development.

To efficiently assess the stability of ligands in solution, we
employed binding pose metadynamics (BPMD) as an enhanced
sampling technique. By applying bias in the metadynamics

FIGURE 3
Virtual screening results rescreening based on molecular dynamics simulation. (A) Time-dependent CV RMSD Analysis of FGFR3 Complexes with
Various Compounds. (B) Time-dependent RMSD of Ligand Fit on Protein Analysis of FGFR3 Complexes with Various Compounds. (C) Time-dependent
MMGBSA of FGFR3 Complexes with Various Compounds.The solid lines of different colors represent the MMGBSA scores of different compounds
interacting with FGFR3 at each time point. The dashed lines of different colors represent the average MMGBSA scores of different compounds over
the 500 ns simulation.
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simulation, ligand poses that exhibited instability were likely to be
rarely occupied in the energy landscape, thereby exerting minimal
influence on the overall binding affinity. We performed ten sets of
BPMD simulations for the five compounds, with Pyrimidine
Derivative 37b as a reference. The results, as shown in Figure 3A,
indicated that the CV RMSD values remained below 2.5 Å for all five
compounds, whereas only Pyrimidine Derivative 37b′s PoseScore
exceeded 2 Å, suggesting that the remaining five compounds
possessed stronger and more stable interactions with FGFR3
(Allegra et al., 2021). For a detailed list of scores, refer to Table 2.

Despite conducting ten sets of simulations, the BPMD
simulation time remained relatively short. Subsequently, we
performed classical molecular dynamics simulations for the five
compounds for an extended period of 500 ns, employing Ligand Fit
on Protein RMSD and MMGBSA as reference values to evaluate the
complex from both conformational and energetic perspectives.
Ligand Fit on Protein RMSD represents the RMSD of a ligand
when the protein-ligand complex is first aligned on the protein
backbone of the reference, and then the RMSD of the ligand heavy
atoms is measured. If the observed values are significantly larger
than the RMSD of the protein, it suggests that the ligand may have
diffused away from its initial binding site.

First, we evaluated the conformational changes, as shown in
Figure 3B, which indicated that the five compounds exhibited a
similar trend of achieving preliminary stability within the first
100 ns of the simulation. However, after 400 ns,

Homoplantaginin showed a noticeable increase in RMSD,
implying a potential time-dependence in its binding to FGFR3,
and a possibility of off-target effects. Subsequently, we assessed the
energetic aspects, focusing on the four remaining compounds since
Homoplantaginin displayed potential off-target behavior. The
MMGBSA results, as shown in Figure 3C, displayed significant
fluctuations. To facilitate result analysis, we plotted the trendlines
of four groups of MMGBSA values over time. The results revealed a
clear upward trend for Gossypin, indicating a continuous decrease
in binding energy between Gossypin and the receptor. This
suggested that as the conformational adjustments continued, the
binding energy between Gossypin and FGFR3 may decrease further,
possibly leading to Gossypin dissociation from the binding pocket,
implying the possibility of off-target effects. In summary,
Isoquercitrin, Rhaponiticin, and PD173074 demonstrated a high
potential to act as FGFR3 inhibitors, both from the conformational
and energetic perspectives. Consequently, these three compounds
were chosen for further interaction analysis.

3.4 Physicochemical parameters, medicinal
chemistry parameters, and
selectivity analysis

The physicochemical parameters and medicinal chemistry
parameters of the compounds provided essential initial

TABLE 1 Binding characteristics of tested compounds.

Name Docking score Glide ligand efficiency MMGBSA dG bind Lig strain energy

Forsythoside A −16.884 −0.384 −49.03 47.778

Apigenin 7-O-(2G-rhamnosyl)gentiobioside −15.204 −0.292 −75.5 18.267

Vitexin -4″-O-glucoside −15.169 −0.361 −59.14 13.998

Kuromanin chloride −14.644 −0.458 −56.76 22.869

Xylopentaose −14.321 −0.311 −54.68 18.536

Neoeriocitrin −14.184 −0.338 −69.72 21.13

Pectolinarin −14.158 −0.322 −62.19 28.427

Isoquercitrin −13.789 −0.418 −60.55 9.111

Gossypin −13.72 −0.404 −72.69 6.723

Plantainoside D −13.697 −0.304 −72.94 19.812

Neohesperidin −13.535 −0.315 −79.03 15.221

Neodiosmin −13.367 −0.311 −75.18 14.731

YKL-05–099 −13.297 −0.309 −80.06 11.416

Desmopressin −13.228 −0.179 −64.58 32.245

Rhaponiticin −13.204 −0.44 −69.41 4.781

Luteolin-7-glucuronide −13.175 −0.399 −37.65 11.544

Homoplantaginin −13.049 −0.395 −52.66 7.762

PD173074 −12.992 −0.342 −96.31 4.589

Didymin −12.788 −0.304 −44.01 28.096

Pyrimidine derivative −14.134 −0.267 −108.12 9.293
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evaluations for drug development, aiding in the screening of
potentially drug-like compounds. The selectivity analysis also
contributed to identifying potential advantageous targets and
guiding subsequent drug optimization and development, thereby
increasing the likelihood of successful drug development.

The radar plot in Figures 4A–C illustrates the analysis of
physicochemical parameters, such as MW, TPSA, and LogP, for
the investigated compounds. Rhapontin was the only compound
that fell within the specified threshold range. The medicinal
chemistry studies presented in Table 3 showed that Rhapontin
exhibited a higher QED (Quantitative Estimate of Drug-likeness)
(Kosugi and Ohue, 2021) value, indicating its potential as a drug-like
molecule, adhering to general drug development guidelines.
Additionally, its low PAINS Alter value suggested a lower risk of
being a promiscuous compound, making it more suitable for drug
development. Moreover, the higher SA Score of Rhapontin indicated
relatively facile synthesis, which facilitated further research.

Furthermore, the higher proportion of sp3-hybridized carbon
atoms (Wei et al., 2020) in Rhapontin suggested its potential for
enhanced drug activity. Notably, the receptor selectivity analyses,
including docking scoring, ligand efficiency, and ligand strain
energy, demonstrated that Rhapontin exhibited exceptional
selectivity against FGFR3, as depicted in Figures 4E,F.

In contrast, PD173074, while displaying some drug-like
characteristics, exhibited a relatively lower QED value (Lipinski,
2004). Although it met the criteria of the Pfizer Rule, its performance
might not be as effective as Rhapontin in certain aspects. The smaller
Molar Refractivity (MCE-18) (Ivanenkov et al., 2019) value of
PD173074 suggested a smaller molecular volume, potentially
affecting interactions within the biological system. Despite having
a PAINS Alter value of 0, indicating a lower probability of being a
promiscuous compound, further investigation was still warranted.

Regarding Isoquercetin, its lower QED value indicated the
necessity for further optimization. While satisfying the Pfizer
Rule, its PAINS Alter value of 1 implied potential promiscuity,
demanding additional evaluation. Isoquercetin’s higher SA Score
indicated relatively facile synthesis, but its larger MCE-18 value
suggested it might occupy a larger volume during interactions.

3.5 Exploring ligand binding effects on
FGFR3 flexibility and interactions based om
RMSF and interaction analysis

Through molecular dynamics simulations, studying the
interactions between receptors and ligands provides in-depth
insights into the binding modes and dynamic processes of drugs
with their target receptors. This valuable information supports

FIGURE 4
Physicochemical property and selectivity of 3 compounds.(A) Radar of Isoquercitrin physicochemical property.(B) Radar of
PD173074 physicochemical property.(C) Radar of Rhaponiticin physicochemical property.(D) Docking scoring heatmap of three compounds with four
FGFRs.(E) Ligand efficiency heatmap of three compounds with four FGFRs.(F) Ligand strain energy heatmap of three compounds with four FGFRs.

TABLE 2 Dynamic interaction scores for tested compounds.

Compound
name

PersScore PoseScore CompScore

Isoquercitrin 0.577 1.172 −3.828

PD173074 0.641 1.626 −3.374

Gossypin 0.348 0.938 −4.062

Rhaponiticin 0.43 1.447 −3.553

Homoplantaginin 0.265 1.962 −3.038

Pyrimidine derivative 0.752 2.121 −1.639
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subsequent drug development, aiding in the optimization and
improvement of drug molecules to enhance their affinity and
selectivity towards target receptors, thus improving drug efficacy and
safety, and providing scientific foundations for drug development.

With this purpose in mind, we first used the RMSF of FGFR3 in
its apo state as a baseline to observe the similarities and differences in
the effects of Pyrimidine Derivative 37b and Rhapontin on FGFR3, as
shown in Figures 5A,B. Comparatively, the main differences between
the two ligands were observed in two peptide segments. Firstly, in the
region of 491–500, both Pyrimidine Derivative 37b and Rhapontin
increased the flexibility to varying degrees, with Rhapontin causing a
significantly greater effect. Secondly, in the region of 600–640,
Pyrimidine Derivative 37b did not exhibit any significant influence,
while Rhapontin slightly increased the flexibility in this area. Apart
from these differences, both ligands showed minimal distinctions in
their overall impact on FGFR3 residues and their contact frequency
with FGFR3 residues.

Regarding the contact situation with residues, as shown in
Figures 5C,D, the overall pattern was quite similar, but the
average contact frequency in the simulation was higher for
Rhapontin than for Pyrimidine Derivative 37b. For a detailed

comparison of the binding conformations of Rhapontin before
and after simulation, please refer to Supplementary Figure S1.
However, this did not appear to be due to unreasonable
conformations of the compounds inside the binding pocket
but rather an increased contact frequency with certain
residues, such as Glu-565 and Asp-635, which showed higher
interaction frequencies than Rhapontin. The upregulation of
RMSF in the region of 491–500 might not be directly related
to changes in contact frequency with Rhapontin, as neither
Pyrimidine Derivative 37b nor Rhapontin directly contacts
these residues. A plausible explanation could be that
Rhapontin does not contact residues 482 and 483, indirectly
relieving the restrictions on this peptide segment.

Subsequently, after classifying and statistically analyzing the
interactions between compounds and individual residues, we
selected residues with interaction frequencies exceeding 30%
and depicted the interaction details between these residues
and the compounds, as shown in Figures 6A–D. The
interaction statistics showed consistency with the differences
mentioned earlier, where the number of interacting residues
with Rhapontin was fewer than with Pyrimidine Derivative

TABLE 3 Medicinal chemistry of 3 compounds.

Compound name Rhapontin PD173074 Isoquercetin

QED 0.366 0.347 0.229

SA Score 3.763 3.634 4.008

FSP3 0.333 0.5 0.286

MCE-18 67.143 22 91

PAINS Alter 0 0 1

Lipinski Rule Accepted Accepted Rejected

Pfizer Rule Accepted Accepted Accepted

FIGURE 5
RMSF and Interaction Analysis. (A) RMSF changes of FGFR3 before and after binding with Pyrimidine Derivative 37b. (B) RMSF changes of
FGFR3 before and after binding with Rhapontin. (C)Dynamic changes of Pyrimidine Derivative 37b′s contacts with FGFR3 residues over time. (D)Dynamic
changes of Rhapontin’s contacts with FGFR3 residues over time.
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37b, but the interaction frequencies were slightly higher.
Furthermore, in the interaction detail plots, it was observed
that three key residues in the FGFR3 pharmacophore
relationship, Lys-508, Ala-558, and Asp-635, were reproduced
in the interaction details with Rhapontin. To further validate the

importance of these three sites in Rhapontin binding, we
conducted dynamic simulations with the three sites mutated
to Gly and assessed their impact on the binding between the
two, as shown in Figure 6E. It was evident that all three mutations
significantly affected the binding between Rhapontin and FGFR3,

FIGURE 6
Protein-Ligand Interactions and Contact Analysis of 2 Compounds. (A,B) Columnar Statistical Analysis of Interaction between Pyrimidine Derivative
37b and Rhapontin (C) ligand-protein interactions of Pyrimidine Derivative 37b (D) ligand-protein interactions of Rhapontin (E) The binding stability of the
receptor and ligand changes after Rhapontin binds to different FGFR3 mutants.

FIGURE 7
Verification of Rhapontin’s anti-tumor activity and its sensitization effect on Ceritinib. (A) The effects of different concentrations of Rhapontin on the
proliferation of A549 and BEAS-2B cells. (B) The effects of different concentrations of Ceritinib on the proliferation of A549 and BEAS-2B cells. (C) lThe
effects of different concentrations of Ceritinib on A549 proliferation before and after combined use with Rhapontin.
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demonstrating the importance of these residues in
Rhapontin binding.

3.6 Biological evaluation of rhapontin
through CCK-8 assay

In consideration of the limitations of our previous theoretical
analyses, we conducted further experimental validations on
Rhapontin. Initially, we subjected both BEAS-2B and A549 cell lines
to varying concentrations of Rhapontin and Ceritinib (0–100 μM), as
depicted in Figures 7A,B. As concentrations escalated, Rhapontin
demonstrated a concentration-dependent proliferation inhibitory
effect on A549 cells, with an IC50 of 62 μM. Despite its IC50 being
significantly higher than that of Ceritinib, Rhapontin exhibitedminimal
impact on the proliferation of BEAS-2B cells. Conversely, Ceritinib
exhibited a notable proliferation inhibitory effect on normal cells,
including instances of substantial cytotoxicity.

