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Editorial on the Research Topic

Physics of Porous Media

The physics of porous media is, when taking a broad view, the physics of multinary mixtures of
immiscible solid and fluid constituents. Its relevance to society echoes in numerous engineering
disciplines such as chemical engineering, soil mechanics, petroleum engineering, groundwater
engineering, geothermics, and fuel cell technology. It is also at the core of many scientific disciplines
ranging from hydrogeology to pulmonology.

Perhaps one may affix a starting point for the study of porous media as the year 1794 when
ReinhardWoltman introduced the concept of volume fractions when trying to understandmud [1].
In 1856, Henry Darcy published his findings on the flow of water through sand packed columns and
the first constitutive relation was born [2]. Wyckoff and Botset proposed in 1936 a generalization of
the Darcy approach to deal with several immiscible fluids flowing simultaneously in a rigid matrix
[3]. This effective medium theory assigns to each fluid a relative permeability, i.e., a constitutive law
for each fluid species. It remains to this day the standard framework for handling the motion of two
or more immiscible fluids in a rigid porous matrix even though there have been many attempts at
moving beyond it.

When the solid constituent is not rigid, forces in the fluids and the solid phase influence each
other. von Terzaghi realized the importance of capillary forces in such systems in the thirties [4].
An effective medium theory of poroelasticity was subsequently developed by Biot in the mid fifties
[5]. Biot theory remains to date the state-of-the art for handling matrix-fluid interactions when the
deformations of the solid phase remain small. For large deformations, e.g., when the solid phase is
unconsolidated, no effective medium theory exists.

The situation today in porous media research is a patchwork of domains, some of which are
advancing at high speed, whereas other domains remain where they have been for decades. For
example, pore scale visualization techniques together with advances in numerical techniques and
hardware have today reached a level of refinement that makes it possible numerically to reproduce
themotion of immiscible fluids and their interfaces in complete detail at the pore level. On the other
hand, to derive effective equations at the large-scale continuum level based on what happens at the
pore scale the upscaling problem remains a rather stagnant endeavor as proven by the popularity
of the 80-year old relative permeability theory of Wyckoff and Botset.

It is the aim of any physical theory to join experimental observations into a common framework
reducing the field to solving mathematical problems. Here is an example. The flow of Newtonian
fluids remained a catalog over experimental observations until the advent of the Navier-Stokes
equations. Afterwards, the problem became solving these equations with the proper boundary
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conditions. The fact that it is extremely difficult to solve these
equations in the majority of instances is a different story. The
science of porousmedia is still at the catalog stage with no general
theory of porous media flow in existence nor in sight.

This Research Topic attempts to present a snapshot of the
state-of-the-art in some of the domains that constitute the
physics of porousmedia. The physics of porousmedia is of course
far too wide to make it possible to give a comprehensive picture
of the field. Interdisciplinarity is a key word.

The paper by Xu et al. studies the dissolution of plaster
by water in a two-dimensional Hele-Shaw cell. The water
is drained from the center of the cell which has a radial
geometry. This causes fingers to grow inwards from the
surface of the plaster. There has been a number of numerical
studies of similar phenomena, but the experimental work
is sparse—in spite of the importance of this process in
geological settings.

In another experimental and numerical study, Xu et al.
inject a reactive fluid into an open fracture with the result that
the fracture surface is modified locally by creating a ramified
structure around the injection point. A tracer is then injected
and the influence of the modified fracture surface on stability of
dispersion front is studied.

Roy et al. consider theoretically and numerically two-phase
flow in the capillary fiber bundle model. This is a model that can
be solved analytically. At high flow rates, the authors find a linear
relation between flow rate and pressure drop across the model,
i.e., a standard Darcy law. However, at smaller pressure drops,
there is a crossover to a non-linear regime where the flow rate is
a power law in the pressure drop. This is precisely what is seen
in experiments (see references in the paper), but the exponent of
the power law depends on the disorder in the model. This is a
surprising result.

In Eberhard et al., the flow of non-Newtonian fluids in
porous media is addressed. The authors propose a generalization
of the Darcy law to describe the flow of a certain class of
non-Newtonian fluids, the Carreau fluid, based on theoretical,
numerical, and experimental work.

Another work focused on the flow of non-Newtonian fluids
in porous media is that of Talon and Hansen. They focus on
bi-linear fluids that have one viscosity up to a given shear
rate and then switch abruptly to another viscosity above this
shear rate. Through analytical and numerical arguments, the
authors demonstrate that there is a critical point with a diverging
correlation length characterizing this transition.

Wettability alteration due to adsorbtion of nanoparticles is
the topic of the experimental paper by Li et al. This is a
very promising approach to mobilizing stuck liquid clusters
and droplets in porous media through flooding—an important
process in many industrial applications such as EOR (Enhanced
Oil Recovery).

Sinha et al. pose the question: when two immiscible fluids flow
simultaneously in a porous medium at high enough speeds so
that capillary forces are negligible compared to the viscous forces,
what would be the effective viscosity that goes into the Darcy law

describing the flow? It turns out not to be so simple: The authors
propose a formula that contains a parameter that is determined
by the pore structure of the porous medium.

There are many very different approaches to numerical
modeling of immiscible two-phase flow in porous media.
Network models constitute one class of such models, and a
subgroup within this class consists of models that track the
motion of the fluid interfaces inside the porous medium.
Gjennestad et al. present here a way to stabilize such models
numerically at very low capillary numbers, i.e., at very low flow
rates. This leads to a vast improvement in range of capillary
number over which these models may be used.

In two papers, Kjelstrup et al. and Kjelstrup et al., present
a new way to coarse grain the thermodynamic variables
at the pore level to the continuum level based on the
Euler theorem for homogeneous functions and classical non-
equilibrium thermodynamics. This way of coarse graining the
system avoids the explosion of variables and complexity seen in
other approaches to this problem. It leads also to a generalization
of Darcy’s law, including for instance contributions from
thermal forces.

What is the pressure inside a nano-porousmedium containing
a single fluid? This is the question that Galteland et al.
pose. Based on Hill’s thermodynamics for small systems (see
references in paper), the authors find that there are in
fact two pressures necessary: an integral and a differential
pressure. The authors support their findings by molecular
dynamics simulations.

Grimstad et al. build a bridge between porous media
physics and the classical concepts in soil mechanics/geotechnical
engineering. The languages used by the practitioners of these two
approaches to the same problem are quite different. Such bridges
are therefore very important if multidisciplinary is to have any
meaning. Physicists, read and learn!

“Bernaise” they call it, the beautiful computational framework
that Linga et al. present for dealing with immiscible two-phase
electrohydrodynamic flow in complex geometries such as porous
media. The flow of immiscible electrolytes is important in many
geological contexts, but little is so far known about how these
electrical phenomena affect the hydrodynamics. Now, we have a
good tool to explore this. Expect much more to come.

Kirichek et al. present a model for the dielectric response of
porous sandstone saturated with NaCl which they proceed to
verify experimentally using a two-electrode setup.
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Dispersion in Fractures With
Ramified Dissolution Patterns
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The injection of a reactive fluid into an open fracture may modify the fracture surface

locally and create a ramified structure around the injection point. This structure will have

a significant impact on the dispersion of the injected fluid due to increased permeability,

which will introduce large velocity fluctuations into the fluid. Here, we have injected a

fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure.

The transparency of the model makes it possible to follow the detailed dispersion of

the tracer concentration. The experiments have been compared to two dimensional (2D)

computer simulations which include both convective motion and molecular diffusion.

A comparison was also performed between the dispersion from an initially ramified

dissolution structure and the dispersion from an initially circular region. A significant

difference was seen both at small and large length scales. At large length scales, the

persistence of the anisotropy of the concentration distribution far from the ramified

structure is discussed with reference to some theoretical considerations and comparison

with simulations.

Keywords: dispersion, fracture, convection-diffusion, fractal-like, Hele-Shaw cell, fluorescein tracer

1. INTRODUCTION

In both geological systems and industrial fields, fractures are known to be important pathways
for fluid transport. Typically, the permeability of fractures is significantly higher than the porous
matrix, so in many systems fractures play an important role in the fluid transport processes. The
flow of tracer particles in a fracture is influenced by both convection and diffusion processes,
and the combined effect of these two processes leads to Taylor dispersion. This effect was first
studied by Taylor [1] for solvent flowing slowly through a tube. Afterwards it has been applied
to various situations, for example, in single and parallel fractures [2, 3], in rough fractures [4],
particle dispersion in narrow channels [5], and in a radial flow geometry [6, 7]. Some previous
works consider geometric anisotropy, using self-organized percolationmodel to study flow through
disordered porous media [8–10].

In most previous studies a flat open fracture with a constant aperture is considered, leading to
a smooth and uniform front [11–15]. However in geological systems or industrial fields, such ideal
initial states are rare. For example, when injecting a reactive fluid into an oil field, the injected
fluid will react with the porous media which is stimulated by engineers trying to maximize the
permeability around wells. A ramified dissolution pattern [16–18] will be formed around such
an inlet. Those ramified features of the inlet will alter the fluid flow transport path in the rocks
significantly. The flow transport problems in the fractures encountered in nature and in industry
typically have irregular initial fronts, which is significantly different from the flat fronts obtained
by injection into an open flat fracture. Considering a pollution leak problem for instance, if we

7
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suppose that the localized pollution source presents an initially
uniform front in a homogeneous porous medium or aperture,
we expect that the contamination spreads with radial symmetry,
which deviates considerably from the actual situation because
of the irregular initial front state. In this paper, we present
experimental and numerical results demonstrating that with a
ramified dissolution initial front state, in some directions the
tracer will transport much faster than what we expect for an
initially uniform front while in other directions there is no tracer
transport at relatively long times.

In order to study these more realistic situations, a ramified
dissolution pattern has been produced in a plaster sample, which
is then used as the injection geometry. A fluid with a fluorescein
tracer is injected into the cavity between this plaster sample
and a flat plate, which together represent an open fracture.
The injected fluid with tracer first fills the dissolved part and
then starts flowing through the open fracture from the tips of
dissolution fingers. The fluorescein tracer allows tracking of the
flow radiating from this structure. We describe our experiments
in section 2. In section 3, the simulation methods are illustrated.
In section 4, the characteristics of the ramified dissolution
patterns are studied. The experimental results are compared with
results from numerical modeling in section 5. The conclusions
follow in the last section.

2. DESCRIPTION OF EXPERIMENTS

The experimental setup is illustrated in Figure 1. The
experiments were performed in a Hele Shaw cell which
consists of two circular and parallel flat glass plates. The bottom
glass plate (Diameter d1 = 36.0 cm) is larger than the upper
one (Diameter d2 = 25.0 cm) and has an external rim. An
inlet is located at the center of the lower glass plate, and the
two glass plates are separated by aluminum spacers of thickness
b = 1.00 mm and held together by clamps.

2.1. Sample Preparation
In the experiments we study the dispersion phenomena in
an open fracture with an initial state representing a ramified
dissolution pattern. We therefore first created a dissolution
pattern in the sample, and later performed the tracer dispersion
experiment. The plaster sample with a dissolution pattern on the
top surface was prepared by the following steps:

A plaster saturated water solution was first injected into the
Hele Shaw cell. Water and plaster powder (Alabaster plaster,
Panduro) was thenmixed with the ratio 2:3 by weight respectively
to form the plaster paste. Next, this paste was injected from the
center of the Hele Shaw cell displacing the plaster saturated water
forming a circular plate of radius R ≈ 8.0 cm. The circular plaster
paste was then kept in the cell surrounded by saturated water for
hydration which was completed in approximately 1 h. During the
plaster hydration process, a form of segregation called bleeding
takes place, where some of the water in the plaster tends to rise
to the top surface of the plaster plate [19]. This process gives an
aperture of h ≈ 50 µm above the surface of the plaster. The next
step was to inject pure water into the center of the Hele Shaw
cell using a syringe pump. The plaster dissolved slightly into this

pure water and a dissolution pattern on the surface of the plaster
sample was formed after several days. This process is known as
wormhole formation [16, 20–22]. After the plaster sample with
dissolution pattern was prepared, we changed the injected fluid
from pure water to the tracer fluid (water with fluorescein) ready
to start the dispersion experiment.

2.2. Dispersion Experiment
The tracer fluid was prepared by mixing water and fluorescein
sodium salt powder. The solubility of fluorescein powder is
1.0 mg/mL and the solution was diluted at a ratio of 1:10.
The concentration of the injected tracer fluid was C0 =
0.27 mmol/L. The viscosity of the tracer fluid µ = 0.965 ±
0.004 mPa·s, is slightly larger than the water viscosity at
room temperature of 23.5◦C. The molecular diffusion coefficient
of fluorescein in water is Dm = 4.25 · 10−6 cm2/s
[23].

The water with fluorescein was injected into the open fracture
by a syringe pump from the central inlet with an injection
rate of Q = 6.00 mL/h. Dissolution of the plaster can be
neglected due to the short time scale of the dispersion experiment
(50 min). The aperture (thickness h = 50.0 µm) is defined
as the distance between the upper glass plate and the upper
surface of the plaster sample. The permeability of this aperture
is calculated as κ = h2/12 = 2.1 · 10−10 m2 and the permeability
of the plaster sample itself is 6.0 · 10−14 m2. Because of the
large permeability contrast between the aperture and the plaster,
almost all injected fluid will flow through the aperture instead
of the porous matrix. An ultraviolet light bulb was used to
illuminate the system from underneath, and a digital camera was
placed 1 m above the Hele Shaw cell to capture images of the
dispersion experiment.

2.3. Image Processing
In our experiments, the plaster plate not only provides the
complex injection boundary of a fractal-like dissolution pattern,
but also plays a role as a light diffuser so that the UV light will
stimulate the fluorescent fluid uniformly. We want to establish
a relation between the image intensity I(r, t) and the tracer
concentration C(r, t). The intensity of the light measured by
the CCD camera is proportional to the intensity of the emitted
light from the fluorescein molecules stimulated by the UV light.
The brightness of image captured by CCD camera is directly
linked to the light intensity. The image brightness field is linearly
related to the fluid concentration field in the fracture if the
fluorescein concentration is low enough [24]. The relation
between the image intensity and the flow tracer concentration
has been measured experimentally as shown in Figure S1 in the
Supplemental Data. The calibration shows as expected a linear
relation between the gray scale levels and the concentration
C when C ≤ 100 mg/L. Applying this linear relationship, we
obtain the normalized fluorescein concentration field from
the experimental images by Cn(r) = I(r)/Imax where I(r) is
the intensity of the gray-scale image at position r and Imax

is the maximum intensity observed in the area with highest
fluorescein tracer concentration, located at the injection inlet
where the concentration was kept fixed at C0 = 0.27 mmol/L.
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FIGURE 1 | Schematic diagram of experimental setup. A circular Hele Shaw cell (spacing 1 mm) contains a saturated plaster plate with a small gap (h = 50.0 µm)

above the plaster. A tracer fluid is injected by a syringe pump into the center of the Hele Shaw cell, where it flows radially outwards. The model is illuminated from

below by an ultraviolet light source. The plaster plate has a fixed dissolution pattern around the injection point, formed by distilled water injection before the tracer

injection experiment.

The concentration C is linked to the normalized concentration
Cn as C(r, t) = C0Cn(r, t).

3. NUMERICAL METHODS

3.1. Molecular Diffusion Model
In the Molecular Diffusion Model, we assume that the flow
velocity and fluorescein concentration is uniform in the vertical
direction, and the problem can be modeled in two spatial
dimensions. For this 2D model we only consider convection
and molecular diffusion, i.e., the dispersion effect combining the
coupling of diffusion and convection is not included. Because
of the contrast between the permeability of the dissolved part
and the undissolved part, as an approximation, we assume that
the pressure in the dissolution pattern is uniform, equal to a
pressure P0. The pressure outside the plaster sample, defined
by the external boundary, is equal to the atmospheric pressure
Pout = 1atm, and we choose P0 > Pout . We assume that the flow
in the open fracture between the plaster sample and the glass plate
follows Darcy’s law, as

u = −
κ

µ
∇P , (1)

where u is average flow velocity across the fracture, κ is the
permeability for the flow in the fracture (estimated assuming
Poiseuille flow as κ = h2/12) and µ is the viscosity of the fluid.
We assume that the fluid is incompressible which implies that
∇ · u = 0. We thus obtain the Laplace equation for the pressure
field in the fracture as

1P = 0 . (2)

By numerically solving for the pressure field, assuming the
boundary pressures as defined above, we can apply Darcy’s law
to obtain the velocity field in the fracture. Combining the flow
field with the Convection-Diffusion Equation gives

∂C

∂t
= ∇ · (Dm∇C)−∇ · (Cu) , (3)

where C is the concentration of fluorescein in water, and
this concentration field can be solved for and compared with
experimental results. We also consider the Taylor dispersion
effect by simply replacing the diffusion coefficient Dm by the
dispersion coefficient D‖ [25, 26]

D‖ =
h2u20
210Dm

+ Dm = Dm(1+
h2u20
210D2

m

) . (4)

In this way, we assume that the transversal dispersion coefficient
D⊥ is the same as D‖ which will give a larger dispersion in the
transversal direction. In section 5, We compare the simulation
results with experimental images, and don’t find significant
differences between themolecular diffusionmodel and the Taylor
dispersion model. For this reason, we will first present our 2D
model with molecular diffusion.

3.2. Simulation Implementation
The dissolution pattern is measured via thresholding of an
experimentally obtained image, and the boundary of this pattern
is used as an internal boundary for the simulation. The external
boundary is defined to coincide with the outer edge of the plaster.
At the external boundary, the pressure is set to atmospheric
pressure. At the internal boundary, an inverse analysis is
performed, where the internal pressure within the dissolved area
is iteratively varied until the volumetric flow rate matches the
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experimentally observed value. For the internal boundary we
set the concentration constant equal to C0 corresponding to the
injected tracer concentration everywhere inside the dissolved
part. We set concentration outside of the plaster disk to 0. For
the initial condition, we set the concentration to 0 everywhere
except in the dissolved structure. Flow rates are calculated
assuming incompressibility and Darcy flow, as explained above,
and an explicit finite difference algorithm is implemented to
solve the Laplace equation. Once the velocity field is known,
the convection-diffusion equation is solved using a finite volume
method that accurately preserves discontinuities [27]. This is
implemented on a regular grid of 800 × 800 cells, which covers
the experimental domain.

4. CHARACTERISTICS OF THE RAMIFIED
DISSOLUTION PATTERN

At early stages, the fluid fills the ramified dissolution pattern
and the pattern is “fractal-like.” We call it “fractal-like” because
it looks similar to fractal structures and these dissolution
patterns were considered as fractal in earlier studies [16]. We
will show in this section that our dissolution pattern presents
significant differences relative to typical fractal patterns such as
viscous fingering [28] or DLA [29] structures. Fractal structures
are commonly described by a fractal dimension. The fractal
dimension can be estimated by many methods [30–32]. Here we
will use the mass within radius method and the box-counting
method to analyze the structures. In fact, we will see that our
dissolution pattern is an example where the box countingmethod
and mass within radius method yield quite different results. The
total mass m(r) within a radius r is calculated by counting the
number of points (pixels) within this circle as seen in Figure 2B.
For a fractal structure the mass within the radius will follow a
power law m(r) ∝ rDm where Dm is the mass fractal dimension.
In the box-counting method, we draw a grid on the structure that
consists of squares of size δ×δ each. If the structure is fractal, the
number of squaresN needed to cover the structure will follow the
scaling relation N ∝ δ−Db where Db is the box-counting fractal
dimension.

From Figure 2, we observe that theMassMethod and the Box-
counting Method give very different results. The r2 scaling seen
in the mass method close to the injection point (r = 0) is caused
by the compact structure in this region which goes up to about 0.5
cm from the injection point. Above this length scale the curved
green line is due to the decrease in thickness of the fingers but
also to the crossover associated to the finite size of the system.
The data in Figure 2C, was fitted to a straight line using linear
regression with a slope of 1.5 which gives an estimate of a box
counting dimension as Db = 1.5. Notice that there is a small
systematic deviation from a linear curve. For the mass within a
radius method Figure 2B shows a linear behavior with slope of
2.0 for the region within the red circle in Figure 2A. However
in the local zone between the red circle and the green circle in
Figure 2A (the green region in Figure 2B), the slope gradually
decreases from 2 to 0 and it is not possible to find a unique mass
fractal dimension. The black solid line in this region with slope

1 is a reference to the eye. Notice that in the dissolution pattern,
the fingers get thinner from the center to the tips. This specific
feature of finger width variation found in the dissolution pattern
is not found for instance for fractal viscous fingering [28] or DLA
structures [29].

5. EXPERIMENTAL RESULTS COMPARED
WITH SIMULATIONS

5.1. Qualitative Comparison
Pictures of the dynamic process of dispersion were taken every
30 s from the beginning of injection until the tracer fluid reached
the edge of the sample. The whole process takes 50 min in total,
which corresponds to 100 digital images. The experiments are
reproducible and the repeated experiments give similar results.
Here we present one set of experimental results and data analysis.
Results from another experiment is shown in the supplemental
data. In Figure 3, four pairs of images corresponding to different
time periods are compared between the simulations and the
experiment.

A visual overview of the concentration pattern evolution
over time is illustrated in Figure 4. It is constructed by firstly
thresholding each grayscale image at I/Imax > 0.2, next
computing the incremental difference by subtracting successive
thresholded images, and subsequently compositing each of
the incremental changes together, leading to Figure 4. This
spatiotemporal diagram allows for a more detailed comparison
of the dynamic process between simulation and experiment. In
the Supplemental Data, Figure S2 shows a similar diagram for
another experiment. The simulation and the experimental images
look qualitatively very similar to each other.

5.2. Overlap Ratio
To compare quantitatively the experiments and the simulations
we have calculated the overlap between two corresponding
images with the same size and spatial resolution. We have
only considered the overlap within the area of interest,
which is the area AD defined as the union of area between
the experimental and simulations images with a detectable
fluorescein concentration. To calculate the overlap we will
introduce the overlap ratio (γOL) defined as:

γOL = 1−
∑

(i,j)∈AD
‖E(i, j)− S(i, j)‖

∑

(i,j)∈AD
max(E(i, j), S(i, j))

(5)

where E and S are respectively the experimental and the
simulation image (i.e., grayscale fields) which have been
normalized (i.e., from 0 to 1), and max(E(i, j), S(i, j)) gives the
maximum value of E(i, j) and S(i, j). In the case where E and S are
binarized (black and white images), this calculation of the overlap
ratio leads to the measure of the ratio of the area of intersection
between E and S divided by the area of union between E and S
(i.e., A(E∩ S)/A(E∪ S)), which we call the structure overlap ratio
γSOL. This computation can also be performed on the gray-scaled
images of E and S to obtain the intensity overlap ratio γIOL.

In Figure 5, we show a pair of images, E and S, from
one experiment and simulation, and the subtracted image
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FIGURE 2 | Measurement of fractal dimension from experimentally derived images. (A,B) Show the mass fractal dimension estimation method. In (A), we divide the

pattern into 3 zones. The part within the red circle is completely dissolved. Between the red and green circles, “fractal-like” fingers expand in different directions.

Outside of the green circle lies an entirely undissolved zone. (B) Shows a log-log plot of mass m(r) vs. radius r, with the colors corresponding to the relevant zones in

(A). The black linear solid lines act as a guide for the eye. The slopes of the black lines are illustrated with the triangles. For the red and blue parts, the fractal

dimension by mass method Dm is indicated. For the green part, there is no clear linear part, i.e., no well defined mass fractal dimension Dm. In (C) we use the

Box-counting Method to obtain the box-counting fractal dimension Db = 1.5.

FIGURE 3 | Experimental results compared with simulation images. (Top) Experimental images subtracted by the initial state image. (Bottom) Simulation output of

the dissolution pattern. The boundary conditions are extracted from the experimental image before fluid flow begins. The green intensity represents the normalized

tracer concentration Cn in the simulation. The vertical pairs of images show comparison after an injection lasting respectively 10/20/30/40 min, which gives a

qualitative description of the similarity between the experiments and simulations.

‖E(i, j)− S(i, j)‖. The overlap ratio, indicated in the figure,
demonstrates a good similarity between experiment and
simulation. From Figure 5, we further observe that the fan-
shaped dispersion fingers in the simulation grow somewhat

more uniformly than in the experiments. On the other hand
the experiment presents longer fingers, but with a more gradual
change in the concentration toward the tips. One reason for
this difference is that in the simulations the dissolution patterns
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FIGURE 4 | Dynamic process of dispersion with time evolution, time duration 50 min. (Left) Data derived from experimental images; (Right) Equivalent data obtained

from numerical simulation.

FIGURE 5 | Experimental image (E) and simulation image (S) are resized

gray-scaled images from original RGB images. |E − S| displays the intensity

difference between experiment and simulation. γSOL is the structure overlap

ratio which compares the black-white images of E and S. γIOL is the intensity

overlap ratio comparing E and S which are gray-scaled images.

are taken to be completely dissolved while in the experiments
the plaster sample is gradually dissolved. Therefore in the
experiments there is a change in the thickness in the dissolved
part which we don’t consider in the simulations. For a similar
reason the assumed undissolved part in the simulations might
have some dissolved fingers that we are not able to see in the
experiments due to limited resolution. These slightly dissolved
fingers will give finer scale structures in the dissolution patterns.
Another difference between the experiments and the simulations

is that experimentally, a very small fraction of fluid infiltrates into
the porous matrix instead of flowing in the open fracture. Flow in
the porous medium is however not included in the simulations.
Eventually, because the Hele Shaw cell is three dimensional, we
expect a concentration distribution in the vertical direction and
a gradient in the measured average concentration (averaged in
vertical direction). However our simulation is 2D and a gradient
in the average concentration due to the 3D velocity field is not
considered.

Figure 6 shows the time dependence of the overlap ratio both
for the structure (black-white images) γSOL and for the intensity
(gray-scaled images) γIOL. The overlap ratio increases with time
and gets almost stable with an overlap of about 0.7 after injection
of 20 min but decreases slightly toward the end, certainly because
of the boundary effect in the experiments different from those
in the simulations, the experimental plaster sample is not a
perfectly circular disk. We implement 3 different simulations to
compare with the experimental results, one simulation without
diffusion, one with molecular diffusion and one with Taylor
dispersion. The figures presented here demonstrate that the
simulation with only a convection term is able to roughly
simulate what we have observed in the experiments. However, the
simulation with diffusion terms (molecular or Taylor dispersion)
is more consistent with the experiments than without diffusion
terms. The simulations with pure molecular diffusion and
Taylor dispersion show almost no significant difference, then the
simulation results in the remainder of this paper use 2D model
with molecular diffusion.

5.3. Concentration Distribution
From the dispersion pictures of both the experiments and the
simulations, we clearly observe that the tracer flow acts very
differently from what we expect from a point injection or
injection from a circular region. These differences are expected
on small length scales but are less obvious on large length and
time scales. Such differences might be important to bear in mind
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FIGURE 6 | Dynamic process of dispersion: the value of the overlap ratio evolves with time. Total time duration is 50 mins. (A) Shows the structure overlap ratio

(derived from black and white images) evolution with time and (B) shows the intensity overlap ratio (derived from grayscale images) evolution with time. Blue lines

show the comparison between experimental results and simulation with no diffusion, green lines with molecular diffusion and red lines with Taylor dispersion.

FIGURE 7 | Effect of front geometry. (Top) Ramified Front Simulation (S) shows the result of simulation with the ramified front (dissolution pattern). (Bottom) Flat Front

Simulation (F). The normalized intensity distribution at r = 3.4 cm, marked with a red circle on the left, is shown as a function of angle on the right. The distribution

begins at the marked triangle, and continues counter-clockwise.

and evaluate when simple model geometries are used to model
transport around wells in large-scale applications. In this section
we will compare experimentally and by computer simulations
the dispersion in an open fracture with an initial state of a

ramified dissolution pattern with simulations with an initial stage
of circular injection. We will choose a radius of the circular disk
injection Rd =

√
A/π where A is the area of the initial ramified

dissolution pattern.
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5.3.1. Concentration Distribution Width

A quantitative comparison between the dispersion with a
ramified and a circular initial structure was performed by
comparing the mean value and standard deviation of the tracer
concentration on circles of different radii r. Figure 7 illustrates
the difference in the tracer concentration distribution on a circle
of a certain radius (here r = 3.4 cm) between the initial circular
front and the ramified front. The mean value of the normalized
tracer concentration on a circle is defined as

< Cn(r) >=
N

∑

i=1

Cn(ri)/N(r) , (6)

where N(r) is the number of pixels along the circle with radius r
and Cn(ri) is the normalized tracer concentration at position ri.
Let σ (r) be the standard deviation ofCn(r) on the circle for a fixed
value of r. Figure 8 shows the mean value < Cn(r) > and the
standard deviation σ (r) at different radii r among experimental
images and simulations with circular and ramified initial fronts.
The Figure 8 clearly demonstrates that the simulation with a
ramified initial front fits the experiment much better than the
simulation with a flat circular initial front. In the standard
deviation Figure 8B, a small peak is observed in the circular front
simulation (green line) which is not expected from the analytical
results. This peak is caused by pixel-size deviations due to a finite
pixel resolution describing the circle.

We will define the width 1r(t) of the normalized mean
concentration distribution as the difference in radius between
< Cn(r) >= 0.8 and < Cn(r) >= 0.2 as illustrated
in Figure 9A. For the circular initial front simulation (yellow
line in Figure 9C) , 1r(t) stays stable at a low level, and
the fluctuation in the curve is due to few data points. While
the circular initial front simulation is completely different
from the experimental curve, the simulation with the ramified
initial front is much closer to the experimental results. The
width of the mean concentration distribution 1r(t) in both
the experiments and the simulation with ramified initial
front increases to a peak and then decreases to a stable
value.

From Figures 9A,B, we observe a noticeable change of the
concentration distribution from awider distribution at a time t =
10–15 min to a more localized front at later times t > 20 min. In
the Supplemental Data Figure S3, another experiment reproduces
a similar mean concentration distribution. At short times the
angle average concentration curves < Cn(r) > are dominated
by the ramified fractal-like initial structure, but they change to
a very different behavior at large scales, to get dominated by the
complex velocity field generated by the same ramified dissolution
structure and diffusion. On average < Cn(r) > has a well
defined width at large times, but it is much wider than what
one would expect from a circular initial front, 5 times wider
for simulation and 7 times wider for experiment. For a constant
radius r there are large fluctuations in the local values of Cn(r)
at different directions. These fluctuations in the concentration
are due to velocity fluctuations in the initial ramified structure
(see Figure 7). An interesting and open question is if these
fluctuations will be reduced or disappear for a sufficient large

systems and times. Will the model with a circular initial state
describe the system at large length scales and times? In the next
section, we will propose a theoretical calculation to address this
question.

5.3.2. Concentration Distribution Shape

A key question is whether the anisotropy of the concentration
profiles will survive over arbitrarily large distances from the
dissolution structure. In order to address this question we first
pose the same question for the flow field u: Will u remain
anisotropic indefinitely? One way to answer this is to consider
a group of two point sources of equal pressure and extent rather
than the complex dissolution structure. In this way the distance
over which an anisotropic flow field becomes isotropic or notmay
be explored. Taking the two sources to be located at±r1 where r1
is the characteristic radius of the dissolution structure, we may
work out the pressure field and by Darcy’s law, the flow field.

Wewill take the pressure, or rather the overpressure relative to
the atmospheric pressure, to satisfy the 2D Laplace equation, take
on the value P0 inside a radius a around ±r1 and vanish at some
large distance R. This pressure may to a good approximation be
written as

P(r) = P0
ln(|r− r1|/R)+ ln(|r+ r1|/R)

ln(a/R)
. (7)

The approximation consists in the fact that the point where the
pressure vanishes is shifted a small distance of the order r1.
Darcy’s law now gives the Darcy velocity

u = −κ
∇P

µ
=

2κP0

µ ln(R/a)r
er

(

1+ O
( r1

r

)2
)

, (8)

where the unit vector er = r/r and the higher order term depends
on products like er · r1. This result shows that the flow velocity
field becomes isotropic over a distance of the order r1. We define
this distance of the order r1 for our experimental geometry as
r0, which in our experiments, r0 is the length of the longest
dissolution finger. The argument is that the the two point sources
must create a flow field that is at least as anisotropic as the real
field, or worse. Since the model field decays to the isotropic field
as (r1/r)

2, we conclude that the real field decays as quickly, or
quicker.

Now, the fact that the velocity becomes isotropic does not
imply that the concentration field does, as this field is governed
by an anisotropic source. We calculate the skin-depth to go as the
diffusion length lD =

√
2D⊥t whereD⊥ is a transverse dispersion

constant. This constant characterizes the porous media. In this
case, since this medium is just a gap of width h, we may take
D⊥ ≈ Dm. Close to the injection point anyhow, once it is
at a point within a few skin-depths of the injection points,
it should have reached a concentration which is equal to the
imposed central concentration, at least due to diffusion if this
did not happen in the first place by convection because the
point considered was along a fast transporting finger. So we
expect a zone growing like

√
D⊥t where the concentration is

homogeneous and naturally isotropic but outside of this zone,
possible anisotropy is discussed by calculating the convection
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FIGURE 8 | Spatial dependence of structure as function of the circle radius. (A) The normalized average concentration, the error bar comes from experimental

measurement for fluid tracer concentration according to the calibration performed in Supplemental Data. (B) Its standard deviation and (C) mean values with error

bars at one standard deviation. In all cases, the blue line is the experimental result, the red line corresponds to the simulation with an injection ramified front

corresponding to the dissolution pattern present in this experiment, and the green line represents the simulation result with an internal flat (circular) front of similar area.

FIGURE 9 | Evolution of the average concentration distribution at different times. (A) Experimental data. (B) Simulation data. The red dotted line in (A) shows how we

get the width of concentration distribution at 15 min (1r(t = 25min)) which is the distance between the red circle (20% of reference concentration) and red asterisk

(80% of reference concentration). (C) Displays the width of concentration distribution evolution with time, the blue line is the experimental result, the red line is the

simulation with an injection ramified front identical to the dissolution pattern present in this experiment, and the yellow one is the simulation result with a flat circular

front of similar area.

length lC. The convection length is defined as the concentration
profile convection length outside the circle of r0, lC =

∫

udt so
that

dlc

dt
= u(lC) =

Q

2π lCh
, (9)

or dl2c =
Q
πh

dt , which immediately gives

lc =
√

Qt

πh
. (10)

Here the time t starts from tD where tD is the time it takes
for molecular diffusion alone to homogenize the immediate
neighborhood of the dissolved cluster. Now we take the
maximum convection length lmax and the minimum convection
length lmin into account, the maximum convection length lmax

starts growing outside of the circle of r0 while the minimum
convection length lmin starts growing after tD. So the ratio of these
two convection lengths is:

lmin

lmax
=

√

t − tD

t
=

√

1−
tD

t
≈ 1−

tD

2t
(11)
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The length difference of lmax and lmin is:

lmax − lmin =
√

Q

πh
(
√
t −

√
t − tD)

=
√

Q

πh
·
√
t(1− (1−

tD

t
)1/2)

≈
√

Q

πh
·

tD

2
√
t

(12)

From the calculations above, we conclude that the ratio between
the maximum and the minimum convection length tends to 1
and the length difference between two decreases as t−1/2 and
tends to 0. It implies that the anisotropy of the concentration
profiles will vanish after an enough long time. To see an
isotropic behavior, a theoretical criterion for a length scale can be
calculated fromEquations (10, 11) requiring tD/t less than a small
number. For instance, tD/t < 0.1 and

√
2DmtD = dD where

dD is a distance between dispersion fans that could be estimated
from Figure 3 as dD = 0.5 cm. Consequently, the length scale

l =
√
10

√

QtD
πh

=
√

5Q
πDmh

· dD to see an isotropic behavior will be

of the order of 1m. These theoretical conclusions are also verified
by the simulation results. The simulation is implemented with the
same system of initial dissolution pattern but expanding by scale
of 8 times so that we can observe the concentration profile after a
long time, see Figure 10.

The convection lengths are obtained by calculation of the
distance between the points at the boundary of the dispersion
pattern and the center of the circular system from the simulation
data. We analyze the maximum andminimum convection length
evolution with time, the ratio and the difference between the two
lengths. The results are shown in Figure 11.

From the simulation results shown in Figure 12, we make a
log-log plot of the data curve and compare it with theoretical
calculations. The convection length follows the relation lc ∝ t1/2.
The ratio of lengths tends to 1 and the difference between lengths
has a decreasing trend. The fluctuations of the simulation data
is because the boundary line of concentration profile is not a
prefect line numerically and also the center is not a prefect point.

For the initial state which is close to the inlet with ramified
dissolution pattern, the velocity field is not radial flow. For the
late stage which is close to the finite edge of system, the boundary
effect will influence the concentration profile close to the rim.
The deviations between the simulation results and theoretical
calculation under these two limiting conditions are expected as
we observe in Figure 12.

Using a similar development, in the case of injection in a three
dimensional porous medium from a ramified structure, without
large scale correlations in the permeability, one expects at large
scale, the flow velocity in a radial field u(lc) = Q/(4π l2c ) and
the convection length lc = (3Qt/(4π))1/3. A concentration field
converging at large times to the point source solution, with a ratio
of minimum convection length over the maximum one,

lmin

lmax
= (

t − tD

t
)1/3 ≈ 1−

tD

3t
, (13)

and a difference

lmax − lmin = (
3Q

4π
)1/3 · (t1/3 − (t − tD)

1/3)

= (
3Q

4π
)1/3 · t1/3 · (1− (1−

tD

t
)1/3)

≈ (
3Q

4π
)1/3 ·

tD

3t2/3
. (14)

In this 3D case, we predict that the anisotropic concentration
patterns would eventually always go away, the maximum and
minimum convection length ratio and difference would follow
the power law as a function of t as shown in the calculation above.

6. CONCLUSION

We have performed experiments and computer simulations of
dispersion in an open fracture with an initial state emerging
from a ramified dissolution pattern. A fluorescent technique was
used to measure the tracer concentration in a transparent Hele
Shaw cell. We implemented a 2D simulation which in addition
to convective motion can include both molecular diffusion and

FIGURE 10 | Example of persistence of anisotropy at larger length scales. The simulation images are obtained from the molecular diffusion model, with the same

dissolution pattern as before but the whole system is expanded by scale of 8 times. The green intensity represents the normalized tracer concentration Cn in the

simulation. The images show the concentration profile after an injection lasting respectively 0/50/1, 000/3, 000 min. We observe that the anisotropy of the

concentration profile vanishes gradually with time.
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FIGURE 11 | Evolution of characteristic length scales in the system with time. (A) The maximum and minimum convection length evolution with time. (B) The ratio of

the two lengths shown in (A), which approaches unity at long times. (C) The difference of the two lengths shown in (A), which approaches zero at long times.

FIGURE 12 | Evolution of characteristic length scales in the system with time. The corresponding log-log plot for Figure 11 is shown. (A) Logarithmic plot of the

maximum and minimum convection length evolution with time, where the black line gives a reference slope of k = 0.5 which implies that the curves tend to follow the

power law of
√
t. (B) One minus the ratio of the two lengths evolution with time follows the power law of 1/t with a reference slope k = −1. (C) The difference of the

two lengths evolution with time follows the power law of 1/
√
t with a reference slope k = −0.5.

Taylor diffusion. For the investigated patterns, simulations with
molecular diffusion and Taylor diffusion have no significant
difference. The ramified dissolution structures have a significant
effect on the local concentration Cn(r) and the concentration
averaged over angles < Cn(r) > both for small and large length
and time scales. The shape of the concentration distributions far
from the dissolution structure is discussed with some theoretical
calculations. The convergence in open systems of structures
injected from ramified patterns to the point-like (or circular)
injection solution is not obvious: When molecular diffusion
presents a skin depth

√
2Dt exceeding largely the central zone size

Rd, the concentration gradients in the central zone are expected
to reduce, and the concentration field should be smoother
there. Nonetheless, the strong anisotropy of the permeability in
the central region leads to clear fingering outside this region.
Whether the influence of these fingers is felt only up to a

finite range is questionable, in particular in this radial geometry,
since the center of the different emerging fingers diverges with
time. We make some theoretical calculations and simulations to
conclude that the anisotropy of the concentration distribution
in the system will vanish at sufficiently large length and time
scales. The experimental verification of isotropy of the tracer
concentration at large scales is an interesting question for further
experimental work. From the theoretical calculation and our
simulation result we estimate that we need an experimental
model of the order of 1m to reach this isotropy. At the
expected 3D structure, we predict that the shape of concentration
distribution far from the dissolution structure will eventually
experience a slowly vanishing anisotropy, in future work it
would certainly be nice to explore these 3D structures both
experimentally and numerically to see how they correspond to
these predictions.

Frontiers in Physics | www.frontiersin.org 11 April 2018 | Volume 6 | Article 2917

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Xu et al. Dispersion in Fractures With Ramified Dissolution Patterns

AUTHOR CONTRIBUTIONS

LX and KM designed the experiment. LX performed the
experiments, analyzed the data and authored the paper. BM
conducted the simulations. EF contributed to the idea for
the simulations and performed some theoretical calculations
together with RT and KM. RT, EF, and KM assisted with the
interpretation and data analysis, and editing of the manuscript.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s
Seventh Framework Programme for research, technological

development and demonstration under grant agreement no
316889. We acknowledge the support of the University of Oslo
and the support by the Research Council of Norway through its
Centres of Excellence funding scheme, project number 262644,
and the INSU ALEAS program. We thank Mihailo Jankov for
technical support andMarcel Moura, Fredrik K. Eriksen, Monem
Ayaz, and Guillaume Dumazer for useful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2018.00029/full#supplementary-material

REFERENCES

1. Taylor G. Dispersion of soluble matter in solvent flowing slowly through

a tube. Proc R Soc Lond A Math Phys Eng Sci. (1953) 219:186–203.

doi: 10.1098/rspa.1953.0139

2. Tang D, Frind E, Sudicky EA. Contaminant transport in fractured porous

media: analytical solution for a single fracture. Water Resour Res. (1981)

17:555–64. doi: 10.1029/WR017i003p00555

3. Sudicky E, Frind E. Contaminant transport in fractured porous media:

analytical solutions for a system of parallel fractures. Water Resour Res.

(1982) 18:1634–42. doi: 10.1029/WR018i006p01634

4. Boschan A, Auradou H, Ippolito I, Chertcoff R, Hulin JP. Miscible

displacement fronts of shear thinning fluids inside rough fractures. Water

Resour Res. (2007) 43:W03438. doi: 10.1029/2006WR005324

5. Sané J, Padding JT, Louis AA. Taylor dispersion of colloidal

particles in narrow channels. Mol Phys. (2015) 113:2538–45.

doi: 10.1080/00268976.2015.1035768

6. Måloy KJ, Feder J, Boger F, Jossang T. Fractal structure of hydrodynamic

dispersion in porous media. Phys Rev Lett. (1988) 61:2925.

doi: 10.1103/PhysRevLett.61.2925

7. Ippolito I, Hinch E, Daccord G, Hulin J. Tracer dispersion in 2-d fractures

with flat and rough walls in a radial flow geometry. Phys Fluids A Fluid Dyn.

(1993) 5:1952–62. doi: 10.1063/1.858822

8. Alencar AM, Andrade JS, Lucena LS. Self-organized percolation. Phys Rev

E (1997) 56:R2379. doi: 10.1103/PhysRevE.56.R2379

9. Andrade JS Jr, Costa UMS, Almeida MP, Makse HA, Stanley HE. Inertial

effects on fluid flow through disordered porous media. Phys Rev Lett. (1999)

82:5249. doi: 10.1103/PhysRevLett.82.5249

10. Parteli EJR, da Silva LR, Andrade JS Jr. Self-organized percolation in

multi-layered structures. J Stat Mech Theory Exp. (2010) 2010:P03026.

doi: 10.1088/1742-5468/2010/03/p03026

11. Bodin J, Delay F, De Marsily G. Solute transport in a single fracture with

negligible matrix permeability: 1. Fundamental mechanisms. Hydrogeol

J. (2003) 11:418–33. doi: 10.1007/s10040-003-0268-2

12. Qian J, Zhan H, Zhao W, Sun F. Experimental study of turbulent

unconfined groundwater flow in a single fracture. J Hydrol. (2005)

311:134–42. doi: 10.1016/j.jhydrol.2005.01.013

13. Koyama T, Neretnieks I, Jing L. A numerical study on differences

in using navier–stokes and reynolds equations for modeling the fluid

flow and particle transport in single rock fractures with shear. Int

J Rock Mech Mining Sci. (2008) 45:1082–101. doi: 10.1016/j.ijrmms.

2007.11.006

14. Bauget F, Fourar M. Non-fickian dispersion in a single fracture.

J Cont Hydrol. (2008) 100:137–48. doi: 10.1016/j.jconhyd.

2008.06.005

15. Rastiello G, Boulay C, Dal Pont S, Tailhan JL, Rossi P. Real-time

water permeability evolution of a localized crack in concrete under

loading. Cement Concrete Res. (2014) 56:20–8. doi: 10.1016/j.cemconres.

2013.09.010

16. Daccord G, Lenormand R. Fractal patterns from chemical dissolution.

Nature (1987) 325:41–3. doi: 10.1038/325041a0

17. Fredd CN, Fogler HS. Influence of transport and reaction on

wormhole formation in porous media. AIChE J. (1998) 44:1933–49.

doi: 10.1002/aic.690440902

18. Szymczak P, Ladd AJC. Instabilities in the dissolution of a porous matrix.

Geophys Res Lett. (2011) 38:L07403. doi: 10.1029/2011GL046720

19. Powers TC. The Properties of Fresh Concrete. New York, NY: John Wiley &

Sons. (1969).

20. Szymczak P, Ladd AJC. Wormhole formation in dissolving fractures.

J Geophys Res Solid Earth (2009) 114:B0620. doi: 10.1029/2008JB006122

21. Daccord G. Chemical dissolution of a porous medium by a reactive fluid.

Phys Rev Lett. (1987) 58:479. doi: 10.1103/PhysRevLett.58.479

22. Wang H, Bernabé Y, Mok U, Evans B. Localized reactive flow in carbonate

rocks: core-flood experiments and network simulations. J Geophys Res Solid

Earth (2016) 121:7965–83. doi: 10.1002/2016JB013304

23. Culbertson CT, Jacobson SC, Ramsey JM. Diffusion coefficient

measurements in microfluidic devices. Talanta (2002) 56:365–73.

doi: 10.1016/S0039-9140(01)00602-6

24. Walker D. A fluorescence technique for measurement of

concentration in mixing liquids. J Phys E Sci Instrum. (1987) 20:217.

doi: 10.1088/0022-3735/20/2/019

25. Aris R. On the dispersion of a solute in a fluid flowing through a tube. Proc

R Soc Lond A Math Phys Eng Sci. (1956) 235:67–77.

26. Boschan A, Charette V, Gabbanelli S, Ippolito I, Chertcoff R. Tracer

dispersion of non-newtonian fluids in a hele–shaw cell. Phys A Stat Mech

Appl. (2003) 327:49–53. doi: 10.1016/S0378-4371(03)00437-0

27. Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear

conservation laws and convection–diffusion equations. J Comput Phys.

(2000) 160:241–82. doi: 10.1006/jcph.2000.6459

28. Måløy KJ, Feder J, Jøssang T. Viscous fingering fractals in porous media.

Phys Rev Lett. (1985) 55:2688. doi: 10.1103/PhysRevLett.55.2688

29. Witten TA, Sander LM. Diffusion-limited aggregation. Phys Rev B (1983)

27:5686. doi: 10.1103/PhysRevB.27.5686

30. Barabási AL, Stanley HE. Fractal Concepts in Surface Growth. Cambridge:

University Press (1995).

31. Feder J. Fractals. Springer Science & Business Media (2013).

doi: 10.1007/978-1-4899-2124-6

32. Eriksen FK, Toussaint R, Måløy KJ, Flekkøy EG. Invasion patterns during

two-phase flow in deformable porous media. Front Phys. (2015) 3:81.

doi: 10.3389/fphy.2015.00081

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Xu, Marks, Toussaint, Flekkøy and Måløy. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is

permitted, provided the original author(s) and the copyright owner are credited

and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 12 April 2018 | Volume 6 | Article 2918

https://www.frontiersin.org/articles/10.3389/fphy.2018.00029/full#supplementary-material
https://doi.org/10.1098/rspa.1953.0139
https://doi.org/10.1029/WR017i003p00555
https://doi.org/10.1029/WR018i006p01634
https://doi.org/10.1029/2006WR005324
https://doi.org/10.1080/00268976.2015.1035768
https://doi.org/10.1103/PhysRevLett.61.2925
https://doi.org/10.1063/1.858822
https://doi.org/10.1103/PhysRevE.56.R2379
https://doi.org/10.1103/PhysRevLett.82.5249
https://doi.org/10.1088/1742-5468/2010/03/p03026
https://doi.org/10.1007/s10040-003-0268-2
https://doi.org/10.1016/j.jhydrol.2005.01.013
https://doi.org/10.1016/j.ijrmms.2007.11.006
https://doi.org/10.1016/j.jconhyd.2008.06.005
https://doi.org/10.1016/j.cemconres.2013.09.010
https://doi.org/10.1038/325041a0
https://doi.org/10.1002/aic.690440902
https://doi.org/10.1029/2011GL046720
https://doi.org/10.1029/2008JB006122
https://doi.org/10.1103/PhysRevLett.58.479
https://doi.org/10.1002/2016JB013304
https://doi.org/10.1016/S0039-9140(01)00602-6
https://doi.org/10.1088/0022-3735/20/2/019
https://doi.org/10.1016/S0378-4371(03)00437-0
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1103/PhysRevLett.55.2688
https://doi.org/10.1103/PhysRevB.27.5686
https://doi.org/10.1007/978-1-4899-2124-6
https://doi.org/10.3389/fphy.2015.00081
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 13 June 2018

doi: 10.3389/fphy.2018.00056

Frontiers in Physics | www.frontiersin.org 1 June 2018 | Volume 6 | Article 56

Edited by:

Romain Teyssier,

Universität Zürich, Switzerland

Reviewed by:

Daniele Chiappini,

Università degli Studi Niccolò Cusano,

Italy

Christian F. Klingenberg,

Universität Würzburg, Germany

*Correspondence:

Magnus Aa. Gjennestad

magnus@aashammer.net

Specialty section:

This article was submitted to

Computational Physics,

a section of the journal

Frontiers in Physics

Received: 19 January 2018

Accepted: 17 May 2018

Published: 13 June 2018

Citation:

Gjennestad MA, Vassvik M,

Kjelstrup S and Hansen A (2018)

Stable and Efficient Time Integration of

a Dynamic Pore Network Model for

Two-Phase Flow in Porous Media.

Front. Phys. 6:56.

doi: 10.3389/fphy.2018.00056

Stable and Efficient Time Integration
of a Dynamic Pore Network Model
for Two-Phase Flow in Porous Media
Magnus Aa. Gjennestad 1*, Morten Vassvik 1, Signe Kjelstrup 2 and Alex Hansen 1

1 PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway, 2 PoreLab,

Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway

We study three different time integration methods for a dynamic pore network model for

immiscible two-phase flow in porous media. Considered are two explicit methods, the

forward Euler and midpoint methods, and a new semi-implicit method developed herein.

The explicit methods are known to suffer from numerical instabilities at low capillary

numbers. A new time-step criterion is suggested in order to stabilize them. Numerical

experiments, including a Haines jump case, are performed and these demonstrate that

stabilization is achieved. Further, the results from the Haines jump case are consistent

with experimental observations. A performance analysis reveals that the semi-implicit

method is able to perform stable simulations with much less computational effort

than the explicit methods at low capillary numbers. The relative benefit of using the

semi-implicit method increases with decreasing capillary number Ca, and at Ca ∼ 10−8

the computational time needed is reduced by three orders of magnitude. This increased

efficiency enables simulations in the low-capillary number regime that are unfeasible with

explicit methods and the range of capillary numbers for which the pore network model

is a tractable modeling alternative is thus greatly extended by the semi-implicit method.

Keywords: porous media, two-phase flow, pore network model, numerical methods, time integration, stability,

low capillary number

1. INTRODUCTION

Different modeling approaches have been applied in order to increase understanding of immiscible
two-phase flow in porous media. On the pore scale, direct numerical simulation approaches using
e.g. the volume of fluid method [1] or the level-set method [2, 3] to keep track of the fluid
interface locations, have been used. The lattice-Boltzmann method is another popular choice, see
e.g. Ramstad et al. [4]. These methods can provide detailed information on the flow in each pore.
They are, however, computationally intensive and this restricts their use to relatively small systems.

Pore network models have proven to be useful in order to reduce the computational cost [5], or
enable the study of larger systems, while still retaining some pore-level detail. In these models, the
pore space is partitioned into volume elements that are typically the size of a single pore or throat.
The average flow properties in these elements are then considered, without taking into account the
variation in flow properties within each element.

Pore network models are typically classified as either quasi-static or dynamic. The quasi-static
models are intended for situations where flow rates are low, and viscous pressure drops are

19

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2018.00056
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2018.00056&domain=pdf&date_stamp=2018-06-13
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:magnus@aashammer.net
https://doi.org/10.3389/fphy.2018.00056
https://www.frontiersin.org/articles/10.3389/fphy.2018.00056/full
http://loop.frontiersin.org/people/514161/overview
http://loop.frontiersin.org/people/122026/overview
http://loop.frontiersin.org/people/96520/overview
http://loop.frontiersin.org/people/73058/overview


Gjennestad et al. Pore Network Model Time Integration

neglected on the grounds that capillary forces are assumed to
dominate at all times. In the quasi-static models by Lenormand
et al. [6], Willemsen [7], and Blunt [8], the displacement of one
fluid by the other proceeds by the filling of one pore at the time,
and the sequence of pore filling is determined by the capillary
entry pressure alone.

The dynamic models, on the other hand, account for
the viscous pressure drops and thus capture the interaction
between viscous and capillary forces. As three examples
of such models, we mention those by Hammond and
Unsal [5], Joekar-Niasar et al. [9], and Aker et al. [10].
A thorough review of dynamic pore network models
was performed by Joekar-Niasar and Hassanizadeh
[11].

The pore network model we consider here is of the dynamic
type that was first presented by Aker et al. [10]. Since the
first model was introduced, it has been improved upon several
times. Notably, it was extended to include film and corner
flow by Tørå et al. [12]. The model considered here does
not contain this extension. This class of models, which we
call the Aker-type models, is different from the majority of
other pore network models [5, 9] in that both the pore body
and pore throat volumes are assigned to the links, and no
volume is assigned to the nodes. Fluid interface locations are
tracked explicitly as they move continuously through the pore
space. This is in contrast to the model by Hammond and
Unsal [5], where interfaces are moved through whole volume
elements at each time step, and to the model of Joekar-
Niasar et al. [9], where interface locations are only implicitly
available through the volume element saturation. One of the
advantages of the Aker-type model is that a detailed picture
of the fluid configuration is provided at any time during a
simulation. Dynamic phenomena, such as the retraction of the
invasion front after a Haines jump [13–16], are thus easily
resolved.

Since 1985, numerical instabilities at low capillary numbers
have been known to occur for various types of dynamic pore
network models [17]. A whole section is devoted to the topic
in the review by Joekar-Niasar and Hassanizadeh [11]. It is
important to address such stability problems rigorously, as
many of the practical applications of two-phase porous media
flow are in the low capillary number regime. Examples include
most parts of the reservoir rock during CO2 sequestration,
flow of liquid water in fuel cell gas diffusion layers and
studies of Haines jump dynamics, see e.g. Armstrong and Berg
[15].

When Aker-type pore network models are used, the
numerical instabilities are observed as oscillations in the
positions of the fluid interfaces. Some efforts to avoid these
oscillations have been made by introduction of modifications
to the model. Medici and Allen [18] used a scheme where
water was allowed to flow in the forward direction only
in order to study water invasion in fuel cell gas diffusion
layers. While this approach led to interesting results, it has
some downsides. First, the interface movement is artificially
restricted, and certain dynamic effects can not be resolved.
This includes e.g. invasion front retraction after a Haines

jump. Second, the method can only be used in cases with
transient invasion. Studies of steady-state flow, such as those
performed by Knudsen et al. [21] and Savani et al. [19], are not
possible.

Because the oscillations originate in the numerical methods,
rigorous attempts to remove them should focus on these
methods rather than the models themselves. Joekar-Niasar
et al. [9] followed this avenue and achieved stabilization
using a linearized semi-implicit method. Their work, however,
concerned a different type of pore network model than that
considered here.

In this work, we present three numerical methods that
can be utilized to perform stable simulations of two-phase
flow in porous media with pore network models of the Aker
type. The stability problems previously observed are thus
solved without the need to resort to model modifications
that restrict interface movement or preclude steady-state flow
simulations. Two explicit methods are discussed, the forward
Euler method and the midpoint method. These are stabilized
by a new time step criterion derived herein. The third method
is a new semi-implicit method. Thorough verifications of
all methods are performed, confirming correct convergence
properties and stability. Finally, we compare the methods in
terms of performance.

The rest of this paper is structured as follows. Section 2
contains background information on the pore network model.
Section 3 presents briefly the nomenclature, used in subsequent
sections to describe the time integration methods. In section 4,
we recapitulate how the forward Euler method is used to
integrate the model and we present a new time step criterion
that stabilizes both forward Euler and the midpoint method at
low capillary numbers. We briefly review the midpoint method
in section 5. The new semi-implicit method is described in detail
in section 6. Some remarks about the numerical implementation
are made in section 7. Section 8 contains a description of the
cases simulated. Numerical experiments, including a Haines
jump case, that show convergence and stability are given in
section 9 and a comparison of the method performances are
made in section 10. Section 11 summarizes and concludes the
paper.

2. PORE NETWORK MODEL

We consider incompressible flow of two immiscible fluids in a
porous medium, where one fluid is more wetting toward the pore
walls than the other. We call the less wetting fluid non-wetting
(n) and the more wetting fluid we call wetting (w). The porous
medium is represented in the model by a network of N nodes
connected byM links. Each node is given an index i ∈ [0,N − 1],
and each link is identified by the indices of the two nodes it
connects. An example pore network is shown in Figure 1. The
nodes are points that have no volume and, consequently, all fluid
is contained in the links. The links therefore represent both the
pore and the throat volumes of the physical porous medium. In
this respect, the pore network model studied here differ from
most other pore networkmodels [11]. Each fluid is assumed to fill
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FIGURE 1 | Illustration of (A) a physical pore network with wetting (white) and non-wetting fluid (blue) and (B) its representation in the pore network model. The void

space volumes separated by dashed lines in (A) are each represented as one link in (B). The node points in the model representation (B) is assumed to be located at

the intersection points of the dashed lines in (A). Each fluid is assumed to fill the entire link cross section. The interface positions are therefore each represented in the

model by a single number, giving its location along the link length.

the entire link cross section. The interface positions are therefore
each represented in the model by a single number, giving its
location along the link length.

The flow in each link is treated in a one-dimensional manner,
where the flow is averaged over the link cross section. As we
consider flow in relatively small cross sections only, we neglect
any inertial effects and the volume flow rate (m3 s−1) from node j
to node i through the link connecting then is given by Washburn
[20]

qij = −gij
(

zij
) {

pi − pj − cij
(

zij
)}

. (1)

Herein, pi (Pa) is the pressure in node i, gij (m
3 s−1 Pa−1) is the

link mobility, cij (Pa) is the link capillary pressure and zij (m) is a
vector containing the positions of any fluid interfaces present in
the link. Both the link mobility and the capillary pressure depend
on the fluid interface positions in the link. If two nodes i and j are
not connected by a link, then gij = 0. Due to mass conservation,
the net flow rate into every node i is zero

∑

j

qij = 0. (2)

While the mobilities are symmetric with respect to permutation
of the indices, the capillary pressures are anti-symmetric,

gij = gji, (3)

cij = −cji. (4)

Introducing this into Equation (1), we obtain the immediately
intuitive result

qij = −qji. (5)

The cross-sectional area of link ij is denoted aij (m
2). Interface

positions are advected with the flow according to

d

dt
zij =

qij

aij
, (6)

when they are sufficiently far away from the nodes. Near the
nodes, however, the interfaces are subject to additional modeling
to account for interface interactions in the pores. This is discussed
further in section 2.3.

The form of the expressions for the mobilities and capillary
pressures depends on the shape of the links, and many different
choices and modeling approaches are possible. Here, we will use
models similar to those previously presented and used by e.g.
Knudsen et al. [21] and Aker et al. [10]. However, the treated time
integrationmethods are more general and can be applied to other
models as well.

2.1. Link Mobility Model
We apply a cylindrical link model when computing the
mobilities, so that

gij(zij) =
πr4ij

8Lijµij

(

zij
) . (7)

Here, rij (m) is the link radius and Lij (m) is the link length.
The viscosity µij (Pa s) is the volume-weighted average of the
fluid viscosities and can be computed from the wetting and
non-wetting fluid viscosities µw and µn and the wetting fluid
saturation sij,

µij

(

zij
)

= µwsij
(

zij
)

+ µn

{

1− sij
(

zij
)}

. (8)
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2.2. Capillary Pressure Model
In each link ij, there may be zero, one or more interfaces
present. These are located at the positions specified in zij. As
the interfaces may be curved, there may be a discontinuity in
pressure at these interface locations. The capillary pressure cij is
the sum of interfacial pressure discontinuities in the link ij. When
computing the capillary pressures, we assume that the links are
wide near each end, and therefore that interfaces located near a
link end have negligible curvature and no pressure discontinuity,
while the links have narrow throats in the middle. The link
capillary pressures are thus modeled as

cij
(

zij
)

=
2σwn

rij

∑

z∈zij
(±1)

{

1− cos
(

2πχij (z)
)}

. (9)

The interfacial tension between the fluids is denoted σwn (Nm−1)
and

χij (z) =











0 z < αrij,
z−αrij

Lij−2αrij
αrij < z < Lij − αrij,

1 z > Lij − αrij.

(10)

The χij-function ensures zones of length αrij at both ends of
each link with zero capillary pressure across any interface located
there. Choosing α = 0 is equivalent to replacing χij with z/Lij in
(9).

2.3. Fluid Interface Interaction Models
The equations discussed so far in this section describe how the
fluids and the fluid interfacesmove through the links. In addition,
we rely on models for how they behave close to the nodes. The
purpose of these are to emulate interface interactions in the pore
spaces.

The following is assumed about the fluid behavior near the
nodes and is accounted for by the fluid interface interaction
models.

• The mass of each fluid is conserved at every node. This means
that at all times, all wetting and non-wetting fluid flowing into
a node from one subset of its neighboring links must flow out
into another disjoint subset of its neighboring links.

• The network nodes in the model have no volume. However,
due to the finite size of the physical pore void spaces, wetting
fluid flowing into a pore space must be able to flow freely past
any non-wetting fluid occupying the node point if the non-
wetting fluid does not extend far enough into the pore void
space cut the wetting fluid off. An example is illustrated in
Figure 2. We consider a link ij to be cut off from free outflow
of wetting fluid if the non-wetting fluid continuously extends
a length at least αrij into the link. Non-wetting fluid may freely
flow past wetting fluid, or not, the same manner.

• In each link ij, interfacial tension will prevent droplets with
length smaller than αrij from forming by separation from
larger droplets. An example is illustrated in Figure 3.

FIGURE 2 | Network node connected to three links. The node point, located

near the middle of the pore space, is occupied by non-wetting fluid (blue). (A)

The non-wetting fluid extends only a short distance into the links containing

wetting fluid (white). The wetting fluid therefore remains connected and may

flow freely through the pore space. (B) Non-wetting fluid protrudes far enough

into all links to block the pore space for wetting fluid. The wetting fluid must

now displace the non-wetting fluid in order to flow through.

2.4. Boundary Conditions
We consider only networks where the nodes and links can be
laid out in the two-dimensional x-y plane. These networks will
be periodic in both the x- and y-direction. However, the model is
also applicable to networks that extend in three dimensions [22],
and the presented numerical methods are also compatible both
with networks in three dimensions and with other, non-periodic
boundary conditions [23].

We will here apply two types of boundary conditions to the
flow. With the first type, a specified pressure difference 1P
(Pa) will be applied across the network in the y-direction. This
pressure difference will be equal to the sum of all link pressure
differences in any path spanning the network once in the y-
direction, ending up in the same node as it started.With the other
type of boundary condition, we specify a total flow rateQ (m3 s−1)
across the network. This flow rate will be equal to the sum of link
flow rates flowing through any plane drawn through the network
normal to the y-axis.

3. TEMPORAL DISCRETIZATION

In the following three sections, we describe the different time
integration methods considered. These methods are applied to
Equation (6), where evaluation of the right hand side involves
simultaneously solving the mass conservation equation (2) and
the constitutive equation (1) to obtain all unknown link flow rates
and node pressures.

The discretized times (s) are denoted with a superscript where
n is the time step number,

t(n) = t(0) +
n−1
∑

i=0

1t(i). (11)

The time step 1t(i) is the difference between t(i+1) and t(i)

and the time t(0) is the initial time in a simulation. Similarly,
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FIGURE 3 | (A) Small non-wetting bubble (blue) whose volume is small compared to the link volumes and is prevented from splitting by interfacial tension. This limits

the minimum size of non-wetting bubbles, which will either (B) be stuck or (C) move through one of the links without splitting.

quantities evaluated at the discrete times are denoted with time
step superscripts, e.g.

q
(n)
ij = qij

(

t(n)
)

. (12)

Mobilities and capillary pressures with superscripts are evaluated
using the interface positions at the indicated time step,

g
(n)
ij = gij

(

z
(n)
ij

)

, (13)

c
(n)
ij = cij

(

z
(n)
ij

)

. (14)

4. FORWARD EULER METHOD

The forward Euler method is the simplest of the time integration
methods considered here and is the one used most frequently
in previous works, see e.g. Knudsen et al. [21] and Sinha and
Hansen [24]. We include its description here for completeness
and to provide context for the proposed new capillary time
step criterion that is introduced to stabilize the method at low
capillary numbers.

The ordinary differential equation (ODE) (6) is discretized in
a straightforward manner for each link ij using forward Euler,

z
(n+1)
ij = z

(n)
ij + 1t(n)

q
(n)
ij

aij
. (15)

The flow rates are calculated by inserting Equation (1), evaluated
with the current known interface positions,

q
(n)
ij = −g

(n)
ij

{

p
(n)
i − p

(n)
j − c

(n)
ij

}

, (16)

into the mass conservation equation (2). This results in the a
system of linear equations consisting of one equation,

∑

j

g
(n)
ij p

(n)
j − p

(n)
i

∑

j

g
(n)
ij = −

∑

j

g
(n)
ij c

(n)
ij , (17)

for each node iwith unknown pressure. This linear system can be
cast into matrix form,

A · x = b, (18)

where the vector x contains the unknown node pressures, e.g.

x =













p
(n)
0

p
(n)
1
...

p
(n)
N−1













. (19)

The matrix elements are

Aij =
{

1− δij
}

g
(n)
ij − δij

∑

k

g
(n)
ik

, (20)

and the elements of the constant vector are

bi = −
∑

k

g
(n)
ik

c
(n)
ik
. (21)

The node pressures are obtained by solving this linear equation
system. The flow rates are subsequently evaluated using Equation
(16) and the interface positions are then updated using Equation
(15) and the interface interaction models.

4.1. Time Step Restrictions
In previous works [10, 21], the time step length was chosen from
a purely advective criterion,

1t(n)a = Camin
ij





aijLij

q
(n)
ij



 . (22)

The parameter Ca corresponds to the maximum fraction of a link
length any fluid interface is allowed to move in a single forward
Euler time step. The value ofCa must be chosen based on the level
of accuracy desired from the simulation.

