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Editorial on the Research Topic

Methods and Applications of Computational Immunology

Understanding the immune system is of paramount importance for the prevention and treatment
of disease as well as the development of novel immunotherapies and immunodiagnostics in the
framework of precision immunology and medicine. Recently, the advent of high-throughput
biological methods has provided unprecedented insight into the molecular mechanisms underlying
immune cell dynamics. The immense complexity of innate and adaptive immunity spanning several
orders of spatial and temporal scales may, however, only be grasped by a systems computational
immunology approach—specifically, by developing powerful computational approaches, which
process, model, and integrate these big immunological data.

This Research Topic was designed to give a comprehensive overview of current methods and
applications of computational immunology for the dissection of mammalian immunity. Twenty-
nine articles are included in this Research Topic, and are categorized into the following types: 13
Original Research (Chaara et al.; Davidsen and Matsen; Davydov et al.; Dowling et al.; Egorov
et al.; Eliyahu et al.; Gadala-Maria et al.; Meyer-Hermann et al.; Neve-Oz et al.; Priel et al.;
Simon et al.; Zhou et al.; Toledano et al.), 5 Methods (Cohen et al.; Ma et al.; Manavalan et al.;
Nouri and Kleinstein; Safonova and Pevzner), 5 Technology Reports (Avram et al.; Bukhari et al.;
Mahajan et al.; Rosenfeld et al.; Vander Heiden et al.), 4 Reviews (Collins and Watson; Gfeller and
Bassani-Sternberg; Schramm and Douek; Yermanos et al.), 1 Hypothesis and Theory (Cohen and
Efroni), and 1 Perspective (Jansen et al.).

These papers address a broad range of conceptual challenges in computational immunology.
The majority of papers focus on the development and application of computational tools for

immune repertoire analysis. Specifically, they elucidate B-cell receptor phylogenetics and somatic
hypermutation (Davidsen and Matsen; Schramm and Douek; Yermanos et al.), study the inference
of immunoglobulin germline genes and polymorphisms (Gadala-Maria et al.; Safonova and
Pevzner), shed light on immunoglobulin light chain characteristics (Collins andWatson; Toledano
et al.), compare immune repertoires in aging and disease (Egorov et al.), and improve and/or
develop novel computational tools for clustering immune receptor sequences (Priel et al.; Nouri
and Kleinstein), immune repertoire benchmarking and error correction (Chaara et al.; Ma et
al.). Furthermore, storage and standardization of immune receptor data were advanced by the
development of a webserver for immunoglobulin analysis pipelines (Avram et al.), a new database
of epitope-specific B-cell and T-cell receptors (Mahajan et al.), and guidelines for immune receptor
data format standardization (Bukhari et al.; Vander Heiden et al.). The antigen targets of immune
receptor repertoires were investigated in works on B-cell epitope prediction (Manavalan et al.) and
antigen presentation (Gfeller and Bassani-Sternberg).
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In addition to immune receptor biology, the dynamics
of immune cells were explored for germinal center B cells
(Meyer-Hermann et al.), plasma cell ontogeny (Zhou et al.),
and regulatory T-cell proliferation (Dowling et al.). Immune
cell signaling was investigated for cytokines (Cohen et al.), the
immune synapse (Neve-Oz et al.), and macrophage function
(Jansen et al.).

Finally, a conceptual paper summarized the similarities
between the mammalian immune system and supervised
machine learning (Cohen and Efroni).

We would like to express our deepest gratitude and
appreciation to all the authors who contributed papers, and to
the reviewers and editors without whose invaluable work the
publication of this Research Topic would not have been possible.
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Immune Repertoire sequencing 
Using Molecular Identifiers enables 
Accurate Clonality discovery and 
Clone size Quantification
Ke-Yue Ma1†, Chenfeng He2†, Ben S. Wendel3, Chad M. Williams2, Jun Xiao4, Hui Yang5,6 
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Unique molecular identifiers (MIDs) have been demonstrated to effectively improve 
immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermu-
tations in antibody repertoire sequencing. However, evaluating the sensitivity to detect 
rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack 
of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized 
approach to estimate T cell clone size from TCR RNA molecule quantification. This lim-
ited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as 
detecting minimal residual disease in lymphoid malignancies after treatment, evaluating 
effectiveness of vaccination and assessing degree of infection. Here, we describe using 
an MID Clustering-based IR-Seq (MIDCIRS) method to quantitatively study TCR RNA 
molecule copy number and clonality in T cells. First, we demonstrated the necessity of 
performing MID sub-clustering to eliminate erroneous sequences. Further, we showed 
that MIDCIRS enables a sensitive detection of a single cell in as many as one million 
naïve T cells and an accurate estimation of the degree of T cell clonal expression. The 
demonstrated accuracy, sensitivity, and wide dynamic range of MIDCIRS TCR-seq 
provide foundations for future applications in both basic research and clinical settings.

Keywords: MId clustering-based IR-seq tCR repertoire sequencing, molecular identifiers, sub-clustering, naïve 
t cells, CMV-specific t cells

INtRodUCtIoN

Immune repertoire sequencing (IR-seq) has become a useful tool to quantify the composition of B 
or T cell antigen receptor repertoires in basic research, such as vaccination (1–3), immune repertoire 
development (4–9), and lymphocyte lineage tracking (2, 9), as well as in various clinical settings, such 
as minimal residual disease (MRD) monitoring (10), hematopoietic stem cell transplant recovery 
monitoring (11), and cancer patient prognosis (12, 13). However, early IR-seq experiments suf-
fered from high PCR and sequencing errors that limited their ability to perform accurate repertoire 
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diversity and abundance quantification. This bottleneck also 
limits the sensitivity of many IR-seq-based assays, such as MRD 
monitoring. Recently, we and others introduced molecular 
identifiers (MIDs) to IR-seq and DNA/RNA sequencing to 
reduce errors by tracking each RNA molecule through PCR and 
sequencing. This approach has significantly improved the accu-
racy of repertoire profiling (9, 14–19), especially to distinguish 
antibody somatic hypermutations from PCR and sequencing 
errors. However, several challenges remain regarding how to use 
MIDs correctly and how to use MIDs for cell clone size estimate. 
First, erroneous MIDs resulting from PCR or sequencing errors 
make accurate MID counting difficult. Second, there is a lack of 
general guidelines of required sequencing depth to saturate MID 
counts. Third, how to use RNA molecular counting to estimate 
T cell clone size has yet to be established.

These challenges become roadblocks to accurately quantify 
T cell receptor (TCR) or BCR RNA molecule copy number, which 
is important in estimating clonal expansion and identifying rare 
clones. Robins et al. developed QuanTILfy to attempt to address 
this problem by counting TILs and assessing T cell clonality in 
tissue samples through droplet digital PCR (dPCR) of rearranged 
TCRβ loci (20). However, by partitioning TCR Vβ into eight 
non-overlapping subgroups, this method lacks the sensitivity 
to identify unique CDR3 of each clonality, not to mention rare 
clones. Therefore, a more comprehensive method to quantify 
TCR or antibody transcripts with high sensitivity while retaining 
accurate clonal diversity is needed for both standardizing basic 
IR-seq studies and applying it in clinical decision-making, such 
as detecting MRD in lymphoid malignancies after treatment, 
evaluating effectiveness of vaccination, and assessing degree of 
infection.

We recently developed a more generalized approach with 
reduced MID length to identify each individual RNA molecule 
using a sequence-similarity-based clustering method to separate 
sequencing reads into sub-clusters within a group of sequencing 
reads that have the same MID. We applied this MID Clustering-
based IR-Seq (MIDCIRS) to study age-related antibody repertoire 
development and diversification during acute malaria (9). In this 
study, we applied MIDCIRS to TCR [MIDCIRS TCR repertoire 
sequencing (TCR-seq)] and used CD8+ T cells as a test bed to 
build a model to count TCR RNA molecule copy number based 
on input cell numbers, percentage of RNA input, and sequenc-
ing depth. We also demonstrated a significant improvement in 
detection sensitivity. A previous study using a different repertoire 
sequencing methodology reported the capacity to resolve one in 
10,000 cells (21). With MIDCIRS TCR-seq, we were able to detect 
one unique T cell clone in 1,000,000 T cells. In addition, we applied 
MIDCIRS TCR-seq to examine T cell clonal expansion in CMV 
infection and showed that sensitive and accurate quantification 
of the TCR RNA molecule copy number is essential to quantify a 
single-cell’s worth of TCR transcripts and to assess the degree of 
clonal expansion. In summary, we showed the significance of the 
sub-clustering step of MIDCIRS in preventing false MID group 
generation, which enabled highly accurate clonal type discovery. 
This study provides a framework for leveraging the sensitivity and 
accuracy of molecular barcoded IR-seq in MRD detection and 
assessing clonal expansion in infection and vaccination.

MAteRIALs ANd Methods

Naïve Cd8+ t Cell sorting
Human leukocyte reduction system chambers were obtained 
from de-identified donors at We Are Blood (Austin, TX, USA) 
with strict adherence to guidelines from the Institutional 
Review Board of the University of Texas at Austin. CD8+ T cell 
enrichment was done following the protocol described previ-
ously (22) using RosetteSep CD8+ T Cell Enrichment Cocktail 
(STEMCELL) together with Ficoll-Paque (GE Healthcare). 
Then, RBCs were lysed using ACK Lysing Buffer (Lonza). After 
washing in phosphate-buffered saline with fetal bovine serum, 
the cell mixture was passed through a cell strainer (Corning) and 
ready for use. Naïve CD8+ T  cells were FACS-sorted into RLT 
Plus buffer (Qiagen) supplemented with 1% β-mercaptoethanol 
(Sigma) based on the phenotype of CD8+CD4-CCR7+CD45RA+ 
using BD FACSAria II cell sorter.

CMV Cd8+ t Cell enrichment and sorting
CMVpp65:482-490 (NLVPMVATV) was used to prepare streptam-
ers as previously described (23). Miltenyi anti-phycoerythrin 
microbeads and magnetic column were used to bind and enrich 
CMVpp65-specific T cells (22). The flow-through was collected 
for background staining. The enriched fraction was eluted off the 
column and washed into cell buffer. The following antibody panel 
was used to stain both the enriched and flow-through fractions: 
CD4, CD14, CD16, CD19, CD32, and CD56 (BioLegend) as a 
dump channel to stain residual non-CD8 T cells, and CD45RA, 
CCR7, CD27, and IL7R (BioLegend). 7-aminoactinomycin D 
was used as a viability marker. Dump−Streptmer+CD45RA+C
CR7−CD27−IL7Rlo live T cells were sorted into RLT Plus buffer 
supplemented with 1% β-mercaptoethanol using BD FACSAria 
II cell sorter.

Bulk tCR Library Generation  
and sequencing
Total RNA was purified using All Prep DNA/RNA kit (Qiagen) 
following the manufacturer’s protocol. Library preparation and 
QC were similar to protocols described previously (9) using TCR 
primers (Table S5 in Supplementary Material). Reads of the same 
library from all runs were combined and analyzed.

dPCR of tCR
Total RNA purified from sorted CD8+ T cells and cultured CMV-
specific CD8+ T  cell lines were reverse transcribed with polyT 
primers (Table S5 in Supplementary Material) using Superscript 
III in 20 µl reaction following the manufacturer’s protocol. 2 µl of 
cDNA was subsequently used on QuantStudio 3D dPCR system 
following manufacturer’s protocol.

Preliminary Read Processing
We followed the similar procedure as described previously to 
generate consensus sequences (9). First, only reads that have 
exact TCR constant sequences were kept for further analysis. 
These reads were then cut to 150 nt starting from constant region 
to eliminate high error-prone region at the end of reads. These 
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preprocessed reads were split into MID groups according to 12-nt 
barcodes.

MId sub-Cluster Generating and Filtering
For each MID group, a quality threshold clustering was used to 
group reads derived from a common ancestor RNA molecule 
and separate reads derived from distinct RNAs as previously 
described (9). Briefly, a Levenshtein distance of 15% of the 
read length was used as the threshold (9). For each subgroup, a 
consensus sequence was built based on the average nucleotide at 
each position, weighted by the quality score. In the case that there 
were only two reads in an MID subgroup, we only considered 
them useful reads if both were identical. Each MID subgroup is 
equivalent to an RNA molecule. Next, we merged all of the identi-
cal consensus to form unique consensus sequences. Further, we 
applied filtering of unique consensus sequences after sub-cluster 
generation by (a) removing non-functional TCR sequences and 
(b) removing sequences with lower MID counts that are one 
Levenshtein distance away from the other. Then, for each unique 
consensus sequence, we removed MID sub-clusters if their reads 
are less than 20% of maximum read count based on the fitting of 
two negative binomial distribution (Figure S5 in Supplementary 
Material). Scripts for this section can be downloaded at https://
github.com/utjianglab/MIDCIRS.

theoretical Percentage of MIds  
that Need sub-Clustering
We modeled the process of MID labeling as a Poisson distribu-
tion. Given the total number of MIDs being M and the number 
of target molecules being N, the probability that a unique MID 
will occur k time(s) is:
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Thus, P0 and P1 are the probability that a MID will be tagged 
0 and 1 time, respectively, and the percentage of MIDs that need 
sub-clustering, F(k > 1), is given by:
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With over 16 million MID combinations from 12 random 
nucleotides, when the number of target molecules, N is less than 
5,000,000, Eq. 2 is an approximate linear function (Figure 1B).

diversity Coverage and RNA  
Copy Number simulation
The estimation of diversity will be affected by the initial RNA 
input (percentage of initial RNA used to construct the sequenc-
ing library). We used a statistical model to estimate the diversity 
coverage for the naïve T cells we sorted based on RNA sampling 
depth.

For N observed RNA molecules, there are K different RNA 
clones. The RNA molecule copy number of each clone is mi 

(i∈(1,K)), whose sum equals N. After fitting the data, mi follows 
a power law distribution (Figure S9 in Supplementary Material):

 m m xi i= ×  (3)

 f x xi i( ) = −( ) >−α αα1 1,( )  (4)

where, m is the RNA molecule copy number per cell, which is a 
constant across all T cells (see Figure 3C). xi represents the cell 
numbers of each clone, which follows a power law distribution 
(24), and the parameter α was fitted with an algorithm combining 
maximum-likelihood fitting and goodness-of-fit test based on 
Kolmogorov–Smirnov statistic (25) “fit_power_law” function in 
R package igraph was applied (26).

Specifically, we fitted the RNA molecule distribution (Figure 
S9 in Supplementary Material) with Eq. 5:
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Since “m” is a constant (see Figure 3C), the alpha in Eqs 4 and 
5 should be equal. We fitted across all libraries on log–log scale, 
and the average slope was taken as α in the above model.

When we sample n RNA molecules from this population, 
the expected detected diversity, E(D), can be calculated as the 
following:
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And xi can be sampled from the fitted power law distribution.
Then, the percentage of the RNA diversity coverage, P(D), can 

be estimated as:

 
P D m x

E D m x
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(7)

We scaled the diversity coverage of unique CDR3s to the 
estimated diversity coverage with 90% RNA input, Dobs. We then 
used Eq. 8 to get estimated m:

 
min | , , , , .
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2
1 2
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statistical Analysis
Mann–Whitney U test was used to calculate the significance of 
copy number difference between pairs in naïve, effector, effector 
memory, and central memory CD8+ T  cells and p values was 
adjusted with Benjamini–Hochberg procedure. Adjusted p-value 
that was less than 0.05 was considered significant.

ResULts

MIdCIRs sub-Clustering Improves 
Repertoire diversity estimation Accuracy
Molecular identifiers have been adopted in IR-seq and DNA/
RNA sequencing to reduce error rate. However, during reverse 
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FIGURe 1 | MID Clustering-based IR-Seq improves accuracy of T cell receptor (TCR) diversity estimation with sub-clustering. (A) The percentage of observed 
molecular identifiers (MIDs) containing sub-clusters is linearly dependent on RNA input, which is defined as cell number multiplied by percentage of RNA (e.g., 
20,000 cells with 10%RNA is equivalent to 2,000 RNA input). Line represents linear regression fit, F-test on the slope, p < 10−9. (B) The theoretical percentage of 
MIDs with sub-clusters is approximately linearly dependent on copies of target molecules when copies of target molecules are less than 5,000,000 (bottom right 
insert). The theoretical percentage of MIDs with sub-clusters was calculated by Eq. 2 in Section “Materials and Methods.” (C) Rarefaction curve of unique 
complementarity-determining regions 3 (CDR3s) with or without sub-clustering. Number of unique CDR3s in three libraries made with three different RNA inputs 
from sorted one million naïve CD8+ T cells are shown here. Data from other cell inputs are in Figure S2 in Supplementary Material. (d) Illustration of consensus TCR 
sequence building without (top) and with (bottom) sub-clustering. Top: without sub-clustering, chimera sequences are generated when different TCR RNA molecules 
are tagged with the same MID; bottom: TCR RNA molecules that are tagged with same MID are sub-clustered to reveal truly represented TCR sequences. Short 
vertical black lines indicate nucleotide differences between two TCR sequences.
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transcription, multiple transcripts could stochastically be tagged 
with same MID. Previous strategies relied on increasing the 
length of MID to reduce the probability of non-unique MID 
tagging when the total RNA molecule copy number was either 
unknown or very large (27). However, longer MID length could 
reduce the efficiency of reverse transcription (28, 29). Thus, we 
developed a more generalized approach (MIDCIRS) with reduced 
MID length. A sequence-similarity-based clustering method was 
implemented in MIDCIRS to separate sequencing reads into sub-
clusters within a group of sequencing reads that have the same 
MID (9). Here, we developed metrics to validate the accuracy 
of this sub-clustering method. In addition, we demonstrated the 
robust ability of MIDCIRS to faithfully represent the diversity 
and abundance of the TCR repertoire using a large range of RNA 
inputs.

We reasoned that in order to comprehensively quantify the 
overall diversity, a large portion of its RNA must be sampled. 
However, this will inevitably increase the number of TCR tran-
scripts that need to be tagged with MIDs, which increases the 
portion of MIDs tagging multiple TCR transcripts. We sought to 
closely examine the relationship between RNA input and mul-
tiple TCR RNA tagging by the same MID. The process of MID 
labeling can be modeled as a Poisson distribution (see Materials 
and Methods). The percentage of MIDs with sub-clusters follows 
an approximate linear trend when the copies of target RNA 
molecules are less than 5,000,000 (Figure 1B). To experimentally 
validate this, we applied MIDCIRS TCR-seq on a range of sorted 
naïve CD8+ T cells (from 20,000 to 1 million) with three differ-
ent RNA inputs (10, 30, and 50%) (Table S1 in Supplementary 
Material). We have previously used control template sequences 
and evaluated the clustering threshold that would separate TCR 
RNA molecules accidentally tagged with the same MID, which 
is 15% of the sequence length (9). As expected, we found that 
the observed percentage of MIDs that need sub-clustering is 
approximately linear with respect to copies of target RNA mol-
ecules used in this study (Figure 1A). With the highest amount of 
RNA molecules used in this study, approximately 8.5% of MIDs 
require further clustering, while previous method treated these 
sequences as ambiguous (17). Thus, MIDCIRS sub-clustering 
significantly improves repertoire diversity coverage.

To evaluate the accuracy of the sub-clustering step by an 
alternative means, we examined the TCR sequence lengths within 
MIDs that contain sub-clusters. We reasoned that if indeed 
each TCR RNA molecule was tagged with a unique MID, then 
the lengths of CDR3 for all reads would be identical under each 
MID. However, we showed that of the 8.5% of MIDs that contain 
sub-clusters, about 87% of MIDs contain TCR sequencing reads 
of different CDR3 lengths while only 13% have the same length 
for one million naïve CD8+ T cells (50% RNA input). After per-
forming sub-clustering, over 97% of sub-clusters have a uniform 
length (Figure S1 in Supplementary Material), demonstrating the 
accuracy of sub-clustering step in MIDCIRS.

More importantly, to our surprise, we found that, without 
performing sub-clustering, the number of unique consensus 
sequences (unique CDR3 sequences) was overestimated, espe-
cially in samples with one million cells (Figure  1C; Figure S2 
in Supplementary Material). This is because chimera sequences 

were generated in the consensus building step for two scenarios. 
In one scenario, multiple true TCR sequences could be tagged 
with the same MID and quality score weighted consensus 
building will generate chimera sequences (Figure  1D; Figure 
S3A in Supplementary Material). In the second scenario, PCR 
or sequencing errors on MIDs group multiple singletons (MIDs 
that contain only one read) under the new MID. If sub-clustering 
is applied, then these singletons will be separated and discarded 
under the singleton category. However, without sub-clustering, 
these singletons will be forced to generate a chimera sequence 
(Figure S3B in Supplementary Material). Taking together, 
these chimera sequences cause overestimation of the total TCR 
diversity. The percentage of chimera sequences can be as high as 
47% (Table S1 in Supplementary Material). Thus, compared with 
previous IR-seq with MID method (17), MIDCIRS not only can 
increase diversity coverage of CDR3 but improve the accuracy of 
diversity estimation.

MId Read-distribution-Based Barcode 
Correction Improves Accuracy and 
sensitivity of Counting tCR transcripts
Besides correcting PCR and sequencing errors, MIDs have also 
been used for absolute quantification of RNA molecule copy 
number in single-cell studies to improve precision (30–33). Here, 
we demonstrated how to use MIDCIRS TCR-seq to digitally count 
TCR transcripts. The absolute quantification of TCR transcripts 
is fundamental for accurate clonal size estimation. We noticed 
that PCR and sequencing errors also affected MIDs, as seen in 
single-cell RNA sequencing studies (29, 34), leading to an inflated 
number of RNA molecules when libraries were sequenced exhaus-
tively with respective to the total TCR transcripts in the sample 
(Figure  2A; Figure S4 in Supplementary Material). To correct 
MID errors, we first removed singleton reads, which cannot be 
confidently used in generating MID groups due to sequencing 
errors. Then, we adopted a similar approach applied in single-
cell RNA-seq by fitting the distribution of reads under each MID 
subgroup into two negative binomial distributions (Figure S5 in 
Supplementary Material) (34). Erroneous MIDs generated due 
to PCR errors generally have distinctively lower read counts 
compared with true MIDs. These two negative binomial distribu-
tions distinctly separated true MIDs from erroneous MIDs. MIDs 
with low read counts were removed accordingly (see Materials 
and Methods). After MID correction, number of RNA molecules 
saturated across libraries (Figure 2A; Figure S4 in Supplementary 
Material).

We found that a shallower sequencing depth is required to 
saturate unique CDR3s than RNA molecules (Figure  2B). In 
addition, the amount of diversity covered increased with increas-
ing RNA input. Thus, to exhaustively measure the TCR repertoire 
diversity, with 30–50% of RNA input, a sequencing depth equiva-
lent to 10 times the cell number covers most of the CDR3 diver-
sity (Figure 1C; Figure S2 in Supplementary Material), while a 
sequencing depth equivalent to about 100 times the relative RNA 
input (defined as cell number multiplied by percentage of RNA 
input) is required to saturate the RNA molecules (Figure  2A; 
Figure S4 in Supplementary Material). For example, 30% RNA of 
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FIGURe 2 | MID Clustering-based IR-Seq is capable of accurate digital counting of T cell receptor (TCR) RNA molecules. (A) Rarefaction curve of detected TCR 
RNA molecules before and after error correction on molecular identifiers (MIDs) in 20,000 naïve CD8+ T cells for three RNA input amounts. Data from other cell 
inputs are in Figure S4 in Supplementary Material. (B) Comparison of rarefaction curve of detected RNA molecules and unique complementarity-determining regions 
3 (CDR3s) in 20,000 naïve CD8+ T cells for three RNA input amounts. (C) Rarefaction curve of number of unique CDR3s with single RNA copy in 20,000 naïve CD8+ 
T cells for three RNA input amounts. Sequencing reads were subsampled to different depth and unique CDR3s were tallied. Data from other cell inputs are in Figure 
S6A in Supplementary Material. (d) The percentage of overlapping clones with single RNA copy at different sequencing depths by sub-sampling in 20,000 naïve 
CD8+ T cells for three RNA input amounts. The overlapping clones were compared between two adjacent sub-samplings and overlap percentage was calculated by 
dividing the number of overlapping clones by the total number of clones observed in the deeper sub-sampling. Data from other cell input are in Figure S6B in 
Supplementary Material.
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20,000 cells is equivalent to 6,000 RNA input. Then, it takes about 
600,000 reads to saturate the RNA molecules but only 200,000 
reads to saturate the unique CDR3s (Figure 2A, middle panel).

After MID correction, with optimal sequencing depth, we 
stably detected TCR clones with a single TCR RNA molecule 
(single-copy clones with at least two identical sequencing reads). 

The number of single-copy clones saturates with adequate 
sequencing depth (Figure  2C; Figure S6A in Supplementary 
Material). Meanwhile, we compared the degree of overlapping 
clones within these single-copy clones at different sequencing 
depths. To do this, we subsampled each library to different frac-
tions of the total reads. The overlapping clones were compared 
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FIGURe 3 | T cell receptor (TCR) RNA copy number per cell estimation and experimental validation. (A) Diversity coverage of unique productive complementarity-
determining regions 3 with different RNA inputs and cell numbers (Line represents linear regression fit, F-test on the slope, R2 > 0.99 and p < 10−3 for all different 
RNA inputs). (B) Diversity coverages with different RNA inputs using 3 as a predicted TCR RNA molecule copy number per cell. Dashed line is the theoretical 
prediction (see Materials and Methods); red dots are diversity coverages observed in libraries with different RNA inputs as illustrated in panel (A), assuming diversity 
coverage at 90% RNA input is 1. (C) Digital PCR results of TCR RNA molecule copies per cell in different CD8+ T cell subset (N, naïve; CM, central memory; EM, 
effector memory; E, effector; NTC, no template control; n.s: p-value > 0.05 by Mann–Whitney U test).
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between two adjacent subsamples, and the overlap percentage 
was calculated by dividing the number of overlapping clones by 
the total number of clones observed in the deeper subsample. 
Thus, for total of 10 subsamples, 9 clonal overlap percentages 
were calculated and plotted with respect to sequencing depth 
(Figure 2D; Figure S6B in Supplementary Material). More than 
90% of single-copy clones were repeatedly detected between the 
full sequencing reads and the 0.9 subsample fraction. The overlap 
percentage was above 80% for the latter part of curve (Figure 2D; 
Figure S6B in Supplementary Material), which suggested that we 
have reached optimal sequencing depth to detect single-copy 
TCR clones.

estimating tCR RNA Molecule Copy 
Number and Validation with dPCR
From early analysis, we know that the diversity coverage of unique 
CDR3s increased as RNA input increased. Here, we performed an 
in depth analysis on the relationship between these two param-
eters and found that the diversity coverage of unique CDR3s 
increased significantly as the RNA input increased initially, then 
reached a plateau, which resulted in a nonlinear increasing of the 
diversity coverage of unique CDR3s (Figures 3A,B). We assumed 
that total diversity for a sample is the diversity discovered when 
combining all sequencing reads from 10, 30, and 50% RNA input 
libraries into a pseudo-90% RNA input. With 50% RNA, we could 
recover about 60% of total diversity (Figure 3B).

Since the observed diversity is dependent on total TCR RNA 
molecules in a sample, which is a function of TCR RNA molecule 
copy number per cell and RNA input percentage, we next sought 
to use a probability model to predict TCR RNA molecule copy 
number per cell using the observed diversity coverage of unique 
CDR3s as a function of RNA input percentage (see Materials 
and Methods). We used the estimated diversity coverage of 
different RNA inputs, including 10, 30, and 50% RNA, as well 

as the computationally combined pseudo-40% (10 + 30%) and 
pseudo-90% RNA inputs as data points to fit the probability 
model. The best fit resulted in three copies of TCR RNA mol-
ecule per cell (Figure 3B). In another independent experiment, 
RNA from 20,000 and 100,000 naïve CD8+ T cells were evenly 
separated into five aliquots, respectively. Four of five aliquots were 
sequenced (Table S2 in Supplementary Material). Results showed 
that CDR3 diversity detected by MIDCIRS is very reproduc-
ible among the four aliquots and is also proportional to the cell 
input numbers. In addition, we bioinformatically combined the 
aliquots into pseudo-40, -60, and -80% of RNA inputs and fitted 
the diversity coverage using the probability model described in 
the Section “Materials and Methods.” As with previously, the best 
fit resulted in three copies of TCR RNA molecule per cell (Figure 
S7 in Supplementary Material).

However, in order to apply this TCR RNA molecule copy 
number in estimating T cell clone size, we need to validate it using 
a different method and also test to see if different phenotypes of 
T cells might have different TCR RNA molecule copy numbers, 
which would be similar to the differences seeing in naïve B cells 
and plasmablasts (35). Next, we validated TCR RNA molecule 
copy number using dPCR and found that various types of T cells 
have similar TCR RNA copies (8–12 copies per cell) (Figure 3C). 
Thus, with MIDCIRS TCR-seq, we could achieve about 30% 
efficiency in recovering the target TCR RNA molecules, which 
is expected given dPCR in a nanoliter volume is more efficient 
than bulk PCR in tubes (36). This ratio also establishes a reference 
point for rare T  cell clone frequency estimate using MIDCIRS 
method.

detecting single-Cell Worth of tCR  
RNA Using MIdCIRs
The lack of accurate and absolute quantitation of TCR clones 
limited the evaluation of the sensitivity of various IR-seq methods 
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FIGURe 4 | MID Clustering-based IR-Seq is sensitive to detect both low copy and highly clonal expanded T cell receptors (TCRs). (A) Number of RNA molecules 
detected by sequencing for each spike-in TCR control sequences (the numbers in the legend denote copies of each TCR spike-in control sequence added).  
(B) Comparison of clone size distribution in naïve CD8+ T cells and CMVpp65-specific effector CD8+ T cells (dashed line indicates TCR sequences with 20 copies of 
RNA molecules). (C) The percentage of RNA molecules that varying degree of clonally expanded complementarity-determining region 3 account for.
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(37), which slowed the application of detecting rare TCR clones 
in both basic research and clinical practice. To address the detec-
tion sensitivity using MIDCIRS, we spiked-in control TCR RNA 
with varying copy numbers into naïve T cells and validated the 
robustness of detecting spiked-in TCRs. 5, 20, and 5 copies of 
three spike-in cell lines with known TCR sequences were added 
into 20,000 and 100,000 naïve CD8+ T cells. 3, 13, and 3 copies of 
three spike-ins were reliably detected, respectively (Figure 4A).

We also analyzed the ability to detect a single T cell’s worth 
of control RNA in a larger number of other T cells. We digitally 
counted the concentration of TCR RNA molecule from the 
Jurkat cell line and spiked-in 10 copies of TCR RNA into 
20,000–1,000,000 naïve CD8+ T cells (Table S1 in Supplementary 
Material). In all 1,000,000 cells we sequenced, we were capable of 
detecting Jurkat TCR sequences (Table 1). This sensitivity was a 
significant improvement compared with previous method, which 
was demonstrated to be 1 in 10,000 (21). These results demon-
strated that MIDCIRS is highly sensitive, capable of detecting 
a single-cell’s amount of TCR transcripts, and rare clones could 
be readily and robustly detected. Those single-copy clones 
(minimum two identical reads) we discovered are thus likely to 
come from single cells (Figure 2C; Figure S6A in Supplementary 
Material).

Meanwhile, we compared the sensitivity of MIDCIRS and 
5′RACE protocol using the diversity coverage as the param-
eter. Briefly, the 5′RACE protocol that was used in Smart-seq2 
protocol was used for TCR-seq, which has been demonstrated 
to significantly improve RNA capture efficiency (38). Equal 
amount of RNA (20%) from same purification was used for both 
MIDCIRS and 5′RACE protocol. We then processed sequencing 
results with MIDCIRS-TCR pipeline and found that 5′RACE 
protocol only recovered about 44% of diversity compared to 
what MIDCIRS protocol obtained (Table S3 in Supplementary 
Material). With improved accuracy and sensitivity to detect rare 

clones, MIDCIRS is promising in being applied to detect MRD 
after treatment.

Quantifying t Cell Clonal expansion in 
Infection Using MIdCIRs
It has been shown that the clonality and quantity of T cells are 
strongly correlated with efficacy of therapies, such as cancer 
chemotherapy and antiviral therapy (20, 39). Accurate quanti-
fication of diversity and abundance of T cell clones is important 
for application of TCR-seq in clinical settings, ranging from 
prognosis to treatment decision-making. However, there lacks 
an accurate approach to evaluate the degree of T  cell clonal 
expansion in humans. Therefore, we applied MIDCIRS TCR-
seq to examine T cell clonal expansion in infection. We sorted 
20,000 and 200,000 CMVpp65-specific effector CD8+ T  cells 
from CMV-infected patients and used 30% of RNA input to 
perform TCR-seq (Table S4 in Supplementary Material). CMV 
pp65 peptide has been shown to be the immunodominant target 
of CD8+ T cell response (40). TCR RNA molecules were digitally 
counted through MIDCIRS pipeline. We defined TCR sequences 
with over 20 copies of RNA molecules as expanded clones accord-
ing to TCR abundance distribution comparing between naïve 
CD8+ T cells and CMV tetramer positive effector CD8+ T cells 
(Figure 4B). Over 99% unique RNA molecules were from these 
expanded clones in CMVpp65-specific effector CD8+ T cells. On 
the other hand, although we observed uneven clonal distribution 
in naïve CD8+ T cells, these expanded clones only account for less 
than 1% unique RNA molecules (Figure 4C). Our data showed 
that in CMV infection, single CMV-specific TCR clone can have 
about 70,000 T cell progenies in 200,000 polyclonal CMV-specific 
effector CD8+ T cells (Table S4 in Supplementary Material). These 
polyclonal CMV-specific effector CD8+ T  cells represent about 
2.6% of total CD8+ T cells. In addition, our previous study showed 
that tetramer positive polyclonal CMV precursor cells existed at 
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tABLe 1 | Spike-in Jurkat T cell receptor (TCR) RNA detection in naïve CD8+ 
T cells.

sample Jurkat tCR copies detected

20,000Tn_10%RNA 7
20,000Tn_30%RNA 0
20,000Tn_50%RNA 1
100,000Tn_10%RNA 5
100,000Tn_30%RNA 4
100,000Tn_50%RNA 1
200,000Tn_10%RNA 7
200,000Tn_30%RNA 3
200,000Tn_50%RNA 3
1,000,000Tn_10%RNA 4
1,000,000Tn_30%RNA 8
1,000,000Tn_50%RNA 17

10 TCR-copy worth of Jurkat RNA was added to each sample during the reverse 
transcription step. Number of molecular identifiers for RNA molecules that are  
tagged with jurkat TCR sequences were counted.
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a frequency of 1 in 100,000 CD8+ T cells in CMV seronegative 
individuals (22). Taking together, these results suggest that single 
T cell clone can have about 900-fold proliferation in infection in 
humans. Thus, MIDCIRS can be applied to evaluate clone size 
and degree of clonal expansion in viral infection.

dIsCUssIoN

In this study, we applied the MIDCIRS, recently developed by 
our group (9), in T cells to demonstrate (1) the necessity of MID 
sub-clustering to improve accuracy of repertoire diversity estima-
tion; (2) the accuracy of counting TCR RNA molecules via MID 
read-distribution based barcode correction; (3) the sensitivity of 
detecting a single cell in as many as one million naïve T cells; and 
(4) the ability to quantify T cell clonal expansion due to infection 
in CMV-seropositive patients.

Previous MID-based IR-seq methods, such as MIGEC, build 
TCR consensus sequences by grouping MIDs (17, 41). However, 
the number of target molecules could vary significantly with dif-
ferent sample inputs, which could be challenging for choosing the 
appropriate MID length to ensure that each target RNA molecule 
is uniquely tagged by MID. Longer MIDs are likely to decrease 
the reverse transcription efficiency (28, 29). Thus, the MIDCIRS 
method offers a flexible strategy for MID-barcoded IR-seq. In 
addition, MIGEC triages MIDs with high diversity as ambiguous. 
We compared TCR diversity discovered using MIDCIRS with 
that of MIGEC, using MID with at least two reads as the thresh-
old for both approaches (see Materials and Methods) and found 
that MIGEC led to an underestimated TCR diversity (Figure S8 
in Supplementary Material, p < 0.001, effect size r = 0.62). We 
demonstrated that using MID-based sub-clustering approach, 
MIDCIRS could identify new diversities, prevent chimera 
sequences from being built, and digitally count RNA molecules 
(Figure 1; Figures S2 and S3 in Supplementary Material). This 
corrected diversity is highly consistent with cell input numbers.

While MIDs are useful to correct for sequencing errors and 
PCR errors that occur on TCR sequences, such errors are also 
likely to show up on MID sequences. Although these errors do not 

affect TCR diversity estimation, they lead to an overestimation of 
transcript copies, thus misestimating TCR clone size (Figure 2; 
Figure S4 in Supplementary Material). We corrected MID errors 
based on the distribution of MID read counts under MID sub-
groups. With MID correction, we were able to accurately count 
TCR RNA molecule copy number, estimate MIDCIRS detection 
limit as well as detect T cell clonal expansion.

Noteworthy, we found uneven CDR3 clone size distribution 
in naïve CD8+ T cells (Figure 4B). The most expanded clone was 
enriched about 0.27% (Table S1 in Supplementary Material). This 
could be due to convergent recombination as has been previously 
noted (42, 43) or uneven clonal expansion during thymocyte 
maturation and selection in thymus (44, 45).

Furthermore, there is a lack of standard guidelines of how 
much RNA input to use for library preparation and sequencing. 
Also, the capacity to evaluate immune repertoire and gene expres-
sion profile simultaneously will facilitate clinical practice, such as 
cancer immunotherapies. Efforts have been made to reconstruct 
antibody and TCR repertoire from RNA-seq data. This, however, 
requires very deep sequencing to recover highly expanded T cell 
clones in the sample, and the exact degree of repertoire coverage is 
difficult to assess (46–48). Here, we demonstrated that 50% RNA 
is enough to cover about 60% of CDR3 diversity (Figure  3B), 
making it beneficial to take advantage of the rest of the RNA from 
the same sample for other applications, e.g., RNA-seq.

Based on the TCR diversity estimation and its dependency 
on RNA input, we built a probability model to estimate TCR 
RNA molecule copies, which resulted in three copies per cell 
(Figure  3B). We would like to point out that this does not 
mean that on average there are three copies of TCR RNA in a 
T cell. Because of the efficiency of RNA purification and reverse 
transcription, we expect our observed RNA molecule per cell to 
be lower than the true value. In Fact, dPCR results showed an 
average of 10 copies of TCR RNA molecule per cell (Figure 3C), 
suggesting the efficiency of MIDCIRS in TCR RNA molecule 
digital counting is about 30%, which is consistent with previous 
finding that nanoliter reaction volume significantly improved 
PCR efficiency. Thus, quantifying TCR RNA molecule per cell 
enables us to estimate the extent of T cell clonal expansion that 
was not possible until now.

We also used spike-in TCR RNA to validate the sensitivity 
of MIDCIRS. We showed that spiked-in TCR RNA at as few 
as five copies can be reliably detected across multiple libraries 
(Figure  4A). More importantly, we were also able to detect 
a single-cell worth of RNA in as many as one million cells 
(Table 1). With this demonstrated sensitivity, this method could 
be extremely useful in MRD detection.

Last, we applied MIDCIRS to evaluate T cell clonal expansion 
in CMV-infected patients. Through accurate digital counting of 
TCR RNA molecules and in combination of precursor T cell fre-
quency, we showed that CMV-specific effector CD8+ T cells can 
expand at least 900 times, and there could be more than 70,000 
effector CD8+ T cells derived from the same CMV-specific T cell 
clone in total of 7,700,000 of CD8+ T cell in infection. We also 
noticed that there is a potential of same TCR sequences tagged 
with same MID, which would under estimate the clonal size, 
especially in highly expanded clones. We calculated the expected 
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number of collisions where same MIDs tag same RNA molecules 
(Supplementary Methods in Supplementary Material). With 
MID length being 12, when there are 200,000 identical RNA 
molecules, the percentage of identical RNA molecules tagged 
with same MID is only 1%. While long MID decreases the 
percentage of identical RNA molecules tagged with same MID, 
it also decreases efficiency of reverse transcription. Our analysis 
revealed that MID with 12 nucleotides is appropriate. Therefore, 
MIDCIRS provides the foundation of accurate assessment of 
clone size and clonal expansion in infection and vaccination, 
which would be a useful technology to provide a comprehensive 
quantification of the T cell repertoire in various basic studies and 
clinical settings.
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High-throughput sequencing (HTS) has the potential to decipher the diversity of T cell 
repertoires and their dynamics during immune responses. Applied to T  cell subsets 
such as T effector and T  regulatory cells, it should help identify novel biomarkers of 
diseases. However, given the extreme diversity of TCR repertoires, understanding how 
the sequencing conditions, including cell numbers, biological and technical sampling 
and sequencing depth, impact the experimental outcome is critical to proper use of 
these data. Here, we assessed the representativeness and robustness of TCR repertoire 
diversity assessment according to experimental conditions. By comparative analyses of 
experimental datasets and computer simulations, we found that (i) for small samples, 
the number of clonotypes recovered is often higher than the number of cells per sample,  
even after removing the singletons; (ii) high-sequencing depth for small samples alters 
the clonotype distributions, which can be corrected by filtering the datasets using 
Shannon entropy as a threshold; and (iii) a single sequencing run at high depth does 
not ensure a good coverage of the clonotype richness in highly polyclonal populations, 
which can be better covered using multiple sequencing. Altogether, our results warrant 
better understanding and awareness of the limitation of TCR diversity analyses by HTS 
and justify the development of novel computational tools for improved modeling of the 
highly complex nature of TCR repertoires.

Keywords: Tcr repertoire, diversity, sampling, normalization, bioinformatics

inTrODUcTiOn

Understanding the specificity of T cells involved in immune responses is of utmost importance in 
many fields of immunology. T cells are characterized by the expression a unique T cell receptor (TR), 
which is clonally generated by somatic rearrangement of the V, D, and J genes belonging to the TR 
genomic locus during thymic T cell differentiation (1). This process leads to the generation of a huge 
diversity of TR, defining a repertoire of antigen recognition, the hallmark of the adaptive immune 
response. Immunoscope analysis (also called CDR3 spectratyping) has long been the standard tech-
nique for TR repertoire analyses (2). Although immunoscope analysis has been very useful, it misses 
the key parameters of TR diversity, which include nucleotide sequence, codon usage, and amino acid 
composition. High-throughput sequencing (HTS) of the adaptive immune receptor rearrangements 
(RepSeq) expressed in a lymphocyte population now overcomes previous limitations, providing a 
thorough and multifaceted measure of diversity (3). Several studies have already highlighted the 
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feasibility of HTS for the analysis of TR repertoire diversity in 
various immune contexts (4–17). However, while the amount of 
information and the depth of analysis provided by this technique 
are unprecedented, the representativeness and robustness of the 
data obtained remain to be established.

First of all, although not addressed in this study, the type of 
starting material (DNA/RNA) as well as the molecular biology 
method used to prepare a TR/IG template may impact the resulting 
diversity observed. Indeed, 5’RACE-PCR and multiplex-PCR, the 
two major methodologies used for TR/IG template amplification, 
can both introduce biases. Multiplex-PCR is mainly sensitive to 
primer competition and does not allow new variant identification, 
while 5’RACE-PCR will be sensitive to transcript integrity and 
length (18). An additional issue is the quantification of the species. 
Unique molecular identifiers have been proposed as a molecular 
method to trace the origin of identical species, thus distinguishing 
species arising from different cells or from PCR amplifications 
(19–22). A comparative study considering UMI on TR sequences 
obtained by 5’RACE-PCR or not suggested fewer intersample 
variations in quantification of unique TRB clonotypes based on 
sequences identified with UMI in comparison with randomly 
selected sequences (23, 24). However, amplification and sequenc-
ing errors in those highly variable short oligonucleotides can still 
occur and be difficult to assess and correct. In addition, UMI can 
be used only in 5’RACE-PCR methods. Therefore, not all the 
commercially available protocols include UMI and tools to handle 
them may need further improvement (25).

RepSeq is a numbers game (26) particularly dependent on 
sequencing depth and therefore on sampling. When monitoring 
T  cell leukemia or highly expanded antigen-specific TCRs fol-
lowing an infection, the sampling and depth of sequencing might 
not be critical parameters. But things are different when studying  
TR repertoire diversity in physiological conditions, when descri-
bing the basics of immune repertoire generation and selection 
or in immune contexts where subtle or qualitative modifica tions 
may be involved in the pathophysiological outcome, such as in 
complex infectious diseases (27–29), autoimmune disorders 
(13, 30–35), and transplantation follow-up (36–38). However, 
RepSeq necessarily implies sampling: (i) only a fraction of the 
cells from peripheral blood or an organ (or a fragment of that 
organ in humans) is harvested; (ii) only a fraction of the RNA/
DNA extracted from these cells is used for sample preparation; 
and finally, (iii) only a fraction of the library is used for a sequenc-
ing run. These different levels of experimental sampling are likely 
to affect the observed diversity.

This is a genuine issue described in ecology studies, as “the 
absence of observation of a species can be either real or the effect 
of a subsampling” (39). Previous studies showed that the number 
of clonotypes observed is positively correlated with sampling size 
(30, 40, 41). This is important, as studies performed in humans 
are mostly based on peripheral blood, a compartment that rep-
resents only around 2% of the total T  lymphocyte population. 
Warren et  al. (42) compared TR repertoires from two blood 
samples from the same individual and found a limited number 
of shared clonotypes (~10%). They concluded that a considerable 
proportion of the peripheral blood TR repertoire is unseen when 
observed randomly (42, 43).

The depth of the sequencing is another confounding factor for 
TR repertoire diversity studies, since an insufficient number of 
sequences produced would not adequately assess the molecular 
diversity of the sample analyzed. To ensure the statistical repre-
sentativeness of the data produced with regards to the population 
of interest, two rules should be considered (44): (i) the number 
of sequences produced must be at least equivalent to the clonal 
richness of the population of interest and (ii) the rarer a clone, the 
greater the sequencing depth needed to detect it. Therefore, the 
RepSeq strategy must be adapted to the nature of the samples and 
the biological questions investigated (45).

While most studies seek to assess the similarity between the 
TR repertoires of several samples, without any knowledge of 
what level of similarity can be observed at best, it seems crucial 
to determine the limits of this approach in order to be able to 
interpret the data properly. In this study, we first investigated the 
impact of the depth of sequencing, in relation to the size of the 
population analyzed, on the observed TR repertoire diversity. 
We found that a small sample size is negatively affected by a too 
high, yet average in common practice, sequencing depth, and 
proposed an analytical approach to recover the “true” repertoire 
diversity. We then questioned the representativeness of a single 
RepSeq experiment by multiple sequencing of the same sample 
and demonstrated that performing a single sequencing run, even 
at high depth of sequencing, does not allow exhaustive observa-
tion of the existing clones in a polyclonal population. Finally, we 
addressed these experimental biases by computational simulation 
on RepSeq data reflecting several levels of clonality and sequenc-
ing depth, to have a better assessment of the robustness of the 
experimental observations.

MaTerials anD MeThODs

Mice
Eight- to twelve-week-old female Balb/C Foxp3-GFP 
(C.129 × 1-Foxp3tm3Tch/J) and 24- to 26-week-old male C57Bl/6 
Foxp3-GFP mice, both expressing the green fluorescent protein 
(GFP) under the promoter of Foxp3 gene, were, respectively, 
provided by V. Kuchroo, Brigham and Women’s Hospital, Boston, 
MA, USA and B. Malissen of the Centre d’Immunologie de 
Marseille Luminy (France). All animals were maintained in the 
Sorbonne Université Centre d’Expérimentation Fonctionnelle 
animal facility under specific pathogen-free conditions in agree-
ment with current European legislation on animal care, housing, 
and scientific experimentation (agreement number A751315). All 
procedures were approved by the local animal ethics committee.

cell Preparation
Fresh total cells from spleen were isolated in PBS1X-3% fetal calf 
serum and stained for 20 min at 4°C with anti-Ter-119-biotin, 
anti-CD11c-biotin, and anti-B220-biotin antibodies followed 
by labeling with anti-biotin magnetic beads (Miltenyi Biotec) 
for 15 min at 4°C. B cells and erythrocytes were depleted on an 
AutoMACS separator (Miltenyi Biotec) following the manufac-
turer’s procedure. Enriched T cells were stained with anti-CD3 
APC, anti-CD4 Horizon V500, anti-CD8 Alexa 700, anti-CD44 
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PE, and anti-CD62L efluor 450. 6.105 CD3+CD4+GFP− Teff cells 
were sorted on a BD FACSAria II (BD Biosciences, San Jose, CA, 
USA) with a purity >99%. Sorted cells were stored in Trizol 
(Invitrogen) or RNAAquous (Ambion, Inc./Life Technologies, 
Grand Island, NY, USA) lysis buffer.

Tr library Preparation
RNA was extracted following the manufacturer’s recommenda-
tions and cDNA synthesis was performed with the Qiagen OneStep 
RT-PCR kit (Qiagen Inc., Valencia, CA, USA) and mouse T cell 
beta receptor primers provided with the mouse TRB iR-Profile 
Kit (iRepertoire Inc., Huntsville, AL, USA). cDNA was amplified 
by two rounds of PCR according to the manufacturer’s recom-
mendations. The TRB library was sequenced using Illumina on 
a MiSeqv2 kit.

repseq Data Processing
Data Annotation
The RepSeq fastq files were demultiplexed by iRepertoire Inc. and 
then annotated using clonotypeR (46) to identify high-quality 
productive and non-ambiguous TRB sequences. Clonotypes were 
defined as unique combinations of TRBV-CDR3-TRBJ segments.

Sequencing Error Correction
Annotated sequences were clustered per TRBV-TRBJ combina-
tion and similar clonotypes collapsed as follows: within each 
TRBV-TRBJ cluster, the clonotypes observed once (singletons) 
were separated from the others to constitute two groups.  
A Levenshtein distance was then calculated between the CDR3 
peptide sequences of each clonotype of the two groups. The 
Levenshtein distance (lev) is a string metric measuring the mini-
mum number of single-character edits (insertions, deletions, or 
substitutions) required to change one sequence into another (47).

When comparing the CDR3 peptide sequences of singleton 
with that of a “non-singleton” sequences, if levseq1,seq2 = 1, their 
respective nucleotide sequences are then compared. If the two 
corresponding nucleotide sequences are also distant by 1, the 
singleton is considered as erroneous and considered as the “non-
singleton” clonotype.

Dataset Normalization
Using the function rrarefy from the Vegan R package (48), 
randomly rarefied datasets were generated to given sample sizes. 
Random rarefaction was done without replacement.

Diversity Profiles
Rényi entropy is a generalization of Shannon entropy, initially 
developed for information theory. We applied this mathemati-
cal function to clonotype frequencies to assess their diversity 
within each dataset. Rényi entropy is function of a parameter α,  
a strictly positive real number that differs from 1 and allows 
the definition of a family of diversity metrics spanning from  
(i) the species richness (α = 0), which corresponds to the number 
of clonotypes regardless of their abundance, to (ii) the clonal 
dominance (α → + ∞), corresponding to the frequency of the 
most predominant clonotype. For α = 1, the Shannon diversity 
index is computed. The exponential of the Rényi entropy defines a 

generalized class of diversity indices called Hill diversities, which 
can be interpreted as the effective number of clonotypes in the 
datasets (49) and thereby is used to build a diversity profile.

repseq simulation algorithm

A. 2·106 clonotype library construction with the tcR package

Based on the estimated total number of clonotypes in a 
mouse, a 2·106 TRB CDR3 library was generated with the tcR 
package following the probability rules of V(D)J rearrange-
ment established in Murugan et al. (50):

 

Ω = = ⋅
∀

  with  2 1
 is a clonotype genera

1 2
6{ ; ;... },

,
ω ω ω

ω
Λ Λ 0

i i tted by the tcR package
∀ ≠i j i j, , ω ω  

B. Construction of 6·105 sequence datasets following particular 
Zipf distributions

Based on the demonstration by Greiff et al. (41) that clonotype 
frequencies determined from RepSeq datasets generally follow a 
Zipf distribution with a particular α ∈ [0, 1] parameter, we chose 
to use the Zipf–Mandelbrot law implemented in the zipfR R 
package (51) to simulate clonotype distributions. The probability 
density function used for simulations is given by
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− −1 0
0 otherwise 

with two free parameters: α ∈ [0, 1] and B ∈ [0, 1] and a normal-
izing constant C. B corresponds to the probability π1 of the most 
frequent species (clonotype).

Seven Zipf distributions were generated with the following 
Zipf parameters:

 A B ( 1 ) 2  3  4  5  1  2  1  and 2= ∈{ } =/ , , , , , , .α 0 0 00 0  
For each Zipf parameter combination, a list ZA is randomly 

generated as follows:
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1·31·108 2·10·107 1·60 107 1·44·107 1·23·107 1·16·107 1·11·107

NA 2·106 2·106 2·106 2·106 2·106 2·106 2·106

C. For each A parameter, the 2·106 ZA values were randomly 
assigned to the clonotype collection to obtain seven TRB 
clonotype repertoires.

D. To obtain the final seven datasets, each of them was rarefied 
using the function rrarefy from Vegan R package to datasets 
of with a size of 6·105 sequences.
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Rarefaction at Increasing Sizes
Each of the seven simulated datasets was rarefied into a series of 
six datasets of size D ∈ {500, 1,000, 5,000, 5·104, 5·105, 1·106}. For 
each value of D, subsamples of TRB sequences were randomly 
produced using the vegan:rrarefy function (without replace-
ment). This process was iteratively repeated 100 times with 
replacement. For each resulting series of subsamples, clonotype 
counts were calculated and used to assess the median and 95% 
CI values of Morisita–Horn index [MH; (52)] between them and 
the original dataset (representativeness) and between each other 
(robustness).

Subsample compositions were also compared to evaluate 
the level of overlap between three subsamples according to the 
dataset size.

For each D, combinations of 3 ZA dataset subsamples were 
randomly selected to determine the proportion of clonotypes 
observed once, twice or in the three subsamples. This process 
was performed 100 times to calculate the median and 95% CI of 
each result.

Since the 95% CI values obtained for MH and overlap propor-
tion were similar to the medians, they are not indicated in the 
corresponding figures and tables.

resUlTs

impact of sequencing Depth on the 
representativeness of the repertoire 
Diversity
With advances in HTS technologies, the minimum number of 
outputs in RepSeq studies is often a million sequences per sample. 
Besides, small samples are often studied. Thus, to determine the 
minimum number of sequences required for a representative 
repertoire, we first explored how the number of raw reads could 
affect the repertoire description according to the sample size. 
We chose to analyze a mouse sample with high diversity and 
used the CD4+Foxp3-GFP− cell population (Teff) previously 
described as very diverse (4). 6·105 Teff cells from female Balb/C 
Foxp3 < GFP > splenocytes were sorted. RNA was extracted from 
these cells and diluted in order to obtain aliquots containing the 
RNA amount equivalent to what would be obtained from 50,000, 
5,000, 1,000, or 500 cells (Figure 1A). Two replicates per dilution 
were prepared. For simplicity in the text, the sample size will 
be defined according to the theoretical equivalent cell number 
for each aliquot. Sequencing was performed on RNA amplified 
by multiplex-PCR using a commercially available kit. We made 
this choice for three reasons: (1) a commercially available kit is 
standardized, avoiding pipetting errors in master mix prepara-
tion, (2) multiplex-PCR are template-target based, therefore we 
know what we are supposed to obtain in terms of V genes, and (3) 
the bias toward genes should be constant.

On average, 1.13 (±0.16) million reads were produced for each 
aliquot (Table S1 in Supplementary Material), which is in the 
average range of common practice (18, 44, 53). As summarized 
in Figure 1B, 0.99·106 (±0.15·106) TRB sequences were identi-
fied per aliquot regardless of the sample size. The point here is 
to determine whether the sample size will impact the resulting 
repertoire distribution.

Thus, we analyzed the diversity of the observed repertoires 
according to sample size. It is noteworthy that the number of unique 
clonotypes (i.e., unique combination of TRBV-CDR3pep-TRBJ)  
per sample was always higher than the number of cells per sample. 
This discrepancy was more marked for small size samples, with 
approximately 20- to 2-fold more clonotypes per sample than cells 
with the “500-” and “50,000-cell” samples, respectively. In each 
dataset, about 50% (±6%) of the clonotypes were observed once 
(singletons). After removing the singletons, as it is commonly 
done (44), this bias was reduced for the large samples, while the 
numbers of clonotypes remained much higher than the actual 
number of cells in small samples (Figure 1B). Still, overall richness 
remained equivalent between all sample sizes.

In order to refine the diversity assessment of these TRB reper-
toires, we computed their diversity profile (Figure 1C) applying 
Rényi entropy to the clonotype relative frequencies within each 
dataset. This function is used in ecological science to quantify the 
diversity, uncertainty, and randomness of a given system (54, 55). 
As the α order increases, it defines metrics spanning from (i) the 
species richness to (ii) the clonal dominance that progressively 
discards the scarcest species. The exponential of these metrics pro-
vides comparable effective numbers of species, used here to build a 
diversity profile. Analysis of the Rényi profiles for the eight aliquots 
showed that TRB repertoire diversity strongly decreases when the 
Rényi order α value increases. While richness was comparable 
between all sample sizes, diversity drops in proportion to sample 
size when progressively discarding scarce clonotypes to reach a 
plateau of clonotype counts below the initial number of cells.

shannon entropy as a Threshold  
to Filter the clonotypes
To avoid bias related to sample size, we normalized each dataset to 
700,000 sequences, a value corresponding to the smallest sample 
size (Table S1 in Supplementary Material). Therefore, we ran-
domly selected 700,000 sequences, ranked the unique clonotypes 
from the most to the least predominant (clonotype rank) and plot-
ted their abundance (clonotype count) to assess their distribution 
(Figure  2A). It is noteworthy that, while all the aliquots come 
from the same sample, the clonotype distributions within each 
dataset are different. The smaller a sample, the higher the most 
predominant clonotype counts, making it difficult to apply a filter-
ing rule based on the count values. The Rényi profiles (Figure 1C) 
showed that the repertoire diversity collapses at a Rényi order α 
of 1, which corresponds to the Shannon diversity index (56). 
Since the number of clonotypes assessed by the Shannon index 
(Table 1) correlates best with sample size (Pearson coeff = 0.966, 
p  =  9.62·10–5 and MH  =  0.877 on original clonotype number 
and Pearson coeff = 0.995, p = 2.92·10−7 and MH = 0.996 after 
clonotype number determined by Shannon index), we chose to 
use this metric as a threshold to discard scarce “uninformative” 
clonotypes (SUC) that could result from experimental noise 
(shown in gray in Figure 2A) and keep only “informative” ones. As 
shown in Figure 2B, the clonotype relative distribution within each 
dataset is not significantly altered by this filtering. Interestingly, 
as shown in Figure 2C, regardless of the initial number of cells, 
this transformation regularizes the values of the Piélou evenness 
index, a measure of clonotype evenness (57) (filled squares), 
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FigUre 1 | Impact of sequencing depth on measured diversity. (a) Experimental design: 600,000 CD4+Foxp3-GFP− cells were sorted from female Balb/C Foxp3 
splenocytes. RNA was extracted (1) and split into aliquots equivalent to the amount of mRNA of 500, 1,000, 5,000, and 50,000 cells (2). Two aliquots were 
produced for each amount of RNA. The eight prepared aliquots were processed for TRB chain deep sequencing. (B) Dataset summaries. Histograms show,  
for each resulting dataset, the number of reads (black), productive TRB sequences (gray), observed clonotypes (blue), and clonotypes observed more than  
once (NoSingletons; light blue). (c) Diversity profiles. For each dataset, a Rényi diversity profile was computed: diversity metrics using clonotype frequencies  
were calculated for increasing values of Rényi order α until stabilization of the resulting diversity. For α = 1, the Shannon entropy was computed.
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which otherwise strongly decreases for unfiltered datasets when 
the clonotype number/cell number ratio increases, revealing that 
a too high sequencing depth for small samples alters clonotype 
distributions (Figure 2C, empty circles).

To confirm that the filtering does not bias the overall reper-
toire diversity, we computed the Morisita–Horn (MH) similarity 
index between the datasets before and after filtering; the high 
similarity values (0.983; 0.997) shown on the matrix diagonal in 
Figure 2D confirm that the datasets are not altered in the process. 
The similarity matrix also reveals a low similarity between repli-
cates, except for the “50,000-cell” samples, which are big enough 
to share rare clonotypes. Thus, high sequencing depth does not 
ensure good coverage of clonotype richness. This led us to ques-
tion the robustness of RepSeq experiment results.

robustness of the TrB repertoire 
Diversity assessment by repseq
We sorted 3·106 Teff cells from splenocytes, extracted the 
RNA and split it into three equivalent RNA aliquots, and then 

sequenced them independently at a high-depth targeting the TRB 
chain using the iRepertoire® multiplex-PCR technology. On aver-
age, for each aliquot, 8.33 (±0.66) million reads were produced 
and 5.63 (±0.56) million TRB sequences were identified, among 
which an average of 130·103 (±5·103) clonotypes (Table S2 in 
Supplementary Material). After applying Shannon filtering, the 
dataset sizes were reduced to 4.7 (±0.6) million TRB sequences 
for a total of 44,217 (±304) clonotypes. Datasets were rarefied 
at an equivalent size by randomly selecting 4·106 sequences for 
each sample.

We first analyzed the clonotype distributions within each 
dataset. The three distributions were similar between replicates 
(Figure 3A). However, when we compared the composition of 
the three TRB repertoires by clonotype overlap, it appeared that 
about 36% of the clonotypes observed in each dataset are shared 
by another replicate, with only 6,599 clonotypes common to the 
three replicates. Although these shared clonotypes represent only 
6% of the 105,332 clonotypes identified overall, their expression 
accounted for approximately 38% of each repertoire (Figure 3B). 
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FigUre 2 | Clonotype distributions before and after data filtering. (a) TRB clonotype counts of the eight aliquots according to sampling size. Within each dataset, 
clonotypes were ranked according to their counts from the most to the least predominant (decreasing clonotype rank) and their abundance (clonotype count). Both 
axes are log-scaled. Plots were colored according to the sampling size: “500 cells” in red, “1,000 cells” in green, “5,000 cells” in cyan, and “50,000 cells” in purple. 
Clonotypes filtered out using the Shannon index (see main text) are colored in gray [scarce uninformative clonotypes (SUC)]. (B) TRB clonotype distributions of the 
eight aliquots before and after data filtering. Before (left) and after (right) filtering each dataset using the Shannon index as threshold, clonotypes were ranked from 
the most to the least predominant (decreasing clonotype rank) according to their relative frequencies (clonotype frequency). The X-axis is log-scaled. Distributions 
were colored according to the sampling size as previously. (c) Impact of clonotype filtering on the clonotype distribution evenness. The ratio between the number  
of clonotypes and the number of cells (x-axis) was calculated for each aliquot before (circles) and after clonotype filtering either by removing only singletons 
(triangles) or using the Shannon index as a threshold (squares). For each dataset, the Piélou evenness index was calculated (y-axis). Aliquots are identified according 
the sampling size as previously. (D) Similarity between datasets before and after Shannon filtering. The Morisita–Horn similarity index between all pairs of datasets is 
color-coded according to the indicated scale before (lower half-triangle) and after (upper half-triangle) Shannon filtering. Aliquots are identified according to sampling 
size as previously.
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We then decomposed the clonotype collection by labeling the 
clonotypes as private (not shared between replicates) or shared by 
two or three replicates. For each dataset, clonotypes were sorted 
from the most to the least abundant and enrichment curves 
were built for each category according to the sharing status of 

each clonotype (Figure 3C). The resulting clonotype spectrum 
revealed that the most predominant clonotypes are shared by 
the three replicates, while the private clonotypes, which are the 
more numerous, are enriched for scarce clonotypes, therefore 
reducing the similarity between technical replicates. These results 
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TaBle 1 | Shannon diversity calculated for each dataset.

shannon diversity r500 r1000 r5000 r50000

#1 171 1,034 3,124 30,432
#2 238 735 5,337 35,027

FigUre 3 | Robustness of a RepSeq experiment. (a) Clonotype distribution of the three replicates within each dataset. Informative clonotypes were ranked 
decreasingly according to their abundance and their frequency was plotted. The x-axis is log-scaled. (B) Venn diagram between the three replicates. Out of the 
105,332 clonotypes observed in total, only 6,599 are shared by the three replicates; their cumulative frequency covers about 38% of each dataset. (c) Spectrum  
of unshared (yellow) and shared (by two in orange and by three in magenta) clonotypes in each replicate. Within each dataset, clonotypes were ranked according  
to their counts from the most to the least predominant (decreasing clonotype rank). Since clonotypes are labeled according to their sharing status, the clonotype 
enrichment (y-axis) of each sharing group is incremented (+1) when a corresponding clonotype is found in the ranked list.
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demonstrate that although the sampling of a large and polyclonal 
cell population has no impact on the observed clonotype distri-
bution, the repertoire composition is affected: even if the most 
predominant clonotypes are always captured, a major proportion 
of the clonotypes observed with a single sequencing are private 
scarce ones. This observation confirms that the more abundant 

a clonotype, the more likely it is to be observed by sequencing. 
However, most rare clonotypes will remain unseen with a single 
sequencing run.

computational assessment of the impact 
of sequencing Depth on Observed 
Diversity
In order to assess the representativeness of the diversity observed 
when analyzing a clonotype repertoire by RepSeq, it would be 
necessary to know a  priori its full diversity and distribution, 
which is not achievable with a classic experimental approach 
inherently subject to sampling bias.
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FigUre 4 | Impact of sequencing depth on the observed diversity. (a) Clonotype distribution within the seven simulated datasets—within each A-dataset, 
clonotypes were ranked decreasingly according to their abundance and their frequency was plotted. Both axes are log-scaled. Distributions are colored according 
to the A parameter used to simulate it. (B) Impact of sequencing depth on the observed clonotype richness—for a given A-dataset, clonotype richness was 
measured within the 100 subsamples produced for each depth and divided by that of the original dataset. The median value by depth is represented for each 
condition. The 95% CI was calculated but cannot be seen since it merged with the median value. (c) Representativeness of the sequencing—the Morisita–Horn 
similarity index was calculated between each subsample and its original dataset. Boxplots across the 100 subsamples of a given depth are color-coded according 
to the A condition. (D) Reproducibility of the sequencing—for each A-dataset, the Morisita–-Horn similarity index was calculated between paired subsamples of a 
given depth. Boxplots across the 100 subsamples of a given depth are color-coded according to the A condition.
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Several studies have demonstrated that immune repertoires 
follow a Zipf-like distribution (58–62), which translates a relation 
between rank order and frequency of occurrence: the frequency 
f of a particular observation is inversely proportional to its rank 
r (63) with:

 
f r

r
( ) ∝

1
α

 
for Zipf-α parameter ≈ 1 (64).

In addition, the lower the Zipf-α parameter of a distribu-
tion, the more evenly represented the clonotypes involved (59). 
We applied this observation to build clonotype distributions of 

a fixed size and known diversity to simulate the sampling effect 
occurring during a RepSeq experiment.

Seven Zipf distributions of 6·105 sequences each were simu-
lated with a parameter A = 1/Zipf-α ranging from 2 to 100. These 
distributions were then assigned to a list of clonotypes randomly 
generated using the tcR package (65), leading to seven TRB 
clonotype repertoires of known diversity.

As observed in Figure 4A, the distribution slope varies accord-
ing to the depth of sequencing of the clonotypes. For example, for 
the distribution simulated with A = 2 (A2), the resulting distribu-
tion is skewed in a way that clonotype counts range from 1 to 
31,109, whereas when A = 100 (A100), clonotype counts do not 
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TaBle 2 | Summary of the simulated Zipf distributions.

a 2 3 4 5 10 20 100

i 1

N
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A

z
=
∑ ,

6E + 05 6E + 05 6E + 05 6E + 05 6E + 05 6E + 05 6E + 05

NA 155,495 394,784 435,528 450,625 469,974 476,829 480,919

TaBle 3 | Sharing proportion between three replicates.

Median proportion of 
clonotypes observed

Dataset sizes

5·102 1·103 5·103 5·104 5·105 1·10 6

Private 99.7 99.4 97.5 83.7 5.2 –
Shared by two 0.3 0.6 2.4 14.3 27.2 –
Shared by three – – 0.1 2 67.6 100
Total number across 
three replicates

1,493 2,973 14,456 117,634 393,434 394,784

FigUre 5 | Clonotype coverage of A3-dataset richness increases with 
multiple subsamples. The A3-datasets were subsampled at increasing depth 
(from 500 to 1·106 sequences as indicated in the legend from light to dark 
blue). For each depth, 100 subsamples were produced. Within each 
subsample series, an increasing number of subsamples (x-axis) were 
randomly selected and their cumulative clonotype richness was calculated 
relative to the original dataset richness (clonotype richness coverage).
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exceed 9. These different distributions lead to datasets of varying 
richness, as summarized in Table 2.

For each of our seven “known” repertoire distributions, we 
generated 100 subsamples at 6 sample sizes (from 500 to 1·106 
sequences) reflecting several levels of sequencing depth. The 
clonotype richness observed within each subsample increased 
according to the depth, as expected (Figure 4B). We used the 
MH similarity index to assess (i) representativeness (Figure 4C) 
by comparing the diversity captured for each subsample 
with the original repertoire diversity and (ii) reproducibility 
(Figure  4D) for the 100 subsamples for a given depth. When 
comparing the seven distributions at a given sequencing depth 
(5·104 sequences, representing 8% of the original repertoire), the 
representativeness of the diversity between distributions was dif-
ferent (Figure 4C), yet with similar relative richness values. For 
the “A2” condition, the similarity index between this subsample 
and the original repertoire was above 0.8, while it varied from 
0.2 to 0.5 for the other conditions (Figure 4C). A dataset of 5·105 
sequences (80% of the original repertoire size) is needed to reach 
a 0.9 similarity for the latter. However, a suitable representative-
ness does not ensure good reproducibility of the observations. 
With 500 or 1,000 sequences, even if the diversity observed for 
the “A2” condition is quite representative (MH ~ 0.8), the high 
variability between the subsamples implies a low reproducibility 
and thus an inability to observe exhaustively all the clonotypes 
(Figure 4D).

We sought to identify which simulated distribution would 
be the most representative of our experimental datasets. To this 
end, we compared the slope at the steepest descent point of each 
simulated distribution with those of all the experimental data 
analyzed in this study. The experimental distribution slopes are 
most comparable with the “A3” and “A5” distributions, with the 
exception of that of the R500_2 sample (Table S3 in Supplementary 
Material). Thus, we chose the “A3” distribution dataset as the most 
representative. In order to understand the low overlap observed 
between experimental replicates in Figure 3B, for each size we 
compared the “A3” simulated subsamples to determine the pro-
portion of clonotypes shared by three independent subsamples, 

as performed experimentally in Figure  3. As summarized in 
Table 3, the proportion of private and shared clonotypes varies 
according to the coverage of the initial repertoire stretch. For 
subsamples with sizes representing less than 1% of that of the 
initial dataset, almost all the clonotypes observed are private 
(only captured in one subsample). For the “5·104 sequence” sub-
samples, the size of which represents 8% of the original repertoire 
size, 16% of the clonotypes observed are captured at least twice. 
These proportions correspond to the observations we made in 
Figure  3 between the three experimental replicates. Finally, 
using subsamples of size close (80%) to that of the original, 95% 
of the observed clonotypes are shared by at least two replicates. 
In addition, as represented in Figure 5, at this depth, while one 
sample only captures about 12% of the overall existing clono-
types, three replicates cover a third of the overall richness. These 
observations suggest that multiple sequencing experiments can 
ensure greater clonotype exhaustiveness than a unique very deep  
sequencing.

DiscUssiOn

RepSeq offers new opportunities to identify biomarkers of health 
or disease by monitoring adaptive immune cell diversity at unprec-
edented high resolution. Continuing improvements in molecular 
biology protocols and sequencing technologies are increasing the 
accuracy of clonotype detection (66). Still, clear evaluation of the 
reproducibility and representability of the observed diversity is 
missing. This is particularly true when considering bulk sequenc-
ing on small size samples such as small cell subsets or cells from 
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biopsies, though of utmost interest when studying TCR repertoires. 
Although over-sequencing has been recommended to ensure 
the identification of rare clonotypes (53), it does increase the 
risk of generating uninformative, possibly artifactual clonotypes 
such as duplicate reads and chimeric reads (67). Indeed, when 
sequencing samples of varying sizes at a commonly used depth, 
we found that small datasets contained 20 times more clonotypes 
than would be expected regarding the sample size. This figure 
decreases when the starting material is increased, demonstrating 
that over-sequencing small samples dramatically generates noise 
that cannot be corrected by removing only singletons. Although 
the relationship between sample size and sequencing depth that 
we used may appear extreme, it can commonly occur when 
studying small cell subsets involved in immunological processes. 
These observations demonstrate the drawbacks of discarding 
clonotypes based only on their counts and the need for objective 
approaches in order to assess the actual richness of a repertoire 
effectively. Single-cell sequencing technologies are an alternative 
to accurate study of the repertoire of small cell subsets and there-
fore will surely not require the use of Shannon filtering, because 
the number of expected unique TR sequences will be at most two 
per single cell. However, currently the number of required cells 
is still regularly higher than actually recovered in particularly  
low-input samples.

Here, we provide a bioinformatics approach to assess accu-
rately the number of unique clonotypes in a large and complex 
cell population, even when over-sequenced. When analyzing 
the diversity profiles of repertoires from subsamples of varying 
sizes of a unique starting sample, we identified Shannon entropy 
as a reliable threshold to eliminate clonotypes arising from tech-
nical noise (SUC) and to focus on informative TR clonotypes 
(Figures 1C and 2A). This filtering strategy has no impact on 
the overall clonotype distribution (Figure  2B). Importantly, 
this approach was validated on subsamples originating from 
a single starting sample. Therefore, the representability of the 
smallest subsample was questioned. While the distribution 
evenness was sample size-dependent when considering all 
the reads, filtering by the Shannon entropy index removed 
this variability between replicates (Figure 2C). This proposed 
strategy therefore offers an accurate assessment of clonotype 
identification and representability, even in extreme situations. 
We applied our method to data produced following multiplex-
PCR amplification on bulk polyclonal CD4+ T cells, for which 
the targeted genes and bias should be constant from one 
experiment to another. Although the number of uninformative  
clonotypes should be assessed when analyzing datasets prepared 
by different molecular methods, we believe that the Shannon 
index should reflect the true diversity by excluding uninforma-
tive clonotypes. Once single-cell sequencing becomes stand-
ardized and applicable to a range of very small to very large 
sample sizes, such correction metrics may not be necessary  
anymore.

Our results strongly suggest that sequencing depth must be 
adapted to the initial cell amount. We show that “50,000-cell” rep-
licates are closer to each other than lower input pairs of samples 
(Figure 2D). This observation emphasizes the need to adapt the 
sample size to the population of interest. All aliquots analyzed 

here were obtained from a rich and polyclonal cell population. In 
order to be reliable, a sample needs to be large enough to ensure 
that most of the clones are represented. Here, about 20% of the 
clonotypes observed in the two replicates (6,766 out of 30,422 and 
35,020 clonotypes) are shared.

Altogether these results show how complex defining a RepSeq 
strategy can be in guaranteeing the representativeness of the 
repertoire diversity. If sequencing depth is not adapted to the 
population size, it can negatively affect the resulting observed 
diversity, in particular if data are not properly analyzed. This is 
particularly crucial since the clonality of a population is rarely 
known before its sequencing, leading to misinterpretation of the 
results. Since the sequencing depth used was much higher than 
the size of the samples we analyzed, one would expect good, if 
not exhaustive, coverage of the overall clonotypes. Conversely, 
we show that this is by no means the case, with only part of 
clonotypes being observed with confidence. These observa-
tions led us to question the robustness of the results of RepSeq 
experiments.

Multiple sequencing of the same sample revealed very low 
overlap between technical replicates, even after filtering out 
uninformative TR clonotypes, and merely captures the most 
frequent clonotypes. Rare clonotypes were at best shared by two 
replicates. As already suggested by Greiff et al. (44), our results are 
in favor of multiple sequencing when considering very diverse 
samples. This can be explained by the experimental sampling 
enforced by the different RepSeq steps (from RNA amplification 
to library sequencing). In order to validate these experimental 
observations and propose guidelines for RepSeq studies, we 
simulated different repertoire distributions and found that the 
representativeness of a very evenly distributed repertoire, which 
could be likened to a polyclonal repertoire, is more sensitive 
to the sequencing depth. The number of sequences produced 
(by multiple sequencing) needs to be equivalent to the popula-
tion size to ensure a good assessment of the original diversity 
(Figure  4C). This is particularly true for small samples for 
which too deep a sequencing can favor the erroneous sequences 
possibly generated during library preparation (68) and thereby 
introduce experimental noise.

Altogether, we provide here a method that accurately discards 
uninformative clonotypes for small and large samples based on 
the application of Shannon diversity index threshold filtering, as 
well as guidelines for RepSeq experimental design. In addition, 
we show how computational simulation of diversity can improve 
adaptive repertoire analysis assessment where controlled refer-
ence repertoires with known actual diversity can be modeled and 
subject to experimental design and annotation tool flaws. We 
believe these will be useful in ensuring better RepSeq analyses 
when looking at rare or unknown cell populations participating 
in pathophysiological processes and will facilitate the discovery 
of HTS-based biomarkers.
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The naïve immunoglobulin (IG) repertoire in the blood differs from the direct output of 
the rearrangement process. These differences stem from selection that affects the ger-
mline gene usage and the junctional nucleotides. A major complication obscuring the 
details of the selection mechanism in the heavy chain is the failure to properly identify 
the D germline and determine the nucleotide addition and deletion in the junction region.  
The selection affecting junctional diversity can, however, be studied in the light chain that 
has no D gene. We use probabilistic and deterministic models to infer and disentangle 
gene ration and selection of the light chain, using large samples of light chains sequenced 
from healthy donors and transgenic mice. We have previously used similar models for the 
beta chain of T-cell receptors and the heavy chain of IGs. Selection is observed mainly 
in the CDR3. The CDR3 length and mass distributions are narrower after selection than 
before, indicating stabilizing selection for mid-range values. Within the CDR3, proline 
and cysteine undergo negative selection, while glycine undergoes positive selection. 
The results presented here suggest structural selection maintaining the size of the CDR3 
within a limited range, and preventing turns in the CDR3 region.

Keywords: deep sequencing, B cell receptor, light chain, selection, rearrangement

inTrODUcTiOn

The diversity of immunoglobulins (IGs) is essential for the function of the adaptive immune sys
tem. The IG repertoire is shaped first by the V(D)J recombination processes, and then by selection  
forces. The rearrangement mechanism determines which genes are combined, as well as the makeup 
of the junction. Bone marrow and peripheral selection alter this initial repertoire to produce the 
naïve repertoire observed in the peripheral blood. The repertoire is then further shaped by antigen 
driven selection to produce the memory repertoire.

The diversity of the IG heavy chain has been studied extensively, like that of the T cell beta chain 
[see Ref. (1) for review]. It has been shown that much of the diversity originates from the V–D and 
D–J junctions (2). Current methods to estimate the identity and position of DH are inaccurate for 
short DH genes (3). Errors in the identification of DH can be erroneously considered as nucleotide 
addition or deletion. Moreover, in short D genes, the V–D and D–J junctions can overlap and 
introduce another layer of ambiguity. Here, we focus on the less studied IG light chain to study the 
roles generation and selection have in establishing functional diversity. An added benefit of studying 
light chain diversity is that with no D gene inside the CDR3, the junction diversity is more readily 
separated into contributions from gene selection, and from N insertions (4, 5).
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We analyze here the kappa light chain locus (IGK), as the 
Lambda locus (IGL) has fewer germline genes, and as such has a 
more limited variability.

Counting all possible V and J choices, deletions, and inser
tions leads to a vast potential diversity. However, multiple lines of 
evidence now support that the repertoire is limited:

• The choice of IGKV and IGKJ genes in IGK rearrangement is 
not completely uniform and preferential use of several genes 
has been shown (5).

• The IGK polymorphism across individuals has been shown to 
be much lower than the heavy chain IGH in humans (5, 6).

• Recent results have shown that surprisingly over 20% of 
light chains CDR3 peptide sequences (out of 700,000 IGL 
sequences) were “public” (i.e., shared by two or more indivi
duals). Moreover, full length IGL protein sequences (VJ recom
binants) are also frequently shared. In a recent study, public 
rearrangements made up of 60.2% of the total sequenced IGK 
rearrangement (7).

These results together suggest that nonuniform rearrange
ment, biased junction formation, structural selection, and func
tional selection can shape the repertoire (5, 8–12). However, the 
relative contribution of these different mechanisms in the light 
chain repertoire has never been studied. We here study the extent 
and origin of IGK diversity using sequences of the recombined 
gene obtained from blood samples for humans and mice. This 
observed recombined repertoire is shaped by the rearrangement 
mechanism and by selection (either positive or negative). To 
understand how the repertoire is selected, these two processes 
must be separated.

We do not delve here on the V and J usage and their corre
lation. Those have been argued based on both theoretical and 
experimental results to be induced by the receptor editing 
mechanism (13–16).

The generation and the selection processes are stochastic in 
nature, with different recombined peptides having different likeli
hoods of being generated and selected. We use statistical models, 
where the probability of assigning each observed sequence to 
appropriate germline genes and junction sequences are computed, 
to infer and disentangle the two processes. We find that structural 
selection strongly shapes the observed light chain repertoire.

We have used similar models on T cells and heavy chain B cells 
(17, 18). Here, these models enable us to study the variability of 
the IGK light chain during the generation and initial selection 
stage of B cells. The IGK samples, sequenced from healthy donors 
and from transgenic mice, are first divided into functional and 
nonfunctional recombined genes. The functional sequences are 
inframe (IF) and with no stop codon, and as such code for a pep
tide that can potentially be the light chain of the IG. Outofframe 
(OF) sequences, on the other hand, underwent recombination 
that resulted in some of the conserved codons of the J template 
to be out of their normal reading frames and thus lack essential 
conserved amino acids when translated. They sometimes also 
have stop codons, which prevent them from being fully translated. 
These OF sequences, having never coded for any protein, did not 
undergo selection and represent the results of the raw generation 
process. By comparing the statistics of the OF sequences (the 

generation process statistics), to the IF sequences, selection can 
be inferred (see Materials and Methods). We have studied Rapid 
Amplification of cDNA Ends (RACE)based cDNA sequ ences of 
human and mouse light chains. The human light chains were taken 
from peripheral blood and were separated into naïve and memory 
cells. The mouse cells were separated into blood and bone marrow 
cells (see Table S1 in Supplementary Material for details).

MaTerials anD MeThODs

generation Model
The V(D)J recombination process involves a random number of 
insertions and deletions, and often produces OF sequences. These 
sequences code for nonfunctional proteins and can still appear in 
a blood sample, if the second chromosome in the cell underwent 
a successful recombination. In such cases, the sequences experi
enced no selection and owe their survival to the receptor expressed 
by the other chromosome. Thus, they provide us a glimpse into 
the pure generation process. We used these OF sequences to infer 
the statistics of the V(D)J recombination process.

Each observed sequence can be the result of a number of 
scenarios that include different initial gene choices, followed by 
a variable number of deleted and inserted base pairs. Estimating 
the probability of a sequence can be done by summing over all 
the different possible scenarios for producing a given sequence, 
weighting each scenario by its probability. Each scenario’s prob
ability (Pgen) is calculated using a probabilistic generation model 
of the form P(V,J)P(delV\V)P(delJ\J)P(ins). In brief, the various 
factors account for the probabilities of uncorrelated events lead
ing to a specific VJ rearrangement: choice of which gene segments 
to recombine P(V,J), probability of the number of deletions from 
the ends of the V and J genes at the junctions P(delV|V) and 
P(delJ|J), choice of number of nucleotides to insert P(ins), as well 
as factors to account for unequal nucleotide preference in the 
inserted sequences. This type of model was used before to infer 
the generation process of heavy chain in B cells and beta chain 
in T cells.

Here, we used the Baum–Welch algorithm to efficiently 
infer the parameters of the generation model (18). In short, by 
reformatting the generation model as a Markov model, we used 
the forward–backward algorithm once per sequence, then sum
ming over all sequences to update the model parameters. This 
is a dynamic programming approach that bypasses the need to 
enumerate all possible recombination scenarios.

selection Model—Probabilistic Model
The naïve productive sequences (IF and with no stop codon), 
unlike the nonproductive ones, have passed an initial selec
tion process before being admitted to the periphery. We used 
the productive sequences to learn the selective forces acting on 
amino acids by comparing how their statistics differ from the raw 
product of V(D)J recombination learned from the OF sequences.

Using the generation model as a starting point, we infer selec
tion factors Q acting on each sequence in the naive repertoire, 
where Q is defined as the fold increase of the probability to 
see a sequence in the functional repertoire (naive, productive) 
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compared with the previously learned generation probability: 
Q = Ppost/Ppre. To infer those factors, we use a factorized model 
Q  =  q(V,J)qLΠqi;L(ai), where we assume that selection acts 
independently on the V,J gene choice [through factor q(V,J)], 
the length L of the CDR3 sequence (through factor qL), and on 
each of the amino acids ai at positions 1  ≤  i  ≤  L between the 
conserved cysteine near the end of the V gene and the conserved 
tryptophan within the J gene [through factors Qi;L(ai)]. We use 
an expectation–maximization procedure to update the selection 
factors until convergence (1).

study subjects
For the human data, 12 apparently healthy adult subjects (3) 
were recruited for highthroughput sequencing using the 454 
platform. Two 45ml blood draws were collected in heparin tubes 
from each subject at a single time point. Mononuclear cells were 
isolated using FicollPaque Plus (GE Healthcare), and then sorted 
by flow cytometry into naïve (CD20+, CD27−) and memory 
(CD20+, CD27+) populations. Informed consent was obtained 
from all donors. This work was performed in accordance with an 
IRBapproved protocol at Pfizer, Inc.

For the mouse data, blood and bone marrow RNA was extra
cted from healthy C57BL/6J mice using Qiagen RNAeasy Mini 
(19). RNA was provided as input to Clonetech SMARTer 5′RACE 
reactions, using murine IgK specific primers. Amplicons received 
Roche 454 adaptors with DNA barcode multiplex identifiers, and 
then sequenced with Titanium chemistry. The human and mouse 
data used here are based on previous publications (3, 20).

Target amplification and 454 sequencing
Unbiased amplification of repertoires was performed by 25 cycles 
of 5′RACE, using individual isotypespecific reverse primers. 
Primers were optimized for efficiency, fidelity, and completeness 
of repertoire recovery by informatics screening, gelanalysis, 
and highthroughput sequencing of recovered products. The 
degree of germlinedependent amplification bias was assessed by 
comparing amplified products of stimulated naïve B cell pools to 
direct sequencing of the same pools. Cycledependent effects on 
diversity estimates were evaluated by highthroughput sequenc
ing. All pro ducts received multiplex identifiers (barcodes) to allow 
unambiguous identification of all products by sequence analysis 
in subsequent processing steps. Multiplex identifiers differed by at 
least three base pairs from any other multiplex identifier sequence, 
and only reads with exactmatches were included in the analysis. 
Products were sequenced with 454 Titanium. Sequencing quality 
was assessed by keypass control. Sample QC was confirmed by 
demultiplexing and VK segment genotype. Sequencing depth was 
determined by diversity estimate rarefaction and simulations of 
germlineprofile stabilization as a function of sequencing depth. 
A detailed validation of the sequencing methodology has been 
provided previously (12).

V–J and clone Detection  
Pipeline—Deterministic Model
We detected clones by clustering together sequences with similar 
CDR3 sequences (further explained below), to minimize the 
effect of potential biases in sequence copy numbers.

Specifically, sequences were grouped into clones using a 
twostep approach. First, we assigned each sequence V and 
J germline genes by running the IgBLAST tool (21) against 
human and mouse germline sequence databases (appropriately). 
Next, to count the clones, we grouped all sequences according 
to their V and J usage as well as the distance between V and 
J, since SHMs usually do not produce insertions or deletions 
of nucleotides (22). Thus, every clone emerging from the same 
founder cell should have the same distance between V and J. We 
then took all of the sequences with the same V–J and the same 
distance between V and J and grouped them using a phylogenic 
approach. All the sequences with an identical V–J and an identi
cal distance were aligned together, using an artificial sequence 
composed of the germline sequences and gaps between them. 
The beginning and the end of all sequences of each dataset were 
trimmed so that all the sequences have same length V and J 
segments. The sequences of each group are thus already aligned 
and a phylogenetic tree was built using maximum parsimony 
(23) and/or neighbor joining (24) methods (from the PHYLIP 
3.69 program package). We then parsed this tree with a cutoff 
distance of four mutations into clones. Thus, a clone was defined 
as a set of sequences similar to one another, up to a distance 
of four mutations. These methods were extensively validated in 
previous studies (1–3, 25–27).

sequence analysis
CDR3 Length
We calculate CDR3 length according to the number of amino 
acids between the conserved cysteine and phenylalanine. 
We then used the same sequence to compute the total CDR3 
molecular mass (MW) using the “peptides” R package (values are 
rounded up to two digits). We then computed the distribution of 
CDR3 lengths in AA and in MW, and compared the SD of these 
distributions in different sets. For the MW relative difference, 
we calculate the SD of the MW in the IF sequence divided by the 
SD of the MW in the OF sequence minus 1 (to have 0 represent 
a state of no selection). The AA length SD ratio was calculated 
similarly. We did the same thing for the relative difference aver
age of the MW and length.

Selection vs. Generation Probabilities
In the p − q plot, we present the log of the selection factor q vs. the 
log of the generation probability p. We computed the Spearman 
correlation between these two values for the generation prob
ability of VJ pairs and for the probability of a given amino acid 
in each position and CDR3 length. Formally, we calculated the 
correlation between the generation probability and selection fac
tors across amino acids where Pi;L(ai) is the generation probability 
for amino acid (ai) in position i for length L (for maximum length 
19, this can be coded with 20*19*19 parameters, some of which 
are zeros). The Qi;L(ai) is the selection factors of the same amino 
acid, length, and position.

Average Selection Factor
To present the selection factors of the different amino acids in 
the different positions, we averaged all the qvalues over CDR3 
lengths for each codon. Then, we present the results of the log 
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FigUre 1 | (a) Comparison of CDR3 length distribution in human in-frame 
(IF) and out-of-frame (OF) sequences. The continuous lines represent the IF 
reads, while the dashed lines represent the OF reads. Pre-selection (IF) and 
post selection (OF) curves (blue) correspond to human naive sequences 
analyzed using the probabilistic model, whereas the red curves correspond 
to the same human naive sequences analyzed using the deterministic model. 
The CDR3 length distribution is narrower after selection, indicating selection 
against too long or too short sequences. (B) The relative difference between 
the SD of CDR3 length/mass between IF sequences and OF sequences (the 
ratio minus 1), for different samples of human and mice. The blue bars 
represent the CDR3 length ratio, and the red bars represent the calculation of 
CDR3 mass ratio (the p values of the F-test are less than 0.001 except from 
the mouse blood sample which are less than 0.01). (c) The same for the 
average over length/mass of the CDR3, for different samples of human and 
mice (the p values of the T-test are less than 0.001 except from the mouse 
BM and the mouse blood which are less than 0.1).
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values on a heat map. We also computed the log of the average 
of the selection affecting all codons translated to the same amino 
acid as presented in Figures 2 and 3.

resUlTs

cDr3 are selected to have  
a narrower Distribution
Naive B cells have undergone light chaindependent selection 
(28). To study this selection, we first investigated the differ
ence in the light chain CDR3 length distribution before and 
after selection in naïve and memory repertoires (the naïve 
pool in the peripheral blood, and the memory pool resulting 
from germinal center driven selection). The length of CDR3, 
defined as the number of nucleotides between the cysteine and 
phenylalanine surrounding the CDR3 [see Ref. (29) for CDRs 
positions definitions], was analyzed in samples from peripheral 
human blood that contains naïve and memory cells and mice 
B  cell samples in the blood and bone marrow (see Table S1 
in Supplementary Material and Materials and Methods for 
details).

We used deterministic and probabilistic generation model to 
compare the OF and IF repertoires. The probabilistic generation 
model was developed to best fit the OF human light chain sam
ples, and the model was then applied to evaluate the generation 
probability of the IF naïve light chain repertoire. The validity of 
this method has been extensively tested (17, 18). For the other 
human and mice samples (mouse blood, mouse bone marrow, 
and human memory B cells), where the data were more limited, 
we only used the deterministic model, where each sequence is 
assigned the most probable V and J genes and the most probable 
alignment as estimated by our clone detection pipeline, which 
was also validated in multiple studies (1, 3, 25). The general fea
tures, such as V and J genes, are similar in the deterministic and 
probabilistic models. Note that we here study generic properties 
of the B cell receptor repertoire, and our results do not require 
an extreme sequencing depth or a very lowsequencing error 
level. Thus, the 454 sequencing used here is precise enough for 
the current analysis.

For each observed clone, only one sequence (the ancestor of 
the clone) was analyzed. Multiples conditions were compared. 
We used the OF sequences as representative the output of the 
rearrangement process, and compared those to naive cells to 
study the selection taking place in the bone marrow, or in the 
periphery prior to antigen exposure. We also used memory cells 
to test the effect of antigen exposure on the L chain repertoire. 
Finally, we analyzed mouse bone marrow and peripheral 
B cells and compared them with mouse OF cells to test again 
selection within the bone marrow and in the transition to the 
naive repertoire in the periphery. The probabilistic model was 
applied to the human naive cells and it thus represents again 
the selection affecting the naive repertoire, probably prior to 
antigen exposure.

A comparison between the OFbased stochastic model and 
the length distribution in the IF naïve human sequences indicates 
that there is a very weak change in the average length of the CDR3 

(Figure 1C). The slightly longer CDR3s in functional sequences 
are in contrast with previously reported shortening of the heavy 
chain during development (30). This increase is accompanied by 
a parallel increase in the total molecular mass.

A more drastic change between the IF and the OF rear
rangements is the reduction in the length variance (Figure 1B), 
indicating selection against short or long CDR3 sequences. A 
similar result can be observed when comparing the results of 
the deterministic model (full vs. dashed lines in Figure 1A and 
appropriate bars in Figures 1B,C). The reduction in the length 
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FigUre 2 | Selection factors for sequences. (a) The average of the q-values for each location in CDR3 in log scale [positive selection represented by positive values 
log(q) > 0 and negative selection represented by negative values log(q) < 0]. (B) The x-axis represents the different location in CDR3; the y-axis represents the 
different codons. In the right side of the figure, each codon is translated to its amino acid. The blue cells represent log(q) values larger than 0 for codon in a certain 
position. The red cells represent log(q) values lower than 0. The white cells indicate that there was no selection.
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distribution width is highly significant. The length distribution 
for mice shows the same trends (F test p <  1.e−3 for all tests, 
except for mouse blood where the IF CDR3 lengths are slightly 
more diverse than OF).

The difference in the human repertoire CDR3 length variance 
is much larger than in the mouse repertoire. The main reduction 
in the CDR3 length variability occurs in the human repertoires 
between the OF and naïve, and not between the naïve and 
memory, suggesting a pathogenindependent selection for inter
mediate CDR3 length. While in the mouse repertoire the SD of 
the length measured in nucleotides did not decrease significantly 
in the blood, the SD of the total molecular mass of the CDR3 did 
decrease significantly (F test, p < 0.01). The difference suggests 
that in humans, the total mass of the CDR3 is maintained by lim
iting the CDR3 length variability, in mouse the result is obtained 
by balancing large and small amino acids within the CDR3. The 
simplest explanation for the reduction in the light chain mass 
variability would be structural selection of the shape of the light 

chain, where too large or small total mass would prevent the bind
ing to the heavy chain or to potential antigens.

selection is not sensitive  
to codon identity
Beyond the length and size of the CDR3 region, the specific com
position of the CDR3 affects its selection and production scores. 
We have used the human kappa chain probabilistic generation 
and selection models to estimate selection pressures for amino 
acids and individual codons (Figures 2 and 3). This is done using 
selection factors that measure the selection pressures on the 
different codons or amino acids, for every position and CDR3 
length. These are learned from IF data, such that their combined 
effect amounts to the difference in amino acid usage from the OF 
sequences (see Materials and Methods for details). For presenta
tion, the factors were averaged over CDR3 lengths (Figures 2A,B), 
and over codons for the same amino acid (Figure 3). We present 
the log of the selection factor. Selection factors higher than 1 (log 
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FigUre 3 | Subplots of selection factors of different lengths for each amino acid. The x-axis represents the different locations in CDR3; the y-axis represents the 
different lengths of the CDR3. The blue cells represent log(q) values larger than 0 for codon in a certain position. The red cells represent log(q) values lower than 0. 
The white cells indicate that there was no selection.
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higher than 0—blue values in Figures 2 and 3) represent positive 
selection (i.e., sequences containing this codon/AA at this spe
cific position are overrepresented compared with the expected 
from the OF sequences), while factors lower than 1 (log lower 
than 0—red values in Figures 2 and 3) correspond to negative 
selection.

Different codons coding for the same amino acid have highly 
similar selection patterns (Figure  2B), suggesting that the 
selection affecting naïve B cell acts on amino acids, and not on 
codons. Such selection would agree with structural selection on 
the for med light chain, instead of a genetic mechanism favoring 
some specific nucleotides in the junctions (the variance of the log 
selection factors between the codons coding for the same amino 
acid is 0.154 and the variance between amino acid is 0.372).

selection Favoring glycine and against 
Proline, cysteine, and aspartic acid
Selection patterns differ between amino acids. Cysteine (Wilcoxon  
test, V = 203, pvalue = 4.618e−15), proline (V = 645, pvalue =  
1.746e−13), and aspartic acid (V =  773, pvalue =  2.955e−08) 

clearly undergo negative selection, whereas glycine (V =  4206, 
pvalue = 1.168e−06) is under positive selection (in almost all 
locations along the CDR3) (Figures 2 and 3). In addition, some 
amino acids such as histidine and arginine have a positive selec
tion in the beginning of the CDR3 and negative selection on the 
other side. Proline is unique as an amino acid, since its residue (R) 
is attached to NH atoms. This special structure breaks (spatially) 
longpeptide chains. Therefore, it is sometimes used in points of 
sharp folding of proteins (31). Proline may thus undergo negative 
selection to avoid the curvature and folding. Similar results were 
observed in the heavy chain (3).

A similar argument may explain selection against cysteine 
to prevent disulfide bonds, as is also observed in heavy chain 
(17). The selection in favor of glycine is the precise opposite 
with a selection for a tiny (the smallest) AA that has very 
limited interactions with other AA and a limited effect on 
the shape of the light chain CDR3 region. We currently have 
no clear model for the negative selection that observed in the 
aspartic acid, since its properties are highly Ph sensitive, and 
we cannot determine in which conditions selection shapes the 
repertoire.
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selection is Mainly Positive in Positions 
5–6 of cDr3 and Mainly negative in the 
Following Positions
Selection is not uniform along the CDR3. The log of the selec
tion factors are close to 0 in the third amino acid of the CDR3 
that is outside the binding site of the antigen (−0.032 ± 0.4868). 
For most amino acids, positions 5 and 6 undergo a significant 
positive selection, showing a clear deviation in favor of rare 
amino acids (correlation between the log of the selection factor 
of position 5 with the AA frequency is 0.329, correlation with 
position 6 is 0.249), exactly at the beginning of the antigen 
binding site [5th position—(29)]. From positions 7 to 12, on the 
opposite site of the binding site, a significant negative selection 
can be observed for most amino acids apart from glycine and in 
specific positions also alanine, lysine, and glutamine, suggesting 
that long sequences are quite restrictive in this area, which ties 
in with the fact that long CDR3 are generally selected against as 
discussed above (these positions only exist in long CDR3 that 
are selected against).

For some amino acids, selection is length and position depen
dent, while for others, it is almost constant. Specifically, certain 
amino acids undergo different selection when close to the ends 
of the CDRs, in contrast to the middle (see, for example, alanine 
or aspartic acid in Figure 3). Other amino acids have positive or 
negative selection in almost all lengths and positions (glycine and 
cysteine and proline, respectively) in agreement with previous 
results (17). Note that this selection occurs in the naive repertoire, 
and it is thus probably not driven by pathogens.

DiscUssiOn

Immunoglobulin genes are created in a stochastic V(D)J recom
bination process that is function independent. The distribution of 
possible receptors is not uniform; there is large variability in the 
generation probability of different elements of the rearrange ment 
[e.g., V(D)J choice, junctional composition]. Beyond these differ
ences, there are differences between the naïve repertoire and the 
one directly emerging from the rearrangement process.

A possible reason for this last difference may be the relation 
between the biochemical properties of the receptor and its poten
tial binding to antigens. Such binding is mainly associated with 
the properties of the variable peptide chain of the CDR3. Many 
of the sequences generated might not code for receptor proteins 
that could potentially bind antigen. Some form of selection could 
then act to purify the generated repertoire into the functional 
one, observed in the naïve pool in the periphery. For example, 
there could be positive selection for binding selfantigens.

Here, we explored this notion of initial selection by analyzing 
the difference between the properties of IF and OF light chain 
rearrangements in naïve and memory repertoires, in human and 
mouse cells using probabilistic and deterministic generation 
models. An important advantage of the light chain repertoire 
analysis is the absence of the D gene, drastically simplifying the 
rearrangement process.

We have shown that selection acts mainly on the CDR3 rather 
than on the templated part of the V and J genes. Within the CDR3, 

selection tends to limit the variance of the CDR3 size in both 
human and murine repertoires in the transition from the direct 
rearrangement process to the naïve repertoire. These variances 
decrease by more than 45% during this transition. Interestingly, 
while in human light chains, the variance reduction is mainly 
through the removal of light chains with a low or high number 
of nucleotides in the CDR3, in mice the reduction is through a 
change in the distribution of amino acids in the CDR3, making 
it more restrictive. The reduction in CDR3 length variance was 
mainly observed between the repertoire emerging from the 
rearrangement and the naïve repertoire and not between the 
latter and memory, suggesting the vast majority of the structural 
selection occurs in the bone marrow, and is not pathogen driven.

In humans, amino acids affecting the structure of the CDR3 
region, such as proline, are selected against, while tiny amino 
acids such as glycine are favored. Similar preferences have been 
observed in the heavy chain (18).

A correlation has been observed between the production 
probability of each amino acid and its selection in the transition 
from rearrangement to the naïve pool, suggesting a longterm 
evolutionary process favoring some junctional amino acids, 
which are later further selected within a host. Such a behavior 
has been previously reported in the heavy chain and T cell beta 
repertoires (17, 18). Selection does not seem to be affected by the 
codon used, but it is both position and CDR3 length dependent, 
for some amino acids. Among most amino acids, 5′ regions have 
higher selection scores than 3′ regions.

All of these elements strongly suggest structural selection 
where the proper structure of the light chain, and possibly its 
binding to the heavy chain are selected for. The main selection 
step has been reported between the OF and the IF naïve repertoire.

The V and J composition of the light chain are not independent. 
However, this dependence could be the direct result of light chain 
editing (replacement of nonfunctional rearrangement by new 
rearrangements) (14–16). Moreover, differences in the VJ pairing 
of IF and OF are expected even in the absence of selection, since 
IF rearrangement are typically made after OF rearrangement, due 
to repeated light chain rearrangement in the same chromosome, 
and as such favor more distal VJ combinations (13).

The difference between IF and OF B cell receptor repertoire 
was argued to highlight properties of B cell receptors associated 
with diseases or pathogenic challenges. However, current and 
other recent results (2, 3, 17, 18, 25, 26, 30, 32–37) highlight that 
the observed naïve repertoire is very different from the direct 
result of the rearrangement process. Thus, three different reper
toires should be defined:

 (1) A repertoire produced from rearrangement during the early 
pro and preB cells stages in the bone marrow.

 (2) A naïve repertoire, which is the result of bone marrow selec
tion mechanisms that may be either antigen dependent or 
independent, and

 (3) A memory and plasmablast repertoire shaped by antigen and 
possibly pathogen driven selection.

The difference between the last two repertoires seems to be 
more limited than the difference between the first two. The next 
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challenge will be to develop models to detect within the structur
ally selected naïve repertoire, BCRs with a potential functional 
CDR3. Using statistical models of the naïve repertoire that went 
through the initial structural selection step, we will be able to 
detect minute differences that indicate selection by exposure to 
pathogens.
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Human aging is associated with a profound loss of thymus productivity, yet naïve T lym-
phocytes still maintain their numbers by division in the periphery for many years. The 
extent of such proliferation may depend on the cytokine environment, including IL-7 and 
T-cell receptor (TCR) “tonic” signaling mediated by self pMHCs recognition. Additionally, 
intrinsic properties of distinct subpopulations of naïve T cells could influence the overall 
dynamics of aging-related changes within the naïve T cell compartment. Here, we inves-
tigated the differences in the architecture of TCR beta repertoires for naïve CD4, naïve 
CD8, naïve CD4+CD25−CD31+ (enriched with recent thymic emigrants, RTE), and mature 
naïve CD4+CD25−CD31− peripheral blood subsets between young and middle-age/old 
healthy individuals. In addition to observing the accumulation of clonal expansions (as 
was shown previously), we reveal several notable changes in the characteristics of T cell 
repertoire. We observed significant decrease of CDR3 length, NDN insert, and number 
of non-template added N nucleotides within TCR beta CDR3 with aging, together with a 
prominent change of physicochemical properties of the central part of CDR3 loop. These 
changes were similar across CD4, CD8, RTE-enriched, and mature CD4 subsets of 
naïve T cells, with minimal or no difference observed between the latter two subsets for 
individuals of the same age group. We also observed an increase in “publicity” (fraction 
of shared clonotypes) of CD4, but not CD8 naïve T cell repertoires. We propose several 
explanations for these phenomena built upon previous studies of naïve T-cell homeo-
stasis, and call for further studies of the mechanisms causing the observed changes 
and of consequences of these changes in respect of the possible holes formed in the 
landscape of naïve T cell TCR repertoire.

Keywords: aging, T cell receptor, naive T cells, immunosequencing, rep-seq, cDr3 repertoire

inTrODUcTiOn

A diverse set of naïve T cell functions (1) and their antigenic receptors—T-cell receptors (TCRs)  
(2, 3)—protects us from a multitude of infectious and cancer hazards encountered throughout our 
lifespan. Furthermore, it essentially provides selection of the appropriate amplitude, type, localiza-
tion, and duration of immune response. Human aging is associated with profound changes in T cell 
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immunity (2–5), compromising our ability to withstand novel 
pathogens and manage chronic infections. It also dampens the 
effect of vaccination (6–8) and can lead to higher cancer suscep-
tibility (9–12). These changes may further result in an imbalanced 
immune response that can develop into non-specific inflamma-
tion, provoking neurodegenerative and cardiovascular disorders, 
and to the loss of tolerance, leading to autoimmunity (3, 13–15). 
For the latter, a reduction of regulatory T  cell (Treg) diversity  
(16, 17) could be a one of the causative factors.

With aging, accumulating clonal expansions of memory 
T  cells caused by previously encountered antigens gradually 
begin to dominate in the available T-cell pool. This leads to a 
homeostasis characterized by a decreased number of naïve T cells, 
essentially shrinking the precious reservoir of diverse functions 
and antigenic specificities (2, 18–23). At the same time, thymus 
function progressively declines after puberty (24, 25), and drops 
sharply to a very low level after 40 years of age (4, 26). Along with 
diminished production of T cell progenitors by the bone marrow 
(27), this leads to a drop in generation of the so-called recent 
thymic emigrants (RTE)—the not fully mature (28, 29) form of 
naïve T cells, and thus in the replenishment of the mature naïve 
T cell pool (5, 26, 30).

The existing naïve T cells may still support their abundance and 
diversity for a prolonged period. In humans, both mature naïve 
T cells and—to a lesser extent—RTE-enriched CD45RA+CD31+ 
subset of CD4 T  cells (30)—keep ability to proliferate on the 
periphery (31, 32). However, the number of allowed divisions is 
not unlimited. Prominent shortening of telomeres is observed 
in both CD31+ and CD31− subsets (30) which eventually leads 
to a gradual, later avalanche, exhaustion of proliferation capac-
ity and depletion of the naïve T cell pool (20, 33). Additionally, 
prolonged peripheral proliferation could also be associated with 
the functional deficiency of naïve T cells that fail to differentiate 
toward memory phenotype upon a specific antigenic challenge 
(3), although a recent cytokine profile study suggests that naïve 
T cells derived from elderly individuals retain their functionality 
and naiveté (26).

How uniform is the naïve T cell proliferation on the periphery 
remains questionable. Qi et al. demonstrated that both CD4 and 
CD8 naïve T cells gated as CCR7+CD45RAhighCD28+ gain clonal 
expansions by the age of 70–85 years (34). This observation sug-
gests that some of the naïve T cell clones are dividing more promi-
nently than others. Furthermore, the most rapidly dividing ones 
could exhaust and extinguish more rapidly, while those dividing 
with a moderate rate could form the observed clonal expansions.

Importantly, the peripheral T  cell proliferation may be 
dependent on the so-called “tonic signaling”—recognition of 
MHC complexes loaded with self antigens while surveying the 
peripheral lymphoid organs. Such contacts are transient and do 
not lead to classic T cell activation, but generate sub-threshold 
signals required for naïve T cell survival and proliferation (35–38).

The desirable (i.e., required to efficiently recognize foreign 
antigens within MHC) and allowed (i.e., not leading to self- 
recognition and autoimmunity) TCR affinity to self peptide–MHC 
complexes is set in the course of positive and negative thymic 
selection, respectively. The threshold range of such selection is 
not that narrow, thus naïve T cells that leave the thymus—initially 

as RTE—have a relatively wide range of self-reactivity. The 
produced pool of naïve T  cells is, therefore, subjected to vary-
ing degrees of tonic TCR signaling (38). Therefore, peripheral 
proliferation of naïve T cells could be potentially biased toward 
preferential exhaustion of naïve T cell clones carrying TCRs with 
the highest affinity to MHC. Furthermore, naïve T cells bearing 
high affinity TCRs could also serve as a preferential source of 
antigen-responding clones (37) thus being the first one to transit 
from the naïve T cell pool.

Another factor that could contribute to the dynamics of naïve 
TCR repertoire landscape is the fate of the specific population of 
T cells produced in fetal period. We have earlier demonstrated 
that this subset may survive for decades and contribute to adult 
TCR repertoire (39). Their TCRs are characterized by a low 
number of nucleotides that are randomly added by TdT enzyme 
in the course of VDJ recombination (40, 41). Furthermore, these 
cells originate from a distinct population of hematopoietic stem 
cells and are characterized with generally higher proliferation 
potential (42). However, their fate among other naïve T cells in 
the elder age remains unexplored.

Altogether, there are number of factors that could shape the 
landscape of naïve T  cell TCR repertoire with aging. To shed 
light on the nature of ongoing changes, we have focused on 
the comparative analysis of intrinsic characteristics of the TCR 
repertoires for the bulk naïve CD8+, bulk naïve CD4+, naïve RTE-
enriched CD31+CD4+, and naïve non-RTE CD4+ T cells derived 
from the peripheral blood of young versus elderly healthy donors, 
demonstrating that

 1) Characteristics of TCR beta CDR3 repertoires change in both 
CD4 and CD8, both RTE-enriched and mature naïve CD4 
T cell subsets with age.

 2) Within the same age group, no significant difference is 
observed in characteristics of TCR repertoire between RTE-
enriched and mature naïve CD4 T cell subsets.

 3) TRBV and TRBJ gene segment usage also changes promi-
nently and similarly both within RTE-enriched and mature 
naïve CD4 T cell subsets of different individuals.

 4) Relative “publicity” (i.e., sharing between individuals) of TCR 
repertoires grows both within RTE-enriched and mature 
naïve CD4 T cell subsets with age.

The observed changes suggest functional differences of young 
versus middle-age/old naïve T cell TCR repertoires with respect 
of potential range and characteristics of recognized antigens.

MaTerials anD MeThODs

Donors and cell sorting
The study was approved by the local ethics committee and 
conducted in accordance with the Declaration of Helsinki. 
All donors were informed of the final use of their blood and 
signed an informed consent document. The cohort included 18 
healthy individuals aged 25–88  years. Individuals with previ-
ously diagnosed cancer or autoimmune disease were excluded. 
Peripheral blood (10–20  ml) was collected into a number of 
EDTA-treated Vacutainer tubes (BD Biosciences, Franklin Lakes, 
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Table 1 | Values used for CDR3 amino acid properties calculation by VDJtools.

amino acid hydropathy Polarity Volume strength

A 1.8 0 67 0
C 2.5 0 86 1
D −3.5 1 91 0
E −3.5 1 109 0
F 2.8 0 135 1
G −0.4 0 48 0
H −3.2 1 118 0
I 4.5 0 124 1
K −3.9 1 135 0
L 3.8 0 124 1
M 1.9 0 124 1
N −3.5 1 96 0
P −1.6 0 90 0
Q −3.5 1 114 0
R −4.5 1 148 0
S −0.8 1 73 0
T −0.7 1 93 0
V 4.2 0 105 1
W −0.9 0 163 1
Y −1.3 1 141 1
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NJ, USA), PBMCs extracted using Ficoll-Paque (Paneco, Kirov, 
Russia) density gradient centrifugation with SepMate™ tubes 
(STEMCELL Technologies, Vancouver, BC, Canada), and stained 
according to manufacturer’s recommendations. Following anti-
bodies were used: CD3-eFluor450 (eBioscience, clone UCHT1), 
CD45RA-FITC (eBioscience, clone JS-83), CD27-PC5 (Beckman 
Coulter, clone O323), CD4-PE (Beckman Coulter, clone 13B8.2), 
CD25-eFluor450 (eBiosciences, clone BC96), and CD31-PC7 
(eBiosciences, clone WM59). T  cells of interest were sorted 
using FACS Aria III (BD Biosciences, Franklin Lakes, NJ, USA), 
directly in 350 µl of RLT buffer (Qiagen) per 100,000 sorted cells. 
Total RNA was further isolated using RNeasy Micro kit (Qiagen) 
and completely used for TCR library preparation. 5′-RACE 
TCR beta cDNA libraries were prepared according to the previ-
ously described protocol (43, 44). See also: https://github.com/
repseqio/protocols/blob/master/Human%20TCR%20alpha%20
and%20beta%20RNA-based%20RACE%20protocol.md.

Libraries were sequenced with Illumina HiSeq 2000/2500, 
paired-end 150 + 150 nucleotides.

Tcr beta repertoires Profiling and Data 
analysis
T-cell receptor beta CDR3 repertoires were extracted using 
MiXCR software (45), version v2.1.5. Decontamination from 
memory T  cell TCR beta clonotypes and comparative post-
analysis were performed using VDJtools software v1.1.7 (46).

Resulting decontaminated TCR beta CDR3 repertoires are 
available from Figshare:

https://figshare.com/articles/Naive_CD4_CD8_subsets/6548921;
https://figshare.com/articles/naive_RTE_and_non-RTE_ 
CD4_T_cells_subsets/6549059.

The obtained repertoires were further filtered to eliminate 
out-of-frame and stop codon-containing TCR beta CDR3 
variants. Averaged physicochemical properties of amino acid 
residues in the middle portion (5 amino acid residues) of TCR 
beta CDR3 were calculated using VDJtools, the following metrics 
were used: strength (47, 48), hydropathy, polarity, and volume 
(values available from: http://www.imgt.org/IMGTeducation/
Aide-memoire/_UK/aminoacids/IMGTclasses.html). During 
calcu lation, property values were weighted by the frequency of 
corresponding clonotypes, so the results favor more frequent 
clonotypes and do not depend on the sequencing/sampling depth 
(49). See Table 1 for the values used for each amino acid property. 
See Tables 2 and 3 for the counts of sorted T cells, the number of 
CDR3 containing sequencing reads, and the number of unique 
TCR beta CDR3 clonotypes in each sample.

statistical analysis
For comparison of repertoire properties, one-sided t-test with 
unequal variances (Welch’s test) was used. Normality of the 
distribution of sample means was confirmed by performing 
Shapiro–Wilk tests, and the decision to reject the null hypothesis 
was made after adjusting for multiple hypothesis testing as in 
Benjamini–Hochberg. False discovery rate in normality testing 
was controlled at a level of 0.05 by setting p-adjusted upper bound 

at 0.05. Z-score normalization was performed by subtracting the 
mean value for each TRBV gene segment values and dividing by 
the SD. Only highly represented TRBV gene segments TRBV9, 
TRBV7−9, TRBV7−2, TRBV6−5, TRBV29−1, TRBV20−1, 
and TRBV12−3/12-4, each associated with at least 2% of CDR3 
clonotypes in each sample, were taken into analysis.

resUlTs

Tcr repertoires of both cD4 and cD8 
naïve T cells change Properties With 
aging
To analyze how the properties of naïve TCR repertoire change 
with age, we first sorted CD3+CD4+CD27highCD45RAhigh and 
CD3+CD4−CD27highCD45RAhigh T cell subsets gated as shown on 
Figure 1 from peripheral blood samples of 4 young (25–35 years 
old) and 7 middle-age/old (51–88  years old) healthy donors 
(Table  2). TCR beta profiling was performed as described in 
Ref. (43), extraction of CDR3 repertoires was performed using 
MiXCR (45). To exclude possible contaminations from memory 
T cell pool that could occur during cell sorting, we also performed 
TCR beta repertoires profiling for memory T cells sorted from the 
same donors (Figure 1). Naïve TCR beta repertoires were further 
decontaminated from the clonotypes present in memory subsets 
using VDJtools “Decontaminate” module with default 
parameters (20:1 parent-to-child clonotype frequency ratio for 
contamination filtering). This procedure eliminated from 0.005 
to 0.5% of reads and from 0.01 to 0.7% of clonotypes, these num-
bers did not depend on the donor age group. Despite the low 
proportion of eliminated reads and clonotypes, such procedure 
is desirable for accuracy of the whole analysis and general control 
for cell contamination during sorting.

We complemented our data with multiplex PCR RNA-based 
TCR profiling data from Ref. (34) for 4 young (20–35 years) and 
5 old (70–85 years) healthy donors naïve T cells gated as CD4+ 
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Table 2 | CD4 and CD8 naïve and memory cell sorting.

Donor age group subset replica number of sorted cells number of cDr3 reads number of cDr3  
clonotypes

Donor 1 25 Young CD4 1 500,000 528,824 38,614
2 500,000 475,392 240,80

CD8 1 500,000 564,227 26,988
2 500,000 648,821 19,338

Donor 2 26 CD4 1 135,000 1,069,588 45,098

CD8 1 251,000 633,854 28,967

Donor 3 35 CD4 1 200,500 380,253 43,526
2 231,000 223,661 23,038

CD8 1 350,500 533,091 47,626

Donor 4 32 CD4 1 560,000 17,494,455 165,184
2 488,000 12,525,047 113,333
3 395,000 6,077,772 54,546
4 100,000 4,353,149 24,582

CD8 1 510,000 9,219,066 101,096
2 316,000 10,594,890 61,022

Donor 5 51 Old CD4 1 495,000 13,765,788 183,873
2 425,000 5,146,822 64,134
3 437,000 3,832,144 84,458
4 255,000 4,773,131 90,459

CD8 1 509,000 7,369,930 125,339
2 200,000 2,689,594 64,907
3 343,000 517,265 20,870
4 120,000 1,945,472 32,259

Donor 6 88 CD4 1 500,000 779,559 65,515

CD8 1 60,000 142,639 9,991

Donor 7 51 CD4 1 100,000 28,129 5,033
2 100,000 37,556 5,455
3 100,000 41,380 6,762

CD8 1 105,000 51,463 7,434

Donor 8 82 CD4 1 100,000 46,472 8,318
2 90,000 38,109 6,694

CD8 1 12,000 6,013 846

Donor 9 55 CD4 1 100,000 82,691 7,768
2 100,000 27,215 4,740

CD8 1 100,000 51,742 5,290
2 100,000 84,532 7,666

Donor 10 77 CD4 1 254,000 677,587 24,652

CD4 2 227,000 963,394 20,087

CD8 1 50,000 942,430 15,033

CD8 2 105,000 553,867 19,180

Donor 11 53 CD4 1 153,000 401,550 11,668

53 CD8 1 101,000 242,248 6,857

Donors, replicas, sorted cell counts, and number of extracted T-cell receptor beta CDR3 clonotypes are shown.
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CCR7+CD45RAhighCD28+ and CD8+CCR7+CD45RAhighCD28+. 
Repertoire extraction was performed using the same MiXCR 
version starting from raw data (dbGaP, www.ncbi.nlm.nih.gov/
gap, accession no. phs000787.v1.p1). Similarly, we used memory 
subsets from the same donors in order to decontaminate naïve 
T cell repertoires from possible contaminations during cell sort-
ing using VDJtools.

Analysis of the normalized Shannon–Wiener diversity index 
for the joint data confirmed the conclusion by Qi and coauthors 

that both CD4 and CD8 naïve T cells accumulate clonal expan-
sion with aging (Figure  2A). The accuracy of the results for 
young individuals generally confirmed the validity of combining 
the data from both experiments, in spite of the fact that different 
gating was used for the naïve T cell sorting in the two studies.

Multiplex PCR employed in Qi et al. (34) may cause quan-
titative biases due to the differing efficiency of primers used 
to amplify different TRBV segments (50, 51). However, such 
source of bias does not influence the relative frequency of 
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FigUre 1 | CD4 and CD8 naïve T cell gating strategy. Naïve CD4 T cells were gated as CD3+CD4+CD27highCD45RAhigh. Naïve CD8 T cells were gated as 
CD3+CD4−CD27highCD45RAhigh. 50,000 events were shown.

Table 3 | Recent thymic emigrants (RTEs)-enriched and mature naïve CD4 T cell sorting.

Donor age group subset replica number of sorted cells number of cDr3 reads number of cDr3  
clonotypes

Donor 12 29 Young RTE 1 50,000 251,199 27,208
non-RTE 1 50,000 939,999 33,389

Donor 13 28 RTE 1 100,000 282,998 27,895
non-RTE 1 100,000 620,320 34,092

Donor 14 31 RTE 1 50,000 144,571 30,139
non-RTE 1 50,000 622,585 29,253

Donor 15 30 RTE 1 69,000 309,070 33,233
non-RTE 1 100,000 2,844,397 63,900

Donor 7 51 Old RTE 1 100,000 14,572 5,306
non-RTE 1 105,000 17,926 4,030

Donor 8 82 RTE 1 38,000 16,033 2,835
non-RTE 1 100,000 29,970 6,244

Donor 9 55 RTE 1 89,000 19,622 3,664
non-RTE 1 189,000 20,891 5,290

Donors, replicas, sorted cell counts, and number of extracted T-cell receptor beta CDR3 clonotypes are shown.
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clonotypes within a particular TRBV segment. Therefore, in 
order to properly join our 5′RACE and multiplex PCR data 
from Qi et  al., we performed further analysis separately for each  
of the TRBV gene segments that were abundantly represented 
in the data.

Notably, this approach has two additional benefits. First, 
different TRBV genes carry distinct CDR1 and CDR2 regions 
that participate in TCR–pMHC interaction, and, therefore, 
could differently influence the averaged properties of CDR3 
that we analyze below. Separate analysis of TRBV segments 
allows to neutralize this bias. Second, distinct TRBV genes 
correspond to distinct T  cell subpopulations allowing for 
independent evaluation of their properties, that provides 
better statistics for limited donor cohorts. All analyses were 

performed “weighted”—per CDR3-covering sequencing read, 
i.e., accounting for the relative frequency of each clonotype, 
with Z-score normalization used to combine information from 
different TRBV segments.

The results of comparative analysis of TRB CDR3 repertoire 
properties with VDJtools software are shown on Figure  3. 
Notably, dispersion of all parameters grows prominently with 
age, which already reflects the non-uniform proliferation of naïve 
T cells with age.

CDR3 length, size of NDN insert, and number of randomly 
added N nucleotides significantly decrease with age both for 
CD4 and CD8 naïve T cells (Figure 3A). Average characteristics 
of amino acid residues in the middle of CDR3 also change promi-
nently for CD4 naïve T cells (Figure 3B).
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both rTe and Mature naïve cD4 T cells 
change Their Properties With aging
To some extent, both CD45RA+CD31− mature naïve CD4+ T cells 
and RTE-enriched CD45RA+CD31+ subsets may support their 
counts by peripheral division: “CD45RA+CD31+CD4+ subset 
also undergoes some in vivo proliferation without immediate loss of 
CD31, resulting in an accumulation of CD45RA+CD31+ prolif-
erative offspring ” (30). Nevertheless, counts of CD45RA+CD31+ 
naïve CD4+ T cell notably decrease with time (5, 30). The CD31− 
subset is believed to proliferate and support their counts more 
efficiently than CD31+, although the extent of telomere shorten-
ing with aging is prominent and comparable for both subsets (30).

Therefore, one could suggest that characteristics of mature 
naïve CD4+CD31− T cells could change more prominently than 
those of RTE-enriched CD4+CD31+ T cell pool. The properties of 
total naïve CD4+ T cells could change with aging because of the 
intrinsic differences between the properties of RTE-enriched and 
mature naïve CD4 T cell TCR repertoires, and decrease of CD31+ 
cell proportion of all naïve CD4 T cells (5).

To verify the latter hypothesis, we compared TCR beta repertoire 
characteristics for the sorted CD4+CD45RAhighCD27highCD31+ 
and CD4+CD45RAhighCD27highCD31− T  cells of 4 young  
(29–31  years) and 3 elder (aged 51, 55, and 82  years) healthy 
donors (Table  3). Importantly, to exclude the potential influ-
ence of naïve Tregs which characteristics essentially differ from 
conventional CD4 T cells, here we gated out the CD25+ cells from 
all subsets (Figure 4). It should be noted that this strict gating 
could also cutoff the CD25dull subset of naïve CD4 T cells that was 
recently reported to accumulate with aging (52), however, these 
cells were nearly absent (represented less than 2% of naïve CD4 
T cells) in our donors.

Analysis of obtained TCR beta CDR3 repertoires revealed 
that characteristics of CD4+CD45RAhighCD27highCD25−CD31+  

and CD4+CD45RAhighCD27highCD25−CD31−CD4 T  cell TCR 
repertoires are nearly identical within the same age group, but 
both prominently differ between the younger and elder donors 
(Figures 5A,B). It should be noted that, since the average CDR3 
length decreases with age, larger portions of TRBV and TRBJ 
segments could be covered by our analysis of the middle 5 amino 
acid residues of CDR3, which could in turn influence the result 
amino acid property averages. However, this influence was not 
prominent since different TRBV segments behaved similarly in 
our analysis.

Furthermore, young and old naïve CD4 T cell repertoires were 
characterized by distinct frequencies of TRBV (Figure 6A), TRBJ 
(Figure 6B), and paired TRBV–TRBJ (Figure 6C) gene segment 
usage, without any notable differences observed between the 
RTE-enriched CD31+ and mature naïve CD4 T cell subsets.

Similarly to naïve CD4 and CD8 subsets, RTE-enriched and 
mature naïve CD4 subsets showed a tendency toward increased 
clonality in the elder age (Figure 2B).

We concluded that observed changes in the characteristics of 
naïve CD4 T  cell TCR beta CDR3 repertoire with aging affect 
both RTE-enriched and mature subsets, and do not result from 
the changes in CD31+/CD31− subsets ratio.

Publicity of naïve cD4 T cell repertoire 
grows With aging
Shorter CDR3 length and lower number of randomly added N 
nucleotides are commonly associated with higher publicity of 
TCR repertoires (53, 54). To analyze how the relative publicity of 
naïve CD4 TCR beta repertoires changes with aging, we extracted 
top-3,000 clonotypes from each dataset, with random sampling of 
clonotypes having the identical low frequency—a normalization 
step which is highly desirable to minimize biases in comparison 
of immune repertoires overlaps. As it could be expected based on 
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CDR3 characteristics (Figures 5A and 7A), analysis of relative 
overlaps between TCR beta CDR3 repertoires revealed that rela-
tive publicity of total CD4 naïve [our data only, excluding the data 
from Ref. (34)], RTE-enriched CD31+ and mature naïve CD31− 
CD4 T cell subsets grows with aging (Figure 7B). A moderate 
overlap was observed between the young and middle-age/old 

CD4 naïve, RTE-enriched CD31+ and mature naïve CD31− CD4 
T cell subsets. No clear age-related changes in relative publicity 
were observed for CD8 naïve T cells (our data only).

We used CDR3 sequence similarity graph to analyze whether 
naïve TCR repertoires form separate networks in young versus 
old donors. To build the graph, we selected 3,000 most abundant 
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clonotypes from each donor and pooled them together to form 
the set of nodes. We connected two clonotypes with an edge if 
they had the same VJ-combination and CDR3 differed by a single 
amino acid substitution. Next, we counted the number of edges 
connecting clonotypes from donors of different age groups (young 
versus old) and obtained empirical distributions for these counts 
by running 1,000 random permutations of age group labels.

We found, that in CD8 naive repertoires, the number of edges 
between clonotypes from young and old donors is larger in data 
than in simulation in 424 donor age group permutations out of 
1,000, so there is no evidence for separate CDR3 networks for 
young and old donors for this subset. In CD4 naive repertoires, 
however, there was a weak tendency: only in 95 simulations out 
of 1,000 (empirical P-value of 0.095) we found a lower number 
of edges between donors of different age, than the one observed 
in real data. This suggests that repertoires of naive CD4 T cells 
include distinct communities of homologous TCR variants in 
young and old individuals. However, this effect was only margin-
ally significant and requires further investigation.

DiscUssiOn

With aging, decreasing thymic output can not efficiently sustain 
naïve T cell counts, so the homeostatic proliferation becomes the 
main mechanism to replenish this cell pool in humans. Such pro-
liferation is inevitably associated with certain biases that shape 
the landscape of naïve T cell TCR repertoire and thus affect the 
spectrum of the antigens they could recognize.