Considering the potential of FGFR3 inhibitors to sensitize Ceritinib,
we subsequently employed a reduced concentration (50 μM) of
Rhapontin in combination with varying doses of Ceritinib (0–10 μM,
adjusted from previous concentrations). The outcomes, as illustrated in
Figure 7C, indeed displayed an enhanced tumor inhibitory effect to a
certain extent when distinct concentrations of Ceritinib were co-
administered with 50 μM Rhapontin. This co-administration led to a
heightened sensitization of A549 cells to Ceritinib.

4 Discussion

The present study presents a systematic exploration aimed at
augmenting the efficacy of Ceritinib, a prominent
FGFR3 inhibitor, via the integration of natural compound-
derived alternatives. Our investigation embraces a
multidimensional approach, employing active learning derived
virtual screen (Ma et al., 2009), deep learning derived QSAR
modeling (Matsuzaka and Uesawa, 2023), molecular dynamics
simulations (Duay et al., 2023), and biological assays to dissect the
mechanisms underlying the potential synergy between Ceritinib
and the identified natural compounds.

The selection of natural compounds as potential drug
candidates draws attention to their inherent structural diversity
and recognized pharmacological safety (Zhang et al., 2023).
Natural products have, over the years, emerged as a wellspring
of bioactive molecules, often possessing unique chemical scaffolds
and physiological properties (Safranko et al., 2023). Notably, the
prospect of leveraging certain natural compounds as nutraceutical
agents underscores their compatibility with biological systems and
augments the overall therapeutic potential (Wang and
Wang, 2021).

Rhapontin, one of the highlighted natural compounds, presents
intriguing prospects despite its moderate inhibitory activity in
comparison to Pyrimidine Derivative 37b. This finding resonates
with the broader paradigm of molecular design, urging for
meticulous structural optimization to fine-tune both binding
interactions and inhibitory potency (Azimian and Dastmalchi,
2023). The journey toward harnessing Rhapontin’s full potential
entails a systematic exploration of its structural landscape, with a

focus on judicious modifications to enhance its binding
interactions.

The combined application of Rhapontin and Ceritinib, while
not achieving the zenith of efficacy exhibited by certain established
combination therapies, merits profound scrutiny (Krol et al.,
2023). The nuanced response could stem from intricate
intracellular interactions, wherein Rhapontin’s engagement with
alternative molecular targets competes with its interaction with
FGFR3 (Ho et al., 2014; Cascetta et al., 2022). This observation
augments the need for a rigorous dissection of these competitive
binding events, necessitating an iterative process of targeted
compound engineering (Ho et al., 2014)

5 Conclusion

This study underscores the potential of natural compound-
derived FGFR3 inhibitors to anti-cancer and sensitize Ceritinib.
The utilization of natural compounds not only diversifies the drug
discovery landscape but also accentuates their potential as
bioactive agents with intrinsic safety profiles. Rhapontin’s
modest inhibitory activity, coupled with its structural attributes,
calls for a deeper exploration to unlock its latent potential. The
observed synergy between Ceritinib and Rhapontin, albeit
nuanced, underscores the intricate cellular dynamics that
govern combination therapies. As we continue to unravel the
complexities of molecular interactions, strategic compound
engineering offers a promising avenue to enhance therapeutic
outcomes and guide the evolution of precision
medicine paradigms.
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Proteins, as the primary executors of physiological activity, serve as a key factor
in disease diagnosis and treatment. Research into their structures, functions,
and interactions is essential to better understand disease mechanisms and
potential therapies. DeepMind’s AlphaFold2, a deep-learning protein structure
prediction model, has proven to be remarkably accurate, and it is widely
employed in various aspects of diagnostic research, such as the study of
disease biomarkers, microorganism pathogenicity, antigen-antibody structures,
and missense mutations. Thus, AlphaFold2 serves as an exceptional tool to
bridge fundamental protein research with breakthroughs in disease diagnosis,
developments in diagnostic strategies, and the design of novel therapeutic
approaches and enhancements in precision medicine. This review outlines
the architecture, highlights, and limitations of AlphaFold2, placing particular
emphasis on its applications within diagnostic research grounded in disciplines
such as immunology, biochemistry, molecular biology, and microbiology.

KEYWORDS

AlphaFold2, deep learning, protein structure prediction, structural biology, disease
diagnosis

1 Introduction

AlphaFold2 (AF2), developed by DeepMind, is a modeling method that harnesses
the cutting-edge technologies of artificial intelligence and deep learning for predicting
protein structures with extremely high prediction accuracy (Figure 1). Rooted in the
principle of co-evolution within protein structures, AF2 integrates novel deep learning
approaches through the deployment of a suite of trained deep neural network models
based on MSA-Transformer, a classical neural network model. These models can
generate three-dimensional protein structures with atomic-level precision, informed by
both specific amino acid sequence data and information from homologous proteins
and multiple sequence alignments (MSAs) (Jumper et al., 2021; Yang et al., 2023). Its
outstanding performance at the international CASP14 protein structure prediction
competition showcased a significant breakthrough in both speed and accuracy, leading
to its decisive triumph (Kryshtafovych et al., 2021). The success of AF2 relies on
the accumulation of experimental data on protein structures and the comprehensive
research conducted on protein structure prediction. Additionally, the active development
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FIGURE 1
Comparison of X-ray- and AF2-predicted structures of the SLC3A1
homodimer, made using ChimeraX. The X-ray structure is depicted in
red, and the AF2-predicted structure is depicted in green. The root
mean square deviation between them was 0.333.

community surrounding AF2 ensures a constant influx of fresh
talent into the AF2 series, including updates and derivative
versions.

Proteins play a vital role in physiological processes, and
alterations in the structure and function of specific proteins
can lead to distinct diseases. Detecting changes in these specific
proteins serves as a crucial diagnostic indicator. Proteins are
also essential players in the biological functions of pathogenic
microorganisms, simultaneously driving disease and influencing
treatment strategies. Furthermore, proteins with strong antigenicity
not only act as antigens but also serve as potential targets
and essential tools in disease diagnosis. Clinical serum antibody
detection is one of the many diverse applications of these proteins.
The application of specific proteins in disease diagnosis relies on
comprehensive research into their unique functions and disease-
related changes, involving multiple fields of biology, such as
immunology, biochemistry, molecular biology, and microbiology.
Since the release of AF2, it has been widely used in various
protein research areas. For these studies, numerous excellent
reviews have thoroughly explained AF2’s multifaceted functions
in biological and medical research, demonstrating its superior
performance in predicting protein structures, analyzing mutations,
and predicting catalytic and binding sites (Bongirwar andMokhade,
2022; Paiva et al., 2022; Bertoline et al., 2023). In the meantime,
a lot of studies have demonstrated AF2’s robust and exceptional
capabilities in investigating disease-related protein structures,
functions, interactions, and proteomics. Consequently, research
findings utilizing AF2 not only facilitate the development of

diagnostic tools and therapeutic drugs, including antibodies and
antigens, but also advance our understanding of protein structures,
functions, and mutations related to diseases. This helps better
understand the impact of specific proteins on the onset and
progression of disease, leading to the development of novel disease
indicators, targets, detection tools, and treatments (Figure 2).
However, there is a lack of comprehensive reviews on AF2’s research
in the field of disease diagnosis.

This review aims to comprehensively examine the model
architecture, key features, and limitations of AF2. It performs a
deep investigation into the extensive applications of AF2 in protein-
related research across several disciplines. Finally, this paper briefly
touches upon the prospective future development of AF2 and
discusses the promotion of basic biological research using AF2 in
disease diagnosis.

2 AF2

2.1 The model structure of AF2

AF2 is DeepMind’s foremost protein structure prediction
method, distinguished by its utilization of the innovative neural
network architecture known as Evoformer. Inspired by the
MSA-Transformer (Figure 3) (Vaswani et al., 2017; Rao et al.,
2021), Evoformer combines evolutionary mechanisms, physical
principles, and geometric constraints inherent in protein
structures to yield exceptional protein structure predictions.
Evoformer, comprising two sets of MSA-Transformer-
based structures, captures information from MSAs and
features related to structural constraints between amino acid
residues. This dual-focus approach significantly enhances the
prediction quality.

At the core of AF2 lies the application of structural information
embedded in protein co-evolution (Pazos and Valencia, 2008;
Ashenberg and Laub, 2013). MSA is a bioinformatics technique
used to align three or more biological sequences, such as
proteins, DNA, or RNA. The objective of MSA is to identify
regions of similarity that suggest functional, structural, or
evolutionary relationships among the sequences. This method
arranges the sequences so that homologous residues, which
are derived from a common ancestor, are aligned in columns
(Prjibelski et al., 2019). By doing so, MSA can uncover crucial
information, including conserved sequences and mutation
events like point mutations, insertions, and deletions, and
can also help infer phylogenetic relationships. MSAs of AF2
sequences are used to extract conservation and covariation
information from protein sequences exhibiting co-evolutionary
relationships with the target proteins. By integrating this valuable
information with structural constraints between amino acid
residues, AF2 achieves high-precision and efficient predictions
of the target protein’s structure (Yang et al., 2023). Moreover,
AF2 incorporates various optimization techniques, such as
specific loss functions (Jumper et al., 2021) (e.g., frame point
alignment error loss, auxiliary loss and violation loss), a recycling
mechanism, self-distillation (Xie et al., 2020), and self-accuracy
estimation (Jumper et al., 2021), and other methods to enhance the
predictive performance of the model.
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FIGURE 2
The application of AF2 in the diagnostic strategies for disease. Containing AF2 applications in four areas, the arrows represent progressive relationships.

FIGURE 3
The comparison of MSA-Transformer and Evoformer. (A) Architecture of MSA-Transformer. (B) Architecture of Evoformer. Compared with (A), a set of
modules is added in (B) to handle paired information.
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FIGURE 4
The overall framework of AF2. It is divided into three parts: 1) the feature extraction module, 2) the encode module, and 3) the structure decode
module. The arrows represent the execution direction of each output in the runtime architecture. The outputs of the encode module and the structure
decode module are continuously optimized through the recycle mechanism.

Thecomprehensive architecture ofAF2 (Tunyasuvunakool et al.,
2021; Yang et al., 2023), outlined in Figure 4, comprises three
main modules: a feature extraction module, an encoder module,
and a structure decoding module. The input module initiates a
search for sequences homologous to the template in the sequence
database and performs MSA, which reveals similarity and co-
evolution information between the protein sequences and is
crucial for accurate protein structure predictions. Simultaneously,
the input module checks for homologous sequences with
known three-dimensional structures and constructs a pairwise
distance matrix in the protein structure database to depict
the spatial distance between each pair of amino acids. The
input module then generates MSA representations and pair
representations, which capture co-evolution information and
structural constraint features, respectively. The generated MSA
pairwise representations are fed into the encode module,
which is composed of Evoformer and infers both spatial and
evolutionary relationships between proteins using the collected
co-evolution information. In the final module, the structure
decode module, the output of the encode module is converted
into the three-dimensional structure of the target protein. The
encoding module and the structure decoding module continuously
optimize the predicted structure through the recycling mechanism
(Jumper et al., 2021; Yang et al., 2023).

2.2 Highlights and limitations of AF2

AF2 utilizes various deep learning training methods combined
with efficient search algorithms to collect information from
protein sequences and structural data, resulting in more accurate
predictions of unknown protein structures.

2.2.1 The neural network architecture adopted by
AF2

AF2 uses the Evoformer to learn features of protein sequences
and structures from different perspectives. The Evoformer consists
of two sets of MSA-Transformer-based modules, which operate
on the original MSA and pairwise information and combines a
gated mechanism and an attention mechanism to dynamically
adjust the network’s output based on the input information
(Makkuva et al., 2020). The MSA row-wise gated self-attention
mechanism enables the model to capture long-range dependencies
in amino acid sequences and protein structures, while the
MSA column-wise gated self-attention mechanism allows for
element exchange between different species. The Evoformer also
learns the geometric constraints inside protein molecules through
a triangular self-attention mechanism. The structure decoding
module is based onmethods similar toMSA-Transformer, encoding
residue geometry into a directed reference frame in three-
dimensional space (Jumper et al., 2021). AF2 also allows the model
to update and optimize its output several times throughout the
recycling mechanism to achieve better convergence and stability.

