About this Research Topic
Compared to the large body of work focusing on design and engineering, the physical attributes that drive these materials’ uniqueness have barely been studied. In contrast to well-established atomic and crystallized systems, boundary conditions under low dimensionality introduce new confinements and requirements during parameterization into physical models. Topological influences also play a role in the properties of low-dimensional inorganics. Are these factors detrimental or beneficial for material functionality? Do they follow conventional quantum mechanical gauges? And can they be employed to benefit materials design and functionality? It is evident that a general procedure or approach as a roadmap is necessary.
As such, this Research Topic is focused on utilizing our physical understanding of low-dimensional materials design, revealing new physical phenomena in reduced spaces, and proposing novel physical mechanisms suitable for low dimensionality but also applicable to the general materials levels. We especially encourage interdisciplinary research covering several physical sciences, topic briefs or mini reviews centered on physical levels in order to inspire new materials designs, and perspectives that highlight materials research and physical progress in reduced dimensions.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.