We have utilized immune repertoire sequencing to study the 
repertoires of naïve T cells in young and aged donors and revealed 
notable changes in human TCR repertoires of both CD4 and CD8 
peripheral blood naïve T cells with aging:

 (1) We confirm the observation of Ref. (34) that relative clonal-
ity reflecting the extent of clonal expansion increases both 
within CD4 and CD8 naïve T cell subsets with age (Figure 2).

 (2) We demonstrate that average CDR3 length, NDN insert 
length, and number of randomly added N nucleotides sig-
nificantly decrease with aging in all subsets of naïve T cells, 
including CD4, CD8, CD4 RTE-enriched CD25−, and CD4 
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mature naïve CD25− subsets (Figures  3A, 5A and 7A). 
Interestingly, due to spatial restrictions in TCR–pMHC inter-
action, the length of CDR3 is inversely related to the length 
of recognized peptide antigen, which affects the spectrum of 
recognized pMHCs (Shugay et  al., manuscript under con-
sideration). The decrease of CDR3 length with aging could, 
therefore, reflect the averaged properties of pMHCs that are 
preferentially recognized by naïve T cells in the periphery, 
and cause better tonic signaling, leading to earlier exhaustion 

of proliferation capacity of the cells carrying corresponding 
TCR variants.

 (3) As could be expected based on previous works (53, 54), the 
abovementioned changes favored higher publicity in CD4 
naïve T cells (Figure 7B). At the same time, we have not 
observed clear differences in TCR beta CDR3 repertoire 
publicity for CD8 compartment. These observations differ 
from the data from Qi et al. (34) suggesting the decrease 
of CD8 naïve T cell publicity with aging. Further studies 

48

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


10

Egorov et al. Aging and Naive T-Cell Repertoire

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1618

on larger cohorts with thoroughly controlled purity of 
cell sorting, and proper normalization of the datasets for 
comparing publicity of repertoires (49) should clarify this 
point.

 (4) Averaged amino acid characteristics in the middle of CDR3 
change prominently in CD4, CD8, CD4 RTE-enriched, and 
CD4 mature naïve subsets (Figures  3B and 5B). In par-
ticular, significant decrease is observed for the “strength” 
metrics, which represents the count of strongly interacting 
amino acid residues (47, 48). The “strongly interacting” 
include F, L, I, M, and V that may form hydrophobic con-
tacts, as well as aromatic residues W and Y that are capable 
of different types of interactions including offset stacked 
or edge-to-face interactions, thiol–aromatic interactions, 
and others (55), and may consist of electrostatic, van der 
Waals, and hydrophobic forces. Correspondingly, similar 
changes are observed for the “hydropathy” metrics which 
counts the number of hydrophobic residues in the middle 
of CDR3.

The “strength” metric efficiently differentiates functional T cell 
subpopulations, such as Treg and non-Treg CD4 subsets [see Ref. 
(49, 56) and our data to be published elsewhere]. This metric can 
be interpreted as an averaged estimation of TCR repertoire affin-
ity to peptide–MHC complexes and in particular to the antigenic 
peptide, since the middle portion of CDR3 is often in contact with 
the presented antigen (Figure 8).
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FigUre 8 | Number of CDR3:antigenic peptide contacts in structural data. 
Comparing the mean number of contacts for entire CDR3 (All positions) and 
its central region (central 5 residues and central 3 residues). ANOVA followed 
by a post hoc Tukey test shows significantly higher number of contacts for 
the central region: P < 10−8 when comparing 5 and 3 central residues to all 
residues, but no difference between 5 and 3 central residues (P = 0.42). The 
analysis was performed for T-cell receptor (TCR) beta chain using 110 human 
TCR:pMHC complexes from Protein Data Bank.

The decrease of relative abundance of strongly interacting 
amino acid residues within TCR beta CDR3 repertoire of naïve 
T cells with aging may, therefore, reflect more rapid depletion of 
naïve T cell clones with higher affinity to self pMHC. This could 
result from more efficient tonic signaling and generally faster 
proliferation, exhaustion of proliferation capacity, and extinction 
of such naïve T cells (38).

Notably, similar changes were observed within RTE-enriched 
CD31+ and mature naïve CD31− CD4 naïve T cells (Figures 5–7). 
Decrease of the “strength” metric was even more prominent for 
the RTE-enriched subset (Figure 5B), suggesting that the CD31+ 
naïve CD4 T cell clones bearing TCR variants with high affinity 
to self pMHC are prominently switching to the CD31− phenotype 
due to more efficient TCR signaling.

Complementary explanation for the changes observed in 
the naïve T  cell TCR repertoire characteristics with aging is 
that the high affinity variants are washed away from the naïve 
T cell pool in the course of ongoing immune responses. Both 
CD4+ and CD8+ T cells with strong reaction to self and high 
tonic signaling dominate in responses to foreign antigens  
(37, 57, 58). Positive selection in thymus thus favors produc-
tion of more efficiently responding T cells that should be also 
more rapidly depleted from the naïve T cell pool. If this is the 
case, the age-related changes are associated with generation 
of prominent functional holes in the landscape of naïve T cell 
receptor repertoire.

An additional factor that could contribute to the observed 
changes in naïve T cell TCR repertoires is the easier conversion 
of clones with high affinity to self pMHC to the “memory-
like” phenotype, as shown in mice models (59, 60), although 
such observations have not yet found clear confirmation in 
humans (3).

Altogether, the observed changes could be interpreted as 
elimination of generally more “sticky”—having higher affinity to 
self and non-self peptide–MHC complexes—TCR variants from 
the naïve T cell pool with aging.

However, there is also an alternative explanation which 
deserves consideration. Shorter CDR3s, lower numbers of 
randomly added N nucleotides, and higher publicity are char-
acteristic features of the early wave(s) of naïve T cells generated 
during fetal period (23, 40, 61–63). Such early wave(s) originate 
from distinct population(s) of hematopoietic stem cells that may 
have distinct long-term program including higher proliferation 
potential (39, 42).

Considering the drop in thymic activity that happens in 
the middle age (4, 26), one could hypothesize that the counts 
of conventional naïve T cell decrease after exhaustion of their 
limited proliferation capacity, while the early-wave naïve T cells 
of fetal origin with prolonged proliferation capacity persist. 
Such organization of T  cell adaptive immunity in the elderly 
could be beneficial from the point of more predictable innate-
like behavior of the T  cells carrying a relatively restricted, 
more germline-encoded TCR repertoire. To some extent, our 
network analysis of naïve CD4 T cell TCR repertoires supports 
this concept.

Summing up, our study sheds light on the intrinsic changes 
in the naïve T cell TCR repertoire structure with aging, and calls 
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Antigen presentation lies at the heart of immune recognition of infected or malignant 
cells. For this reason, important efforts have been made to predict which peptides are 
more likely to bind and be presented by the human leukocyte antigen (HLA) complex 
at the surface of cells. These predictions have become even more important with the 
advent of next-generation sequencing technologies that enable researchers and cli-
nicians to rapidly determine the sequences of pathogens (and their multiple variants) 
or identify non-synonymous genetic alterations in cancer cells. Here, we review recent 
advances in predicting HLA binding and antigen presentation in human cells. We argue 
that the very large amount of high-quality mass spectrometry data of eluted (mainly 
self) HLA ligands generated in the last few years provides unprecedented opportunities 
to improve our ability to predict antigen presentation and learn new properties of HLA 
molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. 
Although major challenges still lie on the road toward the ultimate goal of predicting 
immunogenicity, these experimental and computational developments will facilitate 
screening of putative epitopes, which may eventually help decipher the rules governing 
T cell recognition.

Keywords: human leukocyte antigen peptidomics, human leukocyte antigen ligand prediction, antigen 
presentation, T cell epitope, computational immunology

iNTRODUCTiON

Recognition of infected or malignant cells by T  cells relies on the presentation of immunogenic 
self and non-self peptides at the cell surface. Two main pathways have been identified for antigen 
presentation and processing (1–3).

In the class I pathway, intracellular proteins are degraded into small peptides by the proteasome. 
These peptides are transported into the endoplasmic reticulum by the transporter associated with 
antigen processing (TAP) protein complex. There, they can bind to human leukocyte antigen class I 
(HLA-I) molecules in complex with beta2-microglobulin (β2m). After trafficking to the cell surface, 
the complexes may be recognized by CD8 T cells. HLA-I proteins are primarily encoded by three 
genes (HLA-A, HLA-B, and HLA-C), which are widely expressed in most cell types in human. In 
addition, specialized cell types can express HLA-E, HLA-F, or HLA-G genes. HLA-A, -B, and -C 
genes (hereafter referred to as HLA-I) are the most polymorphic genes in the human genome and 
over 12,000 distinct alleles are documented in the human population (4). Humans have in general 
different combinations of HLA-I alleles and, therefore, express up to six different HLA-I proteins 
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(two for each gene). HLA-I molecules bind short peptides, mainly 
9–11 amino acids, and different HLA-I alleles have distinct bind-
ing specificities, which implies that a broad spectrum of peptides 
can be displayed across different individuals.

In the class II pathway, peptides coming from the degradation 
of phagocytosed extracellular proteins are presented on HLA-II 
molecules for recognition by CD4 T cells (5). In addition, endog-
enous proteins can be presented on HLA-II molecules when 
degraded through autophagy (6). HLA-II proteins are encoded by 
several genes (HLA-DRA, HLA-DRB1,3,4,5, HLA-DPA1, HLA-
DPB1, HLA-DQA1, HLA-DQB1) and also show a very high level 
of polymorphism in the humans (except for HLA-DRA). HLA-II 
form heterodimers (HLA-DRA/HLA-DRB1,3,4,5; HLA-DPA1/
HLA-DPB1 and HLA-DQA1/HLA-DQB1). These dimers bind 
longer peptides (12–20 amino acids) within an open-ended 
peptide-binding site. Several other steps are involved in presenta-
tion of class II epitopes, such as loading on HLA-II molecules 
catalyzed by HLA-DM, peptide exchange catalyzed by HLA-DO, 
the presence of other enzymes such as cathepsins or pH gradients 
(7–10). Unlike HLA-I, HLA-II molecules are mainly expressed 
on specific professional antigen-presenting cells (pAPCs) such as 
dendritic cells or B cells (1), and rarely also by cancer cells such 
as melanoma (11). pAPCs can also uptake exogenous antigens 
and present them on HLA-I (12). This process is called cross-
presentation, and it is crucial for priming of naïve T  cells (13, 
14). Altogether, the cellular antigen processing and presentation 
machinery ensures that the restrictive loading of either intracel-
lular (class I) or extracellular (class II) peptides of the right length 
will take place in specialized cellular compartments.

The set of peptides presented on HLA molecules is called the 
HLA peptidome, also referred to as immunopeptidome or HLA 
ligandome. The HLA peptidome is a rich and complex reper-
toire of peptides that inform T cells about abnormalities in the 
genome, transcriptome, and proteome of infected or malignant 
cells (15–17). It is constantly modulated by HLA or peptides’ 
source protein expression levels, by posttranslational modifica-
tions and by the many enzymes, chaperones, and transporters 
that comprise the antigen processing and presentation machinery 
(7, 18–20). In particular, the catalytic subunits of the constitutive 
proteasome, the immunoproteasome, and the thymic protea-
some are tightly regulated, leading to the production of distinct 
repertoires of presented peptides in different cell types and under 
different conditions (21–24).

Historically, the study and predictions of class I and class II 
T cell epitopes have mainly developed in the field of infectious 
diseases, and large datasets of peptides displayed at the surface of 
infected cells and recognized by T cells are available from HIV, 
dengue, or influenza (25, 26). In the field of cancer immunology, 
tumor-associated antigens (defined here as genes expressed in 
cancer cells and not, or very poorly, in normal cells) have received 
much attention for almost 30  years (27). For instance, T  cell 
recognizing specific epitopes of NY-ESO or MAGE-1 proteins 
can be found in melanoma patients, indicating that the immune 
system can mount a response against tumor-specific antigens 
(27–29). More recently, many evidences have been accumulated 
indicating that cancer cells express unique mutated antigens, the 
so-called neoantigens, which can be recognized by the patients’ 

own (autologous) T  cells (15, 30–35). The total number of 
somatic mutations in some tumors has been shown to correlate 
with the therapeutic efficacy of checkpoint blockade antibodies 
(36–39), suggesting that neoantigens could play an important 
role in tumor immune recognition. Moreover, several studies 
demonstrated clinical benefit mediated by the administration of 
highly enriched populations of neoantigen-reactive CD4+ and 
CD8+ T cells (34, 40) and by neoantigen-based vaccines (41, 42). 
Potential neoantigens are typically predicted first by identifying 
non-synonymous alterations from next generation sequencing 
data and second by predicting the binding to HLA molecules of 
peptides encompassing these non-synonymous genetic altera-
tions (43). For these reasons, predictions of peptides presented 
on HLA-I and HLA-II molecules have gained renewed interest 
in the field of tumor immunology. Predicted neoantigens need to 
be then experimentally validated for HLA binding and immune 
recognition in vitro (44–47).

Here, we review approaches developed for predicting antigen 
presentation in human cells, with a focus on the latest experi-
mental and computational developments to take advantage of 
in-depth and accurate mass spectrometry (MS) data of HLA 
peptidomics. Our aim is to describe the main steps of antigen 
presentation that proved to be successful in making quantitative 
predictions of antigens. The more biological aspects of antigen 
presentation and processing are covered in many other reviews 
(1–3, 8).

MAiN SOURCeS OF HLA LiGAND DATA

A cornerstone in our ability to understand and predict antigen 
presentation has been the experimental identification of specific 
peptides interacting with HLA molecules. First, from an experi-
mental point of view, HLA-I molecules do not fold stably in the 
absence of a ligand and, therefore, all biochemical, structural, 
and functional studies of HLA-I molecules rely on the avail-
ability of known HLA-I ligands. Second, all computational 
methods to predict HLA ligands at a large-scale use data-driven 
approaches based on sequence patterns identified within known 
ligands.

Two main classes of experimental assays have been developed 
to identify HLA ligands. The first class of assays consists of in vitro 
assays. For HLA-I molecules, refolding assays use conformational 
pan HLA-I antibodies to test whether the HLA-I complex is prop-
erly folded in the presence of a peptide (48–52). Peptide-rescuing 
assays consist of a photo-cleavable peptide that is stripped by UV 
radiation in the presence of another peptide (53–55). Competitive 
assays with radiolabeled peptides have been used to determine 
relative affinity (IC50) (56). Dissociation assays based on radiola-
beled β2m have been used to probe the stability of peptide–HLA-I 
complexes (57, 58). Surface plasmon resonance techniques can 
be used to measure actual Kd values (59). In vitro binding assays 
have also been used for HLA-II ligands (60–62). Compared to 
class I ligands, screening of class II ligands at high throughput is 
facilitated since HLA-II molecules have an open-ended peptide-
binding site. Therefore, peptides can be fixed on plates, which 
allow for the use of peptide microarrays (63), or directly encoded 
in different display systems such as phage or yeast display (64, 65).
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In vitro binding assays play a central role in our ability to 
identify T  cell epitopes from viral or cancer-specific antigens 
(66, 67). When used in combination with state-of-the art pre-
dictions tools, they enable rapid validation of predicted targets 
and are currently key to most neoantigen discovery approaches 
in cancer immunotherapy (30, 31, 68, 69). The main caveat of 
in vitro assays for HLA-I ligands is that the peptides have to be 
determined a priori and chemically synthesized, since both the 
C- and N-terminus of most HLA-I ligands need to be free in 
most cases. This limits the use of high-throughput and unbiased 
peptide screening technologies. Furthermore, the involvement 
of the components of the antigen-loading complex is missing in 
in vitro binding assays and, therefore, signals related to antigen 
loading in vivo cannot be captured.

The second type of experimental assays for HLA ligand iden-
tification is based on MS measurement of eluted HLA-binding 
peptides. This approach is the only methodology to compre-
hensively interrogate the repertoire of HLA ligands presented 
naturally in  vivo (16, 18, 70, 71). The best-established HLA 
peptidomics methodology is based on immunoaffinity purifica-
tion (IP) of HLA complexes from detergent solubilized lysates, 
followed by extraction and purification of the peptides. Typically, 
either anti-pan-HLA class I, anti-HLA-DR, or anti-pan-HLA 
class II monoclonal antibodies are used. The extracted peptides 
are then separated by high-pressure liquid chromatography and 
directly injected into a mass spectrometer. The resulting spectra 
obtained from the fragmentation of the peptides are compared 
with in silico generated spectra of peptides from protein sequence 
databases with MS search tools. Therefore, this search is limited to 
the available databases, usually the annotated human proteome. 
Moreover, peptides that have features that make them incompat-
ible with ionization, those that are too hydrophobic or too hydro-
philic, might not be detected with standards methods. With the 
new generation of mass spectrometers, thousands of HLA ligands 
can be identified per sample (15, 18, 72, 73). Cell lines, includ-
ing human cancer cell lines, tumors, healthy tissues, and body 
fluids such as plasma have been subjected to HLA peptidomics 
analyses (18, 70–84). However, MS-based HLA peptidomics 
approaches have limited sensitivity and require a relatively large 
amount of biological sample (~1 cm3 of tissue or 1 × 108 cells) 
(21). Furthermore, despite major improvement in the quality 
of HLA peptidomics data, one can never exclude small residual 
contaminations from co-eluted peptides or wrong annotation of 
spectra depending on the false discovery rate threshold used in 
spectral searches.

Dedicated proteogenomics computational pipelines for cus-
tomized reference databases have been developed to expand the 
search space beyond the canonical human proteome. Customizing 
references to include somatic alterations observed in tumors 
have been used for direct identification of neoantigens by MS in 
murine and human cancer cell line models (31, 35, 80, 85), B cell 
lymphomas (86), and melanoma tissues (15). Similar approaches 
were also used for other cryptic peptides resulting from uncon-
ventional coding sequences in the genome (87) and new open 
reading frames (88) (see Non-Canonical HLA-I Ligands).

Historically, the first HLA-I motifs (e.g., HLA-A02:01) were 
found by looking at peptide sequences of eluted ligands identified 

by MS (89, 90). To overcome the fact that eluted peptides come 
from up to six HLA-I alleles in unmodified cell lines or tissue 
samples, two experimental approaches have been developed. The 
first approach consists of transfecting a soluble HLA allele into a 
cell line and pulling down only the soluble HLA-I molecules in 
complex with their ligands (91, 92). While it has been shown that 
the repertoire of peptides presented on transfected soluble HLA-I 
and the endogenous membranal HLA-I molecules are highly 
similar (93), the non-physiological expression level of the soluble 
HLA-I molecules and the potential different environment in the 
loading compartment could affect the overall peptide repertoire. 
Furthermore, endogenous HLA-I alleles can be shaded or natu-
rally secreted from cells in culture (94) and could contaminate the 
secreted peptidome (75). Nevertheless, this approach proved very 
powerful to identify HLA-I motifs (77, 78, 95–97). Of particular 
interest is the study by Di Marco and co-authors where the motifs 
of 15 HLA-C alleles could be determined, together with motif for 
HLA-G01:01 (75). This detailed view of HLA-C alleles binding 
specificities enabled the authors of this study to identify for the 
first time specificity determinant residues in the HLA-C-binding 
site that provide likely molecular mechanisms explaining the dif-
ferences observed between HLA-C binding motifs. The second 
experimental approach consists of using genetically modified 
cell lines that express only one allele (98, 99) and was used to 
study binding motifs of highly similar alleles, like HLA-B27:02 
to HLA-B27:09 (100). This approach was also recently used to 
screen 16 HLA-A and HLA-B alleles, and this work confirmed 
that predictors trained on MS data could improve predictions of 
naturally presented HLA-I ligands (70). One advantage of this 
approach is that theoretically all peptides come from one single 
allele (see above for potential sources of contaminations). In par-
allel, we and others introduced computational techniques based 
on motif deconvolution (72, 101) and peptide clustering (102, 
103) to accurately determine HLA-I restriction of eluted ligands 
from pooled samples without requiring to experimentally isolate 
each HLA-I allele and without relying on HLA-I ligand predictors 
(see below for a detailed description of these approaches).

Comparison of MS and In Vitro Data
Until 2012, the number of MS datasets was significantly lower 
than in vitro data (Figure 1), which partly explains why in vitro 
binding data were mainly used for training HLA-I ligand predic-
tors. However, the situation has changed quite dramatically over 
the last 4 years. Combining data from IEDB (25) together with 
recent HLA peptidomics studies (see Supplementary Material), 
we can observe that roughly 10 times more unique HLA-I ligands 
and three times more unique HLA-I–peptide interactions are 
currently available from MS studies (Figure 1, the lower number 
of interactions than peptides for MS data comes from the fact that 
several MS samples did not have HLA typing information or allele 
restriction could not be determined with motif deconvolution). 
The coverage of HLA-I alleles is also larger in HLA peptidomics 
samples compared to in vitro binding data (Figure 1). Moreover, 
all curves for MS data do not show signs of saturation, suggesting 
that these numbers are likely to further increase in the coming 
years, especially with the growing interest in HLA peptidomics 
profiling of cancer samples from patients with diverse ethnic 
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backgrounds for neoantigen discovery (15). Similar observations 
hold for HLA-II ligands, where the number of unique peptides 
identified by MS largely exceeds the number of peptides identi-
fied in in vitro assays. However, the number of HLA-II alleles with 
documented ligands is still larger for in vitro binding data. This 
likely reflects the fact that HLA-II ligands are easier to screen in 
a high-throughput way using peptide microarrays, and that allele 
restriction in HLA-II peptidomics data is still more difficult to 
determine with motif deconvolution or peptide clustering than 
for HLA-I peptidomics data.

MODeLiNG HLA-i BiNDiNG SPeCiFiCiTY
Allele-Specific Predictors
Modeling HLA-I-binding specificity has been carried out for 
almost 30 years since the first evidence of HLA-I motifs. Early 
studies used simple sequence motifs [e.g., xLxxxxxx(L/V) for 
HLA-A02:01]. However, as more data started to accumulate, it 
became clear that simple motifs were too restrictive and not quan-
titative enough. To overcome these limitations, position weight 
matrices (PWM) (equally referred to as Position Specific Scoring 
Matrices or simply scoring matrices) were introduced (104–107). 
The basic idea is to compute the frequency of each amino acid 
at each position in a set of (pre-aligned) peptides. The score of 
a new peptide can then be computed by multiplying the PWM 
entries corresponding to the sequence of the new peptide (see 
Supplementary Material). Although the idea of computing amino 
acid frequencies is relatively simple to understand, several steps 
are important when building a predictor based on PWMs. First, 
one has to consider the amino acid background distribution and 
use this distribution to renormalize the scores (see Supplementary 
Material). In most existing approaches, amino acid frequencies of 

the human proteome have been used. However, this approach may 
not be fully justified when using viral epitopes to train predictors. 
Similarly, eluted HLA-I ligands do not show the same amino acid 
distribution as human proteins and much lower frequency of 
cysteine has been reported by ourselves and others (70, 72). As 
such, the optimal choice of background distribution may depend 
on the origin (both biological and technical) of the data. Second, 
in most cases, estimating the frequency of amino acids occurring 
only a few times (or never) at a given position is highly susceptible 
to statistical noise. To address this issue, pseudo-counts are often 
used. A widely used approach is based on the BLOSUM62 matrix 
(see Supplementary Material) (105, 108, 109). Third, biases due to 
the design of specific experiments can be found in many in vitro 
datasets. For instance, if a mutagenesis was carried out at a fairly 
non-specific position in a given epitope, many sequences will 
have identical amino acids at all positions except the one used in 
the mutagenesis. One way to correct for such biases is to add a 
weight to all peptides that is inversely proportional to the number 
of highly similar sequences in the dataset (see Supplementary 
Material).

Since the last decade, most allele-specific HLA-I ligand predic-
tors use machine learning frameworks such as neural networks, 
hidden Markov Models, support vector machines, or convolu-
tional neural networks (110–114). One attractive aspect of these 
models is the ability to consider potential correlations between 
different positions within HLA-I ligands. For instance, we recently 
observed in HLA-B07:02 ligands that arginine is preferred at P3 
or at P6, but not at both positions at the same time (101). This type 
of correlation is not captured by simple PWMs. However, it is still 
unclear how frequent these correlations are for HLA-I ligands. In 
particular, although many studies reported improved predictions 
of HLA-I ligands using machine learning algorithms (112, 115), 
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TABLe 1 | Summary of some of the most recent or most widely used human leukocyte antigen (HLA)-I predictors with available web interface or code repository.

Name Training data Output Algorithm Allele coverage Access Reference

NetMHC4.0 BA BA NN S http://www.cbs.dtu.dk/services/NetMHC/ (110)
NetMHCpan4.0 BA + MS R (BA) NN Pan http://www.cbs.dtu.dk/services/NetMHCpan-4.0/ (117)
MixMHCpred MS R PWM S https://github.com/GfellerLab/MixMHCpred (72, 120)
MHCflurry BA BA NN S https://github.com/openvax/mhcflurry (113)
PickPocket BA BA PWM Pan http://www.cbs.dtu.dk/services/PickPocket/ (107)
NetMHCstabpan BS BS NN Pan http://www.cbs.dtu.dk/services/NetMHCstabpan/ (118)
NetMHCstab BS BS NN S http://www.cbs.dtu.dk/services/NetMHCstab/ (111)
NetMHCcons BA BA C S http://www.cbs.dtu.dk/services/NetMHCcons/ (181)
IEDB consensus BA R C S http://tools.iedb.org/mhci/ (182)
SMMPMBEC BA R PWM S https://github.com/ykimbiology/smmpmbec (104)
MHCnuggets BA BA NN S https://github.com/KarchinLab/mhcnuggets-2.0 (183)
ConvMHC BA R NN Pan http://jumong.kaist.ac.kr:8080/convmhc (116)
HLA-CNN BA R NN S https://github.com/uci-cbcl/HLA-bind (114)
SYFPEITHI BA + MS R PWM S http://syfpeithi.de/0-Home.htm (106)
PSSMHCpan BA BA PWM Pan https://github.com/BGI2016/PSSMHCpan (184)

Column 2, BA, binding affinity; BS, binding stability; MS, HLA peptidomics data; column 3, BA, binding affinity; R, ranking; column 4, NN, Neural network (including deep networks); 
PWM, position weight matrices; C, consensus; column 5, S, allele specific; Pan, pan-class I.
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one has to be careful before concluding that correlation patterns 
are prevalent, since improvement in prediction accuracy may 
also result from more robust regularization frameworks. Finally, 
machine learning approaches are also susceptible to overfitting 
and correcting for potential biases in training sets can be more 
challenging than with simple PWMs.

Pan-Allele Predictors
Enough experimental ligands are available for roughly 100 HLA-I 
alleles, which represents only a small fraction of the >12,000 
HLA-I alleles observed in the human population. To address 
this issue, pan-allele predictors have been introduced, where the 
input of the algorithm consists of both the sequence of the ligand 
and the sequence of the HLA-I allele (or of its binding site) (107, 
116–118). These algorithms are powerful at capturing correla-
tions between amino acids in the HLA-I-binding site and in the 
ligand. The most widely used and likely the most elaborate pan-
specific algorithm is the NetMHCpan tool (117), which includes 
several features specific for HLA-I molecules, such as combining 
peptides of different lengths in the training and incorporating 
peptide length preferences.

Table  1 summarizes some of the most common predictors, 
together with information about the algorithm that is used, the 
type of training data and the output.

Choosing the Right Training Set
While extensive work has been performed to optimize the algo-
rithms used in HLA-I predictors, less attention has been devoted 
to the choice of the training set. Prior to 2016, most approaches 
aimed at predicting binding affinity values (i.e., IC50) and, there-
fore, were trained on in vitro data mainly obtained from IEDB 
(25). Although high accuracy could be reached for many com-
mon alleles, several potential biases suggest that such data can be 
suboptimal for training predictors. In particular, it is important 
to remember that most HLA-I ligands tested in vitro for binding 
were first predicted with older versions of HLA-I ligand predictors 
[some exceptions that used random peptide libraries include Ref. 

(58)]. Unfortunately, this can induce circularity when using these 
data to retrain predictors, and such biases are difficult to detect 
and correct for. Of note, the same circularity issue can also affect 
several published MS datasets when HLA-I ligand predictors or 
motifs were used to assign allele restriction and filter noise. Here, 
we argue that high-quality MS data not filtered with existing 
predictors provide a powerful solution toward overcoming the 
potential circularity inherent to many in vitro binding data.

Using MS Data for identifying HLA-i  
Motifs and Training Predictors
Mono-allelic samples or transfected soluble HLA-I alleles have 
been used since many years to study the binding motifs of specific 
HLA-I molecules (91, 92). However, due the experimental work 
implied by such approaches, they were never applied to a large 
panel of HLA-I alleles [the largest studies consist of 16 alleles for 
mono-allelic cell lines (70) and 17 alleles for transfected soluble 
HLA-I alleles (75)]. For pooled HLA peptidomics dataset, the 
impossibility to experimentally assign allelic restriction was 
often considered as an important hurdle to use such data toward 
studying HLA-I-binding motifs.

However, in the last few years, it became clear that pooled 
HLA peptidomics data can be used to study HLA-I motifs and 
improve predictions, thereby overcoming the need of genetically 
modifying cell lines or transfecting soluble HLA-I alleles. The first 
attempt to determine HLA-I-binding motifs from pooled HLA 
peptidomics data was published in 2015 (18). A year later, we 
published the first evidence that such data can be used to improve 
predictions of HLA-I ligands (101). Since then, many studies have 
confirmed these results both for the identification of new motifs 
(72, 81, 102, 103, 119) and for improving predictions of HLA-I 
ligands by integrating MS data in the training of predictors (70, 
72, 117, 120).

As of today, two algorithms have been used for motif decon-
volution and peptide clustering of pooled HLA peptidomics data. 
One of them (MixMHCp) is based on mixture models and was 
initially developed for multiple specificity analysis in large PDZ 
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or SH3 ligand datasets obtained by phage display (121–123). In 
this framework, the idea is to let the algorithm infer K distinct 
PWMs that optimally model the eluted peptides (101). Since 
peptides identified by MS come from K different HLA-I alleles 
(K ≤ 6), it is not surprising that the motifs that optimally describe 
the data correspond precisely to the specificity of these alleles. 
The other algorithm (GibbsCluster) is based on simulated 
annealing to group the peptides into different clusters optimiz-
ing a global cost function that models how well each peptide fits 
into its respective cluster (103, 124). Somehow unexpectedly, 
both algorithms were initially developed for other purposes (i.e., 
multiple specificity analysis for MixMHCp and simultaneous 
clustering and alignments of short peptides for GibbsCluster) and 
their use for motif identification in HLA peptidomics data was 
realized only later (18, 101, 102). The two approaches have many 
conceptual similarities since the likelihood function optimized in 
MixMHCp differs only slightly from the cost function optimized 
in GibbsCluster. In practice, the two algorithms lead most of the 
time to very similar results for HLA-I peptidomics data (101) 
and nearly identical motifs as those obtained from mono-allelic 
samples or transfected soluble alleles (72) (see also examples in 
Figure S1 in Supplementary Material). In some cases, as we have 
reported, the mixture model tends to be slightly more sensitive 
to identify motifs supported by few peptides, such as those 
describing HLA-C alleles (101). Conversely, the GibbsCluster 
has several advantages, such as the ability to combine peptides of 
different lengths and the simultaneous clustering and alignment 
of the peptides (which is critical for HLA-II ligands) (102, 103). 
Both methods can be used as command line or through webserv-
ers (see http://www.mixmhcp.org and http://www.cbs.dtu.dk/
services/GibbsCluster-2.0/). The availability of these algorithms 
strongly supports the notion that allele assignment in MS data 
should not be done based on HLA-I ligand predictors, since this 
may remove all peptides that are not well modeled with existing 
predictors, and hence bias determination of motifs and prevent 
improving the predictors. It is also important to emphasize that 
accurate motif deconvolution requires a large number of peptides, 
and ideally, many samples to test the robustness of the motifs (72). 
For this reason, it is likely the combination of higher accuracy 
and throughput of MS instruments (18) together with these novel 
algorithms that enabled accurate HLA-I motifs identification in 
pooled HLA peptidomics data.

Annotation of the motifs deconvolved from pooled HLA 
peptidomics data can be done in different ways. For alleles for 
which a reasonable description of the motifs is known, one can 
simply compare the motifs found in MS data to the known refer-
ences (18). Using Euclidean distance to quantify the similarity 
between the PWMs appears to provide stable results and most of 
the time the mapping is quite obvious (72, 101). If the motifs are 
not known, two approaches have been developed. One fully unsu-
pervised approach was proposed by ourselves based on cooccur-
rence of HLA-I alleles across different samples (72). In this way, 
we could identify and annotate HLA-I motifs for more than 40 
alleles, including 7 alleles that had no experimental ligands at the 
time of this study. Another semi-supervised approach that works 
well in most cases consists of comparing with motifs predicted 
from pan-allele predictors such as NetMHCpan (119).

An important limitation of motif deconvolution approaches 
comes from the fact that motifs for some alleles (especially 
HLA-C alleles) are more difficult to detect in many samples. 
Also, in the presence of highly similar motifs (e.g., HLA-A23:01 
and HLA-A24:02, or HLA-C07:01 and HLA-C07:02), the two 
motifs often cannot be split (72). Because of this, not all HLA 
peptidomics datasets are appropriate for training predictors for 
each allele expressed in the corresponding sample. This limita-
tion can be alleviated by considering large collections of HLA 
peptidomics studies and focusing on cases where the motifs are 
clearly visible and can be unambiguously annotated (72). Finally, 
it is sometimes useful to consider more motifs than the number 
of alleles in order to identify motifs for each allele (Figure S2 in 
Supplementary Material).

Figures  2–4 summarize the HLA-A, HLA-B, and HLA-C 
motifs currently available by combining motifs deconvolved from 
recent MS studies together with IEDB data (see Supplementary 
Material). As expected, the clustering based on the similarity 
between the motifs (see Supplementary Material) broadly reca-
pitulates the supertype assignment for HLA-A and HLA-B alleles 
and helps highlighting differences among alleles classified within 
the same supertypes.

Biases in MS Data
While MS data are not suffering from the potential circularity 
present in many in vitro binding data, they are not free from any 
biases. First, as already mentioned, only peptides that are part of 
the database used for spectral searches can be detected in HLA 
peptidomics data, or else, the less accurate de novo method may 
be applied. This has direct implication for cysteine-containing 
peptides. Since this amino acid can be chemically modified by 
oxidation and as such modifications are typically not included 
in standard MS searches, cysteine occurs at very low frequency 
in HLA peptidomics datasets. Attempts to correct for this bias 
when training predictors tried to renormalize PWMs based 
on observed amino acid frequencies at non-anchor positions 
(72) or expand the MS spectral search to include modified 
cysteines (70). Second, peptides that are too hydrophobic or too 
hydrophilic might be missed applying the common purification 
methods that rely on retaining peptides through hydrophobic 
interactions with the solid phase. Furthermore, some peptides 
have features that make them incompatible with ionization or 
lead to poor fragmentation. Combining fragmentation meth-
ods, such as higher-energy collision-induced dissociation and 
electron-transfer dissociation, have been shown to improve 
spectra annotation of HLA peptides (73). Despite these limita-
tions, inspection of HLA peptidomics data and comparison with 
motifs obtained from in vitro data did not reveal major differ-
ences, except for the low frequency of cysteine [slightly higher 
frequency of charged amino acids at some positions has been 
reported in some studies (101, 102)]. Third, immuno-purifica-
tion based MS data cannot distinguish between HLA-I ligands 
presented on the cell surface from those resident in the ER. This 
can be achieved by purifying HLA-I peptides from the cell sur-
face by mild acid elution (125, 126). However, in a head-to-head 
comparison, the IP method outperformed the mild acid elution 
in terms of peptide recovery (127). Last, when considering MS 
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data, it is important to remember that these peptides come from 
human proteins and that proteins or domains within proteins 
can display significant homology (especially for class II ligands 
where in addition many peptides can originate from the same 
core region). This can artificially enhance the frequency of some 
amino acids. This issue is especially important when building 
random models of MS data to infer whether amino acid frequen-
cies (either within a motif or at flanking regions) differ from 
what is expected by chance.

MODeLiNG HLA-ii-BiNDiNG SPeCiFiCiTY

Predictions of HLA-I ligands, especially with the recent incorpo-
ration of high-quality MS data in the training of predictors, have 
reached a high level of accuracy (70, 72, 117, 120). The situation 
is unfortunately not the same for HLA-II ligands, which are still 
much more difficult to predict despite the large amount of experi-
mental data acquired over the years (Figure 1). Several challenges 
arise when modeling the binding specificity of HLA-II alleles. 
First, HLA-II alleles tend to have more degenerate and less spe-
cific motifs. Second, all current approaches rely on first aligning 

peptides with tools such as NN-align (128). Although these tools 
have been optimized to handle HLA-II ligands, automated align-
ment of small peptides is known to be a difficult computational 
problem. Finally, the fact that HLA-II molecules form dimers 
further increases the diversity for HLA-DP and HLA-DQ alleles 
where both members of the dimers are polymorphic. Allele-
specific HLA-II ligand predictors include NetMHCII (129), 
ProPred Singh (130), MHCPred (131), TEPITOPE (132), and 
consensus methods (133). Pan-specific class II predictors mainly 
consist of NetMHCIIpan (129). While all these predictors show 
better than random performances, their accuracy is lower than 
for HLA-I ligand predictors. This may be due to the challenges of 
determining class II motifs, as well as to the complex machinery 
of class II presentation, whose specificity is still poorly under-
stood from a quantitative and predictive point of view [see Ref. 
(7–10) for a detailed discussion of the more biological aspects of 
this process and the importance of HLA-DM and other enzymes]. 
In particular, it appears that properties such as conformational 
flexibility play a role in loading onto HLA-II molecules (134), 
and these properties are difficult to predict directly from peptide 
sequences.
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Whether similar improvement for class II predictions as 
for class I will be reached by incorporating class II peptidome 
data in the training of algorithms has not been investigated at 
a large scale. Nevertheless, it has been recognized already long 
ago that eluted ligands could provide important information 
about HLA-II-binding motifs (135). More recently, HLA-II 
peptidomics was performed in BALB/c and C57BL/6 mice and 
demonstrated that clear motifs for H-2 I-Ad and H-2 I-Ab could 
be obtained (136). A subsequent study suggested that predictors 
trained on these data perform better than NetMHCIIpan when 
repredicting the MS data (137). A similar strategy was carried 
out in transgenic DR1+ and DR15+ mice to identify the motifs 
of these two alleles (138). Recent studies also indicate that motif 
deconvolution with the GibbsCluster algorithm may work in 
pooled HLA-II peptidome datasets (21, 139), which could 
lead to refinement of HLA-II motifs and improved predictions 
in the coming years, as suggested in a recent preprint (140). 
However, the results are still more challenging to interpret and 
some motifs predicted by GibbsCluster are difficult to annotate, 
while the motifs for some alleles are sometimes not detected 
(21, 139, 141).

iNveSTiGATiNG OTHeR PROPeRTieS OF 
HLA–PePTiDe iNTeRACTiONS

Many other important properties of HLA-I molecules beyond 
the 9-mer-binding motifs themselves can be studied through the 
analysis of HLA peptidomics data.

Peptide Length Distribution
Arguably, the most important information beyond the binding 
motifs that can be extracted from MS data is the characterization 
of peptide length distributions. Many studies have demonstrated 
high heterogeneity of peptide length distributions between dif-
ferent alleles, with alleles such as HLA-B51:01 displaying high 
frequency of 8-mers (only slightly smaller than 9-mers) and very 
few longer peptide, while others such as HLA-A01:01 show high 
frequency of longer (≥12 amino acids) peptides, which can still 
be recognized by T cells (15, 70, 97, 103, 142). Structurally, most 
longer peptides are known to form bulges, with anchor residues 
conserved at the second and last positions of the peptides. Some 
patterns emerged from analysis of peptide length distributions. 
For instance, HLA-I alleles with anchor residues at middle 
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positions (e.g., HLA-B08:01, HLA-B14:01, HLA-B14:02, HLA-
B37:01) displayed peptide length distributions peaked at 9-mers, 
which is consistent with the fact that the middle anchor residue 
needs to be structurally conserved in the presence of an anchor 
at such positions (101). The study by Trolle and co-authors (97) 
demonstrated that peptide length distributions observed in MS 
data for five alleles could not be simply explained by differences 
in binding affinity, suggesting that the pool of peptides available 
for loading in the ER is skewed toward 9-mers. This likely implies 
that predictors trained on MS data will differ from those predict-
ing binding affinity when comparing peptides of different lengths. 
In a recent preprint (143), we performed a large-scale analysis of 
peptide length distributions across 85 HLA-I alleles and could 
identify clusters of HLA-I molecules based on the similarity of 
their peptide length distributions. Peptide length distribution 
has been incorporated into the latest versions of NetMHC and 
NetMHCpan, by adding one additional input node encoding 

for peptide length in the neural networks (110, 117), and into 
MixMHCpred by directly fitting distributions observed in MS 
data (143).

As observed in our recent paper (21), peptide length distribu-
tion can also be affected by different treatments such as INFγ 
likely due to modulating the activity of catalytic subunits of 
the proteasome, and these aspects are not captured by existing 
predictors.

C- And N-Terminal extensions
Human leukocyte antigen peptidomics data have been instru-
mental in exploring non-canonical binding modes in HLA-I 
ligands. In particular, several recent studies have used MS data to 
study C- and N-terminal extensions in HLA-I ligands. Although 
such extensions had been identified long ago [first crystal struc-
ture in 1994 (144), PDB:2CLR, followed by another structure in 
2009 (145), PDB:3GIV], their prevalence had remained unclear. 
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In 2016, HLA peptidomics profiling and X-ray crystallography 
were combined to explore C-terminal extensions in HLA-A02:01 
and demonstrated that such extensions were especially common 
among peptides originating from pathogens (146). This was 
followed by additional work that better described the struc-
tural mechanisms and cellular origin of such extensions (147). 
N-terminal extensions have been identified in HLA-B57:01 (148) 
and HLA-B58:01 (149). More recently, we have demonstrated that 
C-terminal extension occur in a substantial fraction of HLA-I 
molecules and can be recognized by CD8 T cells (120). Our work 
further enabled us to identify both sequence and structural fea-
tures predictive of such extensions. In particular, it appeared that 
C-terminal extensions are especially frequent in alleles displaying 
specificity for positively charged residues at the last anchor posi-
tion (e.g., HLA-A03:01, HLA-A31:01, HLA-A68:01). While MS 
data potentially provide a rich source of information about C- and 
N-terminal extensions, identifying these extensions by looking at 
the sequence of the peptides can be challenging, especially when 
the residue at the extension has similar specificity as the anchor 
residue (i.e., same residues at P9 and P10 for putative C-terminal 
extensions, same residues a P2 and P3 for putative N-terminal 
extensions). Our work suggests that many ambiguous cases may 
actually follow the bulging conformation (120).

Posttranslationally Modified HLA-i 
Ligands
Posttranslationally modified peptides have been identified by MS 
analysis of eluted ligands (15, 150–152). These include mainly 
phosphorylated peptides, which can be recognized by T  cells 
(153–155). Phosphorylation was observed to occur mainly at 
position 4 (15), suggesting that it does not impact too much 
the binding to the HLA-I molecules. Existing HLA-I ligand 
predictors do not include phosphorylated peptides, although the 
increasingly larger MS datasets of phosphorylated HLA-I ligands 
suggest that predictions of phosphorylated HLAI ligands may 
soon become feasible. As for now, one approach is to treat the 
phosphorylated residue as its unmodified counterpart and use 
available predictors to predict such ligands.

HLA-ii Molecules
Fewer studies used MS data to investigate properties of HLA-II 
molecules other than the actual-binding motifs. Studies reported 
broad peptide length distributions peaked around 15-mers (15, 21, 
139, 156, 157), but it is still unclear to what extent distinct alleles 
show distinct peptide length distributions. Other properties of 
HLA-II molecules that could be studied based on MS data include 
the cellular origin of class II peptides (156, 158, 159) and the 
impact of different biological processes such as autophagy (160). 
MS studies also indicated preference for proline at the second and 
second to last position of peptides degraded in the endolysosomal 
pathway (156, 161), and preference for lysine at the C-terminus 
and for aspartate at the N-terminally flanking residue of class II 
epitopes degraded in the cytosolic pathway (156). Along these 
lines, many studies support the idea that presentation of class 
II peptides is not only driven by the binding specificity to the 
HLA-II molecules but also involves some (still uncharacterized) 

specificity in the processing machinery, flanking regions (162), or 
presentation hotspots in the human proteome (159).

Considering the increasingly higher quality and throughput 
of class II HLA peptidomics data (15, 21, 86, 138, 139), we 
anticipate that analysis of HLA-II peptidomes will further enable 
researchers to investigate new properties of HLA-II molecules. 
For instance, it will be interesting to see whether the presence 
of bulging class II ligands, as recently reported from an analysis 
of in vitro binding data (163), can be confirmed in large-scale 
unbiased MS data.

ANTiGeN PReSeNTATiON—BeYOND 
BiNDiNG TO HLA

integrating Cleavage Site and TAP 
Transport Predictions, Signals from 
Flanking Regions and Other Proteomic 
information
Mass spectrometry-based HLA peptidomics analysis can reveal 
crucial information about the rules underlying the biogenesis of 
the HLA peptidome, including signatures of cleavage site speci-
ficity, influence of source protein expression or other patterns 
characterizing naturally presented HLA ligands. Predictions of 
cleavage sites have been available since many years and have been 
used to narrow-down the list of predicted HLA-I ligands (164). 
Although some improvement has been observed, cleavage site 
predictions have only a limited effect on prediction accuracy of 
naturally presented HLA ligands. For this reason, it is not widely 
used in many existing pipelines for neoantigen predictions from 
exome sequencing data, for instance. Predictions of TAP transport 
has also been integrated with affinity and cleavage site predictions 
to model antigen presentation (165–167). Interrogation of prop-
erties of thousands of HLA-I ligands source-proteins has revealed 
that the proteome is not randomly sampled. Several biological 
determinants correlate with presentation, such as level of transla-
tion (71), expression, and turnover rate (18) and selective regions 
of the human proteome (71). Specific amino acid signals in 
flanking regions of naturally presented HLA-I ligands, like lower 
frequency of proline, have also been demonstrated (70). While 
binding to HLA still appears to be the most selective step of class 
I antigen presentation, integrating these additional features into 
a single predictor further improves the accuracy of predictions of 
naturally presented peptides (70, 71).

Presentation Hotspots
After deep interrogation of HLA peptidomics large scale data, 
we and others have recently suggested that HLA ligands are not 
randomly distributed along the protein sequences but are located 
within “hotspots” (15, 71), which fit proteasomal cleavage, 
peptide processing, and HLA-binding rules (168). Recently, we 
envisioned that these hotspots reflect regions of proteins with 
enhanced proteasomal or endosomal peptide production prior 
to HLA loading and may, therefore, provide complementary 
information to HLA-binding predictions (159). To this end, we 
collected a large dataset of MS detected HLA class I and class 
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II ligands from different cancer and healthy tissues and variety 
of cell lines. We used this dataset to score potential neoantigens 
based on how well their un-mutated source proteins are naturally 
presented. In a proof of concept study, we tested this hypothesis 
with published data (33) and could show that MS-based features 
improved the prioritization of confirmed neoepitopes (159). 
Large scale databases of HLA peptidomics data capture the global 
nature of the in vivo peptidome averaged over many HLA alleles 
and, therefore, reflect the propensity of peptides to be presented, 
which can complement binding-affinity predictions.

FUTURe PeRSPeCTiveS

expanding the Description of HLA Motifs
Accurate and unbiased binding motifs are available for a bit more 
than 100 HLA-I alleles (Figures 1–4). This is only a tiny fraction 
of the >12,000 HLA-I alleles listed in IMGT/HLA database (4). 
For this reason, much has still to be learned about the specificity 
of HLA-I molecules. We anticipate that the ability to deconvolve 
HLA-I motifs from pooled HLA peptidomics data will play an 
important role to expand our understanding of HLA-I-binding 
specificities. This is especially promising in light of the current 
interest in using MS to identify neoantigens in cancer patients. 
However, even with the current efforts in HLA peptidomics, 
extrapolation of the curves in Figure 1 suggests that experimen-
tally determined HLA-I ligands will remain available for only 
a small fractions of HLA-I alleles in the coming years. For this 
reason, development of pan-specific HLA-I ligand predictors 
leveraging high-quality MS data available for a few (~100) alleles 
to model the binding specificity of other alleles are expected to 
play an important role in broadening the scope of HLA-I ligand 
predictions to rarer alleles without document ligands (117). 
Accurate and in-depth HLA peptidomics data will also likely play 
an important role in improving our understanding and descrip-
tion of HLA-II motifs. Use of HLA-II gene-specific antibodies 
(i.e., pan-DR, pan-DP, or pan-DQ) may facilitate accurate motif 
deconvolution in such datasets.

Better Understanding of Antigen 
Presentation
While binding to HLA molecules is the most specific and best 
quantitatively characterized step of the antigen presentation 
process, it is likely that some additional filtering comes from 
cleavage in the proteasome, transport with TAP, and loading in 
the ER. As mentioned earlier, several recent studies suggest that 
including these additional parameters further improves predic-
tion accuracy (70, 71, 159, 166). One of the challenges there is to 
disentangle real biological signals from potential technical biases 
in MS data. Despite this caveat, it is likely that accumulating very 
large datasets of naturally presented HLA-I ligands is the only way 
to improve the accuracy of models of antigen presentation that 
go beyond the binding to HLA molecules. In addition, it could 
provide new information about how the HLA peptidome can 
be remodeled in response to extracellular signals, such as IFNγ 
stimulation (19, 21). We, therefore, envision that screening how 
inhibition or activation of components of the antigen processing 

and presentation affect the nature of naturally presented HLA 
ligands on a large scale may reveal their role in shaping the HLA 
peptidome.

Non-Canonical HLA-i Ligands
Increasing evidences also suggest that non-canonical and cryptic 
peptides contribute to the HLA peptidome and expand the range 
of putative T  cell epitopes. Laumont et  al. have constructed 
a reference database of stop-to-stop translation products of 
six open reading frames of expressed RNAs and revealed that 
about 10% of the peptidome derive from presumably noncod-
ing genomic sequences or exonic out-of-frame translation (87). 
Liepe et al. have reported that around 30% of the peptidome is 
derived from non-contiguous peptides spliced by the proteasome 
(169). Unexpectedly, spliced peptides displayed significantly 
lower predicted affinity than the normal peptides identified in 
the same samples (169) and did not show the expected HLA-I 
motifs. A very large database that is about two orders of mag-
nitude larger than the typical protein-coding database was used 
to incorporate theoretical spliced products (169). Searching such 
large databases, especially in order to identify HLA peptides that 
have no enzymatic restrictions, may lead to improper control 
of false positives (170). In a recent preprint (171), we proposed 
an alternative, more conservative, approach to identify spliced 
peptides among HLA-I ligands based on de novo interpretation 
of high-quality spectra, suggesting that the number of such 
peptides may have been overestimated in the original study. 
The exact amount of spliced HLA-I ligands is still a matter of 
debate, and further studies will be needed to precisely estimate 
the fraction of spliced peptides actually displayed on HLA-I 
molecules. However, these potential issues suggest that putative 
spliced peptides may not all be appropriate for training HLA-I 
ligand predictors. Exploring non-canonical HLA ligands derived 
from translation of non-conventional regions in our genome or 
posttranslation events such as splicing is like finding a needle in 
a haystack. In silico predictions of such potential HLA ligands 
with existing tools may, therefore, lead to in-controlled numbers 
of false-positives, since the non-canonical space is theoretically 
orders of magnitude larger than the current canonical protein 
space. Hence, intensive proteogenomics based investigation of 
acquired HLA peptidomics data will likely play a central role in 
this endeavor and will require advanced computational tools and 
statistics to properly control for false positives.

Toward Predictions of immunogenicity
Recent years have witnessed an unprecedented growth of in-depth 
and accurate MS data (Figure 1) that significantly enhanced our 
ability to predict antigen presentation. Unfortunately, these data 
cannot inform us about the most critical step in immune recog-
nition, namely, the recognition of presented antigens by T cells. 
Much less is known there, and it is for instance, a disappointing 
fact that most predicted neoantigens from mutations found 
by exome sequencing of tumors are not recognized by T  cells, 
although many resulting peptides do bind to HLA-I molecules. 
While direct identification of mutated peptides presented on the 
surface of cancer cells will likely improve the fraction of truly 
immunogenic epitopes (101), it is likely that many mutated 
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peptides seen by MS will still not be immunogenic. Moreover, 
although binding affinity has been demonstrated to be useful 
for enriching pools of peptide in immunogenic epitopes (espe-
cially for class I), many known immunogenic epitopes display 
low-binding affinity, suggesting that they would be missed by 
approaches based on affinity predictions only. This is especially 
true for class II epitopes, where clear evidences indicate that 
different enzymes, peptide exchange mediates by HLA-DM or 
HLA-DO, pH gradients and peptide conformational flexibility 
play a role in selecting immunodominant epitopes (8–10, 134). 
Unfortunately, currently, very little of this biological knowledge 
about class II antigen presentation could be used to improve 
predictions of class II epitopes.

Work by Calis et al. (172) suggested that some amino acids at 
non-anchor positions confer increased immunogenicity to HLA-I 
ligands. More recently, it has been observed that dissimilarity to 
self among mutated peptides predicted to have similar binding 
affinity as their wild-type counterpart can further help predicting 
immunogenic epitopes (173). Differences between the affinity of 
the wild-type and the mutated peptide, as well as stability of the 
MHC-I peptide interaction were also suggested to narrow down 
the list of immunogenic epitopes (174). Unfortunately, datasets 
of true immunogenic peptides from cancer or infectious diseases 
are still restricted to a few 100 peptides, limiting the power of 
machine learning approaches to infer properties of immunogenic 
epitopes (175, 176). This is likely the main bottleneck toward our 
understanding of the determinants of immunogenicity. Therefore, 
recent high-throughput methods for screening T cells using for 
instance DNA barcoded multimers have the potential to provide 
critical information about the differences between immunogenic 
and non-immunogenic peptides (46). Importantly, most of 
these approaches require to select a  priori the HLA ligands to 
be screened [with the exception of a recent phage display system 
(177)]. Therefore, improved prediction of HLA ligands and anti-
gen presentation will likely play an important role in optimizing 
the set of ligands currently tested for immunogenicity.

CONCLUSiON

The first HLA-I motifs were described almost 30  years ago by 
looking at sequences obtained from MS analysis of eluted MHC-I 
ligands (89, 90). Since then, much has been learned about HLA-I 
and HLA-II molecules through the analysis of their ligands. In 
human, this has resulted in a detailed description of HLA-I alleles 

binding specificities for the most common alleles and culminated 
with the development of pan-allele predictors. Recent years have 
witnessed an explosion of new high-quality data generated by MS 
about HLA-I ligands. Combined with advances in algorithms to 
analyze such data, this has led to refinement of known HLA-I 
motifs, discovery of new HLA-I motifs, characterization of peptide 
length distributions, analysis of N- and C-terminal extensions, 
characterization of antigen processing signals in flanking regions, 
analysis of the interplay between gene/protein expression, protein 
localization and peptide presentation, and evidences for presen-
tation hotspots in the human proteome. For HLA-II ligands, MS 
studies have been recently used to study HLA-II motifs, suggest-
ing that similar improvements may be observed there as well (21, 
138–140). Moreover, the current interest in neoantigen discovery 
will likely result in many more HLA peptidomics datasets from 
donors with diverse HLA backgrounds and different pathogen-
eses. This will provide unique opportunities to further improve 
our understanding of the rules of antigen presentation. To this 
end, it will be crucial that raw MS data are made publicly available, 
and that the reporting of HLA peptidomics data will comply with 
the recent minimal information about an Immuno-Peptidomics 
Experiment (MIAIPE) guidelines (178). Databases such as IEDB 
(25), PRIDE (179), or the SysteMHC Atlas (180) play a key role 
in this process, and it is our hope that soon all journals publish-
ing HLA peptidomics studies will require deposition of the raw 
MS data in PRIDE and unfiltered lists of peptides in appropriate 
databases, or at least accessible in supplementary datasets.
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During adaptive immune responses, activated B  cells expand and undergo somatic 
hypermutation of their B  cell receptor (BCR), forming a clone of diversified cells that 
can be related back to a common ancestor. Identification of B cell clones from high- 
throughput Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data relies 
on computational analysis. Recently, we proposed an automated method to partition 
sequences into clonal groups based on single-linkage hierarchical clustering of the BCR 
junction region with length-normalized Hamming distance metric. This method could 
identify clonal sequences with high confidence on several benchmark experimental and 
simulated data sets. However, determining the threshold to cut the hierarchy, a key step 
in the method, is computationally expensive for large-scale repertoire sequencing data 
sets. Moreover, the methodology was unable to provide estimates of accuracy for new 
data. Here, a new method is presented that addresses this computational bottleneck 
and also provides a study-specific estimation of performance, including sensitivity and 
specificity. The method uses a finite mixture model fitting procedure for learning the 
parameters of two univariate curves which fit the bimodal distribution of the distance 
vector between pairs of sequences. These distributions are used to estimate the per-
formance of different threshold choices for partitioning sequences into clones. These 
performance estimates are validated using simulated and experimental data sets. With 
this method, clones can be identified from AIRR-seq data with sensitivity and specificity 
profiles that are user-defined based on the overall goals of the study.

Keywords: AIRR-seq data, B-cell clonal partitioning, hierarchical clustering, optimized distance threshold, 
immcantation portal

1. INtRodUCtIoN

Next-generation sequencing technologies are increasingly being applied to carry out detailed 
profiling of B  cell receptors (BCRs, also referred to as the immunoglobulin (Ig) receptors). 
Identification of B  cell clones (sequences that are related through descent from a single naive 
B  cell) from these high-throughput AIRR-seq data relies on computational analysis. Accurate 
identification of clonal members is important, as these clonal groups form the basis for a wide 
range of repertoire analysis, including diversity analysis, lineage reconstruction, and detection of 
antigen-specific sequences (1).
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Hierarchical clustering is a widely used approach for parti-
tioning sequences into clones (1) and several associated software 
tools have been developed (2–4). Identifying clonally related 
BCRs is typically accomplished in two steps. First, sequences are 
split into groups that share the same V-gene annotation, J-gene 
annotation, and number of nucleotides in their junction region 
(5–9). Here, the junction region is defined as the CDR3 plus the 
conserved flanking amino acid residues. Next, these groups are 
hierarchically clustered based on the nucleotide similarity of their 
junction region, and partitioned by cutting the dendrogram at a 
fixed distance threshold. We previously developed an automated 
approach for determining this threshold, and demonstrated that 
using this threshold with single-linkage clustering based on the 
length-normalized Hamming distance (i.e., the absolute count of 
differences between two sequences divided by the length of the 
sequence) detects clones with high confidence on several bench-
mark data sets (4). However, the actual sensitivity and specificity 
may differ on any particular data set, and existing methods do 
not provide a mechanism to estimate or tune study-specific 
performance. Here, we propose and validate a computationally 
efficient threshold inference algorithm for partitioning BCR 
sequences into clones that also allows for study-specific perfor-
mance estimation.

2. Method

The proposed method extends the approach developed by Gupta 
et al. (4), where identifying clonally related BCRs is accomplished 
in two steps. First, sequences are split into groups that share 
the same V-gene annotation, J-gene annotation, and number 
of nucleotides in their junction region. Next, these groups are 
hierarchically clustered based on the nucleotide similarity of 
their junction quantified by Hamming distance, and partitioned 
by cutting the dendrogram at a fixed distance threshold. In 
this paper, we specifically develop a new model-based method 
for determining the fixed distance threshold for partitioning 
sequences, which allows for estimation of sensitivity and speci-
ficity. First, the “distance-to-nearest” distribution is determined 
using length-normalized nucleotide Hamming distance (i.e., 
the distribution of minimum distances from each sequence to 
every other non-identical sequence). This is typically a bimodal 
distribution (8, 9), with the first mode representing sequences 
with clonal relatives and the second mode representing those 
without clonal relatives (i.e., singletons) in the data set. Next, the 
bimodal distance-to-nearest distribution is explicitly modeled as 
a mixture of two univariate distribution functions (e.g., a mixture 
of Gaussian or Gamma distribution) of the form:

 f x f x f x( ) ( | ) ( | ,= λ λ1 1 1 2 2 2φ φ+ )  (1)

where λ1 and λ2 represent the mixing weights (summing to one), 
x represents the nearest neighbor distances, and ϕ represents the 
vector of each component parameters. Here, we investigate all 
combinations of f1 and f2 as Gaussian and Gamma distributions so 
ϕ is either the mean and SD (μ, σ) of a Gaussian distribution, or 
the shape and scale (k, θ) of a Gamma distribution. A maximum-
likelihood fitting procedure (function fitdistr from MASS R 

package) is used to estimate the parameters of the model as fol-
lows: (1) parameters of the model are initialized using a standard 
Gaussian mixture model (GMM). The GMM estimates mixing 
weight λ1, mean μi, and SD σi where i ∈  {1,2} refers to the first 
and second distributions. (2) These parameters are then used as 
initial values to begin the maximum-likelihood fitting procedure 
(if Gamma distribution is chosen, the initial values are translated 
accordingly).

After fitting, the two distributions are used to estimate sensi-
tivity (SEN) and specificity (SPC) by the fractions TP/(TP + FN) 
and TN/(TN + FP), respectively. The statistical rates [true positive 
(TP), false negative (FN), false positive (FP), and true negative 
(TN)] are then given by the area under the curves:
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where t1 and t2 are the minimum and maximum values of the 
distance-to-nearest distribution, respectively. Finally, the opti-
mized threshold t is chosen in the distance interval (t1, t2) to 
maximize the average of sensitivity and specificity:
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1 2 2< <
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(3)

3. ResULts

3.1. Mixture of Gamma distributions  
Is Used to Fit the Bimodal distribution
To determine the optimal distributions to use for the mixture 
model, we tested the method using simulated and experimental 
data sets. Specifically, we used the simulated data sets from Gupta 
et al. (4). These simulations start with a set of observed lineage 
tree topologies from lymph node samples from each of four 
individuals (M2, M3, M4, and M5 from Ref. (6)), and generate 
a simulated data set for each individual (R1, R2, R3, and R4, 
respectively) by randomly selecting a new germline sequence 
for every lineage and then stochastically re-introducing muta-
tions along the lineage branches. This process was repeated 10 
times for each individual to create a collection of 40 simulated 
data sets. We also invoked experimental data from BCR 
sequencing of PBMCs from 58 individuals with acute dengue 
virus infection (note that two individuals with total reads <1k 
sequences were excluded) (10). These samples each contained 
~1–13k total reads.

We evaluated all four combinations of Gaussian and Gamma 
distributions for f1 and f2 on both simulated and experimental data 
sets. For each combination, the log likelihood was determined 
once for 40 simulated and 58 experimental data sets. We found 
that in 80% of trials the choice of Gamma distribution for both f1 
and f2 yielded the highest likelihood. Furthermore, in each trial, 
visual inspection suggested that this choice placed the thresh-
old approximately equidistant between the two distributions. 
Therefore, Gamma distributions were selected as the default 
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A B

FIGURe 2 | Performance assessment of (A) sensitivity (Sen) and (B) specificity (Spc) for determining membership in a multi-sequence clone. Mixture modeling of 
the distance-to-nearest distribution was used to estimate sensitivity and specificity for each specified value of the threshold (points) according to equation set 2.  
The estimated performance (Sen-estimated and Spc-estimated) was compared with actual performance (Sen-actual and Spc-actual) for simulated R1.1–R1.10  
data from Gupta et al. (4) across a wide range of thresholds (shades of gray for each point).

A B C

FIGURe 1 | Analysis of the distance-to-nearest neighbor plot to define the distance threshold for partitioning clones. For each sequence, the length-normalized 
nucleotide Hamming distance to every other sequence was calculated, and the nearest (non-identical) neighbor was identified. The histogram of nearest neighbor 
distances is fitted using Gamma distribution for both modes (solid line) for (A,B) representative peripheral blood B cell samples from patients with acute dengue virus 
infection (10), and (C) representative simulated data from Gupta et al. (4). For each data set the optimum threshold, where the average of sensitivity and specificity 
reaches its maximum, was calculated by the findThreshold function (dashed vertical line). Note that the choice of bin size impacts the shape of plotted 
histograms, while the fitting procedure is independent of this bin size.
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choices and used in all of the analyses below (Figures  1A–C). 
We note that the Gamma distribution is known to be skewed 
positively (i.e., an asymmetric distribution with longer right-tail). 
However, the Gamma distribution becomes more symmetric as 
its shape parameter k → ∞. This intrinsic feature of the Gamma 
distribution makes it a strong tool which behaves flexibly accord-
ing to the notion of how symmetric/asymmetric the observed 
distributions are. By contrast, the Gaussian distribution is always 
symmetric, and thus unable to adapt itself to an asymmetric 
distribution of observed data points.

3.2. high Correlation Between Actual  
and estimated Performance Is Achieved  
in simulated data
The ability of the proposed method to estimate sensitivity and 
specificity for clonal relatedness was evaluated on simulated 
data. First, sensitivity and specificity were evaluated using 
ten simulated data sets (set R1 generated by Gupta et  al. (4)).  

On each data set, a wide range of potential thresholds for parti-
tioning sequences into clones was considered. At each threshold 
value, we calculated the actual performance based on the known 
clonal relationships from the simulation (actual), as well as the 
estimated performance based on the mixture modeling and 
equation set 2 using the area under the fitted distribution curves 
(estimated). We found a high correlation between the actual 
and estimated sensitivity (R2 = 92%) and specificity (R2 = 98%) 
on average over all ten simulated data sets (Figures 2A,B). We 
believe that the correlation is useful, as we see that method pro-
vides a lower bound on actual performance. On the other hand, 
sensitivity shows some lack of proportionality. Specifically, at high 
values for the threshold (between 0.12 and 0.15), the sensitivity 
estimated from the mixture model becomes saturated (i.e., the 
area under fitted left distribution reaches one). Although, using 
the positively skewed-shape Gamma distribution is better than 
using a Gaussian distribution, the right-tail of the first Gamma 
distribution still falls off too fast relative to the actual intra-clonal 
distance distribution in some cases.
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FIGURe 3 | Performance assessment of specificity (Spc) for determining membership in a multi-sequence clone. Mixture modeling of the distance-to-nearest 
distribution was used to estimate specificity for each specified value of the threshold (points) according to equation set 2. (A) The estimated performance was 
compared with actual performance for experimental data from patients with acute dengue infection (10) across a wide range of thresholds (shades of gray for each 
point). (B) The estimated performance (Spc-estimated) was compared with actual performance (Spc-actual) across two independent experimental studies (6, 10) 
across a wide range of thresholds (shades of gray for each point).
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3.3. high Correlation Between Actual  
and estimated specificity Is Achieved  
in experimental data
The underlying clonal relationships among sequences in 
experimental data sets are not known with certainty. However, we 
reasoned that two sequences are unrelated when they are derived 
from two separate individuals since, by definition, a B cell clone 
cannot span two individuals. Therefore, false positives are defined 
as sequences from different individuals being grouped together in 
a clone, whereas true negatives are defined as sequences from dif-
ferent individuals that are grouped into separate clones. Specificity 
is then calculated by dividing the number of true negative clas-
sifications by the sum over the number of true negative and false 
positive classifications. We used this approach to further evaluate 
the ability of the method to estimate specificity on experimental 
BCR sequencing data from 58 individuals with acute dengue 
infection (10). First, one of the individuals was chosen as the 
“base.” Next, a single sequence was chosen randomly from each 
of the remaining individuals and added to the sequencing data 
from the base individual. Specificity was then defined by how 
often the sequences from non-base individuals were correctly 
determined to be singletons. Any grouping of these sequences 
into larger clones must be a false positive. Like the simulated 
data, specificity was calculated both using the known source of 
the sequences (actual) and for the mixture model (estimated). 
This procedure was then repeated 50 times for each of 58 different 
base individuals. The results indicated a high correlation between 
the actual and estimated specificity (R2 = 95%) across all 58 base 
individuals (Figure 3A).

3.4. high Correlation Between Actual and 
estimated specificity Is Achieved Across 
experimental data sets
Within a single study, spurious sharing of BCRs may occur by 
cross clustering within the same flow cell, by contamination or by 

chance with low frequency. To address the possibility that these 
occurrences impacted our estimation of specificity, we repeated 
the same specificity analysis described in the previous section, 
but using individuals from two independent experimental data 
sets. First, subject M2 (with ~100k total reads from lymph node 
samples collected by Stern et  al. (6)) was chosen as the “base.” 
Next, a single sequence was chosen randomly from each of the 
58 individuals with acute dengue infection (10) and added to 
the sequencing data from the base. Like the previous analysis, 
specificity was then defined by how often the sequences from 
non-base individuals were correctly determined to be singletons, 
and was calculated both using the known source of the sequences 
(actual) and for the mixture model (estimated). This procedure 
was then repeated 50 times. High correlation between the actual 
and estimated specificity (R2 = 97%) was obtained (Figure 3B). 
These results show that the proposed approach provides a reliable 
estimate of specificity on experimental data.

3.5. the Mixture Method  
Is Computationally efficient
The threshold inference algorithm developed in this work 
(gmm) is computationally more efficient than its density-based 
predecessor by Gupta et  al. (4) (Figure  4). The improvement 
does not arise from the nearest neighbor identification, which is 
identical for both methods. Rather, the improvement comes in 
how to identify the fixed threshold to cut the hierarchy in order 
to identify discrete clonal groups. The density-based approach is 
computationally demanding since it is associated with a fourth 
derivative kernel density estimation with a sequential time 
complexity of O(n3), where n denotes the number of sequences. 
The gmm exhibits faster performance by replacing this compu-
tationally expensive step with an optimization algorithm with a 
sequential time complexity of O(n), where n denotes the number 
of sequences. We compared the run times of both approaches 
using the implementations under the findThreshold func-
tion as part of the SHazaM R package (version 0.1.9) in the 
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FIGURe 4 | The gmm approach is computationally efficient while the density approach run time scales exponentially. Comparison of running times (y-axis) 
between density (dashed line and gray bars) and gmm (solid line and black bars) approaches performed over 58 individuals from a study of acute dengue infection 
(10) (x-axis). The x-axis is ordered ascending by the number of sequences in the individual sample.

5

Nouri and Kleinstein Sequence Analysis

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1687

Immcantation framework (www.immcantation.org). The density-
based method by Gupta et al. (4) and the model-based method 
described here are implemented as methods density and 
gmm, respectively. On a Linux computer with a 2.20 GHz Intel 
processor and 32 GB RAM, we found, for example, that using the 
gmm approach it took <5 min to find the threshold in a data set 
of ~10k sequences, while the density approach completed in 
~15 min (Figure 4).

4. CoNCLUsIoN

We have proposed and validated a computationally efficient 
threshold inference algorithm that can be used to automatically 
partition BCR sequences into clonally related groups. The method 
gmm is based on a mixture model fit to the bimodal distance-
to-nearest distribution, and allows for direct estimation of the 
sensitivity and specificity for membership in a multi-sequence 
clone. This is an important advantage over previous methods, 
such as the density-based method by Gupta et  al. (4), which 
are unable to provide estimates of accuracy for new data. The 
ability to estimate sensitivity and specificity directly from a BCR 
sequencing data set allows researchers to identify B cell clones 
with performance characteristics that optimize study-specific 
goals. For instance, a threshold with high-sensitivity may be 
ideal for identifying sequences that are part of a clone expansion 
including a known antigen-specific sequence, while a threshold 
with high-specificity may be ideal for determining biological con-
nections between tissue compartments or B cell subsets. In the 
evaluations presented in this study, we have chosen to maximize 
the average of sensitivity and specificity.

BCR sequencing data contain errors, although methods such 
as the inclusion of UMIs (11) can dramatically reduce their 
frequency. Thus, the distance-to-nearest distributions being fit 
by the mixture model contain a combination of true somatic 
hypermutation and errors (e.g., PCR and sequencing errors). 
Rather than being a problem, this is an important feature of the 

method. It is critical to take both sources of diversity into account 
when determining the threshold for partitioning sequences into 
clones. If members of a clone were truly <10% different, but 
experimental errors increased their difference to <11%, then the 
proper choice is to use the 11% as the threshold.

The choice of distributions (e.g., Gaussian or Gamma) that 
accurately describe the observed distance-to-nearest distribution 
for clonally related sequences in one data set may not be ideal for 
other sequencing data sets. The shape of the distance-to-nearest 
distribution depends on various experimental and physiological 
factors such as initial B-cell population, sampling depth, sequenc-
ing error, polarized or flat repertoire, and unusual BCR junction 
length distribution. These factors may influence the quality of 
mixture model fits. Therefore, we recommend users visually 
inspect the resulting fit from each data set. If a mixture of Gamma 
distributions results in a poor fit, then other combinations of mix-
ture models should be tried. The density method provides a 
robust backup to these model-based methods, although it would 
be at the cost of losing the estimation of cloning performance. 
Our empirical observations of peripheral blood B cell repertoires 
suggest the bimodality of the distance-to-nearest distribution 
is detectable for a repertoire of minimum 1k total reads. From 
statistical point of view, increasing number of sequences will 
improve the fitting procedure, although it would be at the poten-
tial expense of higher demand in computational time complexity.

The method used in this study has been developed for parti-
tioning BCR heavy (H) chain sequences. More specifically, the 
method leverages the high diversity of the H chain junction region 
as the main “fingerprint” to infer clonal relatedness. Emerging 
techniques, including single-cell sequencing, can provide paired 
H and L chain data (12–14). The methods presented here can be 
applied to such data by extending the criteria for the initial group-
ing of sequences to include the same VH gene, JH gene, CDR3H 
length, VL gene, JL gene, and CDR3L length. Clustering of the H 
chain junction region can then be carried out as before on these 
more refined groups. The low diversity of the L chain junction 
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region (12) makes it unlikely that including this region in the 
clustering will provide a significant performance improvement.

Overall, the results on the simulated and experimental data 
sets indicate that the mixture modeling method provides an 
accurate estimate of sensitivity and specificity for hierarchical 
clustering-based clonal partitioning of BCRs, and is also time-
efficient. This new procedure has been implemented under the 
findThreshold function as part of the SHazaM R package 
(version 0.1.9) in the Immcantation framework (www.immcan-
tation.org).
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iBCe-eL: A New ensemble Learning 
Framework for Improved Linear 
B-Cell epitope Prediction
Balachandran Manavalan1, Rajiv Gandhi Govindaraj2, Tae Hwan Shin1,3, Myeong Ok Kim4 
and Gwang Lee1,3*

1 Department of Physiology, Ajou University School of Medicine, Suwon, South Korea, 2 Department of Biological Sciences, 
Louisiana State University, Baton Rouge, LA, United States, 3 Institute of Molecular Science and Technology, Ajou University, 
Suwon, South Korea, 4 Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, 
Gyeongsang National University, Jinju, South Korea

Identification of B-cell epitopes (BCEs) is a fundamental step for epitope-based vaccine 
development, antibody production, and disease prevention and diagnosis. Due to the 
avalanche of protein sequence data discovered in postgenomic age, it is essential to 
develop an automated computational method to enable fast and accurate identification 
of novel BCEs within vast number of candidate proteins and peptides. Although sev-
eral computational methods have been developed, their accuracy is unreliable. Thus, 
developing a reliable model with significant prediction improvements is highly desirable. 
In this study, we first constructed a non-redundant data set of 5,550 experimentally 
validated BCEs and 6,893 non-BCEs from the Immune Epitope Database. We then 
developed a novel ensemble learning framework for improved linear BCE predictor 
called iBCE-EL, a fusion of two independent predictors, namely, extremely randomized 
tree (ERT) and gradient boosting (GB) classifiers, which, respectively, uses a combination 
of physicochemical properties (PCP) and amino acid composition and a combination of 
dipeptide and PCP as input features. Cross-validation analysis on a benchmarking data 
set showed that iBCE-EL performed better than individual classifiers (ERT and GB), with 
a Matthews correlation coefficient (MCC) of 0.454. Furthermore, we evaluated the perfor-
mance of iBCE-EL on the independent data set. Results show that iBCE-EL significantly 
outperformed the state-of-the-art method with an MCC of 0.463. To the best of our 
knowledge, iBCE-EL is the first ensemble method for linear BCEs prediction. iBCE-EL 
was implemented in a web-based platform, which is available at http://thegleelab.org/
iBCE-EL. iBCE-EL contains two prediction modes. The first one identifying peptide 
sequences as BCEs or non-BCEs, while later one is aimed at providing users with the 
option of mining potential BCEs from protein sequences.

Keywords: B-cell epitope, ensemble learning, extremely randomized tree, gradient boosting, immunotherapy

INtRodUCtIoN

The humoral immune system is a complex network of cells that work together to protect the body 
against foreign substances or antigens such as bacteria, viruses, fungi, parasites, and cancerous cells. 
Generally, antigens are larger in size, however, only certain parts of antigenic determinants, called 
B-cell epitopes (BCEs), are recognized by specific receptors on the B-cell surface, genera ting soluble 
forms of antigen-specific antibodies (1). These antibodies play an important role in neutralization, 

75

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01695&domain=pdf&date_stamp=2018-07-27
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01695
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:glee@ajou.ac.kr
https://doi.org/10.3389/fimmu.2018.01695
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01695/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01695/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01695/full
https://loop.frontiersin.org/people/36828
https://loop.frontiersin.org/people/554474
https://loop.frontiersin.org/people/536242
https://loop.frontiersin.org/people/401017
https://loop.frontiersin.org/people/505106
http://thegleelab.org/iBCE-EL
http://thegleelab.org/iBCE-EL


2

Manavalan et al. Linear B-Cell Epitope Prediction

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1695

cell-mediated cytotoxicity, and phagocytosis for the adaptive  
arm of immunity (2, 3). Thus, the identification and characteri-
zation of BCEs is a fundamental step in the development of 
vaccines, therapeutic antibodies, and other immunodiagnostic 
tools (4–7). Today, interest in epitope-based antibodies in bio-
pharmaceutical research and development is rising due to their 
selectivity, biosafety, tolerability, and high efficacy.

B-cell epitopes are broadly classified into two categories: con-
tinuous/linear and discontinuous/conformational. Continuous/
linear BCEs comprise linear stretches of residues in the anti-
gen protein sequence, while the discontinuous/conformational 
BCEs comprise residues placed far apart in the antigen protein 
sequence, which are brought together in three-dimensional 
space through folding (8, 9). Experimental methods to identify 
BCEs include X-ray crystallography, cryo-EM, nuclear mag ne-
tic resonance, hydrogen–deuterium exchange coupled to mass 
spectroscopy, peptide-based approaches, mutagenesis, and 
antigen fragmentation (5, 10). However, these methods could be 
expensive and time-consuming. Therefore, new sequence-based 
computational methods need to be developed for rapid identi-
fication of potential BCEs. To this end, several computational 
methods based on machine learning (ML) algorithms have 
been developed to predict linear BCEs. These methods can be 
classified into local and global methods. Local methods such as 
Bcepred (11), BepiPred (12), and COBEpro (13) classify each 
residue as a BCE or non-BCE in a given protein sequence; global 
methods such as ABCpred (14), SVMTriP (15), IgPred (16), 
and LBtope (17) predict whether a given peptide is a BCE or 
non-BCE. Among global methods, LBtope is the most recently 
developed one and is also publicly available.

Although global prediction methods for linear BCEs have 
contributed to some development in this field, further studies are 
needed for the following reasons. (i) With the rapidly increasing 
number of BCEs in the Immune Epitope Database (IEDB) (18, 19),  
developing more accurate prediction methods using non-
redundant (nr) benchmark data sets remain an important and 
urgent task. (ii) Most of the existing methods use random pep-
tides as negative data sets. Experimentally determined negative 
data sets are necessary for developing efficient methods. Thus, 
better methods that use ML algorithms based on high-quality 
benchmarking data sets are necessary to accurately predict BCEs.

In this study, we constructed an nr data set of experimentally 
validated BCEs and non-BCEs from the IEDB and excluded 
sequences that showed more than 70% sequence similarity to avoid 
performance bias. We investigated six different ML algorithms 
[support vector machine (SVM), random forest (RF), extremely 
randomized tree (ERT), AdaBoost (AB), gradient boosting (GB), 
and k-nearest neighbors (k-NN)], five compositions [amino 
acid composition (AAC), amino acid index (AAI), dipeptide 
composition (DPC), chain-transition-distribution (CTD), and 
physicochemical properties (PCP)], 23 hybrid features (dif-
ferent combinations of the five compositions), and six binary 
profiles (BPF). We propose a novel ensemble approach, called 
iBCE-EL for predicting BCEs. The ensemble approach combines 
two different ML classifiers (ERT and GB) and uses the average 
predicted probabilities to make a final prediction. Furthermore, 
iBCE-EL achieved a significantly better overall performance on 

benchmarking and independent data sets and was capable of 
more accurate prediction than state-of-the-art predictor.

MAteRIALs ANd Methods

Construction of Benchmarking and 
Independent data sets
To build an ML model, an experimentally well-characterized data 
set is required. Therefore, we extracted a set of linear peptides 
from IEDB that tested positive for immune recognition (BCEs) 
and another set that tested negative (non-BCEs) (18, 19). Less 
than 1% of the peptides had lower than 5 or greater than 25 amino 
acid residues. We excluded these peptides from our data set 
because including them may result in outliers during prediction 
model development.

As mentioned in IEDB, one of the following seven differ-
ent B-cell experimental assays (Qualitative binding, decreased 
disease, neutralization, disassociation constant KD, antibody-
dependent cellular cytotoxicity, off rate, and on rate) are used to 
determine whether a peptide belongs to a positive or negative set 
of epitopes. Indeed, all this assay information is clearly specified 
for each peptide in IEDB (sixth column of the following link: 
http://www.iedb.org/bcelldetails_v3.php). It is worth mention-
ing that the criteria for categorizing positive and negative data set 
are the same as the one used in the recent study (12). To generate 
high confidence in our data set, we carefully examined each 
peptide assay information and considered as positive only when 
it has been confirmed as positive in two or more separate B-cell 
experiments. Similarly, peptides shown as negative in two or 
more separate experiment and never observed as positive in any 
of the above assays were considered as negative ones. To avoid 
potential bias and over-fitting in the prediction model devel-
opment, sequence clustering and homology reduction using 
CD-HIT were performed, thus removing sequence redundancy 
from the retrieved data set. Based on the design of previous 
studies (20, 21), pairs of sequences that showed a sequence 
identity greater than 70% were excluded, thus obtaining an nr 
data set of 5,550 BCEs and 6,893 non-BCEs. Furthermore, each 
peptide present in our nr data set was mapped onto the original 
protein sequence, thus confirming the nature of linear epitopes. 
From this nr data set, 80% of the data was randomly selected as 
the benchmarking data set (4,440 BCEs and 5,485 non-BCEs) 
for development of a prediction model and the remaining 20% 
was used as the independent data set (1,110 BCEs and 1,408 
non-BCEs).

Feature Representation of Peptides
A peptide sequence (P) can be represented as:

 P p p p p= ...1 2 3 N (1)

where p1, p2, and p3, respectively, denotes the first, second, and 
third residues in the peptide P, and so forth. N denotes the pep-
tide length. It should be noted that the residue pi is an element 
of the standard amino acid {A, C, D, E, F, G, H, I, K, L, M, N, P, 
Q, R, S, T, V, W, Y}. To train a ML model, we formulated diverse-
length peptides as fixed-length feature vectors. We exploited five 

76

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
http://www.iedb.org/bcelldetails_v3.php


3

Manavalan et al. Linear B-Cell Epitope Prediction

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1695

different compositions and BPF that cover different aspects of 
sequence information as described below:

 (i) AAC

Amino acid composition is the percentage of standard 
amino acids; it has a fixed length of 20 features. AAC can be 
formulated as follows:

 AAC P f f f f( ) = ( , , ,……, )1 2 3 20  (2)

where f R i1 = = i

N
( , ,…, )1 2 20  is the percentage of composition of 

amino acid type i, Ri is the number of type I appearing in the 
peptide, while N is the peptide length.

 (ii) DPC

Dipeptide composition is the rate of dipeptides normalized by 
all possible dipeptide combinations; it has a fixed length of 400 
features. DPC can be formulated as follows:

 DPC P f f f f( ) = ( , , ,……, )1 2 3 400  (3)

where f R
N

ii
1 400= = , ,…,( )1 2  is the percentage of composition 

of dipeptide type i, Ri is the number of type i appearing in the 
peptide, while N is the peptide length.

 (iii) CTD

Chain-transition-distribution was introduced by Dubchak 
et  al. (22) for predicting protein-folding classes. It has been 
widely applied in various classification problems. A detailed 
description of computing CTD features was presented in our 
previous study (23). Briefly, standard amino acids (20) are 
classified into three different groups: polar, neutral, and hydro-
phobic. Composition (C) consists of percentage composition 
values from these three groups for a target peptide. Transition 
(T) consists of percentage frequency of a polar followed by a 
neutral residue, or that of a neutral followed by a polar residue. 
This group may also contain a polar followed by a hydro-
phobic residue or a hydrophobic followed by a polar residue. 
Distribution (D) consists of five values for each of the three 
groups. It measures the percentage of the length of the target 
sequence within which 25, 50, 75, and 100% of the amino acids 
of a specific property are located. CTD generates 21 features 
for each PCP; hence, seven different PCPs (hydrophobicity, 
polarizability, normalized van der Waals volume, secondary 
structure, polarity, charge, and solvent accessibility) yields a 
total of 147 features.

 (iv) AAI

The AAindex database has a variety of physiochemical and 
biochemical properties of amino acids (24). However, utilizing all 
this information as input features for the ML algorithm may affect 
the model performance due to redundancy. Therefore, Saha et al. 
(25) classified these amino acid indices into eight clusters by fuzzy 
clustering method, and the central indices of each cluster were 
considered as high-quality amino acid indices. The accession 
numbers of the eight amino acid indices in the AAindex database 
are BLAM930101, BIOV880101, MAXF760101, TSAJ990101, 
NAKH920108, CEDJ970104, LIFS790101, and MIYS990104. 

These high-quality indices encode as 160-dimensional vectors 
from the target peptide sequence. Furthermore, the average of 
eight high-quality amino acid indices (i.e., a 20-dimensional vec-
tor) was used as an additional input feature. As our preliminary 
analysis indicated that both feature sets (160 and 20) produced 
similar results, we employed the 20-dimensional vector to save 
computational time.

 (v) PCP

Amino acids can be grouped based on their PCP, and this 
has been used to study protein sequence profiles, folding, and 
functions (26). The PCP computed from the target peptide 
sequence included (i) hydrophobic residues (i.e., F, I, W, L, V, 
M, Y, C, A), (ii) hydrophilic residues (i.e., S, Q, T, R, K, N, D, 
E), (iii) neutral residues (i.e., H,G, P); (iv) positively charged 
residues (i.e., K, H, R); (v) negatively charged residues (i.e., D, E), 
(vi) fraction of turn-forming residues [i.e., (N + G + P + S)/n, 
where n = sequence length], (vii) absolute charge per residue (i.e., 
R K D E

n
+ − −

− .0 03 ), (viii) molecular weight, and (ix) aliphatic 

index [i.e., (A + 2.9V + 3.9I + 3.9L)/n].

 (vi) BPF

Each amino acid type of 20 different standard amino acids is 
encoded with the following feature vector 0/1. For instance, the 
first amino acid type A is encoded as b(A) = (1, 0, 0, …., 0), the 
second amino acid type C is encoded as b(C) = (0, 1, 0,…., 0), 
and so on. Subsequently, for a given peptide sequence P, its N or 
C-terminus with length of k amino acids was encoded as:

 BPF k b p b p b pk( ) [ ( ), ( ), , ( )]= 1 2   (4)

The dimension of BPF(k) is 20 × k. Here, we considered k = 5 
and 10 both at N-terminus and C-terminus, which resulted 
BPFN5, BPFN10, BPFC5, and BPFC10. In addition to this, we 
also generated BPFN5-BPFC5 and BPFN10-BPFC10.

Performance Assessment
A brief description of ML method employed in this study is 
given in the supplementary information, whose performances 
were evaluated using the receiver operating characteristic (ROC) 
analysis and the corresponding area under the ROC curve 
(AUC). An AUC value of 0.5 is equivalent to random prediction 
and an AUC value of 1 represents perfection. ROC analysis is 
based on the true positive rate and false positive rate at various 
thresholds. Furthermore, we used sensitivity, specificity, accuracy, 
and Matthews correlation coefficient (MCC) to assess prediction 
quality, which were defined as:

 

Sensitivity
TP FN

Specificity TN
TN FP

Accuracy TP TN
TP TN

=
+

=
+

=
+

+ +

TP

FFP FN

MCC TP TN-FP FN
TP FP TP FN TN FP TN FN

+

=
× ×

( + )( + )( + )( + )  

(5)
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FIGURe 1 | Overall framework of the proposed predictor. iBCE-EL development involved the following steps: (1) dataset curation, (2) feature extraction,  
(3) exploration of six different ML algorithms and selection of an appropriate algorithm and the corresponding features, and (4) construction of ensemble model.
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where TP is the number of true positives, i.e., BCEs classified 
correctly as BCEs, and TN is the number of true negatives,  
i.e., non-BCEs classified correctly as non-BCEs. FP is the number 
of false positives, i.e., BCEs classified incorrectly as non-BCEs, 
and FN is the number of false negatives, i.e., non-BCEs classified 
incorrectly as BCEs.

Cross-Validation
In this study, we adopted the 5-fold cross-validation method, 
where benchmarking data set is randomly divided into five 
parts, from which four parts were used for training, and the 
fifth part was used for testing. This process was repeated until 
all the parts were used at least once as a test set, and the overall 
performance with all five parts was evaluated.

ResULts

Methodology overview
Figure  1 shows a flowchart illustrating the methodology of 
iBCE-EL, which comprises four stages: (1) construction of an nr 
benchmarking data set of 9,925 peptides (4,440 BCEs and 5,485 
non-BCEs) and an independent data set of 2,518 peptides (1,110 
BCEs and 1,408 non-BCEs) from IEDB; (2) extraction of various 
features from peptide sequences, including AAC, AAI, CTD, DPC, 
and PCP, and generation of hybrid features (various combinations 
of individual compositions); (3) exploration of six different ML 
algorithms and selection of the appropriate ones and their cor-
responding features; and (4) construction of an ensemble model.

Compositional and Positional Information 
Analysis
Prior to the development of the ML-based prediction model, 
we performed compositional analysis using combined data  
set (i.e., benchmarking and independent) to understand the 
nature of the preference of amino acid residues in BCEs and  
non-BCEs. AAC analysis showed that Asn (N), Asp (D), Pro 
(P), and Tyr (Y) were predominant in BCEs (Figure  2A). 
However, Ala (A), Glu (E), Leu (L), Val (V), and Met (M) were 
predominant in non-BCEs (Welch’s t-test; P  ≤  0.05). DPC 
analysis showed that 32.25% of dipeptides differed significantly 
between BCEs and non-BCEs (Welch’s t-test; P  ≤  0.05). Of 
these, the 10 most abundant dipeptides in BCEs and non-BCEs 
were PP, SP, NK, NN, PN, NP, KY, QP, PY, and DP and LA, LT, 
KE, LL, VL, LQ, GL, AL, LE, and LS, respectively (Figure 2B). 
These results suggested that the most abundant dipeptides in 
BCEs were mostly pairs of aromatic–aromatic residues or a 
positively or negatively charged residue paired with proline. 
The most abundant dipeptides in non-BCEs were aliphatic-
aliphatic residues with hydroxyl group and aliphatic–aromatic 
amino acids. Overall, the differences observed in compositional 
analyses (AAC and DPC) can be used as an input feature for ML 
algorithms, where it can capture hidden relationships between 
features allowing a better classification. Therefore, we consid-
ered them as input features.

To better understand the positional information of each 
residue, sequence logos of the first 10 residues from the N- and 
C-terminals of BCEs and non-BCEs were generated using two 
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FIGURe 2 | Compositional and positional preference analysis. (A) and (B) respectively represent the amino acid and dipeptide preferences of BCEs and non-BCEs. 
(B) Shows significant differences in top 30 dipeptides. (C,d) Represent positional conservation of 10 residues at the N- and C-terminals, respectively, between 
BCEs and non-BCEs, generated using two sample logos. In (A,B), error bar is the SE that indicates the reliability of the mean. A smaller SE indicates that the 
sample mean is more accurate reflection of the actual population mean.
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sample logos (http://www.twosamplelogo.org). To test their 
statistical significance, the height of the peptide logos was scaled 
(t-test; P < 0.05). As shown in Figure 2C, at the N-terminal, Pro 
(P) at positions 2, 3, 4, and 6–10; Asn (N) at positions 2–8 and 
10; Asp (D) at positions 1, 2, 8, and 10; and Tyr (Y) at positions 
4, 5, 8, and 9 were significantly overrepresented, compared with 
other amino acids, while Leu (L) at positions 1, 2, 5, and 7–10; 
Ala (A) at positions 2, 3, and 6–9; Met (M) at positions 3, 6, 7, 
and 9; and Cys (C) at positions 4, 5, and 9 were significantly 
underrepresented. As shown in Figure  2D, at the C-terminal, 
Pro (P) at positions 1–7 and 10; Asn (N) at positions 1, 2, 5–7, 
and 9; Asp (D) at positions 3, 4, 6, and 7; and Tyr (Y) at positions 
1, 3, 4, and 6–10 were significantly overrepresented, compared 
with other amino acids, while Leu (L) at positions 1, 2, and 5–8; 
Ala (A) at positions 3, 4, 7, and 8; Glu (E) at positions 1, 9, and 
10; and Met (M) at positions 2, 7, 8, and 10 were significantly 
underrepresented. Notably, the predominant amino acids in the 
non-BCEs (particularly Leu, Val, and Met) were expected to be 
inside the proteins and if exist on the surface were likely to be 
present on the protein–protein interfaces. Conversely, the amino 
acids enriched in BCEs were mostly expected to be present on 
the protein surface. Overall, these results showed that BCEs and 
non-BCEs have contrasting amino acid preferences, which is 
consistent with the compositional analysis. Furthermore, posi-
tional preference analysis will be useful for researchers to design 
de novo BCEs by substituting amino acids at the specific position 
for increasing peptide efficacy. Interestingly, the properties of 

linear epitopes described here based on our data set are different 
from conformational epitopes (27), which is mainly due to the 
local arrangement of amino acids.

Construction of Prediction Models Using 
six different ML Algorithms
In this study, we explored six different ML algorithms, including 
SVM, RF, ERT, GB, AB, and k-NN, using five different encoding 
schemes (AAC, AAI, CTD, DPC, and PCP) and their combina-
tions (17 hybrid features), which included H1 (AAC + AAI); H2 
(AAC +  DPC +  AAI); H3 (AAC +  DPC +  AAI +  CTD); H4  
(AAC  +  DPC  +  AAI  +  CTD  +  PCP); H5 (AAC  +  DPC); 
H6 (AAC  +  CTD); H7 (AAC  +  PCP); H8 (AAI  +  DPC); H9 
(AAI + DPC + CTD); H10 (AAI + DPC + CTD + PCP); H11 
(AAI  +  CTD); H12 (AAI  +  PCP); H13 (DPC  +  CTD); H14 
(DPC + CTD + PCP); H15 (DPC + PCP); H16 (CTD + DPC); 
and H17 (AAC + AAI + PCP). Furthermore, we used six fea-
tures set based on binary profiles, including BPFN5, BPFC5, 
BPFN5 + BPFC5, BPFN10, BPFC10, and BPFN10 + BPFC10. For 
each feature set, we used six different ML algorithms as inputs 
and optimized their corresponding ML parameters (Table S1 in 
Supplementary Material) using 5-fold cross-validation on the 
benchmarking data set. We repeated 5-fold cross-validation 10 
times by randomly portioning the benchmarking data set and 
considering median ML parameters and average performance 
measures. The average performances of these six methods in 
terms of MCC is shown in Figure 3. RF, ERT, and GB performed 
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FIGURe 3 | Performance of six different ML-based classifiers. Performance of various classifiers in distinguishing between B-cell epitopes (BCEs) and non-BCEs.  
A total of 27 classifiers were evaluated using 10 independent 5-fold cross-validation techniques, and their average performances in terms of AUC is shown. The final 
selected model for each ML-based method is shown with arrows. Abbreviations: AAC, amino acid composition; DPC, dipeptide composition; CTD, chain-transition-
distribution; AAI, amino acid index; PCP, physicochemical properties; H1: AAC + AAI; H2: AAC + DPC + AAI; H3: AAC + DPC + AAI + CTD; H4: 
AAC + DPC + AAI + CTD + PCP; H5: AAC + DPC; H6: AAC + CTD; H7: AAC + PCP; H8: AAI + DPC; H9: AAI + DPC + CTD; H10: AAI + DPC + CTD + PCP; 
H11: AAI + CTD; H12: AAI + PCP; H13: DPC + CTD; H14: DPC + CTD + PCP; H15: DPC + PCP; H16: CTD + DPC; H17: AAC + AAI + PCP; N5: BPFN5;  
C5: BPFC5; N5C5: BPFN5 + BPFC5; N10: BPFN10; C10: BPFC10; and N10C10: BPFN10 + BPFC10.
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consistently better than other ML-based methods (SVM, AB, and 
k-NN), regardless of the input features, indicating that decision 
tree-based methods are better suited for BCE prediction. Next, 
we investigated the features that produced the best performance 
for each ML algorithm. We found that SVM and k-NN performed 
best when using N10C10 binary profile as input feature; ERT, RF, 
GB, and AB performed best when H7, H12, H15, and PCP were 
used as input features, respectively. This analysis showed that the 
use of PCP-containing hybrid features as inputs could improve 
the performance of the ML method. Among the 6 ML methods, 
surprisingly, RF, ERT, and GB showed similar performances with 
MCC of 0.437, 0.443, and 0.426, respectively, which was signifi-
cantly better than MCC of other 3 ML methods (SVM: 0.287, AB: 
0.398, and k-NN: 0.221).

Construction of iBCe-eL
An ensemble model (EM) refers to a combination of several 
pre diction models to make the final prediction (28). The major 
advantage of EMs over single models is the reported increase 
in robust  ness and accuracy (29). Here, we generated six ensemble  
models by combining different ML-based models, EM1 (GB +   
ERT); EM2 (GB + ERT + RF); EM3 (GB + ERT + RF + SVM); 
EM4 (GB  +  ERT  +  RF  +  SVM  +  AB); EM5 (GB  +  ERT  +   
RF +  SVM + AB + NN); and EM6 (GB +  SVM + ERT). EM 

was cal cu lated as follows: EM =
=

1
1n
Pii

n∑ , where n is the number of  

ML-based models and P is the predicted probability value. 
Notably, we optimized the probability cut-off values (P) with 
respect to MCC using the grid search to define the class (BCEs 
or non-BCEs), which is a quite common approach and has been 

applied in various methods (30, 31). A model that produced the 
highest MCC was considered as the optimal one for each ensemble 
model. Surprisingly, all these ensemble models showed similar 
performances (Figure S1A in Supplementary Material) and hence 
it seems difficult to pick the best one. However, we checked its 
transferability on an independent data set and selected a model 
that showed consistent performance both on benchmarking and 
independent data sets (Figure S1B in Supplementary Material). 
According to this criterion, EM1 was selected as the best model 
and was labeled as iBCE-EL. To compare the performance of 
iBCE-EL with other ML-based models developed in this study, 
same optimization procedure was applied (Figure 4). Our results 
showed that iBCE-EL, RF, ERT, GB, AB, SVM, and k-NN pro-
duced the highest MCC with an optimal cut-off of 0.35, 0.47, 0.45, 
0.26, 0.50, 0.41, and 0.41, respectively.

Performance of Various Methods on 
Benchmarking data set
We compared the performance of iBCE-EL with that of the other 
6 ML-based methods (RF, ERT, SVM, GB, AB, and k-NN). The 
results are shown in Table  1, where the methods are ranked 
according to the MCC associated with predictive capability. iBCE-
EL had the highest MCC, accuracy, and AUC of 0.454, 0.729, 
and 0.782, respectively. Interestingly, MCC, accuracy, and AUC 
of iBCE-EL were 0.8–15.9, 0.4–9.5, and 0.6–21.9% higher than 
those of the other six ML-based methods (RF, ERT, SVM, GB, AB, 
and k-NN). McNemar’s Chi-square test (32) was used to evaluate 
the statistical significance of the differences in the performances 
of methods. At a P-value threshold of 0.05, iBCE-EL significantly 

80

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FIGURe 4 | Optimization of probability value threshold. The x- and y-axes, 
respectively, represent the probability value threshold and Matthews 
correlation coefficient. The optimal value selected for each method is  
shown with a circle.

tABLe 1 | Performance comparison of iBCE-EL with other ML-based methods on the benchmarking data set.

Method Matthews correlation coefficient (MCC) Accuracy sensitivity specificity AUC P-value

iBCE-EL 0.454 0.729 0.716 0.739 0.782 –
GB 0.446 0.725 0.712 0.735 0.773 0.051
ERT 0.437 0.718 0.734 0.705 0.776 0.205
RF 0.434 0.718 0.717 0.719 0.770 0.051
AB 0.396 0.702 0.662 0.722 0.737 1.2e−16
k-NN 0.301 0.644 0.715 0.591 0.691 1.1e−9
SVM 0.295 0.634 0.634 0.602 0.696 <2.2e−16
LBtope 0.330 0.667 0.660 0.672 0.730 –

The first column represents the methods developed in this study. The columns 2–6 respectively represent the MCC, accuracy, sensitivity, specificity, and AUC value. The last column 
represents McNemar’s Chi-squared test was used to evaluate the performance between iBCE-EL and other methods. A P value <0.05 was considered to indicate a statistically 
significant difference between iBCE-EL and the selected method (shown in bold). For comparison, we have also included LBtope (LBtope_variable_nr) cross-validation performance 
on non-redundant data set.

tABLe 2 | Performance comparison of the iBCE-EL with other methods on independent data set.

Method Matthews correlation coefficient (MCC) Accuracy sensitivity specificity AUC P-value

iBCE-EL 0.463 0.732 0.742 0.724 0.789 –
GB 0.445 0.727 0.717 0.734 0.776 0.596
RF 0.434 0.718 0.718 0.718 0.777 0.839
ERT 0.440 0.719 0.742 0.703 0.780 0.476
AB 0.385 0.697 0.660 0.725 0.742 2.4e−05
LBtope 0.328 0.652 0.759 0.567 0.781 7.4e−06
k-NN 0.275 0.615 0.787 0.479 0.685 4.9e−05
SVM 0.269 0.624 0.721 0.548 0.694 1.4e−05

The first column represents the method employed in this study. The columns 2–6, respectively, represent the MCC, accuracy, sensitivity, specificity, and AUC value. The last  
column represents McNemar’s Chi-squared test was used to evaluate the performance between iBCE-EL and other methods. A P value <0.05 was considered to indicate a 
statistically significant difference between iBCE-EL and the selected method (shown in bold). LBtope (LBtope_variable_nr) used SVM threshold of −0.1 to define the class as 
reported in Ref. (17).
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outperformed SVM, k-NN, and AB and performed better than 
RF, ERT, and GB, thus indicating the superiority of iBCE-EL. 
To the best of our knowledge, iBCE-EL is the first ensemble 
approach for BCE prediction. For comparison, we also included 

LBtope (LBtope_variable_nr) cross-validation performance on 
an nr data set published previously (17). Although four variants 
are available for LBtope (LBtope_variable, LBtope_confirm, 
LBtope_variable_nr and LBtope_nr), LBtope_variable_nr is the 
only model that was developed using nr data set with variable 
length. Hence, we included only this model for comparison and 
evaluation. The accuracy, AUC, and MCC of iBCE-EL were 
higher than those of LBtope by ~6, 12.4, and 5.2%, respectively. 
To assess generalization and practical applicability of these  
models, we evaluated them using independent data set and 
compared their performances.

Performance of Various Methods on 
Independent data set
By comparing the newly developed method with existing algo-
rithms on the same data set, we could estimate the percentage of 
improvement. We compared the performance of iBCE-EL with 
those of LBtope and six other ML-based models. As shown in 
Table  2, iBCE-EL showed MCC, accuracy, and AUC of 0.463, 
0.732, and 0.789, respectively. Indeed, the MCC, accuracy, and 
AUC of iBCE-EL were ~2.0–19.4, ~0.5–11.7, and ~1.0–10.4% 
higher than those of the other methods, thus indicating the 
superiority of iBCE-EL.

At a P-value threshold of 0.05, iBCE-EL significantly outper-
formed SVM, AB, k-NN and LBtope, and performed better than 
ERT, RF and GB, thus indicating that our approach is indeed 
a significant improvement over the pioneering approaches 
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FIGURe 5 | Receiver operating characteristic curves of the various prediction models. Results of 5-fold cross-validation on (A) a benchmarking data set and  
(B) independent data set.
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in predicting linear BCEs. Interestingly, iBCE-EL performed 
consistently in both benchmarking and independent data sets 
(Figure 5) among the methods developed in this study suggesting 
its suitability for BCE prediction, despite the complexity of the 
problem. We made significant efforts to curate a large nr data 
set, explore various ML algorithms, and select an appropriate one 
for constructing an ensemble model thus resulting in consistent 
performance.

Comparison of iBCe-eL With LBtope 
Methodology
We compared our method and LBtope (LBtope_variable_nr) 
in terms of algorithm characteristics. Since the variation in 
the number of B-cell experiments were considered to classify 
the peptides (positive or negative), LBtope used ~2-fold larger 
benchmarking data set than iBCE-EL. Moreover, we tested for 
significant differences in the data set using positional informa-
tion analysis. However, we did not observe any significant differ-
ences between these two methods (Figure S2 in Supplementary 
Material). The choice of ML algorithm is different between these 
two methods, i.e., SVM used in LBtope, however, a combina-
tion of ERT and GB (ensemble model) were used in iBCE-EL. 
Interestingly, three features such as AAC, PCP, and DPC provide 
the most discriminative power for identifying BCEs; however, 
only DPC was used in LBtope.

Web server Implementation
Prediction methodologies available as web servers will be helpful 
for experimentalists, and several web servers for protein func-
tion predictions have been reported (23, 33–38). A web server 
has been developed to implement the iBCE-EL method and 
made publicly accessible at www.thegleelab.org/iBCE-EL for the 
use of the wider research community. Python, JAVA script, and 

HTML languages were employed to construct the web server. 
Users can submit amino acid sequences in the FASTA format. 
The output of the web server contains the class and predicted 
BCE probability values. The data set used in this study can also 
be downloaded from the iBCE-EL web server.

dIsCUssIoN

Computational identification of BCEs is one of the hot research 
topics in bioinformatics. An increasing number of experi-
mentally validated BCEs is growing exponentially in IEDB, 
where most BCEs are found to be derived from protein sequen-
ces. To identify BCEs from a given protein sequence, experi-
mental methods seem to be time-consuming, highly expensive, 
and complex to be utilized in a high-throughput manner.  
Therefore, recent efforts have focused on the development of 
computational methods to accelerate the identification of BCEs 
(12–15, 17, 39–46). Most existing BCE prediction methods 
were developed using very small data sets, with negative ones 
derived from randomly chosen peptides that are not experi-
mentally validated (13–15, 17, 40, 42). This practice is quite 
common in other peptide-based prediction methods, including 
those for anticancer, antifungal, and cell-penetrating peptides  
(30, 47, 48). Among existing methods, LBtope is the latest 
publicly available tool with three different prediction models 
(17). It was developed using an nr data set that produced an 
accuracy of 66.7%, which is far from satisfactory. Hence, a novel 
method with better accuracy is necessitated. In this study, we 
developed a novel software called iBCE-EL, which allowed us 
to predict BCEs from a given primary peptide sequence based 
on the features derived from a set of experimentally validated 
BCEs and non-BCEs.

To the best of our knowledge, the data set we utilized was the 
most stringent redundancy-reduced data set with variable length 
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of epitopes (12–25 amino acid residues). Recent studies demon-
strated that BCEs with shorter lengths (7–12 amino acids) bind 
antibodies poorly (49). Therefore, such shorter peptides were not 
considered in our data set. In general, models developed using 
such high-quality data sets would have a wide range of applica-
tions in modern biology (50). Before developing the prediction 
model, we analyzed our data set to understand the compositional 
and positional preferences of BCEs and non-BCEs. We found 
that Pro and Asn were highly abundant in BCEs, compared to 
non-BCEs. These observations were consistent with the results 
of previous reports, where immunoglobulin binding antigenic 
regions were found to be rich in Pro/Gly (51, 52) residues. Future 
studies should focus on the experimental validation of the bio-
logical significance of various dipeptides we found to be involved 
in B-cell induction.

It is essential to explore different ML algorithms using the 
same data set and then select the best one, instead of arbitrarily 
selecting an ML algorithm (47, 53–58). We explored six differ-
ent ML algorithms (SVM, RF, ERT, AB, GB, and k-NN) and 23 
different features encoding schemes for classifying BCEs and 
non-BCEs. All the features and ML algorithms used in this 
study have been successfully applied in various sequence-based 
classification methods (53–55, 59–61); however, only SVM and 
DPC were used in LBtope (17). To the best of our knowledge, 
this is the first study to evaluate several ML algorithms for 
BCE prediction. Our systematic evaluation of features and 
ML algorithms revealed that RF, ERT, and GB showed similar 
performances, respectively, with a combination of PCP and 
AAI, a combination of PCP and AAC, and a combination of 
DPC and PCP as input features. Subsequently, we constructed 
an ensemble method called iBCE-EL by fusing ERT and GB. 
iBCE-EL performed better than individual component clas-
sifiers. The ensemble approach has been successfully applied 
for various problems, including signal peptide prediction (62), 
membrane protein type classification (63), protein subcellular 
location (64), and DNase I hypersensitive site prediction (65). 
However, this is the first instance where this approach has 
been utilized for BCE prediction. iBCE-EL performed signifi-
cantly better than the existing method and six other methods 
developed in this study, when objectively evaluated on an 
independent data set. Interestingly, the performance of iBCE-
EL was consistent on both benchmarking and independent 
data sets, thus indicating its ability to classify unseen peptides 
well when compared to other methods. The superior perfor-
mance of iBCE-EL was primarily due to the larger size of the 
benchmarking data set, rigorous optimization procedures to 
select the final ML parameters, and the choice of ML methods 
to construct the ensemble model. Future studies should focus 
on identifying novel features that can be combined with the 
current feature set to further improve prediction performance. 
Furthermore, we expect that our proposed algorithm could 
also be applied to other fields of peptide or protein function 
prediction. Several authors still query whether BCE could be 
considered as a discrete feature of a protein molecule or not. 
Indeed, van Regenmortel suggests that an epitope is not an 

intrinsic feature of a protein molecule, but is a relational entity 
that can be defined only by its ability to react with the paratope 
of an antibody molecule (6, 27, 43, 49, 66).

In conclusion, we proposed a novel ensemble method called 
iBCE-EL to classify a given primary peptide sequence as BCE or 
non-BCE. The essential component of this study is the generation 
of high-quality data sets with several manually curated BCEs and 
non-BCEs. iBCE-EL showed consistent performance with both 
benchmarking and independent data sets, thus indicating its 
effectiveness and robustness. We have also created a user-friendly 
web interface, allowing researchers to use our prediction method. 
iBCE-EL is the second publicly available method for predicting 
BCEs, and its accuracy is remarkably higher than that of currently 
available methods. We anticipate that iBCE-EL will become a 
very useful tool for BCE prediction.
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and Yariv Wine*
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Reproducible and robust data on antibody repertoires are invaluable for basic and 
applied immunology. Next-generation sequencing (NGS) of antibody variable regions 
has emerged as a powerful tool in systems immunology, providing quantitative molecular 
information on antibody polyclonal composition. However, major computational chal-
lenges exist when analyzing antibody sequences, from error handling to hypermutation 
profiles and clonal expansion analyses. In this work, we developed the ASAP (A web-
server for Immunoglobulin-Seq Analysis Pipeline) webserver (https://asap.tau.ac.il). The 
input to ASAP is a paired-end sequence dataset from one or more replicates, with or 
without unique molecular identifiers. These datasets can be derived from NGS of human 
or murine antibody variable regions. ASAP first filters and annotates the sequence reads 
using public or user-provided germline sequence information. The ASAP webserver next 
performs various calculations, including somatic hypermutation level, CDR3 lengths, V(D)
J family assignments, and V(D)J combination distribution. These analyses are repeated 
for each replicate. ASAP provides additional information by analyzing the commonalities 
and differences between the repeats (“joint” analysis). For example, ASAP examines 
the shared variable regions and their frequency in each replicate to determine which 
sequences are less likely to be a result of a sample preparation derived and/or sequenc-
ing errors. Moreover, ASAP clusters the data to clones and reports the identity and 
prevalence of top ranking clones (clonal expansion analysis). ASAP further provides the 
distribution of synonymous and non-synonymous mutations within the V genes somatic 
hypermutations. Finally, ASAP provides means to process the data for proteomic anal-
ysis of serum/secreted antibodies by generating a variable region database for liquid 
chromatography high resolution tandem mass spectrometry (LC-MS/MS) interpretation. 
ASAP is user-friendly, free, and open to all users, with no login requirement. ASAP is 
applicable for researchers interested in basic questions related to B cell development 
and differentiation, as well as applied researchers who are interested in vaccine devel-
opment and monoclonal antibody engineering. By virtue of its user-friendliness, ASAP 
opens the antibody analysis field to non-expert users who seek to boost their research 
with immune repertoire analysis.

Keywords: high throughput sequencing, antibodies, B cell receptor, next generation sequencing, Ig-Seq, AIRR-
Seq, antibody repertoire analysis, immune repertoire
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FIguRe 1 | The diversity of antibody sequences and structures and molecular methodologies for next-generation sequencing. (A) Antibodies are comprised of two 
identical heavy chains and two identical light chains, each encoded on a different chromosome, both in human and in mouse. Diversity is achieved by chromosomal 
rearrangement, where different V, D, and J (V and J) genes are combined to construct the variable region of the heavy (light) chain of the antibody. In yellow are 
random nucleotides introduced during the chromosomal rearrangement process. (B) A detailed view of the variable region. Shown are the forward and reverse 
primers used for amplification. Several alternative primers, both forward and reverse, are used in order to capture the diversity of the variable region and its 
associated isotypes. The forward primers anneal to the framework 1 (FR1) region. Red regions within the primers represent adaptor sequences.
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InTRoDucTIon

The power of the adaptive immune system relies on its ability 
to generate an exceptional diversity in the genes encoding the 
variable region of B cell receptors and their secreted form, the 
antibodies. This diversity of antibodies is achieved by several 
unique molecular mechanisms, including chromosomal V(D)J  
rearrangement during B cell maturation in the bone marrow, N-P 
addition/deletion in the ligated V(D)J genes and somatic hyper-
mutations (SHM) following antigen stimuli in the peripheral 
lymph nodes (1) (Figure 1A).

Antibodies can reach an enormous theoretical diversity of 
1013–1018. However, the actual diversity is more restricted and 
was estimated to reach 1011–1012 in humans (2). Due to labor 
and cost considerations, as well as the lack of suitable high-
throughput technologies, analysis of such complex repertoires 
using traditional Sanger sequencing was impractical for many 
years, resulting in major knowledge gaps regarding antibodies 
molecular composition. This precluded the ability to address 
many fundamental immunological questions related to the devel-
opment of the immune response in health, disease, and following 
vaccination.
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TABle 1 | Summary of the analyses supported in ASAP compared to other related webservers.

Feature ASAp BRepertoire ARgalaxy Vidjil VDJviz VDJServer

Paired-end alignment + − + + − +

VDJ annotation + − + + − +

Framework and CDR3 annotation + − + + − +

Filtering + − + + − +

Data trimming + − + + − +

Unique molecular identifier clustering + − − − − +

Inclusion of novel germline alleles + − − + − −

CDR3 length distribution + + + + + +

Somatic hypermutations level + − + − − +

Synonymous/non-synonymous mutations + + + − − +

Isotype distribution + − + − − −

Joint analysis for replicates + − − − − +

Clonal analysis + + + + + +

V(D)J usage + + + + + +

V-D-J combination analysis + + + + + +

Clone ranking detailed analysis + – − − + +

Integrative database of all unique variable region sequences including sequence metadata + – − − − −

MS ready database for proteomics analysis of secreted antibodies + – − − − −

Amino acid level sequences linked to nucleotide level + – − − − −

Single push-button for all analysis steps + – + − − −
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The introduction of next-generation sequencing (NGS) plat-
forms has significantly advanced research in many scientific 
fields and opened new avenues in genomics and transcriptomics 
research. For immunoglobulin sequencing (Ig-Seq), which is 
also termed adaptive immune receptor repertoire sequencing 
(AIRR-Seq), NGS provided the means to underline quantitative 
measures of the immune response in an unprecedented through-
put and since 2009 (3), the number of studies that applied NGS to 
analyze immune repertoires has increased substantially.

AIRR-Seq is based on targeted sequencing of genomic DNA 
or mRNA and in principle focuses on recording the diversity of 
the variable region (which includes the V(D)J genes) encoding 
the heavy (VH) and/or light (VL) chains of antibodies (Figure 1B). 
The variable region encodes the most diversified sites of the anti-
bodies as they are the product of chromosomal rearrangements 
and SHMs and comprise three complementary determining 
regions (CDR1-3) in each antibody chain (Figure  1B). Due to 
the recombination and non-templated diversification mecha-
nisms that generate the CDR3 of the heavy chain (CDR-H3), it is 
considered the most diverse determinant in terms of length and 
sequence of AIRR. CDR-H3 is thus pivotal for antibody specific-
ity, although it was recently suggested that CDR-H3 is necessary, 
albeit insufficient, for specific antibody binding (4).

Accumulating AIRR-Seq data provide invaluable insights 
regarding the nature of the immune response in health and 
disease. These data were shown to be important for isolation 
and expression of antigen-specific monoclonal antibodies (5, 6), 
sequencing and cloning antibodies from single cells (7, 8), and 
proteomic analyses of secreted antibodies (9–11). These sequenc-
ing data can further facilitate the elucidation of the properties of 

antigen-specific antibodies that mediate protection against infec-
tious diseases, are induced following vaccination, and generated 
in cancer and autoimmune diseases.

While AIRR-Seq is a powerful tool for immune repertoire 
analysis, errors accumulated during the experimental procedure 
(e.g., PCR and sequencing errors) make it extremely difficult to 
confidently/reliably determine the qualitative and quantitative 
measurements of the immune repertoire and establish an error-
free antibody variable region sequence database. High confidence 
antibody variable region archives are particularly important when 
AIRR-Seq is combined with the utilization of serum antibodies 
proteomics (12–16), as these archives define the search space to 
interpret the proteomic spectra.

To overcome these challenges, experimental and computational 
strategies can be employed to reduce error-derived “noise” (17, 
18). One such strategy utilizes replicate samples (either technical 
or biological) (19, 20). The main advantage of this approach is 
that it does not require complex experimental protocols that may 
prevent researchers from exploring the potential usage of AIRR-
Seq in their research. Noteworthy, while great effort is invested 
in the development AIRR-Seq analysis tools, there is still no 
consensus on standard operating procedures for data processing 
and deposition. To address these issues, the AIRR Community 
was established in 2014 (http://airr.irmacs.sfu.ca/home) (21, 22).

Here, we report ASAP (A webserver for Ig-Seq Analysis 
Pipeline), a webserver for the analysis of AIRR-Seq data from 
several replicates, that is user-friendly, simple, free, and open to 
all users. ASAP is easily accessible to researchers who are inter-
ested to address basic questions related to B-cell development 
and differentiation in health and disease, as well as to researchers 
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FIguRe 2 | Schematic flowchart for the analysis of each next-generation sequencing replicate (individual) as well as the analyses of the entire set of replicates (joint).
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interested in applicable vaccine development and monoclonal 
antibody engineering. ASAP provides several unique features that 
are absent from other published webservers dedicated for AIRR-
Seq data processing, analysis, and visulation (Table 1). ASAP and 
its associated source code are freely available at https://asap.tau.
ac.il and https://github.com/orenavram/ASAP, respectively.

ReSulTS

The webserver ASAP allows analysis of the complete B  cell 
receptor repertoire based on NGS replicates of antibody variable 
region sequencing experiments. Implemented in Python 3, ASAP 
is simple, user-friendly, and freely available for all users.

The simplicity of the webserver allows researchers of diversi-
fied expertise levels to submit up to six replicates, given that the 
replicates use different barcodes. ASAP consists of two major 
parts: the individual part, in which each replicate is analyzed 
separately, and a joint part, in which the commonalities and dif-
ferences among the replicates are analyzed. A complete overview 
of the ASAP workflow and output information is shown in 
Figure 2. A detailed description of all types of analyses provided 
by ASAP can be found on the webserver’s Gallery section.

To exemplify the advantages of ASAP, we present here a 
demonstration of the entire webserver workflow by analyzing 
previously published antibody sequence data (23). These data 
were obtained from murine pools of plasmablasts and plasma 
cells in technical triplicates, i.e., three samples prepared from 
the same starting cDNA pool. All samples were sequenced using 
Illumina MiSeq platform, 2 × 250 bp paired-end reads (European 
nucleotide archive study accession: PRJEB4643).

Individual processing
The input to ASAP is two FASTQ files for each replicate (paired 
end files). These files are initially processed by the ASAP 

webserver using the MiXCR software (24), which provides full 
V(D)J assignment, frameworks, and CDR3 annotations.

Alignment files that were generated by MiXCR are further 
processed. Aligned sequences are filtered out if at least one of 
the following conditions is met: (1) sequence contains a stop 
codon in the variable region ORF; (2) the two paired-end reads 
do not overlap; (3) the obtained sequences are shorter than a 
specified threshold (default set to be 300 nucleotides); (4) read 
quality is lower than a specified threshold (default set to be 20). 
A file describing the number of sequences filtered due to each 
criterion is provided. In case the reads are associated with a 
unique molecular identifier (UMI), reads with the same UMI 
are collapsed to a single sequence and errors are corrected based 
on the consensus sequence (25). For UMI analyses, the user has 
to provide the UMI pattern according to the IUPAC nucleotide 
code. Notably, UMI are handled in cases where the UMI is found 
only on the forward read, only on the reverse read, or both, as 
described in Ref. (19).

Each chain type has a different output section as follows. 
The first output of the processed data is an annotation file (e.g., 
“IGH_aa_sequence_annotations,” for the IGH chain). In this file, 
each row contains the following information regarding unique 
amino acid sequences (identical sequences are grouped to a single 
line): [1] chain type (VH, Vκ , or Vλ); [2] antibody isotype associ-
ated with the VH sequences (e.g., for human sequences: IgM, 
IgD, IgG, IgA1, IgA2, or IgE); [3] the trimmed nucleotide read 
(without the adapter sequence); [4] the corresponding amino 
acid sequence; [5] amino acid sequence of the CDR3 region; [6] 
V family subgroup; [7] D family subgroup; [8] J family subgroup; 
[9] the number of reads for this amino acid sequence (counts).

The isotype assignment is computed by string matching to 
peptides defining each isotype. These peptides correspond to the 
N terminus of the antibody CH1 region (Figure  1A) and were 
derived from IMGT (26) (Table  2). Isotypes are assigned by 
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TABle 2 | The sequence fingerprint characteristic of each isotype in human and 
mouse.

Isotype human Mouse

M GSASAPT ESQSFP
D APTKAP GDKKEP
G ASTKGPS AKTT[A/P]P
A ASPTSP ESARNP
A1 ASPTSPKVFPLSLCSTQP –
A2 ASPTSPKVFPLSLDSTPQ –
E ASTQSP ASIRNP

FIguRe 3 | A pie chart showing the distribution of isotypes in a specific next-generation sequencing (NGS) replicate. Note, this chart was generated using 
unpublished human NGS data.
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searching for an exact match between a substring of the translated 
read and these peptides. Specifically, the peptides are searched 
against the C terminal region to the Framework-4. This region is 
defined by the string VTVSS in human and by the strings VTVSS, 
LTVSS, and VTVSA in mouse. In case no match is found, the server 
searches for the closest match. In case the difference between the 
closest match is more than a single amino acid mismatch, the 
isotype is classified as “unknown.” In addition, for certain human 
samples, the server is unable to distinguish between the A1 and 
A2 isotypes, e.g., when the relevant peptide motif information 
used for this classification is ambiguous (the peptide motif ends 
with CSTQP for A1 and DSTPQ for A2; Table 2). In this case, the 
isotype is defined as “IgA.” This isotype information is included 
in the annotation file described above. The frequencies of each 
isotype are graphically presented as a pie chart (Figure  3). Of 
note, the ability to detect the various isotypes depends on the 
primers used within the experimental setup.

Next, ASAP provides information regarding SHM. For each 
DNA read, the number of mutations with respect to the germline 
is recorded (Figure  4A). Mutations are stratified to silent and 
non-silent (synonymous and non-synonymous, respectively). 
These data are provided as a file and are also displayed as boxplots 
(Figure 4B). ASAP additionally allow conducting this step using 
germline sequences provided by a user.

CDR3 length distribution was shown to vary in response to 
specific challenges (27–30). ASAP hence provides the distribu-
tion of CDR3 length for each replicate, both as a file and as a 
histogram (Figure 5).

Each of the V, D, and J genes can be encoded by several 
distinct alleles termed subgroups (26). Thus, for each gene, the 
server provides the frequency of unique amino acid sequences 
included in each subgroup. These data are graphically shown 
as three histograms. An example of such a histogram is 
shown in (Figure  6). Data regarding the subgroup usage 
and combination were previously shown to be important 
for understanding the nature and dynamics of the immune 
response, facilitating the distinction between cell types (31, 32).  
ASAP thus also provides the frequencies of all possible sub-
group combinations. An example of the histogram is shown in  
Figure 7.

A clone is defined as the collection of antibody sequences 
that likely originated from a single B cell lineage. Clonal analysis 
may provide insights into the evolution of the antigen-specific 
response of that lineage (11). In practice, clones are defined by 
clustering variable region sequences that comprise highly similar 
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FIguRe 4 | Somatic hypermutation analysis. (A) A histogram showing the frequency of the number of base pair mutations in a next-generation sequencing 
replicate. The X axis represents the number of mutations (both synonymous and non-synonymous) defined by comparison to the germline genes. (B) The number of 
non-synonymous (Ka) and synonymous (Ks) mutations and their ratios (Ka/Ks), based on comparison to the germline genes. The Y axis is the number of mutations 
per codon. Each dot represents a unique variable region nucleotide sequence. 
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CDRH3 regions, although the exact definition of this similarity 
varies among studies (10, 15, 33). Here, we define a clone as all 
variable region sequences with an identical CDRH3 region (at the 
amino acid level). Let y be the number of reads that are associated 
with a specific clone. Some of the reads are identical, and some 
differ in their nucleotide sequence. Let x be the number of unique 
amino acid sequences within a clone (these sequences differ in 
regions other than the CDRH3 region; x ≤ y). Both x and y are 

biologically important: y is indicative of the level of sequence 
variance within a clone, a phenomenon called clonal expansion 
(2) and x is indicative of the proliferation tendency of the clone 
(or when cDNA is used, high values of x may also indicate high 
expression levels). In ASAP, the data regarding these x and y 
values are provided for each clone, as well as a graph showing 
these values for the K clones (the default is K =  100) with the 
highest y values (Figure 8).
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FIguRe 6 | The distribution of V subgroups in a replicate. Shown is the distribution of the subgroup families for the heavy chain of IgG.

FIguRe 5 | The distribution of CDR3 length (number of amino acids) in a next-generation sequencing replicate.
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For each of the above K clones, ASAP also provides a file for 
the multiple sequence alignment between all clone members. 
These multiple sequence alignments are also visualized by Wasabi 
(34). An addition annotation file includes the following informa-
tion for each clone: [1] CDRH3 amino acid sequence; [2] CDRH3 

counts (the y parameter described above); [3] unique variable 
region amino acid sequence counts (the x parameter described 
above); [4] the consensus sequence; [5] the amino acid sequence 
of the clone member which is most similar to the consensus 
sequence; [6] the similarity score; [7] the DNA sequence of the 
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FIguRe 8 | Clonal expansion. The X axis shows the most prevalent 100 clones. For each clone, the Y axis represents the number of variable region amino acid 
reads supporting each clone (in blue) and the number of contributing unique variable region amino acid sequences (in green).

FIguRe 7 | The distribution of the V(D)J combinations in a next-generation sequencing replicate. Shown are the frequencies of the various combinations between 
the V and J subgroups.
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most similar sequence. Finally, for each clone a sequence logo 
graph is also provided (Figure 9).

In addition, ASAP generates a specific FASTA file for each 
chain type (e.g., VH AA Sequences.fasta). In each such a file, all 
amino acid sequences of the variable region are given. For each 
sequence, the following information is given in its header: chain 
type and isotype, the CDR3 amino acid sequence, the V, D (only 
in VH), and J subgroup families, and unique variable region 
occurrences (at the amino acid level). For proteomic analyses, 
and in particular, those aimed to analyze antibody repertoires, the 
C terminus of the variable region sequence (i.e.,  the N terminal 
of the CH1 region) must include a proteolytic cleavage site (9).  
To this end, the server allows concatenating for each of the 
sequences in the above FASTA file a proteolytic cleavage site.  
By default, the “ASTK” and “AK” peptides are added after the FR4 
motif (Figure 1B) of the heavy chain, for the human and mouse 
sequences, respectively. These suffixes introduce a trypsin cleavage 

site at the C terminus of IgG sequences. Alternatively, users can 
introduce other suffixes of their choice, including isotype-specific 
suffixes in case that non-IgG isotypes are proteomically analyzed.