2.2.2 Databases and search algorithms adopted
by AF2

AF2 utilizes sequence data from excellent protein sequence
databases such as MGnify, Uniclust30, Uniref90, and the Big
Fantastic Database, which helps it construct high-quality MSAs
(Suzek et al., 2015; Mirdita et al., 2017; Mitchell et al., 2020).
The protein structure data are derived from widely recognized
databases, including Protein Data Bank (PDB) and PDB70/100
(Steinegger et al., 2019). Such a large amount of amino acid
sequence and structure data enables deep learning neural networks
to explore various dependencies between protein sequences and
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structures (Yang et al., 2023), helping to improve the accuracy of
AF2 prediction results. AF2 also uses several algorithms, including
JackHMMER (Johnson et al., 2010), HHBlits (Remmert et al.,
2011), and HHSearch (Steinegger et al., 2019), to significantly
improve the search efficiency.

2.2.3 The training methods adopted by AF2
The training set of AlphaFold2 consists of 75% self-distilled

data and 25% known structures from the PDB. Self-distillation
is a popular method of knowledge distillation that involves
the student model learning from the teacher model, thereby
enhancing the model’s performance and efficiency. It avoids the
complexity and time costs associated with the independent training
and optimization of the teacher model in traditional knowledge
distillation (Zhang et al., 2019; Xie et al., 2020). During the self-
distillation training phase of AF2, the model is initially trained
with data from the PDB and then predicts the structures of
approximately 350,000 protein sequences in the Uniclust database.
These predicted structures are used as data for subsequent training,
with the model being retrained on a small subset of random samples
in each training cycle. To improve the model’s generalization ability
and predictive accuracy, the training data is enhanced through a
series of data augmentation processes, including random filtering,
MSA preprocessing, and amino acid cropping. Such methods
allow the model to make more effective use of limited data and
enhance its capability to handle different protein domains and
diverse MSA data (Jumper et al., 2021).

2.2.4 The robust AF2 development community
AF2 also boasts a thriving development ecosystem, with

DeepMind and researchers in related fields continually updating
and expanding on it to meet their investigative needs. For instance,
Evans et al. modified AF2 to facilitate predictions of multi-chain
complexes, dubbing this enhanced model AlphaFold-Multimer
(Evans et al., 2022). Gao et al. built upon AF2 to devise a system,
AF2Complex, capable of predicting direct physical interactions
between multi-protein assemblies without requiring paired
MSA input (Gao et al., 2022). Wayment-Steele et al. employed
sequence clustering of protein sequences based on similarity and
subsequently applied AF2 to each cluster to predict alternative
conformations, a methodology they termed AF-Cluster (Wayment-
Steele et al., 2023). Recently, in collaboration with Isomorphic
Labs, DeepMind unveiled the latest iteration of AlphaFold,
AlphaFold3 (AF3), which, beyond predicting protein-protein
interfaces, is capable of forecasting interactions between proteins
and nucleic acids and proteins and small molecule ligands, as
well as those between antigens and antibodies (Abramson et al.,
2024).However, DeepMind is not releasing the AF3 as open source.
The multidimensional advancements surrounding AF2 showcase its
immense potential across various scientific disciplines.

2.2.5 However, AF2 lacks sufficient predictive
ability for the fine structure of proteins

A study by He et al. showed that there are significant
differences between the AF2-predicted structures and experimental
structures in many aspects, such as the assembly of extracellular
and transmembrane domains, the shape of ligand-binding
pockets, and the conformation of the transduction binding

interface (He et al., 2023).The predicted structure and relative
positioning of each domain in AF2 exhibit uncertainty, regardless
of the confidence level. This uncertainty can be attributed to
several factors (Akdel et al., 2022). One such factor is the presence
of indecipherable protein disorder regions in the X-ray data
used for AF2 training, which results in the generation of low-
confidence, disordered segments in AF2 predictions. Another factor
is that some highly confident structural domains are connected by
flexible links, leading to errors in the relative positioning of the
domains. This uncertainty introduces the possibility of inaccurate
results or identifications in structural similarity, structure of
pockets, mutational effects, or model construction. These findings
underscore the highlight of experimental research in protein
structure analysis and emphasize the need for manual inspection
and correction of AF2-predicted structures with experimental data.
Consequently, the integration of experimental data and artificial
intelligence has emerged as a potential solution to addressing these
challenges.

During our usage, we observed that AF2 failed to simulate the
natural conformation of the receptor-binding domain (RBD) of
the SARS-CoV-2 spike protein that “pops out” due to enzymatic
cleavage, regardless of whether or not a custom template was
provided. We speculate that this limitation may stem from the
development of AF2 based on protein structures in aqueous
solutions, which are unable to replicate the effects of environmental
conditions such as solvent conditions, pH, and ion strength on
protein structure (Rey et al., 2023).

2.3 Other methods of protein structure
prediction

Before the advent of AF2, the first generation of AlphaFold
(AF1) had already made significant strides in the field of
protein structure prediction by employing deep learning to
forecast the distances between protein residues. AF1 constructed
a potential of mean force based on these distances, which allowed
for the creation of highly accurate protein structures without
complex sampling procedures (Senior et al., 2020). Subsequently,
AF2 has built upon these achievements by incorporating new
neural network architectures and training methodologies. By
integrating evolutionary, physical, and geometric insights into
protein structures, AF2 has notably increased the precision of
predictions, achieving atomic-level accuracy even for proteins
without known homologous structures. In addition to AlphaFold,
this section will introduce four other protein structure prediction
models: Rosetta, RoseTTAFold All-Atom, ESMFold, and RGN2,
each with its own distinctive features and strengths (Table 1).

2.3.1 Rosetta
Rosetta (Rohl et al., 2004) is a classical de novo protein structure

prediction method based on fragment assembly, developed by the
Baker Lab at the University of Washington, which has had a
long-standing impact and wide application in the field of protein
structure prediction. The core principle of Rosetta relies on an
energy function that utilizes information from fragments of known
protein structures, assembling these fragments through Monte
Carlo strategies to simulate the natural folding process of proteins,
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TABLE 1 Features, advantages and limitations of 5 different protein structure prediction models.

Method Feature Advantages Limitations

AlphaFold2 A neural network architecture
combining attention mechanisms and
evolutionary information

1. High accuracy in protein structure
prediction

2. Continuous updates and
development

1. High computational resources
requirements

2. Homologous sequence dependence
3. Lack of fine structure prediction

ability

Rosetta Uses energy functions with fragments,
Monte Carlo strategies

High computational efficiency with low
search space

1. Limited exploration for intricate
topology proteins

2. Low-resolution energy functions

RoseTTAFold All-Atom Merges sequence-based representations
of biopolymers with atomic graph
representations of small molecules and
covalent modifications

Prediction of proteins, nucleic acids,
small molecules, metals, covalent
modifications

1. Average accuracy
2. Small training datasets

ESMFold Utilizes protein language model with
training parameters instead of MSA.

1. Faster prediction speed.
2. Efficient exploration of large-scale

protein structure space

1. Limited prediction accuracy
2. Less effective with complex structures

RGN2 Uses AminoBERT language model and
recurrent geometric network

Prediction of orphan and de
novo-designed protein structures

1. Poor prediction with sufficient
sequence homologs

2. Hard to predict beta-sheet structures
3. Limited to local dependencies

between Cα atoms

thereby generating conformations close to the native state. This
approach ingeniously transforms the continuous conformational
space optimization problem into a discrete fragment combination
optimization problem, effectively reducing the search space and
enhancing computational efficiency.

Nonetheless, Rosetta is accompanied by several drawbacks
(Simkovic et al., 2017; Kuenze and Meiler, 2019). 1) When dealing
with proteins of high molecular weight or those possessing intricate
topologies, the conformational search strategy based on fragment
assembly may fall short in thoroughly exploring the complete
conformational space. Consequently, this limitation can lead to
the omission of the globally optimal solution. 2) Employing
low-resolution energy functions, while enhancing computational
tractability, inadvertently compromises the precision in depicting
detailed interactions.

2.3.2 RoseTTAFold All-Atom
RoseTTAFold All-Atom (RFAA) is a deep learning network that

extends the capabilities of conventional protein structure prediction
(Krishna et al., 2024; Marchal, 2024). It incorporates the ability to
simulate complete biological assemblies, encompassing proteins,
nucleic acids, small molecules, metals, and covalent modifications.
RFAA merges sequence-based representations of biopolymers with
atomic graph representations of small molecules and covalent
modifications to predict the three-dimensional structures of these
biological assemblies. This enables RFAA to predict the structure
of biomolecules more comprehensively, not limited to pure protein
systems alone. In terms of protein structure prediction accuracy,
RFAA is on par with AF2.

While RFAA has an immediate effect in protein-small molecule
binding design and complex biomolecular assembly modeling, its
accuracy still needs to be further improved (Krishna et al., 2024).

The RFAA’s training set is relatively small, so larger training datasets
are needed to improve prediction accuracy for novel protein-small
molecule complexes.

2.3.3 ESMFold
ESMFold (Lin et al., 2023; Meng et al., 2023) is a protein

structure prediction method built upon pretrained language models
capable of directly generating atomic-level three-dimensional spatial
structures from a single protein sequence, eliminating the need
for multiple sequence alignments or external modeling programs.
It employs the extensive pretraining of the ESM-2 protein
language model, currently the largest with 15 billion training
parameters (Lin et al., 2023), as a replacement for MSA. The
predictive performance of ESMFold in terms of structure improved
with both the size of the language model and the comprehension
of the protein sequence, which exhibited a negative correlation with
perplexity. Notably, the prediction speed of ESMFold is one order
of magnitude faster than that of MSA-based methods, enabling
efficient exploration of large-scale protein structure space.

However, ESMFold is not without its challenges (Lin et al.,
2023). 1) The accuracy of ESMFold predictions shows a negative
correlation with the perplexity of the sequence, implying difficulty
in inferring the structure when the language model struggles to
comprehend the sequence. 2) Currently, there is a disparity in the
prediction ability of more intricate structures, such as multiple
chains or complexes, comparedwith that of AF2. Further refinement
and optimization of ESMFold are required to bridge this gap.

2.3.4 RGN2
RGN2 (Chowdhury et al., 2022) represents an innovative

approach to protein structure prediction that utilizes language
models and deep learning to directly generate three-dimensional
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structures from a single protein sequence, eliminating the need for
multiple sequence alignments or external modeling programs. The
method incorporates AminoBERT, a protein language model, along
with a recurrent geometric network to forecast the local geometry
of each residue. AminoBERT, employing a Transformer-based
architecture, captures latent structural information from unaligned
protein sequences. The recurrent geometric network predicts the
local geometry of each residue using a rotation matrix, ensuring
rotational and translational invariance and avoiding unrealistic
torsion angles. Notably, RGN2 excels in predicting the structures of
orphan and de novo-designed proteins, which traditionally poses
challenges for MSA-based methods.

Nevertheless, RGN2 exhibits certain limitations: 1) When
applied to proteins with sufficient sequence homologs to generate
multiple sequence alignments (MSAs), RGN2 underperforms
compared to AF2 which utilizes MSA for protein structure
prediction. 2) Challenges persist for RGN2 in accurately predicting
beta-sheet structures from single sequences, particularly for
orphan and designed proteins. 3) RGN2 primarily predicts local
dependencies between Cα atoms and does not directly consider
arbitrary pairwise dependencies across the entire protein structure.

3 The application of AF2 in the
diagnostic strategies for disease

3.1 AF2 in antigen research and design of
immunological tool in disease diagnosis

In clinical practice, the immunological assays based on antigen-
antibody interactions are an important method for identifying
pathogenic agents. Utilizing known antibodies or antigens, we can
detect their counterparts in test samples. Concurrently, exploring
the structure, functionality, and mutations of pathogenic antigens
deepens our comprehension of pathogen traits, supports vaccine
creation, and aids in identifying receptors that bind to pathogens.
This comprehensive strategy in immunology significantly improves
diagnostic accuracy. Presently, AF2 has been effectively employed in
a variety of research and design endeavors related to immunology.
In this section, we will explore its applications within this field.

3.1.1 Antigen structure prediction and function
analysis

AF2 is widely employed in the prediction of antigenic structures
in pathogens, analysis of the structural and functional characteristics
of antigen proteins, and assessment of the impact of antigenic
variations. For example, Hu et al. utilized AF2 to predict the novel
fold of the rotavirus glycan-binding domain, which was confirmed
through X-ray crystallography (Hu et al., 2022). Veit et al. (2022)
used AF2 to predict the structure of the Gp5/M dimer of porcine
respiratory and reproductive syndrome virus (PRRSV) and analyzed
the heterogeneity of PRRSV Gp5 signal peptide cleavage sites. Both
Fang et al. and Yang et al. employed AF2 to predict the structure of
the S protein of SARS-CoV-2 and its Omicron variant (Yang et al.,
2021; Fang et al., 2023). They investigated the impact of mutations
in the S protein on its binding arrangement and affinity to the
ACE2 receptor. Yang et al. used AF2 to create a high-precision
structural model (pLDDT>70) and compared it with experimental

data, considering the root mean square deviation (RMSD) values
and amino acid charge properties. The results indicated that the
Omicron variant affects the interaction between the RBD region
of the S protein and ACE2 without altering the interaction site.
Additionally, Fang et al. utilized ColabFold (Mirdita et al., 2022), a
protein-protein complex prediction model based on AF2, to analyze
the S protein complex with two co-receptors, AXL and LDLRAD3.
Based on the predictive complex model, they found that the binding
modes of AXL and LDLRAD3 are different: AXL binds to the NTD
region of S protein, while LDLRAD3 binds to the RBD region of S
protein, and there are competitive binding sites with ACE2. These
findings align with their experimental results.