However, selecting the time step based on the advective
criterion only, often results in numerical instabilities at low
capillary numbers, where viscous forces are small relative to the
capillary forces. This is demonstrated in section 9.2. The origins
of the numerical instabilities can be identified by performing
analysis on a linearized version of the governing equations. This
is done in Appendix A. This analysis also leads to a new time
step criterion, whereby the time step length is restricted by the
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sensitivity of the capillary forces to perturbations in the current
interface positions,

1t(n)c = Ccmin
ij









2aij

g
(n)
ij

∣

∣

∣

∣

∑

z∈z(n)ij

∂cij
∂z

∣

∣

∣

∣









. (23)

For the particular choice of capillary pressure model given by (9),
we obtain

1t(n)c = Ccmin
ij









aijrijLij

2πg
(n)
ij σwn

∣

∣

∣

∣

∑

z∈z(n)ij
(±1) sin

(

2πχij (z)
) dχij

dz

∣

∣

∣

∣









.

(24)

According to the linear analysis, numerical instabilities are
avoided if the parameter Cc is chosen such that 0 < Cc < 1.
However, we must regard (23) as an approximation when
we apply it to the full non-linear model in simulations and,
consequently, we may have to chose Cc conservatively to ensure
stability for all cases.

At each step in the simulation, the time step used is then taken
as

1t(n) = min
(

1t(n)c ,1t(n)a

)

, (25)

to comply with both the advective and the capillary time step
criteria. The capillary time step restriction (23) is independent of
flow rate. It therefore becomes quite severe, demanding relatively
fine time steps, when flow rates are low.

4.2. Boundary Conditions
The periodic boundary conditions, specifying a total pressure
difference 1P across the network, can be incorporated directly
into the linear equation system (18). For each node i, a term

g
(n)
ij 1P is added to or subtracted from bi for any link ij that

crosses the periodic boundary.
With the specified 1P condition implemented, we can use it

to obtain the node pressures and link flow rates corresponding to
a specified total flow rateQ. Due to the linear nature of themodel,
the total flow rate is linear in 1P [10], so that

Q = C11P + C2, (26)

for some unknown coefficients C1 and C2, that are particular to
the current fluid configuration.

We choose two different, but otherwise arbitrary, pressure
drop values 1P1 and 1P2 and, using the above procedure, we
solve the network model once for each pressure difference and
calculate the corresponding total flow rates Q1 and Q2. The
coefficients C1 and C2 are then determined by,

C1 =
Q2 − Q1

1P2 − 1P1
, (27)

C2 =
Q21P1 − Q11P2

1P1 − 1P2
. (28)

The pressure difference 1P required to obtain the specified
flow rate Q is determined by solving Equation (26) for 1P.
Subsequently, the network model is solved a third time with
pressure drop 1P to obtain the desired node pressures and link
flow rates.

5. MIDPOINT METHOD

The forward Euler method is first-order accurate in time. To
obtain smaller numerical errors, methods of higher order are
desirable. We therefore include in our discussion the second-
order midpoint method. This method is identical to that used by
Aker et al. [10], except with respect to choice of time step length.

The ODE (6) is discretized as

z
(n+1)
ij = z

(n)
ij + 1t(n)

q
(n+1/2)
ij

aij
, (29)

where q
(n+1/2)
ij is the flow rate at the midpoint in time between

point n and n+1. This flow rate is calculated in the same manner
as described in section 4. The interface positions at n + 1/2 are
obtained by taking a forward Euler step with half the length of the
whole time step,

z
(n+1/2)
ij = z

(n)
ij +

1

2
1t(n)

q
(n)
ij

aij
. (30)

5.1. Time Step Restrictions
Since the forward Euler stability region is contained within the
stability region for the midpoint method, we use the same time
step restrictions for the midpoint method as for forward Euler,
see section 4.1.

5.2. Boundary Conditions
Both the specified 1P and the specified Q boundary conditions
are incorporated into the midpoint method by applying the
procedures described in section 4.2 for each evaluation of the
right hand side of Equation (6).

6. SEMI-IMPLICIT METHOD

To avoid both the numerical instabilities and the time step
restriction (23), which becomes quite severe at low flow rates,
we here develop a new semi-implicit time stepping method.
Simulation results indicate that this method is stable with time
steps determined by the advective criterion (22) only, and much
longer time steps are therefore possible than with the forward
Euler and midpoint methods at low capillary numbers.

The ODE (6) is now discretized according to

z
(n+1)
ij = z

(n)
ij + 1t(n)

q
(n+1)
ij

aij
. (31)

The semi-implicit nature of this discretization comes from the
flow rate used,

q
(n+1)
ij = −g

(n)
ij

{

p
(n+1)
i − p

(n+1)
j − c

(n+1)
ij

}

. (32)
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Herein, the link mobility is evaluated at time step n, while the
node pressures and the capillary pressure are evaluated time step
n+ 1.

The link mobilities could of course also have been evaluated
at time step n + 1, thus creating a fully implicit backward Euler
scheme. As is shown in Appendix A, we may expect backward
Euler to be stable with any positive 1t(n). The backward Euler
scheme may therefore seem like a natural choice for performing
stable simulations with long time steps. However, to evaluate
the mobilities at time step n + 1 complicates the integration
procedure and was found to be unnecessary in practice. A semi-
implicit alternative is therefore preferred.

To obtain the node pressures, we solve the mass conservation
equations,

Fi =
∑

k

q
(n+1)
ik

= 0. (33)

Again, we have one equation for each node i with unknown
pressure. However, because the capillary pressures now depend
on the flow rates,

c
(n+1)
ij = cij



z
(n)
ij + 1t(n)

q
(n+1)
ij

aij



 , (34)

the mass conservation equations are now a system of non-linear
equations, rather than a system of linear equations. This system
can be cast in the form

F (x) = 0, (35)

where x contains the unknown pressures, e.g.

x =













p
(n+1)
0

p
(n+1)
1
...

p
(n+1)
N−1













. (36)

In order to solve Equation (35) using the numerical method
described in section 7, it is necessary to have the Jacobian matrix
of F. Details on how the Jacobian matrix is calculated are given in
Appendix B.

The calculation of link flow rates from node pressures, and
thus every evaluation of F and its Jacobian, involves solving one
non-linear equation for each link flow rate,

Gij

(

q
(n+1)
ij

)

= q
(n+1)
ij + g

(n)
ij

{

p
(n+1)
i − p

(n+1)
j − c

(n+1)
ij

}

= 0.

(37)

The derivative of Gij with respect to q
(n+1)
ij is

dGij

dq
(n+1)
ij

= 1− g
(n)
ij

dc
(n+1)
ij

dq
(n+1)
ij

. (38)

The procedure for updating the interface positions with the semi-
implicit method may be summarized as follows. The non-linear
equation system (35) is solved to obtain the unknown node
pressures. In every iteration of the solution procedure, the flow
rates are evaluated by solving Equation (37) for each link. When
a solution to Equation (35) is obtained, the interface positions
are updated using Equation (31) and the interface interaction
models.

6.1. Time Step Restrictions
We aim to select the time steps such that

1t(n) = 1t(n+1)
a . (39)

However, to solve the non-linear system (35) is challenging in
practice and requires initial guess values for the link flow rates
and node pressures that lie sufficiently close to the solution. For
this purpose, we here use values from the previous time step. This
turns out to be a sufficiently good choice for most time steps,
but our numerical solution procedure does not always succeed.
As the link flow rates and node pressures at two consecutive
points in time become increasingly similar as the time interval
between them is reduced, we may expect the guess values to
lie closer to the solution if we reduce the time step. Thus, if
our solution procedure is unable to succeed, our remedy is to
shorten 1t(n). This will sometimes lead to time steps shorter

than 1t
(n+1)
a . If, for a given time step, 1t(n) must be reduced

to less than twice the time step length allowed by the explicit
methods, we revert to forward Euler for that particular step. As
we demonstrate in section 10, however, this does not prevent the
semi-implicit method from being much more efficient than the
explicit methods at low capillary numbers.

6.2. Boundary Conditions
As with the explicit methods, the specified 1P boundary
condition can be incorporated directly into the mass balance
equation system, in this case Equation (35). This is done by
adding to or subtracting from the right hand sides of Equation

(32) and Equation (37) a term g
(n)
ij 1P for each link ij crossing the

periodic boundary.
The specified flow rate boundary condition is incorporated by

including1P as an additional unknown and adding an additional
equation

Fm =







∑

ij∈�

q
(n+1)
ij







− Q = 0, (40)

to the non-linear equation system (35). Herein, � is the set of
links crossing the periodic boundary, with i being the node on
the downstream side and j being the node on the upstream side.
Thus, Equation (40) is satisfied when the total flow rate through
the network is equal to Q.

7. IMPLEMENTATION

The non-linear equation system (35) is solved using a Newton-
type solution method that guarantees convergence to a local
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minimum of F · F, see Press et al. [25, p. 477]. However, a local
minimum of F · F is not necessarily a solution to Equation (35),
and good initial guess values for the node pressures and link flow
rates are therefore crucial. For this purpose, we use the values
from the previous time step and reduce the length of the current
time step if the solution method fails, as discussed in section 6.1.

Solving Equation (37) is done using a standard Newton solver
[26]. For robustness, a bisection solver [26] is used if the Newton
solver fails.

The Newton-type solver for non-linear systems and the
explicit time integration methods require methods for
solving linear systems of equations. We use the conjugate
gradient method in combination with the LU preconditioner
implemented in the PETSc library, see Balay et al. [27]. An
introduction to solving systems of Kirchhoff-type equations
numerically can be found in Batrouni and Hansen [28].

8. CASE DESCRIPTIONS

In this section, we describe the two simulated cases. One is a test
case where a single bubble is contained in a network consisting of
links connected in series, while the other is designed to capture
a single Haines jump in a small network where fluids flow at a
specified rate.

8.1. Links-in-Series Test Case
The verification will include comparison of results from the
various numerical methods applied to a test case. The test case
is chosen such that it can be set up as a single ODE with a closed
expression for the right-hand side. An accurate reference solution
can thus be easily obtained using a high-order Runge–Kutta
method. As our test case, we consider a network consisting of
M = 3 identical links connected in series. The network contains
a single bubble of length ℓ (m) with center position z (m). In the
capillary pressuremodel, we choose α = 0. TheODE (6) can then
be restated as an equivalent equation for the bubble position,

dz

dt
=

Q

a
, (41)

where Q is the flow through the network and a is the link
cross-sectional area. The model equations can be reduced to the
following expression for flow rate.

Q = −
g

M

{

1P +
4σwn

r
sin

(

πℓ

L

)

sin

(

2πz

L

)}

(42)

Here, g is the mobility of a single link, L = 1.0 · 10−3m is the
length of a single link and r = 1.0 · 10−4m is the link radius.
The bubble has length ℓ = 4.8 · 10−4m and is initially located
at z = 2.4 · 10−4m. The fluid parameters used in all simulations
are given in Table 1. The pressure difference1P will be stated for
each simulation.

8.2. Haines Jump Case
The Haines jump was first reported almost 90 years ago [13].
It refers to the sudden drops in driving pressure observed
in drainage experiments when non-wetting fluid breaks
through a throat and invades new pores. This process

TABLE 1 | Fluid properties corresponding to water (w) and decane (n) at

atmospheric pressure and 298K.

Parameter Value Unit References

µw 8.9 · 10−4 Pa s [29]

µn 8.5 · 10−4 Pa s [29]

σwn 5.2 · 10−2 Nm−1 [30]

was studied experimentally and numerically by Måløy
et al. [16] and, more recently, it was imaged directly and
analyzed in detail by Armstrong and Berg [15] for flow in
a micromodel and by Berg et al. [14] for flow in a sample
of Berea sandstone. The Haines jump case simulated here
captures one such break-through and subsequent pressure
drop.

Among the findings in the study by Måløy et al. [16] was that
pore drainage is a non-local event, meaning that as one pore
is drained, imbibition occurs in nearby neck regions. This was
also observed by Armstrong and Berg [15], and was explained as
follows. When the imposed flow rates are low, the non-wetting
fluid that fills the newly invaded pores needs to be supplied from
nearby locations rather than the external feed. Armstrong and
Berg [15] also found, for their range of investigated parameters,
that pore drainage occurred on the same time-scale, regardless of
the externally imposed flow rate.

We consider a hexagonal network consisting N = 24 nodes
and M = 36 links. All links have length 1.0 · 10−3m, while
the link radii are drawn randomly from a uniform distribution
between 0.1 and 0.4 link lengths. In the capillary pressure model,
we choose α = 1. The fluid parameters µw, µn and σwn are the
same as in the links-in-series test case, see Table 1. With these
fluid parameters and network length scales, the case mimics the
flow of water (w) and decane (n) in a Hele-Shaw cell filled with
glass beads similar to those used in e.g. Måløy et al. [16, 31] and
Tallakstad et al. [32]. The linear dimensions are∼ 10 times bigger
in this network compared to the micromodel of Armstrong and
Berg [15]. Initially, the fluids are distributed in the network
as shown in Figure 4, with the non-wetting fluid in a single
connected ganglion.

Simulations are run at different specified flow rates Q until a
net fluid volume equivalent to 5% of the total pore volume has
flowed through the network. The flow dynamics will, of course,
depend upon the specified flow rate. At low flow rates, however,
the flow will exhibit some relatively fast fluid redistribution
events and one relatively slow pressure build-up and subsequent
Haines jump event. The Haines jump will occur as the non-
wetting fluid breaks through the link connecting nodes 9 and 16
and invades node 16, see Figure 4.

It was mentioned by Armstrong and Berg [15] that the
large local flow velocities that they observed as a pore
was filled with non-wetting fluid during a Haines jump has
implications for how such processes must be numerically
simulated. Specifically, the time resolution of the simulation
needs to be fine enough during these events to capture them.
This poses a challenge when externally applied flow rates are
low and there is thus a large difference in the large time
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scale that governs the overall flow of the system and the
small time scale than governs the local flow during Haines
jumps.

9. VERIFICATION

In this section, we verify that the time integration methods
presented correctly solve the pore network model equations and
that the time step criteria presented give stable solutions.

9.1. Convergence Tests
All time integration methods presented should, of course, give
the same solution for vanishingly small time steps. Furthermore,
the difference between the solution obtained with a given finite
time step and the fully converged solution should decrease as the
time steps are refined, and should do so at a rate that is consistent
with the order of the method. In this section, we verify that all
three time integration methods give solutions that converge to
the reference solution for the links-in-series test case and thus
that the methods correctly solve the model equations for this
case.

We choose the pressure difference to be 1P = −3200 Pa.
This value is large enough to overcome the capillary forces
and push the non-wetting bubble through the links. We
therefore expect a flow rate Q that varies in time, but is always
positive.

As measures of the numerical error, we consider both the
relative error in the flow rate Q and the relative error in
bubble position z between the numerical solutions and reference
solutions at the end of the simulation. Time integration is

FIGURE 4 | Initial fluid configuration in the Haines jump case. The non-wetting

fluid is blue while the wetting fluid is gray. The link radii are not drawn to scale

with the link lengths. Node indices are indicated in black.

performed from t = 0 s to t = 0.001 44 s. To have control over
the time step lengths, we ignore all time step criteria for now and
instead set a constant 1t for each simulation.

In Figure 5, flow rates are plotted for each of the time
integration methods. Results using a coarse time step, 1t =
4 · 10−5 s, and a fine time step, 1t = 1 · 10−5 s, are shown along
with the reference solution.

For the forward Euler and the semi-implicit method, there
is considerable discrepancy between the numerical and the
reference solution with the coarse time step. The flow rate
obtained from forward Euler lags behind the reference solution,
while that from the semi-implicit method lies ahead of it. This
may be expected, however, since forward Euler at each time
step uses current information in the right hand side evaluation,
whereas the semi-implicit method uses a combination of current
and future information. With the fine time step, there is less
difference between the reference and the numerical solutions.

FIGURE 5 | Flow rates Q plotted against time for two different time steps 1t

for the links-in-series test case with 1 P = −3200Pa. Results from the

forward Euler method are given in (A), results from the midpoint method in (B)

and results from the semi-implicit method in (C). The solid line represents the

reference solution.
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With the more accurate midpoint method, the coarse-stepped
numerical solution lies only marginally ahead of the reference
solution while there is no difference between the fine-stepped
numerical solution and the reference solution at the scale of
representation.

The convergence of the numerical solutions to the reference
solution upon time step refinement is quantified in Tables 2–4.
Herein, the numerical errors and estimated convergence orders
are given for the forward Euler, midpoint and semi-implicit
method, respectively. For all methods considered, the numerical
errors decrease when the time step is refined and do so at the rate
that is expected. The forward Euler and the semi-implicit method
exhibit first-order convergence, while the midpoint method
shows second-order convergence.We note that the errors in both
z and Q are similar in magnitude for the forward Euler and the
semi-implicit method. The errors obtained with the midpoint
method are smaller. The difference is one order of magnitude for
1t = 1 · 10−5 s.

In summary, we have verified that the presented time
integration methods correctly solve the pore network model
equations for the links-in-series test case and that the numerical
errors decrease upon time step refinement at the rate that is
consistent with the expected order of the methods.

TABLE 2 | Relative errors in bubble position z and flow rate Q at t = 0.00144 s

and estimated convergence orders for the links-in-series test case computed with

the forward Euler method.

1t (s) z-error z-order Q-error Q-order

4 · 10−5 1.55 · 10−2 1.33 ·10−1

2 · 10−5 7.44 · 10−3 1.06 6.41 ·10−2 1.06

1 · 10−5 3.66 · 10−3 1.02 3.15 ·10−2 1.02

5 · 10−5 1.82 · 10−3 1.01 1.57 ·10−2 1.01

TABLE 3 | Relative errors in bubble position z and flow rate Q at t = 0.00144 s

and estimated convergence orders for the links-in-series test case computed with

the midpoint method.

1t (s) z-error z-order Q-error Q-order

8 · 10−5 1.67 ·10−2 1.44 · 10−1

4 · 10−5 4.24 ·10−3 1.98 3.65 · 10−3 1.98

2 · 10−5 1.08 ·10−3 1.97 9.33 · 10−3 1.97

1 · 10−5 2.86 ·10−4 1.92 2.46 · 10−3 1.92

TABLE 4 | Relative errors in bubble position z and flow rate Q at t = 0.00144 s

and estimated convergence orders for the links-in-series test case computed with

the semi-implicit method.

1t (s) z-error z-order Q-error Q-order

4 · 10−5 1.39 ·10−2 1.18 · 10−1

2 · 10−5 6.98 ·10−3 0.99 5.97 · 10−2 0.98

1 · 10−5 3.51 ·10−3 0.99 3.01 · 10−2 0.99

5 · 10−5 1.76 ·10−3 1.00 1.5 ·10−2 1.00

9.2. Stability Tests
In this section, we demonstrate that the proposed capillary
time step criterion (23) stabilizes the forward Euler method
and the midpoint method at low flow rates. We simulated two
different cases and varied Cc. Simulations run with low Cc

turned out to be free of spurious oscillations, indicating that
the proposed criterion stabilizes the methods, while simulations
run with Cc significantly larger than unity produced oscillations,
indicating that the proposed criterion is not unnecessarily
strict.

First, consider the links-in-series test case with 1P = 0 Pa.
With no applied pressure difference, the flow is driven purely
by the imbalance of capillary forces on the non-wetting bubble.
Therefore, there should only be flow initially and the bubble
should eventually reach an equilibrium position where both
interfaces experience the same capillary force and the flow rate
is zero. Simulations were run with Ca = 0.1 and Cc equal to 2.0,
1.0, and 0.5. Results from forward Euler are shown in Figure 6A

and results from the midpoint method are shown in Figure 6B.
In both figures, the reference solution is also shown.

The forward Euler results are stable and qualitatively similar
to the reference solution with Cc = 0.5. With Cc = 1.0, there
are some oscillations initially that are dampened and eventually
vanish. From comparison with the reference solution, it is clear
that such oscillations have no origin in the model equations
and are artifacts of the numerical method. With Cc = 2.0, the
oscillations are severe and do not appear to be dampened by the
method. Instead the non-wetting bubble keeps oscillating around
its equilibrium position in a manner that is clearly unphysical.

The results from the midpoint method in Figure 6B follow
a qualitatively similar trend as those from forward Euler with
regard to stability. Results computed with Cc = 0.5 are stable
and results with Cc = 2.0 exhibit severe oscillations. Still, the
results from themidpointmethod liemuch closer to the reference
solution than the results from the forward Euler method, as
we would expect since the midpoint method is second-order.
Both methods are, however, unstable with Cc = 2.0, indicating
that the while the midpoint method has improved accuracy
over forward Euler, it is unable to take significantly longer time
steps without introducing oscillations. This is consistent with the
analysis in Appendix A, since the two methods have identical
stability regions in real space.

Next, consider the Haines jump case with Q = 10−9m3 s−1,
corresponding to Ca = 1.2 · 10−5. This case was run using the
forward Euler method, Ca = 0.1 and three different values of
Cc, equal to 4.0, 2.0, and 1.0. The required pressure difference
to drive the flow at the specified rate is shown in Figure 7A.
Figure 7B shows the pressure from Figure 7A in greater
detail.

For all three values of Cc, the main qualitative features of the
flow are captured. We observe short transient pressure drops at
t ≈ 0.08 s and t ≈ 0.20 s. These correspond to fluid redistribution
events on the upstream side of the non-wetting ganglion, where
the fluid rearranges itself to a more stable configuration with
little change to the interface positions on the downstream side.
The event at t ≈ 0.20 s is illustrated in Figure 8. The fluid
redistribution is driven by capillary forces and less external
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FIGURE 6 | Flow rate plotted against time in the link-in-series test case with 1P = 0Pa. Results from the forward Euler method (A) and the midpoint method (B) are

shown for different values of Cc. Severe numerical instabilities arise when Cc = 2.0. Results from the semi-implicit method are shown are shown in (C). These are

stable, even if the capillary time step criterion is not used. The solid black line represents a reference solution.

FIGURE 7 | Pressure difference required to drive the flow in the Haines jump case at a rate of Q = 10−9 m3 s−1, corresponding to Ca = 1.2 · 10−5. In (B), the results

from (A) are shown in greater detail. Results are computed with the forward Euler method for different values of the capillary time step restriction parameter Cc.

Numerical instabilities are seen to occur for Cc > 1.

pressure is therefore required to drive the flow during these
events.

We also observe the slow pressure build-up from t ≈
0.10 s to t ≈ 0.23 s, when the driving pressure becomes
large enough to overcome the capillary forces and cause
break-through of non-wetting fluid in the link connecting
nodes 9 and 16, and we observe the subsequent Haines jump.

The fluid configurations before and after the Haines jump
are shown in Figure 9. Notice also that non-wetting fluid at
the downstream end of the moving ganglion retracts during
the Haines jump in links near to where the break-through
occurs. This is seen e.g. in the links downstream of nodes
10 and 14. That such local imbibition occurs near the
drained pore is in agreement with the observations of
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FIGURE 8 | Fluid distribution in the Haines jump case, (A) at t = 0.19 s and (B) at t = 0.21 s, before and after the fluid redistribution event at t ≈ 0.20 s. The link radii

are not drawn to scale with the link lengths. Node indices are indicated in black.

FIGURE 9 | Fluid distribution in the Haines jump case (A) at t = 0.23 s and (B) at t = 0.27 s, before and after the Haines jump. During the jump, non-wetting fluid

breaks-through the link connecting nodes 9 and 16 and invades node 16. Also, non-wetting fluid in other links at the downstream end of the moving ganglion retracts.

This is seen e.g. in the links downstream of nodes 10 and 14. The link radii are not drawn to scale with the link lengths. Node indices are indicated in black.

Armstrong and Berg [15], and shows that the model is able
to capture the non-local nature of pore drainage events in a
numerically stable manner when the new numerical methods are
used.

As in the links-in-series case, the solution exhibits oscillations
for the values of Cc that are larger than unity. With Cc = 1.0, the
results are free from oscillations and appear stable. This indicates
that the stability criterion (23) is valid and not unnecessarily strict
also for a network configuration that is much more complex than
links in series.

Both the links-in-series case and the Haines jump case
were simulated with the semi-implicit method and produced
stable results with the advective time step criterion (22) only.
The results from the links-in-series test case are shown in

Figure 6C. For brevity, the results from the Haines jump case
are omitted here. The reader is referred to Figure 10A in
section 10, where stable results are shown for a lower flow
rate.

To summarize, both the forward Euler and midpoint
methods produce stable results for the cases considered when
the capillary time step criterion (23) is used in addition to
Equation (22) to select the time step lengths. By running
simulations with different Cc, we have observed a transition
from stable to unstable results for values of Cc near 1, in
order of magnitude. In the Haines jump case, all methods
presented are able to capture both the fast capillary-driven fluid
redistribution events, and the slow pressure build-up before a
Haines jump.
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FIGURE 10 | (A) Pressure difference required to drive the flow at Q = 10−11

m3 s−1, corresponding to Ca = 1.2 · 10−7, in the Haines jump case. Results

are plotted for the forward Euler method (solid dark blue) and the semi-implicit

method (dashed light blue). These lines coincide at the scale of representation.

The time steps lengths used by each method are plotted in (B).

10. PERFORMANCE ANALYSIS

In this section, we analyze and compare the performance
of the time integration methods. In doing so, we consider
the number of time steps and the wall clock time required
to perform stable simulations of the Haines jump case with
each of the methods at different specified flow rates Q. The
flow rates simulated were 10−7m3 s−1, 10−8m3 s−1, 10−9m3 s−1,
10−10m3 s−1, 10−11m3 s−1, and 10−12m3 s−1. The accuracy of
the methods was studied Section 9.1, and will not be part of the
performance analysis. Instead, stable simulations are considered
sufficiently accurate.

First, we lookmore closely at the results forQ = 10−11m3 s−1,
corresponding to Ca = 1.2 · 10−7. The pressure difference
required to drive the flow is shown in Figure 10A, and the
time step lengths used are shown in Figure 10B. From the latter
Figure, we see that the semi-implicit method is able to take longer

time steps than forward Euler for most of the simulation. During
the pressure build-up phase, the difference is four orders of
magnitude. During the fast capillary-driven fluid redistribution
events, however, the length of the semi-implicit time steps drop
to the level of those used by forward Euler. This is because we
here have relatively large flow rates in some links, even though Q
is low, and the advective time step criterion (22) becomes limiting
for both the semi-implicit method and forward Euler.

It was mentioned by Armstrong and Berg [15] that any
accurate numerical simulation on the pore scale must have a
time resolution fine enough to capture the fast events. The semi-
implicit method accomplishes this by providing a highly dynamic
time resolution, which is refined during the fast events. The
method is therefore able to resolve these events, while time
resolution can be coarsened when flow is governed by the slow
externally applied flow rate, saving computational effort.

The time duration of the Haines jump pressure drops for
all except the two largest externally applied flow rates were
around 10ms. This is in qualitative agreement with the results
presented by Armstrong and Berg [15]. They found that, for
their investigated range of parameters, pores were drained on the
millisecond time scale regardless of externally applied flow rate.
However, we stress that although we consider the same fluids,
the pore network used here was approximately one order of
magnitude larger in the linear dimensions than that of Armstrong
and Berg [15].

The number of time steps and wall clock time required to
simulate the Haines jump case at different specified flow rates Q
are shown in Figures 11A,B, respectively.

For the explicit methods, both the number of time steps
and the wall time are proportional to Ca−1 at low capillary
numbers. This is because the capillary time step criterion (23)
dictates the time step at low capillary numbers (except during
fast fluid redistribution events). The criterion depends on the
fluid configuration, while it is independent of the flow rate. At
low enough flow rates, the system will pass through roughly the
same fluid configurations during the simulation, regardless of the
applied Q. The speed at which the system passes through these
configurations, however, will be inversely proportional to Q and
therefore, so will the required wall time and number of time steps.
As the forward Euler and the midpoint method are subject to the
same time step criteria, these require roughly the same number
of time steps at all considered flow rates. However, since the
midpoint method is a two-step method, the wall time it requires
is longer and approaches twice that required by the forward Euler
for long wall times.

For the semi-implicit method, on the other hand, the number
of time steps required to do the simulation becomes effectively
independent of the specified flow rate at capillary numbers
smaller than approximately 10−4. The result is that low-capillary
number simulations can be done muchmore efficiently than with
the explicit methods, in terms of wall time required to perform
stable simulations. This is seen in Figure 11B. At Ca ∼ 10−5,
the computational time needed by all three methods are similar
in magnitude. The relative benefit of using the semi-implicit
method increases at lower capillary numbers. For the lowest
capillary number considered, the difference in wall time between
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FIGURE 11 | (A) Number of time steps and (B) wall clock time required to simulate the Haines jump case at at different specified flow rates. In each simulation, the

same volume of fluid (5% of the pore volume) flows through a network. Results from the forward Euler method (squares), the midpoint method (diamonds) and the

semi-implicit method (circles) are shown. In (A,B), the black lines are inversely proportional to Ca.

FIGURE 12 | Wall clock time time required to simulate the Haines jump case

with the semi-implicit method for different network sizes. All simulations were

run at Ca ∼= 10−7 and N denotes the number of nodes in the network. The

wall time is seen to increase proportionally to N2 for the three largest networks.

the explicit methods and the semi-implicit is three orders of
magnitude.

The increased efficiency of the semi-implicit method over
explicit methods at low capillary numbers means that one can
use the semi-implicit method to perform simulations in the
low capillary number regime that are unfeasible with explicit
methods. Thus, the range of capillary numbers for which the pore
network model is a tractable modeling alternative is extended
to much lower capillary numbers. This includes e.g. simulations
of water flow in fuel cell gas diffusion layers, where capillary
numbers are can be 10−8 [33].

Finally, to study the effect of an increase in network size on
the wall time required by the semi-implicit method, the Haines
jump case was run on three scaled-up versions of the network
with N = 24 nodes considered so far, illustrated in Figure 4.

All simulations were run at Ca ∼ 10−7. In Figure 12 the wall
clock time time required is plotted against the number of nodes
N for the different networks. The wall time is seen to increase
proportionally to N2.

11. CONCLUSION

We have studied three different time integration methods for a
pore network model for immiscible two-phase flow in porous
media. Two explicit methods, the forward Euler and midpoint
methods, and a new semi-implicit method were considered. The
explicit methods have been presented and used in other works
[10, 21, 24], and were reviewed here for completeness. The
semi-implicit method was presented here for the first time, and
therefore in detail.

The explicit methods have previously suffered from numerical
instabilities at low capillary numbers. Here, a new time-step
criterion was suggested in order to stabilize them and numerical
experiments were performed demonstrating that stabilization
was achieved.

It was verified that all three methods converged to a reference
solution to a selected test case upon time step refinement. The
forward Euler and semi-implicit methods exhibited first-order
convergence and the midpoint method showed second-order
convergence.

Simulations of a single Haines jump were performed. These
showed that the all three methods were able to resolve
both pressure build-up events and fluid redistribution events,
including interfacial retraction after a Haines jump, which may
occur at vastly different time scales when capillary numbers are
low. The results from the Haines jump case were consistent
with experimental observations made by Armstrong and Berg
[15]. Fluid redistribution events cannot be properly captured
when using solution methods that have previously been used
at low capillary numbers that e.g. do not allow backflow
[18].

A performance analysis revealed that the semi-implicit
method was able to perform stable simulations with much less
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computational effort than the explicit methods at low capillary
numbers. For the case considered, the computational time
needed was approximately the same for all three methods at
Ca ∼ 10−5. At lower capillary numbers, the computational time
needed by the explicit methods increased inversely proportional
to the capillary number, while the time needed by the semi-
implicit method was effectively constant. At Ca ∼ 10−8, the
computational time needed by the semi-implicit methods was
therefore three orders of magnitude smaller than those needed
by the explicit methods.

The superior efficiency of the new semi-implicit method over
the explicit methods at low capillary numbers enables simulations
in this regime that are unfeasible with explicit methods. Thus, the
range of capillary numbers for which the pore network model
is a tractable modeling alternative is extended to much lower
capillary numbers. This includes e.g. simulations of water flow
in fuel cell gas diffusion layers, where capillary numbers are can
be 10−8 [33].

In summary, use of Aker-type pore network models were

previously restricted to relatively high capillary numbers due to

numerical instabilities in the explicit methods used to solve them.

With the new time step criterion presented here, these stability
problems are removed. However, simulations at low capillary
numbers still take a long time and the computational time
needed increases inversely proportional to the capillary number.
This problem is solved by the new semi-implicit method. With
this method, the computational time needed becomes effectively

independent of the capillary number, when capillary numbers are
low.
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Non-isothermal Transport of
Multi-phase Fluids in Porous Media.
The Entropy Production
Signe Kjelstrup 1*, Dick Bedeaux 1, Alex Hansen 2, Bjørn Hafskjold 1 and Olav Galteland 1

1 PoreLab, Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway, 2 PoreLab,

Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

We derive the entropy production for transport of multi-phase fluids in a non-deformable,

porous medium exposed to differences in pressure, temperature, and chemical

potentials. Thermodynamic extensive variables on the macro-scale are obtained by

integrating over a representative elementary volume (REV). Contributions come from

porous media specific properties, phase volumes, surface areas, and contact lines.

Curvature effects are neglected. Using Euler homogeneity of the first order, we obtain the

Gibbs equation for the REV. From this we define the intensive variables, the temperature,

pressure, and chemical potentials, and, using the balance equations, we derive the

entropy production for the REV. The entropy production defines sets of independent

conjugate thermodynamic fluxes and forces in the standard way. The transport of

two-phase flow of immiscible components is used to give a first illustration of the

equations.

Keywords: porous media, energy dissipation, two-phase flow, excess surface- and line-energies, pore-scale,

representative elementary volume, macro-scale, non-equilibrium thermodynamics

1. INTRODUCTION

The aim of this article is to develop the basis for a macro-scale description of multi-phase flow in
porous media in terms of non-equilibrium thermodynamics. The system consists of several fluid
phases in a medium of constant porosity. The aim is to describe the transport of these on the scale
of measurements; i.e., on the macro-scale, using properties defined on this scale, which represent
the underlying structure on the micro-scale. The effort is not new; it was pioneered more than 30
years ago [1–4], and we shall build heavily on these results, in particular those of Hassanizadeh and
Gray [2, 3] and Gray and Miller [5].

The aim is also still the original one; to obtain a systematic description, which can avoid
arbitrariness and capture the essential properties of multi-component multi-phase flow-systems.
Not only bulk energies need be taken into account to achieve this for porous media. Also excess
surface- and line-energies must be considered, see e.g., [6]. But, unlike what has been done before,
we shall seek to reduce drastically the number of variables needed for the description, allowing us
still to make use of the systematic theory of non-equilibrium thermodynamics. While the entropy
production in the porous medium so far has been written as a combination of contributions
from each phase, interface and contact line, we shall write the property for a more limited set of
macro-scale variables. In this sense, we deviate widely from the Thermodynamically Constrained
Averaging Theory [5]. Nevertheless, we will be able to describe experiments and connect variables
within the classical scheme of non-equilibrium thermodynamics. The reduction of variables is
possible as long as the system is Euler homogeneous of the first kind.
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The theory of non-equilibrium thermodynamics was set up
by Onsager [7, 8] and further developed for homogeneous
systems during the middle of the last century [9]. It was the
favored thermodynamic basis of Hassanizadeh and Gray for their
description of porous media. These authors [2, 3] discussed also
other approaches, e.g., the theory of mixtures in macroscopic
continuum mechanics, cf. [1, 4]. Gray and Miller [5] argued that
it is the simplest of the many approaches in non-equilibrium
thermodynamics.

The theory of classical non-equilibrium thermodynamics
has been extended to deal with a particular case of flow
in heterogeneous systems, namely transport along [10] and
perpendicular [11] to layered interfaces. A derivation of the
entropy production for heterogeneous systems on themacro-scale
has not been given, however, even if one can find several uses of
this property [6]. Transport in porous media takes place, not only
under pressure gradients. Temperature gradients will frequently
follow from transport of mass, for instance in heterogeneous
catalysis [12], in polymer electrolyte fuel cells, in batteries [11,
13], or in capillaries in frozen soils during frost heave [14]. The
number of this type of phenomena is enormous. We have chosen
to consider first the vectorial driving forces related to changes in
pressure, chemical composition, and temperature, staying away
for the time being from deformations, chemical reactions, or
forces leading to stress [15]. Themulti-phase flow problem is thus
in focus.

The development of a general thermodynamic basis for multi-
phase flow started by introduction of thermodynamic properties
for each component in each phase, interface, and three-phase
contact line [2, 3]. A representative volume element (REV) was
introduced, consisting of bulk phases, interfaces, and three-phase
contact lines. Balance equations were formulated for each phase
in the REV, and the total REV entropy production was the sum of
the separate contributions from each phase.

Hansen et al. [16] recognized recently that the motion of
fluids at the coarse-grained level could be described by extensive
variables. The properties of Euler homogeneous functions could
then be used to create relations between the flow rates at this
level of description. This work, however, did not address the
coarse-graining problem itself. We shall take advantage of Euler
homogeneity also here and use it in the coarse-graining process
described above.

Like Gray et al. [2, 3, 5], we use the entropy production as
the governing property. But rather than dealing with the total
entropy production as a sum of several parts, we shall seek to
define the total entropy production directly from a basis set of a
few coarse-grained variables. This will be done here for the REV,
see [17] for a preliminary version. Once the entropy production
has been formulated, we shall set up the independent constitutive
equations. This will be done in subsequent work, see the
preliminary version [18]. There we highlight the consequences
of the model, and show that new experimental relations can
be found. We shall find that the description is able to add
insight in already published experimental results and design new
experiments.

The overall aim is thus to contribute toward solving the scaling
problem; i.e., how a macro-level description can be obtained

consistent with the micro-level one, by defining transport
equations on the macro-level. The aim of the present work,
seen in this context, is to present the basis for a description
of central transport phenomena, namely those due to thermal,
chemical, mechanical, and gravitational forces. We shall propose
a systematic, course-grained procedure that will be simple in
practical use.

2. SYSTEM

Consider a heterogeneous system as illustrated by the (white) box
in Figure 1. The system is a porous medium of fixed porosity
filled with several immiscible fluids. There is net transport in one
direction only, the x-direction. On the scale of measurement, the
system is without structure. By zooming in, we see the pore scale.
A collection of pores with two fluids is schematically shown in
Figure 2.

A temperature, pressure, and/or chemical potential difference
is applied between the inlet and the outlet, and these differences
can be measured. The pressure difference 1p between the outlet
and the inlet was defined for steady state conditions by Tallakstad
et al. [19], as the time average of the fluctuating difference 1p(t):

1p =
1

te − tb

∫ te

tb

1p(t)dt. (1)

Here t is the time. Subscript “b” denotes beginning and
“e” denotes the end of the measurement. We adopt similar
definitions for 1T and 1µi. It is possible, through application
of separate inlet channels, to control the flow into and out of the
system and find the flow of each component, to define the flow
situation in Figure 1. In the presence of two immiscible phases, it
is only possible to define the pressure difference between the inlet
and the outlet for the phases, 1pw and 1pn, if there is continuity
in the respective phases.

We will repeatedly use two-phase flow of single components
as an example, where w indicates the most wetting and n the
least wetting phase. We refer to them simply as the wetting
and the non-wetting phase. In most of the paper we consider
a multi-phase fluid. In the system pictured in Figure 2, there is
flow within the REV in the direction of the pore. This is not
necessarily the direction given by the overall pressure gradient.
The flow on the macro-scale, however, is always in the direction
of the pressure gradient. Net flow in other directions are zero
due to isolation of the system in these directions. By flow on the
macro-scale, wemean flow in the direction of the overall pressure
gradient along the x-coordinate in Figure 1. The value of this
average flow is of interest.

The representative volume element, REV, is constructed from
a collection of pores like those contained in the red square
in Figure 2. In Figure 1, three REVs are indicated (magenta
structured squares). In a homogeneous system, statistical
mechanical distributions of molecular properties lead to the
macroscopic properties of a volume element. In a heterogeneous
system like here, the statistical distributions are over the states
within the REV. The collection of pores in the REV, cf. Figure 2,
should be of a size that is large enough to provide meaningful
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FIGURE 1 | Schematic illustration of a heterogeneous system (white box, length L) exposed to a difference in temperature, 1T, pressure, 1p, or chemical

potential 1µi . The system is isolated in the y, z−directions. Net flows take place in the x−direction. Three representative elementary volumes, REVs (magenta

squares, length l) are indicated. The REVs may overlap. Each is represented by a set of variables (p,T,µi ) which defines a state (blue dot). Such states can be defined

anywhere on the x-axis.

FIGURE 2 | A schematic collection of pores filled with two immiscible liquids.

In order to compute the system properties, we define a REV. A REV is

indicated in the figure by the red square. Courtesy of M. Vassvik.

values for the extensive variables, and therefore well defined
intensive variables (see below, Equations 19 and 20), cf. section
3.2 below. Thermodynamic relations can be written for each
REV.

State variables characterize the REV. They are represented by
the (blue) dots in Figure 1. The size of the REV depends on its
composition and other conditions. Typically, the extension of a
REV, l, is large compared to the pore size of the medium, and

small compared to the full system length L. This construction of
a REV is similar to the procedure followed in smoothed particle
hydrodynamics [20], cf. the discussion at the end of the work.

The REVs so constructed, can be used to make a path of states,
over which we can integrate across the system. Each REV in the
series of states, is characterized by variables T, p,µi, as indicated
by the blue dots in Figure 1. Vice versa, each point in a porous
medium can be seen as a center in a REV. The states are difficult
to access directly, but can be accessed via systems in equilibrium
with the states, as is normal in thermodynamics. This is discussed
at the end of the work. We proceed to define the REV-variables.

3. PROPERTIES OF THE REV

3.1. Porosity and Saturation
Consider a solid matrix of constant porosity φ. We are dealing
with a class of systems that are homogeneous in the sense that
the typical pore diameter and pore surface area, on the average,
are the same everywhere. There are m phases in the system. The
pores are filled with a mixture of m − 1 fluid phases; the solid
matrix is phase number m. Properties will depend on the time,
but this will not be indicated explicitly in the equations.

In a simple case, the phases are immiscible single components.
The chemical constituents are then synonymous with a phase,
and the number of phases is the number of components. The
state of the REV can be characterized by the volumes of the fluid
phases Vα,REV, α = 1, ..,m− 1 and of the solid medium Vm,REV.
The total volume of the pores is

Vp,REV ≡
m−1
∑

α=1

Vα,REV. (2)
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while the volume of the REV is

VREV ≡ Vm,REV + Vp,REV +
m

∑

α>β>δ=1

Vαβδ,REV. (3)

Superscript REV is used to indicate a property of the REV. The
last term is the sum of the excess volumes of the three-phase
contact lines. While the excess volume of the surfaces is zero
by definition, this is not the case for the three-phase contact
lines. The reason is that the dividing surfaces may cross each
other at three lines which have a slightly different location. The
corresponding excess volume is in general very small, and will
from now on be neglected. This gives the simpler expression

VREV ≡ Vm,REV + Vp,REV. (4)

All these volumes can be measured.
The porosity, φ, and the saturation, Ŝ, are given by

φ ≡
Vp,REV

VREV
and Ŝα ≡

Vα,REV

Vp,REV
=

Vα,REV

φVREV
. (5)

The porosity and the saturation are intensive variables. They
do not depend on the size of the REV. They have therefore no
superscript. It follows from these definitions that

m−1
∑

α=1

Ŝα = 1 and Vm,REV = (1− φ)VREV (6)

In addition to the volumes of the different bulk phases (they are
fluids or solids) m ≥ α ≥ 1, there are interfacial areas, �,
between each two phases in the REV: �αβ ,REV, m ≥ α > β ≥ 1.
The total surface area of the pores is measurable. It can be split
between various contributions

�p,REV =
m−1
∑

α=1

�mα,REV (7)

When the surface is not completely wetted, we can estimate
the surface area between the solid m and the fluid phase α, from
the total pore area available and the saturation of the component.

�mα,REV = Ŝα�p,REV (8)

This estimate is not correct for strongly wetting components
or dispersions. In those cases, films can form at the walls, and
�mα,REV is not proportional to Ŝα . In the class of systems we
consider, all fluids touch the wall, and there are no films of one
fluid between the wall and another fluid.

3.2. Thermodynamic Properties of the REV
We proceed to define the thermodynamic properties of the REV
within the volume VREV described above. In addition to the
volume, there are other additive variables. They are the masses,
the energy, and the entropy. We label the components (the
chemical constituents) using italic subscripts. There are in total

n components distributed over the phases, surfaces, and contact
lines. The mass of component i, MREV

i , in the REV is the sum of

bulk masses, Mα,REV
i , m ≥ α ≥ 1, the excess interfacial masses,

M
αβ ,REV
i ,m ≥ α > β ≥ 1, and the excess line masses,M

αβδ,REV
i ,

m ≥ α > β > δ ≥ 1.

MREV
i =

m
∑

α=1

Mα,REV
i +

m
∑

α>β=1

M
αβ ,REV
i +

m
∑

α>β>δ=1

M
αβδ,REV
i (9)

There is some freedom in how we allocate the mass to the various
phases and interfaces [11, 21]. We are e.g., free to choose a

dividing surface such that oneM
αβ ,REV
i equals zero. A zero excess

mass will simplify the description, but will introduce a reference.

The dividing surface with zero M
αβ ,REV
i is the equimolar surface

of component i. The total mass of a component in the REV is,
however, independent of the location of the dividing surfaces.
From the masses, we compute the various mass densities

ρi ≡
MREV

i

VREV
, ρα

i ≡
Mα,REV

i

Vα,REV
,

ρ
αβ
i ≡

M
αβ ,REV
i

�αβ ,REV
, ρ

αβδ
i ≡

M
αβδ,REV
i

3αβδ,REV
(10)

where ρi and ρα
i have dimension kg.m−3, ρ

αβ
i has dimension

kg.m−2 and ρ
αβδ
i has dimension kg.m−1.

All densities are for the REV. If we increase the size of
the REV, by for instance doubling its size, VREV, MREV

i and
other extensive variables will all double. They will double, by
doubling all contributions to these quantities. But this is not
the case for the density ρi or the other densities. They remain
the same, independent of the size of the REV. This is true also
for the densities of the bulk phases, surfaces, and contact lines.
Superscript REV is therefore not used for the densities.

Within one REV there are natural fluctuations in the densities.
But the densities make it possible to give a description on the
macro-scale independent of the precise size of the REV. The
densities will thus be used in the balance equations on the macro-
scale. The density ρα

i may vary somewhat in Vα . We can then
find Mα

i as the integral of ρα
i over Vα . Equation (10) then gives

the volume-averaged densities.
The internal energy of the REV, UREV, is the sum of bulk

internal energies, Uα,REV, m ≥ α ≥ 1, the excess interfacial
internal energies, Uαβ ,REV, m ≥ α > β ≥ 1, and the excess
line internal energies, Uαβδ,REV,m ≥ α > β > δ ≥ 1:

UREV =
m

∑

α=1

Uα,REV+
m

∑

α>β=1

Uαβ ,REV+
m

∑

α>β>δ=1

Uαβδ,REV (11)

The summation is taken over all phases, interfaces, and contact
lines (if non-negligible). We shall see in a subsequent paper how
these contributions may give specific contributions to the driving
force. The internal energy densities are defined by

u ≡
UREV

VREV
, uα ≡

Uα,REV

Vα,REV
,
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uαβ ≡
Uαβ ,REV

�αβ ,REV
, uαβδ ≡

Uαβδ,REV

3αβδ,REV
(12)

Their dimensions are J.m−3 (u, uα), J.m−2 (uαβ ), and J.m−1

(uαβδ), respectively.
The entropy in the REV, SREV, is the sum of the bulk entropies,

Sα,REV, m ≥ α ≥ 1, the excess entropies, Sαβ ,REV, m ≥ α > β ≥
1, the excess line entropies, Sαβδ,REV, m ≥ α > β > δ ≥ 1,
and a configurational contribution, SREV

conf
, from the geometrical

distribution of the fluid phases within the pores:

SREV =
m

∑

α=1

Sα,REV +
m

∑

α>β=1

Sαβ ,REV +
m

∑

α>β>δ=1

Sαβδ,REV + SREVconf

(13)
The entropy densities are defined by

s ≡
SREV

VREV
, sα ≡

Sα,REV

Vα,REV
, sαβ ≡

Sαβ ,REV

�αβ ,REV
,

sαβδ ≡
Sαβδ,REV

3αβδ,REV
, sconf ≡

SREV
conf

VREV
(14)

and have the dimensions J.K−1.m−3 (s, sα , sconf), J.K−1.m−2

(sαβ ), and J.K−1.m−1 (sαβδ), respectively. To explain the
configurational contribution inmore detail; consider the example
of stationary two-phase flow in a single tube of varying diameter
described by Sinha et al. [22]. The tube contains one bubble of
one fluid in the other. The bubble touches the wall; it can not form
a film between the tube wall and the other fluid. The probability
per unit of length of the tube to find the center of mass of the
bubble at position xb, was 5(xb) [22]. Knowing this probability
distribution, we can compute the entropy of an ensemble of single
tubes (in this case a very long tube composed of the single ones).
It is equal to

SREVconf = kB

∫ ℓ

0
5(xb) ln ℓ5(xb)dxb (15)

For a network of pores it is more appropriate to give the
probability distribution for the fluid-fluid interfaces. This has not
yet been done explicitly.

For the volume, Equations (2) and (4) apply when the contact
lines give a negligible contribution. The dividing surfaces have
by definition no excess volume. For all the other extensive
thermodynamic variables, like the enthalpy, Helmholtz energy,
Gibbs energy, and the grand potential, relations similar to
Equations (11) and (13) apply. We shall later show how this
affects the driving forces [18].

To summarize this section; we have defined a basis set of
variables for a class of systems, where these variables are additive
in the manner shown. From the set of REV-variables we obtain
the densities, u, s, or ρi to describe the heterogeneous system
on the macro-scale. A series of REVs of this type, is needed for
integration across the system, see section 5.

3.3. REV Size Considerations
As an illustration of the REV construction, consider the internal
energy of two isothermal, immiscible and incompressible fluids

TABLE 1 | Fluid properties used to compute the candidate REV internal energy,

for a network containing water (n) and decane (w) within silica glass beads (p) at

atmospheric pressure and 293 K.

Parameter Value Unit References

ηw 9.2 × 10−4 Pa.s [25]

ηn 1.0 × 10−3 Pa.s [25]

γwp 2.4 × 10−2 N.m−1 [26]

γ np 7.3 × 10−2 N.m−1 [26]

γwn 5.2 × 10−2 N.m−1 [27]

−uw 2.8 × 108 J.m−3 [25]

−un 3.4 × 108 J.m−3 [25]

(water and decane) flowing in a Hele-Shaw type cell composed
of silicone glass beads. The relevant properties of the fluids can
be found in Table 1 The porous medium is a hexagonal network
of 3,600 links, as illustrated in Figure 3. The network is periodic
in the longitudinal and the transverse directions and a pressure
difference of 1.8 × 104 Pa drives the flow in the longitudinal
direction. The overall saturation of water is 0.4. The network
flows were simulated using the method of Aker et al. [23], see
[24] for details.

The internal energy of the REV is, according to section 3.2,
a sum over the two fluid bulk contributions and three interface
contributions,

UREV = Um,REV +
∑

i∈{w,n}

{

U i,REV
}

+ Uwn,REV + Unp,REV

+Uwp,REV (16)

= Um,REV + Vp,REV
∑

i∈{w,n}

{

Ŝiui
}

+uwn�wn,REV + unp�np,REV + uwp�wp,REV. (17)

where, ui is the internal energy density of phase i and uij is the
excess internal energy per interfacial area between phase i and
phase j. We assume ui and uij to be constant. For simplicity, uij

is approximated by interfacial tension, denoted γ ij. The internal
energy of the porous matrix is constant in this example and is
therefore set to zero.

Candidate REVs are of different sizes, see Table 2. The 5.4 ×
6 mm (green), and 10.4 × 12 mm (blue) candidate REVs are
shown in Figure 3. For all candidate REVs, UREV is calculated
according to Equation (17) at each time step. Since the measured
saturations and interfacial areas are fluctuating in time, so is the
internal energy. A time-step weighted histogram of the internal
energy presents the probability distribution.

The probability distributions of UREV are shown in Figure 4

for the 5.2 × 6 mm (green) and 10.4 × 12 mm (blue) candidate
REVs. In both plots, the vertical lines represent the internal
energy the REVwould have if it were occupied by one of the fluids
alone. We denote the difference in internal energy between these
two single-phase states by 1UREV.

The mean value of the UREV for all candidate REVs are given
in Table 2, along with mean density u = UREV/VREV and
the standard deviation of UREV divided by 1UREV. The latter
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FIGURE 3 | Illustration of the link network and two of the candidate REVs under consideration. The left candidate REV (green) is 5.2 × 6 mm and the right candidate

REV (blue) is 10.4 × 12 mm.

TABLE 2 | Mean values of UREV and u for candidate REVs of different sizes, along

with the standard deviation of UREV divided by 1UREV. The latter quantity

represents a measure of the relative size of the fluctuations in UREV.

Candidate REV Mean
(

UREV
)

±

(

UREV
)

Mean (u)

Size /J /1UREV / 107 J m−3

5.2 × 6.0 mm −2.82 0.069 −6.04

7.8 × 9.0 mm −5.46 0.047 −5.19

10.4 × 12.0 mm −9.60 0.037 −5.13

13.0 × 15.0 mm −15.4 0.028 −5.25

15.6 × 18.0 mm −22.2 0.024 −5.27

18.3 × 21.0 mm −29.9 0.021 −5.22

20.8 × 24.0mm −39.1 0.017 −5.23

quantity is a measure of the relative size of the fluctuations in
UREV. Due to the additivity of UREV, the mean values of UREV

increases roughly proportional to the candidate REV size. But
this happens only after the REV has reached a minimum size,
here 7.8× 9.0mm. For the larger candidate REVs, themean value
of u changes little as the size increases. The relative size of the
fluctuations in UREV decreases in proportion to the linear size of
the candidate REVs.

This example indicates that it makes sense to characterize
the internal energy of a porous medium in terms of an internal
energy density as defined by Equation (11), given that the size
of the REV is appropriately large. About 100 links seem to be
enough in this case. This will vary with the type of porous
medium, cf. the 2D square network model of Savani et al. [28].

4. HOMOGENEITY ON THE MACRO-SCALE

Before we address any transport problems, consider again the
system pictured in Figure 1 (the white box). All REVs have

variables and densities as explained above. By integrating to a
somewhat larger volumeV , using the densities defined, we obtain
the set of basis variables, (U, S,Mi), in V . The internal energy U
of the system is an Euler homogeneous function of first order in
S,V ,Mi:

U (λS, λV , λMi) = λU (S,V ,Mi) (18)

where λ is a multiplication factor. The internal energy U, volume
V , entropy S, and component massMi, obey therefore the Gibbs
equation;

dU =
(

∂U

∂S

)

V ,Mi

dS+
(

∂U

∂V

)

S,Mi

dV +
n

∑

i=1

(

∂U

∂Mi

)

S,V ,Mj

dMi

(19)
No special notation is used here to indicate that U, S,V ,Mi are
properties on the macro-scale. Given the heterogeneous nature
on the micro-scale, the internal energy has contributions from
all parts of the volume V , including from the excess surface
and line energies. By writing Equation (18) we find that the
normal thermodynamic relations apply for the heterogeneous
system at equilibrium, for the additive properties U, S,V ,Mi,
obtained from sums of the bulk-, excess surface-, and excess
line-contributions.

We can then move one more step and use Gibbs equation to
define the temperature, the pressure, and chemical potentials on
the macro-scale as partial derivatives of U:

T ≡
(

∂U

∂S

)

V ,Mi

, p ≡ −
(

∂U

∂V

)

S,Mi

, µi ≡
(

∂U

∂Mi

)

S,V ,Mj

(20)
The temperature, pressure, and chemical potentials on the
macro-scale are, with these formulas, defined as partial
derivatives of the internal energy. This is normal in
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FIGURE 4 | Probability distributions of internal energy in two the candidate REVs. The left candidate REV (green) is 5.2 ×6 mm and the right candidate REV (blue) is

10.4 ×12 mm. In each plot, the left dashed line represents the internal energy the candidate REV would have if it contained non-wetting fluid only and the right dashed

line represents the internal energy the candidate REV would have if it contained wetting fluid only.

thermodynamics, but the meaning is now extended. In a
normal homogeneous, isotropic system at equilibrium, the
temperature, pressure, and chemical equilibrium refer to a
homogeneous volume element. The temperature of the REV
is a temperature representing all phases, interfaces and lines
combined, and the chemical potential of i is similarly obtained
from the internal energy of all phases. Therefore, there are only
one T, p, and µi for the REV. The state can be represented by the
(blue) dots in Figure 1.

On the single pore level, the pressure and temperature in
the REV will have a distribution. In the two immiscible-fluid-
example the pressure, for instance, will vary between a wetting
and a non-wetting phase because of the capillary pressure. One
may also envision that small phase changes in one component
(e.g., water) leads to temperature variations due to condensation
or evaporation. Variations in temperature will follow changes in
composition.

The intensive properties are not averages of the corresponding
entities on the pore-scale over the REV. This was pointed
out already by Gray and Hassanizadeh [3]. The definitions are
derived from the total internal energy only, and this makes them
uniquely defined. It is interesting that the intensive variables do
not depend on how we split the energy into into bulk and surface
terms inside the REV.

By substituting Equation (20) into Equation (19) we obtain
the Gibbs equation for a change in total internal energy on the
macro-scale

dU = TdS− pdV +
n

∑

i=1

µidMi (21)

As a consequence of the condition of homogeneity of the first
order, we also have

U = TS− pV +
n

∑

i=1

µiMi (22)

The partial derivatives T, p and µi are homogeneous
functions of the zeroth order. This implies that

T(λS, λV , λMi) = T(S,V ,Mi) (23)

Choosing λ = 1/V it follows that

T(S,V ,Mi) = T(s, 1, ρi) = T(s, ρi) (24)

The temperature therefore depends only on the subset of
variables s ≡ S/V , ρi ≡ Mi/V and not on the complete set of
variables S,V ,Mi. The same is true for the pressure, p, and the
chemical potentials, µi. This implies that T, p and µi are not
independent. We proceed to repeat the standard derivation of
the Gibbs-Duhem equation which makes their interdependency
explicit.

The Gibbs equation on the macro-scale in terms of the
densities follows using Equations (21) and (22)

du = Tds+
n

∑

i=1

µidρi (25)

which can alternatively be written as

ds =
1

T
du−

1

T

n
∑

i=1

µidρi (26)

The Euler equation implies

u = Ts− p+
n

∑

i=1

µiρi (27)

By differentiating Equation (27) and subtracting the Gibbs
equation (25), we obtain in the usual way the Gibbs-Duhem
equation:

dp = sdT +
n

∑

i=1

ρidµi
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This equation makes it possible to calculate p as a function of T
and µi and shows how these quantities depend on one another.

We have now described the heterogeneous porous medium by
a limited set of coarse-grained thermodynamic variables. These
average variables and their corresponding temperature, pressure,
and chemical potentials, describe a coarse-grained homogeneous
mixture with variables which reflect the properties of the class of
porous media. In standard equilibrium thermodynamics, Gibbs’
equation applies to a homogeneous phase. We have extended
this use to be applicable for heterogeneous systems at the macro-
scale. On this scale, the heterogeneous system (the REV) is then
regarded as being in local equilibrium.Whether or not the chosen
procedure is viable, remains to be tested. We refer to the section
7 of this paper for more discussion and to a paper to follow [18]
for an experimental program.

5. ENTROPY PRODUCTION IN POROUS
MEDIA

Gradients in mass- and energy densities produce changes in the
variables on the macro-scale. These lead to transport of heat and
mass. Our aim is to find the equations that govern this transport
across the REV. We therefore expose the system to driving forces
and return to Figure 1.

The balance equations formasses and internal energy of a REV
are

∂ρi

∂t
= −

∂

∂x
Ji (28)

∂u

∂t
= −

∂

∂x
Ju = −

∂

∂x

[

J
′
q +

n
∑

i=1

JiHi

]

(29)

The transport on this scale is in the x−direction only. The mass
fluxes, Ji, and the flux of internal energy, Ju, are all macro-scale
fluxes. The internal energy flux is the sum of the measurable

(or sensible) heat flux, J
′
q and the partial specific enthalpy (latent

heat), Hi (in J.kg−1) times the component fluxes, Ji, see [3, 9, 11]
for further explanations. Component m (the porous medium)
is not moving and is the convenient frame of reference for the
fluxes.

The entropy balance on the macro-scale is

∂s

∂t
= −

∂

∂x
Js + σ (30)

Here Js is the entropy flux, and σ is the entropy production which
is positive definite, σ ≥ 0 (the second law of thermodynamics).
We can now derive the expression for σ in the standard way
[9, 11], by combining the balance equations with Gibbs’ equation.
The entropy production is the sum of all contributions within the
REV.

In the derivations, we assume that the Gibbs equation is valid
for the REV also when transport takes place. Droplets can form
at high flow rates, while ganglia may occur at low rates. We have
seen above that there is a minimum size of the REV, for which
the Gibbs equation can be written. When we assume that the
Gibbs equation applies, we implicitly assume that there exists a

uniquely defined state. The existence of such an ergodic state
was postulated by Hansen and Ramstad [29]. Valavanides and
Daras used it in their DeProF model for two-phase flow in pore
networks [30]. Experimental evidence for the assumption was
documented by Erpelding [31].

Under the conditions that we demand valid for the REV, the
Gibbs Equation (26) keeps its form during a time interval dt,
giving

∂s

∂t
=

1

T

∂u

∂t
−

1

T

n
∑

i=1

µi
∂ρi

∂t
(31)

We can now introduce the balance equations for mass and energy
into this equation, see [11] for details. By comparing the result
with the entropy balance, Equation (30), we identify first the
entropy flux, Js,

Js =
1

T
J′q +

n
∑

i=1

JiSi (32)

The entropy flux is composed of the sensible heat flux over the
temperature plus the sum of the specific entropies carried by the
components. The form of the entropy production, σ , depends
on our choice of the energy flux, Ju or J′q. The choice of form is
normally motivated by practical wishes; what is measurable or
computable. We have

σ = Ju
∂

∂x
(
1

T
)−

n
∑

i=1

Ji
∂

∂x
(
µi

T
)

= J′q
∂

∂x
(
1

T
)−

1

T

n
∑

i=1

Ji
∂

∂x
µi,T (33)

These expressions are equivalent formulations of the same
physical phenomena. When we choose Ju as variable with
the conjugate force ∂(1/T)/∂x, the mass fluxes are driven by
minus the gradient in the Planck potential µi/T. When, on
the other hand we choose J′q as a variable with the conjugate
force ∂(1/T)/∂x, the mass fluxes are driven by minus the
gradient in the chemical potential at constant temperature
over this temperature. The entropy production defines the
independent thermodynamic driving forces and their conjugate
fluxes. We have given two possible choices above to demonstrate
the flexibility. The last expression is preferred for analysis of
experiments.

In order to find the last line in Equation (33) from the first,
we used the thermodynamic identities µi = Hi − TSi and
∂(µi/T)/∂(1/T) = Hi as well as the expression for the energy
flux given in Equation (29). Here Si is the partial specific entropy
(in J.kg−1.K−1).

5.1. The Chemical Potential at Constant
Temperature
The derivative of the chemical potential at constant temperature
is needed in the driving forces in the second line for σ in Equation
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(33). For convenience we repeat its relation to the full chemical
potential [9]. The differential of the full chemical potential is:

dµi = −SidT + Vidp+
n

∑

j=1

(

∂µi

∂Mj

)

p,T,Mi

dMj (34)

where Si,Vi, and (∂µi/∂Mj)p,T,Mi are partial specific quantities.
The partial specific entropy and volume are equal to:

Si = −
(

∂µi

∂T

)

p,Mj

, Vi =
(

∂µi

∂p

)

T,Mj

(35)

and the last term of Equation (33) is denoted by

dµc
i =

n
∑

j=1

(

∂µi

∂Mj

)

p,T,Mi

dMj (36)

By reshuffling, we have the quantity of interest as the differential
of the full chemical potential plus an entropic term;

dµi,T ≡ dµi + SidT = Vidp+ dµc
i (37)

The differential of the chemical potential at constant temperature
is

dµi,T

dx
=

dµc
i

dx
+ Vi

dp

dx
(38)

With equilibrium in the gravitational field, the pressure
gradient is dp/dx = −ρg, where ρ is the total mass density and g
is the acceleration of free fall [32]. The well known separation of
components in the gravitational field is obtained, with dµi,T = 0
and

dµc
i

dx
=

RT

Wi

d ln(Ŝiyi)

dx
= Viρg (39)

whereWi is the molar mass (in kg.mol−1), Ŝi the saturation, and
yi the activity coefficient of component i. The gas constant, R,
has dimension J.K−1.mol−1. The gradient of the mole fraction of
methane and decane in the geothermal gradient of the fractured
carbonaceous Ekofisk oil field, was estimated to 5 × 10−4m−1

[33], in qualitative agreement with observations. We replace
dµi,T below using these expressions.

It follows fromEuler homogeneity that the chemical potentials
in a (quasi-homogeneous) mixture are related by 0 = SdT −
Vdp +

∑n
j=1 ρjdµj, which is Gibbs-Duhem’s equation. By

introducing Equation 37 into this equation we obtain an
equivalent expression, to be used below:

0 =
n

∑

j=1

ρjdµ
c
j (40)

6. TRANSPORT OF HEAT AND
TWO-PHASE FLUIDS

Consider again the case of two immiscible fluids of single
components, one more wetting (w) and one more non-wetting
(n). The entropy production in Equation (33) gives,

σ = J′q
∂

∂x
(
1

T
)−

1

T

(

Jw
∂µw,T

∂x
+ Jn

∂µn,T

∂x

)

(41)

The solid matrix is the frame of reference for transport, Jr = 0
and does not contribute to the entropy production. The volume
flux is frequently measured, and we wish to introduce this as new
variable

JV = JnVn + JwVw (42)

Here JV has dimension (m3.m−2.s−1 = m.s−1), and the partial
specific volumes have dimension m3.kg−1. The volume flows
used by Hansen et al. [16] are related to ours by Jnυn = Ŝnυn,
Jwυw = Ŝwυw and JV = υ = Ŝnυn + Ŝwυw.

The chemical potential of the solid matrix may not vary much
if the composition of the solid is constant across the system. We
assume that this is the case (dµc

m ≈ 0), and use Equation (40) to
obtain

0 = ρndµ
c
n + ρwdµ

c
w (43)

The entropy production is invariant to the choice of variables.We
can introduce the relations above and the explicit expression for
dµi,T into Equation (41), and find the practical expression:

σ = J′q
∂

∂x

(

1

T

)

− JV
1

T

∂p

∂x
− vD

ρw

T

∂µc
w

∂x
(44)

In the last line, the difference velocity vD is

vD =
Jw

ρw
−

Jn

ρn
(45)

This velocity (in m/s) describes the relative movement of the
two components within the porous matrix on the macro-scale.
In other words, it describes the ability of the medium to
separate components. The main driving force for separation
is the chemical driving force, related to the gradient of the
saturation. The equation implies that also temperature and
pressure gradients may play a role for the separation.

The entropy production has again three terms, one for each
independent driving force. With a single fluid, the number of
terms is two. The force conjugate to the heat flux is again the
gradient of the inverse temperature. The entropy production,
in the form we can obtain, Equations (41) or (44), dictates the
constitutive equations of the system.