ASAP provides a supportive file that maps each amino acid 
sequences in the abovementioned file to the associated nucleotide 
sequences. A file is provided for each chain type (e.g., VH AA 
TO DNA reads, fasta). Within each file, for each amino acid 
sequence the following information is given: the header includes 
the variable region amino acid sequence itself. For each header, 
the nucleotide sequences that are  associated with the amino acid 
sequences are provided coupled with the original index from the 
FASTQ file.

Joint Analysis
After each replicate is analyzed as outlined above, the server also 
reports statistics based on replicate integration (a “joint” analysis).  
Importantly, while valuable information can be obtained by 
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FIguRe 9 | Sequence logo of one of the top clones.
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analyzing individual runs, the benefit of the joint analysis is that 
a single graph for each attribute of the data is generated based 
on shared reads, e.g., the top K clones based on the ensemble of 
all repeats. Thus, the joint analysis is beneficial for filtering out 
dataset specific reads, which may be unreliable, for pointing out 
problematic repeats, and as a platform to get characteristics and 
statistical measurements from the entire data. Notably, establish-
ing a single reliable data is of vast importance for downstream 
applications, such as mass spectrometry (see below).

The first step in this joint analysis is to construct a joint annota-
tion file, in which the reads from all replicates are aggregated, and 
which is otherwise in the same format as the individual files for 
each replicate analysis (individual analysis). Based on this joint 
analysis, ASAP produces the entire set of statistics, as described 
above for the single replicates (see previous section). The differ-
ences and commonalities among the multiple runs are further 
characterized, as outline below.

The correlation between each pair of runs is reported in 
terms of the frequencies of each sequence. High correlation 
(Figure 10A) point to reproducible replicates while lower levels 
of correlations (Figure  10B) can point to biases that may be 
derived from experimental or sequencing problems.

Similar to the single individual processing, ASAP generates a 
FASTA file, which provides the entire list of amino acid sequences 
shared among all replicates. Unlike the individual processing 
file, information regarding the unique variable region occur-
rences summed over all replicates (at the amino acid level) and a 
comma separated list of these occurrences in each replicate is also 
provided. The server additionally provides a Venn diagram that 
depicts the intersections among the different replicates, present-
ing the number of unique variable region amino acid sequences 
shared between the replicates (Figure 11).

DIScuSSIon

The ASAP webserver described here provides bioinformatic sup-
port for AIRR-Seq analysis. It is simple, free, and does not require 
a login information. Several webservers for analyzing AIRR-Seq 
obtained via NGS have been recently reported (35–39). However, 
the ASAP server offers a number of unique advantages, including 
the analysis of multiple replicates, defining custom search space to 
include new germlines, preparation of the data for proteomic analy-
ses, and single push button analysis of raw data directly obtained 
from the NGS platform, without requiring any pre-analyses. This 
latter feature allows non-expert users to readily use ASAP for ana-
lyzing their data. Table 1 summarizes the analyses supported by 
ASAP compared to other related webservers.

Clonality is an important concept in antibody repertoire 
analysis. Yet, its exact definition varies among different studies 
and tools. For example, clonality may be defined based on either 
DNA or amino-acid sequences. Most commonly, computational 
clustering of variable region sequences into clones is based on 
the CDR-H3 region (2). Clearly, with the enormous increase in 
NGS data available for such studies, concepts such as clonality 
are rapidly evolving and choosing a specific criterion may result 
in too narrow or too wide clustering (under-clustering and over-
clustering, respectively). Thus, clustering analysis such as the one 
provided in this webserver should be taken with a grain of salt 
when interpreting biological data.

We rely on the MiXCR software for the initial processing that 
uses germline information from IMGT. Novel germline alleles are 
inferred and discovered in an accelerated pace (40–42). Thus, it is 
clear that the set of germline sequences found in IMGT is restricted. 
This emphasizes the need to enable flexibility in defining the anno-
tation search space to include new germlines. The inclusion of such 
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alleles will directly affect the V(D)J usage profile, clonality, and 
level of SHM, thus eventually reflecting on the obtained biological 
insights. ASAP provides the option to append the germline space 
with provisional novel alleles. This option enables to annotate the 

AIRR-Seq data with these alleles and to inspect the impact of miss-
ing germline alleles on downstream analyses.

In various fields of biology, analyzing multiple repeats is a 
requirement, e.g., in expression analyses (43) or ChiP Seq data (44). 

FIguRe 10 | Pearson correlation between two next-generation sequencing replicates. Each dot represents a unique amino acid variable region. The X and Y axes 
indicate the number of times each such read appears in the first and the second replicate, respectively. (A) Replicates with high reproducibility and (B) with lower 
reproducibility between replicates.
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The importance of repeats is critical in high-throughput analyses 
in order to remove random noise, thereby increasing the signal to 
noise ratio. While experimental and computational methodolo-
gies to increase this ratio do exist (19, 45, 46), these approaches 
often require sophisticated experimental setups, precluding their 
utilization by non-experts. Moreover, even when applying these 
experimental approaches, a further increase in signal to noise 
ratio can be achieved by experimental repeats. This motivated us 
to implement robust inference procedures for analyzing multiple 
repeats, e.g., the correlations between repeats, a Venn diagram 
showing the intersections among repeats, etc. Given the constant 

reduction in NGS costs, we expect repetitions in NGS experiments 
to become the standard procedure in the field of AIRR-Seq.

AIRR-Seq can also be used for proteomic identification 
of monoclonal antibodies within the polyclonal pool present 
in biological fluids. B cells effector function is the expression 
and secretion of antibodies into the blood or mucosal tissues. 
However, the composition of these antibodies remained elusive 
for many years. Proteomic identification of secreted antibod-
ies requires the consolidation of a high confidence individual 
specific antibody archive in order to interpret the LC-MS/MS 
spectra. The utilization of proteomic analysis of antibodies 
from serum or secretion is emerging as a powerful tool to 
investigate their molecular composition, relative concentra-
tions, temporal dynamics, and the relationship to well-studied 
B cells (6, 8–10, 12, 13, 15).

ASAP currently allows analyzing antibody sequences obtained 
from either human or mouse. While most studies involving 
AIRR-Seq focus on these two model organisms, in the future, 
antibody repertoire analyses from an extended taxonomical sam-
pling should provide information about the differences among 
organisms, thereby providing insights into the evolution of the 
adaptive immune response.
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The evolution of antibodies in an individual during an immune response by somatic 
hypermutation (SHM) is essential for the ability of the immune system to recognize and 
remove the diverse spectrum of antigens that may be encountered. These mutations are 
not produced at random; nucleotide motifs that result in increased or decreased rates 
of mutation were first reported in 1992. Newer models that estimate the propensity for 
mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity 
of SHM targeting and suggested possible new hot spot motifs. Even with these fine-
grained approaches, however, non-local context matters, and the mutations observed 
at a specific nucleotide motif varies between species and even by locus, gene segment, 
and position along the gene segment within a single species. An alternative method has 
been provided to further abstract away the molecular mechanisms underpinning SHM, 
prompted by evidence that certain stereotypical amino acid substitutions are favored 
at each position of a particular V gene. These “substitution profiles,” whether obtained 
from a single B cell lineage or an entire repertoire, offer a simplified approach to predict 
which substitutions will be well-tolerated and which will be disfavored, without the need 
to consider path-dependent effects from neighboring positions. However, this comes at 
the cost of merging the effects of two distinct biological processes, the generation of 
mutations, and the selection acting on those mutations. Since selection is contingent on 
the particular antigens an individual has been exposed to, this suggests that SHM may 
have evolved to prefer mutations that are most likely to be useful against pathogens that 
have co-evolved with us. Alternatively, the ability to select favorable mutations may be 
strongly limited by the biases of SHM targeting. In either scenario, the sequence space 
explored by SHM is significantly limited and this consequently has profound implications 
for the rational design of vaccine strategies.

Keywords: somatic hypermutation, hot spot motifs, affinity maturation, substitution profiles, vaccine design

iNTRODUCTiON

In order to combat an arbitrarily large number of unknown pathogens, the humoral immune sys-
tem relies on three mechanisms to generate diversity in antibody variable domains. In the primary 
repertoire, combinatorial diversity is created by the random joining of germline-encoded V, D, and 
J heavy chain or V and J light chain gene segments. During this process, junctional diversity is 
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also introduced through the action of exonucleases and terminal 
deoxynucleotidyl transferase. This results in an estimated 1015–1018 
possible unique naive B cell (1, 2). Furthermore, upon encounter-
ing cognate antigen, a naive B cell can enter a germinal center and 
begin to undergo somatic hypermutation (SHM), increasing the 
number of realizable antibodies by several additional orders of 
magnitude. However, the total number of circulating B cells in a 
human is only ~109 (3, 4), meaning that if all possible antibodies 
were equally likely to be made, the odds of correctly producing 
one capable of binding to and clearing a particular antigen would 
be minuscule. In fact, precisely such arguments were initially 
used to argue against the “somatic” theory of antibody diversity 
predicting the existence of SHM (5). Hood and Talmage even 
pointed out that potential number of wasted mutations alone (i.e., 
those leading to non-functional antibodies and cell death) would 
far exceed the total number of cells thought to be produced over 
a human lifetime (6).

Nonetheless, the immune system has also evolved mechanisms 
for biasing the generation of diversity in ways, which presumably 
optimize the search for effective antibodies. For instance, different 
V gene segments are used at different frequencies (7, 8) and cer-
tain D genes may be more often recombined with specific J genes 
(9, 10). Many studies have shown that the parameters governing 
recombination vary dramatically from a uniform distribution 
and are generally reproducible between individuals (2, 11–14). 
Indeed, they appear to be optimized to produce B cells that can 
pass tolerance checkpoints and mature into naive B cells (2).

The SHM process is similarly biased. Soon after the first experi-
mental confirmations of SHM (15, 16), it was quickly noted that 
mutations are more clustered together than random expectation 
(17) and fall into intrinsic hot spots (18, 19). Since the discovery 
of activation-induced cytidine deaminase (AID), the enzyme 
that initiates SHM by deaminating cytidine to uridine (20–22), 
much progress has been made in understanding the molecular 
origins of these biases. Many factors have been described that 
participate in targeting AID activity to the Ig loci by associating it 
with enhancer transcription and polymerase stalling [reviewed in 
Ref. (23–25)]. Studies of the specificity loop of AID (26–28) have 
elucidated the basis for the preferential deaminations of cytidines 
within specific microsequence motifs. Finally, investigations of 
uracil-DNA glycosylase, MutSα, DNA polymerase η, and many 
other components of the base excision and mismatch repair 
pathways have revealed some of the mechanisms behind patterns 
of mutations other than the C→T transitions generated directly 
by AID [reviewed in Ref. (25, 29, 30)].

The study of AID and other molecular components of the SHM 
machinery has always been complemented and even driven by 
computational approaches. For instance, the two-phase model of 
SHM (deamination by AID, followed by removal of the resulting 
uracil and error-prone repair) was first proposed in response to 
the observation that SHM is more focused on RGYW (where R is 
A or G; Y is C or T; and W is A or T) hot spots in MSH2-deficient 
mice (31). Similarly, the role of DNA polymerase η was deduced 
in part by comparing the motifs mutated by that enzyme to the 
WA hot spot motifs observed in SHM (32).

In addition, computational analysis can be clarifying, abstract-
ing away molecular details to reveal higher level patterns such as 

the canonical RGYW hot spot motif itself. Recent work has sug-
gested that the repertoire of nucleotide mutations generated by 
SHM can be further abstracted to amino acid substitution profiles 
(33, 34). These profiles point toward a new, simpler avenue for 
predictive analyses of the immune system, such as understanding 
potential responses to a specific vaccine immunogen. Here, we 
review the history, use, and limitations of microsequence motifs 
for predicting the targeting of SHM; the evidence that evolution 
has focused the SHM machinery toward producing specific types 
of amino acid changes at specific positions; the emerging use of 
substitution profiles and other similar predictive frameworks 
(FWR) for amino acid usages, along with their potential chal-
lenges and limitations; and how substitution profiles might find 
use in rational vaccine design.

MiCROSeQUeNCe MOTiFS

The idea that the diversity of antibody specificities could be 
attributed to ongoing accumulation of genetic mutations in 
proliferating lymphocytes was first proposed by Lederberg (35). 
Brenner and Milstein then suggested a mechanism based on DNA 
cleavage targeted to specific genetic loci, followed by exonuclease 
activity and error-prone repair (36). After the emergence of 
experimental support for this hypothesis (17, 37), analogy to the 
action of known mutagenic agents led Rogozin and Kolchanov 
to examine the possible influence of neighboring bases on the 
occurrences of mutations in antibodies. This resulted in the 
discovery of the now-canonical RGYW/WRCY hot spot motif 
(where the underline indicates the mutated base), as well as the 
apparently equally mutable TAA motif (38). Later, a disfavored 
cold spot motif of SYC (where S is C or G) was also reported (39).

However, despite the usefulness of the WRCY and TAA motifs, 
only about 30% of observed SHMs fall into such hot spots (38). 
Moreover, it quickly became clear that not all 8 WRCY sequences 
were equally “hot,” with AGCT being favored (19, 40–42) and 
AGCC or TGCG being disfavored (43, 44). At various times, 
WRCH (where H is A, C, or T) (45), WRCR (46), and WRCW 
(47) have been suggested as more accurate motifs, with the WRC 
thought to be the core motif (39, 46), with the last base possibly 
influencing the choice of repair pathways (45). Similarly, the 
originally proposed TAA motif was later refined to WA (32). In 
addition, other potential hot spot motifs have been suggested, 
such as CRCY and ATCT (48).

Another approach has been to explicitly calculate mutation 
rates for each possible nucleotide sequence of a given length. 
In the first such study, Smith estimated the relative mutability 
for all possible di- and trinucleotide motifs using downstream 
JK sequences from mouse hybridoma lines, concluding that the 
dinucleotides explained most of the variation in mutational 
targeting (40). They later extended this analysis to mouse and 
human heavy chains (49) and human kappa chains (50), using 
non-productive rearrangements instead of intronic sequences 
to calculate mutabilities in humans (49, 50). They found broad 
similarity between species and between heavy and kappa (49, 50), 
while a later analysis of non-productive human IgL sequences 
with higher mutation levels suggested substantial differences from 
IgH (51). Ohm-Laursen used non-productive rearrangements of 
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VH3-23 with JH4 or JH6 to derive a quartet model and showed that 
the frequency of mutation at specific motifs in the D and J genes 
correlated well with those in the V gene (43). A different quartet 
model used the V gene region of all publicly available antibody 
sequences and modeled the effects of the flanking nucleotides as 
independent from the position of the mutation itself (52). These 
authors found a high correlation of observed quartet mutation 
frequencies (~0.7) between heavy and light chains and between 
human and mouse antibodies. However, the full model could 
only explain around half of the variation in mutation frequencies 
in the real data (52).

More recently, with the advent of high-throughput sequenc-
ing technologies, attempts have been made to build out more 
finely discriminatory models. Yaari constructed a 5 nucleotide 
motif model using only synonymous mutations from functional 
sequences (44). The frequency at which each motif was targeted 
was highly correlated between individuals (~0.9), but the cor-
relation between expected and observed mutations was only 
0.67. Moreover, 46% of possible 5-mer motifs were not observed 
directly and had to be estimated from other similar motifs 
(44). The same group also immunized mice transgenic for the 
B1-8 heavy chain with (4-hydroxy-3-nitrophenyl)acetyl, which 
produces a response heavily biased toward λ chain usage (53). 
They sequenced the non-productive kappa chains from these 
animals and confirmed that the 5-mer mutation frequencies from 
functional and non-functional sequences correlated well with 
each other (48). They also built 5-mer models for mouse heavy 
chains and human light chains, finding an overall correlation of 
only 0.63 between the species. Specifically, C:G base pairs were 
observed to be more likely to mutate in mice and also to have a 
higher probability to result in a transition substitution than in 
humans (48).

To overcome the limitation of motifs that do not appear in the 
repertoire of germline Ig sequences, Elhanati et al. constructed a 
7-nucleotide position weight matrix (PWM) that treats each posi-
tion independently, finding a correlation of 0.8 between predicted 
and observed mutations frequencies (2). A later refinement of this 
model also calculated 7-mer PWMs for D and J gene-derived 
nucleotides, finding that those differed sharply from the PWMs 
learned for V genes (54). Another new approach, termed “samm,” 
uses a proportional hazards model with a lasso penalty and a flex-
ible motif dictionary to extract the most important features and 
construct motifs accordingly (55). When used to build a 5-mer 
motif model and compared directly to Cui et al. (48), the results 
are similar, but samm tended to discount the effect of the final 
nucleotide, inferring only 382 unique mutability values instead 
of 1,015 (55).

In addition to calculating the frequency of mutations at each 
motif, many groups have investigated the resulting mutation 
spectrums, or the relative rates of mutation to each possible 
destination nucleotide. Although a preference for transitions over 
transversions was first reported in the early 1990s (19, 56), Cowell 
and Kepler were the first to report a dependency on neighbor-
ing bases for mutations spectrums (57). They found that both 
nucleotides in a homodimer have an increased propensity for 
transitions, while AT and TA dinucleotides have a preference to 
mutate to AA or TT homodimers (57). Ohm-Laursen calculated 

mutation spectrums for all 4-nucleotide motifs (43), but did not 
specifically analyze the effects of context. The quartet model 
of Cohen calculated mutation frequencies independently for 
each possible destination nucleotide, finding that the particular 
substitution had as much impact on the variability of mutation 
frequencies as did the microsequence context (52). Several other 
groups have calculated mutation spectrums, as well (2, 44, 48, 
54) though those authors all deemphasized mutation spectrums 
compared to mutation frequencies or general properties of 
the antibody repertoire. This is due to the fact that mutation 
spectrums are considered less computationally tractable, as the 
underlying molecular machinery is significantly more complex 
and less well understood. In addition, they have been thought 
to be less useful, as the observed substitutions are presumed to 
be heavily influenced by selection for antigen binding, which 
acts on the amino acid sequence. One attempt has been made to 
parameterize an amino acid substitution matrix for antibodies 
(58), which does not compare favorably to real data when used to 
simulate SHM (33).

Even extended to 5- and 7-nucleotide motifs, microsequence 
context can only account for 70–80% of variability in mutation 
frequencies (2, 44, 52, 54). Much of the residual variation appears 
to be due to positional effects within the antibody sequence. 
Differences between FWR and complementarity determining 
regions (CDR) have been reported (49, 50, 52, 59), and regional 
variation can be observed even in non-Ig transgenes (59). In 
addition, mutation frequencies for the same sequence decay 
exponentially with distance from the transcription start site (60). 
In addition, differences between the heavy, kappa, and lambda 
chain loci are consistently observed (48, 49, 51, 52). The complex 
interdependence among all of these factors suggests that an 
evolutionary balancing has optimized the types and distributions 
of mutations produced by SHM.

evOLUTiONARY OPTiMiZATiON OF SHM

One of the primary selective pressures driving antibody gene evo-
lution is the need for functional diversity. Antibody genes were 
originally thought to be subject to “coincidental” or “concerted” 
evolution, as seen for other multigene families like ribosomal 
RNA and histone genes, with diversity generated by unequal 
crossing over and/or gene conversion (61, 62). However, an 
early study of the phylogenetic relationships between mouse and 
human VH genes suggested that the rate of VH gene duplication 
would have to be over 100-fold lower than for other multigene 
families (63). Later, studies with access to more sequences 
from more species were able to show that V gene evolution is 
instead governed by a “birth-and-death” process, which results 
in a more dynamic and diverse repertoire between species (64, 
65). Within VH genes, moreover, the germline sequences of the 
CDRs, but not FWRs, are under diversifying selection (63, 66). 
In addition, SHM is itself an evolutionarily ancient diversification 
mechanism, preceding the emergence of combinatorial V(D)J 
joining and the full diversification of VH genes (67). SHM has 
been observed in vivo in the horn shark (67), and AID orthologs 
with in  vitro deaminase activity have been isolated from carti-
laginous fish (68) and even jawless vertebrates (69). Although 
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all of the AID orthologs tested retained a general preference for 
WRC motifs over non-WRC substrates, the exact microsequence 
specificity varied substantially (68), suggesting co-evolution of 
the SHM machinery with antibody gene sequences to optimize 
the humoral immune response.

The interplay between evolution of the primary sequences of 
the germline repertoire and the biased mechanisms of SHM can 
also be seen in the fact that the codon composition of CDRs make 
them more prone to replacement mutations, while the structur-
ally important FWRs use codons that are biased toward silent 
mutations (70–72). Similarly, Wagner et  al. found that highly 
mutable AGY codons are preferentially used to encode serines in 
CDRs, while less mutable TCN codons tend to appear in FWRs 
(73). Kepler reported a general difference in codon usage between 
CDRs and FWRs, which was strongly correlated with differential 
mutability (74). Moreover, both the specific serine bias (75–77) 
and the general codon bias (78) appear to be phylogenetically 
conserved, emphasizing the importance of plasticity in the CDRs. 
In fact, recent work has demonstrated that AGC hot spot triplets 
in the CDRs are specifically conserved in the serine reading frame 
(79). These codons are exceptionally plastic, and mutated AGY 
serine codons are disproportionately involved in antigen contacts 
seen in crystal structures (79).

Shaping of the action of SHM extends beyond differences 
between CDRs and FWRs. For instance, Zheng et al. showed that 
C→T transitions are predominantly silent, and that those which 
would lead to replacement mutations are found primarily in cold 
spots (80). A similar, though less strict, distribution was reported 
for G→A transitions. Those authors speculate that this pattern 
might have evolved to keep mutations created directly by AID 
from overwhelming those caused by error-prone repair in phase 
II (80).

Somatic hypermutation is also targeted to be able to introduce 
gross structural changes to antibodies in a favorable way. For 
instance, mutations are frequently observed in human Vκ1-
derived antibodies at two FWR positions, which affect inter-
domain dynamics and enhance thermostability (81). Similarly, 
sequences that can give rise to an NxS/T glycosylation motif 
with only one nucleotide change are concentrated in the antigen-
proximal loops of the variable domains (82).

Evolution appears to shape the naive repertoire, as well. Recent 
work has demonstrated that observed biases in the usages of vari-
ous V gene segments correlates with the predisposition of each 
gene to focus SHM toward its CDRs (72). More generally, the 
likelihood that the antibody encoded by an immature B cell can 
survive central tolerance and get selected into the naive repertoire 
correlates with the likelihood of that sequence being generated by 
the recombination machinery in the first place (2). In a similar 
vein, mouse antibodies have substantially less DH gene variation 
and junctional diversity than humans, which has been hypoth-
esized to overcome the limitations of a numerically small B cell 
population by focusing the naive repertoire on the most critical 
specificities (83).

Even in humans, these biases allow the development of ste-
reotyped antibodies, specific recombinations using particular 
genetic elements that can be reproducibly elicited by a particular 
antigen (12). These stereotyped antibodies can even target 

complex antigens such as influenza HA (84–86) and HIV Env 
(87, 88). In addition to stereotyped genes, the antibody response 
can reproducibly make use of specific amino acid substitutions 
generated by SHM. This had been observed in both mice (18, 89) 
and humans (84, 85, 90), and even when the mutation in question 
occurs in a cold spot of AID activity (91). Moreover, substitutions 
that appeared in VH1-46-derived antibodies targeting the CD4-
binding site of HIV Env from multiple donors were also observed 
in VH1-46-derived antibodies from HIV-uninfected donors (92). 
This demonstrates that shared substitutions can occur in the 
selected functional repertoire even without a common antigen 
and may reflect the way that the SHM machinery has evolved to 
sample the mutations that are most likely to be useful.

SUBSTiTUTiON PROFiLeS

It seems counterintuitive that a priori predictions can be made 
about the state of the selected functional repertoire without refer-
ence to the antigens that have driven that selection. However, the 
number of unique clones in which a particular position has been 
substituted is correlated with the diversity of germline amino 
acids available at that position, in both CDRs and FWRs (93). 
Strikingly, the diversity of substitutions at changed positions is 
also correlated with germline diversity, though the diversity of 
the germline amino acids is less than that of the substitutions 
(93). While this at least partially reflects the structural constraints 
of the antibody domain, the physicochemical properties of the 
observed substitutions did not generally parallel those of the 
germline residues at the same positions (93).

In fact, the diversity of the observed substitutions is con-
strained not only by the diversity of all germline genes at a 
position but specifically by the particular gene from which the 
antibody was derived (33, 34) (Figure 1). As seen in studies of 
microsequence motifs (44) and V(D)J recombination (2, 11, 13, 
91, 94), these substitution profiles are stable between individuals 
and across time (33). Similar findings have been reported both 
for sequences isolated from peripheral memory B cells (33) and 
from bone marrow cells (34). Both substitution frequency and the 
diversity of observed substitutions are generally higher in CDRs 
than in FWRs, though several FWR positions have substitution 
profiles similar to those characteristic of CDRs (33, 34). In addi-
tion, assorted VH genes accumulate substitutions in CDRH1 
versus CDRH2 at different rates, and similar variations appear in 
the preferred locations of insertions and deletions (34).

Many expected factors contribute to the observed substitution 
profiles. For instance, the frequencies of substitution are gener-
ally lower at structurally important residues such as the charge 
cluster (95), though individual genes may display higher rates, as 
for R95 of VH1-8 (34) [residue numberings are reported using the 
IMGT convention (96)]. Similarly, when a particular gene carries 
a residue that is distinct from other genes in its VH family (e.g., 
L71 in VH1-18 and T46 of VH1-8), substitutions at that positions 
are frequently biased toward the germline residue(s) encoded 
by the other members of the gene’s family (in this case, F and P, 
respectively) (34). The presence or absence of a microsequence 
hot spot also clearly impacts the observed differential substitution 
rates at some positions, such as S29 in VH5-51, which forms an 

101

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigURe 1 | Substitution profiles and the accumulation of rare mutations. (A) Substitution profile of VH1-69 as calculated by Sheng et al. (33). The germline amino 
acid sequence is shown below the logo plot. (B) Sequence alignment of VH1-69-derived influenza antibodies capable of neutralizing multiple subtypes. Dots 
indicate the germline amino acid and extremely rare substitutions [as defined in Ref. (33)] are shown in red. (C) Substitution profile of VH1-2. (D) Sequence 
alignment of VH1-2-derived broadly neutralizing HIV antibodies targeting the CD4 binding site. Each contains greater than ~20% or more extremely rare 
substitutions.
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AGCT hot spot and diversifies extensively, while the same serine 
in VH4 genes is encoded by a TCC codon and mutates only 
rarely (34). However, it cannot account for all such differences; 
for instance, R80 in VH1-8 diversifies extensively despite the 
absence of a canonical hot spot, while the equivalent arginine in 
VH3 genes is almost complete conserved, without the presence of 
an AID cold spot (34). Simulations indicate that microsequence 
motifs can account for about 70% of the variation in substitution 
frequencies, similar to previous reports (44), but only about 50% 
of the variation when the identity of the substitutions is included 
(33). Another contributing factor to substitution profiles is the 
fact that observed substitutions are typically those that can be 

reached by a single nucleotide change. However, the same codon 
can have substantially different profiles even in a highly similar 
sequence context. Thus, the TCC codon encoding S83 of VH1-2 
is most likely to be substituted to A, followed by T and P, while 
the most likely substitutions for S83 of VH1-46 are P and F, 
followed by A (33). Furthermore, while biases in substitutions 
are somewhat correlated with the physicochemical similarity 
between the germline amino acid and the observed substitution, 
many commonly seen substitutions are non-conservative, and 
even conservative substitutions are frequently asymmetric (e.g., 
E→D and K→R substitutions are more likely to occur than D→E 
and R→K substitutions, respectively) (33, 97).
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In addition to highly significant similarities in substitution 
profiles between individuals with presumably distinct antigen-
exposure histories, substitution profiles observed in the selected 
functional repertoire are also correlated to those derived from 
non-functional passenger alleles (33). This convergence of 
the selected and unselected repertoires is quite surprising and 
implies stricter limitations on the action of SHM than had previ-
ously been understood. One possibility is that the evolutionary 
optimizations described above are fine-tuned enough to strongly 
bias the production of mutations toward those that are most 
likely to be selected for by the suite of antigens that has been 
most commonly encountered over the evolutionary history of a 
species (33). In this vein, recent work has shown that relatively 
low-affinity antibody lineages can persist in germinal centers 
responding to complex protein antigens (98–100). This results in 
a memory response with increased clonal diversity compared to 
that generated by haptens, and it has been hypothesized that this 
diversity enhances the capacity of the immune system to respond 
to future challenges from novel but structurally related antigens 
(101). It may be that the characteristic substitutions observed in 
substitution profiles serve to optimize the structure to this diver-
sity. An additional, perhaps complementary, alternative is that 
the biases in the mutations produced by the SHM machinery are 
strong enough that most mutations are not produced frequently 
enough to be acted upon by selection. In either case, there would 
appear to be drastic implications for rational vaccine design 
efforts, as certain substitutions may not be reliably available in a 
typical repertoire, even with an optimal antigen.

More generally, the existence of substitution profiles indicates 
that there are preferred pathways for antibody affinity maturation 
that depend powerfully on the germline gene used. This, in turn, 
suggests that germline-based substitution profiles contain useful 
information about which substitutions are likely to be tolerated at 
each position, which can be leveraged for antibody engineering. 
As most engineering efforts begin from a known monoclonal 
antibody, a narrower substitution profile, encompassing a single 
antibody lineage, may be of particular use (102). These lineage-
specific substitution profiles are expected to be different from 
gene-specific substitution profiles (33), but may better reflect the 
constraints of binding to a specific antigen. They also provide an 
opportunity to extract information about which substitutions can 
be tolerated at positions in CDR3 and FWR4, which are absent in 
V gene-specific profiles. Frequently, however, the antibody that is 
being engineered is the only known member of its lineage; even 
when deep repertoire sampling is done with high-throughput 
sequencing, most lineages are represented by only one or a few 
members (103).

A new program named SPURF attempts to overcome that limi-
tation by combining several types of substitution profiles derived 
from a large public data set to predict the substitution profile of 
an antibody lineage from the sequence of a single member (102). 
In training the SPURF model, the authors found that the most 
important sources of information are the V gene-specific substi-
tution profile and the inferred naive sequence, in addition to the 
input sequence itself. They also use a gene-family substitution 
profile (i.e., derived from all VH1 genes, etc.) and a substitution 
profile calculated from simulations of neutral mutation of the 

inferred naive sequence using the S5F model from reference (44, 
102). In particular, the inclusion of the inferred naive sequence 
allows the prediction of a substitution profile for CDR3 and 
FWR4, which are not encoded by the V gene and, therefore, 
missed by a V gene-specific profile alone.

OPeN QUeSTiONS

While SPURF performs well predicting the lineage-specific sub-
stitution profiles of an out-of-sample validation set (102) and is 
designed to be used for antibody engineering and improvement, 
it has not yet been tested in that context. Similarly, it remains to 
be seen if substitution profiles can be successfully incorporated 
into a predictive model of SHM. And while rare substitutions 
can be functionally important (104), systematic comparisons 
of the structural and biophysical effects of common versus rare 
substitutions are ongoing. In addition, substitution profiles treat 
the mutations observed at each position as being independent. 
However, recent work suggests that affinity-enhancing mutations 
may be co-selected with structurally stabilizing ones (105), and 
the possibility of correlations between the substitution profiles of 
different positions should be investigated.

Another open question involves the effects of allelic variants 
on substitution profiles. Even silent polymorphisms could theo-
retically change the pattern of mutations generated by SHM by 
the introduction or removal of a microsequence hot spot. More 
importantly, allelic variants are sometimes distinguished by 
replacement mutations (e.g., G55 versus R55 in VH1-69). Since the 
germline residue remains the most commonly observed amino 
acid at most positions, these variants will have a large impact on 
the resulting substitution profile. So far, this has been handled in 
an ad hoc manner, by either excluding genes from donors who 
have previously been determined to be heterozygous for such 
variants (34) or by collectively excluding all possible germline 
residues at each position from the substitution profile, irrespec-
tive of individual genotype (33). Since the germline residues at 
homologous positions in closely related genes are frequently 
observed substitutions (34), a more systematic way of investigat-
ing the effects of allelic variants is necessary. This is especially true 
as it has recently become clear that many such variants remain to 
be discovered (106–109).

Finally, one of the most striking findings about substitution 
profiles is the similarity of the selected and unselected reper-
toires. Yet, this observation rests on mere 650 non-productive 
rearrangements derived from a single VH–JH gene pair (33, 110). 
Although the strong correlations between substitution profiles 
from different individuals also support the idea that SHM is capa-
ble of generating only a limited set of mutations, more data are 
needed to test this. Meanwhile, it is clear that mutation and selec-
tion are distinct biological processes. In order to avoid possible 
confounding effects of selection, studies of microsequence motifs 
have typically used sequences derived from introns, transgenes, 
or non-productive rearrangements; or, if using sequences from 
functional antibodies subject to selection, have included only 
silent mutations extracted from those data sets.

Separately, many efforts have been made to detect and quan-
tify the action of selection on affinity maturation. Initially, these 
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evaluated the frequency of replacement mutations observed 
in CDRs versus FWRs using a binomial (111) or multinomial 
(112) distribution. The binomial model has also been extended 
to account for codon biases that lead to a higher neutral rate of 
replacement mutations CDRs (70) and to account for general 
differences in mutability driven by microsequence context 
(113). However, determining the appropriate null distribution 
of replacement versus silent mutations in antibodies has proven 
challenging, as the intrinsic biases of SHM can give the appear-
ance of selection (114) even when microsequence motifs are 
accounted for (113). One strategy for addressing this difficulty 
has been to use a focused binomial test examining the replace-
ment mutations from only a single CDR or FWR at time, while 
using the silent mutations from all regions (115, 116). Another 
strategy exploited a large data set of non-productive rearrange-
ments to normalize the ratio of replacement to silent mutations 
on a germline- and position-specific basis (94). Other recent 
advancements include the use of a log-odds ratio of the posterior 
distribution of the replacement mutation frequency compared to 
the expected distribution for the germline sequence, to quantify 
the strength of selection (117); the integration of phylogenetic 
information (118, 119); and estimation of the null distribution 
for the number of replacement mutations so that selection effects 
can be calculated for a single sequence (120).

While there is general agreement that purifying selection typi-
cally acts on FWRs, reports have been inconsistent as to whether 
diversifying selection acting on CDRs can (94, 115, 117) or can-
not (114, 121) be detected at the repertoire level. Meanwhile, a 
review of available structural data found no relation between hot 
spot motifs and observed substitutions; the latter were instead 
strongly correlated with antigen contacts and contributions to 
calculated binding energy (122). In addition, a recent study found 
that the need to distinguish between closely related foreign and 
self antigens can drive the expansion of higher affinity clonal vari-
ants that remain subdominant in the absence of self antigen (123), 
demonstrating another way in which selection can influence the 
observed substitutions in a repertiore. On the other hand, an 
in-depth analysis of an antibody against influenza hemagglu-
tinin found that mutability and selection synergized, such that 
replacement mutations expected to occur more frequently under 
a neutral model were also more like to be selected once generated 
(124). It is, therefore, clear that more work is needed to resolve 
when the effects of selection must be explicitly accounted for and 
when they can be implicitly included by the use of substitution 
profiles or other similar abstractions. Structural and biophysical 
characterizations of common versus rare substitutions should 
help resolve this question and will also be important for under-
standing the underlying biological mechanisms.

vACCiNe iMPLiCATiONS

Reverse vaccinology 2.0 (125, 126) is a strategy for rational vac-
cine design that starts by characterizing the epitope targeted by 
an effective natural antibody and selecting or designing an immu-
nogen that can elicit a similar antibody in other individuals. One 
particular implementation is lineage-based vaccine design, which 
attempts to find a series of immunogens that can together induce 

a vaccine-elicited antibody to recapitulate the ontogeny of a 
known lineage (127–130). Both strategies rest on the assumption 
that antibody elicitation is fundamentally reproducible. Thus, 
lineage-based vaccine design for HIV has focused on “classes” 
of antibodies (128) with similar genetic characteristics that have 
been observed in multiple donors. Despite genetic and structural 
similarity, however, several obstacles to the successful design of a 
vaccine capable of eliciting protective classes of antibodies remain 
to be overcome.

In particular, antibodies capable of broad neutralization 
of HIV have particularly high levels of SHM (128, 131, 132) 
and tend to be enriched for rare substitutions (104, 133, 134) 
(Figure  1). Extraordinary levels of SHM (15–35% nucleotide 
mutations) are characteristic of antibodies targeting HIV (135), 
and elevated levels of SHM have also been observed in other types 
of chronic infection and in systemic autoimmune disorders (136). 
By contrast, the maximum level of SHM that has been observed 
in vaccine-responsive antibodies is 8–10% nucleotide mutations, 
even after multiple doses (137, 138).

Fortunately, however, many mutations found in broadly neu-
tralizing antibodies (bnAbs) against HIV appear to be unneces-
sary for full function (139, 140). In fact, two HIV bnAbs have 
recently been reported with at least 50% breadth and less than 
10% nucleotide mutation in VH: CAP256-VRC26.25 (141) and 
DH270.1 (142). Importantly, though, both contain other unusual 
features. CAP256-VRC26.25 has an extraordinarily long heavy 
chain CDR3 of 38 amino acids, including a 1 amino acid insertion 
relative to the inferred naive ancestor (141), while the neutraliza-
tion activity of DH270.1 depends on a critical Gly64Arg (IMGT 
numbering) mutation in a canonical SYC cold spot (142). As 
noted above, such rare mutations are generally enriched in HIV 
bnAbs compared to flu bnAbs (Figure  1) and antibodies from 
normal repertoires or induced by a vaccine (104). While accumu-
lation of some rare substitutions may be incidental to the overall 
level of SHM (33, 104), a recent report demonstrated that half 
of the HIV bnAbs studied have accumulated significantly more 
rare mutations than expected under a neutral evolutionary model 
of SHM (104). Similarly, several positions with low intrinsic 
mutation rates were determined to be significantly enriched in a 
class of VH1-2-derived HIV bnAbs, based on their recurrence in 
members of that class (133). These observations suggest that, as 
for the DH270 lineage, at least some rare mutations may be func-
tionally important. Indeed, this has recently been confirmed for 
three additional HIV bnAbs (104). The identification of critical 
rare mutations and strategies to reproduce them will be central to 
the success of lineage-based vaccine design.

One possible approach is to design immunogens capable of 
exerting strong selection on rare mutations as soon as they occur 
(104). However, even mutations that increase the affinity of an 
antibody 10-fold take much longer to dominate a germinal center 
reaction than would be expected from a simple model of SHM 
(91, 143). Moreover, recent work has shown that lower affinity 
subclones can persist in germinal centers (98–100), which may 
prevent antibodies with the desired rare substitution from reach-
ing protective levels, even with an optimal immunogen. Indeed, 
while several recent studies in transgenic mice have elicited B cells 
enriched for substitutions present in the targeted mature antibody 
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(144–146), none have yet specifically elicited critical rare substitu-
tions or fully recapitulated the neturalization activity of the target 
antibodies. Notably, however, the most successful example focuses 
on PGT121 (146), which contains fewer rare substitutions than 
many other HIV antibodies (104, 134). It may, therefore, be more 
prudent to choose lineage-based vaccine design targets by avoid-
ing those with functionally important rare substitutions (33, 134).

CONCLUSiON

The mechanisms of antibody diversification have evolved to 
achieve a balance between the plasticity needed to successfully 
bind to unknown novel antigens and the robustness needed to 
do so in a biologically feasible manner. This results in a series 
of patterns and variations that can be studied computationally 
both to illuminate the underlying cellular processes and to 
predict the response to specific manipulations. As advances in 
technology have made it possible to collect ever larger datasets, 
our ability to detect and understand these patterns has grown, as 
well. The insights provided thus far by substitution profiles and 

related concepts have already begun to be applied to antibody 
engineering and vaccine design. Concurrently, work is ongoing 
to understand the biology behind these patterns and to develop 
them into predictive models of immune function.
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The cAIRR pipeline for Submitting 
Standards-compliant B and T cell 
Receptor Repertoire Sequencing 
Studies to the national center for 
Biotechnology Information Repositories
Syed Ahmad Chan Bukhari1, Martin J. O’Connor2, Marcos Martínez-Romero2,  
Attila L. Egyedi2, Debra Willrett2, John Graybeal2, Mark A. Musen2, Florian Rubelt3,  
Kei-Hoi Cheung4,5,6† and Steven H. Kleinstein1,6*†

1 Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States, 2 Stanford Center for 
Biomedical Informatics Research, Stanford University, Stanford, CA, United States, 3 Department of Microbiology and 
Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 
United States, 4 Department of Emergency Medicine, Yale School of Medicine, Yale University, New Haven, CT, United 
States, 5 Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT, United States, 
6 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States

The adaptation of high-throughput sequencing to the B cell receptor and T cell receptor 
has made it possible to characterize the adaptive immune receptor repertoire (AIRR) at 
unprecedented depth. These AIRR sequencing (AIRR-seq) studies offer tremendous poten-
tial to increase the understanding of adaptive immune responses in vaccinology, infectious 
disease, autoimmunity, and cancer. The increasingly wide application of AIRR-seq is leading 
to a critical mass of studies being deposited in the public domain, offering the possibility of 
novel scientific insights through secondary analyses and meta-analyses. However, effective 
sharing of these large-scale data remains a challenge. The AIRR community has proposed 
minimal information about adaptive immune receptor repertoire (MiAIRR), a standard for 
reporting AIRR-seq studies. The MiAIRR standard has been operationalized using the 
National Center for Biotechnology Information (NCBI) repositories. Submissions of AIRR-seq 
data to the NCBI repositories typically use a combination of web-based and flat-file templates 
and include only a minimal amount of terminology validation. As a result, AIRR-seq studies 
at the NCBI are often described using inconsistent terminologies, limiting scientists’ ability 
to access, find, interoperate, and reuse the data sets. In order to improve metadata quality 
and ease submission of AIRR-seq studies to the NCBI, we have leveraged the software 
framework developed by the Center for Expanded Data Annotation and Retrieval (CEDAR), 
which develops technologies involving the use of data standards and ontologies to improve 
metadata quality. The resulting CEDAR-AIRR (CAIRR) pipeline enables data submitters to: (i) 
create web-based templates whose entries are controlled by ontology terms, (ii) generate and 
validate metadata, and (iii) submit the ontology-linked metadata and sequence files (FASTQ) 
to the NCBI BioProject, BioSample, and Sequence Read Archive databases. Overall, CAIRR 
provides a web-based metadata submission interface that supports compliance with the 
MiAIRR standard. This pipeline is available at http://cairr.miairr.org, and will facilitate the NCBI 
submission process and improve the metadata quality of AIRR-seq studies.

Keywords: immune-repertoire sequencing, Rep-seq, antibody, B cell receptor, T cell receptor, national center for 
Biotechnology Information, ontology
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InTRoDUcTIon

Recent advances in next-generation sequencing technology have 
made it possible to profile the adaptive immune receptor reper-
toire (AIRR) in exquisite detail. AIRR sequencing (AIRR-seq) (1) 
studies can generate tens- to hundreds-of-millions of B and T cell 
receptor gene rearrangements per experiment. Categorization 
of receptor diversity and gene segment usage, along with iden-
tification of clonal lineages and shared hypervariable region 
motifs provide a rich and detailed view of the adaptive immune 
landscape (1). Since first developed in 2009 (2, 3), AIRR-seq 
has been broadly applied in basic and clinical research settings. 
For example, it has been used to monitor immune responses to 
vaccines and natural infections, cancer therapies, and to track 
autoimmune and malignant clones over time (2, 4). Secondary 
analyses and meta-analyses, which combine independent AIRR-
seq studies, could enhance reproducibility and facilitate new 
scientific discoveries provided that the AIRR-seq data adhere to 
the findable, accessible, interoperable, and reusable (FAIR) data 
principles (5).

Effective sharing of large-scale experimental data is a 
significant challenge. Minimal information about an adaptive 
immune receptor repertoire (MiAIRR) sequencing experiment 
(6) was proposed by the AIRR Community (7) as a standard for 
making AIRR-seq studies sharable. Community-accepted data 
standards, such as MiAIRR, lower the barriers to data sharing, 
as experimental results can easily be transferred without the 
need for lengthy and error-prone descriptions of experimental 
conditions. In addition, analysis software can be written once 
to work on all data, and the standards specify the availability of 
key information in a machine readable format. More broadly, the 
availability of common standards for AIRR-Seq studies benefits 
the wider immunology community, with implications for both 
basic research and clinical medicine.

We used Center for Expanded Data Annotation and Retrieval 
(CEDAR) technology (8) to develop a submission pipeline 
for AIRR-seq studies into National Center for Biotechnology 
Information (NCBI) repositories. Four NCBI repositories are 
needed to cover the full set of required MiAIRR data elements 
(6): BioProject, BioSample (9), the Sequence Read Archive (SRA) 
(10), and GenBank (11). Study, subject, and sample information 
is submitted to BioProject and BioSample, while the sequenc-
ing information and linked raw sequencing data are submitted 
to SRA. Processed sequencing data are submitted to GenBank. 
Submissions of AIRR-seq data to the NCBI repositories typi-
cally use a combination of web-based and flat-file templates and 
include only a minimal amount of terms validation. As a result, 
metadata at these NCBI repositories are often described using 
inconsistent terminologies, limiting scientists’ ability to access, 
find, interpret, and reuse the data sets, and to understand how 
the experiments were performed. Ontologies help to contextually 
interpret the heterogeneous metadata by associating the metadata 
concepts with ontology classes (12, 13). CEDAR develops tech-
nology that takes advantage of data standards and ontologies to 
improve metadata consistency and interoperability (8, 14, 15). We 
have leveraged CEDAR technology to improve metadata quality 
and ease the AIRR-seq study submission process by developing 

an AIRR-seq data submission pipeline named CEDAR-AIRR 
(CAIRR) (Figure 1).

CAIRR uses CEDAR technology to: (i) create web-based 
data submission templates whose values are mapped to ontology 
terms, (ii) generate and validate metadata, and (iii) submit the 
ontology-linked metadata and sequence files (FASTQ) (16) to 
the NCBI BioProject, BioSample, and SRA databases. Overall, 
CAIRR provides a web-based metadata submission interface that 
supports compliance with MiAIRR standard, with the exception 
of GenBank data submission (which is still in progress). The 
interface enables ontology-based validation for several data fields, 
including: organism, disease, cell type and subtype, and tissue 
(17). This pipeline (Figure 1) will facilitate the NCBI submission 
process and improve the metadata quality of AIRR-seq studies.

MIAIRR-coMplIAnT TeMplATe 
DeVelopMenT leVeRAgIng ceDAR 
TeMplATe eDIToR

The CEDAR Workbench provides the CEDAR Template 
Designer, a module to create metadata templates or web forms 
for metadata editing. These templates consist of fields each of 
which contains one or more atomic pieces of information, such 
as a text or date field, or may be recursively composed from 
other template fields (Figure 2, right panel) (18). Fields can be 
restricted to accept certain data types (e.g., number and text) and 
can be configured to make them mandatory or to accept multiple 
values. To enrich the template fields with controlled vocabularies 
or ontologies, the CEDAR Template Designer provides a utility 
for searching and linking the ontology-controlled vocabularies 
from the NCBO (National Center for Biomedical Ontology) 
BioPortal. BioPortal is a repository for biomedical ontologies 
(Figure  2, organism panel view) (18, 19). Linking ontologies 
with template fields makes the resulting metadata interoperable, 
which helps to accelerate the meta-analysis process and enhances 
study reproducibility.

We used the CEDAR Template Designer to design metadata 
submission templates implementing the MiAIRR standard. 
To effectively share AIRR-seq studies, MiAIRR specifies a list 
of 82 fields (Figure 2 left panel) which are categorized into six 
sets: (i) study, subject, and diagnosis, (ii) sample collection, (iii) 
sample processing and sequencing, (iv) raw sequences, (v) data 
processing, and (vi) processed sequences with annotations (6). 
The CEDAR-based MiAIRR template currently includes the first 
four MiAIRR sets with 66 fields because the CAIRR pipeline is 
not covering the submission to GenBank yet. In addition, we 
have included four SRA database specific fields (library_startegy, 
library_source, library_layout), which are not part of MiAIRR, 
but are mandatory elements for the repositories (e.g., isolate, 
geolocation, and library information in SRA, etc.) (20). The 
MiAIRR elements are mapped to BioProject, BioSample, and 
the SRA repositories in the NCBI. Overall, we have created three 
templates for the BioProject, BioSample, and the SRA and then 
grouped them into a single template called “MiAIRR Template.”

To make an AIRR study findable, we devised a scheme to 
link the components (e.g., BioSample and the SRA records of 
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FIgURe 2 | The Minimal Information about an Adaptive Immune Receptor Repertoire (MiAIRR) fields are transformed into a CEDAR template using the CEDAR 
Template Designer. Fields specified by MiAIRR (left panel) are transformed into a CEDAR template (right panel).

FIgURe 1 | CAIRR Submission Pipeline Workflow. (1) The CEDAR Template Designer is employed to create a set of templates according to the Minimal Information 
about an Adaptive Immune Receptor Repertoire (MiAIRR) standard. (2) Scientists can log into the CEDAR Workbench and use these templates to edit ontology-
controlled metadata associated with their AIRR-sequencing study. The edited metadata is pre-validated through the National Center for Biotechnology Information 
(NCBI) validation service. (3) Scientists can start the submission process by accessing the Submission Manager within their CEDAR Workbench workspace. (4) The 
Submission Manager connects the CEDAR Workbench to the NCBI. (5) The Submission Manager facilitates uploading the metadata and data (FASTQ files) to the 
NCBI. (6) The CAIRR pipeline periodically checks the submission status at the NCBI. (7) Alert messages from NCBI are received by the Submission Manager. (8) 
These alert messages provide step-by-step processing detail to the scientists.
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an AIRR study) to each other through unique identifiers in the 
MiAIRR template. For example, a typical AIRR study consists of 
multiple BioSample and SRA records and these records should 
be anchored to each other in a way that a human or machine 
can navigate from a particular BioSample record to the related 

SRA record. Since each BioSample is represented with a unique 
identifier, we used BioSample identifier as a prime identifier and 
linked BioSample records to the related SRA records with unique 
BioSample identifiers. This functionality helps to reduce an AIRR 
study metadata creation and submission time, since users can 
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FIgURe 3 | An ontology-controlled adaptive immune receptor repertoire study metadata editing process. (1) CEDAR’s Metadata Editor presents this web form 
based on the MiAIRR template produced by the Template Designer. The paging option allows a data submitter to add or delete BioSample and sequence read 
archive (SRA) records. (2) Some of BioSample and the SRA metadata are controlled through ontologies, which allow for auto-completion during data entry. (3) The 
toggle spreadsheet option allows data submitters to edit metadata using a traditional spreadsheet view.
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instantiate multiple BioSample and the SRA submission without 
worrying how the NCBI translates the resulting AIRR study data.

Linking ontologies with template fields can help make the 
entered metadata interoperable. In the MiAIRR template, we have 
constrained the field values to ontology terms. For instance, we 
restricted the organism, cell type, cell subtype, disease, and tissue 
fields to terms from AIRR community recommended ontologies 
such as: National Center for Biotechnology Information Taxonomy 
Ontology (NCBITAXON) (21), cell ontology (CL) (22), Brenda 
Tissue Ontology (23), and Human Disease Ontology (DOID) 
(24) (note that CL covers both the cell type and cell subtype). By 
employing the CEDAR Template Designer module, we created a 
MiAIRR template to fulfill the AIRR data submission needs.

onTology-conTRolleD MeTADATA 
eDITIng

In the CAIRR pipeline, fields are associated with available ontolo-
gies. These associations allow CEDAR to provide autocomplete 
functionality using the controlled vocabularies from the linked 
ontologies. Moreover, CEDAR ensures that all ontology-linked 
field values come only from ontologies and prevents free text 
from being used. For instance, when a user starts typing “Homo 
sapiens” in the organism field, controlled metadata from the 
NCBITAXON ontology shows up (Figure 2) (21). This ontology-
based auto-completion reduces typographical errors and 
promotes consistent metadata entry practices. Moreover, filling 
a template with ontology-linked metadata enhances the ability 

to carry out semantic search of the submitted studies. NCBI 
does not make pervasive use of controlled terms as NCBI does 
employ the NCBI taxonomy for the organism field but features 
are not still implemented for the semantic search. If semantic 
search interface is implemented at the NCBI, a study could be 
searched based on its related metadata. For example, since Homo 
sapiens is a subclass of mammalia in the ontology hierarchy of 
NCBITAXON, it would be possible to expand the query search 
scope based on parent class or to narrow down the scope of a 
query based on the subclasses of “Homo sapiens” only.

The CAIRR pipeline provides a user-friendly interface for 
metadata creation. Features such as spreadsheet mode make 
the metadata editing process easy and efficient (Figure  3). For 
example, an AIRR study may hold multiple BioSample and SRA 
records, and the CAIRR pipeline allows users to add multiple 
records. Entering metadata into web-based templates is not always 
the preferred option for scientists who already have metadata 
available in spreadsheets (Figure 3). Therefore, we introduced a 
toggle spreadsheet view which works like any other traditional 
spreadsheet. Scientists can import existing spreadsheet hosted 
data into CAIRR pipeline by copying and pasting through the 
CAIRR spreadsheet toggle feature. Importantly, metadata valida-
tion based on ontologies and other template level constraints 
still works in spreadsheet view, which otherwise is not possible 
without writing special macros in programs like Microsoft Excel 
(25) or by using third-party spreadsheet ontology utilities such 
as RightField (26). Thus, CAIRR helps scientists to edit ontology-
controlled metadata with ease and efficiency.
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FIgURe 4 | CAIRR data submission. (1) Data submitters choose National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) as the target 
repository, and then upload the related datasets to submit. (2) CAIRR provides submission acknowledgment and data-processing-level messages generated by the 
NCBI system.
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AIRR STUDy MeTADATA VAlIDATIon 
AnD SUBMISSIon

The CAIRR pipeline provides ontology-controlled suggestions at 
entry-time along with data type checks for the entered values (e.g., 
date, string, and number). To ensure the quality of the submitted 
metadata to the NCBI, we have designed a metadata validation 
module by employing the NCBI validation service which provides 
an additional layer of quality control (Figure 4). The NCBI valida-
tion service is publicly available for any external user or application. 
It detects missing mandatory BioSample fields, such as BioSample 
Identifier, age, isolate, and sex, and generates alerts with error 
messages. To use the validation service inside the CAIRR pipeline, 
a user fills in an AIRR study’s metadata in the MiAIRR template 
and invokes the validation service through the Validate Metadata 
option within the Metadata Editor. The validation service fetches 
the entered metadata and reports any non-compliant metadata. 
This validation service could be invoked multiple times by a data 
submitter during the AIRR study metadata authoring process. 
Thus, the CAIRR pipeline includes multi-layered validation 
mechanism to ensure that the submitted metadata is of a high 
quality and compliant with the NCBI repositories.

An AIRR study consists of AIRR metadata along with raw and 
processed sequence reads which are stored in FASTQ format (16). 
The available options for data and metadata submission using the 
NCBI submission interface are depositing through email or sub-
mitting through the file transfer protocol (FTP) using command 
line or third-party FTP utilities. In order to make the submission 
process easier, the CAIRR pipeline provides a user-friendly data 
submission interface. This data uploading facility can be accessed 
through the CEDAR Workspace—the first CEDAR interface 

users see after logging in—where users can select the generated 
metadata file and submit it to the NCBI repositories (Figure 4, 
submission dialog to the NCBI).

The CAIRR pipeline provides post-submission processing 
information to the submitters. Data submitters are informed 
within the CAIRR pipeline if any error is automatically detected 
after an AIRR study submission to the NCBI. The post-processing 
at the NCBI involves both computer-based validation and a 
human curator check. The computer automatically checks for 
the sequence reads length and its format details while a human 
curator looks for data relevancy and submitted metadata anoma-
lies. Each computerized stage generates processing logs which 
are stored as a report. The logs capture the submitter detail, IP 
address, number of submitted files, and time zone information, 
along with the NCBI approval and rejection status information. 
The CAIRR pipeline parses this log file and displays the mes-
sages in the submitter’s workspace (Figure 4, NCBI submission 
acknowledgment panel).

DIScUSSIon

The CAIRR pipeline was designed in compliance with the 
MiAIRR standard to facilitate AIRR study metadata generation 
and submission (see Figure S1 in Supplementary Material). 
In order to help users improve their metadata quality through 
ontology-constrained AIRR metadata selections, the CAIRR 
pipeline employs CEDAR technology in conjunction with NCBO 
BioPortal ontologies to develop the MiAIRR template. CAIRR 
makes AIRR study submission to the NCBI straightforward by 
providing a Submission Manager which handles data uploading 
and notifies users about post-submission processing at the NCBI. 
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CAIRR also generates its output in JSON-LD and RDF (Resource 
Description Framework) formats which could be deposited into 
other AIRR-specific repositories such as VDJServer (27) and 
iReceptor (28), or into general repositories such as Zenodo.1

The possibility of re-analysis and meta-analysis of datasets 
made available through the NCBI offers the potential for important 
insights. However, such analyses largely depend on the effective 
sharing of large-scale experimental data such as that generated 
by AIRR sequencing studies. As next-generation sequencing 
technologies continue to improve, scientists are adopting these 
technologies to get insights into the adaptive immune response 
in healthy individuals and in individuals with a wide range of 
diseases (29, 30). The number of published and publicly available 
AIRR-seq datasets is also steadily increasing in repositories such 
as NCBI. Because metadata production is not a straightforward 
process, we observe some existing metadata at the NCBI with 
several metadata anomalies (31). The CAIRR pipeline simplifies 
AIRR study metadata editing and submission, thus improving the 
production and sharing of AIRR-seq data for further analysis.

The CAIRR pipeline can be extended in several ways. The 
current production version of the CAIRR pipeline supports the 
generation of metadata and deposition into three repositories 
at the NCBI (BioProject, BioSample, and the SRA). MiAIRR 
standard also mandates the deposition of processed data, which 
is not covered by these repositories. To address this, CAIRR 
will be extended to support submission to the NCBI GenBank. 
Another future extension will involve the development of an 
AIRR ontology, which will address the fact that not all the 
MiAIRR template fields are linked to ontology classes because 
of the unavailability of the appropriate ontology classes (e.g., 
forward and reverse PCR primer target locations, physical 
linkage of different loci). Finally, a community-level evaluation 
will be carried out to supplement the more limited evaluation 
described here.

conclUSIon

To improve AIRR study metadata quality and to facilitate the 
metadata creation and submission process we have developed 
the CAIRR pipeline2 using the CEDAR Workbench. By linking 

1 http://zenodo.org (Accessed: August 6, 2017).
2 http://cairr.miairr.org (Accessed: August 6, 2017).

MiAIRR template fields with ontologies, and providing validation 
checks, CAIRR minimizes metadata anomalies, such as metadata 
inconsistency, incomplete metadata, and incorrect metadata. 
Through CAIRR, users can submit MiAIRR-compliant data to the 
NCBI BioProject, BioSample, and the SRA repositories. To promote 
the maximum use of CAIRR, we have created a mailing list, online 
documentation with step-by-step instructions3 along with a video 
tutorial. More generally, CAIRR demonstrates how the CEDAR 
Workbench can be tailored for metadata editing and submission 
according to the needs of a particular scientific community.
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Among Immunotherapeutic approaches for cancer treatment, the adoptive transfer of

antigen specific T cells is still a relevant approach, that could have higher efficacy

when further combined with immune check-point blockade. A high number of adoptive

transfer trials have been performed in metastatic melanoma, due to its high immunogenic

potential, either with polyclonal TIL or antigen-specific polyclonal populations. In this

setting, the extensive characterization of T cell functions and receptor diversity of infused

polyclonal T cells is required, notably for monitoring purposes. We developed a clinical

grade procedure for the selection and amplification of polyclonal CD8T cells, specific

for two shared and widely expressed melanoma antigens: Melan-A and MELOE-1.

This procedure is currently used in a clinical trial for HLA-A2 metastatic melanoma

patients. In this study, we characterized the T-cell diversity (T-cell repertoire) of such T

cell populations using a new RNAseq strategy. We first assessed the added-value of

TCR receptor sequencing, in terms of sensitivity and specificity, by direct comparison

with cytometry analysis of the T cell populations labeled with anti-Vß-specific antibodies.

Results from these analyzes also confirmed specific features already reported for Melan-A

and MELOE-1 specific T cell repertoires in terms of V-alpha recurrence usage, on

a very high number of T cell clonotypes. Furthermore, these analyses also revealed

undescribed features, such as the recurrence of a specific motif in the CDR3α region

for MELOE-1 specific T cell repertoire. Finally, the analysis of a large number of T cell

clonotypes originating from various patients revealed the existence of public CDR3α and

ß clonotypes for Melan-A and MELOE-1 specific T cells. In conclusion, this method

of high throughput TCR sequencing is a reliable and powerful approach to deeply

characterize polyclonal T cell repertoires, and to reveal specific features of a given TCR

repertoire, that would be useful for immune follow-up of cancer patients treated by

immunotherapeutic approaches.

Keywords: TCR sequencing, melanoma, Melan-A, MELOE-1, immunotherapy

116

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.01962
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01962&domain=pdf&date_stamp=2018-08-30
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nathalie.labarriere@inserm.fr
https://doi.org/10.3389/fimmu.2018.01962
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01962/full
http://loop.frontiersin.org/people/576620/overview
http://loop.frontiersin.org/people/268263/overview


Simon et al. TCR Sequencing of Melanoma-Specific Repertoires

INTRODUCTION

Among solid tumors, metastatic melanoma is a relevant
model for immunotherapeutic approaches because of a high
immunogenicity, partly due to a high mutation rate, favoring
the development of specific T cell immune responses (1). In
previous studies, it has been documented that the specific
immune response against melanoma is dominated by two vast
T cell repertoires specific for the melanoma antigens Melan-
A and MELOE-1, which can be selected and amplified from
the peripheral blood of HLA-A2 melanoma patients (2, 3).
These two antigens share common features regarding their
frequent expression in melanoma tumors, the presence of
immunodominant HLA-A2 epitopes and of vast specific TCR
repertoires in HLA-A2 melanoma patients. Blood frequencies
of Melan-A and MELOE-1 specific T cells are respectively
around 10−4 and 10−6 among CD8T cells. In addition,
these T cell repertoires also contain high avidity T cells
making these T cell repertoires relevant for a use in adoptive
transfer.

For a long time, Melan-A has been regarded as a self-
antigen, potentially eliciting a suboptimal T-cell repertoire due
to negative selection. However, recently it was reported that
the immunodominant HLA-A2 Melan-A26−35 epitope is not
presented by human medullary thymic epithelial cells, due to
a misinitiation of gene transcription (4), and leading to the
evasion of central self-tolerance toward this epitope. This finding,
together with the strong bias documented in Vα usage (5, 6)
could explain the abundance of this specific-T cell repertoire and
the presence of high avidity T cells among this repertoire.

On the other hand, MELOE-1 antigen is expressed from
a polycistronic RNA, whose expression is controlled by
specific transcription factors and epigenetic mechanisms in the
melanocytic lineage (7). The translation of MELOE-1 from
one of the short ORFs of this RNA is controlled by an IRES
sequence, exclusively activated in melanoma cells, conferring
to this antigen a strict tumor expression profile (8, 9). Like
Melan-A specific T cell repertoire, MELOE-1 specific T cell
repertoire also contains high avidity T cells, and is also strongly
bias toward the preferential usage of a specific TRAV chain
(2), probably contributing to the relative high frequency of
MELOE-1 specific T cells in the peripheral blood of HLA-
A2 individuals. All these features confer to these two antigen-
specific-T cell repertoires interesting properties for a use in
adoptive transfer setting in a large subgroup of melanoma
patients (HLA-A2), contrary to neo-antigen-based therapeutic
personalized strategies.

Based on this, we developed a clinical grade method to select

and expand ex-vivoMelan-A and MELOE-1 specific CD8T cells
from the blood of HLA-A2 patients. This method, relying on the

sorting of specific T cells through the use of HLA/peptide-coated

magnetic beads (3), is currently used in the MELSORT clinical
trial to treat metastatic melanoma patients (NCT02424916,
https://clinicaltrials.gov). This standardized procedure allows
the production of fully specific, polyclonal and tumor reactive
specific T cells. Nonetheless the diversity of these polyclonal
populations has been addressed so far through the use of

anti-Vß specific antibodies, and we could document that these
populations were composed with various Vß subfamilies, but
the number of T cell clonotypes present among a given Vß
subfamily remained unknown. Furthermore, the available panel
of 24 Vß-specific antibodies does not always cover the entire T
cell repertoire of all antigen-specific T cell populations.

We thus took advantage of a recent high throughput TCR
sequencing method developed by Qiagen, to fully characterize
Melan-A and MELOE-1 T cell populations, selected and
amplified according our standardized producing method. We
first documented the sensitivity and reliability of this method,
and we report here an extensive characterization of Melan-A
and MELOE-1 specific T cell repertoires. This analysis reveals a
high diversity of these antigen-specific sorted T cells that exhibit
common and specific TCR features.

Thus, this method enables the complete and accurate
characterization of T cell repertoires that is a main issue for
immune follow-up purposes, in adoptive transfer setting, but also
for other immunotherapeutic approaches including immune-
checkpoint blockade (10).

MATERIALS AND METHODS

Melan-A and MELOE-1 Specific T Cell
Populations
Peripheral blood mononuclear cells (PBMC) were isolated from
40mL of blood of HLA-A2 metastatic melanoma patients (Unit
of Dermato-cancerology, Nantes hospital) after written informed
consent (approval number: DC-2011-1399). PBMC were seeded
in 96 well/plates at 2 × 105 cells/well in RPMI 1640 medium
supplemented with 8% human serum (HS), 50 IU/mL of IL-2
(Proleukin, Novartis) and stimulated either with 1µM of Melan-
AA27L peptide (ELAGIGILTV) or 10µM of natural MELOE-
136−44 peptide (TLNDECWPA), purchased from Genecust. After
14 days, each microculture was evaluated for the percentage of
specific CD8T lymphocytes by double staining with the relevant
HLA-peptide tetramer (from the SFR Sante recombinant protein
facility) and anti-CD8 mAb (Clone RPA-T8, Biolegend) using a
FACS Canto HTS. Microcultures that contained at least 1% of
specific T cells were selected, pooled and sorted with the relevant
multimer-coated beads as previously described (3). After a 14-
day amplification period on irradiated feeder cells, in presence
of PHA-L (1µg/mL) and IL-2 (150U/mL), purity of expanded
sorted T cells was assessed by double staining with the relevant
HLA-peptide tetramer and anti-CD8 mAb (Figure S1).

Vß Repertoire of Specific T Cells
Vß diversity of sorted Melan-A and MELOE-1 specific T cell
lines was analyzed by labeling with 24 anti-Vß mAbs included in
the IOTest Beta Mark TCR V Kit (Beckman-Coulter, IM3497).
These cytometric analyses were performed on a Facs Canto II
(BD Biosciences).

T-Cell Receptor Sequencing
Total RNA was extracted from 5 × 10∧5 antigen specific T
cells using QIAGEN RNeasy Kit. RNA from normal PBMC
(purchased from Precision for Medicine) was used as a reference
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control. 10 or 25 ng of RNA was used to build libraries
with the QIAseq Immune Repertoire -T-cell Receptor Panel
(Catalog 333705- IMHS-001Z). With this kit, RNA is reverse
transcribed with a pool of gene specific primers against the C
(constant) region for the T cell receptor alpha, beta, gamma,
and delta genes. The reverse transcribed cDNA is then used in
a 5′ ligation reaction which adds an oligo which contains one
side of sample index and unique molecular index. Following
reaction cleanup, a single primer extension is used to capture
the T-cell receptor using a pool of gene-specific primers.
Resulting captured sequences are amplified and purified using
QIAseq beads. The libraries then are sample indexed on the
other side by using a unique sample index primer and a
universal primer. The final dual sample indexed PCR fragment
is purified and then quantitated for abundance using real-time
qPCR.

For sequecning, each library was diluted to 4 nM, pooled and
denatured. 12 pM of denatured library pool was run on a MiSeq
using V3 chemistry for 502 cycles with a pair-end 251 base
read.

Read Trimming/Clonotype Calling
FASTQ files were analyzed in the QIAGEN GeneGlobe
Data Analysis Center (https://www.qiagen.com/us/shop/genes-
and-pathways/data-analysis-center-overview-page/) using the
Immune Repertoire Application The web-based read processing
service generates clonotype calls and quantity estimates from
reads generated by the QIAseq Immune Repertoire Library Kit.
The clonotype calls are generated using the IMSEQ software (11).
Themain tasks of IMSEQ are to align the reads tomodel V-region
and J-region sequences, extract the CDR3 region sequence, and
cluster together highly similar CDR3 sequences that likely came
from the same input sample clones. A detailed description of the
IMSEQ algorithm is at the following URL: http://www.imtools.
org.

Read Processing Steps
Trim Reads

We first trim from the reads the constant regions generated by
the enrichment protocol, andmove the UMI sequence to the read
identifier line.

Trim 3′ end of reads with less than 18 base quality score.
Trim ligation common oligo AGGACTCCAAT from the 3′

end of R1.
Trim uPCR common oligo CAAAACGCAATACTGTACATT
from the 3′ end of R2.

The 12 bp UMI sequence is moved from the start of R2 to the
FASTQ read identifier comment region of R1 and R2.

Down-Sample Reads

When read depth rises above about 8 to 10 read pairs per UMI,
very few new real UMIs are observed, but false UMIs caused
by PCR or sequencing errors are observed at an increasing rate.
The same is true for CDR3 sequences. To control this over-
sequencing error in the UMI and CDR3 sequences, we randomly

discard the reads until the remaining reads contain about 8 reads
per UMI.

Merge Overlapping R1 and R2 Reads
To accommodate IMSEQ requirement for R1 being entirely VDJ
sequence, and R2 being V-only, we merge overlapping R1 and
R2 and rename them as R1. The reads are then split by gene
(TRAC, TRBC, TRDC, TRGC). To accommodate IMSEQ input
requirements, we split reads by gene using “cutadapt” search for
the C-region sequence between the 5′-most SPE primer and the
start of the J-region.

Trim V Region
To accommodate the IMSEQ requirement that reads do not
overhang the V-region model sequences, we align the reads to the
V-region models using BWA mem, and trim overhang regions
(e.g., 5′ UTR regions).

Run IMSEQ
We run IMSEQ with the following parameters: -ev 0.15 -mq
25 -mcq 25 -ma -qc -sc -scme 2 -sfb.

The model V and J sequences used with IMSEQ can be
found here: https://storage.googleapis.com/qiaseq-rna-mmrep/
QIAseqRNA_immrep_TCR_model_seqs.zip.

We are using two important features of IMSEQ that are
designed to minimize false clonotype calls caused by sequencing
error. We are using both the “quality-score clustering” and the
“simple edit-distance clustering” with edit distance <= 2 (the
IMSEQ default). The main idea here is that reads that contain
highly similar CDR3 sequences are putatively from the same
clone in the sample, so they are grouped together to generate one
CDR3 call, as described previously (11).

Assign Each Read to a Called Clonotype
Although IMSEQ clusters highly similar CDR3 sequences, it does
not output detail regarding which reads were clustered together.
In part, this is because IMSEQ sometimes counts partial reads,
i.e., when a sequence is equal distance from two different CDR3
centroid sequences. To enable UMI counting, we restore the
connection between each read and one CDR3 call from IMSEQ,
using CD-HIT clustering. We run CD-HIT with the following
parameters:

cd-hit-v4.6.8-2017-0621/cd-hit-est-2d -n 5 -g 1 -r 0 -d 0 -G 1
-t 0 -c 0.90 -p 1 -S 2 -S2 2.

Filter Low-Evidence Clonotypes
To leverage the power of UMI tagging to reduce NGS errors
leading to false clonotype calls, we discard IMSEQ CDR3 calls
that do not have at least one UMI supported by three reads. Users
can set more stringent filters on reported clonotype calls (such as
frequency or minimum number of supporting UMIs) depending
on application needs.

Data and Statistical Analyses
For statistical analyses, clonotypes are defined on the basis
of unique amino-acid sequences of CDR3 alpha and CDR3
beta regions. In our set of data, the total number of unique
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TCR sequences was identical to the number of clonotypes. The
standardized residuals of chi-squared is used to determine if a
V or J chain is preferentially used in antigen-specific repertoire,
score= (observed—expected)2/expected, the expected values are
calculated from the control sample distribution, the observed
values are actually the number of clonotypes using each gene
in one given antigen specific repertoire. We considered as
significantly used the V or J segment having a score >4.

CDR3 amino acid sequences length has been compared
between antigen-specific populations and the control sample
using the two-tailed Student’s T-test. All the calculations were
done using R statistical software.

RESULTS

TCR Diversity of Melan-A and MELOE-1
Specific T Cell Populations
We analyzed the TCR diversity of 6 Melan-A and 4 MELOE-1
specific CD8+ T cell polyclonal populations, derived from the
specific sorting of HLA-A2 patient PBMC stimulated with the
cognate peptides (3). These polyclonal populations were fully
specific, as assessed by specific tetramer labeling (Figure S1) and
reactive against their target peptides and HLA-A2 melanoma cell
lines.

Table 1 summarizes the specific richness of these 10 CD8T
cell populations (numbers of CDR3α and CDR3ß amino-acid
sequences, thereafter called “clonotypes,” detected from libraries
prepared from 10 to 25ng of total RNA). The RNAseq library
includes unique molecular indexes (UMIs) which are added
during library construction to remove amplification duplicates
and sequencing errors. For our analysis, we considered data
where we had at least 1 UMI and 3 reads per UMI to be a true
clonotype. For Melan-A-specific T cell repertoires, we observed
high numbers of CDR3α and CDR3ß clonotypes with the highest
amount of starting RNA, consistent with increased sensitivity
in detecting rare clonotypes when starting with more sample.
Concerning MELOE-1 specific T cell repertoires, the differences
between the number of clonotypes detected with 10 or 25 ng of
RNA are either null or rather modest, in accordance with the
fact that MELOE-1 specific T cell repertoires are less diverse than
Melan-A-specific ones. Thus, the majority of MELOE-1 specific-
T cell clonotypes are already detected with 10 ng of starting
RNA.

Figure 1 illustrates the rank of individual CDR3α and ß
clonotypes identified for the 6 Melan-A (1A) and MELOE-1
(1B) specific populations, and the relative abundance of each
sequence (number of reads of each sequence associated to a
unique UMI), for the two starting RNA quantities. Globally, for
Melan-A, and MELOE-1 specific T-cell repertoires, the number
of counts for CDR3α (blue circles) and CDR3ß sequences (red
circles) was higher when starting with 25 ng (dark circles) vs.
10 ng (light circles) of total RNA. This analysis illustrates the
presence of dominant clonotypes within each individual T cell
populations, the number of counts for a unique TCR sequence
being comprised between 1 and 104. Furthermore, considering
the total number of identified clonotypes, we also observed

TABLE 1 | Number of CDR3 alpha and CDR3 beta clonotypes identified in

Melan-A and MELOE-1 specific T cell populations, starting from 10 to 25 ng of

total RNA.

CDR3 alpha CDR3 beta

Starting RNA 10 ng 25 ng 10 ng 25 ng

MELAN-A SPECIFIC T CELL POPULATIONS

P1 78 140 72 134

P2 61 112 44 100

P3 24 34 14 28

P4 38 46 27 36

P6 22 41 13 26

P7 27 38 13 31

All samples 249 411 183 355

MELOE-1 SPECIFIC T CELL POPULATIONS

P5 49 36 29 29

P8 28 39 23 63

P9 18 20 19 20

P10 62 59 45 41

All samples 157 154 116 153

that scarce CDR3 sequences are not identified for some T cell
populations with the lowest RNA quantity (Figure 1).

Thus for more diverse populations, higher amounts of RNA
will favor the characterization of the complete TCR repertoire,
and for less diverse T cell repertoire, RNA quantity will only affect
the number of counts for all CDR3 sequences.

Comparison of TRBV Chain Frequencies
Using TCR Sequencing or Specific
Antibodies
The proportion of T cells expressing a given Vß chain was
determined by flow cytometry within the 10 antigen-specific
subpopulations, using a panel of 24 Vß-specific antibodies,
covering the most frequently expressed Vß chains. Some of
the antibodies cross-react with various TRBV subtypes, such
as TRBV4-1, 4-2, and 4-3; TRBV6-5, 6-6 and 6-9; TRBV12-
3 and 12-4. In order to compare the frequencies of the
different TRBV subfamilies detected either by flow cytometry
or sequencing approaches, we gather all TRBV sequences
potentially detected by a single anti-Vß antibody and calculated
their cumulated frequencies. Figure 2 illustrates the correlation
between frequencies of TRBV chains detected through the
sequencing approach (starting from 25ng of total RNA) and
antibody-labeling. TRBV chains for whom there is no available
Vß-specific antibody are indicated with red circles. These TRBV
chains (especially TRBV6 and TRBV7 subfamilies) are rather
frequent within the two antigen-specific T cell repertoires
and could only be detected through TCR sequencing. With
the exception of these particular TRBV chain the correlation
between TRBV frequencies detected with the specific antibodies
and cumulated frequencies calculated from sequence counts is
satisfying, unless the presence of some outliers only detected
through sequencing analysis (blue circles). Generally, the
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FIGURE 1 | Rank and relative abundance of UMI for individual CDR3α (blue circles) and CDR3ß clonotypes (red circles) identified for 6 Melan-A specific T-cell

populations (A) and 4 MELOE-1 specific T-cell populations (B), starting from 10 ng (light circles) or 25 ng (dark circles) of total RNA.

frequency of the concerned TRBV chain is rather low, probably
under the detection threshold of specific antibodies. Only the
TRBV4-2 chain is detected through TCR sequencing for P7

patient with a high frequency (64%) but is not detected by
the specific antibody (Figure 2A). Of note, TRBV4-2 chain is
supposed to be detected by an antibody also cross-reacting with
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FIGURE 2 | Comparison of Vß chain detection with antibody labeling or high throuput sequencing. The frequencies of Vß subfamilies in each polyclonal

Melan-A-specific (A) and MELOE-1-specific (B) T cell populations were documented through labeling with a 24 Vß-specific antibody panel (X axis). CDR3ß clonotypes

identified by sequencing were gathered according to their corresponding Vß chain, and their cumulative frequencies are indicated on the Y axis. Red circles represent

Vß chains not covered by the antibody panel. Blue and green circles illustrate respectively Vß chain only detected by TCR sequencing despite the use of a specific Ab,

and Vß chain only detected by flow cytometry.

TRBV4-1 and 4-3, and we can hypothesize that the reactivity
of this antibody against the TRBV4-2 chain is suboptimal.
Conversely, some TRBV chains identified through antibody
labeling are not detected by the sequencing analyses (green circles
on Figure 2). Again, these Vß subfamilies represented only small
frequencies, and these discrepancies can be attributed to some
degree of cross-reactivity of the concerned antibodies.

This comparison validates the reliability of this TCR
sequencing method to estimate the proportion of a specific
TRBV chain within a given T cell repertoire. This method is
undeniably much more powerful than antibody labeling that

leads to underestimate the diversity of a polyclonal population,
due to the number of distinct clonotypes within the same TRBV
subfamily, to the absence of some TRBV-specific antibodies, and
to the cross-reactivity of some specific Vß antibodies.

TRAV and TRBV Usage of Melan-A and
MELOE-1 Specific T Cell Repertoires
Melan-A specific T cell repertoire has been largely studied and
it is well known that this T cell repertoire present a strong bias
in TRAV12-2 gene usage (5, 6). Likewise, a clear TRAV bias
toward TRAV19 chain has also been reported for 18 MELOE-1
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specific CTL clones (2). With the aim to increase the statistical
value of antigen-specific repertoire analyses and to smooth
individual variations, we analyzed TRAV and TRBV usage of all
the Melan-A and MELOE-1 clonotypes (originating respectively
from 6 and 4 HLA-2 metastatic melanoma patients). The same
analyses have been conducted for each individual populations
and are illustrated by Figure S2. We clearly confirm the strong
recurrent usage of the TRAV12-2 and TRAV19 chains, used
respectively by 185/411 Melan-A-specific CDR3α clonotypes
(Chi2 score value= 34.7) and 79/154 MELOE-1-specific CDR3α
clonotypes (Chi2 score value = 21) (Figure 3A, left panel).
These two chains are also frequently used in the control sample,
but their preferential usage by Melan-A and MELOE-1-specific

T cells remains strongly significant. This strong recurrence is
also remarkable for individual populations (Figures S2A,B, left
panels). We also analyzed TRBV usage for these two specific T
cell repertoires. A diverse TRBV usage was previously reported
for Melan-A specific T cell repertoire (5, 6, 12, 13), nonetheless
with some studies highlighting a frequent usage of TRBV20-1,
TRBV27, TRBV28, and TRBV19 (14, 15). Here we documented
the significant preferential usage of TRBV19 chain for Melan-A
specific T cell repertoire, with 43/355 CDR3ß clonotypes (Chi2

score value = 6.18). The other described recurrent TRBV chains
(TRBV20-1, 27, and 27) were also frequently used by Melan-A
specific CDR3ß clonotypes, but this usage was not statistically
different from that of the control sample (Figure 3A, right upper

FIGURE 3 | TRAV and TRBV usage of specific-T cell populations. Number of clonotypes using individual TRAV (A) and TRBV (B) chains in control (upper panels);

Melan-A-specific T cell repertoire (sum of the clonotypes originating from the 6 populations; middle panels); and MELOE-1-specific T cell repertoire (sum of the

clonotypes originating from the 4 populations; lower panels). Black histograms illustrate TRV chains preferentially used in each T cell repertoire, and the same chains

are marked with an asterisk in the control sample. (C) Cumulative frequencies (UMI) of each TRAV (left panel) and TRBV (right panel) chains in the control sample,

Melan-A specific and MELOE-1 specific T cell repertoires.
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panel). At individual population level, although frequently used
in each population, TRBV19 usage is only dominant in 2/6
Melan-A specific T cell populations (Figure S2A, right panel).

No preferential TRBV usage has been reported so far for
MELOE-1-specific TCR repertoire, and here we documented a
significant bias toward the use of the TRBV2 chain, for this
TCR repertoire, with 14/153 CDR3ß clonotypes (Chi2 score
value = 4.58). At individual population level (Figure S2B, right
panel), TRBV2 usage is frequent in each T cell population.

We next analyzed the cumulated frequencies of these
preferentially used TRAV and TRBV chains within each specific
TCR repertoire (Figure 3C). This parameter illustrates the
relative abundance of CDR3α and ß clonotypes using these
particular TRV genes, within a given repertoire. Within Melan-
A and MELOE-1 TCR repertoire, CDR3α clonotypes using
respectively the TRAV12-2 and the TRAV19 genes represented
almost 80 and 90% of amplified clonotypes, strengthening the
crucial role of these TRAV chains in the specificity toward the
HLA-peptide complexes. The preponderance of TRAV12-2 and
TRAV19 clonotypes, in terms of abundance is also observed
in each individual specific-T cell population (Figures S2A,B,
inserts on left panel). TRBV19 Melan-A specific clonotypes
represented the most abundant ones, with almost 20% of
amplified Melan-A specific CDR3ß clonotypes, suggesting that
this TRBV19 segment also participates to TCR specificity. Indeed,
in individual Melan-A-specific T cell populations, TRBV19
clonotypes are overrepresented in 3/6 Melan-A-specific T cell
populations (Figure S2A, inserts on right panel). Conversely,
TRBV2 clonotypes represented only 3.5% of total MELOE-1
specific CDR3ß clonotypes, suggesting that the use of a specific
TRBV chain is less crucial for MELOE-1 specific T cell repertoire.
Indeed, with the exception of P5 patient, TRBV2 clonotypes are
not part of the most abundant ones in individual MELOE-1
specific T cell populations.

TRAJ and TRBJ Usage of Melan-A and
MELOE-1 Specific T Cell Repertoires
Within the Melan-A and MELOE-1 specific repertoires,
we looked for the preferential usage of TRAJ and TRBJ
segments (Figure S3) and to particular TRAV-TRAJ and
TRBV-TRBJ combinations (Figure 4). We found a significant
preferential usage of the TRAJ45 (31/411 clonotypes, Chi2 score
value = 4.5, Figure S3A) and TRBJ1-5 (67/355 clonotypes, Chi2

score value = 8.05, Figure S3B) segments within Melan-A-
specific clonotypes. For MELOE-1 specific repertoire, although
non-significant, we found some biases in TRAJ usage, with
TRAJ22 (9/154 clonotypes, Figure S3A) and TRAJ44 (11/154
clonotypes, Figure S3A) and we also observed a significant
preferential usage of the TRBJ2-1 segment within MELOE-
1 repertoire (38/153 clonotypes, Chi2 score value = 4.3,
Figure S3B).

As these Melan-A andMELOE-1 TCR repertoires are strongly
biased toward the use of TRAV12-2 and TRAV19 chains, we
further investigated whether these dominant TRAV chains were
associated with a given TRAJ segment (Figure 4A). For Melan-
A-specific repertoire, we confirmed the bias already reported
(15, 16) toward the association of the dominant TRAV12-2
chain with the TRAJ45 segment (23/51 TRAV12-2 clonotypes

used this segment, i.e., 45%). So far, no specific TRAV-TRAJ
association has been reported for MELOE-1-specific T cell
repertoire, due to the low number of analyzed T cell clones.
Within TRAV19 clonotypes, the preferential use of TRAJ22 (9/51
TRAV19 clonotypes, Chi2 score value= 6.02) and TRAJ44 (9/51,
Chi2 score value= 4.61) segments is significant (Figure 4B).

We also looked for a preferential TRBV-TRBJ association for
the two specificities, represented by heatmaps on Figure 4C. For
the Melan-A specific repertoire, the significantly preferentially
used TRBJ1-5 segment was associated with 21 TRBV chains, that
confirms the diversity of Melan-A TRB repertoire. Nonetheless,
the most dominant TRBV-TRBJ association was observed with
the TRBV19 recurrent BV chain, with 15 CDR3ß clonotypes
using the TRBJ1-5 segment among the 43 TRBV19 clonotypes.

For MELOE-1 specific T cell repertoire (Figure 4C, lower
panel), the frequently used TRBJ2-1 segment was associated
with 21 different TRBV chains, with no obvious specific TRBV-
association.

CDR3 Lengths and Motif Recurrence
Within Melan-A and MELOE-1 Specific T
Cell Repertoires
CDR3 sequences were defined according international criteria,
beginning by a cysteine residue at the C-terminal end of the
V-gene and ending with a phenylalanine residue coded by the
N-terminal end of the J segment (17).

Lengths of CDR3α and ß sequences of Melan-A and MELOE-
1 specific clonotypes were first compared with those of the
reference sample (Figure 5A). The average lengths of CDR3α
and CDR3ß sequences are between 13 and 14 aa for the control
sample. For Melan-A specific repertoire, the mean length of
CDR3α is significantly shorter (Student test, p = 2.10−16), with
a length centered on 12 amino acids, and the length of CDR3ß
is not different from the control sample. The lengths of CDR3α
and ß are more heterogeneous and both significantly longer
than those of the reference sample for MELOE-1 specific T cell
clonotypes, centered on 17 amino acids for CDR3α and 15 amino
acids for CDR3ß (CDR3α: p= 2.10−8; CDR3ß: p= 8.10−6).

We further investigated the presence of a conserved motif
within these CDR3α and CDR3ß sequences (Figure 5B). For
the Melan-A specific CDR3α sequences, we found no clear
recurrent motif (upper left). This absence of recurrent motif
in the CDR3α sequence is consistent with the fact that the
predominant interaction between the TRAV12-2 chain and the
HLA-A2/Melan-A peptide is located in the CDR1loop (Gln31),
and the CDR3α sequence probably does not participate to
this interaction (4, 18). Interestingly we also confirmed the
presence of the conserved central motif “GLG” for 48/355
CDR3ß sequences (Figure 5B, upper right), that has been already
reported (15), suggesting a non-negligible role of CDR3ß in
HLA-peptide interaction for this repertoire.

The picture is totally inverted for MELOE-1 specific TCR
repertoire, with a strong recurrence of a “GP” motif, formed
by non-template added nucleotides, in 58/154 CDR3α sequence
(position 5-6 of the CDR3α sequence, Figure 5B, lower left).
This motif was previously found in 5/18 MELOE-1 specific CTL
clones (2). This suggests a crucial role of the CDR3α sequence
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FIGURE 4 | TRAJ and TRBJ usage of specific-T cell populations. (A) Number of TRAV-12-2 clonotypes using individual TRAJ in the control sample and Melan-A

specific T cell repertoire. (B) Number of TRAV-19 clonotypes using individual TRAJ in the control sample and MELOE-1 specific T cell repertoire. Black histograms

illustrate TRAJ chains preferentially used in each T cell repertoire, and the same chains are marked with an asterisk in the control sample. (C) Heatmaps of

TRBV-TRBJ combination usage for Melan-A (upper panel) and MELOE-1 (lower panel)-specific T cell repertoires. Numbers of clonotypes using a given combination

are indicated in the corresponding square.

for the HLA-peptide interaction. Conversely, no clear recurrent
motif was identified in MELOE-1-specific CDR3ß sequences
(Figure 5B, lower right).

Particular Features of CDR3 Sequences
Harboring a Conserved Amino Acid Motif
The presence of recurrent motifs in CDR3ß and CDR3α
clonotypes specific for Melan-A and MELOE-1 antigens
prompted us to investigate whether these particular sequences
could be associated with specific features. We first analyzed the
lengths and the relative abundance of these CDR3 sequences
(Figures 6A,C). For Melan-A repertoire, CDR3ß sequences
harboring the “GLG” motif were mainly of 14 aa-length (41/48),
and these 48 clonotypes represented 32% of total CDR3ß
sequences, in terms of abundance (Figure 6A). For MELOE-
1 specific repertoire, the lengths of the 58 CDR3α clonotypes

harboring the conserved “GP” motif at positions 5–6, are
distributed between 15 and 19 amino acids, centered on a length
of 17 amino acids. In terms of abundance, these sequences
are the majority of MELOE-1-specific CDR3α repertoire,
representingmore than 62% of totalMELOE-1 CDR3α repertoire
(Figure 6C).

We further investigated whether these chains harboring a
specific motif were associated with particular TRV and TRJ
segments. Figure 6B illustrates the use of TRBV and TRBJ
segments by the 48 Melan-A-specific CDR3ß clonotypes sharing
the “GLG” motif in their sequences. As for the global analysis of
TRBV-TRBJ association (Figure 4B), we observed the dominant
usage of the TRBJ1-5 segment (31/48 clonotypes), associated with
9 TRBV chains. Of note, the dominant TRBV19 chain is strictly
associated with this TRBJ segment for these particular CDR3ß
sequences.
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FIGURE 5 | CDR3α and CDR3ß lengths and sequence composition of the most abundant CDR3 lengths. (A) Amino acid length distribution of CDR3a (left panel) and

CDR3ß (right panel) clonotypes, from the control sample and antigen-specific populations. (B) Logotypes of amino acid CDR3α (left panel) and CDR3ß (right panel)

composition for the most abundant lengths, for antigen-specific T cell clonotypes.

All but one (57/58) CDR3α clonotypes harboring the “GP”
conserved motif used the TRAV19 dominant chain, that was
found preferentially associated with the two previously identified
dominant TRAJ segments: TRAJ44 (9 clonotypes) and TRAJ22 (8
clonotypes; Figure 6D).

Presence of Public Melan-A and MELOE-1
Specific Clonotypes
We finally looked for Melan-A and MELOE-1 CDR3α and
CDR3ß specific sequences shared between the different

populations that originated from distinct metastatic melanoma
patients.

Heatmaps on Figure 7 illustrate the sequences and the
abundance of each shared CDR3 sequences. Numbers indicated
in boxes correspond to the frequency of each clonotype, within a
given sample. In order to strengthen the value of our results, we
reported here CDR3 clonotypes that have been found as shared

between patients with both 10 and 25 ng of starting RNA.
Twenty-one semi-public CDR3α clonotypes were identified

for Melan-A specific repertoire (Figure 7A), among them 17
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FIGURE 6 | CDR3 length distribution and TRJ usage of clonotypes harboring a conserved motif in their CDR3 sequences. (A) CDR3ß length distribution for

Melan-A-specific clonotypes with the conserved “GLG” motif. Insert in the figure illustrates the abundance of these 48 clonotypes within the global Melan-A specific

repertoire (UMI frequency). (B) Heatmap illustrating TRBV-TRBJ association of these 48 Melan-A specific clonotypes. (C) CDR3α length distribution for

MELOE-1-specific clonotypes with the conserved “GP” motif. Insert in the figure illustrates the abundance of these 58 clonotypes within the global MELOE-1 specific

repertoire (UMI frequency). (D) TRAJ usage of the 57/58 TRAV19 MELOE-1 specific clonotypes, with the conserved “GP” motif.

use the TRAV12-2 dominant chain and 3 of them use the

preferential association TRAV-12-2/TRAJ45. The majority of
these clonotypes are shared between two distinct Melan-A
specific T cell populations, and one of them was identified in 3
populations. Frequencies of these shared clonotypes are highly
variable in individual samples, but some of them are substantially
represented in terms of abundance, reaching 48% of individual
CDR3α Melan-A specific repertoire. To a lesser extent, we also
identified CDR3ß sequences fully conserved and shared by two
distinct Melan-A specific populations (Figure 7B). Among these
5 common CDR3ß sequences, 3 harbored the public “GLG”
motif.

Finally, we also performed the same study on the 4 MELOE-
1-specific T cell populations, and Figure 7C illustrates the
characteristics of the 6 CDR3α sequences that are conserved
between 2 and 3 patients. All these sequences use the TRAV19
chain, and thus harbor the public motif “GP” in positions 5–6. As
for Melan-A-specific CDR3α shared sequences, the frequencies
of these common sequences vary from sample to sample, but can
reach up to 43% of individual MELOE-1 repertoire in terms of
abundance.

DISCUSSION

In this study, we analyzed the TCR repertoires of CD8+ T
cells specific for the immunodominant A2/Melan-AA27L and
the A2/MELOE-136−44 melanoma epitopes, originating from the
peripheral blood of HLA-A2 melanoma patients, using a recently
developed high throughput TCR sequencing method. This

method, based on UMI (Unique molecular indexes) technology
strongly reduces PCR duplicates and amplification bias, that are
major issues in current RNAseq workflows. These molecular
barcodes allow the counting of original transcript levels instead of
PCR duplicates, thereby enabling digital sequencing and resulting
in unbiased and accurate gene expression profiles (19). TCR
sequencing was performed on 6 Melan-A and 4 MELOE-1-
specific CD8+ T cell populations, amplified in vitro after sorting
with HLA-peptide coated magnetic beads (3, 10). Libraries
prepared from 10 to 25 ng of total RNA revealed that the initial
quantity of material is an issue to reveal the entire diversity of the
most polyclonal populations, especially for clonotypes present at
the lowest frequencies. Indeed, the total number of sequenced
CDR3α and CDR3ß clonotypes (cumulated from all populations)
increased by nearly half for Melan-A specific repertoire, when
starting with the highest RNA quantity. For the less diverse
MELOE-1 specific repertoire, the number of total CDR3α and
CDR3ß clonotypes is rather similar with the two RNA starting
quantities. As expected, and illustrated by Figure 1, the highest
quantity of starting material allows the detection of the highest
number of low frequency clonotypes.

In this study, we also assessed the reliability of this TCR

sequencing method comparing the frequencies of CDR3ß
clonotypes sharing the same TRBV chain, detected either through
TCR sequencing or labeling of polyclonal T cells with Vß-
specific antibodies (Figure 2). For most TRBV chains, for which
a specific antibody is available, there was globally a good
correlation between the cumulated frequencies obtained from
TCR sequencing and the fraction of Vß positive cells detected by
cytometry. Nonetheless, we observed some outliers, detected at
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FIGURE 7 | Heatmaps illustrating the sequences and frequencies (UMI) of semi-public CDR3 clonotypes shared by melanoma patients. (A) Heatmap of the 21 public

CDR3α Melan-A specific clonotypes. (B) Heatmap of the 5 public CDR3b Melan-A specific clonotypes. The conserved “GLG” motif is indicated in italics in the

sequence. (C) Heatmap of the 6 public CDR3α MELOE-1 specific clonotypes. The conserved “GP” motif is indicated in italics in the sequence. The frequencies of

each clonotype in individual patients are indicated by the numbers in squares.

low frequencies either by TCR sequencing, or antibody labeling.
This could be explained by the lower sensitivity of antibody
labeling and to some degree of cross-reactivity of some specific
antibodies (Figure 2). Globally, this TCR sequencing method
is a very powerful, sensitive and reliable method to reveal the
diversity of polyclonal T cell populations.

The quality of obtained results was also assessed by the
confirmation of specific features already described for Melan-
A specific T cell repertoire. First, we confirmed a very strong
bias in TRAV usage, with the dominant use of TRAV12-2 for
Melan-A specific repertoire. This dominance has been widely
explored in Melan-A-specific T cells from different origins (TIL,
T cell clones originating from tumors or blood from melanoma
patients or HLA-A healthy donors), (5, 6, 20). This TRAV12-
2 recurrence occurs for T cells specific for the natural epitope
Melan-A26−35 almost all cross-reactive with the heteroclitic
Melan-AA27L peptide, despite the fact that TCR engagement
of these two peptides differs in terms of the strength of the

interaction (18, 21). Indeed, it has been demonstrated that
the TCR is extremely sensitive to minor alterations in peptide
conformation and that the use of heteroclictic peptide can skew
the natural specific T-cell repertoire (22). Therefore we cannot
formally assert that observed features for Melan-AA27L-specific
T cell repertoire would be observed in the same proportions for
Melan-A26−35 specific T cell repertoire, although a high degree
of similarity between the two repertoires has been reported in
structural studies. Indeed, structural analyses of the interaction
between HLA-peptide complexes and both Melan-A26−35- and
Melan-AA27L specific TCR revealed a strong interaction between
the TRAV12–2 CDR1 and the Melan-A 26−35 peptide, presented
in the HLA-A2 molecule (4, 23), the CDR1 loop acting as the
classical CDR3 loop considering peptide contacts. This unusual
TCR binding mode (involving a germline-encoded region) has
been proposed to explain the high frequency of naive Melan-
A-specific precursors. Supporting this hypothesis, two other T
cell repertoires, with a very high frequency of naive precursor,
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also exhibit a strong bias in TRAV12-2 usage, with a major role
of the CDR1 loop: the T cell repertoire specific for the HTLV-
1/A2 dominant epitope, (24) and for Yellow fever/A2 dominant
one (23). We also confirmed the dominant usage of TRAJ45
segment (16), in the whole Melan-A specific T cell repertoire and
even more significant for the TRAV-12-2 expressing clonotypes
(Figure 4A), also suggesting a combinatorial constraint favoring
the association of these two segments forMelan-AA27L repertoire.

A diverse TRBV usage has been reported for Melan-A specific
T cell repertoire (5, 6), nonetheless with the recurrence of
some TRBV chains, such as TRBV19, BV20-1, BV27 and BV28
(14, 15). It has been documented that TRBV repertoires -
specific for the natural and analog Melan-A peptides were
overlapping, nonetheless with the preferential usage of TRBV19
by Melan-AA27L specific TCR (16). Our results confirmed
this bias, with 43/355 clonotypes using the TRBV19 chain,
representing almost 20% of amplified clonotypes. The TRBV20-
1, BV27, and BV28 chains are also frequently used, but as
these chains are very frequent in the control population, their
preferential usage in Melan-A-specific repertoire does not appear
significant. Results also confirmed the preferential usage of
TRBJ1-5 segment (Figure S3), that was also found strongly
associated with the dominant TRBV19 chain (15/43 clonotypes,
Figure 4B). A recurrent usage in TRAJ1-5 segment had been
previously reported (15), with a preferential combination with
TRBV28 chain. In our study, the combination TRBV28-TRBJ1-5
is also present although less dominant (8/36 TRBV28 clonotypes
used this segment) than the TRBV19-TRBJ1-5.

The analysis of CDR3α and ß amino acid composition
revealed no specific features concerning CDR3α sequence, but
a recurrent central motif “GLG” in CDR3b region (Figure 5B)
already documented (15, 16). The resolved TCR/HLA-A2-
Melan-AA27L structure revealed that the residues “LG” of the
CDR3b made interactions with the IleP7 of the Melan-AA27L

peptide. Thus, the CDR3ß loop may contribute to the stability
of the TCR-Melan-AA27L complex (18). Interestingly, TCR
clonotypes harboring this specific motif represented more than
30% of total CDR3ß clonotypes (Figure 6A), strengthening the
role of this conserved motif for TCR/HLA-peptide interactions.
CDR3ß regions harboring this specific motif are mainly of 14
aa-length (41/48 clonotypes), with a clear biased usage of TRBJ1-
5 segment (Figure 6B). Of note, all the TRBV19 clonotypes
harboring this specific motif were associated with this segment,
also dominant within TRBV28 clonotypes, in accordance with
previous report (15). Our results thus confirmed the existence
of a conserved “GLG” amino acid motif in CDR3ß sequences of
Melan-A-specific T cells, together with the preferential usage of
TRB1-5/TRBV19 combination, and to a lower extent of TRBJ1-
5/TRBV28. This strengthens the hypothesis that, besides the well-
documented role of the CDR1 region of TRAV12-2 chain, the role
of TRB chain, and especially that of the CDR3ß region is far from
anecdotal for the sharpness of TCR interaction with Melan-A
peptides.

We perform the same analysis on MELOE-1 specific T
cell repertoire, that has been far less extensively characterized.
Indeed, we reported before that MELOE-1 specific T cell
repertoire was also a vast T cell repertoire in HLA-A2 healthy

donors and melanoma patients, and that MELOE-1 specific T
cells were strongly biased toward TRAV19 usage (2). This initial
study was performed on 18 specific T cell clones of diverse
origins, and here we clearly confirmed this strong bias on 79/154
clonotypes from 4 different melanoma patients (Figure 3).
These TRAV19 clonotypes represented more than 90% of total
clonotypes, in terms of frequency, strengthening the crucial role
of this TRAV chain in the specificity toward the HLA-2-MELOE-
136−44 complexes. This TRAV19 chains appears preferentially
associated with TRAJ44 and TRAJ22 segments (Figure 4B). The
analysis of CDR3α sequences reveals interesting features. First,
the lengths of CDR3a appeared significantly longer than in the
control population, with a mean-length situated around 16–
17 amino acids. Furthermore, this analysis also revealed the
presence of a very highly conserved motif at the beginning of the
CDR3α sequence: CALSGP, in which GP residues are encoded by
the diversity. The presence of this conservedmotif was previously
observed in 12/18 of MELOE-1 specific T cell clones (2), and
suggested that, contrary to that described forMelan-A repertoire,
the CDR3α region of these TCR could be a key player in the
specific interaction with MELOE-136−44 peptide. Of note, all but
one clonotypes harboring this specific motif, and representing
62% of total clonotypes in terms of frequency, used the TRAV19
chain (Figure 6C). The dominant length of these clonotypes is
of 17 amino acids, and in this subgroup, the TRAV19 chain
is mainly associated with TRAJ44 and TRAJ22 segments. This
study also revealed a preferential usage of the TRBV2 chain
with 14/153 clonotypes, nonetheless representing only 3.5% of
expanded clonotypes (Figures 3B,C). Thus TRBV chain may
be less crucial in conferring TCR specificity, also confirmed by
the absence of any clear conserved motif in CDR3ß sequences
(Figure 5B). The most significant feature concerning TRB chain
for MELOE-1 specific repertoire was the dominant usage of
the TRBJ2-1 segment (38/153 clonotypes), associated with 21
different TRBV chains. This suggest, that TRBJ segment, rather
than TRBV chain could be involved in TCR-peptide interaction.

Overall, these data suggest two different structural hypotheses
that could explain the high frequencies of Melan-A andMELOE-
1 specific T lymphocytes, based either on a specific role of
the germline encoded CDR1α and the somatically rearranged
CDR3ß regions for Melan-A T cell repertoire, or based on
probable interactions within the somatically rearranged CDR3α
region, for MELOE-1 specific T cell repertoire, as suggested by
the presence of the highly conserved “GP” motif in TRAV19
chain, and also possibly involving the TRBJ2-1 segment.

Based on these particular features, we investigated the
presence of public or semi-public clonotypes shared by the
different patients from whom these T cells have been derived.
Such CDR3α clonotypes have been previously described for
Melan-A specific repertoire (5, 6, 16), as also reported for T
cells submitted to chronic exposure to antigens (25, 26). Here
we found 21 CDR3α semi-public sequences, shared at least
by 2 patients (one shared by three patients). Among these
clonotypes, 17/22 use the TRBV12-2 chain, and some were highly
frequent in individual Melan-A TCR repertoires. Interestingly,
2 of these TRAV12-2 public clonotypes (CAVNNARLMF and
CAVGGGADGLTF) have been previously identified from the
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blood of patients either vaccinated with the natural or the
analog Melan-A peptides (16). Nonetheless, no conserved
motif was identified within these semi-public clonotypes,
strengthening again the fact that CDR3α chain is not involved
in TCR-peptide interactions (Figure 7). We also observed
5 semi-public CDR3ß sequences, among them 3 harboring
the conserved “GLG” motif, and one of these clonotypes
(CASSFLGTASYEGYF) being previously reported has a public
one (16).

No public CDR3 sequences have been described so far for
MELOE-1 specific T cell repertoire, and here we documented the
existence of 6 CDR3α sequences shared by 2 distinct melanoma
patients. All of them were associated with the TRAV19 chain
and harbored the conserved “GP” motif, previously identified.
However, no public CDR3ß sequences were found for MELOE-
1 repertoire. This final result supports the potential crucial
role of CDR3α region in conferring the specificity toward
MELOE-1 epitope, and could also explain the lower frequency
of MELOE-1 specific T cells (around 10−5 in CD8+) compared
to Melan-A specific ones (around 10−4), whose TCR specificity
is mainly conferred by the TRVA12-2 germline encoded CDR1
loop.

Globally this study highlighted common and specific features
between T cell repertoires specific for two melanoma antigens,
that are relevant targets for immunotherapy. We cannot formally
rule out the possibility that ex-vivo peptide stimulation, sorting
and amplification steps could introduce some biases in the
relative abundance of some clonotypes harboring particular
features. Nonetheless, results obtained about the dominance
of TRAV12-2 and TRAV19 usage, and on specific features
of Melan-A-specific CDR3beta sequences, confirmed already
reported results, some of them obtained without any culture
biases. Therefore, it appears quite plausible to suggest that the
new described T cell repertoire features could arise at least partly
from in vivo amplified T cell repertoires. Beyond these specific
results, high throughput TCR sequencing approaches provide
reliable and exhaustive T cell repertoire analyses, and will be a
real asset to monitor immunotherapy-treated patients, with the
aim to improve immunotherapeutic treatments.
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In response to external stimuli, naïve B cells proliferate and take on a range of

fates important for immunity. How their fate is determined is a topic of much recent

research, with candidates including asymmetric cell division, lineage priming, stochastic

assignment, and microenvironment instruction. Here we manipulate the generation of

plasmablasts from B lymphocytes in vitro by varying CD40 stimulation strength to

determine its influence on potential sources of fate control. Using long-term live cell

imaging, we directly measure times to differentiate, divide, and die of hundreds of pairs of

sibling cells. These data reveal that while the allocation of fates is significantly altered by

signal strength, the proportion of siblings identified with asymmetric fates is unchanged.

In contrast, we find that plasmablast generation is enhanced by slowing times to divide,

which is consistent with a hypothesis of competing timed stochastic fate outcomes. We

conclude that this mechanistically simple source of alternative fate regulation is important,

and that useful quantitative models of signal integration can be developed based on its

principles.

Keywords: B cells, anti-CD40 stimulation titration, fate regulation, lineage priming, competing stochastic timers

INTRODUCTION

Increased understanding of the regulation of cell differentiation, division and death is crucial in
many fields of biology (1–5).While population-level consistency in the proportion of cells taking on
distinct fates has long-since been observed, advancing technologies that enable direct observations
of individual cells and their lineages reveal significant heterogeneity (6–14). In order to manipulate
population-level fate allocation, determining the primary drivers of this cell-level heterogeneity is
an essential precursor to designing interventions, and so the search for the sources of heterogeneity
has been a topic of much recent research.

B lymphocytes are an essential component of the immune response and provide a useful model
for assessing methods of fate control. During activation, they integrate signals from multiple
sources that modify the resulting cell response by altering lifespan, the type of antibody made, the
speed of cell proliferation, and the rate of development into antibody secreting plasma cells (15).
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T cells provide one important source of signals that influence the
B cell (16, 17). During an immune response, antigen captured
by the B cell is presented to reactive T cells that are, in
turn, induced to express CD40L on their surface. This ligand
engages the constitutively expressed receptor CD40 found on
the B cell surface. CD40 stimulation alone can activate and
promote B cell proliferation, but its impact is amplified by T cell
derived cytokines, such as IL-4 and IL-5, that further shape fate
changes including isotype switching and the rate of development
into Antibody Secreting Cells (ASCs) (18). Importantly for
quantitative studies, a CD40 agonist and cytokines can replace
the T cell, making it an excellent model system for studying the
impact of variations in signals on fate outcomes in vitro.

Activated lymphocytes vary in the times they take to divide
and, in culture, are usually found spread across multiple
generations. Notwithstanding that, numerous studies report that
the greater the number of divisions cells have experienced, the
more likely they are to have undergone a change, regardless of
time from stimulation. For example, isotype switching is linked
to division, and is influenced by the concentration of switch-
inducing cytokines (19–21). Similarly, the development into ASC
also has been reported to be promoted by progressive passage
through division cycles, and this likelihood, in turn, is modulated
by the concentration of cytokine delivered signals (18, 22). These
studies proposed that alternative division-linked cell changes,
such as switching and development to ASC, could arise as the
combination of a series of independent fate decisions underway
in each cell (18, 20, 23–25).

This hypothesis of independent fate competition was
evaluated and extended upon by Duffy et al. (26), by assessing
data taken from experiments where individual B cells that
had undergone given numbers of divisions, as determined by
CTV staining, were sorted by flow cytometry and subsequently
followed with long-term imaging. Once these cells were observed
to divide, their sibling offspring were examined with times
to divide, to die, to differentiate to ASC, and to antibody
isotype-switch from last mitosis recorded. Probabilistic analysis
established that the complex array of heterogeneous fate
outcomes and times to fates were consistent with a simple
hypothesis where, within each single cell, times to each fate
(isotype switching, differentiation, death, and division) were
selected independently from a probability distribution and
behaved in competition with each other, such that short times
to fate censor later fate outcomes (26). Sibling fates, however,
had significantly greater commonality than unrelated cells of
the same generation, indicating a substantial element of familial
lineage priming.

As external regulators are known to influence the proportions
of cells assuming fates at a population level, we reasoned that
investigation of their impact at the single cell level would provide
additional discriminating insight. Here we examine the cell-
level impact of changing CD40 stimulation strength on ASC
development. This analysis suggests that CD40 has no direct
impact on differentiation rate or asymmetric fate changes, but
exerts its influence by altering the time to divide distribution,
thereby regulating the proportion of cells that differentiate as the
result of alterations to the inherent cellular competition.

MATERIALS AND METHODS

Mice
Blimp-1-GFP reporter mice on a C57BL/6 background (22)
were bred and maintained in specific pathogen free conditions
at the Walter and Eliza Hall Institute (WEHI) animal
facility according to institutional guidelines. All experiments
were approved by the WEHI Animal Ethics Committee.
Ten-week-old female reporter (Blimp-1+/GFP) and wild type
(Blimp-1+/+) mice were used for the flow cytometry and filming
experiments.

Cell Isolation and Labeling
Naïve, resting B cells were isolated from murine spleens
using a discrete Percoll (GE Healthcare, cat#17089101)
density gradient (50/65/80%, cells collected from 65/80%
interface), followed by purification using magnetic beads
(negative selection, mouse B cell isolation kit, Miltenyi
Biotech cat#130-090-862). Enriched cells were verified to
be >98% B220+ and CD19+ by flow cytometry. Cells were
labeled with CellTrace Violet (Invitrogen, cat#C34557) at
7.5µM final concentration, with 107 cells/mL in phosphate
buffered saline containing 0.1% bovine serum albumin
(PBS/0.1%BSA), and incubated in a 37◦C water bath for
20min. Cells were washed twice with cold culture medium prior
to culture.

Cell Culture
For flow cytometry and for bulk cultures, cells were cultured
in “B cell medium,” made from Advanced RPMI 1640
(Gibco cat#12633-012) supplemented with 5% fetal calf
serum (Gibco, cat#10099-141, Australian origin), 10mM
HEPES (Gibco, cat#15630-130), 2mM GlutaMAX (Gibco,
cat#35050-061), 10 U/mL penicillin, 100µg/mL streptomycin
(Penicillin/Streptomycin, Gibco, cat#15140-148), and 50µM
2-mercaptoethanol (2-ME, Sigma-Aldrich, cat#M7522). For
filming, cells were cultured in phenol red-free Advanced
RPMI 1640 (Gibco custom order) with the same supplements.
Imaged cells were stimulated with 1,000 U/mL IL-4 (WEHI),
and 10, 2.5, or 0.625µg/mL anti-CD40 antibody (1C10,
WEHI Antibody Facility), and incubated at 37◦C with
5% CO2. Differentiation promoting effects of IL-4 were
saturating at concentrations above 316 U/ml [(18) and data not
shown].

Flow Cytometry
For flow cytometry experiments, 200 µL wells containing
104 cells were cultured in triplicates across 96 well flat-bottomed
plates. Blimp-1+/GFP and wild type cells stimulated with IL-4
and 10, 2.5, or 0.625µg/mL of anti-CD40 antibody, or IL-4
alone were harvested periodically for flow cytometry analyses
(BD FACSCantoII). Propidium iodide (PI, 0.5µg/mL final,
Sigma cat#287075) for dead cell exclusion and 5,000 beads
(Sphero Rainbow Calibration particles [6 peaks] 6.0–6.4µm, BD
Biosciences, cat#556288) for cell counting were added just prior
to sample acquisition.
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Cell Sorting and Long-Term Live Cell

Imaging
For filming, 5mL cultures (2 × 105 cells/mL) of cells stimulated
with IL-4 and 10, 2.5, or 0.625µg/mL of anti-CD40 antibody
were harvested 85 h after stimulation. Cells were labeled for
expression of IgG1 (clone X56, BD Pharmingen cat#550874),
and sorted (BD FACSAriaIIu), for generation four cells that were
undifferentiated (Blimp-1-GFP−) and unswitched (IgG1-APC−),
to ensure that cells with a similar starting phenotype were tracked
and compared in each CD40 stimulation condition.

Sorted cells were re-cultured in phenol red-free B cell medium
with the same stimuli concentrations as prior to the sort, at
5 × 104 cells/mL. For each of the three anti-CD40 conditions,
250 µL of cell suspension was placed into a separate well of
a pre-prepared chamber slide (Ibidi, cat#80826) where each
well was lined with a polymer imprinted with a microgrid
array of cell “paddocks” (Microsurfaces, cat#MGA-050-02) (27).
Microgrids were prepared aseptically, rinsed with 100% ethanol
for sterilization, then left to dry completely to ensure adherence;
before wetting again with ethanol such that B cell medium
could be introduced to the hydrophobic grids. Chambers were
rinsed 10 times with B cell medium, prior to resting overnight
in an incubator to aid the dissolution of any air bubbles.
Chambers and polydimethylsiloxane (PDMS) microgrids were
exposed to 470 nm LEDs (custom made) for at least 30min prior
to the addition of cells, to photobleach the grids and reduce
autofluorescence during imaging. The seeding cell density was
determined to yield not more than an average of one cell per
paddock for filming.

Microscopy images were acquired using a Zeiss Axiovert
200M widefield inverted microscope, equipped with an
incubation chamber (37◦C, 5% CO2, humidifier), plan-
apochromat 20x objective (0.8 n.a.), 0.63x c-mount, and a Zeiss
AxioCamMRm (1.4MP) camera. Fluorescence (GFP) and bright
field images were acquired for 141 positions, at 15-min intervals,
encompassing 7,896 paddocks for the three culture conditions,
across 360 time points over the following 89.75 h. The remainder
of the sorted cells were placed into triplicate or duplicate cultures
in 96-well plates for a concurrent flow-cytometry time course of
events, and were run twice-daily for the duration of the filming
experiment as a parallel control.

Single Cell Fates Were Manually Tracked

With Visual Cues and Fluorescence

Thresholding
For consistent tracking of imaged cells, fluorescence images
were first processed using the pipeline reported by Duffy et al.
(26). All images from the GFP channel were corrected for
uneven illumination of the microscopy stage, thresholded for
fluorescence, and binarized to produce an objective indicator
of GFP positivity. The image processing method is automatic,
and threshold values were computed relative to background
illumination using intensity histograms for each image. Resultant
images were cropped into individual paddocks, and the processed
GFP, unthresholded GFP, and bright field images with GFP

overlay for each paddock were concatenated for ease of viewing
and stacked into time-lapse films.

Paddocks with individual, undifferentiated cells were
identified, and those observed to divide were followed to
record the fates of paired offspring. Bright field images were
used to manually track cells using their location, size, shape,
granularity and trajectory. These properties allowed for the
reliable identification of division, as well as death. Shortly
before division, cells appeared to lose adhesion and formed
large spheres, before cleaving into two smaller cells that do
not immediately produce pseudopodia. For death, cells sharply
increased in granularity and the circumference of the membrane
appeared ruffled, likely due to blebbing, several frames before cell
fragmentation was observed, or the membrane perforated and
the cell swelled from osmotic intake. This first change in texture
was recorded as the cell death time.

For identifying differentiation to ASC, thresholded and
binarized images in the GFP channel were followed as a
reporter for Blimp-1 expression. Dim light settings are required
for extended imaging to avoid phototoxicity, hence chosen
voltage and exposure settings also allowed some noise to be
detected above the low threshold, from the autofluorescence
of the cells and grids. Consequently, differentiation times were
only recorded when the cell’s fluorescence remained above
threshold for three or more consecutive frames (45min), and
then did not disappear for more than one frame at a time;
GFP expression would later brighten and cover a larger area.
Unthresholded images from the GFP channel were referenced for
noise exclusion, and also used for cell identification and tracking
based on differentiation status and level of fluorescence.

Sister cells fates were tracked until they either divided again
or died. Some cells survived until the end of filming, or were lost
due to falling out of focus, migration away from their paddock,
or failure to maintain cell ID—these times were also recorded.
Homotypic adhesion prevented the tracking of four or more cells
using this experimental design.

Statistical Analysis
Data was processed in Matlab 2017b by custom software
utilizing in-built functionality. Pearson’s correlation coefficient
was evaluated using corr, and the reported confidence intervals
(CIs) were determined by Fisher’s Transformation. We used
Yule’s Q, a traditional measure of association between pairs of
variables, to quantify association between division and death
or differentiation and no differentiation. Its asymmetric CIs
were determined from a normal approximation to errors in the
logarithm of the Odds Ratio. Non-parametric survival function
(i.e., Kaplan-Meier) estimates were made using the censoring
option of the in-built function ecdf.

Parametric Model Fitting Procedure
Custom software utilizing the Optimization Toolbox in Matlab
2017b was used for model fitting. The uncensored distributions
were assumed to lie in the class of log-normal distributions.
For all stimulation conditions, there was a single log-normal
time to death Tdeath parameterized by a mean µdeath and
covariance σ

2
death

. For all stimulation conditions, there was a
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probability, pdiff, that the differentiation process is active in the
cell whereupon it occurs at a log-normally distributed time with
parameters µdiff and σ

2
diff

. If the process was not on, then the
differentiation time was set to be +∞. For each of the three
concentrations of 1C10 (0.625, 2.5 and 10µg/mL), labeled j in

(1, 2, 3), it was assumed there was a distinct probability, p
j

div
,

that the division process is active in the cell whereupon it occurs
at a concentration-dependent log-normally distributed time with

parameters µ
j

div
and σ

2,j

div
. If division was not active, the time was

set to be+∞.
For θ = (µdeath, σ

2
death

, pdiff, µdiff, σ
2
diff

, p1
div

, µ
1
div

, σ
2,1
div

, p2
div

,

µ
2
div

, σ2,2
div

, p3
div

,µ3
div

, σ2,3
div

), a function was written that numerically
calculates the likelihood of generating a data point d ∈ D given
that parameterization. For example, if a time-lapse frame is taken
every h units of time, for a data point d ∈ D in which a cell in
stimulation condition j is observed to differentiate in the frame
number fdiff and undergo death in the frame number fdeath,
the likelihood of generating that data point d given the model
parameterization θ is

L(d|θ) = P(fdiff ≤ Tdiff/h < fdiff + 1)P(fdeath ≤ Tdeath/

h < fdeath + 1)P(T
j

div.
/h > fdeath.),

where the cumulative distribution functions were evaluated using
Matlab’s logncdf. For a set D composed of the fates of
stochastically independent cells, the likelihood of generating the
set is the product of the likelihoods of generating each point in
the data

L(D|θ) : = 5d∈DL(d|θ).

We used Matlab 2017b’s Optimization Toolbox function
fmincon to identify themaximum likelihoodmodel parameters
θ that would generate the data:

θMAP := argsup
θ
L(D|θ).

As sibling cells have correlated times to fate, they are not
independent and so the function given above does not describe
their likelihoods. Despite that, assuming symmetry in the
joint underlying distribution of times to each fate of siblings,
the maximum likelihood marginal parameters are obtained
by optimizing over the same objective function given above
computed on all data, including siblings.

Reshaped Distributions
Competition and censorship alters the underlying distributions
of times to differentiation, division and death into those that are
observed. For example, the observedmarginal probability density
function for division under stimulation condition j is related to
the uncensored distributions for division and death through the
following equation:

dP(T
obs,j

div
≤ t)/dt = dP(T

j

div
≤ t)/dtP(Tdeath > t)/∫

dP(T
j

div
≤ s)P(Tdeath > s),

which differs from the uncensored density of T
j

div
. Similar

expressions hold for T
obs,j

diff
and T

obs,j

death
. Rather than perform

numerical integrals to evaluate these, a Monte Carlo approach
was taken where 106 samples were drawn from the uncensored
distributions parameterized by θMAP, censoring rules were
applied to the sampled values, and the resulting empirical
distribution functions and densities of the observed variables
were determined.

RESULTS

Population-Level Generation-Based Rate

of Differentiation Is Increased by Weak

CD40 Stimulation
To determine the effect of modulating CD40 signal strength,
we utilized B cells from Blimp-1-GFP reporter mice to
indicate expression of the ASC differentiation program within
plasmablasts. In this system, cells expressing GFP secrete Ig
at high efficiency (22). Purified resting naïve B cells from
reporter mice were labeled with CellTrace Violet (CTV), and
equal numbers of cells were placed in culture with varying
concentrations of anti-CD40 agonist antibody (clone 1C10)
(28) and saturating IL-4 (500 U/mL), and harvested over time
(Figures S1, 1). As expected, increasing concentrations of
CD40 led to greater cell numbers and increased progression
through consecutive generations (Figures S1A,B). Furthermore,
division-linked effects on ASC development were apparent
as a greater proportion of cells produced Blimp-1-GFP
in the advanced generations (Figures 1C,D), consistent
with published findings (18). These data also confirmed
the observation of Hawkins et al. (29) that lower CD40
stimulation levels resulted in a greater proportion of ASC
per generation when compared to equivalent generations
in cultures with high CD40 stimulation (Figures 1C,D).
An increased rate of differentiation was also measurable in
the population as a whole (Figure 1C). Thus, modulating
CD40 stimulation strength has two distinct effects on the
B cell response: high concentrations promote increased
proliferation, whilst low concentrations increase the rate of
observed differentiation events per generation. To identify
the mechanism that alters cell differentiation by changes in
stimulation strength, we undertook direct observation by live
imaging.

Long-Term Imaging Allocates Fate

Assignments for Single Cells
B lymphoblasts stimulated by CpG can be tracked individually
through multiple cell generations (30, 31). In contrast, observing
differentiation by live imaging following CD40 stimulation
is challenging due to homotypic adhesion. The development
of cell aggregates restricts tracking of individual progenitor
cells for more than one or two generations (30). A new
method was introduced in Duffy et al. (32) to circumvent
this problem. By harvesting and disaggregating CTV labeled,
proliferating B cells after a few days in culture, then seeding
sorted, individual cells into microgrids to maintain segregation,
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FIGURE 1 | Anti-CD40 concentration alters division and differentiation rates. CTV labeled resting Blimp-1gfp/+ B cells were cultured in 500 U/mL IL-4 and 10, 2.5,

0.625, or 0µg/mL anti-CD40 and harvested over time for flow cytometry analysis. (A) Total cell numbers over time. (B) Total cells found in each generation. (C) The

proportion of total viable cells also GFP+ (ASC). Dashed lines are from equivalent wild-type control cells used to set GFP gates. (D) The proportion of cells in each

generation that were GFP+. Data points are mean of triplicate cultures ± SEM, and representative of several repeated titration experiments.

(27) cells from different generations were observed to divide and
their progeny followed until their next fate (32). Here we adapted
this protocol, illustrated in Figure 2, to observe the effect
of CD40 stimulation strength changes on differentiation

and division times, as well as concordance in sibling
fates.

In initial bulk cultures CTV labeled Blimp-1-GFP reporter
B cells were incubated with IL-4 and varying concentrations of
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anti-CD40 (10, 2.5, 0.625, and 0µg/ml) for 4 days, resulting
in the expected variation in division and differentiation
rates (Figure S1A). To compare the subsequent fate of
undifferentiated cells from the same generation, cells from each
culture were sorted by flow cytometry for those in generation
4, and seeded into 250 µL chambers containing microgrids for
a further 90 h of live cell imaging (see Materials and Methods).
Control cell cultures were prepared in parallel at the same
density in 96 well plates, and triplicate 200 µL cultures were
analyzed periodically to ensure the overall population response
of the sorted cells was consistent (Figure S2). Control analyses
indicated that sorted cells were GFP− and in generation 4 at the
time they were re-cultured (Figure S2B). These cultures also
confirmed that cells stimulated with higher concentrations of
anti-CD40 divided faster, resulting in greater CTV dye dilution
(Figure S2B), and higher total cell numbers (Figure S2C).
Despite the variation in progression through generations, a
greater proportion of cells in 2.5µg/mL anti-CD40 were GFP+

than in 10µg/mL (Figure S2D). As these proliferation and
differentiation features were consistent with earlier studies,
manual tracking and analysis of the parallel single cell imaged
cultures were undertaken.

Single Cell Data Recapitulated Fate

Changes Seen at Population Level
Acquired images were processed and thresholded to facilitate
GFP scoring, as described in Methods and illustrated in
Figure 3A. After initial visual inspection, “paddocks” identified
with single cells that undertook their first division as GFP− cells
were selected, and the resulting two siblings followed manually,
to record their times to changes in fates (Figure 3). For the data
presented here, the time of the cell’s first division (therefore from
generation 4 to 5) is set as time 0, the initiating event time,
and the siblings being tracked are in generation 5. The complete
annotated data set was converted to such times by calculating the
times between the first observed division and subsequent fates
(differentiation to ASC, division or death). Histograms of these
times are plotted in Figure 3B, illustrating the heterogeneity in
each outcome.

To visualize differences between culture conditions, observed
proportions to undergo each fate are shown in Figure 4A, and
mean times to reach each fate in Figure 4B. These data suggest
that cells stimulated with high concentrations of anti-CD40 were
more likely to divide and less likely to die (Figure 4A), and when
they did divide they completed mitosis more quickly (Figure 4B)
The proportion of cells observed to differentiate is also consistent
with flow cytometry time courses, in that a higher proportion
of cells differentiated to ASC with lower CD40 stimulation
(Figure 4A). Thus, despite segregation into cell paddocks by
the microgrids, the filmed cells recapitulated the fate outcomes
measured by flow cytometry at the population level.

Stimulation Strength Does Not Affect

Sibling Correlations or Concordance
Whether stimulation strength affected differentiation by
influencing asymmetry in fate was first assessed. For each of the

three concentrations (0.625, 2.5, and 10µg/mL, respectively)
78, 68 and 75% (±8, 9, 8% as 95% CIs) of siblings take the
same differentiation or no differentiation and death or division
fates. Figure 4C plots Yule’s Q, a measure of concordance
for opposing fates (division vs. death, and differentiation vs.
no differentiation) relative to their frequency of occurrence
in the population. The consistent, high values of Q indicate
the significant concordance found for both division-death and
differentiation-no differentiation fates of siblings was not affected
by CD40 stimulation strength. Thus, strong sibling concordances
and correlations were found in this experiment, in line with
earlier findings. Interestingly, these sibling similarities did not
appear to be controlled by altered CD40 stimulation strengths,
despite the marked changes in division times, and differentiation
rates.

Uncensoring Cell Fate Time Distributions
Having eliminated modulation of asymmetric fates as a control
feature regulated by anti-CD40 concentration, we turned to the
theory of competing fates as a potential driver of heterogeneity.
Under this hypothesis, autonomous processes leading to each fate
are underway within the cell. The order in which they complete
determines the fate that the cell is observed to take. As observed
times to fate are heterogeneous, the mathematical framework
of probability is necessary to describe them. It encapsulates
the heterogeneity irrespective of whether its source is truly
stochastic processes within each single cell, or arises as a result
of unidentified heterogeneous lineage properties. The hypothesis
suggests that the apparently complex correlation structures
observed in cell fate data are a consequence of observed times
to fate being the product of competition and censorship, and
leads one to query the role of external regulation on each of the
autonomous processes (26, 32).

Figures 4D,E shows the result of applying the standard
non-parametric survival function estimator, the Kaplan-Meier
estimator (33), to the raw cumulative frequency data for each
fate (Figure 4D) to reveal the pre-competition, uncensored
time-to-fate distributions (Figure 4E), assuming probabilistic
independence of these underlying timed mechanisms. For these
plots division is assumed to censor death, death censor division,
and both division and death censor differentiation. In some
instances, the remaining proportion is >0 (i.e., plot does not
reach a height of 1), indicating the observation time was too short
to capture all possible events in this category; or alternatively that
the remaining proportion of cells were incapable of undergoing
that fate.