3.1.2 AF2 in immunology-related design
There are numerous applications for immunological study in

disease diagnosis and prevention, including pathogen detection,
antibody level measurement, immune cell analysis, and vaccine
development. These tests require antibodies that can react
immunologically with the target antigen, as well as auxiliary anti-
antibodies as detection tools. AF2 and its derivative models possess
the capability to predict protein structures and protein-protein
docking. Numerous experiments have demonstrated that AF2
can accurately predict vaccine and antibody structures, as well as
optimize antibody-antigen complexes. This highlights its potential
in designing tools for immunological detection.

3.1.2.1 Antibody design
Antibodies serve as critical tools for immunological detection.

Their ability to bind to antigens largely relies on the topological
complementarity between the variable domain of antibodies and
the spatial structure of antigen epitopes (Graham et al., 2019).
Therefore, accurate identification of the antibody structure and a
precise understanding of the antibody-antigen (Ab-Ag) interface
(i.e., the antibody epitope) are essential for antibody design (Sela-
Culang et al., 2013; Guest et al., 2021; Hummer et al., 2022). Due to
the superior performance of AF2 in predicting protein structures,
it has been used in several studies to predict antibody structures
and epitopes.

There are two major obstacles in predicting antibody
structures: 1) determining the relative orientation of the heavy
chain (Vh) and light chain (Vl) domains and 2) predicting the
complementary determining regions (CDRs), especially highly
variable and conformationally diverse CDR-H3 loop structures
(Jaszczyszyn et al., 2023). Polonsky et al. achieved highly accurate
predictions of 50% of the positions within the Fab region of
222 antibodies using AF2, with an average TM-score of 0.83
for individual Vh and Vl (Polonsky et al., 2023). This not only
implies identical folding but also signifies very close proximity
between the predicted and native structures. Ruffolo et al. tested the
performance of AF2 and AlphaFold-Multimer in antibody structure
prediction (Evans et al., 2022; Ruffolo et al., 2023) and found that
AlphaFold-Multimer can accurately predict the backbone structure
of antibodies, the relative orientation of Vh and Vl, and the CDR
loop structure. For the relative orientation of Vh and Vl, they
calculated the orientation coordinate distance (OCD) (Marze et al.,
2016) of the predicted models to determine the accuracy of the
relative orientation between Vh and Vl in the predicted models. The
results indicate that the Fv (variable region of antibody) structure
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predicted by AlphaFold-Multimer has an OCD of 4.18, which is
within one standard deviation of the native structure. Moreover,
AlphaFold-Multimer demonstrated sub-angstrom accuracy in
predicting the CDR1 and CDR2 loop structures, and for CDR3,
it exhibited greater prediction accuracy and novel predicted
structures compared to many other models, demonstrating superior
performance in predicting antibodies such as the PDB identifier
7N3G. AF2 performs best in predicting the CDR structures of
nanobodies, as it considers various structural arrangements during
the training process, giving it an advantage in predicting the
secondary structures of nanobodies. Although both AlphaFold-
Multimer and AF2 can predict the structure of antibody CDRs,
their ability to predict CDR-H3 loop structures is still insufficient.
Continuous updates to AF2 may improve this issue in the future.

The advancement of deep learning methods has allowed
researchers to work toward enhancing the accuracy of antibody
epitope prediction through the integration of models that combine
sequences and structures and incorporate both local and global
features (Zeng et al., 2023). Researchers have leveraged AF2’s
remarkable monomer protein structure prediction capabilities to
forecast antibody epitopes, utilizing the predicted antibody structure
model as input data for the prediction system (Desta et al., 2023a;
Desta et al., 2023b). Desta et al. devised a method for antibody
epitope prediction known as PIPER-Map (Desta et al., 2023b).
This approach utilizes AF2 to anticipate antibody structures and
employs the docking program PIPER, which is based on fast Fourier
Transform (FFT), to perform docking between the antibody models
and antigens. The docking results are subsequently ranked for
analysis. Studies have shown that this method predicts antibody
epitope structures with excellent accuracy, with the AF2 predictions
comparable to those based on existing antibody crystal structures.
In addition, Desta et al. reviewed the advanced antibody epitope
localization software ServerClusPro AbEMap Web Server and
investigated the effectiveness of predicting antibody epitopes using
the AF2 prediction model as input (Desta et al., 2023a). The results
indicated that the antibody epitope predictions generated by AF2
were similar to those generated based on established antibody
structure templates, with improved predictive power for partial
antibody epitopes such as PDB ID 2W9D compared to X-ray
structures. Notably, the performance of AF2 for antibody epitope
prediction using existing antibody templates was inferior to that
achieved without utilizing antibody templates for prediction.

3.1.2.2 Optimization of antigen-antibody dockingmodels
Antigen-antibody binding serves as the foundation for

immunoassays and holds significant value in medical and
immunological research. However, the current challenge lies in
achieving effective antigen‒antibody docking, and a universal
solution to this problem remains elusive (Hogues et al., 2018).
Despite these obstacles, AF2 canmake robust predictions of protein-
protein binding, and it has been successfully used to predict
structural aspects of antigen-antibody docking and assess the
outcomes of the predictions.

In a study by Yin et al., the ability of AF2 to predict antigen-
antibody docking was scrutinized using over 400 nonredundant
antigen-antibody complexes (Yin and Pierce, 2024). Their
findings indicated that the their than-latest version of AlphaFold,
v.2.3, has a higher prediction success rate compared to the

previous version, v.2.2. Additionally, the updated AlphaFold
demonstrated increased efficacy in predicting nano antigen-
antibody docking, underscoring the potential of AF2 in identifying
antigen-antibody docking structures. This research emphasized
that the accuracy of AF2 can be improved by optimizing the
framework or model, enhancing sequence information within
the MSA, and establishing a positive correlation between subunit
prediction accuracy and the success rate of antigen-antibody
interaction predictions. Consequently, the modification of AF2’s
architecture, particularly the structural module, holds promise
for augmenting prediction accuracy by integrating contemporary
factors (Abanades et al., 2023; Ruffolo et al., 2023) that enhance
antibody prediction precision, potentially refining AF2’s overall
predictive capabilities.

Gaudreault et al. (2023) used AF2 to augment the predictive
accuracy of antigen-antibody docking structures, refining the
expected docking models and improving early success rates.
They employed standardized pLDDT and pTMscore (ZpTMscore
and ZpLDDT) to compute a composite score, the AF2Composite
score, which measures the confidence levels associated with these
docking models (Eq. 1). The experimental results demonstrate the
practicality, simplicity, and efficacy of this scoring method, which
is free from the constraints of a specific physical methodology and
remains uninfluenced by any subjective biases introduced during
training or calibration. Notably, the correlation between the score
and the experimentally observed docking structure strengthened
with increasing quality of the predicted docking models. For
instance, when R2 < 0.4 (indicating poor mutual correlation
between pLDDT and pTMscore), the correlation is significant only
for models of acceptable quality. For models exhibiting superior
prediction quality, the score proves instrumental in elevating the
ranking of true positives within the predictive structure, thereby
enhancing the discriminatory ability of these prediction models in
the negative/positive classification of antibody-antigen docking.

AF2Composite = ΖpLDDT +ΖpTMscore (1)

3.1.3 Vaccine design
The vaccine development for respiratory syncytial virus

(RSV) has demonstrated the importance of structure-based
vaccine design (Graham et al., 2019). Using AF2 to predict
protein structures could aid in structure-based design, potentially
overcoming difficulties faced in previous vaccine developmentwork.

Currently, various antibodies targeting the hemagglutinin (HA)
stem region have been identified as neutralizing antibodies against
influenza B virus (IBV). Therefore, vaccines designed based on HA
can broadly prevent IBV infection. Zheng et al. used AF2 to design a
hemagglutinin stem cell vaccine specific to IBV, named “B60-Stem-
8071” (Zeng et al., 2022). They used AF2 to predict the vaccine’s
structure and screened for vaccine sequences that could correctly
fold and maintain the natural conformation of the HA stem region
in prokaryotic systems. Additionally, to enhance the stability of the
HA stem region structure and improve the immune response against
HA vaccine in vivo, they rationalized and engineered the epitope
linker of the neutralizing antibody CR8071 using AF2, connecting
the optimized structure to the vaccine, allowing it to target the
CR8071 epitope.
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3.2 AF2 in biochemical studies

3.2.1 Development of auxiliary protein targets
and biomarkers

Proteins that perform crucial functions in vital life processes,
such as enzymes, receptors, and ion channels, serve as significant
targets for biochemical detection and drug therapy. While protein-
protein interaction has been identified as a new path to discover
protein targets (Liu et al., 2024), the structure and function of novel
proteins are often difficult to determine. Studying protein targets
with AF2 can not only predict the interaction between proteins
to find protein targets but can also improve the understanding
of protein structure and function, accelerate drug design, and
contribute to advances in biology and medicine. Gόmez-Marίn
et al. used AF2 to predict the structure and interaction domain of
high mobility group 20A (HMG20A) and PHD Finger Protein 14
(PHF14) and found that they form a stable nuclear complex through
coiled-coil domain interactions, identifying them as potential
protein targets (Gómez-Marín et al., 2022). It can affect important
biological processes, such as epithelial–mesenchymal transition and
the TGF and Hippo signaling pathways.

Transmembrane proteins are recognized as significant targets
in drug design. Hegedűs et al. reported that AF2 can accurately
predict the structure of transmembrane proteins, highlighting the
usefulness of AF2 in transmembrane protein studies (Hegedűs et al.,
2022). This study provides valuable information for research into
the ability of transmembrane proteins to correct structural errors,
discover new conformational states, and simulate kinetic processes.
Loring et al. used AF2 to predict the structures of different subtypes
of resistance to inhibitors of cholinesterase 3 (RIC-3) (Loring, 2022).
Based on these predicted structures, they analyzed how RIC-3
interacts with the alpha7 nicotinic receptor (α7 nAChR) subunits
and promotes the folding and assembly of the α7 nAChR into the
final conformation and subsequently proposed two possible models
for the interaction between RIC-3 and α7 nAChR.

The function of these critical proteins often relies on their
essential active residues. When the structures of these residues
change, it can lead to alterations in protein function and
concentration, which frequently preludes the onset of disease.
Several studies have utilized AF2 to gain insight into protein
function, uncover protein interactions, and identify crucial protein
active sites, contributing to the advancement of disease diagnosis.
Freeman et al. (2023) used AF2 to construct a structural model
of the nuclease Ankyrin Repeat and LEM Domain Containing 1
(ANKLE1) and analyze its key active residues. The results indicated
that themutation of each of these residues impaired enzyme activity.
ATG8/LC3 is the key protein involved in the autophagic process,
and the ATG8-interacting motif/LC3-interacting region (AIM/LIR)
facilitates the binding of ATG8 to autophagy cargo receptors and
adaptors (Fracchiolla et al., 2017). Ibrahim et al. used AlphaFold-
Multimer to analyze the spatial structure of the ATG8/LC3 protein
family and accurately predicted the pockets formed by both typical
and atypical AIM/LIR within the family (Ibrahim et al., 2023). The
functions and effects of these pockets in the autophagy pathway
were further analyzed in this way. They also utilized three pathogen
virulence factors to demonstrate that AlphaFold-Multimer could
effectively identify motifs from a variety of AIMs that bind ATG8.

Proteins can serve as molecular biomarkers and are frequently
utilized for early disease screening, diagnosis, prognosis assessment,
individualized treatment plan formulation, and prediction
of adverse drug reactions (Aronson and Ferner, 2017). The
development and screening of characteristic molecular biomarkers
are crucial for determining the specificity and accuracy of molecular
disease diagnosis (Molinski et al., 2020). Proteins with specific
modifications during disease development, along with their crucial
active residues, can serve as biomarkers of disease. Consequently,
AF2’s ability to investigate protein targets and their associated
residues could significantly contribute to biomarker development.
Zhuo et al. used next-generation sequencing (NGS) to determine the
amino acid sequences of the immunoglobulin and T-cell receptor V-
(D)-J region in bone marrow samples of 47 children with precursor
B-cell acute lymphoblastic leukemia (pre-B-ALL), and they used
AF2 to predict the protein structure based on the results (Zhuo et al.,
2023). They extracted the immunoglobulin heavy chain gene (IGH)
CDR3 consensus sequence with rod-shaped α-helix structure
similarity from the predicted protein structure as an IGH rod-
shaped tracker. They further validated the predictive value of the
IGH rod tracker using published IGH data from an additional 203
childrenwith pre-B-ALL.They found that the prognosis for children
who tested positive for NGS-IGH was poorer than that of those
who tested negative, and they also found that the protein structure
encoded by the IGH CDR3 was consistent across all NGS-IGH (+)
samples. These findings suggested that the sequence could serve as a
marker for monitoring minimal residual disease in children during
treatment.