6.1. A Path of Sister Systems
As pointed out above, through the construction of the REV
we were able to create a continuous path through the system,
defined by the thermodynamic variables of the REVs. The path
was illustrated by a sequence of dots in Figure 1. Such a path
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FIGURE 5 | A one-dimensional heterogeneous system cut into slices. Each cut is brought in equilibrium with a homogeneous (pink) mixture at the same temperature

and pressure as the REV.

must exist, tomake integration possible. Also continuummixture
theory hypothesizes such a path [4]: Hilfer introduced a series
of mixture states, to define an integration path across the porous
system, see e.g., [4].

The path created in section 2 is sufficient as a path of
integration across the medium. The access to and measurement
of properties in the REVs is another issue. It is difficult,
if not impossible, to measure in situ as stated upfront. The
measurement probe has a minimum extension (of some mm),
and the measurement will represent an average over the surface
of the probe. For a phase with constant density, the average is
well-defined andmeasurable. A link between the state of the REV
and a state where measurements are possible, is therefore needed.
We call the state that provides this link a sister state.

Consider again the path of REVs in the direction of transport.
To create the link between the REV and its sister state, consider
the system divided into slices, see Figure 5. The slice (the sister
system) contains homogeneous (pink) phases in equilibriumwith
the REV at the chosen location.

We hypothesize that we can find such sister states; in the form
of a multi-component mixture with temperature, pressure, and
composition such that equilibrium can be obtainedwith the REV-
variables at any slice position. The variables of the sister state
can then be measured the normal way. The chemical potential
of a component in the sister state can, for instance, be found
by introducing a vapor phase above this state and measure the
partial vapor pressure. We postulate thus that a sister state can be
found, that obey the conditions

T = Ts (46)

p = ps (47)

µi = µs
i (48)

Here i = 1, ..., n are the components in the REV, and superscript s
denotes the sister state. With the sister states available, we obtain

an experimental handle on the variables of the porous medium.
The hypothesis must be checked, of course.

The series of sister states have the same boundary conditions
as the REV-states, by construction, and the overall driving forces
will be the same. Between the end states, we envision the non-
equilibrium system as a staircase. Each step in the stair made
up of a REV is in equilibrium with a step of the sister-state-
stair. Unlike the states inside the porous medium, the sister states
are accessible for measurements, or determination of T, p, and
µi. The driving forces of transport can then be described by the
sequence of the sister states.

7. DISCUSSION

We have shown in this work how it is possible to extend the
method of classical non-equilibrium thermodynamics [9] to
describe transport in porous media. This was possible by

• constructing a REV in terms of a basis set of additive variables
• assuming that the REV is Euler homogeneous of degree one

in the basis set.

The method is developed in the same manner as the classical
theory is, but it extends the classical theory through the variable
choice. The assumption about Euler homogeneity is the same
for homogeneous (classical) as well as the heterogeneous porous
media. The new variable set is necessary in order to account for
the presence of the porous medium, i.e., the contributions from
interfaces and contact line energies. Film formation in the pore
is excluded. The properties of the porous medium will therefore
enter in the definition of the variable set. The consequences of the
choice will be elaborated in an article to come [18].

The classical equations have been written for single-phase
systems, as these can be regarded as homogeneous on the
molecular scale [34]. Equations (41) and (44), for instance, are
well-established in theory of transport for polymer membranes,
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see e.g., [34]. The idea of the sister states to define the state of
a porous media with larger pores and immiscible phases was
inspired by this. The way of dealing with lack of knowledge of
variables inside the system was for instance used in polymer
membrane transport long ago, see [35, 36]. The procedure, to
introduce a series of equilibrium states, each state in equilibrium
with the membrane at some location between the external
boundaries, was first used by Scatchard [35], and experimentally
verified much later [36, 37].

With the condition of Euler homogeneity we can set up the
Gibbs equation, which is essential in the derivation of the entropy
production. The total entropy production follows directly from
the new set of variables and Euler homogeneity. This procedure
is new, when compared to the literature where focus was set on
the single phases, interfaces and contact lines [2, 3, 5].

The REV obeys local equilibrium in the sense that it obeys
Gibbs equation. Some support for this can be found in the
literature. Prigogine and Mazur [38] investigated a mixture of
two fluids using non-equilibrium thermodynamics. Their system
consisted of superfluid - and normal helium. Two pressures were
defined, one for each of the two fluids. The interaction between
the two fluids was small, meaning that one phase flowed as if the
other one (aside from a small frictional force) was not there. The
situation here is similar, as we may have different liquid pressures
inside the REV. But the interaction between the two immiscible
components in our porous medium is large, not negligible as in
the helium case.

We are adding the contributions from each phase, interface,
and line to overall variables for the REV. But unlike Gray
and Miller [5] and others [39], we do not need to require
that thermodynamic equilibrium relations are obeyed within
the REV. This may seem to be drastic, but the Gibbs-Duhem
equation follows from Euler homogeneity alone, cf. section 5.
The assumption of Euler homogeneity is sufficient to obtain the
Gibbs-Duhem equation. In this aspect, we agree with those who
use that equation for porous media, see e.g., [6].

The surface areas and the contact line lengths are not
independent variables in our representation of the REV. These
variables have been included through the assumption that the
basic variables of the REV are additive. This means that a REV
of a double size has double the energy, entropy, and mass,
but also double the surface areas of various types and double
the line lengths. The contraction to the small set of variables
depend on this assumption. Otherwise, we need to expand the
variable set. This can be done, however. A promising route
seems to include Minkovski integrals [40]. Our approach can be
compared to the up-scaling method used in Smoothed Particle
Hydrodynamics [20]. Inspired by the idea behind smoothed
particle hydrodynamics, we can also define a normalized weight
function W(r), such that a microscopic variable a(r) may be
represented by its average, defined as

a(r) ≡
∫

dr′W(r− r′)a(r′). (49)

For example, if a(r′) is the local void fraction in a porous material
as determined from samples of the material, a(r) is the average
porosity of themedium. The average is assigned to the point r and

varies smoothly in space. The average porosity a(r) would then be
suitable for e.g., a reservoir simulation at the macro-scale.

In general, the system is subject to external forces and its
properties are non-uniform. The choice of W(r) is therefore
crucial in that it defines the extent of the coarse-graining and
the profile of the weighting. The illustration in Figure 1 alludes
to a weight function that is constant inside a cubic box and zero
outside, but other choices are possible. Popular choices used in
mesoscale simulations are the Gaussian and spline functions (see
[20] for details). A convenient feature of the coarse-graining is
that the average of a gradient of a property a is equal to the
gradient of the average.

∇a(r) = ∇a(r) (50)

Similarly the average of a divergence of a flux is equal to the
divergence of the average. This implies that balance equations,
which usually contain the divergence of a flux, remain valid after
averaging. Time averages can also be introduced along the same
lines.

Time scales relevant to porous media transport are usually
large (minutes, hours); and much larger than times relevant
for the molecular scale. Properties can change not only along
the coordinate axis, but also on the time scale. In the present
formulation, any change brought about in the REV must retain
the validity of the Gibbs equation. As long as that is true, we can
use the equations, also for transient phenomena.

The outcome of the derivations will enable us to deal with
a wide range of non-isothermal phenomena in a systematic
manner, from frost heave to heterogeneous catalysis, or multi-
phase flow in porous media. We will elaborate on what this
means in the next part of this work. In particular, we shall give
more details on the meaning of the additive variables and the
consequences for the REV pressure in a paper to come [18].
We will there return to the meaning of the REV variables and
how they will contribute and help define new driving forces of
transport.

8. CONCLUDING REMARKS

Wehave derived the entropy production for transport of heat and
immiscible, single components (phases) in a porous medium.
The derivations have followed standard non-equilibrium
thermodynamics for heterogeneous systems [11]. The only,
but essential, difference to current theories, has been the fact
that we write all these equations for a porous medium on the
macro-scale for the REV of a minimum size using its total
entropy, energy and mass. These equations are mostly written
for the separate contributions. Broadly speaking, we have been
zooming out our view on the porous medium to first define some
states that we take as thermodynamic states because they obey
Euler homogeneity. The states are those illustrated by the dots
in Figure 1. In order to define these states by experiments, we
constructed the sister states of Figure 5.

The advantage of the present formulations is this; it is
now possible to formulate the transport problem on the scale
of a flow experiment in accordance with the second law of
thermodynamics, with far less variables, see [18]. This opens up
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the possibility to test the thermodynamic models for consistency
and compatibility with the second law. Such tests will be explicitly
formulated together with the constitutive equations, in the next
part of this work [18].
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APPENDIX

Mathematical symbols, superscripts, subscripts.

Symbol Explanation

d differential

∂ partial derivative

1 change in a quantity or variable

6 sum

i subscript meaning component i

m number of phases

n subscript meaning non-wetting fluid

w subscript meaning wetting fluid

p superscript meaning pore

REV abbreviation meaning representative elementary volume

r superscript meaning solid matrix of porous medium

s superscript meaning interface

u superscripts meaning internal energy

αβ superscripts meaning contact area between phases αβ

αβδ superscripts meaning contact line between phases α,β, δ

x̄ average of x

Greek symbols

Symbol Dimension Explanation

α superscripts meaning a phase

β superscript meaning an interface

δ superscript meaning a contact line

φ porosity of porous medium

γ N.m−1 (N) surface tension (line tension)

3 m length of contact line

λ Euler scaling parameter

µi J.kg−1 chemical potential of i

ρi kg.m−3 density, ≡ Mi/V

σ J.s−1.K−1.m−3 entropy production in a homogeneous phase

σ s J.s−1.K−1.m−2 surface excess entropy production

σc J.s−1.K−1.m−1 line excess entropy production

� m2 surface or interface area

Latin symbols.

Symbol Dimension Explanation

G J Gibbs energy

M kg mass

m kg.mol−1

d m pore length

Hi J.kg−1 partial specific enthalpy of i

Ji kg.s−1.m−2 mass flux of i

Ju J.s−1.m−2 energy flux

J′q J.s−1.m−2 sensible heat flux

JV m3.s−1.m−2 volume flux

l m characteristic length of representative elementary

volume

L m characteristic length of experimental system

Lij , ℓij Onsager conductivity

p Pa pressure of REV

Q m3.s−1 volume flow

r̄ m avarage pore radius

S J.K−1 entropy

s J.K−1.m−3 entropy density

Si J.kg−1K−1 partial specific entropy of i

Ŝ degree of saturation, ≡ Vi/V

T K temperature

t s time

U J internal energy

u J.m−3 internal energy density

V m3 volume

Vi m3.kg−1 partial specific volume

vD m.s−1 difference velocity

x m coordinate axis

xi - mass fraction of i

Wi - kg.mol−1 molar mass of i
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We define a representative elementary volume of a porous medium in terms of lumped

extensive variables, including properties of homogeneous phases, interfaces, and

contact lines. Using the grand potential, we define the pressure of the REV in a porous

medium in a new manner. From the entropy production expressed in these variables,

we develop new constitutive equations for multi-component, multi-phase, macro-scale

flow. The system is exposed to temperature, composition, and pressure gradients. New

contributions due to varying porosity or surface tension offer explanations for non-Darcy

behavior, and predict thermal osmosis special for porous media. An experimental

program is suggested to verify Onsager symmetry in the transport coefficients. The

analysis is limited to non-deformable systems, which obey Euler homogeneity on the

REV level.

Keywords: porous media, energy dissipation, two-phase flow, representative elementary volume, macro-scale,

excess surface energy, pressure, non-equilibrium thermodynamics

1. INTRODUCTION

We have recently [1] derived a coarse-grained form of the entropy production, σ , of a
representative elementary volume (REV) in a non-deformable porous medium with multi-phase,
multi-component, non-isothermal fluids. The coarse-grained description of the REV was
formulated for systems that obey Euler homogeneity. A Gibbs equation could therefore be
formulated for the REV itself, and used as a starting point, as is normal in non-equilibrium
thermodynamics [2].

Once the entropy production has been found, the driving forces and the constitutive equations
can be given. These will be specified here. We shall see that we can obtain the same form of the
constitutive equations as for homogeneous systems, but that the driving forces are particular for
the porous medium. To write out this particularity, is one aim of the present paper. We shall see
that we can obtain a new definition for the pressure in a porous medium and use this and the
chemical potential to find the constitutive equations. We are also giving internal relations between
experiments particular for the flows, as derived for instance from the Onsager relations.

We consider, as a premise, the REV as a complete thermodynamic system. Hansen and Ramstad
[3] suggested this possibility already some time ago. Since then, the hypothesis has been supported
through measurements on Hele-Shaw cells [4] and through network simulations [5]. The coarse-
grained variables of the REV will fluctuate similar to the variables in a normal thermodynamic state
around a mean value.

The procedure that we used to obtain the Gibbs equation for coarse-grained variables [1],
assumes that the additive thermodynamic variables of the REV are Euler homogeneous functions of
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order one. We give first a brief review of the procedure that
defines the basis set of thermodynamic variables (section 2.1).
The consequences for the chemical potential and the pressure in
the context of porous media is next described (sections 2.2, 2.3).
A new definition of the pressure is proposed in section 2.3.

The constitutive equations that follow from the new set of
variables, allow us to revisit previously published experimental
results. We shall see, for instance, that they can explain deviations
from Darcy’s law. Such deviations have been observed for
small volume flows, also for single fluids like water and water
solutions [6–10]. Thresholds and/or deviations from straight
lines in plots of flow vs. the overall pressure difference, have
been reported. Boersma et al. [8] found a dependency of such
a threshold on the average pore radius, r̄, for flow in a porous
medium made of glass-beads. The observations have, as of
yet, no final explanation. When dealing with immiscible fluids,
Tallakstad et al. [11] observed a dependence of the flow rate
on the square of the pressure difference under steady-state
flow conditions. Sinha and Hansen [12] attributed this square
dependence to a change in the conductivity, arising from the
successive opening of pores due to the mobilization of interfaces
when the pressure difference across the sample is increased.
The explanation was supported by a mean-field calculation
and numerical experiments with a network model. Sinha et al.
[10] followed up the original Tallakstad study, done in a two-
dimensional model porous medium, both experimentally and
computationally in three-dimensional porous media, with the
same result.

There is not only a need to better understand deviations from
Darcy’s law for volume transport. Other driving forces than those
related to the pressure difference, are also relevant to porous
media transport. Counter-current transport of components
can lead to gradients in composition (chemical potential) or
chemical driving forces. Injection of cold seawater into a warm
hydrocarbon reservoir can create thermal driving forces. This
leads to thermal diffusion. The separation of components in a
temperature gradient is an example of the Soret effect [13]. A
temperature gradient may also lead to a pressure gradient, a
phenomenon called thermal osmosis. These effects are not much
studied in porous media, see [14] for a review on membranes.
There are, for instance, contradictory findings in the literature
with respect to the impact of the porous medium on thermal
diffusion. Costeseque et al. [15] found that the porous medium
had no significant effect on the Soret coefficient, as determined
with a horizontal thermodiffusion cell (although the component
diffusion was slower in the porous medium). On the other hand,
Colombani et al. [16] found by molecular dynamics simulations
that both the porosity and the wettability of the porous medium
had an effect on the Soret coefficient. The presence of a porous
matrix had an impact on the flow pattern and therefore the
Soret coefficient according to Davarzani et al. [17]. The role of
a thermal driving force is therefore at best unclear. A better
understanding of its role could be important. An emerging
concept for water cleaning is, for instance, based on thermal
osmosis [18]. This process could help produce clean water using
industrial and natural heat sources, a very important topic in the
world today.

It is thus an open question in porous media theory, how
driving forces like the ones mentioned interact, and how the
porous medium makes these interactions special [17]. It is
therefore also the aim of this work to clarify the coupling that
can take place due to some central forces, by constructing a
non-equilibrium thermodynamic theory, particular for porous
media.

The paper is structured as follows. Section 2 gives first a
brief repetition of the variables used to obtain the coarse-grained
Gibbs equation and the corresponding entropy production [1].
As before, the analysis applies to systems that obeys Euler
homogeneity of the first order. We restrict ourselves to non-
deformable media, and systems with a constant ratio of fluid
surface area to volume (no film formation). For such systems
we proceed to find expressions for the chemical potential and
the pressure in the context of non-deformable porous media, cf.
sections 2.2, 2.3. We intend to extend the theory to deformable
media later.

The expression for the entropy productionwith these variables
is detailed in section 3. The driving forces, due to temperature
-, pressure -, and chemical potential gradients, are specified in
section 4. They obtain new contributions compared to their
normal form in homogeneous systems. In the last section 5,
we detail specific cases of component and volume flow in
combination with heat transport. An experimental program is
suggested in the end to verify Onsager symmetry in the transport
coefficients.

2. THERMODYNAMIC VARIABLES FOR
THE REV

2.1. The Basis Set of Variables
The central concept in this analysis is the representative
elementary volume; the REV [19, 20]. Its characteristic size, l,
is small compared to the size (length) of the full system, L, but
large compared to the characteristic pore length and diameter.
An illustration of the REV is given by the squares in Figure 1.
The REV (square) consists of several phases and components.
The problem is to find the representation on the larger scale.
For each point in the porous system, represented by a (blue) dot
in Figure 1, Kjelstrup et al. [1] used the REV around the dot
to obtain the variables of the REV (UREV, SREV,VREV,MREV

i ).
The variables were given superscript REV to indicate that they
constituted the only independent variables of the REV. From the
Euler homogeneity of these variables, the possibility followed
to define the temperature, pressure, and chemical potentials
of the REV, (T, p,µi). We refer to Kjelstrup et al. [1] and to
Tables A1–A3 in the Appendix for further details, terminology
and symbols.

The value of each of these REV-variables was obtained as a
sum of contributions from each phase, interface and three-phase
contact line present [19, 20]. The contributions are pore-scale
variables; they are not independent variables on the macro-scale.
To assume Euler homogeneity, means to assume that a REV of
the double size, for example, has double the energy, entropy, and
mass, as well as double the surface areas and double the line
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FIGURE 1 | A representative elementary volume (REV) (magenta squares,

length l) in a system (white box of length L) that is exposed to for instance a

pressure difference, 1p, a temperature difference, 1T, and differences in

chemical potentials 1µi . A (blue) dot is used to represent the state that

characterizes the REV. The set of state variables are positioned on the x-axis:

The temperature, pressure and the chemical potentials, (T,p, µi )(x). The figure

is adapted from Kjelstrup et al. [1].

lengths of various types. The average surface area, pore length
and pore radius, as well as the curvature of the surfaces per
unit of volume of the REV, are then everywhere the same. We
limit ourselves to non-deformable systems with a constant ratio
of fluid surface area to volume, for which this is the case. The
extension to deformable systems is more complicated and will be
considered later.

A system of k components in m homogeneous phases, has a
volume, VREV, with contributions from the homogeneous bulk
phases Vα,REV, m ≥ α ≥ 1, and the excess line volumes,
Vαβδ,REV,m ≥ α > β > δ ≥ 1.

VREV =
m
∑

α=1

Vα,REV +
m
∑

α>β>δ=1

Vαβδ,REV ≈
m
∑

α=1

Vα,REV (1)

The superscripts denote the relevant phases, surfaces or contact
lines. The surface area between phases α,β is denoted �αβ ,REV

while the contact line length between phases αβδ is denoted
3αβδ,REV. The surface area (line length) of the REV is the sum
over all areas (lines) in the REV. The excess surface volumes are
by construction zero. The excess line volumes are not, because the
dividing surfaces in general cross each other along three different
lines.

In this first exposition, we neglect contributions to the volume
from the contact lines, which are normally small also in porous
media. The volume of the pores is

Vp,REV =
m−1
∑

α=1

Vα,REV (2)

Superscript p is used for pore. The porosity, φ, and the degree of
saturation, Ŝα (saturation for short), are

φ ≡
Vp,REV

VREV
and Ŝα ≡

Vα,REV

Vp,REV
=

Vα,REV

φVREV
(3)

Superscript α is used for a component, which is equal to the
phase in the present case. The porosity and the saturation do
not depend on the size of the REV, and have therefore no
REV-superscript.

The mass of component i in the REV,MREV
i , is the sum of the

masses in the homogeneous phases of the REV, α, Mα,REV
i , m ≥

α ≥ 1, the excess interfacial masses, M
αβ ,REV
i , m ≥ α > β ≥ 1,

and the excess line masses, M
αβδ,REV
i , m ≥ α > β > δ ≥ 1. We

obtain:

MREV
i =

m
∑

α=1

Mα,REV
i +

m
∑

α>β=1

M
αβ ,REV
i +

m
∑

α>β>δ=1

M
αβδ,REV
i (4)

where the first term on the right-hand side also can be written in
terms of the (constant) densities ρα

i

m
∑

α=1

Mα,REV
i =

m
∑

α=1

ρα
i V

α,REV
i (5)

Similar contributions follow for the other terms.
We shall often use the example of two immiscible one-

component phasesw and n in a solid porousmaterial r of porosity
φ, where contact line contributions are negligible. We can think
of phase w as wetting, and n as non-wetting. The mass variables
from Equation (4) are for n:

MREV
n = ρnV

REV
n (6)

while for the other components we obtain also surface excess
contributions:

MREV
w = MREV

w +Mwn,REV
w

MREV
r = MREV

r +Mrn,REV
r +Mrw,REV

r (7)

When an interface is formed between two phases, we are free
to choose the position of the interface such that one of the
components has a zero excess mass. This is the position of the
equimolar surface of this component. This position is convenient
because the number of variables are reduced. When we use the
equimolar surface of n, Mrn

n = Mwn
n = 0, and when we use the

equimolar surface ofw at the surface of the solid,Mrw
w = 0. These

choices simplify the description of the REV. Therefore, we shall
later use the chemical potential of component n, which has a bulk
contribution only, see section 2.2.

The expressions for UREV and SREV are similar to Equation
(4). This way to construct a REV is reminiscent of the geometric
construction of a state function, proposed for flow in porous
media by McClure et al. [21].

The basis set of macro-scale variables of the REV
(UREV, SREV,VREV,MREV

i ) apply to the whole REV. The
temperature, pressure and chemical potentials of the REV,
(T, p,µi), on the macro-scale were next defined, as is normal in
thermodynamics, as partial derivatives of the internal energy.
These definitions are normal in the sense that they have the
same form as they have in homogeneous systems. They are new
because the variables (say UREV) have contributions from all
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parts of the heterogeneous REV. The intensive variables T, p,
and µi are then not averages of the corresponding variables on
the pore-scale. The importance of this was also pointed out by
Hassanizadeh and Gray [11,12].

The macro-scale densities of internal energy, entropy and
mass; in the example, u, s, ρi, do not depend on the size of the
REV. The densities are therefore convenient when we need to
integrate across the system [1]. They are, however, functions of
the position of the REV, cf. Figure 1.

2.2. The Gibbs Energy of the REV
We proceed to define the Gibbs energy, G, as this variable is
needed in the definition of driving forces of transport, see section
3. The general expression for Gibbs energy is

G ≡ U + pV − ST =
k
∑

i=1

µiMi =
k
∑

i=1

Gi (8)

where G applies to the REV and Gi is defined for component i in
the last identity. All REV variables need be taken into account. In
principle, each component can exist in all phases in the REV. But
component contributions to the REV are additive, cf. Equation
(4). For component i we therefore have

GREV
i ≡ µREV

i MREV
i

=
m
∑

α=1

Gα,REV
i +

m
∑

α>β=1

G
αβ ,REV
i

=
m
∑

α=1

gα
i V

α,REV +
m
∑

α>β=1

g
αβ
i �αβ ,REV (9)

The expression gives the Gibbs energy contributions of
component i to the REV. We neglected again possible
contributions from contact lines.

In the case of two immiscible, one-component fluids in a non-
deformable porous rock, we can take advantage of the simpler
description of the non-wetting fluid (see previous subsection)
giving

GREV
n ≡ µnM

REV
n = Gn,REV

n = gnnV
n,REV (10)

For immiscible, one-component fluids, the label indicating the
components also gives the phase. The density gnn is an average
over Vn,REV. The local density in the pores may vary around the
average.

The total differential of U is used with the definition (8), and
we obtain

dG = −SdT + Vdp+
∑

i

µidMi (11)

where the superscript REV is skipped for convenience.

2.3. The Pressure of the REV
We find the pressure of the REV by starting, as above, with the
extensive property that holds the pressure as the variable. This

is the grand potential. The compressional energy of the REV is
equal to minus the grand potential:

ϒREV
(

T,VREV,µi

)

≡ −pVREV = UREV−SREVT−
k
∑

i=1

µiM
REV
i

(12)
The grand potential of the REV is additive, which gives

ϒREV =
m
∑

α=1

ϒα,REV+
m
∑

α>β=1

ϒαβ ,REV+
m
∑

α>β>δ=1

ϒαβδ,REV (13)

We introduce contributions from all phases, surfaces and contact
lines. This allows us the possibility to define, in a new way, the
pressure of the REV:

p =
1

VREV





m
∑

α=1

pαVα,REV −
m
∑

α>β=1

γ αβ�αβ ,REV

−
m
∑

α>β>δ=1

γ αβδ3αβδ,REV



 (14)

The last equationmakes it possible to compute the pressure of the
REV, p, from the pressures in the bulk phases, the surface tensions
and the line tensions. With knowledge of the pressure in the REV,
we can find the driving force,−dp/dx, in the entropy production,
see below, Equation (29).

We explain now how we can define and compute the pressure
from Equation (14), using the example of two immiscible single
fluids in a non-deformable medium.We shall neglect contact line
contributions for simplicity. Such contributions can be added
by the same procedure. We follow Equation (14) and sum over
the n, w and r bulk phases, and the nr,wr, and nw−interfaces.
The situation can be illustrated for a single cylindrical pore, see
Figure 2.

The figure shows two phases n and w in a tube with the
average radius. The wall material is r. Contact areas are therefore
�nr,REV, �wr,REV, and �nw,REV. The total surface area of the pore

FIGURE 2 | Illustration of contact areas between the phases. A cylindrical

pore is chosen as example.
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is�rp,REV ≡ �nr,REV+�wr,REV. The area �nw,REV is the smallest
contact area shown in the figure. The volumes in Equation (14)
depend on the saturation of the non-wetting component, Ŝn

and the porosity, φ. Neither of the fluids form a film between
the surface and the other fluid, so the surfaces satisfy in good
approximation

�nr,REV = Ŝn�rp,REV and �wr,REV = Ŝw�rp,REV

= (1− Ŝn)�rp,REV (15)

The pressure of the REV from Equation (14) can then be written
as:

p = [pnŜnφ + pw(1− Ŝn)φ + pr(1− φ)]

−[Ŝnγ nr + (1− Ŝn)γ wr]
�rp,REV

VREV
− γ nw �nw,REV

VREV
(16)

Contact-line contributions were again not taken along, for
simplicity. A consequence of the porous medium being
homogeneous is that �rp,REV/VREV is the same everywhere. The
ratio can be used as ameasure of the average curvature of the pore
surface, as will be explained below.

The volume-averaged contributions to the pressure from the
homogeneous phases is given the symbol p̄:

p̄ = pnŜnφ + pw(1− Ŝn)φ + pr(1− φ)

=
(

pn − pw
)

Ŝnφ + pwφ + pr(1− φ) (17)

The first term in the last equality shows that the saturation gives
an important contribution to the volume-averaged pressure. The
contributions of the 2nd and 3rd terms are due to pw and pr .
These contributions are usually constant.

The surface-averaged contributions to the pressure are
likewise given a separate symbol:

p̄c = [Ŝnγ nr + (1− Ŝn)γ wr]
�rp,REV

VREV
+ γ nw �nw,REV

VREV
(18)

The contribution of p̄c to the total pressure, p, may be called the
capillary pressure. The total pressure of the REV is thus, for short:

p = p̄− p̄c (19)

2.3.1. The Case of Approximately Cylindrical Pores
With an (approximately) cylindrical pore geometry, we can
define the average radius of the pores by

r ≡
2Vp,REV

�rp,REV
(20)

By introducing r into Equation (18) we obtain the capillary
pressure

p̄c =
(

γ nr − γ wr
)

Ŝn
2φ

r
+ γ wr 2φ

r
+ γ nw �nw,REV

VREV
(21)

Again the first term shows that saturation gives an important
contribution. The 2nd term only depends on the temperature and

is usually constant. The 3rd term is proportional to the surface
area of the fluid-fluid interface. In many experiments this surface
area is much smaller than �rp,REV. When that is the case, this
term is negligible.

The three equations above give an expression for the REV
pressure p for the example system.

To estimate the size of the various contributions, it is
convenient to usemechanical equilibrium for the contact line and
for the surface, although this conditionmay not apply to the REV,
not even under steady flow conditions.With a balance of forces at
the three-phase contact lines, Young’s law applies for the surface
tensions: γ nr−γ wr = γ nw cos θ , where θ is the (average) contact
angle. When there is furthermore mechanical equilibrium at the
fluid-fluid interfaces, the pressure difference between the fluids is
given by Young-Laplace’s law, pn − pw = 2γ nw cos θ/r̄.

In the single-fluid (w) case, Equation (16) simplifies. There are
volume-averaged and surface averaged contributions,

p = pwφ + pr(1− φ)− γ wr 2

r̄
φ (22)

We have defined above in detail what we mean by the pressure
of a REV. We have found, using the grand potential, that it can
be regarded as result of volume- and surface average properties,
and we have given some examples. These contributions
enter the driving force in Equations (23, 29), to be further
discussed below.

3. THE ENTROPY PRODUCTION OF
NON-ISOTHERMAL TWO-PHASE FLOW

Pressure-driven mass flows through porous media can lead
to gradients in composition and temperature, and vice versa;
temperature gradients can lead to mass flow, separation of
components and pressure gradients. The interaction of such
flows is of interest, andmotivated the search for convenient forms
of the entropy production [1].

3.1. Expression in Terms of Component
Flows
From the Gibbs equation for the REV, we derived the entropy
production for transport of heat and two immiscible fluid phases
through the REV [1]. With transport in the x-direction only, the
entropy production σ of the example system was

σ = J′q
∂

∂x
(
1

T
)−

1

T

(

Jw
∂µw,T

∂x
+ Jn

∂µn,T

∂x

)

(23)

The frame of reference for the mass transport is the non-
deformable solid matrix, Jr ≡ 0. Here J′q is the sensible heat flux

(in J.m−2.s−1), T is the temperature (in K), Ji is a component
flux (in kg.m−2.s−1) and ∂µi,T/∂x is the gradient of the chemical
potential (in J.kg−1.m−1) evaluated at constant temperature. All
properties are for the REV, so superscript REV is omitted.

The thermal force conjugate to the heat flux is the gradient
of the inverse temperature, where the temperature was defined
for the REV as a whole, see Kjelstrup et al. [1]. The chemical force
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conjugate to the mass flux is the negative gradient ofµi,T over the
temperature. The chemical driving forces are obtained from the
full chemical potential, which is the derivative of G with respect
toMi:

µi ≡
(

∂G

∂Mi

)

T,p

(24)

The total differential of the chemical potential is thus from
Equation (11);

dµi = −SidT+Vidp+
k
∑

j=1

µc
i,jdMj ≡ −SidT+Vidp+dµc

i (25)

where Si = − (∂µi/∂T)p,Mj
and Vi =

(

∂µi/∂p
)

T,Mj
and

µc
i,j = (∂µi/∂Mj)p,T,Mk

are partial specific quantities. The last

term describes the change in the chemical potential by changing
composition of the medium. The dµi,T is now defined as a part of
the whole differential:

dµi,T ≡ dµi + SidT = Vidp+ dµc
i (26)

The last term is zero when the composition is uniform. In the
expression of the entropy production in terms of component
flows, Equation (23), the driving force has contributions from the
composition variation and from the pressure gradient.

3.2. Expression in Terms of Volume Flow
The volume flow, rather than the component flows, is often the
measured variable. A description with the volume flow is thus of
interest. The volume flow of several components is JV = 6iJiVi.
We take the example of two fluids to demonstrate the principles.

JV ≡ JnVn + JwVw (27)

With two fluids in a uniform, non-deformable rock, there are
three components. On the coarse-grained level, these are mixed.
We assume that dµc

r = 0, and obtain Gibbs-Duhem’s equation
on the form

ρndµ
c
n + ρwdµ

c
w = 0 (28)

where ρi is the density of i in the REV (in kg.m3). This can be
used with Equation (26) and JV to change Equation (23) into

σ = J′q
∂

∂x

(

1

T

)

− JV
1

T

∂

∂x
p+ υD

ρn

T

∂µc
n

∂x
(29)

We have chosen to keep the chemical potential of n, which
has a simpler form than the other chemical potential (µn =
µn
n), cf. section 2.2. The entropy production in Equation (23) is

invariant, and this invariance defines υD as the relative velocity
of component w and n (in m.s−1):

υD ≡
Jw

ρw
−

Jn

ρn
(30)

The entropy production 29 has also three terms. While the first
term on the right-hand side is the same as before, the second

term is the volume flow with minus the pressure gradient over
the temperature as driving force, and the third term is the velocity
difference with the chemical potential gradient times the density
over the temperature as driving force.

Equations (23, 29) are equivalent. They describe the same
entropy production or flow dissipation. They provide alternative
choices of conjugate thermodynamic force-flux pairs. The choice
to use in the particular case, is determined by practical reasons;
what can be measured or not, or which terms are zero. For
instance, under isothermal conditions we need not take the term
containing the heat flux along, even if heat may be transported
reversibly. One set may give a negative contribution to the
entropy production (work is done), but the overall entropy
production is positive, of course. Each set can be used to obtain
constitutive equations for transport on the macro-scale. We shall
proceed to find these for porous media flow, finding first more
detailed expressions for the driving forces.

In the simple case of a single fluid, say w, we obtain directly
from Equations (23, 26) that

σ = J′q
∂

∂x
(
1

T
)− JV

1

T

∂p

∂x
(31)

In the absence of a gradient in composition, dµc
i = 0, the same

expression applies also for more components. We may follow
Hansen et al. [22] and write the component contributions as
JnVn = Ŝnvn, JwVw = Ŝwvw and JV = v = Ŝnvn + Ŝwvw. where
the saturation has been introduced, and vi is the volume flow of i.

4. DEFINITION OF THE DRIVING FORCES
IN THE CONTEXT OF A POROUS MEDIUM

We expand on the basis presented earlier [1], and give definitions
of the driving forces in the context of porous media flow.

4.1. The Saturation-Dependent
Contributions to the Chemical Potential
Gradient
The specific contribution to the chemical potential gradients
in the entropy production in Equation (23) is of interest. The
concentration dependent part of the chemical potential of i, µi,
for an ideal system is (in J.kg−1)

µi = µ0
i +

RT

Wi
ln

ρi

ρ
0,REV
i

(32)

Here R is the gas constant (in J.K−1.mol−1) and Wi is the molar
mass (in kg.mol−1). The chemical potential is measured referred
to a standard state,µ0

i , having the local concentration ρ0
i in all the

pores. In the description of porous media, a convenient reference
state may be the state when one component is filling all pores, or
when the saturation is unity, Ŝi = 1. The mass density of i in the
REV for the standard state is ρ

0,REV
i = ρ0

i V
REV
p /VREV = ρ0

i φ.

Away from this state ρi = ρ0
i Ŝ

iφ for i = n,w.When φ is constant,
this gives

ρi

Ŝi
= ρ0

i φ (33)
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By introducing these definitions into Equation (32), we obtain for
the concentration dependent part of the chemical driving force of
n

∂µc
n

∂x
=

RT

Wn

1

Ŝn

∂ Ŝn

∂x
(34)

We see that any variation in saturation between REVs along the
x-axis (cf. Figure 1), will lead to a driving force. We integrate
between two REVs and obtain the chemical driving force for
porous media flow

ρn1µc
n = φ

ρ0
nRT

Wn
1Ŝn (35)

We have seen that the return to the Gibbs energy of the
porous medium helped define the chemical potential in terms of
properties relevant to porous media. All variables are measurable.

4.2. The Pressure Dependent Contribution
The driving force for volume flow is the negative gradient of the
REV pressure over the temperature. To measure the pressure
p inside the REV is difficult. The pressure in the fluid phases
adjacent to the porous medium can be determined. Tallakstad
et al. [11] defined the measured pressure difference, 1p′, at
steady state, as an average over the value 1p(t) over the time of
measurement:

1p′ =
1

te − ts

∫ te

ts

1p(t)dt (36)

Here t is the time and 1 refers to the extension of the system.
Subscript ’s’ denotes the start and ’e’ denotes the end of the
measurement. We will take this pressure difference as our 1p.
The pressure differences 1pw and 1pn can also be measured
when there is continuity in the fluids, w and n, respectively.

The pressure variation across the REV is given by Equation
(19), we have an interpretation of the pressure difference external
to the porous medium;

d

dx
p =

d

dx
(p̄− p̄c) (37)

We integrate over the system and obtain an interpretation of the
total pressure difference:

1p = 1p̄− 1p̄c (38)

We can assess the right-hand side of this equation using
Equations (17, 18).

4.2.1. The Case of Large Pressure Differences
When the pressure drop across the porous plug is large compared
to the capillary pressure contribution, the surface contributions
and therefore p̄c can be neglected. This is the case of large
capillary numbers. Furthermore pn = pw. In the pressure
difference, the terms with constant φ and pr disappears, and the
pressure difference is:

1p = 1p̄ = φ1pw (39)

The pressure is applied to the whole cross-sectional area. This
explains that the net driving force becomes a fraction, φ, of 1pw.
In other words, the force applies to the fraction φ of the pore area.

The conditions leading to Equation (39) are common in the
laboratory. Some numerical values for the air-glycerol system,
[4], can illustrate when the conditions apply. The value of
2φγ wr/r̄ is of the same order of magnitude as pcŜnφ (400 Pa)
when the surface tension γ = 6.4 · 10−2Nm−2, the average pore
radius r̄ = 0.2 mm and the porosity φ = 0.63. A typical value of
1p̄ in the experiments is close to 30 kPa, which is far from the
limit where capillary effects are significant.

4.2.2. The Case of Small Pressure Differences
For small capillary numbers the effective pressure drop across
a porous plug is comparable to or smaller than the capillary
pressure. Surface contributions need be taken into account.
Equation (38) gives the effective pressure difference. When we
can assume a constant average radius r̄, and constant porosity,
we obtain

1p = 1p̄−
2φ

r̄
1

[

(

γ nr − γ wr
)

Ŝn + γ wr
]

−1

(

γ nw �nw,REV

VREV

)

(40)
A fluid will be transported when the surface tensions of the
fluids with the wall are different and there is a difference in the
saturation. When there is only one fluid in the porous medium,
cf. Equation (22), and we have constant r̄ and porosity, the
pressure difference becomes

1p = 1p̄−
2φ

r̄
1γ wr (41)

The last term can lead tomass transport, when the surface tension
changes.

5. CONSTITUTIVE EQUATIONS. EXAMPLES

5.1. Constitutive Equations for
Non-isothermal, Two-Phase, Immiscible
Fluids
The constitutive equations follow from the entropy production.
We present these on differential form for two incompressible
flows. From Equation (23) we have:

J′q = lqq
∂

∂x
(
1

T
)− lqw

1

T

∂µw,T

∂x
− lqn

1

T

∂µn,T

∂x

Jw = lwq
∂

∂x
(
1

T
)− lww

1

T

∂µw,T

∂x
− lwn

1

T

∂µn,T

∂x

Jn = lnq
∂

∂x
(
1

T
)− lnw

1

T

∂µw,T

∂x
− lnn

1

T

∂µn,T

∂x
(42)

We can also use Equation (29) and obtain

J′q = lqq
∂

∂x

(

1

T

)

− lqp
1

T

∂

∂x
p+ lqd

ρn

T

∂µc
n

∂x

JV = lpq
∂

∂x

(

1

T

)

− lpp
1

T

∂

∂x
p+ lpd

ρn

T

∂µc
n

∂x

υD = ldq
∂

∂x

(

1

T

)

− ldp
1

T

∂

∂x
p+ ldd

ρn

T

∂µc
n

∂x
(43)
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The flux-force relations are linear on the REV-level. Our
construction of the coarse-grained entropy production has
followed the standard line in non-equilibrium thermodynamic
theory, meaning that the Onsager relations holds for each matrix
of coefficients. They may not hold, when the REV no longer can
be constructed using Euler homogeneity (i.e., can be regarded as
a thermodynamic state) or when the balance equations fail. Some
evidence exists that the REV is a thermodynamic state [4, 5]. Also,
there is theoretical and computational proof that the Onsager
relations apply, lij = lji [23–25]. Experimental proof for the
Onsager relations exists for one-phase flow in porous media[26],
but as far as we know, not for two-phase flow. We continue to
specify how this possibly can be achieved.

One set of conductivities can be expressed by the other, using
entropy production invariance. The element lqq is the same in
both formulations.

We have discussed above how the local and overall driving
forces can be determined.We integrate across the system in order
to relate experimental results to theory. We integrate the linear
laws 43 across the REV, and obtain

J′q = Lqq1(
1

T
)− Lqw

1

T
1µw,T − Lqn

1

T
1µn,T

Jw = Lwq1(
1

T
)− Lww

1

T
1µw,T − Lwn

1

T
1µn,T

Jn = Lnq1(
1

T
)− Lnw

1

T
1µw,T − Lnn

1

T
1µn,T (44)

and

J′q = Lqq1

(

1

T

)

− Lqp
1

T
1p+ Lqd

ρn

T
1µc

n

JV = Lpq1

(

1

T

)

− Lpp
1

T
1p+ Lpd

ρn

T
1µc

n

υD = Ldq1

(

1

T

)

− Ldp
1

T
1p+ Ldd

ρn

T
1µc

d (45)

Here Lij ≡ lij/l and l is the length of the REV, and the driving
forces are defined by Equations (35, 38).

The coefficients may become dependent on the force through
the integration as shown by Sinha et al. [27]. The averaging
procedure gave the conductivity as a function of (1p̄ - 1pc) in
the terminology of this paper. In the remainder of this work we
will discuss experimental conditions that allow us to determine
these coefficients. The presentation follows closely the derivation
of Stavermann [28] and Katchalsky et al. [29]. For transport in
discrete systems with polymermembranes, see also [30].We refer
to these works for further definitions of transport coefficients.

5.2. Constitutive Equation for Isothermal,
Single Fluid
For an isothermal single fluidw, flowing inside a porousmedium,
the entropy production 45 has one term; the volume flow
times the negative pressure difference over the temperature. By
including the constant temperature in the transport coefficient,

we obtain the common linear law. With the permeability Lp, we
write

JV = −Lp1p (46)

where Lp ≡ Lpp/T. The permeability is normally a function
of state variables (pressure, temperature). In the hydrodynamic
regime it is a function of viscosity, Lp = Lp(p,T, η). By
introducing the new expression for the pressure, Equation (22),
we obtain

JV = −LVV

(

1pw −
2

r̄
1γ wr

)

(47)

When the permeability and porosity are constant, LVV ≡
Lpφ. The equation predicts a threshold value for flow if there
is a (significant) change in the surface tension across the
REV. Transport will take place, when 1pw > 21γ wr/r̄. The
permeability LVV is inversely proportional to the viscosity η of
the fluid in the hydrodynamic regime. Interestingly, Boersma
et al. [8] and Miller et al. [7] plotted the volume flow vs. the
hydrostatic pressure difference 1pw and found a deviation from
Darcy’s law in the form of a pressure threshold, for water or
water solutions in clay. They offered no explanation for this.
Also Bernadiner et al. [9] and Swartzendruber [6] plotted the
volume flow of water solution JV vs. the pressure gradient in
sandstone with low clay content [9], and in NaCl-saturated Utah
bentonite [6]. The thresholds that they observed depended on the
content of salt in the permeating solution. They explained the
thresholds by water adsorption and pore clogging by colloids [9].
According to Equation (47), a varying surface tension (due to a
varying adsorption and clogging) might explain the existence of
a threshold or a non-linear flux-force relation. There is no reason
to believe that the non-linear flux-force relation is not caused by
creation of system disorder, as was shown analytically for a tube
[27] and in Sinha and Hansen [12] for a porous medium.

5.3. Constitutive Equations for Isothermal,
Two-Phase Fluids
The entropy production in Equation (29) has two terms when
two immiscible components flow at isothermal conditions. We
choose the formulation that has variables JV and υD; volume flux
and interdiffusion flux, respectively. Equation (45) gives then:

JV = −Lpp1p+ Lpd
(

ρn1µc
n

)

υD = −Ldp1p+ Ldd
(

ρn1µc
n

)

(48)

where L′ij ≡ Lij/T. The coefficients reflect, as above, the

mechanism of flow (pressure, diffusion). Four experiments can
be done to determine the four coefficients. There are only three
independent coefficients. When four experiments are done, we
can check the Onsager relations.

5.3.1. Main Coefficient: The Hydraulic Permeability
The (hydraulic) permeability K is related to the mobility
coefficient Lpp, by Lpp = K/η where η is the fluid viscosity.
Both coefficients are measured at uniform composition. By
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introducing the driving force for the volume flow from Equation
(38), we obtain [the last term on Equation (48)] is zero:

JV = −Lpp1p = −Lpp1(p̄− p̄c) (49)

With the present definition of variables the equation applies to
the overall behavior of the system. A plot of JV vs. 1p̄ may
show a threshold. This threshold has more contributions than
in the single component system, as there are contributions to
the pressure from surface and line energies. A threshold may be
detectable at low capillary numbers.

The hydraulic permeability, is found bymeasuring the volume
flow caused by the overall pressure difference at uniform
composition;

K = −η

(

JV

1p

)

dµc
n=0

(50)

The mobility is a function of the saturation, Lpp =
Lpp(p,T, η, Ŝw). In the hydrodynamic regime, the coefficient can
be modeled, assuming Poiseuille flow and the effective viscosity
ηeff = ηwŜ

w + ηnŜ
n [27]. Using a pore model, Sinha et al.

[27] found a dependence of the coefficient Lpp on the threshold
pressure. This non-linearity does not prevent the use of non-
equilibrium thermodynamics.

5.3.2. Main Coefficient: The Interdiffusion Coefficient
The main coefficient Ldd is an interdiffusion coefficient. It is
defined at uniform pressure from the difference flux created by
a difference in saturation;

Ldd =
(

υD

ρn1µc
n

)

1p=0

=
Wn

φRTρ0
n

(

υD

1Ŝn

)

1p=0

(51)

where we used Equation (35) for the driving force.

5.3.3. The Two Coupling Coefficients
The coupling coefficients in Equations (48) express that a
separation of components can be caused by a pressure gradient
(Ldp) and that a volume flow can be promoted by a gradient in
saturation (Lpd).

Consider first the determination of Ldp. A pressure gradient
may build as a consequence of a difference in composition [30].
The volume flux continues until a balance of forces is reached:

1p =
Lpd

Lpp
ρn1µc

n (52)

From the force-balance across the system, we obtain:

(

1p

1Ŝn

)

JV=0

=
Lpd

Lpp
φ

ρ0
nRT

Wn
(53)

This condition can be used to find the unknown coupling
coefficient, once the hydraulic permeability is known.

The remaining coupling coefficient can be found from the flux
ratio, r, that has been called the reflection coefficient r, see also
[30]. At constant saturation, we have

r = −
(

υD

JV

)

1µc
n=0

= −
Ldp

Lpp
(54)

We are now in a position to compare Lpd and Ldp and
verify the Onsager relations. The state of the system must be
(approximately) the same, when the comparison is made.

5.4. Constitutive Equations for
Non-isothermal, Two-Phase Fluids
The full set of equations given in Equation (45) must be used to
describe non-isothermal flow in porous media. The coefficients,
Lpp, Lpd = Ldp, Ldd in the lower right-hand side corner of the
conductivity matrix, were discussed above. The new coefficients
are those related to heat transport. The coefficient Lqq represents
the Fourier type heat conductivity at uniform composition and
pressure. The coefficients Lpq and Ldq are coupling coefficients.

Non-zero coefficients Lpq and Ldq mean that we can obtain
separation in a temperature gradient. Injection of cold water
into warm reservoirs may thus lead to separation. Likewise, a
pressure difference can arise from a temperature difference. This
is thermal osmosis [14].

Separation caused by a thermal driving force was observed
in clay-containing soils where water was transported in clay
capillaries against a pressure gradient. The coefficient, measured
at constant pressure, was called the segregation potential [31].
The coefficient Lpq can be obtained from Equation (45), setting

1p = 0 and 1µc
n = 0 (1Ŝn=0) in the second line. We obtain

(

JV

1T

)

1p=0,1µc
n=0

= −
1

T2
Lpq (55)

This coefficient can also be found from steady state conditions,
when the thermal gradient is balanced by a gradient in saturation
(chemical potential)

Lpq
1

T2
1T = Lpdρn1µc

n = Lpdφ
RTρ0

n

Wn
1Ŝn

(

1Ŝn

1T

)

υD=0

=
Wn

RT3ρ0
n

Lpq

Lpd
(56)

This determination of Lpq requires knowledge of Lpd.
Alternatively, we may obtain the coefficient from the thermal
osmosis experiment

(

1p

1T

)

JV=0,1µc
n=0

= −
1

T

Lpq

Lpp
(57)

The coupling coefficient Lqp can also be found by measuring
the heat flux that accompanies the volume flux for constant
composition and at isothermal conditions.

(

J′q

JV

)

1T=0,1µc
n=0

=
Lqp

Lpp
(58)

These interrelated effects are well-known in homogeneous media
[14], but have to the best of our knowledge, not been measured
for porous media with two-phase flow.
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6. DISCUSSION AND CONCLUSION

We have further developed a new coarse-grained formulation of
the entropy production [1] for porous media, and specified the
constitutive equations for flow of two immiscible fluids under
uniform or varying temperature, pressure and composition.
Several of the equations are new in the context of porous
media, but they follow well-documented tracks in classical
non-equilibrium thermodynamics [1, 28–30]. Experimental
observations exist on single fluid flow, that give support to the
theoretical description.

We have given a new definition of the pressure of the
representative elementary volume (REV), and used it to obtain
the pressure part of the driving force. The force obtains
contributions from homogeneous phases, surfaces—and, in
principle also line—tensions of the system. This distinguishes
the present formulation from their counterpart for homogeneous
systems [1, 28–30].

We have seen that surface contributions can be spelled out
for varying conditions, under the assumption that the additive
properties of the REV are Euler homogeneous of the first order.
Doing this, we have been able to explain for instance deviations
from Darcy’s law, or the occurrence of threshold pressures
in plots of flow vs pressure difference. We have pointed at
possibilities to describe non-isothermal phenomena.

As for instance sections 5.1–5.3 show, there is a multitude
of scenarios that can be further investigated, and used to check
the theory. The expressions open up the possibility to test the
thermodynamic models in use, for their compatibility with the
second law.

The basic assumption used is that the REV set of basis
variables are Euler homogeneous functions of degree one. This
means in essence that one temperature, one pressure and one
chemical potential per component can be defined for the REV.
Some evidence already supports the idea that the REV is a
thermodynamic state [4], [5], originally proposed by Hansen and
Ramstad [3] and Tallakstad et al. [11]. We did neither consider
surface areas, nor their curvature or the contact line length as
independent variables, but these may be included, cf.[21].

We have illustrated relations for some specific cases; the non-
isothermal flow of one or two immiscible single fluids in a non-
deformable medium. It is straight forward to include more terms
in the chemical potential (e.g. gravity). To include stress fields or
other fields that deform the porous medium is more problematic,
and has been postponed.

Flow of two isothermal, immiscible fluids in a porous medium
has often been described by Darcy’s law, using the relative
permeability concept. The seepage velocities vn and vw are related
to fluxes used here by vn = JnVn and vw = JwVw. The
expressions for the seepage velocities must be contained or be
equivalent to the expressions given here, using the condition
of invariance for the entropy production. A comparison can
elucidate assumptions that are made. Hilfer and Standnes et al.
[32, 33] gave a set of linear relations for the seepage velocities.
Their driving forces were the gradients in the single component
pressures, obtained by pressure measurements in the single
phases. Their description implies e.g., that the composition is
uniform.

We have seen through these examples how non-equilibrium
thermodynamic theory can provide a fundamental basis for
constitutive equations, also in porous media. For systems
that obey entropy production invariance and Onsager
symmetry, we have obtained relations between variables,
which have been used to a limited degree for two-phase
systems.
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APPENDIX

Symbol Lists

TABLE A1 | Mathematical symbols, superscripts, subscripts.

Symbol Explanation

c Superscript meaning capillary pressure

d Differential

∂ Partial derivative

1 Change in a quantity or variable

1f ,t The change is taken from f on the right

to t On the left hand side

6 Sum

i Subscript meaning component i

m Number of fluids

n Subscript meaning non-wetting fluid

w Subscript meaning wetting fluid

p Superscript meaning pore

REV Abbreviation meaning representative elementary volume

r Superscript meaning rock, solid matrix of medium

s Superscript meaning interface

u Subscript meaning internal energy

α,β Superscripts meaning surface between phases α and β

α,β, δ Superscripts meaning contact line between phases α,β, δ

θ Contact angle, average

TABLE A2 | latin symbols

Symbol Dimension Explanation

G J Gibbs energy

M kg Mass

d m Pore length

Hi J.kg−1 Partial specific enthalpy of i

J kg.s−1.m−2 Mass flux

J′q J.s−1.m−2 Sensible heat flux

l m Characteristic length of representative

elementary volume

L m Characteristic length of experimental

system

Lij Onsager conductivity

p Pa Pressure of REV

r̄ m Average pore radius

S J.K−1 Entropy

s J.K−1.m−3 Entropy density

Si J kg−1.K−1 Partial specific entropy of i

Ŝi Degree of saturation of i, ≡ Vi/V

T K Temperature

t s Time

U J Internal energy

u J.m−3 Internal energy density

V m3 Volume

Vi m3.kg−1 Partial specific volume

x m Axis of transport

Wi kg.mol−1 Molar mass of i

TABLE A3 | greek symbols, continued

Symbol Dimension Explanation

α Superscripts meaning a phase

β Superscript meaning an interface

δ Superscript meaning a contact line

φ Porosity of porous medium

γ N.m−1 Surface tension

µi J.kg−1 Chemical potential of i

ρi kg.m−3 Density, ≡ Mi/Vi

σ J.s−1.K−1.m−3 Entropy production in a homogeneous

phase

� m2 Surface or interface area
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4-electrode setups are usually used to measure the dielectric response (complex

conductivity) of sandstones, as it is known that 2-electrode systems are sensitive to

unwanted electrode polarization at low frequency. Moreover, electrode polarization (EP)

occurs in the frequency range where the characteristic relaxation associated to the grain

size also occurs, which can therefore theoretically be assessed using 4-electrode setups.

Nonetheless, we find that other parameters of interest (porosity, salinity) can easily be

extracted from the frequency range ∼ 1–10 kHz, beyond the one affected by EP using

a 2-electrode setup. An additional unwanted effect (“pseudo-inductance”) is observed

in the frequency range 10 kHz–1 MHz during our experiments. Even though the origin

of this effect remains unknown, it is shown to be correlated with the ionic strength of

the system and the electrode separation. The bulk polarization region, i.e., the region

of intermediate frequencies devoid of EP and pseudo-inductance polarizations, is the

one of interest, as the complex conductivity of the system is there only dependent on

material parameters such as the porosity of the sandstone and the conductivity of the

electrolyte. We demonstrate that in the bulk region the model predicts the complex

conductivity response, when these porosity and ionic strength are known. The model

has been validated using laboratory measurements on a Bentheim sandstone saturated

with five different NaCl concentrations: 5, 10, 100, 170, and 540 mM.

Keywords: dielectric spectroscopy, sandstone, electrode polarization, 2-electrode setup, impedance

1. INTRODUCTION

Frequency dependent electrical measurements have been widely used during the last decades for
environmental and engineering studies [e.g., 1–4]. All these measurements have been typically
done using a 4-electrode cell, a measurement technique that is in principle devoid of (unwanted)
electrode polarization effect. Numerous laboratory experiments have been conducted to investigate
the frequency-dependence of the electrical conductivity of porous rocks, unconsolidated sands
and sandstones using 4-electrode setups in the frequency range between 0.01 Hz and 10
MHz [e.g., 1, 5–8]. The electrokinetic polarization response is however difficult to interpret
quantitatively due to crosstalks between the 4 electrodes in the frequency range > 1 kHz,
dependent on the electrode separation and unwanted interactions between the measuring
equipment, electrodes and the sample. For the high frequency range 2-electrode setups are
generally used, as they are less sensitive to cross talks in that range [9]. The bulk impedance,
i.e., the impedance of the saturated sandstone (devoid of parasitic impedances), can be masked
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by electromagnetic pseudo-inductance effects which produce
inductive loops yielding positive values in the phase spectra at
high frequencies. These loops can be triggered by the wiring
of the measurement system [10]. Normally, this effect is taken
into account during the design of the measurement cell so
that its contribution is reduced. Even though crosstalks between
electrodes are avoided when 2-electrode systems are used, wiring
induced and other unwanted polarizations can still arise as we
will demonstrate with our measurements.

Electrode polarization (EP) is the most common
electrode/bulk effect reported in the literature for dielectric
spectroscopy measurements, which are conducted with 2-
electrode systems [11–14]. This phenomenon occurs due to the
build-up of ions close to the surface of the electrodes (which
are assumed to be perfectly blocking) at low frequencies. As
the impedance measurements presented in this article are done
with 2-electrode system, EP is dominant in the impedance
spectra at low frequencies. Several relaxation frequencies can be
observed in the spectra, an important one being associated to the
relaxation of the double layer of the grains which occurs at high
frequencies [6, 9].

Mechanistic models describing the overlapping of the
polarization effects at low and high frequencies are given in Leroy
and Revil [15], Jougnot et al., [2], and Okay et al. [16] among
others. These models have been successfully used to connect the
complex conductivity to the changes in the pore fluid chemistry
[e.g., 9, 32, 38]. Recently, we have proposed a new model for the
dielectric response of sands and sandstones that in most cases
require no adjustable parameters [17]. The model we presented
was for dielectric spectra that are not affected by unwanted
(parasitic) polarization effects. They were tested using data from
literature that were obtained with 4-electrode setups, and the
mismatches found between models and experimental data were
attributed to the unwanted polarization effects generated from
the measuring equipment.

In the present article, we will show that the model can be
adapted to account for unwanted polarization effects in the case
of 2-electrode systems. Unlike 4-electrode setups, 2-electrode
setups have the advantage to be less sensitive to crosstalks in the
frequency range > kHz. We will show that in a given frequency
range, (1–10 kHz), the impedance of the saturated sandstone
(devoid of parasitic impedances) can be obtained and that 2-
electrode measurements are reliable. For higher frequencies,
we found that an unwanted pseudo-inductance affected our
measurements. This pseudo-inductance was also accounted for
in the model.

The dielectric spectroscopy measurements presented in this
article were performed using a 2-electrode system on fully
saturated sandstones in the frequency range 20Hz–3MHz, where
EP, bulk polarization (the polarization of the saturated sandstone)
and pseudo-inductance effects are present. We compare the data
with the response of an equivalent circuit model that is built as
a sum of three complex impedances. Two of these impedances
are directly linked to the theoretical complex conductivities
of EP and bulk, and are, therefore only dependent on the
system parameters (fluid, grain and electrode properties). The
last impedance is introduced to model the pseudo-inductance

effect measured at high frequencies. This impedance is a function
of one adjustable parameter. Frequency ranges where one of
the polarization effects (EP, bulk or pseudo-inductance) is
dominant will be mathematically defined from the analysis
of the full equivalent circuit expression. The theoretical range
corresponding to the dominance of the bulk polarization will be
compared to the experimental one.

This paper consists of four sections. In the first section we
formulate theoretical descriptions of electrode polarization, bulk
polarization, and pseudo-inductance complex conductivities as
functions of the system parameters, i.e., porosity, conductivity
and dielectric permittivity of water and grains. The model is
compared with other models available in literature. In the second
section we give an equivalent circuit model, for which the circuit
elements can be identified with the complex conductivities found
in the first section. In the third section a short overview of the
laboratory experimental setup, which is used to measure the
dielectric spectroscopy of reservoir rock that is saturated with
NaCl solution, is given. Finally, in the fourth section we test the
new model by predicting the desired bulk properties from the
measured electrokinetic response of a fully saturated reservoir
rock for 5 different NaCl solution concentrations.

2. THEORY

2.1. Bulk Polarization
In Kirichek et al. [17], we show (see Equation 8 in that article) that
the complex conductivity of the bulk, σ ∗

b
(ω), can be expressed

using the Maxwell-Wagner model as

σ ∗
b (ω) = σb(ω)+ iωε0εb(ω) = σ ∗

e (ω)
1+ 2(1− φ)β∗(ω)

1− (1− φ)β∗(ω)
, (1)

where σb(ω) and εb(ω) are, respectively, the conductivity and
relative dielectric permittivity of the bulk, ω is the angular
frequency, ε0 is the permittivity of vacuum, σ ∗

e (ω) = σe +
iωε0εe, σe is the conductivity of electrolyte, εe is the relative
dielectric permittivity of electrolyte. Note that σb(ω) and εb(ω)
are frequency dependent whereas σe and εe are not in the
frequency range of interest, i.e., < GHz. Furthermore, φ is the
porosity, β∗(ω) is the dipolar coefficient that is linked to the
polarization P(ω) of a grain and its double layer by P(ω) =
α∗(ω)E0(ω). E0(ω) is the electrical field that is applied on the
porous media and the polarizability, α∗(ω), is given by: α∗(ω) =
4πεeε0a

3β∗(ω), where a is the radius of a grain.
For an electrolyte (with no grains) φ = 1, and one gets

σ ∗
b
(ω) = σ ∗

e (ω), as expected. One can show that the dipolar
coefficient β∗(ω) of a spherical grain with complex conductivity
σ ∗
g (ω) immersed in an electrolyte of conductivity σ ∗

e (ω) can be
written as [17, 18]:

β∗(ω) =
σ ∗
g (ω)− σ ∗

e (ω)

σ ∗
g (ω)+ 2σ ∗

e (ω)
, (2)

where σ ∗
g (ω) = iωε0εg , εg being the relative dielectric

permittivity of the grains. For silica grains, we take εg ≈ 4.5
[19]. This expression for β∗(ω) is based on the hypothesis that

Frontiers in Physics | www.frontiersin.org 2 January 2019 | Volume 6 | Article 14862

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kirichek et al. Dielectric Response of Saturated Sandstones

FIGURE 1 | Equivalent circuit representation of the measured electrical impedance. (A) Equivalent circuit representation for an electrolyte solution. Re and Ce are

resistance and capacitance of the electrolyte, A is the area of the electrode, d is the distance between the electrodes, ε0 is the permittivity of vacuum, σe and εe are

electrical conductivity and permittivity of an electrolyte, respectively. (B) Equivalent circuit representation for an electrolyte solution with electrode polarization. Cep is

the capacitance of electrode polarization, εep is the permittivity of electrode polarization and κ−1 is the electric double layer thickness. (C) Equivalent circuit

representation for an electrolyte saturated sandstone with electrode polarization. Rb(ω) and Cb(ω) are resistance and capacitance of the bulk, σb(ω) and εb(ω) are

electrical conductivity and permittivity of the bulk, respectively. (D) Equivalent circuit representation for a bulk in presence of electrode polarization and

pseudo-inductance. L is used as a fitting parameter.
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the polarization of the double layer is negligible compared to the
polarization of the core of the grain. This hypothesis is valid for
κa >> 1 , where κ−1 is the Debye length given in Equation
6, and moderate zeta potentials [18]. We showed in Kirichek
et al. [17] how the corresponding parameter, the Dukhin number
influences the expression for β∗(ω) and hence the complex
conductivity of sands and sandstones. The Dukhin number reads

Du =
2

κa

[

exp

(

eζ

2kT

)

− 1

]

, (3)

where e is the elementary charge, ζ is the zeta potential, k the
Boltzmann constant and T the temperature. In our case, we can
estimate that on an average κa ∼ 104 ≫ 1, where the inverse of
the Debye length, κ is defined in Equation 6. The Dukhin number
is therefore small, which implies that the grain bulk polarization
will dominate the total (grain and double layer) polarization. In
the case of small charged grains, there are models which take into
account the electric double layer polarization, and even account
for additional layers, like Stern layers [17, 18], in the evaluation
of β∗(ω), see also the Appendix of the present article.

The conductivity of the electrolyte σe can be evaluated by:

σe ≡
∑

i

Di
e2z2i νin∞

kBT
, (4)

where Di is the diffusion constant of ion i, zi is the valency of ion
i, νi are stoichiometric coefficients, kB is the Boltzman constant,
T is temperature, and n∞ is the ionic density. The latter is given
by

n∞[m−3] = Cs[mM] · Na[mol−1], (5)

with Cs and Na being the salt concentration and the Avogadro
constant, respectively. The Debye length κ−1 is a measure for the
electric double layer thickness. It can be calculated using

κ2 ≡
e2n∞

εeε0kBT

∑

i

νiz
2
i . (6)

Substituting Equation 6 in Equation 4 and using the
electroneutrality relation

∑

νizi = 0 leads to

σe ≡ εeε0κ
2D0 with D0 =

z+D+ − z−D−
z+ − z−

. (7)

In this work we consider NaCl solution as the pore-filling
electrolyte. Hence, we assume the following: D+ ≈ D− ≈ 2·10−9

m2/s, z+ = −z− = ν+ = ν− =1.

2.2. Electrode Polarization
Electrode polarization (EP) is observed at low frequencies in a
2-electrode measurement system and arises due to ion build-
up close to the surface of the electrodes, as both electrodes
are considered to be blocking. This effect is associated with a
characteristic frequency ωep, which is defined as [11, 14]

ωep =
2D0κ

d
, (8)

where d is the distance between the electrodes. We found that
EP is indeed shifted to higher frequencies in our experiments,
in accordance with Equation 8, as the ionic strength is increased
and/or d is diminished.

In this article, Cs is in the range 5–540 mM, and two
electrodes separations are used: d = 0.03 m and d = 0.074 m.
The characteristic frequency for the EP effect is, thus, in the
frequency range below 1 kHz (from Equation 8). EP complex
conductivity can also be derived from the set of electrokinetic
equations presented in Buck [11] and Chassagne et al. [14]. The
expression for EP reads

σ ∗
ep(ω) =

iωεepε0κd

2
. (9)

For electrolyte solutions (no porous media), εep = εe. In the
case of two-phase systems, such as suspensions or porous media
made of electrolyte and grains, it remains to be investigated if
εep = εe or εep(ω) = εb(ω) [14], where εb(ω) is the dielectric
permittivity of the two-phase system that is connected to the bulk
conductivity (Equation 1).

2.3. Pseudo-Inductance Effect
Our dielectric spectroscopy experiments (see Figure 4) show that
the electrical impedance has a positive phase in the frequency
range [10 kHz–1 MHz]. A positive phase is usually the signature
of the presence of parasitic inductors due to the proximity of
wires in electric circuits. Therefore, we call this effect “pseudo-
inductance.” We have observed that the characteristic frequency
of this polarization depends on the electrode separation d,
and its magnitude depends on the ionic strength. The pseudo-
inductance complex conductivity is not modeled using first
principles as is done for EP and bulk polarizations. We show in
the next section how we account for it by using the concept of
equivalent circuits.

3. FULL MODEL

Traditionally, dielectric spectroscopy measurements have been
analyzed by means of equivalent electrical circuits. The classical
equivalent circuit approach is based on the use of simple R, C, L
elements. It has been shown explicitly that two-phase systems can
also bemodeled by equivalent circuits, where each circuit element
can be linked to a theoretical complex conductivity, as defined in
the previous section [14].