Within this competing timers model, these results are
consistent with the hypothesis that CD40 stimulation strength
had a significant impact on cell division times with little direct
effect on the underlying distributions of times to death or
differentiation. Higher levels of anti-CD40 reduces division
times, positively impacting the proportion of cells in the
population that progress to the next generation, while reducing
the proportion of cells that differentiate. Together, these results
are consistent with the hypothesis that CD40 stimulation controls
the time to divide, but not the times to differentiate or die.
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Parametric Model Based on Competition

and Changes in Division Time Only
Under the stochastic competition hypothesis, not all processes
need to be in operation in every cell. In particular, there is a

possibility that neither differentiation nor division partake in

the competition. To extract these propensities to differentiate

and divide (i.e., likelihood that the underlying division or
differentiation machinery is active within a cell), we created a
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proportions of cells to undergo fates between 0.625 vs. 2.5, 0.625 vs. 10, 2.5 vs. 10µg/mL anti-CD40. Division vs. death: p = 4.18 × 10−6, 1.77 × 10−23, and

3.01 × 10−7, respectively. Differentiation vs. no-differentiation: p = 0.15, 0.0007, and 0.078, respectively. (B) For cells reaching each fate the average time is shown

with 95% CIs. Kruskal-Wallis test was performed to compare the times to fates between different anti-CD40 concentrations. Division: p = 3.8741 × 10−8, death:
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the influence of death, death was uncensored from division, and differentiation was uncensored from both division and death. Data from all tracked cells are included.

parametric statistical model by assuming that underlying time-
to-fate distributions are log-normal given fate is in operation,
but with a possibility that differentiation and division are inactive
(discussed in Materials and Methods). Based on the observations
from application of the Kaplan-Meier estimator, we assumed
that the uncensored differentiation and death distributions were
unchanging with stimulus and that only the division distribution
and the propensity to divide were altered. This resulted in a single

three-parameter description for differentiation (mean, variance,
propensity to differentiate) and a two-parameter description for
death (mean, variance) across all three stimulation conditions,
along with a three-parameter description for division (mean,
variance, propensity) per stimulation condition.

The uncensored lognormal curves with the highest likelihood
of fitting to the data are shown in Figure 5A for comparison with
the per-condition non-parametric uncensoring. The parametric
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and non-parametric estimates are in good agreement, further
supporting the hypotheses of the parametric model. Having
ascribed lognormal curves to the probability distributions of
times to fate, fitted parameters from different conditions could be
compared for deviations in means, variations, and probabilities
(Figure 5B). For decreasing anti-CD40 concentrations (10, 2.5,
0.625µg/mL), the model fit division time distributions to the
data with increasing mean (15.60, 20.09, 30.89 h) and variance

(5.37, 9.37, 17.81 h), while the propensity for division being
“on” in the cell decreased (0.84, 0.71, and 0.58, respectively).
Death times (mean 51.20 h, variance 79.87 h) and differentiation
times (mean 36.35 h, variance 34.43 h, propensity 1) were fitted
with one distribution each for all of the CD40 stimulation
concentrations, with the assumption that the probability of death
is always ultimately 1. The best-fit propensity for differentiation
was 1, suggesting that differentiation is always “on” in a
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on a cell differentiating or not, which differ as a consequence of the reshaping by competition.

stimulated cell and so is the default action that occurs when
either division or death does not censor it. Overlaying the raw
data, Figure 5C provides the extrapolation from these best-
fit uncensored probability distribution functions to what they
predict would be observed as a consequence of competition and
censorship. The model predicts that a small proportion of cells
will take their fate, typically death, after cessation of filming. A
small number of cells are, indeed, observed to have neither died
nor divided by the end of the microscopy session, and these are
plotted at the end of the death-time histograms, according well
with the out-of-sample model prediction.

Further Features of the Data Consistent

With Competition
Figure 6 plots an additional interesting feature of the data that
might appear to require an involved explanation. The upper
panels display the empirical cumulative distribution of the times
to divide of cells that did not differentiate for each stimulation
condition, while the corresponding lower panels display the
times to divide for cells that were observed to differentiate. For
each condition, these two distributions are distinct, with division
times being—on average—longer for cells that differentiated. The
equivalent plots for times to death can be found in Figure S3,
where the same phenomenon is exhibited.

Outside of the competition model, this seems to suggest
distinct distributions for times to division or death fates
dependent on whether a cell differentiates or not. Within
the competition hypothesis, however, it is instead an intrinsic

consequence of the model structure. Also displayed in the upper
panel of Figure 6 is the conditional distribution of the time to
divide given that the cell did not differentiate as determined
by the model, while the lower panel displays the model’s
conditional distribution of the time to divide given a cell did
differentiate. Within the competition model, these two observed
distributions are expected to be distinct as a consequence of
censoring: knowing that a cell differentiates ensures a lower
bound on the time to divide, conditioning it to be larger.
Thus, the competition model inherently anticipates and accounts
for these apparently involved features of the data within one
mechanistically simple hypothesis that would otherwise require
a model with significantly more parameters to explain.

DISCUSSION

The B lymphocyte is an ideal model system for studying cell
fate control, being highly tractable to in vitro manipulation
and sensitive to many alternative receptor driven signals that
alter its behavior. Here we adopted this system and sought an
answer to how varying the strength of one significant signal,
transmitted through CD40 on the B cell surface, could affect
the rate of development to ASC. This question is of particular
interest as earlier studies noted the effect to be “paradoxical”:
weaker stimulation leads to a greater rate of differentiation with
each generation (29). Building on previous filming experiments
(26, 30), chamber slides were used to sustain and image cells
in varying levels of anti-CD40 stimulation. Miniature paddocks
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segregated the individual cells and reduced interference from
homotypic adhesion (27). These data consisted of the recorded
times to fates of hundreds of sibling pairs, making it suitable for
quantitatively challenging hypotheses.

Analyzing these data allowed the elimination of the
hypothesis that the paradoxical differentiation effect was
due to changes in asymmetric cell division, as siblings had a
high concordance in fate that was unaffected by stimulation
strength. Our attention turned to ask whether the theory
of competing fates (26, 32) could explain the phenomena.
We hypothesized that increased differentiation could arise
by cells transitioning faster within each generation, or by
division times slowing, and thus allowing cells more time
to differentiate before they divided again. Consistent with
the latter hypothesis, the data, when uncensored, revealed
that CD40 stimulation level regulated division times and
division proportions, but had no effect on either differentiation
or death times. Parametric fitting to differentiation times
only required one set of parameters (mean, variance,
propensity), whereas constraining division times to a
single set of parameters would have produced poorly fitted
outcomes. Hence, assuming independently timed control
of fates, we were able to reject the hypothesis that CD40
stimulation was controlling either the proportions of cells
capable of differentiating to ASC, or the time required for
cells to differentiate. Instead, changes in division times were
sufficient to re-create the differentiation patterns seen with flow
cytometry.

This analysis supported the hypothesis that low CD40
stimulation slows division times, and consequently allows
more time for cells to differentiate. Thus, regulation of
division time by stimulation strength is identified as a
controlling feature of fate decisions by the stimulated B
cell. An influence of cell cycle length on differentiation has
been noted in other cell systems suggesting this may be a
biologically widespread regulatory mechanism (34, 35). We
also assume the likelihood of differentiation is dependent on,
and in turn altered by, the concentration of cytokines in
culture. Further experiments will be required to assess this
possibility.

These studies raise the question of how signals and
internal molecular processes alter the time to different fates.
One mechanism reported to date posits accumulation of
transcriptional regulators. Kueh et al. (36) imaged hematopoietic
progenitor cells and noted the choice between becoming a
macrophage-lineage cell or a B cell was dependent upon the
timed accumulation of transcriptional regulator PU.1. The
longer cells took to divide, the more likely they were to
accumulate the higher levels of PU.1 needed for macrophage
commitment. A variant of this mechanism requiring both timed
production and loss was noted by Heinzel et al. (37) for
expression of Myc as a controller of division progression. Myc
accumulated in proportion to signal strength and decayed at
a constant rate, independently of division, eventually leading
to a timed cessation of mitosis. As transcriptional regulators
are important drivers for many fate changes, equivalent timed
changes in expression level based on accumulation are likely
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FIGURE 7 | cells automatically differentiate, and rapidly form large numbers of

unswitched, low affinity antibody secreting cells. Meanwhile, those cells that

receive strong stimulation divide rapidly, and hold back their differentiation

mechanism until the clone has undergone expansion and isotype

modifications, thus leading to an increased net number of higher affinity

plasmablasts.

to be in operation in mature B cells. Further experiments
measuring levels of transcriptional regulators and correlating
levels with fate outcomes in individual cells will be informative
to identify this and other putative molecular mechanisms
(15).

These findings also offer insights into the controlling systems
for antibody generation during a T-dependent immune response.
T and B cell cooperation is an active process that occurs in two
distinct sites during an immune response. Initial engagement
occurs in the extrafollicular zones of lymphoid tissue and
leads to the heterogeneous production of antibody secreting
plasmablasts, that are typically short-lived and of weak to
moderate affinity (38). Effective T and B cell collaboration
requires an unbroken sequence of graded quantitative events
that begins with antigen capture by the B cell receptor (BCR)
and upregulation of T cell costimulatory surface molecules
such as CD28, class II MHC and CD40 (39, 40). For effective
stimulation by T cells, antigen must also be internalized by
the B cell and presented on the cell surface, providing further
opportunities for quantitative titration of the outcome (41).
These variables in turn determine the level of stimulation
received by an engaged T cell and subsequently the level
of CD40L expression, and the rate of cytokine production
provided to the B cell during the collaborative event (42).
While the combinatorial possibilities are large, given the
results here, we can identify a key principle in operation:
even if holding all other variables constant, quantitative
differences in CD40L, as the result of the chain of early
events, will lead to proportional variations in average division
times as well as the number of divisions completed (43).
By slowing division, the weaker cells automatically assume a
greater likelihood of differentiating and of dying. The more
strongly stimulated cells will divide rapidly, automatically
holding back their differentiation to ASC and leading to
greater selection and expansion. Based on these findings we
suggest that, as stimulated cells lose access to T cells, B
cells slow division and automatically transition to secreting
plasmablasts, provided cytokines are also present. Thus, the
more avid and competent B cells are naturally selected for
expansion while their differentiation is suppressed, leading,
ultimately, to an increased net number of higher affinity
plasmablasts overall (illustrated in Figure 7). This model is
consistent with the studies of Paus et al. showing greater
proliferation and overall generation of plasmablasts by higher
affinity B cells (44). As antibody isotype switching is also
strongly linked to progressive division and unaffected by
the strength of CD40 stimulation (18, 19), this selection

mechanism will, without additional cellular machinery, result in
higher affinity clones that transition, automatically, to produce
specialized antibody subtypes. It seems likely that the quantitative
relation between all of these processes has evolved to provide
an optimal balance for generating protective antibody over
time.

An important second site of T-B cell collaboration is the
germinal center. A subset of activated T and B cells migrate
to primary follicles to initiate and sustain this reaction (45–
47). At this site B cells undertake successive rounds of somatic
hypermutation and selection that generates fully differentiated
plasma cells and long-lived high affinity, memory B cells.
Selection of B cell clones in the germinal center is critically
dependent upon T cells and CD40-CD40L interactions (17, 48,
49). B lineage cells in the germinal center are distinct from
those generated in vitro, and seen in extrafollicular sites (50).
However, labeling studies in vivo have determined that the
division rate is affected by the strength of stimulation provided
by T cell help (51, 52). These observations taken together with
the in vitro findings of the present paper, imply a general
mechanism where the rate of proliferation is linked to, and
tempers, the fate of competent, highly stimulated cells to achieve
an optimal dynamic outcome with minimal direct control over
differentiation.

AUTHOR CONTRIBUTIONS

JZ, PH, and KD designed all experiments and analyzed and
interpreted experiments and wrote manuscript. JZ performed
experiments and undertook all data annotation. JM developed
the data pipeline, conducted the image processing, and oversaw
microscopy setup.

ACKNOWLEDGMENTS

This work was supported by the National Health and
Medical Research Council via Project Grants 1010654 and
1057831, and Program Grant 1054925, and fellowships to
PH and Science Foundation Ireland grant No. 12IP1263
to KD. This work was made possible through Victorian
State Government Operational Infrastructure Support and
Australian Government NHMRC Independent Research
Institutes Infrastructure Support Scheme Grant 361646. JZ
was supported by an Australian Postgraduate Award. JM was
supported by National ICT Australia (NICTA), which was
funded by the Australian Research Council and the Australian
Department of Broadband, Communications and the Digital
Economy. We thank S. Nutt and A. Kallies for Blimp-1-GFP
reporter mice.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2018.02053/full#supplementary-material

Frontiers in Immunology | www.frontiersin.org 13 September 2018 | Volume 9 | Article 2053143

https://www.frontiersin.org/articles/10.3389/fimmu.2018.02053/full#supplementary-material
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Competing Fates Regulate B Cell Differentiation

REFERENCES

1. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al.

Camargo: clonal dynamics of native haematopoiesis.Nature (2014) 514:322–7.

doi: 10.1038/nature13824

2. Carulli AJ, Samuelson LCS. Schnell: unraveling intestinal stem cell behavior

with models of crypt dynamics. Integr Biol (Camb). (2014) 6:243–57.

doi: 10.1039/c3ib40163d

3. Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from

the retina. Nat Rev Neurosci. (2001) 2:109–18. doi: 10.1038/35053522

4. Homem CC, Knoblich JA. Drosophila neuroblasts: a model for stem cell

biology. Development (2012) 139:4297–310. doi: 10.1242/dev.080515

5. Tyson JJ, Novak B. Control of cell growth, division and death:

information processing in living cells. Interface Focus (2014) 4:20130070.

doi: 10.1098/rsfs.2013.0070

6. Naik SH, Perie L, Swart E, Gerlach C, van Rooij N, de Boer RJ, et al. Diverse

and heritable lineage imprinting of early haematopoietic progenitors. Nature

(2013) 496:229–32. doi: 10.1038/nature12013

7. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell

heterogeneity. Nat Rev Immunol. (2018) 18:35–45. doi: 10.1038/nri.2017.76

8. Altschuler SJ,Wu LF. Cellular heterogeneity: do differencesmake a difference?

Cell (2010) 141:559–63. doi: 10.1016/j.cell.2010.04.033

9. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH,

Jankovic M, et al. Camargo: clonal analysis of lineage fate in native

haematopoiesis. Nature (2018) 553:212–216. doi: 10.1038/nature25168

10. Pei W, Feyerabend TB, Rossler J, Wang X, Postrach D, Busch K, et al. Polylox

barcoding reveals haematopoietic stem cell fates realized in vivo. Nature

(2017) 548:456–460. doi: 10.1038/nature23653

11. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H,

et al. Transcriptional heterogeneity and lineage commitment in myeloid

progenitors. (2016) Cell 164:325. doi: 10.1016/j.cell.2015.12.046

12. Perie L, Duffy KR, Kok L, de Boer RJ, Schumacher TN. The branching

point in erythro-myeloid differentiation. Cell (2015) 163:1655–62.

doi: 10.1016/j.cell.2015.11.059

13. Gerlach C, Rohr JC, Perie L, van Rooij N, van Heijst JW, Velds A, et al.

Heterogeneous differentiation patterns of individual CD8+ T cells. Science

(2013) 340:635–9. doi: 10.1126/science.1235487

14. Buchholz VR, Flossdorf M, Hensel I, Kretschmer L,Weissbrich B, Graf P, et al.

Disparate individual fates compose robust CD8+ T cell immunity. Science

(2013) 340:630–5. doi: 10.1126/science.1235454

15. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation

of antibody-secreting plasma cells. Nat Rev Immunol. (2015) 15:160–71.

doi: 10.1038/nri3795

16. Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol. (2015)

15:185–9. doi: 10.1038/nri3803

17. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular

helper T cells. Annu Rev Immunol. (2016) 34:335–68.

doi: 10.1146/annurev-immunol-041015-055605

18. Hasbold J, Corcoran LM, Tarlinton DM, Tangye SG, Hodgkin PD. Evidence

from the generation of immunoglobulin G-secreting cells that stochastic

mechanisms regulate lymphocyte differentiation. Nat Immunol. (2004) 5:55–

63. doi: 10.1038/ni1016

19. Hodgkin PD, Lee JH, Lyons AB. B cell differentiation and isotype switching is

related to division cycle number. J Exp Med. (1996) 184:277–81.

20. Deenick EK, Hasbold J, Hodgkin PD. Switching to IgG3, IgG2b, and IgA

is division linked and independent, revealing a stochastic framework for

describing differentiation. J Immunol. (1999) 163:4707–14.

21. Hasbold J, Lyons AB, Kehry MR, Hodgkin PD. Cell division number regulates

IgG1 and IgE switching of B cells following stimulation by CD40 ligand

and IL-4. Eur J Immunol. (1998) 28:1040–51. doi: 10.1002/(SICI)1521-

4141(199803)28:03<1040::AID-IMMU1040>3.0.CO;2-9

22. Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM, Hodgkin

PD, et al. Plasma cell ontogeny defined by quantitative changes in blimp-1

expression. J Exp Med. (2004) 200:967–77. doi: 10.1084/jem.20040973

23. Hawkins ED, Turner ML, Dowling MR, van Gend C, Hodgkin PD. A

model of immune regulation as a consequence of randomized lymphocyte

division and death times. Proc Natl Acad Sci USA. (2007) 104:5032–7.

doi: 10.1073/pnas.0700026104

24. Duffy KR, Subramanian VG. On the impact of correlation between collaterally

consanguineous cells on lymphocyte population dynamics. J Math Biol. (2009)

59:255–85. doi: 10.1007/s00285-008-0231-x

25. Subramanian VG, Duffy KR, Turner ML, Hodgkin PD. Determining the

expected variability of immune responses using the cyton model. J Math Biol.

(2008) 56:861–92. doi: 10.1007/s00285-007-0142-2

26. Duffy KR, Wellard CJ, Markham JF, Zhou JH, Holmberg R, Hawkins ED,

et al. Activation-induced B cell fates are selected by intracellular stochastic

competition. Science (2012) 335:338–41. doi: 10.1126/science.1213230

27. Day D, Pham K, Ludford-Menting MJ, Oliaro J, Izon D, Russell SM, et al.

A method for prolonged imaging of motile lymphocytes. Immunol Cell Biol.

(2009) 87:154–8. doi: 10.1038/icb.2008.79

28. Heath AW, Wu WW, Howard MC. Monoclonal antibodies to murine CD40

define two distinct functional epitopes. Eur J Immunol. (1994) 24:1828–34.

doi: 10.1002/eji.1830240816

29. Hawkins ED, Turner ML, Wellard CJ, Zhou JH, Dowling MR, Hodgkin PD.

Quantal and graded stimulation of B lymphocytes as alternative strategies

for regulating adaptive immune responses. Nat Commun. (2013) 4:2406.

doi: 10.1038/ncomms3406

30. Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD. A single-cell

pedigree analysis of alternative stochastic lymphocyte fates. Proc Natl Acad

Sci USA. (2009) 106:13457–62. doi: 10.1073/pnas.0905629106

31. Mitchell S, Roy K, Zangle TA, Hoffmann A. Nongenetic origins of cell-to-

cell variability in B lymphocyte proliferation. Proc Natl Acad Sci USA. (2018)

115:E2888–97. doi: 10.1073/pnas.1715639115

32. Duffy KR, Hodgkin PD. Intracellular competition for fates in the immune

system. Trends Cell Biol. (2012) 22:457–64. doi: 10.1016/j.tcb.2012.05.004

33. Cox DR, Oakes, D. Analysis of Survival Data. London; New York, NY:

Chapman and Hall (1984).

34. Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that

lengthens, but does not arrest, neuroepithelial cell cycle induces premature

neurogenesis. J Cell Sci. (2003) 116(Pt 24):4947–55. doi: 10.1242/jcs.00825

35. Coronado D, Godet M, Bourillot PY, Tapponnier Y, Bernat A, Petit M, et al.

A short G1 phase is an intrinsic determinant of naive embryonic stem cell

pluripotency. Stem Cell Res. (2013) 10:118–31. doi: 10.1016/j.scr.2012.10.004

36. Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. Positive

feedback between PU.1 and the cell cycle controls myeloid differentiation.

Science (2013) 341:670–3. doi: 10.1126/science.1240831

37. Heinzel S, Binh Giang T, Kan A, Marchingo JM, Lye BK, Corcoran LM, et

al. Myc-dependent division timer complements a cell-death timer to regulate

T cell and B cell responses. Nat Immunol. (2017) 18:96–103. doi: 10.1038/

ni.3598

38. MacLennan IC, Toellner KM, Cunningham AF, Serre K, Sze DM, Zuniga

E, et al. Extrafollicular antibody responses. Immunol Rev. (2003) 194:8–18.

doi: 10.1034/j.1600-065X.2003.00058.x

39. HarwoodNE, Batista FD. Early events in B cell activation.Annu Rev Immunol.

(2010) 28:185–210. doi: 10.1146/annurev-immunol-030409-101216

40. Linterman MA, Vinuesa CG. Signals that influence T follicular helper

cell differentiation and function. Semin Immunopathol. (2010) 32:183–96.

doi: 10.1007/s00281-009-0194-z

41. Batista FD, Neuberger MS. Affinity dependence of the B cell response to

antigen: a threshold, a ceiling, and the importance of off-rate. Immunity (1998)

8:751–9.

42. Crotty S. Follicular helper CD4T cells (TFH). Annu Rev Immunol. (2011)

29:621–63. doi: 10.1146/annurev-immunol-031210-101400

43. Rush JS, Hodgkin PD. B cells activated via CD40 and IL-4 undergo

a division burst but require continued stimulation to maintain

division, survival and differentiation. Eur J Immunol. (2001) 31:1150–9.

doi: 10.1002/1521-4141(200104)31:4<1150::AID-IMMU1150>3.0.CO;2-V

44. Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink, R. Antigen

recognition strength regulates the choice between extrafollicular plasma cell

and germinal center B cell differentiation. J Exp Med. (2006) 203:1081–91.

doi: 10.1084/jem.20060087

45. Phan TG, Paus D, Chan TD, Turner ML, Nutt SL, Basten A, et al. High affinity

germinal center B cells are actively selected into the plasma cell compartment.

J Exp Med. (2006) 203:2419–24. doi: 10.1084/jem.20061254

46. Shlomchik MJ, Weisel, F. Germinal centers. Immunol Rev. (2012) 247:5–10.

doi: 10.1111/j.1600-065X.2012.01125.x

Frontiers in Immunology | www.frontiersin.org 14 September 2018 | Volume 9 | Article 2053144

https://doi.org/10.1038/nature13824
https://doi.org/10.1039/c3ib40163d
https://doi.org/10.1038/35053522
https://doi.org/10.1242/dev.080515
https://doi.org/10.1098/rsfs.2013.0070
https://doi.org/10.1038/nature12013
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1016/j.cell.2010.04.033
https://doi.org/10.1038/nature25168
https://doi.org/10.1038/nature23653
https://doi.org/10.1016/j.cell.2015.12.046
https://doi.org/10.1016/j.cell.2015.11.059
https://doi.org/10.1126/science.1235487
https://doi.org/10.1126/science.1235454
https://doi.org/10.1038/nri3795
https://doi.org/10.1038/nri3803
https://doi.org/10.1146/annurev-immunol-041015-055605
https://doi.org/10.1038/ni1016
https://doi.org/10.1002/(SICI)1521-4141(199803)28:03<1040::AID-IMMU1040>3.0.CO;2-9
https://doi.org/10.1084/jem.20040973
https://doi.org/10.1073/pnas.0700026104
https://doi.org/10.1007/s00285-008-0231-x
https://doi.org/10.1007/s00285-007-0142-2
https://doi.org/10.1126/science.1213230
https://doi.org/10.1038/icb.2008.79
https://doi.org/10.1002/eji.1830240816
https://doi.org/10.1038/ncomms3406
https://doi.org/10.1073/pnas.0905629106
https://doi.org/10.1073/pnas.1715639115
https://doi.org/10.1016/j.tcb.2012.05.004
https://doi.org/10.1242/jcs.00825
https://doi.org/10.1016/j.scr.2012.10.004
https://doi.org/10.1126/science.1240831
https://doi.org/10.1038/ni.3598
https://doi.org/10.1034/j.1600-065X.2003.00058.x
https://doi.org/10.1146/annurev-immunol-030409-101216
https://doi.org/10.1007/s00281-009-0194-z
https://doi.org/10.1146/annurev-immunol-031210-101400
https://doi.org/10.1002/1521-4141(200104)31:4$<$1150::AID-IMMU1150$>$3.0.CO;2-V
https://doi.org/10.1084/jem.20060087
https://doi.org/10.1084/jem.20061254
https://doi.org/10.1111/j.1600-065X.2012.01125.x
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Competing Fates Regulate B Cell Differentiation

47. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. (2012)

30:429–57. doi: 10.1146/annurev-immunol-020711-075032

48. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC.

Mechanism of antigen-driven selection in germinal centres. Nature (1989)

342:929–31. doi: 10.1038/342929a0

49. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ. gp39-CD40

interactions are essential for germinal center formation and the development

of B cell memory. J Exp Med. (1994) 180:157–63.

50. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R,

Nussenzweig MC. Identification of human germinal center light and dark

zone cells and their relationship to human B-cell lymphomas. Blood (2012)

120:2240–8. doi: 10.1182/blood-2012-03-415380

51. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-

Hermann M, Dustin ML, et al. Germinal center dynamics revealed by

multiphoton microscopy with a photoactivatable fluorescent reporter. Cell

(2010) 143:592–605. doi: 10.1016/j.cell.2010.10.032

52. Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJ, Koren A, et

al. Humoral Immunity. T cell help controls the speed of the cell cycle

in germinal center B cells. Science (2015) 349:643–6. doi: 10.1126/science.

aac4919

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Zhou, Markham, Duffy and Hodgkin. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Immunology | www.frontiersin.org 15 September 2018 | Volume 9 | Article 2053145

https://doi.org/10.1146/annurev-immunol-020711-075032
https://doi.org/10.1038/342929a0
https://doi.org/10.1182/blood-2012-03-415380
https://doi.org/10.1016/j.cell.2010.10.032
https://doi.org/10.1126/science.aac4919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 11 September 2018

doi: 10.3389/fimmu.2018.02051

Frontiers in Immunology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 2051

Edited by:

Gur Yaari,

Bar-Ilan University, Israel

Reviewed by:

Martin Lopez-Garcia,

University of Leeds, United Kingdom

Christoph Wülfing,

University of Bristol, United Kingdom

*Correspondence:

Eilon Sherman

sherman@phys.huji.ac.il

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 30 April 2018

Accepted: 20 August 2018

Published: 11 September 2018

Citation:

Neve-Oz Y, Sajman J, Razvag Y and

Sherman E (2018) InterCells: A

Generic Monte-Carlo Simulation of

Intercellular Interfaces Captures

Nanoscale Patterning at the Immune

Synapse. Front. Immunol. 9:2051.

doi: 10.3389/fimmu.2018.02051

InterCells: A Generic Monte-Carlo
Simulation of Intercellular Interfaces
Captures Nanoscale Patterning at
the Immune Synapse
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Molecular interactions across intercellular interfaces serve to convey information between

cells and to trigger appropriate cell functions. Examples include cell development

and growth in tissues, neuronal and immune synapses (ISs). Here, we introduce an

agent-based Monte-Carlo simulation of user-defined cellular interfaces. The simulation

allows for membrane molecules, embedded at intercellular contacts, to diffuse and

interact, while capturing the topography and energetics of the plasma membranes of the

interface. We provide a detailed example related to pattern formation in the early IS. Using

simulation predictions and three-color single molecule localization microscopy (SMLM),

we detected the intricate mutual patterning of T cell antigen receptors (TCRs), integrins

and glycoproteins in early T cell contacts with stimulating coverslips. The simulation

further captures the dynamics of the patterning under the experimental conditions and

at the IS with antigen presenting cells (APCs). Thus, we provide a generic tool for

simulating realistic cell-cell interfaces, which can be used for critical hypothesis testing

and experimental design in an iterative manner.

Keywords: cell signaling, T cell activation, kinetic segregation model, single molecule localization microscopy,

photoactivated localization microscopy, direct STORM, microvilli, agent based Monte-Carlo simulation

INTRODUCTION

Cells associate and form functional interfaces to create tissues, to exchange molecular content and
to convey information. Such interfaces form in multicellular organisms between adherent and
developing cells in tissues (1), between neurons (2) and immune cells (3). Cell contacts can also
occur in unicellular organisms, e.g., between bacteria in biofilms and between bacteria and their
host cells (4).

A wide range of physical structures appear in intercellular interfaces, including junctions (e.g.,
plasmodesmata and gap junctions, tight junctions, and desmosomes) (5), neuronal synapses and
immune synapses (IS). The dynamics of the interfaces may vary widely, from seconds to days.
For instance, neuronal synapses may persist over much longer times, but still show surprising
remodeling dynamics (6, 7).

In this study, we focus on the IS between CD4+ T Cells and antigen presenting cells (APCs)
as an example of a dynamic intercellular interface of outstanding importance and interest
(Figures 1A,B). This synapse serves T cells to probe the outer surface of APCs for cognate
antigens, and to mount an appropriate immune response (8). Advancements in microscopy have
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FIGURE 1 | Cell interfaces of the immune synapse. (A) A scheme of a

physiological interface between a T cell and an antigen presenting cell (APC).

(B) A physical model of the interface in panel (A). (C) A scheme of an

experimental interface between a T cell and a coverslip. (D) A physical model

of the interface in panel (C).

shown that such structures demonstrate complex levels of
dynamic organization (9). The IS starts with early contacts that
mature within a few minutes to form molecular segregation
into supramolecular activating clusters (SMACs) (10). Such
experiments often turn to artificial mimics of the APC for high
resolution microscopy. Examples include coverslips coated with
antibodies (11) (Figures 1C,D) or with lipid bilayers that include
molecules of interest (12).

Recently, super-resolution cell imaging, and especially single
molecule localization microscopy, has allowed to resolve
the organization of molecules in live cells with resolution
down to ∼20 nm (13). Such methods include Photoactivated
Localization Microscopy (PALM) (14) and direct Stochastic
Optical Reconstruction Microscopy (dSTORM) (15). Through
these techniques, whole (or a large part of) molecular populations
of specific protein species can be directly visualized with such
resolution. For instance, imaging of signaling molecules in
CD4+ T cells has shown surprising nanoscale patterning of
proteins, in the form of hierarchical and functional clusters
(16, 17). Specifically, the nanoscale segregation of the TCRs
from bulky glycoproteins, such as CD45, has been detected
(18). Still, the latter patterns of kinetic segregation in early
contacts (18–20) have not been related to the hierarchical
ordering of TCRs, integrins and glycoproteins into central,
proximal and distal SMACs (c-, p- and d-SMACs; known also
as the “bull’s eye” pattern) that has been detected at the mature
IS (10, 21, 22).

For gaining further insight on the structure, dynamics
and functional role of interfaces, experimental techniques
can be complemented with computational cell modeling and
simulations. Indeed, multiple computational simulations have
been developed and employed for studying cells (23). Such

methods may vary widely in their details, from atoms to entire
cells, time-scale, from microseconds to minutes and length-
scales, from angstroms to microns and more.

Here, we introduce an agent-basedMonte-Carlo simulation of
user-defined cellular interfaces. The simulation, called InterCells,
is based on detailed physical modeling of the interface and
embedded molecules within. The simulation allows for the
molecules to diffuse and interact, while capturing the topography
and energetics of the interacting plasma membranes (PMs).
It relies on simple and inexpensive computation that is still
complex enough to capture realistic complexity and dynamics
of the interfaces. Recently, similar modeling and simulations
have served to resolve possible mechanisms of cooperativity and
localized activation in TCR clusters (24) and to identify kinetic
segregation of TCR and glycoproteins at the engaged tips of
microvilli (18).

A special emphasis in our simulation is its easy operation
by non-experts. For that, we provide a friendly graphical
user interface (GUI) for rapid configuration and deployment
of the simulation. Multiple analytical tools are provided
for data analysis and interpretation. A key property of the
simulation is its ability to confront the results and predictions
of realistic simulations with experimental data, acquired by
single molecule localization microscopy. We provide a detailed
example related to pattern formation in intercellular contacts
that characterize the early IS between CD4+ T cells and
antigen presenting cells (APCs) (18, 20). Specifically, our
simulation results predict a new feature of pattern formation—
the intricate mutual patterning of T cell antigen receptors
(TCRs), integrins and glycoproteins in the early contacts.
We confirm this patterning by SMLM imaging of T cells
on functionally-coated coverslips. Thus, we provide a generic
tool for simulating cell-cell interfaces, which can be used for
critical hypothesis testing and experimental design in an iterative
manner.

RESULTS

Intricate Patterning of Membrane Proteins

at the IS
To study molecular patterning at the IS, we imaged Jurakt
E6.1 CD4+ T cells, as they adhered and spread on functionally
coated coverslips (11) (see details in Materials and Methods).
Anti-CD3-coated coverslips result in direct TCR stimulation, T
cell activation and spreading. In contrast, coverslips coated with
poly-L-lysine (PLL) show reduced levels of TCR stimulation and
smaller cell footprints (25). For imaging, we used three-color
single molecule localization microscopy (SMLM) in total internal
reflection (TIRF; Figure 2). Our SMLM approach included
PALM imaging of TCRζ-Dronpa, stably expressed by the cells.
CD11 and CD45 molecules were immunostained using an
anti-CD11-Alexa568 and anti-CD45-Alexa647, respectively
(see Materials and Methods) and imaged by two-color
dSTORM.

Our images showed a striking patterning of molecules
where CD11 clusters (blue) localized in between TCR clusters
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FIGURE 2 | Intricate molecular patterning at the immune synapse. Three-color PALM/dSTORM imaging of fixed E6.1 Jurkat cells expressing TCRζ-Dronpa (green)

and stained for CD45 (red) and CD11 (blue). The cells were dropped on coverslips coated with either (A) poly-L-lysine (PLL; top raw) or (B) αCD3 (bottom raw). Cells

were let spread on the coverslip for 1.5min before fixation. Shown are representative cells (N = 40 cells on PLL and 31 cells on αCD3). Bars−2µm.

(green) and CD45 clusters (red) on either TCR-stimulating
and non-stimulating conditions. On PLL-coated coverslips, TCR
clusters occupied the center of the interface, while CD45 showed
an outer ring. CD11 clusters localized outside TCR clusters and
in the formed gaps between TCRs and CD45. On αCD3-coated
coverslips, CD11 also localized in between TCR and CD45.
However, on these coverslips, the cells formed larger footprints
and TCR was more clustered.

The segregation of TCRs from CD45 has been shown by

diffraction limited microscopy, and more recently, in early
contact (18). Also, the localization of CD11 was shown before in

the pSMAC while CD45 localized to the dSMAC (22). However,

such mutual patterning has not been resolved in early ISs and at
the nanoscale. Thus, our imaging captured an intricate mutual

patterning of TCRs, integrins and glycoproteins in the early
contacts. The occurrence of the mutual patterning on coverslips

coated with either αCD3 or PLL indicates that this patterning

is caused by the physical contact of the cell with the opposing
interface of the coverslip.

Modeling and Simulation of Molecular

Patterning Under the Experimental

Conditions
For testing the robustness and dynamics of the patterns that
we have detected, we turned to the modeling and simulation
of the cell interfaces. The simulation is described in details in
the Materials and Methods and in the User’s Guide (provided in
the Supplemental Information). Briefly, the simulation employs
physical modeling of the PM of the interacting cells and of the
molecular interactions (Figure 3, and below). The simulation
structure is described in Figure 4, the simulation process is
described in Figure 5 and its GUI is shown in Figure 6.

An important feature of our agent-based Monte-Carlo
simulation, is its ability to integrate experimental measurements
at the single molecule level (as in Figure 2). Such data can be
integrated as initial conditions for the simulation, or as dynamic
physical constraints [as previously demonstrated (18)]. Here,
we demonstrate the setting of initial conditions by cropped
data from the footprints of cells, imaged by SMLM (Figure 2).
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FIGURE 3 | A computational model of the intercellular interface between T cells and a coverslip. (A) A top view of a simulated membrane. The membrane is shown as

a grid, where molecules (colored circles) are embedded and can diffuse and interact. Membrane height is marked by variable gray levels. (B) A 3D view of the

simulated membrane. (C) The interaction potential between molecules embedded in the simulated membrane.

FIGURE 4 | A schematic description of the cell interface simulation. A detailed account of the simulation, its structure and interface are provided as a User’s Guide in

the Supplemental Information.

Specifically, coordinates were taken for TCRζ molecules (in
green). To complete the initial conditions, the initial coordinates
of CD11 and CD45 molecules were manually determined via the
available tools of the simulation in the GUI.

In our simulation, the plasma membrane of the interacting
cells are modeled as grids where molecules, modeled as agents,

diffuse and interact within and across the grids (Figures 3A,B).
The simulation included a model that captured the energetic
of the PMs of interacting T cell and APC (26) (Figure 3C).
Specifically, the simulation balanced forces due to attractive and
repulsive interactions. Specific attraction occurred between the
TCR and αCD3 and self-clustering of CD11 and TCR molecules.
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FIGURE 5 | A schematic description of the simulation process.

Non-specific attraction affected the molecules at the T cell
PM by the PLL. Repulsive interactions occurred between the
molecule (and esp. for the bulky glycoprotein) and the coverslip
(Figure 3C). The PM underwent thermal fluctuations during the
simulation. The positions of the molecules were updated in each
step of the simulation. The simulations included 10,000 steps of
400 × 400 pixels of 10 nm each and took ∼5min (∼100 s in cell
time) each, using a PC (i7 quad processor). Simulated parameters
are detailed for the interacting molecules (Table S1).

The simulation resulted in a redistributed pattern ofmolecules
that was embedded within the interface, and evolved over
time (Figures 7A,B,Movies M1, M2). Strikingly, the simulations
could recreate realistic patterning of CD45 molecules around
the evolving TCR clusters. CD11 molecules were distributed
in between TCR clusters and CD45. These results correlated
well with experimentally imaged positions of these molecules on
either PLL- or αCD3-coated coverslips (compare left and right
columns in Figures 7A,B with Figures 2A,B).

The Effect of Simulation Parameters on the

Molecular Patterning
Multiple parameters could affect the resultant molecular patterns
that we observed. Such parameters include the initial conditions
of molecular placement (e.g., in Figure 7 at t = 0); the density
of the molecules; their diffusion coefficient and their interaction
potential. Thus, we repeated the simulations shown in Figure 7,
yet with modifying one of the described parameters in each
simulation. Recent publications showed that TCRs are clustered
in microvilli (27) that form early contacts (18, 28). Hence, we
started with changing the initial placement of CD11 and CD45
molecules in relation to TCR clusters. The cells were attached to
a coverslip coated with PLL and αCD3, for engaging the TCRs.
Figure S1 shows the results for applying the initial conditions
as in Figure 7B (Figures S1A–C), a diffused pattern of CD45
(Figures S1D–F) or a diffused pattern of both CD45 and CD11
(Figures S1G–I). The variability in initial conditions was applied
to simulations that either included molecular self-clustering of
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FIGURE 6 | The graphical user interface. A snapshot of the graphical user interface (GUI) of the simulation. The GUI includes dynamic menus for setting all simulation

parameters and a live interface for presenting the simulated parameters (top) and initial conditions (bottom). All menus, parameters and operation instructions are

provided in the User’s Manual in the Supplemental Information.

TCR and CD11 (Figures S1B,E,H) or did not include such self-
clustering (Figures S1C,E,I). Strikingly, themolecular patterning
under all conditions showed the mutual patterning of TCRs,
CD11 and CD45, as in Figure 7B an in our experiments
(Figure 2B). As expected, TCR and CD11 were more diffused
within these mutual patterns when the simulations did not
include self-clustering of these molecules (Figures S1C,E,I). Our
results indicate the robustness of the mutual patterning of TCR,
CD11 and CD45 to variations in initial molecular placements and
to their self-clustering.

We next conducted a sensitivity analysis of molecular
patterning to variations in the density of CD45 (Figure S2A),
the diffusion coefficient of the molecules (namely, TCR, CD11
and CD45; Figure S2B), and the interaction potential of CD45
(Figure S2C). Parameter values were taken as half, equal or
twice the values that were chosen in the simulation shown in
Figure S1B. The mutual patterning of TCR, CD11 and CD45 was
robust to most of the conditions. Still, the following differences
can be observed for the different conditions. For instance, the
CD45 outer ring became relatively thicker with the increase
of CD45 concentration (Figure S2A). The mutual shape of the
TCR, CD11 and CD45 became more diffused and occupied a
bigger area with the increase in the diffusion coefficients of
the molecules (Figure S2B). Last, we observed a less diffused
pattern of CD45 when its spring constant became stronger
(Figure S2C).

Modeling and Simulation of Molecular

Patterning at the T cell-APC IS
Next, we studied the effects of the patterning in simulated
physiological interface between T cells and APCs. Nanoscale
imaging of T cells and APCs is technically complicated, yet is
readily accessible to our modeling and simulation. Here, we
included mobile ligands at the PM of the APC, namely pMHC
and ICAM. These molecules exerted specific attraction forces on
the TCR and CD11 molecules (respectively) as they diffused at
the PM of the opposing T cell. The PM of the APC was given
similar physical properties to the PM of the T cell (as detailed
in Table S2). The molecular positions at the T cell PM were set
manually as initial conditions, and were kept identical for the
simulations on APCs (Figures 8C,D) and on coverslips coated
with either PLL (Figure 8A) or αCD3 (Figure 8B). In this way,
results could be directly compared across different interfaces.

Our simulations showed that the mutual patterning of CD11,
TCRs and CD45 occurred not only on coverslips, but also
at the PM of T cells conjugated to APCs (Figures 8C,D).
Corresponding patterning of pMHC and of ICAM molecules
appeared at the PM of the APCs (Figure 8C). Interestingly, CD11
was less self-clustered in such interfaces in comparison to the cell
interface with αCD3-coated coverslips (Figure 8B).

Under physiological conditions, APCs typically carry only
a small fraction of cognate peptides. Thus, we repeated our
simulations for interface of T cells with APCs, while considering

Frontiers in Immunology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 2051151

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Neve-Oz et al. InterCells: Simulation of Intercellular Interfaces

FIGURE 7 | The dynamics of molecular patterning in simulations. The dynamic

evolution of molecular patterning of TCRs (green), CD11 (blue) and CD45 (red)

at the cell interface. Simulated results are shown as a function of time for

individual cells on either a PLL–coated coverslip (A) or on an αCD3-coated

coverslip (B) along time. The simulations start from user-defined initial

conditions (top raw) that are set for the simulated molecules. Membrane height

is marked by variable gray levels. Bars−1µm.

only 1% of cognate peptides (Figures S3A,B). As expected, the
interface was not as tight as for the previous simulation (compare
height levels with Figures 8C,D). Importantly, the molecular
patterning of TCR, CD11 and CD45 seemed more diffused and
their segregation was less pronounced.

Another important physiological condition is the
translocation of TCR molecules toward the center of the IS
21 (29, 30). To simulate this process, we created an interactive
tool within the software. Using this tool, we set a target
coordinate for TCRs translocation at the center of the interface
and set a constant velocity of 19 nm/s (29) toward the center to
all TCRs. Along with translocation, we assumed TCR diffusion
but no self-clustering, in order not to hinder its mobility further.
Expectedly, the TCRs concentrated at the center of the IS, while
a relatively pronounced and well-segregated CD45 ring formed

at the periphery (Figures S3C,D). As before, CD11 molecules
localized between the segregated TCRs and CD45 molecular
patterns.

To quantitatively assess the mutual patterns of TCR, CD11
and CD45, we introduced a topological analysis (see details in
the Materials and Methods and in Figure 9A). This analysis
related the density of CD11 and CD45 molecules to individual
TCR clusters. The density of the molecules as a function of
the distance from TCR clusters is shown in Figures 9B–E. The
results of the topological analysis of our experimental results
(in Figure 2) clearly show the hierarchical ordering of TCR
clusters at the center, surrounded consecutively by CD11 and
CD45 molecules (Figures 8B,C). Moreover, the evolution of
this pattern could now be captured using our simulated results
on either PLL- or αCD3-coated coverslips (Figures 9D,E). As
expected, the self-clustering of TCRs (the peak height of the
green manifold) was higher, and more persistent for αCD3-
coated coverslips relative to PLL-coated coverslips. Strikingly, the
mutual patterning of TCR, CD11 and CD45 occurred within
a few 10 s of seconds from the start of the simulations. The
mutual patterning of CD11 and CD45 from TCR can be further
compared between the experimental data and the simulated
results (Figures 9F,G). Our simulations captured the shift in
the peak of the molecular distributions of CD45 relative to
the TCRs on both PLL (Figure 9F, red lines), and on αCD3
coated coverslips (Figure 9G, red lines). The separation of CD11
was captured more accurately on PLL-coated coverslips than
on aCD3-coated coverslips (Figures 9F,G, blue lines). Thus, our
simulations now set the stage for seeking parameters that would
minimize the differences between the density distributions of the
molecules under study (18).

DISCUSSION

In this work, we introduce “InterCells”—a generic agent-based
Monte-Carlo simulation of intercellular interfaces in molecular
detail. Our study focused on dynamic molecular patterning at
the early IS, as an important example of a dynamic intercellular
interface. The study combined three-color SMLM imaging of
fixed CD4+ T cells on functionally coated coverslips, as well
as modeling and simulations of the IS of such CD4+ T cells
with APCs. Our imaging and simulation showed an intricate
patterning of TCRs, glycoproteins (e.g., CD45) and integrins
(e.g., CD11) at the PM of the interacting T cells. In the detected
patterns, clusters of CD11 localized in between segregated
clusters of TCR and of CD45. Such patterning has been instructed
by diffraction limited microscopy (12), recent detection of
segregation of TCRs and CD45 molecules in early contacts (18),
and by preliminary simulations. To our knowledge, such mutual
patterns have not been observed at the nanoscale before and thus,
have not been related to the macroscopic “bull’s eye” patterns
detected at the IS (10, 21).

To test the robustness of the detected pattern, we simulated
a range of relevant interfaces, including coverslips with different
coatings, different sets of initial conditions, and ISs with APCs.
Varying such conditions in the simulation can be readily achieved
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FIGURE 8 | Simulation results of molecular patterning at the immune synapse (A,B) The molecular patterning of TCRs (green), CD11 (blue) and CD45 (red) at the cell

interface, on either (A) a PLL-coated or (B) an αCD3-coated coverslip. (C,D) The molecular patterning at the T cell-APC immune synapse. (C) ICAM (blue) and pMHC

(green) molecules are shown at the PM of the APC. (D) TCRs (green), CD11 (blue) and CD45 (red) are shown at the PM of the T cell. Membrane height in panels (C,D)

is marked by variable gray levels. Bars−1µm.

through the design and the GUI of the simulation. Notably,
our agent based simulation allows for the seamless integration
of experimental data at the single molecule level, as captured
by PALM and dSTORM. We have previously demonstrated the
use of SMLM data as constrains for setting hybrid simulations
(18). The results of such simulations can be directly compared
to experimental results (18). The robustness of the molecular
segregation between TCR, CD11 and CD45 clusters, which
persisted in all simulations, indicates that it is driven by
mechanical forces acting between molecules and the opposing
surfaces of the IS. Notably, our simulation did not include
translocation of molecules, such as TCRs or integrins, across
the IS (31). Such translocation plays a role in the spatial sorting
of newly appearing clusters at the cell periphery in the mature
IS, while our simulation and imaging focused on relatively less
mature ISs.

Multiple simulation tools have been developed to study
molecular interactions in the cell, such as signaling pathways
and enzymatic reactions. Such modeling often assumes complete
molecular mixing via ordinary differential equations (ODEs)
(32), or the use of cell automata with cell compartmentation
that could average out critical spatial variations in local
concentration of signaling proteins. The virtual cell [Vcell;

(33)] allows for solving partial differential equations (PDEs)
and ODEs, and the integration of spatial constraints from
2D and 3D optical microscopy. Still, such simulations cannot
account for molecular heterogeneities and non-synchrony that
are inherent to stochastic processes of molecular diffusion
and interaction within cells. Such heterogeneities can be
captured by Monte Carlo simulations of finite numbers of
interacting molecules that are embedded in realistic models
of cellular compartments [e.g., Smoldyn (34) and MCell
(35)]. Specifically, MCell contains extensive simulation tools,
including the generation of arbitrary meshes through integration
with a powerful graphical package (Blender), the simulation
of cytosolic proteins, allowing stochastic state transitions of
molecules, various mobility states including diffusion and drift
and running batches for scanning parameters. Notably, MCell
is not designed to account for dynamically changing meshes.
In contrast to MCell, InterCells is currently more modest
in its flexibility and in its integration of advanced features
and tools. For instance, multiple dynamic processes, such
as molecular endocytosis and recycling are currently lacking
and will become available in an upcoming update of the
simulation. Also, it is currently limited to simulating membrane
proteins, while cytosolic proteins will be integrated, but will
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FIGURE 9 | Topology analysis of molecular patterning in experiments and simulations. (A) Topology analysis of molecular densities of different species (red and blue

dots) relative to a cluster of reference (green dots). The cluster perimeter is defined by consecutive dilations. (B,C) Results of the analysis of molecular patterning in

experimental results on either (B) a PLL–coated coverslip or (C) on an αCD3-coated coverslip. (D,E) Results of the analysis of molecular patterning in simulated

results, on either (D) a PLL–coated coverslip or (D) on an αCD3-coated coverslip. (F,G) The shift in the peak of the molecular distributions of the topology analyses, on

either (F) a PLL–coated coverslip or (G) on an αCD3-coated coverslip. Experimental results are shown as dashed colored lines while simulated results are shown as

continuous colored lines.

not be explicitly simulated as diffusing agents in the 3D
environment of the cytosol. Still, our simulation specializes
in capturing complex and dynamic interactions and pattern
formation in intercellular interfaces. It focuses on surface
molecules interacting in a dynamic, fluctuating surfaces. To our
knowledge, the integration of SMLM data into cell simulations
and the effects of embedded molecules on the cells’ surface
are important features that have not been attempted in current
simulations.

Our simulation has been designed as an accessible tool to
non-experts. It operates on a PC with a standard (i7 quad)
processor. It is coded in Matlab, in a modular structure that
can be easily expanded to include additional membrane and
cortical structures, such as cortical cytoskeleton, membrane
bound proteins, channels, etc. Still, expansion of the simulation
to whole cells will require much stronger computational power
than is currently employed. It integrates a wide range of physical
parameters of simulated entities (membranes, molecules) that

Frontiers in Immunology | www.frontiersin.org 9 September 2018 | Volume 9 | Article 2051154

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Neve-Oz et al. InterCells: Simulation of Intercellular Interfaces

are accessible via an intuitive GUI. We provide multiple
analysis tools, including univariate and bivariate PCFs (36),
clustering algorithms and the topological analysis demonstrated
here (Figure 9). Additional analyses of relevance may include
Minkowski functionals (37), conditional second order PCFs
(13), and more. Our simulation enable batch runs for scanning
systematically values of parameters of choice. The results of
such batch simulations can be presented graphically using
our statistical analyses tools. The user can then quantitatively
compare the results of such statistics to experimental results,
for further refinement of the simulation. We have recently
demonstrated this approach to study inaccessible properties of
the PM (e.g., its rigidity and its ligand density) (18). The further
integration of iterative simulations with sensitivity analyses such
as the Sobol method could enable more systematic evaluation of
the wide parameter space of our agent-based simulation.

We believe that InterCells, esp. with its upcoming tools, will
allow the study of molecular patterning at cell surfaces and
interfaces in a wide range of cases. We provided in the User’s
Manual a second example, demonstrating how InterCells can be
employed to quantify the effects of molecular trapping and self-
clustering on molecular organization at the PM. Additional cell
interfaces that can be studied using InterCells may include cell
junctions between cells in a tissue, the evolution of interfaces in
development, neuronal synapses, immune synapses of multiple
types, and under various experimental conditions, and more.

To conclude, we provide here a generic simulation of
intercellular interfaces. The simulation was applied to nano-
scale pattern formation at the IS, which was resolved by three-
color SMLM. The detailed simulations combined data from
SMLM imaging, coarse-grained physical model PM of the
interacting cells, and simulative data from multiple Monte-Carlo
simulations. During this process, the simulation has proved to
be an invaluable predictive and hypothesis generating tool. It
further provided an elaborate test of our physical understanding
of molecular patterning at the IS and of the forces behind it. The
iterative application of novel experimental tools and modeling
could provide critical feedback to future experiments and the
adaptation of working models; thus, in this case, enhancing
our mechanistic understanding of early T cell activation. Our
simulations are modular, flexible and accessible, such that they
can be employed for studying a wide range of intercellular
interfaces and molecular interactions within.

METHODS

Sample Preparation
Jurkat E6.1 cells and such cells stably expressing TCRζ-Dronpa
were available for this study from a previously published
work (16). Positive expression was routinely monitored using
fluorescence microscopy. For three-color, SMLM TCRζ-Dronpa
were immunostained with antibodies: 1. αCD45-Alexa647
conjugated (BioLegend, 304056); 2. αCD11 (LFA1) primary (BD
Pharmingen, 555378) and αMouse secondary antibody labbled
with Alexa568.

Cells were dropped onto glass coverslips coated with 0.01%
poly-L-lysine (Sigma) with or without following coating αCD3

(UCHT1, eBioscience 16-0038-85). The cells were incubated at
37◦C for a specific spreading time on the coverslips of 1.5min.
After this time the cells were fixed with 2.4% Paraformaldehyde
for 30min at 37◦C. Combined SMLM (PALM-dSTORM)
imaging was performed in a dSTORM buffer (50mM TRIS
pH = 8, 10mM NaCl, 0.5 mg/ml glucose oxidase, 40µg/ml
catalase, 10% glucose, 10mMMEA).

PALM and STORM Microscopy
Three-color SMLM (combined PALM/dSTORM) imaging was
performed using a total internal reflection (TIRF) microscope
(TI-E, Nikon). Imaging in TIRF mode served to visualize
molecules at the PM of spreading cells in close proximity
to the coverslip (up to ∼100–200 nm). PALM images were
analyzed using the N-STORM module in NIS-Elements (Nikon)
or a previously described algorithm (ThunderSTORM) (38)
to identify peaks and group them into functions that reflect
the positions of single molecules (14). PALM acquisition
sequence typically took ∼5min for three channel imaging at
50–100 frame/s. Custom algorithms were then applied for
statistical characterization of the SMLM images of the detected
molecules (see Supplementary Information for further details).
The fluorescent proteins were imaged sequentially in the different
channels using dedicated emission filters that minimized cross
talk between the channels. Photoactivation illumination at
405 nm was changed over the imaging sequence of fixed cells.
Drift compensation and channel registration were performed
using dedicated algorithms in ThunderSTORM.

DETAILED MOLECULAR SIMULATION

Modeling Approach and Structure of the

Simulation
Here, we take a reductionist approach for modeling, aiming
to explain complex spatio-temporal patterns of molecular
organization at intercellular interfaces. All simulation files are
available online on Github (https://github.com/ShermanLab/
InterCells). These files should be downloaded to the User’s
computer under a directory that can be accessed by Matlab.

Requirements

For ease of use, the simulation Basic computational power,
employing a standard PC (with an i7 processor). It is coded in
Matlab (MathWorks). The structure of the simulation is depicted
in Figures 4,5 and is explained in detail in the User’s Manual
(provided in the Supplemental Information).

Input

Input parameters include parameters that describe the physical
properties of the interacting surfaces and of the molecules
that interact within and across the interfaces. The parameters
are typically extracted from experimental measurements, on
molecular interactions that govern the signaling cascade (39, 40).
In the case of hybrid simulations, initial conditions are set by
single molecule data on molecular positions and their state from
SMLM imaging (see User’s Manual). Benchmark runs for testing
a range of predetermined parameters. Such benchmark runs have
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previously served for critical evaluation of mechanistic models of
T cell activation (24) and for studying the effects of variations
in critical physical parameters on molecular patterning at the
IS (18).

Simulation Core

The simulation includes detailed models of relevant stochastic
processes, including reaction-diffusion processes and relevant
force fields. The details of the simulation algorithm are provided
in separate sections below. Briefly, in our simulation we assume
specific Hamiltonians of a quasi-equilibrium system and with
mean-field approximations. The simulation relies on hierarchical
levels of simplification. Continuous entities that are not the
focus of the simulations are “coarse-grained.” Such entities
include lipids in the PM and water molecules, and are not
specifically described in the simulation. In contrast, protein
molecules of interest are described individually. The simulation
algorithms is realized using “importance sampling” Monte-Carlo
simulations (41). Molecular identities are maintained for the
reactant molecules of interest. Metropolis criterion is applied
to determine the transition probability between consecutive
configurations.

Outputs

Quantifiable readouts of the numeric simulations include the
position and state of individual proteins, the morphology of the
PM and their energetics. Visualization tools are provided for
showing the simulation results. For instance, live evolution of
molecular patterning is provided during the simulation run. The
patterns can then be shown for each step individually, or as a
movie.

Analyses

Here we integrated multiple statistical tools for quantitative
analyses and interpretation of the results. Our tools include
clustering algorithms and second-order statistics (16, 36), and
the topology analysis (Figure 3). These tools are important for
the quantitative comparison between results from experiments
and from simulations. Moreover, the analyses provide a critical
feedback for generating experimentally testable hypotheses and
the adaptation of working models in an iterative way. In fact, our
imaging in this study was instructed by early simulative results
that indicated the mutual patterning of TCR, CD11 and CD45.

Simulation Setup

The simulations are based on a rectangular grid, of a size of
few microns. The array is made of square 10 nm pixels. We
used periodic boundary conditions (molecules that exit on one
side appear on the opposite side). The initial height (z) of
the membrane is set to 70 nm. The PM height in pixels that
accommodate either TCR or CD11 molecules are set to the
molecular height. The z-value of each pixel changes randomly
at every iteration by 1z that has a normal distribution with
σ = 1 nm, according to the Metropolis criterion.

A specific limitation of our simulation to the number of
simulated molecules originates from the occupancy of only one
molecule (regardless of its species) in a single pixel. Thus,
considering a pixel size of 10 nm and a rectangular grid of 1 ×

1 µm2, a limit of 10K molecules can be simulated. Larger grids
are often needed to show complex molecular patterns within a
cell footprint. Thus, we often simulated tens of thousands of
molecules within grids of 400 × 400 pixels. Such grids were
chosen to include a region of interest of a cell footprint with
an area of 4 × 4 µm2 (i.e., each pixel representing an area of
10 × 10 nm). Such a size should leave a wide enough margin
(e.g.,∼50–100 pixels), such that boundary effects are minimized.
Such simulations took ∼15min using a PC with a standard (i7
quad) processor. Acceleration of the simulation can be improved
via operating parallel computing, computation via GPUs and
more. A bigger grid size minimizes the effect of the boundary, yet
requires longer (actual) simulation time, computational power
and memory. Similar consideration may restrict the iteration
time, overall simulation time, the save rate and the number of
runs (Table S3). While other simulations, such as MCell, can
accommodate millions of molecules and states, they require
compartmentation of the simulated space for efficiently running.

We simulated multiple different types of proteins, as follows.
TCRs behave as binding proteins to immobile ligands (αCD3) on
a coverslip or to mobile pMHC molecules at the PM of APCs.
CD11 may bind ICAM at the PM of APCs. The z coordinates of
the TCRs and CD11 are kept at 13 nm and at 35 nm, respectively,
throughout the simulation runtime. The molecules, and esp.
bulky CD45 molecules, act as repulsive springs. Non-specific
binding occurs between all molecules and the PLL coating
of coverslips. The numbers of simulated molecules remains
constant throughout the simulation. All simulated parameters are
detailed in Tables S1–S3.

Monte Carlo Simulations
Simulation Energetics

In the simulations we used the Hamiltonian H = Hint + Hel, to
calculate the energetics of the overall interactions between the T
cell membrane and the coverslip (represented by the term Hint)
and the elasticity of the T cell membrane (represented by the term
Hel). The interaction part, Hint , is defined as:

Hint =

∑
i
(δ1,moliδ1,ligi )Vmol−lig(zi)+ δ1,moliVmol(zi) (1)

where,

δ1,Xi =

{
1, if a molecule of type X exists in pixel i

0, otherwise
(2)

Single pixels from any surface (i.e., either a PM or a coverslip)
can accommodate only one molecule at a time. The interaction
potential of the molecule with its ligand, Vmol−lig , is defined as:

Vmol−lig (zi) =

{
Umol−lig , |zi − lmol−lig | < Interaction range

0, elsewhere
(3)

where Umol−lig is the interaction strength of a molecule and
its ligand, lmol−lig is the length of an engaged molecule-ligand
conplex. zi is the inter surface distance at pixel i. The width of the
molecule-ligand potential is set and its depth are set according
to published results (see Table S3). The repulsion potential of the
molecule is defined as:

Frontiers in Immunology | www.frontiersin.org 11 September 2018 | Volume 9 | Article 2051156

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Neve-Oz et al. InterCells: Simulation of Intercellular Interfaces

Vmol(zi) =

{
kmol(zi − lmol)

2, zi < lmol

0, zi > lmol
(4)

The physical parameters of kmol, the compressional stiffness of
the molecule and lmol, the length of the uncompressed molecules,
are detailed in Table S1.

The elastic part of the Hamiltonian, Hel, is defined as:

Hel =

∑
i

κ

2a2
(1dzi)

2 (5)

where κ = κ1·κ2/(κ1 + κ2), is the general effective bending
rigidity of two membranes. In this case, the bending rigidity is
effectively κ ≈ κ1, since κ2 >> κ1 and is simulated at different
values. The lattice constant, a, is 10 nm and dzi = zi1+ zi2+ zi3+
zi4 − 4zi, (where i1, i2, i3, i4 are the indices of the four nearest
neighbors of pixel i).

Simulations Dynamics

The simulation propagates in time by iterations of 0.01 s. In every
iteration all molecules attempt to hop to one of the neighboring
pixels according to their diffusion coefficient. The hopping
attempts of the molecules are accepted or rejected according to
the following rules:

1. The target pixel is not occupied.
2. The probability of acceptance is according to Metropolis

criterion is:

at an old pixel:

P(old state → free) =

{
11E < 0

exp (−1E) 1E > 0
(6)

and at a new pixel:

P(free → new state) =

{
11E < 0

exp (−1E) 1E > 0
(7)

While

P(attempt accepted) = P
(
old state → free

)
×P(free → new state)

(8)

3. If more than one molecule attempted to hop to the same pixel,
the molecule with the highest energy gain will hop.

4. The height, z, of each pixel of the surface is changed randomly
by 1z, that has a normal distribution with σ = 1 nm and
according to Metropolis criterion. The value of σ is set by
receiving 40–50% of acceptance of the membrane attempts 27.

Topology Analyses
The topology analysis measures the conditional density of
molecules from a spatial reference set by clusters of a chosen
molecular type. In the example presented in Figure 9A, the
cluster of reference is set by green molecules. Next, circles are
placed around each green molecule (middle panel), and we
consider the perimeter of their unified area. The densities of the
other molecules (namely, red or blue points in our example)
can now be calculated on this perimeter. The consecutive
operation of these steps with growing radii from the molecules
yields the Minkowski perimeter functional (37). The conditional
densities of the molecules are then calculated for the growing
perimeters, as shown in Figures 9B–E. Last, the density of the
molecules of reference (here, green dots) is determined and
presented by its univariate PCF as a function of the perimeter
radius.
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ImmuneDB is a system for storing and analyzing high-throughput immune receptor

sequencing data. Unlike most existing tools, which utilize flat-files, ImmuneDB stores

data in a well-structured MySQL database, enabling efficient data queries. It can take raw

sequencing data as input and annotate receptor gene usage, infer clonotypes, aggregate

results, and run common downstream analyses such as calculating selection pressure

and constructing clonal lineages. Alternatively, pre-annotated data can be imported and

analyzed data can be exported in a variety of common Adaptive Immune Receptor

Repertoire (AIRR) file formats. To validate ImmuneDB, we compare its results to those

of another pipeline, MiXCR. We show that the biological conclusions drawn would be

similar with either tool, while ImmuneDB provides the additional benefits of integrating

other common tools and storing data in a database. ImmuneDB is freely available on

GitHub at https://github.com/arosenfeld/immunedb, on PyPi at https://pypi.org/project/

ImmuneDB, and a Docker container is provided at https://hub.docker.com/r/arosenfeld/

immunedb. Full documentation is available at http://immunedb.com.

Keywords: next-generation sequencing, antibody repertoire analysis, bioinformatics, B-cell receptor, database

INTRODUCTION

The study of immune cell populations has been revolutionized by next-generation sequencing. It
is now commonplace to have hundreds of thousands or even millions of sequences from a single
sample or individual (1, 2). With this increase in experimental data output, many tools have been
created for pre-processing sequences (3), germline association and clonal inference (4–7), and post-
processing analysis (8, 9). Lacking from this space, however, is a system to store fully-annotated
sequences, their inferred germline sequences, clonal associations, and study-specific metadata. This
paper describes ImmuneDB (10) and introduces new features added since its original publication
including: additional importing & exporting formats, a more flexible metadata system, extra clonal
assignment methods, integration of a novel allele detection tool (11), and the ability to analyze
other species and light chains. ImmuneDB provides an easy to use immune-receptor sequence
database, which has been optimized for and tested with datasets of up to hundreds of millions
of sequences (1). It can take as input raw FASTA/FASTQ sequence files, or import pre-annotated
sequences from an array of formats including the Change-O data standard (5) and the AIRR
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https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02107
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02107&domain=pdf&date_stamp=2018-09-21
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:uh25@drexel.edu
https://doi.org/10.3389/fimmu.2018.02107
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02107/full
http://loop.frontiersin.org/people/497937/overview
http://loop.frontiersin.org/people/525054/overview
http://loop.frontiersin.org/people/42429/overview
http://loop.frontiersin.org/people/105693/overview
https://github.com/arosenfeld/immunedb
https://pypi.org/project/ImmuneDB
https://pypi.org/project/ImmuneDB
https://hub.docker.com/r/arosenfeld/immunedb
https://hub.docker.com/r/arosenfeld/immunedb
http://immunedb.com


Rosenfeld et al. ImmuneDB

data standard currently being implemented and further refined
(2). With either method, it can infer clonal associations, calculate
selection pressure, generate lineages, and make all resulting
information available both from the command line and as a web-
interface. For interoperability with other systems, ImmuneDB
can output data in AIRR, Change-O, VDJtools, and genbank
formats. ImmuneDB’s usage of MySQL also allows for rapid
querying and data-sharing using a variety of existing tools.

MATERIALS AND METHODS

The methods below describe the ImmuneDB pipeline in the
context of human B-cell heavy chain rearrangements. We then
extend the methods to T cells, light chains, and other species
(Figure 1).

Computer Hardware and Software

Requirements
ImmuneDB is primarily written in Python and can therefore
run on most common Unix-based operating systems (including
macOS). Local installation of the version described in this paper
(v0.24.1) requires Python 3.5+, although legacy versions support
Python 2.7. The setup will automatically install all Python library
dependencies. Additionally, MySQL (or a drop-in replacement
like MariaDB) is required, although it need not run on the same
host as ImmuneDB.

Optional steps require installation of additional external tools.
Local alignment requires Bowtie 2 (12), lineage construction
depends on Clearcut (13), selection pressure calculations utilize
BASELINe (9), novel gene detection requires TIgGER (11), and
the web-frontend exists in a separate repository1.

Alternatively, a Docker image2 is available with all these
dependencies pre-installed along with helper scripts, and is
therefore the recommended method for using ImmuneDB.

Hardware requirements depend on the input data, but as a
general guideline it is recommended that ImmuneDB be run on
a machine with enough available memory to store at least three
times the largest input sample (e.g., for a 5 Gb input file, 15 Gb of
memory should be available). Any number of cores are acceptable
and ImmuneDB uses Python’s multiprocessing library to utilize
as many cores as possible.

Germline Reference Database
ImmuneDB can use any IMGT aligned V- and J-gene database
which it accepts as a pair of FASTA files. We suggest always using
the most recent IMGT/GENE-DB (14) database including only
functional germlines.

License
ImmuneDB is released under the GNU General Public License,
version 33 allowing for unlimited use, modification, and
distribution under the same license and with any changes
explicitly stated.

1https://github.com/arosenfeld/immunedb-frontend
2https://hub.docker.com/r/arosenfeld/immunedb/
3https://www.gnu.org/licenses/gpl-3.0.en.html

The ImmuneDB Pipeline
ImmuneDB is comprised of sequential steps, run via the
command line, that generate a database with analyzed immune
receptor data as shown in Figure 1. Before running ImmuneDB,
it is recommended that pRESTO (3) be used for quality
control and, when applicable, paired-read assembly. ImmuneDB
itself begins with V- and J-gene identification and optional
local-alignment. Then, duplicate sequences are identified across
samples originating from the same subject. These sequences
are then grouped into clones using one of three methods of
clonal inference (described in section Clonal Inference). Finally,
aggregate statistics are generated and results can be exported,
explored in a web browser, or further analyzed with an integrated
set of downstream-analysis tools.

Each step of the pipeline is detailed in this section along with
an example of the command to run. In all cases passing the
--help flag will list all possible parameters and their default
values (if any).

Raw Data Processing

Before running the ImmuneDB pipeline itself, raw FASTQ reads
from a sequencer should be quality controlled using pRESTO.
First, sequences are trimmed of poor-quality bases on the end
farthest from the primer where base call confidence tends to
degrade. Using default parameters, sequences are then trimmed
to the point where a window of 10 nucleotides has an average
quality score of at least 20. If reads are paired, the next step is to
align the R1 and R2 reads into full-length, contiguous sequences.
Short sequences, those with less than 100 bases, are then removed
from further analysis. Finally, any base with a quality score less
than 20 is replaced with an N and any sequence containing more
than 10 such bases is removed from further analysis. In the case
of FASTA input which has no quality information, only paired-
end assembly and short sequence removal are recommended. A
detailed script for running this process can be found in Rosenfeld
et al. (15).

After this process, the remaining filtered sequences are
presumed to be of adequate quality for germline inference and
clonal assignment.

Creating a Database

ImmuneDB allows users to separate their datasets into individual
ImmuneDB project, each with their own database. To create a
properly structured MySQL database, the immunedb_admin
command is used:

$ immunedb_admin create db_name ∼/configs

Running this command with db_name replaced with an
appropriate name will create a database named db_name and
create a configuration file in ∼/configs with information for
the remainder of the pipeline to access it. Specifically, it records a
unique username and password for the database so each project
you create is separated from others. Database names must consist
of only alphanumeric characters, integers, and underscores.
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FIGURE 1 | A general overview of the ImmuneDB pipeline. To start, sequences are optionally pre-processed with pRESTO to remove poor-quality sequences and

mask bases below a user-defined threshold. Next, using a conserved region anchoring method, sequences are either assigned V- and J-genes or labeled as

“unidentifiable” which optionally can be corrected by local alignment. After gene assignment, sequences are collapsed across samples and grouped into clones based

on one of three methods (see text). Lastly, downstream analyses such as selection pressure, and lineage construction are performed. A web interface is available to

browse the resulting data and analyzed data can be exported in a variety of formats. Inset: Examples of downstream analysis: cosine similarity between inferred B-cell

rearrangements in tissue samples from an organ donor, diversity (calculated as defined in Equation 1) plotted at different orders from the same tissue samples;

rarefaction calculated for B-cell rearrangements amplified from colon samples.
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Sample Metadata Assignment

Each ImmuneDB project is designed to house data across many
samples and subjects. It is recommended that each quality-
controlled FASTA/FASTQ file contains the sequences from
one biologically independent sample. This implies that, if a
given sequence is found in multiple independent samples, it
actually occurred in multiple cells. Although not recommend,
ImmuneDB will still operate normally if samples originated from
multiple sequencing runs of the same PCR aliquot. However,
many measures of sequence abundance and clone size break
down under this conditions [see section Sequence Collapsing
(copies, uniques, instances) for discussion].

For the ImmuneDB pipeline, some metadata about each
sample are required: a unique sample name and a subject
identifier. Samples with the same subject identifier came from
the same source organism. Additional custommetadata (e.g., cell
subset, tissue) can be attached to each sample, which can be useful
for later analysis and grouping.

To generate a template metadata file in the directory with the
FASTA/FASTQ files for processing, the user runs:

$ immunedb_metadata --use-filenames

This will generate a metadata.tsv file that should be further
edited with the appropriate information, and will be used in the
next step of the pipeline. The optional -use-filenames flag
pre-populates the sample names with the associated filename,
stripped of its.fasta or.fastq extension.

Germline Assignment (Anchoring, Local Alignment)

The first portion of the ImmuneDB pipeline infers V- and J-
genes for each set (sample) of quality-filtered reads using the
approach in Zhang et al. (4). This method was chosen because
it is quicker than local-alignment and works for the majority of
sequences which are not mutated in conserved regions flanking
the CDR3. Given a small number of restrictions detailed in the
documentation, this method can accept user-defined germlines
so long as they are properly IMGTnumbered (16). Specifics about
the numbering scheme can be found at4.

For each sequence, the anchor method first searches for a
conserved region of the J gene. If it is found, all germline J-gene
sequences are compared to the same region in the sequence, and
the one with the smallest Hamming distance (17) is assigned as
the putative J gene. Since ImmuneDB requires sequences to have
a J- and V-gene assignment to be included in clones, if no anchor
is found the sequence is marked as unidentifiable and is excluded
from V-gene assignment for efficiency.

Then, a conserved region near the 3
′

end of the V-segment
is used to position each sequence correctly relative to the IMGT
numbered germline sequences. As with J-genes, each germline
sequence is then compared using Hamming distance, and the
one with the smallest distance is assigned as the putative V gene.
If the conserved region is not found, the sequence is marked
as unidentifiable and excluded from the rest of the anchoring
process.

4http://www.imgt.org/IMGTScientificChart/Numbering/IMGTIGVLsuperfamily.

html

After every sequence is assigned a V and J gene (or marked
as unidentifiable) the average mutation frequency and sequence
length are calculated. For each sequence, other germline genes
which are statistically indistinguishable from the putative genes
are added as “gene-ties.” Thus, each sequence may have multiple
V- and J-gene assignments.

As a post-identification quality control step, ImmuneDB then
marks sequences with a low V-germline identity (defaulting
to 60%) as unidentifiable. Further, any sequence which has a
window of 30 nucleotides with less than 60% germline identity
is marked as a “potential insertion or deletion”.

To run this step, the user enters the following commands:

$ immunedb_identify /path/to/config.json \

/path/to/v_germlines.fasta \

/path/to/j_germlines.fasta .

After this command finishes, the anchoring portion of alignment
is complete. Due to insertions or deletions, mutations in the
conserved regions, and other anomalies, there are generally
sequences which cannot be identified with this approach. To
rectify such sequences, ImmuneDB can then optionally use
Bowtie 2 (12) to attempt local-alignment on each of these
sequences. Any insertion or deletions that Bowtie 2 finds are
also stored with the sequence. The command to locally align
sequences is similar to identification:

$ immunedb_local_align /path/to/config.json \

/path/to/v_germlines.fasta \

/path/to/j_germlines.fasta .

Sequence Collapsing (Copies, Uniques, Instances)

After sequences are assigned V and J genes, sequences that differ
only at N positions—those which had low quality calls from the
sequencer—are collapsed within each sample resulting in one set
of unique sequences per sample. Each unique sequencemaintains
a count called “copy number” of how many duplicates occurred
in the sample. Then, all the sample-level unique sequences within
the same subject are compared to one another and duplicates are
marked and collapsing information is stored.

After this process, each subject-level unique sequence has
two fields associated with it: total copies and instances. When
samples are biologically distinct, which is recommended in
section Sample Metadata Assignment, the instance count of a
sequence is the number of samples in which that sequence
occurred (which can be interpreted as the lower bound on
number of cells that contained that sequence) and the total copies
is the number of duplicates across all samples. Although the
latter is subject to PCR artifacts, it can give an indication of
true sequence abundance. Alternatively, when samples are not
biologically independent, the instances of a sequence no longer
give a bound on cell count and the copy number of a sequence
may be inflated, leading to skewed sequence and clone abundance
calculations.

An overview of the terms copy number, instances, and unique
sequences is provided in Table 1.
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TABLE 1 | Summary of terms for sequence collapsing.

Term Description

Unique Sequence A distinct sequence across an entire subject

Instance A distinct sequence within a single sample

Copy number The number of raw reads that are associated with an

instance or unique sequence

A description of the three terms used to indicate sequence or clonal sizes.

To run the collapsing process, run:

$ immunedb_collapse /path/to/config.json

Novel Allele Detection and Correction

The ImmuneDB gene identification process assumes the
germline allele database provided, from IMGT or another
repository, are indeed those present within the subjects being
analyzed. Users can add or remove genes as needed by modifying
the germline FASTA files input into ImmuneDB. However, in
many cases it may not be known a priori which genes are or
if the subjects have novel germline alleles. To determine which
genes are present in a dataset, ImmuneDB may optionally run
TIgGER (11) on sequences to identify potential differences from
the standard germline database. To do so, the identification and
collapsing processes above is run with a presumed germline
database followed by:

$ immunedb_export /path/to/config.json

changeo \

--min-subject-copies 2

$ immunedb_genotype /path/to/config.json \

/path/to/v_germlines.fasta

This exports the sequences, as identified with the presumed
germline genes, with at least two copies in the subject and then
runs TIgGER. If novel alleles are found, a new set of input
germlines is generated, and ImmuneDB can be re-run with these
germline reference genes.

Clonal Inference

ImmuneDB incorporates two methods of clonal inference, all
of which start with the same set of sequences: the subject-level
unique sequences calculated previously. By default, only such
sequences with a copy number of at least two are considered
eligible for clonal assignment. This eliminates some of the
sequences that potentially arose from sequencing error and could
cause spurious construction of clones. After this process, each
clone has three defined levels of size. The number of unique
sequences are the number of distinct sequences that comprise
a clone. Copies and instances are defined as the sum of copies
and instances over the clone’s constituent unique sequences.
These clone size metrics are reviewed in detail in Rosenfeld
et al. (15).

CDR3 Similarity

The first method of clonal inference is for B cells. It uses CDR3
similarity to group sequences from the same subject with the

same gene assignments and CDR3 length into clones. Initially an
empty list of clonesC is created. Let S be the set of all subject-level
unique sequences.

Each sequence s ∈ S is visited in order of decreasing copy
number. If there is a clone c ∈ C such that every sequence
already assigned to c has the same V gene, J gene, CDR3 length
in nucleotides, and has 85% CDR3 amino-acid similarity, s is
added to the clone c. Otherwise, a new clone is added to C
containing only s. This results in a set of clones such that all the
sequences in a clone share the same gene assignments, CDR3
length, and pairwise are at least 85% similar in the CDR3. The
percent similarity can be tweaked by the user as necessary.

This method of clonal inference can be run with:

$ immunedb_clones /path/to/config.json \

similarity

Lineage Separation

The newest method of clonal assignment in ImmuneDB is based
on (18). For each subject, sequences are placed into buckets based
on their V gene, J gene, and CDR3 length in nucleotides. Then,
a lineage is made out of each bucket. Working from the root
node of the lineage (the germline) each edge is traversed until
a specified number (by default four) mutations accumulates. The
subtree starting at that point is then grouped into a clone. This
method, unlike similarity-based methods, is order-agnostic and
can be run with:

$ immunedb_clones /path/to/config.json \

lineage

Selection Pressure

After clonal inference, ImmuneDB can optionally use BASELINe
(9) to estimate clonal selection pressure. It first runs on each
clone as a whole, providing an overview of selection pressure
in the framework and complementary regions. Then, it runs
independently on the subset of sequences that occur in each
sample. This can be useful when a clone spans multiple samples
with various biological features. For example, a clone may appear
in samples from different tissues or cell subsets.

To run BASELINe via ImmuneDB, the path to the
Baseline_Main.r script must be specified.

$ immunedb_clone_pressure /path/to/config.json \

/path/to/Baseline_Main.r

Lineages

ImmuneDB integrates Clearcut (13) to infer clonal lineages using
neighbor-joining. For each clone, a lineage is constructed and
every node maintains information about its associated sequence,
as shown via the web-interface in Figure 2. This process can be
parameterized in different ways including filtering sequences or
mutations that occur less than a set number of times. Generally,
it is recommended to run Clearcut excluding mutations that
happen exactly once with:

$ immunedb_clone_trees

/path/to/config.json \

/path/to/clearcut \

--min-count 2
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FIGURE 2 | In (A) an example clonal lineage as viewed through the web interface for ImmuneDB. Node diameter is proportional to the total number of sequence

copies at that node and the edge numbers show the number of mutations between the parent and child nodes. The colors indicate the tissue(s) that make up the

sequences at the node. In this case green is Bone Marrow, red is Lung, and black is a combination of both. As shown in (B), hovering over a node gives more

information such as the specific mutations, copy number, and sequence metadata.

Figure 3 shows the same clone’s lineage constructed with
Figure 3A no mutation threshold, Figure 3B a threshold
requiring mutations to occur in at least 2 sequences, and
Figure 3C a threshold requiring mutations to occur in at
least 5 sequences. The large expansion of nodes in Figure 3A

is likely due to sequencing error. A higher threshold like
in Figure 3C may be useful when there is high sequencing
depth or when clones are extremely large (such as in some
hematopoietic malignancies). In these cases it is quite likely that
the same sequencing error will occur multiple times. However,
thresholding mutations means the lineages may not accurately
reflect recent or rare clonal events.

Web Interface

ImmuneDB comes with a web interface for browsing analyzed
data. It allows users to group and filter data to generate interactive
plots, view clones, and inspect sequences. It is primarily intended
to explore data at a high-level, visualizing individual samples or
comparing different samples in various ways. The command line
tools can then be used formore fine-grained analysis. An example
interface can be found at http://immunedb.com/tissue-atlas.

To utilize the web interface using the Docker container simply
run the following and open http://localhost:8080 in a browser:

$ serve_immunedb.sh /path/to/config.json

Information about running the web interface without the Docker
container or with more sophisticated configurations, such as
hosting multiple databases, are described in the documentation.

Importing Gene Assignments and Clonal

Inference From Other AIRR Tools
Although ImmuneDB has the features to fully analyze sequences
from raw reads through clonal assignment, a concerted effort has
been made to allow users to import both identified sequences
and clonal assignments from other tools. For pre-identified
sequences, ImmuneDB can import files in the Change-O data
format (5) with:

$ immunedb_import /path/to/config.json \

/path/to/v_germlines.fasta \

/path/to/j_germlines.fasta \

/path/to/changeo_files

Note that this requires a metadata file identical to that needed by
the identification step.

Clonal assignments can be imported from either ImmuneDB-
identified sequences or imported sequences. First, the command
below is run to output a template file with a list of clonal-
assignment eligible sequences:

$ immunedb_clone_import /path/to/config.json \

--action export sequences.tsv

Users then fill in the clone_id column in sequences.tsv as they
desire and import it back into ImmuneDB with:

$ immunedb_clone_import /path/to/config.json \

--action import sequences.tsv

Assuming that no constraints are broken (clones must still have
the same V gene and J gene and originate from the same
subject), the custom clonal assignment will then be accepted by
ImmuneDB.

As members of the AIRR Community (19), the authors
will continue to integrate data standards (2) as they are
defined.

Aggregate Analysis and Data Export
ImmuneDB automatically aggregates data for some common
analyses in the last step of the pipeline with:

$ immunedb_clone_stats /path/to/config.json

$ immunedb_sample_stats /path/to/config.json

This auto-generated, aggregate analysis is not exhaustive, and
is meant to provide sufficient data for the web-interface and
to guide further investigation. To assist with this, ImmuneDB
allows users to easily export all portions of the analyzed dataset in
useful, common formats. Specifically, ImmuneDB has integrated
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FIGURE 3 | Comparison of mutation thresholding on lineage shape. A comparison of a single clonal lineage constructed from bulk IgH V-region sequencing data

where (A) all mutations are included, (B) only mutations found in at least 2 sequences are included, and (C) only mutations in at least 5 sequences are included. The

drastic elimination of leaf nodes between (A) and (B) indicate that they are most likely due to sequencing error. In very deeply sequenced samples or in malignancies

where clones are very large, an even higher threshold may be required, such as in (C), since the same sequencing error may occur multiple times.

export capabilities for the Change-O (5),vdjtools (8), genbank,
and FASTA/FASTQ formats. This enables users to quickly use
common downstream analysis tools including VDJtools and
those included with the Immcantation Framework5, or submit
their datasets in the AIRR-compliant GenBank format. The basic
template for this command is as follows, replacing the term
format with changeo, vdjtools, or genbank:

$ immunedb_export /path/to/config.json \

format

Applications to Other Data Types
T-cells

ImmuneDB can analyze T-cell receptor sequences, in addition
to B-cell receptor sequences. When compared to B-cell analysis,

5https://immcantation.readthedocs.io

the two changes necessary in the pipeline for T-cell analysis are
to use T-cell germline sequences during germline assignment
and to specify the T-cell method during clonal inference. The
T-cell method groups sequences with the same V gene, J gene,
and 100% CDR3 nucleotide identity into clones. Like the B-cell
similarity method described in section CDR3 Similarity, the T-
cell method does not take into account any mutations in the
V- and J genes. In the case of T cells, mutations are assumed
to be experimental artifacts as T cell receptors do not undergo
somatic hypermutation due to lack of activation-induced cytidine
deaminase (AID). Putative T-cell clones may be comprised of
sequences which appear to differ in the V- and J-gene sequences.
Spurious intra-clonal diversification is likely from sequencing
error whereas consistent divergence from the germline within
a clone likely arises from allelic differences from the germline
database. The latter case can be corrected with TIgGER as
described in section Novel Allele Detection and Correction.
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Light Chains

Because ImmuneDB does not attempt to determine D-genes for
sequences during germline assignment, light-chains are naturally
supported when a proper germline database of the V- and
J genes are provided. At the present, the germline genes for
kappa and lambda chains must be placed in separate files
and run independently. This restriction will be lifted in future
versions. Additionally, because of lower junctional diversity,
it is recommended that clonal assignment be considered.
For example, when using the similarity method, it is likely
appropriate to lower the default amino-acid similarity threshold
to a value below 85%.

Other Species

Species other than humans are supported by ImmuneDB, but
with two restrictions. First, for the built-in anchoring method
for gene identification, germline genes must have conserved
anchoring points as described in Zhang et al. (4) and be IMGT
aligned. Second, the length of all J genes past the 3′ end of the
CDR3 must be fixed, which is the case for all species currently in
the IMGT database.

COMPARISON TO MIXCR

It is difficult to verify the results of clonal and germline
associationmethods as there is no agreed upon gold standard.We
attempt to associate different types of diversity to their underlying
cause(s), but in the end, this is still just an educated guess. Our
methodology, as described above, is based on the best practices
described in Yaari and Kleinstein (20): stringent pre-processing,
correcting for allelic differences between subjects, identification
of insertions and deletions, and multiple clonal assignment
methods for different datasets. ImmuneDB also provides the
option of varying the stringencies of both data filtering and clonal
assignment to ensure reproducible and robust results.

As a final argument for the efficacy of ImmuneDB, we show
that repertoires analyzed with ImmuneDB take a form similar
to those observed with other tools. In this section we compare
ImmuneDB to a commonly used pipeline, MiXCR (6), on two
datasets. First, we compare the germline gene assignment and
clonal inference of the two methods on five samples, one each
from five different tissues, all from one human organ donor.
Second, we inspect how similar the overall view of a larger
repertoire (19 biological replicates from a single organ donor’s
colon) appears with each method (1).

Germline Assignment and Clonal Inference
To determine how similarly MiXCR and ImmuneDB assign
germline genes and infer clones, both pipelines were run on five
samples from one human subject selected fromMeng et al. (1) as
listed in Table 2. The associated SRA accession information can
be found in Table S1. This data set has a total of 651,988 reads.
Sequences which were considered incorrect or misleading were
discarded from both result sets: sequences had to have at least
160 bases in the V gene (at least all of CDR2), between 3 and
96 nucleotides in the CDR3, a functional V-gene assignment (no
pseudogenes), and all V-gene calls (V-ties) for a given sequence

TABLE 2 | Input reads for germline assignment comparison.

Donor Tissue Input reads

D181 Bone Marrow 185,057

D181 Ileum 140,084

D181 Jejunum 117,641

D181 Lung 113,325

D181 Peripheral Blood 95,881

Total Reads 651,988

Total number of input reads for germline assignment comparison between ImmuneDB

and MiXCR. The total number of input reads was after pre-processing with pRESTO. The

samples were selected from one of the deeply sequenced donors in Meng et al. (1).

had to be from the same V-gene family. For clonal comparisons,
clones with only one total copy were discarded.

Germline Assignment

First, we compared which sequences each method was able to
identify given this filtering. MiXCR identified 599,930 while
ImmuneDB identified 611,252, and both identified the same
577,750. The corresponding Jaccard index of 0.91 indicates that
the two methods identified a similar set of sequences.

Next, we compared howmany of the identified sequences were
assigned to the same genes. Since both methods allowed multiple
assignments for both V genes and J genes, we considered two
sequences to have the same gene call if the intersection of their
gene calls contained at least one shared gene. For V genes, the two
methods agreed on 98% of the sequences, for J-genes 95%, and
when considering both genes, 93%. Of the sequences that differed
with either gene, less than 1% differed in their gene family calls.
Thus, overall both methods generally agreed on which germline
genes gave rise to each sequence.

Clonal Inference

Next, we compared how similarly the two methods inferred
clonotypes for the 19 biologically independent colon sample
replicates. The associated SRA accession information can be
found in Table S2. For this process, we assigned each clone one
or more labels from each method:

• If clone A from one method contained exactly the same
sequences as clone B from the other, we labeled both
“identical”.

• If clone A from one method contained a strict superset of
sequences compared to clone B from the other method, we
labeled A “superset” and B “subset”.

• If clone A from one method contained a portion of sequences
compared to a clone B from the other method, we labeled both
“intersecting”.

• If clone A from one method was disjoint from all clones from
the other method, we labeled it “disjoint”.

Note that a clone could potentially have both the labels superset
and intersecting simultaneously if it contained all the sequences
from a clone inferred by the other method and contained
sequences from another clone. Further, a clone could have
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TABLE 3 | Label assignments for clonal inference comparison.

Clone Type ImmuneDB MiXCR

Identical 10,788 10,788

Subset 1,665 2,819

Superset 1,155 726

Intersecting 22 12

Superset & Intersecting 72 74

Disjoint 36 36

Clonal labels when comparing methods of clonal inference between ImmuneDB and

MiXCR. Identical indicates the same set of clones was identified by both methods,

subset/superset means the clone constructed by the associated pipeline was a

subset/superset of one assigned by the other pipeline, and intersecting means there some

sequences from a clone assigned by one pipeline that overlapped sequences assigned

by the other pipeline.

multiple superset labels if it contained all the sequences from
multiple clones inferred from the other method.

As shown in Table 3, ImmuneDB inferred 13,736 clones
whereas MiXCR inferred 14,453. Of these 10,786 were identical;
that is both methods constructed clones with exactly the same set
of sequences. In 1,665 cases, an ImmuneDB clone was a subset
of a MiXCR clone. There are two reasons this occurred. First,
different amounts ofN nucleotides in the either the V- or J-region
can cause sequences, that are otherwise similar, to be assigned
different sets of gene ties and therefore placed in different clones.
Second, since ImmuneDB requires pairwise 85% similarity of
CDR3 amino-acid sequences in clones, some sequences that may
actually originate from the same clone are separated. Conversely,
2,819 MiXCR clones are subsets of an ImmuneDB clone. Nearly
all of these are due to overly-strict J-gene assignment, resulting
in separation of likely clonally related sequences. For example,
some sequences that are one nucleotide away from IGHJ1 and
two away from IGHJ4 could easily be confused due to sequencing
error (4).

Overall Repertoire Features
Repertoire analysis pipelines should reveal similar overall trends
in acceptably large datasets even if the minutiae of sequence
assignment and clonal inference differ. Specifically, when looking
at sufficiently large clones, the overlap across samples and
diversity should lead to similar conclusions. It is generally
acceptable to only look at larger clones as smaller clones have
likely been under-sampled or are an artifact of sequencing error
(21).

To compare repertoire-level metrics generated from
ImmuneDB and MiXCR processed data, 19 biologically
independent colon replicates were analyzed. We assessed the
similarity of the two pipelines by comparing their clone size
distributions, diversity measures, rarefaction, and clonal overlap
between samples as described in Meng et al. (1).

Clone Size Distribution

We first looked at clone size distributions from the two pipelines.
In Figure 4, the left panel shows a comparison of clone sizes as
measured by copy number. The overall landscape is similar with

both methods, especially when looking only at clones with 10 or
more sequence copies. For smaller clones, the difference in clone
sizes can be attributed to the more stringent CDR3 similarity
measure MiXCR uses compared to ImmuneDB. The right panel
shows the same comparison but instead measures the size of
clones as the number of instances comprising the clone. Both
methods have nearly identical clone size distributions, especially
when considering clones with at least 2 instances.

Diversity

We next considered the diversity of the clones assigned by
each method. The diversity index qD, as defined by Equation 1
quantifies how many different clones there are.

Equation 1: Diversity index qD

qD =

(
R∑

i =1

p
q
i

)1/(1−q)

Here, R is the number of clones (richness), pi is the fraction of
the repertoire (either as copies or instances) inferred to be in
clone i, and q is the order. When the order is zero, the diversity
is richness, or total number of clones. Increasing the order, q,
gives more weight to the larger clones (21, 22). Figure 5 shows
the diversity at orders 1 through 15 for ImmuneDB and MiXCR,
measuring clone size both as copies and instances.

It is clear that MiXCR infers more clones than ImmuneDB.
However, when the order number is increased (more weight
is given to large clones) the diversity of the two methods
converges.

Rarefaction

Rarefaction gives insight into how many clones are estimated to
occur given a certain number of samples (biological replicates)
from the same source. A rarefaction curve that levels out
indicates that fewer new clones will be found with further
sampling. Figure 6 shows the rarefaction curves for ImmuneDB
and MiXCR for clones with at least 2, 5, 10, and 20 instances.
The x-axis shows the number of samples and the y-axis shows
the normalized richness (the richness divided by the richness at
19 samples). The solid lines (up to 19) are calculated from the 19
samples being compared, whereas the dashed lines past sample 19
show the projected number of additional clones if more replicates
had been acquired. As only larger clones are considered, the
rarefaction curves both begin to level out, indicating that those
larger-clone populations have been more adequately sampled.
Both pipelines tended to agree on when clones had been sampled
enough, even though the overall diversity appears to be higher
with MiXCR (indicated by lower fractional richness).

Sample Overlap

We next evaluated the amount of clonal overlap using the cosine
similarity, as defined by Equation (2):

Equation 2: Cosine similarity between vectors A and B

C(A,B) =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i
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FIGURE 4 | Comparison of clone size distributions between ImmuneDB and MiXCR in 19 colon samples subjected to bulk antibody heavy chain V-region sequencing

from one organ donor [data from (1)]. Clone size is given as copies in (A) and instances in (B). Both plots have been restricted to a maximum X-value of 50, but the

trends continue beyond that.

FIGURE 5 | Comparison of diversity calculations between ImmuneDB and MiXCR in 19 colon samples from one donor (same data as in Figure 4). As order

increases, more weight is given to larger clones. For both copies and instances, MiXCR inferred more diverse clonal populations for low order numbers. As order

increases, however, the two methods begin to converge.

In this case, A and B are vectors corresponding to two samples
both of which have a length equal to the total number of clones
in the dataset. The ith value in each vector indicates the number
of copies of the ith clone in the sample represented by the vector.

Figure 7 shows the cosine similarity for clones with a
minimum of 2, 5, 10, and 20 sequence instances. MiXCR
infers less overlap between samples, but the general trend
between both methods is the same: as expected, with larger
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FIGURE 6 | Rarefaction analysis for both ImmuneDB and MiXCR for clone size cutoffs of 2 instances (A), 5 instances (B), 10 instances (C), and 20 instances (D) in 19

colon samples from one donor. The Y-axis shows the number of predicted clones when the population has been sampled between 1 and 25 times. A rarefaction

curve that plateaus indicates the underlying clonal population has been adequately sampled. For all cutoffs, although the overall richness varies, the conclusion drawn

would likely be the same: for clones under 10 instances, more sampling is required, while larger clones have been sampled sufficiently.

FIGURE 7 | The distribution of cosine similarities (a measure of clonal overlap) between each pair of 19 colon samples for clone size cutoffs of 2 instances (A), 5

instances (B), 10 instances (C), and 20 instances (D). The boxes represent the interquartile range, the purple lines are the median, and the whiskers show the range

of data. MiXCR finds less overlap across samples, because it has a more stringent CDR3 similarity requirement for clonal sequences than ImmuneDB, but both

methods show a similar trend: larger clones overlap across more samples as one may expect.

clones, more overlap is discovered. Further, the distribution of
cosine similarities about the median of each method are not
significantly different. That is for both methods, clones over
a given instance count tend to be distributed across a similar
number of samples with a similar fraction of sequences in each
sample.

DISCUSSION

ImmuneDB provides a unified method for the storage and
analysis of large amounts of high-throughput immune receptor
sequencing data. Like other pipelines such as Change-O (5)
and MiXCR (6), it can analyze data from raw reads through
clonal assignment. ImmuneDB has two method of germline
calculation, anchoring and local-alignment, and provides the
option of filtering the data at different QC and copy number cut-
offs, which is desirable when samples with different sequencing
depths are being compared. In addition, ImmuneDB provides
multiple methods of clonal assignment. Combined, these
features provide a variety of ways to analyze different types of
data.

ImmuneDB is also flexible in that it can import pre-annotated
data in a variety of formats supported by other AIRR software

tools. This allows users to use custom tools for their dataset,
using ImmuneDB for only a portion of the analysis. To provide
a comprehensive suite of repertoire analysis tools, ImmuneDB
also integrates downstream analyses such as selection pressure
via BASELINe (9), lineages via clearcut (13), and novel allele
detection via TIgGER (11), reducing the need for users to learn
individual tools. Unlike most other tools, ImmuneDB stores
the data in an easily queryable MySQL database and provides
a web-interface for easily sharing data with non-technical
users.

It is worth noting that ImmuneDB does make some
assumptions when using other tools, however. For example, it
is assumed that sequences in a clone have the same V gene,
J gene, and CDR3 length and that they come from the same
organism. Although generally this is likely acceptable, there are
certain situations where such assumptions may not hold, such as
donor/recipient data where a clone may span multiple recipients.
As such, it is important to consider the limitations of all tools
before using them on non-traditional datasets.

Additionally, since ImmuneDB calculates clones on a per-
subject basis, adding new samples to a subject requires clonal
inference to be re-run for that subject. However, the rest of the
database will remain unchanged.
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Finally, in section Comparison to MiXCR we compared
ImmuneDB to MiXCR, a pipeline that similarly determines
germline usage and infers clonotypes to show that the benefits of
using ImmuneDB do not come at the cost of drastically changing
conclusions one may draw from the data. Although the methods
differ in their approach to clonal assignment, both yield similar
clone size distributions, rarefaction plateau points, and sample
overlap.

CONCLUSION AND FUTURE PLANS

In this paper we have provided a comprehensive description
of ImmuneDB, a system for the analysis of large-scale, high-
throughput immune repertoire sequencing data. ImmuneDB can
operate either independently, providing an integrated collection
of analysis tools to process raw reads for gene usage, infer clones,
aggregate data, and run downstream analyses, or in conjunction
with other AIRR tools using its import and export features. Thus,
ImmuneDB can be an all-in-one solution for repertoire analysis
or serve as an efficient way to visualize and store annotated
repertoire data, or both. In either case, the ImmuneDB web-
interface can be used to easily interact with the underlying
dataset.

ImmuneDB is regularly being updated to address user needs
and handle the increasing complexity of adaptive immune
receptor repertoire sequencing data. In the future we plan
to add a feature to allow users to assess the quality of
individual sequencing libraries (replicates) before running the
entire pipeline. As pRESTO provides a per-sequence quality
control step, this new feature will provide a post-identification
quality control step, informing users if their samples have

insufficient depth or quality. Further, the CDR3 similarity clonal
inference method will receive two additional features. First, it

will be extended to allow for different similarity thresholds for
different CDR3 lengths. Second, this method will allow users
to set a required minimum number of shared V-gene somatic
hypermutations for sequences to be grouped into a clone.
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Clonal evolution of B cells in germinal centers (GCs) is central to affinity maturation

of antibodies in response to pathogens. Permanent or tamoxifen-induced multi-color

recombination of B cells based on the brainbow allele allows monitoring the degree of

color dominance in the course of the GC reaction. Here, we use computer simulations

of GC reactions in order to replicate the evolution of color dominance in silico and to

define rules for the interpretation of these data in terms of clonal dominance. We find

that a large diversity of clonal dominance is generated in simulated GCs in agreement

with experimental results. In the extremes, a GC can be dominated by a single clone or

can harbor many co-existing clones. These properties can be directly derived from the

measurement of color dominance when all B cells are stained before the GC onset.

Upon tamoxifen-induced staining, the correlation between clonal structure and color

dominance depends on the timing and duration of the staining procedure as well as on

the total number of stained B cells. B cells can be stained with 4 colors if a single brainbow

allele is used, using both alleles leads to 10 different colors. The advantage of staining with

10 instead of 4 colors becomes relevant only when the 10 colors are attributed with rather

similar probability. Otherwise, 4 colors exhibit a comparable predictive power. These

results can serve as a guideline for future experiments based on multi-color staining of

evolving systems.

Keywords: germinal center, multiphoton imaging, sequencing, clonal selection, brainbow, computer simulation,

mathematical modeling

1. INTRODUCTION

Permanent multi-color recombination of cells allows monitoring the fate of the stained cells.
Cre-dependent recombination of colors based on the Brainbow fluorescent protein reporter
construct was applied in the past years to the nervous system (1–4) and to developmental biology
(5, 6). As the adopted color is transmitted to the progeny of the cell, this method not only allows to
follow the fate of the stained cell itself but also to visualize cell division and the fate of the daughter
cells. This particular property of the brainbow allele made it suitable for the study of evolutionary
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systems like the germinal center (GC) reaction (7), which is an
important part of the acute immune response to pathogens (8, 9).
While the full repertoire of GC B cells might be assessed in
the future at particular time points by sequencing, the brainbow
method can be used tomonitor the evolution of BC clones in GCs
over time (10).

GC reactions are central not only for the clearance of
infections but also for generating immune memory. As such they
form the basis for the success of vaccinations and are central to
the prevention of diseases. The fundamental principle of a GC
reaction is an evolutionary process on the scale of a few weeks
inside the living organism in lymphoid organs. There, B cells
divide and mutate (11) and subsequently undergo a selection
process giving rise to high affinity antibodies in response to a
pathogenic challenge. The emerging B cells encode a different
antibody than their germline counterparts, with better binding
properties to the pathogen. The GC reaction is also responsible
for a diversification of the pool of antibodies ready to fight against
the next infection.

The evolution of B cells in GCs is difficult to monitor. One
possibility is sequencing of all B cells at different time points of
the reaction (7, 12). Multi-color recombination of B cells bears
information of the clonal evolution of the B cells and, thus,
would allow us to learn about selection and diversification of B
cells. Recent experiments using this approach suggested that B
cells are not only optimized for high affinity to the pathogen,
as widely accepted, but also for an optimal antibody diversity
(7), which was also supported by modeling (13). Here, we
analyse the predictive power of the measured color distributions
for properties of the GC reaction like clonal dominance and
diversification.

2. METHODS

The in silico GC reactions used as the backbone of the
present analysis of B cell clonality is fully described in the
Supplementary Material. The model architecture is a stochastic
event generator with cellular agents in a three-dimensional
discretized space. It is complemented by a reaction-diffusion
system for chemokines, which are generated and sensed by
cellular agents. In addition, each cellular B cell agent carries a
position in a shape space, which reflects its similarity to the
antibody, which binds optimally to the antigen in question.
Somatic hypermutation is modeled as displacement in this shape
space. All agents move according to published two-photon
measurements. They interact according to the current state-of-
the-art model of how GC B cell affinity maturation evolves.
Events like movement, division, interaction, and selection are
based on rate-derived probabilities per time step, unless stated
otherwise (see Supplementary Material). Possible fates of B
cells are apoptosis, differentiation to output cells, or recycling
to the DZ phenotype (14, 15). The simulations reproduce
the population kinetics, affinity maturation, and output cell
production in agreement with experimental constraints.

The previously published model (16), was corrected by
a substantially higher number of founder cells (7) and was

extended by a dynamic-number of division (DND), which states
that B cells receiving more signals from T follicular helper cells
would divide more (16–18).

2.1. Increased Number of Founder Cells
By extrapolation from the number of different founder clones
found by sequencing of randomly picked GC B cells to the
real number of GC founder clones (7), the old picture of an
oligoclonal GC (12, 19) was revised. Instead the number of
founder clones was estimated in the range of 100 cells (7). The GC
simulation (16) needs to be revised correspondingly. Following
Meyer-Hermann and Binder andMeyer-Hermann, A continuous
influx of new founder cells during the first days after GC onset is
assumed (17, 20). Although influx rates of GC founder cells are
currently unknown, in our model we assumed 2 cells per hour
limited to the first 4 days of the GC reaction, which generated
a number of founder cells consistent with Tas et al. (7). This
value might also be estimated with a simple ODE model (see
Supplementary Information: B cell influx rate).

2.2. Color Probabilities
The brainbow allele as implemented in theRosa26Confetti allele (1)
randomly tags cells with one of 4 different colors. Applying this to
both alleles in GC B cells, stains the B cells with one of 10 different
color combinations (7). Recombination can be induced prior to
the GC reaction or by injection of tamoxifen. In order to simulate
the color dynamics in GCs in silico, the probability of each color
combination was determined as the mean over all GCs in AID-
KO experiments, in which mutation and selection are suppressed
in GCs (Table 1). The probabilities for 4 color stainings in silico
were assumed. These values were used in all simulations unless
stated otherwise.

2.3. Delayed Action of Tamoxifen
Injection of tamoxifen induces Cre-lox recombination of one or
two alleles. The GC B cell then expresses one of ten possible

TABLE 1 | Probabilities of staining B cells with one of either 4 or 10 colors.

Color 4 color Tamoxifen Founder

Black 0.40 5.2 10−1 1.1 10−1

YFP 0.18 1.3 10−1 1.7 10−1

RFP 0.18 1.2 10−1 1.7 10−1

CFP 0.18 1.0 10−1 1.7 10−1

GFP 0.06 5.6 10−2 5.1 10−2

C/R – 2.7 10−2 8.0 10−2

C/Y – 1.6 10−2 8.0 10−2

Y/R – 1.4 10−2 2.8 10−2

G/R – 3.2 10−3 8.0 10−2

C/G – 1.8 10−3 2.8 10−2

G/Y – 1.0 10−3 2.8 10−2

For 10 colors, the probabilities in tamoxifen-induced and founder cell staining experiments

were distinguished and derived from AID-KO experiments [(7), renormalized to an amount

of black of 52%]. Black denotes the probability of no staining. Values rounded to two

digits.
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color combinations. Tamoxifen-activity continues for a finite
time. An exponential decay of tamoxifen and, consequently, of
the recombination probability was assumed in silico. The initial
probability pstain,0 of tamoxifen-induced recombination is not
known. It was chosen such that the experimentally observed
fraction of stained cells fstained, which is known from experiment
(see Table 1, one minus black).

The initial probability of recombination pstain,0 after injection
of tamoxifen is estimated with the help of a simplifying model.
Staining is initiated in the simulation in time steps 1tstain. With
the tamoxifen decay time τtamoxifen, the fraction of stained cells
can be approximated as:

fstained =
pstain,0

1tstain

∫
∞

0
exp

(
−

t

τtamoxifen

)
dt

=
pstain,0

1tstain
τtamoxifen . (1)

Note that this holds only for probabilities pstain,0, sufficiently
small such that double staining can be neglected.

For practical reasons, tamoxifen activity was stopped at time
τstainstop. This modifies Equation (1) to

fstained =
pstain,0

1tstain

∫ τstainstop

0
exp

(
−

t

τtamoxifen

)
dt

=
pstain,0

1tstain
τtamoxifen

(
1− exp

(
−

τstainstop

τtamoxifen

))
. (2)

This condition approximates the initial staining probability
pstain,0 to

pstain,0

1tstain
=

fstained

τtamoxifen

(
1− exp

(
−

τstainstop
τtamoxifen

)) . (3)

This relation was used in the simulations in order to fix pstain,0
with τtamoxifen = 24 h, τstainstop = 2 days, and fstained equal to 1
minus black in Table 1. In order to save computation time in the
simulations, the staining procedure is called with 1tstain = 1 h.
In the simulations, a color is only attributed once to a cell, unless
stated otherwise, i.e., in the case of an attempt to restain an
already stained cell, this attempt is ignored.

3. RESULTS

3.1. Correlation of Clonal and Color
Dominance
It is known that high affinity B cells emerge from the GC reaction
in a process of cycles of mutation and selection. The dynamics of
clonal selection and shift toward high affinity clones in the course
of the reaction was recently analyzed with the help of random
attribution of colors to either GC founder cells or to GC B cells
in an early phase of the reaction (7). This allowed them to follow
GC B cells of a particular color and was interpreted to provide
information on the clonal evolution of GC B cells. In particular,
the largest fraction of cells stained by a single color, short the color
dominance, was considered as a measure of the clonal dominance,

i.e., the largest fraction of GC cells that stem from a single clone
(see Table 2). A clonal dominance of 100% would correspond to
all GC B cells being derived from a single clone, which would
be the result of strong selection of an advantageous clone. The
smaller the clonal dominance, the more different B cell clones
coexist in the same GC.

Here, we replicate these experiments in silico, and determine
under which conditions the evolution of clonal and color
dominance in GCs is correlated and delineate the limits of
this correspondance as a guideline for future experiments. The
analysis was restricted to the dominant color because, in our
hands, the inclusion of the second most dominant color did not
improve the results.

3.2. Staining of Founder Cells
In a setting in which B cells are stained before the GC
reaction, most B cells entering the GC already carry a color
(Table 1 column founder). This corresponds to spontaneous
recombination of B cells in the Mx1-Cre-mice in Tas et al. (7)
and allows monitoring the clonal evolution inside GC reactions
based on the evolution of color dominance. However, this relies
on a good correlation between clonal and color dominance.
We replicated the color dynamics in silico (Figure 1A). The
color dominance starts from a baseline level, which is basically
reflecting the probability distribution of getting the different
colors (Table 1). Around day 5 post GC onset, GCs differ
markedly in the fraction of cells expressing the dominant
color, which is at the time after B cell expansion when the
selection pressure on BCs is getting strong. The diversity of color
dominance reaches a saturated level around day 8 post GC onset,
which coincides with the time associated of take over of high
affinity clones (21), and is kept by the end of the GC reaction.

In the simulations, full information on the clonal evolution
is known as well, which puts us in the position to determine the
degree of correlation between the color and the clonal dominance
(Figure 1B). The correlation is sufficiently strong to allow for an
association of clonal with color dominance. It was tested whether
imposing a threshold staining level for each GC to be included in
the analysis would change the correlation. The level of correlation
was rather independent of this threshold (Figure 1B).

This correlation can be confirmed by the explicit comparison
of the color and the clonal dominance (Figures 1C,D). During
expansion at day 2 post GC onset, the B cells only divided and
mutated but only underwent selection processes in rare cases.
As a consequence, clonal dominance is rather low and color
dominance reflects the staining probabilities. Both peaks are
clearly seperated. Later at day 13 post GC onset when affinity
maturation is accomplished, both distributions largely overlap.
However, it can also be seen that the color dominance has the
tendency to over-estimate the clonal dominance.

3.3. Tamoxifen-Induced Staining of Cells
Next, we investigated the attribution of colors to B cells at
day 2 post GC onset, which corresponds to tamoxifen induced
recombinations in AID-CreERT2 mice (7). At day 2 of the
reaction, founder clones already expanded and diversified their
encoded B cell receptor by somatic hypermutations. This leads to
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TABLE 2 | Definition of the terminology used throughout.

Term Symbol Definition

Staining Cre-lox recombination of the brainbow alleles (one or both) inducing a constitutive expression of a color in the

cell that is transmitted to its progeny. In the simulation this corresponds to the simple attribution of a color to

a cell object. The probabilities to induce particular colors are listed in Table 1.

Colors C The set of 4 or 10 colors (excluding black) that can be attributed to cells.

Clones F All GC founder cell define the set of GC clones.

Lineages Lt0 All GC B cells present in the GC at a particular time point t0 (typically the time point of giving tamoxifen)

during the GC reaction define the set of GC B cell lineages Lt0 with N(t0) elements. Note that two daughter

cells of a clone may give rise to different lineages.

Cell numbers N(t) The total number of GC B cells at time t of the GC reaction.

Fi (t) The number of GC B cells at time t that stem from clone i ∈ F.

Li (t) The number of GC B cells at time t > t0 that stem from a lineage i ∈ Lt0 .

Ci (t) The number of GC B cells at time t that express a color i ∈ C.

Clonal dominance F (t) = max
i∈F

{
Fi (t)
N(t)

}
The largest fraction of the GC B cells at particular time points t during the GC reaction that stems from a

single clone among all clones.

Lineage dominance L(t) = max
i∈Lt0

{
Li (t)
N(t)

}
The largest fraction of the GC B cells at particular time points t > t0 that stems from a single lineage among

all lineages.

Color dominace C(t) = max
i∈C

{
Ci (t)
N(t)

}
The largest fraction of the GC B cells that express a single non-black color.

Color density D(t) =
∑

i∈C Ci (t) The fraction of GC B cells that express any (non-black) color.

Staining threshold T The staining threshold T restricts the analysis to only those GCs with the property that the color density at the

time t of analysis is above the staining threshold, i.e., D(t) > T.

PDD C(t) D(t) The product of color dominance and color density.

a random staining of many copies of cells descendent of the same
initial founder clone. Thus, a correlation of cell color with B cell
clones is not expected.

The evolution of the color dominance in silico and in vivo is
compared in Figure 2A. As in Figure 1A, the color dominance
starts from a baseline and increases over time. While the overall
agreement between theory and experiment is convincing, there is
a small subset of GC simulations with a higher color dominance
at days 5 and 7 post tamoxifen. This might be a hint to an
overestimation of the selection pressure or of the GC diversity
in silico. Note, that the number of in silico GCs is higher than in
vivo at both days.

B cells stained in the course of a reaction each define
a new lineage. The evolution of colors is now interpreted
to provide information on the evolution of those lineages.
Indeed, a correlation between color and lineage dominance exists
(Figure 2B, red line). However, it is much weaker than in the case
of founder cell staining and limits the interpretation of the data
on the evolution of color dominance.

3.3.1. A Staining Threshold Guarantees a Correlation

of Color and Lineage Dominance
We sought for a possible filter for the in silico GC data that
improves the correlation between lineage and color dominance.
Given that a large proportion, in the range of 50% of lineages, is
not stained by tamoxifen in silico and in vivo, there is a substantial
fraction of GCs that are dominated by a black lineage. This results
in an underestimation of the lineage dominance by the color
dominance. Indeed, the introduction of a staining threshold,
i.e., a minimum fraction of total stained cells in each in silico GC
that has to be reached for inclusion of the GC in the analysis,
substantially increases the correlation between lineage and color

dominance (Figure 2B, blue and magenta lines). However, the
level of correlation was still not comparable to that observed
when staining founder cells before entering the GC reaction.

The lineage dominance is also (weakly) correlated to the
fraction of stained cells in a GC (Figure S2), referred to as
color density in the following (see Table 2), provided a staining
threshold is imposed. This is the case because a staining fraction
above the initial mean staining level is more likely to occur
for GCs with high lineage dominance. We tested the degree
of correlation between lineage dominance and the product of
color dominance and color density, shortly denoted as PDD in
the following (Figure 2C). PDD approximates the normalized
density score (NDS), which was used in vivo and is defined as
the product of color dominance with the density of colored cells
in the dark zone, measured as number of colored cells per 10µm2

(7). While the correlation is even weaker in GCs with low color
density (yellow, orange, and red lines), the staining threshold
allows to reach the same high degree of correlation as was found
for the staining of founder cells. Thus, we recommend to use a
staining threshold in the range of 40%.With lower thresholds, the
correlation gets weaker. With higher thresholds, the correlation
hardly improves. Instead, the statistics get critical because a large
fraction of GCs is left out of the analysis.

In order to illustrate how the removal of GCs dominated by
black, i.e., not stained, B cells improves the correlation we plot
lineage dominance against color density (Figure 3). The perfect
correlation would correspond to all symbols being concentrated
on the diagonal line. The symbols above the diagonal are those
with a low color dominance but high lineage dominance. These
can be attributed to the cases described above when the staining
procedure failed to stain the lineage which became dominant
later on during the GC reaction. These GCs are dominantly black.
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FIGURE 1 | Staining of GC founder cells guarantees a good correlation of color and clonal dominance. The GC founder cells were stained with 10 colors before the

GC reaction. The size of the largest color (A) (first 100 out of 1,000 GC simulations) and its correlation with the clonal dominance (B) were monitored over the duration

of the GC reactions. The impact of imposing a staining threshold onto the correlation was tested in (B) (colors). Pearson correlation coefficient from 1,000 in silico

GCs. 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation. The distribution of color (red)

and clonal (black) dominance are shown at day 2 (C) and 13 (D) post GC onset.

The introduction of a threshold removes these GCs from the
analysis as can be seen by the reduction of the number of GCs
above the diagonal line with increasing threshold. Note that a
staining threshold of 50% also eliminates a part of the GCs at the
day of staining (day 0, red symbols) from the analysis, which by
definition exhibit a staining level of 48%. By random fluctuations,
there is still a subset of GCs with a staining level above the
threshold of 50%. The impact of increasing the threshold from
40 to 50% on later time points of the GC reaction is comparably
weak, which explains the minor change in the correlation in
Figure 2C.

The graph also illustrates that the product of color dominance
and color density has the tendency to overestimate lineage
dominance. These are the GCs with symbols below the diagonal
line in Figure 3. Overestimation is a result of different persisting
lineages being stained with the same color. If this happens,
different lineages contribute to the same color, while the lineage
dominance only corresponds to one of those lineages. This
effect is less pronounced for large PDD, as was confirmed by
sequencing in vivo (7). The introduction of a staining threshold to
select a subset of GCs for analysis makes the fraction of GCs with
an overestimation of the lineage dominance more prominent.
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FIGURE 2 | Predictivity of tamoxifen-induced staining. (A) Evolution of color dominance in response to tamoxifen-induced staining. Thirty simulations (black open

squares) are compared to the experimental color dominance behind Figure 3F in Tas et al. (7) (closed red squares). Correlation between lineage dominance and (B)

color dominance or (C) the product of color dominance and color density (PDD). Different staining thresholds were distinguished (line colors). Following tamoxifen

induced staining as in Table 1, GC B cells were stained at day 2 post GC onset with 10 colors. Pearson correlation coefficient from 1,000 in silico GCs. 95%

approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation.

3.3.2. The Dominant Color Switches During GC

Selection
It is possible that the inhomogeneous color distribution to
the B cells (Table 1) is dominating the subsequent fate of the
color dominance. If the color reflects the progression of the
selection process during the GC reaction, the dominant color
should switch between the time point of staining and the
time point of evaluation when the selection of lineages was
completed. We assumed that this would be the case at day 11
post staining (21). Indeed, a large fraction of GCs switched
the dominant color between the time of staining and day 11
(Figure 4). This result further supports that the analysis of color

distributions is a suitable measure for the analysis of selection
in GCs.

3.3.3. The Time of Tamoxifen-Induced Staining Is

Important
The time of lineage definition by tamoxifen is critical for
the analysis. For one shot stainings it holds that the earlier
recombination is induced the better the correlation with the
lineage dominance (Figure 5A), provided we use a staining
threshold of 20% or higher. Two lineages that will survive
on long-term might be stained with the same color, which
overestimates the lineage dominance. At day 3 or 4 of the GC
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FIGURE 3 | Higher staining thresholds eliminate GCs dominated by unstained lineages. Lineage dominance vs. the product of color dominance and staining density

(PDD) with a staining threshold of 0 (A), 30 (B), 40 (C), and 50% (D). GC days are distinguished by symbol/line colors. GC B cells were stained at day 2 post GC

onset with 10 colors (Table 1) in 1,000 in silico GCs.

reaction, many low affinity B cells were already eliminated such
that the fraction of long-term survivor lineages increases at the
time of staining. Hence, an attribution of the same color to
different long-term surviving lineages becomes more probable
the later the staining is induced.

In addition, lineages become less dominant the later they are
defined. This is because similar variants of potentially dominant
lineages are defined as different lineages, although neither has a
fitness advantage over the other. Hence, it is unlikely that one
of them gets lost during further selection. The later staining is
induced, the more probable it is to define two similar lineages
as different lineages. As a consequence, lineage dominance gets
more and more limited the later staining is induced (Figure S3).
While with a lineage definition at day 1 post GC onset 100%

lineage dominance is frequent, at day 4 the largest dominance
found in 1,000 GC simulations was at 60%.

3.4. Decay of Tamoxifen-Induced Staining
of Cells
The staining induced by tamoxifen is not a one shot event.
Upon tamoxifen injection, recombination of B cells can be
induced for a limited time and the probability of recombination
decreases over time. The detailed dynamics of the reduction of
the recombination probability is not known. We assumed an
exponential decay (Equation 3), which reflects a linear decay
of tamoxifen activity. As we are interested in the correlation
of the color dominance with the dominance of the lineages
existing at the time of tamoxifen injection, we decided to
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FIGURE 4 | The dominant color switches in the course of GC affinity

maturation. Lineage dominance vs. the product of color dominance and

staining density (PDD) with a staining threshold of 40% at day 11 post staining

(subset of data in Figure 3). Black and gray squares are GC reactions with a

staining level below the threshold, while red and green ones are above the

threshold, thus, kept for analysis. Black and red GCs have the property that

the initially dominant color was also dominant at day 11 post staining. Thus, in

gray and green GCs the dominant color has switched between the time of

staining and the time of analysis. GC B cells were stained at day 2 post GC

onset with 10 colors (Table 1) in 1,000 in silico GCs.

define a new lineage not at the time of color attribution but
at the time of tamoxifen injection. The correlation between
lineage dominance and the product of color dominance and
color density is reduced in absolute terms when such staining
dynamics are included (Figures 5A,B). The comparison of the
distribution of lineage dominance and PDD shows how the
two distributions approach each other in the course of GC
development but stay separate with a substantial fraction of
GCs under-estimating the lineage dominance (Figures 5C,D).
This can be repaired by imposing a staining threshold of 40%
(Figures 5E).

3.4.1. The Set of Lineages Depends on the Time of

Tamoxifen Injection
The marking difference to the one-shot staining is the existence
of a time point between day 2 and 3 post GC onset at which
correlation is maximized. A population of GCs not observed in
one-shot stainings and characterized by low lineage dominance
and high color dominance emerges. This new GC population
exists for early stainings only (day 1 or 2 post GC onset)
and is robust against staining thresholds (Figure S4). It is
associated with founder cells entering the GC reaction after
the starting time of staining. Indeed, if these late founder cells
are included in the set of lineages, this population of GCs

disappears again together with the optimal time of staining
(Figure S1). At late staining times, correlation is lost due
to staining ambiguities. At early staining times, it is lost
because of stained cells not belonging to any monitored lineage,
giving rise to the observed optimal time point for initiation
of B cell lineage staining (Figure 5B). This result emphasizes
that it is important to consciously chose the time point of
tamoxifen injection because it impacts on the resulting set of
lineages and may change the interpretation of the experimental
results.

3.4.2. A Decay of the Staining Probability Effectively

Retards Staining
As described for the one-shot staining scenario, there is a general
tendency that later staining reduces the correlation. By the decay
of tamoxifen-induced staining activity, staining is distributed
onto 2 days, which corresponds effectively to a retardation of
staining by roughly 1 day. Indeed, inititation at day 3 with
tamoxifen decay is effectively rather similar to initiation at day
4 with one-shot staining (Figure 5). This effective retardation of
staining reduces the overall level of correlation.

3.4.3. The Impact of Recombination of Already

Recombined Cells
During the time period of tamoxifen activity, it is possible that
a cell undergoes multiple recombination events. This would
imply that a cell already expressing a color may switch color.
Here, we investigated whether this process would impact on the
interpretation of color dominance in terms of lineage dominance.
When restaining of already stained cells was allowed in silico,
the resulting correlation between lineage dominance and color
dominance is further reduced (Figures S5A,B). However, only
a small impact was found on the correlation between lineage
dominance and PDD (Figures S5C,D). While the possibility
of ongoing and repetitive recombination makes the resulting
color dominance more fuzzy, the correlation with PDD appears
robust.

3.4.4. A Decay of the Staining Probability Induces a

Fuzzy Color Distribution
The resulting distribution of colors at the end of the staining
procedure is less well defined compared to the one-shot
staining, where the distribution reflects the color probabilities
(see Table 1). With tamoxifen decay, a lineage stained right
at the beginning of the extended staining period will also
stain all of the progeny of this lineage. In contrast, for a
lineage stained at the end of the staining period, only a
small subset of the progeny is stained, for the cell defining
the lineage has divided a number of times and only one
of these daughter cells is stained together with its progeny.
Other progeny from the very same lineage might not be
stained or be stained with different colors. As a consequence,
the color dominance under-estimates the lineage dominance
(Figure S3). Thus, at the end of the staining period, the number
of stained cells from a lineage does not necessarily reflect the
size of the lineage and adds to the uncertainties associated
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FIGURE 5 | The staining time point determines the predictive power. Correlation between lineage and the product of color dominance and color density in dependence

on the time point of staining. Simulations with single shot (A) or dynamic decay (B) of tamoxifen-induced staining with 10 colors (Table 1). For dynamic tamoxifen

decay in (B), a half life of τtamoxifen = 24 h was assumed in Equation (3). Lineages were defined at the time of tamoxifen injection. For lineages complemented by all

founder cells entering the GC after injection see Figure S1. For dynamic tamoxifen decay with tamoxifen given at day 2 post GC onset, the lineage dominance

distribution is compared to the distribution of the product of color dominance and color density (PDD) without threshold at day 2 (C) and 13 (D) and with a staining

threshold of 40% at day 13 post GC onset (E). Data in (A,B) show the Pearson correlation coefficient from 1,000 in silico GCs at day 11 post tamoxifen with different

staining thresholds (line colors). 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation.

with staining different lineages with the same color (over-
estimation) or staining the same lineage with different colors
(under-estimation). This limitation gets even more important
for late initiation of staining, when it gets more likely that two
similar parts of a lineages both survive GC selection. The higher
variability of the color distributions at the end of the staining
process, overall reduces the correlation of color and lineage
dominance.

3.4.5. A Shortened Tamoxifen Staining Activity Would

Improve Color Analysis
Some of these stained GCs under-estimating lineage dominance
are removed by the staining threshold (Figures 5D,E). As
tamoxifen activity was assumed to decay exponentially, in many

cases staining happens only one division after the time of
initiation of staining, which may still induce a high degree of
staining. Also the staining of other progeny from the same
lineage with a different color would keep the stained cell
fraction high. Thus, a relevant proportion of GCs exists, which
exhibits a high fraction of stained cells above the staining
threshold but still results in an under-estimate of lineage
dominance (Figure S4). A slow decay of tamoxifen activity
in the range of days, requires a higher staining threshold
for the analysis of 50% or higher in order to keep up with
the correlation level of one-shot stainings. In view of the
reduced statistics (see absolute counts of GCs in Figures 5D,E),
it would be more advantageous to stop tamoxifen activity at
defined time points in experimental settings. For example, one
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might consider shortening the period of tamoxifen activity by
administering the drug already in its active form as 4-hydroxy-
tamoxifen.

3.4.6. Later Staining Limits Lineage Dominance
The later the lineages are defined, the more the lineage
dominance achieved is limited (Figure S3). While lineages fully
dominating the GCs exist for stainings initiated at day 1–3 post
GC onset, their frequency decreases. In stainings at day 4, the
highest dominance is reduced to 60%. For late stainings, the
identification of GCs dominated by single clones becomes rare
based on tamoxifen-induced staining.

3.5. Colored GCs Are Predictive of Black
GCs
Imposing a staining threshold in the range of 40% or higher
turned out to be critical in order to ensure predictive power of the
color dominance for the lineage dominance. This was tested for
the GCs satisfying the staining threshold. It would be of particular
interest, whether the statements on lineage dominance are not
only valid for the highly stained GCs but apply to all GCs.

In order to test this, we compared the lineage dominance
distribution for GCs above and below the staining threshold
(Figure 6). There exists an optimal staining threshold of 45%
for which the lineage dominance of the GCs kept (green bars)
and deleted (red bars) from the analysis are widely identical
(Figure 6B). With higher staining thresholds (Figure 6C),
lineage dominance in the range of 30% are more frequent in
the GC subset deleted from the analysis. Thus, the GC subset
kept for analysis will underestimate the lineage dominance in this
regime. For lower staining thresholds (Figure 6A), the situation
is inverted. The difference between both subsets scales with
the deviation of the staining threshold from 45%. The optimal
staining threshold of 45%, shown in Figure 6 for the case of
decaying tamoxifen activity, equally holds true for one-shot
stainings (data not shown). In conclusion, the staining threshold

of 45% not only guarantees a fairly good correlation with lineage
dominance with acceptable statistics. It also guarantees that the
lineage dominance estimated with the subset of GCs stained to
more than 45% remains valid for the whole set of GCs.

3.6. Impact of the Fraction of Stained Cells
The fraction of stained GC B cells induced by tamoxifen was in
the range of 50% in vivo (7). It is not clear whether a different
fraction of stained cells would improve the correlation between
color and lineage dominance or reduce it. An increase of the
stained fractionwould allow to achieve better statistics.We varied
the fraction of stained cells between 10 and 90% (Figure 7).
Without imposing a staining threshold the intuitive result that
staining more infers a better correlation of color and lineage
dominance is confirmed (Figure 7, red lines).