3.2.2 Characterization of effect of mutation on
enzyme activity and the difference of enzyme
activity among different subtypes

Enzyme activity and enzyme metabolites are two crucial
markers in biochemical detection. Alterations in either can signify
changes in associated physiological indicators and the onset of
related diseases. AF2 has been widely used to study the effects
of structural differences and variations in enzyme activity and
enzymemetabolites, providing a basis for biochemical detection and
mechanism interpretation of enzymes involved in vital activities.
Aminolevulinic acid synthase (ALAS), a key regulator of catalytic
heme synthesis during the initial steps of key enzymes (Taylor
and Brown, 2022; Freeman et al., 2023), can carry a mutation in
the extended C-terminus of the erythroid isoform (ALAS2) that
impacts its ability to efficiently catalyze heme synthesis, resulting in
increased risk of X-linked protoporphyria. Hunter et al. used AF2
to study the structural differences among various ALAS variants, as
well as the mechanism by which the C-terminal extension of ALAS
controls the rate of porphyrin synthesis (Hunter and Ferreira, 2022).
They predicted the structure of six mammalian ALAS subtypes and
compared the predicted structure of ALAS1 with that of ALAS2.
They found that the CXXC motif and the heme regulatory motifs
(HRM) 4 and 5, which extend the C-terminus of ALAS, regulate
ALAS activity. Their analysis of the ALAS1 structure revealed that
the CXXC motif forms disulfide bonds in its oxidized state, causing
HRM4 and HRM5 to fold and thereby preventing their inhibitory
effect. The CXXC motif is reduced to expose HRM4 and HRM5,
inhibiting excessive heme synthesis. Furthermore, the different
positions of HRM4 and HRM5 in ALAS2 compared to those in
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ALAS1 prevent the closure of HRM4 and HRM5 at the extended
C-terminus, resulting in the inability of the cellular redox state to
regulate excessive hemoglobin concentrations.

Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental
disorder caused by de novo mutation of lysine methyltransferase
2A (KMT2A, a multidomain histone methyltransferase)
(Jones et al., 2012). Reynisdottir et al. (2022) reported that the onset
of WDSTS was closely related to the loss of the ability to recognize
and bind unmethylated CpG in the CXXC domain of KMT2A due
to variation. They used AF2 to predict the structure of various
variations in the CXXC domains and established a high-precision
classification scheme for the effects of these variations. All possible
missense variations in the CXXC domain were predicted, and the
variants were classified into three types based on the predicted
results: no effect, damage to DNA binding, or non-folding of the
domain. This allowed for the accurate determination of potential
pathogenicity and effects on function that the missense variations
in the CXXC domain have, thereby providing a reference resource
for disease diagnosis.

3.3 AF2 in molecular biology studies

3.3.1 Proteomic research
Proteomic research involves the qualitative and quantitative

study of proteins with the aim of understanding the mechanisms
by which they carry out their physiological activities and exploring
disease process and pathogenicity to guide diagnosis and novel
drug development (Hanash, 2003; Aslam et al., 2017). Technological
advancements have allowed proteomics to play a pivotal role in
disease diagnosis. By comparing protein expression and functional
changes between control and case groups, researchers can study
specific protein characteristics associated with disease. This aids
in early disease diagnosis and prognostic monitoring while also
allowing for the analysis of individual protein variations to
inform personalized diagnosis and medical treatment. However,
due to the dynamic range and large scale of the proteome,
traditional mass spectrometry methods still face challenges in
terms of data acquisition and verification. With its strong data
processing and mining capabilities (Zhang et al., 2014), AF2 is able
to predict the three-dimensional structure of single-chain proteins
as well as of protein complexes, making it particularly useful for
proteomic studies.

3.3.1.1 The function of AF2 as a proteomic tool
Functional proteomics is the study of protein-to-protein or

protein-to-nucleic acid interactions in a specific time and space,
focusing on a functional subgroup of proteins within a cell. AF2
has been widely used in functional proteomics research due to
its excellent predictive speed and accuracy, enabling large-scale
research and cluster analysis of protein functions (Huang et al.,
2023). By searching for proteins containing the Z-DNA/Z-RNA
binding protein (Zα) domain in the AF2 predictive structure
database, Bartas et al. identified 185 proteins that may bind
to Z-DNA/Z-RNA and play an important role in a variety of
cellular processes (Bartas et al., 2022). Huang et al. (Huang et al.,
2023) selected 15 genes with a length greater than 100 bp from
the deaminase family, predicted their structures, and compared

them with those in the AF2 database. Based on the comparison
results, a similarity matrix was generated, and a structure tree was
constructed to perform a cluster analysis on the deaminase family to
elucidate the structural and functional differences among different
deaminases within the family. Al-Masri et al. (2023) analyzed
known protein kinase structures in the AlphaFold protein structure
database to predict the specific structures of several protein kinases,
subsequently using Smina to perform molecular docking on protein
kinase crystals matching the protein kinase structure to evaluate the
effectiveness ofAF2 in virtual filtering.The results show thatAF2 can
effectively simulate kinase active sites that are highly characteristic
of conformational states, providing a foundation for the study of
protein kinase pathogenicity and the development of new drugs
based on kinase active sites.

3.3.1.2 Establishment of protein database
AF2 provides a high-quality and efficient method for generating

and analyzing large-scale protein structure databases, which is
crucial in proteomic research (Domon and Aebersold, 2006;
Fremdling et al., 2022). The construction of a protein information
database is an essential step that significantly increases the speed of
protein identification and the development of mass spectrometers.
AF2 can be used to construct large-scale protein structure databases,
providing rich and reliable protein structure resources for proteomic
research and facilitating the establishment of relevant datasets for
mass spectrometers. Varadi et al. created a comprehensive, open
access database of high-accuracy protein structure predictions
(Varadi et al., 2022). AlphaFold database contains a considerable
number of high-accuracy protein structure prediction models,
offering valuable resources for biological research. Hekkelman
et al. used small molecules and ions in experimentally determined
protein structures to “transplant” the protein model in the
AlphaFold protein structure database, thereby establishing the
AlphaFill database (Hekkelman et al., 2023). The database contains
12,029,789 “transplant” results of 995,411 AF2 models, providing
relevant validation indicators and visual interfaces, enriching model
information in the AlphaFold database, and offering researchers
clues to new protein function hypotheses. Consequently, AF2 can
deliver high-quality and efficient generation and analysis methods
for the construction of large-scale protein structure databases,
providing more possibilities for proteomic research and mass
spectrometer development.

3.3.2 AF2 in the study of missense mutation on
protein structure and function

Missense mutations can serve as biomarkers in clinical
molecular biology tests. These mutations may alter the amino acid
sequence and structure of proteins, thereby affecting their function
and pathogenicity. Many studies have utilized AF2 to predict and
compare the structures of normal and mutated proteins, thereby
revealing the mechanisms and effects of missense mutations.

Wang et al. (2023) reported a novel mutation in the lysosomal
membrane structural protein (LAMP2) gene and used AF2 to
predict the three-dimensional structures of wild-type and mutant
LAMP2. They found that the mutant LAMP2 is composed of
only six amino acids and that it is unable to form functional
peptides or proteins, confirming that LAMP2 deficiency is caused
by this mutation. The LMNA gene encodes the lamin A/C protein,
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which is involved in the construction of nuclear membranes, and
mutation of LMNA results in a series of lamin diseases. Chang et al.
(2023) used AF2 to predict the spatial structure of the lamin
A/C mutant protein and found an interruption in the alpha-helix
region. They used this protein structure to visualize the impact
of the mutation on protein morphology and interaction compared
to the wild-type protein. Finally, they used AF2’s predictions
to elucidate the mutation’s pathogenicity at the protein level,
revealing the function of different protein domains and potential
therapeutic targets.

Despite great progress in AF2’s ability to predict the structure of
mutant proteins, some researchers have pointed out the limitations
of AF2 in predicting the impact of missense mutations on protein
stability. Buel et al. emphasized these limitations by comparing AF2-
predictedmodels ofwild-type andmutant structures of three protein
domains to the experimentally determined structures of the wild-
type proteins (Buel and Walters, 2022). This comparison revealed
that the predicted models did not accurately reflect the structural
changes and functional losses induced by the mutations. To address
this issue, researchers have developed AF2 prediction models to
deduce the structure and stability of proteins after mutation. For
example, Iqbal et al. developed a predictive model, protein stability
(PROST), that can estimate the changes in protein stability caused
by single-point missense mutations (Iqbal et al., 2022). In two blind
test datasets, PROST outperformed the other models in terms of
predictive performance, achieving the highest Pearson’s correlation
coefficient and the lowest root mean squared error. This indicates
that PROST has good accuracy and can serve as an important
tool in the prediction of the three-dimensional structure of mutant
proteins. Cheng et al. developed a model based on AF2, called
AlphaMissense (Cheng et al., 2023), that was fine-tuned based on
AlphaFold 2.3.0 using human and primate variant frequency data as
weak labels and avoiding circularity arising from the use of manual
annotations. AlphaMissense can simulate all possible single amino
acidmutations and can distinguish 89%ofmissense variants as likely
pathogenic or likely benign.

AF2 not only predicts the structural changes in proteins
resulting from missense mutations but also analyzes the impact of
these changes on protein function. It generates various models to
predict the stability changes caused by missense mutations and the
likelihood of pathogenicity. AF2 therefore plays a crucial role in
missense mutation research—it can not only explain the pathogenic
mechanisms of missense variants but can also identify missense
mutations with potential clinical significance, providing biomarkers
for disease diagnosis.

3.4 AF2 in pathogenic microbiology
research

Pathogenic microorganisms play a crucial role in laboratory
disease diagnosis. Factors such as biological characteristics, drug
resistance, and variant typing all affect the pathogenicity of
microorganisms, the symptoms of disease, and the effect of drug
treatment. For example, the major resistance mechanism in MRSA
is via the acquisition of the gene mecA, which encodes the protein
PBP2a. MecA, however, has a significantly low affinity for β-
lactam, which makes all currently available β-lactam drugs largely

ineffective for the treatment of MRSA (Peacock and Paterson,
2015). The key proteins involved in the pathogenic process of
microorganisms are also important targets for drug development
and screening.

Traditional laboratory diagnostic methods for pathogenic
microorganisms (Rajapaksha et al., 2019) include culture and
isolation, biochemical and serological detection, and immunological
and nucleic acid assays. However, these methods have significant
limitations, such as extended diagnostic time, low detection
rate, inability to fully interact with in vivo infections, and
inability to culture certain microorganisms. The advancement
of cutting-edge biological theories and technologies, such
as mass spectrometry (Schubert and Kostrzewa, 2017) and
molecular diagnostics (Lai and Stayton, 2015; Visconti et al.,
2017; Yasemin et al., 2019), coupled with the progress of artificial
intelligence (Jumper et al., 2021; Tunyasuvunakool et al., 2021),
makes it possible to examine clinical pathogenic microorganisms
based on studies of the structure, function, and distribution of
microbial proteins. To date, many studies have used AF2 to
determine the pathogenicity, microbial resistance, and potential
drug targets of microorganisms.

3.4.1 Study of pathogenic substances
Considering its direct impact on clinical manifestations and

disease progression, studying the pathogenicity of microorganisms
is key to revealing the core pathogenic mechanisms and promoting
the identification and targeted treatment of pathogens. Use of
AF2 in the in-depth analysis of the structural and functional
properties of these key proteins that considers the composition
of a variety of pathogenic proteins and biomolecules is driving
the rapid development of the detection and treatment of
pathogenic microorganisms. With the assistance of AlphaFold-
Multimer, Le et al., 2023 predicted the structural model of
the outer membrane lipoprotein Tle3, its cognate immune
protein Tli3, and their immune complexes of adhesively invasive
Escherichia coli (AIEC) and optimized themodel throughmolecular
replacement. They found that a β-lamellia stacking region in the
C-terminal extension domain of Tli3 intercalates into the active
cleave of Tle3, suggesting that Tli3 physically blocks Tle3 from
contacting its substrate and thereby inhibits its phospholipase
A1 activity. They used similar methods to predict the mode
of interaction between Tle3 and VgrG, a protein constituting
the spinous process of the type VI secretion system, and found
a potentially specific interaction between the N-terminal loop
of Tle3 and the C-terminal transthyretin-containing domain of
VgrG. This provided vital structural and biochemical information
for understanding the function and mechanism of type VI
secretion system effectors and immune proteins in AIEC, which
is of great significance for revealing the pathogenesis of AIEC
and identifying new therapeutic targets. These findings will
aid in the development of new anti-AIEC drugs or diagnostic
reagents, thereby enhancing the efficiency and accuracy of clinical
microbiology.