We looked for the same type of equivalence when setting up
our full model. We wanted each polarization to be identifiable as
a separate impedance in series with the others. This constraint led
us to the equivalent circuits which are illustrated in Figure 1. The
total impedance of the system is represented by:

Ztheo = Zep + Zb + Zhf , (10)

where Zep and Zb are the electrical impedances that arise from
electrode and bulk polarizations, respectively. Zhf accounts for
the pseudo-inductance effect observed at high frequencies.
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The complex electrical conductivity and complex electrical
impedance are linked by

Zk =
d

Aσ ∗
k
(ω)

, (11)

where A is the area of an electrode, d is the distance between the
electrodes, and k = theo, b, hf or ep. The ratio d/A is called the
cell constant.

3.1. The Dielectric Response of Electrolyte
Suspensions
For a simple electrolyte solution illustrated in Figure 1A, one can
show that

1

Ztheo
=

1

Ze
=

1

Re
+ iωCe (12)

where Re and Ce are linked to σe and εe by

Re =
d

Aσe
and Ce =

Aε0εe

d
, (13)

respectively. Note that, in this case, EP is not accounted for.
Therefore, this equivalent circuit is valid for ω > ωep. In order
to account for EP, one should consider Figure 1B [11], where
the complex electrical conductivity of EP is connected to the EP
impedance by:

Zep =
d

Aσ ∗
ep(ω)

=
1

iωCep
. (14)

The capacitance is given by Cep = Aκεepε0/2 and the impedance
corresponding to EP and bulk polarization of the electrolyte is
given by Ztheo = Zep +Ze. The frequency range of validity is now
in principle [mHz–MHz].

3.2. The Dielectric Response of Colloidal
Suspensions and Sandstones
When the electrolyte solution is replaced by a suspension or a
porous medium, the equivalence can still be considered valid
[14, 17], but the circuit elements are then frequency-dependent
so that Rb(ω) and Cb(ω) have the dimension of resistance and
capacitance, but cannot actually be substituted by real resistance
and capacitance as in traditional equivalent circuits. They are
given by

Rb(ω) =
d

Aσb(ω)
and Cb(ω) =

Aε0εb(ω)

d
. (15)

This case is shown in Figure 1C, where Ztheo = Zep + Zb. The
frequency range of validity in this case is in principle [mHz–
MHz]. When φ = 1 (only electrolyte), we get σ ∗

b
(ω) = σ ∗

e (ω)
and Zb = Ze. In this case, the equivalent circuit reduces to the
one given in Figure 1B.

3.3. Accounting for the Measured
Pseudo-Inductance
The equivalent circuit presented in Figure 1C is valid in order
to fit the data in the frequency range [mHz–≈ 10 kHz], as will be
shown in the experiment section (Section 4).We found a pseudo-
inductance signature in the impedance spectra for frequencies
higher than 10 kHz. In order to account for the pseudo-
inductance occurring at higher frequencies, the equivalent circuit
presented in Figure 1D is used. Using the equivalent circuit,
where Ztheo = Zep + Zb + Zhf , the data can be modeled for the
whole frequency range [mHz– MHz]. At higher frequencies, the
dielectric relaxation of water occurs [20], which is not accounted
for in the present model. From the circuit element analysis, one
finds the following characteristic frequencies:

ωep =
1

ReCep
=

2κ

d
D0; ωhf 1 =

Rb

L
; ω0 =

1

RbCb
≃ κ2D0;

and ωhf 2 =
√

ω0ωhf 1 =
1

√
LCb

. (16)

The frequency ωep corresponds to the characteristic frequency
associated to EP, below which charges can fully build-up a double
layer close to the blocking electrodes. Above ωep, EP effects can
be considered to be negligible. The frequencyωhf 1 corresponds to
the frequency above which pseudo-inductance effects can affect
the electrokinetic response. For extremely large L there is no
pseudo-inductance effect, the frequencies ωhf 1 and ωhf 2 tend to
infinity, and Zhf can be represented by a wire. The equivalent
circuit shown in Figure 1D then reduces to the one shown in
Figure 1C for the frequency range [ωep−ω0]. The frequencyωhf 2

corresponds to the frequency where the charges cannot totally
be dissipated in the system start to play a role. Above ω0 (the
Maxwell-Wagner frequency) no double layer can be established
at the electrodes and the double layers around the grains cannot
polarize anymore. Below ω0 one can verify using Equations 1,
2, and 15, that Rb and Cb are in good approximation constant
as function of frequency as we are in the special case where the
Dukhin number, Equation 3, is small (large κa and moderate
zeta potentials). This is why we could define proper characteristic
frequencies in Equations 16 using Rb and Cb. In these definitions,
we imply that we take the values of Rb and Cb belowω0. The same
holds for Table 1 and Table A1 (see Appendix) where the value
for Rb is the value of Rb below ω0. For larger Dukhin numbers,
Rb and Cb become frequency-dependent below ω0, but it is then
also possible to define characteristic frequencies [14]. One can
then find the approximations for the amplitude and phase in
each frequency domain given in Table 1. An example is given in
Figure 2. The individual contributions of Zep, Zb, and Zhf to Ztheo
are indicated in color. An alternative equivalent circuit is given
and discussed in the Appendix.

3.4. Comparison Between Models
Most models used in geophysics concentrate on the bulk
polarization [e.g., 23, 27, 33, 37] as these authors use 4-electrode
cells, for which EP effects are in theory avoided. 4-electrode cells
are in fact not devoid of parasitic impedances due to cross-talks
between the electrodes and some EP effects have been measured
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TABLE 1 | Evolution of the amplitude
∣

∣Ztheo
∣

∣ and phase ϕ as function of the applied electric field frequency ω for the equivalent circuit presented in Figure 1D.

ωep < ω < ωhf1 ωhf1 < ω < ωhf2 ωhf2 < ω < ω0

∣

∣Ztheo
∣

∣ ≃ Rb Rb

[

1+
(

ω/ωhf1
)

/

(
√

1+
(

ω/ωhf1
)2

)]

2Rb/

√

1+
(

ω/ω0
)2

tanϕ ≃ 0
(

ω/ωhf1
)

/

[

1+ 2
(

ω/ωhf1
)2

]

−ω/ω0

FIGURE 2 | Predicted magnitude |Z| and phase ϕ of the electrical impedance

of a sandstone saturated with a 50 mM NaCl electrolyte, including the effects

of EP, bulk polarization and pseudo-inductance with L = 5·10−4 H, that is

representative for our measurements. The individual contributions of Zep
(magenta line), Zb (blue line) and Zhf (green line) to Ztheo (red line). fhf1, fhf2
and f0 are characteristic frequencies.

[e.g., 28, 34]. Moreover, 4-electrode systems and its additional
electronics (as compared to 4-electrode systems) is in general
less suitable for high frequencies. In their measurements, done
using both 4 and 2 electrodes on a Berea sandstone saturated
with NaCl, [9] found a good overlap between the two devices
in the frequency range [102–103] Hz. The 4-electrode setup
was used in the frequency range [10−3–103] Hz, whereas the
2-electrode cell was used in the frequency range [102–106] Hz.
The relaxation frequencies associated to the electrolyte saturated
sandstone are linked to its characteristic length scales. One of this
length scale is the double layer thickness κ−1 and depending on

FIGURE 3 | Sketch of the experimental setup. Wayne Kerr Precision

Component Analyser 6640A (PCA 6640A) is used to measure |Z| and ϕ at the

frequency range 20 Hz–3 MHz.

FIGURE 4 | Validation of the model for d = 0.074 m. Measured impedances

are shown in symbols for NaCl concentration of 5, 10, and 100 mM. The full

model is shown by the solid lines. Only the inductance L is fitted to match the

pseudo-inductance response measured at ω >10 kHz. The response of the

bulk (1–10 kHz) is obtained with no adjustable parameter, as in particular both

porosity and salinity are known.

ionic strength the associated characteristic frequency ω0 is of the
order of [105–109] Hz a frequency range best probed using a 2-
electrode device. The other length scale is the characteristic of a
sandstone grain size, a, and the associated frequency is given by
ωa = D0/a

2 [14], which gives values of the order of 1–500 Hz
for micrometric particles. This frequency range is therefore best
probed by 4-electrode cells in principle. However, as stated above,
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FIGURE 5 | Contribution of the bulk polarization (black line) to the total impedance (red line) of a fully saturated reservoir rock. The model for the impedance is given in

Figure 1. No adjustable parameter is used to generate the bulk impedance. Measured impedances are shown in symbols for NaCl concentrations of 5, 10, 100, 170,

and 540 mM. The electrode separation is 0.03 m.

EP can also contaminate the signal of 4-electrode devices, as such
low frequencies and interpretation of data at these frequencies
can be complicated [17, 21].

Some authors using 2-electrode cells try to mathematically
“clean” the measured signal for EP [22]. A discussion about how
to compensate for EP can be found in Chassagne et al. [14].
Experimental evidence however shows that even though it is
theoretically possible to compensate for EP, in practice it is very
difficult due to the non-ideality of the electrodes. In the present
article we explicitly define the frequency range where the bulk
properties of the system can be obtained without any correction.

Regarding the modeling of this bulk polarization part,
different formulations for the related complex conductivity have
been presented in the literature. A review has been provided by
Chelidze et al. [23]. There has been some debate in literature
regarding the origin of the low-frequency polarization (see Scott
[24] for a review), which corresponds, in our terminology, to
the frequency range below ω0, where the double layers around
charged grains can still polarize under the action of the electric

field. It has been argued by some authors [e.g., [25]] that
so-called membrane polarization could be causing this effect.
Membrane polarization is caused in a pore constriction (pore
throat), where ions in the pore fluid can encounter resistance
to their movement, causing charge buildup. The first reference
to membrane polarization is to be found in Marshall and
Madden [26], where Marshall and Madden explicitly state that
the conductive grains i.e., metallic particles within the rock are
responsible for this phenomenon. Due to the voltage gradient
in the vicinity of the conductive grains, a charge build-up
can be created close to the conductive grains (much like what
happens close to the electrodes) and electric double layers can
be established. This is quite similar to what happens close to
the surface of charged grains (with a dielectric core) which have
electric double layers when they are in contact with an electrolyte.
When grains are very close it is possible that their double layers
overlap and it is argued that this might be the reason for the
restriction in the pore throat (the pore throat being the space
between the two grains). As discussed in Scott [24], and as the
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reader can verify from Equation 6, the size of the double layer
for most systems is generally in the nm range, much smaller
than the average pore throat. Most rocks formed by grains (like
sandstones) are well interconnected pores, see Sen et al. [27] for
a discussion. In fact, from simple mathematical consideration,
a pile of grains can be seen as having (average) pore throats of
the order of a grain diameter. It is, therefore, not surprising that
the effective-medium approach based on a collection of grains
is giving good results, as for large grains and any ionic strength
κa≫1 any grain’s double layer can polarize without being affected
by a neighboring one. In Kirichek et al. [17], wemoreover showed
that the effective medium approach, as originally proposed by
Maxwell-Wagner and Bruggeman, can be modified so as to
include surface conductivities without the use of approximations
(large κa, large ζ ), which lead to formulations comparable to
Equation 48 in Chelidze et al. [23]. In the present article, as
discussed above, surface conduction due to the polarization of
the grain double layer is negligible and our expression reduces
to the self-similar model presented in Sen et al. [27], see their
Equation 5.

We will show in the next section how our equivalent
circuit model adequately reproduce our measured data for the
whole range of frequencies investigated and how indeed the
bulk polarization part can be estimated without any adjustable
parameter in a well-defined frequency range.

4. LABORATORY EXPERIMENTS

A simplified sketch of the experimental setup is shown in
Figure 3. The relatively high porosity (21.8%) and grain diameter
(0.1–0.3 mm) of Bentheim sandstone makes it a good testing
material for the core-flooding experiments. The sample is
encased in a silicone sleeve and placed in a stainless steel core
holder. An insulating silicon rubber is used as a material for the
sleeve. Thus, current leakages from the system to the core holder
can be disregarded. A temperature-controlled oven is used to
reproduce realistic reservoir conditions of temperature and to
eliminate complication of data analysis due to fluctuations in the
external temperature.

Each end of the core holder contains a port for fluid injection.
The sandstone is fully saturated with NaCl solution before each
experiment.

A Wayne Kerr Precision Component Analyser 6640A is used
as the impedance measuring system. Coaxial cables connect the
measuring device to the electrodes, which are directly attached to
the lateral surface of the core on diametrically opposite sides. We
use a 2-terminal electrode system in this study. Both electrodes
act as current and potential terminals. Residual stray impedances
were filtered out using a standard open/short/load calibration
[28]. The measurements of magnitude |Z| and phase ϕ of the
electrical impedance are conducted over the frequency range
20 Hz–3 MHz. The electrical conductivity σ ∗(ω) is converted
from the measured |Z| and ϕ from

σ ∗(ω) =
d

A|Z|eiϕ
. (17)

TABLE 2 | The fitting parameter L is used to generate the red curves in

Figures 4, 5.

d = 0.03 m d = 0.074 m

Cs [mM] fep[Hz] fhf1[Hz] L[H] fep(Hz) fhf1(Hz) L(H)

5 20 7 · 103 2.2 · 10−2 8 945 0.4

10 28 1.5 · 104 5 · 10−3 11 3.8 · 103 0.05

100 90 5 · 104 1.5 · 10−4 36 6.3 · 103 0.003

170 117 5.6 · 104 8 · 10−5

540 209 1.4 · 105 1 · 10−5

The characteristic frequencies are evaluated using Equations 16. The characteristic

frequencies fep and fhf1 are related to the angular frequencies ωep and ωhf1 by fep =
ωep/2π and fhf1 = ωhf1/2π , respectively.

FIGURE 6 | Electrical conductivity spectrum of the porous rock saturated with

100 mM NaCl solution for electrode separation of 0.074 and 0.03 m.

We have conducted two sets of experiments. For the first set,
we use a NaCl solution with Cs = 5, 10, 100, 170, and 540 mM.
The distance between the electrodes d =0.03 m and the area
is A =0.01×0.05 m2. For the second set of experiments, NaCl
solutions with Cs = 5, 10, and 100 mM are used. For this case,
the parameters are d =0.074 m and A =0.01×0.025 m2. Other
parameters are the relative permittivity of water εe = 80, the
relative permittivity of the sandstone εb = 4.5, the temperature
is T = 25 degrees C.

5. RESULTS AND DISCUSSION

The dielectric response of the reservoir rock filled with NaCl
solutions of various salinities is shown in Figures 4, 5. A
frequency region can be identified, where the contribution of
the (desired) bulk polarization is dominant. For our measured
data, this is [≈ 10 ωep–ωhf 1], as can be seen from comparing
the regions where the bulk impedance is overlapping the total
impedance in Figures 4, 5 and the values given in Table 2. This
implies that within this frequency range the relevant parameters
(porosity, salinity) can be extracted. In our case, both the porosity
of the sandstone and the salinity of pore-filling electrolyte are
known. Hence, the bulk polarization could be predicted with no
adjustable parameters.

The characteristic frequency of EP, ωep is increasing with
salinity in accordance with Equation 8. In Chassagne et al. [14]

Frontiers in Physics | www.frontiersin.org 8 January 2019 | Volume 6 | Article 14868

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kirichek et al. Dielectric Response of Saturated Sandstones

the question was raised whether, in estimating Cep, one should
take εep = Cep/(Aκε0) = εe or εb. We find that εep(ω) ≃ εb(ω)
in the whole range of the considered salinity. This implies that
the grains close to the electrodes certainly contribute to EP.

From Figure 5 and the values given in Table 2, one realizes
that the frequency range where EP is dominant [mHz–
ωep] is underestimated. The frequency region where the bulk
polarization is dominant is on average starting above ≈ 10
ωep. The estimated value of ωep is based on the assumption
that the electrodes are perfectly blocking and that the contact
between these electrodes and the porous sandstone is ideal (the
electrodes are not porous and extremely clean). In practice a
discrepancy between theory and experiment is always observed
when studying electrode polarization as these conditions are
never met. Taking ≈ 10ωep as an estimation from the
characteristic frequency above which EP is negligible is found
to be appropriate for the large range of salinity studied for the
shortest electrode separation used (d = 0.03 m). For the larger
electrode separation, d = 0.074 m, (see Figure 4), EP is barely
affecting the measurements as ωep is found to be very low (see
Table 2).

The effect of electrode separation is better illustrated in
Figure 6, where the data is plotted in terms of conductivity
in order to avoid the cell constant (d/A) dependence of the
impedance. For ωep ≪ ω < ωhf 1, we have Ztheo = Zb, and
no adjustable parameters are required to predict the measured
impedance.

The fact that the phase becomes positive in the frequency
range [ωhf 1– ωhf 2] indicates the development of an inductive
effect in the system. There are several possible explanations for
the origin of this phenomenon. Inductive loops can be generated
by a chemical reaction between electrode and electrolyte, e.g.,
oxidation of the electrodes [10]. Another trigger for inductive
loops can be due to inductive connecting cables [10]. In this
case the inductance signatures occur at high frequencies in the
impedance spectrum. The coaxial cables used in the present study
were perfectly shielded, so we do not expect they create a parasitic
inductance. Fleig et al. [29] suggests that inductive loops can be
induced in the impedance spectra at high frequencies due to the
capacitive leakage to the ground. Since the measurement system
used in this study is grounded, the occurrence of this artifact is
highly unlikely.

Other authors [e.g., 30, 36] found a pseudo-inductance
by measuring electrolyte solutions using 4-electrode setups.
Zimmermann et al. [30] refers to this phenomenon as “contact
impedance,” and attributed it to a phase error due to the
inhomogeneous contact impedance of the current electrodes.
They found that the pseudo-inductance depends on the nature
of the electrodes used. The surface properties of the electrodes
(roughness, contamination) could, therefore, play a major role

in the pseudo-inductance effect. An alternative possibility is
proposed in the Appendix. We there demonstrate that the
contribution of a Stern layer around the grains can generate
pseudo-inductance effects. The demonstration is only theoretical
as there is no proof that such contribution is present in the system
we have investigated.

6. CONCLUSION

We have demonstrated that the dielectric response of a
porous sandstone saturated with NaCl solutions of different
concentrations measured with a 2-electrode setup can correctly
be modeled using the theory presented in this article. The
model accounts for 3 distinct polarization phenomena: electrode
polarization, bulk polarization, and pseudo-inductance effect,
that all three were found in our experiments. Different
characteristic frequencies (ωep, ωhf 1, ω0, and ωhf 2) were
defined, see Equations 16. Each frequency range was studied
theoretically to find its dominant polarization mechanism. A
suitable frequency range was identified [≈ 10 ωep–ωhf 1] in our
experiments, where the bulk polarization is the dominant part of
the measured impedance. As both the porosity of the sandstone
and the salinity of the pore fluid were known in our system,
no adjustable parameter was required to predict the complex
impedance response in the bulk polarization region. A good
match was found between the predictions and measurements for
a large range of ionic strengths and two different setups.
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Bernaise: A Flexible Framework for
Simulating Two-Phase
Electrohydrodynamic Flows in
Complex Domains
Gaute Linga*, Asger Bolet and Joachim Mathiesen

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Bernaise (Binary Electrohydrodynamic Solver) is a flexible high-level finite element solver

of two-phase electrohydrodynamic flow in complex geometries. Two-phase flow with

electrolytes is relevant across a broad range of systems and scales, from “lab-on-a-chip”

devices for medical diagnostics to enhanced oil recovery at the reservoir scale.

For the strongly coupled multi-physics problem, we employ a recently developed

thermodynamically consistent model which combines a generalized Nernst–Planck

equation for ion transport, the Poisson equation for electrostatics, the Cahn–Hilliard

equation for the phase field (describing the interface separating the phases), and the

Navier–Stokes equations for fluid flow.We present an efficient linear, decoupled numerical

scheme which sequentially solves the three sets of equations. The scheme is validated by

comparison to cases where analytical solutions are available, benchmark cases, and by

the method of manufactured solution. The solver operates on unstructured meshes and

is therefore well suited to handle arbitrarily shaped domains and problem set-ups where,

e.g., very different resolutions are required in different parts of the domain. Bernaise

is implemented in Python via the FEniCS framework, which effectively utilizes MPI and

domain decomposition. Further, new solvers and problem set-ups can be specified and

added with ease to the Bernaise framework by experienced Python users.

Keywords: electrokinectic, electrohydrodynamics (EHD), porous flow, phase field method, capillarity, numerical

simulation, finite element method (FEM)

1. INTRODUCTION

Two-phase flow with electrolytes is encountered in many natural and industrial settings. Although
Lippmann already in the nineteenth century [1, 2] made the observation that an applied electric
field changes the wetting behavior of electrolyte solutions, the phenomenon of electrowetting has
remained elusive. Recent decades have seen an increased theoretical and experimental interest
in understanding the basic mechanisms of electrokinetic or electrohydrodynamic flow [3, 4].
Progress in micro- and nanofluidics [5, 6] has enabled the use of electrowetting to control small
amounts of fluid with very high precision (see e.g., the comprehensive reviews by [2, 7, 8] and
references therein). This yields potential applications in, e.g., “lab-on-chip” biomedical devices
or microelectromechanical systems [9–11], membranes for harnessing blue energy [12], energy
storage in fluid capacitors, and electronic displays [13–16].
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It is known that electrohydrodynamic phenomena affects
transport properties and energy dissipation in geological systems,
as a fluid moving in a fluid-saturated porous medium sets
up an electric field that counteracts the fluid motion [17–19].
Electrowetting may also be an important factor in enhanced oil
recovery [20, 21]. Here, the injection of water of a particular
salinity, or “smart water” [22], is known to increase the recovery
of oil from reservoirs as compared to brine [23]. Further,
transport in sub-micrometer scale pores in low-permeability
rocks in the Earth’s crust may be driven by gradients in the
electrochemical potential [24], whichmay have consequences for,
e.g., transport of methane-water mixtures in dense rocks.

Hence, a deepened understanding of electrowetting and
two-phase electrohydrodynamics would be of both geological
and technological importance. While wetting phenomena
(or more generally, two-phase flow) on one hand, and
electrohydrodynamics on the other, remain in themselves two
mature and active areas of research which both encompass a
remarkably rich set of phenomena, this article is concerned
with the interface between these fields. For interested readers,
there are several reviews available regarding wetting phenomena
[25–27] and electrohydrodynamics [28–30]. Notably, the “leaky
dielectric” model originally proposed by Taylor [31] (and
revisited by [28]) to describe drop deformation, is arguably the
most popular description of electrohydrodynamics, but it does
not describe ionic transport and considers all dielectrics to be
weak conductors. In this work, we shall employ a model that
does not make such simplifications. Recently, Schnitzer and Yariv
[32] showed rigorously that models of the latter type reduce to
the Taylor–Melcher model in the double limit of small Debye
length and strong electric fields. The simplified model may
therefore have advantages in settings where those assumptions
are justified, e.g., in simulations on larger scales; while the class
of models considered here are more general and expected to be
valid down to the smallest scale where the continuum hypothesis
still holds.

Experimental and theoretical approaches [33–35] in two-
phase electrohydrodynamic flows need to be supplemented with
good numerical simulation tools. This is a challenging task,
however: the two phases have different densities, viscosities and
permittivities, the ions have different diffusivities and solubilites
in the two phases, and moreover, the interface between the
phases must be described in a consistent manner. Hence,
much due to the complex physics involved, simulation of two-
phase electrohydrodynamic phenomena with ionic transport
is still in its infancy. It has been carried out with success
e.g., in order to understand deformation of droplets due
to electric fields [36–38], or for the purpose of controlling
microfluidic devices (see e.g., [39]). Lu et al. [40] simulated
and performed experiments on droplet dynamics in a Hele-
Shaw cell. Notably, Walker et al. [41] simulated electrowetting
with contact line pinning, and compared to experiments. In
practical applications, such as in environmental remediation or
oil recovery, the complex pore geometry is essential and it is
therefore of interest to simulate and study electrowetting in such
configurations. However, to our knowledge, there have been few

numerical studies of these phenomena in the context of more
complex geometries.

In this article, we introduce and describe Bernaise
(Binary ElectRohydrodyNAmIc SolvEr), which is an open-
source software/framework for simulating two-phase
electrohydrodynamics. It is suitable for use in complex
domains, operating on arbitrary unstructured meshes. The
finite-element solver is written entirely in Python and built
on top of the FEniCS framework [42], which (among other
things) effectively uses the PETSc backend for scalability.
FEniCS has in recent years found success in related applications,
such as in high-performance simulation of turbulent flow
[43], and for single-phase, steady-state electrohydrodynamic
flow simulation in nanopores [44] and model fractures [45].
Since Bernaise was inspired by the Oasis solver for fluid
flow [43], it is similar to the latter in both implementation
and use.

In this work, we employ a phase-field model to propagate the
interface between the two phases. Such diffuse interface models,
as opposed to e.g., sharp interface models (see for instance [46]),
assume that the fluid-fluid interface has a finite size, and have the
advantage that no explicit tracking of the interface is necessary.
Hence, using a phase-field model has several advantages in our
setting: it takes on a natural formulation using the finite element
method; in sub-micrometer scale applications, the diffuse
interface and finite interface thickness present in these models
might correspond to the physical interface thickness (typically
nanometer scale [47]); and the diffuse interface may resolve the
moving contact line conundrum [27, 48]. Note that although ab
initio and molecular dynamics simulation methods are in rapid
growth due to the increase in computational power, and do not
require explicit tracking of the interface or phenomenological
boundary conditions, such methods are restricted to significantly
smaller scales than continuum models are. Nevertheless, they
serve as valuable tools for calibration of the continuum methods
[48–51]. We note also that sharp-interface methods such as level-
set [52, 53] and volume-of-fluid methods [38, 54, 55] are viable
options for simulating electrohydrodynamics, but such methods
shall not be considered here.

The use of phase field models to describe multiphase flow has
a long history in fluid mechanics [56]. Notably, the “Model H”
of Hohenberg and Halperin [57], for two incompressible fluids
with matched densities and viscosities, is based on the coupled
Navier–Stokes–Cahn–Hilliard system, and was introduced to
describe phase transitions of binary fluids or single-phase fluid
near the critical point. Lowengrub and Truskinovsky [58] later
derived a thermodynamically consistent generalization of Model
Hwhere densities and viscosities were different in the two phases,
however with the numerical difficulty that the velocity field was
not divergence free. To circumvent this issue, Abels et al. [59]
developed a thermodynamically consistent and frame invariant
phase-fieldmodel for two-phase flow, where the velocity field was
divergence free, allowing for the use of more efficient numerical
methods. Lu et al. [40] proposed a phase-field model to describe
electrohydrodynamics, but was restricted to flow in Hele-Shaw
cells, using a Darcy equation to describe the flow between the
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parallel plates1. A phase-field approach to the leaky-dielectric
model was presented by Lin et al. [60]. Using the Onsager
variational principle, Campillo-Funollet et al. [61] augmented the
model of Abels et al. [59] with electrodynamics, i.e., inclusion
of ions, electric fields and forces. This can be seen as a more
physically sound version of the model proposed by Eck et al. [62],
which only contained a single “net charge” electrolyte species.
A model for two-phase electrohydrodynamics was derived, with
emphasis on contact line pinning, by Nochetto et al. [63], but this
does not appear to be frame-invariant, as the chemical potential
depends quadratically on velocity [61]. In this work, we will
therefore focus on the model by Campillo-Funollet et al. [61].

There is a vast literature on the discretization and simulations
of immiscible two-phase flows including phase-field models
(see e.g., [46, 56]), but here we focus on research which
is immediately relevant concerning the discretization and
implementation of the model by Campillo-Funollet et al.
[61]. Grün and Klingbeil [64] discretized the model in Abels
et al. [59] (without electrohydrodynamics) with a dual mesh
formulation, using a finite volume method on the dual mesh
for advection terms, and a finite element method for the rest.
Based on the sharp-interface model benchmarks of Hysing et al.
[65], Aland and Voigt [66] provided benchmarks of bubble
dynamics comparing several formulations of phase-field models
(without electrodynamics). Energy-stable numerical schemes
for the same case were presented and analyzed in Guillén-
González and Tierra [67] and Grün et al. [68]. Campillo-
Funollet et al. [61] provided preliminary simulations of the
two-phase electrohydrodynamics model in their paper, however
with a simplified formulation of the chemical potential of
the solutes. A scheme for the model in Campillo-Funollet
et al. [61] which decouples the Navier–Stokes equations
from the Cahn–Hilliard–Poisson–Nernst–Planck problem, was
presented and demonstrated by Metzger [69, 70]. In the
particular case of equal phasic permittivities, the Cahn–Hilliard
problem could be decoupled from the Poisson–Nernst–Planck
problem. Recently, a stable finite element approximation of
two-phase EHD, with the simplifying assumptions of Stokes
flow and no electrolytes, was proposed by Nurnberg and
Tucker [71].

The main contributions of this article is to give a
straightforward description of Bernaise, including the necessary
background theory, an overview of the implementation, and
a demonstration of its ease of use. Solving the coupled set
of equations in a monolithic manner (as is done in [61]
using their in-house ECONDROP software) is a computationally
expensive task, and we therefore propose a new linear
splitting scheme which sequentially solves the phase-field,
chemical transport and the fluid flow subproblems at each
time step. A major point of this article is to demonstrate
the validity of the approach and numerical convergence of
the proposed scheme. We do this through comparing our
numerical solutions to limiting cases where analytical solutions
are available, benchmark solutions, and using the method of

1Instead of the full Navier–Stokes equations, which would be necessary in the

presence of boundaries in the two in-plane dimensions.

manufactured solution.We also demonstrate how the framework
can be extended by supplying user-specified problems and
solvers. We believe that due to its flexibility, scalability and
open-source licensing, this framework has advantages over
software which to our knowledge may have some of the same
functionality, such as ECONDROP (in-house code of Grün
and co-workers) and COMSOL (proprietary). Compared to
sharp-interface methods, the method employed in the current
framework is automatically capable of handling topological
changes and contact line motion, and the full three-dimensional
(3D) capabilities allows to study more general phenomena than
what can be achieved by axisymmetric formulations [38]. We
expect Bernaise to be a valuable tool that may facilitate the
development of microfluidic devices, as well as a deepened
understanding of electrohydrodynamic phenomena in many
natural or industrial settings.

The outline of this paper is as follows. In section 2, we
introduce the sharp-interface equations describing two-phase
electrohydrodynamics; then we present the thermodynamically
consistent model of electrohydrodynamics by Campillo-Funollet
et al. [61]. In section 3, we write down the variational form
of the model, present the monolithic scheme, and present a
linear splitting scheme for solving the full-fledged two-phase
electrohydrodynamics. section 4 gives a brief presentation of
Bernaise, and demonstrates its ease use through a minimal
example. Further, we describe how Bernaise can be extended
with user-specified problems and solvers. In section 5, we
validate the approach as described in the preceding paragraph.
In section 6, we apply the framework to a geologically
relevant setting where dynamic electrowetting effects enter,
and present full 3D simulations of droplet coalescence and
breakup. Finally, in section 7 we draw conclusions and point to
future work.

We expect the reader to have a basic familiarity with the finite
element method, the Python language, and the FEniCS package.
Otherwise, we refer to the tutorial by Langtangen and Logg [72].

2. MODEL

The governing equations of two-phase electrohydrodynamics
can be summarized as the coupled system of two-phase flow,
chemical transport (diffusion and migration), and electrostatics
[61]. We will now describe the sharp-interface equations that
the phase-field model should reproduce, and subsequently
the phase-field model for electrohydrodynamics. For the
purpose of keeping the notation short, we consider a general
electrokinetic scaling of the equations. The relations between
the dimensionless quantities and their physical quantities are
elaborated in Appendix A in Supplementary Material.

2.1. Sharp-Interface Equations
In the following, we present each equation of the physical
(sharp-interface) model. With validity down to the nanometer
scale, the fluid flow is described by the incompressible Navier–
Stokes equations, augmented by some additional force terms due
to electrochemistry:
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ρi
(

∂tv+ (v · ∇)v
)

− µi∇
2v+ ∇p = −

∑

j

cj∇gcj , (1)

∇ · v = 0. (2)

Here, ρi is the density of phase i, v is the velocity field, µi is the
dynamic viscosity of phase i, p(x, t) is the pressure field2, cj(x, t)
is the concentration of solute species j, and gcj is the associated
electrochemical potential. The form of the right hand side of
Equation (1) is somewhat unconventional (and relies on a specific
interpretation of the pressure), but has numerical advantages
over other formulations as it avoids, e.g., pressure build-up in the
electrical double layers [73].

The transport of the concentration field of species
i is governed by the conservative (advection–diffusion–
migration) equation:

∂tcj + v · ∇cj − ∇ · (Kijcj∇gcj ) = 0, (3)

where Kij is the diffusivity of species j in phase i. The
electrochemical potential is in general given by

gcj (cj,V) = α′(cj)+ βij + zjV , (4)

where α′(c) = ∂α/∂c(c), and α(c) is a convex function describing
the chemical free energy, βij is a parameter describing the
solubility of species j in phase i, zj is the charge if solute species
j, and V is the electric potential. Equation (3) can be seen as a
generalized Nernst–Planck equation. With an appropriate choice
of α(c), Equation (3) reduces to the phenomenological Nernst–
Planck equation, which has been established for the transport of
charged species in dilute solutions under influence of an electric
field. The latter amounts to a dilute solution, using the ideal
gas approximation,

α(cj) ∝ cj(ln cj − 1). (5)

With this choice of α, the solubility parameter βij can be

interpreted as related to a reference concentration cref,ij , through

the relation

βij = − ln cref,ij . (6)

This gives a chemical energy Gj = α(cj) + βijcj = cj(ln(cj/

cref,ij ) − 1) which has a minimum at cj = cref,ij (see also

Linga et al. (Submitted)).
Since the dynamics of the electric field is much faster than that

of charge transport, we can safely assume electrostatic conditions
(i.e., neglect magnetic fields). This amounts to solving the Poisson
problem (Gauss’ law):

∇ · (εi∇V) = −ρe, (7)

Here, εi is the electrical permittivity of phase i, and ρe =
∑

j zjcj
is the total charge density.

In the absence of advection, for the case of two symmetric
charges, and under certain boundary conditions, Equations (3–7)

2The interpretation of this pressure depends on the formulation of the force on the

right hand side of Equation (2).

lead to the simpler Poisson–Boltzmann equation (see
Appendix B in Supplementary Material).

2.1.1. Fluid-Fluid Interface Conditions
It is necessary to define jump conditions over the interface
between the two fluids.We denote the jump in a physical quantity
χ across the interface by [χ]+−, and the unit vector n̂int normal to
the interface.

Firstly, due to incompressibility, the velocity field must
be continuous:

[v]+− = 0. (8)

The electrochemical potential must be continuous across the
interface,

[

gcj
]+
− = 0. (9)

Due to conservation of the electrolytes, the flux of ion species j
into the interface must equal the flux out of the interface,

[

Kijcj∇gcj
]+
− · n̂int = 0, (10)

and the normal flux of the electric displacement field
D = −εi∇V , and the electric potential, should be continuous
(since by assumption, no free charge is located between the
fluids):

[εi∇V]+− · n̂int = 0, [V]+− = 0. (11)

Finally, interfacial stress balance yields the condition

[

p
]+
− n̂int − [2µiDv]+− · n̂int −

[

εiE⊗ E−
1

2
εi|E|2I

]+

−
· n̂int = σκn̂int,

(12)
where σ is the surface tension, κ is the curvature, and E = −∇V
is the electric field. Moreover, we have defined the shorthand
symmetric (vector) gradient,

Dv = sym (∇v) =
1

2

(

∇v+ ∇vT
)

. (13)

Further, all gradient terms have been absorbed into the pressure.
Note that Equation (12) leads to a modified Young–Laplace law
in equilibrium, which include Maxwell stresses.

2.1.2. Boundary Conditions
There are a range of applicable boundary conditions for two-
phase electrohydrodynamics. Here, we briefly discuss a few
viable options. In the following, we let n̂ be a unit normal
vector pointing out of the domain, and t̂ be a tangent vector to
the boundary.

For the velocity, it is customary to use the no-slip condition
u = 0 at the solid boundary. Alternatively, the Navier slip
condition, which is useful for modeling moving contact lines
[50], could be used:

n̂ · v = 0, (γ v− 2µDv n̂)× n̂ = 0, (14)

where γ is a slip parameter. The slip length µ/γ is typically of
nanometer scale and dependent on the materials in question.

Frontiers in Physics | www.frontiersin.org 4 March 2019 | Volume 7 | Article 2174

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Linga et al. Two-Phase Electrohydrodynamic Flows

However, since the implementation of such conditions may
become slightly involved, we omit it in the following.

With regards to the electrolytes, it is natural to specify either
a prescribed concentration at the boundary, ci = c0, or a no-flux
condition out of the domain,

n̂ ·
(

−vcj + Kijcj∇gcj
)

= 0. (15)

For the electric potential, it is natural to prescribe either the
Dirichlet condition V = V̄ , or a prescribed surface charge σe(x),

n̂ · ∇V =
σe

ǫi
. (16)

2.2. Phase-Field Formulation
In order to track the interface between the phases, we introduce
an order parameter field φ which attains the values ±1,
respectively, in the two phases, and interpolates between the two
across a diffuse interface of thickness ǫ. In the sharp-interface
limit ǫ → 0, the equations should reproduce the correct
physics, and reduce to the model above, including the interface
conditions. A thermodynamically consistent phase-field model
which reduces to this formulation was proposed by Campillo-
Funollet et al. [61]:

∂t(ρ(φ)v)+ ∇ ·
(

ρ(φ)v⊗ v
)

− ∇ ·
[

2µ(φ)Dv (17)

+v⊗ ρ′(φ)M(φ)∇gφ
]

+ ∇p = −φ∇gφ −
∑

i

ci∇gci ,

∇ · v = 0, (18)

∂tφ + v · ∇φ − ∇ · (M(φ)∇gφ) = 0, (19)

∂tcj + v · ∇cj − ∇ · (Kj(φ)cj∇gcj ) = 0, (20)

∇ · (ε(φ)∇V) = −ρe. (21)

Here, φ is the phase field, and it takes the value φ = −1 in phase
i = 1, and the value φ = 1 in phase i = 2. Equation (19)
governs the conservative evolution of the phase field, wherein
the diffusion term is controlled by the phase field mobilityM(φ).
Here, ρ, µ, ε, Kj depend on which phase they are in, and
are considered slave variables of the phase field φ. Across the
interface these quantities interpolate between the values in the
two phases:

ρ(φ) =
ρ1 + ρ2

2
+
ρ1 − ρ2

2
φ, (22)

µ(φ) =
µ1 + µ2

2
+
µ1 − µ2

2
φ, (23)

ε(φ) =
ε1 + ε2

2
+
ε1 − ε2

2
φ, (24)

Kj(φ) =
K1,j + K2,j

2
+

K1,j − K2,j

2
φ. (25)

These averages are all weighted arithmetically, although other
options are available. For example, Tomar et al. [54] found that,
in the case of a level-set method with smoothly interpolated

phase properties, using a weighted harmonic mean gave more
accurate computation of the electric field. However, Lopez-
Herrera et al. [55] found no indication that the harmonic mean
was superior when free charges were present, and hence we adopt
for simplicity and computational performance the arithmetic
mean, although it remains unsettled which mean would yield the
most accurate result.

Further, the chemical potential of species cj is given by

gcj (cj,φ) = α′(cj)+ βj(φ)+ zjV , (26)

where we, for dilute solutions, may model α(c) = c(log c − 1)
to obtain consistency with the standard Nernst–Planck equation.
Further, we use a weighted arithmetic mean for the solubility
parameters βj:

βj(φ) =
β1,j + β2,j

2
+
β1,j − β2,j

2
φ, (27)

which, under the assumption of dilute solutions and with the
interpretation (6), corresponds to a weighted geometric mean for
the reference concentrations:

crefj (φ) =
(

cref,1j

)
1+φ
2 ·

(

cref,2j

)
1−φ
2

. (28)

In analogy with gcj being the chemical potential of species cj, we
denote gφ as the chemical potential of the phase field φ. It is given
by:

gφ =
∂f

∂φ
− ∇ ·

∂f

∂∇φ
+
∑

j

β ′j (φ)cj −
1

2
ε′(φ)|∇V|2. (29)

The free energy functional f of the phase field is defined by

f (φ,∇φ) =
3σ

2
√
2

[ ǫ

2
|∇φ|2 + ǫ−1W(φ)

]

= σ̃

[ ǫ

2
|∇φ|2 + ǫ−1W(φ)

]

,

(30)
where σ is the surface tension, ǫ is the interface thickness,
and W(φ) is a double well potential. Here, we use W(φ) =
(1 − φ2)2/4. We have also implicitly defined the scaled surface
tension σ̃ for convenience of notation. With this free energy,
we obtain

gφ = σ̃ ǫ−1W′(φ)− σ̃ ǫ∇2φ+
∑

j

β ′j (φ)cj−
1

2
ε′(φ)|∇V|2. (31)

We will assume this form throughout.
After some rewriting, exploiting Equation (18) and the fact

that ρ′(φ) is constant due to Equation (22), Equation (18) can
be expressed as

ρ(φ)∂tv+
((

ρ(φ)v− ρ′(φ)M(φ)∇gφ
)

· ∇
)

v− ∇ ·
[

2µ(φ)Dv
]

+ ∇p

= −φ∇gφ −
∑

j

cj∇gcj .

(32)
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2.2.1. Phase Field Mobility
Given a proper definition of the phase-field mobility M(φ), the
phase-field model should reduce to the sharp-interface model
given in the previous section. As discussed at length in Campillo-
Funollet et al. [61], the two following ways are viable options:

M(φ) = ǫM0, (33a)

M(φ) = M0(1− φ2)+. (33b)

HereM0 is a constant, and (·)+ = max(·, 0). Other formulations
of M are possible; some of these will in the limit of vanishing
interface width reduce to a sharp-interface model where the
interface velocity does not equal the fluid velocity [59, 61].

2.2.2. Boundary Conditions
Some of the interface conditions from the sharp-interface model
carry over to the phase field model, but in addition, some new
conditions must be specified for the phase field. Here we give a
brief summary. We assume that the boundary of the domain �,
∂�, can be divided into an inlet part ∂�in, an outlet part ∂�out,
and a wall part ∂�wall. We shall primarily discuss the latter here.

For the velocity field, we assume the no-slip condition

v(x, t) = 0 for x ∈ ∂�wall. (34)

Alternatively, a no-flux condition and a slip law could have
been used; in particular, a generalized Navier boundary condition
(GNBC) has been shown to hold yield a consistent description of
the contact line motion [48, 49]. However, to limit the scope, the
moving contact line paradox will in this work be overcome by
interface diffusion.

With regards to the flow problem, the pressure gauge needs to
be fixed. To this end, the pressure could be fixed somewhere on
the boundary, or the pressure nullspace could be removed.

For the concentrations cj, we may use a prescribed
concentration, or the no-flux condition

n̂ ·
(

Kj(φ)cj∇gcj
)

= 0 on ∂�wall. (35)

For the electric potential, we use either the Dirichlet condition
V = V̄ (which is reasonable at either inlet or outlet), or in the
presence of charged (or neutral) boundaries, the condition

n̂ · ∇V =
σe

ε(φ)
on ∂�wall, (36)

similar to the sharp-interface condition. Note that σe(x) is
prescribed and can vary over the boundary.

We assume that the no-flux conditons hold on the phase field
chemical potential,

n̂ · ∇gφ = 0 on ∂�wall. (37)

For the phase field itself, a general dynamic wetting boundary
condition can be expressed as [74]:

ǫτw∂tφ = −σ̃ ǫn̂ · ∇φ + σ cos(θe)f
′
w(φ), (38)

where θe is the equilibrium contact angle, τw is a relaxation
parameter, and fw(φ) = (2 + 3φ − φ3)/4 interpolates smoothly
between 0 (at φ = −1) and 1 (at φ = 1). In this work, we
limit ourselves to studying fixed contact angles, i.e., considering
Equation (38) with τw = 0. For a GNBC, the phase-field
boundary condition (38) must be modeled consistently with the
slip condition on the velocity [48].

3. DISCRETIZATION

For solving the equations of two-phase EHD, i.e., the model
consisting of Equations (18)–(21), there are four operations that
must be performed:

1. Propagate the phase field φ.
2. Propagate the chemical species concentrations ci.
3. Update the electric potential V
4. Propagate the velocity v and pressure p.

The whole system of equations could in principle be solved
simultaneously using implicit Euler discretization in time and
e.g., Newton’s method to solve the nonlinear system. However,
in order to simulate larger systems faster, it is preferable to
use a splitting scheme to solve for each field sequentially. One
such splitting scheme was outlined in Metzger [69], based on
the energy-stable scheme without electrochemistry as developed
by Guillen-Gonzalez F and Tierra [67], Grün et al. [68].
However, that scheme did not take into account that the electric
permittivities in the two fluids may differ, and when they do,
the phase field and the electrochemistry computations become
coupled through the electric field [70]. We will here discuss
two strategies for solving the coupled problem of two-phase
electrohydrodynamics. First, we present the fully monolithic,
non-linear scheme, and secondly, we propose a new, fully
practical linear operator splitting scheme. As we are not aware of
any splitting schemes that are second-order accurate in time for
the case of unmatched densities, we shall constrain our discussion
to first-order in time schemes.

In the forthcoming, we will denote the inner product of any
two scalar, vector, or tensor fields A,B by (A,B). Further, we
consider a discrete time step τ , and denote the (first-order)
discrete time derivative by

∂−τ A
k =

Ak −Ak−1

τ
. (39)

The equations are discretized on the domain � ⊂ R
d, d = 2, 3,

with the no-slip boundary Ŵ. Since we do not consider explicitly
in- and outlet boundary conditions in this work, we will omit this
possible part of the domain for the sake of brevity.

We define the following finite element subspaces:

Vh = (Vh)
d where Vh =

{

v ∈ H1(�)
}

for velocity, (40)

Ph =
{

p ∈ L20(�)
}

for pressure, (41)

8h =
{

φ ∈ H1(�)
}

for phase field, (42)

Gh =
{

g ∈ H1(�)
}

for phase field chemical potential, (43)
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Ch =
{

c ∈ H1(�)
}

for concentrations, (44)

Uh =
{

V ∈ H1(�)
}

for the electrostatic potential. (45)

3.1. Monolithic Scheme
Here we give the fully implicit scheme that follows from a
naïve implicit Euler discretizion of the model (18)–(21), and
supplemented by Equation (31).

Assume that (vk−1, pk−1,φk−1, gk−1
φ , ck−1

1 , . . . , ck−1
M ,Vk−1) is

given. The scheme can then be summarized by the following.
Find (vk, pk,φk, gkφ , c

k
1, . . . , c

k
N ,V

k) ∈ Vh×Ph×8h×Gh×(Ch)
N×

Uh such that

(

ρk∂−τ v
k, u
)

+
((

mk · ∇
)

vk, u
)

+
(

2µk
Dvk,Du

)

−
(

pk,∇ · u
)

= −
(

φk∇gkφ , u
)

−
∑

j

(

ckj ∇gkcj , u
)

, (46a)

(

∇ · vk, q
)

= 0, (46b)

(

∂−τ φ
k,ψ

)

−
(

vkφk,∇ψ
)

+
(

Mk
∇gkφ ,∇ψ

)

= 0, (46c)

(

gkφ , gψ

)

=
(

σ̃ ǫ−1W′(φk), gψ
)

− σ cos(θe)

∫

Ŵ

f ′w(φ
k)gψ dŴ

+
(

σ̃ ǫ∇φk,∇gψ

)

+
∑

j

(

β ′j c
k
j , gψ

)

−
(

1

2
ε′|∇Vk|2, gψ

)

, (46d)

(

∂−τ c
k
j , bj

)

−
(

vkckj ,∇bj

)

+
(

Kk
j c

k
j ∇gkcj ,∇bj

)

= 0, (46e)

(

εk∇Vk,∇U
)

=
(

ρke ,U
)

+
∫

Ŵ

σeU dŴ, (46f)

for all test functions (u, q,ψ , gψ , b1, . . . , bN ,U) ∈ Vh×Ph×8h×
Gh × (Ch)

N × Uh. Here we have used

mk = ρkvk − ρ′Mk
∇gkφ (47)

and the shorthands

ρk = ρ(φk), µk = µ(φk), Mk = M(φk), εk = ε(φk),

Kk
j = Kj(φ

k), and ρke = ρe({ckj }).

Note that Equations (46) constitute a fully coupled non-linear
system and the equations must thus be solved simultaneously,
preferably using a Newton method. This results in a large
system matrix which must be assembled and solved iteratively,
and for which there are in general no suitable preconditioners
available. On the other hand, the scheme is fully implicit and
hence expected to be fairly robust with regards to e.g., time step
size. There are in general several options for constructing the
linearized variational form to be used in a Newton scheme.

3.2. A Linear Splitting Scheme
Now, we introduce a linear operator splitting scheme. This
scheme splits between the processes of phase-field transport,
chemical transport under an electric field, and hydrodynamic
flow, such that the equations governing each of these processes
are solved separately.

3.2.1. Phase Field Step
Find (φk, gkφ) ∈ 8h × Gh such that

(

∂−τ φ
k,ψ

)

−
(

vk−1φk,∇ψ
)

+
(

Mk−1
∇gkφ ,∇ψ

)

= 0 (48a)

(

gkφ , gψ

)

= σ̃ ǫ−1
(

W′(φk,φk−1), gψ

)

+ σ̃ ǫ
(

∇φk,∇gψ

)

− σ cos(θe)

∫

Ŵ

f ′w(φ
k,φk−1) gψ dŴ +

∑

j

β ′j

(

ck−1
j , gψ

)

−
1

2
ε′
(

|∇Vk−1|2, gψ
)

, (48b)

for all test functions (ψ , gψ ) ∈ 8h × Gh. Here,W′(φk,φk−1) is a

linearization ofW′(φk) around φk−1:

W′(φk,φk−1) = W′(φk−1)+W′′(φk−1)(φk − φk−1). (49)

We have also used the discretization of Equation (38)

σ̃ ǫn · ∇φk = σ cos(θe)f ′w(φ
k,φk−1), (50)

where we have used the linearization

f ′w(φ
k,φk−1) = f ′w(φ

k−1)+ f ′′w (φ
k−1)(φk − φk−1). (51)

3.2.2. Electrochemistry Step
Find (c1, . . . , cN ,V) ∈ (Ch)

N × Uh such that

(

∂−τ c
k
j , bj

)

−
(

vk−1ckj ,∇bj

)

+
(

J̄kcj ,∇bi

)

= 0 (52a)

(

εk∇Vk,∇U
)

+
∫

Ŵ

σeU dŴ +
(

ρke ,U
)

= 0 (52b)

for all test functions (b1, . . . , bN ,U) ∈ (Ch)
N × Uh. Here J̄kcj

is a linear approximation of the diffusive chemical flux Jcj =
Kj(φ)cj∇gcj . For conciseness, we here constrain our analysis to
ideal chemical solutions, i.e., we assume a common chemical
energy function on the form α(c) = c(ln c − 1). To this end, we
approximate the flux by:

J̄kcj = Kk
j (∇cki + cki β

′
i∇φ

k + zic
k−1
i ∇Vk). (53)
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3.2.3. Fluid Flow Step
Find (vk, pk) ∈ Vh × Ph such that

(

ρk−1∂−τ v
k, u
)

+
((

m̄k−1 · ∇
)

vk, u
)

+
1

2

(

vk∂−τ ρ
k, u
)

−
1

2

(

m̄k−1,∇(vk · u)
)

+
(

2µk
Dvk,Du

)

−
(

pk,∇ · u
)

= −
(

φk∇gkφ , u
)

−
∑

j

(

ckj ∇gkcj , u
)

(54a)

(

q,∇ · vk
)

= 0 (54b)

for all test functions (u, q) ∈ Vh × Ph. Here, we have used the
following approximation of the advective momentum:

m̄k−1 = ρk−1vk−1 − ρ′Mk
∇gkφ . (55)

Note that the terms in (54a) involving ∂−τ ρ
k + ∇ · m̄k−1, which

is a discrete approximation of ∂tρ + ∇ · m = 0, is included
to satisfy a discrete energy dissipation law [75] (i.e., to improve
stability). This step requires solving for the velocity and pressure
in a coupled manner. This has the advantage that it yields
accurate computation of the pressure, but the drawback that it is
computationally challenging to precondition and solve, related to
the Babuska–Brezzi (BB) condition (see e.g., [76]). Alternatively,
it might be worthwhile to further split the fluid flow step into the
following three substeps, at the cost of some lost accuracy [77].

• Tentative velocity step: Find ṽk ∈ Vh such that for all u ∈ Vh,

(

ρk−1 ṽ
k − vk−1

τ
, u

)

+
(

(m̄k−1 · ∇)ṽk, u
)

+
(

2µk
Dṽk,Du

)

−
(

pk−1,∇ · u
)

+
1

2

(

ṽk∂−τ ρ
k, u
)

−
1

2

(

m̄k−1,∇(ṽk · u)
)

= −
(

φk∇gkφ , u
)

−
∑

i

(

ck−1
i ∇gki , u

)

, (56a)

with the Dirichlet boundary condition ṽk = 0 on Ŵ.
• Pressure correction step: Find pk ∈ Ph such that for all q ∈ Ph,

we have

(

1

ρ0
∇(pk − pk−1),∇q

)

= −
1

τ

(

∇ · ṽk, q
)

. (56b)

• Velocity correction step: Then, find vk ∈ Vh such that for all
u ∈ Vh,

(

ρk
vk − ṽk

τ
, u

)

=
(

pk − pk−1,∇ · u
)

, (56c)

which we solve by explicitly imposing the Dirichlet boundary
condition uk = 0 on Ŵ.

Equations (56a), (56b), and (56c) should be solved sequentially,
and constitutes a variant of a projection scheme, i.e., a fractional-
step approach to the fluid flow equations [75, 77–80]. We will in
this paper refer to the coupled solution of the fluid flow equations,
unless stated otherwise. Specifically, the fractional-step fluid flow
scheme will only be demonstrated in the full 3D simulations
in section 6.2.

The scheme presented above consists in sequentially solving
three decoupled subproblems (or five decoupled subproblems
for the fractional-step fluid flow alternative). The subproblems
are all linear, and hence attainable for specialized linear solvers
which could improve the efficiency. We note that the splitting
introduces an error of order τ , i.e., the same as the scheme
itself. Moreover, our scheme does not preserve the same energy
dissipation law on the discrete level, that the original model
does on the continuous level. We are currently not aware
of any scheme for two-phase electrohydrodynamics with this
property, apart from the fully implicit scheme presented in the
previous section.

4. BERNAISE

We have now introduced the governing equations and two
strategies for solving them. Now, we will introduce the Bernaise
package, and describe an implementation of a generic simulation
problem and a generic solver in this framework. For a
complete description of the software, we refer to the online Git
repository [81].

The work presented herein refers to version 1.0 of Bernaise.
It is compatible with version 2017.2.0 of FEniCS [42] running
in Python 2.7, and version 2018.1.0 of FEniCS, which is the
latest stable version available for Python 3.6 at the time of
writing. The simulations presented herein were carried out
using the 2017.2.0 version of FEniCS (installed from the
standard PPA) in combination with Python 2.7 on a Ubuntu
16.04 system. Future releases of Bernaise will (as FEniCS)
primarily be compatible with Python 3.6 and follow the update
cycle of FEniCS.

4.1. Python Package
Bernaise is designed as a Python package, and the main
structure of the package is shown in Figure 1. The package
contains two main submodules, problems and solvers.
As suggested by the name, the problems submodule
contains scripts where problem-specific geometries (or
meshes), physical parameters, boundary conditions, initial
states, etc., are specified. We will in section 4.2 dive
into the constituents of a problem script. The solvers

submodule, on the other hand, contains scripts that are
implementations of the numerical schemes required to
solve the governing equations. Two notable examples that
are implemented in Bernaise are the monolithic scheme
(implemented as basicnewton) and the linear splitting
scheme (implemented as basic). We shall in section 4.3
describe the building blocks of such a solver. Further, a
default solver compatible with a given problem is specified
in the problem, but this setting can—along with most other
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FIGURE 1 | Part of the directory structure of Bernaise.

settings specified in a problem—be overridden by providing
an additional keyword to the main script call (see below).
Note that not all solvers are compatible with all problems,
and vice versa.

A simulation is typically run from a terminal, pointing to the
Bernaise directory, using the command

>> python sauce.py problem=charged_droplet

where charged_droplet may be exchanged with another
problem script of choice; albeit we will use charged_droplet
as a pedagogical example in the forthcoming. The main script
sauce.py fetches a problem and connects it with the
solver. It sets up the finite element problem with all the given
parameters, initializes the finite element fields with the specified
initial state, and solves it with the specified boundary condition
at each time step, until the specified (physical) simulation time
T is exceeded. Any parameter in the problem can be overridden
by specifying an additional keyword from the command line;
for example, the simulation time can be set to 1,000 by running
the command:

>> python sauce.py problem=charged_droplet T=1000

After every given interval of steps, specified by the
parameter checkpoint_interval, a checkpoint is
stored, including all fields, and all problem parameters
at the time of writing to file. The checkpoint can be
loaded, and the simulation can be continued, by running
the command:

>> python sauce.py problem=charged_droplet

restart_folder=results_charged_droplet/1/

Checkpoint/

where the restart_folder points to an appropriate
checkpoint folder. Here, the problem parameters stored within
the checkpoint have precedence over the default parameters
given in the problem script. Further, any parameters specified
by command line keywords have precedence over the checkpoint
parameters.

The role of the main module sauce.py is to allocate the
required variables to run a simulation, to import routines from
the specified problem and solver, to iterate the solver in time,
and to output and store data at appropriate times. Hence, the
main module works as a general interface to problems and
solvers. This is enabled by overloading a series of functions,
such that problem- and solver-specific functions are defined
within the problem and solver, respectively. The structure of
sauce.py is by choice similar to the NSfracStep.py

script in the Oasis solver [43]; both in order to appeal to
overlapping user bases, and to keep the code readable and
consistent with and similar to common FEniCS examples.
However, an additional layer of abstraction in e.g., setting
up functions and function spaces is necessary in order to
handle a flexible number of subproblems and subspaces,
depending on e.g., whether phase field, electrochemistry or
flow is disabled, or whether we are running with a monolithic
or operator splitting scheme. To keep the Bernaise code
as readable and easily maintainable as possible, we have
consciously avoided uneccessary abstraction. Only the boundary
conditions (found in common/bcs.py) are implemented
as classes.

4.2. The Problems Submodule
The basic user typically interacts with Bernaise by implementing
a problem to be solved. This is accessible to Bernaise when put

Frontiers in Physics | www.frontiersin.org 9 March 2019 | Volume 7 | Article 2179

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Linga et al. Two-Phase Electrohydrodynamic Flows

in the subfolder problems. The implementation consists in
overloading a certain set of functions; all of which are listed
in the problems/__init__.py file in the problems folder.
The mandatory functions that must be overloaded for each
problem are:

• mesh: defines the geometry. Equivalent to the mesh function
in Oasis [43].

• problem: sets up all parameters to be overloaded, including
defining solutes and types of finite elements. The default
parameters are defined in the problems/__init__.py
file.

• initialize: initializes all fields.
• create_bcs: sets all subdomains, and defines boundary

conditions (including pointwise boundary condtions, such
as pressure pinning). The boundary conditions are more
thoroughly explained below.

Further, there are functions thatmay be overloaded.

• constrained_domain: set if the boundary is to be
considered periodic.

• pf_mobility: phase field mobility function; cf. (33a) and
(33b).

• start_hook: hook called before the temporal loop.
• tstep_hook: hook called at each time step in the loop.
• end_hook: hook called at the end of the program.

• rhs_source: explicit source terms to be added to the
right hand side of given fields; used e.g., in the method of
manufactured solution.

Note here the use of three hooks that are called during the
course of a simulation. These are useful for outputting certain
quantities during a simulation, e.g., the flux through a cross
section, or total charge in the domain. The start_hook

could also be used to call a steady-state solver to initialize
the system closer to equilibrium, e.g., a solver that solves
only the electrochemistry subproblem such that we do not
have to resolve the very fast time scale of the initial
charge equilibration.

In Listing 1, we show an implementation of the problems
function, which sets the necessary parameters that are required
for the charged_droplet case to run. Here, the solutes
array (which defines the solutes), contains only one species, but it
can in principle contain arbitrarily many.

In Listing 2, we show the code for the initialization stage. Here,
initial_pf and initial_c are functions defined locally
inside the charged_droplet.py problem script, that set
the initial distributions of the phase field and the concentration
field, respectively. Here, it should be noted how the (boolean)
parameters enable_PF, enable_EC and enable_NS allow
to switch on or off either the phase field, the electrochemistry or
the hydrodynamics, respectively.

Listing 1 | The problems function for the charged_droplet case.

def problem():

info_cyan("Charged droplet in an electric field.")

# Define solutes

# Format: name, valency, diffusivity in phase 1, diffusivity in phase 2,

# solubility energy in phase 1, solubility energy in phase 2

solutes = [["c_p", 1, 1e-5, 1e-3, 4., 1.]]

# Default parameters to be loaded unless starting from checkpoint.

parameters = dict(

solver="basic", # Solver to be used.

folder="results_charged_droplet", # Folder to store results in.

dt=0.08, # Timestep

t_0=0., # Starting time

T=8., # Total simulation time

grid_spacing=1./32, # Mesh size

interface_thickness=0.03, # Extent of diffuse interface

solutes=solutes, # Array of solutes defined above

Lx=2., # Length of domain along x

Ly=1., # Length of domain along y

rad_init=0.25, # Initial droplet radius

V_left=10., # Potential at left side

V_right=0., # Potential at right side

surface_tension=5., # Surface tension

concentration_init=10., # Initial (total) concentration

pf_mobility_coeff=0.00002, # Phase field mobility coeff. (M_0)

density=[200., 100.], # Density in phase 1, phase 2

viscosity=[10., 1.], # Viscosity in phase 1, phase 2

permittivity=[1., 1.] # Permittivity in phase 1, phase 2

)

return parameters
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Listing 2 | The initialize function for the charged_droplet case.

def initialize(Lx, Ly, rad_init, interface_thickness, solutes,

concentration_init, restart_folder, field_to_subspace,

enable_NS, enable_PF, enable_EC, **namespace):

""" Create the initial state. """

w_init_field = dict()

if not restart_folder:

x0, y0, rad0, c0 = Lx/4, Ly/2, rad_init, concentration_init

# Initialize phase field

if enable_PF:

w_init_field["phi"] = initial_pf(

x0, y0, rad0, interface_thickness,

field_to_subspace["phi"].collapse())

# Initialize electrochemistry

if enable_EC:

w_init_field[solutes[0][0]] = initial_c(

x0, y0, rad0/3., c0, interface_thickness,

field_to_subspace[solutes[0][0]].collapse())

return w_init_field

Listing 3 | The get_subproblems subroutine of the basic solver.

def get_subproblems(solutes, enable_NS, enable_PF, enable_EC, **namespace):

""" Returns dict of subproblems the solver splits the problem into. """

subproblems = dict()

if enable_NS:

subproblems["NS"] = [dict(name="u", element="u"),

dict(name="p", element="p")]

if enable_PF:

subproblems["PF"] = [dict(name="phi", element="phi"),

dict(name="g", element="g")]

if enable_EC:

subproblems["EC"] = ([dict(name=solute[0], element="c")

for solute in solutes]

+ [dict(name="V", element="V")])

return subproblems

4.3. The Solvers Submodule
Advanced users may develop solvers that can be placed
in the solvers subdirectory. In the same way as with
the problems submodule, a solver implementation constists
of overloading a range of functions which are defined in
solvers/__init__.py.

• get_subproblems: Returns a dictionary (dict) of the
subproblems which the solver splits the problem into. This
dictionary has points to the name of the fields and the elements
(specified in problem) which the subspace is made up of.

• setup: Sets up the FEniCS solvers for each subproblem.
• solve: Defines the routines for solving the finite element

problems, which are called at every time step.
• update: Defines the routines for assigning updated values to

fields, which are called at the end of every time step.

The module solvers/basicnewton.py implements the
monolithic scheme, while the module solvers/basic.py
implements the segregated solver3. The problem is split up into

3The latter also contains an equilibrium solver for the quiescent electrochemistry

problem, mainly to be used for initialization purposes.

the subproblems corresponding to whether we have amonolothic
or segragated solver in the function get_subproblems.
Within the setup function, the variational forms are defined,
and the solver routines are initialized. The latter are eventually
called in the solve routine at every time step. Note

that the element types are defined within the problem,

and that the solvers in general can be applied for higher-
order spatial accuracy without further ado. The task of

get_subproblems is simply to link the subproblem to the
element specification.

In Listing 3, we show how the get_subproblems function
is implemented in the basic solver. As can be readily seen, the

function formally splits the problem into the three subproblems

NS, PF, and EC.
The other functions (such as setup) are somewhat more

involved, but can be found at the Git repository [81].
Note that the implementations of the solvers presented above

are sought to be short and humanly readable, and therefore
quite straightforwardly implemented. There are several ways to

improve the efficiency (and hence scalability) of a solver, at the

cost of lost intuitiveness [43].

Frontiers in Physics | www.frontiersin.org 11 March 2019 | Volume 7 | Article 2181

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Linga et al. Two-Phase Electrohydrodynamic Flows

Listing 4 | The create_bcs function within the charged_droplet case.

def create_bcs(field_to_subspace, Lx, Ly, solutes, V_left, V_right,

enable_NS, enable_PF, enable_EC,

**namespace):

""" The boundary conditions are defined in terms of field. """

boundaries = dict(

wall=[Wall(Lx)],

left=[Left()],

right=[Right(Lx)]

)

noslip = Fixed((0., 0.))

bcs = dict()

bcs_pointwise = dict()

bcs["wall"] = dict()

bcs["left"] = dict()

bcs["right"] = dict()

if enable_NS:

bcs["wall"]["u"] = noslip

bcs["left"]["u"] = noslip

bcs["right"]["u"] = noslip

bcs_pointwise["p"] = (0., "x[0] < DOLFIN_EPS && x[1] < DOLFIN_EPS")

if enable_EC:

bcs["left"]["V"] = Fixed(V_left)

bcs["right"]["V"] = Fixed(V_right)

return boundaries, bcs, bcs_pointwise

4.4. Boundary Conditions
Boundary conditions are among the few components of Bernaise
which are implemented as classes. Physical boundary conditons
may consist of a combination of Dirichlet and Neumann (or
Robin) conditions, and the latter must be incorporated into
the variational form. The boundary conditions are specified in
the specific problem script, while the variational form is set
up in the solver. To promote code reuse, keeping the physical
boundary conditions accessible from the problems side, and
simultaneously independent of the solver, the various boundary
conditions are stored as classes in a separate module. The
boundaries themselves should be set by the user within the
problem. By importing various boundary condition classes
from common/bcs.py, the boundary conditions can be
inferred at user-specified boundaries.

Within the bcs module, the base class GenericBC is
defined. The boolean member functions is_dbc and is_nbc
specifies, respectively, whether the concrete boundary conditions
impose a Dirichlet and Neumann condition, and both return
false by default. The base class is inherited by various concrete
boundary conditon classes, and by overloading these two
member functions, the member functions dbc or nbc are,
respectively called at appropriate times in the code. There is
a hierarchy of boundary conditions which inherit from each
other. Some of the boundary conditions currently implemented
in Bernaise are:

• GenericBC: Base class for all boundary conditions.

– Fixed: Dirichlet condition, applicable for all fields.

∗ NoSlip: The no-slip condition—a pure Dirichlet
condition with the value 0, applicable for velocity.

∗ Pressure: Constant pressure boundary condition—
adds a Neumann condition to the velocity, i.e., a
boundary term in the variational form.

– Charged: A charged boundary—a Neumann conditon
intended for use with the electric potential V .

– Open: An open boundary—a Neumann condition
is applied.