This relationship is turned around for higher staining
thresholds. The lower the stained fraction of GC B cells the
better the color dominance informs about the lineage dominance.
Compared to 50% stained cells with a staining threshold of 40%,
the same correlation is found for 10% stained cells with a staining
threshold of less than 20% (Figure 7A). There is a trade-off
between less stained cells, which reduces the statistics, and a lower
cut-off, which increases the statistics again. Experiments should
be planned to stain a comparably low fraction of cells in order
to facilitate the analysis and to improve the predictive power of
the color distribution. Staining of lower fractions of cells requires
less repetitive dosing of tamoxifen, such that the limitations due
to extended staining periods (Figure 5) are also reduced.

The same trend holds true for a tamoxifen activity spread
over 2 days. However, the overall level of correlation is lower
(Figure 7B).

Tamoxifen-induced cell staining induces a color distribution
that carries information on the lineage distribution but not on
the clones. Information on the founder cells is widely lost. In the
limit of low staining fractions with high staining thresholds it is
possible to get a fair correlation of early one-shot induced color

FIGURE 6 | Estimation of the lineage dominance of GCs below the staining threshold. The distribution of lineage dominance is shown for the GCs above (green) and

below (red) the staining threshold separately. Data were derived from the 1,000 simulations with dynamic tamoxifen decay as described in Figure 5 at day 11 post

tamoxifen. The comparison of the GC subsets was repeated for staining thresholds of 40 (A), 45 (B), and 50% (C).
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FIGURE 7 | Staining less cells improves predictive power. Correlation between lineage and the product of color dominance and color density in dependence on the

fraction of stained cells. Simulations with single shot staining (A) or dynamic decay (B) with 10 colors (Table 1) at day 2 post GC onset. Pearson correlation coefficient

from 1,000 in silico GCs at day 11 post tamoxifen with different staining thresholds (line colors). 95% approximate confidence intervals to the Pearson product

moment correlation were computed using the Fisher transformation.

dominance and clonal dominance (Figure S6). However, already
at day 2 the correlation becomes rather weak.

3.7. The Predictive Power of 4 and 10
Colors Is Similar
In experimental settings, the variety of colors is generatedmaking
use of the so-called brainbow allele (1), which was implemented
in the Rosa26Confetti mice (5). The random Cre-recombination
of the color segments is induced by injection of tamoxifen
and generates cells with 4 different colors. When the brainbow
staining is implemented on both alleles, the diversity of colors
is enhanced to 10 colors (7). Here we investigated, whether 10
colors are more predictive for the lineage dominance in GCs
than single allele Confetti mice. It turns out that the correlation
of lineage dominance and the product of color dominance
and stained fraction of cells is rather similar with 4 or 10
colors (compare Figure 8 to Figures 5A,B and Figure 7). In
particular, in one-shot stainings it is found that the predictive
power of 4 colors is even better than with 10 colors for early
stainings and low fractions of stained cells (Figures 8A,C).
Further, for simulations with decaying tamoxifen-activity, the
optimal time point (day 3 post GC onset) for the initiation
of staining is the same as for 10 colors and the overall
correlation is reduced to a similar degree (Figure 8B). This
can be rescued by reducing the fraction of intially stained cells
(Figure 8D).

The unexpected result that 10 colors would not be
substantially better predictors than 4 colors prompted us to
test whether the reason for this lack of improvement by more
colors would be related to the rather inhomogeneous probability
of activation of the different colors (Table 1). Indeed, when

assuming equal probabilities for all 10 colors, the predictive
power is better than for 4 colors and also better than for 10
colors based on real activation probabilities in Table 1 (compare
Figure 8B, dashed and full lines).

4. DISCUSSION

The present analysis supports that the Brainbow construct
is suitable for the analysis of an evolutionary system like
the evolution of GC B cells in the context of an immune
response. When all germline B cells are stained before the GC
reaction, the color distribution during and at the end of the
evolutionary process in the GC reaction is predictive of the
clonal distribution. Thus, staining and fate monitoring of colors
is a good approximation for the analysis of clonal evolution.
Sequencing of B cells is only necessary to account for specific
clones, but the clonal dominance is well evaluated based on the
colors alone.

When the Cre-dependent recombination is employed to stain
the B cells in the course of a GC reaction, the color is predictive
of the clonal composition provided the staining is limited to a
rather short time interval. The longer the staining progresses,
the weaker the correlation to the clonal distribution. With a
prolonged staining procedure, staining ambiguities like staining
of two lineages with the same color, is aggravated by the
variability of initial states of the color distributions. A lineage is
defined at the beginning of the staining procedure, such that a
late staining event leads to a few stained cells in comparison to
an early staining event, where the whole lineage branch would be
stained. For that reason, it is recommended to limit the action of
tamoxifen to a short time period.

Frontiers in Immunology | www.frontiersin.org 11 September 2018 | Volume 9 | Article 2020182

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Meyer-Hermann et al. Simulation of Multi-Color B Cells in Germinal Centers

FIGURE 8 | Four colors have similar predictive power than 10 colors. Correlation between lineage and the product of color dominance and density in dependence on

the time point of staining (A,B) or the fraction of stained cells (C,D). Simulations with single shot (A,C) or dynamic decay (B,D) of tamoxifen-induced staining with 4

colors (Table 1) (full lines) or with 10 colors with equal probabilities (dashed lines). For dynamic tamoxifen decay, a half life of τtamoxifen = 24 h was assumed in

Equation (3). Lineages were defined by the cells present at the time of tamoxifen injection. Pearson correlation coefficient from 1,000 in silico GCs at day 11 post

tamoxifen with different staining thresholds (line colors). 95% approximate confidence intervals to the Pearson product moment correlation were computed using the

Fisher transformation.

An important source of ambiguity is that there is only a
fraction of cells stained by tamoxifen-induced recombination.
This implies that there is a proportion of GCs in which the
unstained B cells would become dominant. A good predictive
power relies on the elimination of black-dominated GCs, which
can be achieved by imposing a staining threshold. This threshold
eliminates all poorly stained GCs from the analysis. A suitable
staining threshold is in the range of 40%. With longer staining
periods, 50% leads to better results. A staining threshold of 45%
was identified that allows to extrapolate the lineage dominance

derived from the subset of GCs above the staining threshold to
the whole set of measured GCs, including the GCs left out from
the analysis.

Intuitively, one would expect that staining more B cells would
improve the predictive power. This is only true without a staining
threshold, thus, including all GCs irrespective how strongly
they are stained. However, together with imposing a staining
threshold, the relationship is inverted. Low staining fractions
are substantially more predictive of clonal dominance than high
staining fractions. At the same time, the total number of GCs
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eliminated by the threshold increases if only a small fraction of
B cells per GC is stained. Thus, in the future design of such
experiments it is important to find the right balance between
statistical significance and low staining. Staining of 30% of the
GC B cells appears as a good starting point from the point of view
of in silico GCs.

The time point of staining is an important parameter. The
general tendency is the earlier the better. At later time points,
a pre-selected set of B cells is stained, which increases errors
of staining different lineages with the same color, thus, further
over-estimating the clonal dominance by the color dominance.
This happens because the pre-selected B cells are more likely to
both survive and persist in the continuation of the GC reaction.
However, at very early time points, the set of different lineages
is limited. Physiologically, it might make sense to wait until a
minimum of B cell diversity was achieved. Otherwise, it would
make more sense to use the Mx1-Cre system, in which founder
GC B cells carry a color already when they start the GC reaction.

Depending on the question under consideration, one might
want to analyse the set of cells present in the GC at the particular
time point at which staining is induced, or of all cells getting
stained in the course of the GC reaction. In the latter case, earlier
staining increases predictive power. In the former case, earlier
staining reduces predictive power. This is due to late founder cells
that enter the in silico GC reaction and still get stained. Colored
B cells exist without any lineage counterpart in the analysis. If
lineages defined at a particular time point are in the focus of
the research, there exists a time point of inducing the staining
between day 2 and 3 post GC onset, which is optimal for the
analysis of lineage dominance.

The analysis is based on a set of 1,000 in silico GC simulations
in agreement with data from two-photon imaging (22–24) and
anti-DEC205-OVA experiments (15). This set of GC simulations
was used to interpret the data in Tas et al. (7) and correlates
well with the results therein. Clonal and color dominance are
likely depending on model parameters like affinity of founder
cells to the antigen, division rate, selection pressure, strength
of antibody feedback, etc. A different set of simulations might
well quantitatively shift one or the other result, provided the
change would influence the timing of selection or the number of
mutations in the GC reaction. For example, the quality of the GC

founder cells might vary depending on the type of immunization
and the existence of transgenic B cells with a particular affinity to
the immunizing antigen. This implies that the planning of new
experiments would ideally go hand-in-hand with a specifically
adapted set of simulations.
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Increased interest in the immune system’s involvement in pathophysiological phenomena

coupled with decreased DNA sequencing costs have led to an explosion of antibody and

T cell receptor sequencing data collectively termed “adaptive immune receptor repertoire

sequencing” (AIRR-seq or Rep-Seq). The AIRR Community has been actively working to

standardize protocols, metadata, formats, APIs, and other guidelines to promote open

and reproducible studies of the immune repertoire. In this paper, we describe the work

of the AIRR Community’s Data Representation Working Group to develop standardized

data representations for storing and sharing annotated antibody and T cell receptor data.

Our file format emphasizes ease-of-use, accessibility, scalability to large data sets, and a

commitment to open and transparent science. It is composed of a tab-delimited format

with a specific schema. Several popular repertoire analysis tools and data repositories

already utilize this AIRR-seq data format. We hope that others will follow suit in the interest

of promoting interoperable standards.

Keywords: antibody, immunoglobulin, T cell, B cell, immunology, repertoire, AIRR-seq, Rep-Seq

RATIONALE

The increasing use of next-generation sequencing technology to study antibody (IG) and T cell
receptor (TR) repertoires led to the establishment of the Adaptive Immune Receptor Repertoire
(AIRR) Community in 2015. The goal of the AIRR Community (which was incorporated
into The Antibody Society in 2017 to amplify its membership and activities) is to promote
community-driven best-practices around the generation, use, and sharing of AIRR sequencing
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(AIRR-seq or Rep-Seq) data (1). A major goal of the AIRR
Community is to facilitate comparative and integrative analyses
of AIRR data. So far, the community effort has defined a list of
minimal metadata elements (MiAIRR) for describing published
AIRR-seq datasets (2) and is actively developing simple interfaces
for depositing these datasets in established repositories (3). As
a first step toward standardization, the MiAIRR data standard
focuses primarily on metadata describing the study design and
the type of information to be collected. Providing a standardized
machine-readable format, as described herein, will remove a
substantial barrier to cross-repository interoperability and cross-
dataset analyses. With the proliferation of software tools for the
analysis of AIRR-seq data (4–6), there is a pressing need to be
able to share data between different applications, pipelines, and
databases. To bridge these gaps, the AIRR Community has tasked
the Data Representation Working Group (DRWG) to develop
data models, schema specifications, file formats, and application
programming interfaces (APIs) to promote interoperability and
reusability of AIRR-seq data. This paper has two goals: (i) a
description of the guiding philosophy we have adopted for
defining data representations and (ii) a description of the schema
and associated file format we have released specifically for
annotated rearrangement data.

DESIGN GOALS

Standardized file formats are key to interoperability and effective
data sharing of high-throughput AIRR-seq data because they
function as a grammar that provides structure to a potentially
large set of heterogeneous data. One of the challenges of
developing a standard is finding the right balance between
rigor and usability that will lead to wide community adoption.
The format has to allow the accurate representation of the
complexity of the experiment while maintaining flexibility and
human-friendliness. The formats and schema developed by the
DRWG have been designed to promote accessibility, scalability,
and transparency, especially in light of the rapidly changing
technological landscape.

Accessibility
A major goal is to make AIRR-seq data sets the easiest to use
for the broadest possible set of researchers and applications.
Our primary specification is a relational-compatible schema for
commonly used objects in AIRR-seq, which are stored as tab-
delimited text files. There exist an enormous number of tools
for processing such tabular data supporting a range of expertise
levels and applications. Non-programmers can use common
spreadsheet applications like Microsoft Excel or Google Sheets
to perform simple exploratory data analysis. Programmers can
process datasets and perform more complex analyses using
flexible and fully-featured environments like R and Python. Large
production operations can make data available through SQL
databases or through the cloud using distributed computing
frameworks like Hadoop and Apache Spark. The key idea is that
all of these tools trivially support the ingestion and processing
of tab-delimited text data. The tradeoff in this design choice is
that we are restricted to a less expressive tabular data model, in

contrast to formats like XML, JSON, or Protocol Buffers. Text
data also requires parsing different data types, in contrast to
binary formats like Apache Parquet. A further goal is compliance
with the tidy data structure philosophy (7) wherein all columns
are variables and each row contains a single observation of those
variables. A tidy structure simplifies analyses employing split-
apply-combine strategies and is readily importable into tabular
databases. An additional benefit to a tabular format is that it is
readily extensible by simply appending columns when a tool or
database requires custom fields.

Scalability
The continued increase in DNA sequencing throughput,
combined with increasing interest in the immune repertoire,
anticipates the generation of massive AIRR-seq datasets. Indeed,
multiple projects propose the generation of billions of IG/TR
sequences over the next several years with the intent to
mine them for biomarkers, vaccine design, and many other
applications. While most analyses of AIRR-seq data today are
typically performed in single-node environments by loading
data into memory (e.g., via R’s data.frame or Python’s
pandas.DataFrame), the scale of future datasets will likely
require the use of distributed computing. A key design
consideration in choosing a line-oriented format is therefore to
ensure our data files are splittable. Splittable data formats are
such that a process can start reading a file from any arbitrary
byte position in the file and find the correct record boundaries.
This allows a system to read a single, large file frommultiple start
points in parallel, rather than requiring a process to read data
from the beginning of a file. Similarly, it is simple to consider
a collection of tab-delimited files with a compatible schema as
a single dataset by logically concatenating them, allowing the
parallelized writing of datasets.

Importantly, certain compression schemes (e.g., gzip) are not
splittable, while others do allow reading from arbitrary byte
offsets (e.g., bzip2, blocked gzip). We strongly encourage the
use of splittable compression formats. One way in which our
accessibility and usability goals might conflict with scalability
is our preference for tidy data structures, which necessarily
introduces redundancy and may require reshaping of data
as a preprocessing step to certain computations. On the
other hand, redundancy compresses well. We leave open the
possibility of endorsing the use of a binary container format for
tabular data, including columnar schemes like Apache Parquet
(https://parquet.apache.org/) in the future. Finally, our group is
coordinating with the AIRR Community’s Common Repository
Working Group (CRWG) to define a compatible API for
repositories containing large volumes of AIRR-seq data.

Transparency
The DRWG develops implementations openly on GitHub and
we welcome the participation of the community. We are
using software engineering best-practices, including continuous
integration and delivery to ensure our standards, libraries, and
documentation remain consistent. Our format is continuing to
evolve and we do not wish to require users to repeatedly reformat
possibly large sets of data. Therefore, we have implemented
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a variation of the semantic versioning scheme (https://semver.
org) to ensure that no changes to field definitions occur
without a corresponding change in the version number (X.Y.Z).
Specifically, because the development repository contains the
work of multiple AIRR Community working groups, the major
version number (X) is reserved for changes that impact multiple
standards, such as updates to the MiAIRR data standard; the
minor version number (Y) reflects changes in the schemas
and APIs; and the patch version number (Z) is for updates
to the associated software packages or documentation that are
not accompanied by schema modifications. To further maintain
backward-compatibility, a key design goal is that the definitions
and names of fields will not be changed unless a major flaw has
been revealed. Rather, the schema changes will be preferentially
introduced by adding fields with new names and deprecating
obsolete fields.

Adoption is critical to the success of any format.
Bioinformatics is plagued with format conversion, and we
are wary of simply defining yet-another-format for AIRR-seq
data without a clear path to adoption (Figure 1).

To that end, we have developed reference APIs for both R and
Python to facilitate addition of the format to existing tools (see
section AIRR reference APIs for further details). Furthermore,
we have engaged a broad community of authors of popular
AIRR software packages and resources to contribute in the design
and implementation of the annotated rearrangement schema
described herein, including IgBLAST (8), Immcantation (9, 10),
iReceptor (11), VDJServer (12), SONAR (13), ImmuneDB (14,
15), TRIgS (16), Partis (17), MiXCR (18, 19), IGoR (20), OLGA
(21), and Vidjil (22, 23) (Table 1). Direct involvement of the
stakeholders will help ensure our standards continue to evolve
to meet the needs of the community. We will continue active
outreach to new tool and database developers as part of the AIRR
Community’s broader efforts.

ANALOGOUS EFFORTS

There exist a multitude of standardization efforts in
bioinformatics. Indeed, FAIRsharing (24) is a centralized
registry of standards, databases, and policies containing over 500
standards related to the life sciences alone (including MiAIRR).
In this section, we review some analogous efforts and cover some
existing formats that we believe are not suitable for our goals.

Minimal Reporting Standards
There exist a large array of “minimal standards” in different life
sciences domains that strive to capture necessary information for
other research groups to fully reproduce each other’s experiments
and analyze each other’s data (25). For example, the MIAME
(Minimum Information About a Microarray Experiment)
standard (26) describes the six components of information
necessary to describe a microarray experiment, including the
study design, the array design, the experimental conditions of
hybridization, a description of the biomaterial sample, the actual
raw data, and any normalizations. Analogously, the MINSEQE
(Minimum Information about a high-throughput SEQuencing
Experiment) standard (27) enumerates the five elements of

FIGURE 1 | Standards proliferation. The DRWG has been actively engaging as

many community members as possible to drive adoption of our new standard.

https://xkcd.com/927/.

experimental description which are necessary to interpret a high-
throughput nucleotide sequencing experiment.

Reporting information about AIRR-seq experiments is unique
because datasets may represent samples of B cells and T cells from
a variety of different cell types. Furthermore, other standards do
not take into account the unique genetic architecture of the IG
and TR loci. To address these issues, the AIRR Community has
defined its own set of minimal standards [MiAIRR; see (2)]. Most
importantly, like many of the other minimal standards efforts,
the MiAIRR data standard defines what should be reported, but
not how it should be reported, and certainly not in a machine-
readable format. In an effort to follow the FAIR principles for
data management and promote interoperability, we describe
herein our efforts at a machine-readable file format for AIRR-seq
experiments that is compliant with MiAIRR.

Bioinformatics File Formats
Here we review a number of commonly used bioinformatics file
formats, including which design features we emulated and which
design elements are not appropriate for storing AIRR-seq data.

At its core, annotation of IG and TR sequences is derived
from alignments against a reference database or an analogous
operation. The SAM and BAM formats are ubiquitous for
storing aligned NGS data [(28) and https://samtools.github.io/
hts-specs/]. However, the genetic architecture of IG and TR
sequences requires that each read be separately aligned to the
reference set of individual V, D, and J genes. This would require
multiple SAM/BAM records per IG/TR sequence, complicating
data processing. Furthermore, a given BAM file is mandated to
be globally sorted relative to a reference set of contigs, effectively
partitioning all V, D, and J alignments into separate parts of
the file (or into separate files entirely). The BAM format also
implements a custom binary format which requires maintenance
of a large toolchain in order to manipulate. Its non-canonical
structure has led to considerable effort in porting its toolchain
to achieve compatibility with Hadoop-based architectures (29).

Similarly to the VCF format for storing genome variation,
we chose an easily readable tab-delimited text-based format.
However, VCF files are actually structured into three sections.
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TABLE 1 | Tools and databases supporting the AIRR Rearrangement schema.

Software Version Support

AIRR Python Library 1.2 Input, output and validation

AIRR R Library 1.2 Input, output and validation

IgBLAST 1.10 Output

IGoR TBD Input and output

Immcantation:Change-O 0.4.2 Input, output and conversion

ImmuneDB 0.24.0 Output

iReceptor 2.0 Input, output and conversion

MiXCR 2.2.1 Output

OLGA TBD Input and output

Partis TBD Output

SONAR 3.0 Output

TRIgS 2 Input

VDJServer 1.2.0 Input and output

Vidjil-algo 2018.10 Output

Vidjil Web Platform TBD Input and conversion

The meta-information section contains information about the
version of the VCF and optional lines about processing of the
data. The header section contains the standardized field names
for the data captured within each column of the third section,
along with additional lines specifying how to parse certain
columns. The data section captures the genomic variations
per sequence at each line. However, because VCF includes certain
fields that have a user-defined structure, these fields must be
parsed, leading to considerable complications in interpreting
such files. Finally, VCF files tend to grow horizontally (i.e., more
samples requires more columns), which is a barrier to scalable
architectures that generally assume only the ability to append
data.

Another set of common bioinformatics formats are designed
to store range annotations on genomes, including BED (30),
GFF, and GTF (31). They are also text-based delimited formats.
However, their column-set is highly constrained so that a
single record contains only a single annotation. To store AIRR-
seq data, each IG or TR would have to span multiple lines,
complicating the processing of such files and sacrificing a degree
of human readability. Furthermore, a significant number of
IG/TR annotations are not keyed to genomic coordinates. Finally,
these architectures would necessitate storing the sequences
themselves in separate files and do not have a natural way to store
alignments.

Other General-Purpose Container File
Formats
Accessibility is one of the primary design goals of our format,
which strongly suggests using a standard general-purpose
storage format for AIRR-seq data. Both JSON and XML are
standard formats with parsers in every language that support
the description of complicated data records, including nested
data. However, both JSON and XML are very verbose (as
field names must be replicated into each record), and XML in
particular is notoriously finicky to parse, in addition to being

unsplittable. Moreover, enforcing the use of a particular schema
would be more difficult. Most significantly, necessitating the use
of JSON/XML would exclude less computationally-savvy users
that depend on spreadsheet software, and preclude the use of
many popular statistical tools that assume a tabular data model.

Another family of general-purpose container formats are built
around the serialization frameworks in the Hadoop ecosystem,
such as Protocol Buffers, Thrift, Avro, and Parquet (32). These
are binary file formats that support the use of either tabular or
nested data models. The tools can strictly enforce a particular
schema and can achieve very high performance, including from
the use of columnar storage (33). However, they are not as user-
friendly because they require special tools for reading/writing the
data and do not have ubiquitous language support.

SQLite represents another option for tabular data storage
with broad language support, including the ability to run SQL
queries. However, similar to the binary formats above, this would
eliminate ease-of-use and require users to use the SQLite API.

IG- and TR-Specific Formats
Our work was heavily influenced by previous attempts at
developing formats for IG and TR sequences, including VDJML,
the output of IMGT/HighV-QUEST (34), and the Change-O
format. Indeed, our working group includes members of several
of these previous efforts. For the reasons described below, it was
decided a new annotated rearrangement format was required to
meet the needs of the broader community.

VDJML is an XML-based file format specifically designed
for AIRR-seq data and describes the alignments of rearranged
sequences to germline genes with the accompanying set of
annotations (35). It only represents annotations directly related
to the alignment and does not represent the additional
downstream annotations. We considered enhancing VDJML to
include those annotations, as the expressivity of XML allows a
large number of annotations to be stored in a nested structure
for each record. However, based on the downsides of XML
described above, we ultimately decided that VDJML was not a
suitable format. We provide a mapping between the VDJML tags
and the data elements in the AIRR Rearrangement schema in
Supplementary Table S1.

IMGT provides a text-based serialization format designed for
storing annotated IG and TR data that is a variation on the
INSDC format (like GenBank and EMBL formats). However, this
format is difficult to parse and incompatible with many standard
tools for analyzing data. The IMGT/HighV-QUEST tool for
annotating IG and TR sequences also provides output in a tabular
delimited format. However, the results are spread across multiple
TSV files that must be manually joined, including duplicate field
names with content that differs between files, which complicates
analyses. IMGT’s format is also not openly developed, breaking
our requirement for transparency.

The Change-O delimited format was most similar to our
ultimate design, as it has an IG/TR-specific schema and meets
many of our design goals. However, similar to IMGT’s tabular
format, the Change-O format was designed to meet the needs
of a specific tool suite (Immcantation), and therefore lacks
some requirements germane to support for a broad range
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of software tools. Ultimately, due to MiAIRR compatibility
requirements, the need for features to support the efforts of
other AIRR working groups (e.g., CRWG APIs), and backwards-
incompatible technical choices (e.g., end vs. length fields,
CIGAR vs. BTOP), we decided to specify a new schema under
the AIRR umbrella. In large part, our schema represents a
superset of the data elements defined by the Change-O format,
with the exception of a few elements that were excluded
due to their inapplicability outside Immcantation. A complete
correspondence of the fields between the AIRR Rearrangement
schema, the Change-O format, VDJML, and IMGT/HighV-
QUEST’s tabular output is shown in Supplementary Table S1.

AIRR DATA REPRESENTATION FOR
ANNOTATED REARRANGEMENTS

We propose a versioned data representation standard for
reference alignments and rearrangement annotations for AIRR-
seq data using a tab-separated values (TSV) format with a well-
defined schema of column names, data types, and encodings for
reference alignment results and common upstream/downstream
non-alignment annotations. This paper describes v1.2.0 of the
data representation standard. The schema is provided in a
machine-readable YAML document that follows the OpenAPI
v2.0 specification. Strict typing enables interoperability and
data sharing between different AIRR-seq analysis tools and
repositories, and we are considering the use of controlled
vocabularies for certain fields as well. We define a dataset in
this context as: a TSV file, a TSV with a companion YAML file
containing metadata, or a directory containing multiple TSV files
and YAML files. The v1.2.0 schema, TSV format specification,
and an example data file are provided in the Supplementary
Materials (Supplemental Data Sheet 1).

AIRR Rearrangement Schema
Specification
The main data type of interest is an “annotated rearrangement,”
which describes a rearranged adaptive immune receptor chain
(e.g., antibody heavy chain or TCR beta chain) along with a
host of annotations. These data elements are defined by the
AIRR Rearrangement schema, which comprises eight categories
as shown in Figure 2. By default, data elements representing
sequences in the schema contain nucleotide sequences except for
data elements ending in “_aa,” which are amino acid translations
of the associated nucleotide sequence. The Input category
consists of the input sequence to the V(D)J assignment process.
The Primary Annotations category consists of the primary
outputs of the V(D)J assignment process, which includes the gene
locus, V, D, J, and C gene calls, various flags, V(D)J junction
sequence, copy number (duplicate count), and the number of
reads contributing to a consensus input sequence (consensus
count). The Alignment Annotations and Alignment Positions
categories contain detailed alignment annotations including
the input and germline sequences used in the alignment;
score, identity, statistical support (E-value, likelihood, etc);
the alignment itself through CIGAR strings for each aligned

gene; and start/end positions for genes in both the input and
germline sequences. The Region Sequence and Region Positions
categories consists of sequence and positional annotations for the
framework regions (FWRs) and complementarity-determining
regions (CDRs). Lastly, the Junction Lengths category provides
lengths for junction sub-regions associated with aspects of
the V(D)J recombination process. The online documentation
(https://docs.airr-community.org) will always have the most in-
depth and up-to-date description of the format.

The specification includes two classes of fields. Those that are
required and those that are optional. Required is defined as a
column that must be present in the header of the TSV. Optional
is defined as column that may, or may not, appear in the TSV.
All fields, including required fields, are nullable by assigning an
empty string as the value. There are no requirements for column
ordering in the schema, although the Python and R reference
APIs enforce ordering for the sake of generating predictable
output. The set of optional fields that provide alignment and
region coordinates (“_start” and “_end” fields) are defined as 1-
based closed intervals, similar to the SAM, VCF, GFF, IMGT, and
INDSC formats (GenBank, ENA, and DDJB; http://www.insdc.
org).

Most fields have strict definitions for the values that they
contain. However, some commonly provided information cannot
be standardized across diverse toolchains, so a small selection
of fields have context-dependent definitions. In particular,
these context-dependent fields include the optional “_score,”
“_identity,” and “_support” fields used for assessing the quality
of alignments which vary considerably in definition based
on the methodology used. Similarly, the “_alignment” fields
require strict alignment between the corresponding observed and
germline sequences, but the manner in which that alignment is
conveyed is somewhat flexible in that it allows for any numbering
scheme (e.g., IMGT or KABAT) or lack thereof.

While the format contains an extensive list of reserved
field names, there are no restrictions on inclusion of custom
fields in the TSV file, provided such custom fields have a
unique name. Furthermore, suggestions for extending the format
with additional reserved names are welcomed through the
issue tracker on the GitHub repository (https://github.com/airr-
community/airr-standards).

AIRR Reference APIs
One of our key design principles was simple programmatic
access to the data using commonly-available parsers for tab-
delimited formats. While the AIRR Rearrangement schema is
fully functional and portable using this approach, we have also
implemented Python and R reference libraries that perform type
conversion and validate standards compliance for applications
that require strict adherence. These libraries also provide
a programmatic interface to the entire MiAIRR annotation
set and the experimental schemas that are currently under
development. These APIs, with bundled schema definitions,
are available for download from the AIRR Standards GitHub
repository (https://github.com/airr-community/airr-standards),
the Comprehensive R Archive Network (https://cran.r-project.
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AIRR Rearrangement Schema
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FIGURE 2 | AIRR Rearrangement schema v1.2.0. Overview of the schema for representing annotated rearrangements. Fields in bold are required columns in the TSV.

All fields, including those that are required columns in the TSV header, can be set to null by assigning an empty string as the value.

org/web/packages/airr), and the Python Package Index (https://
pypi.org/project/airr) under a permissive license (CC BY 4.0).

Furthermore, the specification of the AIRR Rearrangement
schema using OpenAPI v2.0 provides a standards based
mechanism for describing the interface to tools and resources
that share AIRR-seq data throughAPIs. For example, it is possible
to utilize automatic documentation and code generation tools
such as those found on https://swagger.io to develop web-based
AIRR-seq client and server applications.

AIRR Rearrangement Schema
Implementations and Support
Several AIRR-seq analysis tools and data repositories have already
implemented the AIRR Rearrangement schema while several
others are planning support for a future release (see Table 1

for a complete list). An updated list of software and resources
that support the various AIRR standards is maintained on the
documentation site (https://docs.airr-community.org).

Example Use Case
An example use case showcasing the tool interoperability
provided by the AIRR Rearrangement schema is shown in
Figure 3A. The flowchart demonstrates generating annotated
AIRR-seq data with IgBLAST along with additional data
processed by IMGT/HighV-QUEST and converting the
combined data into an AIRR Rearrangement compatible
TSV using Change-O (part of the Immcantation framework).
Finally, the merged output of these two distinct tools is used
to (a) perform analysis and (b) create MiAIRR-compliant
GenBank/TLS submission files. More details regarding each step,
the commands used, and an example data set are available from
the documentation site (https://docs.airr-community.org).

A further example of the power of the AIRR Rearrangement
schema is the ability to perform federated queries across
repositories that adhere to the REST API being developed by
the CRWG (section Roadmap). For example, the iReceptor
Scientific Gateway can search for data of interest (e.g., twin
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FIGURE 3 | Interoperability example. Shown is a set of flowcharts depicting examples of the interoperability facilitated by the AIRR Rearrangement schema. (A)

Starting with repertoire sequencing data in the FASTA format, either IgBLAST or IMGT/HighV-QUEST in combination with Change-O’s conversion tool may be used.

Once data conforms to the AIRR Rearrangement schema, Change-O can be used to generated MiAIRR-compliant GenBank/TLS submissions. AIRR-seq data from

separate tools and pipelines can easily be combined for aggregate analysis. (B) Data may be exported from or imported to the iReceptor or VDJServer repositories

using the TSV format. Data is returned from queries to the separate repositories using the TSV format and can be integrated into a single collection for downstream

analysis.

and non-twin sibling data) from multiple studies and across
multiple repositories (e.g., the VDJServer and iReceptor Public
Archive repositories). Because both repositories support the
AIRR Rearrangement schema and provide their output in the
TSV format, the gateway can collate those results and further
process them into a format suitable for downstream analysis.
Such a use case is shown pictorially in Figure 3B and is described
in detail in (11).

DISCUSSION

In collaboration with many stakeholders, we have defined a
schema and associated file format for representing annotated
IG/TR rearrangements. By choosing to use a ubiquitous tabular
container format (TSV), we have ensured that data coming from
AIRR-seq pipelines will be available in a way that is accessible
to a broad population and will scale to massive data sizes. We
have developed this machine-readable format in coordination
with other AIRR working groups on GitHub with the goal of
enabling tool and database interoperability guided by the goals
of accessibility, scalability, and transparency. We have also laid
the groundwork for defining additional schemas for AIRR-seq
related objects in the future.

The DRWG is engaged in continuous dialog and coordination
of efforts with other AIRR Community working groups. We have
coordinatedd with theMinimal StandardsWorking Group to use
the MiAIRR data standard as a guide for classifying certain fields
as required or optional. We are coordinating with the CRWG
to ensure our schema is compatible with the REST API they
are developing. The DRWG is also working with the Germline

Database Working Group to ensure compatibility with their
strategies for curating newly discovered germline reference genes
and alleles derived from allele inference tools and sequencing
projects. As the AIRR Community effort develops, further data
representations will be released to meet these needs. A partial
list of schemas under active development and scheduled for
near-term release are described in the Roadmap sections that
follow.

Roadmap: Detailed Alignment Schema
A core intermediate step in annotating AIRR-seq data is
generating possible alignments of the IG/TR sequences to
standard germline databases. While many researchers may be
primarily interested in only the optimal reference alignment
annotations described by the AIRR Rearrangement schema,
some applications also require a list of sub-optimal reference
alignments. As such, we are developing an additional TSV
specification specifically for representing multiple annotation
assignments on a single query sequence as a hit table, similar
to the output of tools such as BLAST. Typically, this type of
data set will be used as intermediate output, for tasks such
as performance evaluation of an alignment tool, reassignment
of optimal gene calls using alternative criteria, or performing
genotyping with ambiguous gene assignments as a starting guide
(36–38). This Alignment schema is available on the main AIRR
standards documentation site (https://docs.airr-community.org)
under the Data Representations / Alignment Schema section.
This specification is in an experimental state, but under active
development, and we expect to release an official draft late in
2018.
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Roadmap: Metadata Schema
Along with the primary data files, a dataset may containmetadata
corresponding to the MiAIRR description of the experiment.
This may include, but is not limited to, study design, sample
demographic data, various experimental conditions, analysis
tool versions, and pipeline provenance data. Representing both
MiAIRR defined metadata and provenance is somewhat more
complex because it contains a hierarchy of relationships that
cannot be easily encoded in a tabular format. In this case, we
recommend the storage of such data using YAML, a human-
friendly superset of JSON. YAML/JSON metadata can be easily
modified using a text editor and parsed in virtually every
programming language.

The AIRR Metadata schema is also under active development
at the time of writing. Currently, a full specification of
MiAIRR data elements is complete and available online
at the AIRR Standards GitHub repository (https://github.
com/airr-community/airr-standards). Completion of the data
representation schema and associated API is planned for a future
release.

Roadmap: AIRR Data Commons
The CRWG has developed a set of recommendations (https://
github.com/airr-community/common-repo-wg/blob/master/
recommendations.md) for an AIRR Data Commons that
promotes the deposition, sharing, and use of AIRR-seq data.
The recommendations (i) state the general principles for sharing
of AIRR-seq data; (ii) outline the characteristics of compliant
repositories for data deposit, storage and access; and (iii)
describe a distributed model for compliant repositories for
AIRR-seq data, linked by a central registry. The integration
between the iReceptor platform and the VDJServer repository
(Figure 2B) makes use of the AIRR Rearrangement schema as
an early version of a REST API for querying AIRR-seq data.
CRWG is currently developing a more comprehensive REST
API, which will include the AIRR Rearrangement and Metadata
schemas. AIRR compliant data repositories will implement a
set of recommendations, including a REST API service, thus
providing a standardized query capability and interoperable data
format for all data repositories part of the AIRR Data Commons.
Specifications and reference service implementations will be
released through the AIRR standards GitHub repository (https://
github.com/airr-community/airr-standards) at a future date.

CONCLUSIONS

We have described the design goals of the AIRR Community’s
DRWG along with a schema and file format for annotated
IG/TR AIRR-seq data. The data representations described
herein can function as a standardized communication tool
across different parts of the AIRR-seq data ecosystem,
including users, data repositories, and analysis tools. We
hope that our guiding design principles of accessibility,
scalability, and transparency will help promote wide
adoption. We welcome and actively encourage contributions
and involvement from the broader community with the
ultimate goal of simplifying tool interoperability and
data sharing in the study of adaptive immune receptor
repertoires.
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Antibody evolution studies have been traditionally limited to either tracing a single clonal

lineage (B cells derived from a single V-(D)-J recombination) over time or examining bulk

functionality changes (e.g., tracing serum polyclonal antibody proteins). Studying a single

B cell disregards the majority of the humoral immune response, whereas bulk functional

studies lack the necessary resolution to analyze the co-existing clonal diversity. Recent

advances in high-throughput sequencing (HTS) technologies and bioinformatics have

made it possible to examine multiple co-evolving antibody monoclonal lineages within

the context of a single repertoire. A plethora of accompanying methods and tools have

been introduced in hopes of better understanding how pathogen presence dictates the

global evolution of the antibody repertoire. Here, we provide a comprehensive summary

of the tremendous progress of this newly emerging field of systems phylogeny of

antibody responses. We present an overview encompassing the historical developments

of repertoire phylogenetics, state-of-the-art tools, and an outlook on the future directions

of this fast-advancing and promising field.

Keywords: systems immunology, phylogenetics, antibody lineage, B cell evolution, Ig-Seq

INTRODUCTION

B cells are the foundation of humoral immunity and are defined by their characteristic B cell
receptors (BCR, or secreted version: antibodies), which bind foreign pathogens and initiate effector
functions, such as pathogen opsonization, neutralization, complement activation, and cellular
cytotoxic and phagocytosis signaling (1). Antibodies are composed of two identical heavy chains
and two identical light chains, where each chain consists of a variable region and a constant
region. The variable regions dictate antigen-binding specificity (2), whereas the constant regions
enable interactions with other molecular and cellular components of the immune system (1). Initial
variable region diversity is encoded in the organism’s genome through the presence of multiple V-,
D- (heavy chain only), and J-gene segments, which pseudo-randomly recombine in both the heavy
and light chain loci (3, 4). During somatic recombination, the variable regions can undergo further
diversification due to deletions or insertions at the V-D and J-D junctions, rendering a potential
theoretical amino acid diversity in humans and mice of >1013 (5–7). The region encompassing the
last few nucleotides of the V-gene segment, the entire D-gene segment (in the case of heavy chain
rearrangement), and the start of the J-gene segment is known as the complementary determining
region 3 (CDR3), and has been shown to largely dictate antigen specificity (2).
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Selective pressures are present during early B cell development
to ensure binding specificity is not directed toward self-antigens
through interactions with stromal cells in the bone marrow.
This is done via deletion or induction of anergy in B cells
expressing BCRs exhibiting self-reactivity. B cells surviving
this selection emigrate from the bone marrow and enter the
circulating population of mature B cells. These newly produced
B cells circulate between blood and secondary lymphoid organs
until encountering their respective antigen. The BCRs which
bind their respective target can subsequently engulf the foreign
antigen via receptor-mediated endocytosis and display these
pathogen-derived peptides on the cell surface using major
histocompatibility class (MHC)-II proteins (8, 9). This prepares
the B cell for further differentiation via binding of CD4+ T cells,
which interact specifically with the foreign peptides displayed on
the B cell’s MHC-II molecules. Both the strength and duration
of this interaction between B and T cells have been implicated in
dictating the fate of the B cell (10). Longer conjugate interactions
may preferentially lead to a germinal center (GC) reaction, where
affinity maturation and class switching occur (11, 12).

GCs are structurally divided into a dark zone, where B cells
rapidly proliferate while mutations are selectively introduced into
the antibody locus, initially via the enzyme activation-induced
cytidine deaminase (AID) and the upregulation of the error-
prone DNA polymerase eta (13–15), a process referred to as
somatic hypermutation (SHM) (16). A number of reviews exist
describing the complex biochemistry underlying SHM and are
available for further reading (17, 18). The light zone in GCs is
where T follicular helper (TFH) cells mediate the selection of B
cell clones with higher antigen affinity and their differentiation
into plasma cells (Figure 1A) (12, 19, 20). B cell clones incurring
SHM that increase the strength of the antibody-antigen binding
interaction will subsequently receive more survival signals, such
as ICOS, CD40, and interleukin-21 (IL-21) (11, 21, 22).

It has been shown that antibodies surviving the selective
pressures faced during affinity maturation are capable of
producing high affinity antibodies with binding disassociation
constants (Kds) hundreds to thousands of times higher than
their germline progenitor (23). Furthermore, recent work in
mouse models of chronic viral infection have revealed that the
continued presence of TFH cells is crucial for the development
of neutralizing antibodies (24). While it is intuitive that affinity
maturation holds an essential role to improve the specificity and
affinity of B cells against complex antigens (such as pathogens
and their proteins), a recent study has questioned this, as it
was proposed that there is a continuous recruitment of naïve
or memory B cells equipped with high affinity BCRs into an
ongoing humoral immune response (25). This suggests that SHM
might play a prominent role in broadening the antibody response
with respect to its ability to recognize antigenic variants (26, 27).
Despite these recent findings, the exact nature regarding whether
and how affinitymaturation instructs antibody evolution remains
at the forefront of contemporary antibody repertoire research.
What recent studies have made abundantly clear, however, is that
B cells with unique V-(D)-J rearrangements exist contemporarily,
both within an organism and even within a single germinal
center (Figure 1B) (27, 28). The utilization of new experimental

techniques (e.g., multiphoton microscopy, confetti mice, and
bone marrow chimeras) in concert with sequencing technologies
have provided an unprecedented insight into how biological
factors such as BCR affinity or clonal diversity can influence the
evolutionary landscape.

Over the past decade, many fields of research have leveraged
the increased resolution and decreased cost of high throughput
sequencing (HTS) to better understand genomic diversity and
evolution. Similarly, the field of immunology has employed HTS
to investigate the genetic diversity of antibody variable regions,
also referred to as immunoglobulin sequencing or Ig-Seq. This
application has been instrumental in providing a quantitative
description and profile of antibody repertoires (29–31). Ig-Seq
experiments capture the diversity found in the variable regions
of co-existing antibodies, enabling the reconstruction of multiple
antibody lineages within a single host over time (32–34). Given
the immense wealth of sequencing data arising from Ig-Seq,
phylogenetic inference is a well-suited methodology to better
understand clonal selection and expansion mechanisms that
drive B cell evolution.

The standard evolutionary analysis of a B cell involves
the reconstruction of a phylogenetic tree, in which the
temporal relationships between recovered antibody sequences
are modeled. The phylogenetic tree is often referred to as a clonal
lineage, whereas a “phylogenetic lineage” represents a branch in
the tree. In the case of antibody repertoire phylogenetics, each
phylogenetic tree represents a clonal lineage descending from an
independent V-(D)-J recombination event. From a single Ig-Seq
experiment, a multitude of phylogenetic trees can be inferred,
demanding a novel analysis pipeline not typically required in
conventional phylogenetic studies examining species or viral
evolution. The sequencing reads covering the full V-(D)-J region
(∼350–400 base pairs) are represented as nodes in the tree,
while the edges indicate the relationship between the tips, and
the edge lengths represent the time between branching events.
These representations provide valuable information regarding
the evolutionary history of a given antibody or B cell clone
and can be employed to understand the selective pressures
experienced during affinity maturation.

Studying how antibodies evolve in the context of pathogen
neutralization has the potential to both answer basic biological
questions pertaining to clonal selection and to aid in the
development of precision vaccines or discovery of therapeutic
monoclonal antibodies. Extensive research efforts have already
been dedicated to better comprehend a subset of antibodies
capable of neutralizing the infectious potential of multiple
strains of HIV-1 (broadly neutralizing antibodies, bNAbs)
(35–38). A prominent example involves the VRC01 bNAb
lineage, originally identified from B cells of an HIV-1
patient, which has been shown to neutralize 90% of HIV-1
strains after undergoing extensive SHM (39). Using traditional
phylogenetic methods, the evolutionary steps preceding virus-
neutralizing capability were inferred, enabling the inference of
both ancestral and intermediate sequences (38, 39). Further
work has attempted to design vaccine immunogens that
target these intermediate progenitor sequences in hopes of
directing the subsequent evolution of antibodies toward
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FIGURE 1 | Evolutionary dynamics of the Germinal center reaction. (A) Naïve and memory B cells are recruited into germinal center reactions where they undergo

subsequent rounds of somatic hypermutation in the dark zone and selection via follicular dendritic cells in the light zone. This leads to successive rounds of division

and mutations (shown by colored antibody receptors) or apoptosis (shown by gray cells). Different selection pressures can lead to either balanced selection, in which

multiple independent clones expand and undergo SHM, or imbalanced selection where a few clones dominate the GC reaction and undergo many rounds of SHM.

(B) Ig-Seq can capture the sequence diversity within populations of B cells. Systems phylogeny aims to assign the recovered sequences into clonal families, followed

by the inference of evolutionary histories. The resulting phylogenetic trees can then be compared both within one host and between hosts.

the broadly neutralizing phenotype (40, 41). Additionally,
how affinity, avidity, and the initial concentration of these
progenitor BCRs influence the subsequent GC reactions
and incurred mutations was recently described, providing

further insight about the appearance and propagation of
bNAbs (42).

While the various HIV-1 bNAbs have ignited hopes of
utilizing phylogenetics to design vaccines for rapidly mutating
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viruses, most research employing antibody phylogenetics has
been confined to single clonal lineages (35–37, 43, 44). Despite
the emphasis on single antibody lineages, the majority of the
sequencing data used to describe these neutralizing antibodies
has been recovered via Ig-Seq experiments. Thus, while
individual trees describing the evolution of HIV-1-neutralizing
antibodies have been well characterized, several unanswered
questions remain regarding how to partition the sequencing
reads into the individual V-(D)-J recombination trees, and how
this antibody “forest” of distinct phylogenetic trees evolves as a
system.

The unique opportunity to apply sequencing technologies to
the study of B cells has led to the development of several tools
and practices specifically tailored to the investigation of antibody
evolution (45–47). It is foreseeable that this trend will only
continue to increase as Ig-Seq experiments become increasingly
commonplace in immunological research given the applications
both to antibody therapeutics and rational vaccine design (48).
Despite the lack of standardization, many studies have already
incorporated phylogenetic analyses in concert with Ig-Seq (34,
38, 49). These studies have employed various tools, inference
methods, and heuristics. We provide here a comprehensive
review tailored specifically to antibody repertoire phylogeny.
We outline both contemporary practices and software, in
addition to the problems currently faced by this promising
field.

CLONAL LINEAGE ASSIGNMENT

As opposed to traditional phylogenetic studies, the somatic
diversification mechanisms inherent to B cell development
present an additional pre-processing step even before the
selection of a tree-inference method. V-(D)-J recombination
creates an immense starting pool of roots, each of which has
the potential to encounter its cognate antigen and subsequently
undergo clonal expansion and evolution (polyclonal response).
Therefore, at any given point in a single individual host, multiple
co-evolving lineages will be present. Phylogenetic analyses
involving pathogens traditionally assume that all recovered
sequences are related to a single common ancestor. Thus,
correctly assigning a given B cell clone to a particular clonal
lineage presents a challenge not found in other phylogenetic
analyses. Upon successfully sequencing the B cell populations of
interest, the recovered reads need to be first assigned to a given
phylogenetic tree, representing a group of clones expanded from
a single V-(D)-J recombination event (Figure 1B). A given Ig-Seq
experiment can produce millions of sequencing reads per sample
(4, 29, 50), rendering it difficult to disentangle the simultaneous,
independently co-evolving lineages. Several strategies and tools
have been recently developed in response to this problem and are
outlined below.

A common starting approach is to initially cluster sequences
by their germline genes, and subsequently infer an individual tree
for each cluster. Based on the number of possible combinations
of V-, D-, and J-genes, this implies that thousands of phylogenetic
trees could be inferred within a single individual. In practice,

not all germline genes and combinations thereof are used at
the same frequency, which dramatically reduces the number of
actual trees produced within one host (4, 51). Additionally, low
alignment accuracy of the D-gene segment has led many studies
to only consider the V- and J-gene segments during clustering.
The number of trees within a single individual can be further
reduced by setting a threshold for a number of sequences per
tree. Unfortunately, the value to define the threshold is less
clear and often depends on the context of biological questions.
For example, there exist studies which have set thresholds
of 10 sequences per tree when tracing B cells across various
compartments (e.g., B cells trafficking to the central nervous
system) (52), whereas other studies that depict differentiated
memory B cells within a tree have omitted a threshold altogether
(49). In addition to lower limits set on the number of sequences
required per tree, upper limits can also be set depending on the
computational demands of the selected phylogenetic method.
Multiple HIV studies, for example, have restricted each lineage
tree to a maximum of 200 randomly sampled sequences for the
root of interest (36, 43).

The challenge of assigning reads to a clonal lineage can
be addressed by taking advantage of the nature of SHM to
preferentially introduce nucleotide substitutions during GC
reactions (53). This implies that insertions and deletions
are mainly introduced via V-(D)-J recombination. Therefore,
information regarding insertions and deletions can be utilized
to restrict sequences with identical clonal (CDR3) lengths to a
given tree. This dramatically increases the number of trees per
individual, while decreasing the number of sequences assigned to
a given clonal lineage. Under the assumption that clonal lineages
evolve independently, phylogenetic trees from a particular
individual can be computed in parallel. Thus, this heuristic
approach can dramatically reduce the necessary computation
time while incorporating relevant biological insight regarding
a constant CDR3 length throughout the affinity maturation
process.

Commonly used tools capable of aligning Ig-Seq data are
MiXCR, IMGT, IgBlast, SONAR, IGoR, iHMMunealign, and
Partis (54–60), which work by assigning germline genes to
sequencing reads and additional annotation [Framework regions
(FRs) and CDRs] (Table 1). In some cases, such as with MiXCR,
Partis, and IgBlast, a user is able to include a custom reference
germline database (particularly useful in cases where germline
genes of a given species have not yet been fully annotated)
(54, 56, 57); this can be used in concert with software capable
of predicting germline alleles from Ig-Seq data. While Partis has
this capability built in (61), other standalone software includes
IgDiscover and TigGER (62, 63). Additionally, one can extract
germline information from whole genome shotgun sequencing,
as performed by VGeneRepertoire (64). One of the major
drawbacks of the previously mentioned lineage assignment is
the large reliance on an initial alignment of recovered reads
to the germline. Furthermore, any rare insertions or deletions
introduced during SHM will be excluded due to restricting trees
to an identical clonal (CDR3) length.

Several methods have been developed to circumvent problems
arising during alignment-based lineage assignment. These
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TABLE 1 | Comparison of tools and methods used for clonal lineage assignment and phylogenetic inference.

Attributes (+) Notes (–)

Clonal LINEAGE ASSIGNMENT

Alignment based

(Mixcr, IMGT, IgBlast, IGoR, IHMMunealign)

• Potentially fast run time (depends on the tool)

• Can often supply own germline genes

• Often arbitrary thresholds for clonal

relatedness (e.g., 80% CDR3 similarity)

Partis

(https://github.com/psathyrella/partis)

• Human, mouse and macaque germline built in

• Germline inference possible

• Docker image available

• Good documentation

• Large datasets may require subsampling due

to computational demands

Clonify

(https://github.com/briney/clonify-python)

• Antibody specific edit distance

• Explicit incorporation of shared mutational

histories

• Limited to unseeded alignment

SONAR

(https://github.com/scharch/SONAR)

• Multiple seeded lineage assignment algorithms

• Easy export to other phylogenetic software

• Docker image available

• Limited to Human germlines

PHYLOGENETIC METHOD

Distance based

(ape, ClustalOmega, EBI, phangorn, FastML)

• Computational speed

• Multiple distance metrics possible

• Difficult to calculate distances for sequences

with large divergence and alignment gaps

• Less sophisticated than probabilistic methods

Maximum parsimony

(PHYLIP, Rphylip, GCTree, phangorn, IgTree)

• Intuitive algorithm

• Clonal frequency incorporation (GCTree)

• Polytomies and internal nodes (IgTree)

• Ignores antibody specific properties (hotspots,

transversions, transitions)

• Long-branch attraction problem

Maximum likelihood

(FastML, MEGA, IQ-TREE, dnaml, IgPhyML)

• Complex substitution models

• Hotspot specific codon models (IgPhyML)

• Computationally demanding

• Sensitive to model misspecification

Bayesian

(BEAST, Mr. Bayes, ImmuniTree)

• Complex substitution models

• Can produce rooted trees without explicit

outgroup

• Possible to incorporate biological knowledge

with priors

• Mutation rate returned in calendar time

(BEAST)

• Sensitive to model misspecification

• Highest computational demands due to

Markov chain Monte Carlo algorithm

methods include both seeded and unseeded lineage assignment.
Seeded lineage assignment aims to extract all clonally-related
transcripts to an input antibody sequence. Conversely, unseeded
lineage assignment attempts to decompose the entirety of
input sequences into their constitutive clonal families.
Three prominent tools specifically tailored to clonal lineage
determination are Partis, Clonify, and SONAR (57, 58, 65).
Partis models B cell evolution with a likelihood function
that avoids the need to strictly define rooting assumptions,
such as an arbitrarily defined percentage of CDR3 sequence
homology (57). This tool can perform both unseeded and
seeded lineage assignment, with input sizes reaching hundreds
of thousands and millions of sequences, respectively. Another
tool, Clonify, uses hierarchical clustering based on an antibody
specific edit distance to determine clonal lineage inclusion
(65). One benefit of this proposed algorithm relative to the
aforementioned alignment tools is that neither CDR3 lengths
nor germline alignments explicitly define a clonal lineage.
Instead, CDR3 similarity, germline alignment scores, and
information regarding shared mutational histories are included

in the clonal assignment. Finally, SONAR first aligns reads to
germlines provided by IMGT and can subsequently perform
either seeded or unseeded lineage assignment (58). Their
unseeded alignment relies upon first separating transcripts into
groups based on V- and J- genes, with subsequent clustering
based on CDR3 sequence similarity. Multiple algorithms for
seeded lineage assignment are available, in addition to functions
which allow visualization of homology to germline genes and
other known antibodies (58). While the subsequent phylogenetic
tree inference is possible with SONAR, clonal lineages can also
be easily exported to formats compatible with other commonly
used tree inference software. Finally, both Partis and SONAR
are available as Docker containers, which can dramatically
simplify the installation process. While these methods are a
promising step to improve the delineation of independent
V-(D)-J recombination events from bulk sequencing data,
further benchmarking studies are still required to illustrate how
clonal lineage assignment algorithms influence the downstream
evolutionary conclusions. Such studies, for example, could
examine how the amount, topologies, and sizes of lineage trees
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from a single repertoire change based on preprocessing and
lineage assignment pipelines.

STRUCTURE OF THE B CELL TREE

Phylogenetic trees are commonly defined such that each node
represents a recovered B cell sequence (or clone), whereas the
branches represent the relationship between sequences. However,
there exist several important differences between traditional
phylogenetic trees and models specifically tailored to describe B
cell evolution (Figure 2). One important characteristic of B cell
maturation is clonal selection during expansion, which results in
multiple B cells that have identical BCR sequences. Therefore, Ig-
Seq can return identical reads corresponding to different B cells,
adding a frequency attribute to each recovered sequence. The
most common method currently employed by repertoire studies
has been to remove replicate sequences, producing a phylogenetic
tree entirely composed of unique sequences. However, this
approach is inherently biased given the disregard for clonal
expansion, a biological phenomenon seminal to B cell immunity.
In particular, evolutionary rates are over-estimated as the periods
without mutation during clonal expansion are disregarded.

Furthermore, it has been recently shown that the starting
amount of antigen-specific memory (precursor) B cells (i.e.,
ancestral sequences) in a given lineage directly impacts the
ability to engage in GC reactions and undergo further
mutations (42). This stresses the importance of implementing
phylogenetic methods that can incorporate clonal frequencies
into the tree reconstruction calculation. To account for
clonal expansion, antibody studies have displayed phylogenetic
trees where the size of the node refers to the number of
identical sequences (Figure 2A). While this leads to a visual
representation of clonal abundance, this information does
not contribute to the phylogenetic inference, thereby ignoring
valuable information describing the evolutionary processes
underlying clonal selection. Therefore, recent progress has been
made to combine traditional phylogenetic inference methods
with this clonal abundance data (66). In what are referred
to as GCTrees, clonal abundance information was explicitly
modeled into the phylogenetic inference process, leading to
increased accuracy based on simulated trees (66). Furthermore,
this reconstruction method allows for the inclusion of recovered
sequences to serve as internal nodes (for the rationale, see section
The Mutation Process Along the Tree) (66). This methodology
highlights the progress toward integrating the biologically
relevant information recovered from Ig-Seq experiments into the
reconstruction of antibody phylogenies.

The traditional phylogenetic framework produces trees where
the recovered sequences are positioned as leaves of the trees.
However, there are several antibody evolution studies that have
conceptualized the internal structure of the phylogenetic tree
to better suit B cell evolution and selection. This involves the
allowance of polytomies (more than two descendants from a
single internal node) and intermediate sequences serving as
internal nodes (Figures 2B,C). The underlying logic behind this
dramatic shift from traditional evolutionary studies relies on the

assumption that a given B cell clone can producemultiple distinct
offspring (somatic variants), each of which may be separated
by only a single mutation. Furthermore, this same ancestral B
cell may persist long after giving rise to progenitor cells without
incurring further mutations (Figure 2D). To account for both
of these biological considerations, antibody-specific phylogenetic
tools such as IgTree and ImmuniTree allow for both the presence
of polytomies and the presence of recovered sequences as internal
nodes in the resulting lineage tree. While these topological
frameworks diverge from traditional phylogenetic analyses, they
introduce a flexibility that allows for the incorporation of
antibody-relevant information. However, it remains unknown
how these adjustments to the phylogenetic model tree impact the
biological conclusions such as tree shape and mutation rates. It
would be interesting to investigate into how the tree structure
of HIV neutralizing antibodies, for example, would change if
polytomies were allowed in the phylogenetic reconstruction.

THE MUTATION PROCESS ALONG THE

TREE

The enzymatic nature of how AID induces mutations during
affinity maturation dictates the evolutionary trajectories possible
for a given B cell. AID introduces mutations by preferentially
targeting the immunoglobulin locus via the deamination
of deoxycytidine residues into deoxyuridines. This newly
introduced deoxyuridine results in a mismatch pairing in the
DNA and is subsequently corrected by either MMR or BER.
The majority of mutations introduced after these nucleotide
repair pathways are in the form of point mutations, although
there are occasional deletions or insertions present (67, 68).
These substitutions must not only maintain stability of the BCR,
but also provide a functional antibody capable of surviving
antigen selection imposed during GC reactions (Figure 1A).
This selection has been implicated in improving binding affinity,
broadening of antigen recognition and the development of
specific effector functions such as pathogen neutralization (24,
39). Interestingly, the shift from pathogen binding to pathogen
neutralizing is not always associated with a large increase in
binding affinity, suggesting a more nuanced role of affinity
maturation than solely promoting high affinity antibodies (69).

Given that mutations are introduced through enzyme-
mediated mechanisms, it is somewhat intuitive that particular
patterns in the genome would be preferentially targeted. Even
before the advent of HTS, certain nucleotide motifs, termed
“hotspots,” have been demonstrated to incur point mutations
at greater than average frequency (70). One initial example
supporting this neighbor-dependent model of SHM was the
discovery of the RGYW motif (where W = A/T, R =

A/G, Y = C/T), where the adjacent nucleotides influence
the mutability of the central G nucleotide (70). Subsequent
experiments uncovered additional motifs targeted by AID,
albeit at low numbers due to limitations arising from low-
throughput experimental settings (71–73). However, recent
studies employing Ig-Seq have provided a thorough analysis
of how neighboring nucleotides influence the probabilities of
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FIGURE 2 | Tree topologies for B cells. (A) The inclusion of polytomies in the phylogenetic tree allows a B cell to produce more than two distinct offspring at a given

internal node. (B) Experimentally recovered sequences can be inferred as either internal nodes or tips in the phylogenetic tree. (C) Persisting ancestral sequences can

be sampled at multiple time points while also producing distinct offspring. (D) Clonal frequencies have often been illustrated by the size of the nodes. Therefore,

information regarding clonal expansion can be incorporated into the resulting topologies.

point mutations (74, 75). One prominent example compared
synonymous and non-synonymous mutations across multiple
Ig-Seq datasets to infer mutational probabilities for 5mers
(nucleotide sequences with length 5), termed the “S5F” model
(74). This substitution model contains inferred transition
probabilities for the middle nucleotide of all possible 5mers,
both verifying historical, low-throughput experimental data, and
discovering novel motifs. In subsequent work, similar models
were developed to describe the specific mutational properties
of the 5mer motifs found in light chains arising from human
and mouse data, providing a wealth of pertinent information
to the mutational landscape of SHM (75). The refinement of
distinct hotspot models for heavy and light chain evolution is
crucial because the inference of heavy and light chain phylogenies
can be performed separately, as performed in studies comparing
the evolution of heavy and light chains in the context of
HIV infection (38). However, when the pairing of heavy and
light chains is known, the loci can be combined (concatenated
to each other) and treated as a single evolving entity. This
can increase the information used when inferring evolutionary
parameters such as mutation rates and tree structure, given
that both loci must share the same tree topology. Despite
these findings describing the neighbor-dependent nature of AID,
most modern phylogenetic methods rely on the assumption of

site-independent substitution models, in which the neighboring
nucleotides play no role in the evolutionary inference calculation.
Thus, current studies analyzing B cell lineages typically do not
account for this well-established biological phenomenon that
may also have evolutionary ramifications.

One promising step to incorporate the properties of SHM
hotspot motifs into the phylogenetic inference process has
been demonstrated by the implementation of the HLP17
codon substitution model, which accounts for neighbor-
dependent hotspot mutations, germline sequence knowledge,
and irreversible evolution (76). This substitutionmodel (available
in the IgPhyML program) has been shown to perform better on
Ig-Seq data than conventional phylogenetic substitution models
because of the inclusion of phylogenetic inference parameters
that describe the WRC hotspot (76). Specifically, it could be
observed that the use of this codon model reduced bias in
evolutionary parameters such as tree length (76), which has
been previously shown to be difficult to estimate for multiple
bNAb lineages with traditional substitution models (38). Their
model allows for any motifs of length three nucleotides to
be incorporated while still assuming that these hotspot motifs
(i.e., codons) evolve independently to maintain computational
feasibility (76). While all motifs cannot yet be explicitly
accounted for simultaneously due to computational limitations,
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this work represents important progress toward incorporated
motif-specific properties of SHM. One additional drawback
remains that this substitution model is not yet available in
many commonly used phylogenetic tools, potentially limiting its
application.

FROM SEQUENCES TO TREES

Multiple phylogenetic inference methods exist to construct
the antibody lineages, each of which have their strengths and
weaknesses (Table 1). A variety of these methods have been
employed for the analysis of Ig-Seq data, including distance-
based methods (44, 45, 77), maximum parsimony (36, 52, 78,
79), maximum likelihood (37, 43, 44, 80, 81), and Bayesian
inference (38, 47, 82). Most methods initially require a multiple
sequence alignment (MSA), which allows for lists of sequences
with varying lengths to be compared in a site-dependent manner.
Some common examples of MSA tools include ClustalOmega,
Kalign, MUSCLE, and T-coffee (83–86). The output of the MSA
file will usually be in fasta, nexus, or phylip format, which is
easily integrated with the phylogenetic reconstruction methods
described below.

Distance-Based Methods
Distance-based methods involve first filling a matrix by an all-
against-all calculation of a given metric comparing pairwise
sequence similarity (87). The distances between sequences
are often calculated using a substitution model. This allows
for the incorporation of certain characteristics of sequence
evolution, such as indicating different rates of evolution for
transitions (purine <-> purine, pyrimidine <-> pyrimidine),
and transversions (purine<-> pyrimidine), as well as taking into
account the possibility of hidden mutations (such as backward
mutations). A neighbor-joining algorithm is utilized to produce
the tree, which involves successively joining two sequences
together with newly created internal nodes (88, 89). One major
advantage of this method is that tree inference is very fast.
Therefore, thismethod can be especially useful for exploring large
Ig-Seq data sets, particularly when there are many sequences in
each lineage tree. A noteworthy example of this implementation
was seen when examining the evolution of HIV-1 bNAbs, in
which the neighbor-joining method was used exclusively for
large datasets (45). There exist many tools that can produce
neighbor-joining trees, either found online with ClustalOmega
or EBI bioinformatics server, in addition to R packages such
as phangorn or ape (84, 90, 91). One notable example of a
distance metric that does not require a MSA is the Levenshtein
distance. The Levenshtein distance describes the number of
changes (mutations, insertions, or deletions) required to change
one string into another, and has been used extensively in Ig-Seq
experiments in the past (4, 92).

Maximum Parismony
Another non-parametric method of inferring antibody evolution
involves the use of maximum parsimony, in which the output
phylogeny is the tree that can explain the evolution with the
least amount of mutations (93, 94). This method does not

allow for the incorporation of parameters specific to antibody
evolution, which can be a disadvantage when there is abundant
background knowledge of the experimental system. Conversely,
the lack of assumptions regarding the substitution process
may prevent model misspecification and thereby erroneous
conclusions. Maximum parsimony has been used in multiple
studies pertaining to Ig-Seq data, with some notable examples,
examining B cell migration to the cervical lymph node or
the development of neutralizing antibodies against West Nile
virus (4, 74). Several tools exist to create maximum parsimony
trees, although the most common among them is PHYLIP (95).
Additionally, R packages such as Rphylip and phangorn have
both incorporated maximum parsimony, allowing one to work
within the R framework (91, 96). Finally, as previously stated,
the GCTree utilizes a modified maximum parsimony to allow for
clonal frequencies to influence the phylogenetic inference (67).

One of the earliest methods specifically tailored to inferring
antibody evolution, IgTree, utilized a customized parsimony
metric to produce lineage trees (45). This tool additionally
introduced the concept of inferred intermediate sequences, in
which all direct ancestral sequences were restricted to the
separation of a single mutation (46). For example, two “inferred”
internal nodes would be created when two sequences differing by
three nucleotides are in the same clonal family. Thus, even if an
intermediate sequence was not explicitly sampled, there would be
a corresponding internal node in the output phylogeny. IgTree
has been used to characterize how B cells evolve under a variety
of selective pressures, such as lymphomas, multiple sclerosis, and
autoimmunity (33, 77, 97).

Maximum Likelihood
Another method applied to study antibody evolution is
maximum likelihood, which relies on the optimization of
a likelihood function. This parametric method incorporates
a substitution model that can dictate parameters such as
nucleotide/amino acid frequencies and allow for different
substitution rates for transitions and transversions. Thus,
maximum likelihood can utilize evolutionary models that may
better describe antibody evolution than the neutral assumption
that all nucleotides are the same. Some of these models include
the HKY, GTR gamma, and JC69 (98–100), which allow for
nucleotide specific behavior (e.g., A mutating to C can have a
different rate as C mutating to G). It may not be immediately
apparent which substitution model best fits the data at hand,
whereby tools that include model selection capabilities may be
useful. Notable programs utilized in the context of Ig-Seq data
include FastML, MEGA, IQ-TREE, and Phylip’s dnaml (33, 90,
94–96, 98, 101–103). As mentioned above, one notable limitation
of these substitution models is that the transition probability of
a given site is independent to the neighboring nucleotides. Thus,
building upon models which incorporate information regarding
hotspot mutability represents a cornerstone of contemporary
systems phylogenetics research (76).

A multitude of studies have employed the maximum
likelihood method to analyze Ig-Seq data, with many focusing
on the evolution of HIV-neutralizing antibodies (35, 37, 39, 43,
44, 80, 104, 105). Despite most maximum likelihood programs
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producing a “traditional” phylogenetic tree, where recovered
sequences cannot serve as intermediate nodes and polytomies
are absent, the biological relevance of these maximum likelihood
trees has been proven by the inference and production of
intermediate and ancestral germline sequences which possessed
virus-binding capabilities (36, 40).

Bayesian Inference
The final considered method of phylogenetic inference relies
upon Bayesian statistics, which is thus capable of incorporating
prior biological information (known as priors) into the inference
process. This includes information regarding the evolution of the
B cells, in particular themutation rate, and the replication of the B
cells generating the tree, in particular B cell duplication and death
rates. The most commonly used tool is BEAST (106, 107), which
has many learning resources and user-contributed modules
that are available for download. This method involves the
largest computational demands compared to other phylogenetic
methods both in terms of memory and calculation time (87). This
largely is due to the inference process, which utilizes a Markov
chain Monte Carlo (MCMC) algorithm to explore parameter
space. This provides a sample from the posterior probability
distribution, i.e., the output consists of millions of trees, which
are a sample of the probability distribution. One can summarize
this distribution into a single tree, termed as the most credible
clade (MCC) tree, allowing for an easier comparison between
multiple trees.

One further advantage of BEAST is that one can easily
specify the time at which sequences were sampled, and that the
output consists of trees with branch lengths in calendar time
units (rather than number of substitutions as in all methods
above). This kinetic information restricts the position of the
sequence in the tree, in addition to inferring mutation rates in
calendar time units. Thus, Bayesian methods present a strong
advantage when time-resolved Ig-Seq data is available. One
major drawback is the limited number of sequences that can
be included in each phylogenetic tree, as trees with more than
∼500 antibody sequences often require substantial computation
time (e.g., months on a server) and do not always converge to
the posterior distribution. Furthermore, if many lineage trees are
desired, running the MCMCs in parallel is essential given the
slow computation time. BEAST has been used to infer mutation
rates of neutralizing antibodies and subsequently compared to
viral evolution (39). An interesting result from this analysis
was that the heavy and light chains evolved at similar rates for
this particular bNAb. Furthermore, it was shown that different
neutralizing antibody lineages evolve at different rates, suggesting
multiple mechanisms underlying the maturation of bNAbs.

An antibody-specific tool, ImmuniTree, has been developed
that incorporates a Bayesian framework into the inference of
lineage trees (48). ImmuniTree allows for recovered sequences
to be placed at internal nodes, polytomies, and accounts for
spurious diversity arising from sequencing errors. Furthermore,
the trees produced by ImmuniTree can depict the percentage
of mutations a given immunoglobulin sequence has, thereby
incorporating information not included in most other inference
methods. Practically, this tool has been used to reconstruct

lineages of bNAbs and to infer ancestral intermediates of these
antibodies (47, 82). The phylogenetic data was subsequently
used to direct experiments which displayed that the neutralizing
breadth of these intermediate antibodies was still present, despite
a lesser extent of SHM (48).

Rooting the Phylogenetic Tree
The presented phylogenetic methods (with the Bayesian methods
as exceptions) return trees without a root, i.e., the tree does
not consist of information regarding on which branch the
clonal expansion process started. Thus, these unrooted trees
need to be rooted, which is typically done using an outgroup
(for example, when inferring an ape tree, one can use a-non-
ape primate sequence as an outgroup for rooting). For B cell
phylogenies, we have knowledge regarding the underlying V-
(D)-J recombination, meaning that unmutated V-(D)-J germline
sequence can be incorporated into the tree reconstruction process
as the outgroup. One major assumption of this strategy is that
there is sufficient confidence in the germline annotations. This
assumption may increase the information present during the
phylogenetic analysis for inbred model organisms, such as mice
or zebrafish. However, when the exact genomic composition of
the V-(D)-J germline segments is unknown (e.g., in humans,
where there are slight allelic changes in the germline between
individuals), this discrepancy could alter the inferred mutation
rate.

BEAST produces rooted trees even without explicitly
designating any germline sequences as the outgroup. This can be
advantageous when an exact annotation of the germline genes
is lacking. While it is possible in BEAST to explicitly specify the
root of a tree, it is not immediately straightforward due to the
nature of the software. In the case where no germline sequences
are supplied as a root, there exists an additional tool in the
program that allows for the user to infer the sequence at the
root (in addition to sequences at internal nodes). Important to
note, however, is that the accuracy of this method has not yet
been explicitly validated for antibody evolution (i.e., compared
unmutated ancestors inferred from BEAST to the known
germline sequences). Further benchmarking on both simulated
data and experimental data is required to better understand how
rooting with the germline segments influences the subsequent
biological conclusions, for example mutation rates and topology
metrics.

Simulations
Simulations of antibody evolution represents a powerful
approach to validate and explore the consequences of various
phylogenetic tools and heuristic strategies. Initial antibody
repertoire simulation frameworks did not possess a temporal
component (i.e., no explicit rate at which sequences change
in regard to time), hence preventing the investigation of how
traditional phylogenetic methods perform on Ig-Seq data (108).
Recently, multiple tools have been developed to account for
evolutionary properties specific to B cell evolution. Elements such
as hotspot motifs, clonal abundances, and mutation rates can
be defined to produce an output phylogenetic tree along with
the accompanying mutated sequences. These sequences can then

Frontiers in Immunology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 2149203

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yermanos et al. Systems Phylogeny of Antibody Repertoires

be fed as input into various phylogenetic inference methods to
validate tree reconstruction accuracy. Tree accuracy is validated
by comparing the inferred to the simulated tree, e.g., via the
Robinson Foulds distance, clade accuracy, and treescape metrics
(46, 109, 110). While simulations are commonly incorporated in
Ig-Seq experiments, these are largely in-house and not always
publically available. An important step to improve benchmarking
tools and strategies for Ig-Seq experiments includes making these
simulation platforms publicly available to increase their use.

DOWNSTREAM ANALYSIS

One of the difficulties of including phylogenetic trees into Ig-
Seq studies is the extraction and interpretation of biologically
relevant conclusions. An emerging trend has been to focus on
a few select lineages and leave the majority of the repertoire
unanalyzed. Thus, major questions regarding how the entirety of
the antibody repertoire evolves remain unanswered. The hurdles
of inferring potentially hundreds to thousands of phylogenetic
trees per individual is daunting both due to the computational
demands and the subsequent analysis. Furthermore, comparing
trees within a single host, and to other organisms introduces a
further layer of complexity.

One of the most immediate results of phylogenetic inference
is the output of a phylogenetic tree. The topology of these trees
provides a visualization of the evolutionary relationship between
a set of antibodies, which can be both qualitatively understood
and quantitatively compared. Qualitatively, an imbalanced tree
(defined as the two daughter lineages of a node have very
different numbers of descending nodes) can be interpreted in
that a single progenitor clone continuously out-survives the
other clones. Thus, tree imbalance may describe the breadth of
underlying selection pressures. This selective pressure where a
single clone outcompetes the remaining population has been seen
in other infectious species, for example influenza between hosts
or HIV within a host (111). Conversely, when selection occurs
evenly throughout a lineage, many clones may simultaneously
proliferate, which can be observed as a balanced structure of
the tree (Figure 1). Balanced trees have e.g., been observed for
HIV between hosts (111). While Ig-Seq papers have mentioned
these topological characteristics, few have thoroughly analyzed
these phylogenetic structures. There exist metrics arising from
the evolutionary biology field capable of describing tree topology
in a way that allows comparison of the lineage trees both from
within a single host and across individuals. Metrics such as the
Colless number, the Sackin index, and the average number of
ladders characterize tree “imbalance” (112, 113). Mathematically,
these metrics account for the number of descendant sequences
in right and left sub-trees at all internal nodes, producing
a single value for the entire tree. This value can then be
directly compared to other clonal lineage trees, providing a
framework for a systems analysis of lineages. This concept
of analyzing tree shape and imbalance has been implemented
in the comparison of vaccine-responsive lineages to persistent
lineages (highly abundant lineages that did not change in
response to vaccination) (114). Lineages that were unresponsive

to vaccination showed a more balanced evolution, whereas the
vaccine-enriched lineages often had a focus onmultiple positively
selected subclones (114).

While the metrics above have not often been applied to Ig-Seq
experiments, other topological metrics have been used to quantify
clonal selection. For example, clonal lineage trees were produced
to better understand the diversification processes underlying a
subset of B cells residing in the bone marrow of human patients
suffering from light chain amyloidosis (115). The downstream
analysis described structural properties of the phylogenetic trees,
such as the number of sequences per tree, the length of the trunk
(distance from root to first branching event), pass-through nodes
(internal nodes with a single offspring), the distance to the nearest
branching event (thus quantifying how mutations separate a
sequence’s direct ancestor), and tree branching (determined by
the outgoing number of internal nodes). Similarly, another study
found that during gastric lymphomas, B cell evolution results
in trees with longer trunks and path lengths when compared to
gastritis, correlating with a higher initial affinity and a higher
selection threshold (34).

While these structural motifs and tree-imbalance metrics
provide a natural analysis of phylogenetic trees in biological
terms, there additionally exist less intuitive metrics yet to be
applied to Ig-Seq data. Phylogenetic trees are essentially acyclic
graphs (graphs = networks), suggesting that novel methods in
graph theory may potentially find their use in Ig-Seq studies. One
potential example of utilizing graph theory arises from examining
the Laplacian spectra of the many trees within an individual.
This approach was suggested recently to possess a multitude of
parameters describing individual tree shape and branch length
in the context of eigenvector distributions (116). However, few
studies have leveraged such topological analyses of unlabeled
antibody trees, thus, the extent to which meaningful biological
conclusions can be drawn remains unseen.

In contrast to qualitative topological analysis, statistically
derived parameters may be of further interest to provide a
quantitative description of the evolutionary process of antibody
lineages. Traditionally, repertoire studies have been interested
in counting the number of mutations found at a given time
point, however, leveraging phylogenetics, one can quantify
how often a given lineage accumulates mutations in a time-
resolved fashion. As previously stated, Bayesian phylogenetics
has already been utilized to calculate the mutation rates of
heavy and light chain lineages of HIV-neutralizing antibodies
(39). Furthermore, parameters describing population size, the
speciation and extinction of species, and tree age can be further
inferred, providing a set of parameters that lends itself easily to
the comparison both within a single host and across different
individuals.

Toward Systems Phylogeny of Antibody

Repertoires
The aforementioned metrics to quantify phylogenetic trees
require just a single phylogenetic tree as input. The values
arising from multiple trees can then be collectively analyzed
to describe the selective pressure exerted upon the antibody
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repertoire as a whole. This traditional manner of studying the
collection of antibody lineages, however, assumes a significant
degree of independence between each phylogenetic tree. In an
attempt to describe the population of antibody lineage trees, the
UniFrac metric was applied to quantify the divergent evolution
of immune systems arising during aging (35). The UniFrac
metric was originally developed to measure the distance between
microbial communities based on which branches are present
in each sample, presenting a community-based statistic that
can be easily adapted to Ig-Seq data (117). Another recent
study aiming to characterize the dynamics of BCR evolution
during HIV infection developed statistical models to describe
clonal competition across multiple antibody lineages (118).
Taken in concert, these studies represent important steps in
the direction of statistics and analyses capable of describing
the dynamic nature and evolution of antibody repertoire
forests.

CONCLUSION

Quantifying how antibody repertoires change over time
represents an emerging field only possible due to the increased
resolution of HTS and Ig-Seq. While the earliest phylogenetic
metrics specifically tailored to antibody repertoire evolution
were developed over a decade ago, more work remains necessary
to comprehensively incorporate our experimental knowledge
of antibodies into clonal lineage assignment, phylogenetic
tree inference, and downstream analyses. Furthermore,
benchmarking the aforementioned tools and strategies
on both Ig-Seq data and multiple simulation frameworks

can identify biases arising from the currently employed

methodologies. The usage of lineage trees has immediate
applications with medicinal relevance, such as vaccine design by
targeting intermediate sequences or the discovery of therapeutic
monoclonal antibodies. Furthermore, phylogenetics provides
a unique opportunity to describe the clonal selection and
competition underlying the pathogen-driven evolution of B
cells. While phylogenetics has long held a role in the field of
antibody research, the full potential of systems phylogenetics to
delineate the complex co-evolving landscape between several
independent lineages has not been realized. Other research
fields such as machine learning, statistical entropy, and network
analysis are becoming integral in antibody repertoire analysis,
reinforcing the potential for phylogenetics to similarly take
the stage to help delineate the complex picture of the B cell
immunity.

AUTHOR CONTRIBUTIONS

AY and SR conceived and designed the review. All authors wrote
the review.

FUNDING

This work was funded by the Swiss National Science Foundation
(Project #: 31003A_170110, to SR), SystemsX.ch—antibody RTD
project (to SR); European Research Council Starting Grant
(Project #: 679403 to SR); and ETH Zurich (Research Grants).
The professorship of SR is made possible by the generous
endowment of the S. Leslie Misrock Foundation.

REFERENCES

1. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody

effector functions in infectious diseases. Nat Rev Immunol. (2017) 18:46–61.

doi: 10.1038/nri.2017.106

2. Xu JL, Davis MM. Diversity in the CDR3 region of VH is

sufficient for most antibody specificities. Immunity (2000) 13:37–45.

doi: 10.1016/S1074-7613(00)00006-6

3. Tonegawa S. Somatic generation of antibody diversity. Nature (1983)

302:575–81. doi: 10.1038/302575a0

4. Greiff V, Menzel U, Miho E, Weber C, Riedel R, Cook SC, et al.

Systems analysis reveals high genetic and antigen-driven predetermination

of antibody repertoires throughout B-cell development. Cell Rep. (2017)

19:1467–78. doi: 10.1016/j.celrep.2017.04.054

5. Elhanati Y, Sethna Z, Marcou Q, Callan CG, Mora T, Walczak AM. Inferring

processes underlying B-cell repertoire diversity. Phil Trans R Soc B (2015)

370:20140243. doi: 10.1098/rstb.2014.0243

6. Nadel B, Feeney AJ. Nucleotide deletion and P addition in V (D) J

recombination: a determinant role of the coding-end sequence.Mol Cell Biol.

(1997) 17:3768–78. doi: 10.1128/MCB.17.7.3768

7. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, et al.

Precise determination of the diversity of a combinatorial antibody

library gives insight into the human immunoglobulin repertoire. Proc

Natl Acad Sci USA. (2009) 106:20216–21. doi: 10.1073/pnas.09097

75106

8. Lanzavecchia A. Receptor-mediated antigen uptake and its effect

on antigen presentation to class II-restricted T lymphocytes. Annu

Rev Immunol. (1990) 8:773–93. doi: 10.1146/annurev.iy.08.040190.0

04013

9. Hou P, Araujo E, Zhao T, Zhang M, Massenburg D, Veselits M, et al. B cell

antigen receptor signaling and internalization are mutually exclusive events.

PLoS Biol. (2006) 4:e200. doi: 10.1371/journal.pbio.0040200

10. Zaretsky I, Atrakchi O, Mazor RD, Stoler-Barak L, Biram A, Feigelson

SW, et al. ICAMs support B cell interactions with T follicular helper

cells and promote clonal selection. J Exp Med. (2017) 214:3435–48.

doi: 10.1084/jem.20171129

11. Mesin L, Ersching J, Victora GD. Germinal center B cell dynamics. Immunity

(2016) 45:471–82. doi: 10.1016/j.immuni.2016.09.001

12. Allen CDC, Okada T, Cyster JG. Germinal-Center Organization and cellular

dynamics. Immunity (2007) 27:190–202. doi: 10.1016/j.immuni.2007.07.009

13. Cattoretti G, Buettner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek

G. Nuclear and cytoplasmic AID in extrafollicular and germinal center B

cells. Blood (2006) 107:3967–75. doi: 10.1182/blood-2005-10-4170

14. Greeve J, Philipsen A, Krause K, Klapper W, Heidorn K, Castle

BE, et al. Expression of activation-induced cytidine deaminase in

human B-cell non-Hodgkin lymphomas. Blood (2003) 101:3574–80.

doi: 10.1182/blood-2002-08-2424

15. McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG.

Class-switched memory B cells remodel BCRs within secondary germinal

centers. Nat Immunol. (2015) 16:296–305. doi: 10.1038/ni.3095

16. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody

somatic hypermutation. Annu Rev Biochem. (2007) 76:1–22.

doi: 10.1146/annurev.biochem.76.061705.090740

17. Methot SP, Di Noia JM. Molecular mechanisms of somatic hypermutation

and class switch recombination. Adv Immunol. (2017) 133:37–87.

doi: 10.1016/bs.ai.2016.11.002

18. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman

MF, et al. The biochemistry of somatic hypermutation. Annu Rev

Frontiers in Immunology | www.frontiersin.org 11 October 2018 | Volume 9 | Article 2149205

https://doi.org/10.1038/nri.2017.106
https://doi.org/10.1016/S1074-7613(00)00006-6
https://doi.org/10.1038/302575a0
https://doi.org/10.1016/j.celrep.2017.04.054
https://doi.org/10.1098/rstb.2014.0243
https://doi.org/10.1128/MCB.17.7.3768
https://doi.org/10.1073/pnas.0909775106
https://doi.org/10.1146/annurev.iy.08.040190.004013
https://doi.org/10.1371/journal.pbio.0040200
https://doi.org/10.1084/jem.20171129
https://doi.org/10.1016/j.immuni.2016.09.001
https://doi.org/10.1016/j.immuni.2007.07.009
https://doi.org/10.1182/blood-2005-10-4170
https://doi.org/10.1182/blood-2002-08-2424
https://doi.org/10.1038/ni.3095
https://doi.org/10.1146/annurev.biochem.76.061705.090740
https://doi.org/10.1016/bs.ai.2016.11.002
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yermanos et al. Systems Phylogeny of Antibody Repertoires

Immunol. (2008) 26:481–511. doi: 10.1146/annurev.immunol.26.021607.

090236

19. Meyer-Hermann ME, Maini PK, Iber D. An analysis of B cell selection

mechanisms in germinal centers. Math Med Biol. (2006) 23:255–77.

doi: 10.1093/imammb/dql012

20. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-

Hermann M, Dustin ML, et al. Germinal center dynamics revealed by

multiphoton microscopy with a photoactivatable fluorescent reporter. Cell

(2010) 143:592–605. doi: 10.1016/j.cell.2010.10.032

21. Liu D, Xu H, Shih C, Wan Z, Ma X, Ma W, et al. T–B-cell entanglement and

ICOSL-driven feed-forward regulation of germinal centre reaction. Nature

(2015) 517:214–18. doi: 10.1038/nature13803

22. Shulman Z, Gitlin AD, Weinstein JS, Lainez B, Esplugues E, Flavell RA, et al.

Dynamic signaling by T follicular helper cells during germinal center B cell

selection. Science (2014) 345:1058–62. doi: 10.1126/science.1257861

23. Wang Y, Keck Z, Saha A, Xia J, Conrad F, Lou J, et al. Affinity

maturation to improve human monoclonal antibody neutralization potency

and breadth against hepatitis C virus. J Biol Chem. (2011) 286:44218–33.

doi: 10.1074/jbc.M111.290783

24. Greczmiel U, Kräutler NJ, Pedrioli A, Bartsch I, Agnellini P, Bedenikovic

G, et al. Sustained T follicular helper cell response is essential for

control of chronic viral infection. Sci Immunol. (2017) 2:eaam8686.

doi: 10.1126/sciimmunol.aam8686

25. Murugan R, Buchauer L, Triller G, Kreschel C, Costa G, Pidelaserra

Martí G, et al. Clonal selection drives protective memory B cell responses

in controlled human malaria infection. Sci Immunol. (2018) 3:eaap8029.

doi: 10.1126/sciimmunol.aap8029

26. Pappas L, Foglierini M, Piccoli L, Kallewaard NL, Turrini F, Silacci C, et al.

Rapid development of broadly influenza neutralizing antibodies through

redundant mutations. Nature (2014) 516:418–22. doi: 10.1038/nature13764

27. Kuraoka M, Schmidt AG, Nojima T, Feng F, Watanabe A, Kitamura D,

et al. Complex antigens drive permissive clonal selection in germinal centers.

Immunity (2016) 44:542–52. doi: 10.1016/j.immuni.2016.02.010

28. Tas JM, Mesin L, Pasqual G, Targ S, Jacobsen JT, Mano YM, et al. Visualizing

antibody affinity maturation in germinal centers. Science (2016) 351:1048–

54. doi: 10.1126/science.aad3439

29. Greiff V, Miho E, Menzel U, Reddy ST. Bioinformatic and statistical

analysis of adaptive immune repertoires. Trends Immunol. (2015) 36:738–49.

doi: 10.1016/j.it.2015.09.006

30. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR.

The promise and challenge of high-throughput sequencing of the antibody

repertoire. Nat Biotechnol. (2014) 32:158–68. doi: 10.1038/nbt.2782

31. Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor

repertoire sequencing analysis. Genome Med. (2015) 7:121.

doi: 10.1186/s13073-015-0243-2

32. Galson JD, Trück J, Clutterbuck EA, Fowler A, Cerundolo V, Pollard AJ,

et al. B-cell repertoire dynamics after sequential hepatitis B vaccination

and evidence for cross-reactive B-cell activation. Genome Med. (2016) 8:68.

doi: 10.1186/s13073-016-0322-z

33. Michaeli M, Tabibian-Keissar H, Schiby G, Shahaf G, Pickman Y, Hazanov

L, et al. Immunoglobulin gene repertoire diversification and selection in the

stomach – from gastritis to gastric lymphomas. Front Immunol. (2014) 5:264.

doi: 10.3389/fimmu.2014.00264

34. de Bourcy CF, Angel CJ, Vollmers C, Dekker CL, Davis MM, Quake SR.

Phylogenetic analysis of the human antibody repertoire reveals quantitative

signatures of immune senescence and aging. Proc Natl Acad Sci USA. (2017)

114:1105–10. doi: 10.1073/pnas.1617959114

35. Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, et al. Maturation

pathway from germline to broad HIV-1 neutralizer of a CD4-mimic

antibody. Cell (2016) 165:449–63. doi: 10.1016/j.cell.2016.02.022

36. Banerjee S, Shi H, Banasik M, Moon H, Lees W, Qin Y, et al. Evaluation

of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8

neutralizing epitopes on HIV-1 gp41 membrane proximal external region.

Virology (2017) 505:113–26. doi: 10.1016/j.virol.2017.02.015

37. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN,

DeKosky BJ, et al. Developmental pathway for potent V1V2-directed HIV-

neutralizing antibodies. Nature (2014) 509:55–62. doi: 10.1038/nature

13036

38. Wu X, Zhang Z, Schramm CA, Joyce MG, Do Kwon Y, Zhou

T, et al. Maturation and diversity of the VRC01-antibody lineage

over 15 years of chronic HIV-1 infection. Cell (2015) 161:470–85.

doi: 10.1016/j.cell.2015.03.004

39. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution

of HIV-1 neutralizing antibodies revealed by structures and deep sequencing.

Science (2011) 333:1593–602. doi: 10.1126/science.1207532

40. Jardine JG, Kulp DW, Havenar-Daughton C, Sarkar A, Briney B,

Sok D, et al. HIV-1 broadly neutralizing antibody precursor B cells

revealed by germline-targeting immunogen. Science (2016) 351:1458–63.

doi: 10.1126/science.aad9195

41. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, et al. Proof

of principle for epitope-focused vaccine design. Nature (2014) 507:201–6.

doi: 10.1038/nature12966

42. Abbott RK, Lee JH, Menis S, Skog P, Rossi M, Ota T, et al. Precursor

frequency and affinity determine B cell competitive fitness in germinal

centers, tested with germline-targeting HIV vaccine immunogens. Immunity

(2018) 48:133–46.e6. doi: 10.1016/j.immuni.2017.11.023

43. Bhiman JN, Anthony C, Doria-Rose NA, Karimanzira O, Schramm CA,

Khoza T, et al. Viral variants that initiate and drive maturation of V1V2-

directed HIV-1 broadly neutralizing antibodies. Nat Med. (2015) 21:1332–6.

doi: 10.1038/nm.3963

44. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution

of a broadly neutralizing HIV-1 antibody and founder virus. Nature (2013)

494:476–96. doi: 10.1038/nature12053

45. Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. IgTree©: creating

immunoglobulin variable region gene lineage trees. J Immunol Methods

(2008) 338:67–74. doi: 10.1016/j.jim.2008.06.006

46. Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, et al.

Comparison of methods for phylogenetic B-cell lineage inference using time-

resolved antibody repertoire simulations (AbSim). Bioinformatics (2017)

33:3938–46. doi: 10.1093/bioinformatics/btx533

47. Sok D, Laserson U, Laserson J, Liu Y, Vigneault F, Julien JP, et al. The effects of

somatic hypermutation on neutralization and binding in the PGT121 family

of broadly neutralizing HIV antibodies. PLoS Pathog. (2013) 9:e1003754.

doi: 10.1371/journal.ppat.1003754

48. Parola C, Neumeier D, Reddy ST. Integrating high-throughput screening

and sequencing for monoclonal antibody discovery and engineering.

Immunology (2018) 153:31–41. doi: 10.1111/imm.12838

49. Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, et al.

Immune history profoundly affects broadly protective B cell responses to

influenza. Sci Transl Med. (2015) 7:316ra192. doi: 10.1126/scitranslmed.

aad0522

50. DeWitt WS, Lindau P, Snyder TM, Sherwood AM, Vignali M, Carlson CS,

et al. A public database of memory and naive B-cell receptor sequences. PLoS

ONE (2016) 11:e0160853. doi: 10.1371/journal.pone.0160853

51. Rettig TA, Ward C, Bye BA, Pecaut MJ, Chapes SK. Characterization

of the naive murine antibody repertoire using unamplified

high-throughput sequencing. PLoS ONE (2018) 13:e0190982.

doi: 10.1371/journal.pone.0190982

52. Stern JN, Yaari G, Heiden JA, Church G, Donahue WF, Hintzen

RQ, et al. B cells populating the multiple sclerosis brain mature in

the draining cervical lymph nodes. Sci Transl Med. (2014) 6:248ra107.

doi: 10.1126/scitranslmed.3008879

53. Smith DS, Creadon G, Jena PK, Portanova JP, Kotzin BL, Wysocki LJ. Di-

and trinucleotide target preferences of somatic mutagenesis in normal and

autoreactive B cells. J Immunol. (1996) 156:2642–52.

54. Bolotin DA, Poslavsky S, Mitrophanov I, ShugayM,Mamedov IZ, Putintseva

EV, et al. MiXCR: software for comprehensive adaptive immunity profiling.

Nat Methods (2015) 12:380–1. doi: 10.1038/nmeth.3364

55. Aouinti S, Malouche D, Giudicelli V, Kossida S, Lefranc MP. IMGT/HighV-

QUEST statistical significance of IMGT clonotype (AA) diversity per

gene for standardized comparisons of next generation sequencing

immunoprofiles of immunoglobulins and T cell receptors. PLoS ONE

(2015) 10:e0142353. doi: 10.1371/journal.pone.0142353

56. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable

domain sequence analysis tool. Nucleic Acids Res. (2013) 41:W34–40.

doi: 10.1093/nar/gkt382

Frontiers in Immunology | www.frontiersin.org 12 October 2018 | Volume 9 | Article 2149206

https://doi.org/10.1146/annurev.immunol.26.021607.090236
https://doi.org/10.1093/imammb/dql012
https://doi.org/10.1016/j.cell.2010.10.032
https://doi.org/10.1038/nature13803
https://doi.org/10.1126/science.1257861
https://doi.org/10.1074/jbc.M111.290783
https://doi.org/10.1126/sciimmunol.aam8686
https://doi.org/10.1126/sciimmunol.aap8029
https://doi.org/10.1038/nature13764
https://doi.org/10.1016/j.immuni.2016.02.010
https://doi.org/10.1126/science.aad3439
https://doi.org/10.1016/j.it.2015.09.006
https://doi.org/10.1038/nbt.2782
https://doi.org/10.1186/s13073-015-0243-2
https://doi.org/10.1186/s13073-016-0322-z
https://doi.org/10.3389/fimmu.2014.00264
https://doi.org/10.1073/pnas.1617959114
https://doi.org/10.1016/j.cell.2016.02.022
https://doi.org/10.1016/j.virol.2017.02.015
https://doi.org/10.1038/nature13036
https://doi.org/10.1016/j.cell.2015.03.004
https://doi.org/10.1126/science.1207532
https://doi.org/10.1126/science.aad9195
https://doi.org/10.1038/nature12966
https://doi.org/10.1016/j.immuni.2017.11.023
https://doi.org/10.1038/nm.3963
https://doi.org/10.1038/nature12053
https://doi.org/10.1016/j.jim.2008.06.006
https://doi.org/10.1093/bioinformatics/btx533
https://doi.org/10.1371/journal.ppat.1003754
https://doi.org/10.1111/imm.12838
https://doi.org/10.1126/scitranslmed.aad0522
https://doi.org/10.1371/journal.pone.0160853
https://doi.org/10.1371/journal.pone.0190982
https://doi.org/10.1126/scitranslmed.3008879
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1371/journal.pone.0142353
https://doi.org/10.1093/nar/gkt382
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yermanos et al. Systems Phylogeny of Antibody Repertoires

57. Ralph DK, Matsen FA IV. Likelihood-based inference of B

cell clonal families. PLoS Comput Biol. (2016) 12:e1005086.

doi: 10.1371/journal.pcbi.1005086

58. Schramm CA, Sheng Z, Zhang Z, Mascola JR, Kwong PD, Shapiro L.

SONAR: a high-throughput pipeline for inferring antibody ontogenies from

longitudinal sequencing of B cell transcripts. Front Immunol. (2016) 7:372.

doi: 10.3389/fimmu.2016.00372

59. Marcou Q, Mora T, Walczak AM. High-throughput immune

repertoire analysis with IGoR. Nat Commun. (2018) 9:561.

doi: 10.1038/s41467-018-02832-w

60. Gaëta BA, Malming HR, Jackson KJ, Bain ME, Wilson P, Collins

AM. iHMMune-align: hidden Markov model-based alignment and

identification of germline genes in rearranged immunoglobulin gene

sequences. Bioinformatics (2007) 23:1580–7. doi: 10.1093/bioinformatics/

btm147

61. Ralph DK, Matsen FA IV. Per-sample immunoglobulin germline inference

from B cell receptor deep sequencing data. ArXiv:171105843[Preprint]

(2017). Available online at: http://arxiv.org/abs/1711.05843 (Accessed July

12, 2018).

62. Corcoran MM, Phad GE, Bernat NV, Stahl-Hennig C, Sumida N, Persson

MAA, et al. Production of individualized V gene databases reveals high

levels of immunoglobulin genetic diversity. Nat Commun. (2016) 7:13642.

doi: 10.1038/ncomms13642

63. Gadala-Maria D, Yaari G, Uduman M, Kleinstein SH. Automated analysis of

high-throughput B-cell sequencing data reveals a high frequency of novel

immunoglobulin V gene segment alleles. Proc Natl Acad Sci USA. (2015)

112:E862–70. doi: 10.1073/pnas.1417683112

64. Olivieri DN, von Haeften B, Sánchez-Espinel C, Faro J, Gambón-Deza

F. Genomic V exons from whole genome shotgun data in reptiles.

Immunogenetics (2014) 66:479–92. doi: 10.1007/s00251-014-0784-3

65. Briney B, Le K, Zhu J, Burton DR. Clonify: unseeded antibody lineage

assignment from next-generation sequencing data. Sci Rep. (2016) 6:23901.

doi: 10.1038/srep23901

66. DeWitt WS III, Mesin L, Victora GD, Minin VN, Matsen FA IV.

Using genotype abundance to improve phylogenetic inference.

ArXiv:170808944[Preprint] Q-Bio (2017). Available online at: http://

arxiv.org/abs/1708.08944 (Accessed September 21, 2017).

67. Odegard VH, Schatz DG. Targeting of somatic hypermutation. Nat Rev

Immunol. (2006) 6:573–83. doi: 10.1038/nri1896

68. Goossens T, Klein U, Küppers R. Frequent occurrence of deletions and

duplications during somatic hypermutation: implications for oncogene

translocations and heavy chain disease. Proc Natl Acad Sci USA. (1998)

95:2463–8. doi: 10.1073/pnas.95.5.2463

69. Simonich CA, Williams KL, Verkerke HP, Williams JA, Nduati R, Lee KK,

et al. HIV-1 neutralizing antibodies with limited hypermutation from an

infant. Cell (2016) 166:77–87. doi: 10.1016/j.cell.2016.05.055

70. Rogozin IB, Kolchanov NA. Somatic hypermutagenesis in immunoglobulin

genes: II. Influence of neighbouring base sequences on mutagenesis. Biochim

Biophys Acta (1992) 1171:11–8. doi: 10.1016/0167-4781(92)90134-L

71. Betz AG, Neuberger MS, Milstein C. Discriminating intrinsic and actigen-

selected mutational hotspots in immunoglobulin V genes. Immunol Today

(1993) 14:405–11. doi: 10.1016/0167-5699(93)90144-A

72. Betz AG, Rada C, Pannell R,Milstein C, NeubergerMS. Passenger transgenes

reveal intrinsic specificity of the antibody hypermutation mechanism:

clustering, polarity, and specific hot spots. Proc Natl Acad Sci USA. (1993)

90:2385–8. doi: 10.1073/pnas.90.6.2385

73. Shapiro GS, Aviszus K, Ikle D, Wysocki LJ. Predicting regional mutability

in antibody V genes based solely on di- and trinucleotide sequence

composition. J Immunol. (1999) 163:259–68.

74. Yaari G, Heiden JV, Uduman M, Gadala-Maria D, Gupta N, Stern

JN, et al. Models of somatic hypermutation targeting and substitution

based on synonymous mutations from high-throughput Immunoglobulin

sequencing data. Front B Cell Biol. (2013) 4:358. doi: 10.3389/fimmu.2013.

00358

75. Cui A, Niro RD, Vander Heiden JA, Briggs AW, Adams K, Gilbert

T, et al. A model of somatic hypermutation targeting in mice based

on high-throughput Ig sequencing data. J Immunol. (2016) 197:3566–74.

doi: 10.4049/jimmunol.1502263

76. Hoehn KB, Lunter G, Pybus OG. A phylogenetic codon substitution

model for antibody lineages. Genetics (2017) 206:417–27.

doi: 10.1534/genetics.116.196303

77. Tipton CM, Fucile CF, Darce J, Chida A, Ichikawa T, Gregoretti I,

et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell

population expansions in acute systemic lupus erythematosus.Nat Immunol.

(2015) 16:755–65. doi: 10.1038/ni.3175

78. Bashford-Rogers RJ, Palser AL, Huntly BJ, Rance R, Vassiliou GS, Follows

GA, et al. Network properties derived from deep sequencing of human B-

cell receptor repertoires delineate B-cell populations. Genome Res. (2013)

23:1874–84. doi: 10.1101/gr.154815.113

79. Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, et al.

Neutralizing antibodies against West Nile virus identified directly from

human B cells by single-cell analysis and next generation sequencing. Integr

Biol. (2015) 7:1587–97. doi: 10.1039/C5IB00169B

80. Soto C, Ofek G, Joyce MG, Zhang B, McKee K, Longo NS, et al.

Developmental pathway of the MPER-directed HIV-1-neutralizing antibody

10E8. PLoS ONE (2016) 11:e0157409. doi: 10.1371/journal.pone.0157409

81. Zhou T, Zhu J, Wu X, Moquin S, Zhang B, Acharya P, et al. Multidonor

analysis reveals structural elements, genetic determinants, and maturation

pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity

(2013) 39:245–58. doi: 10.1016/j.immuni.2013.04.012

82. Wang C, Liu Y, Xu LT, Jackson KJ, Roskin KM, Pham TD, et al. Effects

of aging, cytomegalovirus infection, and EBV infection on human B

cell repertoires. J Immunol. (2014) 192:603–11. doi: 10.4049/jimmunol.

1301384

83. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM,

et al. T-Coffee: a web server for the multiple sequence alignment of protein

and RNA sequences using structural information and homology extension.

Nucleic Acids Res. (2011) 39:W13–7. doi: 10.1093/nar/gkr245

84. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast,

scalable generation of high-quality protein multiple sequence alignments

using Clustal Omega.Mol Syst Biol. (2014) 7:539. doi: 10.1038/msb.2011.75

85. Edgar RC. MUSCLE: multiple sequence alignment with high

accuracy and high throughput. Nucleic Acids Res. (2004) 32:1792–7.

doi: 10.1093/nar/gkh340

86. Lassmann T, Sonnhammer EL. Kalign – an accurate and fast multiple

sequence alignment algorithm. BMC Bioinformatics (2005) 6:298.

doi: 10.1186/1471-2105-6-298

87. Yang Z, Rannala B. Molecular phylogenetics: principles and practice.Nat Rev

Genet. (2012) 13:303–14. doi: 10.1038/nrg3186

88. Gascuel O, Steel M. Neighbor-joining revealed. Mol Biol Evol. (2006)

23:1997–2000. doi: 10.1093/molbev/msl072

89. Saitou N, Nei M. The neighbor-joining method: a new method for

reconstructing phylogenetic trees.Mol Biol Evol. (1987) 4:406–25.

90. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics

and evolution in R language. Bioinformatics (2004) 20:289–90.

doi: 10.1093/bioinformatics/btg412

91. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics (2011)

27:592–3. doi: 10.1093/bioinformatics/btq706

92. Wendel BS, He C, Qu M, Wu D, Hernandez SM, Ma KY, et al. Accurate

immune repertoire sequencing reveals malaria infection driven antibody

lineage diversification in young children. Nat Commun. (2017) 8:531.

doi: 10.1038/s41467-017-00645-x

93. Fitch WM. Toward defining the course of evolution: minimum change for a

specific tree topology. Syst Zool. (1971) 20:406–16. doi: 10.2307/2412116

94. Farris JS. Methods for computing Wagner Trees. Syst Zool. (1970) 19:83–92.

doi: 10.2307/2412028

95. Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2).

Cladistics (1989) 5:164–6.

96. Revell LJ, Chamberlain SA. Rphylip: an R interface for PHYLIP.Methods Ecol

Evol. (2014) 5:976–81. doi: 10.1111/2041-210X.12233

97. Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, et al.

Immunoglobulin class-switched B cells form an active immune axis between

CNS and periphery in multiple sclerosis. Sci Transl Med. (2014) 6:248ra106.

doi: 10.1126/scitranslmed.3008930

98. Jukes T, Cantor C. Evolution of Protein Molecules. New York, NY Academic

Press (1969). p. 121–32.

Frontiers in Immunology | www.frontiersin.org 13 October 2018 | Volume 9 | Article 2149207

https://doi.org/10.1371/journal.pcbi.1005086
https://doi.org/10.3389/fimmu.2016.00372
https://doi.org/10.1038/s41467-018-02832-w
https://doi.org/10.1093/bioinformatics/btm147
http://arxiv.org/abs/1711.05843
https://doi.org/10.1038/ncomms13642
https://doi.org/10.1073/pnas.1417683112
https://doi.org/10.1007/s00251-014-0784-3
https://doi.org/10.1038/srep23901
http://arxiv.org/abs/1708.08944
http://arxiv.org/abs/1708.08944
https://doi.org/10.1038/nri1896
https://doi.org/10.1073/pnas.95.5.2463
https://doi.org/10.1016/j.cell.2016.05.055
https://doi.org/10.1016/0167-4781(92)90134-L
https://doi.org/10.1016/0167-5699(93)90144-A
https://doi.org/10.1073/pnas.90.6.2385
https://doi.org/10.3389/fimmu.2013.00358
https://doi.org/10.4049/jimmunol.1502263
https://doi.org/10.1534/genetics.116.196303
https://doi.org/10.1038/ni.3175
https://doi.org/10.1101/gr.154815.113
https://doi.org/10.1039/C5IB00169B
https://doi.org/10.1371/journal.pone.0157409
https://doi.org/10.1016/j.immuni.2013.04.012
https://doi.org/10.4049/jimmunol.1301384
https://doi.org/10.1093/nar/gkr245
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1186/1471-2105-6-298
https://doi.org/10.1038/nrg3186
https://doi.org/10.1093/molbev/msl072
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1038/s41467-017-00645-x
https://doi.org/10.2307/2412116
https://doi.org/10.2307/2412028
https://doi.org/10.1111/2041-210X.12233
https://doi.org/10.1126/scitranslmed.3008930
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yermanos et al. Systems Phylogeny of Antibody Repertoires

99. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by

a molecular clock of mitochondrial DNA. J Mol Evol. (1985) 22:160–74.

doi: 10.1007/BF02101694

100. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA

sequences. Lect Math Life Sci. (1986) 17:57–86.

101. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol

Biol Evol. (2013) 30:1229–35. doi: 10.1093/molbev/mst012

102. Ashkenazy H, Penn O, Doron-Faigenboim A, Cohen O, Cannarozzi

G, Zomer O, et al. FastML: a web server for probabilistic

reconstruction of ancestral sequences. Nucleic Acids Res. (2012) 40:W580–4.

doi: 10.1093/nar/gks498

103. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-

TREE: a fast and effective stochastic algorithm for estimating

maximum-likelihood phylogenies. Mol Biol Evol. (2015) 32:268–74.

doi: 10.1093/molbev/msu300

104. Doria-Rose NA, Bhiman JN, Roark RS, Schramm CA, Gorman J, Chuang

GY, et al. New member of the V1V2-directed CAP256-VRC26 lineage that

shows increased breadth and exceptional potency. J Virol. (2016) 90:76–91.

doi: 10.1128/JVI.01791-15

105. Joyce MG, Wheatley AK, Thomas PV, Chuang GY, Soto C, Bailer RT, et al.

Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A

viruses. Cell (2016) 166:609–23. doi: 10.1016/j.cell.2016.06.043

106. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol. (2007) 7:214. doi: 10.1186/1471-2148-

7-214

107. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2:

a software platform for Bayesian evolutionary analysis. PLOS Comput Biol.

(2014) 10:e1003537. doi: 10.1371/journal.pcbi.1003537

108. Safonova Y, Lapidus A, Lill J. IgSimulator: a versatile

immunosequencing simulator. Bioinformatics (2015) 1:3213–5.

doi: 10.1093/bioinformatics/btv326

109. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.

(1981) 53:131–47. doi: 10.1016/0025-5564(81)90043-2

110. Kendall M, Colijn C. Mapping phylogenetic trees to reveal distinct patterns

of evolution.Mol Biol Evol. (2016) 33:2735–43. doi: 10.1093/molbev/msw124

111. Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, et al.

Unifying the epidemiological and evolutionary dynamics of pathogens.

Science (2004) 303:327–32. doi: 10.1126/science.1090727

112. Colless DH. Phylogenetics: The theory and practice of phylogenetic

systematics. Syst Zool. (1982) 31:100–4. doi: 10.2307/2413420

113. Sackin MJ. “Good” and “Bad” phenograms. Syst Zool. (1972) 21:225–6.

doi: 10.2307/2412292

114. Horns F, Vollmers C, Dekker CL, Quake SR. Signatures of selection in

the human antibody repertoire: selective sweeps, competing subclones, and

neutral drift. bioRxiv (2017) 111:145052. doi: 10.1101/145052

115. Manske MK, Zuckerman NS, Timm MM, Maiden S, Edelman H,

Shahaf G, et al. Quantitative analysis of clonal bone marrow CD19+

B cells: use of B cell lineage trees to delineate their role in the

pathogenesis of light chain amyloidosis. Clin Immunol. (2006) 120:106–20.

doi: 10.1016/j.clim.2006.01.008

116. Lewitus E, Morlon H. Characterizing and comparing phylogenies from their

Laplacian spectrum. Syst Biol. (2016) 65:495–507. doi: 10.1093/sysbio/syv116

117. Lozupone C, Knight R. UniFrac: a new phylogenetic method for

comparing microbial communities. Appl Environ Microbiol. (2005) 71:8228–

35. doi: 10.1128/AEM.71.12.8228-8235.2005

118. Nourmohammad A, Otwinowski J, Luksza M, Mora T, Walczak AM. Clonal

competition in B-cell repertoires during chronic HIV-1 infection. (2018)

ArXiv:1802.08841[Preprint]. doi: 10.1101/271130

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Yermanos, Dounas, Stadler, Oxenius and Reddy. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 14 October 2018 | Volume 9 | Article 2149208

https://doi.org/10.1007/BF02101694
https://doi.org/10.1093/molbev/mst012
https://doi.org/10.1093/nar/gks498
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1128/JVI.01791-15
https://doi.org/10.1016/j.cell.2016.06.043
https://doi.org/10.1186/1471-2148-7-214
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1093/bioinformatics/btv326
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1126/science.1090727
https://doi.org/10.2307/2413420
https://doi.org/10.2307/2412292
https://doi.org/10.1101/145052
https://doi.org/10.1016/j.clim.2006.01.008
https://doi.org/10.1093/sysbio/syv116
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1101/271130
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 08 October 2018

doi: 10.3389/fimmu.2018.02249

Frontiers in Immunology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 2249

Edited by:

Gur Yaari,

Bar-Ilan University, Israel

Reviewed by:

Gregory C. Ippolito,

University of Texas at Austin,

United States

Peter Daniel Burrows,

University of Alabama at Birmingham,

United States

*Correspondence:

Andrew M. Collins

a.collins@unsw.edu.au

Specialty section:

This article was submitted to

B Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 15 June 2018

Accepted: 10 September 2018

Published: 08 October 2018

Citation:

Collins AM and Watson CT (2018)

Immunoglobulin Light Chain Gene

Rearrangements, Receptor Editing

and the Development of a

Self-Tolerant Antibody Repertoire.

Front. Immunol. 9:2249.

doi: 10.3389/fimmu.2018.02249

Immunoglobulin Light Chain Gene
Rearrangements, Receptor Editing
and the Development of a
Self-Tolerant Antibody Repertoire

Andrew M. Collins 1* and Corey T. Watson 2

1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia, 2Department

of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States

Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous

feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic

variants of germline light chain genes is also limited, even in well-studied species. In this

review, the implications of this lack of diversity are considered. We explore germline and

rearranged light chain genes in a variety of species, with a particular focus on human and

mouse genes. The importance of the number, organization and orientation of the genes

for the control of repertoire development is discussed, and we consider how primary

rearrangements and receptor editing together shape the expressed light chain repertoire.

The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has

been hypothesized that an important function of the light chain is to guard against self-

reactivity, and the role of secondary rearrangements in this process could explain the

genomic organization of the light chain genes. It could also explain why the light chain

repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that

suitable light chain partners are usually available for each heavy chain that forms early in B

cell development. We suggest that the co-evolved loci of the house mouse often became

separated during the inbreeding of laboratory mice, resulting in new pairings of loci that

are derived from different sub-species of the house mouse. A resulting vulnerability to

self-reactivity could explain at least some mouse models of autoimmune disease.

Keywords: immunoglobulin light chain, receptor editing, self-tolerance, antibody repertoire, V(D)J rearrangement,

models of autoimmune disease, sub-species of the house mouse

INTRODUCTION

The success of the humoral arm of the adaptive immune system depends upon a diversity of
antibody specificities within an individual’s population of circulating B cells. This diversity is made
possible by the process of gene recombination that takes place during B cell development, creating
functional antibody heavy and light chain V(D)J transcripts from relatively small sets of Variable
(V), Diversity (D), and Joining (J) genes. The basic processes underlying V(D)J recombination are
now well understood (1, 2) and recently, thanks to advances in sequencing technologies that allow
millions of different V(D)J gene rearrangements to be explored in a single individual, much has
been learnt about the nature of the expressed antibody repertoire (3–8). Most repertoire studies,
however, have focused upon the heavy chain repertoire. The nature of the light chain repertoire is
less clear.
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The diversity of the antibody repertoire is a consequence
of the permutations of heavy chain V, D, and J genes,
and light chain V and J genes, that are possible given the
size of these sets of genes within the genome, and of the
permutations of heavy and light chain pairings. This component
of the overall diversity is referred to as combinatorial diversity,
and is a simple reflection of the number of available heavy
chain genes and κ and λ light chain genes. Additional
diversity is generated during the recombination processes by
imprecise joining at the V(D)J junctions. This is referred to
as junctional diversity, and is principally determined by the
extent to which random nucleotides are inserted between joining
genes (4, 6).

In this review, we highlight important consequences for
repertoire development that result from the organization of
light chain genes within the mammalian genome. In particular,
this organization facilitates repeated rounds of light chain gene
rearrangement through the process of receptor editing. This
helps to ensure that virtually all developing B cells successfully
generate productive light chain rearrangements.

A number of biases and constraints are discussed which lead
to substantially less diversity in the light chain repertoire than is
usually calculated, and this limited diversity appears to be present
in a wide range of species. We conclude that diversity is not the
raison d’être of the light chain repertoire. In light of substantial
evidence for a special role for light chains in autoimmune
reactivity, we propose that the co-evolution of heavy and light
chain genes has resulted in a limited light chain repertoire
that usually serves to avoid self-reactivity. This hypothesis is
explored through an examination of the generation of light chain
repertoires in inbredmouse strains that are widely used inmodels
of autoimmune disease.

THE NUMBER AND ORGANIZATION OF

LIGHT CHAIN GENES WITHIN THE

MAMMALIAN GENOME

To properly understand how the heavy and light chain
repertoires are generated, it is essential to have a detailed
knowledge of the number of rearranging germline genes that
give rise to these repertoires, and of their organization within the
genome. The number of genes per species is highly variable as a
result of dynamic evolutionary processes in these complex gene
families. This can be appreciated by examining the phylogenetic
relationships among genes within and between species, and is
demonstrated in a phylogeny of functional human and mouse
heavy and light chain variable genes (Figure S1). However, our
understanding of the precise evolutionary histories of these genes
across a larger range of species remains limited, largely due to a
paucity of available genomic data.

The organization of the light chain genes is particularly
complex, and quite different to that of the heavy chain genes.
Heavy chain genes are found within a single gene locus (IGH),
while light chain genes are generally found as two separate gene
loci-the κ locus (IGK) and the λ locus (IGL). These two loci
are found in virtually all mammalian species, while loci for

these and other light chain variants are found in bony and even
cartilaginous fish (9, 10). Such a general distribution of light chain
genes between separate loci is intriguing, and suggests that this
genomic organization may carry evolutionary advantages.

Within the κ chain loci of humans, mice and most other
species, genes are organized in a similar fashion to the genes
of the heavy chain locus (11–15). That is, a cluster of IGKV
genes are found 5′ of a small number of IGKJ genes, with the
IGKJ gene cluster located 5′ of a single IGKC gene. The dog
genome is unusual in that half the canine IGKV genes are located
upstream, and half are located downstream of the IGKJ and IGKC
genes (16).

The number of functional IGKV genes varies widely between
species, and this number may have some relationship to species
size (Figure S1). We have argued that small species may require
more germline genes because of the small burst size of the
germinal center reaction in those species (17). As the number
of cells responding to antigen is limited in small species, there
is less chance for important higher affinity antibodies to emerge
from the germinal center through the process of somatic point
mutation. Critical specificities must therefore be encoded in the
germline.

Sequencing of the human κ locus has identified 44 functional
IGKV genes and open reading frames, which are found in two
clusters that arose through segmental duplication (18, 19). An
additional three functional IGKV sequences may be present in
some haplotypes (20). A comparable number of functional IGKV
genes (n = 54) was recently characterized in genomic sequences
from the rhesus macaque, a commonly used non-human primate
model (21). In contrast, studies of the horse genome reference
sequence identified only 19 apparently functional IGKV genes
(22), while 111 and 135 potentially functional IGKV genes
have been found in the guinea pig and rat genome reference
sequences, respectively (23, 24). Among mammalian species
studied to date, the microbat (Myotis lucifugis) is unique in
that it lacks a κ locus (25). It has been suggested that this
may be part of a general simplification of immune function
in a species that has met the weight to muscle challenge
that is necessary for flight capability (26). This hypothesis
is indirectly supported by the fact that the κ locus is also
absent from the genome of chickens (25) and zebra finches
(27), and it may have been lost from the genomes of all bird
species.

In line with numbers reported in the small rodent species
mentioned above, the genome of C57BL/6 mice carries around
101 functional IGKV genes (28). This number may, however,
not be accurate for other inbred mouse strains. We recently
reported that the heavy chain loci of different inbred strains of
mice are derived from different sub-species of the house mouse.
As a result, the C57BL/6 strain carries 99 functional IGHV
genes, but the BALB/c strain carries 163 functional IGHV genes
(29). We have also noted that based on available whole-genome
SNP data (30), almost all inbred strains carry κ chain loci that
appear to be derived from the Mus musculus domesticus sub-
species (17). NOD/ShiLtJ mice are unusual in that they carry a
M. m. castaneus-derived κ locus (17). Interestingly, many of the
distinct κ genes of this diabetes-prone strain are identical to κ
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genes of the Systemic Lupus Erythematosis (SLE)-prone (NZB×

NZW)F1 and MRL strains (31). SNP analysis shows that parts
of the IGKV loci of NZB and MRL mice are also derived from
the M. m. castaneus sub-species (Figure 1). This confirms an
observation from a very early study of BALB/c and NZB-derived
myeloma proteins. It was reported that NZB and BALB/c mice
share some κ light chain sequences, but that other κ genes differ
markedly between the strains (32). SNP analysis shows that the
chr6:67.5m−68.2m region of the κ locus of the NZB strain is
of M. m. castaneus origin. The chr6:68.2m−68.5m region is of
uncertain origin, and the remainder of the NZB κ locus is M.
m. domesticus-derived. Genes of M. m. castaneus origin are also
found in the MRL strain, in the region chr6:68.8m−70.7m (see
Figure 1).

The λ locus of most species investigated to date includes a
set of IGLV genes that are located 5′ from a variable number
of tandem cassettes, each made up of an IGLJ gene and an
IGLC gene. The human locus includes as many as 38 functional
IGLV genes and Open Reading Frames (18) and five functional
J-C gene pairs (34). In the rhesus macaque, 47 IGLV genes are
predicted to be functional based on genomic data (21), and in the
pig, there are nine functional IGLV genes (35). In these species
too, the IGKV genes are located 5′ of functional J-C pairs, but
this organization is not invariant. 144 IGLV genes of uncertain
functionality have been identified in the horse, with 110 genes
being located upstream and 34 being located downstream of
the IGLJ/IGLC cluster (22, 36). The locus of the mouse is also
differently organized.

The C57BL/6 genome includes just three IGLV genes
(Figure S1), and there has been speculation that IGLV genes
might have been lost during the inbreeding of laboratory strains.
In fact, diversity is lacking in wild mice of all three Mus
musculus subspecies (37). Two of the C57BL/6 IGLV genes
are associated with one functional J-C gene pair, while the
third IGLV gene is associated with a second J-C pair. Lambda
rearrangement in the mouse takes place within each of the
two VJC units, with little or no recombination between the
units (38).

The genes of both the human and mouse λ IGLV loci are
all in the same transcriptional orientation as the λ J-C gene
clusters (18, 39). The V, D, and J genes of the heavy chain loci
of mammalian species are also found in the same orientation as
their associated constant region genes (40–42). The κ chain locus
of these species, on the other hand, includes many IGKV genes
that are found in the opposite orientation to their associated IGKJ
and IGKC genes. In the human, the orientation of the distal κ

gene cluster is opposite to that of the IGKJ genes and IGKC gene,

while all but the two most 3
′

genes of the proximal gene cluster
share their orientation with the IGKJ and IGKC genes (20). The
κ locus of the mouse also includes IGKV genes in both the same
and the opposite orientation to their respective IGKJ and IGKC
genes (13). Such variable orientations of IGKV genes have also
been reported in other species including the elephant (43), horse
(22), pig (14), dog (16), and rhesus macaque (21).

In the horse, which is a species with a λ -dominant repertoire,
IGLV genes are found both upstream and downstream of the λ

J-C gene clusters. Many of these sequences are pseudogenes, but
the few functional genes in the downstream cluster are found in
the opposite orientation to that of the horse J-C genes, thereby
allowing the genes to recombine (36).

The orientation of genes has other consequences for the
generation of diversity. The opposite orientation of many
IGKV genes within the murine and human κ loci means that
primary rearrangements of such genes do not lead to deletion
of the genes that are located between recombining IGKV and
IGKJ genes (see Figure 2). This retention of genes becomes
important if a rearrangement results in a non-productive chain
or a self-reactive B cell receptor (BCR). In such situations,
all other IGKV and IGKJ germline genes remain available for
secondary rearrangements (see discussion below). In any cell
that experiences such successive rounds of recombination, the
order and orientation of the genes within the locus will be
subject to complex changes, and this will have consequences for
the repertoire that is generated by secondary rearrangements
(Figure 2).

The frequencies with which different V, D, and J genes
are utilized in gene rearrangements vary by many orders
of magnitude. This appears to reflect, at least in part, the
accessibility of genes, and their positions within the genome
(28, 44, 45). Dramatic changes in the order of genes and in
the distances between IGKV and IGKJ genes, arising from
a primary rearrangement of genes, should therefore lead to
changes to gene accessibility. This may mean that the utilization
frequency of a gene can vary between primary, secondary and
subsequent rearrangements. Complex changes could therefore
compromise the tight regulation that otherwise appears to guide
the generation of the antibody repertoire. In many species, this
risk to the regulation of the repertoire may be mitigated by
the action of Kappa Deleting Elements (KDE). The consecutive
rearrangements that are possible within the κ locus can be
terminated by KDE-mediated recombination, driving B cells to
the expression of genes of the λ locus (46). This may also prevent
or lead to the resolution of allelic inclusion, which can arise
because of the orientation of IGKV genes within the locus (see
Figure 2) (47).

Kappa Deleting Elements (KDE) are located downstream of
IGKC genes, and they appear to be highly conserved within
the mammalian genome (48). The mouse KDE is referred to
as the Recombining Segment (RS), and it is distinct but very
similar to the Recombination Signal Sequences (RSS) located
adjacent to the 3′ ends of the IGKV genes and the 5′ ends
of the IGKJ genes (49). KDEs of all species studied are made
up of conserved heptamer and nonamer sequences separated
by 23 base pair spacers (48). The KDEs function by allowing
recombination between the KDEs and recombining elements that
contain the palindromic heptamer CACAGTG. These are located
within the IGKJ-IGKC intron and in the RSS at the 3′ ends
of the IGKV genes. Such recombination effectively terminates
the involvement of the rearranging locus in the generation of
diversity. This will drive recombination from the first to the
second κ locus (i.e., on the alternate chromosome), or from
the second κ locus to the λ gene-bearing chromosomes (see
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FIGURE 1 | Predicted sub-specific origins of germline haplotypes found in the (A) immunoglobulin IGHV and (B) immunoglobulin IGKV loci among selected classical

inbred and wild-derived mouse strains. The MRL/MpJ strain is the parental strain of the MRL/lpr strain, and although MRL/MpJ mice carry a normal Fas gene, they

are also prone to autoimmunity. The lowest three strains shown are wild-derived, with genomes that are representative of the three major subspecies. M. m.

domesticus-derived sequences are shown in blue, M. m. musculus-derived sequences are shown in red, and M. m. castaneus-derived sequences are shown in

green. Data from Yang et al. (30). Graphics by Mouse Phylogeny Viewer (33).

Figures 2, 3). It is likely that despite the conservation of this
element within the κ locus, the strength of action of the elements
varies between species. The preponderance of κ chains in the
expressed antibody repertoire of themouse, for example, suggests
that the mouse RS usually fails to drive rearrangement to the
λ locus. Instead, each murine κ locus will likely be rearranged
to exhaustion, and this will prevent the overexpression of the
handful of λ genes that remain in the mouse genome. The
activities of RS in different sub-species of the house mouse have
not been explored.

Gene Rearrangement of the Light Chain

Loci
The light chain repertoire is shaped by the order of gene
rearrangement, and early studies in the mouse and human
showed that rearrangement begins with the κ locus (34, 50).
This may not be true for all species. It has recently been
shown that the λ locus rearranges first in the fetal and neonatal
pig (51, 52). Timing therefore requires further investigation,
particularly in species with repertoires that are dominated by
the λ light chain, for regulation of the expressed repertoire
could be more difficult if the minor locus was to rearrange

first. If a species had just a handful of functional κ genes, and
abundant functional λ genes, initial rearrangements of the κ

locus would risk over-expression of the few available IGKV
genes.

In the mouse and human, if an initial κ rearrangement is
unproductive or self-reactive, additional rounds of secondary
rearrangement can proceed, in a process known as receptor
editing (53–55). Receptor editing is usually discussed as a
pathway to resolution of auto-reactivity, either in developing
B cells in which self-reactivity is generated by primary
rearrangements (56), or in mature antigen-selected B cells where
self-reactivity may result from somatic point mutations (57). Less
attention has been paid to the more general role that receptor
editing plays in shaping the formation of the repertoire.

The organization of genes within the light chain loci facilitates
receptor editing, and this increases the likelihood that each B cell
will form an in-frame light chain rearrangement (58). As long
as unrearranged V genes remain 5′ of a VJ rearrangement, and

unrearranged J genes remain 3
′

of the rearrangement, receptor
editing can continue (see Figure 2). In the mouse, the potential
of κ chain receptor editing is maximized by a bias toward
rearrangement of the 5′ IGKJ1 gene (59), and this targeting
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FIGURE 2 | Three rounds of VJ rearrangement of the κ locus, that might result from non-productive rearrangements or rearrangements resulting in self-reactive BCR.

The initial configuration of genes (top) shows four IGKV genes in the reverse orientation to the IGKJ and IGKC genes, and 3 IGKV genes in the orientation shared with

those genes. Gene loss, as well as the changing order and orientation of genes is highlighted through successive rounds of rearrangement. Expression of the final

configuration (shown in row 4), which threatens allelic inclusion and possible continuing auto-reactivity, is terminated through the action of the Kappa Deleting Element

(bottom).

results from the action of the proximal IGKJ germline transcript
promoter (60).

A process of serial rearrangement of the κ chain locus
may continue on one chromosome until all possibilities of
recombination have been exhausted. Recombination will then
proceed on the second κ chromosome (Figure 3). A failure to
produce a productive, self-tolerant rearrangement on the second
chromosome, after multiple rounds of rearrangement, will be
followed by rearrangement of the λ loci.