3.4.2 Assessment of genetic relationships and
variability

AF2 has been used to analyze the differences in the protein
structures of various strains or phages and evaluate their
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genetic relationships and variability. This has proven beneficial
for the classification and identification of different species
of microorganisms, providing a reference for epidemiological
surveillance and control. Goulet et al. employed AF2 to predict
three-dimensional models of the components of the adhesion
apparatus of two bacteriophage types, OE33PA (Jaomanjaka et al.,
2018) and Vinitor162 (Philippe et al., 2020), that infect Oenococcus
oeni (Goulet andCambillau, 2021). Based on the known architecture
of the phage adhesion apparatus, a topological model was
reconstructed. OE33PA possesses an evolved distal tail protein
(Dit) (Veesler et al., 2010) and an exotic receptor-binding protein
(RBP), composed of two domains similar to the RBPs of different
phages, and forms a chimeric structure. By contrast, Vinitor162
has a long tail-associated lysozyme protein (Tal) that is rich in
carbohydrate-binding modules (CBMs). This finding suggests
distinct infection mechanisms between OE33PA and Vinitor162:
OE33PA employs a dual binding strategy involving its Dit-CBM
and RBP head domain to engage receptors on the host cell wall for
entry, whereas Vinitor162 utilizes a multipoint attachment mode
through its Tal-CBM and RBD to infect host cells by interacting
with receptors on the host cell wall. Monzon et al. used AF2 to
predict structures lacking known adhesion domains in more than
6,500 credible fibrillar adnexins and identified 24 potential novel
families of adhesion protein domains, 15 of which showed structural
similarity to known adhesion domains. This contributes to the
discovery of novel bacterial interaction mechanisms (Monzon and
Bateman, 2022).

3.4.3 Research on drug resistance
AF2 can be used to predict mutation-induced changes in the

protein structure of microorganisms as well as unreported protein
structures, thereby assisting in the analysis of microbial resistance
mechanisms. Multidrug-resistant Acinetobacter baumannii (A.
baumannii) is one of the leading pathogenic causes of severe
nosocomial infections. A. baumannii CipA has been identified as a
plasminogen-binding and complement-inhibitory protein that plays
a significant role in its immune evasion process. The use of AF2
in the structural prediction of CipA aptly explained the results
obtained from several CipA variants (Ries et al., 2022). According
to the structural prediction of AF2, replacing the glutamic acid (E)
at position 360 with a proline (P) will induce a significant structural
change in the C-terminal region of the DUF4377 domain, and the
hydrogen bond pairing of the adjacent β-fold is completely lost.
This change greatly inhibits the ability of CipA to interact with
complement factor I, which will provide potential targets for new
therapeutic interventions.

Some researchers have also successfully predicted unresolved
structures using AF2. Willems et al. used the AF2 algorithm to solve
domain structures that were not resolved in the previously reported
Plasmodium falciparum Chloroquine Resistance Transporter
(PfCRT) protein 7G8 isoform cryo-EM structure (Willems et al.,
2023). When cryo-EM was used to analyze the 7G8 isoform of
PfCRT, many of the N- and C-termini, as well as the cytosolically
disposed “loop 2” connecting TM helices 2 and 3, were not
resolved, presumably due to masking by bound F’ (ab) (a type
of incomplete F (ab) fragment) used in solving the cryo-EM
structure and/or the intrinsic flexibility of these regions. They then
performed energy minimization through Monte Carlo molecular

dynamics simulations, revealing additional structures for the
previously unresolvedN- andC-termini.These results are crucial for
understanding the structure and function of PfCRT, the mechanism
of chloroquine resistance, and the development of novel second-
tier drug therapies active against chloroquine-resistant malaria. The
above examples further highlight the significant application and
value of AF2 in biomedical research.

3.4.4 Design of drug targets
In recent years, the emergence of drug-resistant strains has

gradually diminished the therapeutic effect of antibiotics on
pathogenic microbial infections (Davies and Davies, 2010). To
address these new challenges in anti-infection treatment and
drug screening, some studies have employed AF2 to study
the structure and function of proteins related to pathogenic
microorganisms. This has advanced research on potential drug
targets, the development of antibacterial drugs, and the screening
of drugs and antimicrobial peptides. Madi-Moussa et al. used
AF2 to predict the structure of Lacticaseicin 30, a rare gram-
positive bacteriocin that inhibits gram-negative bacteria (Madi-
Moussa et al., 2022). They found that it primarily consists in the five
helical segments and contains regions and amino acids involved in
anti-gram-negative activity. By studying the antimicrobial activity
of a series of shortened variants or those containing point
mutations in the five helical segments, they mapped these regions
and the amino acids involved in inhibition. These experiments
showed that at least two helical segments of the N-terminal
region are required for Lacticaseicin 30 inhibition of gram-
negative bacteria, which will aid in the design of additional
Lacticaseicin 30 variants as potential drugs treatments of gram-
negative bacterial infection. Alotaibi et al. screened a series of drug
target proteins against Vibrio by gene alignment and used AF2 to
predict the three-dimensional structure of 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase, a drug target protein
(Alotaibi et al., 2023). Furthermore, some effective inhibitors were
identified through virtual screening (Panwar et al., 2024) and
molecular docking studies (Pinzi and Rastelli, 2019), and their
binding stability with target proteins was verified using molecular
dynamic simulations (Koirala et al., 2024).

4 Conclusion and future perspectives

Proteins play a crucial role in disease diagnosis. They
serve as diagnostic indicators and detection tools, contributing
to accurate diagnosis, disease prevention, and personalized
medicine. AF2, a deep learning-based protein structure
prediction model, achieves remarkable accuracy and rapid
protein structure predictions through its unique principles and
architecture. As such, it has applications in diverse areas of
protein research (Yang et al., 2023).

AF2 significantly contributes to disease diagnosis by predicting
antibody structures for immunological tests and vaccines, verifying
antigen-antibody affinity, and aiding in diagnostic tool design. It’s
used to predict structures of disease-related proteins, enhancing
our understanding of their structural, functional, and activity
changes. These insights form the basis for improving diagnosis,
prevention, and treatment. AF2 also analyzes key enzyme variations
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during disease progression, establishing diagnostic criteria.
It supports proteomic data analysis, database creation, and
research. Additionally, AF2 assesses missense variation impacts,
aiding in biomarker design. It studies pathogenic substances’
functions, drug resistance, and classification by microorganisms,
aiding in accurate infection diagnosis and drug target
development.

AF2 is highly adaptable and presents with unlimited
potential for extensive application in several biological fields.
Various prediction models based on AF2 with expanded
functions have emerged, examples of which include AlphaFold-
Multimer (Evans et al., 2022; Yin et al., 2022; Ibrahim et al., 2023),
AF2Complex (Gao et al., 2022), ColabFold (Mirdita et al., 2022),
and AlphaMissense (Cheng et al., 2023). Future versions of
AlphaFold may prioritize the optimization and refinement of
its architecture to enhance its predictive ability and broaden its
functionality (Abramson et al., 2024), for example, with revamped
diffusion-based architecture, AF3 has transcended the capabilities
of its predecessor by not only predicting protein structures with
higher fidelity but also accurately modeling a diverse array of
biomolecular complexes. However, it is important to note that AF3 is
currently not available as an open-source tool. With the continuous
development and in-depth research of AF2 and its derivatives,
they are expected to provide broader assistance in theoretical
research and direct application in disease diagnosis in the future,
becoming more powerful and effective tools for disease diagnosis.
We have some ideas, for instance, AF2 can predict the structures and
binding interfaces of antigens and antibodies, making it invaluable
to the design of immunological assays and detection tools. It
can also be utilized to reverse design corresponding antibodies
or antigens with high affinity based on the predicted structures.
Using AF2’s reverse network, protein sequences corresponding
to the designed structures can be predicted (Goverde et al.,
2023). Moreover, AF2 can integrate with sequencing technologies
to not only detect pathogenic genes but also predict the
pathogenic potential of mutations and their impact on biological
activities.

During the paper-writing process, we encountered numerous
applications of deep learning predictive models such as
IgFold (Ruffolo et al., 2023), DeepAb (Ruffolo et al., 2022), and
ImmuneBuilder (Abanades et al., 2023). These examples underline
the evolving landscape of disease diagnosis, where deep learning
models, driven by artificial intelligence, have the potential to
facilitate the design of swift and convenient researchmethodologies.
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Russia, 2R. M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation,
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The Dicer protein is an indispensable player in such fundamental cell pathways
as miRNA biogenesis and regulation of protein expression in a cell. Most
recently, both germline and somatic mutations in DICER1 have been identified
in diverse types of cancers, which suggests Dicer mutations can lead to
cancer progression. In addition to well-known hotspot mutations in RNAase
III domains, DICER1 is characterized by a wide spectrum of variants in all the
functional domains; most are of uncertain significance and unstated clinical
effects. Moreover, various new somatic DICER1 mutations continuously appear
in cancer genome sequencing. The latest contemporary methods of variant
effect prediction utilize machine learning algorithms on bulk data, yielding
suboptimal correlation with biological data. Consequently, such analysis should
be conducted based on the functional and structural characteristics of each
protein, using a well-grounded targeted dataset rather than relying on large
amounts of unsupervised data. Domains are the functional and evolutionary
units of a protein; the analysis of the whole protein should be based on
separate and independent examinations of each domain by their evolutionary
reconstruction. Dicer represents a hallmark example of a multidomain protein,
and we confirmed the phylogenetic multidomain approach being beneficial for
the clinical effect prediction of Dicer variants. Because Dicer was suggested to
have a putative role in hematological malignancies, we examined variants of
DICER1 occurring outside the well-known hotspots of the RNase III domain
in this type of cancer using phylogenetic reconstruction of individual domain
history. Examined substitutions might disrupt the Dicer function, which was
demonstrated by molecular dynamic simulation, where distinct structural
alterations were observed for each mutation. Our approach can be utilized to
study other multidomain proteins and to improve clinical effect evaluation.

KEYWORDS

Dicer1, variant of uncertain significance, variant effect prediction, gene evolution,
oncology, molecular dynamics
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1 Introduction

Dicer1 is a double-stranded RNA (dsRNA) endoribonuclease
playing a central role in short dsRNA-mediated post-transcriptional
gene splicing. It is responsible for cleaving naturally occurring long
dsRNAs and short hairpin pre-microRNAs (miRNA) into 21–23-
nucleotide-long fragments with a two-nucleotide 3′ overhang,
producing short interfering RNAs (siRNA) and mature microRNAs
(miRNAs) (Ha and Kim, 2014; Yang and Lai, 2011; Foulkes et al.,
2014). These small RNAs serve as guides that direct the RNA-
induced silencing complex (RISC) to complementary RNAs for its
degradation or translation prevention. Gene silencing mediated by
siRNAs (RNA interference) controls the degradation of exogenous
RNA along with the elimination of transcripts from mobile
and repetitive DNA elements triggered by endogenous loci
that affect gene expression and genome organization (Wilson
and Doudna, 2013; Okamura and Lai, 2008). Thus, Dicer1
plays a key role in the overall protein translational control
within the canonical miRNA biogenesis pathway (Fabian and
Sonenberg, 2012).

Advances in understanding the genetic and molecular
functions of Dicer1 have led to new insights into its role in
cancer progression (Robertson et al., 2018; Caroleo et al., 2021;
Vedanayagam et al., 2019). Mutations in the DICER1 gene were
associated with a predisposition to multiple cancer types—the
DICER1 syndrome—which is characterized by disrupted miRNA
biogenesis and processing with subsequent disruption in the control
of gene expression (Hill et al., 2009). Missense mutations associated
with DICER1 syndrome were reported in various types of tumors:
endocrine tumors, pleuropulmonary blastoma, cystic nephroma,
rhabdomyosarcoma, multinodular goiter, thyroid cancer, ovarian
Sertoli–Leydig cell tumor, neuroblastoma, and other neoplasias
(Robertson et al., 2018). More than four thousand DICER1 variants
are available in the ClinVar database, which makes it the 19th most
frequently mutated gene according to this database. Nearly half
of the reported variants (2140) have unknown clinical effects, and
the overwhelming majority of these are represented by missense
mutations (Vogelstein et al., 2013).

Recent studies highlight the significance of miRNA biogenesis
genes in hematological malignancies that are under mutational
pressure during tumor progression. In particular, the downregulated
expression of DICER1 was revealed in mesenchymal stem cells
(MSCs) from myelodysplastic syndrome patients (Santamaría et al.,
2012). Furthermore, selective deletion of theDICER1 gene inmurine
mesenchymal osteoprogenitors induces markedly disordered
hematopoiesis with several MDS features, indicating the crucial
role of this gene in mesenchymal “stroma” as a primary regulator
of tissue function (Raaijmakers et al., 2010). Recent analysis of
MDS clinical data revealed the high mutational burden in both
miRNA processing genes and their association with common MDS
mutations (Moiseev et al., 2021). Therefore, functional classification
of variants that are currently listed as variants of uncertain
significance is critically important for a fundamental understanding
ofDICER1 functions as well as its role in cancer and utility in clinical
diagnostics.