We note that when a no-flux condition is to be applied, no
specific boundary condition class needs to be supplied, since
the boundary term in the variational form then disappears (in
particular when considering conservative PDEs).

As an example, we show in Listing 4 the create_bcs

function within the charged_droplet case. Here, the
boundaries Wall, Left, etc., are defined in the standard
FEniCS/DOLFIN way as instances of a SubDomain class.

4.5. Post-processing
An additional module provided in Bernaise is the post-processing
module. It operates with methods analogously to how the
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main Bernaise script operates with problems. The base script
postprocess.py pulls in the required method and analyses
or operates on a specified folder. The methods are located in
the folder analysis_scripts/ and new methods can be
implemented by users by adding scripts to this folder.

To exemplify its usage, we consider a method to analyse the
temporal development of the energy. This is done by navigating
to the root folder and calling

>> python postprocess.py method=energy_in_time

folder=results_charged_droplet/1/

where we assume that the output of the simulation,
we want to analyse, is found in the folder
results_charged_droplet/1/. The analysis method
energy_in_time above can, of course, be exchanged with
another method of choice. A list of available methods can be
produced by supplying the help argument from a terminal call:

>> python postprocess.py -h

Similar to the problems submodule, the methods are
implemented by overloading a set of routines, where default
routines are found in analysis_scripts/__init__.py.
The routines required to implement an analysis method are
the following:

• description: routine called when a questionmark is added
to the end of the method name during a call from the terminal,
meant to obtain a description of the method without having to
inspect the code.

• method: the routine that performs the desired analysis.

The implementation hinges on the TimeSeries class (located
in utilities/TimeSeries.py), which efficiently imports
the XDMF/HDF5 data files and the parameter files produced by
a Bernaise simulation. Several plotting routines are implemented
in utilities/plot.py, and these are extensively used in
various analysis methods.

5. VALIDATION

With the aim of using Bernaise for quantitative purposes, it is
essential to establish that the schemes presented in the above
converges to the correct solution—in two senses:

• The numerical schemes should converge to the correct
solution of the phase-field model.

• The solution of the phase-field model should converge to the
correct sharp-interface equations4.

Unless otherwise stated, we mean by convergence that the error
in all fields χ should behave like,

‖χ − χe‖h ∼ Chh
kh + Cτ τ

kτ (57)

where ‖·‖h is an L2 norm, χ is the simulated field, χe is the exact
solution, h is the mesh size, τ is the time step, kh is the order

4Obviously, when the physical interface thickness may be resolved by the phase

field, the sharp-interface assumptionmight be less sensible than the diffuse. Hence,

in such cases this point might be too crude.

FIGURE 2 | Schematic set-up of the stable bulk flow intrusion test case. Here,

the “water” (subscript w) displaces the “oil” (subscript o). At the left and right

boundaries, a constant velocity is prescribed.

of spatial convergence, kτ is the order of temporal convergence
(kτ = 1 in this work), and Ch and Cτ are constants.

In the following, we present convergence test in three
cases. Firstly, in the limiting case of a stable bulk intrusion
without electrochemistry, an analytical solution is available to test
against. Secondly, using the method of manufactured solution,
convergence of the full two-phase EHDproblem to an augmented
Taylor–Green vortex is shown. Thirdly, we show convergence
toward a highly resolved reference solution for an electrically
driven charged droplet.

We note that the aim of Bernaise is to solve coupled multi-
physics problems, and while the solvers may contain subtle
errors, they may be negligible for many applications, and
dominant only in limiting cases. In addition to testing the
whole, coupled multi-physics problem of two-phase EHD, a
proper testing should also consider simplified settings where
fewer physical mechanisms are involved simultaneously. A brief
discussion of testing and such reduced models is given in
Appendix C in Supplementary Material. In this section, we show
the convergence of the schemes in a few relevant cases, which we
believe represent the efficacy of our approach. Tests of simplified-
physics problems are found in the Git repository [81].

5.1. Stable Bulk Intrusion
A case where an analytic solution is available, is the stable
intrusion of one fluid into another, in the absence of electrolytes
and electric fields. A schematic view of the initial set-up is shown
in Figure 2. A constant velocity v = v0x̂ (x̂ is the unit vector
along the x axis) is applied at both the left and right sides of the
reservoir, and periodic boundary conditions are imposed at the
perpendicular direction. We shall here consider the convergence
to the solution of the phase-field equation, i.e., retaining a finite
interface thickness ǫ. This effectively one-dimensional problem is
implemented in problems/intrusion_bulk.py.

Due to the Galilean invariance, we expect the velocity field to
be uniformly equal to the inlet and outlet velocities, i.e., v(x, t) =
v0x̂. The exact analytical solution for the phase field is
given by

φ(x, t) = tanh

(

x− x0 − v0t√
2ǫ

)

, (58)
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FIGURE 3 | Convergence in time for the case of stable intrusion. The mesh size is held fixed at h = 0.0039. (Left) We show the phase field interpolated at equidistant

points along the centerline for increasing temporal resolution. The solid black line is the analytical solution. (Right) The integrated L2 norm of the phase field plotted

against time step. The solid black line shows the theoretical convergence order of the scheme (∼ τ ). As can be seen from the figure, it displays close to ideal scaling.

FIGURE 4 | Convergence in space for the case of stable intrusion. The time step is held fixed at τ = 0.0025. (Left) Phase field interpolated at equidistant points along

the centerline for increasing spatial resolution. (Right) The L2 norm of the phase field is plotted against mesh resolution. The solid black line shows the theoretical

convergence order (∼ h2).

for which we shall consider the error norm. Note that the only
parameters this analytical solution depends on are the initial
position of the interface x0, the injection velocity v0, and the
interface width ǫ. We consider the parameters ρ1 = ρ2 = 1000,
µ1 = 100, µ2 = 1, σ = 2.45, ǫ = 0.03,M(φ) = M0 = 2 · 10−5,
x0 = 1, Lx = 5, Ly = 1 and v0 = 0.1.

Figure 3 shows the convergence to the analytical
solution with regards to temporal resolution. The order of
convergence is consistent with the order of the scheme,
indicating that the scheme is appreciable at least in the lack of
electrostatic interactions.

Figure 4 shows the convergence of the phase field with regards
to the spatial resolution. The scheme is seen to converge at the
theoretical rate,∼ h2.

5.2. Method of Manufactured Solution: A
Two-Phase Electrohydrodynamic
Taylor–Green Vortex
Having established convergence in the practically one-
dimensional case, we now consider a slightly more involved

setting where we use the method of manufactured solution to
obtain a quasi-analytical test case.

The Taylor–Green vortex is a standard benchmark problem
in computational fluid dynamics because it stands out as one
of the few cases where exact analytical solutions to the Navier–
Stokes equations are available. However, in the case of two-phase
electrohydrodynamics, the Navier–Stokes equations couple to
both the electrochemical and the phase field subproblems. In
Linga et al. (Submitted) the authors augmented the Taylor–
Green vortex with electrohydrodynamics, and in this work we
supplement the latter with a phase field and non-matching
densities of the two phases.

We consider the full set of equations on the domain � =
[0, 2π]×[0, 2π], where all quantities may differ in the two phases.
The two ionic species have opposite valency ±z. The fields are
given by

u = U(t)(x̂ cos x sin y− ŷ sin x cos y), (59a)

p = −
∑

mn

Pmn(t) cos(2mx) cos(2ny), (59b)
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φ = 8(t) cos x cos y, (59c)

c± = c0(1± cos x cos y C(t)), (59d)

V =
zc0C(t)

ε
cos x cos y. (59e)

Here, the time-dependent coefficients are given by

U(t) = U0 exp

(

−
2µ̄

ρ̄
t

)

, (60)

C(t) = C0 exp
(

−2D̄
(

1+
c0

ε̄

)

t
)

, (61)

8(t) = 80 exp

(

−2Mσ̃

(

2ǫ −
1

ǫ

)

t

)

, (62)

where U0,C0 and80 are scalars, and

Pmn =











Q1(t)+Q2(t) for (m, n) ∈ {(0, 1), (1, 0)},
Q2(t) for (m, n) ∈ {(1, 1)},
0 otherwise.

(63)

where

Q1 =
1

4
ρU2

0 (t), and Q2 =
z2c20C

2(t)

4ǫ
. (64)

Further, a bar indicates the arithmetic average over the value in
the two phases, i.e., χ̄ = (χ1+χ2)/2 for any quantity χ , and D̄ =
(D̄++ D̄−)/2 = (D+,1+D+,2+D−,1+D−,2)/4 is the arithmetic
average over all diffusivities. The time-dependent boundary
conditions are set by prescribing the reference solutions at the
boundary of � for all fields given in (59a)–(59e), except the
pressure p, which is set (to the reference value) only at the corner
point (x, y) = (0, 0). The method of manufactured solution
now consists in augmenting the conservation Equations (18),
(19), (20) and (21) by appropriate source terms, such that the
reference solution (59a)–(59e) solves the system exactly. These
source terms were computed in Python using the Sympy package,
and are rather involved algebraic expressions. The expressions
are therefore omitted here, but can be found as a utility script in
the Bernaise package. Note that in the special case of single-phase
flow without electrodynamics, i.e., φ ≡ 1 and z = 0, we retrieve
the classic Taylor–Green flow (with a passive tracer concentration
field), where all artificial source terms vanish.

We consider now the convergence toward the manufactured
solution. We let the grid size h ∈ [2π/256, 2π/16] and the
time step τ ∈ [0.0001, 0.01], and evaluate the solution at the
final time T = 0.1. The parameters for two phases used the
simulation are given in Table 1, while the non-phase specific
parameters are given in Table 2. Note that in order to test all
parts of the implementation, all parameters are kept roughly in
the same order of magnitude. When all the physical processes
are included, the manufactured solution becomes an increasingly
bad approximation and thus the resulting source terms become
large. Thus, in order to avoid numerical instabilities, it was
necessary to evaluate the error at a relatively short final time T.
However, it should be enough to locate errors in most parts of
the code.

TABLE 1 | Phasic parameters used in the Taylor–Green simulations.

Parameter Symbol Value in

phase 1

Value in

phase 2

Density ρ 3 1

Viscosity µ 3 5

Permittivity ε 3 4

Cation diffusivity D+ 3 1

Anion diffusivity D− 4 2

Cation solubility β+ 2 −2

Anion solubility β− 1 −1

TABLE 2 | Non-phase-specific parameters used in the Taylor–Green simulations.

Parameter Symbol Value

Surface tension σ 0.1

Interface thickness ǫ 1/
√
2

Phase field mobility M 1

Initial velocity U0 1

Initial concentration c0 1

Initial phase field 80 1

Initial conc. deviation C0 0.5

We plot the L2 errors of all the fields as a function of the
grid size h in Figure 5. In these simulations, we used a small
time step τ = 0.0001 to rule out the contribution of time
discretization to the error, cf. Equation (57). It is clear that
the spatial convergence is close to ideal for all fields, indicating
that the scheme approaches the correct solution. The pressure
p displays slightly worse convergence and higher error norm
than the other fields, which may be due to the pointwise way of
enforcing the pressure boundary condition (all other fields have
Dirichlet conditions on the entire boundary).

In Figure 6, we plot the L2 errors of the same fields as in
Figure 5, but as a function of the time step τ . In the simulations
plotted here, we used a fine grid resolution with h = 2π/256
to rule out the contribution of spatial discretization to the error,
cf. Equation (57). Clearly, first order convergence is achieved for
sufficient refinement, for all fields including the pressure.

5.3. Droplet Motion Driven by an Electric
Field
We now consider a charged droplet moving due to an imposed
electric field; a problem for which there is no analytical
solution available. However, by comparing to a highly resolved
numerical solution, convergence for the fully coupled two-phase
electrohydrodynamic problem can be verified. This problem has
already been partly presented in the above, and is implemented in
problems/charged_droplet.py. A sketch showing the
initial state is shown in Figure 7. We consider an initially circular
droplet, where a positive charge concentration is initiated as a
Gaussian distribution, with variance δ2c , in the middle of the
droplet. In this set-up, we consider only a single, positive species.
The total amount of solute, i.e., integrated concentration, is
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FIGURE 5 | Convergence in space for the two-phase electrohydrodynamic

Taylor–Green manufactured solution. The solid black line shows the theoretical

convergence rate based on the order of the finite elements chosen (∼ h2). All

fields display close to ideal convergence.

FIGURE 6 | Convergence in time for the two-phase electrohydrodynamic

Taylor–Green manufactured solution. The solid black line shows the theoretical

convergence rate of the scheme (∼ τ1). All fields display close to ideal

convergence.

C0 =
∫

�
c0 dA. The left wall of the reservoir is kept at a positive

potential, V = 1V , while the right wall is grounded, V = 0. The
top and bottomwalls are assumed to be perfectly insulating, i.e., a
no-flux condition is applied on concentration fields and electric
fields, and a no-slip condition is applied on the velocity. The fluid
surrounding the droplet is neutral, and its parameters are chosen
such that the solute is only very weakly soluble in the surrounding
fluid, and the diffusivity here is very low here to prevent leakage.
The droplet is accelerated by the electric field toward the right,
before it is slowed down due to viscous effects upon approaching
the wall.

FIGURE 7 | Schematic set-up of the test case of droplet motion driven by an

electric field. The “water” droplet contains positive ions and is driven by the

electric field set up between the high potential on the left wall and the

grounded right wall.

TABLE 3 | Numerical parameters that vary with resolution in the charged droplet

simulations: Mesh size h, time step τ , and interface thickness ǫ.

h τ ǫ

0.04 0.04 0.06

0.02 0.02 0.03

0.01 0.01 0.015

0.005 0.005 0.0075

0.0025 0.0025 0.00375

With regard to reproducing the sharp-interface equations,
we consider now the case of reducing the interface thickness
ǫ → 0. To this end, we keep the ratio h/τ between
mesh size and time step fixed, and further we keep the
interface thickness ǫ proportional to h. The latter spans
roughly 3–4 elements. Since the interface thickness ǫ changes,
an important parameter in the phase-field model changes,
which couples back to the equations, and thus the L2
norm does not necessarily constitute a proper convergence
measure. We therefore resort to using the picture norm or
contour of the droplet as a measure, i.e., the zero-level
set of the phase field φ = 0. In particular, we will
consider two observables: circumference and the center of
mass (along x) of the droplet, as a function of resolution.
A similar approach was taken for the case of phase-field
models without electrodynamics by Aland and Voigt [66]
who compared their benchmarks to sharp interface results by
Hysing et al. [65].

The resolutions used in our simulations are given in
Table 3. In order not to have to adjust the phase field
mobility when refining, whilst still expecting to retrieve the
sharp-interface model in the limit ǫ → 0, we choose
the phase field mobility given by (33b). All parameters
for the phasic quantities are given in Table 4, while the
remaining parameters are given in Table 5. From these
parameters, using the unit scaling adopted in this paper, we

find an approximate Debye length λD =
√

ε/(2z2cR) ≃
√

1/(2 · 10) ≃ 0.2 (see section B2 in the Appendix for
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TABLE 4 | Numerical parameters for the phases that are common for all charged

droplet simulations.

Parameter Symbol Value, phase 1 Value, phase 2

Density ρ 200.0 100.0

Permittivity ε 1.0 1.0

Diffusivity D 1 · 10−5 (≃ 0) 0.001

Solubility β 4.0 1.0

Viscosity µ 10.0 1.0

TABLE 5 | Numerical parameters not specific to phase for the charged droplet

simulations.

Parameter Symbol Value

Potential difference 1V 10.0

Integrated concentration C0 10.0

Phase field mobility coeff. M0 1.5 · 10−5

Initial droplet radius R 0.25

Initial conc. std. dev. δc 0.0833

Surface tension σ 5.0

Length in x-direction Lx 2.0

Length in y-direction Ly 1.0

FIGURE 8 | Shape comparison of electrically driven charged droplet at two

time instances. The effect of the four resolutions given in Table 3 is shown. The

legend shown in the figure refers to both spatial (h) and temporal resolution (τ ).

this expression), since we can approximate the order of
magnitude of cR < C/(πR2) = 10/(π · 0.252) for a
moderate screening.

In Figure 8, we show the contour of the driven droplet
at two time instances t = 4 and t = 8, and compare
increasing resolution (simultaneously in space, time and interface
thickness). Qualitatively inspecting the contours by eye, the
droplet shapes seem to converge to a well defined shape with
increasing resolution at both time instances.

However, qualitive comparison is clearly not enough to assess
the convergence. As in Hysing et al. [66] and Aland and Voigt
[65], we define three observables:

• Center of mass: We consider the center of mass of the
dispersed phase (phase 2, i.e., φ < 0),

xCM =

∫

φ<0 x dA
∫

φ<0 dA
, (65)

where we approximate the integral over the droplet (phase 2)
by
∫

φ<0(·) dA =
∫

�
(1− φ)(·)/2 dA.

• Drift velocity: Similarly as above, the velocity at which the
droplet is driven is measured by

V =

∫

φ<0 u · x̂ dA
∫

φ<0 dA
. (66)

• Circularity: Defined as the ratio of the circumference of the
area-equivalent circle to the droplet circumference,

C =
2
√

π
∫

φ<0 dA

ℓ
. (67)

The circumference ℓ and the integrals are computed by the
post-processing method geometry_in_time which is built
into Bernaise.

Figure 9 shows the three quantities as a function of time
for increasing resolution. (Here we have omitted the coarsest
resolution h = 0.04 for visual clarity.) The curves seem to
converge toward well-defined trajectories with resolution.

For a more quantitative comparison, we define the time-
integrated error norm,

‖e‖p =

(

∫ T
0 |qref(t)− q(t)|p dt
∫ T
0 |qref(t)|p dt

)1/p

(68)

for a given quantity q. We can compute an empirical convergence
rate of this norm,

kp,i =
log

(

‖e‖p (hi+1)/‖e‖p (hi)
)

log
(

hi+1/hi
) (69)

for two successive resolutions (hi+1 > hi). Here we shall
consider the L2 error norm in time, i.e., p = 2, and in practice
we compute the integrals in time by cubic spline interpolation
of measurement points saved at every 5 time steps. There is
no exact solution, or reference high-resolution sharp-interface
solution available for this set-up. However, if we now assume
that the finest resolution is the exact solution, and use this as the
reference field in Equation (68), we can compute error norms and
convergence rates. These values are reported in Table 6.

The computed convergence rates increase for all three
observables and reach 1.6–1.7 with increasing resolution,
indicating also quantitatively a convergence that is in
agreement with the anticipated convergence rate. Considering
Equation (57), from the temporal discretization, we expect
k2 ≃ 1, and from the spatial k2 ≃ 2. Depending on which
term contributes most to the error, we will measure either of
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FIGURE 9 | Observable quantities as a function of time. Increasing resolutions

(spatial and temporal) are compared.

TABLE 6 | Mesh size h, error norm ‖e‖2, and empirical convergence rate k2 for

increasing grid refinement, assuming the solution for the finest resolution to be

exact.

h ‖e‖2 k2

CENTER OF MASS

0.04 0.1798

0.02 0.0955 0.9129

0.01 0.0410 1.2186

0.005 0.0126 1.7033

DRIFT VELOCITY

0.04 0.3427

0.02 0.2067 0.7293

0.01 0.1032 1.0025

0.005 0.0341 1.5932

CIRCULARITY

0.04 0.0891

0.02 0.0423 1.0757

0.01 0.0205 1.0467

0.005 0.0060 1.7612

these rates. The values measured here indicate that both terms
may be comparable in magnitude; however if we instead of
using directly the finest solution as reference, extrapolated the
trajectories further, we would presumptively have achieved lower
convergence rates. This might indicate that the convergence
error is eventually dominated by the temporal discretization, cf.
Equation (57).

6. APPLICATIONS

6.1. Oil Expulsion From a Dead-End Pore
Here, we present a demonstration of the method in a potential
geophysical application. We consider a shear flow of one phase
(“water”) over a dead-end pore which is initially filled with a
second phase (“oil”). The water phase contains initially a uniform
concentration of positive and negative ions, c±|t=0 = c0, and the
water–oil interface is modeled to be impermeable. The simulation
of the dead-end pore is carried out to preliminarily assess
the hypothesis that electrowetting could be responsible for the
increased expelling of oil in low-salinity enhanced oil recovery.
The problem set-up is schematically shown in Figure 10. The
phasic parameters used in the simulations are given in Table 7,
and the remaining parameters are given in Table 8. This problem
is implemented in the file problems/snoevsen.py.

To investigate the effect of including electrostatic interactions,
we show in Figure 11 instantaneous snapshots of simulations
with and without surface charge at different times. The left
column, Figures 11A,C,E, shows the results for vanishing surface
charge, and the right column, Figures 11B,D,F, shows the results
for a surface charge of σe = −10.

For the uncharged case, the frames that are shown are almost
indistinguishable. In fact, the main difference is the numerical
noise of the total charge, which is due to roundoff errors of
machine precision. The initial dynamics of the oil plug interface,
which is to equilibrate with the neutral contact angle and the
shear flow, mainly happens before the first frame presented;
compare Figure 10 and Figure 11A.

A markedly different behavior is displayed in the right
column, Figures 11B,D,F, where a uniform surface charge
density is enforced at the walls at the simulation start, t = 0. Here,
we see first that two tongues are intruding on both sides of the
droplet, which push the droplet out into the center of the dead-
end pore. The process is continued, as shown in the second frame,
and finalized, as shown in the third frame, with the complete
release of the droplet as the two tongues meet at the bottom of
the dead-end pore, cutting the final contact point.

With these simulations, we have demonstrated the effects
when a surface charge couples to hydrodynamics. This has lead
to the observation that oil phase, on a larger scale than the Debye
length, behaves like it is completely dewetting even when we
locally enforce a neutral contact angle.

6.2. 3D Simulations of Droplet Coalescence
and Breakup in an Electric Field
Finally, to demonstrate the ability of Bernaise to simulate 3D
configurations, we present simulations of two oppositely charged
droplets that coalesce. In order to achieve this efficiently, a
fully iterative solver was implemented. The solver consists of a
fractional step version of the basic solver, in the sense that
within the fluid flow step, it splits between the velocity and
pressure computations, as shown in Equations (56a), (56b), and
(56c). The splitting introduces a weak compressibility which
suffices to stabilize the problem [77] (with respect to the BB
condition) and thus we can use P1 finite elements also for the
velocity. The combination of fewer degrees of freedom and
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FIGURE 10 | A schematic depiction of the “dead-end pore” geometry, with the appropriate boundary conditions for the problem and specified initial conditions for the

phase field. The geometry is specified by the two lengths Lx , Ly , and the radius R used to define the dead-end pore in the center of the channel by a circle and a

circular smoothed inlet. The roman numerals indicate the phase, along with the tone of gray. The darker phase is the oil-like phase (I), and the lighter one is the

water-like phase (II).

TABLE 7 | Phasic parameters for the simulations of shear flow over a dead-end

pore.

Parameter Symbol Value in phase 1 Value in phase 2

Viscosity µ 1.0 1.0

Density ρ 10.0 10.0

Permittivity ε 1.0 1.0

Solution energy β± 4 1

Ion mobility D± 0.0001 0.01

The subscript ± indicates the value for both the positive and negative ions.

the applicability of iterative linear solvers imparts significant
speed-up compared to coupled solvers, which is of paramount
importance for 3D simulations. This yields advantages over
solvers which rely on a mixed-element formulation of the
hydrodynamic subproblem [70]. The detailed analysis of the
fractional step solver will be published in a separate paper, but
the implementation can be found in
solvers/fracstep.py. For solving the linear systems
iteratively, we use an algebraic multigrid (AMG) preconditioner
and a generalized minimal residual (GMRES) linear solver for
the electrochemical and the pressure correction step; Jacobi
preconditioner (Jacobi) and a stabilized bi-conjugate gradient
method (BiCGStab) for the velocity prediction, and Jacobi and
GMRES for the velocity correction. For the phase field we use
Jacobi and a conjugate gradient method.

To prevent leakage of ions out of the two coalescing droplets,
a weighted geometric mean was used for the diffusivities:

TABLE 8 | Simulation parameters for the simulations of shear flow over a

dead-end pore.

Parameter Symbol Value

Length Lx 3.0

Height Ly 1.0

Total simulation time T 20

Radius R 0.3

Time step τ 0.01

Resolution h 1/120

Interface thickness ǫ 0.02

Phase field mobility M0 2.5 · 10−6

Surface tension σ 2.45

Surface charge σe {−10, 0}

Reference concentration c0 2

Shear velocity utop 0.2

Kj(φ) = K
1+φ
2

j,1 · K
1−φ
2

j,2 , (70)

instead of the arithmetic mean (25) used in most of the article.
We consider a setup of two initially spherical droplets in a

domain� = [0, Lx]× [0, Ly]× [0, Lz]. The droplets are centered
at (Lx/2, Ly/2, (Lz±Lx)/2) and have a radius R. The lower droplet
(along the z-axis) is initialized with a Gaussian concentration
distribution of negative ions (z− = −1), whereas the upper
droplet is initialized with positive ions (z+ = 1). The average
concentration of the respective ion species within each droplet is
c0, such that the total charge in the system is zero, and the initial
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FIGURE 11 | Oil released from a dead-end pore. We show instantaneous snapshots from the simulations of the dead-end pore under a shear flow. The black phase

is the oil phase, which does not contain solutes, and the other phase is the water phase, which contains monovalent positive and negative ions. The color in the lighter

phase indicates the local net charge, red meaning positive charge, blue negative charge, and gray neutral charge. The color scale is relative to the maximum deviation

from neutral charge for an entire simulation; therefore the neutral simulations display numerical noise (which is of the order of machine precision). In the left column the

surface charge is zero, and in the right column, a uniform surface charge density σe = −10 is set. The rows show snapshots at different times t. (A) t = 3.0, σe = 0.

(B) t = 3.0, σe = -10. (C) t = 6.0, σe = 0. (D) t = 3.0, σe = -10. (E) t = 9.0, σe = 0. (F) t = 9.0, σe = -10.

spread (standard deviation) of the Gaussian distribution is R/3. A
potentialV0 is set on the top plane at z = Lz and the bottom plane
at z = 0 is taken to be grounded. We assume no-slip and no-flux
conditions on all boundaries, except for the electrostatic potential
V at the top and bottom planes, and the fluid is taken to be in a
quiescent state at the initial time t = 0. The phasic parameters
used in the simulations are given in Table 9, and the remaining
parameters are given in Table 10. The problem is implemented
in the file problems/charged_droplets_3D.py.

Figure 12 shows snapshots from the simulations at several
instances of time. As seen from the figure, the droplets are set

in motion toward each other by the electric field and collide with
each other. Subsequently, the unified droplet is stretched, until
it touches both electrodes. The middle part then breaks off, and
as it is unstable, it further emits droplets that are released to
two two sides. Finally, two spherical caps form at each electrode,
and a neutral drop is left in the middle, due to the initial
symmetry. Similar behavior has been observed in axisymmetric
simulations (e.g., [82]).

We finally carry out a strong scaling test of the linear iterative
solver on a single in-house server with 80 dedicated cores. The
results of average computational time per time step (averaged
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TABLE 9 | Phasic parameters for the simulations of droplet coalescence and

breakup in an electric field.

Parameter Symbol Value in phase 1 Value in phase 2

Viscosity µ 1.0 0.5

Density ρ 500.0 50.0

Permittivity ε 1.0 2.0

Solution energy β± 2 0

Ion mobility D± 0.0001 0.1

The subscript ± indicates the value for both the positive and negative ions.

TABLE 10 | Simulation parameters for the simulations of droplet coalescence and

breakup in an electric field.

Parameter Symbol Value

Length along x Lx 1.0

Length along y Ly 1.0

Height Lz 2.0

Total simulation time T 20

Initial radius R 0.2

Time step τ 0.005

Resolution h 1/64

Interface thickness ǫ 0.01

Phase field mobility M0 1 · 10−5

Surface tension σ 2.0

Initial avg.

concentration

c0 20.0

over 10 time steps) vs. number of cores are shown in Figure 13.
We show here the amount of time spent per time step for all
substeps in order to illuminate where most of the computational
resources are spent. As can be seen, a significant portion of
the computational time is spent on the electrochemical substep.
Overall, the solver displays sublinear scaling with the number of
cores, but the results are promising given that neither the solver
nor the FEniCS install (a standard PPA install of FEniCS 2017.2.0
on Ubuntu 16.04 server) are fully optimized. Much could be
gained by improving the two steps where solving a Poisson
equation is involved; in particular it seems possible that more
specifically tailored preconditioners than the straightforward
AMG preconditioning could impart speedup. However, we stress
that the division of labor between the steps is highly problem-
dependent, and in particular, the electrochemical subproblem
is susceptible to how far into the non-linear regime we are
(see e.g., [45]).

7. DISCUSSION AND CONCLUSION

We have in this work presented Bernaise, a flexible open-source
framework for simulating two-phase electrohydrodynamics in
complex geometries using a phase-field model. The solver is
written in its entirety in Python, and is built on top of
the FEniCS/DOLFIN framework [42, 83] for solving partial
differential equations using the finite element method on
unstructured meshes. FEniCS in turn interfaces to, e.g.,

scalable state-of-the art linear solvers through its PETSc
backend [84]. We have proposed a linear operator-splitting
scheme to solve the coupled non-linear equations of two-
phase electrohydrodynamics. In contrast to solving the equations
directly in a monolithic manner, the scheme sequentially solves
the Cahn–Hilliard equation for the phase field describing
the interface, the Poisson–Nernst–Planck equations for the
electrochemistry (solute transport and electrostatics), and the
Navier–Stokes equations for the hydrodynamics, at each time
step. Implementation of new solvers and problems has been
demonstrated through representative examples. Validation of
the implementation was carried out by three means: (1) By
comparison to analytic solutions in limiting cases where such
are available, (2) by the method of manufactured solution
through an augmented Taylor–Green vortex, and (3) through
convergence to a highly resolved solution of a new two-phase
electrohydrodynamics benchmark problem of an electrically
driven droplet. Finally, we have presented applications of the
framework in non-trivial settings. Firstly, to test the applicability
of the code in a complicated geometry, and to illuminate the
effects of dynamic electrowetting, we simulated a shear flow of
water containing an electrolyte over a dead-end pore initially
filled with oil. This problem is relevant from a geophysical
standpoint, and exemplifies the potential of the method to
simulate the dynamics of the interaction between two-phase flow
and electric double layers. Secondly, the ability of the framework
to simulate three-dimensional configurations was demonstrated
using a fully iterative version of the operator-splitting scheme,
by simulating the coalescence and subsequent breakup of two
oppositely charged droplets in an electric field. The parallel
scalability of the latter solver was tested on in-house computing
facilities. The results presented herein underpin our aim that
Bernaise can become a valuable tool both within the micro- and
nanofluidics community and within geophysical simulation.

We have in this article not considered situations with multiple
interacting droplets, complicated background flows, or complex
mesh topologies. While the numerical procedure is capable of
handling this, the main purpose of this article (in addition to
presenting the software) has been to establish the validity of the
approach, and to demonstrate its use through fairly rudimentary
examples. Hence, we plan to use the present work as a basis for
studying more complicated systems in the future.

There are several possible avenues for further development
and use of Bernaise. With regard to computational effort,
the linear operator-splitting scheme constitutes a major
computational improvement over a corresponding monolithic
scheme. For the resulting smaller and simpler subproblems,
more specialized linear solvers and preconditioners can be
used. However, the implementation of the schemes are still not
fully optimized, as in many cases it is not strictly necessary to
reassemble entire system matrices (multiple times) at every time
step. Using ideas e.g., from Mortensen and Valen-Sendstad [43]
on how to effectively preassemble system matrices in FEniCS,
one could achieve an implementation that is to a larger extent
dominated by the backend linear solvers. However, as the phase
field is updated at every time step, there may be less to gain in
performance than what was the case in the latter reference.
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FIGURE 12 | Snapshots from the simulations of droplet coalescence and subsequent breakup in an electric field. The phase boundary shows the φ = 0 isosurface of

the phase field. The coloring indicates charge: red is positive and blue is negative. The color bar goes from -20 (deep blue) to 20 (deep red). The quivers show the

velocity field in the x = 0.5 plane (color indicates intensity). (A) t = 0.0. (B) t = 0.25. (C) t = 0.5. (D) t = 0.75. (E) t = 1.0. (F) t = 1.25. (G) t = 1.5. (H) t = 1.75. (I) t = 2.0.

(J) t = 2.25. (K) t = 2.5. (L) t = 2.75. (M) t = 3.0. (N) t = 4.0.

With regard to solving the Navier–Stokes equations, the
solvers considered herein either rely on a coupled approach
(the basic and basicnewton solvers) or a fractional step
approach that splits between the computations of velocity and
pressure (the fracstep solver that was considered in section
6.2). Using direct linear solvers, the coupled solvers yield accurate
prediction of the pressure and can be expected to be more robust.
However, direct solvers have numerical disadvantages when
it comes to scalability, and Krylov solvers require specifically
tailored preconditioners to achieve robust convergence. An
avenue for further research is to refine the fracstep solver
and develop decoupled energy-stable schemes for this problem,
which seems possible by building on literature on similar systems
[67–70, 75], Linga et al. (Submitted). The implementation of such
enhanced schemes in Bernaise is straighforward, as demonstrated
in this paper. On the other hand, in problems where interface
forces and electric fields become sufficiently strong, and the
equations become strongly nonlinearly coupled, it may be

necessary to use a fully-implicit approach (along the lines of
basicnewton), combined with direct linear solvers, to obtain
a converged solution. In the future we aim to compare the
ranges of applicability of various fully-implicit, semi-implicit,
and splitting-based schemes for practical settings.

A clear enhancement of Bernaise would be adaptivity, both
in time and space. Adaptivity in time should be implemented
such that time step is variable and controlled by the globally
largest propagation velocity (in any field), and a Courant
number of choice. Adaptivity in space is presently only
supported as a one-way operation. Adaptive mesh refinement
is already used in the mesh initialization phase in many of
the implemented problems. However, mesh coarsening has
currently limited support in FEniCS and to the authors’
knowledge there are no concrete plans of adding support for
this. Hence, Bernaise lacks an adaptive mesh functionality, but
this could be implemented in an ad hoc manner with some
code restructuring.
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FIGURE 13 | Strong scaling test. We show computational time per timestep

vs. number of processor cores for the coalescence and breakup of droplets in

3D. The results are averaged over the 10 first timesteps for simulations with

128× 128× 256 = 4,194,304 degrees of freedom, with a time step τ = 0.02.

In this article, we have not considered any direct dependence
of the contact angle (i.e., the surface energies) on an applied
electric field. However, the contact angle on scales below the
Debye length is generally thought to be unaffected, albeit
on scales larger than the insulator thickness, an apparent
contact angle forms [85, 86]. Using the full two-phase
electrohydrodynamic model presented herein, effective contact
angle dependencies upon the zeta potential could be measured
and used in simulations of moremacroscopic models; i.e., models
admissible on scales where the electrical double layers are not
fully resolved [86]. This would result in a modified contact angle
energy that would be enforced as a boundary condition in a phase
field model [87].

Physically, several extensions of the model could be included
in the simulation framework. Surfactants may influence the
dynamics of droplets and interfaces, and could be included as in
e.g., the model by Teigen et al. [88]. Themodel in its current form
further assumes that we are concerned with dilute solutions (i.e.,
ideal gas law for the concentration), and hence more complicated
electrochemistry could to some extent be incorporated into the
chemical free energy α(c).

Finally, the requirement of the electrical double layer to
be well-resolved constitutes the main constraint for upscaling
of the current method. Thus, for simulation of two-phase
electrohydrodynamic flow on larger scales, if ionic transport need
not be accounted for, it would only require minor modifications
of the code to run the somewhat simpler Taylor–Melcher leaky
dielectric model, e.g., in the formulation by Lin et al. [60], within
the current framework.
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Modern soil mechanics (geotechnical engineering) was developed as a branch of civil

engineering from the 1920’s. While modern porous media physics was developed as a

branch of physics and applied mathematics from roughly the same period of time. In soil

mechanics the main concern is often on the deformations, resulting from mechanical,

hydraulic, or thermal actions. In application of porous media physics the main concern

is historically on the flow part, putting less emphasis on the mechanical part. However,

deformation and flow are highly linked processes, especially in unconsolidated porous

media (soil). This paper makes some links between concepts used in porous media

physics, like the effective medium theory, and concepts in soil mechanics, like choice

of stress measures. As an example, it shows that the use of Terzaghi effective stress

is a matter of choice and can be consistently used also for cases where other effective

stress measures are used in literature, like Biot effective stress. The requirement, to be

consistent, is that the state variables considered, at the constitutive level, includes all

relevant variables.

Keywords: soil mechanics, porous media physics, effective medium theory, effective stress, constitutive model

INTRODUCTION

Geotechnical engineering is the part of civil engineering concerns about the hydro-mechanical (or
thermo-hydro mechanical) behavior of soils. In classical soil mechanics (geotechnical engineering)
the basics principles used are:

• Equilibrium (Conservation of linear momentum)
• Mass balance (Conservation of mass)
• Heat balance (conservation of energy)
• Effective stress principle (Terzaghi or Bishop) for the stress carried by the soil skeleton and

responsible for deformation.
• Stress-strain constitutive relations
• Darcy flow for the pore fluid(s)
• Fourier’s law for heat conduction

The continuum approach is the most used approach to satisfy the momentum balance,
compatibility, mass balance and heat balance equations. Deformation of and/or stresses (forces)
acting on structures are one of the main problems for the geotechnical engineer to solve. In
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air-saturated soil systems (dry soils), when the loading rate
is not too high (like the load coming from an explosion),
the equilibrium equation is the only equation that should
be solved. In water-saturated systems (and also in partially
saturated systems), the volumetric deformation of the system
is directly linked with the ability of the porous system for
draining/absorbing of water, thus the mass balance equation
should also be taken into account. Practical engineering problems
involving non-isothermal conditions, e.g., artificial ground
freezing projects, require the heat balance equation to be taken
into account, too.

In classical soil mechanics, by assuming incompressible
grains, the deformation of the system is considered as the result of
the process of slippage, widening, and closing between granular
medium particles. The slippage, widening, and closing between
the granular materials will continue until reaching a locked
state. Geotechnical engineers call this state as the “critical state”
of the soil. At the onset of critical state, the volume of the
system will be locked and the system can only be distorted. The
critical state is a kind of geometrical state and can be found
analytically. However, geotechnical engineers find this state
experimentally, and use a mechanical constitutive framework to
link the deformation gradients to an effective stress measure of
the system [1].

The mechanical constitutive model is the key aspect
of computational geotechnical engineering. Traditionally,
in classical geotechnical engineering, these models are
developed in the framework of plasticity theory. However,
it is also possible to find deformation gradient- effective
stress links, based on the effective medium theory. For the
reader not used to the terminology, Effective Medium Theory
(EMT) is a way to describe the macroscopic properties of
a composite material from some sort of averaging of the
multiple values of the constituents of this composite (e.g.,
[2–5]). The properties of the system are calculated from
constituents’ properties knowing the volume fraction of
the constituents and geometrical details. This is typically
used to find conductivities (hydraulic, thermal, or electric)
in composite systems. In case of mechanical properties of
material like rocks, EMT can be used to find elastic moduli
of the composite from elastic moduli of the constituents
(e.g., [6]). The volume fraction and the individual properties
of the constituents are often the easy parts to establish,
however, the geometry of the arrangement of the constituents
is difficult to assess [7, 8]. Hence, effective medium theory
will often result in rigorous upper and lower bounds from
the extreme assumptions on geometrical arrangements and a
representative model in between these two extremes, which needs
experimental calibration.

This paper will give some relations between the macroscopic
material behavior (i.e., constitutive laws) and the equivalent
properties that can be obtained from effective medium
theory. The main attempt is made on mechanical constitutive
relations; however, it will also address the possibilities of
using relations obtained from the use of effective medium
theory for calculating hydraulic and thermal conductivities of
the mixture.

EFFECTIVE MEDIUM THEORY AND
DEFORMATION PROPERTIES OF
DRY SOILS

As an example of effective medium theory and the application
to soil, the case of compressibility/stiffness is selected as a start
point. For the case of soils, or to what is often in porous
media physics referred to as “unconsolidated” porous materials,
effective medium theory has been applied by several researchers
to e.g., establish the dry bulk compressibility and shear modulus
of the composite, assuming a system of spheres and the Hertz-
Mindlin contact model (e.g., [9, 10]). In the geotechnical
engineering community, a similar attempt, but under a different
name “discrete element method,” have been made to find the
deformation characteristics of the composite (e.g., [11–13]).

The dry bulk compressibility derived from effective medium
theory, which will be a function of mean (effective) stress and/or
porosity (or void ratio) in addition to the contact stiffness
(grain compressibility) of the Hertz-Mindlin model, seems to
be relatively in line with the measured values from course-
graded soils (e.g., [14]). As seen from traditional geotechnical
testing of sand samples under isotropic stress condition, the
dry bulk compressibility, or the reciprocal property being the
bulk stiffness, is shown to be a function of porosity and/or
mean stress [1]. The empirical data typically gives that the bulk
stiffness of sand varies with the square root of the mean stress,
at least under the working stress levels normally encountered
in geotechnical engineering practice. Houlsby et al. [15] derived
a hyperelastic formulation, proposing a function for the elastic
strain energy (Helmholtz free energy) and/or the complementary
Gibbs free energy. The derivation from Houlsby et al. [15]
gives not only the variation of the bulk stiffness under isotopic
condition, as function of mean stress, but also the rest of the
4th order stiffness tensor and its stress dependency. As reviled
from the hyperelastic description, under general stress condition,
the stiffness is dependent on the general stress state not only
the mean stress. However, the formulation gives, under the
assumption of isotropic condition, a mean stress dependent bulk
stiffness, that then agrees very well with the results obtained
with effective medium theory [14]. It is worth noting, the
power dependency according to hyperelasticity can vary between
one (linear variation) and zero (constant stiffness), like the
experimental finding of e.g., Janbu [16]. Effective medium theory
under non-isotropic condition shows, as e.g., seen in Norris
and Johnson [17], that the bulk compressibility will become a
function of the tangential slip displacement in the contacts and
the tangential contact stiffness in the Hertz-Mindlin model. This
relates back to the general (shear) stress dependency found by
Houlsby et al. [15] and will also generate coupling terms between
bulk and shear stiffness in the medium in a similar way.

THE EFFECTIVE STRESS PRINCIPLE IN
SOILS, EFFECT OF PORE FLUID

The section above shows that the effective medium theory
essentially produces similar results for dry granular media as
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those relations already used in soil mechanics when it comes to
deformation of themedium. The natural next step would be to see
the relationship between effectivemedium theory and an effective
stress measure, in fully saturated soils. This is important since,
in geotechnical engineering, the effective stress is considered as
the only stress variable controlling the deformation of the soil. It
is well-established, through experimental work and theory, that
for saturated condition and for course-graded soils (i.e., sand
and gravel) the effective stress principle of Terzaghi is valid (see
for instance [18]). In the following, this concept is summarized.
In saturated condition, due the small contact area between the
relatively large grains, one may simply write up Equation (1)
considering one component of normal stress and the buoyancy
of the grains in water.

σ ′ =
1

A
·
(

A · σ − Aw ·
(

pw − pam
)

− A · pam
)

= σ − pam

+
Aw

A
·
(

pam − pw
)

(1)

Where A is the total area of a cross section taken through the
contact points, Aw is the area covered by water (note that water
can be replaced by any other non-reactive pore-fluids), σ

′ and
σ are the effective and total normal stress respectively, pw and
pam are the water and ambient pressures. This is in accordance
with the expression found by Bishop [19]. Further setting Aw/A
= 1 (i.e., ignoring the contact area between grains) and redefining
total stress as σ – pam, and pore pressure as pw – pam, yields the
Terzaghi effective stress as:

σ ′ = σ − pw (2)

Note that, in the above, compression and pressure is considered
as positive.

De Boer and Ehlers [20] used the concept of mixture
theory and free energy to show that, when the constituents
are considered as incompressible (incompressible grains and
incompressible fluid) and that the fluid are considered to have
negligible shear stress, the total partial solid stress tensor (acting
over the whole area) is additively decomposed into the pore-
liquid pressure and the effective stress tensor Equation (3). The
above assumption holds, as the shear stiffness of the fluid is zero
for Newtonian fluids and the viscosity times shear strain rate, in
the fluid, is negligible or zero (which holds for the assumption of
Darcy flow).

σij
S = σ ′

ij
S + nS · pF · δij (3)

Where nS is the volume fraction of solid and pF is fluid pressure.
Similar for the partial pore-fluid stress tensor (acting over the

whole area), the equation by de Boer and Ehlers yields:

σij
F = nF · pF · δij (4)

where nF is the volume fraction of fluid, which in geotechnical
engineering, in the case of saturated medium, is called porosity n
(the ratio between pore volume and total volume).

When combining Equations (3, 4) in to the total stress of the
effective medium, the following is obtained, since for saturated
case nS + nF = 1:

σij = σij
S + σij

F = σ ′
ij
S +

(

nS + nF
)

· pF · δij = σ ′
ij
S + pF · δij

(5)

This further clarifies, into the classical Terzaghi effective stress
[21], by replacing fluid with water and omitting the index S
for solid:

σ ′
ij = σij − pw · δij (6)

It will be for this effective stress that the constitutive equation,
for the mechanical behavior of the saturated mixture, should
be formulated.

For the case of partially saturated soil (which can be extended
to the case of more than one type of pore fluid), Nikooee et al.
[22] derived from a thermodynamic approach an analog stress to
the Bishop effective stress [23]:

σ ′
ij
(B) = σij − pa · δij + χ ·

(

pa − pw
)

· δij (7)

where pa is pore air pressure. Equation introduces the effective
stress parameter χ. The parameter χ is a function of the water
saturation (including the air entry value) and the specific air-
water interfacial area. Notice the similarity of Equations (7) to if
one sets χ = Aw/A. Other works, like that of Borja [24], show, by
using mixture theory, that the parameter χ can be set to be equal
to the degree of water saturation (Sw), meaning that the specific
air-water interfacial area would only be dependent on the soil and
degree of saturation and not if the soil is going through wetting
or drying. This is probably an assumption that does not hold
in reality and is easily proven incorrect by experimental testing
(e.g., [25]). Others like the work of Jiang et al. [26] and Huyghe
et al. [27] discuss the form of χ including the effect of wetting
and drying. In addition, as discussed by e.g., Molenkamp et al.
[28] and Manahiloh et al. [29], the Bishop effective stress actually
should be take a form like Equation (8), as due to soil fabric, the
effect of suction is not isotropic.

σ ′
ij
(B∗) = σij − pa · δij + χ ·

(

pa − pw
)

·
(

δij + χ̂ ·
(

αij − δij
))

(8)

Where A is introduced to account for the anisotropic effect of
suction due to the fabric tensor αij. The consequence of soil
fabric leads to an effective stress measure that is dependent on the
state variable (fabric). Therefore, it might be more appropriate to
work with Terzaghi’s definition of effective stress, Equation (6),
and suction (pa – pw) as an independent stress variable, at the
constitutive level.

As the effective stress is a well-established framework, working
well for coarse graded soil and has solid theoretical explanations,
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the next step is to look into more of the fine graded soils like
clay. Authors like Osipov [30] emphasizes on that the effective
stress principle above does not consider the influence of any
physicochemical forces on the effective stress. Mitchell and Soga
[31] found that the effective stress principle can be modified to
include the “far distance” attractive and repulsive electrostatic
forces and the close distance chemical bounds. After integrating
the effect of the close chemical bounding and the contact stresses,
this results in the following expression for effective stress:

σ ′
ij = σij + A− pw · δij (9)

where A (capital α, not Latin A) is representing the integral of
electrostatic attraction forces divided by area. However, the actual
value of A is very difficult to assess. The size and the sign of
which will be a function of particle orientation and distance,
the double layer thickness etc. For water saturated clays, with
no direct contact between particles, as in soft natural clays with
fully open pore structure, A is equal to the integral over the
local net disjoining/attractive pressure over the working areas,
divided by the total area. The net A is then a function of the
particle-to-particle distance, which in average is represented by
the porosity of the clay (i.e., the volume fraction of free water).
The link between this and the classical geotechnical terminology
is what we experience as the effect of the pre-consolidation stress,
pc

′, of the clay. In terms of constitutive modeling, this allows
for two options: A constitutive model formulated in terms of an
effective stress considering ‘A’; or using the previous definition of
effective stress, for saturated soils, and add an additional state
variable being the pre-consolidation stress. The latter being the
way it is often done in soil mechanics today. As an alternative,
a measure of porosity can be used as state variable. For a denser
clay, there might be formation of closed pores. In such case even
for saturated condition, the χ (as the ratio “Aw/A”) parameter
may locally be interpreted as less than one; and the local pore
pressure might be higher than hydrostatic pressure, as the
local encapsulated pressure cannot consolidate. Such behavior
typical the case for e.g., smectite rich clays (swelling clays).
However, this behavior may also be treated at a constitutive level
considering Terzaghi effective stress [32], since the local effective
stress is not needed for considering the macroscopic behavior
of clay aggregates, and the microscopic effects (particle-particle
interaction) can be included by state variables in the model (i.e.,
through fabric).

CONSTITUTIVE MODELING AND CHOICE
OF EFFECTIVE STRESS MEASURE

The relations between two physical quantities specified to a
material are called constitutive relations. Examples of constitutive
relations are that between potential differences and mean fluxes
(fluid, electrical, heat etc.) or between deformation gradients
and stresses (mechanical behavior). For soils, in the context of
soil mechanics, there are three main constitutive relationships
that needs to be addressed. Namely, for the hydraulic part (the
hydraulic conductivity, i.e., the fluid flux due to the gradient

in hydraulic potential, Darcy law, i.e., the 2nd order tensor, k),
for the thermal part (the thermal conductivity, i.e., the heat flux
due to temperature gradient, Fourier’s law, i.e., the 2nd order
tensor λ) and for themechanical part (change in effective stress in
relation to change in strain, i.e., the 4th order tangential stiffness
tensor,D).

The hydraulic conductivity, k, is a function of the soil
permeability (as a function of porosity and anisotropy) and
the fluid viscosity (as a function of temperature). In addition,
the gradient of hydraulic potential is linked through pressure
gradient and density (the fluid density is also a function
of temperature).

Even though the exact description on a macro level for
establishing the effective hydraulic and thermal conductivity
tensors are complicated, from the effective medium theory
perspective, the derivation of it is the same for both consolidated
and unconsolidated porous media.

The deformation properties of a dry porous media are
discussed in a previous section. Accepting that the effective stress
will be the only stress variable responsible for the mechanical
behavior, the same constitutive rules will apply to saturated or
partially saturated soils as for dry soils. Hence, the elastic stiffness
relations found from effective medium theory applies also here.
However, actually the elastic deformation of an unconsolidated
porous medium (i.e., the elastic portion of strain in the soil
material) normally only contributes with a small amount to the
total deformation. Actually, most of the deformations within a
soil material will be plastic deformations (strain that does not
contribute to increase in internal reversible energy).

By the assumption of incompressible solid constituents, as
shown by e.g., Gajo [33], the plastic strains in the medium (soil
skeleton) can be found from a formulation considering a yield
and potential surface that are formulated in terms of the effective
stresses defined in the previous section.

In case of compressible constituents, the tradition in soil/rock
mechanics community is to use the so-called Biot effective stress
definition instead of Terzaghi effective stress. In accordance with
Biot and Willis [34], the Biot effective stress, σ ′′

ij, is defined in
Equation .

σ̇ ′′
ij = σ̇ij − α · ṗw · δij (10)

Where α is the Biot parameter(assumed here as a constant).
Note that when both the soil skeleton and the solid grains
behave isotropically elastic, the volumetric deformation of the
solid grains can be included into the Biot parameter, from the
ratio of the bulk stiffness of the soil skeleton grain system to the
bulk stiffness of solid grains. Which, then in saturated condition
would be:

α = 1−
K ′′

KS
(11)

where K
′′
is bulk stiffness of the solid system (skeleton and

grains) and KS is supposed to be the stiffness of the solid grains.
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Then, the volumetric deformation of the system can simply be
calculated as:

ε̇v =
ṗ′′

K ′′ (12)

where p′′ is the mean Biot effective stress (p′′ = σ ′′
ii/3).

The other option is to use the Terzaghi effective stress
principle for the soil skeleton, and the effective medium theory
to find the effect of compressible constituents in the constitutive
level. In this case, the total volumetric strain in the system is
distributed into volumetric strain in the solid particles themselves
and volumetric strain of the soil skeleton. While the volumetric
strain in the soil skeleton is connected to the change in effective
mean stress (p′), the volumetric strain in the solid particles
is connected to the change in solid grains mean stress (ps).
According to Equation (3) the stress in solid grains depends on
both effective stress, p′, and pore pressure, pw. However, the solid
stress in Equation (3) is acting over the whole area, and it could
be rescaled on the solid surface forming the stress σS:

(σS)ij =
σij

S

1− n
=

σ ′
ij
S

1− n
+ pF · δij (13)

One can rewrite this equation in terms of mean stress rate as

ṗS =
ṗ′

1− n
+

p′

(1− n)2
· ṅ+ ṗw (14)

where the Terzaghi definition is used:

p′ = p− pw (15)

and p is the total mean stress and p′ is the effective mean stress.
The increment in volumetric strain in the particles is related to

pS through the bulk stiffness of the solid constituent, if the solid
grains behave isotropically elastic.

(ε̇S)v =
ṗS

K ′
S

(16)

where (εs)v is the volumetric strain of the particles and KS
′ is the

actual effective bulk stiffness of the solid material.
The increment in volumetric strain in the skeleton is related

to p′ through the bulk stiffness of the skeleton, if the skeleton
behaves isotropically elastic.

ε̇′v =
ṗ′

K ′ (17)

where ε′v is the volumetric strain of the skeleton and K′ is the
effective bulk stiffness of the soil skeleton. The total volumetric
strain of the system then can be calculated as

ε̇v = (1− n) · (ε̇S)v + ε̇′v (18)

Now, one can connect the Biot stiffness parameters to the
effective stiffness parameters through: (full derivation is given in
the Appendix)

KS =
K′

S

1− n
·
(

1−
p′

K′
S
·

n

1− n

)

(19)

K′′ =
(

1−
p′

K′
S
·

n

1− n

)

·
((

1−
p′

K′
S
·

1

1− n

)

·
1

K′ +
1

K′
S

)−1|

Note that normally both K′′ and K′ are function of n and/or p′. If
KS

′ ≫ p′ then the relations are simplified to Equation (20), and
only porosity dependency is present.

KS ≃ 1
1−n · K ′

S

K ′′ ≃
(

1
K′

S
+ 1

K′

)−1 (20)

Giving the Biot coefficient, as a function of porosity, as follows:

α ≃
K ′

S + n · K ′

K ′
S + K ′ (21)

The difference between using the Biot effective stress measure
and the Terzaghi effective stress is then simply the use of K′ or K′′

for bulk stiffness of the soil skeleton alone or for the solid system
in total, respectively, and KS or KS

′ for the grain contribution.
It means that selection of the stress measure is a choice as long
as one considers the effects at the constitutive level. Note that
the above relation with Terzaghi effective stress definition can be
extended to anisotropic elasticity, for the soil grains or the soil
skeleton, by modifying Equations or respectively. Table 1 gives a
brief summary of three of the stressmeasures, found in the article,
and the connection with required variables.

Since soil actually does not behave in an isotropic linear
elastic manner (see the section on effective medium theory
and deformation properties of dry soils), the Biot definition
of effective stress will be response dependent. Therefore, for
a non-linear, anisotropic and/or inelastic material response, it
is more convenient to have an effective stress measure that is
independent of response (Equation, 6), i.e., the Terzaghi effective
stress definition and solid stress as the stress state variables for the
mechanical constitutive model.

CONSTITUTIVE MODELING, CHOICE OF
FUNCTIONS AND STATE VARIABLES

For e.g., soft clays, it is often found that there is a linear
relationship between mean effective stress and elastic bulk
stiffness, for small variation in porosity. Such an observation
and others like it is essential information to be able to
formulate constitutive models for the mechanical behavior of
soils. However, the constitutive equations cannot be formulated
in an arbitrarily manner, the following should apply (not in a
specially ordered manner):

1. Behave in a deterministic manner or more strictly described:
Principle of causality
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TABLE 1 | Summary table of some stress measures.

Terzaghi Biot Bishop

Effective Stress σ ′ σ ′′ σ ′ (B)

Purpose for modification N.A. Deformable grains Unsaturated soil

Isotropic parameters/variables under “normal” isothermal

working condition

K′ K′′ and α K′ and χ

Additional variables needed in the constitutive model when

deformable grains should be modeled under isotropic

isothermal condition

pw, K
′
S No new variables

Note that α is function of porosity

(and σ ′, K′
S and K′)

Not part of this work

Additional variables needed in the constitutive model when

unsaturated soil should be modeled under isotropic

isothermal condition

pw, χ (and pa) Not part of this work No new variables

Note that χ is a function of pw − pa

2. Obey the 2nd law of thermodynamics (Entropy principle)
3. Behave objectively (Principle of material frame-indifference)
4. Preserve material symmetry, meaning that there

is a consistency between material symmetry and
constitutive equation.

5. Principle of equipresence, meaning that all constitutive
equations should include the all the same state variables.
Unless these are shown to have no effect. Or, that such a
presence is in violation with physical laws (i.e., reduced by the
other principles).

6. Finally, the constitutive behavior is to be described locally
(Principle of local action). Which means that it is only the
action on an infinitesimal space, which gives an effect in
this infinitesimal space. However, deviation from this point
is allowed in some cases, e.g., in order to use a continuum
description for a local phenomenon.

Constitutive Model for the
Mechanical Behavior
Houlsby and Puzrin [35] uses the fact that, in order to have a
hyper-elastoplastic description of the mechanical behavior of a
material, the constitutive equations should be formulated based
on the 1st and 2nd law of thermodynamics. As a consequence
of their derivation, it is possible to come up with a formulation
of so called yield and potential surfaces, formulated in the
conventional stress space (i.e., in terms of σ ′

ij, pw, pa, θ ,∇θ , dθ/dt,

∇(dθ/dt), κ). Where θ is temperature and κ is a set of internal
state variables. In the simplest form, κ is expressed simply by the
plastic strain tensor, ε

p
ij. Note that Houlsby and Puzrin uses the

dissipative generalized stress “Xij“ to formulate the framework in
their paper and also assuming that the mechanical work itself
must be dissipative (to obey the 2nd law of thermodynamics).
However, a transformation between a formulation in terms of
the dissipative generalized stress and conventional stress tensor is
possible. Normally, the elastoplastic description of soil materials
is not derived from energy potentials and dissipation functions,
but rather suggested expressions for yield surfaces, potential
surfaces and hardening rules, for the plastic or viscoplastic part.
For the elastic part, some uses a hypo-elastic description, in
other case a hyper-elastic description is used (where the latter is
definitely preferable).

Constitutive Relations for the Fluid Flow
Darcy’s law, for quasi-static condition (steady state) of a single-
phase flow in saturated porous media, gives that the fluid
velocity tensor, w, over the total area, with respect to the
soil skeleton grain system, is proportional to the difference in
hydraulic potential:

w = −
k

ρw · g
·
(

∇pw − ρw · g
)

(22)

Where:

w = n · (vw − v) (23)

and k is the hydraulic conductivity tensor (in geotechnical
engineering, referred to as permeability tensor, which for
isotropic condition is replaced by a single value k), vw is the actual
velocity tensor of the water, v is the velocity tensor of the skeleton
grain system, ρw is mass density of water, g is the gravitational
tensor [0 0 –g]T. The hydraulic conductivity is found from:

k = κ ·
ρw · g
µw

(24)

where κ is the absolute permeability tensor and µw is dynamic
viscosity of water. The absolute permeability tensor is expected
to be a function of the porosity, n, and anisotropy/fabric α.
µw and ρw are functions of temperature (θ) [and fluid pressure
(pw)]. The geotechnical engineering practice is to establish this
experimentally. However, effective medium theory can be used
to establish such a relationship. For the case of partially saturated
soil the concept of relative permeability as described in Brooks
and Corey [36] is normally followed. A concept easily extended
to anisotropic medium, e.g., [37].

Constitutive Relation for Heat Flow
Unlike the hydraulic conductivity, that depends on the absolute
permeability tensor, a property of the pore space, and the
properties of the fluid, the thermal conductivity depends on
structure of the skeleton, properties the solid part, structure of
the pores and properties of the pore fluid. Wang et al. [38] and
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Gong et al. [39] considered an isotropic representative volume
and showed that an unified equation, for a modified effective
medium theorymodel for the thermal conductivity of a two phase
system (particular case of a multiphase system), is in accordance
with Equation (25).

λ′ =
λS · λw + 2λm · ((1− n) · λS + n · λw)

(1− n) · λw + n · λS + 2λm
(25)

Where λ′ is the effective thermal conductivity, λS and λw are
thermal conductivities of the solid and fluid (water), respectively,
λm is the unknown effective medium conductivity parameter that
gives the coupling, extremes being series, or parallel coupling
(λm = 0 or λm = ∞). By setting λm = λ′, one retrieves a
more original form of the EMTmodel (for electrical conductivity
with spherical inclusions) by Landauer [40]. Note that λm likely
itself will be porosity dependent, but this dependency is not
significant, as discussed in e.g., Gong et al. [39] for the case of
a sand, where empirical findings agreed well with the use of
Equation (25). However, in general in a soil, it is expected that
the thermal conductivity may not be isotropic, but expressed
by a tensor (λ′). Which, also like the hydraulic conductivity,
depends on the fabric tensor, α. Establishing the full λ

′ tensor
can be done following the procedure of a modified EMT with
different structure in different directions, but little references to
such work can be found in literature. Even from an experimental
point of view, measurement of anisotropic thermal conductivity
is challenging [41]. Finally, the Fourier law gives that the heat flux
q is expressed as:

q = −λ
′ · ∇θ (26)

Note that in the above, properties as K′
S and λS are assumed

to be reflected by a single mineralogical composition. However,
natural soil is composed of a variety of different minerals with
varyingKS and λS. The calculation of these two average quantities
for the bulk of grains are ideal exercise in using EMT. For the
case of effective bulk stiffness of the solid such a relation will be
of the form of Equation (27) after modifying and extending the
Landauer [40] relation.

∑

(

nSi ·
K ′

S − Ki
S

f · K ′
S + Ki

S

)

= 0 (27)

Where nSi is the volume fraction of the solid constituent, i,
and f is a geometrical factor between zero and infinity. For the
effective (combined) solid thermal conductivity of the solid, λ′S,
the following relation may be used:

∑

(

nSi ·
λ′S − λiS

f · λ′S + λiS

)

= 0 (28)

Equations (27, 28) are not the exact form of the effective
quantities for the solid, because it does not reflect on the
anisotropy, but it is a simple suggestion as a start point.

Thermal Expansion

Based on the individual constituent the volumetric thermal
expansion follows the Equation (29)

ε̇θ ,v = −
∑

i

(

ni · αi

)

· θ̇ (29)

where αi is the volumetric thermal expansion of the constituent.
However, for the solid grains when combined in a soil skeleton
grain system, consisting of several different minerals, the thermal
expansion coefficient is not necessary isotropic.

FINAL GOVERNING EQUATIONS

Governing equations for a saturated porous media, in tensorial
form, are presented below. The mass balance equation is written
with an Eulerian description for the fluid phase with respect to
the Lagrangian solid:

nρ̇w − ρw
(

ε̇′v − ε̇θ ,v

)

+∇ . (ρwww) = 0 (30)

The first term in Equation (30) can be found by the bulk modulus
of water (Kw):

ρ̇w =
ṗw

K ′
w

(31)

Substituting Equations (18, 31, 29) in Equation (30), result in:

n

K′
w
ṗw − ρw

[

ε̇v − (1− n) · (ε̇S)v +
(

(1− n) · α′
S,v + n · αw

)

· θ̇
]

+∇ . (ρwww) = 0 (32)

Considering Equations (16, 32) can be rewritten as:

n

K′
w
ṗw − ρw

[

ε̇v − (1− n) ·
ṗs

K′
s
+
(

(1− n) · α′
S,v + n · αw

)

· θ̇
]

+∇ . (ρwww) = 0 (33)

Where the total volumetric strain is found from:

ε̇v = −∇ · v (34)

Introducing Equations (14, 34) into Equation (33) and
rearranging, one find the final form of the mass balance
equation as:



∇ · v+
ṗ′ + p′

1−n · ṅ
K ′

S
+
(

1− n

K ′
S

+
n

Kw

)

· ṗw (35)

−
(

(1− n) · α′
S,v + n · αw

)

· θ̇
)

· ρw +∇ · (ρw · w) = 0

Where α′
S,v and αw is the effective volumetric thermal expansion

coefficient of solid and thermal expansion coefficient of water,
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respectively. The particular form of Equation (35) is chosen such
that it includes the relative change in fluid pressure to solid stress
through Equation (14), by the change in effective mean stress
and/or due to change in porosity.

Equilibrium equation is written using the Terzaghi effective
stress definition plus solid stress, stand for describing the hydro-
mechanical behavior of a fully saturated system.

∇ · σ ′ +∇pw − ρ · g = 0 (36)

And finally for heat balance:

(

(1− n) · ρS · CS + n · ρw · Cw

)

· θ̇ + ρw · Cw · w · ∇θ +∇ · q
−Q = 0 (37)

where Q is the total heat supply (or loss). CS and Cw are heat
capacity of solid and fluid, respectively.

CONCLUSION

This article tries to connect the use of different concepts with
porous media physics, like effective medium theory, to the
classical concepts in soil mechanics/geotechnical engineering.
The article demonstrates that the use of the Terzaghi effective
stress principle is valid, for all types of geomaterials, as long
as the constitutive model for the material behavior considers
all relevant state variables. This means that there is no actual
need for a Biot or Bishop effective stress, or any modification of
such effective stress, to take into account of e.g., physiochemical
forces, grain compressibility or the capillary suction in partially
saturated soil. Especially since, the Biot parameter is anyway not
a constant, but is deformation dependent, the physiochemical

forces cannot be assessed properly and the capillary suction
anyway must be treated as a state variable at constitutive
level to account for soil fabric. For the case of compressible
grains this article proposes a modified mass balance equation
where the solid stress is included (rather that the Biot
parameter). The understanding, of the geomaterials, obtained
from effective medium theory and thermodynamics, shows that
the conventional methodology, as used in modern numerical
modeling in geotechnical engineering practice, is theoretically
sound. This includes things like effective stress dependent
stiffness, for themechanical part, and the description of hydraulic
and thermal conductivities where empirically based values
fits with well with theoretical EMT studies, as recorded in
various literature.
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APPENDIX

Derivation of the stiffness relation Equation (19).
Setting the rate of total stress in Equation (10) equal to the rate

of total stress derived from Equation (6) combined with Equation
(11) gives:

σ̇ ′
ij = σ̇ ′′

ij −
K ′′

KS
· ṗw · δij (A1)

Taking the trace and inserting Equations (12, 17)

K ′ · ε̇′v = K ′′ · ε̇v −
K ′′

KS
· ṗw (A2)

Combined with Equation (18)

K ′ · ε̇v − K ′ · (1− n) · (ε̇S)v = K ′′ · ε̇v −
K ′′

KS
· ṗw (A3)

Writing porosity change as:

ṅ = −ε̇′v + n · ε̇v (A4)

Inserting Equation (A4) into Equation (14) and combining with

Equation (16, 17)

K ′
S · (ε̇S)v =

K ′ · ε̇′v
1− n

+
p′

(1− n)2
·
(

−ε̇′v + n · ε̇v
)

+ ṗw (A5)

Then, replacing the εν
′ by using Equation (18) gives:

K ′
S ·(ε̇S)v =

K ′ ·
(

ε̇v − (1− n) · (ε̇S)v
)

1− n
−

p′

1− n
·
(

ε̇v − (ε̇S)v
)

+ṗw

(A6)
Which solved for (̇εν) gives:

(ε̇S)v =
(

K ′ − p′
)

· ε̇v + (1− n) · ṗw
(1− n) · K ′

S + (1− n) · K ′ − p′
(A7)

Inserting the resulting Equation (A7) into Equation (A3) and
rearranging gives:

(

K′
S − n

1−n · p′

K′
S + K′ − p′

1−n

)

·K′ · ε̇v−
K′ · (1− n)

K′
S + K′ − p′

1−n

· ṗw = K′′ · ε̇v−
K′′

KS
· ṗw

(A8)
Where, by grouping:

(

K ′
S − n

1−n · p′

K ′
S + K ′ − p′

1−n

)

·K ′ = K ′′and
K ′ · (1− n)

K ′
S + K ′ − p′

1−n

=
K ′′

KS
(A9)

Which, finally gives Equation (19).
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Pressures Inside a Nano-Porous
Medium. The Case of a Single Phase
Fluid
Olav Galteland*, Dick Bedeaux, Bjørn Hafskjold and Signe Kjelstrup

PoreLab, Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway

We define the pressure of a porous medium in terms of the grand potential and

compute its value in a nano-confined or nano-porous medium, meaning a medium

where thermodynamic equations need be adjusted for smallness. On the nano-scale,

the pressure depends in a crucial way on the size and shape of the pores. According

to Hill [1], two pressures are needed to characterize this situation; the integral pressure

and the differential pressure. Using Hill’s formalism for a nano-porous medium, we derive

an expression for the difference between the integral and the differential pressures in a

spherical phase α of radius R, p̂α − pα = γ /R. We recover the law of Young-Laplace

for the differential pressure difference across the same curved surface. We discuss the

definition of a representative volume element for the nano-porous medium and show that

the smallest REV is a unit cell in the direction of the pore in the fcc lattice. We also show,

for the first time, how the pressure profile through a nano-porous medium can be defined

and computed away from equilibrium.