The human λ locus also seems permissive of receptor editing
(61), and the absence of deletional elements in the λ locus
should maximize the potential of serial λ recombination in the

human. This should ensure that relatively few human B cells
fail to make a suitable productive light chain rearrangement
that is self-tolerant when expressed in association with the cell’s
heavy chain rearrangement. The possibility of repeated rounds
of λ rearrangement could be particularly important for the
avoidance of self-reactivity, for it has been suggested that λ -
bearing human B cells are less prone to self-reactivity than κ-
bearing B cells (61). The λ chains of these cells may also provide
stability during an ongoing immune response, for it has been
shown that the codon usage of λ genes reduces the likelihood
of structural changes arising from accumulating somatic point
mutations (62).
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FIGURE 3 | Light chain rearrangements provide multiple pathways to the production of self-tolerant B cells. Alternative pathways are a consequence of

rearrangements of the light chain loci that result in non-productive or auto-reactive BCR. Beginning with rearrangements of the κ locus on the first selected

chromosome, a succession of light chains can be paired with an existing heavy chain that is already expressed on the surface of the pre-B cell. Each resulting BCR is

assessed for affinity to self-antigen. Cells expressing autoreactive antibodies can be rescued via further rounds of receptor editing. If repeated rounds of

rearrangements of a locus fail to generate a functional, self-tolerant antibody, and the possibilities of rearrangement are exhausted, the process may continue on other

chromosomes. Rounds of κ rearrangement may be prematurely curtailed by the action of the kappa deleting element. B cells unable to generate self-tolerant

antibodies despite multiple rounds of receptor editing will ultimately be deleted or rendered anergic. In contrast, B cells that generate successful light chain

rearrangements that result in self-tolerant antibodies will go on to develop further into immature B cells.

Population Variation in the κ and λ Gene

Loci
Combinatorial diversity is expanded by heterozygous gene loci,
and such diversity appears to be of functional significance (63).
It is therefore important that repertoire studies include a focus
on alleles and gene heterozygosity. Although a few new allelic
variants of human IGKV genes have recently been reported
(19), the reported IGKV germline gene repertoire appears to
be relatively complete (64). According to the IMGT reference
directory, 26 IGKV genes have no known allelic variants, while
15 IGKV genes have only one reported variant and five have two
known variants. The extent of allelic variation within the κ light

chain locus could be even less than is indicated in the IMGT
reference directory, for some of the reported variants are likely
to be artifacts arising from sequencing errors. This is certainly
the case for many reported IGHV alleles that were identified in
early sequencing studies (65).

The reported human IGLV germline gene repertoire may also
be relatively complete, for only five new alleles have been reported
since 1997. These sequences are more varied than genes and
allelic variants of the IGH and κ loci (66), but like the IGKV
repertoire, there appears to be relatively little allelic variation
amongst the IGLV genes. Functional and ORF allelic variants
have been reported for 24 IGLV genes, but not for 15 other
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IGLV genes. No more than four alleles are identified in the
IMGT reference directory for any IGLV gene (http://www.imgt.
org/vquest/refseqh.html).

In contrast to the genes of the κ and λ loci, there is
just a single functional IGHV gene (IGHV3-NL1) that lacks
reported allelic variants in the IMGT reference directory or
in the IgPdb database (https://cgi.cse.unsw.edu.au/~ihmmune/
IgPdb/). So many common variants are known for some genes
that heterozygosity in any individual is almost assured. For
example there are 16 IGHV1-69 gene sequences in the IMGT
reference directory, and a further 13 alleles have been inferred
from analysis of high throughput genomic and AIRR-seq data
(67, 68). Although the larger number of IGHV allelic variants
could reflect the greater attention that has been given to
defining this set of germline genes, there is additional evidence
that points to a lack of diversity in the light chain gene
repertoire.

A lack of allelic variation in the human κ locus is supported
by AIRR-seq studies of κ rearrangements. In a study of four
individuals, involving the dominant three human IGKV gene
families (IGKV1, IGKV2 and IGKV3), VJ rearrangements were
seen involving between 20 and 25 genes (69). One individual
was homozygous at all gene loci. In the three other individuals,
heterozygosity was only seen at 1 or 2 of the IGKV loci (69). The
contrast with the heavy chain locus is striking. A recent AIRR-seq
study of 95 individuals explored heterozygosity at 50 heavy chain
IGHV gene loci (70). Other than in three individuals from whom
relatively few sequences were generated, study participants were
shown to be heterozygous at between 20% and 40% of the loci. Six
gene loci were heterozygous in over 50% of study participants.
Only six genes that were relatively abundantly present in
the datasets showed homozygosity in all individuals (70).
Similar patterns of heterozygosity within IGHV coding segments
have also been noted from targeted genomic sequencing
data (67).

In addition to allelic variation, gene copy number variation
is also enriched in the IGHV locus, relative to IGLV and IGKV.
Greater than half of the known human functional/ORF IGHV
genes have evidence of copy number variation (45, 67, 70–
75), compared to only one and three IGLV and IGKV genes,
respectively (76–78).

Additional albeit indirect evidence for an evolutionary drive
to conserve rather than diversify the human κ locus comes from
the similarity of the genes in the proximal and distal IGKV
clusters. The large segmental duplication that gave rise to the
human κ locus appears to have occurred since the divergence
of the human lineage from the most recent shared ancestor
with other great apes (11). There are 23 functional IGKV
genes and ORFs in the proximal cluster, and 22 in the distal
cluster. Eighteen paired sequences are found in both clusters,
and no coding changes have evolved at eight of these paired
gene loci. In addition, one sequence in each of two other
sequence pairs are now non-expressible pseudogenes. Expressed
variation is therefore concentrated in just 8 of the 18 sequences.
Furthermore, comparisons of nucleotide variation across the
entirety of the sequence comprising the large proximal and distal
gene clusters reveal strong similarity. Diversity within the large

segmental duplications harboring these gene clusters appears to
be much lower on average (>6 fold less) than that observed
within segmental duplications found in the IGHV locus (19).
We have speculated that this lack of diversity in IGKV may
be the result of homogenizing effects of gene conversion events
between the proximal and distal regions, as such events have been
explicitly documented (19). We also reported that locus-wide
IGHV diversity is ∼3-fold higher than IGLV diversity; in fact,
IGHV diversity appears to be generally higher than the genome
average (19). Earlier analyses based on limited datasets have
suggested that nucleotide and amino acid substitution patterns
within V segments may differ between IGHV, IGKV, and IGLV
loci (79); specifically, and consistent with decreased genomic
diversity in κ locus haplotypes, Schwartz and Hershberg showed
that, relative to κ chain V segments, heavy and λ chain genes
exhibit greater amino acid diversity in both framework and
complementarity determining regions (66). Together, these data
suggest contrasting evolutionary histories that have resulted in
different genetic features being associated with the human heavy
and light chain loci.

The κ locus of the mouse seems to display the same lack of
variation that is seen in the human locus. The IGKV locus was
first mapped using YACs and BACs derived largely fromC57BL/6
and C3H mice (12, 80, 81), and these sequences dominate
the IMGT mouse IGKV database. An alternative assembly of
the mouse κ locus was later produced based upon data from
the C57BL/6, A/J, 129 and DBA/2 strains (82). Each of the
IGKV genes previously reported by Zachau and colleagues were
mapped to this new assembly, and they were all found to have
>99% identity. Not a single allelic variant was reported from this
study, although it is true that their approach means that some
highly similar but previously unreported polymorphisms may
have been overlooked (82).

Evidence of a lack of allelic variation amongst germline genes
within mouse strains also comes from analysis of the IMGT
database. Studies of light chain germline genes have included
a sampling of a wide variety of inbred strains, and from wild-
derived M. m. musculus and M. m. castaneus mice (83–85).
Yet the IMGT database includes allelic variants for just 11
functional IGKV genes, and when analysis is confined to reports
from studies of strains appearing to carry M. m. domesticus-
derived genes, variants have only been seen for 6 IGKV genes.
Confirmation that the apparent lack of variation is genuine,
rather than reflecting insufficient investigation of mouse light
chain genes, needs to be pursued through more comprehensive
surveys of variation across wild mice from each of the sub-
species.

The Diversity of the Expressed Light Chain

Repertoire
It is generally held that a stupendous diversity is the defining
characteristic of the antibody repertories of all species. This
was famously expressed by Peter Medawar as the miracle of
immunology: “that a rabbit yet unborn will be able to make
antibodies to an antigen not yet synthesized” (86). We have
recently argued that the production of antibodies that target
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molecules never before seen, and unlikely to be seen, could
be a costly investment for many species (17). The immune
repertoires of different species may have developed varying
levels of diversity in response to the quite differing evolutionary
pressures faced by each species. Some of the most significant
pressures may result from basic aspects of the biology of species,
including their differing reproductive strategies and longevity,
and especially from their varying sizes. The antibody repertoires
of small species are necessarily small, and there is therefore a
greater need for regulatory processes to steer the development
of their repertoires toward specificities that target key pathogens
(17). This may explain why in comparison to the human
antibody repertoire, the murine repertoire includes more heavy
chain clonotypes that are shared by many individuals of the
species (6, 17, 87).

Public clonotypes may be rare in the human heavy chain
repertoire, but there is a surprising lack of diversity in the human
light chain repertoire, and public clonotypes account for about
60% of the human κ (69) and λ (88) light chain repertoires.
This is in part a consequence of very strong biases in light chain
gene usage. Six IGKV sequences dominate reported human IGK
rearrangements: IGKV3-20∗01, IGKV3-15∗01, IGKV3-11∗01,
IGKV1-5∗01, IGKV2-30∗01, and IGKV1-39∗01/IGKV1D-39∗01
(69). The IGKV3-20∗01 gene alone is seen in over 30% of
rearrangements in some individuals (69). On the other hand,
some genes are utilized at very low frequencies. In fact, amongst
22,193 rearrangements analyzed from four individuals, we saw no
sequences that utilized eight reportedly functional IGKV genes
(69).

Similarly, while the mouse may have over 100 available
IGKV genes, just seven genes are responsible for over 40% of
rearrangements, and the utilization frequencies of some IGKV
genes are as low as 0.001% (28).

Biased usage of λ IGLV genes is also seen. Three IGLV
genes account for more than 50% of human rearrangements,
and individual IGLV genes are used at frequencies that range
from 0.02 to 27% (89). In the neonatal pig, biases are even
more extreme, with three IGLV genes accounting for 70%
of rearrangements (51). The utilization of the four functional
human IGLJ genes are also affected by biases, with frequencies
varying from just 5% for IGLJ1 to almost 55% for IGLJ7 (90, 91).

The lack of D genes in light chain rearrangements limits their
diversity. Diversity is further limited by the fact that relatively
few nucleotides are lost from κ and λ V and J gene ends by
exonuclease removals and few N nucleotides are added to the
junction of the joining genes. Public human κ clonotypes have
on average just 0.4 added N nucleotides, while even private
clonotypes have an average of only 2.5N additions (69). Similarly,
on average, public λ VJ junctions include a single N addition,
and private junctions average around two additions (88). There
is even less N addition in the mouse (92), and interestingly,
this is also true in the humanized mouse (88). This severely
limits junctional diversity of the complementarity determining
region 3 (CDR3) of light chains in the mouse. Together with the
lack of combinatorial diversity, this ensures that the light chain
repertoire of the mouse and human are highly constrained. In an
analysis of over 250,000 mouse κ chain VJ rearrangements from

59 mice, over 90% of the sequences encoded just 1000 amino
acid sequences (28). A similar number of amino acid sequences
dominate the human κ chain repertoire (69).

LIGHT CHAINS AND THE CONTROL OF

SELF-REACTIVITY

The light chain repertoire is constrained, and there is an
extensive body of research that suggests that an important
factor that constrains the repertoire is the need for light
chain rearrangements to minimize BCR self-reactivity. Human
antibodies formed with κ chains may have a greater tendency
toward self-reactivity (61), but through repeated rounds of κ

rearrangement, and through similar rounds of λ rearrangement,
much self-reactivity seems to be avoided. This may explain the
recent observations that reduced light chain editing is associated
with several autoimmune conditions in the human, including
Systemic Lupus Erythematosis (SLE), type 1 diabetes (T1D), and
myasthenia gravis (47, 93). This has also been observed in several
mouse models of autoimmunity (47). It has also been shown
that reduced KDE rearrangements can lead to dual κ and λ

chain expression, through a failure to delete κ rearrangements
in λ-switched cells, and this disturbance of light chain editing is
associated with SLE (94).

The study of cells in which both κ and λ rearrangements are
present has highlighted the fact that certain IGKV genes may be
prone to self-reactivity. Biases in IGKV gene expression are seen
when productive κ rearrangements are studied in λ-bearing B
cells, and compared with κ rearrangements from κ-bearing cells
(95). This comparison is possible because of the persistence of κ

VJ rearrangements in cells that have switched to a λ light chain
rearrangement as a consequence of the earlier generation of a
self-reactive κ positive BCR. The biased gene expression therefore
points to a tendency of some genes to mediate self-reactivity.

Some heavy chain IGHV genes are also associated with
autoreactivity, and human IGHV4-34 in particular has been
implicated in anti-red blood cell autoimmune responses (96).
It may be, however, that this association should be seen as
resulting from a difficulty in finding a suitable light chain partner
for IGHV4-34. The persistence of IGHV4-34 in the human
population, and its expression at relatively high frequency within
the antibody repertoire, points to the value of IGHV4-34 heavy
chains when a self-tolerant light chain partner is found.

Evidence in support of a special role for light chains in the
etiology of autoimmune diseases also comes from a consideration
of mouse disease models. There are several types of mouse model
of autoimmune disease (97). Autoimmunity can be induced by
challenging animals with self-antigen in the presence of powerful
adjuvants. An example is the Experimental Allergic Encephalitis
(EAE) model that involves the challenge of SJL mice with spinal
cord homogenate (97). Other models of autoimmune disease
involve the spontaneous development of disease. This is the
case with the NOD Type 1 Diabetes model and models of SLE
using MRL/lpr mice and (NZB × NZM)F1 mice (97). These
spontaneous models may more closely approximate human
disease than the antigen challenge models.
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A third kind of model relies upon genetic manipulation
of animals using gene knockout and transgenic techniques.
These models have been particularly important for the study
of self-reactive B and T cells, and how they are deleted or
otherwise controlled. Some of these models involve the use of
transgenic antigen and antibody pairs (eg HEL/anti-HEL) (98).
Other models use transgenic immunoglobulin chains derived
from autoreactive B cells arising in autoimmune-prone mice.
For example, Andrews and colleagues recently published a study
exploring receptor editing in mice that carry an IGKV4-IGKJ4
anti-DNA transgene (99). Although more self-reactive cells were
seen when the transgene was expressed in autoimmune-prone
MRL/lpr mice, self-reactive B cells were also generated when the
transgene was expressed in C57BL/6 mice (99).

This IGKV4-IGKJ4 anti-DNA transgene sequence is derived
from a monoclonal antibody that was first isolated from an
MRL/lpr mouse in 1987 (100, 101). In describing this and other
anti-DNA antibodies, the authors acknowledged their lack of
knowledge of the germline genes inMRL/lpr mice, but concluded
that themAb antibody gene sequences were relatively unmutated,
based upon a consensus sequence created from both the anti-
DNA and other non-DNA-specific antibodies. The apparent
presence of some somatic point mutations was, however, deemed
to be highly significant. In fact studies describing these antibodies
stand as the first evidence for the possibility that self-reactive
B cells can arise from self-tolerant B cells by the accumulation
of somatic point mutations within the germinal center reaction
(100, 101).

Thirty years later, our understanding of MRL/lpr germline
genes is still far from complete, but comparisons can now
be made between the anti-DNA antibodies and the complete
repertoire of C57BL/6 IGKV genes and other murine IGKV
genes. This includes sequences that are likely to be NOD IGKV
germline genes, many of which are identical to MPL-derived
IGKV sequences in GenBank (31). The IGKV sequence in the
transgene includes 18 nucleotide differences with respect to the
nearest reported IGKV gene (IGKV4-81) in the IMGT reference
directory. The sequence is, however, much more similar to a
NOD sequence reported by Henry and colleagues, differing only
within the CDR3 region of the sequence (31). We believe that
the many differences with respect to C57BL/6 IGKV genes are
a consequence of the separate evolutionary origins of the IGKV
loci of the C57BL/6 and MRL/lpr mouse strains. Based upon the
haplotype analysis depicted in Figure 1, the MRL/MpJ-derived
transgene appears to be ofM. m. castaneus origin. In the absence
of further information about the MRL/lpr IGK locus, there can
now be no certainty regarding the presence or absence of somatic
point mutations in the anti-DNA sequences reported in 1987.
Only when the germline IGKV genes of MRL mice have been
properly documented will it be possible to say whether or not
these anti-DNA antibodies arose through an accumulation of
point mutations in previously self-tolerant cells.

We believe that the autoreactivity of the light chain product
of the IGKV4-IGKJ4 transgene may be the result of its M. m.
castaneus origin, and of its association withM. m. domesticus and
M. m. musculus-derived heavy chains. We also believe thatM. m.
castaneus genes may also explain the spontaneous autoreactivity

that is seen in NOD and other inbred mice. The complete κ light
chain locus of the NOD strain, and portions of the loci of the
MRL/lpr and NZB strains, are derived from the M. m. castaneus
sub-species of the house mouse (Figure 1). The heavy chain locus
of the NOD mouse, on the other hand, comes from the M. m.
musculus sub-species, while the MRL/lpr and NZB strains appear
to carry IGH loci that areM. m. domesticus-derived.

The three major sub-species of the house mouse emerged
from a common ancestor about 350,000 years ago (102), and it
is reasonable to assume that their heavy and light chain genes
co-evolved as the sub-species diverged. This co-evolution would
be required to minimize self-reactivity, and to ensure that each
heavy chain could successfully partner with light chains encoded
by at least a subset of the IGKV genes. It appears, however, that
the breeding histories of many laboratory mice have resulted
in heavy and light chain gene sets that did not evolve together
being found in their genomes. A few common laboratory
strains, including BALB/c and 129 mice, carry matching M.
m. domesticus-derived IGH and IGK loci, whereas others like
the AEJ, C57BL/6, C57BL/10, and SJL strains carry a M. m.
domesticus-derived IGH locus but a M. m. musculus-derived κ

locus (Figure 1).
Not all inbred mice that have been reported to be prone to

autoimmunity harbor obviously mismatched loci. For example,
C57BLKS/J mice are diabetes-prone, but have heavy and light
chain loci that appear to be derived fromM. m. domesticus (103).
DBA mice are used in a collagen-induced arthritis model of
rheumatoid arthritis (104), and both their heavy and light chain
loci also appear to beM.m. domesticus-derived. It is also true that
not all strains that carry mismatched loci have been reported to
be susceptible to autoimmunity. An example is the RF/J strain,
which appears to have a M. m. domesticus IGH locus and a M.
m. castaneus IGK locus. However, it is striking howmany models
of autoimmunity involve mismatched heavy and light chain gene
loci. In addition to theNOD,MRL/lpr, andNZBmodels, SJLmice
that are used in the EAE model of multiple sclerosis (97) appear
to have a M. m. musculus IGH locus and a M. m. domesticus
IGK locus. A model of autoreactivity to matrix collagen uses
a C57BL/6-derived IGKV3 transgene in C57BL/6 hosts (105).
In this strain, the IGH locus seems to be M. m. musculus-
derived, while the IGK locus is M. m. domesticus-derived.
Hybrid (129 × C57BL/6) mice spontaneously develop an SLE-
like condition (106), and these mice express M. m. domesticus
heavy chains in association with both M. m. domesticus and
M. m. musculus-derived κ chains. Finally, the BXSB mouse
spontaneously develops lupus-like pathology (107). SNP analysis
suggests that it has a M. m. domesticus IGH locus and a M. m.
musculus κ locus (Figure 1).

For over 30 years, mouse models have provided profound
insights into the nature of autoreactivity and self-tolerance.
It may be though that an ignorance of the makeup of the
immunoglobulin gene loci has kept hidden a key genetic
contributor to autoimmunity. To determine if this may be the
case, the repertoires of laboratory mice will need to be compared
to repertoires generated in animals in which the heavy and light
chain loci and all critical regulatory elements, as well as self-
antigens, are all derived from the same sub-species of the house
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mouse. The immunoglobulin genes of the different strains will
also need to be properly characterized. It is possible that this may
reveal that the apparently matched loci of some autoimmune-
prone strains are derived from disparate sources. SNP analysis
at present characterizes mouse strains with respect to the three
major sub-species of the house mouse, but other minor sub-
species may also have contributed genes to the laboratory mouse.
We believe that such a focus on heavy and light chain pairings, in
mouse models and in human studies, may help explain some of
the mysteries that still surround autoimmune diseases.
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Age-related changes can significantly alter the state of adaptive immune system and

often lead to attenuated response to novel pathogens and vaccination. In present

study we employed 5′RACE UMI-based full length and nearly error-free immunoglobulin

profiling to compare plasma cell antibody repertoires in young (19–26 years) and

middle-age (45–58 years) individuals vaccinated with a live yellow fever vaccine, modeling

a newly encountered pathogen. Our analysis has revealed age-related differences in the

responding antibody repertoire ranging from distinct IGH CDR3 repertoire properties to

differences in somatic hypermutation intensity and efficiency and antibody lineage tree

structure. Overall, our findings suggest that younger individuals respond with a more

diverse antibody repertoire and employ a more efficient somatic hypermutation process

than elder individuals in response to a newly encountered pathogen.

Keywords: immunoglobulin repertoire, vaccination, age, yellow fever, plasma cell

INTRODUCTION

A number of previously published studies suggests that the function of adaptive immunity is
impaired in aged individuals (1, 2). The findings include functionally exhausted immune repertoire
displaying a substantially lower diversity of T cell and B cell receptors compared to young
individuals (3–6), impaired antigen-driven selection mechanisms (7, 8), and attenuated response
to vaccines (9–16).

Functional defects of antibody-mediated vaccine-induced immunity in elderly adults are
manifested both in the hampered generation of a primary response and in decreased effect
of booster vaccination: low production of vaccine-specific antibodies, low affinity and opsonic
capacity of generated antibodies, reduced vaccine longevity (9, 13, 14, 17–23). Altogether, this leads
to lower protection achieved in the elderly than in young adults. However, the exact reasons of poor
vaccine response in old people have not been fully elucidated.
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Recent advances in high-throughput sequencing (HTS) allow
performing a targeted readout of hundreds of thousands of B-
cell receptor (BCR) heavy chain (IGH) sequences from samples
of interest (24–30), providing a powerful tool for investigation
of age-related changes in B cell immunity. HTS profiling of
BCR repertoires reveals contracted clonal diversity both in naive
and antigen-experienced B memory subsets, and accumulation
of highly mutated immunoglobulin genes and persistent clonal
expansions with aging (25, 31, 32). The latter resembles the age-
related changes in T cell repertoire (5, 33–35), and altogether
these effects can be linked to the decreased efficiency of
vaccination in the elderly adults (32, 34, 36).

The HTS approach was also employed for studies of influenza
(25, 27), tetanus (37), and hepatitis B (38, 39) vaccines. It
was demonstrated that B cell repertoire has the ability to
rapidly expand and contract in a highly dynamic mode in
response to vaccination (27). Stereotypic changes of B cell
repertoires include increase in mutation frequency and decrease
in diversity 4–10 days after vaccination, which corresponds to the
maximum concentration of mutated plasma cells released into
the peripheral blood (38–40). Interestingly, highly homologous
“public” BCR variants can be produced in response to the same
antigen in different individuals by convergent recombination and
selection (27, 41, 42).

There is also an increasing number of data characterizing
changes in the antibody repertoires with respect to vaccine
immune stimulus and age. We have found three HTS-based
studies of BCR repertoires aimed at revealing the age-related
differences in vaccine response, all tracking the changes upon
influenza vaccine challenge (25, 32, 43).

Wu et al. (43) analyzed cDNA-based BCR repertoires obtained
from the peripheral blood mononuclear cells (PBMC) of
young (19–25 years) and old (70–89 years) individuals, where
responding B cell clones (groups of homologous clonotypes)
could be distinguished by their large size at D7 in terms of
the number of included clonotypes. In the old individuals, they
reported decreased average clone size within IgA isotype, and
increased CDR-H3 length and lower mutation frequency for the
large IgA and IgM clones.

Jiang et al. (25) analyzed cDNA-based BCR repertoires
obtained from PBMC of 8–17, 18–32, and 70–100 years
old groups of individuals at D0, D7-8, and D28 (±4) after
vaccination. At D7-8, plasmablasts were sorted as CD3–
CD19+CD20–CD27+CD38+ cells. The oldest age group was
characterized by fewer B cell lineages compared to other age
groups both in PBMC samples obtained before and after
vaccination and within the vaccine-responding plasmablast
repertoire.

de Bourcy et al. (32) analyzed cDNA-based BCR repertoires
obtained from the PBMC of young (21–27 years) and old (73–
93 years) individuals, where responding B cell lineages were
distinguished as those that were detected at both D0 and D7 and
increased their transcript abundance between these time points.
They reported reduced intralineage mutational diversification,
and decreased proportion of radical (prominently changing the
amino acid properties) mutations in the clones responding to
vaccination in old individuals. These observations may indicate

generally impaired affinity maturation in the old age, as well as
accumulated original antigenic sin and the requirement of only
fine-tuning of the existing flu-specific memory B cell repertoire
in old individuals with long history of response to influenza (32).

All these data have highlighted the importance of B cell
repertoire dynamics consideration in vaccine studies in the
elderly adults, but were limited to tracking the response to a
common pathogen with a substantial exposure history. Here we
focused on investigation of the age-related differences in BCR
repertoire structure of the plasma B cells responding to the live
yellow fever (YF) virus vaccine in young (19–26 years old) versus
middle-age (45–58 years old) individuals as a model of response
to a previously unencountered pathogen.

We utilized our protocol based on 5′-RACE with unique
molecular identifiers (UMI) that allows nearly error-free,
full-length (FR1-FR4 plus IgD/IgM/IgG/IgE/IgA isotypes
identification) sequencing of IGH variable region repertoires
(44), with minor modifications. Given that sufficient coverage
is achieved in terms of sequencing reads per cDNA molecule,
the use of UMIs dramatically increases the quality of long range
high-throughput sequencing, and endues the algorithms of PCR
errors correction with high power and precision, critical for
resolving the true somatic hypermutation events (44–47).

To focus the analysis on the immunoglobulin repertoires
specifically responding to vaccination, we isolated CD20-
CD19+CD27highCD38high plasma B cells from peripheral blood
samples obtained from healthy volunteers 9 days after their
first vaccination with live YF vaccine. In this time frame, the
concentration of plasma B cells in peripheral blood increases
dramatically and mainly represents the cells that respond
specifically to the vaccine antigens (40, 48).

It should be noted, that a minor portion of peripheral blood
plasma B cells analyzed 9 days after vaccination could include
clones responding to the current antigens other than the YF,
such as self-antigens and antigens arising from commensal
microorganisms or chronic infections. Thus the picture of the
differences observed in the plasma B cell repertoires of young
and middle-age donors after YF immunization could include
imprint from the general differences in the ongoing plasma B
cell response between the young and middle-age volunteers, as
well as differences inmemory-track prehistory of these responses.
According to our observations, 9 days after YF vaccination,
relative abundance of plasma B cells in peripheral blood increased
more than 10-fold and reached 15.5%± 10% of CD19+CD27high

B cells (Supplementary Figure 1), similar for both age groups,
which corresponds well to the previous data with influenza
vaccination (48). Thus we estimate the contribution of such non-
YF vaccination related B cell clones as ∼10% of the analyzed
cDNA quantity.

It should be also noted that since our approach to
immunoglobulin profiling is RNA-based, the resulting IGH
repertoires yield the picture that intrinsically accounts for the
difference in the IGH mRNA expression levels, thus favoring B
cell clones with high production of immunoglobulins.

In our data analysis, we have focused on three groups
of variables that together provide a comprehensive repertoire
characterization:
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1) V-D-J rearrangement structure and CDR3 physicochemical
properties;

2) Antibody lineage structure (clonal trees);
3) Profiles of newly acquired and potentially pre-existing somatic

hypermutations.

We reveal a number of antibody repertoire features that were
distinct between young and middle-age individuals, highlighting
age-related differences in humoral immune response directed
against newly encountered antigens, that are already detectable
by the age of 50.

METHODS

Blood Donors and Samples
This study was approved by the local ethical committee and
conducted in accordance with the Declaration of Helsinki. All
donors were informed of the final use of their blood and signed
an informed consent document. The cohort of healthy donors
(n = 10, Table 1) has been immunized for the first time by the
yellow fever vaccine (live freeze-dried preparation of the 17D
strain of YFV licensed in Russia, FSUE of Chumakov IPVE,
RAMS). Yellow fever is not endemic in Russia and the volunteers
have not previously traveled to areas known to be endemic for
yellow fever. Peripheral blood (9ml per sample) was collected on
the 9th day after vaccination into EDTA-treated Vacutainer tubes
(BD Biosciences). The B cells were stained for surface markers
by incubating with following monoclonal antibodies: CD38-PE
(clone HB7, eBioscience), CD19-FITC (clone J3-119, Beckman
Coulter), CD20-Vio Blue (clone LT20, Miltenyi Biotec), CD27-
PC5 (clone O323, eBioscience). The plasma B cells were gated as
CD20-CD19+CD27+CD38high and collected directly into RLT
buffer (Qiagen) for storage and RNA extraction. The numbers of
sorted plasma cells per sample are shown in Table 1.

RNA Extraction, cDNA Libraries

Preparation, and Sequencing
UMI-barcoded IGH cDNA libraries for the vaccinated donors
were prepared as described previously (44) with minor
modifications which allow to introduce Illumina Nextera

adapters and indexes during PCR. Briefly, total RNA was
extracted from sorted B cells using RNeasy Micro Kit (QIAGEN)
and converted to cDNA using 5′ template switch adapter
containing UMI. The cDNA was treated with UDG (NEB), and
purified using AMPure Beads (Beckman Coulter). A portion of
cDNA equivalent to 200 sorted plasma B cells (Table 1) was used
for further PCR amplification. Appropriate amount of cDNA
used for the library preparation is critical in order to achieve
sufficient coverage in terms of sequencing reads per UMI, which
is a prerequisite for the efficient error correction (44–46). IGH
libraries were amplified using a set of IGHC-specific and 5′

template switch adapter-specific primers introducing indexed
Nextera sequencing adapters. Please refer to the Table 2 for the
oligonucleotides used. The resulting libraries were analyzed on 2
runs of Illumina MiSeq, paired-end 310+310 nt sequencing. All
10 samples were analyzed within each run, and results of the 2
runs were pooled before further bioinformatic analysis.

Data Preprocessing and Analysis
UMI extraction and UMI-based consensus assembling was
performed using MIGEC software (45), with a 5 reads-
per-UMI threshold. Further reads mapping and clonotypes
(unique full length IGH nucleotide sequences) assembling was
performed using MiXCR as described previously (44) with
some changes in MiXCR analysis pipeline (KAligner alignment
algorithm was used that allows to detect indels of more than
2 nt). Resulting clonesets deposited at https://figshare.com/
articles/Comparative_analysis_of_B-cell_receptor_repertoires_
induced_by_live_yellow_fever_vaccine_in_young_and_middle_
age_donors/6853961.

All analyses except for depicted in Figure 5A were performed
using mean values for repertoire features and summary statistics
computed for each donor, statistical testing was performed by
comparing values for n= 5 young and n= 5 middle-age donors.

Antibody Lineage Analysis
Reconstruction of clonal trees was done using in-house algorithm
that takes into account VJ assignment and NDN sequence of IGH
and can be briefly described as follows. First, IGH clonotypes are

TABLE 1 | Donor and sample metadata.

Donor ID Age range

(median),

years

Status Number of

sorted plasma

cells

Portion of cDNA

used

Number of raw

paired-end

sequencing reads

Number of analyzed

IGH cDNA molecules

Number of unique

IGH clonotypes

extracted

P1 19–26 (19) Young 6,000 1/30 4,410,583 29,052 3,913

P2 6,000 1/30 3,443,963 17,284 3,590

P3 6,000 1/30 4,254,150 10,593 2,159

P4 6,000 1/30 3,737,681 20,665 2,916

P5 6,000 1/30 2,888,569 18,086 2,563

P6 45–58 (55) Middle-age 6,000 1/30 1,939,674 19,111 2,529

P7 5,000 1/25 3,133,844 42,768 3,520

P8 6,000 1/30 2,731,660 21,879 2,507

P9 3,000 1/15 2,566,472 11,154 1,761

P10 3,000 1/15 1,845,910 20,102 2,427
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TABLE 2 | Oligonucleotides used.

Primer Application Sequence

FIRST-STRAND cDNA SYNTHESIS

SmartNNNext 5′–template-switch oligo with sequencing illumina adapter

U = dU, rG = riboG

AGATGUGTAUAAGAGACAGNNNNUNNNNUNNNNUCTT(rG)4

IGH cDNA synthesis primer mix

hIGG_r1 Primer for cDNA synthesis, human IgG heavy-chain mRNA GAAGTAGTCCTTGACCAGGCA

hIGM_r1 Primer for cDNA synthesis, human IgM heavy-chain mRNA GTGATGGAGTCGGGAAGGAAG

hIGA_r1 Primer for cDNA synthesis, human IgA heavy-chain mRNA GCGACGACCACGTTCCCATCT

hIGD_r1 Primer for cDNA synthesis, human IgD heavy-chain mRNA GGACCACAGGGCTGTTATC

hIGE_r1 Primer for cDNA synthesis, human IgE heavy-chain mRNA AGTCACGGAGGTGGCATTG

FIRST PCR AMPLIFICATION

Common primer Step-out primer, anneals on the switch adaptor AGATGTGTATAAGAGACAG

IGH reverse primer mix

Common-hIGGE_r2 Nested primer with sequencing illumina adaptor, human

IgG/IgE heavy-chain cDNA

AGATGTGTATAAGAGACAGARGGGGAAGACSGATG

Common-hIGA_r2 Nested primer with sequencing illumina adaptor, human IgA

heavy-chain cDNA

AGATGTGTATAAGAGACAGCAGCGGGAAGACCTTG

Common-hIGM_r2 Nested primer with sequencing illumina adaptor, human IgM

heavy-chain cDNA

AGATGTGTATAAGAGACAGAGGGGGAAAAGGGTTG

Common-hIGD_r2 Nested primer with sequencing illumina adaptor, human IgD

heavy-chain cDNA

AGATGTGTATAAGAGACAGATATGATGGGGAACAC

SECOND PCR AMPLIFICATION

F-common Step-out primer with sequencing and P7 illumina adapters TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

R- common Step-out primer with sequencing and P5 illumina adapters GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

THIRD PCR AMPLIFICATION

Fc_i7a Step-out primer with index 1 illumina adapter CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG

Fc_i5b Step-out primer with index 2 illumina adapter AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC

a,b Illumina Nextera index adapters (i5 and i7). See illumina Nextera DNA library preparation reference guide and illumina adapters sequences list for more information.

clustered into groups containing sequences with matched V and
J segments. Then, a pairwise comparison is performed for each
group: if the K-mer (K = 5) composition of NDN regions of
two sequences is highly similar the sequences are considered to
originate from one ancestor sequence and connected by an edge
on the lineage tree.

An edge connects a pair of clonotypes that are likely to come
from a pair of cells, one of which is a hypermutated [bears a
B-cell receptor with mutation(s)] sub-variant of another. The
direction of edge shows which of the clonotypes is a parent one
and which is a child one. As we use full-length immunoglobulin
sequencing data, one can infer edge direction using parsimony
principle: parent clonotype mutations should be a subset of child
mutations.

The similarity is computed by summing the information
content of each K-mer (that is, the logarithm of its probability
to be found in random VDJ rearrangements), thus K-mers
containing many non-template bases are scored the most. The
similarity score threshold for drawing an edge was selected
according a benchmark performed by in-silico mixing Raji
hypermutating cell line repertoire and PBMC IGH samples.
CDR3 hypermutations were obtained using Smith-Waterman
alignment for each pair of connected nodes with different
CDR3 sequences. Parsimony principle was applied to remove
improbable nodes and infer the direction of edges. In order

to eliminate duplicate paths and form a tree structure we next
removed all incoming edges except the one with lowest number
of mutations. To normalize samples for accurate comparison, we
extracted 10,000 randomly sampled IGH cDNA molecules from
each dataset.

CDR3 Physicochemical Property Analysis
Averaged CDR3 physicochemical properties of repertoires
accounting for the clonotypes size were computed using custom
R script. To estimate the energy of the interaction between CDR3
and a random epitope, we used Miyazawa-Jernigan statistical
potential (49), that is based on calculating the frequencies of
certain amino acids being in close proximity with each other
in available structural data, and assuming that these frequencies
follow Boltzmann distribution parameterized by corresponding
energy values. For each amino acid among the five positions in
the middle of CDR3, we computed the average interaction energy
with all 20 amino acids. We then summed values across amino
acid residues to estimate the energy of the interaction between
CDR3 and a random epitope. Other physicochemical properties
were analyzed similarly.

Selection Strength
The selection strength was estimated using BASELINe
framework (50) which compares the observed frequencies
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of replacement and silent mutations with the expected ones.
BASELINe was applied to a subset of Variable segment sequences
(FR1-FR3) that do not contain indels and the closest germline
alleles as a reference. For each donor, clonal groups of sequences
were collapsed to consensus sequences using SHazaM R package
(51) as recommended by BASELINe authors. The probability
density functions of the selection strength were compared using
built-in statistical test.

RESULTS

CDR3 Characteristics
Analysis of the averaged CDR3 characteristics was performed for
IgA, IgG, and IgM isotypes, weighted by the abundance of each
clonotype (i.e., the input of each clonotype was proportional
to its frequency within repertoire), and included CDR3 length,
added N nucleotides, and physicochemical characteristics for
the five amino acid residues located in the middle of CDR3
[having the highest probability to contact with antigen, by
analogy with TCRs, (52)]. The latter included averaged statistical
potential of CDR3:epitope interactions [the estimated “energy”
of interaction between CDR3 and a random epitope (49)],
“strength” of interaction [derivative of “energy,” VDJtools
(53)], hydrophobicity (Kidera factor 4) (54, 55), and “volume”
(VDJtools, values from: http://www.imgt.org/IMGTeducation/
Aide-memoire/_UK/aminoacids/IMGTclasses.html) for the
young versus middle-age individuals (see Table 3 for the values
used for each amino acid property).

The analysis revealed several features that significantly
differed between the responding plasma cell IGH repertoires of
the two age groups but not between the isotypes (Figure 1).
Of note, differences in “energy,” and hydrophobicity (Kidera
factor 4) were previously demonstrated to be critical for antibody
affinity and specificity (56). Altogether, observed differences
indicated that middle-age individuals tend to respond to a
new challenge with IGH variants carrying longer CDR3s [in
agreement with (43)], with higher content of bulky, hydrophobic,
and strongly interacting amino acid residues in the middle of
CDR3.

Isotype and IGHV Gene Segments Usage
We have not detected prominent differences in IGHV gene
segment usage as well as in isotype usage between plasma cell
IGH repertoires of young and middle-age individuals vaccinated
with YF (Figures 2A,B). The list of most commonly used IGHV
segments included the IGHV4 (IGHV4-31, IGHV4-34, IGHV4-
59, and IGHV4-39) family, IGHV3 (IGHV3-74, IGHV3-30,
IGHV3-53, IGHV3-24) family, as well as IGHV1-18 and IGHV5-
51.

Note that potential biases in isotype and IGHV gene segment
usage are corrected by UMI-based analysis, since sequencing
reads that cover the same cDNA molecule (irrespectively to the
efficiency of amplification of each particular isotype or gene
segment) are clustered together, each cDNA molecule to a single
UMI-labeled group of sequencing reads.

TABLE 3 | Values used for CDR3 amino acid properties calculation.

Amino acid Mjenergy Kf4 Volume Strength

A −2.8455 −0.27 67 0

C −3.782 −1.05 86 0

D −2.116 0.81 91 0

E −2.141 1.17 109 0

F −5.017 −1.43 135 1

G −2.499 −0.16 48 0

H −2.927 0.28 118 0

I −4.641 −0.77 124 1

K −1.789 1.7 135 0

L −5.023 −1.1 124 1

M −4.1915 −0.73 124 1

N −2.349 0.81 96 0

P −2.443 −0.75 90 0

Q −2.2505 1.1 114 0

R −2.402 1.87 148 0

S −2.308 0.42 73 0

T −2.6145 0.63 93 0

V −4.093 −0.4 105 1

W −4.1375 −1.57 163 1

Y −3.7505 −0.56 141 1

Differences in Immunoglobulin Clonal

Lineage Structure
The analysis of antibody repertoires can be extended by grouping
IGH clonotypes into clonal lineages (trees) that share a common
ancestor (57) and represent a B-cell clone undergoing the affinity
maturation process. UMI-based full-length immunoglobulin
sequencing (44) and dedicated antibody tree building algorithm
(see section Methods) allowed us to accurately infer and analyze
clonal lineage structure.

This analysis revealed that basic graph characteristics, such
as the Gini inequality coefficient, and number of singletons
(clones including only one clonotype) were significantly
different between young and middle-age YF-vaccinated donors
(Figure 3A). The Gini coefficient measures the inequality of tree
size (number of nodes) distribution. Large Gini coefficient values
mean that large trees with many mutated variants dominate
over small trees, i.e., most of the observed immunoglobulin
variants come from few B-cell clones. Smaller values mean
that more distinct clones enter the affinity maturation process
during an immune response. Thus the direction of the
observed differences suggests that young individuals have
a more diversified responding repertoire, while middle-age
individuals display a more biased lineage architecture with larger
trees that account for the majority of observed clonotypes
(Figures 3B,C).

Note that the trees may include impossible lineage relations
such as IgA to IgM isotype conversion. This reflects the fact that
our analysis is limited by sampling depth and particular time
point.We do not observe the whole pre-history of hypermutation
process, thus additional unseen IGH sequence variants that can
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FIGURE 1 | CDR3 characteristics. (A) CDR3 length, aa. (B) Number of non-template added N nucleotides within V-D-J junction. (C) Physicochemical properties for

the 5 amino acids residues in the middle of CDR3: Kidera factor 4 (hydrophobicity, lower values refer to more hydrophobic amino acids), potential “energy” of

interaction (49) (lower values refer to stronger interaction), “strength” and “volume.” All characteristics were calculated “weighted”—i.e., accounting for IGH clonotype

size. ANOVA p-values for age and for isotype adjusted using Benjamini & Hochberg correction are shown on top of each plot.

FIGURE 2 | Isotype and IGHV segments usage for YF-vaccinated subjects from the two age groups. (A) Isotype usage. (B) IGHV usage.
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FIGURE 3 | Antibody lineage analysis. (A) Diversity of antibody lineages: Gini inequality coefficient for the number of nodes (clonotypes) in a tree (clone), and number

of “trees” that include only one node. Both parameters are significantly different (p < 0.05) between young and middle-age donors. Two-tailed T-test, p-values

adjusted using Benjamini & Hochberg method. (B,C) Top IGH trees by size containing equal number of 270 nodes for united data of all young (B) and middle-age (C)

individuals are shown.

resolve this ambiguity may exist, e.g., unseen IgM sequence
variant parent to observed IgM and IgA variants.

Bulk Analysis of Somatic Hypermutations
Bulk load of somatic hypermutations per clonotype obtained
without using the information on the trees structure was
comparable between young and middle-age plasma cell IGH
repertoires (Figure 4A). We controlled for isotype which is
necessary in such comparisons as there are substantial differences
between base mutation burden for each isotype (e.g., mean
number of SHMs in an IgG clonotype is about 2 times higher
than per IgM clonotype).

In order to estimate the burden of somatic hypermutations
that could earlier accumulate within memory B cells clones
currently participating in immune response, we analyzed the
frequency of hypermutations within the identified roots of the
trees—the IGH sequence variants that were closets to germline
within each tree. This analysis also has not revealed significant
differences between the young and middle-age individuals in
a load of root somatic hypermutations, potentially pre-existing
within responding IGH clones (Figure 4B).

To test for the intrinsic differences in the structure of
hypermutations, we estimated the average “selection strength”
that drived the accumulation of somatic hypermutations
in young versus middle-age individual repertoires using
BASELINe framework (50), which is based on estimation of
expected versus observed frequencies of replacement and silent
mutations. This analysis indicated higher “selection strength”
in the young versus middle-age individual IGH repertoires
(Figure 4C).

Observed History of Ongoing Somatic

Hypermutations
Finally, we focused on the newly generated mutations that are
directly observed (identified in the edges of the trees), i.e.,
hypermutations that are supported by both observed “parent”
and “child” clonotypes in the dataset. A dedicated tree building

algorithm allowed us to infer the set of currently ongoing
hypermutations on the entire length of the immunoglobulin
sequence (Figure 5A). Note that in the full length analysis of
clonal IGH evolution, we are able to identify all hypermutations
that occurred within V gene segment, by comparing with
the germline. For CDR3 region, we are only able to identify
those mutations that differentiate the evolving clones from the
identified root. We cannot determine the exact original CDR3
sequence that was generated during IGH recombination and
thus cannot identify the hypermutations that have not been
sampled by our analysis. This explains the lower proportion of
hypermutations observed with CDR3 compared to CDR1 and
CDR2 regions.

Middle-age individuals had higher total numbers of the
newly acquired unique somatic hypermutations (Figure 5B),
while the replacement-to-silent (R:S) ratio among such
hypermutations was significantly lower compared to the young
donors (Figures 5C,D).

DISCUSSION

Our comparative analysis of immune response to a novel
pathogen, performed using immune repertoire sequencing and
modeled by a live YF vaccine, revealed several differences
between the two age groups indicating that humoral adaptive
response already undergoes significant changes by the age of 50.

First, physicochemical properties of the hypervariable IGH
CDR3 region that are linked to antigen recognition (58, 59)
changed significantly (Figure 1). Differences in the interaction
“energy,” Kidera factor 4, “strength” and “volume” indicate the
increase of relative number of bulky, hydrophobic and strongly
interacting amino acid residues in the middle of CDR3 with
aging, potentially associated with increased cross-reactivity (60).
In agreement with Wu et al. (43), responding repertoire of the
middle-age donors also displayed longer CDR3s.

Second, the analysis of clonal lineages suggests that young
individuals produce a more diverse IGH repertoire implying
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FIGURE 4 | Bulk analysis of somatic hypermutations. (A) Somatic hypermutations per clonotype, without using trees information (NS, ANOVA). (B) Somatic

hypermutations within roots of the trees with >2 nodes (NS, ANOVA). (C) Selection strength estimated using BASELINe framework. Adjusted p = 0.011 for CDR,

0.011 for FWR.

FIGURE 5 | Patterns of newly acquired somatic hypermutations in young and middle-age donors vaccinated with YF. (A) Summary profile of somatic hypermutations

observed in the study. IGH regions are marked with color. The distribution of silent (S) and replacement (R) hypermutations are shown with dashed and solid lines,

respectively. For CDR3 region, mutation analysis was done using the root as reference. Data were pooled for all young and all middle-age individuals. (B) Frequency of

newly acquired somatic hypermutations (SHMs) in young (red) and middle-age (blue) donors. ANOVA p = 0.0005 for age, 0.14 for isotype. (C,D) Mean

replacement:silent ratio (R:S ratio) for newly acquired somatic hypermutations (SHMs) in young and middle-age donors, for isotypes (C, ANOVA p = 0.058 for age,

0.69 for isotype) and regions (D, ANOVA p = 0.0013 for age, 0.00014 for regions).
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higher efficiency of the adaptive immune response (61). Middle-
age individuals responded to YF vaccination with higher
proportion of clonal hypermutating B cell trees of a larger size
(Figure 3), which echoes the observation that elderly individuals
have generally decreased numbers of B-cell lineages (25). Older
individuals responded with lower lineage diversity, for which
general decrease of B cell diversity with aging, correlating
with the health status, could be one of the reasons (6, 62).
While the exact reason behind the observed differences in
the structure of IGH repertoire responding to novel antigens
in young and middle-age individuals is unknown, one can
speculate that they could be attributed to overall decrease in
circulating B cells (63, 64), including memory B cells that
initially recognized unrelated antigens but could respond to
YF vaccination, decreased production and counts of naive B-
cells (65, 66) and their diminished ability to enter somatic
hypermutation (66, 67). All these factors narrow the capability
of B cell immunity to select novel immunoglobulin variants.

Third, responding clonal lineages of the middle-age
individuals hypermutated more intensely (Figure 5B) but
less efficiently in terms of replacement-to-silent mutations
ratio compared to young individuals (Figures 4C, 5C,D). The
latter result overlaps with previous works, which show that
loss of functional repertoire diversity is determined by not only
the reducing the number of different B cell lineages but also
by decreased proportion of replacement mutations (68) and
mutations prominently changing the amino acid properties
(32). This observation suggests that the parameters of affinity
maturation may essentially vary between young and middle-age
individuals, and is in line with previous works demonstrating
impaired ability to produce high affinity protective antibodies
against newly encountered antigens in the older individuals
(13), and general changes in the mechanisms of IGH affinity
maturation and memory B cells generation with aging (66).

Of note, it was earlier demonstrated that AID levels and
intensity of hypermutation decrease with aging, but only after the
age of 60 (63, 69, 70)—beyond the age of the cohorts that we have
studied in the current work.

We have not obtained data on serum titers of YF-specific
antibodies due to technical unavailability of samples. In general,

it is known that the serum titers are similar for these age groups
(71, 72), and are sufficiently high to provide protection for
many years: (73). Thus the observed differences in the B cell
response to the live YF vaccine between young and middle-
age individuals are not detrimental for generation of protective
immunoglobulin repertoire. However, these differences reveal
the dynamics of changes in humoral response architecture that
are already detectable by the age of 50 years.

Further studies involving a larger set of novel antigens and
comprehensive longitudinal tracking of the response, as well as
studies of vaccinations with vaccine boost, can shed more light
on the fine properties of age-related changes in B cell response.
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Understanding how the strength of an effector T cell response is regulated is a

fundamental problem in immunology with implications for immunity to pathogens,

autoimmunity, and immunotherapy. The initial magnitude of the T cell response is

determined by the sum of independent signals from antigen, co-stimulation and

cytokines. By applying quantitative methods, the contribution of each signal to the

number of divisions T cells undergo (division destiny) can be measured, and the resultant

exponential increase in response magnitude accurately calculated. CD4+CD25+Foxp3+

regulatory T cells suppress self-reactive T cell responses and limit pathogen-directed

immune responses before bystander damage occurs. Using a quantitative modeling

framework to measure T cell signal integration and response, we show that Tregs

modulate division destiny, rather than directly increasing the rate of death or delaying

interdivision times. The quantitative effect of Tregs could be mimicked by modulating the

availability of stimulatory co-stimuli and cytokines or through the addition of inhibitory

signals. Thus, our analysis illustrates the primary effect of Tregs on the magnitude of

effector T cell responses is mediated by modifying division destiny of responding cell

populations.

Keywords: T cells, regulatory T cells (Tregs), modeling and simulation, cytokines, immunity

INTRODUCTION

CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a critical role in immune homeostasis.
However, the precise mechanism of regulatory function on effector T cells remains contentious.
Important roles for modulation of co-stimulation by dendritic cells (1–4), absorption of cytokines
such as IL-2 (5–8), secretion of inhibitory cytokines such as TGF-β, IL-10 and IL-35 (9–13)
and direct cell-contact dependent mechanisms (9, 14) have all been demonstrated in a variety
of in vitro and in vivo systems (15–18). The relative quantitative importance of these different
mechanisms is unknown and may depend on context. Apart from suppressing proliferation,
Tregs are also known to modulate the function of effector T cells. For example, Maeda et al.
recently showed that Tregs can induce self-reactive human CD8+ T cells (Melanin-A specific)
to adopt a CCR7+CTLA-4+ anergic phenotype in response to peptide stimulation in vitro,
as well as reducing their proliferation via modulation of dendritic cell co-stimulation (19).
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Recent work by Marchingo et al. has defined a quantitative
framework for understanding signal integration by T cells (20).
A key concept is the notion of “division destiny”—the number
of divisions a cell undergoes before ceasing proliferation and
reverting to a quiescent state, first described in B cells (21–23).
The mean division destiny of CD8+ T cells was shown to be
the linear sum of independent contributions from antigen, co-
stimulation and cytokines, allowing quantitative prediction of
the magnitude of the T cell response from knowledge of the
individual stimuli. Heinzel et al. subsequently demonstrated that
this quantitative signal integration to determine division destiny
can be inferred by levels of Myc within T cells and B cells,
providing a molecular mechanism for this phenomenon (24).

We tested whether the calculus of division destiny could
be used to quantify the action of Tregs during suppression of
effector T cell proliferation. We hypothesized that Tregs may
potentially function in an opposing mechanism to T cell co-
stimulation, and thus manifest suppression of effector T cell
proliferation via a reduction in division destiny in the effector T
cell population. Here, using quantitative methods, we illustrate
that the dominant action of Tregs is through “subtracting”
division destiny in responding T cells in a dose-dependent
manner, in comparison to inducing more rapid death or slowing
proliferation. These results provide a quantitative framework
for studying different mechanisms of suppression in immune
responses including genetic polymorphisms associated with
autoimmunity or inflammation. Furthermore, they highlight that
division destiny is a universal cellular parameter central to not
only positive regulation of immune responses, but also effector
response suppression.

MATERIALS AND METHODS

Mice
All experiments were performed using C57BL/6 mice bred
and maintained under specific pathogen-free conditions in
the Walter and Eliza Hall Institute (WEHI) animal facilities
(Parkville, Victoria, Australia) and used between 6 and 12 weeks
of age. All experiments were performed under the approval of the
WEHI Animal Ethics Committee.

CD4+CD25+ Treg and
CD4+CD25-CD62L+ Teff Cell Purification
CD4+CD25−CD62L+ effector T cells (Teff) were isolated
from pooled mouse lymph nodes (inguinal, axillary, brachial,
superficial cervical, and lumbar) and spleens by negative
and positive selection using the mouse naïve CD4+ T cell
isolation kit (Miltenyi). CD4+CD25+ Tregs were prepared
from pooled spleen and total lymph nodes (inguinal, axillary,
brachial, superficial cervical, and lumbar) of C57BL/6 mice.
Cell suspensions were stained with anti-CD4−PerCP-Cy5.5, anti-
CD25-FITC, and enriched for CD25+ cells using anti-FITC
beads (Miltenyi). Cells were then sorted for CD4+ CD25hi on
a BD FACSAria. Treg purity was checked using intracellular
staining for Foxp3 and in all experiments was >90%. Irradiated
splenocytes were prepared by red cell lysis of whole spleen
suspension and irradiated at 3,000Gy.

Celltrace Oregon Green Labeling
For division tracking, Teffs were labeled with a final
concentration of 20µM Cell Trace Oregon Green (Invitrogen)
by incubation for 10min at 37◦C at a cell density of 107 cells/mL
in phosphate-buffered saline (PBS) with 10% bovine-serum
albumin (BSA).

Cell Culture
Cells were cultured in RPMI 1640 medium (Invitrogen)
supplemented with non-essential amino acids, 1mM Sodium-
pyruvate, 10mM HEPES, 100 U/mL Penicillin, 100µg/mL
Streptomycin (all Invitrogen), 50µM 2-mercaptoethanol, 2mM
L-glutamine (both Sigma) and 10% FCS (JRH Biosciences and
Invitrogen). Cells were incubated in a humidified environment
at 37◦C in 5% CO2.

The in vitro Treg suppression assay was set-up as follows
(25). Twenty thousand Teffs were co-cultured with 80,000
irradiated splenocytes and 2µg/mL anti-CD3 (clone 2C11,
WEHI antibody facility, Australia) and a varying ratio of Tregs.
Proliferation was analyzed by flow cytometry for the next
4 days.

For experiments mimicking suppression the following
reagents were added to cultures: CTLA4-Ig (prepared from COS
cells, provided by Peter Lane), anti-mouse IL-2 monoclonal
antibody (purified from hybridoma cell line S4B6, WEHI),
TGF-β (eBioscience), recombinant murine IL-10 (purified
from baculovirus-transfected Sf21 insect cell supernatant,
DNAX).

Flow Cytometry Analysis
Triplicate wells were harvested at each time point after addition
of a known number of CaliBRITE microbeads (BD) to facilitate
quantification of absolute cell numbers. Cells were analyzed on a
BD FACSCanto.

BrdU Labelling
Detection of intracellular BrdU was performed using a BrdU
staining kit (BD Pharmingen) as per manufacturer instructions.

Calculation of Cell Numbers Per Division,
Cohort Number and Mean Division Number
of Dividing Cells
The number of cells per division, ni, i = 0, 1, . . . , 7, 8+, was
determined by flow cytometry with gating for 2-fold dilution
of Cell Trace Oregon Green intensity and the ratio of analyzed
cells to the known number of microbeads (division number >7
could not be resolved above background autofluorescence, and
8+ refers to all cells gated as having divided 8 or more times).

The number of undivided cells is n0, and the number of
dividing cells is:

Ndiv =

8+∑
i=1

ni (1)

Following (26), the precursor cohort numbers for each division,
ci, were calculated by dividing the cell number per division by
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two to the power of division number, in order to remove the
expected expansion of cell number with division in the absence of
death:

ci =
ni

2i
(2)

The total cohort number, C, is the sum of the cohort numbers
over all divisions:

C =

8+∑
i=0

ci (3)

The cohort number would remain equal to the starting cell
number if there were no cell death in the system, and therefore
comparison of differences in cohort number over time according
to a varying condition can be used to identify effects on survival
(20, 24, 26–28).

Plots of mean division number against harvest time
can be used to estimate proliferation features, including
average time to first division, subsequent division rate and
division destiny (20, 26, 28, 29). A number of methods
have been used to calculate mean division number. Here,
as not all anti-CD3 stimulated T cells enter division,
we averaged the dividing cells only. This value, mean
division number of dividing cells (MDNdiv), is calculated
as:

MDNdiv =

∑8+

i=1 ici∑8+

i=1 ci
(4)

A plateau in MDNdiv can indicate that the cells have stopped
dividing having reached their division destiny.

RESULTS

Regulatory T Cells Do Not Reduce Survival
or Activation of Effector T Cells in vitro
In principle, regulatory T cells may suppress effector T cells by
directly inducing death, by reducing activation and recruitment
into division, by slowing the division rate, or by reducing
division destiny. To decipher the effects on these different
parameters, we analyzed an in vitro suppression assay using the
established precursor cohort method (26, 29). This approach uses
quantitative graph-based methods to track the fate of founder
cells seeded in culture during in vitro proliferation assays and
allocate effects to changes in division rate, division destiny or
overall cell survival. We designed our experimental approach
using a suppression assay that reflects the majority of assays used
in studies of Treg biology. Teffs labeled with the division tracking
dye Cell Trace Oregon Green were co-cultured with varying
ratios of Tregs, irradiated splenocytes as antigen-presenting cells
(APCs), and anti-CD3 as a polyclonal T-cell-receptor stimulus
(25). Addition of counting beads at the time of harvest allowed
quantification of absolute cell numbers per division.

Figure 1A demonstrates the suppressive effect of Tregs on
division of Teff over the time course of T cell stimulation as
measured by dilution of cell division tracking dyes. When two
ends of the spectrum are compared (no Tregs vs. a high Treg:Teff
ratio), the progression through division of the Teff population is
significantly reduced. In this system not all T cells are activated
to enter division, and cells that are not activated display different
survival kinetics than activated cells (27, 30). We first asked
whether the suppressive effect of Tregs could be ascribed to
a reduction in either the survival of undivided cells or in the
proportion of cells induced to divide, as either conclusion could
be reached by comparing division profiles shown in Figure 1A.

Either of these processes would affect the number of undivided
cells measured in culture over time. Figure 1B shows that the
number of undivided cells is unaffected by the Treg ratio over
the course of the experiment. Thus, contrary to the above
expectation, survival of undivided cells and recruitment into
division is not affected by Tregs, and an alternate explanation
must be sought.

Next, we examined total cell numbers in culture. Figure 1C
quantifies the response of Teffs in culture over time as
represented by total cell numbers in the context of varying the
Treg ratio. The peak of the response was ∼60 to 70 h post
stimulation for all Treg ratios, followed by a decline thereafter.
Late in the culture, after 70 h, the highest cell numbers were
observed in the absence of Tregs, and the addition of Tregs
reduced the Teff number in a dose-dependent manner, as
expected. Interestingly, between ∼40 and 60 h we noted an
increase in cell number at intermediate ratios of Tregs (1:16, 1:8,
1:4), compared with lower or higher ratios of Tregs, which was
unexpected and did not correlate with the overall trend seen in
cell numbers at the end of the experiment.

We investigated how the Teff response was altered in the
presence of increasing numbers of Tregs by applying the
precursor cohort method (20, 26, 27). As described in Methods,
the cohort number is defined as the sum of the cell numbers
in each division divided by two to the power of division
number. Calculating the cohort number removes the effect of
cell division on cell number, allowing an analysis of survival
of the original cohort of cells placed in culture, independently
of other kinetic changes. Figure 1D illustrates the effect of
Tregs on the cohort number over time. In general, increasing
numbers of Tregs did not induce a more rapid decline in
the cohort numbers over time, indicating the mechanism of
suppression is not via active induction of death of Teffs. This
result is also supported by observing survival early in the
culture, prior to entry into first division (<50 h—Figure 1C),
where Teffs appeared to die at a rate that was independent of
Treg ratio. The exception is that we observed a small increase
in cohort number at ∼40–60h with intermediate Treg ratios
(as represented by a slight shift in the cohort plot to the
right in 1:16, 1:8, 1:4), revealing a small effect on promoting
survival. This explains the increased cell numbers seen in
Figure 1C at this time. As undivided cells were not affected by
Tregs (Figure 1B), this unexpected survival-enhancing effect of
intermediate ratios of Tregs can be ascribed to the activated
dividing-cell population.
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FIGURE 1 | Quantitative analysis of the effect of Tregs on Teff stimulation. CD4+CD25−CD62L+ effector T cells (Teffs) labeled with cell division dyes were co-cultured

with varying ratios of Tregs and the response measured. (A) Example timecourse of cell division progression in cultures without Tregs (top panel) and with Tregs (lower

panel). (B) Number of undivided Teff cells in culture over time. Data shown are mean +/– SEM of triplicate samples. One representative data set from three

independent experiments is shown. (C) The effect of Tregs on the total live cell number of Teffs over time for varying ratios of suppression is shown. For each graph,

the Treg ratio (closed circles) is overlaid with the control culture with no Tregs added (open circles). (D) The cohort number over time of Teff cells is shown for varying

ratios of Tregs. For each graph, the Treg ratio (closed circles) is overlaid with the control culture with no Tregs added (open circles).

Regulatory T Cells Subtract From the Mean
Division Destiny Reached by Activated
Effector T Cells in a Dose-Dependent
Manner
Late in the culture (after 70 h), there is a clear dose-dependent
effect of Tregs on Teff cell number (Figure 1C), which represents

the predominant suppressive effect of Tregs, and is the time at

which in vitro Treg assays are typically measured. The number

of times cells divide before they return to quiescence (division

destiny) has recently been demonstrated as a critical component
of T cell responses (20, 24). Division destiny is observed in cohort
analysis as a plateau in the mean division number over time.

We hypothesized that the suppressive effect of Tregs might be
explained by regulation of division destiny or other features of
cell division rate.

Figure 2A shows the effect on cell division for varying Treg
ratios illustrating a progressive reduction in T cell proliferation
as Treg numbers are increased. The consequence of this effect
on expansion of cell numbers is highlighted by the significant
effect on the number of cells in each division (Figure 2B). Given
the absence of Treg induced cell death (Figure 1D), we used the
cohort method to investigate other potential kinetic influences
that could explain the reduced division progression associated
with increasing Treg numbers, namely time to first division,
subsequent division rate (after first division) and division destiny.
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Figure 2C illustrates how changes to these distinct proliferation
parameters (i.e., time to first division, division rate or division
destiny) will affect cohort plots of mean division number vs. time
(20, 21, 24, 27, 28, 31, 32). Figure 2D shows the effect of Treg
co-culture on MDNdiv, the calculated mean division number of
cells that have entered into division (i.e., excluding undivided
cells) using the cohort method. This analysis demonstrates three
important points of interest regarding the effect of Tregs on T
cell stimulation: (1) Increasing the ratio of Tregs had no effect
on the mean time taken for the Teff cell population to respond
to stimulation and enter the first division (as indicated by the
overlapping line for early divisions on the y-axis for all Treg
ratios—Figure 2D). This is consistent with division tracking data
from early time points in Figure 1A (37.50 h) shown with and
without high Treg exposure. Here, no difference is observed in
the first entry of responding cells into division; (2) The rate
of division (the gradient of the mean division number vs. time
curve) was unaffected by the presence of Tregs, but division
destiny was reached earlier, consistent with a timed regulation
of division destiny (24); and, (3) Increasing the ratio of Tregs
reduced the maximum mean division number reached by Teff
in a dose-dependent manner. Together, in the absence of a
significant effect observed in all other parameters measured, this
suggests that the predominant effect of Tregs is limiting the
division potential of responding effector T cells.

To further demonstrate the quantitative effect of regulation
of division destiny, we calculated the expected reduction in
cell number that can be attributed to the diminished division
destiny. This calculation is illustrated in Figure 2E. We compared
proliferation in the absence of Tregs (ratio 0:1), to the highest
ratio of Tregs (1:1). The difference in mean division destiny (dark
blue vs. light blue lines) was determined to be 1.1 (Figure 2D);
thus the expected reduction in cell number is 21.1 = 2.14. We
compared the number of divided cells vs. mean division number
of divided cells (Figure 2E). Here, the dark blue horizontal line
indicates the peak response measured in the absence of Tregs,
while the light blue horizontal line represents the predicted
reduction in cell number. Strikingly, the vast majority of the effect
of adding Tregs to stimulating T cell conditions can be explained
by changes in division destiny alone.

To confirm the effect of Tregs on proliferation, we investigated
cell cycle turnover by measuring BrdU incorporation. As
expected, the presence of Tregs reduced BrdU incorporation in
a dose-dependent manner indicating fewer cells were actively
dividing at higher Treg:Teff ratios at 63 h post stimulation
when measured at either the total population (Figure 2F) or
per division basis (Figure 2G). Thus, while consistent with in
vitro Treg assays, our analyses provide further detail regarding
suppressive mechanisms that regulate Teff kinetics.

The Quantitative Effect of Tregs on Teff
Proliferation Can Be Mimicked by Known
Mechanisms of Suppression
Many mechanisms of suppression by Tregs have been
demonstrated in a range of different in vitro and in vivo
systems (16, 17). We therefore investigated whether the observed

reduction in division destiny could be replicated by previously-
studied mechanisms. In Figure 3, the effect of previously
implicated mechanisms on the kinetics of Teff responses is
investigated using the same quantitative assays outlined above.
Total cell number (left panel), cohort number (survival—middle
panel) and mean division number (Division analysis—right
panel) is displayed for each experiment in order to illustrate
effects on cell death and division destiny.

The availability of IL-2 has been shown to increase division
destiny in a dose-dependent manner in T cells (20). Absorption
of IL-2 by Tregs, and therefore reducing the access to free
IL-2 has been described as a mechanism of Treg suppression
(5–8). To mimic this effect, we added an anti-IL2 blocking
antibody (S4B6) to cultures of Teffs stimulated with anti-CD3
and APCs (Figure 3A). Similar to the effect of Tregs, anti-IL-2
reduced division destiny without affecting cohort number. Next,
we mimicked the effect of inhibition of co-stimulation, by adding
CTLA4-Ig to cultures (Figure 3B). CTLA4-Ig binds to CD80
and CD86 and competitively blocks engagement of CD28 on T
cells (33). Again, similar to the effect of Tregs, CTLA4-Ig did
not affect cohort number but had a clear effect on reducing
division destiny. There was also a small reduction in time to
first division consistent with the effect of CD28 co-stimulation
in the presence of IL-2 (29). By contrast, the number of APCs
added to Teff cultures affected predominantly cohort number
(Figure 3C). APC ratios between 1:1 and 8:1 did not appear to
regulate division destiny. Thus, the APCs in this system appear
to be important for survival of Teffs, through a mechanism that
is not fully recapitulated by inhibition of IL-2 or co-stimulation.

Finally, we analyzed the effect of inhibitory cytokines, TGF-
β and IL-10 (9, 10, 12–14). TGF-β modestly increased cohort
number while reducing division destiny in a dose-dependent
manner (Figure 3D, middle and right panels). The net effect
of TGF-β was suppressive, as indicated by a decrease in total
cell number (Figure 3D, left panel). This suppressive effect is
interesting and unusual, as previous studies have shown that
the addition of cytokines or increasing the level of receptor
stimulation leads to an increase in division destiny as opposed
to the direct subtraction observed here (20). Similar to TGF-β,
addition of IL-10 modestly increased cohort number, however
there was no effect on division destiny (Figure 3E, middle and
right panels). Therefore, the net effect of IL-10 was to increase
total cell number (Figure 3E, left panel). Thus IL-10 was not
directly suppressive in this in vitro system. While surprising, a
similar lack of suppression has been previously reported using a
quantitative in vitro CD8+ T cell system (20).

DISCUSSION

Our results demonstrate that the predominant effect of Tregs
is on reducing the division destiny of effector T cells, rather
than directly reducing survival or division rate. This finding
underscores the importance of division destiny as a key
mechanism regulating the T cell expansion in activating as well
as suppressive conditions.
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FIGURE 2 | Using cohort analysis to dissect the effect of Tregs on Teff cell division. (A) Cell division profiles of Teff cells at 77.25 hours with varying ratios of Tregs. (B)

Cell numbers per division at 77.25 h as determined by quantification to a known number of added beads. (C) Cohort plot examples illustrating how trends in graphs

are altered by changes in mean time to 1st division, the subsequent division rate and division destiny, as labeled. MDN - mean division number. (D) Cohort analysis

plot of Mean division number of divided Teff cells over time (cohort method, excluding undivided cells). (E) Divided Teff cell number (excluding undivided cells) vs. mean

division number of divided cells (cohort method) in the presence and absence of Tregs. The darker horizontal and vertical dashed lines indicate division destiny in the

absence of Tregs, the lighter dashed lines indicate the reduction in division destiny at the maximum ratio of Tregs:Teffs (1:1), and the predicted reduction in total live

cell number. BrdU incorporation at 63 h as a function of Treg:Teff ratio for the total culture (F) and per division basis (G) during a 2 h BrdU pulse. Data shown are mean

+/– SEM of triplicate samples. One representative data set from three independent experiments is shown.

We propose a “log-dampener” model of Treg suppression
as illustrated in Figure 4. As shown in (20), contributions of
antigen (signal 1), co-stimulation (signal 2) and cytokines (signal
3) to T cell division destiny can be summed linearly to predict
the magnitude of the response (Figure 4A), thus providing a

quantitative basis for classic two- and three-signal theories (34–
37). Figure 4B shows the effect of Tregs in removing or reducing
some of the positive signals (left panel), as well as supplying
negative signals (right panel). Examples of reducing positive
signals include CTLA4 binding to CD80/86 and inhibition of
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FIGURE 3 | The kinetic effects of Treg suppression may be mimicked by some, but not all, known mechanism of Treg action. Teffs were stimulated with irradiated

splenocytes (APCs) and anti-CD3. (A) Titration of an anti-IL-2 blocking antibody (S4B6)—total cell number (left panel), cohort number (middle panel) and mean division

number of divided cells (MDNdiv, right panel). Titration of (B) CTLA4-Ig, (C) APC number, (D) TGF-β and (E) Titration of IL-10. Data shown are mean +/– SEM of

triplicate samples. One representative data set from two independent experiments is shown.

IL-2 by absorption or decreased production. Tregs also reduce
CD80/86 directly on APCs to regulate co-stimulation strength
(2, 38–40). Examples of addition of negative signals include
TGF-β produced by Tregs acting on effector T cells. We were
not able to show a similar mechanism for IL-10 in the in vitro
system, suggesting a more complex mechanism of action to
induce suppression in vivo, rather than a direct effect on the
proliferation of effector T cells. Figure 4C illustrates the effect
of removal of positive signals and addition of negative signals
by Tregs on effector T cell numbers over time. As changes in
division destiny translate to exponential effects on cell numbers,
seemingly small perturbations can result in orders of magnitude
difference in the peak number of T cells. Multiple pathways
may sum independently to achieve suppression, and it is likely
that the different pathways vary in their importance in different

in vivo systems. Figure 4D illustrates the log-dampener model
in schematic form. Our data highlights the dominant role of
reducing division destiny in Treg action under these commonly
employed culture conditions. It remains possible that other
features might be targeted under different stimulation conditions
(for example, antigen-specific T cells and dendritic cells). We
anticipate that our assay methods employed here can be adapted
andwill prove useful to dissect such alternative cell arrangements.

A corollary of this model is that the classic in vitro
suppression assay (frequently used for studies of Treg function
and mechanism), is finely tuned to demonstrate this suppressive
effect. The difference in division destiny of dividing Teffs between
no Tregs and an equal ratio of Tregs was only slightly more than
a single division cycle (Figure 1). The classic assay of tritiated
thymidine incorporation on day 3 cannot distinguish between
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FIGURE 4 | Log-dampener model of suppression of CD4+ effector T cell proliferation by Tregs. (A) In the absence of Tregs, signals from antigen (signal 1—gray),

co-stimulation (signal 2—blue) and cytokines (signal 3—red) sum linearly according to the number of divisions contributed to division destiny by each signal, resulting

in an exponential increase in the magnitude of the T cell response (20) (note the log scale on the y-axis). “a” and “b” refer to different types of co-stimulatory and

cytokine signals contributing positively to the T cell response. (B) Tregs regulate division destiny by reducing positive signals (1, 2a and 3a) and by adding negative

signals (2c and 3c). (C) Illustration of the effect of Tregs on the size of the effector T cell response (note the linear y-axis). The blue dots represent the peak of the T cell

response in the absence of Tregs (dark blue), after subtracting of positive signals (medium blue) and after addition of negative signals (light blue). (D) Schematic

showing different types of signals being integrated within the CD4+ effector T cell according to the rules of the “cellular calculus”.

direct induction of cell death, slowing proliferation rate or
reduction in division destiny. Studies of Treg function following
genetic manipulation may benefit from using these quantitative
methods to study the full kinetics, to assist with drawing
conclusions as to the effect of the manipulation on function.
Further studies with similar quantitative methods investigating
different levels of TCR stimulation/affinity or varied sources of
APC may be useful for dissecting whether division destiny is a
universal mechanism that is affected by Treg regardless of culture
conditions. Our study also indicated the surprising result that
at some ratios Tregs enhanced net cell numbers by promoting
survival of effector T cells. Two cytokines produced by Treg,
TGF-β and IL-10 also promoted survival, potentially explaining
this result. Thus, it appears the net outcome of Treg interaction
with Teff results from combinations of positive effects on survival
and negative influences on division destiny.

In conclusion, our results demonstrate that the complex
and multifactorial suppressive effect of Tregs is amenable to
study using rigorous quantitative techniques. The many known
mechanisms of suppression either remove positive signals or
supply negative signals, and combinations act on division destiny
according to a simple cellular calculus – addition or subtraction
from division destiny. Thus, by reducing division destiny of
effector T cells, Tregs act as a “log-dampener” on the magnitude
of the Teff response. The net effect is that small changes in

division destiny induced by Tregs can have large effects on the
peak size of the effector T cell response, with consequences
for achieving the balance between protective immunity and
tolerance of self.
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B cell receptor sequences evolve during affinity maturation according to a Darwinian

process of mutation and selection. Phylogenetic tools are used extensively to reconstruct

ancestral sequences and phylogenetic trees from affinity-matured sequences. In addition

to using general-purpose phylogenetic methods, researchers have developed new

tools to accommodate the special features of B cell sequence evolution. However,

the performance of classical phylogenetic techniques in the presence of B cell-specific

features is not well understood, nor how much the newer generation of B cell specific

tools represent an improvement over classical methods. In this paper we benchmark

the performance of classical phylogenetic and new B cell-specific tools when applied

to B cell receptor sequences simulated from a forward-time model of B cell receptor

affinity maturation toward a mature receptor. We show that the currently used tools

vary substantially in terms of tree structure and ancestral sequence inference accuracy.

Furthermore, we show that there are still large performance gains to be achieved by

modeling the special mutation process of B cell receptors. These conclusions are further

strengthened with real data using the rules of isotype switching to count possible

violations within each inferred phylogeny.

Keywords: ancestral sequence reconstruction, B cell receptor repertoire, phylogeny, benchmarking, antibodies

INTRODUCTION

B cells play a key role in adaptive immunity. After successful VDJ gene recombination of the
variable part of the B cell receptor (BCR), and various selection steps, mature B cells are exported
from the bone marrow. At this stage the mature B cells have not yet bound antigen and they
are therefore referred to as naive. Upon infection some cells from this repertoire of naive BCRs
will bind the infectious agent, initializing a cascade of events called affinity maturation leading to
pathogen neutralization.

Affinity maturation is a micro-evolutionary process consisting of coupled mutation and
selection. This essential process takes place in specialized anatomic compartments called germinal
centers (GCs), with the objective of improving antigen binding of the BCR (1). Affinity maturation
results in “clonal families” of thousands of B cells for each of the naive ancestors. Sequences in a
family are related to a common naive B cell but with higher affinity BCRs and accumulation of
mutations in their sequences.

The study of B cell evolution in the GCs is an important and active field of research including
response to infections, mechanisms of vaccines (2) and immunological memory (3). Furthermore,
the field has experienced a boost of interest and capability in recent years due to the advancements
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of high-throughput sequencing of BCR repertoires (Rep-Seq)
(4). Rep-Seq now enables sequencing of BCRs on massive scale
(millions of cells) and is being increasingly applied in different
areas from vaccine studies (5, 6) to antibody engineering (7, 8).
Following Rep-Seq, computational methods can be used to group
the BCRs into clonal families, each consisting of the descendants
of a single naive cell (9).

The events of the affinity maturation process can be
interrogated by inferring the phylogenies of sequences within
each such clonal family, as well as inferring ancestral sequences
on the phylogenies. Phylogenetic methods have given great
insight into the long and complex development process of
broadly-neutralizing antibodies (10, 11). Phylogenetic methods
are equally important for shorter-time-scale investigations of
affinity maturation, such as of the response to vaccination (12).
One may also use trees equipped with ancestral sequences to
make statements about the strength of natural selection (13).

Given the importance of these methods to understanding
affinity maturation, there has been surprisingly little validation of
their performance in the parameter regime relevant to the study
of affinity maturation. Although dozens of studies benchmarking
phylogenetic methods via simulation in the general phylogenetic
case have appeared since (14), methods for BCR sequences
deserve special treatment because of special aspects of the
evolutionary process of affinity maturation. These include:

1. The somatic hypermutation (SHM) process in affinity
maturation is driven by purpose-built molecular machinery
(15) that results in a highly context-dependent process with
local sequence contexts that either favor (“hotspots”) or
disfavor (“coldspots”) mutation (16, 17). The complexity of
this process is at odds with both the usual phylogenetic
assumption of independent and identical processes between
sites and with the assumptions of commonly-used sequence
simulators (18, 19) used for benchmarking.

2. Sampling and sequencing, especially for direct sequencing of
GCs (20), is dense compared to divergence between sequences.
Because the resulting sequences will have limited divergence
between them, it raises the possibility that simpler methods
with fewer free parameters such as parsimony would be
an appropriate choice (21). Also, because of the resulting
distribution of short branch lengths, zero-length branches
and multifurcations representing simultaneous divergence are
common. When these zero-length branches lead to a leaf, they
represent a “sampled ancestor” – a sequence with an identical
genotype to an ancestral cell. Because of these differences,
previous conclusions about performance of phylogenetic
estimators in the classical regime of millions of years of
divergence need not hold here.

3. Rep-Seq typically sequences the coding sequence of
antibodies, which are under very strong selective constraint
in GCs. This contrasts strongly with the neutral evolution
assumptions of most phylogenetic algorithms, as well as the
neutral assumptions of the most common software used for
phylogenetics benchmarks (18, 19).

4. In contrast to typical phylogenetic problems where the root
sequence is unknown, one has significant information about

the root sequence for BCR sequences. Even our current
imperfect knowledge of germline genes greatly constrains the
space of possible ancestral sequences compared to the typical
phylogenetic case where the ancestor is completely unknown.
Evolution of BCR sequences happens in a directed fashion
from this ancestral sequence.

For these reasons, we believe that BCR-specific validation of
phylogenetic tools is an essential prerequisite to their use.

Practitioners frequently use standard phylogenetic tools
for BCR sequences. Many studies performing phylogenetic
reconstruction on BCR sequences have used the PHYLIP package
(22) such as the maximum likelihood (ML) tool dnaml (11, 23–
25) or the maximum parsimony (MP) implementation dnapars
(26–28). For general phylogenetics use, PHYLIP’s dnaml is now
less frequently used compared to faster or more feature-rich
programs such as RAxML (29), PhyML (30), FastTree2 (31), and
the most recent popular ML program, IQ-TREE (32). However,
not all of these programs return ancestral sequence estimates so
are less interesting for antibody researchers.

Four tools have been developed specifically for inferring
BCR phylogenies: IgTree (33), ARPP (34), IgPhyML (35), and
GCtree (36). IgTree aims to find the minimal sequence of
events that could have led to the observed sequences (i.e., a
maximum parsimony criterion), allowing a known root and
sampled ancestors. ARPP is an implementation of a BCR specific
ML model to infer ancestral sequences on trees produced
by PHYLIP’s dnaml. Both IgTree and ARPP have limited
availability: IgTree is not available for download at all, while
ARPP is only available for Windows. ARPP cannot be run
from a script, thus we could not include it in this large-
scale benchmark. IgPhyML adapts the Goldman-Yang (GY94)
codon substitution model (37) by adding parameters to model
the motif dependent mutation rate. However, to achieve a
tractable likelihood the motif contribution is marginalized
across codons to achieve a independent-across-codon likelihood
function that works well with the usual ML setup. IgPhyML
is built on codonPhyML (38) which is used for tree inference
and likelihood calculations; ancestral sequence reconstruction
can be done in a post processing step using an auxiliary script
(provided in the supplement of (35)). GCtree ranks equally
parsimonious trees found by PHYLIP’s dnapars according to a
likelihood function derived from a Galton-Watson branching
process (39). In this branching process, the cellular abundance
of a given genotype is used and therefore single cell data
is a necessary requirement for optimal ranking with GCtree.
Both IgPhyML and GCtree are freely available through
GitHub. Additionally, we have implemented an alternative
method, called SAMM v0.2, for ranking equally parsimonious
trees based on the sum of log likelihoods of the observed
mutations between nodes on a tree given a substitution model
based on SHM motifs. This ranking is implemented using
the SAMM package (40) and described in more detail in
Methods.

To benchmark phylogenetic methods for BCRs, we desired a
simulator for full-length BCR sequences that modeled context-
sensitive mutation, natural selection on amino acids, and had
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publicly available source code. Many interesting simulators have
different goals. Detailed mechanistic models have been proposed
to model all cells and all interactions in a GC using first principles
from biophysics (41–43). Others have suggested probabilistic
frameworks modeling summary statistics of SHM (44, 45) and,
as a middle ground between ultra fine grained models and plain
summary statistics, models attempting to explain population
level trends using systems of differential equations have been
suggested (46). Even simulators that use a notion of sequence
don’t necessarily use nucleotides or model mutation in an
accurate way. For example, (41) uses a reduced-size alphabet to
obtain an appropriately rugged fitness landscape, while (47) use
uniform per-site nucleotide mutation in the complementarity
determining region and selection based on a subset of key
residues.

No existing simulator fit our needs and so we
designed a simple model of affinity maturation of BCR
sequences in a clonal family. In this model, sequence fitness is
solely a function of the amount of antigen bound by the BCR
at equilibrium. Antigen binding is calculated using standard
binding kinetics applied to a GC with B cells carrying BCRs
with different sequences and affinities, competing to bind a
limited amount of antigen. Our simple design is motivated by
the observation that antigen binding is the main driver and
limiting factor of affinity maturation (48). By modularizing
the simulation code we have one module preforming mutation
and proliferation as a neutral branching process and an
optional module to change the birth/death rate through affinity
selection.

This simulator has enabled a primary goal of our work: to
benchmark methods for ancestral sequence reconstruction. Such
methods infer sequences at ancestral nodes of a phylogenetic
tree according to some optimality criterion. Ancestral sequence
reconstruction is heavily used in BCR sequence analysis, in which
it is common to synthesize and test ancestral sequences in order
to understand the impact of historical substitutions on binding
(49, 50).

A recent and independent effort by Yermanos et al. (51) did
a benchmarking study using simulated BCR sequences without
selection and compared phylogenetic method performance,
including ML and MP tools. Our study has the following
differences with this previous work:

• we simulate sequences under selection using an affinity-
based model, which we show makes the inferential problem
significantly more difficult,

• we compare accuracy of ancestral sequence inference,
• we include additional software tools, several of which are

BCR-specific,
• we provide evidence that our simulations have similar

characteristics to real data,
• and we use isotype data as a further non-simulation means of

benchmarking methods.

This previous work also worked to understand the results of
phylogenetic inference using a “toy” clonal family inference
method with necessarily bad performance, whereas here we
assume that clonal families have been properly inferred.

In this paper we attempt to answer some of the unresolved
questions about BCR phylogenetic inference, including a
benchmark of the performance of relevant phylogenetic
tools (dnaml, dnapars, IgPhyML, IQ-TREE, GCtree and an
undescribed SHM motif based tree ranking method), an
investigation of the influence of SHM motifs; and a comparison
between simulations with neutral or selection-based evolution
(Figure 1). We apply our proposed sequence simulation
framework to simulate under different realistic models that
include SHM motifs and affinity selection. Finally, we show how
the biological mechanism of isotype switching can be used to
empirically test phylogenetic inference.

All simulation code is open source and can be found
on our GitHub repository together with sequence data for
the isotype validation (https://github.com/matsengrp/bcr-phylo-
benchmark). All simulation data is organized to reproduce
figures and is available for download on Zenodo (https://doi.org/
10.5281/zenodo.1306301).

METHODS

Although statisticians have made substantial strides in
proving identifiability (52, 53) of phylogenetic models and
consistency (54) of inferential procedures, proving consistency
of phylogenetic methods under context-sensitive BCR evolution
models with selection is out of reach because no likelihood
function is available. Therefore, we chose the general approach
of simulating phylogenies, and benchmark tools based on their
inference on samples from these known trees. As ancestral
sequence reconstruction is of special interest among the users
of BCR phylogenetics (11, 50, 55) we developed a metric to
measure ancestral sequence reconstruction performance. In
the following subsections we present these simulations and
performance metrics, as well as a method to use empirical data to
assess performance via the principle of irreversibility of isotype
switching.

Simulation
We devised two simulation strategies for BCR evolution: (1) a
neutrally evolving branching process, and (2) a branching process
with a birth/death rate controlled by BCR antigen binding. Both
simulations start with a single naive sequence as a starting point
for the tree simulation; this is evolved a number of generations
to a population of BCR sequences from which a sample is drawn
and used for inference. To get realistic starting sequences for the
simulations we created a set of 288 naive sequences inferred by
partis (56) from the healthy donor human single cell dataset in
Briggs et al. (57). These sequences were selected because they
have many unique unique molecular identifier (UMI) tagged
reads, which gives a high confidence consensus over the full VDJ
region. When a simulation run is initialized a naive sequence is
drawn randomly from this set.

Our neutral model is controlled by two parameters which
are used to control two Poisson distributions determining the
simulation: the progeny distribution (λ) and the mutation
generating distribution (λmut). Each evolving sequence has its
own λwhich expresses the fitness of that sequence in comparison
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FIGURE 1 | Graphical abstract summarizing the work presented in this paper. We use sequence simulation to establish a ground truth phylogeny from which a

sample of sequences is used to infer the phylogeny using different inference methods. The inferred tree is then compared to the simulated true tree to measure

inference performance. Lastly, the different inference methods are compared.

to the other sequences in the population (details below). All
sequences have the same mutation probability i.e., λmut is the
same for all sequences and constant throughout the simulation.
The simulation starts with a single cell carrying the naive
sequence; a draw from Pois(λ) will yield the number of progeny
cells in the first generation. If a zero is drawn the cell dies, if
one is drawn it propagates without division, if two is drawn it
splits into two cells, etc. Next, for each progeny cell a draw from
Pois(λmut) will determine how many mutations to introduce
into its sequence. Mutations are drawn either from a uniform
distribution over both sites and substitutions, or using a context
sensitive motif model (e.g., S5F (16)). Multiple mutations are
introduced stepwise, one at a time, and if a context sensitive
mutation model is chosen the sequence context is updated
between each introduced mutation. The simulation process can
be terminated in three ways: (1) when all cells have died, (2) at
fixed time point T, or (3) when a fixed number of cells, N, has
been reached.

As mentioned above, birth and death rates are controlled
through the Poisson rate λ. One can think of this as measuring
the level of T helper cell signal, in which lots of signal promotes
proliferation while insufficient signal leads to death (1). In our
neutral simulations, λ is held constant and is the same for all cells.
For simulations with selection we use a very simplistic view of
the maturation process, in which selection is purely driven by T
helper cell signal which is strong for BCRs binding a lot of antigen
and weak for BCRs binding little antigen. To translate this into
selection in our simulation framework we devise a simple model

to transform a BCR sequence into an affinity value, solve for its
antigen binding and then use this to control λ, thus making it
sequence dependent. In essence, this “affinity selection” is just
a mapping between a BCR sequence and a λ; this enables us to
use the same simulation framework for both neutral and affinity
simulations. We emphasize that cells with a small λ will tend to
draw a 0 from the Poisson distribution and die, so this framework
incorporates cell death in addition to division and persistence.

Here we review the basics of fitness assignment; a detailed
description of the model as well as model choices can be found
in the Supplementary Material. For any BCR sequence indexed
by i, its fitness is λ(i) = Y(x), where Y is a transformation of
some information, x, specified in the simulation. For a neutral
simulation Y(x) is constant and independent of x, while for the
affinity simulation Y is variable with respect to x. To model
BCR sequence affinity we introduce the concept of a “mature
sequence” which is the sequence with the highest attainable
fitness in the simulation run. Once the simulation starts the
mature sequence acts as an attractor to which evolution tends
to converge by rewarding amino acid sequences closer to the
attractor with higher λ. The choice of mature sequence is
arbitrary so we chose to simulate it by randomly mutating the
naive sequence until it accumulates a predefined number of
amino acid substitutions. Next, the naive and mature sequence
are assigned their own affinity values and the span between
these define the affinity gain during affinity maturation. To
calculate the affinity of a BCR sequence we calculate its amino
acid Hamming distance to the mature sequence and transform
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FIGURE 2 | Time series of the distribution of cells at different distances from

the mature sequence (Dist 1, 2, ..., 8) as it appears in a typical affinity

simulation (corresponding tree shown in Figure 3). The simulation is started

from a single naive sequence, five amino acid substitutions away from the

mature sequence (Dist 5), and simulated sequences converge toward the

mature sequence as generations progress.

this into an affinity value using an appropriate power function
calibrated on the naive and mature sequences. We then model
the BCR binding kinetics by defining a total GC volume with
a constant concentration of antigen and solve for the B cells’
antigen occupancy at equilibrium. Antigen occupancy is mapped
to B cell fitness (λ(i)) using a logistic function returning a value
between 0 and 2. These steps describe the general setup of
calculating Y(x) for the affinity simulation.

Inspection of the simulation runs confirm that affinity
simulation recapitulate a number of desired properties
(Figures 2, 3): (1) sequence evolution is converging toward
the mature sequence, (2) cells are competing for the limited
supply of antigen establishing a “carrying capacity,” and (3)
favorable mutations are rapidly fixed through selective sweeps
(59) analogous to clonal bursts (1, 20).

We set the expected number of mutations, introduced into
the sequence at each mutation step, to be approximately 0.365.
This corresponds to the frequently cited SHM rate at around
10−3 (60) given the average length of our naive BCR sequences
of 365 nucleotides. We define λmut = 0.365 as the “normal”
mutation rate, but because the estimates of SHM rate vary
in the literature we also include half and double of this rate
(λmut ∈ {0.1825, 0.365, 0.73}) in all our simulations. We observe
high correlation between the method performance across all
three λmut (Figures S2, S3), showing that our conclusions are
robust to differences in mutation rate. For neutral simulations
the branching parameter (λ) and the population size termination
criterion (N) are adjusted (λ = 1.5 and N = 75) to
recapitulate summary statistics of the single cell GC experiment
in Tas et al. (20) (Figure S25), following a similar procedure as
DeWitt et al. (36). For the affinity simulations the branching
parameter is cell-specific and adjusts dynamically, in the range
between 0 and 2, according to antigen competition. Each affinity
simulation uses 100 “mature” sequences, which act as a collection

of targets for the convergent evolutionary process. These mature
sequences are generated by randomly introducing 5 amino acid
substitutions to the naive sequence (in depth description in
Supplementary Material). Affinity simulations are run with an
antigen concentration sufficient to maintain a cell population of
approximately 1,000 cells, and after 35 generations a random
sample of 60 cells is recovered for inference, again, roughly
recapitulating summary statistics of the single cell GC experiment
(Figure S26). We also performed intermediate sampling for
the affinity simulation: in such cases 30 cells are sampled at
generation 15, 30 and 45 and pooled to a total of 90 cells.
Neutral simulations were run with 1,000 replicates and affinity
simulations were run with 500.

Inference Methods
From each simulation run a subset of sequences was sampled
and used for phylogenetic inference along with the correct naive
sequence which was used as an outgroup. We tested a number
of relevant tools either previously used in the context of BCR
phylogenetic inference or with potential use in this field:

• dnaml v3.696: PHYLIP’s implementation of ML using the F84
model (22)

• dnapars v3.696: PHYLIP’s implementation of MP (22)
• GCtree v1.0: Branching process likelihood ranking of MP trees

(36)
• SAMM v0.2: Mutation motif based likelihood ranking of MP

trees (40)
• IgPhyML v0.99: GY94 codon model with hot/cold spot motif

parameters (35)
• IQ-TREE v1.6.beta5 (IQT): Fast ML inference with many

substitution models (32)

For all methods the naive sequence was used as an outgroup,
furthermore, the naive sequence was used to reroot the tree
after inference. For all methods no sequence partitioning
was used. IQ-TREE was run using either JC, HKY or GTR
nucleotide substitution models and using the “ASR” flag, but
otherwise with default settings. IgPhyML was run as described
in Hoehn et al. (35) and using the “-o tlr -motifs

WRC_2:0,GYW_0:1,WA_1:2,TW_0:3,SYC_2:4,

GRS_0:5 -hotness e,e,e,e,e,e” flags to optimize
branch lengths and topology with NNI moves under the full
HLP17 model containing a free parameter for all six degenerate
hot/coldspots. dnaml was run using gamma distributed rates,
a coefficient of variation of substitution rate among sites of
1.41, four rate categories and otherwise default parameters.
dnapars was run using default settings. In the case of dnapars
it is common to observe many equally parsimonious trees, and
in those cases a random tree was drawn. GCtree was run as
described in DeWitt et al. (36), passing both sequences and their
abundances to the program. Both GCtree and SAMM use the
equally parsimonious trees generated with dnapars for likelihood
ranking, hence in the case when only a single MP tree is found,
dnapars, GCtree and SAMM will by definition yield the same
result.

The use of all the above methods has been described
previously, except SAMM which is part of a statical framework
to infer DNA mutation motifs using survival analysis (40). As
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FIGURE 3 | A collapsed tree made from 60 sequences sampled from GC generation 35 of the simulated population. Nodes are labeled with numbers indicating the

number of collapsed tips (genotype abundance) and node size is proportional to this number. Branch lengths are Hamming distance between nucleotide sequences

with dashed lines indicating purely synonymous mutations and solid lines indicating one or more non-synonymous mutations. Branch thickness is proportional to the

number of non-synonymous mutations. The tree was rendered with ETE3 (58) and colored according to distance from the mature sequence with the same colors as

Figure 2.

it is well known that SHM is context sensitive (16, 17, 61)
we ranked equally parsimonious trees according to their SHM
motif likelihood, inspired by the branching process ranking of
DeWitt et al. (36). Using SAMM we calculate the likelihood of
the observed mutations given a tree equipped with ancestral
sequences at the internal nodes (in this application from
parsimony) and a motif model by using Chib’s method (62) to
integrate out event orders on the branches. This likelihood is then
used to rank the equally-parsimonious trees, and the highest-
ranked tree is chosen as the tree returned by SAMM. More
detail on the likelihood calculation used in SAMM can be found
elsewhere (40).

We would like to make it very clear that we use the same motif
model for both simulating mutations and calculating SAMM
likelihoods. This gives SAMM an unfair advantage, however, the
selection process is not modeled as part of the motif model.
We are not formally proposing SAMM ranking as a competing
inference method, but rather as a yardstick with which to
measure howmuch improvement would be possible taking a fully
context-sensitive mutation process into account. On the other
hand, SAMM has no inherent advantage on the isotype scoring
experiment, and it is limited to the MP trees.

Genotype Collapsing
Due to our focus on ancestral sequence inference we have
adopted the use of genotype collapsed trees from DeWitt et al.
(36) throughout this work. Briefly, a genotype collapsed tree
is made by inferring a phylogenetic tree, inferring ancestral
sequences at the internal nodes and recalculating the branch
lengths as Hamming distances between the node sequences. In
the branch length recalculation step nodes are “collapsed” if
their sequences are identical, thereby collapsing tips upwards
and adding observations to internal nodes (Figure 3). Genotype
collapsing deals conveniently with the very short branch lengths,
typically observed in binary trees for BCR sequences, since these
most often collapse into a single node.

Tree and Sequence Reconstruction Metrics
We scored trees both in terms of tree structure and in terms
of ancestral sequence inference. For tree structure, we used the
commonly used Robinson-Foulds (RF) distance (63), which is
half the size of the symmetric difference between the sets of
bipartitions obtained by cutting each edge.We define bipartitions
using both tips and sampled internal nodes, as opposed to
standard RF using only tips. Because we perform RF on
genotype-collapsed trees, this measure in fact combines accuracy
estimation of ancestral sequences and tree topology.

We also used several means to more directly compare
ancestral sequence reconstructions: the “most recent common
ancestor” (MRCA) metric, and the “correctness of ancestral
reconstruction” (COAR) metric. The MRCA metric compares
ancestral sequences on the true vs. the inferred phylogeny in
a way that does not depend on agreement between the two
topologies. Specifically, the MRCA distance is calculated by
iterating through all pairs of leaves. For each such pair there
is a well defined MRCA node on the tree. The MRCA metric
is the average Hamming distance between the inferred and the
true ancestral sequence for these pairs. Using i and j (i 6= j) to
iterate over all combinations of pairs of leaves to find their true
(Ti,j) and inferred (Ii,j) most recent common ancestor, this can be
written as:

N∑
i=1

N∑
j=i+1

dH(Ti,j, Ii,j)
/
(N(N − 1)/2)L.

HereN is the number of leaves and L is the length of the sequence.
Thus, MRCA gives an overall view of how ancestral sequence
reconstruction is performing.

There is also a special interest in benchmarking tools to
reconstruct a lineage of ancestral sequences going from the root
(the naive sequence) to a tip of interest (11, 55). Hence, we
developed the COAR metric which is measuring the average
number of sequence mismatches across all true vs. inferred
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lineages going from the root to any tip. It is not initially obvious
how to compute such a distance if the true and inferred lineage
contains a different number of nodes. We solve this problem
by finding the node to node comparison that minimizes the
distance while maintaining the root-to-tip order. Please see
the Supplementary Information for details on COAR metric
calculation.

We chose COAR as our principal metric for comparison
because it was well correlated with other metrics (see section
Results) and because it reflects how researchers use ancestral
sequence reconstruction of BCRs.

Isotype Scoring
We used sequences with isotype information as another means of
characterizing phylogenetic accuracy. The isotype-determining
constant region is located downstream of the heavy chain BCR
variable region, and isotype changes through a process called
class-switch recombination. In mice the isotype constant regions
are ordered, from closest to furthest to the J gene: IgM, IgG, IgE,
then IgA. Naive BCRs use IgM, but during affinity maturation
isotype switching can occur by looping out one or more of the
constant regions. For instance if IgM is looped out the resulting
BCR is IgG and if IgM, IgG, and IgE is looped out the resulting
BCR is IgA. Because the isotype is physically removed from the
chromosome this process is irreversible, hence a parent cell with
an IgA BCR can never give rise to a child cell of IgM isotype.

We use the irreversible nature of isotype switching to measure
the performance of tree inference by mapping back isotype labels
to the nodes on the inferred tree and counting the number of
nodes with an edge to a child that violate the rules of isotype
switching. We use the BCR data from Laustsen et al. (64) which
is generated with unique molecular identifier (UMI) technology
and primers targeting the isotype region on splenocyte whole
mRNA from five outbred mice undergoing an immunization
campaign. After extensive quality filtering using pRESTO (65) we
ran partis (9) to partition sequences into clonal families. These
clonal families were filtered based on having minimum 10 and
maximum 200 unique sequences and containing at least two
different isotypes. Furthermore, we discarded all clonal families
where inference exceeded 24 h of compute time for any single
tool on a single core. This left 697 clonal families to do isotype
validation.

We defined an isotype mismatch as an observed violation of
the isotype switching order (namely the order IgM, IgG, IgE,
IgA). That is, an edge connecting a parent and a child node is
an isotype mismatch if the isotype order of the parent is farther
along the order than its child (Figure S18). To calculate the
“isotype score” we iterate over all the tips and use each tip as
a starting point to collect the list of isotypes between this tip
and the root. This list is made by progressing from a tip to the
root and collecting isotypes sequentially, however, unobserved
internal nodes will not have an associated isotype and therefore
they “reverse inherit” the isotype from their child. Once this list
has been filled, each edge is evaluated and if an isotype mismatch
is encountered the parent node is marked as a violator. The
number of isotype switching violations is found by counting all
the violator nodes.

This sum is dependent upon the shape of the inferred tree,
potentially leading to a bias associated with each inference tool.
To address this, for each inferred tree we created 10,000 samples
of trees with the same topology but shuffled labels and from these
we calculated a “baseline” isotype score to be expected given this
topology.We divided the violation count by the baseline to obtain
the final isotype score.

Comparison to Joint Reconstruction
There are two approaches to maximum-likelihood ancestral
sequence reconstruction. For joint reconstruction, one infers
the collection of ancestral sequences that jointly maximize
the likelihood of the sequence data given the tree and a
substitution model (66). For marginal reconstruction, one infers
the maximum likelihood ancestral sequences at each internal
node individually, marginalizing over all the possible states of the
other internal nodes. Under the maximum parsimony objective,
ancestral sequence reconstruction is an inherent part of the tree
construction and thus it is conceptually more similar to a joint
ancestral sequence reconstruction.

All the ML based tools (dnaml, IgPhyML, and IQ-TREE)
we test use marginal reconstruction, raising the question of
whether this could influence the results of our benchmark
and if the relatively good performance of parsimony could be
explained by it being a joint-reconstruction technique. In order
to investigate this question, we applied the FastML tool (66),
capable of doing both joint and marginal ancestral sequence
reconstruction. FastML was run using the HKY model and
neighbor joining to build trees resulting in two reconstructions
with the same tree: one joint and one marginal reconstruction.
One thousand simulations under neutral and affinity simulation
was performed using the previously defined three mutation rates.
Finally, the joint and marginal reconstructions were compared
with IQ-TREE as a visual reference (Figures S13–S17).

Boxplot Layout
Tool performance is plotted in boxplots. Colored boxes cover
from lower to upper quartiles, with the median marked by gray
vertical lines and whiskers extending to 1.5 times the interquartile
range. Points beyond the range of the whiskers (outliers) are
hidden for clarity. Red triangles mark themeanmetric value of all
simulations, with 1,000 replicates for neutral and 500 replicates
for affinity simulations, with an overlapping horizontal red line
showing the 95% confidence interval of the mean. Confidence
intervals on the mean were computed using non-parametric
bootstrapping, using sampling with replacement on the set of
metric values to generate 10,000 bootstrap replicates (67). Tools
are ordered according to their mean metric values.

RESULTS

Metrics Are Correlated
The RF, MRCA, and COAR metrics are highly correlated, with
COAR being the most central metric (Figure 4). We checked
this for both neutral and affinity simulation and over a range
of mutation parameters (Figure S1) and conclude that the high
correlation between metrics is robust over many parameter
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FIGURE 4 | Correlation between metrics for the neutral simulation across the three mutation rates described in section Results. Same trend is true for affinity

simulation (Figure S1). (A) Correlation between COAR and MRCA metrics. (B) Correlation between COAR and RF metrics.

choices. To reduce the number of comparisons we chose COAR
as our principal metric because this was the most central metric
as well as being interpretable as the expected number of per-site
errors per reconstructed lineage. However, all metrics have been
run on all simulations (see Supplementary Figures), except
RF distance which does not deal well with reoccurring
sequences that appear multiple times in the affinity
simulation.

Joint and Marginal Reconstruction
Performs Equally Well
We found that joint reconstruction does not have an advantage
over equivalent methods using marginal reconstruction
according to our criteria. To investigate this question, we
ran default FastML v3.1 (66) with neighbor-joining tree
inference to infer ancestral sequences with both joint and
marginal reconstruction over a range of simulation methods
and parameters. Using our three performance metrics: RF,
MRCA and COAR, the two reconstruction methods performed
essentially identically (Figures S13–S17). Because none of the
ML methods initially tested had available joint reconstruction
implementations, we cannot make specific conclusions about
their performance using joint reconstruction. However, the
fact that between joint and marginal reconstruction perform
essentially identically is suggestive that this may be a general
phenomenon in this parameter regime.

Methods Differ in Performance
Consistently Across Simulations
We observe similar trends across varying simulation methods,
performance metrics, and mutation rates. A higher mutation
burden (λmut) leads to more complex trees resulting in decreased
inference performance, and this is true for all methods and
performance metrics (Figures S4–S10). Tools perform better on

neutral simulation compared to affinity simulations (Figure 5),
which is to be expected due to the added complexity of the
affinity simulation. Overall, the distributions of performance
metrics are heavy tailed with several outliers far outside of
the interquartile range. We have chosen to hide such outliers
for the interpretability of our boxplots but their impact can
be observed in the means (red triangles) and their confidence
intervals.

We find that SAMM and GCtree, which rank equally-
parsimonious trees, perform better than a uniformly-selected
equally parsimonious tree from dnapars. For all 15 tests
across mutation rates, performance metrics and simulation
methods SAMM is better than dnapars while GCtree is
better than dnapars 13/15 times (Figures S4–S10). SAMM
is the best ranked tool 12/15 times and often with a
substantial margin to the second best. Thus the equally-
parsimonious tree set contains better and worse trees, and
the likelihood ranking of these is effective at distinguishing
between them. However, given that SAMM were using the
S5F model for likelihood calculations on simulated mutations
also drawn from an S5F motif model, it should be not
surprise to see that SAMM consistently outperforms all other
tools.

Because SAMM is constrained by dnapars and the criterion
of only ranking equally parsimonious trees, we consider the
performance of SAMM compared to other tools as a conservative
estimate of the potential improvement available when correctly
modeling SHM motif bias. As a control, we note that when
mutations are drawn from a uniform distribution over sites
and substitutions, SAMM is not any better than dnapars
(Figures S11, S12) showing that SAMM’s performance can be
ascribed to the mutational context bias. Thus, we can use the
performance difference between SAMM and dnapars to measure
how much inference performance can improve by incorporating
SHMmotif bias.
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FIGURE 5 | COAR performance for different tools under neutral and affinity simulation using normal SHM rate (λmut = 0.365) and mutations drawn from the S5F motif

model. Colored boxes cover the lower to the upper quartiles, with the median marked by gray vertical lines and whiskers extending to 1.5 times the interquartile range.

Points beyond the whiskers (outliers) are hidden for clarity. Red triangles mark the mean COAR value of all simulations (1,000 replicates for neutral and 500 replicates

for affinity simulations) with the overlying red lines showing the 95% confidence interval found by bootstrapping the mean with 10,000 replicates. Black dashed lines

mark highest and lowest mean COAR values. Tools are ordered according to their mean COAR value.

Simulated datasets include information on sequence
abundance, which enables good performance of the GCtree
method. Normally, phylogenetic trees are made from a set of
unique sequences while the cellular abundance of each sequence,
referred to as genotype abundance, is discarded. GCtree, on
the other hand, utilizes this genotype abundance information
by ranking equally parsimonious trees via a likelihood using
abundances. Our results show that GCtree is the second best
performing tool, and consistently better than picking a random
equally parsimonious tree, indicating that the integration of
genotype abundance information does improve tree inference.
Here GCtree is given the correct abundances, giving an upper
bound on the performance gain obtainable by incorporating
abundance information. In a situation with real data GCtree
would rely on single cell data to gain estimates of genotype
abundances; while single cell data is becoming more widespread
(57, 68–70) the majority of Rep-Seq studies are still based on bulk
RNA sequencing resulting in unknown genotype abundances.

Performing third best after SAMM and GCtree comes dnaml
and dnapars, both with similar performance, after that IgPhyML
and lastly the three mutation models implemented in IQ-TREE
which are all performing very similarly (Figure 5). dnapars
performs slightly better than dnaml in neutral simulations while
the opposite is true in affinity simulations. Practically, the
difference between the two programs is so small that we suggest
users to choose whichever program they find to be fastest or most
convenient to use for their application.

Surprisingly, on simulated sequences IgPhyML performs
consistently worse than the simpler dnaml or dnapars
alternatives. Although, it is clear from the SAMM results
that SHM motifs are present and provide useful information for
inference, it does not seem to improve IgPhyML performance
beyond SHM naive methods such as MP. IgPhyML’s model was
preferred (by likelihood ratio test) in the examples provided in
the paper introducing it, which were large trees of long-term

broadly-neutralizing anti-HIV antibodies (35). We suspect
that IgPhyML’s model is too rich for the less complex data
provided here.

All three IQ-TREEmethods, using different mutation models,
perform consistently worse than any other tool tested in this
study. We find it surprising that IQ-TREE using the HKY
model is so far off dnaml using F84 despite the high similarity
between the two substitution models. We therefore conclude that
implementation differences e.g., tree space search, convergence
criteria etc. must be the reason for this discrepancy, which is in
concordance with our observation that IQ-TREE is much faster
than dnaml.

Isotype Data Confirms That Raw
Parsimony Can Be Improved by Likelihood
Ranking
The results of our investigation using isotype were somewhat
inconclusive. This measure had an extraordinarily large variance
observed in both the confidence intervals and the changed
rankings upon rerunning the analysis (Figure S19). Although
SAMM did perform best among all tools when using a custom
motif model fitted on the whole isotype dataset (using means
for ranking), the difference to other tools was small relative to
the variance, thus we cannot conclude from this comparison that
SAMM is better than the next few tools.

We find that most methods are slightly, but significantly,
better than dnapars (Figure S19). Furthermore, we find that
SAMM improves upon raw parsimony (Figure 6), again
confirming the notion that the SHM mutation process is
important and contains residual information not captured by the
parsimony objective. Notably, the parsimony ranking of GCtree
is also significantly better than dnapars (Figure S19) despite
the fact that this dataset did not contain genotype abundance
information. This indicates that the branching process prior used
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FIGURE 6 | Isotype score differences between dnapars and SAMM for all clonal families with non-zero isotype score. Positive points are clonal families where dnapars

had higher (worse) isotype score than SAMM and vice versa for negative values. The horizontal width of the red rectangle marks the 95% confidence interval of the

mean difference.

by GCtree can also yield useful results using the tree topology
alone. Testing the full potential of GCtree would require a single
cell dataset and this may also result in even better performance.
However, we emphasize that the difference in the isotype score
distribution between dnapars and the other methods is quite
small, especially when compared to the variance. Indeed, there
are many trees for which dnapars performed much better than
SAMM according to this metric (Figure S19, points <0).

DISCUSSION

In this work we have benchmarked the performance of
phylogenetic algorithms for use in B cell sequence analysis, with
a special emphasis on ancestral sequence reconstruction. Our
sequence simulation deviates from the standard independent-
across-nucleotides models, often used in such benchmarking,
by both introducing mutations using a realistic SHM motif
model and rewarding convergent mutations via an affinity model
of the binding equilibrium between BCRs and antigen. To
our knowledge this is the first simulation method to model
affinity maturation using BCRs represented as DNA sequences
such that selection is based on the corresponding amino acid
sequences. Inference based on affinity simulated sequences
is more challenging, resulting in ∼10 fold higher COAR
values (Figure 5), underlining the importance of considering
selection to get realistic error estimates on BCR phylogenetic
reconstruction. Still, the average COAR values for affinity
simulation is 0.0003–0.0005 which translates to an expectation
of 1–2 total nucleotide errors in a lineage with 5 heavy+light
chain BCR sequences reconstructed (∼3,600 nucleotides). With
the added benefit that about 1/3 of these expected mutations
will be silent, reconstruction of BCR affinity matured lineages
using ancestral sequence reconstruction in this parameter regime
appears to be of high fidelity. However, this estimate should
be tempered with the fact that the correct naive sequence

was provided to the algorithm, and the general fact that
complex processes happening in real data can make the problem
significantly harder. In real applications there will be uncertainty
in the inference of the naive sequence. In cases where an
erroneous naive sequence is used in tree reconstruction, such
nucleotide errors are likely to propagate toward the tips of the
tree, increasing the expected number of errors.

Our simulations generally follow same summary statistics as
a single instance of germinal center maturation starting from
an unmutated naive B cell (Figures S25, S26). However, upon
repeated exposures, germinal center maturation is more likely to
be based onmemory recall e.g., chronic or seasonal infections like
HIV and influenza (71). Memory recall will naturally accumulate
more mutations than maturation on a naive B cell and hence
will constitute a more complex reconstruction task. As we do
not simulate the conditions of memory recall our results cannot
be directly applied to such cases, however, we do expect that
in such cases the success of reconstruction is lower and that
the expected number of nucleotide errors in a reconstruction
is substantially higher than the expectations reported above. It
also follows from the simulation summary statistics (Figures S25,
S26) that our simulated trees are quite densely sampled, giving
rise to sampled ancestors and short branch lengths. This stands
in contrast to typical repertoire-wide data where clonal families
are sampled more sparsely and therefore have longer branches on
their corresponding phylogenetic trees. The short branch lengths
of our simulations may favor simpler reconstruction methods
such as parsimony. Because of these limitations our findings are
not directly applicable to repertoire-wide datasets, although they
do indicate that we cannot assume the results of simulations in
the classical long-branch phylogenetic regime (e.g., (14)) hold for
all cases of B cell lineage evolution.

Looking at the more subtle differences between tools two
observations stand out: first, accounting for SHM motifs is the
biggest contributor to accuracy, and second, implementation
matters. The performance of SAMM on simulations clearly
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shows how SHM motifs leave a useful trace that can be
integrated into an inference method. One such method is
the HLP17 model used by IgPhyML (35), but it may suffer
from noisy parameter estimates in cases with relatively few
sequences per clonal family. An extension to IgPhyML may
alleviate these problems by either fixing the hot/cold spot
parameters with a predetermined motif model, or the means
of combining information across clonal families. Yet, there
are still reasons to attempt other ways of integrating SHM
motifs, as well as other affinity maturation specific information
like genotype abundances, into inference methods in more
principled ways than mean field approximations or likelihood
ranking of MP trees. Our benchmark also gives a reminder that
implementation matters. Under otherwise similar substitution
models two different implementations (dnaml and IQ-TREE)
vary substantially and consistently in performance. We do not
know what causes these differences, but we speculate that tree
space sampling could be a critical point as this appears to be the
most important difference between these two implementations,
and because IQ-TREE experiences the same pathologies with
multiple different substitutionmodels. IQ-TREE’s heuristics were
probably tuned with the traditional phylogenetic case (of deeply
diverging sequences) in mind, which is different from our
use case.

BCR isotype switching is an irreversible event and contains
useful information about the phylogenetic relationship among
BCR sequences in the same clonal family. We observed that
the two MP tree ranking methods (SAMM and GCtree) did
significantly decrease the isotype score compared to picking
a random equally parsimonious tree, thus confirming our
simulations. Despite this it appears to be very difficult to use
the isotype score as an empirical performance metric because of
its high variance. We believe that this is in part due to sparse
sampling of the clonal families (only few tens of sequences out
of the thousands evolved in a GC). In such cases, incomplete
sampling can cause penalization of correct reconstructions
because of missing observations and the isotype score will not
reach zero even with perfect reconstruction. However, on average
the best reconstructions should have lower isotype scores than
the worst reconstructions. With better sampling and more clonal
families we expect the isotype score to be better resolved, with
lower variance, and then it may be a more useful metric for
assessing the performance of BCR phylogenetic inference, or
simply used as a constraint in the inference model itself (72).

In this work we provided phylogenetic algorithms with
the correct naive sequence. The impact of naive sequence
uncertainty was in a way benchmarked by Yermanos et al.

(51), in which they used a coarse method for clonal family
inference and then asked if phylogenetic methods could

later disentangle the families. Both our study and Yermanos
et al. (51) leave open the question of the performance of
phylogenetic methods when supplied with a potentially noisy
estimate of the naive sequence supplied by current clonal family
inference tools. We will perform the appropriate benchmarking
as part of our future development of methods to perform
phylogenetic reconstruction and naive sequence estimation
simultaneously.

In this work we also have not tested the impact of insertion-
deletion (indel) mutations, which do happen in BCR phylogenies
(61, 73, 74). Current tools leave a lot to be desired for ancestral
sequence inference in the presence of indels, as in our experience
they “fill in” nucleotides at every site of an ancestral sequence
inference, even if a gap is clearly the right choice. In addition,
indels are not treated as the informative characters they are
in mainstream phylogenetics software; rather, they are treated
as missing data. Benchmarking phylogenetic tools would also
require benchmarking the alignment step, which has an effect on
ancestral sequence reconstruction accuracy (75). Nevertheless,
this will be another important focus for future tool development
and ancestral sequence reconstruction benchmarking within the
field of BCR phylogenetic reconstruction.
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The Immune Epitope Database (IEDB) is a free public resource which catalogs

experiments characterizing immune epitopes. To accommodate data from next

generation repertoire sequencing experiments, we recently updated how we capture and

query epitope specific antibodies and T cell receptors. Specifically, we are now storing

partial receptor sequences sufficient to determine CDRs and VDJ gene usage which

are commonly identified by repertoire sequencing. For previously captured full length

receptor sequencing data, we have calculated the corresponding CDR sequences and

gene usage information using IMGT numbering and VDJ gene nomenclature format. To

integrate information from receptors defined at different levels of resolution, we grouped

receptors based on their host species, receptor type and CDR3 sequence. As of August

2018, we have cataloged sequence information for more than 22,510 receptors in

18,292 receptor groups, shown to bind to more than 2,241 distinct epitopes. These

data are accessible as full exports and through a new dedicated query interface. The later

combines the new ability to search by receptor characteristics with previously existing

capability to search by epitope characteristics such as the infectious agent the epitope is

derived from, or the kind of immune response involved in its recognition. We expect that

this comprehensive capture of epitope specific immune receptor information will provide

new insights into receptor-epitope interactions, and facilitate the development of novel

tools that help in the analysis of receptor repertoire data.

Keywords: IEDB, epitope, antibody, TCR, BCR, CDR, repertoire sequencing, AIRR

INTRODUCTION

The adaptive immune system in vertebrates has evolved to recognize and combat an ever
changing repertoire of pathogenic organisms such as viruses, bacteria, and parasites. The ability
to recognize this plethora of attackers is vastly due to B and T lymphocytes which express a
highly diverse repertoire of antigen receptors. Both B and T cell receptors are generated through
a stochastic process in which segments from several genes are re-arranged (1). B cell receptors
(BCRs) or antibodies (secreted BCRs) are typically heterodimers of two different proteins, a
heavy and a light chain, while T cell receptors (TCRs) are made up of α and β or γ and
δ chains. Chromosomes encoding the heavy and β chains proteins in every B- and T cells,
respectively, have DNA modules composed of variable (V), diversity (D), joining (J), and constant
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(C) genes. On the other hand, light and α chains are encoded by
modules of V, J, and C genes. For example, the IMGT database (2)
reports 68V, 2 D, 14 J, and 2C genes in the human TCR locus of
the β chain and 54V, 61 J, and 1C genes in the complementary α

chain locus.
The recombination process rearranges one each of these

possible V, D, and J gene segments to be adjacent to each
other. B and T cells with productive rearrangements of the two
chains express BCRs and TCRs on their surface, respectively. The
protein domain encoded by V(D)J recombination in heavy and
light chains is known as the variable domain. This combinatorial
rearrangement process is the key to receptor diversity. Receptor
diversity is further amplified by insertions and deletions at the
junctions between the various gene segments (3).While TCRs are
stable after this initial V(D)J re-arrangement, BCRs can further
mutate due to somatic hypermutations and affinity maturation,
resulting in even higher BCR diversity which is associated with
high affinity with their cognate antigen (4). These processes
ultimately supply the host with a broad array of BCR and TCR
receptors capable of binding to immune epitopes that allow the
immune system to distinguish self from non-self.

The Immune Epitope Database (IEDB) contains data gathered
by manual curation of the scientific literature and through direct
submissions of experimentally identified B- and T-cell epitopes
and MHC ligands (5). As of August 2018, the IEDB has over
462,000 epitopes from over 19,500 manually curated references
and direct submissions. In addition to capturing the identity of
these epitopes, the IEDB also captures a vast array of information
on the host organism in which the epitope is recognized, immune
exposures of the host that led to the epitope recognition, the
type of immune response targeting the epitope, and the epitope
specific TCRs or BCRs/antibodies (Figure 1).

Originally, BCR and TCR sequence information was only
curated in the IEDB if a formal sequence record was available

FIGURE 1 | Information captured in the IEDB. Detailed information related to the immune exposure of the host, type of assay used to test the immune response, and

the reference of the data is captured in the IEDB. Data shown in this figure is from IEDB Assay ID: 1479091.

in GenBank or UniProt. This was nearly exclusively the case for
3D structures of receptor-epitope complexes, as immune receptor
sequencing was expensive and labor intensive. However, with the
advent of next generation receptor sequencing experiments, also
known as Rep-Seq (6), epitope specific BCR and TCR sequences
are increasingly becoming available. The sequence data from such
experiments is typically limited to one of the two receptor chains,
and often targets the highly variable CDR3 (Complementarity
Determining Region 3). Capturing these data appropriately and
making it compatible with the existing full length receptor
sequence data in the IEDB required modifying the IEDB curation
approach and database design, as well as the query and reporting
interfaces. These changes are described in the present article.

CHANGES IN THE IEDB DATABASE
STRUCTURE AND CURATION PROCESS
FOR IMMUNE RECEPTORS

Extension of Information Captured on
Immune Receptors
In the past, IEDB receptor data was captured as part of the B-
and T-cell assay tables, and included the receptor names (e.g.,
OT-2), types (e.g., α/β), isotypes (e.g., IgG4), immunoglobulin
(Ig) domains (e.g., Fab, Fv, Whole antibody) and links to their
sequence records (e.g., UniProt or NCBI accessions) for each
of the chains (Table 1). As pointed out, above, next generation
immune receptor sequencing experiments often provide partial
receptor sequences. To store this information, we added fields
to capture CDR1, CDR2, and CDR3 amino acid sequence
information, as well as VDJ gene usage (Table 1). We used the
IMGT definition for CDRs (7), and followed the WHO-IUIS
nomenclature for VDJ genes (8). As sequencing experiments
often target nucleotide sequences, a field to store them was also
added to the assay table (See Table 1).
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TABLE 1 | Data structure and grouping of captured receptor information.

Data fields Assay receptor Distinct receptor Receptor group

Receptor name PMEL17

Source organism Homo sapiens Homo sapiens Homo sapiens

Sequence identifier Chain1: NCBI:5EU6_D

Chain2: NCBI:5EU6_E

Protein sequence Chain1: MKQEVTQIPAALS…

Chain2: GAGVSQTPSNKVT…

Nucleotide sequence –

Curated Calculated

V gene Chain1: TCRAV21

Chain2: TCRBV7-3

Chain1: TRAV21*01

Chain2: TRBV7-3*01

Chain1: TRAV21*01

Chain2: TRBV7-3*01

D gene – – –

J gene – Chain1: TRAJ53*01

Chain2: TRBJ2-3*01

Chain1: TRAJ53*01

Chain2: TRBJ2-3*01

Receptor type αβ αβ αβ αβ

Chain type Chain1: α

Chain2: β

Chain1: α

Chain2: β

Chain1: α

Chain2: β

Chain1: α

Chain2: β

Variable domain sequence – Chain1:KQEVTQIPA…

Chain2:AGVSQTPSN…

Chain1:KQEVTQIPA…

Chain2:AGVSQTPSN…

CDR1 sequence Chain1:DSAIYN

Chain2:SGHTA

Chain1:DSAIYN

Chain2:SGHTA

Chain1:DSAIYN

Chain2:SGHTA

CDR1 positions – Chain1: 28-33

Chain2: 27-31

CDR2 sequence Chain1:IQSSQRE

Chain2:FQGTGA

Chain1:IQSSQRE

Chain2:FQGTGA

Chain1:IQSSQRE

Chain2:FQGTGA

CDR2 positions – Chain1: 51-57

Chain2: 49-54

CDR3 sequence Chain1: AVLSSGGSNYKLTF

Chain2: ASSFIGGTDTQYF

Chain1: AVLSSGGSNYKLT

Chain2: ASSFIGGTDTQY

Chain1: AVLSSGGSNYKLT

Chain2: ASSFIGGTDTQY

Chain1: AVLSSGGSNYKLT

Chain2: ASSFIGGTDTQY

CDR3 positions – Chain 1: 92-104

Chain 2: 93-104

Receptor data captured from publications is shown in ‘assay receptor’ column (IEDB assay ID: 2723539). The values in distinct receptor column were used for creating distinct receptor

entries by combining receptors from different assays. If variable domain sequence was not available then CDR 1, 2 and 3 sequences were used to create distinct receptors. Similarly,

the values in receptor group column are used for clustering similar distinct receptors in a group.

We wanted to capture the same information on CDRs and
gene usage for receptor data for which full length protein
sequences were previously curated. Thus, we identified CDRs,
their position in the full length sequence, variable domain
sequences and VDJ gene usage from full chain protein sequences
based upon the IMGT numbering scheme (7) using ANARCI
software v1.1 (9). This “calculated” information was stored in the
assay table side by side with the “curated” information provided
by the author if both are available (Table 1). The calculated and
curated receptor information is displayed on the assay details
pages in the IEDB (Figure 2).

Distinct Receptor Identifiers
As we do for epitopes and assays, we wanted to assign numeric
IEDB identifiers to receptors that serve as a stable reference, and
group together all information available for a specific receptor
studied. As an epitope database, the IEDB considers two immune
receptors to be distinct if they have different specificities. For
example, addition of a histidine tag to an antibody is not expected
to significantly change its specificity, so we would want data

from an antibody with and without such a tag to be grouped
together, and want to assign it the same identifier to be able
to interlink such reports. Similarly, differences in the nucleotide
sequences of TCRs that encode for the same amino acid variable
domain are not expected to result in different specificities. Based
on these considerations, we identified the subset of information
in Table 1 that is clearly linked to receptor specificity, namely
the species of the host organism making the receptor, the
receptor type, and the sequence of the variable domain/s. If
the full length variable domain sequence is not available, all

the available CDR sequences are considered. For several values,
such as CDR3 regions, an assay may have both curated data

(which reflects what the author stated to be the CDR3), and

calculated data (which is based on automated analysis of the
full length sequence). If both curated and calculated data are

available and they are in conflict, we prioritize the calculated
information, as it is easier for us to guarantee that it follows

the IMGT numbering scheme. Overall, the rows in “distinct

receptor” column of Table 1 identify the subset of properties
that are used to identify distinct receptor entries, and which are
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FIGURE 2 | Assay receptors. The curated and calculated assay receptor information is displayed side by side on the assay details pages in the IEDB. Data shown in

this figure is from the IEDB Assay ID: 2723539.

FIGURE 3 | Receptor groups. Receptors are grouped based on their type, CDR3 sequence/s and host organism. Next generation repertoire sequencing experiments

can report only a single chain CDR3 sequence for a receptor. Therefore, we group receptors hierarchically in groups with identical single chain CDR3 sequences

(receptor group ID: 11040) which are divided in receptor groups based on CDR3 sequences from the other chain (receptor group ID: 1162 and 1525).
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FIGURE 4 | Capturing engineered, camelid and other special receptor types in

the IEDB. The nanobodies and HCAbs in the IEDB are captures under heavy

and heavy-heavy receptor types. The heavy and light chain variable domains in

the scFv are captured as individual chains under scFv receptor type. The

diabodies are captured as constructs. The heavy and light chain pairs in the

diabodies which bind to two different epitopes are captured as two different

assays.

linked to all assay entries that have receptors that match these
fields.

Receptor Groups
While the definition of distinct receptors interlinks records for
which the same receptor sequence information is given, it keeps
records separate for which information is provided at different
levels of granularity. For example, receptors for which only the
TCR-beta chain is sequenced will be separated from receptors
that have both the TCR-alpha and TCR-beta sequence available.
Given that the CDR3 region of immune receptors is the most
variable and is typically responsible for most contacts of the
receptor with the epitope recognized, we decided to provide
groups of receptor data that share the same CDR3 sequence.

Specifically, we grouped together distinct receptors that had
the same host species, receptor type, and CDR3 sequence/s
(shown in “receptor group” column of (Table 1). This
classification is hierarchical, so that the receptor group
sharing the same TCR-α CDR3 sequence, can be subdivided into
multiple receptor groups based on their TCR-β CDR3 sequence.
Figure 3 illustrates how different distinct receptors are assigned
to receptor groups. All the curated receptors were grouped into
18,292 receptor groups using above mentioned criteria.