In this study, we evaluated the evolutionary history of Dicer1
and presented a multiple sequence alignment of Dicer1 orthologs

TABLE 1 Dicer domains.

Name (annotation rule) Start End

Helicase ATP-binding domain (PRU00541) 51 227

Helicase C-terminal domain (PRU00542) 433 602

Dicer double-stranded RNA-binding fold domain
(PRU00657)

630 722

PAZ (PRU00142) 891 1,042

RNase III (PRU00177) 1,276 1,403

RNase III (PRU00177) 1,666 1,824

Double-stranded RNA-binding domain (PRU00266) 1,849 1,914

suitable for the interpretation of variants observed in this gene. We
also show that some evolutionarily intolerable variants negatively
affect the structural stability of Dicer1.

2 Materials and methods

2.1 Homology study

We carried out a BLAST search of the human Dicer protein
(isoform 1, accession number NP_001258211.1) against the NCBI
RefSeq protein database (Altschul et al., 1990; O’Leary et al., 2016).
The resulting hits were sorted by E-value, and the first 1,387
sequences, consisting of Dicer1 proteins, a known outgroup—insect
Dicer2, and a number of similar proteins were aligned using the
MAFFT algorithm v7 (Katoh et al., 2002).Themaximum-likelihood
tree was inferred from the acquired multiple sequence alignment
(MSA) using iqTree utility v2 (Minh et al., 2020) with the LG
+ R10 model resolved by ModelFinder (Kalyaanamoorthy et al.,
2017). Branch support was assessed with ultrafast bootstrap
approximation [UFBoot (Minh et al., 2013; Hoang et al., 2017),
1,000 replicates].We selectedDicer1 proteins from the tree, omitting
Dicer2 paralogs, and generated a full-sequence MSA using MAFFT.
Sequences with ambiguous amino acids were removed from the
MSA, and misaligned amino acids were masked manually by
observing the proximities of insertions and deletions in aligned
sequences.

2.2 MSA refinement

Domain coordinates were obtained from PROSITE
(Table 1) (Sigrist et al., 2013). Based on these coordinates,
Dicer1 MSA was split into MSAs of its domains and non-
domain subsequences, including interdomain, initial, and
terminal sections that do not belong to any domain. All 15
subsequent MSAs were realigned by MAFFT, and then erroneous
and incomplete sequences were discarded. Finally, the full-
length Dicer1 MSA was assembled.
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2.3 Selection of mutations for analysis

The missense mutations of DICER1 in hematological
malignancies were obtained from the COSMIC database (https://
cancer.sanger.ac.uk/cosmic) (Tate et al., 2018) by filtering the
variants in hematological and lymphoid tissues. Variants located
in Dicer1 domains but not in RNase III were analyzed.

2.4 Protein structure modeling

All stages of protein modeling and analytical calculations
were performed using the Schrödinger molecular modeling suite
(version 2021-1) (Schrödinger, LLC, New York, NY, 2021). A Dicer
full-length 3D-structure PDB ID AF-Q9UPY3-F1 predicted by
AlphaFold (Jumper et al., 2021) was selected from the UniProt
database (UniProt IDs Q9UPY3) (https://www.uniprot.org/).
To ensure the AlphaFold structure was reliable and accurate,
we performed the topological similarity analysis by TM-score
calculation (Xu and Zhang, 2010) with the experimental Dicer
structure: the TM-score was 0.8053 compared with 5ZAK for the
Dicer model (Liu et al., 2018). The quality of the Dicer structure was
tested and preprocessed in the Protein Preparation Wizard (PPW)
(Madhavi Sastry et al., 2013). Detected problems and additional
loop refinement were resolved in the Prime package (Jacobson et al.,
2004). No problems were reported in the processed protein
structure.

2.5 Molecular dynamics (MD) simulations

MD simulations were performed using the Desmond package
(Bowers et al., 2006).TheMD systemwas set up in “System Builder”
inMaestro as follows: theTIP3Pwatermodel (Jorgensen et al., 1983)
was used to simulate water molecules; the buffer distance in the
orthorhombic box was set at 10 Å; a recalculated amount of Na+/Cl-
ions were added to balance the system charge and placed randomly
to neutralize the solvated system; additional salt was appended
for final concentration 0.15 M in order to simulate physiological
conditions.

Molecular dynamic simulations were conducted with the
periodic boundary conditions in the NPT ensemble class using
OPLS3e force field parameters (Harder et al., 2015; Roos et al.,
2019). The temperature and pressure were kept at 300 K and 1
atmospheric pressure, respectively, usingNosé–Hoover temperature
coupling and isotropic scaling (Nosé, 1984). The model system
was relaxed before simulations using Maestro’s default relaxation
protocol, which includes two stages of minimization (restrained and
unrestrained), followed by four stages of MD runs with gradually
diminishing restraints. MD simulations were carried out with
100 ns and 300 ns runs and recording the trajectory configurations
obtained at 50 ps intervals.

2.6 Protein site-specific mutagenesis

Initially, the preprocessed and refined structure of wild-type
Dicer was relaxed by MD simulation for 100 ns in order to obtain

the relaxed systemwithminimized energy.The recorded trajectories
were clustered, and the total energies of the representative structures
were calculated in Prime (selected parameters VSGV and OPLS3e).
The structure with the lowest energy was employed in further long
MD simulations and protein mutagenesis. Specific mutations were
introduced into the structure by the 3D Builder Panel in Maestro,
and side-chain rotamers were refined. The local structure around
the inserted mutation was minimized; the 10 amino acids loop
around the introduced mutation was refined in the Prime package,
followed by side-chain prediction to locate an appropriate residue
conformation. The quality of the mutated model was validated
in PPW as previously (Section 2.4), and given Dicer, mutated
structures were subjected to 300-ns MD simulation.

2.7 Analysis of the MD simulation

The MD trajectory files were investigated by using simulation
quality analysis (SQA) and simulation event analysis (SEA) along
with simulation interaction diagram (SID) programs available with
the Desmond module: root-mean-square deviation (RMSD), root-
mean-square fluctuation (RMSF), total intra-molecular hydrogen
bonds (Hbonds Intra), radius of gyration (Rgyr), and secondary
structure elements (SSE) were calculated and visualized. The
recorded trajectories were clustered, and the total energies of
the representative structures were calculated in Prime (options
VSGV and OPLS3e). Additionally, the H-bonds formed by mutated
residue with the whole protein molecule were computed by
analyse_trajectory_ppi.py script and SEA, and the interactions
were compared with the WT structure. To characterize the local
changes induced by mutation, the region radius of 10 Å around
the introduced residue was analyzed by calculating local RMSD, H-
bonds, Rgyr, and surface area (the clustered structures withminimal
total energy were used to measure the surface area in 10 Å radius of
mutated residue).

3 Results

3.1 Obtaining variants of uncertain
significance in DICER1

We examined ClinVar (Landrum et al., 2017), a public archive
of human genetic variants, to identify known and predicted
pathogenic and benign amino acid substitutions in DICER1, as
well as missense variants of uncertain significance (VUSs). In
total, we found 2002 variants, and more than 91% of them are
VUS (accessed March 2022). We found 45 variants annotated
as intolerant (11 likely pathogenic and 34 pathogenic) and 44
variants annotated as tolerant (36 likely benign and eight benign)
(Figure 1). Importantly, only six hotspot positions in Dicer1 have
been reported: E1705, D1709, D1713, G1809, D1810, and E1813
(Chen et al., 2018; Klein et al., 2014).

VUSs present a substantial challenge in the clinical context
(Federici and Soddu, 2020), and current efforts by the scientific
community focus on developing easily applicable methods for their
classification. Widely used variant effect prediction tools (CADD,
PROVEAN, SIFT, PolyPhen, SNAP, PhD-SNP, and MAPP) were
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FIGURE 1
Dicer1 variants with known and predicted clinical effects. (A) The lolliplot of Dicer1 variants with different clinical effects from ClinVar (accessed
December 2021). Protein domains are indicated as follows: ResIII: type III restriction enzyme, res subunit; H: Helicase conserved C-terminal domain;
Dim: Dicer dimerization domain; PAZ: PAZ domain; RNase IIIa: ribonuclease IIIa domain; IIIb: ribonuclease IIIb domain. (B) Pie chart showing the
distribution of variants with known and predicted clinical effects versus VUS.

applied to identify missense mutations that are assumed to lead to
DICER1-associated cancers. Surprisingly, one of the latest prediction
models, EVE, did not provide resolution for mutations past position
1789, which leaves unresolved substitutions at several known
hotspots, such as G1809, D1810, and E1813 (Kock et al., 2019). As
for other tools, even in cases of known pathogenic mutations, their
expected accuracy levels ranged from 65% to 80% (Thusberg et al.,
2011). This low accuracy is primarily due to misalignments and the
inclusion of low-quality sequences, paralogs, and remote homologs
that are not functionally equivalent.

To overcome problems associated with the use of automated
variant predictors, we constructed our own datasets of well-defined
Dicer1 orthologs based on its evolutionary history and domain
architecture andused these datasets to derive a riskmap forDICER1-
associated cancer.

3.2 Constructing the dataset

After sponges diverged from the main animal branch, but
before the cnidarian split, DICER1 was duplicated, resulting in two
paralogs, DICER1 and DICER2, (Mukherjee et al., 2012). The roles
of these paralogs are different. Dicer1 functions in miRNA-based
gene regulation (Welker et al., 2011), whereas Dicer2 is responsible
for antiviral immunity (Kolaczkowski et al., 2010). As Dicer2 was
subsequently lost in some metazoans, including vertebrates, Dicer1
gained some of its functions (Hammond, 2005). For clarification
purposes, we will use the asterisk to label such a multifunctional
DICER1∗ gene and its Dicer1∗ protein where necessary.

To establish the precise evolutionary history of Dicer, we first
collected its homologs by carrying out a BLAST search initiated
with the human Dicer protein (isoform 1, accession number
NP_001258211.1) against the NCBI RefSeq protein database
(Altschul et al., 1990; O’Leary et al., 2016). The resulting hits were

FIGURE 2
A maximum-likelihood phylogenetic tree of the Dicer group. Dicer1,
Dicer2, and Dicer1∗ subclades are demonstrated.

sorted by E-value, and the first 1,387 sequences, consisting of
Dicer1 proteins, a known outgroup—insect Dicer2, and a number
of similar proteins were aligned using the MAFFT algorithm v7
(Katoh et al., 2002). The maximum-likelihood tree was inferred
from the acquired MSA using iqTree utility v2 (Minh et al., 2020)
(Figure 2, Supplementary File S1) with the LG+R10model resolved
by ModelFinder (Kalyaanamoorthy et al., 2017). Branch support
was assessed with ultrafast bootstrap approximation [UFBoot
(Minh et al., 2013; Hoang et al., 2017), 1,000 replicates].

A maximum-likelihood phylogenetic tree showed two
distinct clades corresponding to Dicer1 and Dicer2, and all
Dicer1∗ sequences formed a distinct subclade within the
Dicer1 group (Figure 2).
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FIGURE 3
A fragment of the Dicer1∗MSA corresponding to human Dicer1 sequence positions 588–598 demonstrating both conserved (outlined by the red
rectangle) and variable (outlined by the green rectangle) positions in the dataset.

TABLE 2 Examples of variant assessment before and after domain realignment.

Variant Known clinical effect Tolerant substitutions

Before the realignment After the realignment

E1705K Pathogenic E, K, N E

E1813K Pathogenic E, K, L, V E

D1822V Pathogenic D, C, V, K, Y D

Sequences from the Dicer1∗ sub-clade were aligned, and
by identifying both invariant and highly variable positions
in the MSA (Figure 3), we concluded that there was enough time for
orthologs to diverge.

Next, we inspected the alignment and noticed misalignments in
some Dicer1 domains. To mitigate this problem, we split the MSA
of full-length protein sequences into subsequences corresponding
to human Dicer1 domain coordinates and realigned sequences
of each domain separately. Erroneous and incomplete sequences
were removed from domain MSAs. After the realignment, we
reassembled the full-length Dicer1 MSA (termed “final MSA”),
resulting in a reduction in the number of misaligned regions and
improving predictions according to known clinical effects for some
positions (Table 2).

3.3 Variant effect interpretation

We collected a total of 1834 unique missense VUSs from
the ClinVar database, and their positions were examined in the
final MSA. We adopted the following straightforward reasoning
to evaluate variants, similar to a previously reported protocol
(Adebali et al., 2016): if a variant occurs in an invariant position or

if it is not seen in a highly conserved position of the final MSA,
then it is intolerant. If a variant exists in any of the final MSA
sequences, then it is evolutionarily allowable or tolerant. We also
ensured that only single substitutions serve as evidence for benignity,
and if each substitution in an examined position is accompanied
by another one in an adjoining position, then the tested variant is
uninterpretable. This approach allowed us to assign 485 variants as
tolerant and 588 variants as intolerant and thus potentially damaging
substitutions (Figure 4).