Keywords: nano-porous media, thermodynamics of small systems, representative elementary volume, single

phase fluid, molecular dynamics simulations

1. INTRODUCTION

The description of transport processes in porous media poses many challenges that are well
described in the literature (see e.g., [2–6]). There is, for instance, no consensus, neither on the
definition nor on the measurement or the calculation, of the pressure in a porous medium with
flow of immiscible fluids. The problem with the ill-defined microscopic pressure tensor [5, 7] is
accentuated in a heterogeneous system with interfaces between solids and fluids. In a homogeneous
fluid phase one may define and calculate a pressure and a pressure gradient from the equation of
state. In a porous medium the presence of curved surfaces and fluid confinements makes it difficult
to apply accepted methods for calculation of the microscopic pressure tensor and, consequently,
the pressure gradient as driving force for fluid flow. The scale at which we choose to work will be
decisive for the answer. Moreover, the scale that the hydrodynamic equations of transport refer to,
remains to be given for nano-porous as well as micro-porous media.

A central element in the derivation of the equations of transport on the macro-scale is the
definition of a representative elementary volume (REV) (see e.g., [8, 9]). The size of the REV
should be large compared to the pore size and small compared to size of the porous medium. It
should contain a statistically representative collection of pores. We have recently discussed [10]
a new scheme to define a basis set of additive variables: the internal energy, entropy, and masses
of all the components of the REV. These variables are additive in the sense that they are sums of
contributions of all phases, interfaces and contact lines within the REV. Using Euler homogeneity
of the first kind, we were able to derive the Gibbs equation for the REV. This equation defines
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https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00060
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00060&domain=pdf&date_stamp=2019-04-24
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:olav.galteland@ntnu.no
https://doi.org/10.3389/fphy.2019.00060
https://www.frontiersin.org/articles/10.3389/fphy.2019.00060/full
http://loop.frontiersin.org/people/634365/overview
http://loop.frontiersin.org/people/633919/overview
http://loop.frontiersin.org/people/96520/overview


Galteland et al. Pressures Inside a Nano-Porous Medium

the temperature, pressure and chemical potentials of the REV as
partial derivatives of the internal energy of the REV [10].

As discussed in Kjelstrup et al. [11] the grand potential, ϒ ,
of the REV is given by minus kBT times the logarithm of the
grand partition function, Zg, where kB is Boltzmann’s constant
and T is the temperature. The grand potential is equal to minus
the contribution to the internal energy from the pressure-volume
term, kBT lnZg = ϒ = −pV , which we will from now on refer
to as the compressional energy. For a single fluid f in a porous
medium r, the result was [10, 11]

pV = pfV f + prVr − γ fr�fr , (1)

where p and V are the pressure and the volume of the REV.
Furthermore pf and V f are the pressure and the volume of the
fluid in the REV, pr and Vr are the pressure and the volume in
the grains in the REV, and γ fr and �fr are the surface tension and
the surface area between the fluid and the grain. The assumption
behind the expression was the additive nature of the grand
potential. This definition of the REV, and the expression for the
grand potential, opens up a possibility to define the pressure on
the hydrodynamic scale. The aim of this work is to explore this
possibility. We shall find that it will work very well for flow of
a single fluid in a porous medium. As a non-limiting illustrative
example, we use grains positioned in a fcc lattice. The work can
be seen as a continuation of our earlier works [10, 11].

The work so far considered transport processes in micro-
porous, not nano-porous media. In micro-porous media, the
pressure of any phase (the surface tension of any interface) is
independent of the volume of the phase (the area between the
phases). This was crucial for the validity of equation 1. For
nano-porous systems, we need to step away from Equation (1).
Following Hill’s procedure for small systems’ thermodynamics
[1], we generalize Equation (1) to provide an expression for the
thermodynamic pressure in a nano-porous medium.We shall see
that not only one, but two pressures are needed to handle the
additional complications that arise at the nano-scale; the impact
of confinement and of radii of curvature of the interfaces. In the
thermodynamic limit, the approach presented for the nano-scale
must simplify to the one for the macro-scale. We shall see that
this is so. In order to work with controlled conditions, we will first
investigate the pressure of a fluid around a single solid nano-scale
grain and next around a lattice of solid nano-scale grains. The
new expression, which we propose as a definition of the pressure
in a nano-porous medium, will be investigated for viability and
validity for this case. The present work can be seen as a first step in
the direction toward a definition and use of pressure and pressure
gradients in real porous media.

The pressure is not uniquely defined at molecular scale. This
lack of uniqueness becomes apparent in molecular dynamics
(MD) simulations, for which the computational algorithm has to
be carefully designed [7]. The predominant method for pressure
calculations in particular systems is using the Irving-Kirkwood
contour for the force between two particles [12]. This algorithm
works for homogeneous systems, but special care must be taken
for heterogeneous systems [5, 6]. However, if the control volume
(REV) used for pressure calculation is large compared with the

heterogeneity length scale, one may argue that the algorithm for
homogeneous systems gives a good approximation to the true
result. We are interested in the isotropic pressure averaged over
the REV, on a scale where the porous medium can be considered
to be homogeneous.

The paper is organized as follows. In section 2 we derive
the pressure of a REV for one solid grain surrounded by fluid
particles (Case I) and for a three-dimensional face-centered
cubic (fcc) lattice of solid grains (Case II). Section 3 describes
the molecular dynamics simulation technique when the system
is in equilibrium and in a pressure gradient. In section 4 we
use the theory to interpret results of equilibrium molecular
dynamics simulations for one solid grain and for an array of
solid grains in a fluid. Finally we apply the results to describe
the system under a pressure gradient. We conclude in the last
section that the expressions and the procedure developed provide
a viable definition of the pressures and pressure gradients in
nano-porous media.

2. THE PRESSURE OF A NANO-POROUS
MEDIUM

Equation (1) applies to a micro-porous medium, a medium
where the pore-size is in the micrometer range or larger
[10, 11]. For a nano-porous medium we need to apply the
thermodynamics of small systems [1]. In nano-porous media,
this technique is therefore well suited for the investigation.
The thermodynamic properties like internal energy, entropy and
masses of components of a small system are not proportional to
the system’s volume. As Hill explained, this leads to the definition
of two different pressures, for which he introduced the names
integral and differential pressure, p̂ and p, respectively. For a
system with a volume V , these pressures are related by

p(V) =
∂

(

p̂ (V)V
)

∂V
= p̂ (V) + V

∂
(

p̂ (V)
)

∂V
. (2)

The symbol p (the differential pressure) is given to the variable
that we normally understand as the pressure on the macroscopic
level. It is only when p̂ depends on V , that the two pressures are
different. For large systems, p̂ does not depend on V and the two
pressures are the same.

The integral and differential pressures connect to different
types of mechanical work on an ensemble of small systems. The
differential pressure times the change of the small system volume
is the work done on the surroundings by this volume change. The
name differential derives from the use of a differential volume.
This work is the same, whether the system is large or small. The
integral pressure times the volume per replica, however, is the
work done by adding one small system of constant volume to the
remaining ones, keeping the temperature constant. This work is
special for small systems. It derives from an ensemble view, but
is equally well measurable. The word integral derives from the
addition of a small system.

From statistical mechanics of macro-scale systems, we know
that pV equals kBT times the natural logarithm of the grand-
canonical partition function. For a small (nano-sized) system,
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Hill ([1], Equations 1–17), showed that this logarithm gives
p̂V . In nano-porous media this product is different from
pV , cf. Equation (1). Energies are still additive and the total
compressional energy within the small system is similar to
Equation (1). We replace Equation (1) by:

p̂V = p̂fV f + p̂rVr − γ̂ fr�fr , (3)

where p̂f , p̂r are integral pressures of the sub-volumesV f andVr ,
and γ̂ fr is the integral surface tension.

We consider here a nano-porous medium, so integral
pressures and integral surface tensions apply. The integral
pressure and integral surface tension normally depend on the
system size. In the porous medium there are two characteristic
sizes: the size of a grain and the distance between the surfaces
of two grains1. The quantities p̂, p̂f , p̂r and γ̂ fr may depend on
both. We shall here examine a system (cf. section 3) of spherical,
monodisperse grains, for which the radius R is a good measure
of the size. The volume of the grains may be a good alternative
measure, which we will also use. The dependence on the grain
size and on the distance between the surfaces of the grains will be
studied in an effort to establish Equation (3).

In the following, we consider a single spherical grain confined
by a single phase fluid (Case I) and a face-centered cubic (fcc)
lattice of spherical grains confined by a single phase fluid (Case
II). The size of the REV does not need to be large, and we will
show in section 4.2 that the smallest REV is a unit cell in the
direction of the pore in the fcc lattice.

2.1. Case I. Single Spherical Grain
Consider the inclusion of a spherical grain r in a box with fluid
phase f . This is system A in Figure 1. Phase f has volume V f

and phase r has volume Vr . The total volume is V = V f + Vr .
The surface area between phase f and r is�fr . The compressional
energy of system A has contributions, in principle, from all its
small parts

p̂AV = p̂fV f + p̂rVr − γ̂ fr�fr (4)

where p̂A is the unknown pressure in Equation (3). There is a hat
on the pressures and the surface tension, in the outset, because
the system is small. The pressure of the fluid in A is, however,
pf , meaning that p̂f = pf . When the surface tension depends
on the curvature, there is a dependence of γ̂ fr on �fr [13, 14].
This interesting effect, which we will not consider here, becomes
relevant as the grain size decreases. Only p̂r depends on the
volume of the phase, Vr . This gives

p̂AV = pfV f + p̂rVr − γ fr�fr (5)

We now introduce a system B in contact with A. System B
has volume V, contains pure fluid, and is tuned so that it is in
thermodynamic equilibrium with A. The equilibrium condition
requires that their grand canonical partition functions are equal,

1Another valid characteristic size is the size of the pores between the grains, but

this follows from the two we have chosen.

FIGURE 1 | A particle in a confined system (A) in equilibrium with a bulk fluid

phase (B).

which implies p̂AV = p̂BV , and with equal volumes this means
p̂A = p̂B. Furthermore, system B is not a small system in Hill’s
sense, which leads to:

p̂A = p̂B = pB = pf (6)

The fluid pressure pf is the same in phases A and B. We obtain

pfV = pfV f + p̂rVr − γ fr�fr , (7)

and by rearranging the terms,

p̂r = pf +
γ fr�fr

Vr
= pf +

3γ fr

R
. (8)

where we have used thatVr+V f = V and �fr

Vr = 3
R for a spherical

phase r.
The pressure of the rock particle depends on the volume of the

particle. The relation of the two pressures is according to Hill

pr =
∂(p̂rVr)

∂Vr
(9)

When this is combined with the equation right above, we find the
relation we are after

pr − pf =
2γ

R
, (10)

which is the familiar Young-Laplace’s law. By subtracting
Equation (10) from Equation (8), we obtain an interesting
new relation

p̂r − pr =
γ fr

R
(11)

The expression relates the integral and differential pressure
for a spherical phase r of radius R. It is clear that this pressure
difference is almost equally sensitive to the radius of curvature as
is the pressure difference in Young-Laplace’s law.

We see from this example how the integral pressure enters the
description of small systems. The integral pressure is not equal
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to our normal bulk pressure, called the differential pressure by
Hill, p̂r 6= pr . While two differential pressures satisfy Young-
Laplace’s law in Equation (10), the integral pressures do not. The
integral pressure has the property that when averaged over system
A using Equation (4), it is the same as in system B, cf. Equation
(6). This analysis shows that system A is a possible, or as we shall
see proper, choice of a REV that contains the solid grain, while
system B is a possible choice of a REV that contains only fluid.

2.2. Case II. Lattice of Spherical Grains
The above explanation concerned a single spherical grain andwas
a first step in the development of a procedure to determine the
pressure of a nano-porous medium. To create a more realistic
model, we introduce now a lattice of spherical grains. The integral
pressure of a REV containing n grains is given by an extension of
Equation (3)

p̂AV = pfV f +
n

∑

i=1

p̂riV
r
i −

n
∑

i=1

γ̂
fr
i �

fr
i , (12)

For each grain onemay follow the same derivation for the integral
and differential pressure as for the single grain. By using Equation
(8), we obtain

p̂ri = pf + γ
fr
i

�
fr
i

Vr
i

= pf +
3γ

fr
i

Ri
, (13)

where the last identity applies to spherical grains only. The
differential pressure of the grains is given by a generalization of
Equation (10)

pri =
∂(p̂riV

r
i )

∂Vr
i

=
∂(pfVr

i )

∂Vr
i

+ γ
fr
i

∂�
fr
i

∂Vr
i

= pf + γ
fr
i

∂�
fr
i

∂Vr
i

= pf +
2γ

fr
i

Ri
, (14)

where the last identity is only for spherical grains. The differential
pressures again satisfy Young-Laplace’s law at equilibrium.

When all grains are identical spheres and positioned
on a fcc lattice, a properly chosen layer covering
half the unit cell can be a proper choice of the
REV. We shall see how this can be understood
in more detail from the molecular dynamics
simulations below. The REV is larger if the material
is amorphous.

3. MOLECULAR DYNAMICS SIMULATIONS

Cases I and II were simulated at equilibrium, while
case II was simulated also away from equilibrium.
Figures 3–8 illustrate the equilibrium simulations of the
two cases.

3.1. Systems
The simulation box was three-dimensional with side lengths
Lx, Ly, Lz .The box was elongated in the x-direction, Lx >

Ly = Lz . Periodic boundary conditions were used in all
directions in the equilibrium simulations. In the non-equilibrium
simulation, reflecting particle boundaries [15] were applied to
the x-direction, cf. section 3.5. Along the x-axis, the simulation
box was divided into n rectangular cuboids (called layers)
of size 1x, Ly, Lz , where 1x = Lx/n. The volume of each
layer is Vl = 1xLyLz . There are two regions A and B in
the simulation box. Region A contains fluid (red particles)
and grains (blue particles) and region B contains only fluid,
see Figure 2. The regions, B = B1 + B2 and A do not
have the same size, but the layers have the same thickness,
1x. The compressional energy of the fluid in one layer is,

p̂
f

l
V
f

l
= plV

f

l
.

The simulation was carried out with LAMMPS [16] in the
canonical ensemble using the Nosé-Hoover thermostat [17], at
constant temperature T∗ = 2.0 (in Lennard-Jones units). The
critical temperature for the Lennard-Jones/spline potential (LJ/s)
is approximately T∗

c ≈ 0.9. Fluid densities range from ρ∗ = 0.01
to ρ∗ = 0.7.

3.2. Case Studies
In case I the single spherical grain was placed in the center of
the box. A periodic image of the spherical grain is a distance
Lx, Ly and Lz away in the x, y and z-directions, see Figure 4A.
The surface to surface distance of the spherical grains is d =
Lα − 2R, where R is the radius of the grain, and α = y, z.
In case I, each spherical grain has four nearest neighbors in
the periodic lattice that is built when we use periodic boundary
conditions. We considered two nearest neighbor distances;
d = 4σ0 and d = 11σ0, where σ0 is the diameter of the
fluid particles.

In case II, the spherical grains were placed in a fcc lattice
with lattice constant a. The two shortest distances between the
surfaces were characterized by d1 = 1

2 (
√
2a − 4R) and d2 =

a − 2R, see Figure 2, where d1 < d2. We used d1 = 4.14σ0
and d1 = 11.21σ0, which is almost the same as the distances
considered in case I. The corresponding other distances were
d2 = 10σ0 and d2 = 20σ0. Each grain has 12 nearest neighbors
at a distance d1.

FIGURE 2 | A slice of the simulation box in case II. The box has side lengths

Lx , Ly , Lz , and properties are calculated along the x-axis in layers l of width

1x. Blue particles are grain r and red particles are fluid f . The A is the lattice

constant of the fcc lattice, d1 and d2 are the two shortest surface-to-surface

distances.
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In all cases we computed the volume of the grains Vr
l
, the

surface area �
fr

l
and the compressional energy of each layer, l,

in the x-direction.

3.3. Particle Interaction Potential
The particles interact with the Lennard-Jones/spline potential,

uij(r) =



























∞ if r < Rij

4ǫij

[

(

σij−Rij
r−Rij

)12
−

(

σij−Rij
r−Rij

)6
]

if Rij < r < rs,ij

aij(r − rc,ij)
2 + bij(r − rc,ij)

3 if rs < r < rc,ij

0 if r > rc,ij

.

(15)
Each particle type has a hard-core diameter Rii and a soft-core

diameter σii. There were two types of particles, small particles
with σff = σ0, Rff = 0 and large particles with σrr = 10σ0, Rrr =
9σ0. The small particles are the fluid (f ), and the large particles
are the grain (r). The hard-core and soft-core diameters for
fluid-grain pairs are given by the Lorentz mixing rule

Rfr =
1

2

(

Rff + Rrr
)

and σfr =
1

2

(

σff + σrr
)

. (16)

We define the radius of the grain particles as R ≡ (σff + σrr)/2 =
5.5σ0, which is the distance from the grain center where the
potential energy is zero. Fluid particles can occupy a position
closer to the grain than this, this is illustrated in Figure 3.
The figure shows the radial distribution function, g(r), of fluid
particles around a single spherical grain. The density of fluid
varied between ρ∗ = 0.1 and ρ∗ = 0.7. This shows that the
average distance from the grain particle and the closest fluid
particle is approximately 5.5σ0, but the fluid particles are able to
occupy positions closer to the grain particle.

The interaction strength ǫij was set to ǫ0 for all particle-
particle pairs. The potential and its derivative are continuous in
r = rc,ij. The parameters aij, bij and rs,ij were determined so that

FIGURE 3 | The radial distribution function of fluid particles around a grain, as

shown in Figure 4. Results are shown for densities that vary between

ρ∗ = 0.1 and ρ∗ = 0.7.

the potential and the derivative of the potential (the force) are
continuous at r = rs,ij.

3.4. Pressure Computations
The contribution of the fluid to the grand potential of layer l
is [12]

p
f

l
V
f

l
=

1

3

〈

∑

i∈l

mi(vi · vi)

〉

−
1

6

〈

∑

i∈l

N
∑

j=1

(rij · fij)

〉

, (17)

where p
f

l
is the fluid differential pressure, V

f

l
the fluid volume,mi

and vi are the mass and velocity of fluid particle i. The first two
sums are over all fluid particles i in layer l, while the second sum is
over all other particles j. Half of the virial contribution, the second
term in Equation (17), is assigned to particle i and the other half
to particle j. The virial contribution assigned to the solid particles
are not included. rij ≡ ri − rj is the vector connecting particle i
and j, and fij = −∂uij/∂rij is the force between them. The ·means

an inner product of the vectors. The computation gives p̂
f

l
, which

is the contribution to the integral pressure in layer l from the fluid
particles, accounting for their interaction with the grain particles.

3.5. The Porous Medium in a Pressure
Gradient
We used the reflecting particle boundary method developed by Li
et al. [15] to generate a pressure difference across the system along
the x-axis. Particles moving from right to left pass the periodic
boundary at x = 0 and x = Lx with probability

(

1− αp

)

and
reflected with probability αp, whereas particles moving from left
to right pass freely through the boundary. A large αp gives a high
pressure difference and a low αp gives a low pressure difference.

4. RESULTS AND DISCUSSION

The results of the molecular dynamics simulations are shown
in Figures 4–8 (equilibrium) and Figures 9, 10 (away from
equilibrium). The porous medium structure was characterized
by its pair correlation function, cf. Figure 3. The compressional
energy was computed according to equation 4 in case I with a
single spherical grain and case II with a lattice of spherical grains.

We computed the compressional energy, plVl, in the bulk
liquid (region B) and in the nano-porous medium (region A).
In the bulk liquid we computed the pressure directly from the

compressional energy, because plVl = p
f

l
V
f

l
(not shown).

Figures 4, 6 show the various contributions to the
compressional energy, cf. equation 4. The grain particles
were identical and the system was in equilibrium, so the
integral pressure in the grains was everywhere the same,
p̂r
l

= p̂r . Similarly, the surface tension was everywhere the

same, γ
fr

l
= γ fr .

The grain pressure p̂r and surface tension γ fr were fitted such
that the pressure is everywhere the same and are plotted as a
function of the fluid pressure pf . The results for case II were next
used in Figures 9, 10 to determine the pressure gradient across
the sequence of REVs in the porous medium.
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FIGURE 4 | (A) Illustration of case I, a single spherical grain surrounded by a

fluid phase with d = 4σ0. (B) Volume of grain, Vr , (C) surface area �fr and (D)

compressional energy pV as a function of the x-axis of the simulation box.

4.1. Case I. Single Spherical Grain.
Equilibrium
The single sphere case is illustrated in Figure 4A. Figures 4B,C
show the variation in the volume of the porous medium (rock),
Vr
l
, and the surface area between the rock and the fluid, �fr ,

along the x-axis of the simulation box. The two quantities were
determined for all layers, l, and these results were used in the plots
of Figures 4B,C. To be representative, the REV must include the
solid sphere with boundaries left and right of the sphere. In order
to obtain pREVVREV we summed plVl over all the layers in the
REV. At equilibrium, pREV = p, where p is the pressure in the
fluid in region B. For the REV we then have

pVREV =
∑

l∈REV

p
f

l
V
f

l
+ p̂r

∑

l∈REV

Vr
l − γ fr

∑

l∈REV

�
fr

l
, (18)

where we used that p̂r
l
= p̂r and γ

fr

l
= γ fr . We know the values of

all the elements in this equation, except p̂r and γ fr . The values of
p̂r and γ fr are fitted such that the pressure, p in Equation (18)
is everywhere the same. With these fitted values available, we
calculated plVl of each layer from

plVl = p
f

l
V
f

l
+ p̂rVr

l − γ fr�
fr

l
. (19)

The contributions to the compressional energy in this equation
for case I are shown in the bottom Figure 4D. We see the

contribution from (1) the bulk fluid p
f

l
V
f

l
, (2) the bulk fluid

and grain p
f

l
V
f

l
+ p̂rVr

l
and (3) the total compressional energy,

plVl = p
f

l
V
f

l
+ p̂rVr

l
− γ fr�fr , which gives the pressure of the

REV when summed and divided with the volume of the REV.
Figure 4D shows clearly that the bulk pressure energy gives

the largest contribution, as one would expect. It is also clear that
the surface energy is significant. As the surface to volume ratio
increases, the bulk contributions may become smaller than the
surface contribution (not shown). In the present case, this will
happen when the radius of the sphere is 2.25σ0. For our grains
with R = 5.5σ0, this does not happen.

The plots of p̂r and γ fr as functions of p in region B are shown
in Figure 5. The values for d = 4σ0 and d = 11σ0 are given in
the same plots. We see that the plots fall on top of each other.
This shows that the integral pressure and the surface tension
are independent of the distance d in the interval considered. If
confinement effects were essential, we would expect that p̂r and
γ fr were functions of the distance d between the surfaces of the
spheres. When the value of d decreases below 4σ0, deviations
may arise, for instance due to contributions from the disjoining
pressure. Such a contribution is expected to vary with the surface
area, and increase as the distance between interfaces become
shorter. In plots like Figure 5, we may see this as a decrease in
the surface tension.

4.2. Case II. Lattice of Spherical Grains.
Equilibrium
Consider next the lattice of spherical grains, illustrated in
Figure 6A. Figures 6B,C give the variation in the volume of the
porous medium Vr

l
and surface area, �fr , along the x-axis.

When the REV in region A is properly chosen, we know that
pREV = p. In equilibrium, the pressure of the REV is constant in
the bulk liquid phases, in regions B1 or B2, where p is the pressure
of the fluid in region B. In order to obtain pVREV in region A, we
sum plVl over all the layers that make up the REV, and obtain

pVREV =
∑

l∈REV

p
f

l
V
f

l
+ p̂r

∑

l∈REV

Vr
l − γ fr

∑

l∈REV

�
fr

l
, (20)

To proceed, we find first the values of all the elements in this
equation, except p̂r and γ fr . The values of p̂r and γ fr are fitted
such that the pressure is everywhere the same. Using these fitted
values, we next calculated p̂lVl of each layer using

plVl = p
f

l
V
f

l
+ p̂rVr

l − γ fr�
fr

l
(21)

The contributions to the compressional energy in this equation
are shown in three stages in Figure 6D: (1) bulk fluid

contribution p
f

l
V
f

l
, (2) bulk fluid and grain contribution

p
f

l
V
f

l
+ p̂rVr

l
and (3) the total compressional energy, plVl =

p
f

l
V
f

l
+ p̂rVr

l
− γ fr�fr . Figure 6D shows clearly that the bulk

contribution is largest, as is expected. However, the surface
energy is significant.

From Figure 6B it follows that a proper choice of the REV is a
unit cell, because all REVs are then identical, (except the REVs at
the boundaries). The integral over plVl in these REVs is the same
and equal to pVREV. The layers l are smaller than the REV and as
a consequence p̂lVl will vary, a variation that is seen in Figure 6D.
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FIGURE 5 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for a sphere (characteristic length d = 4σ0 and d = 11σ0).

FIGURE 6 | (A) Illustration of case II, a lattice spherical grain surrounded by a

fluid phase with a = 20σ0. (B) Volume of grain, Vr , (C) surface area �fr and

(D) compressional energy pV as a function of the x-axis of the simulation box.

The smallest REV is a unit cell.

The values for p̂r and γ fr are shown as a function of pf for case
II in Figure 7 for d1 = 4.14σ0 and d1 = 11.21σ0. We see now a
systematic difference between the values of p̂r and γ fr in the two
cases. The integral pressure and the surface tension increases as
the distance between the grains decreases. The difference in one
set can be estimated from the other. Say, for a difference in surface
tension1γ fr we obtain for the same fluid pressure from equation
11, a difference in integral pressure of 1p̂r = 31γ fr/R. This is
nearly what we find by comparing the lines in Figure 6, the lines
can be predicted from one another using R = 6.5σ0 while the
value in Figure 3 is R = 5.5σ0. The difference may be due to the
disjoining pressure. Its distribution is not spherically symmetric,
which may explain the difference between 6.5σ0 and 5.5σ0.

The results should be the same as for case I for the larger
distance, and indeed that is found, cf. Figure 8. As the distance

between the grain surfaces increases, we expect the dependence
on confinement to disappear, and this is documented by Figure 8
where the two cases are shown with distances d = 11σ0 and
d1 = 11.21σ0, respectively. The curves for the single grain and
lattice of grains overlap.

The knowledge gained above on the various pressures at
equilibrium is needed to construct the REV. The size of the REV
includes the complete range of potential interactions available in
the system, but not more. To find a REV-property, we need to
sample the whole space of possible interactions. The thickness of
the REV is larger than the layer thickness used in the simulations.

Our analysis therefore shows that the pressure inside grains
in a fcc lattice and the surface tension, depends in particular on
the distances between the surfaces of the spheres, including on
their periodic replicas. A procedure has been developed to find
the pressure of a REV, from information of the (equilibrium)
values of p̂r and γ fr as a function of pf . It has been documented
in particular for nano-porous medium, but is likely to hold for
other lattices, even amorphous materials when the REV can be
defined properly.

4.3. Case II. Lattice of Spherical Grains.
Non-equilibrium
Figure 9 illustrates the system in the pressure gradient, where
Figure 9B shows the compressional energy, pV , along the x-
axis. The dip in the pressure close to x = 0 is caused by the
reflecting particle boundary, cf. section 3.5. The reflecting particle
boundary introduces a surface between the high pressure on the
left side and the low pressure on the right side.

To show first how a REV-property is determined from the
layer-property, consider again the compressional energies of each
layer. In the analysis we used the fcc lattice with lattice parameter
a = 20σ0. The volume of the grain, Vr , and the surface area, �fr ,
varied of course in the exact same way as in Figures 6B,C. The
pressure gradient was generated as explained in section 3.5. The
pressure difference between the external reservoirs B1 and B2 was
large, giving a gradient with order of magnitude 1012 bar/m. The
fluid on the left side is liquid-like, while the fluid on the right
side is gas-like. The smallest REV as obtained in the analysis at
equilibrium is indicated in the figure.

In order to compute a REV variable away from equilibrium,
we therefore follow the procedure described by Kjelstrup et al.
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FIGURE 7 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for the lattice of spheres (characteristic length d1 = 4.14σ0 and d1 = 11.21σ0).

FIGURE 8 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for the sphere (characteristic length d = 11σ0) and a lattice of spheres

(characteristic length d1 = 11.21σ0).

[10] and choose a layer as a reference point. We then compute
the average using five layers, two to the left, two to the right
and the central layer. Moving one layer down the gradient, we
repeat the procedure, and in this manner we obtain the property
variation on the REV scale. The results of the simulation gave, for
each individual layer, pl

l
V l
l
, as plotted in Figure 9B. The profile

created by the REV-centers is shown in Figure 10. We see a
smooth linear profile (central curve) as one would expect from
the boundary conditions that are imposed on the system. Some
traces of oscillation are still left in the separate contributions to
the total compressional energy.

We have seen that a nano-porous medium is characterized
by pressures in the fluid and the solid phases, as well as the
surface tension between the fluid and the solid. When one
reduces the size of a thermodynamic system to the nano-meter
size, the pressures and the surface tensions become dependent
on the size of the system. An important observation is then
that there are two relevant pressures rather than one. Hill [1]
called them the integral and the differential pressure, respectively.
It is maybe surprising that the simple virial expression works
so well for all pressure calculations in a fluid, but we have
found that it can be used. We will next be able to study
transport processes, where the external pressure difference is a
driving force. The method, to compute the mechanical force
intrinsic to the porous medium, may open interesting new
possibilities to study the effects that are characteristic for
porous media.

FIGURE 9 | (A) Illustration of case II in a pressure gradient. (B) Compressional

energy pV variation across the system.

In a macro-scale description, the so-called representative
elementary volume (REV) is essential. The REVmakes it possible
to obtain thermodynamic variables on this scale. We have here
discussed how the fact that the macro-scale pressure is constant
in equilibrium makes it possible to obtain the integral pressure
in the solid, as well as the surface tension, of the liquid-
solid contacts in the REV. An observation which confirms the
soundness of the procedure is that we recover Young-Laplace’s
law for the differential pressures. The existence of a REV for
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FIGURE 10 | Compressional energy pV variation across the system smoothed

over the representary elementary volume.

systems on the nano-scale supports the idea of a REV that can
be defined for pores also of micrometer dimension [10]. There is
no conflict between the levels of description as they merge in the
thermodynamic limit. The REV, as defined in the present work,
may allow us to develop a non-equilibrium thermodynamic
theory for the nano-scale.

5. CONCLUSIONS

The following conclusions can be drawn from the above studies

• We have obtained the first support for a new way to compute
the pressure in a nano-porous medium. The integral pressure
of themedium is defined by the grand potential. The definition
applies to the thermodynamic limit, as well as to systems which
are small, according to the definition of Hill [1].

• It follows that nano-porous media need two pressures in their
description, the integral and the differential pressure. This is
new knowledge in the context of nano-porous media.

• For a spherical rock particle of radius R, we derive a relation
between the integral and the differential pressure in terms
of the surface tension, p̂r − pr = γ /R. Their difference is
non-negligible in the cases where Young-Laplace’s law applies.

• We have constructed two models of a porous medium, case I
with a single spherical grain and case II with a fcc lattice of
spherical grains. The new method to compute the pressure

in these nano-porous mediums is not specific to these two
cases, it is general. The method can be used on, e.g., a random
distribution of spherical grains, but the REV will need to be

larger in order to include all possible microstates. The REV
needs in general to be larger as the heterogeneity of the porous
medium increases.

• To illustrate the concepts, we have constructed a system with
a single fluid. The rock pressure and the surface tension are
constant throughout the porous medium at equilibrium. The
assumptions were confirmed for a porosity change from φ =
0.74 to 0.92, for a REV with minimum size of a unit cell.

• From the assumption of local equilibrium, we can find the
pressure internal to a REV of the porous medium, under
non-equilibrium conditions, and a continuous variation in the
pressure on a macro-scale.

To obtain these conclusions, we have used molecular dynamics
simulations of a single spherical grain in a pore and then for
face-centered lattice of spherical grains in a pore. This tool is
irreplaceable in its ability to test assumptions made in the theory.
The simulations were used here to compute the integral rock
pressure and the surface tension, as well as the pressure of the
representative volume, and through this to develop a procedure
for porous media pressure calculations.

Only one fluid has been studied here. The situation is expected
to be more complicated with two-phase flow and an amorphous
medium. Nevertheless, we believe that this first step has given
useful information for the work to follow. We shall continue
to use the grand potential for the more complicated cases, in
work toward a non-equilibrium thermodynamic theory for the
nano-scale.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the work done. OG carried out
the simulations.

ACKNOWLEDGMENTS

The calculation power was granted by The Norwegian

Metacenter of Computational Science (NOTUR). We thank the
Research Council of Norway through its Centres of Excellence
funding scheme, project number 262644, PoreLab.

REFERENCES

1. Hill TL. Thermodynamics of Small Systems. New York, NY: Dover (1964).

2. Gray WG, Miller CT. Thermodynamically constrained averaging theory

approach for modeling flow and transport phenomena in porous medium

systems: 8. Interface and common curve dynamics. Adv Water Resour. (2010)

33:1427–43. doi: 10.1016/j.advwatres.2010.07.002

3. Bennethum LS, Weinstein T. Three pressures in porous media. Transp Porous

Media. (2004) 54:1–34. doi: 10.1023/A:1025701922798

4. Magda J, Tirrell M, Davis H. Molecular dynamics of narrow, liquid-filled

pores. J Chem Phys. (1985) 83:1888–901. doi: 10.1063/1.449375

5. Todd B, Evans DJ, Daivis PJ. Pressure tensor for inhomogeneous fluids. Phys

Rev E. (1995) 52:1627. doi: 10.1103/PhysRevE.52.1627

6. Ikeshoji T, Hafskjold B, Furuholt H. Molecular-level calculation

scheme for pressure in inhomogeneous systems of flat and spherical

layers. Mol Simulat. (2003) 29:101–9. doi: 10.1080/10286620210000

2518a

7. Hafskjold B, Ikeshoji T. Microscopic pressure tensor for hard-

sphere fluids. Phys Rev E. (2002) 66:1–4. doi: 10.1103/PhysRevE.66.0

11203

8. Hassanizadeh SM, Gray WG. Mechanics and thermodynamics of multiphase

flow in porous media including interphase boundaries. Adv Water Resour.

(1990) 13:169–86. doi: 10.1016/0309-1708(90)90040-B

9. Gray WG, Hassanizadeh SM. Macroscale continuum mechanics

for multiphase porous-media flow including phases, interfaces.

Adv Water Resour. (1998) 21:261–81. doi: 10.1016/S0309-1708(96)0

0063-2

10. Kjelstrup S, Bedeaux D, Hansen A, Hafskjold B, Galteland O. Non-isothermal

transport of multi-phase fluids in porous media. the entropy production.

Front Phys. (2018) 6:126. doi: 10.3389/fphy.2018.00126

Frontiers in Physics | www.frontiersin.org 9 April 2019 | Volume 7 | Article 60114

https://doi.org/10.1016/j.advwatres.2010.07.002
https://doi.org/10.1023/A:1025701922798
https://doi.org/10.1063/1.449375
https://doi.org/10.1103/PhysRevE.52.1627
https://doi.org/10.1080/102866202100002518a
https://doi.org/10.1103/PhysRevE.66.011203
https://doi.org/10.1016/0309-1708(90)90040-B
https://doi.org/10.1016/S0309-1708(96)00063-2
https://doi.org/10.3389/fphy.2018.00126
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Galteland et al. Pressures Inside a Nano-Porous Medium

11. Kjelstrup S, Bedeaux D, Hansen A, Hafskjold B, Galteland O. Non-isothermal

transport of multi-phase fluids in porousmedia. Constitutive Equations. Front

Phys. (2019) 6:150. doi: 10.3389/fphy.2018.00150

12. Irving JH, Kirkwood JG. The statistical mechanical theory of transport

processes. IV. The equations of hydrodynamics. J Chem Phys. (1950) 18:817–

29. doi: 10.1063/1.1747782

13. Tolman RC. The effect of droplet size on surface tension. J Chem Phys. (1949)

17:333–7. doi: 10.1063/1.1747247

14. Helfrich W. Elastic properties of lipid bilayers: theory and possible

experiments. Zeitschrift für Naturforschung C. (1973) 28:693–703.

15. Li J, Liao D, Yip S. Coupling continuum to molecular-dynamics simulation:

reflecting particle method and the field estimator. Phys Rev E. (1998) 57:7259–

67. doi: 10.1103/PhysRevE.57.7259

16. Plimpton S. Fast parallel algorithms for short - range molecular dynamics. J

Comput Phys. (1995) 117:1–19. doi: 10.1006/jcph.1995.1039

17. Hoover WG, Holian BL. Kinetic moments method for the

canonical ensemble distribution. Phys Lett Sect A. (1996) 211:253–7.

doi: 10.1016/0375-9601(95)00973-6

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Galteland, Bedeaux, Hafskjold and Kjelstrup. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physics | www.frontiersin.org 10 April 2019 | Volume 7 | Article 60115

https://doi.org/10.3389/fphy.2018.00150
https://doi.org/10.1063/1.1747782
https://doi.org/10.1063/1.1747247
https://doi.org/10.1103/PhysRevE.57.7259
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/0375-9601(95)00973-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 07 May 2019

doi: 10.3389/fphy.2019.00065

Frontiers in Physics | www.frontiersin.org 1 May 2019 | Volume 7 | Article 65

Edited by:

Josè S. Andrade Jr.,

Universidade Federal do Ceará, Brazil

Reviewed by:

Wenzheng Yue,

China University of Petroleum, Beijing,

China

Bikas K. Chakrabarti,

Saha Institute of Nuclear Physics,

India

*Correspondence:

Santanu Sinha

santanu@csrc.ac.cn

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 11 January 2019

Accepted: 15 April 2019

Published: 07 May 2019

Citation:

Sinha S, Gjennestad MA, Vassvik M,

Winkler M, Hansen A and Flekkøy EG

(2019) Rheology of High-Capillary

Number Two-Phase Flow in Porous

Media. Front. Phys. 7:65.

doi: 10.3389/fphy.2019.00065

Rheology of High-Capillary Number
Two-Phase Flow in Porous Media
Santanu Sinha 1,2*, Magnus Aa. Gjennestad 2, Morten Vassvik 2, Mathias Winkler 2,

Alex Hansen 2,1 and Eirik G. Flekkøy 3

1 Beijing Computational Science Research Center, Beijing, China, 2 PoreLab, Department of Physics, Norwegian University of

Science and Technology (NTNU), Trondheim, Norway, 3 PoreLab, Department of Physics, University of Oslo, Oslo, Norway

Flow of immiscible fluids in porous media at high capillary numbers may be characterized

by an effective viscosity. We demonstrate that the effective viscosity is well-described

by the Lichtenecker-Rother equation. Depending on the pore geometry, wettability, and

viscosity of the fluids, the exponent α in this equation can have different values. We

find α = 1 when fluids are well-mixed with small bubbles, α = 0.6 in two- and 0.5 in

three-dimensional systems when there is less mixing with the appearance of big bubbles,

and α = −0.5 when lubrication layers are formed along the pore walls. Our arguments

are based on analytical and numerical methods.

Keywords: porous media, two-phase flow, effective viscosity, pore-network modeling, lattice-boltzman method

(LBM)

1. INTRODUCTION

The hydrodynamics of real systems very often happens at small scale, such as in a porous medium
[1]. This is the case in a wide variety of biological, geological, and technological systems where there
are often several immiscible fluids present. The challenge of describing such systems in a unified
way, however, is largely unsolved. An important reason for this is the lack of a length scale above
which the system may be averaged. Such a length scale gives rise to the representative elementary
volume (REV) which is the conceptual basis for conventional theories that seek to up-scale the
description of flow in porousmedia. However, since the fluid structures in question are often fractal,
the REV average of intensive quantities, such as saturations, will depend on the size of the REV.

An important and rather general exception where this is not a problem, is the case of steady
state flow [2, 3]. Steady state flow is characterized by potentially strong fluctuations at the pore
scale, but with steady averages at the REV scale. Steady state configurations have much in common
with ensembles in equilibrium statistical mechanics. Steady state flow implicitly assumed in
conventional descriptions of porous media flows that take the existence of a REV for granted.

When the flow in question contains immiscible phases that are strongly forced in the sense
that viscous forces dominate capillary forces, the description of the steady state simplifies to the
description of a single fluid. This is the subject of the present work, and we show how the emergent
description is manifestly incompatible with the conventional theories that have been in use for
more than 80 years, most notably perhaps by the petroleum industry.

2. THEORY

The first and still leading theory describing immiscible two-phase flow in porous media is that of
Wyckoff and Botset [4]. They based their theory of relative permeability on the idea that when the
porous medium is seen from the viewpoint of one of the fluids, the pore volume accessible to this

116
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fluid would be the pore volume of the porous medium minus
the pore volume occupied by the other fluid. This reduces
the effective permeability seen by either fluid and the relative
reduction factor is the relative permeability. In order to account
for the surface tension between the immiscible fluids in the pores,
the concept of capillary pressure was introduced [5]. The central
equations in relative permeability theory are

Evj = −
K

µj
kr,j(Sj) E∇Pj , (1)

where the subscript j either refers to the wetting fluid (j = w)
or the non-wetting fluid (j = n). Evw and Evn are superficial
velocities of the two fluids, defined as the volumetric flow rates
of each fluid entering a REV divided by the area of entry. K
is the permeability of the porous medium, µw and µn are the
wetting and non-wetting viscosities. kr,w(Sw) and kr,n(Sw) are the
relative permeabilities and they are both functions of the wetting
saturation Sw only. The corresponding non-wetting saturation
is Sn = 1 − Sw. The wetting and non-wetting pressure fields
Pw and Pn are related through the capillary pressure function
Pc(Sw) = Pn−Pw.We define a total superficial velocity Ev given by,

Ev = Evw + Evn . (2)

Ev is defined as the volumetric flow rate of all fluids entering the
REV divided by the area of entry.

Let us now consider the case when the flow rates are so large
that the capillary pressure may be ignored. Hence, we have Pn =
Pw = P and we may combine the relative permeability Equation
(1) with Equation (2) to find

Ev = −K

[

kr,w(Sw)

µw
+

kr,n(Sn)

µn

]

E∇P = −
K

µeff(Sw)
E∇P , (3)

where we have defined an effective viscosity µeff as

1

µeff(Sw)
=

kr,w(Sw)

µw
+

kr,n(Sn)

µn
. (4)

There have been many suggestions as to what functional form
the relative permeabilities kr,w(Sw) and kr,n(Sw) take. The most
common choice is to use those of Brooks and Corey assuming
kr,w(Sw) = k0r,wS

nw
w and kr,n(Sw) = S

nn
n where 0 ≤ k0r,w ≤ 1

and the Corey exponents nw and nn being typically in the range
2–6 [6, 7].

Equation (4) is problematic. When µw = µn, a dependency
of µeff on the saturation is predicted when nw and/or nn are
larger than 1when using the Brook–Corey relative permeabilities.
Other functional forms for the relative permeabilities give similar
dependencies. Clearly, such behavior is not physical.

McAdams et al. [8] proposed an effective viscosity for two-
phase flow by assuming a saturation-weighted harmonic average

1

µeff
=

Sw

µw
+

Sn

µn
. (5)

Cicchitti et al. [9] proposed an effective viscosity based on the
saturation-weighted arithmetic average

µeff = µwSw + µnSn . (6)

Both of these expressions become saturation-independent when
µw = µn as they should. There are several other proposals for the
functional form of the effective viscosityµeff in the literature [10].

A one-dimensional porous medium, e.g., a capillary tube
where the two fluids move as bubbles in series [11] constitutes
a series coupling and the arithmetic average (6) is appropriate.
If the capillary tubes forms a parallel bundle, each filled with
either only the wetting or the non-wetting fluid, we have a
parallel coupled system and Equation (5) is appropriate. We now
consider a capillary bundle, where each capillary i in the bundle is
filled with a bubble train with a corresponding wetting saturation
Sw,i. The probability distribution for finding a capillary having
this saturation, Sw,i, is p(Sw,i) so that

Sw =
∫ 1

0
dS p(S) S . (7)

The capillary bundle is essentially a parallel combination of tubes,
each filled with a series of bubbles. The effective viscosity for the
capillary bundle is therefore given by,

1

µeff
=

∫ 1

0

p(S) dS

µwS+ µn(1− S)
. (8)

As a model for the distribution p(Sw,i), we may take a Gaussian
with a narrow width σ centered around Sw: p(Sw,i) =
exp[−(Sw,i − Sw)

2/2σ 2]/
√
2πσ 2. Using this distribution for

saturation we can integrate Equation (8) using a saddle point
approximation and we find to order σ 2 that,

µeff = µwSw + µnSn −
(µn − µw)

2

µwSw + µnSn
σ 2 . (9)

We now consider a wide distribution of saturations in the
capillaries. Considering a uniform distribution for p(Sw,i) in
Equation (8) rather than a Gaussian, we find for an average
wetting saturation Sw = 1/2,

µeff =

∣

∣

∣

∣

∣

∣

µw − µn

ln
(

µw
µn

)

∣

∣

∣

∣

∣

∣

. (10)

The functional form of the latter equation is very different from
the one for the Gaussian distribution, Equation (9).

For the extreme case when the capillaries are filled completely
by either the wetting or the non-wetting fluids given by p(Sw,i) =
Swδ(Sw,i− 1)+ Snδ(Sw,i), we find the effective viscosity according
to Equation (5), as already pointed out. Wemay study this either-
or situation in a more complex network, namely a square lattice.
We assume that the wetting saturation is set to Sw = 1/2, which
defines the bond percolation threshold and that the links are
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randomly filled with either fluid. We may then use Straley’s exact
result [12] leading to an effective viscosity

µeff =
√

µwµn . (11)

We may calculate the effective viscosity of a regular lattice by
using Kirkpatrick’s mean field theory [13]. The mobility between
nodes i and j is Kij/µij where Kij is the permeability and µij is the
effective viscosity of the link given byµij = µwSw,ij+µnSn,ij. Here
Sw,ij and Sn,ij are the local wetting and non-wetting saturations in
the links between the nodes. This form of µij is due to the fluids
being connected in series in one link. Kirkpatrick’s theory is based
on the idea that the network with link mobilities Kij/µij may be
replaced by a network with a uniform mobility K/µeff such that
the total network mobility remains the same. In that case, the
value of K/µeff is given by [13]

〈 K
µeff

− Kij

µij

Kij

µij
+

[(

z
2

)

− 1
]

K
µeff

〉

= 0, (12)

where z is the coordination number of the lattice.
Considering the wetting saturation distribution p(Sw,ij)
fulfilling Equation (7), the ensemble average is given by,

〈...〉 =
∫ ∞
0 dKijP(Kij)

∫ 1
0 dSw,ijp(Sw,ij)..., where P(Kij) is the

permeability distribution. We assume a square lattice so that
z = 4. By assuming that the saturation distribution is a narrowly
peaked Gaussian with width σ , we may again use the saddle
point approximation to get,

µeff = µwSw + µnSn +O
(

|µn − µw|σ 2
)

. (13)

This is similar to that found for the parallel capillary
bundle, Equation (9).

From the systems giving rise to Equations (9), (10), (11), and
(13), the form of µeff is not clear. Does it depend on the details of
the porousmedium or is there a general form?Wemay generalize
Equations (5) and (6) by writing them in the form

µα
eff = µα

wSw + µα
nSn, (14)

where α = −1 for parallel coupling and α = +1 for
series coupling. Equation (14) has been used for estimating
the effective electrical permittivity of heterogeneous conductors
and in connection with permeability homogenization in porous
media and is known as the Lichtenecker–Rother equation [14–
17]. The effective viscosity in (11) corresponds to α → 0, whereas
Equations (9) and (13) suggest α = 1. Only Equation (10) does
not fit this form.

In order to test Equation (14) in case of a porous medium, we
now present two numerical approaches in the following: dynamic
pore-network modeling and lattice Boltzmann simulations.

3. PORE-NETWORK MODELING

The dynamic pore-network model used here has successfully
explained several experimental and theoretical results for

both the transient and steady-state two-phase flow in porous
media over decades [18–21]. During the transients, the
model shows the different regimes of two-phase flow, namely
the capillary fingering, viscous fingering, and the stable
displacement pattern while changing the capillary number
and viscosity ratio [18]. In the steady state, the crossover
from linear Darcy regime to a quadratic regime that was
observed experimentally have also been studied with this
pore-network model [19, 22]. The model have also shown
the experimental observation of history independence in
the steady-state two-phase flow at higher capillary numbers
[20]. Recently, relations between steady-state seepage
velocities in porous media was obtained analytically by
introducing of a new velocity function, the co-moving velocity.
These relations were also established numerically with this
model [23].

In the model, the porous medium is represented by a network
of links, connected at nodes. In the links, two immiscible fluids,
separated by interfaces, are transported. We consider both two-
dimensional (2D) and three-dimensional (3D) networks for our
simulations. For 2D, regular square and honeycomb networks
with disordered link radii are used, whereas for 3D, reconstructed
pore networks extracted from real samples are used [19]. The flow
rate inside a link between two neighboring nodes i and j with
respective pressures pi and pj obeys

qij = −
gij

lij

(

pj − pi
)

, (15)

where lij is the link length and gij is the link mobility which
is inversely proportional to the link viscosity given by µij =
µwSw,ij+µnSn,ij [24, 25]. There is no contribution to the pressure
from interfaces as the surface tension (γ ) is zero. This sets the
capillary number, defined as the ratio of viscous to capillary forces
given by Ca = uµr/γ , to infinity. Here u is the Darcy velocity
and µr is the viscosity of the more viscous fluid. Simulations are
performed with a constant global pressure drop 1P across the
network and the local pressures (pi) are determined by solving
the Kirchhoff equations. Flow rates qij through each link are then
calculated using Equation (15) and the interfaces are moved with
small time steps.

A crucial point here is how to distribute the two fluids after
they mix at the nodes. Whether the system will allow high or
low fragmentation of the fluids will depend on the geometry
and nature of the pore space [26, 27]. This will have impact on
the size of the bubbles and the number of interfaces inside a
link. As small bubbles of either fluid may not necessarily imply
a large number of interfaces or vice versa, we implemented two
different algorithms for the interface dynamics. In the bubble-
controlled algorithm, we decide the minimum size of a bubble
before entering a link and in the interface-controlled algorithmwe
decide the maximum number of interfaces that can exist in a link.
We considered two different possibilities for each algorithm: for
the bubble-controlled case, (A) small bubbles are allowed, with
minimum sizes bmin = 0.02rij, (B) bubbles with sizes at least
equal to the respective pore radii (bmin = rij) are allowed. For the
interface-controlled algorithm, we study two cases, (C) one with
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maximum four and (D) another with maximum two interfaces
per link. Our model does not include lubrication layers, and the
simulations therefore cannot capture the wetting film effects at
the pore walls. More details of the interface algorithm is provided
in the Supplementary Material.

4. LATTICE BOLTZMANN SIMULATIONS

We then turn to lattice Boltzmann simulations which have no
explicit parameters for the bubble size or for the number of
interfaces and permits arbitrary shapes of the fluid domains
within the link. The lattice Boltzmann model applied here is
based on the original triangular lattice and the interaction rules
first introduced by Gunstensen et al. [28]. It models the Navier–
Stokes equation for two immiscible fluids within a 2D pore
geometry of rectangular pipes of equal width, and in the pores
the fluids organize only according to the flow and geometry of the
system. The two fluids are represented by different colors, here
red (more viscous) and blue (less viscous), and their respective
densities ρr and ρb define a local color gradient. The surface
tension is introduced by the application of two steps, first a
perturbation of the mass distribution that is proportional to the
magnitude of the color gradient, thus increasing the mass in the
directions transverse to a fluid-fluid interface, and second, a re-
coloring step that sends red toward red and blue toward blue.
Both steps conserve the local momentum, the first step creates
the change in the stress tensor which is responsible for the surface
tension, and the last step causes an anti-diffusive flux of both
phases. The solid obstacles are represented by the bounce-back
rule, which ensures the hydrodynamic no-slip condition and the
wetting property is controlled by coloring the solid obstacles with
the same saturations as in the bulk fluid. The aim is to simulate
flows that are not governed by surface tension effects and this
wetting rule creates a relatively neutral wetting property that does
not affect the flow as much as full wetting of one phase. The
model also allows for tuning of the surface tension γ, so that
the capillary number given by Ca = uµr

γ
, is set to high values.

Here, u is the overall Darcy velocity and µr is the viscosity of
the red fluid with higher viscosity. In all the simulations Ca >

9. For the more viscous wetting fluid, the wetting saturation
Sw = ρr/(ρr + ρb) controls the viscosity according to the
local rule

µ =
[

Sw +M(1− Sw)
]

µr , (16)

where M = µb/µr here and the pressure gradient is
implemented as a constant body force in the diagonal
direction point to upper right corner of the simulation
domain. The body force is introduced as a constant
momentum input at every time step and at every
lattice site.

Initially, the flow velocity is zero everywhere and ρr and ρb
initialized according to the specified value of Sw but with a small
random component added. This randomness then triggers an
initial phase separation which is responsible for the subsequent
distribution of bubbles. Unlike the network modeling, the
wetting effects of the pore walls are included here [29]. For the

neutral wetting condition and for more viscous wetting fluid,
we choose a rectangular pore network to emulate the network
model. For the case of complete wetting with less viscous wetting
fluid, the wetting layers are important and we therefore avoid the
singular sharp corners. The model is implemented on a 128×128
biperiodic lattice with the pressure gradient implemented as a
constant body force in the diagonal direction pointing to the
upper right corner.

5. RESULTS AND DISCUSSION

We perform simulations under constant external pressure drop
1P and the systems are evolved to the steady state. The results
here are in the high capillary number regime and therefore
do not depend on the history or the initial preparation of the
system [20]. In the steady state, we compare the results with
(µeff/µw)

α = Sw +MαSn (Equation 14), whereM = µn/µw. In
the network model, we measure the total flow rateQ as a function
of the saturations Sw. As Q = − KA

Lµeff
1P, we measure µeff/µw

by calculating Qw/Q where Qw is the total flow rate at Sw = 1.
In the lattice Boltzmann simulations, the µeff is calculated by
measuring the effective permeability, obtained by measuring the
total flux Q through the system and dividing by the forcing or
average pressure gradient. We chose M = 2, 5, and 10 here.
Higher values of M increase the computational cost and do not
change the conclusions of this study for the network model with
γ = 0. Simulations with M and 1/M produce the same results
due to symmetric bubble rules and the absence of film flow in
the network model. Depending on the pore geometry, wettability
and viscosities of the fluids, we find three flow regimes. All can
be characterized by Equation (14) with three different values of
α. When smaller bubbles (model A) or more interfaces (model
C) are allowed in the network model, we find α = 1 for both
2D and 3D systems as shown in Figures 1, 2, respectively were
the fluids are well mixed. This regime is also observed in the
lattice Boltzmann simulations for neutral wetting properties, or
when the wetting fluid is more viscous. This is shown in Figure 3,
where the straight lines confirm α = 1 in Equation (14). Here the
continuous merging and break-up of droplets give rise to a flow
where each pore channel contains a sequence of individual drops.
The fluids effectively behave as if they are arranged in series, and
on the average the life-time of the droplets does not have any
impact on the up-scaled behavior.

When we allow only larger bubbles with the size of the order
of the pore size (model B) or few interfaces (model D) in the
network model, we find α = 0.6 for 2D and α = 0.5 for 3D
that are consistent with Equation (14). Results are plotted in
Figures 4, 5, respectively. Here the steady-state fluid distribution
shows less mixing and larger clusters compared to Figure 1. This
also affects the fractional flow, making the less viscous fluid to
flow with higher velocity (Supplementary Material). So far, we
could not find a set of suitable parameters or pore geometry for
the lattice Boltzmann simulations that can reproduce this regime
of flow.

When the wetting fluid is made less viscous in the lattice
Boltzmann simulations, it produces lubrication layers of the
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FIGURE 1 | (A) Plot of (µeff/µw)
α obtained from 2D network simulations (symbols) with small bubbles (A) or with many interfaces (C). Results are consistent with

Equation (14) (straight lines) with α = 1. A steady-state snapshot for model C is shown in (B), where gray and blue are the wetting and non-wetting fluids respectively.

Here the wetting fluid is more viscous and the results for less viscous wetting fluid are the same for the network model due to the symmetry in the interface rules and

the lack of film flow mechanism in the model.

FIGURE 2 | (A) Plot of (µeff/µw)
α for 3D networks reconstructed from Berea sandstone and sandpack samples for the simulations with four interfaces (C). Results

are consistent with Equation (14) (straight lines) with α = 1, similar to the 2D networks. A snapshot of fluids in Berea sandstone in the steady state for model C is

shown in (B), where blue and red are the wetting and non-wetting fluids respectively.

FIGURE 3 | (A) Plot of (µeff/µw)
α obtained from lattice Boltzmann simulations with more viscous wetting fluid which shows α = 1 when compared with Equation (14).

(B) Typical steady-state distribution of the fluids, where the blue and red are the more viscous (wetting) and less-viscous (non-wetting) fluids, respectively.

wetting fluid along the pore walls. This introduces a third
regime with a negative value of α. The results are shown
in Figure 6 which indicate a robust α = −0.5 behavior
over a range of M values. This means that, due to the

lubrication layers flow comes close to the parallel-coupling
scenario, which is described by α = −1, but there is still
a significant difference. The flow paths that appear in parallel
are not stationary as they would be in a parallel coupled
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FIGURE 4 | (A) Plot of (µeff/µw)
α obtained from network simulations with larger bubbles (B) or few interfaces (D) which shows α = 0.6 for 2D. (B) Typical

steady-state snapshot for model D, showing less mixing of fluids and larger clusters compared to Figure 1B.

FIGURE 5 | (A) Plot of (µeff/µw)
α for 3D networks reconstructed from Berea sandstone and sandpack samples for the simulations with two interfaces (D). Results are

consistent with Equation (14) (straight lines) with α = 0.5. A steady-state snapshot of Berea sandstone for model D is shown in (B), where blue and red are the wetting

and non-wetting fluids respectively.

FIGURE 6 | (A) Plot of (µeff/µw)
α from lattice Boltzmann simulations with less viscous wetting fluid where we find α = −0.5. The steady state is dominated by

lubrication layers of less viscous blue fluid as seen in (B). The end points close to Sw = 1 fall a little below 1, which could have several explanations, one being finite

Reynolds numbers, an effect that is likely to increase with increasing M the way the simulations are done.

system, they break up and merge continuously. We could
not study this regime with our network model as the model
does not contain film flow. It will be interesting to study
this in the future with a network model that includes the
film flow [30].

6. CONCLUSION

In summary, we show that immiscible two-phase flow in porous
media at high capillary number limit can be characterized by
measuring the effective viscosity in the steady state. We find that

Frontiers in Physics | www.frontiersin.org 6 May 2019 | Volume 7 | Article 65121

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sinha et al. Rheology of High-Capillary Number Flow

the Lichtenecker–Rother Equation (14) describes the effective
viscosity well for different flow configurations. We identified
three flow regimes characterized by the exponent α, which
depend on the organization of the two fluids in the pores. When
the fluids are well mixed, we find a result which is consistent
with the Kirkpatrick’s mean field theory [13] with α = 1. This
is observed in both the network model and lattice Boltzmann
simulations, by allowing small bubbles or more interfaces in the
network model, and with the neutral wetting condition or more
viscous wetting fluid in the lattice Boltzmann simulations. When
only larger bubbles or fewer interfaces are allowed, we find the
second regime with α = 0.6 in 2D and α = 0.5 in 3D with
the network model. Third, when the wetting fluid is less viscous,
lubrication layers are formed at the pore walls, and we find α =
−0.5 from the lattice Boltzmann simulations.

Finally, we like to point out that in the network model, we
have varied the minimum bubble size over the range 0.02rij to
0.5rij finding α decreasing gradually from 1 to 0.6. Taking into
account that rij ≤ 0.4 l, where l is the link length, this shift of α

from 1 to 0.6 occurs over the narrow range from 0.008 l to 0.2 l,
indicating that we see a crossover. In case of the lattice Boltzmann
simulation there is no gradual transition with different wetting
properties from α = 1 to α = −0.5. The former is observed in
the neutrally wetting case or in the case when the viscous fluid
is the completely wetting. The latter is observed in the case of
complete wetting of the less viscous fluid.
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Wettability alteration was proposed as one of the enhanced oil recovery (EOR)

mechanisms for nanoparticle fluid (nanofluid) flooding. The effect of nanoparticle

adsorption on wettability alteration was investigated by wettability index measurement

of Berea sandstone core injected with nanofluids and by contact angle measurement of

a glass surface treated with nanofluids. Nanoparticle adsorption was studied by single

phase coreflooding with nanofluids in Berea sandstone. The adsorption isotherm and

the impact of adsorption on the effective permeability were investigated by measuring

the effluent nanoparticle concentration and differential pressure across the core. Results

showed that hydrophilic nanoparticles (e.g., fumed silica) made the core slightly more

water wet, and hydrophobic nanoparticles (e.g., silane modified fumed silica) delayed

spontaneous imbibition but could not alter the original wettability. It was found that

hydrophilic nanoparticles treatment reduced contact angle between oil and water by

about 10 to 20 degree for a glass surface. Results also showed that different types of

nanoparticle have different adsorption and desorption behavior and different ability to

impair the permeability of Berea sandstones cores.

Keywords: wettability alteration, nanoparticle, adsorption and desorption, transport, contact angle

INTRODUCTION

The wettability of reservoir rock plays an important role in oil field development. It controls
the relative permeability, capillary pressure, and residual oil distribution. Altering wettability to a
favorable status will lead to more oil production. It has been reported that oil recovery is optimum
at slightly water-wet to neutral wet reservoir [1]. Traditionally, surfactant flooding was utilized to
alter reservoir rock wettability to more water wet, which can enhance spontaneous imbibition and
increase oil recovery during water injection [2, 3]. Hammond and Unsal [4] discussed the possible
mechanisms of wettability alteration with surfactants. They include surfactant adsorption onto rock
surface and surfactant complexing with contaminant molecules of crude oil that are adsorbed on
the rock surface and stripping them off. Salehi et al. studied themechanisms of wettability alteration
using surfactant in naturally fractured reservoirs, they found that both ion-pair formation and
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adsorption of surfactant molecules are the two main mechanisms
responsible for altering the rock wettability to more water-wet,
and surfactants with higher charge density on the head groups
were more effective in altering wettability to a more water-
wet state [2].

Recently, nanoparticles were proposed as wettability alteration
agents to change the wettability of reservoir rock [5, 6].
A nanoparticle is a particle with size ranging from 1 to
100 nm. A nanoparticle suspension is called a nanofluid. It
has been applied in many different disciplines including heat
transfer [7], biomedicines [8], and soil remediation [9]. Besides
EOR and wettability alteration, nanofluids have been proposed
for applications on exploration, drilling and production,
equipment manufacturing, refining and processing [10]. The
EOR mechanisms of a nanofluid were discussed by Li et al. [11].
They include interfacial tension reduction, wettability alteration,
pore channels plugging, disjoining pressure, and emulsification.

Miranda et al. [12] reported that silica nanoparticles have
many advantages as EOR agents, such as: (1) 99.8% of silica
nanoparticle is silicon dioxide, which is the main component
of sandstone, thus making it an environmentally friendly
material; (2) properties such as thermal conductivity, stress–
strain relationship and rheology strongly depend on size and
shape of the nanoparticles, which can be tailor designed
during the manufacturing process; (3) the chemical behavior
of nanoparticles can be controlled by changing surface coating;
(4) the price of silica nanoparticle is cheaper than most of
EOR chemicals.

The ability of nanoparticles to alter the wettability has
been extensively studied. Contact angle measurements show
that different types of nanoparticle (silicon dioxide, iron oxide,
aluminum oxide and titanium dioxide) can reduce contact angle
between oil and water, making surface more water wet regardless
of initial surface wettability [13–16]. Microfluidic flooding
experiments show that nanofluid flooding can alter wettability
of glass grains. Nanoparticle adsorption on glass grains leading
to wettability change from oil wet to water wet was observed in
microfluidic experiments [13]. Lu et al. [17] reported imbibition
of nanofluids into a capillary channel that changes wettability to
strongly water wet, so the residual oil formed spherical droplets
and can move freely with low resistance. Disjoining pressure
is proposed as another mechanism of wettability alteration by

FIGURE 1 | Cryo-TEM image of nanoparticles: Right: FNP; Left: CNP.

nanofluids. Various researchers have investigated the ability of a
nanofluid to displace oil from a solid surface due to disjoining
pressure [18–20]. The phenomenon of nanoparticles ordering
themselves into a confined wedge between an oil drop and a
solid substrate is a consequence of entropy increase of the overall
nanofluids by permitting greater freedom for nanoparticles in
the bulk liquid. These ordered microstructures exert an excess
pressure separating the two surfaces confining the nanofluids.
This excess pressure is defined as a structural disjoining pressure
[20]. The particles that are present in this three-phase contact
region tend to form a wedge-like structure and force themselves
between the discontinuous phase and the substrate. Particles
present in the bulk fluid exert a pressure forcing the particles
in the confined region to move forward. The energies that drive
this mechanism are Brownian motion and electrostatic repulsion
between the particles. The force imparted by a single particle is
extremely weak, but when large amounts of small particles are
present, the pressure can be upwards of 50,000 Pa at the vertex.
Particle size and the associated particle charge density also affect
the strength of this force. The smaller the particle size, the higher
is the charge density, and the larger is the electrostatic repulsion
between those particles. When this force is confined to the vertex
of the discontinuous phase, displacement occurs in an attempt
to regain equilibrium. As with any colloidal system, particle size,
temperature, salinity and surface characteristics of the substrate
affect the magnitude of the disjoining force [21].