Receptor Types: Special Cases
While the majority of vertebrates produce heterodimeric
antibodies with heavy and light chains, camelids (camels, llamas
and alpacas) produce naturally occurring heavy chain only
antibodies devoid of light chains (HCAbs) (10). Similarly, sharks
and other cartilaginous fish produce IgNARs (Immunoglobulin

New Antigen Receptors) which are homodimeric heavy chain
only antibodies (11). These observations have led to the
development of engineered antibodies with a single heavy chain
variable domain, known as VHH or nanobodies. Nanobodies
and other types of antibody and TCR constructs, such as single
chain antibodies (scFv), single chain TCRs (TscFv), single domain
antibodies (sdAbs), and bispecific dual-variable- domain (DVD)
antibodies or diabodies (12, 13), pose additional challenges in
curation of receptor information.

To date, the available camelid and shark HCAbs curated in
the IEDB-3D were engineered single-variable-domain antibodies
(monomeric nanobodies or vNAR), so these were captured
under receptor type “heavy” (Figure 4). ANARCI software
cannot assign variable domain sequences and CDRs to IgNARs,
so we captured IgNARs by manual curation, but were not
able to assign calculated CDRs, gene usage and variable
domains to these receptors. The sdAbs are either heavy or
light chain variable domain antibodies (13). Therefore, they
were captured as receptor type “heavy” or “light.” Engineered
single chain antibodies (scFv) and single chain TCRs (TscFv)
with full length sequences were split into their individual
variable domains (heavy, light, α or β) before populating
the assay table (Figure 4). The receptor type “construct” is
included to capture additional types of engineered antibodies
and TCRs, e.g., engineered bi-specific diabodies. The diabodies
or dual-variable-domain (DVD) antibodies with two pairs
of variable heavy and light domains were also split into
individual pair of heavy and light variable domains. Only
the author specified pair of heavy and light variable domains
in the diabodies that interacts with the epitope were stored
in the assay table. If the 3D structure of a diabody bound
to a single epitope was solved by authors, then the pair of
heavy and light chain variable domains interacting with the
antigen was identified using the IEDB-calculated receptor-
antigen contacts within 4Å atomic distance. If both pairs of
heavy and light chain variable domains were in contact with
two different antigens, then they were stored as two different
receptors.

Re-curation
The process of extending the IEDB database and reviewing
previously captured data resulted in the identification and
correction of curation errors, as well as merging of duplicate
records. We identified cases where the chain sequences were
missing from the 3D data, as well as cases where the chain
type was incorrect. The Ig domains from the 3D assays were
identified based on chain lengths and presence or absence
of the binding chain using an in-house script. The CDR
sequences and their positions were extracted using another in-
house script utilizing outputs from an ANARCI (9) analysis
that assigns IMGT numbering to the receptor chain sequences,
and identifies the chain types (heavy, light, α, and β). Conflicts
between calculated and curated Ig domains and chain types
were resolved by manual re-curation of the articles. We also
identified a few TCR and MHC assays where MHC allele
names did not follow the correct nomenclature or were
insufficiently specified. Such alleles were re-curated using an
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FIGURE 5 | Querying IEDB using antibody or TCR sequences. (A) In the past, user query results in the IEDB were displayed in different tabs named epitopes,

antigens, assays, and references. We added a new results tab for receptors to display different receptor groups corresponding to the user query. (B) All the receptor

information in results can be downloaded using “export results” link in the “receptors” tab. Similarly, more detailed results are downloaded from “assays” tab.

(C) Users can filter any query results by receptor full length protein or CDR sequences using the new receptor search panel. The example shown is to filter results by

antibody (receptor type is BCR heavy-light) heavy chain with “CSYAGGKSLV” as CDR3 sequence.

in-house script to identify the MHC allele based on their
epitope binding groove domains [or G-domain (14)] sequence
identity to known MHC alleles captured in the MRO database
(15). G-domains are composed of α1 and α2 domains in
MHC class I molecules and α1 and β1 domains in MHC
class II molecules, and were identified from MHC chain
sequences using IMGT MHC G-domain numbering (14). These
changes in MHC allele names were verified using manual re-
curation.

Identifying Data for Curation
To date, we have identified 1,604 references having TCR
or antibody sequence information from several strategies.
One ongoing strategy is the introduction of screening all
newly published articles relevant to the IEDB scope for
receptor sequence information during our regular manual
screen step (16). This process was introduced into our
normal workflow, which includes an automated PubMed
query (17) that is run every 2 weeks followed by an
automatic document classifier that excludes articles highly
likely to not have any epitope specific information, and
manually reviewing the remaining articles. We also sought

out public resources that capture information on antibody
or TCR sequences. We searched the ATLAS (18), McPAS
(19), VDJdb databases (20), and the Adaptive Biotechnologies
website for references to journal articles that contain epitope
specific receptor information and downloaded all PubMed
IDs. These identified articles were manually reviewed to
ascertain if the receptors mentioned were epitope specific.
If an article contained such data, we manually curated the
entire article following the established IEDB curation rules
(16). We also screened publications with links to GenBank
entries to determine if the entry is an adaptive immune
receptor utilizing ANARCI to identify TCR and antibody
protein sequences. We then manually screened the associated
publications and curated them when they were found to contain
epitope specific data. We have curated 22,510 of these for
antibody or TCR sequence data and are continuing to curate
the remainder on an ongoing basis. We also added TCR
sequence information to articles having TCR transgenic mice
as the host, wherever clear TCR sequences were available for
these mice. All previously curated assays having 3D structures
were reviewed and receptor sequence data were verified for
accuracy and gene usage, V domains, and CDR3 sequences

Frontiers in Immunology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2688260

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mahajan et al. Epitope-Specific Receptors in the IEDB

FIGURE 6 | Receptor details. Receptor details are split into 3 sections. (A) The first section is a short summary of receptor group. This section has information on

accessions of receptor chains and PDB IDs of receptor-antigen complexes involving individual receptors from this receptor group, if available. (B) The second section

provides information of individual receptors in the receptor group. This section provides CDR sequences, VDJ gene usage, variable domain sequences and epitopes

which are recognized by each receptor. (C) The last section provides a short summary of epitopes recognized by receptor group including assays and publications,

e.g., an antibody in group ID 651 recognizes two different epitopes from Dengue and one epitope from Zika genome polyproteins.

were calculated. These calculations have been implemented
as an ongoing automated process for all newly curated 3D
structures.

QUERYING IEDB FOR EPITOPE SPECIFIC
ANTIBODIES AND TCRS

Addition of Receptor Specific Query
Interface
To enable queries for receptor data in the IEDB, we added
a new set of parameters to the “refine search results” page
that is available after starting a search from the IEDB home
page. Figure 5C depicts the parameters that are available, which
include limiting results to those where any receptor information
is available, and more specifically querying for receptor type,
such as for α-β chain TCR data or heavy-light chain antibodies.
Moreover, users can search by a CDR sequence or a full length
receptor protein sequence with the added feature of searching for
exact identity or for matches at 60, 70, 80, or 90% identity, as well
as a substring match (Figure 5). Importantly, any such queries
can be combined with the general IEDB search criteria, such
as limiting the results to receptors recognizing viruses, or those
present on T cells producing IL-10 upon epitope recognition.

Report of Receptor Groups Matching Any
IEDB Query
The receptors groups matching any query in the IEDB are
displayed in the newly added “receptor” tab (Figure 5A). This

receptor tab describes receptor group IDs, receptor types,
and their host organisms along with CDR3 sequences. All
information on the receptors pertaining to the query can be
downloaded in the CSV format from “export results” link
on “receptor” tab (Figure 5B). Similarly, detailed query results
including information on assay, immunization, epitopes, and
receptors can be downloaded in the CSV format from “Assays”
tab.

When clicking on the receptor group ID, all data on the
distinct receptors matching this group (organism, receptor type,
CDR3 sequences, and variable domain sequences) are provided
to the users with a comprehensive overview of the data available
within the IEDB for these receptors (Figure 6). All experimental
assays utilizing any given receptor can be retrieved, enabling
full access to all biological activities, immunological responses
and associated cellular phenotypes, binding constants, and 3D
structures available for each receptor, across all epitopes that they
were shown to recognize. For example, the human monoclonal
antibody (receptor group ID: 651) shown in Figure 6 has been
tested against two Dengue virus epitopes and one Zika virus
epitope in a total of 4 neutralization assays, two ELISA qualitative
binding assays and two 3D structural assays with antibody-
antigen complexes (PDB IDs: 4UTB and 5LCV).

Exports of Complete Receptor Datasets
In addition to the targeted query described above, the entire
receptor data in the IEDB can be downloaded from the “Database
Export” option from “More IEDB” drop-down menu on IEDB
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website as a zipped CSV file (http://www.iedb.org/database_
export_v3.php). This export file contains extensive details on
assays, immunization, epitopes, and receptors.

SUMMARY OF EPITOPE SPECIFIC
RECEPTOR CONTENT CAPTURED SO FAR

We curated a total of 22,510 receptors which are known to
bind to 2,241 distinct epitopes in 9,901 assays from 1,604
publications as of August 2018 (Table 2). A total of 4,874
curated chains had full length protein sequences and 5,526 chains
had nucleotide sequences. These 22,510 curated receptors were
grouped into a total of 19,537 distinct receptors (Table 2) with
21,066 distinct chains. The distribution of distinct receptors in

TABLE 2 | Receptor groups.

Category Number of receptors Number of epitopes

Total curated receptors 22,510 2,241

Distinct receptors 19,537

Receptor groups 18,292

TCR groups 16,949 536

BCR groups 1,343 1,714

different organisms is shown in Figure 7.Over 90% of the distinct
receptors were from humans and 8% from mice. A total of 2,319
distinct receptors had paired CDRs. All the distinct receptors
were further clustered into 18,292 receptor groups, out of which
16,949 were for TCR groups and 1,343 were antibody groups.

DISCUSSION

We here report our efforts to better represent epitope specific
BCR and TCR data in the IEDB. As mentioned, this is not the
first such effort. Epitope-specific BCR and TCR sequences have
been curated as a part of 3D structural databases such as IEDB-
3D (21) and IMGT/3Dstructure-DB (22). The Epitome (23),
SabDab (24), and STCRDab (25) databases store information
on 3D antibody-antigen (Ab-Ag) complexes, where the focus of
SabDab and STCRDab is unbound antibody and TCR structures,
respectively. A complementary resource, IMGT database (2),
stores germline sequences of antibodies and TCRs. Recently
published databases, such as VDJdb (20) and McPAS-TCR (19),
are focused on curating CDR3 sequences of TCRs from Rep-
Seq experiments (6). VDJdb stores epitope specific TCR-pMHC
data, while McPAS-TCR curates TCR sequences with their
cognate antigens, and associated pathologies. Many of our design
decisions reported here were informed by inspecting how these
other databases represented immune receptors, and were aimed

FIGURE 7 | Distribution of the available receptors from different organisms. Over 90% of the antigen receptor data in the IEDB are from humans and around 8% from

mice.
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at creating a unifying representation of immune receptor data
that is appropriate across different applications.

The IEDB is the only resource that provides information
related to the host, such as species, gender age, and importantly
what the host was exposed to, infected by or allergic to and
other information relevant to the host’s immune response, such
as which cytokines are produced by T cells or if the antibodies
are neutralizing and so on. With our updated curation scheme,
much more information regarding BCR and TCR receptors can
now easily be linked to the epitopes they bind and the immune
responses associated with them in the IEDB. We have curated
BCR and TCR sequence information from the past articles with
low-throughput data as well as the recent articles with the
high-throughput data, unlike VDJdb and McPAS-TCR databases
which focus on the high-throughput data only. This task was not
without its challenges. While a large amount of sequencing data
has been becoming available in the literature; the vast majority
of this data is not epitope specific. IEDB curators must screen
all such publications related to TCR and antibody data to find
the relevant records that can be curated. In many cases when
receptor data is presented as being epitope specific, the epitope
that it is specific for is not clearly defined. This occurs when
authors sequence a large number of receptors specific to a variety
of epitopes derived from the same pathogen but present CDR3
sequences in tables that do not specify which receptor was bound
to which epitope.

Differences in formatting have also been a challenge as
different authors describe VDJ gene usage using differing
nomenclatures and describe CDR sequences using different
numbering schemes especially for antibodies (26–29). Different
receptor numbering schemes and the author reported CDR
sequences from repertoire sequencing experiments can also
include additional flanking junction region residues as a
part of the CDR which create inconsistencies in storing the
CDR sequences from different sources. Other related receptor
sequence databases provide CDR3 sequences from TCRs with
the conserved flanking anchor residues such as Cys and Phe or
Cys and Trp. Such conserved anchor residues are not present
for CDR1 and CDR2 sequences and also, they are excluded from
the CDR regions in the IMGT numbering scheme. To provide
consistent information based on the IMGT numbering scheme,
we have not included the conserved anchor residues in any CDR

sequences in the IEDB. We expect that as the field matures,
standards for reporting experimental protocol and analysis of
receptor repertoire data such as those developed by the AIRR
community (30, 31) will become widely adopted, and these issues
will resolve over time.

Lastly, a key challenge for the IEDB is to define what identifies
a truly epitope specific receptor. The experimental procedures
used to isolate and sequence receptors can be quite variable
and can result in more or less stringency in what is deemed
“epitope specific.” For example, one author may simply re-
stimulate a PBMC culture with a peptide and sequence and report
all receptors from the culture (low stringency). The use of or lack
of experimental controls also varies widely, with some authors
demonstrating that the epitope specific receptor is not found
in controls, while others may have no such controls. We are in

the process of establishing curation rules for receptor data to
take these variables into account, with the goal of consistent and
accurate receptor curation.

While the field is maturing, the IEDB curation procedures are
adapting. This means that the exact data structure utilized might
change, and the persistence of receptor identifiers cannot yet be
guaranteed. We expect receptor identifiers to be stable by the end
of 2018, and will at that point adhere to FAIR standards (32).
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The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel

The T cell repertoire potentially presents complexity compatible, or greater than, that

of the human brain. T cell based immune response is involved with practically every

part of human physiology, and high-throughput biology needed to follow the T-cell

repertoire has made great leaps with the advent of massive parallel sequencing (1).

Nevertheless, tools to handle and observe the dynamics of this complexity have only

recently started to emerge [e.g., (2–4)] in parallel with sequencing technologies. Here,

we present a network-based view of the dynamics of the T cell repertoire, during the

course of mammary tumors development in a mouse model. The transition from the

T cell receptor as a feature, to network-based clustering, followed by network-based

temporal analyses, provides novel insights to the workings of the system and provides

novel tools to observe cancer progression via the perspective of the immune system.

The crux of the approach here is at the network-motivated clustering. The purpose of

the clustering step is not merely data reduction and exposing structures, but rather to

detect hubs, or attractors, within the T cell receptor repertoire that might shed light on the

behavior of the immune system as a dynamic network. The Clone-Attractor is in fact

an extension of the clone concept, i.e., instead of looking at particular clones we observe

the extended clonal network by assigning clusters to graph nodes and edges to adjacent

clusters (editing distance metric). Viewing the system as dynamical brings to the fore the

notion of an attractors landscape, hence the possibility to chart this space and map the

sample state at a given time to a vector in this large space. Based on this representation

we applied two different methods to demonstrate its effectiveness in identifying changes

in the repertoire that correlate with changes in the phenotype: (1) network analysis of the

TCR repertoire in which two measures were calculated and demonstrated the ability to

differentiate control from transgenic samples, and, (2) machine learning classifier capable

of both stratifying control and trangenic samples, as well as to stratify pre-cancer and

cancer samples.

Keywords: T cells, T cell repertoire, network analysis, graph theory, machine learning, breast cancer, repertoire

sequencing, HER2
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1. INTRODUCTION

The way by which the immune system deals with complexity of
signals, is by building a complex regulation system through its
arsenal of tools. This regulation system relies on the ability of
T cells and of B cells to present and to communicate through
a set of highly variable receptors. In T cells, these receptor are
called T cell receptors (TCRs), and their sequence complexity
is achieved through a delicate recombination mechanism (5) of
T cell DNA. As the sequences determining these recombined
regions are unique to each T cell clone (mean length around
13-aa), and since they are relatively short, the recent progress in
genome sequencing has made it possible to sequence millions of
T cells in parallel, for their TCR type, thereby determining the
collection of TCRs from those T cell. This collection has been
termed the T Cell Repertoire.

The interaction between T cells and tumor cells during
tumor progression is the subject of extensive study. Further,
Immunotherapy, which over the past few years have been
heralded as a great hope in the fight against cancer, relies on
the ability to revert tumor progression, by encouraging some
T cells to revert from a previous state of tolerance. In some
cases, the immune system is able to eliminate tumors before
they become uncontrollable. The role of presentation of tumor
specific antigens, Neoantigens, is rapidly taking center stage in
such immunotherapy research and treatment, with recent major
progress in the clinic (6) pushing the field forward. The mirror
image of these neoantigens lies in the immunological repertoire.
An ability to respond to antigens is an ability coded into the T cell
repertoire. The ability to account for the dynamics of the T cell
repertoire is therefore critical to our understanding of immune
response to tumor cells.

High-throughput biology, needed to follow the T-cell
repertoire, has made great leaps with the advent of massive
parallel sequencing (1). Nevertheless, tools to handle and observe
the dynamics of this complexity have only recently started to
emerge [e.g., (2–4, 7, 8)] in parallel with sequencing technologies.
Collectively, the sequencing step provides the CDR3 (and
possibly flanking regions, with some longer-read technologies)
for each of the collected cells. The outcome table, often describing
millions of cells, indicates involved clones and is referred to as the
Repertoire.

The computational study of T-cell repertoires is challenging
due to the complexity of the high-dimensional receptors
sequences landscape, as well as its time dependency. Several
methods for the computational and statistical analysis of
large-scale rep-seq data have been developed to resolve its
complexity, and less so its dynamics, and to gain insight
into the mechanisms controlling the immune system behavior
under various conditions. We mention here, and use later,
two major approaches: (1) Network-based analysis, in which
clones are associated with vertices of the graph, and edges
represent some distance measure between pairs of clones, and (2)
Machine learning techniques to relate physiological conditions
to a state vector composed of the magnitude of particular
clones. In Bashford-Rogers et al. (9) BCR sequences were
organized into networks which demonstrated that differences

in network connectivity may distinguish between repertoires
of healthy individuals from those with Chronic Lymphocytic
Leukemia, and possibly other clonal blood disorders. They used
measures defined by the Gini Index and cluster sizes. Madi
et al. (10) applied network analysis of TCR sequencing data
to show that substantial numbers of public CDR3-TCRβ are
identical in mice and humans. They further used annotated TCR
sequences associated with self-specificities such as autoimmunity
and cancer, to demonstrate a link to network clusters.

Greif et al. (11) applied machine learning to develop an SVM-
classifier for separating private from public TCR sequences. Their
machine is reported to achieve 80% prediction accuracy of public
and private status in humans and mice, and was sufficiently
robust for public clone prediction across individuals and studies
using different library preparation and sequencing protocols. In
Ostmeyer et al. (12) the authors developed a statistical classifier
to diagnose individuals with multiple sclerosis. Their method
includes feature selection step based on snippets derived from the
BCR sequences that are converted into a set of chemical features
using Atchley factors. Those features are combined using logistic
regression function whose weights are trained. The outcome
is further transformed to a single score (probability) used for
diagnosis.

In Miho et al. (13) a computational method is proposed to
overcome the hurdle posed by the amount of unique sequences
[O(105) and higher]. The resulting sparse distance matrix is then
used to assess global and local properties of the network over
individuals, and at the local (clonal) level. Of interest to our study
is the redundancy found in the repertoire space of sequences.

In the following we propose to view the immune repertoire
dynamics as a nonlinear dynamical system [see e.g., (14)]
whose attractor landscape is characterized by the clusters of
similar sequences, hence denoted as Clone-Attractor (CA). This
representation assumes an inherent robustness, or redundancy,
in the repertoire. By this we mean that a cluster of highly similar
sequences may be viewed as an attractor, where larger clusters
have larger basin of attraction. Sequences belonging to the same
cluster-attractor may be relevant to a specific antigen. This
representation is used to demonstrate the differences between
experiment and transgenic mice via two approaches: (1) network
analysis of the TCR repertoire and, (2) machine learning study
aim at developing a classification tool to separate experiment
from transgenic, as well as the status of a sample as pre-cancer
vs. cancer.

2. METHODS

Temporal TCR repertoire analysis poses a unique problem, as
the number of different sequences is very large and (unlike, e.g.,
gene expression data) changes over time, whereas the amount
of samples available in each experiment is relatively small.
Since data is collected over several time points, sequences are
observed in part of the samples, part of the time, rendering
the association of particular clones to complex physiological
conditions uniquely challenging. This assertion is even stronger
assuming the condition is dominated by multiple clones with
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possible interactions between their members. We used a cluster-
based representation of the repertoire to tackle these difficulties.
This representation further makes the analyses more robust. This
robustness is gained by treating each cluster as “Clone-Attractor”
(CA) whose amplitude is the sum of its members amplitude at
each time point.

In the following we describe the clustering algorithm used,
followed by a description of two analysis approaches: (1) Graph
theoretic measures of the various networks, and (2) Machine
learning methods applied to the space of CAs in order to expose
a subspace sufficient for classification of control vs. transgenic
samples, as well as to stratify pre-cancer and cancer samples.

2.1. Experimental Setup, Data Collection
and Preprocessing
Full details of the data collection and preprocessing are given in
Gordin et al. (15). TCR sequencing data, from FASTQ files, has
been analyzed using MiXCR (16) to produce CDR3 abundance
levels per sample. Table summarizing the number and groups of
samples and time points and the number of sequences obtained
per sample and time point is given in the Supplementary

Material. These repertoires were the basis for the network
analyses described in the next sub sections. The setup is depicted
in Figure 1.

.

2.1.1. Transgenic Mice

Transgenic Mice expressing the inactivated rat neu (Erbb2)
oncogene under the transcriptional control of the mouse
mammary tumor virus promoter were purchased from Jackson
Laboratories [FVB/N-Tg(MMTVneu) 202 Mul/J]. The female
mice of this strain represent a mouse model of mammary tumor
in humans, model of HER2/ Erbb2 / Neu human breast cancer
(17). FVB/NJ strain with the same genetic background as the
transgenic mice, serve as a non-transgenic control mouse that
does not develop tumors. Mice were housed in accordance with
all applicable laws and regulations following approval by the
responsible animal care and ethical committee, under specific
pathogen-free conditions. Mice were monitored by palpitation
for tumor development monthly for up to 9 months.

2.1.2. Antibody Staining and Cell Sorting

Blood was sampled from the retro-orbital sinus of 15 mice once
per month for 8 time points (total of 120 samples). Mononuclear
cells from the peripheral blood was isolated by density gradient
centrifugation using Ficoll (Ficoll PaqueTM plus, GE Health
Care), Single cell suspensions were prepared from thymus and
spleen that were removed from each mouse at the end of
the experiment. For cell sorting, cells were stained with the
following fluorescently labeled monoclonal antibodies: anti-CD4
Pacific Blue (BD), anti-CD25 PE (eBioscience), anti-CD44 APC
(BD) and anti-CD62L PE-Cy7 (eBioscience) and viability using
the Fixable Viability stain 450 (BD Horizon). Cell sorting was
performed using FACS ARIA III sorter. CD4+ D44loCD62Lhi
were sorted as naive T cells. After sorting, cells were pelleted and
resuspended with 300µl of RNA protect cell reagent (Qiagen).
Cells were stored at minus 80oC until RNA extraction. RNA was

purified from RNAprotect-stabilized cells using the RNeasy Plus
Mini Kit. After RNA extraction, samples were run on TapeStation
to estimate quality.

2.1.3. High-Throughput Sequencing of the T Cell

Repertoire

The method for high-throughput sequencing of the T cell
repertoire was performed as previously described in Di Niro
et al. (18) and Tsioris et al. (19). Briefly, RNA was reverse-
transcribed into cDNA using a biotinylated oligo dT primer.
An adaptor sequence was added to the 3’ end of all cDNA,
which contains the Illumina P7 universal priming site and a
17-nucleotide unique molecular identifier (UMI). Products were
purified using streptavidin-coated magnetic beads followed by
a primary PCR reaction using a pool of primers targeting
the TCRα and TCRβ regions, as well as a sample-indexed
Illumina P7C7 primer. The TCR-specific primers contained tails
corresponding to the Illumina P5 sequence. PCR products were
then purified using AMPure XP beads. A secondary PCR was
performed to add the Illumina C5 clustering sequence to the
end of the molecule containing the constant region. The number
of secondary PCR cycles was tailored to each sample to avoid
entering plateau phase, as judged by a prior quantitative PCR
analysis. Final products were purified, quantified with Agilent
Tapestation and pooled in equimolar proportions, followed by
high-throughput paired-end sequencing on the Illumina MiSeq
platform. For sequencing, the Illumina 600 cycle kit was used
with themodifications that 325 cycles was used for read 1, 6 cycles
for the index reads, 300 cycles for read 2 and a 20% PhiX spike-in
to increase sequence diversity.

2.2. Clustering Algorithm
The clustering method we used, roughly follows the UClust (20)
algorithm with some modifications. Its purpose is twofold: (1)
data reduction, i.e., mapping the very large space of unique
sequences to the space of representative clusters, 2–3 orders of
magnitudes smaller, and (2) reducing the inherent fluctuations
in the data, assuming very similar TCR-sequences are associated.
In addition, we naturally minimize the occurrence of missing
values, a phenomenon in which many algorithms struggle [e.g.,
see (21, 22)], since the activity of each cluster (CA) is now
based on several sequences. The graph nodes (or features) are
considerably less sensitive to the noise in measuring the single
sequences.

The algorithm begins by sorting the sequences according to
their length and starting from the smallest. It then iteratively
checks for existing cluster to associate the next sequence whose
editing distance from the cluster’s representative is smaller than
a given threshold. The association step is greedy, namely, to the
first cluster that meets the constraint. The editing distance used
was ’Levenshtein’ with parameters [deletion = 1.1, insertion =

1.1, substitution = 1.9]. The association threshold was set
to λ = 3. This choice of parameters ensures at most 2
deletions/insertions, or 1 substitution plus 1 insertion/deletion
with respect to the ’cluster-representative’ sequence.

Following is the pseudo-code describing the algorithm. Let
us denote the current set of already found clusters by C =
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FIGURE 1 | Experimental procedure 120 blood samples were drawn from the retro-orbital sinus of 10 FVB/N-Tg (MMTVneu), a mouse model of HER2 human breast

cancer mice, and from 5 FVB/NJ control mice. Over these 8 time points, none of the control mice (blue) developed any tumors. Progress of tumor in the ten

transgenic mice is demonstrated using the red colored samples in the figure. The last time point before tumors are shown was defined as pre-cancer and marked light

red. From each time point, the peripheral blood mononuclear cells were isolated and stained for flow cytometry. Cells were analyzed and gated for sorting using a

FACS ARIA III sorter, and CD4+CD62L+CD44- naive population was separated for RNA extraction and T cell receptor library preparation.

c1, c2, · · · , ck, where each cluster’s representative is denoted by
Cr = cr1, cr2, · · · , crk. Each cj is the set of all sequences associated
with the j’th cluster.

1. Read one sequence, denoted as x̂
2. Calculate similarity measure S(x̂, crj) ∀j, i.e., Levenshtein

distance, between the sequence and the j’th cluster
representative

3. Find the nearest cluster ci to x̂

(a) Associate x̂ to the most similar cluster ci if S(x̂, cri) ≤

λ . Update cluster representative by searching for a new
member of the cluster that minimizes the distance from all
other members

(b) If no cluster found, i.e., S(x̂, cri) > λ ∀i, create a new cluster
ck+1 with representative crk+1 = x̂ and add it to the set C

4. Repeat the above steps until exhausting all sequences

The algorithm goes over all sequences once, and the number
of clusters found depends on the threshold λ defining the
“radius” of the CAs, i.e., the ensemble of highly similar sequences.
As mentioned, to reduce the complexity of the algorithm, we
adopted a greedy strategy in which the current sequence is
associated to the first cluster that is found close enough (winner
takes all).

2.3. Graph Theoretic Analysis
Our temporal data give rise to multiple graphs, each represents
a sample at a given time-point. Graphs were generated based on
the CAs as nodes, and the distance between the representative
sequences of each pair of CA as edges. Nodes with <10 members
(‖CAi‖ < 10) were eliminated. Edges of distance >8 were
eliminated as well. Finally, we kept only CAs that appeared in
more than 60% of the time points. So, starting from ∼ 360 k
sequences, we obtained ∼ 57 k CAs, from which ∼ 550 CAs
remained after applying the above filtering process. Nevertheless,
those remaining CAs account for ∼ 100 k of all sequences.
The above parameters were chosen empirically, taking into
consideration both robustness and complexity issues. That is,
we opt for taking considerable amount of CA’s, however, those
CA’s should be statistically significant (hence the cutoff at 10
members). In addition, we require them to cover enough time
points to ensure they represent a phenomenon and not a sample.
The exact parameters’ value is less important, and one can vary
them to filter more or less CAs. The results shown below are
not sensitive to these parameters. We tested various sets of
parameters that resulted in an amount of CA’s that roughly varies
in the range 400− 1, 000.

To compare the various graphs, we build the following
quantities to reflect measures of the graphs (other than visual
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inspection), which are required for an unbiased comparison of
non-trivial and large networks. Many such measures have been
developed within the field of graph theoretical analysis [see (23)].
We demonstrate the differences between the control/transgenic
groups using two measures, namely, the Betweenness Centrality
(BWC) which is a node level measure, and the Molecular
Topological Index (MTI) which is a graph level measure.

The molecular topological index originated from the study of
graph representation in (mathematical) chemistry (24), and some
of its properties can be found in Gutman (25). TheMTI is defined
by

MTI =

n∑
i=1

n∑
j=1

di(Aij + Dij) (1)

where n is the number of vertices of the graph, di is the degree
vector of the vertices, Aij are the entries of the adjacency matrix
A (Aij is 1 if vertices i and j are adjacent and 0 otherwise), and
D the graph distance matrix, i.e., the number of edges on the
shortest path. One of its properties, relevant to our case, is the
inverse relation between its value and the graph “branchness.”

The betweenness centrality (one of several centrality
measures) is defined as follows:

BWC(i) =
∑
i6=j6=k

gjk(i)

gjk
(2)

where gjk is the total number of shortest paths from node j to
node k and gjk(i) is the subset of paths that pass through i. The
BWC is ameasure of accessibility, i.e., the number of times a node
is crossed by shortest paths in the graph between pairs of nodes
j− k.

Since the BWC is a node level measure, we basically evaluate
its quantity for every graph node. Although we begin the process
of building the graph for each sample from the same set of
CA’s, the effective size of each graph (based on the activity of
the nodes/CA’s at that time-point) is different. To facilitate the
comparison between the graphs, we evaluate a single global

variable from each vector of EBWC values, being the sum of all
components above some threshold taken as the median of all
BWC vectors (th50). This global variable is in fact the temporal-
graph-mean-BWC (since the original number of nodes is the
same). It’s biological meaning is then: “the average amount of
influential CA’s.”

sBWC =

∑
i

BWCi, ∀BWCi > th50, i = 1..n (3)

We note that the results presented below are not sensitive to the
threshold chosen, i.e., other statistical values will work as well.

2.4. Machine Learning Methods
While using graph theoretic measures can shed light on
global level differences between networks (in our case, of
different genetic and/or physiologic origin), the purpose of
applying machine learning methods is to identify particular
representations that will provide efficient classification results,

but, just as important, an efficient geometrical representation.
Since the number of data points in our experiments, i.e., samples
at different time points, is small in terms of statistical machine
learning, especially with respect to the original dimensionality of
the data, it is imperative from the generalization point of view to
obtain a robust, low-dimensional solution.

2.4.1. Feature Selection

The first step involves feature selection. In our case, the features
are the magnitudes of each Clone-Attractor, taken per sample
per time point. Since the number of CAs is relatively high, while
the number of data points is very small, we first reduced the
set of CAs to the subset that is active across samples (> 95%
of samples). “Active” in this context means that at least one
sequence in the CA is expressed in a sample/time-point. This
process resulted in <100 CAs.

To search this, still very high, feature space we adopted a
sequential bottom-up (forward) scheme. The two classes for this
step where Control/Transgene for which there were 24/49 data
points respectively. The classifier used was SVM with “Gaussian”
kernel (26, 27). Instead of starting from choosing among all
single features, we trained 2D classifiers on all pairs of CA
features. Based on the leave-one-out cross validation (LOOCV)
(28), the top-50 pairs were chosen to continue. This process
has been repeated for the subsequent iterations until the overall
performance converged. At the end of this stage we obtained the
best k = 50 sets of features for each dimension.

2.4.2. Robust Model Evaluation

One of themajor problems in assessing performance of a learning
machine based on a very small data set is the robustness of the
solution, or the generalization error. Since its impractical to apply
the standard statistical learning methodology, i.e., to subdivide
the data set into training/validation/test sets, due to its size, we
combined the following techniques:

1. Using LOOCV, as described above for the feature selection
phase

2. Naive form of ensemble averaging (29) - committee of
classifiers trained on different feature subspace

3. Model testing via noisy versions of the original data

Using ensemble averaging of m = 10 machines reduced the
variance of the combined (meta) classifier, as expected. In order
to obtain a more robust evaluation of the model, we generated
noisy data sets, each with a higher noise amplitude. Each noisy
set has been generated as follows. Let us denote the original set

by EX, then the k’th noisy set EnX
k
is obtained by multiplying the

data by random normally distributed variable with variance σ 2
k
,

i.e.,

nXk
i = Xi(1+ Vk

i ) i = 1..n, V ∼ N (0, σ 2
k ) (4)

We used noise amplitudes varying in the range [0, . . . , 0.25].
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3. RESULTS

3.1. Cluster Analysis Results
The fundamental step in our analysis is clustering the T-Cell
repertoire sequences and generating “Clone-Attractors” (CAs).
Due to the smaller amount of TCRα sequences, and the higher
occurrence of time points absent of TCRα sequences, we show
results of TCRβ only.

The original data set obtained comprised of ≈ 360k TCRβ

sequences. Following the clustering procedure, the number of
clusters found was ≈ 57k. Figure 2 depicts the network of the
CAs obtained from all the sequences. The size of each red circle
is proportional to the size of the CA (number of sequences
associated) and the blue lines correspond to the graph edges (line
width is inversely proportional to the distance between each pair
of CAs). The figure has been generated using “Gephi” (30).

A quick examination of Figure 2 reveals a small number
of highly connected CAs (hubs) and numerous more isolated
ones. This qualitative observation is verified in Figure 3, where
the distribution of cluster sizes is shown to follow a power-law
scaling (31),

P(K) ∝ (K)−α , K = ‖CA‖

This result holds for all samples/time-points, with different pre-
factors and slightly different power values, where α ≈ 3. This
is a strong indication that the network belongs to the class of
scale-free networks.

FIGURE 2 | Clone-Attractors network. Red dots represent nodes (CAs) of the

graph (size proportional to the number of sequences in the CA), and blue lines

are the edges (line width is inversely proportional to the distance.

Before we provide results of the graph theoretic analysis, it
is useful to see the panel (Figure 4) of example Control vs.
Transgenic networks at two time points along the experiment,
early/late (denoted T1/T2 respectively). It is evident from the
figure that while the network of the Control mice becomes
more sparse, the network of the Transgenic mice remains
densely connected. In the next subsection we elaborate on the
quantitative results regarding this behavior.

3.2. Graph Theoretic Results
Using the clustering algorithm for all repertoire sequences,
resulted in an array of CAs as described in 2.2. Since the TCR
repertoire was generated for each sample, control and transgenic,
at several time points, we generated multiple graphs from the
active CAs from each pair (time↔ sample). As mentioned above,
we filtered the CAs such that the remaining subset contained
only those clusters that were found active in most samples/time-
points. As mentioned in section 2.3, the filtering process resulted
in ∼ 550 CAs upon which the results below were obtained, i.e.,
these CAs were the graph’s nodes.

The measures described in 2.3, Betweenness Centrality
and Molecular Topological Index, were calculated for each
sample/time-point. In the next two figures we present the median
value of all time points per sample. In both figures themedian and
std are presented for each sample, where the std is calculated over
time points.

Figure 5 shows the variable sBWC (Equation 3) averaged
over time per each sample. The separation between the two
groups is apparent, where 80% success rate was achieved in
distinguishing control (4 out of 5) from transgenic sample (8
out of 10). The same result is obtained using the MTI in
Figure 6.

It is worth noting that the lower levels of the MTI measure
in the control group may be attributed to the graph ’branchness’
observed at later times (see Figure 4). Similarly, the lower levels

FIGURE 3 | Cluster size distribution in log-log scale, showing a power-law

relation. The analysis was done for all the active CAs combined from the

Control/Transgenic samples, respectively.
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FIGURE 4 | Graph dynamics of Control (up) and Transgenic samples (down), depicted at 2 time points, T1 < T2. The Transgenic graph remains dense, whereas the

Control becomes branched and diluted at later time.

FIGURE 5 | Samples graph Betweenness-Centrality. The sum of BWC of each

sample (indices [1–5] - Control, [6–15] - Transgenic) is shown along with the

1σ errorbar.

of the sBWC are associated with the decreasing number and
amplitude of significant nodes (or hubs), again at later times, in
the control group.

FIGURE 6 | Samples graph Molecular-Topological-Index. Similar to Figure 5,

but for the MTI measure.

3.3. Machine Learning Based Classification
As mentioned earlier, the overall data available for analysis (from
the 5-control and 10-transgenic mice) consisted of 73 time
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FIGURE 7 | Machine learning results of the first classification stage: separating Control from Transgenic classes. Left panel: AUC of models trained on different

dimensional features space (see legend) at various noise levels (Equation 4). The 5-dimensional model is preferred. Middle panel: ROC of the same models as the left

panel, where each point is the average over the noise levels. This curve allows us to prefer the model D = 5 assuming our operating point is FPR = 0.1. Right panel:

Zoom in the best model, showing the performance degradation for various levels of noise added to the data.

points, of which 24 from control and 49 from transgenic. Prior
to the feature selection process described in 2.4, the data is about
hundred dimensional, originated from the CAs.

We applied the machine learning pipeline described in section
2.4 in two stages. First, we applied to classify the Control and
Transgen groups. Assuming the first stage is successful, we
then used the same pipeline to generate another classification
machine to classify the pre-cancer and cancer sub populations
within those classified as Transgenic. Indeed, it turns out that
the subset of features found in the second stage are mostly
different than those found in the first stage. This hierarchical
scheme allowed us to separate the two problems and control the
learning process, in particular in view of the small size data set at
hand.

Figure 7 summarizes the results of the first stage. The left side
panel shows the Area-Under-Curve (AUC) of several classifier
models trained as described above. Each classifier model (an
ensemble of 10 machines of the same input dimension) operates
on a different dimensional space, shown are Dim = 3, . . . , 8.
The models were tested with various levels of noise amplitudes,
ranging noise = 0, . . . , 0.25. The best model, according to
the AUC is obtained for D = 5. The middle panel shows
the Receiver-Operating-Characteristic curve (ROC), i.e., the true
positive rate (TPR) vs. the false positive rate (FPR) calculated
at various threshold values of the classifier’s output. The values
of each point are the average over the noise level tested. The

models D = 5, 6 perform the best, hence we shall take the lower
dimensional model. Finally, the graph on the right shows the
ROC for the chosen model (D = 5) for various noise levels.
The robustness of the model is evident by the gradual decrease in
performance as a function of the noise. One can set the operating
point of the classifier at FPR = 0.1 to obtain TPR ≈ 0.9. The TPR
value is taken at the worst noise level.

Note that the FPR refers to the expected error in the Control
group, whereas the TPR refers to the Transgenic group. More
specifically, at this operating point, there is a 0.1 probability of
misclassifying a Control sample as a Transgenic, and about 0.9 of
correctly classifying a Transgenic sample.

The results depicted in Figure 8 refer to the second
classification stage, i.e., of separating the classes pre-
cancer/cancer of the Transgenic group. The details of the
three panels in the figure are identical to Figure 7. However,
the main conclusion here are that the performance of the best
ensemble are reduced with-respect-to the first classification
stage. One may expect at FPR ≈ 0.2 to obtain TPR ≈ 0.8.

As noted, the set of features (CAs) found for the two
classification stages are different, indicating that there might
be two biological processes involved. Referring to Table S1 in
the Supplementary Material, the list of sequences denoted as:
[1, 2, 10, 13, 17, 23, 26, 44, 48, 60, 68, 71] was found best for stage-
1, and the list: [3, 5, 11, 16, 32, 33, 35, 38, 42, 63, 64, 77, 82] was
found best for stage-2.
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FIGURE 8 | Machine learning results of the second classification stage: separating precancer from cancer classes of the Transgenic group. The structure of the figure

are as Figure 7. The main difference between the two stages is the reduced performance observed here. In particular, the best model achieves a TPR ≈ 0.8 at an

operating point where FPR ≈ 0.2 .

3.4. Correlation With Public TCR DataBase
The growing number of availble rep-seq datasets, over multiple
phenotypes, enabled the production of curated databases of
T-cell receptor (TCR) sequences with associated antigens.
One such database is the VDJdb (32) (see project web-page
https://vdjdb.cdr3.net), whose primary goal is to facilitate access
to existing information on T-cell receptor antigen specificities,
i.e., the ability to recognize certain epitopes in a certain MHC
contexts.

Out interest in these types of Db’s is 2-fold: analyzing the
extent of public sequences in private repertoire, and correlating
the sequences with our CA representation. The VDJdb currently
contains ≈ 16k β− sequences. Analysis of the distance matrix
between the VDJdb sequences and our CAs reveals the following
interesting results. When taking into account the CAs used for
the graphs analysis (≈ 550, section 2.3), the number of sequences
from the VDJdb whose distance (d) from any of those CAs is
d = 0, 1 amount to 4, 126, respectively. That is, four sequences
were identical to CAs representatives, and another 126 differ by a
single insertion/deletion from CAs. Of interest is the fact that out
of those 126 sequences, 38 are identical to one of the members of
the respective CAs.

As for the CAs chosen for the machine learning (ML) study
(section 2.4), the number of sequences from the VDJdb whose
distance from any of those (ML)CAs is d = 0, 1 amount to 2, 64
respectively. Again, out of those 64 sequences, 30 are identical to
one of the members of the respective (ML)CAs.

Table 1 presents the set of sequences from the VDJdb that
matches CAs found in the ML process described above, i.e., they
are among the CAs comprising the feature space upon which
the classification machines were built. First 4 sequences matches
features found in stage-1 (section 3.3), and the next 4 sequences
corresponds to features found in stage-2.

4. DISCUSSION

We have proposed a new way to look at TCR rep-seq data.
By rebuilding the sequences into a network, and by following
this network over temporal changes in the phenotype, we were
able to identify changes in the repertoire that associate with
changes in the phenotype. Using the proposed methodology,
we demonstrated its utility in two different disciplines,
namely, graph/network theory and statistical machine learning.
Following a clustering process and further pruning, we generated
a network for each sample/time-point. By summing up the
sequences associated with the respective clusters measured
at that time-point per sample, the nodes of each network
represent the “activity” of the Clone-Attractors. We applied
two graph measures on the networks: Betweenness-Centrality
and Molecular-Topological-Index, and demonstrated its ability
to discriminate the two populations, control and transgenic,
with a rate of 0.8. The same Clone-Attractors were used for
developing a two-stage classifier machine, separating control
from transgenic, and further separating pre-cancer from cancer
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TABLE 1 | List of sequences from the VDJdb that matches CAs revealed via the machine learning process.

AA sequence Species AG gene AG species IGoR Prob.

1. “CASSLGGYEQYF” “Mus-Musculus” “PA” “InfluenzaA” 0.29

2. “CASSPLGANTGQLYF” “Mus-Musculus” “PA” “InfluenzaA” 0.14

3. “CASSPGTDTQYF” “HomoSapiens” “NP177” “InfluenzaA” 0.12

4. “CASSPLTDTQYF” “HomoSapiens” “BZLF1” “EBV” 0.1

5. “CASSPQTDTQYF” “HomoSapiens” “p65” “CMV” 0.11

6. “CASSLAGEQYF” “HomoSapiens” “p65” “CMV” 0.2

7. “CASSLNYEQYF” “HomoSapiens” “p65” “CMV” 0.64

8. “CASSLLGGDAETLYF” “Mus-Musculus” “M45” “MCMV” 0.1

Sequences 1–4 coincide features of stage-1 (see section 3.3), and sequences 5–8 coincide features found in stage-2. The last column is the IGoR probability (33).

samples in the transgenic sub-population. This machine achieves
an estimated true positive rate of 0.9 at a false positive
rate of 0.1. A word of caution is in order here regarding
the machine learning results at this time. As the amount
of data available for the study was limited, it is reasonable
to assume a certain level of over fitting, although this
concern has been addressed by applying a robust estimation.
Additional experimental data is required to further test our
method.

This new way provides, in essence, a biologically-inspired
means to perform dimensionality reduction on repertoire data.
The Clone-Attractors are built using their biology, namely,
their sequence similarities. When we collapse sequences onto
the network representation, we use this biology to raise an
alternative view of the system, in a different set of dimensions.
However, this dimensionality reduction, as useful as it might
be for data compression and representation, would not be
interesting without exposing utility. Indeed, such utility is readily
presented, by 1. stratifying different network behaviors in the two
phenotypes we have studies: mice that develop tumor vs. mice
that do not, and by 2. using the behavior of the Clone-Attractors
to classify different samples according to their origin, as well as
physiological state.

Further, we find that the CA themselves are associated with
a number of curated sequences, that appear in context of a
set of related and unrelated pheotypes, curated in the VDJdb
database. This association, which may be interesting in and of
itself, further provides context to the possible cognate peptides
of the T cells. Since many of the TCR sequences identified
in this manner (see Table 1) are associated with human and
mouse viral peptides, the biology behind the association between
these specific peptides and the tumor phenotype remains to be
seen.

It is important to emphasize, however, that part of the public
nature of many of the sequences is, in fact, an artifact of the
measurement itself. The method used here is unable to provide
a match between the alpha and beta sequences. In that case, a
single beta sequence may actually represent a number of distinct
T cell clones, which differ in their alpha sequence. In spite of this
limitation, the conclusion of the computation used here, which
is the success in classification, overcomes this issue and is able to
deliver the reported results. It might be that with the progress in

single-cell sequencing, we would be able to significantly improve
over these classifications.

However, the Clone-Attractor phase space representation
is more than merely a dimensionality reduction tool. We
hypothesize that this space reflects the temporal status of the
immune response to tumor progression as follows. CAs having
small basin of attraction, i.e., that are composed of a small
number of sequences, may be a normal immune response to
antigens, pathogens, etc. This can be viewed as an extension of
the clone notion. When the immune response fails to control
those cells and the tumor evolves, it is possible that the immune
system replicates further T cells with similar TCRs to explore
the adjacent sequence space, resulting in a larger basin of Clone-
Attractor. This CA is also expected to be more active as the tumor
progress. As temporal data become more abundant, it might
be possible to chart certain regions of the CA landscape and
associate both dynamics and specific attractors with particular
pathologies.

The work described here succesfuly stratifies two classes: mice
that would devlop tumors and mice that would not. However,
in the context of machine learning, these are also the only two
classes included in the experimnet. That is, we do not know
if the classification easily carries into the complexity of the
heterogenetiy of human subjects. To be able to carry the method
further, much research is still needed, both in animal models
and in human samples. The actual span of relevant classes is not
binary, but huge, and probably, since T cells are involved in most
aspects of physiology, contains any phenotype in the physiology
of organisms. To be able to achieve such resolutions, a larger set
of data needs to combine over multiple experiments, to feed a
much more informative model.

With continuous research into T Cell Repertoires, especially
with recent progress in the ability to associate TCRs with specific
peptides (34, 35), we expect many future studies to produce
TCR repertoire data. These data may benefit from a network
perspective such as the one proposed here. The example we
provide here raises interesting questions regarding the biology
behind Clone-Attractors in general and specifically in breast
cancer. Our own research continues to follow these specific
clones and their role in tumor progression. Other data sets may
raise to the surface a novel set of clones. Combined, these efforts,
the networks that they use and the attractor-network that they
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would build, may further promote our understanding of this
complex phenomena.
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Hepatitis C virus (HCV) is a major public health concern, with over 70 million people

infected worldwide, who are at risk for developing life-threatening liver disease. No

vaccine is available, and immunity against the virus is not well-understood. Following

the acute stage, HCV usually causes chronic infections. However, ∼30% of infected

individuals spontaneously clear the virus. Therefore, using HCV as a model for comparing

immune responses between spontaneous clearer (SC) and chronically infected (CI)

individuals may empower the identification of mechanisms governing viral infection

outcomes. Here, we provide the first in-depth analysis of adaptive immune receptor

repertoires in individuals with current or past HCV infection. We demonstrate that

SC individuals, in contrast to CI patients, develop clusters of antibodies with distinct

properties. These antibodies’ characteristics were used in a machine learning framework

to accurately predict infection outcome. Using combinatorial antibody phage display

library technology, we identified HCV-specific antibody sequences. By integrating these

data with the repertoire analysis, we constructed two antibodies characterized by

high neutralization breadth, which are associated with clearance. This study provides

insight into the nature of effective immune response against HCV and demonstrates

an innovative approach for constructing antibodies correlating with successful infection

clearance. It may have clinical implications for prognosis of the future status of infection,

and the design of effective immunotherapies and a vaccine for HCV.

Keywords: hepatitis C virus, antibody repertoire, neutralizing antibodies, infectious disease, immune signature

INTRODUCTION

HCV infection can lead to hepatitis, cirrhosis, liver failure, and hepatocellular carcinoma (HCC);
it is the leading cause of liver transplantation (1). HCC is the fifth most common cancer, and the
third leading cause of cancer-related death worldwide. Unfortunately, its prevalence in the US and
Western Europe is increasing (1). No vaccine is currently available for HCV, and immunity against
the virus is not well-understood. Cure rates are expected to increase with the recent approval of

277

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.03004
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.03004&domain=pdf&date_stamp=2018-12-21
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gur.yaari@biu.ac.il
mailto:Meital.Tanamy@biu.ac.il
https://doi.org/10.3389/fimmu.2018.03004
https://www.frontiersin.org/articles/10.3389/fimmu.2018.03004/full
http://loop.frontiersin.org/people/628440/overview
http://loop.frontiersin.org/people/653445/overview
http://loop.frontiersin.org/people/622718/overview
http://loop.frontiersin.org/people/484898/overview
http://loop.frontiersin.org/people/655852/overview
http://loop.frontiersin.org/people/129578/overview
http://loop.frontiersin.org/people/87486/overview
http://loop.frontiersin.org/people/607212/overview


Eliyahu et al. Antibody Repertoire Analysis of HCV

Direct-Acting Antiviral Drugs (DAAs). Yet, despite this progress,
many challenges remain, such as limited implementation,
efficacy, and protection from reinfection (2). Thus, global
eradication of HCV by implementing DAAs is currently not
a feasible goal (3–6). Since vaccination is considered the most
effective means of eradicating viral infections (5), a prophylactic
HCV vaccine is an urgent, unmet medical need (3–6). However,
critical gaps in understanding the correlates of protective HCV
immunity have hindered the design of anti-HCV vaccines and
novel immunotherapeutics (3–6).

Unlike HIV-infections, which are not spontaneously cleared,
20–40% of HCV-infected individuals experience spontaneous
recovery (7). A multitude of evidence suggests that induction
of an efficient HCV-specific natural immunity can control the
infection. Therefore, using HCV as a model for comparing
immune responses between spontaneous clearer (SC) and
chronically infected (CI) individuals will enable the identification
of unique mechanisms that govern human disease outcomes.
Until recently, protection against persistent HCV infection was
thought to be associated with a vigorous T-cell response (8).
However, it is now widely accepted that neutralizing antibodies
(nAbs) also play a key role in viral clearance (8–12). This
point was strengthened by demonstrating that natural clearance
correlates with the early development of nAbs (13), and with
nAbs that exhibit distinct epitope specificity (14). Extensive
characterization of monoclonal HCV-neutralizing antibodies
(mnAbs), combined with crystal structures of the HCV envelope
protein E2, which is the target of most HCV-nAbs, has provided
valuable information regarding the E2 antigenic landscape (15–
19). However, since most HCVmnAbs characterized to date were
generated from CI patients (12, 20, 21), the nature and epitope
specificities of mnAbs in SC individuals remain to be elucidated.
Recent studies have demonstrated that the early appearance
of broadly neutralizing antibodies (bnAbs) is associated with
spontaneous clearance (13). Interestingly, bnAbs also protect
against HCV infection in animal models (22–24). Very recently,
the first panels of bnAbs isolated from SC infections have
been developed (25, 26). The panel reported by Bailey et al.
displayed a low number of somatic mutations compared with the
well-characterized nAbs from chronic patients exhibiting higher
neutralization breadth, but were similar to nAbs from chronic
infections in terms of clonality and epitope specificities (26). It
remains unknown whether and how the immune response of SC
individuals is distinct from that of CI patients.

New emerging technologies empowering high-throughput
direct screening for specific antibodies have provided deep
insights into the immunogens that elicit broad antibody
responses (27, 28). In the case of HIV, such technologies
led to the generation of broadly neutralizing monoclonal
antibodies with significantly higher potency, breadth, and novel
epitope specificities [reviewed in (29)]. These novel revolutionary
methods of studying immune responses can offer important
insights into the nature of immune responses to infections. The
antibody repertoire of an individual stores information about
current and past threats that the body has encountered, and
thus has the potential to shed light on screening antibodies and
vaccine design (27, 30). Comparing the features of antibody

repertoires between distinct patient populations may provide
information that can be correlated with clinically relevant
outcomes (31, 32). Indeed, recent studies have found common
antibody sequences in unrelated individuals following Dengue
(33), influenza (34), and HIV (35) infections, as well as
autoimmune diseases such as celiac (36) and pemphigus vulgaris
(37). In chronic lymphocytic leukemia, 30% of patients carry
highly similar antibodies (38). Here we utilized high-resolution
technologies to identify unique antibodies that stratify between
CI and SC HCV infection outcomes. We also used antibody
repertoires in combination with phage display to construct HCV-
specific broadly nAbs associated with HCV infection clearance.

MATERIALS AND METHODS

Cell Lines
Huh-7.5 cells (a generous gift from Charles Rice, Rockefeller
University) and Huh7/FT3-7 cells (a generous gift from Stanley
M. Lemon, University of North Carolina at Chapel Hill)
are human hepatoma cell lines that are highly permissive
for infection and replication of cell culture infectious HCV
(HCVcc) (39). Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing high glucose; 10% fetal bovine
serum (FBS); 1% L-glutamine; 1% penicillin streptomycin; and
1% non-essential amino acid. The cells were incubated in a
humidified incubator at 37◦C containing 5% CO2. The irradiated
3T3-msCD40L feeder cells that express CD40L were obtained
from the National Institutes of Health (NIH) and cultured as
previously described (40).

Virus
Virus stocks from HJ3–5 chimeric virus [a generous gift from
Stanley M. Lemon, University of North Carolina at Chapel Hill
(39)] and the other chimeric viruses containing E2 envelope
protein from genotypes 1-7: HJ3-5/1a, H77C/1a, j6/2b, s52/3a,
ED43/4a, sa13/5a, HK6A/6a, QC69/7a [a generous gift from Jens
Bukh (41)], were produced in Huh7/FT3-7 cells and viral titers
were determined by FFU assay in Huh-7.5 cells, as described
previously (39).

Antibodies
A panel of HCV mnAbs CBH-4B, CBH-4D, HC-1, HC-11,
CBH-7, HC84.22, HC84.26, HC33.1, and HC33.4 that are
representative E2 antigenic domain A-E antibodies, and a control
non-specific antibody R04 (12, 20, 21) were kindly provided by
Steven Foung, Stanford Univ., Stanford, California.

Sample-Collection
All blood samples were collected from the Liver Institute
at Belinson and the Galilee Medical Center, Israel. In total,
we obtained blood samples from 80 individuals; of these, 18
were individuals that spontaneously cleared HCV infection,
52 were with persistent chronic HCV infections, and 10 were
from healthy controls. Subjects were defined as spontaneously
cleared HCV if anti-HCV antibodies are detectable, with
undetectable HCV RNA assessed by the Taqman reverse-
transcription polymerase chain reaction (RT-PCR) quantitative
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assays. HCV chronic infections were defined as viremia if there
were detectable viral loads for more than 1 year. Both cohorts
were not treated with any anti-viral treatment. All blood samples
were collected using protocols approved by the Institutional
Review Boards and were in accordance with the ethical standards
of the Helsinki Declaration. Sample data are summarized in
Supplementary Table 1. For the isolation of peripheral blood
mononuclear cells (PBMCs), 30–50ml of whole blood from each

donor was separated on Ficoll-Paque gradient (Lymphoprep
TM

)
according to the manufacturer’s instructions.

Expression and Purification of the E2
Glycoprotein
The H77 genotype 1a E2 sequence (GenBank accession
no. AF009606), spanning residues 384–661 (not containing
the transmembrane domain), was amplified by PCR using
HCV plasmid pHJ3-5 (39) and primers pSHOOTER-sec-E2-
1a-SE and pSHOOTER-sec-E2-1a-As (primers are listed in
Supplementary Table 2). The PCR product was digested with
NotI and NcoI and cloned into plasmid pCMV-SEC-MBP (a
generous gift from Itai Benhar, Tel-Aviv University, Tel-Aviv,
Israel) containing signal peptide for secretion, His and Myc
tags, and fused to maltose-binding protein (MBP) for higher
expression and stabilization. The resulting plasmid was termed
pCMV-SEC-MBP-E2-384-661-1a-His-Myc.

For production of E2 protein, 293T cells were transfected with
12 µg pCMV-SEC-MBP-E2-384-661-1a-His-Myc expression
plasmid by PEI transfection reagent. At 72 h post transfection,
medium containing the secreted protein was collected from cells
for protein purification. The E2 protein was purified using Ni-
NTA agarose beads (Qiagen) according to the manufacturer’s
instructions. Purified E2 glycoprotein was stored at −20◦C. E2
glycoprotein-containing fractions were analyzed on SDS 10%
polyacrylamide gels.

Construction of an Immune anti-HCV
Antibody Phage Display Library
We constructed a phage display antibody library from a
source of pooled PBMCs obtained from 10 SC patients.
For library construction, we designed a degenerative primer
set by using the IMGT database (IMGT R©, the international
ImMunoGeneTics information system R© http://www.imgt.org
(founder and director: Marie-Paule Lefranc, Montpellier, France)
(42) (primers are listed in Supplementary Table 2). The phage
antibody library was produced using a protocol as previously
described (43). In brief, total RNA was extracted from 107

PBMCs using the RNeasymini kit (Qiagen). cDNAwas produced
from mRNA by reverse transcription using the AccuScript Hi-
Fi cDNA Synthesis Kit (Agilent). Heavy and light chain variable
domains were amplified from the RT-PCR cDNA product by
PCR using the primer sets we have designed. The heavy variable
domains were amplified using the primer sets Hu-VH1-6-NcoI-
BACK and Hu-JH1-6-FORF and the light variable domain was
amplified using primer sets Hu-VK1-6-BACKF and Hu-JK1-
5-NotI-FORF (for amplifying Kappa light chains) or Hu-VL1-
10-BACKF and Hu-JL1-7-NotI-FORF (for amplifying Lambda

light chains). For the combinatorial assembly of the heavy and
light chain variable domains into complete single-chain variable
fragments (scFv), the fragments were mixed according to their
natural frequencies, and PCR was performed using the assembly
primer (forward) and the primers set Hu-JK1-5-NotI-FORF for
Kappa scFv or the primers set Hu-JL1-7-NotI-FORF for Lambda
scFv (reverse) (primers are listed in Supplementary Table 2).
The amplified scFvs were cloned into the phagemid vector
pCC16 (43). The ligated DNA was used for electroporation
into electrocompetent XL-1 cells (Agilent Technologies) under
the following conditions: 2.5 kV, 200�, 25 µF. In total, we
conducted 75 electroporations that yielded a total library size of
6∗107 individual clones. To test the diversity of the libraries, we
amplify the scFv genes from 30 colonies from the library by PCR.
The PCR products were digested by BstNI (NEB). The digested
samples were separated on 2.5% agarose gel. A diverse running
pattern indicates sequence diversity. Rescue of the library using
helper phage and preparation of library stocks was performed
essentially as described (43).

Biopanning and Isolation of Monoclonal
Anti-E2 Phages
To enrich E2-specific phages, five cycles of biopanning were
performed for the SC library essentially as described (43). In
brief, phages were first rescued from the library. Then, the first
cycle of enrichment was performed by coating the wells with E2
glycoprotein, and then 1011 phages were added to the wells. Non-
specific phages were washed by PBST and then specific phages
were eluted with 100mM triethylamine. For neutralization, 1M
Tris•Cl pH 7.4 was added. Eluted phages were used for the next
cycle of biopanning. Phages were pooled from the 4th and 5th
biopanning cycles. Next, 96 colonies were picked from each cycle
and rescued essentially as described (43). Their specificity to E2
was screened by ELISA, as described below.

Expression and Purification of Full-Length
Antibodies
To produce full-length IgGs, the heavy and light chains from
scFvs were cloned into pMAZ-IgH and pMAZ-IgL vectors (a
generous gift from Itai Benhar, Tel-Aviv University) that contain
the constant regions of IgG1and a signal peptide for secretion
(44). The variable heavy chain region was recovered by PCR
from pCC16 vector, which carries the selected scFv using primers
TAB-RI and CBD-As (Supplementary Table 2). Alternatively,
the variable Heavy chain region sequences identified and selected
by bioinformatic analysis were custom-synthesized (IDT, Israel).
The variable Kappa and Lambda chain regions were recovered by
PCR from pCC16 vector, which carries the selected scFv using
primers TAB-RI and CBD-As (Supplementary Table 2). PCR
products were digested with BssHII and NheI for heavy chains,
BssHII and BsiwI for the light Kappa chain, and BssHII and
AvrII for the light Lambda chain, and cloned into the appropriate
vectors.

For antibody production, 293T cells were transfected with
pMAZ-IgH expressing the Heavy chain and with pMAZ-IgL
expressing the Light chain. At 72 h post transfection, medium
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was collected from the cells and antibodies were purified using
Protein A Sepharose CL-4B beads (GE healthcare) according to
the manufacturer’s instructions. Purified antibodies were stored
at−20◦C. Fractions containing antibodies were analyzed on SDS
15% polyacrylamide gels.

ELISA
For Detecting Specific Antibodies in Patients’ Sera
Each well of the ELISA plate was coated with 0.5 µg of rE2
diluted in 100 µl of coating buffer and the plates were incubated
at 4◦C overnight. The plates were washed twice with PBST and
blocked with 3% skim milk in PBS for 1 h at 37◦C. Next, the
plates were washed twice with PBST and serum (diluted 1:1,000)
from different patients were added to the wells, followed by 1 h
incubation at RT. The plates were washed three times with PBST
and goat α human HRP-conjugated antibody diluted 1:10,000
was added to each well, followed by 1 h incubation at RT. Then,
100 µl of Tetramethylbenzidine (TMB) was added to each well
and following incubation of 5–10min, the reaction was stopped
by adding 50 µl of H2SO4 0.5 M to each well. The signal was
detected at a wavelength of 450 nm by a plate reader.

For Detecting Binding Phages
ELISA was performed as previously described (43). First, 96-well
ELISA plates were coated with 5 µg of rE2 or negative control
protein (BSA). Plates were incubated overnight, then washed ×

3 with PBS, and blocking buffer was added to the plates for 2 h
at 37◦C. Next, individual rescued phages were added from the
master plate. Plates were incubated at RT for 1 h and washed
×3 with PBS. Next, 1:5,000 HRP conjugated to α M13 antibody
was added. Then, 100 µl of TMB was added and following an
incubation of 30min, the reaction was stopped by adding 50
µl of H2SO4 0.5 M to each well. The signal was detected at a
wavelength of 410 nm by a plate reader. Specific phages were
picked by detection of positive signal for rE2 compared with BSA.

For Determining Antibodies’ Specificity
For detecting antibodies binding to rE2, ELISA plates were coated
with 5µg of rE2. The plate was incubated and blocking buffer was
added. Then, antibodies were added in concentration of 16µg/ml
and incubated for 1 h at RT. HRP-conjugated Goat α Human was
added at 1:10,000 dilution and the plate was incubated for 1 h at
RT. TMB was added and following an incubation of 5–10min,
50 µl of H2SO4 0.5M was added to each well. The signal was
detected at a wavelength of 450 nm by a plate reader.

Focus-Forming Unit (FFU) Reduction
Neutralization Assay
Neutralization assays were carried out essentially as we described
previously (45). Huh7.5 cells were seeded on an eight-chamber
slide and incubated overnight at 37◦C. The next day, 5∗1011

of each selected phage or different concentrations of purified
IgGs were incubated for 1 h with 100 FFU of HCVcc HJ3-5
chimeric virus or viruses containing E2 from genotypes 1–7
[1a (H77/JFH1); 2b (J8/JFH1); 3a (S52/JFH1); 4a (ED43/JFH1);
5a (SA13/JFH1); 6a (HK6a/JFH1); 7a (QC69/JFH1)]. Next,
phages/IgGs and virus mixtures were added to the wells. The

slides were incubated for 24 h. Next, 200 µl of DMEM was added
to each well and the slide was incubated for another 24 h. Then,
the slides were washed twice with 200µl PBS. The PBS was gently
removed and 100 µl of Methanol:Acetone 1:1 was added to each
well, followed by 10min incubation at RT. Each well was washed
twice with 200 µl PBS. Then 7.5% BSA in PBS was added with
serum from a CI HCV patient at a dilution of 1:1,000, followed
by 1 h of incubation at 37◦C. Each well was washed twice with
200 µl PBS. Next, 100 µl of 7.5% BSA in PBS with fluorescently
labeled goat anti-human antibody diluted 1:100 was added to
each well, followed by 1 h of incubation at RT. Each well was
washed 3 times with 200 µl PBS. Neutralization was measured by
immunofluorescence microscopy, followed by manual counting
of foci of infected cells. The percent neutralization was calculated
as the percent reduction in FFU compared with virus incubated
with an irrelevant control antibody.

Isolation of HCV-Specific B Cells
We established a platform for the propagation and isolation of
HCV-specific B cells. PBMCs from CI and SC patients were
isolated and CD19+ B cells were separated by a FACS sorter.
B cells were then plated on feeder irradiated 3T3-msCD40L
cells that express CD40L, which induces proliferation, Ab class
switching, and secretion (46). B cells were activated with 5µg/ml
rE2 protein and a combination of IL2 (10,000 U/ml) and IL21
(100µg/ml) (47). The combination of CD40L feeder cells and
the addition of cytokines IL2 and IL21 can successfully stimulate
switched memory B cells to produce high concentrations of IgG
to the supernatant.

Supplementary Figure 1 demonstrates the successful
propagation of memory B cells following separation of CD19+
B cells from a healthy individual, that were grown on 3T3-
msCD40L cells and stimulated with a pool of positive peptides
and IL2 and IL-21. Evaluation of CFSE staining following 14
days of culture demonstrates CFSE fading, only under stimulated
conditions. This indicates the proliferation of the activated
culture (Supplementary Figure 1A). Moreover, in the activated
culture, 23% of the population was memory B-cells that are
positive for CD27+, compared with very low numbers of CD27+
cells in the non-activated culture (Supplementary Figure 1B).
For evaluating the ability of B cells to differentiate and produce
IgG, we measured the concentrations of IgG secreted to the
culture medium 3 or 8 days following B-cell activation by ELISA.
As shown in Supplementary Figure 1C, the activation induced
IgG secretion, in a time and cell number-dependent manner.

For isolation of HCV-specific B-cells, B-cells from CI, and SC
patients were isolated and stimulated as described above. The
cultures were incubated for 14 days and then HCV-specific B
cells were isolated. Activated B cells were incubated with rE2
and stained with CD19-PE, CD27-BV421, and tagged rE2 (anti-
cMyc, alexa fluor 633). Viable CD19+, CD27+, and E2+ were
isolated by FACS. These HCV-specific B cells were then grown for
1 week, as described above. Supernatants were collected at each
step and used in the HCV-neutralization assays. The background
was compared to healthy individuals, stained, and gated as the
tested samples.
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Sequencing B-Cell Repertoires
Library Preparation
Total RNA was purified from 5∗106 PBMCs from each sample
(using RNeasy Mini kit, Qiagen). RT-PCR was performed using
an oligo dT primer. An adaptor sequence was added to the 5’
end, which contains a universal priming site and a 17-nucleotide
unique molecular identifier (48–51). Products were purified,
followed by PCR using primers targeting the IgD, IgM, IgG, and
IgA regions, and the universal adaptor. PCR products were then
purified using AMPure XP beads. A second PCR was performed
to add the Illumina P5 adaptor to the constant region end, and
a sample-indexed P7 adaptor to the universal adaptor. Final
products were purified, quantified with a TapeStation (Agilent
Genomics), and pooled in equimolar proportions, followed by
2 × 300 paired-end sequencing with a 20% PhiX spike on
the Illumina MiSeq platform according to the manufacturer’s
recommendations.

Bioinformatic Analyses
Pre-processing of raw sequencing reads: Repertoire Sequencing
TOolkit (pRESTO version 0.5.8) (52) was applied to the raw reads
using the following steps: (a) Removal of low-quality reads (mean
Phred quality score <20). (b) Removal of reads where the primer
could not be identified or had a poor alignment score (mismatch
rate >0.1). (c) Identification of sets of sequences with identical
molecular IDs (corresponding to the same mRNA molecule).
These are collapsed into one consensus sequence per set, after
removing sets with a mean mismatch rate >0.2. (d) Assembly
of the two consensus paired-end reads into a complete antibody
sequence. Then, V(D)J segments were assigned for each of the
antibody sequences using IMGT/HighV-QUEST (53). This was
followed by quality control and additional filtering: (a) Removal
of non-functional sequences due to a stop codon or a reading
frame shift between the V and the J gene. (b) Sequences with
CDR3 length <12 nucleotides. (c) Samples with an unusually
abundant single V-J CDR3 length combination were excluded:
samples CI4 and SC12 met this criterion, since they had a single
sequence in >50% of the raw reads. (d) For mutation analysis
sequences with read numbers (CONSCOUNT) lower than two
were removed. (e) For IGHV gene usage we showed analysis for
only functional genes that were in the 15 topmost frequent in at
least one sample.

Clustering of Related B-cell Sequences
Across all Samples
Sequences were first grouped according to their V-gene, J-gene,
and CDR3 length. For each group, the difference in amino
acids between each pair of CDR3s was calculated by Hamming
distance. Hierarchical clustering by a complete linkage method
was applied and sequences were clustered by genetic distance,
using a threshold of 0.15, i.e., the maximal dissimilarity between
any two CDR3 sequences in a cluster never exceeded 15%.
As an additional quality control step, sequence clusters for
which >90% of sequences came from a single sample were
removed.

Comparing HCV-Specific B Cells and
General Repertoires From SC and CI
Clinical Groups by Amino Acid
Conservation Levels
The frequency of each amino acid (AA) at each CDR3 position
was calculated for each B-cell cluster. The sums of frequency
squares were calculated for each clinical group. B-cell clusters
containing CDR3 positions for which the sum of frequencies in
SC was greater than the corresponding sum for CI by more than
0.5 were selected. Only clusters with sequences originating from
more than one sample, and sequences with CONSCOUNT >1
were used.

Prediction Model Based on the Patients’
Repertoire
1. Sequences were grouped to clusters as described above.
2. The frequency of each cluster per sample was calculated.
3. A classification model was applied as follows:

a. The data set was randomly divided into 18 (∼90%) and 2
samples (∼10%) of training and test sets, respectively.

b. Feature selection was performed by a random forest model,
choosing the most informative 18 features.

c. Logistic regression with an L2 regularization penalty was
applied to these 18 remaining features, and the model was
applied to the test set. The accuracy rate was measured.

d. The process was repeated 100 times; each time two
different samples were taken as a test set.

e. Random predictions: to ensure that our results are not
biased, clinical group labels were randomly shuffled. Then,
steps a-d were applied to this permuted labels model.

4. A similar model was applied to T-cell repertoires, except that
clusters of sequences were defined by identical CDR3 regions
at the amino acid level.

Data Availability
The antibody repertoires sequencing datasets for this study were
deposited in the European Nucleotide Archive. The accession
numbers are ERR2843386-ERR2843427.

RESULTS

Our overall approach is summarized in Figure 1; it included a
collection of blood samples from CI and SC HCV infections in
addition to healthy controls, and a screen to identify samples
containing high levels of HCV-nAbs. Selected samples were used
for sequencing of total and HCV-specific antibody repertoires,
as well as total T-cell receptor repertoires. This was followed
by constructing monoclonal antibodies associated with infection
clearance, based on phage display antibody library and repertoire
data (Figure 1).

Anti-HCV Antibodies in Resolved
Infections Are Potent Neutralizers
We collected PBMCs and sera from 80 individuals. Of
these, 18 were individuals that spontaneously cleared HCV
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FIGURE 1 | Scheme of workflow. The workflow included the following steps: collection of blood samples from SC, CI, and healthy individuals, sequencing of total

B-cell repertoires, T-cell repertoires, and HCV-specific B-cell repertoires, analysis of repertoires and identification of antibody clusters and TCR sequences associated

with viral clearance, construction of an antibody phage display library, isolation of a panel of HCV-binding antibody sequences that associate with cleared infections,

and integration of all data to construct HCV-broadly neutralizing antibodies associated with clearance.

infection, 52 were with persistent chronic HCV infection,
and 10 were from healthy controls. To validate the presence
of nAbs in sera from CI and SC HCV infections, we first
screened these sera by ELISA for antibodies able to bind a
recombinant HCV envelope protein E2 (rE2) that we have
produced. Although high levels of anti-rE2 were detected in
chronic HCV infections, very low levels were detected in
resolved HCV infections (Supplementary Figure 2A). This is
expected, since the ongoing infection in CI patients results
in the generation of large numbers of anti-HCV antibodies
from plasma cells, whereas in resolved individuals, anti-HCV
antibodies are secreted from lower number of circulating HCV-
specific long lived plasma cells or memory B-cells. Then, we
screened these sera for HCV-neutralization by performing an
HCVcc neutralization assay. Approximately a 2-fold drop in
neutralization efficiency was observed in resolved infections (an
average of 45%) compared with chronic infections (an average of
85%) (Supplementary Figure 2B).

To validate that we indeed measured HCV-specific immunity,
we collected two CI samples before and after successful

anti-viral therapy (SVR). The blood samples were collected
between 6 months and 1 year after achieving SVR. Using
these samples, we again tested binding to rE2 and HCV-
neutralization. As expected, we observed a significant drop
both in binding and in neutralizing HCV following treatment
(Supplementary Figures 2C,D). Collectively, these results
suggest that although the anti-HCV antibodies in resolved
infections are at low levels, they are potent neutralizers. The
samples that displayed high neutralization efficiency were
selected for further analysis.

Differentiating Features Between SC and
CI Antibody Repertoires
Previous studies suggested defining a successful immune
response to HCV by studying SC vs. CI (8, 9, 13, 26).
However, a deep insight into these responses is lacking. Here, we
sought to use high-resolution technologies that will significantly
increase the number of screened samples and the screening
depth of each sample. We sequenced antibody repertoires from
28 individuals; among these are 10 HCV CI, 11 SC that

Frontiers in Immunology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 3004282

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Eliyahu et al. Antibody Repertoire Analysis of HCV

displayed the highest neutralization efficiency as described above
(Supplementary Figure 2B), and 7 healthy control samples. We
identified 104-105 unique full-length heavy chain sequences for
each sample (Figure 2A).

To identify features in B-cell repertoires that are unique to
CI or SC HCV infections, we evaluated the usage frequency
of each V and J gene segment, the CDR3 length, as well as
the mutation frequencies across the V genes. Sequences were
grouped by their V gene, J gene, and CDR3 length, clustered
by genetic distance, and the frequencies within and between the
clinical groups were compared. We did not observe significant
differences in CDR3 length, V, and J gene distributions between
the clinical groups (Figures 2B–D). V-J gene combinations, as

well as V-J-CDR3 length also did not yield significant results.
We performed a similar analysis for β chains of TCRs from the
same individual groups (Supplementary Figure 3A), and did not
observe differences in CDR3 length, V, and J gene usage between
SC and CI clinical groups (Supplementary Figures 3B–D).

We next sought to explore the possibility that clusters of
similar antibody sequences are enriched in either SC or CI
groups. To this end, we grouped the antibody sequences by
V-J-CDR3 similarity. We identified 337 clusters that are different
between the clinical groups by more than four samples. Of these,
165 clusters were enriched in SC samples and 172 clusters were
enriched in CI samples. To narrow down the list of candidate
clusters for classification, we increased the threshold for calling

FIGURE 2 | Characterization of B-cell repertoires in SC, CI, and healthy individuals. (A) The number of unique sequences per sample after pre-processing. (B) The

CDR3 length distribution. (C) The IGHV gene distribution. Only functional V genes that were in the 15 topmost frequent in at least one sample are shown. (D) The

IGHJ gene distribution. (E) Feature combinations whose abundance differ between the SC and CI groups are presented for sequence clusters grouped by identical

IGHV and IGHJ and by high CDR3 similarity, which were significantly more abundant in either SC or CI cohort (|#samplesSC-#samplesCI | >3 samples). Sequence

logos CDR3 of these clusters are presented in Supplementary Figure 4.
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a cluster enriched, from four samples to five. Using this higher
threshold, we identified 13 enriched clusters. Of these, 11 clusters
were unique to SC, and one was unique to CI (Figure 2E and
Supplementary Figure 4)

To evaluate the mutation frequencies between the clinical
groups, we first subdivided the sequences into IgM, IgD, IgG,
or IgA isotypes. No significant differences in the frequencies
of the different isotypes were observed between the clinical
groups (Supplementary Figure 5A). Supplementary Figure 5B

displays a violin plot comparing the distribution of somatic
mutation frequencies across IgA, IgD, IgG, and IgM. As expected,
higher mutation numbers were observed in the IgG and IgA
isotypes, compared with the IgM and IgD isotypes. No significant
differences were observed in mutation numbers within each
isotype between the clinical groups (Supplementary Figure 5C).
We also compared mutation numbers for each isotype across
V genes between the clinical groups. Interestingly, 14 isotype-
specific V genes were significantly different when comparing
the clinical groups (Supplementary Figure 5D). Of these,
four displayed higher mutation numbers in SC than in CI,
including IGHV3-53, IGHV2-70, IGHV1-8, and IGHV3-33. The
remaining ten V genes displayed lower mutation numbers in SC
than in CI.

A Machine Learning Model Predicts
Clinical Outcomes Based on the Antibody
Repertoire
To determine whether a combination of features, rather than
one at a time, would provide better insight into the antibody
sequences that participate in the response to HCV, we used a
machine learning approach, which predicts the clinical group
based on a combination of features. This approach can be utilized
not only as a prediction model; it can also be used as a tool to
identify significant features that did not arise in the single-feature
analysis.

For feature selection, we calculated frequency per sample for
each cluster of sequences. To avoid false clusters that may occur
due to grouping of several erroneous sequences with correct ones,
we removed rare clusters that appeared at low frequencies or in
fewer than four samples. Then, we left out two samples as a test
set, and we trained the model on the remaining samples.

We applied a random forest model to extract the best 18
clusters (equal to the size of the training set), followed by logistic
regression on the selected clusters to generate the prediction
model. Finally, we applied the model to the remaining two
samples and calculated their accuracy. The process of sampling
and training was repeated 100 times, to ensure that the model
was not biased toward specific samples.

The final predication results, summarized in Figure 3,
indicate 91% accuracy of the prediction. As a control, when we
randomly shuffled the clinical groups and trained our model,
the prediction rates were 49 and 35% for the SC and CI groups,
respectively (Figures 3A,B for T cells), suggesting that we did
not achieve the high accuracy predictions due to over fitting
or another random bias of any specific sample. Therefore,
we identified sequence clusters that can accurately stratify

between the SC and CI samples (termed “stratifying clusters”).
Of the 10 best clusters (Figure 3C; Supplementary Figure 6),
four (IGHV3-15∗IGHJ4∗8∗∗130, IGHV4-34∗IGHJ6∗14∗∗103,
IGHV3-23∗IGHJ4∗10∗∗707, and IGHV3-23∗IGHJ6∗20∗∗367)
were also previously found in the single-feature comparisons
(Figure 2E).

Possible inaccuracies in multiplexed sample sequencing as a
result of rare barcode impurities might cause biases. To overcome
this difficulty we determined a strict cutoff. We used only clones
in which at most 90% of the sequences originated from one
sample. If we had not used any cutoff, the prediction precision
would improve by only 2%. Lowering the cutoff to 80% decreases
the precision by 13.5%. Still, a high performance of the algorithm.

Training the model for T-cell repertoires was very similar
to the one for the B-cell repertoires, except that the data
were categorized by identical AA CDR3 sequences. The average
accuracy was ∼79 and 85% for the SC and CI groups, compared
with 50% using shuffled labels (Figure 3B). Of the 10 best CDR3
sequences (Figure 3D), two sequences, CASSTAGQGLTEAFF
and CASSLGTPNEQFF, were also found in the single feature
comparisons.

Differentiating the Features of
HCV-Specific B-cell Repertoires
Previous studies reported the frequencies of circulating, antigen-
specific B cells in humans of up to 1% of the overall B-
cell population (54). Therefore, the polyclonal nature of the
immune response may impose significant background noise
that interferes with characterizing the HCV-specific immune
response. Thus, we sought to isolate HCV-specific B cells
and characterize their properties. Here, we have established a
novel platform for the in vitro propagation and isolation of
HCV-specific memory B cells (described in the Materials and
methods). The HCV E2+-specific populations were separated
from six CI and three SC individuals and healthy individuals
as controls (Figure 4A). The fold enrichment of HCV-specific B
cells from each sample was calculated compared to the number
of B cells isolated from healthy individuals, as demonstrated in
Supplementary Figure 7. The fold enrichment of cells isolated
from HCV-specific B cells ranged from 2 to 466 (Figure 4A).
To validate the enrichment of HCV-specific B cells, the growth
media of the cells were used for the HCV-neutralization
assay, which displayed higher neutralization in the CI and SC
samples compared with healthy controls. Neutralization was
further enhanced following separation of HCV-specific B cells
(Figure 4B).

The variable regions of the antibody’s heavy chains of the
HCV-specific B cells were sequenced. First, we evaluated the
genomic distance of the VDJ region sequences between the
different samples by the Levenshtein distance. Interestingly, some
of the most closely related sequences originated from different
samples (Figure 4C). This observation implies that similar
antibodies convergently evolve in different patients to bind HCV.
To compare the repertoire of HCV-specific binding sequences
with the total repertoire of a given donor, defined here as the
“general repertoire,” we searched for sequences in the general
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FIGURE 3 | Machine learning model used to stratify between SC and CI. (A) Accuracy was based on the B cells’ repertoire. Original labels represent clustered

sequences by identical IGHV and IGHJ and the high similarity of the CDR3 amino acid sequence. For validation purposes, the model was trained and applied on

randomly labeled data. (B) Prediction model based on the T cells’ repertoire. The training for the T-cell repertoires model is very similar to the B-cell model, except that

the data were clustered solely by CDR3 amino acid identity. (C,D) The top 10 clusters used by the model to stratify between the cohorts. (C) In B-cell clusters. (D) In

T-cell clusters. Sequence logos of the CDR3 of the B cell clusters are presented in Supplementary Figure 6.

repertoire that are similar to the specific binders. Similarity was
defined as having the same V gene, J gene, and CDR3 sequence
that are at least 75% identical at the AA level. In total, we detected
5,447 clusters in the general repertoire that were similar to the

HCV-specific repertoire. In the specific repertoire we identified
17 clusters that were enriched in SC samples in the general
repertoire, and 15 clusters that were enriched in CI samples
in the general repertoire. An enriched cluster was defined as
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FIGURE 4 | Isolation of HCV-specific B cells from resolved and chronic HCV infection. (A) HCV-specific B-cells isolated from six CI and three SC individuals, as

compared with control healthy individuals. The fold enrichment of HCV-specific B cells from each sample was calculated compared with the number of B cells isolated

from a healthy individual, as demonstrated in Supplementary Figure 7. (B) HCVcc-neutralization assays using supernatants of cultured B cells from healthy, SC, and

CI samples after two 2 weeks of activation in vitro. (*P < 0.03, **P < 0.003, ***P < 0.0001, ****P < 0.00003, t-test). (C) Dendogram of CDR3s from HCV-specific B

cells, generated based on Levenshtein distances. Each color of the CDR3 sequence corresponds to an individual. (D) Mutation numbers in IGHV genes in the general

(Continued)
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FIGURE 4 | repertoire compared with the HCV-specific repertoire. Each specific sequence was randomly matched to a non-specific sequence with the same IGHV

and IGHJ genes. The sequences were grouped by isotype and mutations were compared by Mann Whitney test (IGA p = 3.488873e-07, IGG p = 6.849511e-08,

IGM p = 3.764229e-04). (E) Mutation number in the IGHV genes in the specific repertoire for SC and CI (IGA p = 0.000574, IGG p = 0.435930). (F) Conserved

amino acids in CDR3 from the HCV-specific repertoire (binders) compared with the general repertoire (non-binders). For each specific sequence, a non-specific

sequence was randomly matched. Sequences were then grouped by IGHV, IGHJ, and CDR3 length. Cases where CDR3 amino acids were very conserved for binder

sequences but not for non-binders are shown.

being represented in more than three samples in the cohort, and
in addition, the fraction of samples in the cohort representing
this cluster out of the total number of samples representing it
is larger than 2/3. The lists of these clusters are presented in
Supplementary Tables 3,4. A comparison between these two lists
reveals that except for the V-J combination IGHV3-33∗IGHJ4,
which is abundant in both lists, different HCV-binding clusters
are enriched in the two clinical groups.

Another feature that we have analyzed in the general
repertoire, compared to the specific repertoire, is mutability.
Against each specific sequence, one non-specific sequence was
randomly sampled from the general repertoire. The sampled
sequence contained the same V and J gene as the corresponding
specific sequence. Then, sequences were grouped by isotype,
and mutation numbers in the V gene were compared. Both
for IgA and IgG, we detected significantly higher mutation
numbers in specific compared with non-specific repertoires. For
IgM, however, we observed an opposite trend (Mann Whitney
test, IGA p = 3.488873e-07, IGG p = 6.849511e-08, IGM p
= 3.764229e-04) (Figure 4D). This might result from the long
infection period of the chronic HCV patients.

We then evaluated the mutation number in the HCV-specific
repertoire in SC compared with CI. All specific sequences of
SC samples were unified into one bulk, and CI samples were
unified in a second bulk. Then, the sequences were grouped by
isotype and themutation numbers in the V genes were compared.
The number of mutations in the SC-specific repertoire bulk
was lower than that in the CI-specific repertoire (Figure 4E).
This is expected, as in CI the B cells have been through longer
and repeated rounds of somatic hypermutation process which is
consistent with a chronic situation that allowed the accumulation
of mutations, compared with the short period of infection in SC.

The heavy chain CDR3 is the most diverse region in the
antibody sequences. Therefore, conservation of AAs in this
region can highlight positions that are important for antigen
binding. Here we searched for conserved AAs in the CDR3
region in the HCV-specific repertoire compared to the general
repertoire. Against each binder sequence, we selected a random
sequence with identical V, J, and CDR3 lengths from the
general repertoires, defined as non-binder. Then, amino acids
that were conserved in binder sequences but not in non-
binders were selected. We identified four combinations of
V, J, and CDR3 lengths containing differentially conserved
AAs in CDR3 (Figure 4F). Interestingly, IGHV4-39–IGHJ6–17
contained a stretch of seven conserved residues in CDR3 and
was observed in three different samples (CI56H, CI57H, and
CI59H). These results imply that clones evolved independently
in different subjects and converged to similar CDR3 AA
patterns.

Identifying Binder Antibody Sequences
Associated With HCV Infection Clearance
We next sought to construct antibodies that are associated
with infection clearance, and to explore their properties. One
limitation of constructing mAbs directly from bulk repertoire
analysis is the pairing of heavy and light chains. We applied an
approach for matching heavy with light chains, by constructing
a phage display antibody library. These antibodies contain the
variable regions of both heavy and light chains as a single chain
(scFv), and thus enable the design of full antibodies (55).

Since we specifically focused on nAbs associated with HCV
clearance, we have constructed a phage display antibody library
from a source of pooled PBMCs obtained from 10 SC individuals
(Supplementary Table 1). The scFv library was constructed by
amplification of the VH and VL genes separately, and then their
combinatorial assembly and cloning into a phagemid vector.
In total, we obtained a library of 6∗107 individual scFvs. We
screened for HCV E2 binders, and identified and validated
six different phages that displayed 2- to 15-fold binding to
rE2 compared with BSA as background (Figure 5A). We then
identified clusters of sequences from the general repertoire that
were similar to the isolated scFv sequences, and selected the
closest sequence to each scFv (Figure 5B).

We searched for candidates for constructing full-length
antibodies from these six scFvs. We decided to focus on scFv
SC11 and SC28, since they showed the highest binding to HCV
E2 protein (Figure 5A) and were the most similar to the SC
general repertoires (Figure 5B;Supplementary Figure 8). The
closest cluster to scFv SC28 was IGHV4-39∗IGHJ4∗13∗861,
which was detected in the repertoires of four out of nine
SC samples, and the closest cluster to scFv SC11 was
IGHV6-1∗IGHJ6∗17∗∗20, which was detected in repertoires
of five out of nine SC samples (Figure 2E). Both clusters
were not detected in CI repertoires. Cluster IGHV6-
1∗IGHJ6∗17∗∗20 was also enriched in the HCV-specific
repertoire (Supplementary Table 4). Lineage trees revealed that
the closest sequences to SC11 and SC28 are positioned relatively
high in the tree (Figures 5C,D), suggesting that these sequences
appeared earlier during the infection. We therefore selected
scFvs SC11 and SC28 as candidates for constructing full-length
antibodies and characterizing their properties.

Construction of Broadly Neutralizing
Antibodies Associated With HCV Infection
Clearance
We constructed and produced full-length antibodies from scFvs
SC11 and SC28. In addition, we constructed and produced
full-length antibodies with identical light chains, but the heavy
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FIGURE 5 | Identification of HCV-specific antibody sequences associated with HCV infection clearance. (A) Binding of the phage-displayed antibodies to the rE2

protein (5µg/ml) by ELISA. Each bar indicates the mean fold change ± SD in the OD compared with BSA binding, from three independent experiments. (B) Violin plot

of the distances between HCV-specific sequences and the healthy, CI and SC repertoires. (C,D) Phylogenetic trees of the two closest clusters to scFv SC11 (C), and

SC28 (D).

chains were replaced with one of the nearest sequences to the
heavy chains of scFv SC11 and scFv SC28 from the general
repertoires (RMS11 and RMS28, respectively). We evaluated
the binding specificities of these four antibodies to HCV rE2

protein. We observed more than 35-fold higher binding signals
in antibodies RMS11 and RMS28 than with antibodies SC11
and SC28 (Figure 6A). To further characterize the binding
capacity of RMS11 and RMS28, we compared the binding of
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these antibodies to a well-characterized panel of mAbs, including
CBH-4B, CBH-4D, HC-1, HC-11, CBH-7, HC84.22, HC84.26,
HC33.1, and HC33.4, which are representative E2 antigenic
domain A-E antibodies [(12) and reviewed in (20, 21)]. ELISA
results with rE2 protein indicated binding capacity of RMS11
and RMS28 comparable to the well-defined panel (Figure 6B).
To evaluate neutralization breadth, we performed neutralization
assays with these antibodies across all HCV genotypes using
a panel of infectious HCVcc containing envelope proteins
from HCV genotypes 1–7 (41). The percent neutralization was
calculated as the percent reduction in FFU compared with
virus incubated with an irrelevant control antibody RO4 (56–
59). Antibodies RMS11 and RMS28 efficiently neutralized all
seven HCV genotypes, including genotype three which was less
efficiently neutralized by previous panels of HCV antibodies
including a recent SC panel (26), pointing out their exceptionally
high neutralization breadth (Figures 6C,D).

DISCUSSION

This study provides the first in-depth analysis of HCV-specific
immune response and identifies features that correlate with
infection outcome. The landscapes of B- and T-cell repertoires,
including usage of specific V and J genes, CDR3 lengths, and
mutation numbers, did not significantly differ between the SC

and CI groups. The most prominent differences between SC
and CI are specific sequence clusters enriched in one of the
groups, identified both in the general and in the HCV-specific B-
cell repertoires. Strikingly, we found that enrichment of specific
clusters in SC or CI is indicative of infection outcome, and with
an accuracy of over 90% for B-cell repertoires and 80% for T-
cell repertoires. This may have important clinical relevance as
well as prognostic value for the outcome of an active infection.
In the DAAs era, when the availability of effective HCV therapy
is limited by the high costs (2), using the platform we have
established may indicate the best clinical decisions for treatment.

Fewer mutations were observed in the general B-cell

repertoires compared with HCV-specific B-cell repertoires. In
addition, fewer mutations were observed in HCV-specific B-
cell repertoires from SC vs. CI. These findings validate a recent

study demonstrating that a panel of HCV- nAbs isolated from
SC contained a lower number of mutations compared with HCV-

nAbs isolated fromCI (26). Our findings expand the above results
to many HCV-specific sequences from multiple individuals.
Moreover, we validated the broad neutralization potential of

two of the identified HCV-specific sequences observed in SC.
Broadly nAbs were suggested to be induced in the early stages of

infection in SC, whereas CIs were associated with the induction
of such antibodies at later stages. Furthermore, CI antibodies

require higher mutation numbers to achieve broad neutralization

FIGURE 6 | Construction and characterization of antibodies correlated with infection clearance. (A) Binding of antibodies RMS28 and RMS11 to the rE2 protein

(5µg/ml) compared with the phage display antibodies SC28 and SC11 by ELISA, using 16µg/ml Ab. Each bar indicates the mean fold change ±SD in binding,

compared with BSA, from three independent experiments. (B) Binding of antibodies RMS11 and RMS28 to the rE2 protein (5µg/ml), compared with a well-defined

panel of nAbs and a non-specific control antibody RO4 by ELISA, using 16µg/ml Ab. Presented are mean OD (450 nm) values ±SD, from three independent

experiments. (C,D) HCVcc neutralization assays were carried out with genotypes G1-G7 using 20µg/ml of antibodies RMS11 (C) and RMS28 (D). The percent

neutralization was calculated as the percent reduction in FFU compared with virus incubated with an irrelevant control antibody (RO4). Presented are means of %

neutralization ±SD from three independent experiments.
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to the variable quasi-species population of viruses that evolved
in these later stages. Therefore, it has been suggested that bnAbs
with a relatively low number of mutations are associated with
viral clearance (26). In contrast to HCV, in the case of HIV
infection, bnAbs require high mutation numbers and many
years to evolve (60–62). Indeed, the ability to provoke broad
neutralization with low mutation numbers in HCV infection is
translated to approximately 30% SCs, compared with none in
HIV infections (7). Here, we show that HCV-specific antibodies
in SC are characterized by not only low mutation numbers
and high neutralization breath compared with antibodies in CI,
but also that the context of these differences is within different
clusters of sequences between the two clinical groups. These
findings point to the conclusion that the immune response to
HCV infection provoked in SC is largely different from that
provoked in CI. Therefore, we provide the first evidence that
the nature of the immune response is associated with infection
outcome and not only with the timing of the appearance of
bnAbs, as was suggested previously (13, 26).

It will be most interesting to determine whether antibodies
that are unique to SC are also characterized by binding to distinct
epitopes. Similar epitope specificities were demonstrated for the
recent panel of nAbs isolated from SC infections (26). Still, it
has been suggested that nAbs with distinct epitope specificities
do exist but remain to be discovered (12). Discovering novel
epitopes will point to new mechanisms driving infection
outcome.

The construction of two antibodies, identified by combining
phage display antibody library technology and antibody
repertoires of SC, yielded HCV- nAbs with exceptional potential
of broad neutralization breadth. Our finding that specific clusters
are specific for clearance of HCV infection, whereas others are
specific for progression to chronic infection, demonstrates that
similar antibodies convergently evolved in different individuals.
Identifying fractions of these clusters in the HCV-specific
repertoire validates that they are provoked in response to
the infection and consequently likely bind the virus. Sharing
identical CDR3 sequences by different individuals was suggested
to be very rare (63), although such immunological signatures
were reported in viral-specific responses (33). These discoveries
raise the intriguing question of what governs these pronounced
similarities in the antibody’s response to HCV in different
individuals, which is indicative of infection outcome.

Previous publications have suggested that VH1-69 is enriched
in clusters identified in both SC and CI, based on isolating a
panel of HCV-nAbs (25, 26, 64). However, our high-resolution
approach, which provides a wide overview of the general
repertoire and HCV-specific repertoire, demonstrates that this
gene is more abundant in CI than in SC repertoires, and that it
is not enriched in HCV-specific repertoires.

In summary, this study provides a novel high-resolution
insight into the nature of the HCV-specific immune response,
and demonstrates for the first time that the outcome of infection
is determined by the unique features of the immune response.
Our innovative approach combines antibody repertoire analysis
and antibody engineering tools that provide the high sensitivity
necessary to identify antibody sequences enriched in SC vs. CI

infections, and use this information to produce full antibodies.
Identifying the epitopes of these antibodies may provide
translational information for designing a rational prophylactic
vaccine. In addition, passive immunization with combinations of
mAbs possessing well-defined epitope specificities may overcome
virus resistance (65), confer a prophylactic effect, such as in
liver transplantation (66), where re-infection of the transplant
is rapid (67), and may also prove effective in treating existing
HCV infections (24). From a more general point of view, the
in-depth analysis of immune repertoires demonstrated here may
open a world of possibilities for advancing monoclonal antibody
discovery and engineering strategies, which bear many potential
clinical implications.
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Supplementary Figure 1 | Enrichment of the HCV-specific B-cell population in

vitro. For the in vitro proliferation of B cells, CD19+ cells were isolated from

PBMCs of healthy donors using a FACS sorter. Isolated B cells were labeled with

CFSE, cultured in the presence of IL2, IL21, and feeder irradiated 3T3-msCD40L

cells, and activated with a pool of positive peptides for 8 days. (A) CFSE profile of

CD19+ B cells. CFSE fading (right panel) indicates the proliferation of the

activated culture, compared with the non-activated culture (left panel). (B)

Evaluating the proliferation of memory B cells. In the activated culture, 23% of the

population consists of memory B cells that are positive for CD27+ (right panel),

compared with very low numbers of CD27+ cells in the non-activated culture (left

panel). (C) Evaluating the ability of B cells to differentiate and produce IgGs. The

concentrations of IgG secreted to the culture medium 3 or 8 days following B-cell

activation were measured by ELISA. (∗∗P < 0.003, ∗∗∗P < 0.0003, ∗∗∗∗P <

0.00003). Presented are means ±SD from three independent experiments.
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Supplementary Figure 2 | Characterization of sera from HCV-infected

individuals. (A) HCV antibodies binding to rE2 protein (0.5µg/ml) performed with

1:1,000 diluted sera of CI (n = 52) and SC (n = 18) by ELISA. Each dot represents

a patient. The background of the binding to BSA was subtracted from all samples.

Presented are mean OD (450 nm) values from three independent experiments. (B)

The HCVcc neutralization assays were performed with 1:1,000 diluted sera of CI

(n = 52) and SC (n = 18) to screen for antibodies that can neutralize HCV

infection. The Y axis shows the percentage of neutralization capacity compared

with neutralization by sera from a healthy control. Each dot represents the mean

neutralization for a patient, from three independent experiments. (C,D)

Characterizing HCV binding and neutralizing in sera obtained from two patients

(CI21 and CI22) before and after anti-HCV treatment and following SVR by ELISA

(with 0.5µg/ml rE2 protein and 1:1,000 diluted sera) (C) and by the HCVcc

neutralization assay (with 1:1,000 diluted sera) (D). The HCV-cured blood samples

were collected from 6 months to 1 year after achieving a sustained virological

response. ∗∗P < 0.003, ∗∗∗P < 0.0003. Presented are means ±SD from three

independent experiments.

Supplementary Figure 3 | General characterization of T-cell repertoires of

resolved and chronic HCV infection. (A) The number of sequences per sample

after pre-processing. (B) TRBJ gene usage, colored by clinical group. (C) CDR3

length distribution per sample, colored by clinical group. (D) TRBV gene usage,

colored by clinical group.

Supplementary Figure 4 | CDR3 from the SC and CI abundant B cells clusters.

Sequence logos of the overall AA composition of the CDR3s in copious clusters.

The individual abundance of these clusters is shown in

Figure 2E.

Supplementary Figure 5 | IGHV mutation characterization in SC and CI

infections. (A) Isotype usage distribution. (B) IGHV mutation distribution, per

isotype. (C) IGHV mutation distribution per isotype per cohort. (D) IGHV mutation

distribution per isotype per cohort per IGHV gene. Only statistically significant

combinations are shown (P < 0.05, t-test).

Supplementary Figure 6 | CDR3 from the SC and CI B cells clusters used for

the Logistic Regression model. Sequence logos of the overall AA composition

across the CDR3s in the top 10 clusters used by the model to stratify between the

cohorts. The individual abundance of these clusters is shown in Figure 3C.

Supplementary Figure 7 | Isolation of HCV-specific B cells from SC, CI, and

healthy donors by FACS. CD19+ B cells from SC17 and CI58 were grown with

feeder-irradiated 3T3-msCD40L cells and activated with 5µg/ml rE2 protein, IL2,

and IL21 for 13–14 days. After 14 days, activated B cells were incubated with

5µg/ml rE2 and stained with CD19-PE, CD27-BV421, and tagged rE2

(anti-cMyc, alexa fluor 633). Viable, CD19+, CD27+, and HCsAg+ were isolated

by FACS. The gating region is shown as a black rectangular.

Supplementary Figure 8 | The distance between scFv antibody sequences and

clusters from B-cell repertoires of SC and CI infection. Each dot represents the

average distances between the scFv antibody sequence and the 10 closest

sequences (by VDJ, amino acid sequence) of the B-cell repertoire from healthy

controls (light blue), CI (blue), and SC (green). The lower the distance, the more

similar is the scFv antibody sequence.

Supplementary Table 1 | Features of studied subjects.

Supplementary Table 2 | List of primers.

Supplementary Table 3 | Clones detected in HCV-specific B cell repertoire and

enriched in CI.

Supplementary Table 4 | Clones detected in HCV-specific B cell repertoire and

enriched in SC samples.
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Here, we outline an overview of the mammalian immune system that updates

and extends the classical clonal selection paradigm. Rather than focusing on

strict self-not-self discrimination, we propose that the system orchestrates variable

inflammatory responses that maintain the body and its symbiosis with the microbiome

while eliminating the threat from pathogenic infectious agents and from tumors. The

paper makes four points:

1) The immune system classifies healthy and pathologic states of the body—including

both self and foreign elements—by deploying individual lymphocytes as cellular

computing machines; immune cells transform input signals from the body into an

output of specific immune reactions.

2) Rather than independent clonal responses, groups of individually activated

immune-system cells co-react in lymphoid organs to make collective decisions

through a type of self-organizing swarm intelligence or crowd wisdom.

3) Collective choices by swarms of immune cells, like those of schools of fish, are

modified by relatively small numbers of individual regulators responding to shifting

conditions—such collective inflammatory responses are dynamically responsive.

4) Self-reactive autoantibody and T-cell receptor (TCR) repertoires shared by healthy

individuals function in a biological version of experience-based supervised machine

learning. Immune system decisions are primed by formative experience with training

sets of self-antigens encountered during lymphocyte development; these initially

trained T cell and B cell repertoires form a Wellness Profile that then guides immune

responses to test sets of antigens encountered later. This experience-based machine

learning strategy is analogous to that deployed by supervised machine-learning

algorithms.

We propose experiments to test these ideas. This overview of the immune system bears

clinical implications for monitoring wellness and for treating autoimmune disease, cancer,

and allograft reactions.

Keywords: immune computation, swarm intelligence, machine learning, autoreactive repertoires, T cells,

autoantibodies
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THE IMMUNE SYSTEM MANAGES
INFLAMMATION

In the beginning, it was taught that the function of the immune
system was to distinguish between the self and the foreign—
whatever was foreign was to be rejected and, in contrast,
what belonged to the self was to be ignored (1). We need not
bother to define the tricky terms self and foreign (2) because we
now know that the functions of the immune system are much
more varied than a simple self-not-self binary distinction (3, 4):
The immune system clearly protects the body from invading
pathogens, but it also welcomes and manages our symbiosis with
the essential bacterial microbiome and viral components of the
body (5); the immune system also heals wounds and repairs
injuries to maintain us in the face of the accidents of life (6, 7); it
detects and destroys aged cells and transformed tumor cells (8, 9);
and it rejects tissues transplanted from allogeneic individuals,
while tolerating our foreign symbionts (10).

These complex functions of the immune system can be
reduced to a common process: in one way or another,
all the effects of immune activity involve the management
of what is called inflammation (6). Where grossly visible,
inflammation is marked by redness and swelling due to
changes in tissue blood flow and edema; microscopically,
inflammation is marked by accumulations of immune system
cells; by the death and growth of many types of cells; by
the proliferation of scar-forming connective tissues; and, often,
by the regeneration of blood vessels and damaged tissue
cells. The process of inflammation usually terminates when
the injury heals, but sometimes an inflammatory process
persists chronically or periodically exacerbates, or may develop
unnecessarily in otherwise healthy tissue. In these instances,
the inflammatory process itself can be the cause of disease—
autoimmune diseases result from such misguided inflammatory
processes.

THE IMMUNE SYSTEM CLASSIFIES THE
STATE OF THE BODY

In the beginning, it was thought that an adaptive immune
response was the exclusive property of individual antigen-specific
lymphocyte clones, each bearing an antigen receptor of a single
specificity (11). The population of mature lymphocytes was
presumed to be purged during development of receptors that
could possibly recognize molecules of the host (self-antigens);
mature lymphocytes could recognize only foreign antigens. But,
as we mentioned above, body maintenance obliges the immune
system to interact with self-molecules as well as with not-self-
molecules. Immunity is not merely a reflex to a foreign presence,
but an act of cognition (12).

Now, if we define computation as the ordered transformation
of input into output (13), we can perceive the immune system
to be a computational, living reactive system (4, 14); the
system gathers input about the state of the body, locally,
and generally, and reacts to arrange an output of appropriate
inflammatory procedures that feedback on the body to maintain,

FIGURE 1 | Immune cells compute the state of the body. Individual immune

cells bear receptors (blue corner on cell surface), innate receptors or antigen

receptors, which are activated by input signals from the body. The individual

responding cell, innate, or adaptive, then transforms the input signals into

outputs that can mediate inflammatory responses. The inflammatory state

then feeds back to heal or protect the body. The immune response also

provides feedback to immune system cells and tissues—thus, the immune

system organizes itself through experience.

heal, regenerate and protect it; immune experience also feeds
back to modify the immune system itself (Figure 1).

Immune computation differs in many ways from computer-
based algorithms and classifiers: First, note that the hardware
is the software; the programed activities of the molecules, cells
and organs comprising the physical system actually constitute
functioning algorithms. The performer and the program are
identical—a living cell is defined by the way the cell’s components
behave programmatically.

Secondly, computation is distributed throughout a living
body; each immune system cell computes in parallel; each cell
(lymphocyte, macrophage, dendritic cell, stem cell, endothelial
cell, etc.) receives whatever signals its array of receptors can
detect; each cell then responds to transform (compute) its
input information into an output of signal molecules, receptors,
metabolic reactants, antibodies, or other products that comprise
an inflammatory output (Figure 1). The response of the cell
and its outputs are determined by the state of the individual
computing cell; this state reflects the cell’s differentiation and
its history, along with the input to the cell from other cells and
molecules. In other words, immune system cells have no central
processor—each cell is its own information processor.

The clonal selection paradigm focuses on the behaviors of
individual, receptor-bearing lymphocytes, and clones. Individual
cells, however, must integrate their disparate behaviors to
generate a systemic decision; an ordered immune response
emerges from the way a collective of cells integrate their
behaviors—a type of swarm intelligence or crowd wisdom (15).
Immune crowd wisdom emerges from crowds of cells, including
T cells and B cells that bear each its own antigen receptor
along with other types of immune system cells that express only
innate receptors and do not recognize antigens at all. Moreover,
collectives of responding cells have to dynamically adjust their
system-wide behaviors as the inflammatory situation changes
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over time for better or worse. How do immune crowd behaviors
take place?

CO-RESPONDENCE, BYSTANDER CELLS,
AND IMMUNE ANATOMY

Each immune system cell is exposed to only a partial and limited
view of its surroundings—the cell’s perceptions are dictated by
the particular receptors expressed by the cell and the ligands
impinging on them. Even a specific antigen receptor can tell
only a partial story: any antigen receptor can see only an epitope
fragment or domain of the antigen that may or may not have
originated from an infection, a tumor, an injury, or a healthy
tissue. Moreover, a single T-cell receptor has been estimated
to be able to interact functionally with many different peptides
with varying avidity (3); how then can a T cell know which
of its potential antigen epitopes it is seeing? Innate receptors
borne by lymphocytes and other immune cells are also restricted
to particular domains of their ligand molecules. A lone cell,
necessarily, is blind to information that does not activate its
receptors—each cell is confined to a world compressed by its own
shortsightedness.

Moreover, just as a single clone has a limited view of the world,
a single clone is not sufficient to effect an immune response; an
appropriate inflammatory response requires the participation of
large collectives of a variety of different cells. The doubling time
of a T cell is about 10 h; a single T cell simply cannot generate
enough progeny in the time needed to respond to an infection or
potential tumor. How are individually limited views integrated
to generate a diagnostic consensus and how can a coherent and
dynamic multi-cellular inflammatory response be mobilized in a
relatively short time?

Co-respondence
Co-respondence helps (Figure 2). Co-respondence describes the
ability of lone immune cells to sense and respond to the states of
adjacent immune and body cells (3); this mutual responsiveness
generates a type of swarm intelligence or crowd wisdom. By
interacting with neighboring cells, a collective of immune cells
together can construct a relatively broad assessment of the
situation. A cell may not see the antigens or other signals
perceived by adjacent immune cells, but each cell can sense, by
its receptors for cytokines, metabolic products, and other innate
response mediators, the state and degree of activation of adjacent
cells. The collective of cells, one-by-one, is able to modify its
local behavior according to the output signals of the collective
crowd wisdom. An integrated crowd response arises from the
mutual summation of adjacent responses (16). The input string of
individual antigens and mediator molecules is thus transformed
into a collective computation.

This strategy for achieving system-wide integration of
piecemeal perceptions is common throughout nature. Schools of
fish, colonies of ants, migrating locusts, and flocks of birds (and
even relatively simple robots) can exhibit collective responses
that appear to be miraculously coordinated and highly complex
(Figure 3). Yet upon examination and mathematical modeling,

FIGURE 2 | Co-respondence between cells generates immune computation

at the systemic scale. An integrated immune response results from the ability

of individual immune cells to tune their inflammatory responses in the light of

the responses they sense from adjacent cells (the curved blue lines connecting

cells); this co-respondence is mediated by innate receptors. Bystander cells,

which may lack direct input signals from the body, are enlisted into the

response by co-respondence with adjacent immune cells.

these collective behaviors turn out to be the products of relatively
simple cues transmitted between adjacent individuals (16). Such
collective behaviors do not require an external, all-knowing
manager to impose its will on the group; the collective of
individuals self-organizes (17). A mutually interacting collective
of individuals may appear to define a goal, as it were, and
can manifest complex, seemingly goal-directed behavior merely
by the exchange of relatively simple signals between adjacent
individuals (Figure 3, dashed line inset). Local signaling then
spreads through the group as a kind of integrating epidemic
(from the Greek epi—upon; demos—the population). Biological
self-organization emerges, as it were, from crowd wisdom. The
epidemic spread of local cell responses, like the spread of
information in a school of fish or flock of birds, quickly leads to
highly coordinated group “decisions” that effectively integrate the
individual immune cell responses into a collective inflammatory
response—a few initiating immune cells mobilize bystander,
crowd support (Figure 4).

Integrated collective immune responses need to finetune
themselves as the environment changes—greater or lesser tissue
damage, many or few infectious agents, the evolving state of
a tumor, the mending of a broken bone, and so forth. This
integrated crowd behavior can be adjusted on the run by a
few regulator cells in the collective who have sensed a change
in the infection or in tissue healing; adjacent neighbors adjust
their responses, which then spread to the other participants in
the immune response. The immune system, like a school of
fish or a crowd of people, is dynamically adaptive. Figure 4
depicts an about-face shift in collective direction fromDestructive
Inflammation toHealing Inflammation, brought about by a small
number of regulatory individuals who have sensed the need for
change. Such manipulations of group inflammatory behavior
by small numbers of regulatory elements is termed “infectious
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FIGURE 3 | Schools of fish manifest self-organized behavior. A school of fish,

as an organized group, effectively flees from a predator fish. The dashed-line

inset shows that the shape and direction of the school of fish is actually

self-organized by a relatively small number of visual signals exchanged

between adjacent fish.

FIGURE 4 | Adaptable crowd wisdom. A swarm of immune cells is depicted

as a school of fish initially proceeding in the direction of Destructive

Inflammation; but a small number of Regulators (by spreading

Co-respondence; see Figure 3) can shift the behavior of the entire swarm

toward Healing Inflammation.

tolerance” (18); indeed, a few percent of Tregs are all that is
needed to influence major inflammatory decisions (19).

Bystanders
Bystander activation refers to the fact that most of the
activated lymphocytes and other leukocytes accumulating at an
inflammatory site do not bear antigen- receptors specific for
antigens borne by the agent that triggered the inflammation
(20). Unfortunately, the word bystander bears a negative
connotation—the cells that migrate to the site of the antigen
without receptors for the antigen, in the eyes of the classical
clonal selection theory, don’t belong there. They are merely
chance lookers on. But we now know that co-respondence is of
the essence—bystanders are the expression of crowd wisdom; it’s
the way the immune system works. The informed few who see
the antigens arouse a cohort of “bystander” cells to help mediate
the inflammation (Figure 2). Crowd wisdom is an integral part
of immune computation of body state.

Immune Anatomy
The functional anatomy of the immune system is a key factor
in integration and decision making. The immune system in
real life, unlike our laboratory experiments, is not a culture
of cells dispersed in a flask—the immune system is organized
anatomically into defined organs (lymph nodes, bone marrow,
thymus, spleen, Peyer’s patches, etc.), which are connected
by specific flows of molecules and cells in blood vessels,
lymph vessels, and extracellular fluids (3). Cells and molecules
do not meet merely by chance; immune interactions are
organized in space and time by anatomic structure, flow, and
signaled migrations—organized interactions are analogous to
“hard wired” connections. Thus, collective decision-making and
immune response phenotypes are decisively organized by the
anatomical infrastructure of the system—machine learning, as
we shall discuss below, emerges from this organization. The
anatomic details are beyond the scope of this bird’s-eye overview.
Here, we only direct attention to the importance of “anatomically
wired” influences on immune decision making.

IMMUNE MACHINE LEARNING

Mainstream immunology, steeped in the clonal selection theory
of adaptive immunity (21), has tended to attribute regulation of
the immune response to single clones of lymphocytes and their
antigen receptors; binding a specific antigen triggers a response—
no antigen or antigen receptor, no response (Figure 1). Our
present discussion of immunological swarm intelligence and
crowd wisdom (Figures 2–4) connects immune system behavior
by analogy to the collective behavior of schools of fish, flocks
of birds, and hives of bees along with other collective biologic
entities. What is the basis of this immune group behavior? Note
that the immune system is uniquely like the brain; both brain and
immune system develop fully, far beyond their genes, as a result
of somatic lifetime experience (3). In this section, we would like
to suggest that immune experience requires preliminary training
reminiscent of supervised machine learning.

What is machine learning? The term machine learning was
coined to describe the way an algorithm running on a computer
can be used to uncover meaningful patterns hidden in diverse
sets of data. Supervised Machine learning is a type of pattern
recognition in which previous training subsequently enables
detection of informative patterns buried in test sets of new
data (22). The computer algorithm is first educated by way
of primary interactions with selected training sets of model
data. The machine learns to identify correlations or statistical
associations between the component entities that comprise the
data included in its training sets.

Unlike a computer algorithm, the immune system does not
process electronic signals: Antigens, metabolic products, cell
interaction molecules, and other molecular signals make up the
sets of data perceived by the cells of the immune system. The
correlations between the components comprising a set of data
can be very subtle and obscure to the human observer, yet such
correlations are detectable by machine learning algorithms, and,
by analogy, by networks of cells and antibodies in the immune
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system. As a consequence of exposure to training sets of input, the
computer algorithm—and the immune system—can accumulate
a bank of learned correlations. These formative correlations can
then be used by the computer or the repertoire networks of the
immune system to interpret new test data.

Learning Similarities
Interpretation of new data emerges from the presence or absence
in the data of correlations previously learned during primary
training. A preexisting algorithm is not needed to learn each
individual pattern of components; the machine or the biologic
system need only be programmed generally to detect any patterns
shared by both the learning and test sets of data. A characteristic
feature of one type of machine learning—deep neural networks–
is the interaction between multiple sets of hidden networks that
process the input. The current science of deep learning does not
completely understand how such network architectures actually
work to interpret patterns of input, and we cannot get into the
arcane details here. The important point is that it works.

The new data may appear to the human observer to be new,
but the correlations, through prior training, are already familiar
to the computer or to the acquired repertoires of the immune
system; in a word, the new data are not new to the expert
system—artificial or biological. Similar patterns in the training
and test sets of input data are uncovered by a process involving
iterations within and between different levels of hidden, internal
networks organized within the deep neural network (Figure 5).
In other words, the immune responses to test sets of antigens are
supervised, as it were, by the training sets of immune activation
experienced during development.

The power of artificial deep neural networks to deal with
complexity is evident in image analysis and in natural language
processing. The ability of driverless cars to negotiate their
way through traffic requires precise, dynamic image analysis;
refinements are still needed, but the technology promises to
significantly change human transportation. Similarly, the ability
of computers to process natural language will significantly
influence human culture. Likewise, smart houses will use deep
neural networks to affect the way we live. As wementioned above,
experts are still not sure how deep neural networks work and how
they succeed where other methods have failed. Some have gone as
far as calling machine learning “alchemy” or “alien technology”
(23). We know how to build and use them, but we do not know
exactly how they do what they do.

Deep learning “black boxes” are now built using about 150
million parameters. This is a large parameter space, and it may
explain why such machine learning models have outgrown our
ability to understand precisely how they work. Note, however,
that networks comprising 150 million parameters express only
a fragment of the complexity available for computational use by
the immune system. For example, a milliliter of blood contains 2
million T cells; each T cell expresses tens of thousands of proteins
on its surface. Add to that the additional dimension of spatial
changes over time, and even a droplet of blood contains orders of
magnitude more complexity than one of the larger deep learning
networks, such as the VGG19 model (24).

Don’t let the term machine learning mislead you: living
systems do not use computer algorithms and are not machines in
the way that computers are machines (artificial computers made
of DNA are in very early stages of development). Fortunately,
your brain serves as a familiar example of a biological learning
machine. Consider the fact that you are able to recognize a
familiar three-dimensional face when you see it as a two-
dimensional cartoon because layers of networks deep in your
brain are able to detect a similar pattern of key face features
shared by both the real face and the caricature. You can use a
map to drive your car through a new environment because your
brain has learned to see common patterns shared by the map
and the real world perceived by your eye—a map is a caricature
of a landscape. Past experience has taught your brain to extract
essence from accident. Likewise, Google Photos uses machine
learning algorithms to recognize and catalog the photographed
faces of an individual as he or she proceeds from childhood into
old age; the person is identifiable both by computer algorithm
and our brains despite the marked changes in physiognomy
during aging. (Indeed, the Google algorithm can help reveal
relationships hidden in brains: one of us finds it most intriguing
that Google clustered photos of a daughter-in-law with photos of
one’s daughters—was a son’s spouse preference trained by early
visual input training from his sister or his mother?).

Learning Differences
Conversely, prior experience with learning sets of data can
also teach your brain to detect meaningful differences between
grossly similar signals. For example, the more familiar you
are with a set of monozygotic “identical” twins, the easier
it is for you to tell them apart, even when they are not
both present for side-to-side comparison. Indeed, very subtle
differences are often easiest to detect on a background of
close similarity—a minor difference in the strips or stars of
army rank is most visible when all the soldiers wear grossly
similar uniforms. Amotz Zahavi has claimed that the vividly
colored markings on bird species evolved to enable females to
see genetic differences between apparently similar male suiters
(25). We here propose that early training enables the immune
system, like the brain, to detect meaningful differences as well as
similarities.

The ability of your immune system to distinguish, for example,
a symbiotic bacterium from a pathogenic bacterium requires the
recognition and distinction of particular input patterns present
in the myriads of molecular signals impinging on your collectives
of immune cells. Both pathogenic bacteria and bacteria of
the symbiotic microbiome express LPS or peptidoglycans and
both types of bacteria share a great many other foreign
antigens and innate signals; but the invading pathogen damages
the host and so appears accompanied by signals produced
by damaged body tissues and by metabolic changes (5).
By profiling the mixture of bacterial and body signals,
your immune system can discriminate between very similar
bacteria by attending to informative differences in patterns of
signals—a lone antigenic signal rarely suffices for a definitive
diagnosis.
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FIGURE 5 | Supervised Machine learning from experience. (A) represents a simplified Architecture of computer Machine Learning in which Hidden Layers of

interacting networks are organized as Deep Neural Networks. Input information is interpreted by comparing the present test Input to training sets of information

previously experienced. The processing of test Input through hidden layers of networks generates an informative Output. (B) represents an analogous Immune

supervised Machine Learning Architecture. Input from the body—healthy or ill—is gathered by receptors of immune cells and processed through interactions

organized as hidden layers of networks of Innate cells, B cells, and T cells. By comparing the input data to the training data obtained during immune cell development,

the immune system generates an immune response suitable to the situation. The output feeds back to serve the needs of the body and to update the internal

organization of the immune networks themselves.

Your immune system can also sense patterns of antigens
compatible with general health; markedly different tissues like
lungs, hearts and kidneys can signal a pattern of health, despite
their obvious differences in molecular structure and behavior.
Just as there is a diagnostic profile difference between infectious
pathogens compared to similar symbionts, there is a profile of
similarity that designates health in highly dissimilar body organs.
Indeed, we have recently learned that growing tumors may trick
the immune system into tolerating them as normal tissue despite
their abnormalmutations—the tumors express health signals that
prevail over tumor signals and neoantigens that might otherwise
expose a state of pathology; the tumor, as it were, exploits profiled
signals of well-being that enable it tomasquerade as healthy tissue
(26). Fortunately, the tumors in some individuals, in due course,
can become targets for spontaneous immune destruction, or
medically engineered destruction in response to anti-checkpoint
immunotherapy (27).

Two Requirements for Immune System
Supervised Machine Learning
In summary, deep learning requires two elements: data for
training and networks for data processing. Training sets of
data provide the immune system with reference criteria for
interpreting new data; processing the data emerges from layers
of network interactions that take place deep within the system.
Experimental evidence shows that healthy individuals share
autoreactive TCR and autoantibody repertoires. The clonal
selection paradigm cannot explain the possible function of this
healthy, immune self-reactivity; here we propose that these
repertoires serve to supervise a type of immune machine
learning.

Training Sets
Immune supervised machine learning requires training sets of
antigen experience that initially prime the immune system for its
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subsequent performance in dealing with test immune challenges
that arise when confronting the real world. The initial T cell and
B cell training repertoires both arise early during development
in isolated body locations protected from the environment; this
adaptive learning is driven by healthy self-antigens.

The primal TCR repertoire develops in the thymus through
genetically programed experience with self-antigens expressed,
processed and presented by innate dendritic cells (28). Thymic
T-cell development has been studied in detail for some decades
and much is known about it (29). There is no need to recount
the details here; the bottom line is that programed thymic
selection to particular self-antigens is critical to the normal
development of the mammalian immune system (30); faulty
thymic T-cell development can lead to autoimmune disease and
immune system deficiency in dealing with pathogens (31). T-
cell experience with a healthy self-training set of antigens is
necessary (but, alas, not sufficient) for developing a healthy
immune system. The specificity of healthy self-antigen training
is exemplified by mutations in AIRE and other transcription
factor genes that lead to severe autoimmune disease resulting
from the lack of expression of certain tissue antigens by thymic
epithelial cells (32). Note that T-cell development in the thymus
is associated with TCR repertoires that are shared by different
individual humans; some of these public TCR structures are
identical in humans and mice and are organized in networks of
very similar amino acid sequences (33).

The primal B cell repertoire has been much less studied than
has the primal T-cell repertoire. Early studies of autoantibodies
in the bloods of healthy subjects were done using relatively
crude western blot technology (34). Most relevant to immune
system computation are recent antigen-microarray studies of
autoantibody repertoires in the bloods of young mothers and in
the cord bloods of their healthy newborns. The antibodies in cord
blood are important because they reflect initial training of the B-
cell repertoire with which the newborn faces life outside the safety
of mother’s womb. We have carried out two such studies: the first
used 10 mother-cord pairs (35) and the second used 71 mothers
and their 104 newborns; we measured IgG and IgM antibody
binding to 295 self-antigens, compared to 27 standard foreign
antigens (36). The results have been published; here we briefly
summarize the key findings:

1. The binding of some cord blood autoantibodies to self-
antigens is at least as strong as the binding of maternal
antibodies to some foreign antigens; thus, the congenital
autoantibody repertoire recorded by microarray technology
appears to reflect significant immune priming to healthy
self-antigens.

2. Because maternal IgG is actively transported across the
placenta to the developing fetus, the IgG repertoire of each
newborn is strongly correlated with that of its mother; there
is relatively less correlation between the IgG repertoires of
different newborns or different mothers.

3. Human newborns manifest a strong correlation of IgM
autoantibody repertoires amongst themselves as a group that
differ from the IgM repertoires of each of their mothers.
In contrast to maternal IgG antibodies, antibodies of the

IgM isotype do not cross the placenta from mother to fetus
(37). Hence, any IgM autoantibodies in cord blood had
to have been produced by the fetus during development
in the isolation of the womb. Thus, genetically diverse
human babies undergo B-cell training experience to develop
standard repertoires of IgM autoantibodies during pre-natal
life. Healthy autoantibody repertoires, like public T-cell
repertoires, manifest networks (38) of connectivity linking
certain dominant self-antigens (33).

At the present time, we do not know of early training experiences
of innate leukocytes, which do not bear receptors for antigens.
However, dendritic cells, epithelial cells and probably other
innate cells do participate in the training of the adaptive T-cell
and B-cell repertoires (39)—it remains to be seen if this early
innate-cell experience also trains innate leukocyte development.

Layers of Network Interactions
The second element essential to machine learning algorithms
based on neural networks is an architecture that features
multiple layers of interacting networks that process input
data (Figure 5A). In computer parlance these deep layers of
interacting networks have been termed “hidden”; the internal
networks in living systems such as the brain and the immune
system are molecular and they too are essentially “hidden”
from view. Figure 5B depicts network interactions between
innate cells, T cells and B cells as if they were deep layers
of immune processing. Advanced imaging technics can show
the movements and contacts of groups of individual cells, but
we have no way, yet, of observing the information transferred
between such interacting cells nor can we see the molecules
involved. Experiments teach us that innate antigen-presenting
cells interact with T cells and B cells, and that T cells and B
cells interact between themselves in various ways. Moreover, T
cells of various types interact with other T cells and B cells and
antibodies interact with each other (33, 40); through regulatory
(41), idiotypic (42), ergotypic (43), and other types of network
connections. The anatomy of lymphoid organs includes discreet
layers of interacting cell types, as we mentioned briefly above.
Here, we propose that this architecture of anatomically layered
immune networks has evolved to materialize a biologic version
of experience-based machine learning.

Classically, the existence of networks of interacting cells and
molecules has been explained ad hoc by the need to satisfy a list
of functional binary distinctions in the immune response: IgM
vs. IgG antibodies; innate vs. adaptive recognition; memory vs.
transience; helpers vs. killers; suppressors vs. effectors; Th1 vs.
Th2 helper types; and so on and so forth. Each newly discovered
cell or interaction was assigned to fulfill a singular need, a
particular goal, to account for its evolution. Immunology had no
single organizing principle, or fundamental strategy that would
make sense of all the system’s seemingly redundant complexity.

Here, we support the idea that these sets of interacting
immune elements serve immune decision-making by
constituting a multi-level network architecture that serves
experience-based supervised machine learning. Like a deep
learning machine learning contrivance, the immune system
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is organized to include multiple levels of interacting cells
and molecules triggered into motion by an immunological
experience, which is them interpreted by reference to early
training sets of data. Obviously, other explanations are
conceivable; experimentation is needed.

MACHINE LEARNING AND IMMUNE
WELLNESS

Note that the primary immune reference repertoires selected
during early development of B-cell and T-cell repertoires arise
through interactions with healthy tissues; we can reason that the
emerging repertoires of selected lymphocytes signify a pattern
of health—it is reasonable to hypothesize that healthy self-
antigens are what lymphocytes see in the thymus and in utero.
In other words, the adaptive immune system is first trained
to recognize relative wellness. Consequently, the similarity of
a profile of test antigens to the training set profile means that
all looks well and no destructive inflammation is needed. In
contrast, a functional dissimilarity of a test antigen pattern to
the healthy reference pattern should spur the immune system
into inflammatory action (Figure 5B). Hypotheses do their job by
inviting experimentation, and the existence of a positive wellness
profile needs experimental support. Below, we shall suggest some
novel experiments and predictions.

We can view the immune supervised machine learning
process as a wellness theory of adaptive immunity; the immune
process begins with a seminal perception of the healthy body.
The reference set of antigen receptors are tuned to the state of
wellness; disease is manifested by a significant fall, however slight,
from a healthy pattern.