We also used the SAVER algorithm (Adebali et al., 2016) to
evaluate variants against the finalMSA, and it confirmed 1,067 of our
1,073 predictions. Satisfactorily, known DICER1 hotspot mutations
were evolutionarily intolerable in our final MSA and consequently
were predicted as damaging (Table 2), thus providing a positive
control for our analysis (Supplementary File S2).

Producing a high-quality final MSA of Dicer1 orthologs
distinguishes our approach from automated variant predicting
bioinformatics tools. For example, in our finalMSA, positionM1808
is invariable; therefore, any variant in this position is evolutionarily
intolerant and thus damaging. It is worth noting that M1808 is
adjacent to three known Dicer1 hotspots, G1809, D1810, and
E1813, which further reinforces its potential significance. However,
automated tools provide conflicting and erroneous assignments
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FIGURE 4
Pie charts representing the distribution of variants with known and
predicted clinical effects and VUS before (A) and after (B) the
phylogeny-based variant effect prediction.

for a documented VUS in this position: M1808L (dbSNP ID:
rs763241498), is predicted to be “possibly damaging” by PolyPhen2
(which is a less confident prediction than “probably damaging”),
“tolerated” by SIFT, and “neutral” by PROVEAN, whereas EVE
did not provide any interpretation of this variant. These erroneous
assignments result from “noisy” MSAs used by these tools. For
example, we have identified several paralogs (Dicer2 sequences) in
some of these MSAs (Supplementary Figure S1).

3.4 Assessment of selected DICER1
mutations in hematological malignancies

Advances in understanding the genetic and molecular
functions of Dicer1 have opened new horizons into its role
in cancer progression with questions that remain unanswered
(Robertson et al., 2018; Caroleo et al., 2021). We made sure all
known Dicer1 hotspots were completely conserved in the MSA and
turned to less-studied cases. Recent studies highlight the significance
of miRNA biogenesis genes in hematological malignancies that are
under mutational pressure during tumor progression, and their
disruption can alter the cellular proliferation through miRNA
regulation. Therefore, the investigation of mutations’ pathogenicity
in the context of oncohematologymight shed light on the functional
importance of these proteins and the mutations acquired under
tumor evolution.

To demonstrate the validity of our approach, we selected four
VUS that are located within functional domains of Dicer1 but
outside known hot spots: Y124H (COSMIC database identificatory:
COSV100601713), located in the Helicase ATP-binding domain,
I445S (COSV58619533) and F508C (COSV58616328), located in
the Helicase domain C-terminus), and T993R (COSV58617548),
located in the PAZ domain. In addition to assessing the
evolutionary tolerability of each variant, we performed molecular
dynamics (MD) simulations of mutated Dicer1 proteins
to evaluate potential structural alterations caused by these
mutations.

All four selected variants were found to be evolutionarily
intolerable by our approach. None of these specific substitutions
were found in the multiple alignments of (i) Dicer1 orthologs

that emerged after the last duplication event, leading to Dicer
subfunctionalization (MSA1) or (ii) all identified Dicer orthologs
(MSA2) (Figure 2). Two positions, corresponding to Y124 and I445,
were variable. In MSA1, a single substitution in position 124 was
found—Y124C in the Dicer1 sequence from Petromyzon marinus
(Figure 5); however, no instances of Y124H were detected in either
MSA. Thus, we interpret this variant as evolutionarily intolerable.
Similarly, several instances of I445V substitution were detected in
MSA1 (Figure 5), but there were no instances of I445S substitutions
in either MSA. Consequently, this variant was also considered
evolutionarily intolerant. The other two positions, F508 and T993,
were invariable; therefore, reported VUSs F508C and T993R are
evolutionarily intolerable (Supplementary Table S1).

MD simulations showed relative stability of all four
mutated Dicer proteins compared to the wild-type protein
(Supplementary Figure S2; Supplementary Table S2). The variants
Y124 and I445S did not show significant bond alterations, which
was demonstrated by the relative stability of structural elements
during MD simulation (Supplementary Figures S3,S4).

F and T are strongly conserved in the 508th and 993rd
positions, respectively, by analyzedMSA, and other substitutions are
evidently prohibited by evolution (Figure 6).These positions are also
invariable in the majority of Dicer1∗ sequences, which underscores
the importance of their conservation for the functionality of Dicer1
homologs in general. Neither F508C nor T993R is ever seen among
Dicer1 homologous sequences, including Dicer2. The detailed
damaging effect of these Dicer variants was confirmed by MD
simulation. RMSD fluctuations of F508C and T993R are roughly
30% higher than wild-type protein, in particular for T993R, which
triggers a more destabilized area; both the F508 and T993R regions
are characterized by a significantly increased radius of gyration,
indicating the loss of local compactness and more pronounced
conformational changes (Figures 7, 8; Supplementary Table S3).
Moreover, significant bond alterations were observed for F508
and T993R variants (Supplementary Figure S3). In particular, both
induce the loss of five H-bonds within the considered 10Å
region. The spectrum of the most frequent interactions of F508
consists of H-bonds with V504, H511, C443, G444, and L505 that
are responsible for α-helix and β-sheet interposition. All these
interactions were completely lost for C508, and the set of occurring
bonds through the MD run was totally different. The differences
led to severe structural changes: the α-helix containing residue
508 was partially disbanded along with loss of interactions with
β-sheet; the whole local region was deformed with lower inter-
compactness (Figure 7). Similar severe structural changes were
characterized for T993R substitution: T993 and R993 have only
R944 as a one-H-bond donor in common; therefore, the most
frequent and stable interactions of T993 with W1048 and H856
were lost for the R993 mutant. Such a loss of an essential H-bond
with W1048 leads to a significant distance increase between the
corresponding α-helix and β-sheet, entire region deformation, and
destabilization (Figure 8).

4 Discussion

The DICER1 gene and its mutations draw interest from the
carcinogenesis perspective as a crucial and irreplaceable player in
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FIGURE 5
A fragment of the Dicer1∗MSA corresponding to the human Dicer1 sequence around positions 124 (A) and 445 (B), demonstrating the variability of
these positions in the dataset.

FIGURE 6
A fragment of the Dicer1∗MSA corresponding to the human Dicer1 sequence around positions 508 (A) and 993 (B), demonstrating the conservation of
these positions in the dataset.

miRNA and the siRNA biogenesis gene, while cancer pathogenesis
is widely characterized by the dysfunction of the miRNA spectrum
(Vedanayagam et al., 2019; Foulkes et al., 2014). Indeed, both
germline and somatic mutations in DICER1 were identified in
diverse types of cancer (Hill et al., 2009; Witkowski et al., 2013;
Seki et al., 2014; Wu et al., 2018; Chen et al., 2015). We have
analyzed DICER1 variants available in the ClinVar database and
found that 91% of registered variants are of unknown clinical

significance. Among them, only six cancer-associated Dicer1
hotspots have been reported previously (Vedanayagam et al., 2019).
In this case, the classification of themajority ofDICER1 variants and
prediction of their clinical effects would benefit the comprehension
of the DICER1 role in tumorigenesis.

We applied widely used bioinformatic tools to evaluate the
clinical effects of the mutations (CADD, PROVEAN, SIFT,
PolyPhen, SNAP, PhD-SNP, and MAPP): unfortunately, the
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FIGURE 7
Structural alterations of Dicer1 variant F508C. (A) Interactions formed by wild-type amino acid F508. (B) Interactions formed by mutation C508. Amino
acids taking part in bond formation are marked by spheres. H-bonds are indicated by dashed yellow lines, and aromatic H-bonds are indicated by
dashed blue lines. Protein secondary structural elements (α-helixes, β-strands, and disordered loops) are shown in blue by cartoon representation. The
radius of gyration (C) and RMSD (D) fluctuations of the 10Å region around the wild-type amino acid and corresponding mutation through a 300-ns MD
simulation.

expected accuracy for even well-known DICER1 hotspot mutations
did not exceed 60%–80%. After applying a comparative genomic
approach, these tools produced several issues and incorrect
predictions, which are basically the result of faulty MSA. Most
of the errors occur from the inclusion of low-quality sequences
and paralogs in the analytic dataset. Therefore, we advocate for
precise and individual dataset construction for each protein of
interest based on its evolutionary history and domain architecture.
For this purpose, we reconstructed DICER1 evolution and
divided two paralogs, Dicer1 and Dicer2, which, in addition
to their sequence homology, are functionally different proteins
(Welker et al., 2011; Kolaczkowski et al., 2010). Moreover, the last
major evolutionary event in the history of DICER1 homologs was
the loss of DICER2 (Mukherjee et al., 2012), and it is essential
to take only Dicer1 sequences from proteomes without Dicer2.
We inspected and refined the final MSA for the interpretation
of Dicer1 variants. First, the MSA dataset was validated on the
well-known protein hotspots. Our “straightforward” prediction
approach was based on the total conservation of the position
of interest and its neighboring positions corresponding to the

human Dicer1 sequence, which means intolerance for substitution.
If the position is changed along with its neighbors, we consider
such situations as uncertain because the change of local context
could compensate for the impact of the substitution on the
functionality of the whole protein and, furthermore, on clinical
significance. Thus, our approach allowed us to determine the
potential significance of 1,073 variants: among them, 485 were
tolerant, and 588 were intolerant. In addition, we thoroughly
analyzed those variants whose predictions were not consistent with
the automated tools’ predictions. Several pieces of evidence were
demonstrated for such conflicting variants (e.g.,M1808L), which are
close to several well-known “hotspots.”This example clearly explains
the issues in MSA of automated programs and consequent false
predictions.

Moreover, our obtained MSA was applied for analysis of
those DICER1 variants that occurred in cancer where the role
of this gene is of particular interest. Recent studies showed
the potential DICER1 involvement in hematological malignancies
(Santamaría et al., 2012; Raaijmakers et al., 2010; Moiseev et al.,
2021). Therefore, the variants with unknown significance were
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FIGURE 8
Structural alterations of Dicer1 variant T993R. (A) Interactions formed by wild-type amino acid T993. (B) Interactions formed by mutation R993. Amino
acids taking part in bond formation are marked by spheres. H-bonds are indicated by dashed yellow lines, and aromatic H-bonds are indicated by
dashed blue lines. Protein secondary structural elements (α-helixes, β-strands, and disordered loops) are shown in blue by cartoon representation. The
radius of gyration (C) and RMSD (D) fluctuations of the 10Å region around the wild-type amino acid and corresponding mutation through a 300-ns MD
simulation.

analyzed using our method in order to evaluate the potential
effect on cancer progression. Dicer1 missense mutations that
occurred in functional domains (Y124H (Helicase ATP-binding),
I445S and F508C (Helicase C-terminal), and T993R (PAZ)) were
analyzed by MSA. The assessment by comparative genomics was
additionally compared with the evaluation of these variants by in
silico site-specific mutagenesis and molecular dynamics simulation.
In particular, the analysis of variants Y124H and I445S (both in the
Helicase domain) demonstrated some variability of these protein
positions compared to F508C (Helicase C-terminal) and T993R
(PAZ), which were strongly conserved, and other substitutions
are evidently prohibited by evolution. The results obtained by the
MSA analysis were in compliance with those of the molecular
dynamics simulation, which showed the structural consequences of
mutations: namely, significant structural alterations in the Dicer1
mutated with F508C and T993R substitutions. In these cases,
the key interactions were lost, which led to protein local region
destabilization. F508C dramatically altered the mutual proximity
of secondary structural elements within the C-terminal Helicase
domain; T993R disrupted the interactions of the PAZ domain with

both interdomain regions that, in turn, affect PAZ positioning
between adjacent domains (Dicer dsRNA-binding fold and RNAase
III). All these events are the distinct basis for protein dysfunction
and/or dysregulation.

To summarize, in addition to the well-known DICER1 tumor
predisposition syndrome (González et al., 2021), the potential
oncogenic role of this gene is being studied and discussed in other
malignant diseases (Robertson et al., 2018). Ourworkwas dedicated
to investigating and clarifying the effect of the mutational spectrum
across the whole protein sequence and marked as uncertain
significance on the basis of the combination of in-depth gene
evolution reconstruction and molecular modeling of mutational
structural–functional consequences. Our analysis revealed the effect
of newly occurring “non-hotspot” gene variants accompanying
tumorigenesis progression in the example of hematological
malignancies. Our study further expands our overall understanding
of DICER1 potential in neoplastic development. In the future,
it could be valuable to expand such analysis to other oncology-
associated genes and their inconclusive variants to develop the
flexible methodology of variant evaluation in order to examine their

Frontiers in Molecular Biosciences 09 frontiersin.org192

https://doi.org/10.3389/fmolb.2024.1441180
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Bug et al. 10.3389/fmolb.2024.1441180

potential effect with an appropriate set of instruments that could be
adjusted individually for each marker.
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