Adsorption and transport behavior of nanoparticles inside
porous media play a very critical role for wettability alteration.
Normally, when hydrophilic nanoparticles are injected into

FIGURE 2 | SEM image of nanoparticles: Right: FNP; Left: CNP.

TABLE 1 | Fluid properties.

Fluid Density*, g/cm3 Viscosity*, cP

3 wt. % NaCl brine 1.022 1.003

0.05 wt. % FNP nanofluid 1.022 1.086

0.2 wt. % FNP nanofluid 1.022 1.155

0.5 wt. % FNP nanofluid 1.022 1.563

0.05 wt. % CNP nanofluid 1.022 1.033

0.2 wt. % CNP nanofluid 1.022 1.034

0.5 wt. % CNP nanofluid 1.022 1.037

*All properties were measured under room temperature.
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a porous medium, five phenomena can occur: adsorption,
desorption, blocking, transport and aggregation of nanoparticles.
Five forces dominate the interactions between nanoparticles
and pore walls: the attractive potential force of van der Waals,
repulsion force of electric double layers, Born repulsion, acid-
base interaction, and hydrodynamics [22]. When the total force
of these five forces is negative, the attraction is larger than
repulsion between nanoparticles and pore walls, which leads
to adsorption of nanoparticles on the pore walls. Otherwise
desorption of nanoparticles from the pore walls will occur.
Adsorption and desorption is a dynamic balance process
controlled by the total force between nanoparticles and pore
walls. Zhang et al. [23] discussed that both reversible and
irreversible adsorption of nanoparticles occur during transport
through porous media. Blocking will take place if the diameter
of the particle or nanoparticle aggregate is larger than the size
of pore throat. Aggregation of nanoparticles happens if the

previous equilibrium system breaks up and nanoparticles form
clusters [24].

In this paper, in order to study the effect of nanoparticles
(hydrophilic and hydrophobic) adsorption on wettability
alteration, several commonly used silica nanoparticles were used.
Two approaches were used in wettability alteration experiments.
First, overall wettability change of a core plug treated with
nanoparticles was studied by measuring the wettability index.
Second, the contact angle between oil and water was measured
on a glass surface soaked in a nanofluid. The results from
these two approaches were analyzed comprehensively. Since
the nanoparticle adsorption is crucial for wettability alteration
of the core, the adsorption behavior of nanoparticles inside
porous media was investigated by single phase coreflooding of a
nanofluid. Nanoparticles adsorption curves and differential
pressure curves were plotted to analyzed nanoparticles
adsorption and transport behavior inside porous media.

FIGURE 3 | Size distribution measured by DLS: (A) FNP; (B) CNP. The Y axis is light scattering intensity.

FIGURE 4 | Nanoparticles coreflooding apparatus. (1) Pump fluid (Exxol D60); (2) injection line; (3) Quzix Pump; (4) Valve; (5) Pump Fluid in reservoir; (6) Piston plate;

(7) Brine; (8) Nanofluids; (9) Nanofluids; (10) Oil line; (11) Brine/Nanofluids line; (12) Bypass Valve; (13) Hassler Core Cell; (14) Core plug; (15) Pressure gauge; (16)

Sleeve pressure; (17) connection cable; (18) Computer; (19) Accumulator; (20) electrical resistivity meter.
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This study is novel in several aspects. First, this is the first
quantitative study of the ability of nanoparticles to change
the wettability of a core using the wettability index, which
can provide an overall wettability state for an oil reservoir.
Second, this is the first reported study of the transport of
nanoparticles in Berea sandstone cores giving the transport
behavior of nanoparticles in such porous medium with complex
pore structures.

MATERIALS AND METHODS

Nanoparticle
Hydrophilic fumed silica nanoparticles (FNP),
dimethyldichlorosilane modified hydrophobic fumed silica
nanoparticles (FNP-O) and hydrophilic silica colloidal
nanoparticles (CNP) were provided by Evonik Industries
and employed in this study. They were supplied by Evonik
Industries. FNP and FNP-O were manufactured as solid powder
and CNP were provided as a highly concentrated suspension.
FNP and CNP have been characterized with Cryo-Transmission
Electron Microscope (Cryo-TEM) and Scanning Electron
Microscopy (SEM) and images are shown in Figures 1, 2,
respectively. FNP has irregular shape in suspension and CNP
is seen as separate spherical particles. FNP and FNP-O have an
average primary particle size of 7 nm and specific surface area of
300 m2/g. However, they may aggregate to form bigger particles
in dispersion. CNP have an average single particle size of 18 nm
and specific surface areas of 350 m2/g. They do not aggregate
in dispersion.

Preparation of Nanofluids
Based on the experience of previous flooding experiments [11,
25], three nanoparticle concentrations (0.05, 0.2, and 0.5 wt.%)
were used in this study. A 3 wt.% Sodium chloride (NaCl)
brine was used as dispersion fluid for FNP and CNP, and n-
decane was used as a dispersion fluid for FNP-O. For nanofluids
preparation, solid powder nanoparticles were weighed, and then
were mixed with dispersing fluid with a high-speed magnetic
stirrer for 5–10min and continued agitation by using a sonicator
for 20–30min at room temperature. The CNP nanofluids were
diluted from a concentrated dispersion. Fluid properties of each
hydrophilic nanofluids measured at room temperature are shown
in Table 1. Nanoparticle size distribution in suspension was
measured with dynamic light scattering (DLS) and are shown
in Figure 3. The particle size for FNP and CNP is 153.3 and
17.5 nm, respectively. The results of DLS also were used to check
the homogeneity of nanoparticles suspension.

FIGURE 5 | Wettability classification based on Amott-Harvey wettability

index [27].

Oil
The oil used in this experiment was n-decane and crude oil from
North Sea. The density was 0.73 and 0.82 g/ml, respectively. The
API gravity value of crude oil was 41.06◦.

Core Plugs
Berea sandstone core plugs were used. Twenty short core plugs
and six long core plugs drilled from the same block of Berea
Sandstone were used for the wettability index (WI) measurement
and nanoparticles transport experiments. The average porosity
and permeability are 18.3% and 316 mD, respectively. The
diameter was 3.83 cm and the length was 3 cm for the short cores
and 8 cm for the long cores. All core plugs were cleaned with
methanol before experiment.

Amott Cell and Centrifuge
Amott cells and centrifuge were used to measure WI of core.

Flooding Setup
Figure 4 shows schematic of coreflooding setup. The pump
injected Exxol D-60 as pumping fluid to push the piston located
inside the reservoir, which was filled with brine and nanofluids.
The differential pressure across the core plug during nanoparticle
transport experiments was recorded by precision pressure gauge.

Core Treatment With Nanoparticles
A total of eighteen short core plugs (designated as S3-S20) were
treated with nanoparticles. Two cores (S1 and S2) were used
for wettability index measurement of core without nanoparticle
treatment. Three pairs of short cores (S3, S4; S5, S6 and S7, S8)
were injected with three concentrations (0.05, 0.2, and 0.5 wt. %)
of FNP nanofluids and another three pairs (S9, S10; S11, S12 and
S13, S14) were injected with three concentrations (0.05, 0.2, and
0.5 wt. %) of CNP nanofluids. The rest of core plugs (S15, S16;
S17, S18 and S19, S20) were injected with three concentrations
(0.05, 0.2, and 0.5 wt. %) of FNP-O nanofluids. First, each pair
of core plugs was saturated with nanofluids by using a vacuum
container, and then the same nanofluids were injected into the
core for 20 pore volumes (PV), inlet and outlet were exchanged
at 10 PVs. Afterwards, deionized water/n-decane was injected to
flush free nanoparticles out. Finally core plugs were dried in a
heating cabinet and used for wettability index measurement.

Wettability Index Measurement
The wettability indexes of all core plugs were measured at
room temperature (25◦C). The core treated with nanoparticles
was saturated with n-decane and then placed into an Amott
cell surrounding with brine. Brine was allowed to imbibe into
the core displacing oil out until equilibrium was reached, and
the volume of water imbibed (Vo1) was measured. Then the
remaining oil in the core was reduced to residual oil saturation
by using a centrifuge. The volume of oil displaced (Vo2) was
determined by weight measurements. The core saturated with
water at residual oil saturation was returned to the Amott cell
and surrounded with n-decane. Oil was allowed to imbibe into
the core displacing water out of core. The volume of water
displaced (Vw1) wasmeasured after equilibriumwas reached. The
remaining water in the core was forced out by displacement in a
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centrifuge. The volume of water displaced (Vw2) was measured.
The wettability index of the core was defined and calculated by
the following equation:

WI =
Vo1

Vo1 + Vo2
−

Vw1

Vw1 + Vw2
(1)

During brine imbibition process, oil production volume vs. time
was measured to plot the spontaneous imbibition curve. The WI
is a generally accepted quantitative measure of the wettability of
a reservoir core sample. AWI of−1.0 indicates a strongly oil-wet
core, whereas a WI of+1.0 indicates a strongly water-wet core.

Contact Angle Measurement
Contact angle measurements were performed under room
temperature (25◦C) Small glass chips cut from microscope slides
were used as the solid phase in this experiment. First, glass chips
were cleaned and soaked in FNP or CNP nanofluids for about
1 day, and then the captive drop method [26] was applied to
measure the contact angle between 3 wt.% brine and crude oil
on glass chip. Three concentrations 0.05, 0.2, and 0.5 wt.% of
nanofluids were used in this experiment. For each case three
measurements were performed to obtain an average value. Using

glass chips as substrate provides a smooth surface for contact
angle measurement, since glass is 100% silicon dioxide so it
cannot mimic other minerals in Berea sandstone.

Nanoparticles Transport Experiment
Single phase nanofluids flooding was performed for nanoparticles
transport experiment. Six long core plugs (8 cm length) were
employed in this experiment for FNP and CNP. Different
salt concentrations of brine were used as a tracer. First, core
plugs were saturated with a 2.5 wt.% brine by using a vacuum
pump and then injected with one PV of the same brine for
measuring the absolute water permeability. Afterwards, about
4 PVs of nanofluids with 3 wt.% brine as dispersing phase
were injected into the core plug to investigate the effect of
nanoparticle adsorption and retention on permeability. Finally,
4 PVs of 2.5 wt.% brine were injected as a post-flush to observe
the desorption of nanoparticles. A constant flow rate of 2
ml/min was used. The resistivity of the effluent was measured
to determine the breakthrough time of the tracer. Differential
pressure across the core was recorded during the whole injection
process. Effluent fluid was collected every 4ml (about 1/4 PV),

FIGURE 6 | Spontaneous imbibition curves: (A) core plugs treated with FNP; (B) core plugs treated with CNP.

Frontiers in Physics | www.frontiersin.org 5 May 2019 | Volume 7 | Article 74128

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Li et al. Wettability Alteration by Nanoparticle Adsorption

FIGURE 7 | Wettability Index: (A) core plugs treated with FNP; (B) core plugs treated with CNP.

FIGURE 8 | Spontaneous imbibition curves for core plugs treated with FNP-O.
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and nanoparticle concentration was measured by using a UV-
VIS spectrophotometer.

RESULTS AND DISCUSSION

In this section, we first present the results of wettability alteration
for core plugs treated with nanoparticles. One pair of core
plugs was used for each case to test repeatability. The average
wettability index for untreated core plugs (S1 and S2) was 0.795.
Since all core plugs were drilled from the same block of Berea
sandstone, we assumed that the original wettability index for all
cores plugs before nanoparticles treatment was also 0.795. Based
on wettability classification (Figure 5), the wettability for original
core plugs was classified as water wet.

Wettability Index Measurement of Core

Plugs Treated With Hydrophilic

Nanoparticles (FNP and CNP)
Three pairs of core plugs (S3, S4; S5, S6 and S7, S8) were
treated with injection of FNP nanofluids with concentration of
0.05, 0.2, and 0.5 wt.%, and another three pairs of core plugs
(S9, S10; S11, S12, and S13, S14) were treated with injection of
CNP nanofluids with concentration of 0.05, 0.2, and 0.5 wt.%.
After treatment with nanoparticles, core plugs were put into
an Amott cell. During spontaneous imbibition oil production
volume vs. time was recorded and spontaneous imbibition curves
were plotted and are shown in Figure 6. Both FNP and CNP have
similar spontaneous imbibition performance. Most of the oil was
displaced at the beginning of the spontaneous imbibition, and oil
volume remained constant when it reached to maximum. This
meant that core plugs treated with hydrophilic nanofluids were
still strongly water wet, and the oil was produced rapidly because
of capillary force. However, compare to the core plugs without
treatment, the core plugs treated with both FNP and CNP had
slower spontaneous imbibition rate and less final oil production

volume, which might due to permeability impairment during
nanofluids injection and drying process. The results of wettability

index measurement are shown in Figure 7 (detail data in

Supplementary Tables 1, 2). There is no significant change of
wettability observed for the core plugs treated with both FNP and

CNP. For both 0.05 and 0.2 wt.% FNP and CNP cases, core plugs
changed to slightly more water wet from original wetting state,
because adsorption of hydrophilic nanoparticles on pore wall
made core more water wet. For core plugs treated with 0.5 wt.%
nanofluids, they should have the similar wettability index value
with 0.05 and 0.2 wt.% cases, while the results showed that they
were slightly less water wet than the original cores. This might
be because of the permeability impairment (pore channels were
plugged during drying process). Overall, there is no significant
difference between the core plugs treated with hydrophilic CNP
or FNP. Both have potential to alter the wettability of core plugs
slightly to more water wet.

Wettability Index Measurement of Core

Plugs Treated With Hydrophobic

Nanoparticles (FNP-O)
The rest of the three pairs of core plugs (S15 S16, S17 S18,
and S19 S20) were treated with injection of hydrophobic
FNP nanofluids with concentration 0.05, 0.2, and 0.5 wt.%,
respectively. Spontaneous imbibition rate was also recorded
and plotted in Figure 8. Unlike hydrophilic nanoparticle cases,
the imbibition rate of core plugs treated with hydrophobic
nanoparticle was very slow at beginning. For core plugs treated
with 0.5 wt.% there was no oil production during first 40min
meaning they were oil wet at beginning. After some delay
oil was produced at a low rate and gave the similar ultimate
oil production volume as the hydrophilic nanoparticles cases
(Figure 6). The wettability index measurement results of core
plugs treated with hydrophobic nanoparticle are shown in
Figure 9 (detail data in Supplementary Table 3). It can be seen

FIGURE 9 | Wettability index for core plugs treated with FNP-O.
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FIGURE 10 | Contact angle for a glass chip soaked in nanofluids.

that there was almost no change of wettability index after
core treatment with hydrophobic nanoparticle. The reasons
for this result and delay of spontaneous imbibition might be
the adsorption of hydrophobic nanoparticle on water wet pore
wall was weak. So some adsorbed nanoparticle desorbed and
dispersed in decane, and those hydrophobic nanoparticles were
transported out of core together with the oil. Thus, the wettability
of core restored to what it was originally.

Contact Angle Measurements for Glass

Chips Soaked in Nanofluids
The contact angle between crude oil and brine on glass chips was
measured and the results are shown in Figure 10. Glass chips
were soaked in nanofluids for about 1 day before measurement.
Unlike some contact angle measurements conducted before, in
this experiment 3 wt.% brine was utilized as aqueous phase rather
than nanofluids, which is similar to the condition of wettability
index measurement. As shown in Figure 10, both soaking in
FNP and CNP nanofluids reduced the contact angle and change
the glass surface to more water wet. For CNP nanofluids, a
concentration higher than 0.1 wt.% cannot reduce contact angle
anymore, while for FNP nanofluids the higher the concentration
of nanoparticles, the smaller was the contact angle. We also
observed that for glass chips soaked in higher concentration
nanofluids, due to nanoparticles adsorption, oil was not sticky on
the glass surface anymore and an oil drop can easily slip on the
surface. This indicated existence of a strongly hydrophilic surface.

Both wettability index and contact angle were measured at
room temperature, which gave good stability to nanoparticles
suspension but cannot show the performance of nanoparticles at
realistic reservoir condition, for instance, high temperature may
make nanoparticle suspension less stable.

Hydrophilic Nanoparticles Transport in

Porous Media
Hydrophilic nanoparticles transport experiments were
conducted to study nanoparticle adsorption behavior inside
core and its influence on the permeability. Differential pressure
across the core plug was recorded and effluent was collected
during flooding. Effluent nanoparticle concentrations were
measured after flooding. Six long core plugs were used in this
experiment. Three of them were injected with FNP nanofluids
with concentrations of 0.05, 0.2, and 0.5 wt.%. Another three
long cores were injected by CNP nanofluids with concentrations
of 0.05, 0.2, and 0.5 wt.%.

Figure 11 shows the differential pressure during nanoparticles
transport experiments for FNP and CNP nanofluids with
different concentrations. FNP and CNP nanofluids exhibited
a totally different differential pressure behavior. For all FNP
nanofluids injection (Figure 11A) the differential pressure
increased after 1 PV of nanofluids injection and the higher the
concentration, the faster differential pressure climbed. At the
end of nanofluids injection, the pressure was still increasing and
seemed far away from reaching its ultimate value. During the
post-flush brine injection, due to residual nanofluids in inlet
tubing and pores, differential pressure still increased to a high
value and peaked until the end of injection. This indicated that
nanoparticle retention cannot be flushed out of core and the
higher concentration, the higher the plateau. Figure 11B shows
that there is no big differential pressure change between CNP
nanofluids injection and post-flush injection for all injection
cases, which means that CNP adsorption does not impair
permeability of the core. The ratio of permeability of core before
nanofluids injection to after nanofluids injection was calculated
and is shown in Table 2. FNP injection impairs permeability
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FIGURE 11 | Differential pressure curves for nanoparticles transport experiment: (A) core plugs treated with FNP; (B) core plugs treated with CNP.

TABLE 2 | Permeability of core plugs before and after nanofluids injection.

Injection scenario K1, mD (before

NP injection)

K2, mD (after

NP injection)

K2/K1, %

FNP 0.05 wt.% 269.3 18.1 6.72

FNP 0.2 wt.% 463.2 5.9 1.28

FNP 0.5 wt.% 326.2 1.6 0.48

CNP 0.05 wt.% 367.6 364.8 99.25

CNP 0.2 wt.% 165.4 169.5 102.49

CNP 0.5 wt.% 308.8 313.8 101.64

significantly at all concentrations, while CNP injection has no
effect on permeability.

Dimensionless effluent nanoparticles concentration curves
were plotted vs. time and are shown in Figure 12. The
dimensionless nanoparticle concentration is defined as the
ratio of effluent nanoparticle concentration to the injection

nanoparticle concentration. Due to very weak responded
signal during UV-VIS measurement, effluent nanoparticle
concentration could not be measured for 0.05 wt.% CNP case.
Therefore, the adsorption curve is absent from Figure 12B.
In Figure 12A, nanoparticle concentration increased later
than the tracer curve indicating nanoparticles adsorption
and/or retention. After reaching the peak, FNP concentration
started to decrease. It might be due to the “self-adsorption”
of nanoparticles, which means that the previous adsorbed
nanoparticles can adsorb nanoparticles injected afterwards
resulting in multilayer adsorption and/or nanoparticles
aggregation. If the nanoparticle aggregates are larger than
one-seventh of the pore size [28], they can be retained in the
porous medium thus causing plugging. This indicates that
FNP adsorption is multilayer. In Figure 11A rapid differential
pressure increase is observed after 2 PVs FNP nanofluids
injection, which is another evidence of nanoparticles retention
and core plugging. FNP concentration decreased rapidly during
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FIGURE 12 | Nanoparticles adsorption curves: (A) core plugs treated with FNP; (B) core plugs treated with CNP.

post-flush injection and earlier than the tracer curve indicating
almost no desorption of nanoparticles. This is consistent with
the results from differential pressure curve (no pressure decline
during the post-flush in Figure 11A). In Figure 12B, CNP shows
an almost ideal adsorption curve, where its concentration both
increased and decreased later than tracer curve, indicating
adsorption and desorption of CNP and effluent nanoparticle
concentration kept at a plateau after nanoparticles adsorption
on pore walls reached an equilibrium. It was observed that the
0.2 wt.% CNP curve increased and reached to plateau later than
0.5 wt.% CNP curve, which may indicate that amount of CNP
adsorbed for the core plug is constant (Once pore walls of core
were saturated with nanoparticles almost no nanoparticles will
be adsorbed since adsorption and desorption reached a balance).
So 0.2 wt.% CNP case takes a longer time to reach this amount.
The CNP concentration decline curves for both concentrations
are almost overlapped. Since the area between tracer and decline

concentration curve indicate amount of nanoparticle desorbed,
so the amount of CNP desorbed for the core plug is also constant
(when adsorption and desorption reached an equilibrium).

The percentage of nanoparticles adsorbed or trapped inside
core plug was calculated for both FNP and CNP and is shown
in Figure 13. More than 25% of FNP were adsorbed and
trapped during the experiment, and the lower the concentration,
the higher was the percentage. However, much less CNP
was adsorbed compared to FNP. The adsorbed nanoparticles
percentage of 0.2 wt.% case is 2.7 times that of the 0.5 wt.% case.
Since this value is close to 2.5 (concentration ratio between 0.5
and 0.2 wt.%), it proves that adsorption capacity of the core plug
for CNP is nearly constant and independent of concentration.

Hydrophilic nanoparticle adsorption and/or retention
inside water wet core was observed in nanoparticle transport
experiment. For FNP, it was easy to observe this phenomenon
both with differential pressure curve and nanoparticle adsorption
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FIGURE 13 | Percentage of adsorbed nanoparticles inside core plug.

curve. However, since CNP injection did not influence
differential pressure too much, so the adsorption and desorption
of CNP could only be found in nanoparticle adsorption
curve. This difference may indicate that two different kinds
of nanoparticles have different adsorption behavior when they
are injected into the core plug. This indirectly indicates that
the adsorption and/or retention of FNP could be multilayer in
nature whereas that of CNP is nearly monolayer.

CONCLUSIONS

In this study the effect of nanoparticle adsorption on wettability
alteration was investigated by measuring wettability index of core
plugs treated with nanoparticles and the contact angle between
oil and brine on a glass surface treated with nanoparticles.
Adsorption behavior of nanoparticle in porous media was
investigated by coreflooding experiments with Berea sandstone
core plugs. The results of wettability alteration experiment
showed that treatment with hydrophilic nanoparticles altered
wettability of sandstone slightly to more water wet and reduced
the contact angle between oil and brine on a glass surface by
about 10◦. However, treatment with hydrophobic nanoparticles
could not change wettability of core plug, but only delayed the

spontaneous imbibition. For nanoparticle transport experiment,
injection of FNP resulted in significant nanoparticle retention
and permeability impairment, while injection of CNP had
almost no influence on permeability. Nanoparticle adsorption
curves indicated that FNP injection resulted in large amount of
adsorption and/or retention, while no desorption was observed.
However, compare to FNP cases, CNP injection only had less
adsorption and significant desorption during post-flush was
found. These results also suggested that FNP adsorption and/or
retention inside core plug might be multilayer, while CNP
adsorption is close to monolayer.

CNP has favorable injectivity into core plug compared
with FNP, and it also has enough adsorption inside the core
to alter wettability. FNP injection can change wettability to
slightly more water wet, while a large amount of adsorption
and/or retention result in unfavorable injectivity. FNP is not
recommended for flooding without further surface modification.
The wettability change during crude oil displacement with a
nanofluid inside a core plug is interesting to investigate in
the future.
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When non-Newtonian fluids flow through porous media, the topology of the pore space

leads to a broad range of flow velocities and shear rates. Consequently, the local viscosity

of the fluid also varies in space with a non-linear dependence on the Darcy velocity.

Therefore, an effective viscosity µeff is usually used to describe the flow at the Darcy

scale. For most non-Newtonian flows the rheology of the fluid can be described by a

(non linear) function of the shear rate. Current approaches estimate the effective viscosity

by first calculating an effective shear rate mainly by adopting a power-law model for the

rheology and including an empirical correction factor. In a second step this averaged

shear rate is used together with the real rheology of the fluid to calculate µeff. In this work,

we derive a semi-analytical expression for the local viscosity profile using a Carreau type

fluid, which is a more broadly applicable model than the power-law model. By solving

the flow equations in a circular cross section of a capillary we are able to calculate

the average viscous resistance 〈µ〉 directly as a spatial average of the local viscosity.

This approach circumvents the use of classical capillary bundle models and allows to

upscale the viscosity distribution in a pore with a mean pore size to the Darcy scale.

Different from commonly used capillary bundle models, the presented approach does

neither require tortuosity nor permeability as input parameters. Consequently, our model

only uses the characteristic length scale of the porous media and does not require

empirical coefficients. The comparison of the proposed model with flow cell experiments

conducted in a packed bed of monodisperse spherical beads shows, that our approach

performs well by only using the physical rheology of the fluid, the porosity and the

estimated mean pore size, without the need to determine an effective shear rate. The

good agreement of our model with flow experiments and existing models suggests that

the mean viscosity 〈µ〉 is a good estimate for the effective Darcy viscosity µeff providing

physical insight into upscaling of non-Newtonian flows in porous media.

Keywords: non-newtonian fluids, porous media, flow profile, shear rate, effective viscosity
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1. INTRODUCTION

Flow through porous media is ubiquitous in many natural and
industrial systems. Examples include flow through biological
tissues, blood vessels and bones [1–3] or through soils, sediments
and rocks, with long-standing interest in hydrology [4, 5],
petroleum [6], and chemical engineering [7–9]. At low Reynolds
numbers (Re≪1) the bulk flow of a Newtonian fluid flowing
through porous media is described by Darcy’s law

q =
κ

µ

1p

L
, (1)

where q is the mean flow rate per unit area, also called
Darcy velocity and µ is the dynamic viscosity. The variable κ

is the permeability and 1p/L is the pressure drop over the
distance L. The proportionality constant K = κ/µ is called
hydraulic conductivity and can be derived from Stokes’ equation
assuming a linear relation between the viscous forces and the flow
velocity [10].

While Darcy’s law is a sound description for the bulk behavior
of a fluid whose viscosity µ is constant, many relevant fluids
in e.g., in food [11–13] and petroleum [14, 15] industry, show
a much more complex constitutive law. For most of these so-
called non-Newtonian fluids, the viscosity can be described by
a nonlinear function of the stress-strain rate tensor E or more
specifically its first principal invariant γ̇ = 1

2

√
E :E [16]. Due

to the heterogeneity of the flow velocities in the interstitial pore
space, shear rates vary considerably inside the porous media. For
non-Newtonian flows the coupling of the constitutive equations
with the flow field leads to a spatial variable viscous resistance.
Consequently, the relation between Darcy velocity and pressure
drop cannot be described by a linear function anymore as in the
case of Newtonian fluids. In order to obtain a bulk equation for
the flow that is linear in the pressure drop, an effective viscosity
µeff—which itself depends on the flow variables—must be used
in order to account for the non-linear effects i.e.,

q =
κ

µeff

1p

L
. (2)

Here we assumed that the permeability κ is a characteristic
constant representing the complexity of the pore space alone.
Several empirical and semi-empirical models have been proposed
to estimate µeff [17–23]. Most of these models start from
a capillary bundle representation of the different flow paths
through a porous medium and estimate an effective shear rate
γ̇eff by comparing the flow rate of a power-law fluid with that
of a Newtonian Poiseuille flow [24] (see also SI). Although
analytical solutions can be derived to determine γ̇eff for power-
law rheologies, previous studies proposed various empirical
correction factors [19, 20] to relate Darcy velocity to the effective
shear rate. The effective shear rate γ̇eff is then inserted into the
constitutive law of the fluid of interest µ(γ̇) to obtain an effective
viscosityµeff. This approach requires an empirical factor to relate
q to γ̇eff, which can vary over several orders of magnitude [25,
26], depending on the properties of the fluid, the tortuosity
and the permeability. This suggests that the above assumptions

FIGURE 1 | Sketch of two shear thinning rheologies: (A) pure power-law

model with two parameters K and n, (B) Carreau model with five parameters

µ0, µ∞, λ, n and α.

are questionable. Additionally most of these models predict
a linear relationship between the effective shear rate and the
Darcy velocity.

In this manuscript we show that for a Carreau fluid [27], the
local viscosity can be derived directly from the fluid’s constitutive
law and the velocity profile in a mean pore size, using a circular
capillary to mimic the flow at pore scale. Contrary to commonly
used capillary bundle models, our approach does neither require
the knowledge of the tortuosity nor of the permeability. The
capillary is only used to calculate a fully developed average
flow profile. Finally, we calculate the mean viscous resistance by
spatially averaging the local viscosity 〈µ〉. Comparisons of our
results with flow cell experiments and existing models show that
〈µ〉 is a good estimate for µeff.

2. METHODOLOGY

2.1. Characterization of the Fluid
In order to model the flow of a non-Newtonian fluid, we first
need to characterize its constitutive behavior. For most non-
Newtonian fluids the constitutive relation between the deviatoric
stress tensor T and the applied strain rates E can be described
by a time independent scalar function µ = µ(γ̇), such that
T = 2µ(γ̇)E. Here µ is a generalized viscosity which depends
only on the first principal invariant γ̇ = 1

2

√
E :E of the stress-

strain rate tensor E [16]. In the case of simple shear flow γ̇

reduces to the shear rate. Many functional forms for µ(γ̇) have
been proposed, where the most common ones are the power-law
model (Figure 1A), the Carreau model (Figure 1B), the Cross
model or the Herschel-Bulkley model [18, 28].

The power-law model is described by

µ(γ̇) = Kγ̇
n−1, (3)

where K is the viscosity at the shear rate γ̇ = 1 s−1 and
n is the power-law index defining the steepness of the shear-
thinning decay for n < 1 (see Figure 1). Due to its simplicity,
the power-law model is the most commonly used rheology to
derive analytical expressions. However, the unbounded power-
law model has two drawbacks: first the model does not capture
the linear shear-strain relation for very low and very high shear
rates, that are prevalent in most natural systems, and second
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the viscosity curve becomes singular in the limit of vanishing
shear. Consequently constitutive models which “blend” a power-
law regime between a Newtonian behavior at low and high shear
rates—such as the Carreau model—have been proposed for real
world applications. The constitutive law of a Carreau fluid is
parametrized by

µ(γ̇) = (µ∞ + (µ0 − µ∞)(1+ (λγ̇)α)
n−1
α ), (4)

where n is the power-law exponent, µ0 and µ∞ are the limits
of the viscosity at zero and infinite shear and λ is the reciprocal
of the critical shear rate, which describes the onset of the shear
thinning regime. The parameter α describes how smoothly the
Newtonian regime blends into the power-law.

2.2. Current Models
Most commonly applied models to estimate µeff can be derived
by equating the flow rate of a Poiseuille flow [29] with the flow
rate of a power-law fluid [30]

QPoiseuille = Qpower−law. (5)

For a circular capillary with radius R one obtains

π

8µ

1p

L
R4 =

πn

3n+ 1

(

1

2K

)
1
n
(

1p

L

)
1
n

R
3n+1
n , (6)

where we used

Qpower−law =
πn

3n+ 1

(

1

2K

)
1
n
(

1p

L

)
1
n

R
3n+1
n , (7)

which is also known as the Rabinowitsch equation [30] to
describe the flow rate of a power-law fluid in a capillary. Solving
Equation (6) for µ, a power-law viscosity µpower−law can be
defined as

µpower−law =
1

8 (2K)−
1
n

3n+ 1

n

(

1p

L

)
n−1
n

R
n−1
n . (8)

Equation (8) can be simplified to

µpower−law = K
3n+ 1

4n

(

1p

2KL

)
n−1
n

R
n−1
n . (9)

This power-law viscosity corresponds to the viscosity of a
Newtonian fluid which would have given the same pressure drop
1p/L along a capillary.

For a power-law constitutive relationµ = Kγ̇
n−1 Equation (9)

can be inverted to obtain an effective shear rate γ̇eff

γ̇eff =
(

3n+ 1

4n

)
1

n−1
(

1pR

2KL

)
1
n

. (10)

Using the Rabinowitsch equation, we can express the term
(

1p
KL

)
1
n
as

(

1p

KL

)
1
n

= 2
1
n
3n+ 1

n
R−

n+1
n qcap, (11)

where qcap is the mean capillary velocity defined as
Qpower−law/(πR2). Furthermore, the mean capillary velocity
qcap can be defined as the Darcy velocity divided by the
porosity, qcap = q

8
. Following Savins [31], the radius Req can be

expressed by

Req =
√

8κζ

8
, (12)

where ζ is the tortuosity, Req is the radius of a capillary
in the capillary bundle model (see detailed derivation in
Supplementary Information). Inserting Req into Equation (10)
then yields

γ̇eff =
1
√

ζ

(

3n+ 1

4n

)
n

n−1 4q
√
8κ8

. (13)

Empirically it has been found by Cannella et al. [19] that the
factor 1/

√
ζ does not fit realistic data and replaced the term 1/

√
ζ

by a constant C, i.e.,

γ̇eff = C

(

3n+ 1

4n

)
n

n−1 4q
√
8κ8

. (14)

Hirasaki and Pope [20] proposed to use C = 1/
√
25/12 ≈ 0.69

by using the tortuosity ζ of packed spheres, which has been
widely reported to be 25/12 [32, 33]. Ignoring the tortuosity
ζ , Cannella et al. [19] found a factor of C = 6 to be
suitable to describe many flows in different settings. Additionally,
Cannella et al. accounted for unsaturated and multiphase flows
by correcting the permeability κ to κr,wκ and the porosity 8

to Sw8. Here, κr,w is the relative permeability and Sw is the
saturation. Consequently, the effective shear rate according to
Cannella et al. [19, 26] is given by

γ̇eff = 6

[

3n+ 1

4n

]
n

n−1

[

4
√
8

q
√

κr,wκSw8

]

. (15)

Cannella et al. then used this effective shear rate together with
a constitutive law µ(γ̇) to calculate an effective viscosity. For this
last step, mostly the Carreaumodel has been used due to its ability
to fit a wide range of different rheologies.

Other models, that have been developed, are using more
complex rheological descriptions of the fluid. Nevertheless, they
generally require to correct the analytical solution with empirical
factors to achieve reasonable agreement with experimental
data [17].
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2.3. Average Viscosity Approach
Here we present a new approach to estimate µeff by solving
directly for the viscosity profile of a fully developed Carreau flow
inside a single capillary of radius R that mimics a mean pore
with a mean flow rate of

q
8
. This approach assumes that a single

constitutive law can be used both on the pore as well as on Darcy
scale. This assumption is supported by the observation that even
at pore scale, the viscosity distribution covers the whole range of
viscosities given by the Carreau model equation. Consequently
a single power-law is insufficient to describe the transitional
behavior at the low and high shear limits.The onset of the power-
law regime occurs at a characteristic combination of the Darcy
velocity and the pore size. Therefore, it is important to determine
at which Darcy velocity the onset of the non-linearities of the
fluid starts to matter for a given pore size.

The Carreau model allows to obtain an average viscosity
profile in a pore without invoking an effective shear rate and an
intermediate power-law rheology. Note that the Carreau model
includes the critical shear rate 1/λ, which defines the onset of the
power-law regime, see Figure 1. To model the flow of a Carreau
fluid we perform the following steps:

(i) We estimate the characteristic pore size in order to set
the diameter of the average pore for which we examine the flow
profile. This characteristic pore size can be readily obtained from
an pore- or grain-size distribution. (ii) We then compute the
velocity profile as a function of the flow rate. (iii) The velocity
profile obtained in the previous step can subsequently be used to
determine local shear rates γ̇(r) = du(r)/dr. (iv) Combining the
shear and the Carreau rheology (Equation 4) we obtain the local
viscosity distribution µ(γ̇(r)) in a cross section of the capillary.
(v) Finally, we use the local viscosity, to estimate the effective
viscosity µeff by averaging the viscosity profile over the cross
section of the capillary.

In order to apply this concept of a mean profile in a pore, we
use a capillary with a circular cross section and assume a fully
developed flow profile. The steady state Navier-Stokes equation
at low Reynolds numbers in a circular capillary can be written as

1

r

d

dr

(

µ

(

du

dr

)

r
du

dr

)

=
dp

dx
, (16)

where the pressure gradient along the capillary is constant
dp
dx

=
const. Integrating with respect to r yields

µ

(

du

dr

)

du

dr
=

r

2

dp

dx
+ K1. (17)

Based on the symmetry of the flow profile, the velocity is maximal
along the center line of the capillary at r = 0. By definition of a

maximum, the shear rate γ̇ = du
dr

vanishes, du
dr

∣

∣

∣

r=0
= 0, which

results in K1 = 0. Thus, Equation (17) simplifies to

µ(γ̇)γ̇ =
r

2

dp

dx
. (18)

Since the pressure drop
dp
dx

along the capillary is assumed to be
constant, we can replace it by a reference pressure pref 6= 0

divided by a reference length scale. Choosing the capillary radius
R as characteristic length, we define

1

2

dp

dx
=

pref

R
. (19)

Then, we insert the reference pressure from Equation (19) into
Equation (18) and obtain

µ(γ̇)γ̇ =
r

R
pref. (20)

Inserting the constitutive law of a Carreau fluid (Equation 4)
into (Equation 20) and solving for r yields

r =
R

pref
γ̇

(

µ∞ + (µ0 − µ∞)(1+ (λγ̇)α)
n−1
α

)

. (21)

This expression can be rewritten by using the boundary condition
for the shear rate ( γ̇|r=R = −γ̇w), where γ̇w is the shear rate at
the wall of the capillary. Consequently, the reference pressure is
given by the following equation:

pref = −γ̇w

(

µ∞ + (µ0 − µ∞)(1+ (−λγ̇w)
α)

n−1
α

)

. (22)

In order to obtain an expression for the flow profile u(r) and γ̇w,
we integrate r(γ̇′) given by Equation (21) radially with respect
to γ̇

′. As the shear rate γ̇
′(r) is an odd function, the relation

∫ −γ̇

0 dγ̇′ = −
∫

γ̇

0 dγ̇′ holds for all r. Consequently, the shear
rate γ̇ will be our free parameter ranging from 0 to−γ̇w.

The resulting integral can be expressed as

∫ −γ̇

0
r(γ̇′)dγ̇′ = −

∫

γ̇

0

R

pref
γ̇
′µ(γ̇′)dγ̇′

= −
R

pref

[∫

γ̇

0
µ∞γ̇

′dγ̇′ + (µ0 − µ∞)

∫

γ̇

0
γ̇
′(1+ (λγ̇

′)α)
n−1
α dγ̇′

]

= −
R

pref

[

1

2
µ∞γ̇

2 +
1

2
(µ0 − µ∞)γ̇2

× 2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(λγ̇)α

)]

= −
Rγ̇

2µ∞
2pref

−
R

pref
(µ0 − µ∞)

1

2
γ̇
2

× 2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(λγ̇)α

)

.(23)

Here 2F1(a, b; c; z) is a hypergeometric function with parameters
a, b and c. Further details about the hypergeometric function
can be found in the Handbook of mathematical functions by M.
Abramowitz and I.A. Stegun [34]. Using the chain rule on d(rγ̇′),
we can rewrite r(γ̇′)dγ̇′ as d(rγ̇′)− γ̇

′dr, which yields

rdγ̇′ = d(rγ̇′)− du, (24)
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where we already substituted γ̇
′dr with du. Performing now the

integration with respect to γ̇
′ gives

∫ −γ̇

0
r(γ̇′)dγ̇′ = −

∫

γ̇

0
d(r(γ̇′)γ̇′)−

∫ u

umax

du

= −
R

pref
γ̇
2
(

µ∞ + (µ0 − µ∞)(1+ (λγ̇)α)
n−1
α

)

+ umax − u.

(25)

Setting Equation (23) equal to Equation (25) allows to solve for
the velocity u inside the capillary (Equation (26)).

u = umax −
Rγ̇

2µ∞
2pref

−
R

pref
(µ0 − µ∞)γ̇2

(

(1+ (λγ̇)α)
n−1
α −

1

2
2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(λγ̇)α)

))

. (26)

Applying the non-slip boundary condition at the wall
for velocity (u|r=R = 0) and shear ( γ̇|r=R = −γ̇w)
finally yields umax as defined in Equation (27).

umax =
Rγ̇

2
wµ∞
2pref

+
R

pref
(µ0 − µ∞)γ̇2w

(

(1+ (−λγ̇w)
α)

n−1
α −

1

2
2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(−λγ̇w)

α)

))

(27)

Therefore, for any given maximum velocity umax at the center
of a capillary, the two Equations (27) and (22) can be solved for
the two unknown parameters pref and γ̇w using a non-linear root
finding algorithm. These two parameters can then be inserted
into Equations (26) and (21) to obtain the velocity field u
and the corresponding radial coordinate r. The remaining free
parameter is the shear rate γ̇, which varies between −γ̇w and 0.
Consequently, one can calculate the flow profile u(r) in a capillary
of radius R for any umax. The mean capillary velocity qprofile is
then readily calculated by integrating u(r) over the capillary cross
section �, i.e.,

qprofile =
∫

�
u(r)dA

∫

�
dA

. (28)

To obtain the Darcy velocity, the mean capillary velocity qprofile
has to be multiplied by the porosity 8, namely, q = qprofile8.
Further, we can determine the shear rate profile from u(r) by

differentiation using γ̇(r) = du
dr
. In combination with the Carreau

model (Equation 4), the shear rate can be used to calculate the
local viscosity µ(r) in a cross section of the capillary from which
we can infer the spatial average of 〈µ〉 as

〈µ〉 =
∫

�
µ(r)dA

∫

�
dA

. (29)

Based on this formalism, we now propose that the effective
viscosity can be appropriately estimated directly from the average
viscosity 〈µ〉 without using an effective shear rate γ̇eff. Our
approach is purely based on the physical constitutive law of the
fluid (here represented by a Carreau rheology) and the solution

of the momentum equation of such a non-Newtonian fluid in a
circular capillary.

In order to test the hypothesis that µeff is appropriately
described by 〈µ〉, we benchmark our approach with flow
experiments and compare our model’s prediction with that of
Cannella et al. [19] and Hirasaki & Pope [20].

2.4. Experimental Setup
To measure the effective viscosity of a non-Newtonian fluid
flowing through porous media we set up a Darcy experiment in
a column (405 mm height; 50.3 mm diameter) of monodisperse
glass beads with a diameter of 8 mm (Figure 2). A constant static

pressure was applied using a Boyle-Mariotte bottle connected to
a pressure controller (Fluigent MFCSTM-EZ). The flow rate was
determined by measuring the weight of the outflowing fluid over

time, while the pressure drop was measured with two pressure
sensors (Keller, PAA-36XW) connected to the Darcy column. The
porosity of the packed bed was 8 = 0.4. Before determining the
effective viscosity of the non-Newtonian solution we measured
the permeability κ of the porous medium using a Newtonian
solution (66.7 vol% Glycerol + 33.3 vol% D.I. water) with a well
specified viscosity µNewt = 0.0266 Pa · s [35]. We then measured
the pressure drop over the length L = 300 mm at different flow
rates, obtaining fivemeasurements for q(1P/L). Fitting a straight
line to the measured data yields κ = 4.4 · 10−8m2 (Figure 3).

As a non-Newtonian fluid, we used a solution of 0.05 wt%
xanthan gum produced by Sigma Aldrich. The rheology curve
of the xanthan gum solution was measured with an Anton Paar
MCR 702 rheometer with a double gap DG 26.7 geometry.
Figure 4 shows the dynamic viscosity of our solution as a
function of the applied shear rate together with the fitted Carreau
model with parameters µ0 = 0.085 Pa · s, µ∞ = 0.001 Pa · s,
λ = 2 s, n = 0.48 and α = 0.8 (Equation 4). Very high shear
rates have not been measured, but literature values [36] indicate
that the viscosity of xanthan gum solutions approach the viscosity
of water at high shear rates.

After characterizing the non-Newtonian fluid’s constitutive
behavior, we perform the same Darcy experiment for the non-
Newtonian solution as in the Newtonian case, measuring the
pressure drop at 8 different flow rates. The effective viscosity
µeff of the non-Newtonian fluid was then computed from the
measured Darcy velocity q, the measured pressure drop 1p/L
and the previously measured permeability κ according to

µeff =
κ

q

1p

L
. (30)
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FIGURE 2 | Scheme of the Darcy column experimental setup: constant flow is

imposed from the Boyle-Mariotte bottle (A) by compressed air from pressure

controller (B). We measured the outflow on a scale (C) and the pressure drop

at the column with two sensors (D), where the distance between the sensors

defines L.

FIGURE 3 | Darcy velocity q vs. pressure drop 1p for the Newtonian fluid

(66.7 vol% Glycerol + 33.3 vol% D.I. water) used in the permeability

estimation, κ = KµNewt = 4.4 · 10−8m2.

3. RESULTS AND DISCUSSION

Before discussing the upscaling of our capillary model and the
averaging of the viscosity approach we analyze how the profiles
of velocity, shear and ultimately viscosity behave inside a single
capillary. Figure 5 shows the velocity, the shear rate and the
viscosity profiles, normalized by the respective means, for a
capillary of radius 1 mm for two flow rates qprofile = 0.003 mm/s
and qprofile = 3.7 mm/s. For the rheology of the fluid we
use the Careau model with parameters µ0 = 0.085 Pa · s,
µ∞ = 0.001 Pa · s, λ = 2 s, n = 0.48 and α = 0.8. The profiles
have been calculated numerically by solving Equations (22)
and (27) to determine pref and γ̇w together with Equations (21)
and (26) as described above.

For the low flow rate qprofile = 0.003 mm/s, the shear rate
does not exceed the critical shear rate γ̇crit = 1/λ at any radial
position in the capillary. Consequently the viscosity is almost
constant at µ0 resulting in a Newtonian flow behavior and a
parabolic velocity profile. Here the shear rate increases linearly

FIGURE 4 | Measured rheology of a 0.05 wt% xanthan gum solution, with the

best fit of the Carreau model for the parameters: µ0 = 0.085 Pa · s,
µ∞ = 0.001 Pa · s, λ = 2 s, n = 0.48 and α = 0.8. Very high shear rates have

not been measured. Literature values indicate that µ∞ for xanthan gum

solutions approximates water, i.e., µ∞ = 0.001 Pa s [36].

from γ̇ = 0 at the center of the capillary to γ̇ = γ̇w at the wall.
As soon as the flow rate exceeds a certain threshold, nonlinear
effects become important and the velocity profile flattens at the
center (c.f. purple line in Figure 5A). This nonlinear behavior
can also be observed in the shear rates γ̇ = du/dr, as well
as in the local viscosity µ(r) which starts to develop a very
distinct maximum at the center of the capillary, Figure 5C. As
a result, first averaging the shear rate and then calculating the
viscosity leads to a significantly different results than calculating
the average viscosity itself, namely µ(〈γ̇〉) 6=

〈

µ(γ̇)
〉

. The models
of Cannella et al. and Hirasaki & Pope assume a pure power-
law rheology for the calculations of the effective shear rate γ̇eff

at all flow rates (Equations 7, 11). This does not agree with the
bahavior shown in Figures 5A–C, which indicates that the profile
changes from a Newtonian to a nonlinear behavior depending on
the applied flow rate.

After discussing the problem of averaging shear and
viscosity in a single capillary, we now benchmark the average
viscosity approach. We compare our model estimates with
our experimental results and the predictions of the models by
Cannella et al. and Hirasaki & Pope.

Figure 6 shows the measurement of the effective viscosity
as a function of the Darcy velocity using Equation (30) (red
diamonds). The predictions of the models by Cannella et al.
(C = 6) and Hirasaki & Pope (C = 0.69) are marked in
orange and green, respectively. The solid violet line represents the
prediction of our average viscosity model using a pore radius R =
0.62 mm. The characteristic pore radius R used in Figure 6 has
been calculated from the bead diameter as the maximal radius of
the void space between three beads that are in contact with each
other (see Figure 7). Consequently we find for a bead diameter of
d = 8 mm a capillary radius of R = 0.62 mm.

While Cannella et al.’s model does not capture the
experimental measurements, the model of Hirasaki & Pope
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FIGURE 5 | (A) Normalized flow and (B) shear profile for flow in a capillary with an exemplary radius of 1 mm. The fluid is described by the Carreau model using the

fitting parameters for the measured rheology. (C) Viscosity distribution µ(γ̇(r)), including the viscosity of the mean shear rate and the mean viscosity for a mean velocity

of qprofile = 3.7 mm/s.

FIGURE 6 | Comparison of the experimental measurements (red diamonds)

with the proposed model (purple solid line). The model is calculated for a pipe

of radius R = 0.62 mm. Additionally, the correlations of Cannella et al. [19]

(C = 6) and Hirasaki and Pope [20] (C = 0.69) are shown. The latter was

defined from packed beds of monodisperse spheres.

fits the experimental data equally well as the average viscosity
model. Nevertheless, all three models agree in terms of slope
in the shear thinning power-law regime. This is consistent
with the observation of Teeuw & Hesselink [22], who found
that the power-law exponent of the microscopic rheology equals
the exponent of the effective viscosity µeff as function of the
Darcy velocity q [19]. The major difference in the behavior of
our model compared to the approach of Hirasaki & Pope [20] is
found at the transition from the low shear Newtonian regime to
the power-law regime. Here the former model predicts a slightly
smoother transition than the average viscosity formulation.
However, the error bars shown in the inset of Figure 6 reveal
that this region also has the highest uncertainty due to the
noise in the pressure measurements. Consequently, we cannot
conclude that the proposed model, using an average viscosity,
captures the transition between the low shear Newtonian regime

FIGURE 7 | Characteristic pore size with radius R between three glass beads

with radius d/2 (blue circles).

and the power-law regime better than the previous models.
Nevertheless, in favor of the proposed model, the linear relation
in Equation (13) assumed for γ̇eff ∼ q used by both Cannella et al.
and Hirasaki & Pope does not reflect the non-linear behavior of
the profiles shown in Figure 5 for a single capillary.

A major challenge of models based on effective shear rates is
the need of an empirical factor to compute γ̇eff. This, so-called
C-factor, can vary over several orders of magnitude [25, 26].
This problem is especially evident considering the fact that the
shape factor varies for different fluids and pore geometries [26].
While the shape-factor C is used to fit the onset of the power-law
regime in µeff against Darcy velocity plot, our model describes
this transition intrinsically through the Carreau parameter 1/λ.

Comparing the models of Cannella et al. and Hirasaki & Pope
reveals that the empirical shape factor C of Cannella et al.’s model
corresponds to C = 1/

√
ζ in the model of Hirasaki & Pope.

Using the tortuosity of ζ = 25/12 for a packed bed of uniform
spheres [32, 33] Hirasaki & Pope arrive at a shape factor of C =
0.69. However, Cannella et al. later found empirically that this
tortuosity dependence does not hold in many different settings
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and proposed C = 6 as a generally good value. However if we
calculate the tortuosity associated with this empirical value we
obtain a tortuosity ζ = 0.03, which is inconsistent with the
geometric interpretation of ζ as the elongation of flow paths in a
capillary bundle model. Another problematic point of the models
of Hirasaki & Pope andCannella et al. is that the tortuosity should
not matter at all for the determination of the effective viscosity
as the viscosity profile does not change along the capillary.
Hence the viscosity, respectively the effective shear rate, should
not change with the elongation of the flow paths contrary to
Equation (13).

In contrast to most currently used capillary bundle models
which try to mimic the flow paths inside porous media, our
average viscosity approach uses a capillary only to calculate
a fully developed flow profile in a single pore. Generally, we
find good agreement with experimental measurements and with
previous models, provided that the free parameters have been
determined from experimental data [16, 19, 32, 33, 37–39].
Averaging the viscosity over the mean flow profile has several
advantages. First of all, the model only includes the physical
rheology of the fluid and does not need a singular power-law
model as an intermediate step to calculate an effective shear
rate γ̇eff. This eliminates the problem that arises from µ(〈γ̇〉) 6=
〈

µ(γ̇)
〉

. Using the mean viscosity to describe the flow resistance
of the fluid is physically more intuitive than using an effective
quantity derived from comparisons of non-Newtonian flows with
Newtonian behavior. Additionally our model only requires a
characteristic geometric length factor rather than an empirical
shape factor which depends on geometric properties as well as
on the fluid. Our characteristic length scale is a property of the
porous medium alone and can be estimated independently from
permeability, porosity or tortuosity using e.g., pore or grain size
distributions. Furthermore, our approach includes the parameter
λ, which describes the onset of the shear thinning regime and
is given by the rheology. Consequently, the average viscosity
approach provides a consistent nonlinear upscaling of a flow
profile in a pore with mean pore size and does not require
tortuosity [40].

4. CONCLUSIONS

In summary, we presented a new approach to extend Darcy’s law
to Carreau fluids using the mean viscosity over a representative
capillary as the effective flow resistance. The major advantage
of the new model is that it does not require an intermediate
effective shear rate and calculates the average viscosity directly

using the microscopic constitutive law of the fluid. This approach
allows us to upscale the average viscosity of a single pore with
a mean pore size to a Darcy scale. This procedure also avoids
an empirical shape parameter, which has been replaced by a
characteristic length scale derived from the physical property of
the porous medium itself. Furthermore, the proposed approach
does not require commonly made capillary bundle assumptions
like the elongation of a capillary by using the tortuosity
and it does not require the permeability [40] to estimate an
equivalent capillary diameter. Experimental measurements for

a flow through a packed bed of monodisperse beads and
comparison with other non-Newtonian capillary models reveal
that the average viscosity provides a robust estimate for the
effective Darcy viscosity µeff.
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We investigate the effective rheology of two-phase flow in a bundle of parallel capillary

tubes carrying two immiscible fluids under an external pressure drop. The diameter

of the tubes vary along the length which introduce capillary threshold pressures. We

demonstrate through analytical calculations that a transition from a linear Darcy to a

non-linear behavior occurs while decreasing the pressure drop 1P, where the total

flow rate 〈Q〉 varies with 1P with an exponent 2 as 〈Q〉 ∼ 1P2 for uniform threshold

distribution. The exponent changes when a lower cut-off Pm is introduced in the

threshold distribution and in the limit where 1P approaches Pm, the flow rate scales

as 〈Q〉 ∼ (|1P| − Pm)
3/2. While considering threshold distribution with a power α,

we find that the exponent γ for the non-linear regime vary as γ = α + 1 for Pm = 0

and γ = α + 1/2 for Pm > 0. We provide numerical results in support of our

analytical findings.

Keywords: two-phase flow, capillary fiber bundlemodel, effective rheology, non-Darcy flow at low velocity, porous

media

Understanding the hydrodynamic properties of simultaneous flow of two ormore immiscible fluids
is essential due its relevance to a wide variety of different systems in industrial, geophysical and
medical sectors [1, 2]. Different applications, such as bubble generation in microfluidics, blood
flow in capillary vessels, catalyst supports used in the automotive industry, transport in fuel cells,
oil recovery, ground water management and CO2 sequestration, deal with the flow of bubble
trains in different types of systems, ranging from single capillaries to more complex porous media.
The underlying physical mechanisms in multiphase flow are controlled by a number of factors,
such as the capillary forces at the interfaces, viscosity contrast between the fluids, wettability and
geometry of the system, which make the flow properties different from single phase flow. When
one immiscible fluid invades a porous medium filled with another fluid, different types of transient
flow patterns, namely viscous fingering [3, 4], stable displacement [5], and capillary fingering [6]
are observed while tuning the physical parameters [7]. These transient flow patterns were modeled
by invasion percolation [8] and diffusion limited aggregation (DLA) models [9]. When steady state
sets in after the initial instabilities, the flow properties in are characterized by relations between the
global quantities, such as flow rate, pressure drop and fluid saturation [10, 11]. It has been observed
theoretically and experimentally that, in the regime where capillary forces compete with the viscous
forces, the two-phase flow rate of Newtonian fluids in the steady state no longer obeys the linear
Darcy law [12, 13] but varies as a power law with the applied pressure drop [14–17]. Tallakstad et
al. [14, 15] experimentally measured the exponent of the power law to be close to two (= 1/0.54)
in a two-dimensional system and followed this observation up with arguments why the exponent
should be two. Rassi et al. [16] found a value for the exponent varying between 2.2 (= 1/0.45)
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and 3.0 (= 1/0.33) in a three-dimensional system. Sinha et al.
[17] considered a similar system to that which had been studied
by Rassi et al. finding an exponent 2.17±0.24 (= 1/(0.46±0.05)).
The reason behind the discrepancy between the results of Rassi
et al. and those of Sinha et al. is the possibility of a non-zero
threshold pressure that observed in the later study, under which
there would be no flow, which was assumed to be zero in the
former study. The reciprocals in the brackets are provided in
order to compare the exponent values reported in the literature
[14–17] with those we present here in this article, as we express
our results as 〈Q〉 as a power law in 1P, whereas in the cited
papers 1P was expressed as a power law in 〈Q〉.

This power law behavior is in contrast to the assumption of
linearity in the relation between flow rate and pressure drop
that is generally assumed in the relative permeability approach
dominating reservoir simulations [18].

For a single capillary tube with varying diameter, Sinha et
al. [19] showed that the average volumetric flow rate q in the
steady state has a non-linear square-root type relationship with
the pressure drop 1P as q ∼

√

1P2 − P2c . This was shown
analytically by integrating the instantaneous linear two-phase
flow equation over the whole capillary tube. Here Pc is the
threshold pressure difference below which there is no flow.
It appears due to the capillary barriers at the interfaces at
the narrow pore throats. Extending this non-linear relationship
to a network of disordered pores, the relationship between
the steady-state flow rate and an excess pressure drop leads
to a quadratic relationship in the capillary dominated regime
[20]. The quadratic relationship for the pore network, both
in two and in three dimensions, was obtained analytically by
mean-field calculations and numerically with pore network
modeling [17, 20].

While increasing the pressure drop, the capillary forces
become negligible compared to the viscous forces. This leads to
a crossover from the non-linear regime to a linear Darcy regime
for both the single capillary tube and for the pore network. Such
non-linear quadratic relationship at low flow rate and a crossover
to a linear regime at high flow rate was also observed in case of the
single-phase flow of Bingham viscoplastic fluid in porous media
[21, 22]. A Bingham fluid is a yield threshold fluid which behaves
like a solid below the threshold and flows like a Newtonian fluid
above it. The origin of the quadratic regime for the Bingham
fluid flowing in a porous media can be understood intuitively
in this way: the flow starts when one connected channel appears
in the system just above a threshold pressure and the flow rate
varies linearly with the excess pressure drop; while increasing the
applied pressure drop further, more number of connected flow
channels start to appear enhancing the overall flow rate more
rapidly than the applied pressure drop leading to the quadratic
relationship. Finally, when all possible flow paths become active,
the flow become Newtonian following the linear Darcy law. Note
that, in general, the rheology of the Bingham fluid is linear above
the yield threshold. It is the disorder in the yield thresholds due
to the porous medium that creates the quadratic regime.

The argument presented by Tallakstad et al. [14, 15] focused
on the successive opening of fluid channels when the pressure
drop across the system was increased. When |1P| is small, the

flow will occur along isolated channels. The volumetric flow rate
in such a channel will be proportional to |1P|/L. Between the
channels there will be fluid clusters held in place by capillary
forces, say of the order pt . There is a pressure gradient |1P|/L
in the flow direction. A given cluster of length l‖ will be stuck
if pt > l‖|1P|/L. The largest stuck cluster will then have a size
l‖,max = Lpt/|1P|. If we now assume that this length, l‖,max is
same as the distance between the channels where there is flow, l⊥,
then the total flow rate must be equal to the number of channels,
which is proportional to 1/l⊥, multiplied by the flow rate in each
channel. Hence, we have Q ∝ (1/l⊥) |1P| ∝ |1P|2. Though
this argument provides the same behavior as the one based on
the mean field calculation [20] for two-dimensional networks,
a difference appears in three dimensions. When following the
same arguments, it leads the flow rate to vary with the pressure
drop with third power as long as the isolated channels remain
one-dimensional strings rather than two-dimensional sheets in
three dimensions.

We present in this article a capillary fiber bundle model [23,
24], which is a system of N parallel capillary tubes, disconnected
from each other, each carrying an independent bubble trail
of two immiscible fluids under an external pressure drop. In
a porous medium, a typical pore consists of two wide pore
bodies at the ends and a narrow pore throat in the middle.
When an interface moves along the pore, the capillary pressure
associated with the interface becomes position dependent due
to the change in the radius of curvature. This introduces an
overall threshold pressure that depends on the position of all
the interfaces [19]. One can simplify the shape of the pore
by a sinusoidal type and a long capillary tube with varying
radius can be seen as a series of many pores. In the capillary
bundle model, the diameter of each tube varies along the axis
identically and the disorder in the threshold appear due to the
different interface positions in different tubes. This model is
essentially the only model for immiscible two-phase flow which
is analytically tractable. We calculate the total average flow rate
as a function of the applied pressure drop and study the effect
of disorder in the threshold distribution. We point out that,
here we do not address the question of the relation between the
fluid distributions in the capillaries and the respective threshold
distributions. Our aim with this model is to investigate how
the range of the disorder in the threshold distribution controls
the effective flow properties. This provides an insight into the
non-linearities in steady-state two-phase flow. We will see that
the exponent for the non-linear regime depends on the lower
cut-off of the threshold distribution as well as on the behavior
of the distribution near the cut-off. The possibility to study
analytically for this model how the competition between viscous
and capillary forces renders the Darcy relation non-linear, is a
new and useful discovery.

The capillary fiber bundle model is a hydrodynamic analog
of the fiber bundle model used in fracture mechanics to study
mechanical failure under stress [25]. The fiber bundle model is an
ideal example of a disordered system in statistical mechanics that
is driven by threshold activated dynamics. It is a simple, yet very
rich model to understand failure events in mechanical systems.
In its simplest form it is analytically tractable. In more complex
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versions of the model, analytical calculations go hand in hand
with numerical simulations.

Figure 1 illustrates a bundle with N = 5 parallel capillaries.
Each capillary tube has a length L and an average inner area a. For
each capillary, the diameter varies along the long axis identically.
Each capillary is filled with a bubble train of wetting and non-
wetting fluids. Due to the varying diameter, the capillary forces
at the interfaces vary as the bubble train moves along the tubes.
We assume that the wetting fluid does not form films along the
pore walls so that the fluids do not pass each other. The lengths
of the wetting and non-wetting fluids in each tube is Lw and Ln,
respectively such that the volume of the wetting fluid in each tube
is Lwa and the volume of the non-wetting fluid is Lna, where a is
the average cross-sectional area of the capillary tubes. Hence, the
saturations are given by Sw = Lw/L and Sn = Ln/L for each
capillary tube. The cross-sectional pore area of the capillary fiber
bundle is

Ap = Na. (1)

Though each tube contains the same amount of each fluid, it
has its own division of the fluids into bubbles. We average over
the ensemble of capillary tubes in the bundle by averaging over
the fluids in each tube that pass at a given instance through an
imaginary cut as shown in the figure. We will obtain the same
averages if we consider a single capillary tube, averaging over a
time interval the fluid passing the imaginary cut [19, 26]. This
shows that the model is ergodic.

The volumetric flow rate in a capillary tube is given by [19]

q = −
a2

8πµavL
2(|1P| − Pc) [1P − Pc] , (2)

FIGURE 1 | The capillary tube model. There are N = 5 capillaries, each filled

with a bubble train of wetting (white) and non-wetting (black) fluids moving in

the direction of the arrow. The diameter along each tube vary so that the

capillary force from each interface vary with its position. The variation in the

diameters are not illustrated in the figure. The average diameters are the same

for all tubes. The broken line illustrates an imaginary cut through the capillary

fiber bundle.

where 1P is the pressure drop across the capillary tube, Pc the
sum of all the capillary forces along the capillary tube due to the
interfaces and

µav = Swµw + Snµn, (3)

is the effective viscosity. 2(|1P| − Pc) is the Heaviside
function which is zero for negative arguments and one for
positive arguments.

Sinha et al. [19] showed that the time average when the
pressure difference across the tube is kept fixed is given by

q(Pc) =

−
a2

8πµavL
sgn(1P)2(|1P| − Pc)

√

1P2 − P2c , (4)

where the function sgn(1P) is the sign of the argument. Suppose
now that the thresholds Pc are distributed uniformly between
zero and a maximum value PM . The cumulative threshold
probability is then

5(Pc) =







0 , Pc ≤ 0,
Pc
PM

, 0 < Pc ≤ PM ,

1 , Pc > PM .

(5)

We have N capillary tubes. Using order statistics, we may order
the N averaged threshold values,

5(Pc(k)) =
k

N + 1
, (6)

where 1 ≤ k ≤ N. Hence,

Pc(k) = PM
k

N + 1
. (7)

The average volumetric flow rate through the capillary fiber
bundle for |1P| > 0 is then

〈Q〉 =
(N+1)min

(

|1P|
PM

,1
)

∑

k=1

q
(

Pc(k)
)

(8)

We assume the limit N → ∞ turning the sum into an integral,

〈Q〉
N

= −
a2PMsgn(1P)

8πµavL

∫ min(|1P|/PM ,1)

0
dx

√

(

|1P|
PM

)2

− x2 . (9)

This integral is doable and we find

〈Q〉
N

= −
a2

32µavL

∣

∣

∣

∣

1P

PM

∣

∣

∣

∣

1P (10)
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when |1P| ≤ PM and

〈Q〉
N

= −
a2PMsgn(1P)

16πµavL




√

(

|1P|
PM

)2

− 1

+
(

|1P|
PM

)2

arcsin

(

PM

|1P|

)

]

, (11)

when |1P| > PM . In the limit |1P| ≫ PM , Equation (11) gives

〈Q〉
N

= −
a2

8πµavL
1P . (12)

Hence, the Darcy relation for a tube is recovered.
We see that this picture is consistent with that central to the

arguments of Tallakstad et al. [14, 15] leading to the quadratic
dependence of Q on 1P. From Equation (7) we deduce that a
number kc of the capillary tubes are active, where

kc =
|1P|
PM

(N + 1) . (13)

The typical distance between active capillary tubes in units of the
distance between the tubes is then given by

l⊥ =
N + 1

kc
=

PM

|1P|
, (14)

in accordance with the argument of Tallakstad et al.
How stable is the square law Q ∝ |1P|2? That is, how much

does it hinge on the choice of cumulative threshold probability
5(Pc). So far we have only considered the one given in Equation
(5). Let us now generalize it to

5(Pc) =











0 , Pc ≤ 0 ,
(

Pc
PM

)α

, 0 < Pc ≤ PM ,

1 , Pc > PM ,

(15)

where α > 0. The average ordered threshold are then given by

Pc(k) = PM

(

k

N + 1

)1/α

, (16)

and when combined with the expression for 〈Q〉, Equation (8) in
the limit N → ∞, we find

〈Q〉
N

= −
a2PMsgn(1P)

8πµavL

∫ min((|1P|/PM)α ,1)

0
dx

√

(

|1P|
PM

)2

− x2/α .

(17)

Since we are interested in the behavior for |1P| → 0, we do this
integral under the assumption that |1P| < PM finding

〈Q〉
N

= −
a2α

32
√

πµavL

Ŵ
(

α
2

)

Ŵ
(

3+α
2

)

(

|1P|
PM

)α

1P , (18)

where the Ŵ function for real positive z is defined as, Ŵ(z) =
∫ ∞

−∞
tz−1e−tdt. When α = 1, we recover Equation (10).

Equation (10) shows the behavior observed experimentally
in References [14] and [15]. With Equation (18), we have just
shown that 〈Q〉/N ∼ |1P|γ as |1P| → 0, where γ depends
on the threshold distribution, i.e., on α in Equation (15). Does
this imply that there is no universality; that the experimentally
observed behavior is due to the presence of a very specific
threshold distribution?

As we now argue, there is universality. We note that the
threshold distribution p(Pc) = d5(Pc)/dPc behaves as p(Pc) ∝
Pα−1
c . Hence, if α > 1, the distribution vanishes as Pc →

0, whereas it diverges for α < 1. Thus, the behavior of the
distribution is vastly different for these two cases, and this causes
γ to depend on α. However, for α = 1, the distribution reaches a
constant, non-zero value for Pc → 0. Any threshold distribution
with this behavior for small Pc, i.e., p(Pc) reaching a non-zero
value and dp(Pc)/dPc → 0 in the limit Pc → 0 will give rise to the
square power law seen in Equation (10). Such distributions are
ubiquitous, and γ = 2 is universal over this class of distributions.

We now consider α = 1 again, but introduce a minimum
threshold Pm so that the cumulative threshold probability is
given by

5(Pc) =







0 , Pc ≤ Pm ,
Pc−Pm
PM−Pm

, Pm < Pc ≤ PM ,

1 , Pc > PM .

(19)

Equation (6) yields in this case the ordered threshold sequence

Pc(k) = Pm + (PM − Pm)
k

N + 1
. (20)

Equation (8) now becomes in the limit N → ∞

〈Q〉
N

= −
a2(PM − Pm)sgn(1P)

8πµavL

∫
|1P|

PM−Pm

Pm
PM−Pm

dx

√

(

|1P|
PM − Pm

)2

− x2 ,

(21)
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when we assume Pm ≤ |1P| ≤ PM . We find

〈Q〉
N

= −
a2(PM − Pm)sgn(1P)

32πµavL

(

|1P|
PM − Pm

)2



π − 4

(

Pm

|1P|

)2
√

(

|1P|
Pm

)2

− 1

− 2arccot









2

√

(

|1P|
Pm

)2
− 1

2−
(

|1P|
Pm

)2

















.

(22)

We find to lowest order in (|1P| − Pm), that this expression
behaves as

〈Q〉
N

= −
a2sgn(1P)

3
√
2πµavL

√
Pm

(PM − Pm)
(|1P| − Pm)

3/2 , (23)

as |1P| → Pm.

We now turn to numerical simulations and observe that the
numerical results are in good a agreement with the analytical
findings. The numerical simulations also allow us to explore the
regions which are analytically challenging. Results are shown
in Figure 2 for a bundle containing N = 105 capillary tubes
and averaged over 104 configurations. In Figure 2A, we show
the behavior of the volumetric flow rate 〈Q〉 as a function of
increasing pressure drop 1P for uniform threshold distributions
with Pm = 0 and Pm > 0, given by Equations (5, 19), respectively.
The results show that, for each threshold distribution, the
relationship is linear for high 1P obeying the Darcy law as
predicted by Equation (12). For small pressure drops, 〈Q〉 follows
a power law in1Pwith an exponent 2 when there is no lower cut-
off in the threshold distribution, i.e., Pm = 0. This is predicted
in Equation (10). When a lower cut-off is introduced in the
threshold distribution (Pm > 0), this exponent shifts from 2 to

FIGURE 2 | Results from numerical simulations performed with N = 105 capillaries and averaged over 104 configurations. Variation of 〈Q〉/N as a function of pressure

drop 1P for different threshold distributions are shown in (A–C) where non-linear to linear transitions are observed while increasing the pressure drop.

(A) Corresponds to uniform threshold distribution (Equation 5) where the power-law exponent γ for the non-linear regime has a value 2 without a lower cut-off

(Pm = 0). With any non-zero lower cut-off (Pm > 0), the exponent shifts to 3/2 (Equation 23). Results for the threshold distribution with a power α (Equation 24) are

shown in (B,C) for Pm = 0 and Pm > 0, respectively, where γ varies with α as γ = α + 1 for Pm = 0 and as γ = α + 1/2 for Pm > 0. These two relations are shown in

(D) for the range of α which show two distinct straight lines for Pm = 0 and for Pm > 0. Here, the number of active capillaries (kc) vary with 1P as kc/N ∼ (1P−Pm)α

as shown in the insets of (B,C).
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3/2 as predicted in Equation (23). These exponents in the non-
linear regime are not sensitive to the span of the distribution as
shown in Figure 2A. An insight to a more generalized picture is
presented in Figures 2B,C for a threshold distribution given by a
generalization of Equation (15) with an introduction of a lower
cut-off Pm,

5(Pc) =











0 , Pc ≤ Pm ,
(

Pc−Pm
PM−Pm

)α

, Pm < Pc ≤ PM ,

1 , Pc > PM ,

(24)

With this distribution of thresholds, the exponent γ in the non-
linear region shows a continuous variation with α as γ = α + 1
for Pm = 0. Such variation is given in Equation (18) and
matches well with the numerical results as shown in Figure 2D.
In presence of a lower cut-off Pm > 0, γ varies as (α+1/2) instead
of (α + 1) irrespective of the position of the lower cut-off. An
analytical treatment for a general α value with Pm > 0 is rather
challenging. Nevertheless, our numerical result matches with the
analytical study (see Equation 23) in the limit α = 1.

Equation (18) predicts an exponent γ = α + 1. A simple
argument, related to that given by Roux and Herrmann [22], goes
as follows: The number of active capillary tubes is proportional
to (|1P| − Pm)

α . This behavior is observed in the insets in
Figures 2B,C. The flow rate in an active capillary is proportional
to (|1P| − Pm)

1/2. Hence, the total flow rate should be 〈Q〉 ∝
(|1P| − Pm)

α+1/2. It is accidental that this argument works out
for Pm > 0 (Figure 2C), as it does not when Pm = 0, where
γ = α + 1. For the argument to function, the distribution of
active capillaries and the flow rate in each capillary should be
uncorrelated. It is not.

We find the same behavior with respect to the cut-off: An
exponent 3/2 for the cumulative threshold probability

5(Pc) =















0 , Pc ≤ Pm ,

log
(

Pc
Pm

)

log
(

Pc
PM

) , Pm < Pc ≤ PM ,

1 , Pc > PM ,

(25)

where Pm = 10−β and PM = 10β and β ranging from 0.5 to 1.5.
The same goes for the cumulative threshold probability

5(Pc) =
{

0 , Pc ≤ Pm ,

1− e−Pc−Pm/Pd , Pm < Pc ,
(26)

where we have set Pm = 0.1 and Pd = 1. In both of these cases,
the probability density at Pc = Pm is finite.

We have presented an analytical study supported by numerical
simulations of steady-state two-phase flow in a system of parallel

capillary tubes. Considering a uniform distribution for the
threshold pressures for the capillaries, we have calculated the
average flow rate as a function of the applied pressure drop.When
the thresholds are distributed according to a uniform distribution
between zero and a maximum value—or more generally, the
threshold distribution approaches a non-zero value in the limit of
zero thresholds—we obtain a quadratic relationship between the
flow rate and the applied pressure drop when the applied pressure
drop is below the maximum threshold pressure, and the linear
Darcy relationship for higher pressure drops. This crossover
between a quadratic non-linear and linear flow regimes is in
agreement withmany existing results of two-phase flow in porous
media which shows that this simple model can capture effective
two-phase flow properties of more complex porous media. When
a lower cut-off is introduced in the threshold distribution, the
quadratic relationship changes, and the flow rate varies with an
excess pressure drop with an exponent 3/2 as the pressure drop
approaches to the lowest threshold pressure.

The difference between the capillary fiber bundle model and a
porous medium is that in the latter, the fluids meet and mix at the
nodes of the pore network. This is an essential mechanism that
leads to the non-linear Darcy law is a power law with an exponent
two as seen in the experiments, the numerical simulations and the
mean-field calculations. However, it remains a mystery how the
mixing at the nodes leads to this universality.
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Reaction-infiltration instability refers to the morphological instability of a reactive fluid

front flowing in a soluble porous medium. This process is important for many naturally

occurring phenomena, such as the weathering and diagenesis of rocks, dissolution in

salt deposits and melt extraction from the mantle. This paper is focused on experiments

on dissolution finger growth in radial geometries in an analog fracture. In the experiments,

pure water dissolves a plaster sample forming one of the fracture walls in a Hele-Shaw

cell with controlled injection rate and aperture. The flow is directed inwards to the center,

and we observe the reaction-infiltration instability developing along the relatively long

perimeter of the plaster. Our experimental results show a number of features consistent

with the theoretical and numerical predictions on the finger growth dynamics such as

screening and selection between the fingers. Statistical properties of the dissolved part

evolution with time are also investigated.

Keywords: dissolution, fracture, reaction-infiltration, fingering, Hele-Shaw cell, screening effect

1. INTRODUCTION

In geological systems, dissolution plays an important role in the weathering and diagenesis of
Earth’s rocks [1, 2], chemical erosion of salt deposits [3, 4], and melt extraction from the mantle
[5]. It is also of fundamental importance in many engineering applications, including dam stability
[6] and CO2 sequestration [7]. The important applications in the oil industry include acidization of
petroleum reservoirs [8] in order to enhance oil and gas production by increasing the permeability
of the rock [9, 10].

Because the reaction-infiltration instability plays an important role in a variety of fields, it
stimulates dissolution-related research projects, both theoretical and numerical. Linear stability
analysis can be applied to characterize the initial instability in porous media dissolution [11–14],
but after fingering develops, we enter a nonlinear regime, where very few theoretical tools can be
applied and one needs to resort to numerical simulations [3, 8, 15–21]. Compared to the theoretical
and numerical works on the subject, there are relatively few experimental studies, especially on the
observation of dissolution in quasi-2D radial geometry, which is the focus of this article.

In the lab experiments, two different setups are usually used: rock core acidization in Hassler
cell and quasi-2D systems in Hele-Shaw cell which are aimed to study the dissolution in quasi-2D
porous media and fractures. The number of core-flooding experiments reported in the literature
is significantly larger than Hele-Shaw cell studies. There are two reasons for that: First, the
core-flooding is closer to the real conditions encountered in the wellbore acidization in petroleum
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industry. Second, in core flooding it is easier to inject the
flow into a porous matrix with negligible boundary effect.
Many variables are systematically controlled in core-flooding
experiments, including: injection rate [22], sample material [23],
system scale [24], pH and temperature [25].

In this work, we have decided to use a 2D Hele-Shaw cell,
as quasi-2D systems are easier to visualize and due to a large
number of numerical work performed on these systems [18,
21, 26, 27]. On the experimental side, Daccord et al. [28, 29]
investigated the water/plaster system in radial Hele-Shaw cell
with central injection, and Golfier et al. [16] used a water/salt
system in rectangular Hele-Shaw cells. The intention of both
works was to study flow in a porous matrix, however, because of
the difficulty in avoiding wall effects at boundaries, the injected
water in most cases was found to flow along the difficult-to-
detect aperture between the medium and the confining cell plate.
This problem can be turned into advantage, if we promote it in
a controlled manner instead of avoiding the wall flow. Such a
controlled-aperture system can then be considered as an analog
of a fracture, and the study is then directed at the investigation
of how the fracture aperture evolves in time as a result of
dissolution. Within this frame, Detwiler et al. [30] undertook
a well-controlled dissolution study of the water/KDP system
in rectangular Hele-Shaw cell and systematically measured the
evolution of aperture at different flow rates. Osselin et al.
[31] have performed experiments on the onset of reactive-
infiltration instabilities in a fracture with a microfluidic setup
using a rectangular water/plaster system. However, in many
cases the relevant geometry is radial rather than rectangular,
for instance, in the oil industry where the acid fluids are
injected from a well, and in groundwater protection where
pollutants expand with or without dissolution radially from the
pollution source. Xu et al. [32] have recently studied dispersion
in fractures in radial geometry with a dissolution pattern around
the inlet.

The aim of this project is to study the dissolution finger
growth in a fracture aperture of radial geometry. In section 2,
we describe our experimental setup. In section 3, we present
our experimental results discussing the screening effect and
the statistical properties of the dissolved part evolution. The
conclusions are drawn in section 4.

2. DESCRIPTION OF EXPERIMENTS

The experimental scheme is illustrated in Figure 1. A Hele-Shaw
cell is formed by two circular glass plates which are separated by 1
mm aluminum spacers and held together by clamps. The bottom
glass plate (diameter d1 = 36.0 cm) is larger than the upper one
(diameter d2 = 25.0 cm) and has an external rim to hold the
water surface at a fixed altitude level. There is an outlet at the
center of the lower glass plate. A lightbox with a homogeneous
intensity of light illuminates the system from below. A digital
camera (Nikon D7100) records the sample images from the top
every 5 min, and the whole dissolution process is thus recorded
from the beginning of fluid withdrawing up to the dissolution
channel breakthrough at the central outlet.

FIGURE 1 | Schematic diagram of the experimental setup. A circular

Hele-Shaw cell (spacing 1 mm) contains a plaster plate with a small gap h

above the plaster upper surface. The aperture is created artificially by the

spacers and kept clamped. Water is withdrawn by a syringe pump from the

center of the bottom glass plate (the outlet), where it flows radially inwards.

The plaster plate is surrounded by freshwater. The model is illuminated from

below by a light box.

The circular plaster sample between the two plates was
prepared as follows: A gypsum saturated water solution was first
injected into the Hele-Shaw cell. We made a plaster paste by
mixing water and plaster powder with the ratio 2:3 by weight.
This paste was then injected from the center of the Hele-
Shaw cell. The paste displaced the plaster saturated water and
formed a circular plate of radius R0 = 8.0cm. The hydration
of this circular plaster paste requires approximately one hour to
complete. During the plaster hydration process, the plaster paste
was kept in the cell surrounded by saturated water. Over time, a
form of segregation called bleeding takes place, where some of
the water in the plaster tends to rise to the top surface of the
plaster plate [33]. This process creates a small gap h0 = 50µm
above the upper surface of the plaster. After the completion of
the hydration process, we removed the top glass plate, put several
plastic films (each film thickness h1 = 100µm) on the aluminum
spacers and put back the top glass plate. The artificial aperture in
our experiment h is defined as the distance between the upper
glass plate and the surface of the plaster sample. The aperture
created in this way is thus h = h0 + n · h1 where n is the number
of plastic films. In the experiments reported here, we used n = 2
films which gave h = 250µm. When the sample preparation was
completed, we started the dissolution experiments.

Because the radial dissolution by injection from the center
gives a very short dissolution front around a point-like inlet,
it becomes difficult to analyze the evolution of the fingers and
the periodic wavelength from the experimental images in such
a setup. Therefore, we chose instead to withdraw the water by
a syringe pump from the outlet located at the center of the
bottom glass plate. In this way, the freshwater flows from the rim
toward the center and dissolves the plaster sample from the outer
boundary. The instability can then be observed along the external
perimeter of the sample. The withdrawing flow rate Q is set as
Q = 0.18ml/min and the initial aperture of the artificial fracture
is h = 250µm. The permeability of the porous plaster matrix
is κp = 6.0 · 10−14m2 [34] but the permeability of the fracture
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FIGURE 2 | Experimental photos of the developing fingering pattern at different moments of time. The time interval between the photos is 2 days. In the circular

plaster sample, the dark yellow disk is the undissolved part of plaster and the light yellow part represents the dissolved or partially dissolved part.

calculated as κ = h2/12 is around 5.2·10−9m2, thus 5magnitudes
larger than the permeability of the porous matrix of our plaster
sample. Therefore almost all the freshwater flows through the
fracture instead of the porous matrix. The freshwater pumped
through the system is distilled water at room temperature T =
22◦C with pH = 7.17. The molecular diffusion coefficient of
plaster (gypsum) in water is Dm = 1.0 · 10−9m2/s [35]. One
experiment lasts around 10 days. The camera records the entire
dynamic evolution process from initial instabilities to fingering
formation, then to dissolution finger growth, and finally to the
breakthrough of the longest fingers at the outlet.

2.1. Characteristic Timescales
The initial aperture h is an important characteristic length scale
in our system. A characteristic timescale for diffusion across the
aperture is tD = h2/Dm = 62.5s and the characteristic timescale
for the reaction on the same length scale is tR = h/k = 54.3s,
where k is the chemical reaction kinetic constant (k = 4.6 ·
10−6m/s) [36]. A relevant time scale for convection is the time
it takes to flush the system, i.e., tC = πR20h/Q = 1, 670s. As we
see, tC ≫ tD ≈ tR. It means that reaction and diffusion across
the aperture happen almost immediately compared with the time
it takes for a fluid particle to flow through the system and we
therefore expect that the calcium concentration of the water will
reach the saturation concentration at the outlet. We performed
density measurements to determine the concentration of the
effluent solution. The concentration at the outlet is Coutlet =
2.5g/L which is consistent with the value of the saturation
concentration reported in the literature Csat = 2.53g/L [37].

3. EXPERIMENTAL RESULTS AND
DISCUSSION

3.1. Dissolution Finger Growth With
Screening Effect
As the freshwater flows from the edge of the plaster sample
to the center, the plaster begins to dissolve. In this process,
the water becomes saturated, thus the dissolution concentrates
at the perimeter. After several days, a visible dissolution front
appears and it slowly develops into many dissolution fingers as
a result of the reactive-infiltration instability. The further growth

of these fingers becomes nonlinear, with scarce theoretical results
concerning their shapes or growth rates [38, 39]. On the other
hand, numerical models give a number of predictions for the
fingering which can be qualitatively compared with experiments
[17, 18, 21]. In particular, one can study the screening between
the fingers, with the longer ones suppressing the growth of their
shorter neighbors. As a results, approximately half of the active
fingers continue to grow while the other half cease to grow. The
process then repeats itself, leading to the scale-free distribution of
finger lengths [40, 41].

Such a hierarchical growth of the fingers is clearly observed in
the experimental images. Four experimental photos are chosen
to show the process of the finger growth in Figure 2 (see also
Figure S1 and Videos S1, S2).

A dissolution front is extracted from the experimental images
by using thresholding. A front position D is calculated as the
distance between the point at the dissolution front and the outlet
center. The front position varies with the polar angle θ and time
t and we define the dissolution length as l(θ , t) = D(θ , t =
0) − D(θ , t), where D(θ , t = 0) is the initial front line. The
initial front position D(θ , t = 0) has a small variation with the
radius of the plaster sample R because in the experiments, the
initial plaster sample is not perfectly circular. The dissolution
length evolution with time l(θ , t) is shown in Figure 3. We should
notice that the dissolution length function l(θ , t) is not a unique
function because one polar angle θ could correspond to more
than one dissolution front point, at different radial positions. This
is because fingers develop along the radial direction and can also
grow wider, with an orthoradial growth component.

In Figure 3, the competitive growth of the fingers is observed,
due to the screening effect. The time interval we choose is fixed
(1.0 day between neighboring curves), but the growth rate for
different fingers varies significantly. One part of the fingering
pattern (with θ in between 4 and 5 radians) grows more slowly
than the rest over the entire time which means that the fluid
flux through this part must have been significantly smaller.
Such a flow inhomogeneity could be accidental, because the
geometry of the system is not perfectly uniform. It leads to an
initial circular symmetry breaking, where one side becomes a
freshwater preferential flow path, screening off dissolution at
other sides. Due to a positive feedback loop, eventually, some
fingers will dominate so that most freshwater concentrates in
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FIGURE 3 | (A) Dissolution front propagation with time in Cartesian coordinates. The outermost red circle is the initial boundary, the red star marks the origin, where

the outlet is located. The red arrow shows the point where θ = 0 and the direction in which the polar angle increases. Different colors of the curves show the

dissolution front in different times with the time interval of 1 day between two neighboring curves. (B) The evolution of the dissolution length with time is shown in polar

coordinates, obtained by calculating l(θ , t) = D(θ , t = 0)− D(θ , t) from binary experimental images. Different colors represent different times corresponding to the colors

in (A). The longest finger located at θ = 3.03 radians and the two second longest fingers located at θ = 0.48 radians and θ = 2.18 radians are indicated in the plot.

FIGURE 4 | (A) The finger length evolution with time. The longest finger and two second longest fingers growth with time are displayed. Fingers located at different

angular positions (see Figure 3B) are represented by different colors. The finger growth with time at these positions (fixed θ ) have been fitted with an exponential

function l = a · eβt, displayed by three different black curves (solid or dashed). Minimum dissolution distance (corresponding to the point on the perimeter with the

slowest dissolution speed) is shown by the purple curve. The inset shows the exponential fits for the finger length vs. time. (B) Dissolution finger length histograms

obtained by counting the peaks in the dissolution length profiles (see Figure 3B). Different colors represent different times. The histogram bins cover the range 0–4.0

cm with bin size 0.5 cm.

these dissolution fingers. These long fingers then continue to
grow while the short fingers grow very slowly (see Figure 3B).
For the dissolution front propagation with time in a repeated
experiment (see Figure S2). The longest fingers grow almost
exponentially with time judging from Figure 4A, where we fit the
finger length vs. time with an exponential function l = a·eβt . The
exponential growth rate β is shown in the legend of Figure 4A.
Interestingly, the values of exponential growth rates are the same
for all the three different fingers β = 0.32day−1, which shows
that the longest fingers grow largely independent of each other.
From Figure 3A, the distance between these longest fingers is

comparable to the length of their lengths. This is in agreement
with the observation [41, 42] that the long finger screens the
area of a lateral extent approximately equal to its length. For the
analysis of the growth rates of other fingers (see Figure S3A).

In order to perform the statistical analysis of the dissolution
finger growth, we find the local maxima of the curves
in Figure 3B and define the dissolution finger length as
the dissolution length corresponding to these maxima. The
dissolution finger length histogram is shown in Figure 4B. The
bins are chosen from 0 to 4.0 cm with a bin size of 0.5 cm,
which divides the fingers into several types (orders). At an early
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FIGURE 5 | (Left) X-ray image of dissolved plaster sample captured by X-ray thickness gauge REX-CELL 4X from Flow Capture. The gray-scaled picture shown in

the left panel is the normalized intensity of the X-ray measurement together with the color bar. (Right) Thickness profile of the dissolved plaster sample is displayed

with the gradient-color picture together with the color bar.

stage, a lot of small fingers appear, with the length below 0.5
cm; these are the first order fingers. After 3 days, 2nd order
fingers become clearly visible and the distribution gets wider as
time progresses. With time, the number of small fingers (finger
length below 1 cm in Figure 4B) decreases significantly since they
are absorbed by the moving dissolution front while the longest
fingers (finger length above 2.5 cm in Figure 4B) continue to
grow. For the dissolution finger length histogram of other fingers
(see Figure S3B).

3.2. Statistical Properties of the Dissolution
Patterns
We observe from Figure 2 that the interface between the
dissolved and the undissolved part is diffuse as the thickness
of plaster sample at the dissolution front gradually transitions
from the dissolved part to the undissolved part. Therefore,
thresholding of the image, although useful for analyzing the
dissolution patterns, leads inevitably to the information loss, as
partially dissolved region are either interpreted as fully dissolved
or as undissolved. In order to measure the aperture variation
in the experimental images, a calibration between the thickness
profile of the plaster sample and the intensity profile of the photos
is performed by an X-ray Thickness Gauging REX-CELL 4X from
Flow Capture [43–45].

The X-ray measurement for the thickness of dissolved plaster
sample is displayed in Figure 5. The data records the photon
counts at different positions of the sample by the X-ray
measurement. Then the thickness profile is obtained from the

intensity data by

d = ds ·
ln(I/I0)

ln(Is/I0)
,

where ds is the initial thickness of the undissolved plaster sample,
I is the intensity at a given pixel, I0 is the average intensity
value of the background and Is is the average intensity value
of the undissolved part. This formula is derived based on the
Beer-Lambert law, I = I0e

−ζd [46] where ζ = 0.43mm−1

normalized by a reference intensity Is = I0e
−ζds corresponding

to the undissolved sample.
The X-ray measurement and the calibration with the images

illuminated by white light are shown in Figure 6. We compared
the image illuminated by X-ray and the image illuminated by
lightbox, we found a linear regression for the scatter plot of
two images with y = 0.94 · x − 0.02. The Pearson correlation
coefficient [47] between the two images is 0.95, which confirms
that we can calculate the thickness of the plaster based on the
lightbox measurements.

This allows us to quantify the local volume of dissolved
gypsum in the sample. First, we define the aperture growth at
a given point as as δht(r, θ) = ht(r, θ) − h where ht(r, θ) is
the aperture at radial position r and polar angle θ and h is the
initial aperture. Next, we calculate the dissolved volume per unit

angle as Vθ (θ , t) =
∫ R0
0 δht(r) · rdr. Note that the total dissolved

volume is an integral of Vθ (θ , t) over the polar angle, Vdiss(t) =
∫ 2π
0 Vθ (θ , t)dθ . Subsequently, we find it more convenient to use
the arc length along the perimeter, p = R0θ , instead of θ itself,
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FIGURE 6 | (A) X-ray image of the plaster sample. (B) Image illuminated by light box of the white light. (C) The scatter plot, each point in the scatter plot represents a

pixel at the same position in both images illuminated by X-ray and the white light. The error bars are of the order of 5% on each of the axes. The pixel value below 0.7

represents the undissolved part and the pixel value above 0.9 represents the empty area outside of the plaster sample.

FIGURE 7 | Estimation of the local dissolved part. (A) An experimental photo to be processed. (B) The red circular line acts as the reference curve, which represents

the boundary of the initial plaster sample. The black part represents the undissolved part of the plaster sample. The red star marks the center of the plaster sample.

We integrate the aperture variation values along a radial line from a point on the perimeter of the red circular line to the center.

to parameterize the experimental data. Then we define a local

dissolved part as SD(p, t) =
∫ R0
0 δht(r)

r
R0
dr = Vθ (θ , t)/R0. The

calculation method is illustrated in Figure 7.
The local dissolved part SD(p, t) evolves in time as the

dissolution front propagates, as illustrated in Figure 8A. In order
to analyze this function quantitatively, a fast Fourier transform
with a Blackman window [48] is applied at different times to
obtain power spectrum S(k, t) where k is the spatial frequency or
wavenumber (k = 1/λ where λ is the wavelength).

The data in Figure 6A shows another manifestation of the
screening of the shorter fingers by the longer ones. The power
spectrum in Figure 8B has two main peaks before wavenumber
k = 0.1cm−1. The first peak (Peak 1 indicated by the red circle) at

0.02 cm−1 with wavelength∼ 50cm comes from the perimeter of
the plaster sample and the second peak (Peak 2 indicated by the
blue circle) at 0.06 cm−1 with a wavelength ∼ 17cm is connected
with the deviation of the initial gypsum disk from the circular
shape (see Figures S6, S7 in Supplementary Data).Wewill ignore
these two peaks because they come from the geometric properties
of the initial plaster sample and not from the dissolution process.

Beyond these two peaks, the maximum of the power spectrum
is observed at 0.24cm−1 with wavelength ∼ 4.2cm, indicated
by the red star in Figure 8B. This wavelength is related to the
characteristic distance between the longest fingers, which is the
main contribution to the power spectrum after finger formation.
From the semi-log representation in Figure 8C, we see that the
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FIGURE 8 | (A) The local dissolved part SD(p, t) at different time moments. (B) The power spectrum of SD(p, t) profiles presented in (A). Three main peaks are

indicated in the plot. The first two (marked by red and blue circles) are related to the initial geometry of the plaster sample. On the other hand, the peak at 0.24 cm−1

with wavelength ∼ 4.2cm (marked by the red star) is related to the characteristic wavelength of the fingering pattern. (C) Semi-log plot of the power spectrum, which

allows to observe power amplitude trends in a larger scope. The amplitude decays almost exponentially with wavenumber at low wavenumber (high wavelength),

followed by a flat plateau at higher wavenumbers. The solid black line in (C) is the linear fit, the slope of which gives the characteristic decay length, lD = 0.55cm.

FIGURE 9 | The left panel (A) shows the local dissolved part along the perimeter, SD(p, t) at t = 7 days. The positions corresponding to the individual fingers, at p =

[4.0, 11.9, 23.9, 29.3, 35.4, 41.3, 47.6] cm are marked with color circles. The center panel (B) displays the growth of SD(pi , t) at these positions with error bars. The

right panel (C) shows the total dissolved volume as a function of time (red line) together with a linear fit (black line) and the theoretical estimate (blue line) with the

corresponding error bars. The overlap between error bars show the experimental measurement fits well with the theoretical estimate.

amplitude decays almost exponentially with wavenumber at low
wavenumbers (high wavelengths), followed by a flat plateau at
higher wavenumber. The decay is exponential, S(k, t) ∝ S(0, t) ·
e−lD·k with the characteristic decay length lD = 0.55cm as shown
in Figure 8C. The Fourier transform of a Lorentzian gives an
exponential function [49]. The width of the Lorentzian gives the
characteristic decay length of this exponential function. Since
the largest fingers are of a similar shape, we expect the decay
length lD = 0.55cm to correspond to their characteristic width,
which is indeed the case. The amplitude of the power spectrum
decays gradually after a crossover at wavenumber k = 20cm−1

corresponding to the wavelength λ = 0.5mm. The part of the
spectrum with the wavenumber larger than k = 20cm−1 are
considered as noise from the roughness of the dissolution front.

The local dissolved part increases in time, as illustrated
in Figure 9. The uncertainty of the measurement of the
thickness variation is about 5% according to Figure 6. In
Figure 9, we present the evolution of SD(p, t) with error bars at

several different points along the perimeter of the sample, the
positions of which are marked by circles with the corresponding
color in Figure 9A. Figure 9B further confirms the crucial
role played in the dynamics by the competition between the
fingers—the longer fingers speed up at the expense of the
shorter ones.

To validate the calibration between the aperture profile and
intensity profile, we have also calculated the growth of the total
dissolved volume in time. The results, presented in Figure 9C,
show that VD increases linearly in time with the slope of
528mm3 per day. This is close to the theoretical estimate of the
growth of the dissolved volume based on the mass balance of
the reactant

VD =
Q · csat

ρb
t, (1)

where Q is the injection rate, csat is the solubility of gypsum in
pure water at 20◦C and ρb is the bulk density of experimental
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FIGURE 10 | The figure shows the mean wavenumber (for k > 0.1cm−1), its standard deviation and the mean wavelength (λ = 1/k) evolution with time for two

experiments with the same aperture h = 250µm and the withdrawing rate Q = 0.18ml/min. (A) The average wavenumber decreases with time. (B) The standard

deviation decreases with time. (C) The average fingering wavelength increases with time.

plaster sample. For Q = 0.180ml/min, csat = 2.53g/l [37]
and ρb = 1.1g/ml we get the rate of growth of the dissolved
volume of 596mm3/day with an uncertainty of 9.1%, a reference
line of this slope with error bars is shown in Figure 9C.
The possible factors influencing the difference between the
theoretical slope and the one measured experimentally come
from inaccuracy in theH measurement of the bulk density
ρb, measurement of the thickness variation δh and the linear
fitting for VD(t) based on the image analysis. Importantly,
the second run of this experiment results in similar statistical
properties of the dissolved pattern (see the Supplemental Data
in Figures S4, S5).

We now introduce a calculation method by Vinningland et al.
[50] who characterized the mean wavenumber of a growing
interface. We again ignore the low frequencies since they are
related to the initial geometric properties of the sample and only
consider the wavelength λ < 10cm i.e., k > 0.1cm−1. An
average wavenumber < k > from the power spectrum S(k) for
k > 0.1cm−1 is defined as:

< k >=
6k · S(k)
6S(k)

, (2)

where the sum 6 is over all k > 0.1cm−1. The standard deviation
σf is defined as:

σk =

√

6k2 · S(k)
6S(k)

− < k >2. (3)

We calculate the temporal evolution of < k > and σk,
shown in Figure 10. As observed, the average wavenumber
decreases with time, i.e. the average wavelength increases.
This is another manifestation of the competition between
the fingers: longer fingers develop and screen off nearby
shorter fingers, which leads to a larger wavelength. The

average wavenumber ranges from 0.4 to 1.8 cm−1, thus
the average wavelength ranges from 0.6 to 2.5 cm which
fits the observation of characteristic wavelength from the
experimental images.

4. CONCLUSIONS

Understanding of the dissolution of fractures is important
both for basic science (e.g., for studies of speleogenesis) as
well as for technological applications, particularly in petroleum
industry. However, the dissolution experiments in quasi-2d,
radial geometry are relatively seldom performed. We dissolve
a plaster disk in a Hele-Shaw cell by withdrawing water
from the center, thus creating the inward flow pattern, and
for the first time to our knowledge, we report the reactive-
infiltration instability and finger growth along the perimeter
of the circular plaster sample. The perimeter is 50.3 cm
long which is sufficient to perform a statistical study of the
reactive-infiltration instability and the dissolution fingers growth
with time.

We observe strong competition between the growing fingers
with the longest fingers growing exponentially with time in
our experiments. We measure the thickness variation of the
plaster sample by X-ray gauge and quantify the evolution in
time of the dissolved volume. We then analyze it using statistical
methods. The characteristic wavelength of the perturbations
of the front is measured by a fast Fourier transform of the
local dissolved volume. The power spectrum shows exponential
decay with a characteristic decay length lD = 0.55cm. On
the other hand, the average wavelength increases linearly
with time.

Our experimental setup allows us to adjust both the aperture
thickness and flow rate. In the future, we will systematically
control these two parameters to study a dissolution phase
diagram in a radial geometry.
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Video S1 | The video of the experiment described in the main text shows the

sequence of the experimental photos of the developing fingering pattern at

different moments of time.

Video S2 | The video of the experiment described in the Supplementary Material

shows the sequence of the experimental photos of the developing fingering

pattern at different moments of time.
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Wemodel the flow of bi-viscous non-Newtonian fluids in porous media by a square lattice

where the links obey a piece-wise linear constitutive equation. We find numerically that

the flow regime, where the network transitions from all links behaving according to the first

linear part of the constitutive equation to all links behaving according to the second linear

part of the constitutive equation, is characterized by a critical point. We measure two

critical exponents associated with this critical point, one of them being the correlation

length exponent. We find that both critical exponents depend on the parameters of

the model.

Keywords: porous media, non-newtonian fluid, percolation, critical system, non-linear Darcy law

1. INTRODUCTION

The behavior of complex fluids when being inside a porous medium may be very different from
that when they are not. This is a problem encountered in many biological or industrial applications
ranging from impregnation of fibrous materials to immiscible multi-phase flow in porous media.
Among the different types of non-Newtonian fluids, many undergo behavioral changes depending
on the stress or strain applied. One can mention the Carreau rheology which is Newtonian at low
shear rate but behaves as a power law fluid above a certain shear rate [1]. Other examples are yield
stress fluid that responds as a solid below a critical yield threshold. Above, they behave as a power
law fluid [2]. At the mesoscopic level, this rheological approach can also be extended to other
situations. For example, inertial effects can be described as a rheological change from a Newtonian
fluid to a power law (quadratic or cubic) for a given large Reynolds number [3]. Another possible
extension is the displacement of immiscible fluids in porous media. In this case, the fluids may each
be Newtonian. However, the interfacial tension between them makes them effectively behave in a
non-Newtonian way inside the porous medium [4]. Indeed, a non-zero amount of stress is then
required for a non-wetting phase to invade the smaller pore throats.

Non-Newtonian fluids are notoriously difficult to treat analytically and computationally. When
in addition the flow is constrained by the very complex boundary conditions of a porous medium,
the effective rheology of the fluid flow is not well understood. This might for example be seen in the
fact that the leading theory for describing immiscible multi-phase flow in porous media is still the
relative permeability theory dating from 1936 [5] a theory which has evident weaknesses.

The purpose of this manuscript is to investigate the coupling between the heterogeneity of the
medium and a rheology with a change of behavior. We study a very simple model, namely a bi-
viscous fluid, where the fluid is Newtonian but with a change of viscosity at one particular shear
rate (or shear stress) [6, 7]. The second viscosity might be lower (shear thinning) or higher (shear
thickening). As we shall see, the coupling between the disorder and such a simple rheological model
is enough to generate a rich problem.

162

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00225
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00225&domain=pdf&date_stamp=2020-01-09
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:talon@fast.u-psud.fr
https://doi.org/10.3389/fphy.2019.00225
https://www.frontiersin.org/articles/10.3389/fphy.2019.00225/full
http://loop.frontiersin.org/people/127744/overview
http://loop.frontiersin.org/people/73058/overview


Talon and Hansen Effective Rheology of Bi-viscous Fluids

FIGURE 1 | Diamond lattice used in this work. At each node, a pressure Pi is

defined. In each link, the flow rate is a function of the pressure difference

δP = Pi − Pj according to a bi-viscous model.

We also choose a simple porous medium; a square lattice
oriented at 45◦ with respect to the average flow direction, see
Figure 1, consisting of Nx links in the flow direction and Ny links
in the direction orthogonal to the flow direction.

The constitutive equation for the fluid in a link in the lattice is
given by

q(∇p) =

{

−α∇p : |q| ≤ qc ,

−β∇p+ sgn(q)
[

1− β
α

]

qc : qc ≤ |q| , (1)

where q is the volumetric flow rate in the link, and ∇p is the
pressure drop across the link. There are three parameters, α,
β and qc. The two first parameters, α and β are the mobilities
when the fluid is either in the “α-mode" or in the “β-mode." The
third parameter, qc is the flow rate at which the fluid changes
from being in α-mode to β-mode. We illustrate the constitutive
equation in Figure 2. To simplify the problem as much as
possible, we let the two the α-mobilities and the β-mobilities be
the same for all links in the lattice. However, each link has its own
flow rate threshold qc drawn from a distribution p(qc).

We will in the following study this system for different values
of α and β and for two threshold distributions p(qc); a uniform
distribution and an exponential distribution.

In section 2, we consider the symmetries inherent in the
system. There are two types of symmetries. The first type is
related to what happens to the volumetric flow rate through the
system, Q when we scale the system parameters. Using the Euler
theorem for homogeneous functions, we are able to write down
the most general form of the volumetric flow rate. If we define
〈q〉 as Q/Ny, where Ny is the width of the lattice in terms of
nodes, we find that 〈q〉 = α q(∇p,β/α, {qc}/α), where {qc} refers
to the set of thresholds, one for each link. The second type of
symmetry is the self-duality of the square lattice leading to a
mapping between the behavior of the system for a given ratio β/α

FIGURE 2 | Bi-viscous flow curve. If the absolute value of the flow rate is

below a local threshold qc, the flow is linear with a mobility α. Once the

absolute value of the flow rate has reached the threshold the evolution is still

linear but with different mobility β.

and its inverse, α/β . Hence, we only need to discuss parameters
for which β/α ≥ 1, see Figure 3.

We study in section 3 the lattice with Nx = 1, i.e., there is
only one layer. Themodel then becomes the capillary fiber bundle
modelwhich is analytically tractable.We find that for the uniform
threshold distribution, the flow rate behaves as 〈q〉−〈qc〉 ∼ (∇p−
∇pc)

2 where (〈qc〉,∇pc) is a point only dependent on the value of
the ratio β/α and the limits of the uniform distribution qmin and
qmax. This is reminiscent of a critical point. However, it is not a
critical point. There are no correlations developing in the system
as ∇p approaches ∇pc. Furthermore, the power law behavior is
not seen when the threshold distribution is exponential.

Section 4 is devoted to the numerical algorithm we use to
solve the flow patterns. Our algorithm is based on the augmented
Lagrangian algorithm, which we describe in this section.

We present our results in section 5. First we note that the
two limits β/α → 1 and β/α → ∞, or equivalently, β/α →
0 correspond to the directed percolation [8] and the directed
polymer problems respectively [9]. This points us in the direction
of there being a critical point in the problem in spite of the
conclusion drawn for the capillary fiber bundle model in section
3. Indeed, this is what we find, i.e., that 〈q〉−〈qc〉 ∼ (∇p−∇pc)

µ

where µ depends on the ratio β/α for the same type of threshold
distribution that gave a power law dependence in the capillary
fiber bundle model studied in section 3. We define and measure a
correlation length Lmax ∼ (∇p−∇pc)

−ν . The correlation length
exponent ν also depends on the ratio β/α. In the limit β/α → 1,
the longitudinal directed percolation correlation length exponent
ν‖ = 1.733847(6) [10] is expected and our numerical results are
consistent with this. In the directed polymer limit β/α → ∞,
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FIGURE 3 | Example of the mean flow rate 〈q〉 as function of the mean

gradient ∇p for two different bi-viscous model (α,β) = (1, 10) (blue) and

(α,β) = (1, 0.1) (green). As described in the text, the two cases are

symmetrical through a duality mapping.

however, the corresponding correlation length exponent is not
the usual one, ν‖ = 3/2 [11], but rather one that describes a
correlated directed percolation problem.

The last section 6 contains our summary and conclusions.

2. SYMMETRIES

In this section, we discuss the symmetries that lie hidden in
the system we study, a diamond lattice of links obeying the
constitutive (Equation 1). We consider two types of symmetry:
one is based on scaling of the size and parameters of the model.
Through the Euler theorem for homogeneous functions, we
are able to write down the most general functional form the
volumetric flow rate through the network takes. We then go on
to exploring the geometrical symmetry inherent in the diamond
lattice due to self-duality in the same way as first done by Straley
[12]. This symmetry demonstrates that we only need to explore
the part of parameter space for which β/α ≥ 1.

2.1. Scaling Symmetry
The volumetric flow rate Q shows a number of scaling
symmetries. We combine these with the Euler theorem for
homogeneous functions to deduce the functional form of Q =
Q(1P,α,β , {qc},Nx,Ny) [13]. Here {qc} is the set of thresholds,
one for each link in the network. The volumetric flow rate is
extensive in the width of the network, Ny. Hence,

Q(1P,α,β , {qc},Nx, λyNy)

= λyQ(1P,α,β , {qc},Nx,Ny) . (2)

With respect to the length of the system, we find the symmetry

Q(1P,α,β , {qc},Nx,Ny)

= Q(λx1P,α,β , {qc}, λxNx,Ny) . (3)

A more subtle scaling symmetry is

Q(1P, λqα, λqβ , {λqqc},Nx,Ny)

= λqQ(1P,α,β , {qc},Nx,Ny) . (4)

We also have the scaling symmetry

Q
(

1P,α,β , {qc},Nx,Ny

)

= Q

(

λP1P,
α

λP
,

β

λP
, {qc},Nx,Ny

)

. (5)

The lengthNx and widthNy of the network are discrete variables.
By setting λy = 1/Ny we find from Equation (2) that

Q(1P,α,β , {qc},Nx,Ny)

= NyQ(1P,α,β , {qc},Nx, 1) . (6)

The second scaling relation, Equation (3) gives when
setting λx = 1/Nx,

Q(1P,α,β , {qc},Nx,Ny)

= Q(∇p,α,β , {qc}, 1,Ny) , (7)

where we have used the definition ∇p = 1P/Nx. We now
combine (Equations 6 and 7) to get

Q(1P,α,β , {qc},Nx,Ny)

= NyQ(∇p,α,β , {qc}, 1, 1) = 〈q〉 . (8)

Hence, we define the average flow rate in the links as

〈q〉(∇p,α,β , {qc}) = Q(∇p,α,β , {qc}, 1, 1) . (9)

This is thus an intensive variable with respect to the width and
the length of the network.

The two remaining scaling relations (4) and (5) involve
continuous variables and we may thus make use of Euler’s
theorem for homogeneous functions. The Euler theorem is easy
to implement for each of these four scaling symmetries: we take
the derivative with respect to the scaling variable λ in each
expression and set the variable equal to one.

The scaling relation (4) gives

Q(1P,α,β , {qc},Nx,Ny)

=
(

∂Q

∂α

)

α +
(

∂Q

∂β

)

β +
∑

links

(

∂Q

∂qc

)

qc , (10)

or in terms of the intensive variable

〈q〉(∇P,α,β , {qc})

=
(

∂〈q〉
∂α

)

α +
(

∂〈q〉
∂β

)

β +
∑

links

(

∂〈q〉
∂qc

)

qc . (11)

We define the functions

A = −
(

∂〈q〉
∂α

)

, (12)
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B = −
(

∂〈q〉
∂β

)

, (13)

and,

{c} =
{(

∂〈q〉
∂qc

)}

. (14)

There is one function c for each link in the network.
Whereas 〈q〉 is homogeneous of order one1 in the variables α,

β and {qc}, the functions A, B and {c} are homogeneous of order
zero in these variables. This means that the parameters α, β and
{qc} only appear as ratios in these functions,

A = A

(

∇p,
β

α
,
{qc}
α

)

, (15)

B = B

(

∇p,
β

α
,
{qc}
α

)

, (16)

and

{c} =
{

c

(

∇p,
β

α
,
{qc}
α

)}

. (17)

Equation (10) may thus be written

〈q〉(∇P,α,β , {qc}) =

−A

(

∇p,
β

α
,
{qc}
α

)

α − B

(

∇p,
β

α
,
{qc}
α

)

β

+
∑

links

c

(

∇p,
β

α
,
{qc}
α

)

qc .

(18)

Scaling Equation (5) combined with the Euler theorem gives

(

∂Q

∂1P

)

1P =
(

∂Q

∂α

)

α +
(

∂Q

∂β

)

β , (19)

In terms of 〈q〉 and Equation (17), we may rewrite this Equation

m

(

∇p,
β

α
,
{qc}
α

)

∇p

= A

(

∇p,
β

α
,
{qc}
α

)

α

+ B

(

∇p,
β

α
,
{qc}
α

)

β , (20)

where we have defined the mobility

m = −
(

∂〈q〉
∂∇p

)

. (21)

From Equations (10) and (19), we deduce that

〈q〉 =
(

∂〈q〉
∂∇p

)

∇p+
∑

links

c qc = −m∇p+
∑

links

c qc , (22)

1A homogeneous function f (x, y) of order n in variables x and y fulfills the scaling

relation λnf (x, y) = f (λx, λy).

and with the help of Equation (20) we find

〈q〉 = − a

(

∇p,
β

α
,
{qc}
α

)

α∇p

− b

(

∇p,
β

α
,
{qc}
α

)

β∇p

+
∑

links

c

(

∇p,
β

α
,
{qc}
α

)

qc , (23)

where we have defined

a

(

∇p,
β

α
,
{qc}
α

)

∇p = A

(

∇p,
β

α
,
{qc}
α

)

, (24)

and,

b

(

∇p,
β

α
,
{qc}
α

)

∇p = B

(

∇p,
β

α
,
{qc}
α

)

. (25)

We may take Equation (23) one step further by dividing out the
parameter α,

〈q〉
α

= q

(

∇p,
β

α
,
{qc}
α

)

, (26)

where,

q

(

∇p,
β

α
,
{qc}
α

)

=

− a

(

∇p,
β

α
,
{qc}
α

)

∇p

− b

(

∇p,
β

α
,
{qc}
α

)

β

α
∇p

+
∑

links

c

(

∇p,
β

α
,
{qc}
α

)

qc

α
.

(27)

We may as a check, compare Equation (23)—our main result in
this section—with the constitutive Equation (1) in the case when
there is no disorder, i.e., when all qc are equal. In this case, 〈q〉
should be equal to the constitutive equation. Hence, in this case
we find,

a

(

∇p,
β

α

)

= 2(qc − |q|) , (28)

b

(

∇p,
β

α

)

= 2(|q| − qc) , (29)

and

c

(

∇p,
β

α

)

= 2(|q| − qc) sign(q)

(

1−
β

α

)

. (30)

Here 2 is the Heaviside step function which is one for positive
arguments and zero for negative arguments. We note that if
|q| < qmin, then Equations (28–30) are correct as the disorder
is not “noticeable" in this flow regime.
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FIGURE 4 | Sketch of the dual network construction. From the original

network (black), one can construct a dual one (red), where the nodes are

located at the center of the original cells. At each link of the dual network we

associate a “dual" flow rate obtained from the pressure difference of the

original network. At each node we associate a “dual" pressure based on the

original flow rate. See the text for details.

2.2. Self-Duality of the Square Lattice
We define a dual network as sketched in Figure 4. A node is
located at the center of each cell and there is a link connecting
each adjacent cell. On each link, a “dual" current is defined
from the pressure difference between pressure by the crossed link
(from the original network),

jA→B = P1 − P4 ,

jA→D = P2 − P1 ,

jF→A = P3 − P4 ,

jE→A = P2 − P3 . (31)

The current in the dual lattice satisfies the conservation of mass
at each node (e.g., the Kirchhoff condition) since jA→B+ jA→D−
jF→A − jE→A = 0.

Moreover, one can define a pressure fieldW on the dual lattice
defined from this gradient,

WA −WB = q1→4 ,

WB −WC = q1→5 ,

WC −WD = q1→6 ,

WD −WA = q1→2 . (32)

The definition is consistent once W is defined at a single point
since the sum over a closed loop (and thus any) is equal to zero,
(WA − WB) + (WB − WC) + (WC − WD) + (WD − WA) =
q1→4 + q1→5 + q1→6 + q1→2 = 0.

Hence, the “dual” pressure gradient and current follow the
constitutive equation,

WA −WB = q1→4 = q(PA − PB) = q(jA→B) , (33)

so that,

jA→B = q−1(WA −WB) . (34)

Hence, the dual pressure and flow rate field satisfy the same kind
of equation but with a local law which is inverted. It is important
to note that the mean flow in the dual lattice is perpendicular to
the original one.

3. CAPILLARY FIBER BUNDLE MODEL

We now consider an analytically solvable model for the flow.
Let us assume that the network consists of a set of parallel links
placed between two fluid reservoirs kept at pressure p = 0 and
p = ∇p < 0, i.e., we are describing the capillary fiber bundle
model [14–16]. The constitutive equation for the fiber bundle is
then given by

Q =
Ny
∑

i=1

[

−2(qi − α|∇p|)α∇p

− 2(α|∇p| − qi)β∇p

+ 2(α|∇p| − qi)

(

1−
β

α

)

qi

]

, (35)

where we have labeled the links according to their position, i =
1, · · · ,Ny and qi is the threshold of the ith link.

Let us now relabel the links in ascending order with respect
to their thresholds: q(1) ≤ q(2) ≤ · · · ≤ q(Ny). Equation (35)
then becomes

Q =
Ny
∑

k=1

[

−2(q(k) − α|∇p|)α∇p

− 2(α|∇p| − q(k))β∇p

+ 2(α|∇p| − q(k))

(

1−
β

α

)

q(k)

]

. (36)

The thresholds are distributed according to the probability
distribution p(qc), with a corresponding cumulative probability
given by

P(qc) =
∫ qc

0
p(q)dq . (37)

According to order statistics, the mean value of kth largest
threshold—mean value in the sense of averaging over an
ensemble of networks—is given by

P(q(k)) =
k

Ny + 1
≈

k

Ny
. (38)
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Thus, the ensemble averages of the three types of sums in
Equation (36) are then

Ny
∑

k=1

2(q(k) − α|∇p|) = Ny[1− P(α|∇p|)] , (39)

Ny
∑

k=1

2(α|∇p| − q(k)) = NyP(α|∇p|) , (40)

and

Ny
∑

k=1

2(α|∇p| − q(k))q(k) = Ny

∫ α∇p

0
p(q)q dq . (41)

Inserted into Equation (36), these averages give

〈q〉 = −[1− P(α|∇p|)]α∇p− P(α|∇p|)β∇p

+
[

1−
β

α

] ∫ α|∇p|

0
p(q)q dq , (42)

where 〈q〉 = Q/Ny.

3.1. Uniform Threshold Distribution
We now consider the concrete threshold distribution we will
also employ in our numerical simulations on the square lattice:
a uniform distribution on the interval (qmin, qmax). Hence,

p(qc) =







0 : qc ≤ qmin ,
(qmax − qmin)

−1
: qmin < qc < qmax ,

0 : qmax ≤ qc .
(43)

We define

∇pmin = −
qmin

α
, (44)

and

∇pmax = −
qmax

α
. (45)

We also define

∇p0 =
1

2

[

∇pmin +∇pmax

]

. (46)

Inserting these expressions into Equation (42) gives

〈q〉 =



























−α∇p : |∇p| ≤ |∇pmin| ,
(α−β)(∇p−∇pc)

2

2(∇pmax−∇pmin)

−α(α∇p0−β∇pmin)
α−β

: |∇pmin| < |∇p|
: |∇p| < |∇pmax| ,

−β∇p− (α − β)∇p0 : |∇pmax| ≤ |∇p| .

(47)

We have here defined

∇pc =
α∇pmax − β∇pmin

α − β
. (48)

If we now define

〈qc〉 =
α(β∇pmin − α∇p0)

α − β
, (49)

we may cast the middle regime where |∇pmin| < |∇p| < |∇pmax|
in the form

〈q〉 = 〈qc〉 +
(α − β)

2(∇pmin −∇pmax)
(∇p−∇pc)

2 . (50)

It straight forward but somewhat tedious to rewrite the average
flow rate 〈q〉, Equation (47) in the general form (26) and (27)
resulting from the scaling relations (2) to (5).

3.2. Exponential Threshold Distribution
Let us now consider the exponential threshold distribution

p(qc) =
e−qc/q0

q0
, (51)

for 0 ≤ qc < ∞. The corresponding cumulative distribution is

P(qc) = 1− e−qc/q0 . (52)

Inserted into Equation (42), this gives

〈q〉 = −eα∇p/q0α∇p

−
(

1− eα∇p/q0
)

β∇p

+
[

1−
β

α

]

[

q0 − eα∇p/q0
(

q0 − α∇p
)

]

, (53)

where we are still assuming ∇p < 0. Let us set q0 = −α∇p. We
then have the limits

〈q〉 =
{

−α∇p : |∇p| ≪ q0/α ,
−β∇p+ (α − β/)∇p0 : q0/α ≪ |∇p| . (54)

In contrast to the uniform distribution discussed in section 3.1,
there is not a transitional regime between the two limits of
Equation (54) which is on the form (50).

Hence, the uniform distribution on an interval, (43) results in
〈q〉 following a power law in 〈q〉 − 〈qc〉 vs. ∇p − ∇pc, Equation
(50), whereas the exponential distribution (51) does not. From
the simple capillary fiber bundle model we may conclude that the
power law behavior seen in Equation (50) is incidental and due to
the uniform threshold distribution, which in itself is a power law
(with exponent zero).

We study a two-dimensional network mode in section 5.
Surprisingly, we find that also in this case, only the uniform
distribution leads to a flow dependency on the pressure drop of
the form

〈q〉 − 〈qc〉 ∼ (∇p−∇pc)
µ . (55)

In this case, however, the exponent µ depends on the parameter
ratio β/α.
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4. NUMERICAL METHOD: AUGMENTED
LAGRANGIAN

For completeness, this section describes the numerical method
used to solve the non-linear Kirchhoff equations. This section is
not required to understand the results that follow.

The method used is based on the Augmented Lagrangian
method commonly used to solve the Stokes Equation for yield
stress fluids [17, 18]. It is based on a variational approach. We
start by rewriting the local Equation (1), introducing the function
f (q) as

δp(q) = −f (q) =

{

− 1
α
q : |q| < qc

− 1
β

[

q− q
|q| (1−

β
α
)
]

: |q| > qc .
(56)

We define a function φ(q) =
∫ q
0 f (q′)dq′. The flow field {ql}

solution of Equation (1), with the constraints of imposed inlet
and outlet pressures at the boundaries pin and pout , can be written
as the saddle point of the functional

max
{λn}

min
{ql}

8[{ql}, {λn}]

=
∑

l∈L

[

φ(qn)− δl,inpinql + δl,outpoutql
]

+
∑

n∈N
λn

∑

l′∈V(n)

ql′ , (57)

where L represents the ensemble of links, N the ensemble of
nodes and V(n) the ensemble of links connected to node n. The
symbol δl,in (resp. δl,out) is equal to 1 if the link is connected to
the inlet (resp. outlet) node and to 0 otherwise. The {λn} field is
a set of Lagrangian multipliers which imposes the conservation
of mass at each node (and it may thus be associated to a
pressure field).

The main idea of the Augmented Lagrangian method is to
introduce a secondary set of velocities {jl} to decouple the non-
linear rheology from the Kirchhoff Equation. Another constraint
is then added {jl} = {ql} via the Lagrangian method.

Hence, the velocity field is the solution of the equation

max
{λn},{µn}

min
{ql},{jl}

9[{ql}, {jl}, {λn}, {µl}]

=
∑

l∈L

[

φ(qn)− δl,inpinjl + δl,outpoutjl

+ µ(jl − ql)+
ǫ

2
|ql − jl|2

]

+
∑

n∈N
λn

∑

l′∈V(n)

jl′ , (58)

where {µl} is a set of Lagrangian multipliers. The quadratic term
is an additional penalty term which characterizes the augmented
Lagrangian approach. Here ǫ is a parameter determining
its strength.

The methods consists now in implementing an iterative
algorithm to reach the saddle point starting from an initial guess
{q0

l
}, {j0

l
}, {λ0n} and {µ0

l
}.

Knowing {qn
l
}, {jn

l
}, {λnn} and {µn

n}, the algorithm is
decomposed in the following steps.

Determination of {jn+1
l } and {λn+1

n }:

For this step we solve

∀l ∈ L,
∂

∂ jl
9[{qnl }, {jl}, {λn}, {µ

n
l }] = 0 ,

∀n ∈ N ,
∂

∂λn
9[{qnl }, {jl}, {λn}, {µ

n
l }] = 0 , (59)

which reads

∀l ∈ L, jn+1 = −
1

ǫ
(λn+1

l+ − λn+1
l− + µn

l − ǫqnl ) (60)

∀n ∈ N ,
∑

l′∈V(n)

jn+1
l′ = 0, (61)

where λn+1
l+ and λn+1

l− are the Lagrangian multipliers of the two
nodes adjacent to link l. For nodes adjacent to the outlet (resp.
inlet), λ+ (resp. λ−) has to be replaced with pout (resp. pin).

The most important point of this set of equations is that it is
equivalent to solving the standard linear Kirchhoff equations with
a constant permeability 1/ǫ but with an additional source term
µn
l
− ǫqn

l
. Hence, it may be solved by standard linear methods

(uch as Cholesky, LU decomposition, etc.).

Determination of qn+1
l :

We solve

∀l ∈ L,
∂

∂ql
9[{ql}, {jn+1

l
}, {λn+1

n }, {µn
l }] = 0, (62)

which the local, but implicit equation

∀l ∈ L,φ′(qn+1
l

)+ ǫqn+1
l

= µ + ǫjn+1
l

; . (63)

Noting that y = µ + ǫjn+1
l

, the solution is given by

qn+1
l

=

{

1
1/α+ǫ

y : |y| < ǫic + ic
α
,

1
1/β+ǫ

[

|y| + (1/β − 1/α)ic
]

sign(y) : |y| > ǫic + ic
α
.

(64)

Determination of µn+1
l :

For this step, we update in the direction of the gradient
(Newton method)

µn+1
l

= µn+1
l

+ γ (jn+1
l

− qn+1
l

) , (65)

where γ is a parameter set to γ = ǫ for simplicity.
In practice, this algorithm is iterated until the relative

variation of the total flow rate between two step is below 10−5%.
The computational time and the number of steps are strongly
varying depending on β but also on the applied pressure.

5. RESULTS

We now our numerical model based on the network show in
Figure 1 and the algorithm described in section 4. We use the
link threshold distribution (43) with qmin = 7.5 and qmax = 12.5
in the following.
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5.1. Criticality
As noted above, due to the distribution of thresholds, the links
will reach their thresholds at different macroscopic pressures. A
link l will be defined as being in β-mode if ql > qc and in α-mode
otherwise. Similar to the percolation problem, a macroscopic
change in flow regime is expected once there are percolation
pathways of β-mode links. However, it is important to note
a major difference with the percolation problem: the mode of
a link influences the neighboring links. Indeed, in the case of
β > α, once a link switches to β-mode, the flow will be easier
through it. This will tend to concentrate the flow toward it. It
will therefore increase the flow in the upstream and downstream
neighboring links and as a consequence push these links toward
the β-mode. In the opposite case, for β < α, the β-mode has
a lower conductivity once entering this mode compared to what
it would have in α-mode. Flow will therefore tend to go around
it, increasing the flow in the other lateral links. Consequently β-
mode links will tend to correlate in the stream-wise (or lateral)
direction for β > α and orthogonally to the stream-wise
direction for β < α [19].

The intermediate case β = α is interesting as the mode of
a link has no influence on its neighbors. Since the mobility are
the same for every link, the flow rate and the pressure gradient
become homogeneous and equal to the mean flow rate and
mean gradient. The problem is therefore identical to the directed
percolation problem [8].

The other limit β/α≫1, the problem becomes identical to that
of a yield stress fluid in a porous medium [9, 20, 21]. The critical
path is then related to the directed polymer problem [9, 22–24],
as it corresponds to the path that minimizes the sum of local
pressure threshold 1Pc = min

∑

(qc/α).

5.2. Pathscape Method
To quantify this phenomenon and to determine the percolation
pressure, we determine the longest directed path of the β-mode
links. This quantity is essentially the longitudinal correlation
length in directed percolation [10].Wemap the length of all paths
by invoking a pathscape approach as described in Talon et al. [24]
for yield-stress fluids.

We introduce the node field Ln representing the longest
upstream directed path ending at n. Ln can be determined from a
transfer matrix algorithm propagating from left to right (stream
direction). If we note, at a given node n, l1 and l2 the two
upstream neighbor links and n1 and n2 the corresponding nodes.
We associate binary variablesm1 andm2 with the two links l1 and
l2. If link l1 is in β-mode, thenm1 = 1, otherwisem1 = 0 — and
likewise for the link l2. We then have that

Ln = max
[

(Ln1 + 1)m1, (Ln2 + 1)m2

]

. (66)

We proceed by constructing the node field Rn containing
the longest directed path ending at n but propagating in the
downstream direction. This algorithm is identical to the previous
one but it propagates in the upstream direction from the
rightmost column.

Once both fields have been determined, we sum the two to
obtain the pathscape Tn = Ln + Rn, which contains the length of
longest directed percolating path passing by the node n. From

this pathscape, we can then identify the longest directed path
Lmax = max(Tn). In Figure 5, we present two examples of such
a pathscape at two different imposed pressure. We see here the
longest cluster path in dark blue. At low applied pressure, the
longest cluster is quite low Lmax = 7, whereas at higher pressure,
Lmax is closer to the system size.

It is important to note that the pathscape we have defined
here is not the landscape of minimal paths [24]. In the limit
β → α the pathscape reflects the clusters in directed percolation
as noted in section 5.1. However, when β 6= α, the paths we
identify correspond to directed percolation clusters. However, the
directed percolation is now correlated.

5.3. Evolution of the Correlation Length
Lmax
In Figure 6, we investigate the evolution of Lmax as function of
the applied pressure. As it can be seen, the correlation length
increases with pressure until it reaches the system length Nx.
Similarly to percolation, one can see in Figure 6B that the
correlation length diverges as a power law close to a critical
pressure gradient ∇pc,

Lmax ∝ (∇pc −∇p)−ν . (67)

We note in this figure that the exponent ν seems to vary with β .
In Figure 7, we display the evolution of ν and the critical pressure
gradient ∇pc against the parameter β . As we can see, ν and ∇pc
decrease significantly with β .Where the limit β → 1 is consistent
with the results found in the literature on directed percolation,
ν = ν‖ = 1.733847(6) [10]. Our best estimate of the threshold
pressure is ∇pc ≈ 10.72.

At the end of section 5.2 we noted that the pathscape we have
identified is not related to the pathscape spanned by minimal
paths in the limit β/α → ∞. If that were the case, we would
have expected ν to approach the value ν‖ = 3/2 [11]. Rather,
we are identifying directed percolation clusters in a correlated
landscape, and this directed percolation ν is approaching the
value 1 in this limit.

5.4. Flow Curve
We now investigate the flow curve. Figure 8 displays the
evolution of the mean flow rate as function of the pressure
gradient and for different β . In the lower figure, we show that,
close to the critical pressure, the flow rate also follows a power-
law which can be written on the form

〈q〉 − 〈q〉c ∝ (∇p−∇pc)
µ , (68)

where qc is a constant obtained by interpolating the data at the
critical pressure. We note here that the exponent µ varies with
the coefficient β . In Figure 9, we report the evolution of this
exponent as a function of 1/ log(β). For β = α = 1 we have the
obvious limiting value µ = 1. As β increases, so does the value of
µ. By plotting µ against 1/ log(β) we estimate the limiting value
for β → ∞, which is consistent with the value µ = 2; the value
suggested by Roux and Herrmann in 1987 [25].

We note that the functional form 〈q〉, Equation (68), based on
the uniform threshold distribution (43), gives a behavior closely
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FIGURE 5 | Pathscapes in the network at pressure differences ∇p = 8 (Left) and ∇p = 8.6 (Right). The links in α-mode are not shown. Each link in β-mode have

been assigned a color. The color reflects the length of the path to which the link in β-mode belongs, according to the bar to the right of each network. The shortest

paths are light blue, the longest are dark blue.

FIGURE 6 | Correlation length Lmax as function of the gradient of pressure ∇p (A) or of the distance to the critical pressure |∇p−∇pc| (B) for different value of β. The

solid line correspond to the power law fit given by Equation (67). The system size is 256× 256.

FIGURE 7 | (Left) ν as function of β for system sizes 128× 128, 256× 256 and 1, 024× 1, 024. The data set for L = 128, 256, and 1, 024 are respectively based on

200, 200 and 10 realizations for each value of β. The horizontal line corresponds to the directed percolation exponent ν ≈ 1.72. (Right) Critical gradient of pressure

∇Pc(β) as function of β for the system size 256× 256. The upper line corresponds to directed percolation (pc = 0.644700185(5) [10]). The line below (dashed)

corresponds to the average of the directed polymer algorithm.
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FIGURE 8 | Mean flow rate 〈q〉 as function of the mean pressure gradient (Left) and of the distance to the critical pressure gradient ∇p− ∇pc (Right) for different β.

The solid lines correspond the power law fit given by Equation (68). The system size is 256× 256.

FIGURE 9 | Flow exponent µ as function of 1/ log(β) for a system sizes

L = 128× 128, 256× 256, and 1, 024× 1, 024. The dependence of the

exponent with system size is smaller than the error bars.

related to the one found for the capillary fiber bundle model with
the same type of threshold distribution, see Equation (50), but
with µ = 2. The correlation length exponent ν cannot be defined
in the capillary fiber bundle model.

In section 3.2, we studied the capillary fiber bundle model
with an exponential threshold distribution (51). We have used
the same distribution for the network model considered here. As
in the capillary fiber bundle model, we do not find a power law
of the type (68) in this case, nor do we find a power law for the
correlation length (67).

6. SUMMARY AND CONCLUSIONS

We have explored the behavior of a bi-viscous fluid moving in
a diamond lattice subject to the constitutive Equation (1) for
each link. This system contains a critical point which leads to
the behavior 〈q〉 − 〈qc〉 ∼ (∇p − ∇pc)

µ for the volumetric flow
rate and Lmax ∼ (∇p−∇pc)

−ν for the correlation length when a

uniform threshold distribution is used. However, the two limits of
the ratio between the two parameters representing the mobilities,
β/α → 1 and β/α → ∞, or equivalently, β/α → 0 correspond
to the percolation and the directed polymer problems respectively.
These are problems containing critical points.

There are still a number of open questions concerning this
system. We list them as follows:

• We have only considered ∇p ≥ ∇pc. What happens on the
other side of the critical point?

• The critical exponents µ and ν are functions of the parameter
ratio β/α. Is this a crossover or are we dealing with non-
universal exponents?

• We have only dealt with β ≥ 0. What happens for β < 0? The
limit β → −∞ turns the model into the fuse model. What
happens when β is barely negative? Our numerical algorithm
is not capable of handling this problem.

• It would be more realistic, but also more challenging to
consider a power-law type characteristic for the constitutive
Equation for q ≥ qc. How will this change our conclusions?

• Why do we not see critical behavior for the exponential
threshold distribution in the network model?
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