Obviously, this wellness view is at odds with the disease-
oriented view developed byWestern biomedicine as a corollary to
the germ-theory of disease: According to the standard paradigm,
health is a given; health is freedom from pathogenic agents such
as bacteria, viruses, or malignant cells (44). The discovery of
the DNA genetic code has added mutant or abnormal DNA to
the causes of disease. Immune machine learning would suggest
that immune wellness is not merely the absence of a specific
disease but a particular body state, one that must be learned
during early immune repertoire development. This shifts our
perception of the immune response away from an exclusive
preoccupation with disease and adds to the immune system
the task of maintaining one’s state of health (3). Wellness
theory would suggest that a chronic or recurrent disease might
arise from replacement of a healthy reference set of immune
body data with an aberrant reference set; indeed, the chronic
autoimmune disease lupus appears to be characterized by an
aberrant autoantibody signature that is relatively stable (45)—the
sick immune system views a lupus immune profile as if it were
the patient’s normal state. If this is true, then treatment of an
autoimmune disease might aim at immune re-education toward
a healthy reference profile rather than primarily at suppression of
the autoreactivity. Likewise, successful allograft transplantation
might be advanced by educating the host immune system to
include key allo-antigens in the host’s reference repertoire of

health—this might explain the effect of allogeneic bone marrow
transplantation of the induction of tolerance to an allogenic
graft. Effective tumor immunotherapy, as we have mentioned
in passing, deprives the tumor of its resemblance to healthy
wellness—rejection then follows (27).

EXPERIMENTAL TESTING

Hypothesis and theory contribute to empirical science in two
important ways: First, they can help initiate new thinking
regarding known observations, and second, and most
importantly, they can inspire new experiments. We have
raised two related points that invite novel experimentation: the
concept of a Wellness Profile and its function as a training set of
data that guides the type of inflammatory immune response to
variable test data.

The Wellness Profile hypothesis proposes that healthy
individual humans (and by extension other mammals) share
common sets of autoantibodies and TCR repertoires. This
hypothesis was inspired by our finding that the cord bloods
of different newborns are highly correlated in their IgM
autoantibodies produced in utero. Healthy adults go on tomodify
their initial cord blood repertoires of IgM and IgG through
physiological immune experience.

If indeed there is a Wellness Profile in adult life, then we
predict that we will be able to discover a list of autoantibody
reactivities shared by most healthy people. Some antibodies in
this Wellness autoantibody list will be absent in people with
chronic autoimmune disease. Indeed, we predict that we will
find a number autoantibodies that are shared by people suffering
from different chronic autoimmune diseases—a type of Illness
Profile. We plan to carry out these experiments using the antigen
microarray device developed by one of us (45); informatic
analyses of sufficient numbers of samples will test whether our
prediction is borne out.

The Wellness Profile hypothesis also includes TCR
repertoires, which are technically more difficult to study.
Shared, public TCR receptors have already been published, and
we predict that public TCR sequences will include repertoire
features that are shared by healthy people and absent in the
TCR repertoires of people suffering from chronic autoimmunity
problems or tumors. We can carry out such a study by informatic
analysis of published TCR data from healthy “controls”
compared to samples from persons with chronic autoimmune
conditions or cancer.

We here have proposed that the immune inflammation
phenotype is influenced by training sets of autoantigen
reactivities arising during healthy development. This idea
can be tested by introducing, during development, otherwise
immunogenic antigens such as allogeneic cells to induce specific
lifelong “tolerance” to specific allografts in inbred mice. We
would predict that modified training sets of autoreactive
autoantibody and TCR repertoires would be detected in these
mice and would persist throughout adult life; these modified
training reactivities would be added to the standard, shared
profile of wellness present in the mice.
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These predictions can be tested using a model of alloantigen
tolerance induced in mice before birth in utero or shortly
after birth. The newborn mice exposed to allo-antigens during
development will manifest modified Wellness Profiles that
include specific allo-antibodies and modified TCR repertoires;
the mice with modified profiles should accept H2-specific
allografts, according to our proposed theory. Adoptive transfer
of modified TCR and autoantibody repertoires in inbred mice
would make it possible to isolate the key elements in the
transferred repertoires.

In contrast to inducing tolerance to foreign transplantation
antigens, it appears that enhanced autoimmune T-cell mediated
inflammation in adults can be induced in newborn mice by
injection of selected autoimmune T cells: adult rats of the Fischer
strain can mount T-cell proliferative responses to myelin basic
protein but they resist developing inflammation that causes
experimental autoimmune encephalomyelitis (EAE); however,
injecting newborn Fisher rats with anti-MBP T cells renders
the rats susceptible to inflammatory EAE induced by active
immunization later in adult life (46); the injected T cells did not
cause EAE in the newborn rats, but the injected T cells migrated
to the thymus and spleen and persisted there. These early findings
suggest that it might indeed be feasible to modulate a later

inflammatory immune response by manipulating the developing
T-cell repertoire. Some of the novel concepts outlined here do
stimulate novel research programs.

CODA

To summarize, the standard clonal selection paradigm fails to
account for new findings that confound simple binary, self-
non-self explanations of complex immune behavior. Here, we
propose immune system computation, swarm intelligence, and
experience-based training repertoires as strategies for intelligent,
self-organizing body maintenance, healing, and protection.
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The adaptive immune receptor repertoire (AIRR) contains information on an individuals’

immune past, present and potential in the form of the evolving sequences that encode the

B cell receptor (BCR) repertoire. AIRR sequencing (AIRR-seq) studies rely on databases

of known BCR germline variable (V), diversity (D), and joining (J) genes to detect

somatic mutations in AIRR-seq data via comparison to the best-aligning database alleles.

However, it has been shown that these databases are far from complete, leading to

systematic misidentification of mutated positions in subsets of sample sequences. We

previously presented TIgGER, a computational method to identify subject-specific V

gene genotypes, including the presence of novel V gene alleles, directly from AIRR-seq

data. However, the original algorithm was unable to detect alleles that differed by

more than 5 single nucleotide polymorphisms (SNPs) from a database allele. Here we

present and apply an improved version of the TIgGER algorithm which can detect

alleles that differ by any number of SNPs from the nearest database allele, and can

construct subject-specific genotypes with minimal prior information. TIgGER predictions

are validated both computationally (using a leave-one-out strategy) and experimentally

(using genomic sequencing), resulting in the addition of three new immunoglobulin heavy

chain V (IGHV) gene alleles to the IMGT repertoire. Finally, we develop a Bayesian strategy

to provide a confidence estimate associated with genotype calls. All together, these

methods allow for much higher accuracy in germline allele assignment, an essential step

in AIRR-seq studies.
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INTRODUCTION

Affinity maturation, in which B cells expressing receptors
with an improved ability to bind antigen are preferentially
expanded, is a key component of the B cell-mediated adaptive
immune response (1, 2). This selection process requires a
diverse pool of B cell receptors (BCRs) which is generated
both through V(D)J recombination [in which each B cell
creates its own BCR by recombining variable (V), diversity (D),
and joining (J) genes], and through the subsequent somatic
hypermutation (SHM) of these sequences during T-dependent
adaptive immune responses. SHM is an enzymatically-driven
process that introduces mainly point substitutions into the
BCR at a rate of about one mutation per 1,000 base-pairs
per cell division (3, 4). Leveraging next-generation sequencing
technologies to profile this adaptive immune receptor repertoire
(AIRR) allows tens- to hundreds-of-millions of unique BCR
sequences to be collected from a single subject and has become
a prevalent method for studying aspects of the B cell-mediated
immune response, including topics related to gene usage,
mutation patterns, and clonality (5–9).

An accurate immunoglobulin (Ig) germline receptor database
(IgGRdb) is a key part of the typical AIRR-seq data analysis
pipeline (10). Analysis generally begins with pre-processing tools
specifically designed for BCR sequencing, such as pRESTO
(11). Following this, computational methods [e.g., IMGT/HighV-
QUEST (12), IgBLAST (13), or iHMMune-Align (14)] are used
to align sample sequences to the set of unmutated reference
alleles from an IgGRdb, such as the one maintained by IMGT (3).
However, these IgGRdbs have been shown to be incomplete, and
studies continue to discover new alleles (5–9). Immunoglobulin
(Ig) loci are rarely fully sequenced in a single subject due
to the large locus size and similarity of genes confounding
many modern high-throughput sequencing methods (7, 15,
16). Thus, if a subject carries a novel allele, it can lead to
incorrect interpretations of which positions have been mutated
and can subsequently affect the reconstruction of clonal lineages.
We previously created the TIgGER method, and an associated
software package, to detect novel V gene alleles from AIRR-
seq data, infer the genotype of a subject, and correct the initial
allele assignments (8). Since the development of TIgGER, several
other methods have been proposed to discover novel alleles
(17–20). While the application of TIgGER to several subjects
revealed a high prevalence of novel alleles, the design of the
method limited its ability to detect novel alleles differing by
more than five polymorphisms from a known IgGRdb allele,
which we previous found covers ∼10% of alleles in the IMGT
IgGRdb (8).

Here we present and apply improvements upon the
original TIgGER method that allow for the detection of
novel alleles that differ greatly from IgGRdb alleles as
well as for the assignment of levels of confidence to each
genotype call. This updated version of TIgGER (version
0.3.1 or higher) is available for download as an R package
from The Comprehensive R Archive Network (CRAN; http://
cran.r-project.org), with additional documentation available
at http://tigger.readthedocs.io. The input and output formats

of TIgGER conform to the Change-O file standard (21),
and thus the method can be used seamlessly as part of
the Immcantation tool suite, which provides a start-to-
finish analytical ecosystem for high-throughput AIRR-seq
datasets (http://immcantation.org), including methods for pre-
processing, population structure determination, and advanced
repertoire analyses.

RESULTS

Detecting Distant Alleles Using Dynamic
Positioning of the “Mutation Window”
TIgGER detects novel alleles by analyzing the apparent mutation
frequency pattern at each nucleotide position as a function of
the sequence-wide mutation count. The input to the method
consists of a set of rearranged BCR sequences (which may
be mutated, but should contain at least some sequences that
have not accumulated mutations) from a single subject and
the alignment of those sequences to IgGRdb alleles, such as
the output of running IMGT/HighV-QUEST (4, 22) or IgBlast
(13). TIgGER searches for novel V alleles among the sequences
that fall in a specified “mutation window” relative to each
of the IgGRdb alleles. The mutation window of the original
algorithm (8) had an upper bound of at most 10 sequence-wide
mutations, while the lower bound was defined as minimum(L,
5), where L was the most frequent mutation count among
sequences with at most 10 sequence-wide mutations. Positions
were considered as potentially polymorphic if a linear fit
predicted a mutation frequency (y value) above a threshold
level of 0.125 at a mutation count (x value) of zero (i.e., the
y-intercept). While this method had excellent sensitivity and
specificity, the definition of the lower bound meant that TIgGER
could only detect novel alleles that differed by at most five
single nucleotide polymorphisms (SNPs) from some previously
known IgGRdb allele. We hypothesized that by modifying the
TIgGER algorithm to dynamically shift the mutation window
to the most relevant region for discovery of the polymorphic
position, it would be possible to detect novel V alleles that
differed by any number of polymorphisms from the nearest
IgGRdb allele.

The updated TIgGER algorithm described here defines the
lower bound of the mutation window for each allele as the
mutation count of the most frequent sequence assigned to that
allele. The upper bound of the mutation window is always
nine bases greater than the lower bound. Positions are analyzed
within this window, and considered as potentially polymorphic
if a linear fit predicts a mutation frequency (y value) above a
threshold level of 0.125 at a mutation count (x value) one less
than the start of the mutation window (see Methods for details).
The behavior of the updated TIgGER algorithm (Figure 1,
bottom row) is equivalent to the original TIgGER algorithm
(Figure 1, top row) when analyzing sequences derived from a
novel allele with a single nucleotide polymorphism (Figure 1,
first column). The behavior of the two algorithms diverges
slightly in cases where 2–5 polymorphisms are present in the
novel allele (Figure 1, middle column), as the updated algorithm
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FIGURE 1 | Distant V gene alleles can be detected by dynamic shifting of the mutation window. The original TIgGER algorithm (top row) and the updated method

(bottom row) were applied to BCR sequences generated from two subjects, hu420143 and 420IV, as part of a vaccination time course study (18). In both cases, the

mutation frequency (y-axis) at each nucleotide position (gray lines) was determined as a function of the sequence-wide mutation count (x-axis). For each position

known to be polymorphic (dark gray lines) (12), linear fits (red lines) were constructed using the points within the mutation window (red shaded region). The linear fit

was then used to estimate the mutation frequency at the intercept location (blue dotted line). Sequences that best aligned to IGHV1-2*02 from hu420143 were used

to demonstrate the behavior when detecting a germline with a single nucleotide polymorphism (left column), while sequences that best aligned to IGHV3-43*01 from

420IV were used to demonstrate the behavior when detecting a germline with three polymorphisms (middle column), as novel alleles with that number of

polymorphisms had been previously discovered in those subjects (12). Data to assess the behavior when detecting a novel allele with seven polymorphisms (right

column) was simulated using sequences from hu420143 that best aligned to IGHV1-2*02 by artificially adding six base changes to the germline sequence used for

alignment, as no novel allele with more than five polymorphisms had been discovered. In all cases, only sequences from pre-vaccination time points were used from

these individuals.

FIGURE 2 | The updated TIgGER method detects distant alleles with high sensitivity. Detection of novel V gene alleles differing from IgGRdb alleles by n

polymorphisms was simulated by extracting experimental sequences best aligning to a single IgGRdb allele in a single subject, then inserting into the IgGRdb an allele

n polymorphisms in silico and providing only the modified IgGRdb allele to TIgGER. Each sensitivity measurement at distance n (x-axis) included modification of all

IgGRdb alleles best-aligning to at least 500 sequences in subject PGP1. The variance in sensitivity was estimated by repeating this procedure for 100

randomly-modified IgGRdb alleles and the mean sensitivity as a function of n was determined for 1 ≤ n ≤ 30. Error bars represent the standard error of the mean.
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FIGURE 3 | TIgGER identifies high diversity in the inferred IGHV genotypes of 26 genetically distinct subjects, and high similarity among 5 monozygotic twin pairs.

IGHV genotypes of 31 subjects (columns) were inferred using the frequency method from the updated TIgGER algorithm, under the default settings. Monozygotic twin

pairs are indicated as TW***A and TW***B; multiple sclerosis subjects are denoted as M*; influenza vaccination time course subjects are denoted PGP1, 420IV, and

hu420143; myasthenia gravis subjects are indicated by AR** and MK** with the associated healthy controls indicated by HD**. Each row represents an IGHV gene,

and the color(s) in each column represent(s) the allele(s) present in that subject using the IMGT designation shown in the color bar. Note that the size of the bars does

not represent relative allele frequency. Clustering of the genotypes was performed using Ward’s method.

allows both the upper bound of the mutation window and the
location where the mutation frequency threshold is evaluated to
dynamically shift based on the start of the window. The greatest
divergence is observed in detecting novel alleles with over 5
single nucleotide polymorphisms. In this case, the mutation
window of the original algorithm ends before the window of the
updated algorithm (Figure 1, right column). When confronted
with such distant novel alleles, the linear fits of the polymorphic
positions constructed by the original algorithm often failed
to yield y-intercepts large enough to identify the positions as
polymorphic, whereas the updated algorithm can identify all
polymorphic positions.

To test the performance of the updated TIgGER method, we
simulated data in which novel alleles differed by n SNPs from
the nearest IgGRdb allele by randomly changing n nucleotides
in the IgGRdb alleles utilized by TIgGER (i.e., by removing
the true allele from the IgGRdb and replacing it with a distant
one). Using AIRR-seq data from subject PGP1 described in our
previous study (23), the 38 IGHV alleles assigned to at least 500
unique BCR sequences were each tested for every value of n
from 1 to 30. This process was repeated 100 times per value of
n random single nucleotide polymorphisms, to ensure a diversity
of polymorphic positions and base changes would be tested. The
fraction of times the original germline sequence was recovered
was determined as a function of n and averaged across all
germline alleles tested. The updated version of TIgGER had 100%
sensitivity in the range of 1 ≤ n ≤ 5, and was also able to detect
novel alleles with high sensitivity (over 99%) for all values of n

tested (Figure 2). Additionally, only the removed germline alleles
were discovered by the algorithm; no false positive sequences
were predicted. Thus, TIgGER can detect novel V alleles that
are far from any known IgGRdb allele with high sensitivity
and specificity.

To search for distant novel alleles, the updated version
of TIgGER was applied to AIRR-seq data from the seven
individuals described in our previous study (8), including
three subjects receiving influenza vaccination (23) and four
subjects with multiple sclerosis (24, 25). However, this yielded
the same alleles previously reported, with the most-distant
novel alleles differing from the nearest IgGRdb allele by
at most three polymorphisms (Table S1). We next applied
the updated TIgGER algorithm to 24 additional individuals.
This included published AIRR-seq data from five pairs of
monozygotic twins (10), 10 subjects with myasthenia gravis and
4 subjects that served as healthy controls (26). Considering all
31 individuals, TIgGER identified a total of 28 novel alleles
that were part of the genotype inferred for one or more
of the individuals (Figure 3 and Table S1). All of the novel
alleles differed from IgGRdb alleles by at most three single
nucleotide polymorphisms. Thus, while it was demonstrated
on synthetic data that the updated version of TIgGER has the
potential to detect alleles that differ greatly from known IgGRdb
alleles, none of the novel alleles discovered in the repertoires
of 26 genetically distinct individuals (monozygotic twins are
considered genetically indistinguishable) differed by more than
three polymorphisms.
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Experimental Validation of Novel IGHV
Gene Alleles Predicted by TIgGER
The application of TIgGER to AIRR-seq data from 26 genetically
distinct individuals identified 28 novel IGHV gene alleles
(Figure 3 and Table S1). We selected four of these novel alleles
that were each predicted by TIgGER in multiple individuals
for experimental validation: IGHV1-2∗02_T163C, IGHV1-
8∗02_G234T, IGHV3-20∗01_C307T and IGHV1-69∗06_C191T.
Three of these alleles were also predicted independently by other
groups. IGHV1-2∗02_T163C was identified in (5, 9), IGHV1-
8∗02_G234T was identified in (9) and IGHV3-20∗01_C307T
was identified in (27). IGHV1-69∗06_C191T has not been
previously reported.

To validate the TIgGER predictions, we cloned and sequenced
the relevant gene locus directly from genomic DNA. For each
allele, we chose one of the subjects where it was predicted
for validation: MK04, MK05, MK05, and MK06 for the alleles
of IGHV1-2, IGHV1-8, IGHV3-20, and IGHV1-69, respectively.
PCR primers were designed to fully amplify the exons and
introns of each target IGHV gene locus (IGHV1-2, IGHV1-8,
IGHV3-20, and IGHV1-69) from genomic DNA; sequences for
each primer set are provided in Table S2. PCR amplicons for
each gene were then generated individually from the genomic
DNA samples of the donor where they were predicted to
be present, and subsequently cloned. DNA was isolated from
4 to 15 clones per gene target, and Sanger sequenced from
both ends. These sequences were compared directly to the
allele sequences inferred by TIgGER from the same donor to
assess the degree of concordance. In all cases (4/4), genomic
DNA sequencing provided validation of the putative IGHV
polymorphisms inferred by TIgGER from the AIRR-Seq data
suggesting that TIgGER has high specificity for identifying new
IGHV alleles.

Single representative clones for each genomic sequence
validating the TIgGER predictions were submitted to GenBank
and have been assigned the following accession numbers:
MH267285 (IGHV1-2∗02_T163T), MH267286 (IGHV1-
8∗02_G234T), MH332884 (IGHV3-20∗01_C307T), and
MH359407 (IGHV1-69∗06_C191T). These predicted alleles
were also submitted to IMGT for inclusion in their IgGRdb.
Three of these alleles were accepted for inclusion in the
IMGT IgGRdb as novel alleles, and have been assigned the
following allele names: IGHV1-2∗06 (MH267285), IGHV3-20∗03
(MH332884), and IGHV1-69∗17 (MH359407). The fourth
allele that we experimentally validated (IGHV1-8∗02_G234T)
was added to the IMGT IgGRdb as IGHV1-8∗03 during the
course of this study, and was thus no longer considered novel.
Along with IGHV1-8∗03, several other alleles identical to
TIgGER predictions were added to IMGT during this study:
IGHV1-18∗01_T111C as IGHV1-18∗04, IGHV2-70∗01_T164G as
IGHV2-70∗15, IGHV3-64∗05_A210C_G265C as IGHV3-64D∗06,
and IGHV3-9∗01_C296T as IGHV3-9∗03. Overall, eight of the
28 novel IGHV genes predicted by TIgGER in 26 genetically
distinct individuals are now part of the IMGT IgGRdb,
including three novel IGHV alleles that directly resulted from
this study.

TABLE 1 | Performance of TIgGER in detecting the set of V gene alleles

comprising each IGHV family starting from a sparse IgGRdb.

Subject IGHV family Alleles discovered/Alleles present (%)

420IV 1 12/12 (100%)

420IV 2 5/5 (100%)

420IV 3 24/27 (89%)

420IV 4 9/9 (100%)

420IV 5 3/3 (100%)

420IV 6 1/1 (100%)

420IV 7 1/1 (100%)

420IV 55/58 (95%)

hu420143 1 8/12 (67%)

hu420143 2 5/5 (100%)

hu420143 3 16/22 (73%)

hu420143 4 9/11 (82%)

hu420143 5 1/1 (100%)

hu420143 6 1/1 (100%)

hu420143 7 1/1 (100%)

hu420143 41/53 (77%)

PGP1 1 11/14 (79%)

PGP1 2 6/6 (100%)

PGP1 3 14/29 (48%)

PGP1 4 10/13 (77%)

PGP1 5 1/2 (50%)

PGP1 6 1/1 (100%)

PGP1 7 1/2 (50%)

PGP1 44/67 (66%)

Total 140/178 (79%)

TIgGER was run iteratively to detect the set of IGHV alleles carried by each of three

subjects. An example of detecting IGHV1 family alleles is shown in Figure 4. For each

subject, the algorithm was provided an initial IgGRdb consisting of only the single most-

commonly observed allele for each IGHV family. Performance was assessed by comparing

the final number of alleles per family discovered by this iterative method to the number

of alleles per family resulting from running the TIgGER algorithm when provided with a

complete list of IgGRdb alleles. The final total number of alleles discovered for each subject

are highlighted in bold.

Inference of IGHV Genes Starting From a
Sparse IgGRdb
TIgGER relies on the ability to make initial assignments of BCR
sequences to alleles from an IgGRdb. However, such IgGRdbs
may be sparse or non-existent for certain species; IMGT/GENE-
DB has only a single IgGRdb IGHV allele for most genes in
mouse, and only a single allele for all genes in rat and rhesus
macaque. Nevertheless, IGHV variation was observed in all of
these species [for example, Mouse (28, 29), Rat (30), Macaque
(31, 32)]. In principle, the deep coverage of repertoire sequencing
data could obviate the need for IgGRdbs by inferring the set
of alleles for each subject based solely on the observed set of
rearranged sequences. Here we consider whether a very sparse
IgGRdb may be sufficient to discover the IGHV alleles of a
subject’s IGHV genotype. This is theoretically possible given the
ability of the updated TIgGER algorithm to detect alleles that
differ greatly from the nearest known IgGRdb allele.
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FIGURE 4 | Iterative application of TIgGER detects most IGHV alleles beginning from a sparse IgGRdb containing only one allele per IGHV family. Sequences from

subject PGP1 that best aligned to any IgGRdb allele from the IGHV1 family were all reassigned to the most common allele, IGHV1-18*01 (first panel). The updated

TIgGER algorithm was used to detect “novel” alleles that were not in the IgGRdb (initially consisting only of IGHV1-18*01). Five alleles were discovered after this first

iteration, and sequences were reassigned based on this expanded IgGRdg consisting of 6 alleles (second panel). After a second iteration of TIgGER (third panel), 5

additional alleles were discovered, and the resulting sequence assignments closely matched the control case where TIgGER was used with all known IGHV IgGRdb

alleles (fourth panel). The height of each bar indicates the number of sequences assigned to the indicated IGHV allele, while the bar colors indicate the allele

assignment given to sample sequence in the control case.

To evaluate the ability of TIgGER to identify the set of
alleles carried by an individual when starting from a sparse
IgGRdb, we simulated the extreme case of each IGHV gene family
containing only a single allele in the IgGRdb. The performance
was evaluated on published sequencing data from three subjects
(PGP1, hu420143, and 420IV; see Methods). For each subject,
the IgGRdb was defined by the single alleles from each IGHV
family that were most frequently assigned by IMGT/HighV-
QUEST. All sequences initially assigned to any allele in that
family were then reassigned to that single IgGRdb allele. The set
of IGHV genes carried by each individual was then identified
by iterative applications of TIgGER. After each application of
TIgGER, the set of novel alleles discovered by running the
algorithm was added to the IgGRdb to be used for subsequent
iterations, and sequences were reassigned to their most similar
IgGRdb allele (measured byHamming distance). The process was
repeated until no new allele assignments were made (at most
five iterations in these studies). The final set of alleles of each
IGHV family discovered by this method was compared to the
result obtained when running the TIgGER algorithm followed
by genotype inference using the original IMGT/HighV-QUEST
allele assignments and full IgGRdb (Figure 4).

The updated TIgGER algorithm discovered up to 95% (79%
average) of the alleles in each of the three subjects’ IGHV families
when starting with a single IgGRdb allele per family (Table 1).
To understand how TIgGER achieves this performance, consider
sequences from the IGHV1 family in subject PGP1. In this case,
the first application of TIgGER was able to identify five of the
correct novel alleles and reassign the sequences to the better
allele (Figure 4, first and second panels). This success was due
to the fact that the mutation ranges of interest (i.e., the mutation
windows described in Figure 1) differed for many of the novel
alleles.We expect this will generally be true, and since the number
of positions differentiating different novel alleles from a shared
most-similar IgGRdb allele varies, relevant mutation windows

of alleles to be discovered are unlikely to overlap and result
in a dilution of signal. Nevertheless, a single run of TIgGER
was not able to detect all of the IGHV alleles. TIgGER was
then run a second time using the new IgGRdb and assignments
determined from the first run, leading to the identification of
five additional novel alleles. This second iteration discovered
less-used alleles, as the initial group of sequences assigned to
the starting allele was broken into smaller subgroups (Figure 4,
third panel). Three low-frequency alleles from two genes present
when running TIgGER with access to the full IgGRdb (Figure 4,
fourth panel) remained undiscovered after repeated iterations.
The difficulty of discovering alleles that are expressed at low
frequency highlights the dependence of TIgGER’s performance
on sequencing depth. For subject 420IV, who had the largest
sequencing depth (112K sequences), TIgGER detected 55 alleles
out of the 58 in the genotype (95%). Subject hu420143 had 80K
sequences and TIGgER detected 77% of alleles, while subject
PGP1 had 55K sequences and TIgGER detected 66% of alleles.
However, even at lower sequencing depth, TIgGER was able
to discover alleles that were far away from known alleles. For
example, for PGP1 (shown in Figure 4), the inferred “new”
alleles in the first iteration were 29–49 SNPs away from the
starting germline repertoire, and 19–30 SNPs away in the second
iteration. This could not be done with the previous version of
TIgGER. Overall, these results demonstrate that TIgGER can be
run iteratively to discover a large fraction of the IGHV alleles
carried by an individual (with better performance at higher
sequence depth), even when there is very little prior knowledge
of the set of alleles in the population.

Bayesian Inference of BCR Genotypes Can
Differentiate Subjects
Given the diverse nature of the IGHV locus (7), we expected
that genotypes inferred by TIgGER would vary across unrelated
subjects, but should be the same within the five pairs of
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monozygotic twins. While the genotypes that were constructed
for the individuals in this study were observed to be unique
across subjects, the inferred genotypes of the monozygotic
twin pairs were similar but not identical (Figure 3). Due to
the relatively small number of sequences, not all novel alleles
discovered in one twin were also discovered in the other.
However, for the majority of genes, TIgGER assigned the same
genotype alleles to each twin. Additionally, hierarchical clustering
(using Ward’s method) of the genotypes properly grouped pairs
of twins and excluded the genotypes of the other subjects
(Figure 3, top).

In order to quantify our confidence in the assignment of
genotypes, a Bayesian approach to genotyping was developed.
This method analyzes the posterior probabilities of possible
allele distributions, considering up to four distinct alleles per
V. The posterior probabilities for these four possible models
are compared and a Bayes factor is calculated for the two
most probable models (see Methods). This Bayes factor reflects
our confidence in the genotyping call of the method, and
different models (i.e., different combinations of alleles) can be
compared in a quantitative way. In the current implementation
of the Bayesian approach, up to four alleles are considered
(14), allowing for the possibility of a gene duplication with
both loci being heterozygous (see Methods). This Bayesian
method was applied separately to 10 independent samples
from subjects PGP1, hu420143, and 420IV (corresponding to
10 different time-points pre- and post-influenza vaccination)
to test if we could confidently group samples from the same
subject. The similarity of these personalized genotypes (for
each combination of subject and time point) was estimated
by determining the Jaccard distance metric for each gene.
These individual gene distances were combined by calculating
a weighted average of them using the Bayes factors as weights
(see Methods). Using this distance metric, all samples from
the three subjects could be differentiated with perfect accuracy,
as the maximal weighted Jaccard distance of samples coming
from the same subject was lower than the distance between
samples coming from different subjects (Figure 5). Similar high
classification accuracy was found for a wide range of model
parameters showing the robustness of this approach. Overall,
this Bayesian approach enables us to relax the strict cutoff
criterion used by TIgGER in the previous sections (wherein the
minimum number of alleles explaining 88% (7/8) of apparently-
unmutated sequences are included in the genotype) to decide
whether an allele should be included in an individual’s genotype
or not.

To compare the new Bayesian approach with the previously
used method, we assessed the ability of each method to generate
matching IGHV genotypes for each of the five twin pairs that
were part of our cohort of 31 individuals. Genotype similarity
was computed as the average Jaccard distance between the
genotypes of each twin pair (similar to the dendrogram in
Figure 3). As the certainty threshold (K) is increased, the
genotypes of the twin pairs become more and more similar
(Figure 6). At K ≥ 1, the genotypes inferred by the Bayesian
method are a significantly better match than those inferred by the
non-Bayesian method.

METHODS

Sample Preparation, Sequencing, and
Processing of Influenza Vaccination Data
Data from subjects PGP1, hu420143, and 420IV result from
previously published BCR sequencing from blood samples taken
at ten times relative to the administration of an influenza vaccine:
−8 days, −2 days, −1 h, +1 h, +1 day, +3 days, +7 days, +14
days, +21 days, and +28 days. Peripheral blood was collected
under the approval of the Personal Genome Project. Samples
were prepared, sequenced and processed as described (23).
Briefly, VH mRNA was selectively amplified by PCR using IGHV
and IGHC region specific primers followed by sequencing on
the Roche 454 platform. Sequence data were quality controlled
and processed using custom scripts and aligned against the
IMGT germline references using IMGT/HighV-QUEST version
v1.1.1 (12).

Sample Preparation, Sequencing, and
Processing of Multiple Sclerosis Data
Samples from subjects M2, M3, M4, and M5 were collected
from autopsy material that included central nervous system
and draining cervical lymph node tissue derived from patients
with multiple sclerosis (24). Sequencing was performed as
described in (24). Briefly, VH mRNA was selectively amplified
by PCR using IGHV and IGHC region specific primers with
15 nucleotide unique molecular identifiers (UMIs). Amplicons
where sequencing on the Illumina MiSeq platforming using the
2 × 250 kit according to the manufacturer’s recommendations.
The version of the sequence data used here was previously used
to generate lineage tree topologies as simulation constraints (25).
Briefly, sequence data was processed using pRESTO v0.3 (11) and
Change-O v0.3.4 (21). Reference alignment was performed using
IMGT/HighV-QUEST v1.1.1 (12) with the February 4th, 2013
version of the IMGT gene database.

Sample Preparation, Sequencing, and
Processing of Healthy Monozygotic Twin
Pair Data
Subjects with identifiers beginning with TW represent five
pairs of monozygotic twins whose BCR repertoires were
previously sequenced from blood samples (33). Peripheral
blood was collected after obtaining written informed consent
from all subjects, who participated in studies of licensed
seasonal influenza vaccines under the Institutional Review Board
approval at the Stanford University School of Medicine. Samples
were prepared, sequenced and processed as described (33).
Briefly, FACS sorted cells were used to prepare sequencing

libraries from RNA using a protocol employing 5
′

RACE and
10 nucleotide UMIs. Libraries were sequencing on the Illumina
MiSeq platform using the 2 × 300 kit according to the
manufacturer’s recommendations. UMIs and constant region
primers were exacted from the raw reads using VDJPipe (34).
Further processing was performed using usearch (35), pRESTO
(11), Change-O (21), and IMGT/HighV-QUEST v1.3.1 (12).
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FIGURE 5 | Bayesian inference of the subject-specific IGHV genotype identifies the same subject across independent samples in an influenza vaccination time

course. BCR repertoire sequencing was carried out from a total of 10 blood samples taken before and after influenza vaccination of three subjects (PGP1, 420IV, and

hu420143) as part of a previous study (23). The Bayesian model was applied to the data from each of 10 time points from each individual separately to determine a

subject-specific IGHV genotype. The distance (colors) between each pair of inferred genotypes (rows/columns; numbered 1–30, labeled by color according to subject)

is based on the Jaccard distance of the alleles of each gene (see Methods for details).

Sample Preparation, Sequencing, and
Processing of Myasthenia Gravis Data and
Associated Healthy Controls
Subjects with identifiers beginning AR, MK, and HD are from
patients with myasthenia gravis with autoantibodies targeting
the acetylcholine receptor (AR) or muscle specific kinase (MK)
or from healthy controls (HD). Peripheral blood was obtained
from subjects after acquiring informed consent and the study was
approved by the Human Research Protection Program at Yale
School of Medicine. Naive and memory B cells sorted from these
subjects were previously published (26). New data described
here includes unsorted B cells from an additional subject MK06,
and unsorted B cells from all subjects described in (26). All
samples were prepared, sequenced and processed as previously

described (26). Briefly, unsorted or FACS-sorted cells were used
to prepare VH and VL sequencing libraries from mRNA using a

protocol employing 5
′

RACE and 17 nucleotide UMIs. Libraries
were sequenced on the Illumina MiSeq platform with the 2
× 300 kit according to the manufacturer’s recommendations,

except for performing 325 cycles for read 1 and 275 cycles

for read 2. Sequence data was processed using pRESTO
v0.5.0 (11), Change-O v0.3.0 (21), SHazaM v0.1.2 (21), and

IMGT/HighV-QUEST v1.4.0 (12) with the July 7, 2015 version

of the IMGT gene database. Sequence data was deposited in

the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)
under BioProject accession PRJNA338795; sequencing runs used

for this study are denoted A79HP, AAYFK, AAYHL, AB0RF,
and AB8KB.
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FIGURE 6 | The Bayesian method improves the similarity of IGHV genotypes inferred for twin pairs. The Jaccard distance was calculated for each IGHV gene for each

twin pair, and was averaged over all genes. This calculation was carried out for the basic cutoff method of TIgGER (Non-Bayesian) or using the genotype from the

Bayesian method (Bayesian). In the Bayesian cases, only genes with certainty above the indicated confidence level (K ≥ 0, 1, or 2) were taken into account. Each

point corresponds to a twin pair.

Genomic Sequencing of Predicted IGHV
Alleles
Genomic DNA was extracted using the Qiagen DNeasy Blood
& Tissue Kit from the peripheral blood of subjects MK04,
MK05, and MK06; peripheral blood was collected as part of
the previously published myasthenia gravis study (26). PCR
primers were designed to fully amplify the exons and introns
of each target IGHV gene locus (IGHV1-2, IGHV1-8, IGHV3-
20, and IGHV1-69) from genomic DNA; sequences for each
primer set are provided in Table S2. PCR amplicons for each
gene were generated individually from respective genomic DNA
samples using the Qiagen HotStarTaq Kit (Cat. No. 203443),
and subsequently cloned using the Invitrogen pCR4 TOPO
TA kit (Cat. No. K457502). DNA was isolated from 4 to 15
clones per gene target, and sequenced from both ends using
Sanger. Sequence chromatograms were viewed and analyzed
using SeqMan Pro (DNASTAR 13.0.2).

The Updated TIgGER Algorithm
The original TIgGER algorithm (8) was modified so that, for any
set of sequences isolated from a single subject and best aligning
to the same IgGRdb allele, the range of mutation counts analyzed
would begin at the most frequent positive mutation count m
and end at a mutation count of m + 9 (If m = 1, the updated
algorithm will behave as the original). Additionally, any other
mutation count at least 1/8 of the most frequent defines the start
of a mutation range that is additionally analyzed, for improved
sensitivity in cases where multiple novel alleles are assigned to the
same IgGRdb allele; this mutation count may be either greater or
less than the most frequent.

Application of TIgGER to a Human Cohort
For novel allele detection and genotype inference, TIgGER
was applied on functional, unique sequences with detectable
junction sequences. For each sample, the “findNovelAlleles”
function with default parameters was applied with IMGT
IGHV germline reference (downloaded on May 17, 2018).
Next, the set of putative novel alleles were used in genotype
inference using the “inferGenotype” function with default
parameters. Alleles that were included in the resulting
genotype, but were not present in the IgGRdb, were considered
novel alleles.

Calculation of Distant Allele Detection
Sensitivity
Pooled pre-vaccination sequences from subject PGP1 (i.e.,
samples taken at −8 days, −2 days, −1 h relative to vaccination
and sequenced on the 454 platform) were used. This dataset was
chosen because it did not show significant clonal expansions
in response to vaccination; did not have sequencing primers

extending into the 5
′

ends of sequences, as was the case in the
multiple sclerosis and twin subjects, giving us confidence in the
true set of alleles carried by the subject. For all sequences that
best aligned to a particular IGHV germline allele, a number
of positions n between IMGT-numbered positions 1 and 312
(inclusive) were modified (“mutated”) in the germline being used
by the updated TIgGER algorithm. Mutations of a nucleotide to
itself we not allowed, in order to ensure n differences between
the starting germline and the resulting sequence. This was done
100 times for each n between 1 and 30, to simulate a situation
in which the nearest IgGRdb was n polymorphisms away from
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the novel allele to be discovered, with each iteration using a
separate random set of polymorphisms. The fraction of times
the correct allele was detected by TIgGER for each value of
n vs. those detected at n = 0 (i.e., when TIgGER is allowed
access to all IgGRdb alleles) was averaged across each germline
sequence tested to determine the sensitivity as a function of n.
For example, if for n = 15, 100/100 mutated variants led to the
proper detection of the germline allele for 19 of 38 alleles, and
in the remaining 19 alleles 90/100 mutated variants led to the
proper detection of the germline allele in each case, then the
sensitivity at n= 15 would be calculated as (19∗100%+ 19∗90%)
/ 38= 95%.

Bayesian Approach to Genotyping
A Bayesian framework with a Dirichlet prior for the multinomial
distribution was adapted to genotype inference. To model

the possible allele distributions, up to four distinct alleles

were allowed in an individual’s genotype (e.g., four alleles

could correspond to a gene duplication with both loci being
heterozygous). From the observed allelic frequencies, a posterior

probability is calculated for a continuum of underlying biological

models that set allelic distribution for each gene. For example,

a gene can include two equally abundant alleles, or one allele

that is twice as abundant as the second one due to gene
duplication in one of the chromosomes (17). Prior distributions
were initially set to reflect naive biological assumptions about
the underlying dynamics that determine the allelic usage (see
Figure S1). Following this initial approach, priors were modified
by fitting empirically genotypes of the three subjects (all time
points combined): PGP1, hu420143, and 420IV, constructed
using the naive priors. The posterior probability for each model

is given by: P
(
Eθ

∣∣∣ EX
)
Dirich

=

P
(
EX
∣∣Eθ)

multinom
�P

(
Eθ

)
Dirich

P
(
EX
) , where Eθ is

the allele probability distribution and EX is the counts for the
top four alleles. The certainty of the most probable model was

calculated using a Bayes factor, K =
P
(
Eθ=EH1st+ E∈|EX

)

P
(
Eθ=EH2nd+ E∈|EX

) , where EH1st

and EH2nd correspond, to themost and second-most likelymodels,
respectively. The larger the K, the greater the certainty in the
model. For clarity, consider a case where the most abundant
four alleles appeared in 334, 295, 209, and 1 independent
rearrangements (see Table S3). In this case, EX is (334,295,209,1),
the expected allele probability distributions for each of the

different models are
−→
HH = (1, 0, 0, 0) (homozygous),

−−→
HD1 =

(0.5, 0.5, 0, 0),
−−→
HD2 = (0.67, 0.33, 0, 0), or

−−→
HD3 = (0.75, 0.25, 0, 0)

(heterozygous with two alleles),
−→
HT1 = (0.33, 0.33, 0.33, 0) or

−→
HT2 = (0.5, 0.25, 0.25, 0) (heterozygous with three alleles), and
−→
HQ = (0.25, 0.25, 0.25, 0.25) (heterozygous with four alleles,

see Figure S1). E∈ is set to (1,1,1,1)
100 . In this case, the resulting

likelihoods for the four different models are: log (KH) = −1000,
log (KD) = −218.3, log (KT) = −3.17, and log (KQ) = −103.2,
which results in the genotype call of three alleles with log (K)
= 106.34. An output example of the Bayesian method is shown
in Table S3.

Calculation of the Jaccard Distance
To estimate distance between genotypes of two subjects a Jaccard
distance was calculated in the following way: (i) for each gene,
oneminus the ratio between the number of shared alleles over the
number of unique alleles from both samples was calculated. For
example, for two genotypes with allele assignments a and b the

Jaccard distance was defined as 1 − a∩b
a∪b

. Genes that appeared in
only one of the samples were excluded. (ii) The overall distance
between two genotypes was calculated by a weighted average of
all individual gene distances, where the weights are the mean of
the two Bayes factors (K) for each.

DISCUSSION

While the original TIgGER algorithm was very successful at
detecting novel alleles, a significant limitation was that it could
not detect novel V gene alleles that differed from known
germline alleles by more than five SNPs. In addition, the original
TIgGER genotyping approach was dependent on an arbitrary
cutoff value for including genes in each subject’s genotype, and
did not quantify the certainty of these genotype calls. Here
we have described how modifying the “mutation window” in
which the algorithm searches for mutation patterns that are
indicative of polymorphisms was able to overcome the five
mutations limitation. We also developed a Bayesian approach
for genotyping that does not depend on a strict cutoff and
provides a certainty level for each genotype call. We applied
the updated algorithm to AIRR-seq data from 26 genetically
distinct individuals (23, 24, 26, 33), and were able to identify
28 novel IGHV alleles. Although we showed on simulated data
that TIgGER could detect alleles an arbitrary distance from
known alleles, the most distant novel allele identified in this
cohort contained three polymorphisms relative to the closest
known IgGRdb allele. Based on the distances between alleles
in the IMGT IgGRdb, we previously showed that ∼10% of
these alleles differ by more than five SNPs from the nearest
IgGRdb allele (8). While this does not directly imply that 10%
of novel alleles will have more than 5 SNPs, we do expect that as
TIgGER continues to be applied to datasets from more subjects,
especially ethnically diverse populations, such alleles will
be discovered.

The IMGT gene IgGRdb maintains its requirement of direct
DNA-based allele evidence of any alleles to be included in
the IgGRdb. We generated such validation for several TIgGER
predictions, resulting in the inclusion of three novel IGHV
gene alleles in IMGT: IGHV1-2∗06, IGHV3-20∗03, and IGHV1-
69∗17. Validation of the other gene alleles discovered via AIRR-
seq by TIgGER will be a priority going forward. While the
IMGT standard for inclusion is intended to help ensure the
quality of the IgGRdb, it inhibits the ability of the IgGRdb
to benefit from the large number of non-IgGRdb alleles that
are being rapidly discovered from AIRR-seq analyses. The
Germline Gene Database (GLDB) Working Group of the AIRR
Community is currently working to develop alternative criteria
for judging the validity of Ig genes that are inferred from
AIRR-seq data (22). In the meantime, we have chosen to
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deposit the novel alleles we have detected into an alternative
IgGRdb, the Immunoglobulin Polymorphism IgGRdb (IgPdb)
(36). Dependency on the completeness of IgGRdb can be reduced
by TIgGER, as we demonstrated in deriving the majority of
several subjects’ germline IGHV alleles starting from only a
single gene allele per family. Further, a multiple alignment of
the several sequences most-observed in a blood-based repertoire
sample may be sufficient to remove the dependency on having a
IgGRdb allele of each family, allowing for a more fully IgGRdb-
blind derivation of alleles and V(D)J genotypes. Besides detecting
several novel IGHV gene alleles in the genotypes of the 32
subjects in this study, we observed that no two IGHV genotypes
appeared to be the same (37, 38), barring those of the five
pairs of monozygotic twins. It may be the case that IGHV
genotypes alone are sufficient to uniquely identify a subject. This
would additionally be improved if IGKV/IGLV genotypes, as
well as D and J genotype were also determined, and this is an
important area of future work. However, we observed notable
variation even in the inferred genotypes of monozygotic twins
due to the depth of sequencing. Though we adapted a Bayesian
approach that presents an additional criterion for evaluating
the certainty level of the genotype (based on the K value), in
order to accurately differentiate samples coming from different
individuals additional work is still required. One direction for
further improvement of sample differentiation, was suggested
recently by applying a Bayesian approach to haplotype inference
(38). We were able to accurately separate samples based on
their genotypes from the subjects in the influenza time course,
but these methods are affected by the sequencing depth. The
influence of sequencing depth on the genotype call and its
associated K value, was assessed on a single gene and is shown in
Figure S2. It remains unclear how to adjust the Jaccard distance
cutoff on the basis of sequencing depth, and we hope to explore
this question and integrate dataset-tailored cutoffs into TIgGER’s
genotyping functionality in the future.

Overall, we have expanded upon the capabilities of the
TIgGER algorithm, demonstrated its persistent need in the
analysis of AIRR-seq data, and hope that it will continue to be of
use to the AIRR-seq community. The latest version of TIgGER is
available for download as an R package from The Comprehensive
R Archive Network (CRAN; http://cran.r-project.org) with
additional documentation available at http://tigger.readthedocs.
io. TIgGER is part of the Immcantation framework (http://
immcantation.org), which provide a start-to-finish analytical
ecosystem for high-throughput AIRR-seq data analysis, and is
also available through the Immcantation Docker container builds
at https://hub.docker.com/r/kleinstein/immcantation.
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The V(D)J recombination forms the immunoglobulin genes by joining the variable (V),

diversity (D), and joining (J) germline genes. Since variations in germline genes have

been linked to various diseases, personalized immunogenomics aims at finding alleles of

germline genes across various patients. Although recent studies described algorithms for

de novo inference of V and J genes from immunosequencing data, they stopped short of

solving a more difficult problem of reconstructing D genes that form the highly divergent

CDR3 regions and provide the most important contribution to the antigen binding. We

present the IgScout algorithm for de novo D gene reconstruction and apply it to reveal

new alleles of human D genes and previously unknown D genes in camel, an important

model organism in immunology. We further analyze non-canonical V(DD)J recombination

that results in unusually long CDR3s with tandem fused IGHD genes and thus expands

the diversity of the antibody repertoires. We demonstrate that tandem CDR3s represent

a consistent and functional feature of all analyzed immunosequencing datasets, reveal

ultra-long CDR3s, and shed light on the mechanism responsible for their formation.

Keywords: repertoire sequencing, VDJ recombination, germline gene inference, antibody repertoire, repertoire

diversity

INTRODUCTION

Antibodies provide specific binding to an enormous range of antigens and represent a key
component of the adaptive immune system. The antibody repertoire is generated by somatic
recombination of the V (variable), D (diversity), and J (joining) germline gene segments.
Immunosequencing has emerged as a method of choice for generating millions of reads that
sample antibody repertoires and provide insights into monitoring immune response to disease and
vaccination (1).

Information about all germline genes in an individual is a pre-requisite for analyzing
immunogenomics data. However, nearly all immunogenomics studies rely on the population-level
germline genes rather than germline genes in a specific individual that the immunosequencing data
originated from. This approach is deficient since the set of known germline genes is incomplete
(particularly for non-Europeans) and contains alleles that resulted from sequencing and annotation
errors (2, 3). Moreover, it is non-trivial to figure out which known allele(s) is present in a specific
individual since the widespread practice of aligning each read to its closest germline gene results in
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high error rates (3). These errors hide the identity of the
individual germline genes, make it difficult to analyze somatic
hypermutations (SHM) and complicate studies of antibody
evolution (4–6).

Personalized immunogenomics (i.e., identifying individual
germline genes) is important since variations in germline genes
have been linked to various diseases (7), differential response
to infection, vaccination, and drugs (8, 9), aging (10), and
disease susceptibility (7, 11, 12). However, since the International
ImMunoGeneTics (IMGT) database is incomplete even in the
case of well-studied human germline genes (13), there exist still
unknown human allelic variants that are difficult to differentiate
from SHMs. In the case of immunologically important but less
studied model organisms, such as camels or sharks, the germline
genes remain largely unknown. Unfortunately, since assembling
the highly repetitive immunoglobulin locus from whole genome
sequencing data faces challenges (14), the efforts like the 1,000
Genomes Project have resulted only in limited progress toward
inferring the population-wide census of germline genes (14–16).

In addition to personalized immunogenomics, the
incompleteness of the IMGT database negatively affects
analysis of monoclonal antibodies. Existing tools for antibody
sequencing from tandem mass spectra (17, 18) rely on a
comprehensive database of V, D, and J genes to assemble tandem
mass spectra into an intact antibody. Lack of such databases for
many species limits applications of Valens (Digital Proteomics),
SuperNova (Protein Metrics), and other software tools for
antibody sequencing.

Although the personalized immunogenomics approach was
first proposed by Boyd et al. (19), themanual analysis in this study
did not result in a software tool for inferring germline genes.
Gadala-Maria et al. (20) developed the TIgGER algorithm for
inferring germline genes and used it to discover 11 novel allelic V
segments. However, 20 stopped short of de novo reconstruction
of the germline genes and acknowledged that it is important to
develop algorithms for finding diverged alleles that TIgGER is
not able to find. In the case of V and J genes, this challenge was
addressed by Corcoran et al. (21), Zhang et al. (22), and Ralph
and Matsen (3). However, as Ralph and Matsen (3) commented,
the more challenging task of de novo reconstruction of D genes
remains elusive. This is unfortunate since D genes contribute
to the complementarity determining region 3 (CDR3) that covers
the junctions between V, D, and J genes and represents the
highly divergent part of antibodies. We describe the IgScout
algorithm for de novo inference of D genes and apply it to
diverse immunosequencing datasets with the goal to reconstruct
dominant variants of highly abundant D genes and discover
novel highly abundant variations.

Althoughmany studies analyzed patterns of V-D-J pairing (23,
24), there is still a shortage of studies of unusual recombination
events such as V(DD)J recombination incorporating two D genes
into a single unusually long CDR3 with tandem fused IGHD
genes (or tandem CDR3). Meek et al. (25) were the first to reveal a
few tandem CDR3s, thus confirming the V(DD)J recombination
conjecture put forward by Kurosawa and Tonegawa (26).
However, since tandem CDR3s are rare, they remained elusive
for the next two decades and (27, 28) even argued that tandem

CDR3s found in Meek et al. (25) represent artifacts. However,
Briney et al. (29) and Larimore et al. (30) demonstrated that
tandem CDR3s do exist (at frequency 1 per 800 B-cells) by
analyzing high-throughput immunosequencing datasets.

As emphasized in Briney et al. (29), detecting V(DD)J
recombination has to be done with caution since it is often
confused with standard V(D)J recombination. Although they
came up with a heuristic for detecting tandem CDR3s, there is
still no software for detecting tandem CDR3s and it remains
unclear how many tandem CDR3s found in Briney et al. (29)
represent false positives. We thus extended the functionality of
the IgScout algorithm to finding tandem CDR3s and revealed
that V(DD)J recombination is a functional (rather than aberrant)
feature with frequency varying from 1 per 200 to 1 per 2,500
B-cells across various datasets. Finally, we revealed ultra-long
tandem CDR3s and shed light on the mechanism responsible for
their formation.

RESULTS

Immunosequencing Datasets
We analyzed the following datasets described in the
Supplemental Note “Immunosequencing datasets”:

• HEALTHY: 14 datasets from 14 healthy human donors,
• ALLERGY: 24 datasets from six allergy patients (31),
• HIV: 13 datasets from two HIV-infected patients (32),
• NAÏVE: 7 datasets from naïve B cells of healthy

human donors,
• PROJECT10: 600 datasets from various humans resulting

from 10 NCBI projects
• CAMEL: 6 datasets from three healthy camels (33).

Constructing CDR3 Datasets
We illustrate the work of IgScout using one of the HEALTHY
datasets (Set 1) containing heavy chain repertoires extracted
from peripheral blood mononuclear cells (PBMC). The IgReC
tool (34) extracted 228,619 distinct CDR3s from this dataset.
To minimize impact of sequencing and amplification errors, we
clustered similar CDR3s (differing by at most three mismatches)
and constructed consensus for each cluster resulting in 98,576
consensus CDR3 of average length 46 nucleotides.

Each CDR3s typically starts from a short suffix of a V gene
and ends with a short prefix of a J gene. Since these suffixes and
prefixes negatively affect reconstruction of D genes, IgScout trims
them as described in the Supplemental Note “Preprocessing
CDR3 datasets.” This procedure reduces the average length of
CDR3 strings (46 nucleotides) to 30 nucleotides strings that
represent substrings of CDR3s that are not encoded by IGHV
or IGHJ genes. The result of the procedure is the set of
strings CDR3∗. We refer to the number of strings in CDR3∗

as |CDR3∗|.

Overview of Human D Genes
The human immunoglobulin (IGH) locus contains 27 D genes
that vary in length from 11 to 37 nucleotides. Since two pairs
of human D genes are identical, there exist only 25 distinct D
genes. Since the IMGT database refers to D genes using rather
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long names and since these names do not reveal the ordering of
D genes in the IGH loci (that is important for analyzing tandem
CDR3s), it is difficult to visualize the IgScout results across
all D genes and across multiple immunosequencing datasets.
We thus renamed distinct human D genes from D1 to D27 in
the increasing order of their positions in the IGH locus. The
IMGT database also contains seven alleles of D genes denoted
D2∗2, D2∗3, D3∗2, D8∗2, D10∗2, D16∗2, and D21∗2. See Table 1
and Supplemental Note “Information about human D genes”
for details.

Frequent k-mers in D Genes
The problem of inferring germline genes can be formulated
as the Trace Reconstruction Problem (35) in information
theory described in the Methods section. IgScout is a heuristic
for solving this problem that is inspired by the RepeatScout
algorithm for de novo repeat finding (36) and that is based on
analyzing frequent k-mers (contiguous strings of length k) in
CDR3s. We illustrate the work of IgScout using k-mers of size
15 (all human D genes are longer than 15 nucleotides except for
11 nucleotide long gene D27).

The human D genes contain 305 15-mers. We classify a k-
mer as known if it occurs in a human D gene (from IGHD1-
1 to IGHD7-27), mutated if it differs from a known k-mer
by a single substitution, and trimmed if it contains a known
(k-2)-mer. All other k-mers are called foreign. Twenty-seven
percent of strings in the CDR3∗ dataset contain a known 15-
mer and 35% contain either a known, or a mutated, or a
trimmed 15-mer.

We classify a k-mer as common if its abundance exceeds
fraction∗ |CDR3∗| (the default value fraction=0.001). Figure 1
and the Supplemental Note “Common k-mers” present
distributions of frequencies of all common 15-mers in various
datasets. Although the vast majority of common k-mers are
known, mutated, or trimmed, some of them are foreign. These

foreign common k-mers have to be treated with caution since
they may trigger false positive inferences of D genes.

From Frequent k-mers to D Gene

Reconstruction
IgScout selects a most abundant k-mer in the CDR3∗ dataset,
aligns all CDR3 that contain this k-mer (using this k-mer
as the alignment seed), and constructs the motif logo of the
resulting alignment (Figure 1). It further trims all positions
of the motif logo with the information content below IC
(the default value IC = 0.5) and computes the consensus
string. Afterwards, it extends the consensus strings to the
right and to the left (the PrefixExtension and SuffixExtension
steps in the Supplemental Note “IgScout pseudocode”) to
construct a putative D gene as described in the Methods
section. Finally, the algorithm removes the sequences that
contain k-mers from the identified putative D gene from the
set CDR3∗, finds a most abundant k-mer in the resulting
dataset, and iterates. IgScout stops when a most abundant
k-mer is not a common k-mer (see Supplemental Notes

“IgScout pseudocode,” “IgScout parameters,” and “Benchmarking
IgScout on simulated immunosequencing datasets”). Figure 2
demonstrates that IgScout reconstructs many known human
D genes.

Similarly to the existing tools for reconstructing V and J genes
(that typically trim a few nucleotides in the beginning/end of
the reconstructed genes), IgScout also trims a few nucleotides
in the beginning/end of the reconstructed D genes. Although
lowering the IC threshold would reduce the number of trimmed
nucleotides, we decided not to do it since lowering this
parameter may result in erroneous reconstructions and since the
trimmed nucleotides hardly affect the downstream applications
of IgScout. See Supplemental Note: “How trimmed (rather

TABLE 1 | Positions and lengths of human D genes.

Name IMGT name Position (bp) Length (nt) Name IMGT name Position (bp) Length (nt)

D1 IGHD1-1 105,919,502 17 D15 IGHD2-15 105,897,957 31

D2 IGHD2-2 105,916,826 31 D16 IGHD3-16 105,895,634 37

D3 IGHD3-3 105,914,359 31 D17 IGHD4-17 105,894,508 16

D4 IGHD4-4 105,913,222 16 D5 IGHD5-18 105,893,542 20

D5 IGHD5-5 105,912,257 20 D19 IGHD6-19 105,891,699 21

D6 IGHD6-6 105,910,410 18 D20 IGHD1-20 105,891,191 17

D7 IGHD1-7 105,909,907 17 D21 IGHD2-21 105,888,551 28

D8 IGHD2-8 105,907,211 31 D22 IGHD3-22 105,886,031 31

D9 IGHD3-9 105,904,681 31 D23 IGHD4-23 105,884,870 19

D10 IGHD3-10 105,904,497 31 D24 IGHD5-24 105,883,903 20

D4 IGHD4-11 105,903,616 16 D25 IGHD6-25 105,881,539 18

D12 IGHD5-12 105,902,649 23 D26 IGHD1-26 105,881,034 20

D13 IGHD6-13 105,901,142 21 D27 IGHD7-27 105,865,551 11

D14 IGHD1-14 105,900,638 17

Since the IGH locus starts at the end of the 14th chromosome, positions are given with respect to its complementary sequence (assembly GRCh38.p12). Green and orange cells

correspond to two duplicated and identical D genes IGHD4-4*01–IGHD4-11*01 (D4) and IGHD5-5*01–IGHD5-18*01 (D5).
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than complete) D genes affect the downstream analysis of
immunosequencing datasets.”

Indeed, the personalized immunogenomics applications [such
as the discovery of “deficient” germline variants that lead to
poor responses to vaccination (12)] are hardly affected by
the fact that all existing tools for inferring the V, D, and J
genes trim a few nucleotides from the ends. Reconstruction of
monoclonal antibodies from tandem mass spectra and various
proteogenomics applications are also hardly affected by this
trimming. Moreover, in the case of human germline genes
(and other genomes with well-characterized germline genes) the
trimmed nucleotides can be tentatively reconstructed based on
similarity with known germline genes (as has been done in
previous studies of V and J genes). However, in some cases,
assigning terminal nucleotides by homology might lead to the
inference of erroneous alleles (38–40). Ideally, the gene inference
problem should be followed by validation using genomic data
that raises need in paired Rep-Seq and WGS datasets from the
same individual. The antibody analysis and engineering in model
organisms can also be done with partial D genes.

Limitations and Advantages of IgScout
The IgScout pipeline consists of three steps: (i) preprocessing
Rep-seq reads; (ii) inferring D genes; (iii) analyzing VDJ
recombinations based on the inferred genes (Figure 3). The
preprocessing step extracts CDR3s, constructs consensus CDR3s,
and trims prefixes and suffixes of CDR3s to exclude suffixes of V
genes and prefixes of J genes. The inference step derives D genes
from the set of trimmed CDR3s and combines them with the set
of known D genes (if available). The final step computes usage of
D genes (including analysis of the allele usage of heterozygous D
genes) and finds CDR3s with tandem D-D fusions.

Analysis of simulated CDR3s suggests that IgScout correctly
reconstructs long D genes (length at least 20 nucleotides) if
they give rise to at least 1% of CDR3s but misses short D
genes (length <20 nt) if they give rise to <2.5% of CDR3s
(see Supplemental Note “Benchmarking IgScout on simulated
immunosequencing datasets”).

Since it is difficult to distinguish amplification artifacts from
SHMs, IgScout takes a conservative approach and partially
removes the clonal diversity (step “Hamming Graph (HG)
Constructor” in Figure 3) to avoid propagation of amplification
errors. Since naïve B cells do not have SHMs, the preprocessing
step results in correcting amplification errors and enables
reconstruction of long fragments of D genes. As a result,
IgScout performs well on datasets with a sufficiently large
number of consensus CDR3s (Figure 3). Below we analyze how
the number of consensus CDR3s in real datasets affects the
IgScout performance.

If a dataset contains hypermutated sequences, then the
processing step keep SHMs in the consensus CDR3s. However,
if the dataset does not have large clonal lineages (e.g., PBMC
from a healthy donor) and the number of consensus CDR3 is
large (Figure 3), IgScout treats unremoved SHMs as random
errors and still reconstructs mutation-free D genes. However, if
a dataset is formed by large clonal lineages, the preprocessing
step creates a small number of consensus CDR3s with abundant

FIGURE 1 | Abundances of all 443 common 15-mers (top) and the motif logo

constructed for the most abundant 15-mer CGATTTTTGGAGTGG in the

CDR3* dataset constructed from the Set 1 dataset (bottom). (Top) The

CDR3* dataset contains 91% of all 15-mers appearing in human D genes (all

15-mers in human D genes are unique, i.e., appear in a single D gene). Four

hundred forty-three common 15-mers in the CDR3* set have abundances

varying from 83 to 3,141. The y–axis represents the number of common

15-mers with given abundance (in logarithmic scale). Red, yellow, violet, and

blue bars represent the number of common 15-mers with given abundance

among known, mutated, trimmed, and foreign 15-mers, respectively. There

exist 175 known, 195 mutated, 70 trimmed, and three foreign common

15-mers. The histogram represents 100 bins of width 30 each. (Bottom) The

ATTACGATTTTTGGAGTGGTTAT is the initial 28-nucleotide long sequence

formed by positions in the motif logo with high information content (37). The

motif logo was constructed using 3,141 sequences from the set CDR3*

containing the most abundant k-mer. After extending this 28-mer, IgScout

reconstructed the 30-mer GTATTACGATTTTTGGAGTGGTTATTAT that is a

substring of the 33-nucleotide long IGHD3-3 gene

GTATTACGATTTTTGGAGTGGTTATTAT acc shown below the logo.

SHMs. Although IgScout is able to reconstruct some over-
represented D genes for such datasets, some of the inferred D
genes may still contain SHMs (Figure 3). We thus suggest to
use caution while applying IgScout to clonally expanded datasets
(see Supplemental Note “How IgScout results are affected by the
number of consensus CDR3s and cell types”).

Reconstruction of Human D Genes
IgScout is best suitable for reconstructing D genes in the
case of naive datasets and PBMC datasets with small clonal
lineages. To illustrate this point, we applied IgScout to the
NAÏVE, HEALTHY, ALLERGY, and HIV datasets. The number
of consensus CDR3s in the NAIVE datasets varies from 1,000
to 115,000. Figure 4 shows that IgScout reconstruct the same
set of D genes as on the simulated datasets for naïve datasets
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FIGURE 2 | IgScout results on the CDR3* dataset. Each row shows a

reconstructed string (strings are inferred in the order from the top to the

bottom). Dark green segments correspond to reconstructed substrings of

human D genes (flanking non-reconstructed nucleotides are shown in

standard green). The most frequent 15-mers that were used for reconstructing

the corresponding D genes are shown in red (their abundances are shown on

the left). The reconstructed substring of the D2 gene (IGHD2-2) also occurs in

D2*2 and D2*3 genes. Seventeen strings reconstructed by IgScout represent

substrings of 17 human D genes. IgScout misses short prefixes and suffixes of

D genes: 1.4 nucleotides on the left and 1.7 nucleotides on the right, on

average for the Set 1 dataset (0.9 nucleotides on the left and 1.5 nucleotides

on the right, on average after combining reconstructions over all HEALTHY

datasets). IgScout did not reconstruct eight human D genes: D1 (IGHD1-1),

D4 (IGHD4-4), D7 (IGHD1-7), D14 (IGHD1-14), D20 (IGHD1-20), D23

(IGHD4-23), D25 (IGHD6-25), and D27 (IGHD7-27) that contributed to few

CDR3 in the Set 1. These genes have the following abundances of their most

frequent 15-mers: 43 for D1, 59 for D4, 83 for D7, 0 for D14, 33 for D20, 75

for D23, 0 for D25, and 0 for D27.

with at least 20,000 consensus CDR3s. Figure 4 shows that
IgScout performs well on the HEALTHY and ALLERGY datasets
and reconstructs the same set of D genes as for the simulated
and NAÏVE datasets. Since number of consensus CDR3s in
some of the HEALTHY and ALLERGY datasets is as low as
40,000, we recommend applying IgScout to dataset with small
clonal lineages if the number consensus CDR3s exceeds 40,000.
Although the HIV datasets also has many consensus CDR3s
(varying from 19,000 to 55,000), the high SHM rate in the HIV
datasets makes it difficult to reconstruct some short D genes
(Figure 4).We thus suggest to use caution while applying IgScout
to highly hypermutated datasets (such as repertoires of HIV and
lymphoma patients.

Figure 5 illustrates that IgScout reconstructed 18 out
of 25 human D genes across all HEALTHY datasets,
Supplemental Note “Summary of IgScout results across
diverse immunosequencing datasets” describes inference of 20
human D genes across multiple immunosequencing datasets.
Supplemental Note “Reconstructing variants of humanD genes”
describes inference of five allelic variants of the D7, D10, D16,
D17, and D23 genes, However, since variations in D7, D17, and
D23 genes affect the first or last nucleotides of the corresponding
D genes, they likely represent computational artifacts caused by
abundant nucleotides at the flanking positions of the D genes
within CDR3s. In contrast, variations of the D10 and D16 genes

(referred to as D10+ and D16+, respectively) have mutations
in the middle of D genes (Figure 5). They were inferred from
multiple datasets (Set 5 and Set 7 for D10+, and Set 5, Set 7, Set
9, and Set 13 for D16+) and are consistent with alleles identified
in previous studies [alleles IGHD3-10∗p03 and IGV3-16∗p03
reported in Lee et al. (41) and Boyd et al. (19)], but still missing in
IMGT. Supplemental Note “Reconstructing variants of human
D genes” illustrates that 50 (42) samples among 600 samples in
the PROJECTS10 dataset support D10+ (D16+) variants and
presents two more variants D10++ and D16++.

To demonstrate that D10+ and D16+ indeed represent
new variants of D10 and D16 genes, we analyzed 40 whole
genome sequencing datasets from the population-wide study of
esophageal cancer (PRJNA427604 project) and searched for exact
occurrences of D10+ and D16+ in reads. Both variations were
detected in five out of 40 datasets (SRR6435661, SRR6435676,
SRR6435686, SRR6435691, and SRR6435692) with the number
of reads supporting D10+ (D16+) varying from 8 to 14 (30 to
58) across these five datasets.

In general, IgScout has limitations with respect inferring both
variants of a heterozygous D gene. Specifically, if two variants of
the same D gene share a k-mer and IgScout selects this k-mer
as a seed, the current version of IgScout may only reconstructs
the most abundant variant of this D gene. We plan to enable
inference of heterozygous D genes with two novel alleles and thus
address this limitation in the next version of IgScout. Currently,
to analyze allele usage of heterozygous human D genes, IgScout
combines the inferred D genes with known D genes.

Reconstruction of Camel D Genes
Although camel V genes were inferred in Conrath et al. (43),
camel D genes remain unknown. We analyzed six CAMEL
datasets from three camels (VH and VHH libraries for each
camel) labeled as Camel 1VH, 1VHH, 2VH, 2VHH, 3VH, and
3VHH (33). While the VH libraries contain the heavy chain of
the conventional (both heavy and light chain) camel antibodies,
the VHH libraries contain the heavy chains of the single-chain
antibodies.

We extracted camel CDR3s by aligning camel antibody
repertoires against the known camel V and J genes using
the IgReC tool (34). For the Camel 1VH dataset, IgScout
constructed 60,066 consensus CDR3 sequences of average length
48 nucleotides. The CDR3∗ dataset for Camel 1VH has total
length 1,400,360 nucleotides (the average length 23 nt).

IgScout reconstructed four D genes in the case of the
Camel 1VH dataset that we refer to as D1, D2, D3, and D4
(see Supplemental Note “Reconstructing camel D genes”). It
reconstructed four putative D genes in datasets Camel 1VHH,
and Camel 2VH, and three putative D genes in the remaining
three camel datasets (17 strings in total) that are largely
consistent with genes D1, D2, D3, and D4 derived from the
Camel 1VH dataset (previous studies assumed that the camel
genome has a single germline D gene (43). Supplemental Note

“Reconstructing camel D genes” illustrates that all camel
D genes are shared between the VH and VHH datasets.
Supplemental Note “Usage of camel D genes” demonstrates that

Frontiers in Immunology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 987320

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Safonova and Pevzner De novo Inference of IGHD Genes

FIGURE 3 | The IgScout pipeline. (Top) IgScout steps. (Bottom). IgScout performance on a hypothetical naive dataset (left), a dataset with small clonal lineages

(middle), and a dataset with large clonal lineages (right). We assume that all CDR3s are derived from the same D gene (shown in gray). CDR3s corresponding to the

same ancestral VDJ recombination are shown by the same color. Sequencing and amplification errors are shown in red; somatic hypermutations are shown in green.

The reconstructed (missing) part of the inferred D gene is shown in gray (light gray).

the camel D genes have strikingly different usage in the VH and
VHH antibodies.

D Gene Usage
Twenty-five human D genes form a set of strings that we refer
to as D-Genes. Given an arbitrary string Target, a string D from
D-Genes, and a parameter k, we say that a string Target is formed
by D if it contains a k-mer from D but does not contain k-mers
from other strings in D-Genes (the default value k = 11). We
classify a CDR3 as traceable if it is formed by a D gene and non-
traceable, otherwise. The percentage of traceable CDR3s is rather
conservative across all HEALTHY datasets: ≈60% of CDR3s
in the HEALTHY datasets are traceable (Supplemental Note

“Traceable CDR3s”).
Given a set of strings Strings and a string D from D-

Genes, we define usage(Strings, D-Genes, D) as the fraction
of traceable strings in Strings formed by the string D. We

are interested in usage(CDR3∗, D–Genes, D) for each human
D gene. Supplemental Note “Traceable CDR3s” analyzes the
usage of all human D genes across all HEALTHY datasets.
Supplemental Note “D gene classification by IgScout and
IgBlast” compares IgScout and IgBlast classification of D genes
forming CDR3s.

We analyzed the usage of known and novel allelic variants
(D10+ and D16+) across all HEALTHY datasets. Figure 6

reveals that usage of allelic variants of D2 and D3 is
consistent across all datasets with D2∗2 and D3 as dominant
variants. However, the Set 5 has different dominant variants
as compared to other datasets: D8∗2 (compared to D8
in all other datasets); D10+ (compared to D10 in all
other datasets); and D21 (compared to D21∗2 in all other
datasets). The variant D16+ is dominant in Sets 5, 7, 9,
and 13, while the D16 gene is dominant in the remaining
eight datasets.
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FIGURE 4 | De novo reconstructions of D genes across NAÏVE, HEALTHY, ALLERGY, and HIV datasets. Human D genes that were reconstructed (missed) are shown

by colored (gray) cells. Green and orange cells correspond to reconstructed D genes listed in the IMGT database. Green cells correspond to substrings of known D

genes. Orange cells correspond to substrings that differ from substrings of known D genes by the first or the last nucleotide. Blue cells correspond to novel variants of

D10 (IGHD3-10) and D16 (IGHD3-16) genes. For the Set5, Set7, ALLERGY1–ALLERGY4, ALLERGY17–ALLERGY20, HIV1–HIV13, IgScout inferred two variants

(novel and known) of D10 (IGHD3-10). The NAIVE datasets are listed in the increasing order of the number of consensus CDR3s in them.

Tandem CDR3s
Given strings D and D’, and a parameter k, we say that a
string Target is formed by D and D’ if it contains k-mers
from both D and D’ and a k-mers from D’ starts after a k-
mer from D ends. Since tandem CDR3s represent a small
fraction of all CDR3s, we set the default value k = 11
(rather than k = 15 for all CDR3s) to increase the number
of identified tandem CDR3s. Although a smaller value of
k may lead to identification of pseudo-tandem CDR3s, the
Methods section describes how to filter out such pseudo-
tandem CDR3s.

There exist 187 tandem CDR3s formed by two D genes in
the CDR3∗ dataset (Figure 7). We denote the longest substring
between a tandem CDR3 Target and D (Target and D’) as
Dmatch(D’match) and represent a tandem CDR3 Target as a
concatenate of five strings prefix ∗ Dmatch ∗ middle ∗ D’match ∗

suffix. We define the span of a tandem CDR3 formed by D and

D’ as the substringDmatch ∗ middle ∗ D’match and inter-D insertion
as the substringmiddle (Figure 7).

Briney et al. (29) emphasized that detecting tandem CDR3s
has to be done with caution since they are often confused
with pseudo-tandem CDR3s formed by the standard V(D)J
recombination (Figure 7). The Methods section describes how
IgScout detects pseudo-tandem CDR3s. One hundred and
fourteen out of 187 tandem CDR3s are not pseudo-tandem in the
CDR3∗ dataset.

Tandem Bias
There exists 114 tandem CDR3s in the Set 1 dataset and
1900 tandem CDR3s across all HEALTHY datasets. Figure 7
represents all tandem CDR3s as a tandem matrix and reveals that
the vast majority of them correspond to cells in the upper half of
this matrix. If tandem CDR3s were computational artifacts, we
would expect similar numbers of CDR3s in the upper and lower
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FIGURE 5 | De novo reconstructions of D genes across HEALTHY datasets (top) and allelic variants D10+ and D16+ inferred by IgScout (bottom). (Top) Genes

reconstructed at consecutive steps of IgScout for all HEALTHY datasets. Rows correspond to the datasets and columns correspond to the IgScout steps. Each cell is

marked by a reconstructed D gene (each D gene is assigned a unique color). Cells marked with the “+” sign refer to strings that differ from known D genes by at most

two nucleotides and correspond to putative novel variants (shown in red). (Bottom) Allelic variants D10+ and D16+ inferred by IgScout. Differences from human D

genes and their allelic variants listed in the IMGT database are shown in red.

parts of the tandemmatrix. We define the tandem bias as Nlower /
(Nupper +Nlower), whereNupper , andNlower is the sum of entries in
the upper and lower parts of the tandem matrix, respectively (we
assume that the main diagonal belongs to the lower part of the
matrix). The tandem bias varies from 0.03 to 0.21% across various
datasets (see Supplemental Note: “Analysis of tandem CDR3s).

Since most pairs of D genes in tandem CDR3s contribute
to the upper part of the tandem matrix (and thus follow the
order of D genes in the IGH locus), entries in the lower
part of the tandem matrix likely represents false positives.
However, some of them may reveal possible duplications of
D genes, e.g., the D22 row in the lower part of the tandem
matrix in Figure 7 reveals many tandem CDR3s. Analysis of
the hepatitis patient 1,776 in the PROJECTS10 dataset (44)
revealed particularly many entries in the D22 column in the
lower part of the tandem matrix, suggesting a duplication of
the D22 gene in this patient (see Supplemental Note “Analysis
of tandem CDR3s”). Kidd et al. (23) analyzed biases in the

D-J pairing and also suggested that D22 may be duplicated in
some individuals.

Ultra-Long CDR3s Reveal Unusual

Recombination Events
One thousand nine hundred tandem CDR3s across all

HEALTHY datasets contain 1,081 distinct inter-D insertions,
varying in length from 0 to 153 nucleotides. The two longest

inter-D insertions (denoted I1 and I2) appear in the Set 1 and

have length 153 nucleotides. They are formed by genes D9 and
D10, differ by a single nucleotide, and appear in CDR3s differing

by six nucleotides. Surprisingly, the inter-D insertion I2 coincides
with the sequence of the IGH locus between the D9 and D10
genes. Germline D genes are flanked by recombination signal
sequences (RSSs) with 12-nucleotide long spacer and the inter-D
insertion I2 starts with the right RSS of D9 and ends with the left
RSS of D10 (Supplemental Note “Ultra-long tandem CDR3s”).
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FIGURE 6 | Usage of D genes with known and novel allelic variants across all

HEALTHY datasets. Horizontal black lines sub-partition the matrix into six

sub-matrices corresponding to allelic variants of D2 (IGHD2-2), D3 (IGHD3-3),

D8 (IGHD2-8), D10 (IGHD3-10), D16 (IGHD3-16), and D21 (IGHD2-21). For

each D gene and each dataset, we computed the percentage of usage of

each variant. Values in cells vary from 0 (blue) to 100 (red). White cells

correspond to values ∼50% and likely represent cases when a single individual

carries different variants of a given D genes on two different chromosomes.

Thus, ultra-long tandem CDR3s reveal unusual RSS skipping
events during somatic recombination: skipping the right RSS of
D9 and left RSS of D10 led to a tandem CDR3 representing a
concatenate D9 + I2 + D10. Although the found example is
not productive, we also detected RSS skipping in nine productive
ultra-long CDR3s across all HEALTHY and ALLERGY datasets.
All productive CDR3s are formed by skipping of the right RSS
of D22. Instead of it, somatic recombination uses a cryptic RSS
(CACAGCA + ACCCAAACA) located at the distance 129 nt
from the end of D22 and forms ultra-long CDR3s containing a
genomic fragment of the IGH locus that starts with the right RSS
of D22 (Supplemental Note “Ultra-long CDR3s”). The discovery
of productive ultralong CDR3s challenges the conventional view
of germline genes as non-overlapping substrings of DNA and
reveals the first example of nested D genes, when one D gene is
contained within another D gene.

The existing immunosequencing protocols are likely to miss
ultra-long immunoglobulins since they are not designed to
capture the abnormally long variable regions (exceeding ∼400
nt). We captured reads containing ultra-long tandem CDR3s
because the 300-nucleotide long paired reads (overlapping by
only 50 nucleotides) in the Set 1 and ALLERGY datasets are
longer than reads used in most other immunosequencing
datasets. Thus, even if ultra-long tandem CDR3s were
common, they would likely remain below the radar of most
immunosequencing studies.

Tandem CDR3s Contribute to Adaptive

Immune Response
We investigated whether tandem CDR3s contribute to the
adaptive immune response by analyzing their isotypes. Since IgG,

IgA, and IgE isotypes occur in plasma and memory B cells
subjected to the antibody-antigen interactions, these isotypes
they indicate (in difference from IgM isotypes common in
memory and naïve B cells) that the corresponding antibodies
participate in the adaptive immune response.

We inferred isotypes in the ALLERGY and HIV datasets
using markers described in Levin et al. (31) (Figure 8). The
vast majority of tandem CDR3s from the ALLERGY dataset
correspond to the IgM isotype and thus are produced by memory
and naïve B cells. In contrast,∼60% of tandemCDR3s in the HIV
dataset correspond to the IgG type. This observation suggests
that tandem CDR3s in the HIV-infected patients arise from
immunoglobulins that are produced by plasma cells and thus
might contribute to the immune response against HIV antigens.

DISCUSSION

Since many human germline alleles remain unknown
(particularly for non-European subjects), missing alleles
may mislead clinical decisions (45) and lead to erroneous
derivation of clonal lineages due to misinterpretations of SHMs.
Thus, finding new germline alleles and building personalized
sets of germline genes for each individual is important for
downstream analysis of immunosequencing datasets.

Although there exists a number of tools for inferring V and
J genes (3, 21, 22), a more difficult problem of reconstructing
D genes remains open. IgScout aims to reconstruct all D genes
explaining a large percentage of the VDJ recombination in an
antibody repertoire rather than to reconstruct all D genes. The
IMGT database reflects the genomic diversity of D genes but not
their recombinant diversity (information about rearrangements,
transcription, and translation of D genes). Since assemblies of
the highly repetitive IGH loci are fragmented and error-prone (7,
14, 42, 46) reconstruction of all germline genes from the whole-
genome sequencing data is a difficult problem. Although the
IGH locus is extremely diverse (16), it remains largely unknown
how it varies across the human population. Moreover, even in
the case when the IGH locus is correctly assembled, prediction
of the functional germline genes is a non-trivial problem
(2, 13).

Immunosequencing datasets reflect the recombinant diversity
of antibody repertoires and thus complement the genomic
datasets. If some D genes do not contribute to the VDJ
recombination (e.g., our analysis suggests that genes D1, D14,
D20, D25, and D27 do not significantly contribute to VDJ
recombination in any of the analyzed datasets), they have limited
contribution to immune response. In this paper, we focused on
reconstructing D genes shaping the recombinant diversity rather
than all D genes.

IgScout reconstructed 20 out of 25 human D genes across
multiple datasets and missed genes D1, D14, D20, D25, D27 that
form a small number of CDR3s (<0.1% each) across all analyzed
datasets. It remains unclear whether some of these genes ever
contribute to any CDR3s, for example genes D14 and D25 do not
form any CDR3s in most datasets (few CDR3s formed by these D
genes in some datasets may represent computational artifacts).
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FIGURE 7 | A tandem CDR3 formed by genes D3 (IGHD3-3) and D5 (IGHD5-5) (top), a pseudo-tandem CDR3 formed by genes D10 (IGHD3-10), and D16

(IGHD3-16) (middle), and the tandem matrix for all tandem CDR3s across all HEALTHY datasets (bottom). (Top) A tandem CDR3 with

Dmatch=GTATTAGGATTTTTGGAGTGGTTAT, middle=CAGCCA, and D’match=GTGGATACAGCTATGG. (Middle) The pseudo-tandem CDR3, formed by genes D10

(IGHD3-10) and D16 (IGHD3-16). This CDR3 was formed by a single gene D10 (IGHD3-10) with three mutations (shown in red). IgScout filters out most

pseudo-tandem CDR3s. (Bottom) The number in a cell (i,j) shows the total number of tandem CDR3s formed by genes Di and Dj across all HEALTHY datasets.

Empty cells correspond to pairs of D genes that do not form tandem CDR3s. Genes D4 and D5 appear in two copies in the IGH loci. The second copy of D4

(IGHD4-11) appears between D10 (IGHD3-10) and D12 (IGHD5-12). The second copy of D5 (IGHD5-18) appears between D17 (IGHD4-17) and D19 (IGHD6-19). The

vast majority of tandem CDR3 correspond to cells in the upper half of the matrix. The only populated column in the lower part of the tandem matrix corresponds to the

D5 gene and likely results from tandem CDR3s formed by the second copy of D5 in the IGH locus.

IgScout revealed four new allelic variants (D10+, D10++,
D16+, and D16++), thus increasing the number of known
variants of human D genes from 7 to 11. These new variants
are unlikely to be computational artifacts since they were found
in dozens immunosequencing datasets from distinct individuals
and many whole genome sequencing datasets. The frequency
of the already known Single Nucleotide Polymorphisms (SNPs)
in D genes exceeds the frequency of SNPs in the entire human
genome by two orders of magnitude (12 SNPs for all D genes of
total length only 288 nucleotides).

Although IgScout revealed four novel variants of human
D genes and inferred camel D genes, these genes will not
be included in the IMGT database since they haven’t been
experimentally confirmed yet. Similarly to Gadala-Maria et al.
(20), we argue that, like in other areas of genomics, the time
has come to add such prediction to the IMGT database.

For example, the lion’s share of genes in genomic databases
represent computational predictions that haven never been
experimentally confirmed. We argue that IMGT should classify
alleles with varying levels of supporting evidence, not unlike
classification systems used in other biological databases and
in the recently established Open Germline Receptor Database
(OGRDB), a new repository of germline genes maintained
by The Adaptive Immune Receptor Repertoire (AIRR)
Community (47).

Although IgScout is not specifically designed for
reconstructing V and J genes, it turned out that its
applications are not limited to reconstructing D genes (see
Supplemental Note “De novo reconstruction of human J
genes”). In addition to de novo reconstruction of D genes, it also
detects tandem CDR3s. Briney et al. (29) postulated that tandem
CDR3s mostly appear in naïve B cells and thus do not contribute
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FIGURE 8 | Fractions of IgM, IgG, IgE, and IgA isotypes representing tandem

CDR3s in the repertoires from the ALLERGY and HIV datasets.

to adaptive immune response. In contrast, our analysis revealed
that ∼60% of tandem CDR3s in the HIV dataset correspond to
plasma and memory B cells.

METHODS

Inferring Germline Genes as the Trace

Reconstruction Problem
In information theory, a string S yields a collection of
traces, where each trace is independently obtained from S by
substituting each symbol in S by another symbol from a fixed
alphabet with a given probability δ. Given the traces and the
value δ, the Trace Reconstruction Problem (35) is to reconstruct
the original string S. De novo reconstruction of D genes results
in a more complex version of the Trace Reconstruction Problem
where traces are generated by multiple strings and each trace is
obtained from one of these strings by (i) randomly trimming it
from both sides, (ii) adding a randomly generated prefix in the
front of the string, and (iii) adding a randomly generated suffix
in the end of the string. Given a set of such traces (modeled by
a set of trimmed CDR3s extracted from an immunosequencing
dataset), the goal is to reconstruct the original set of strings.

Extending the Consensus String
IgScout trims all positions of the motif logo with the information
content below IC and computes the consensus string. Afterwards,
it extracts the first k-mer of the consensus string and finds all
CDR3s that contain this k-mer. If the position preceding the

first k-mer in these reads has information content exceeding
a threshold, IgScout adds the most frequent nucleotide at this
position to the consensus and iterates. Afterwards, it applies a
similar procedure to the last k-mer of the consensus string. The
resulting extended consensus is reported as a putative D gene
(Figure 1).

Detecting Pseudo-Tandem CDR3s
Given strings Span and S, we define distancet(Span,Target) as
the minimum Hamming distance between t-mers in Span and
S. Given a parameter 1 (the default value 1 = 5) we define the
1-distance between strings Span and Target as distancet(S,Target)
for t=|Span|-1, where |Span| stands for the length of the string
Span. Finally, we define the1-distance between a string Span and
a set of strings Strings as the minimum 1-distance between Span
and all strings in Strings.

We computed the 1-distance between the spans of all 187
identified tandem CDR3s in CDR3∗ and all string in D-Genes.
Seventy-three out of these 187 CDR3s can be explained as CDR3s
originating from a single D gene (for the 1-distance threshold
three). However, the remaining 114 CDR3s have 1-distance at
least nine. We thus classify a CDR3 sequence Target formed by
genes D and D’ as pseudo-tandem if the 1-distance between
the span of this pseudo-tandem CDR3 and D-Genes does not
exceed a predefined threshold (the default value is three), and
(truly) tandem, otherwise. See Supplementary Note “List of
tandem CDR3s.”
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This perspective outlines an approach to improve mechanistic understanding of

macrophages in inflammation and tissue homeostasis, with a focus on human

inflammatory bowel disease (IBD). The approach integrates wet-lab and in-silico

experimentation, driven by mechanistic mathematical models of relevant biological

processes. Although wet-lab experimentation with genetically modified mouse models

and primary human cells and tissues have provided important insights, the role of

macrophages in human IBD remains poorly understood. Key open questions include:

(1) To what degree hyperinflammatory processes (e.g., gain of cytokine production) and

immunodeficiency (e.g., loss of bacterial killing) intersect to drive IBD pathophysiology?

and (2) What are the roles of macrophage heterogeneity in IBD onset and progression?

Mathematical modeling offers a synergistic approach that can be used to address

such questions. Mechanistic models are useful for informing wet-lab experimental

designs and provide a knowledge constrained framework for quantitative analysis and

interpretation of resulting experimental data. The majority of published mathematical

models of macrophage function are based either on animal models, or immortalized

human cell lines. These experimental models do not recapitulate important features of

human gastrointestinal pathophysiology, and, therefore are limited in the extent to which

they can fully inform understanding of human IBD. Thus, we envision a future where

mechanistic mathematical models are based on features relevant to human disease and

parametrized by richer human datasets, including biopsy tissues taken from IBD patients,

human organ-on-a-chip systems and other high-throughput clinical data derived from

experimental medicine studies and/or clinical trials on IBD patients.

Keywords: macrophages, monocytes, IBD, mechanistic mathematical models, in silico experimentation

INTRODUCTION

Macrophages are heterogeneous cells with key functions in inflammatory immune responses, tissue
homeostasis, and immune regulation. They are a first line of defense against pathogens, and, play
a major role in maintaining tissue integrity by accelerating repair processes (1). Macrophages
are also involved in the pathogenesis and progression of human inflammatory diseases including
rheumatoid arthritis (RA), atherosclerosis, and inflammatory bowel disease (IBD). Common
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polymorphisms that confer disease susceptibility and Mendelian
genetic disorders that can present with IBD and RA clearly
suggest an important role for macrophage signaling pathways.
Loss of function defects in IL-10 signaling induce early
onset IBD with complete penetrance and in mouse models
macrophage specific loss of IL10R expression causes the
spontaneous development of severe colitis (2, 3). Monocyte-
derived macrophages are also major sources of inflammatory
cytokines such as TNF-α, IL-12/23, and IL-6, all therapeutic
targets in IBD and/or RA (4).

Despite genetic and pharmacological evidence that
macrophages are important in IBD pathophysiology, the
mechanistic details of this role remain to be fully elucidated.
For example, the complex intracellular signaling pathways
and extrinsic macrophage interactions with other cells
within diseased gastrointestinal tissues are still incompletely
understood. Key questions include to what degree do
hyperinflammatory processes and immunodeficiency intersect
to drive human IBD and other inflammatory diseases, and,
what is the role of macrophage heterogeneity in IBD onset and
progression? Addressing such questions may inform the rational
development of next generation treatments for IBD that target
macrophage function.

Lack of efficacy is a source of clinical trial failure. Furthermore,
mechanistic understanding of the role of drug targets in human
disease is a key indicator of therapeutic success (5). Multiple drug
targets, successful in mouse IBDmodels, have subsequently failed
in clinical IBD trials (6).We therefore see future opportunities for
the use of data derived from human cells and tissue, including
biopsy data from normal and diseased intestinal tissues, to
potentially increase the reliability and relevance of mathematical
models for human IBD pathophysiology (7, 8).

The development of high-throughput experimental methods
has made it possible to obtain increasingly rich data from
relevant human cells and tissues. Integration of genomics,

transcriptomics, proteomics, and immunohistochemistry
datasets derived from macrophages and other cells requires

the use of bioinformatics tools and machine learning, to
organize and analyse these integrated datasets. The ever-growing
availability of large-scale quantitative and structured human

datasets provides a unique opportunity to rationally and
systematically test hypotheses via calibrated models that may

provide deeper mechanistic insights into IBD pathophysiology.
In this perspective, the term “modeling” is used to describe
the use of mechanistic mathematical models to conduct
in-silico experiments, focusing on exploring macrophage
roles in inflammation and tissue homeostasis. Observed
discrepancies between a mathematical model and experimental
data can generate biological insight by challenging assumptions
on which the model is based, such as the assumption of
a perfectly mixed population by Zhou et al. (discussed in

Section Modeling macrophage behavior in the context of tissue
microenvironments). However, the fact that a model matches a
certain dataset need not generate biological insight on its own
(9). We therefore propose an iterative approach of wet-lab and

in-silico experimentation.

APPLICATION OF MATHEMATICAL

MODELS TO INFLAMMATORY

MACROPHAGE BIOLOGY

Mathematical models have been utilized to analyse the
role of macrophages in inflammatory processes and better
understand macrophage intracellular signaling pathways.
Relevant models were identified via PubMed and Web-of-
Science searches (executed 1st January 2018) containing the
words “computational” or “mathematical,” and “macrophage”
or “monocyte” in their abstract and published within
the last 10 years. These searches identified 605 and 736
references via PubMed and Web-of-Science. As summarized in
Supplementary Table 1, sixty-one models were identified from
these references by selecting mechanistic models of macrophage
function in inflammation while excluding those focused on:
(i) interactions between tumors and the immune system (10),
(ii) macrophages in tissue repair and replacement; and (iii) the
role of macrophages in debris engulfment. Although not the
focus of this perspective, tissue repair, and macrophage debris
engulfment are important functions in the context of the gut
tissue microenvironment, with modeling conducted by Weavers
et al. (11), Martin et al. (12), and Ford et al. (13) and reviewed
by Dunster (14). For just over half the selected models (n =

31), mathematical modeling was complemented by wet-lab
experimentation. The vast majority (n = 28/31) of associated
experimental systems consisted of mouse models, murine or
other animal/human immortalized cell lines. However, animal
models and cell lines do not recapitulate all features of human
disease pathophysiology and response to drug exposure (47).
As cellular pathways are both type and species specific, we see
future opportunities to develop models parametrized solely by
data derived from human cells and tissue.

Note that the models listed in the table are all dynamic,
describing time-dependent changes in macrophage cell numbers
and/or cytokine concentrations and knowledge-driven, i.e.,
model development was guided and informed by relevant
biology. Data-driven modeling is a more recent approach,
driven by advances in computational power and the availability
of large and complex data sets, including, whole genome
sequencing (WGS), single cell imaging and transcriptomics
derived data. As this perspective focuses on mechanistic models,
no data-driven models were included in Supplementary Table 1.
Machine learning techniques have been utilized to infer possible
gene interaction networks from gene expression data alone,
without leveraging relevant prior biological knowledge. However,
gene network inference is challenging and its accuracy is low
(15). Nonetheless, in the longer-term, as more complete datasets
become available, these approaches may inform automated
mathematical model development workflows. Examples of the
many algorithms used to infer gene interaction networks
from expression data [see for a comparison of methods
(16)], include CLR (Context Likelihood of Relatedness) (17),
ARACNe (Algorithm for the Reconstruction of Accurate Cellular
Networks) (18) and GENIE3 (GEne Network Inference with
Ensemble of trees) (19). ARACNe has been used to identify
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key genes involved in macrophage activation from a human
macrophage gene expression data set generated under varying
stimulatory conditions (20).

These methods are purely data-driven and produce static
gene networks. However, cellular interactions are dynamic and,
in part, driven by, dynamic protein interactions (e.g., signaling
pathways). Furthermore, intracellular protein concentrations
and related functional activity levels do not necessarily correlate
with corresponding gene transcription levels (21). Accordingly,
we anticipate that as gene interaction knowledge becomes richer
and integrated with other data types such as proteomic data,
future data-driven models will be increasingly dynamic in
nature and more deeply integrated with mechanistic modeling
approaches. Examples of data driven modeling techniques used
in a variety of other cell types to construct dynamic gene
networks from gene expression data include not only differential
equation models, but also Boolean and dynamic Bayesian models
[reviewed by Hecker et al. (22)]. A key challenge for data-driven
modeling is integration with existing knowledge of pathway
interactions, and more generally, known biological mechanisms.
Of note, emerging algorithms that integrate prior knowledge of
gene interactions typically outperform algorithms solely using
gene expression data (15). Advances in machine learning and
data driven tools, together with richer datasets, will improve
our ability to identify the critical biological determinants (e.g.,
key cell types, interactions, proteins, and associated pathways
and networks) mediating the observable behavior of human
tissues and organs (e.g., human intestine) and thereby inform the
development of dynamic mechanistic in silicomodels.

MODELING MACROPHAGE BEHAVIOUR IN

THE CONTEXT OF TISSUE

MICROENVIRONMENTS

The dynamic crosstalk between macrophages and their
microenvironment is key to understanding the role of
macrophages in normal, healthy, and diseased, IBD
gastrointestinal tissues. Their behavior depends on both
their origin (tissue resident vs. monocyte derived inflammatory
macrophages) and the stimuli they have previously encountered.
Activated monocyte-derived macrophages have historically been
identified as two mutually exclusive groups: pro-inflammatory,
classically activated, M1 and anti-inflammatory, alternatively
activated, M2 macrophages. Differentiation into one of these two
subtypes was assumed to be driven by the different stimuli the
macrophage receives within their resident tissue. Furthermore,
macrophage cytokine and growth factor production modulate
their microenvironment, within the intestinal lamina propria
(Figure 1A). Although the binary M1/M2 framework provides a
useful distinction between inflammatory and non-inflammatory
(tissue repair) macrophage populations, tissue macrophages are
extremely heterogeneous, existing in an essential continuum of
functional states, depending on the various stimuli they have
received and integrated over time (26).

Mesenchymal derived fibroblasts support the integrity of
intestinal and other mucosal barriers via synthesis of extracellular

matrix and growth factors required for both barrier repair
and macrophage homeostasis. Recently, Ruslan Medzhitov
and colleagues utilized a combination of experimentation and
modeling based on an in-vitro system of bone-marrow derived
macrophages and primary mouse embryonic fibroblasts to
dissect feedback signaling loops between macrophages and
stromal fibroblasts (24, 25). In this system the macrophages
and fibroblasts were plated together in culture medium without
addition of growth factors and cell numbers determined
by flow cytometry. The mathematical model describes how
simple macrophage-fibroblast interactions can reach stable cell
populations. This is an illustration of how modeling can provide
a useful framework for qualitative understanding of the dynamics
between different cells. The model also proved useful on a
quantitative level; cell-density had to be taken into consideration
to match experimentally observed cell numbers predicted by
the model. This in turn led to experimentally tested findings
that close macrophage-fibroblast contact is essential for growth
factor exchange.

Specifically, the experimentally confirmed findings were (1)
fibroblasts in the system produce bothmacrophage and fibroblast
growth factors, while the macrophages only produce a fibroblast
growth factor; (2) the growth rate of the fibroblasts, but
not the macrophages, is limited by their carrying capacity,
which was found to be dependent on available space. Based
on these two findings, a mathematical model was constructed
describing macrophage and fibroblast cell counts and growth
factor concentrations over time. Different wiring possibilities for
the model network were explored mathematically. Of the 144
possibilities considered, only 48 networks allowed for a stable
steady state across a wide range of parameters, corresponding
to a stable number of macrophages and fibroblasts. It was
found that all 48 networks that allowed for such a stable steady
state included a negative regulatory loop on the macrophage
growth factor. This is a necessary condition for stability, as a
cell population that is not limited by its carrying capacity will
keep expanding indefinitely if its growth factor is not regulated.
Experimental studies subsequently showed that macrophage
growth factor is negatively regulated by receptor internalization.
Furthermore, it was found that fibroblast growth factor is also
negatively regulated, both by receptor internalization and by the
macrophage growth factor, however the model indicates that
this regulation of fibroblast growth factor does not significantly
alter system dynamics (Figure 1B). The mathematical model
based on the final circuit generated in this way predicts that
apart from the stable steady state, there also exists a state
with only fibroblasts, sustaining themselves, and a state without
macrophages and fibroblasts. Depending on the initial absolute
cell numbers, the system will converge to one of these states
(Figure 1C), which was experimentally tested by quantifying cell
numbers over time using a combination of flow cytometry and
fluorescent imaging. Finally, it was found that the initial cell
numbers required to converge to the steady state of coexisting
cell populations was larger than the model predicted. This was
explained by density-dependent effects; the model assumes a
perfectly mixed population, but cell-dependent contact decreases
when cell numbers decrease. Thus, the discrepancy of the model
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FIGURE 1 | (A) TLR-2 can sense the bacterial product LPS both outside the cell and in vesicles, after engulfment of the bacterium. NOD-2 can sense the bacterial

product MDP that is exported from vesicles (23). The NF-κB activation in response to TLR-2 or NOD-2 signaling results in the production of cytokines such as

pro-inflammatory cytokine TNF-α, IL-6, or IL-8 (with positive feedback loops) or anti-inflammatory cytokine IL-10 (a negative feedback loop to downregulate

inflammation). Apart from the autocrine regulation, many cytokines stimulate other cell types (IL-12 for instance drives naïve T-cells toward a Th1 phenotype, while

IL-23 promotes Th17 differentiation etc.). Activated T cells in turn produce macrophage response shaping mediators themselves, such as IFN-γ, IL-17, and IL-22. (B)

Wiring diagram of the macrophage-fibroblast growth factor model by Zhou (24) and Adler (25). Fibroblasts produce both macrophage growth factor (CSF1) and

fibroblast growth factors (PDGFD, HBEGF), while macrophages produce a fibroblast growth factor (PDGFB), mediating cross talk between macrophages and stroma.

The dimensionless model derived from this diagram consists of two ODEs describing the population sizes of the macrophages and fibroblasts and two algebraic

equations describing the concentration of the two growth factors. Different wiring possibilities were explored (gray arrows), i.e., the addition of positive or negative

feedback of one growth factor on the production rate of the other (1, 2), removal of a growth factor through receptor mediated endocytosis (3, 4),

(Continued)
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FIGURE 1 | or autocrine growth factor production (5, 6). Of the 144 possibilities considered, only 48 networks allowed for a stable steady state for a wide range of

parameters, corresponding to a stable number of macrophages and fibroblasts. The final experimentally tested circuit is depicted by the solid arrows. (C) Phase

portrait of the macrophage and fibroblast cell population numbers of the model by Zhou (24) and Adler (25). Given initial cell numbers, the system will end up in one of

the three stable steady states. All initial values at the left-hand side of the separatrix (dashed line) will converge to the trivial steady state (yellow, no fibroblasts or

macrophages). At the right-hand side of the separatrix, the system will converge to the positive steady state if the initial system contains macrophages (red, positive

numbers of fibroblasts and macrophages), and converge to the “fibroblast only” steady state (green, only fibroblasts) otherwise. Several figure components taken from

the “Library of Science & Medical Illustrations” by SomerSault1824 were used in panel (A,B) (http://www.somersault1824.com/science-illustrations/). panel (B,C) are

based on Zhou et al. (24), Figures 3A, 4E, 5B.

predictions with the experimental results suggested that cell-cell
contact is essential for growth factor dynamics and the regulation
of tissue homeostasis.

MODELING MACROPHAGE

INTRACELLULAR SIGNALLING

Macrophages sense and respond to their localized tissue
microenvironments and in this role must integrate different
external stimuli and respond appropriately.Multiplemacrophage
receptor systems detect specific changes in local tissue
microenvironments including the presence of pathogens [Toll-
like receptors and NOD-like receptors (27, 28)], cell damage
[RAGE and Toll-like receptors via alarmins (29)], cytokines
(cytokine receptors that detect growth factors including M-
CSF, interleukins such as IL-1,6,10, tumor-necrosis factor-α,
and chemokines), and neurotransmitters (30). The resulting
macrophage responses may result in the production of activating
and inhibitory cytokines, orchestrating the timing of pathogen
specific innate and adaptive immune responses and associated
intra- and extra-cellular microbial clearance (23) (Figure 2A). To
better understand macrophage sensing and response behaviors,
intracellular signaling network models have been constructed
and used to generate experimentally testable predictions about
the effect of blocking individual proteins including TLR3 (33),
TLR4, TNF, IFN-β, and IL-10 (34), TLR3, TLR7, Type-1-IFNs,
and IL-10 (35), TLR, JAK/STAT, and ITAM (36), and TLR,
JAK/STAT and nitric oxide (37) on intracellular signaling
dynamics (38). Many models were based on experimental mouse
models or immortalized cell lines. Thus, the species and lineage
specificity of these networks and the interacting cell types needs
to be critically analyzed to understand their relevance to human
IBD pathophysiology (39).

A key integrator of different macrophage signaling pathways
is the NF-κB pathway, which regulates nuclear localization
of NF-κB transcriptional regulators controlling expression of
hundreds of genes involved in inflammation (40). One of
the seminal mathematical descriptions of NF-κB signaling was
developed by Hoffmann et al. This model provided a quantitative
description of three NF-κB inhibitor isoforms, IκBα, IκBβ, and
IκBε (31). It was one of the first studies to use an iterative
approach of modeling (in-silico experimentation) and wet lab
experimentation to better understand intracellular signaling
mechanisms. The model was calibrated with data obtained from
an experimental mouse model with only one active NF-κB
inhibitor isoform and provides a mechanism-based explanation
for the oscillatory dynamics of nuclear NF-κB concentration

observed in wild-type mice, but not in mice that lack an active
form of IκBα (Figure 2B). Many more mathematical models
of NF-κB dependent processes were subsequently constructed,
including models of TNF-α receptor signaling (41), TNF-α
secretion (42), TLR4 receptor signaling, and the addition of
extrinsic noise to the synthesis rate of TLR4, the activation rates
of TRIF and MyD88 and the endosomal maturation rate, to
incorporate cell-to-cell variability (43) [see (44) for a review of
earlier models].

The above modeling frameworks (31) were developed by
converting a signaling, protein interaction network diagram into
a system of ODEs to quantitatively represent key reactions of
the network driving dynamic changes in the concentrations of
corresponding key proteins. In general, mass action, Michaelis-
Menten, or Hill equation kinetics were used to derive reaction
equations (45).

Static maps of all protein interactions believed to be involved
in mammalian macrophage TLR signaling pathways have
previously been generated [Figure 2C (Right), reproduced from
Oda and Kitano (32)], with the relationship of Hoffmann’s NF-
κB signaling model [Figure 2C (Left)] also illustrated. The model
derived from this latter network consists of 26-ODEs, one for
every network node. The interactions between nodes, denoted
by arrows in the network, are included in the terms for these
ODEs. Advances in computational power, high-throughput data
generation, data driven model parameterization and machine
learning techniques will empower larger scale modeling of
signaling pathways and their integration with extracellular
signals. For example, high-dimensional quantitative analysis
of macrophage signaling pathways in human tissue biopsies
from diseased and non-diseased regions of the intestine may
be used to inform model structure(s) and parameterization.
There are however remaining challenges including parameter
identifiability. These challenges stem from the fact that
current high-throughput datasets tend to have poor temporal
and spatial resolution, whereas biological systems including
human intestinal tissue are often spatially heterogeneous, and
relevant pathophysiological processes occur across a broad range
of time scales. Nonetheless, such approaches are becoming
feasible, and may allow explicit in silico identification of
key IBD mediators and processes, driving subsequent wet-lab
experimental exploration, testing, and verification.

FUTURE DIRECTIONS

Despite increasingly rich datasets on human inflammatory
processes, macrophage function is still not well understood. Open
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FIGURE 2 | (A) The activation of macrophage signaling pathways by various pathogens. Macrophage output in the form of cytokine production is amongst others

dependent on the type of pathogen and the receptor location. Green, yellow, and red arrows correspond to a Th1, Th17, and Th2 polarizing response, respectively.

(Continued)
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FIGURE 2 | Macrophage responses exist in a continuum. (B) The free nuclear NF-κB concentration against time generated by the equations of the model by

Alexander Hoffmann et al. (31). The model provides an explanation for the oscillatory dynamics of the nuclear NF-κB concentration that are observed in wild-type

mice, but not in mice that lack an active form of IκBα. Each NF-κB inhibitor can bind to a NF-κB molecule, forming an NF-κB-inhibitor complex. When IκB kinase (IKK)

also binds to this NF-κB-inhibitor complex, the inhibitor degrades, and the free NF-κB can travel to the nucleus and bind DNA. This results in the synthesis of various

proteins, one of which is IκBα. The production rate of the NF-κB inhibitor IκBα is thus dependent on the concentration of free NF-κB. The negative NF-κB–IκBα

feedback loop generates oscillations in the concentration of NF-κB. In contrast, the other two NF-κB inhibitors, IκBβ and IκBε, are produced at a constant rate,

independent of the amount of free NF-κB. Therefore, they have a damping effect on the oscillations generated by the IκBα negative feedback loop. A model without

IκBβ or IκBε, but with IκBα therefore produces oscillations (left, yellow), while a model without IκBα, but with IκBβ and IκBε does not (right, black). (C) Left: the wiring

network from the NF-κB model by Alexander Hoffmann et al. (31). The model derived from this network consists of 26 ODEs, one for every node in the network. The

interactions between nodes, denoted by arrows in the network, are included in the terms of these 26 ODEs. Right: a map of all protein interactions thought to be

involved in mammal macrophage TLR signalling pathways, with the relationship of Hoffmann’s NF-κB signaling model also illustrated. The map was constructed by

Kanae Oda and Hiroaki Kitano (32). Several figure components taken from the “Library of Science & Medical Illustrations” by SomerSault1824 were used in (A–C)

(http://www.somersault1824.com/science-illustrations/). Panel (C) is based on Oda and Kitano (32), Figure 1.

questions include: (1) how do macrophage hyperinflammatory
processes and immunodeficiency intersect to produce human
IBD; (2) what are the functional consequences of genetic
variant burden across the multiple human polymorphisms
associated with inflammatory diseases and that intersect
with macrophage signaling pathways; (3) what factors and
cellular processes drive granuloma formation in Crohn’s
disease and other granulomatous disorders; (4) what is the
relationship between peripheral blood monocytes and tissue
resident macrophages; (5) what is the role of macrophage
heterogeneity in IBD disease dynamics; (6) what is the
role of long lived tissue-resident macrophages, monocyte
derived macrophages, dendritic cells, neutrophils, and non-
professional APCs during active IBD inflammation and
remission? Mathematical models can help answer these
questions at the level of experimental design, data analysis,
and interpretation.

Models can be developed to predict the effects of perturbing
specific protein networks, from single cell to localized tissue
pathology, through to effects on higher-level physiology.
Additionally, they can identify the relative importance of
bacterial handling and cytokine production in tissue pathology.
Proposed mechanisms can be discarded based on simulations,
and new mechanisms proposed and experimentally tested (24).
Many challenges remain in both the proposed application of
human datasets including tissue biopsies from healthy donors
and IBD patients, and the combination of modeling with
high-throughput data. Parameter identifiability is challenging
due to high variability and poor spatial and temporal resolution
of available human datasets. Another key challenge is data
integration across different spatial and temporal scales,
and, in an informative way, while selecting optimal model
scope and granularity for the specific scientific questions
under investigation. Furthermore, within this context one
should note that the hypotheses on which mathematical
models are based can only be falsified, but never proven.
Therefore, mathematical modeling should be seen as an
investigative tool that can be used to challenge assumptions
and identify key uncertainties (46). For example, models
based on different mechanisms might equally well describe an
observed phenomenon and discrepancies between two such
models can inform experiments to distinguish between the two
alternatives (9).

CONCLUSIONS

There is a growing body of work focused on the mathematical
modeling of macrophage function, e.g., modeling intracellular
signaling pathways and the dynamic cross talk between these
cells and other cell types such as fibroblasts. However, to date
many modeling efforts have been disconnected from wet-lab
experimentation or guided by experimental work on mouse
models and isolated murine and human cell lines. These
experimental systems do not recapitulate important features
of human gastrointestinal pathophysiology, and, therefore, are
limited in the extent to which they can inform mechanistic
understanding of the role of macrophages in human IBD
pathophysiology. Consequently, there are many open questions
about the role of macrophages in human IBD. Thus, we envision
a future were mechanistic mathematical models will be based
on features relevant to human disease and parametrized by
richer human data sets, including high-throughput assessments
of biopsy tissues taken from IBD patients with increasing
spatial and temporal resolution. Furthermore, we envisage deeper
integration of mechanistic modeling with experimental design
whereby models are used to both inform experimental medicine
study designs and provide a knowledge constrained framework
for the quantitative analysis and interpretation of the resulting
clinical data.
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Cytokines and chemokines are key signaling molecules of the immune system. Recent

technological advances enable measurement of multiplexed cytokine profiles in biological

samples. These profiles can then be used to identify potential biomarkers of a variety of

clinical phenotypes. However, testing for such associations for each cytokine separately

ignores the highly context-dependent covariation in cytokine secretion and decreases

statistical power to detect associations due to multiple hypothesis testing. Here we

present CytoMod—a novel data-driven approach for analysis of cytokine profiles that

uses unsupervised clustering and regression to identify putative functional modules

of co-signaling cytokines. Each module represents a biosignature of co-signaling

cytokines. We applied this approach to three independent clinical cohorts of subjects

naturally infected with influenza in which cytokine profiles and clinical phenotypes

were collected. We found that in two out of three cohorts, cytokine modules were

significantly associated with clinical phenotypes, and in many cases these associations

were stronger than the associations of the individual cytokines within them. By comparing

cytokine modules across datasets, we identified cytokine “cores”—specific subsets of

co-expressed cytokines that clustered together across the three cohorts. Cytokine cores

were also associated with clinical phenotypes. Interestingly, most of these cores were

also co-expressed in a cohort of healthy controls, suggesting that in part, patterns of
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cytokine co-signaling may be generalizable. CytoMod can be readily applied to any

cytokine profile dataset regardless of measurement technology, increases the statistical

power to detect associations with clinical phenotypes and may help shed light on the

complex co-signaling networks of cytokines in both health and infection.

Keywords: innate immunology, cytokines, chemokines, influenza, biomarker

1. INTRODUCTION

Cytokines and chemokines are key signaling molecules of the
immune system, mediating a complex network of interacting

cells that govern the immune response (1, 2). These small

proteins secreted by a broad range of cells, regulate host

responses to infection, trauma and sepsis and are involved in

inflammatory and autoimmune diseases. The role of cytokines in
disease as well as the associations between cytokine production

levels and the occurrence of diseases and their phenotypes has
been extensively studied (3), and many studies have shown that
cytokine signaling is context-dependant (4). Cytokine expression
and dysregulation have been linked with a variety of diseases such
as diabetes (5, 6), Alzheimer’s (7), cancer (8–11), heart disease
(12, 13), and various viral infections including influenza, EBV,
RSV, HIV and dengue (14–18).

Influenza is a respiratory virus that accounts for significant
rates of hospitalizations and deaths, especially among very young
or old individuals (19). Due to the variety of influenza subtypes
and their rapid evolution, influenza causes annual epidemics and
occasional catastrophic pandemics (20, 21). Influenza infection
in humans can result in asymptomatic to serious illness with
symptoms such as fever, myalgia, headache and upper and
lower respiratory symptoms. The respiratory tract infection can
progress to various acute conditions, e.g., pneumonia and acute
respiratory distress syndrome (ARDS) or a “cytokine storm”
causing widespread tissue damage (22, 23). In some cases,
complications are caused by a secondary bacterial infection such
as Staphylococcus aureus.

Cytokine expression in response to influenza infection has
been studied using human blood and nasal samples, immune
cell cultures and animal models (23, 24). Numerous studies
have reported associations of individual cytokines with various
influenza phenotypes and outcomes such as hospitalization and
death. Each study tested a specific subset of cytokines. From these
studies, several prominent cytokines have been repeatedly found
to be associated with illness and symptoms including IL-6, TNF-
α, IL-10, IL-8, IP-10, IFN-γ , and MCP-1 (23–32). Differences in
cytokine expression levels were found between subjects infected
with different Influenza strains, as well as different severity and
symptoms. For example, the H5N1 strains were found to induce
high serum levels of IP-10 and monokine induced by interferon-
γ (MIG) (25, 33) and also higher levels of TNF-α and IFN-β
compared to H3N2 or H1N1 strains (29). Another study reported
hyperactivation of IL-6, IL-8, and MCP-1 in blood of subjects
infected with pandemic H1N1 that developed pneumonia and
in complicated seasonal influenza, but not in milder pandemic
H1N1 infections (28). A significant correlation has been reported

between disease severity and the levels of IL-6, IL-10, and IL-15
(32), and in contrast, IL-17 was lower in more severe patients
(28, 32).

Despite our partial understanding of cytokine biology there
are a variety of therapeutic treatments that target specific
cytokines, which are in wide clinical use to treat autoimmune
diseases and cancer. There are a variety of licensed monoclonal
antibody (Ab) treatments that target cytokines or their receptors.
Examples include: anti TNF-α Abs (34, 35), an anti IL-6 receptor
Ab (35, 36), anti IL-1 Abs (35), anti IL-10 Abs (37), anti IL-23
Abs (38), and anti Herceptin Abs (39). Most notably, Humira-an
anti TNF-α Ab is widely used to treat a variety of autoimmune
diseases and was the best selling drug in 2017 (40).

Since cytokines and chemokines (hereafter referred to as
cytokines) reflect the local or systemic immune state, they have
the potential to serve as indicators of various clinical conditions.
Various studies suggested the use of measurements of circulating
cytokines as biomarkers in order to aid clinicians in patient
prognosis and care (41–46). Furthermore, as the understanding
of cytokine biology improves, new treatment strategies emerge
to leverage this knowledge (47). Several methodologies have
been developed for quantification of secreted cytokines in body
fluid samples, including immunoassays such as ELISA and bead-
based multiplex immunoassays (48), allowing the collection
and analysis of cytokine “profiles”: a broad and unbiased
assessment of cytokine levels that typically includes 10–50
cytokines of interest.

While numerous studies have reported associations between
cytokine levels and various clinical phenotypes, the analysis of
cytokine profiles is often statistically underpowered to detect
such associations, due to the large number of cytokines and
the requirement for multiplicity adjustment. Furthermore, the
relatively high-cost of cytokine profiles limits the sizes of cohorts
for which they are measured. A typical cytokine profile dataset
can have measurements obtained from tens to hundreds of
subjects. These opposing trendsmake it increasingly important to
develop new computational tools for analyzing cytokine profiles
that are statistically efficient and provide interpretable results.

One possible solution for preserving statistical power, is to
select a small subset of cytokines for a primary analysis with
phenotypes, with a secondary/exploratory analysis that includes
all remaining cytokines. For example, in previous work on
cytokine profiles following influenza natural infection we pre-
selected a subset of 11 cytokines for the primary analyses based
on published studies (49).Multiplicity adjustment was performed
across the 11 cytokines pre-selected in our analysis plan. While
this approach identified several significant associations with
phenotypes, it failed to detect other significant associations
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of cytokines that were not selected in the primary set as
we demonstrate below. Furthermore, it required pre-existing
knowledge for selecting the primary set of cytokines, limiting the
ability to discover novel associations.

Another important property of cytokine signaling is its
inherent redundancy (2, 50). Many of the same cytokines may be
simultaneously secreted by different immune cells, and activation
or attenuation of an immune pathway can often be mediated by
multiple cytokines. Therefore, cytokine profiles typically exhibit
high levels of pairwise correlations among cytokines, across
subjects, as previously demonstrated (49, 51). These complexities
pose particular challenges in the interpretation and analysis of
cytokine data by practitioners.

Motivated by previous work, and the growing abundance of
cytokine profile datasets, we developed CytoMod: a novelmethod
for the analysis of cytokine profiles based on identifying cytokine
modules. The modular-based approach is partly inspired by
similar approaches used for analyzing gene expression data (52–
57). Our proposed method aims to increase statistical power
to detect associations of cytokines with clinical phenotypes by
grouping cytokines into putative functional modules, using a
data-driven clustering approach. Cytokines are grouped based
on their pairwise correlations using hierarchical clustering.
Modules are formed over absolute and adjusted cytokine levels.
Associations are then assessed between cytokine modules and
phenotypes as opposed to individual cytokines (Figure 1). An
earlier version of this method was used to analyze cytokine
profiles of influenza infected children that were admitted to
the intensive care units (51). Here we extended this method
to allow fully automated identification of modules and applied
it to three independent clinical cohorts of natural influenza
infection in which cytokine profiles were obtained and clinical
phenotypes were collected. We found that in two of these
cohorts, cytokine modules were significantly associated with
clinical phenotypes, and in many cases these associations were
stronger than the associations of the individual cytokines within
each of the modules. Applying our method to these three
independent cytokine profile cohorts we identified specific
subsets of cytokines (cytokine “cores”) that clustered together
across the three cohorts, and which were also associated with
clinical phenotypes. These cytokine cores identify subsets of
cytokines that are co-expressed during influenza infection, and
most were also observed in healthy individuals. Our method
can be readily applied to any cytokine profile dataset, and is
publicly available for use using Python code or an interactive
Jupyter Notebook.

2. MATERIALS AND METHODS

2.1. Data
We analyzed cytokine profiles of 611 subjects collected from
three independent studies (49, 51, 58) of subjects naturally
infected with influenza virus as well as healthy controls: (1)
PICFLU-a prospective multi-center study of children admitted
to intensive care units with severe influenza infection (51);
(2) FLU09-a prospective study of children admitted to the
emergency room with influenza like-illness and their household

FIGURE 1 | CytoMod—a modular data driven approach to identify cytokine

modules and assess their associations with clinical phenotypes. Traditionally,

associations between cytokine data (1) and clinical phenotypes (5) are tested

directly using univariate models. CytoMod independently uses absolute

cytokine profiles (1) or adjusted cytokine profiles (2) to generate cytokine

modules (3)-sets of co-signaling cytokines within a given cohort. Modules are

generated using unsupervised hierarchical clustering. Associations are then

tested between module levels (4) and clinical phenotypes (5). By significantly

reducing the number of associations tested CytoMod increases the statistical

power to detect associations. By comparing modules across datasets,

CytoMod can also identify “cores” of cytokines that consistently co-signal

together.

members (49); and (3) The Southern Hemisphere Influenza and
Vaccine Effectiveness Research and Surveillance (SHIVERS)—a
prospective study of influenza infected subjects collected in New
Zealand (58). Influenza positive cohorts included 221, 161, and
87 subjects, respectively, which were all tested and found positive
for influenza (by DFA, PCR, RT-PCR, or culture). The FLU09
study also included 142 healthy control subjects.

PICFLU - The PICFLU study was a prospective multi-center
study of severe influenza infections in children aged 0.06–18.19
years (median 6.97) (51). Blood samples were collected from a
total of 221 children diagnosed with influenza critical illness that
arrived at intensive care units (ICUs) at 35 hospitals between
December 2008 and May 2015. An endotracheal sample was
collected from all subjects that were intubated. Samples were
provided at enrollment (mostly within 24 h of intensive care
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unit admission). Almost half of the enrolled subjects received
vasoactive agents for septic shock and a similar fraction met
criteria for Acute Respiratory Distress Syndrome (ARDS) with
the majority having the severe form. Most subjects (n = 175,
79.2%) were influenza type A positive, while the remaining
cases (n = 46, 20.8%) were influenza type B positive. Eighty-
one subjects (36.6%) had a bacterial coinfection, predominantly
with Staphylococcus aureus, Streptococcus pneumoniae and
Streptococcus pyogenes. Additional information regarding the
design, sampling, and subjects in PICFLU cohort can be found
in Table 1.

FLU09 - The FLU09 study was a prospective study of children
and their household members. It included samples of blood
plasma and nasal swab/lavage from influenza infected subjects
as well as their asymptomatic Influenza-positive household
contacts. Three hundred and three subjects aged 0.05–69.53
years (median 17.23) were enrolled during 2009–2014 and
included 142 healthy householdmembers. A preliminary analysis
of cytokine profiles (49) included only subjects from 2009 to
2011. Most samples were provided at enrollment and only
few were taken within the first week. The cohort included
36 (22.4%) individuals who were hospitalized, four of them
(2.5%) were admitted to the ICU. 5 (3.1%) suffered from febrile

TABLE 1 | Characteristics and clinical information of patients from the analyzed

cohorts.

Cohort PICFLU FLU09 sick FLU09 healthy SHIVERS

Sample size (n =) 221 166 142 87

Age 0.06–18.19 0.05–69.53 0.15–65.19 5–88

(median) (6.97) (6.29) (24.77) (48)

Gender

Male 126 79 35 36

Female 95 87 107 51

Hospitalized 221 36 0 60

Intensive Care Unit 221 4 0 4

Sample type

Blood 215 96 119 87

Airway 93 165 141

Clinical phenotypes &

outcomes

Death 12 1 0 0

ECMO 9 – – –

Pneumonia-ARDS 100 – – –

Shock 103 – – –

Bacterial

Coinfection

81 – – –

SARI – – – 60

Influenza subtype /

strain

A (strain unknown) 29 6 0 16

A H1 92 68 0 0

A H3 53 62 0 45

B 46 27 0 26

Unknown 1 3 0 0

− means the outcome was not tracked in the study.

acute respiratory disease and another single subject (0.006%)
had ARDS and died. Three subjects (1.8%) suffered from a
bacterial coinfection. Study subjects were asked to rank their
symptom severity daily according to a visual analog scale (VAS)
until study completion. The symptoms considered were upper
respiratory tract (URT) symptoms (sore throat, stuffy/runny
nose, sinus fullness/facial pain); lower respiratory tract (LRT)
symptoms (cough, shortness of breath, wheezing); systemic
symptoms (feverishness, fatigue or malaise, headache, body aches
or myalgia, chills, lethargy); gastrointestinal symptoms (nausea,
vomiting, diarrhea). The FLU09 study also included 142 healthy
control subjects for which cytokine profiles were also measured.
These data were analyzed separately in section 3.5. Additional
information regarding the design, sampling and subjects in
FLU09 cohort can be found in Table 1.

SHIVERS - The Southern Hemisphere Influenza and
Vaccine Effectiveness Research and Surveillance (SHIVERS)
study included 87 Influenza infected subjects recruited from 16
sentinel general practices and 4 hospitals (58). Subjects were
enrolled between 2013 and 2015 (aged 12–78 years, median 44.5).
Sixty (68.9%) subjects recruited from hospitals demonstrated
symptoms of Severe Acute Respiratory Illness (SARI), defined as
“an acute respiratory illness with a history of fever or measured
fever of ≥ 38◦C, and cough, and onset within the past 10
days, and requiring inpatient hospitalization” (59), while the
rest suffered from a milder form of Acute Respiratory Illness
(ARI), i.e., do not require hospitalization (59). The majority
of the SARI cases were relatively mild. Four subjects (4.59%)
were admitted to the ICU. Blood specimens were taken from
subjects after their Influenza infection was confirmed and also
2 weeks later. Our analysis only included samples from the
acute phase (first timepoint). Subject samples were analyzed for
cytokines, chemokines, growth factors and other mediators using
bead-based Luminex multiplex assays or ELISA technology. In
a preliminary analysis of the cytokine profiles, we detected
significant differences between the measurements in year 1 and
2 of the study. These were likely caused by two factors: (1) The
sampling strategy was modified between the two study years;
and (2) Different labs quantified cytokines in each study year
(personal communication, Sook-San Wong). We therefore used
year 2 data for generating cytokine modules, but did not include
it in our association analyses with clinical phenotypes presented
below. Additional information regarding the design, sampling
and subjects in SHIVERS cohort can be found in Table 1.

2.2. Adjustment for Mean Cytokine
Concentration
To obtain the relative concentration of cytokines with respect to
the overall level of cytokine secretion within each subject,
cytokine concentrations were adjusted as follows: for a
given cytokine, the levels for all subjects were regressed
against the mean cytokine concentration. The adjusted
cytokine concentrations were defined as the residuals from
the regression. Formally, the adjusted values represent the
level of unexplained deviation of that cytokine, from the
expected cytokine level, given the average cytokine level of the
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subject. The full adjustment procedure for each Cytokinej is
as follows:

1. Compute the mean cytokines level for each subject in the
dataset. Construct a vector of the means (with the length of
the sample size).

2. Construct a regression model for Cytokinej, such that the
vector of the means is used as a predictor for Cytokinej’s level
in the sample, defined as the response variable:

Cytokinej = β0j + β1j ·Mean+ ǫj.

3. For each sample compute the expected Cytokinej level using
the regression model defined in II. Calculate the residue of
the regression as:

Cytokinejadjusted = Cytokinej − Cytokinejexpected.

As shown in Fiore-Gartland et al. (51) and above, adjustment
can reveal interesting information about the relative deviation in
cytokine levels in different individuals, which cannot be observed
when analyzing absolute cytokine concentrations.

We note that the CytoMod adjustment procedure utilizes the
values of all cytokines in a given dataset and may therefore
be sensitive to the specific cytokines that were measured.
To quantify the sensitivity of the adjustment procedure to
cytokine selection, we conducted the following analysis: Subsets
of cytokines were randomly selected from the original set of
37 cytokines in the PICFLU dataset; their size ranged between
2 and 36 cytokines. For the size of 36 cytokines, 37 subsets of
cytokines were drawn, each containing the entire set of cytokines
except for a single cytokine that was left out in each. For each
subset size between 2 and 35, 50 different subsets of cytokines
were randomly drawn. For each subset the adjustment procedure
was conducted over the selected subset and the Spearman
correlation was computed between the adjusted cytokine values
of this subset, and their corresponding adjusted values over
the entire set of 37 cytokines. Figure S1 presents the average
median correlation across all 50 subsets, where the median
was computed for each subset across all cytokines tested. We
found that when drawing subsets of more than 10 cytokines, the
average correlation to the original adjusted dataset was >0.95.
Furthermore, when drawing subsets of 25 cytokines, the average
correlation was 0.9899. This suggests that our adjustmentmethod
is robust given a sufficiently large set of cytokines.

2.3. Clustering
CytoMod is a modular approach for cytokine analysis that
clusters cytokines based on pairwise correlations, to both amplify
the signal they share and aid in interpretation by grouping
putatively co-signaling molecules. Cytokines are grouped
using a hierarchical clustering technique which iteratively pairs
cytokines (and groups of cytokines) with similar behavior to
generate a series of nested clusters. The clustering hierarchy
can be represented by a tree-like graph (dendrogram) in which
branches indicate the similarity between the formed subgroups
of cytokines. By slicing the tree at a certain level we can obtain
a set of distinct clusters. The dendrogram allows to graphically

portray the clusters hierarchy and visualize the structure and data
distribution in a manner that is intuitive for both computational
and non-computational practitioners (55, 56, 60).

In this study, cytokine measurements from each dataset
were clustered independently of the others. Measurements of
different compartment samples in the same study were clustered
independently due to notable differences in signaling patterns
as shown in two different studies (49, 51). Importantly,
clustering is performed over cytokines and not over subjects,
to obtain groups of cytokines with similar expression profiles
across subjects. Clusters were formed based on the correlation
of adjusted and absolute cytokine levels, separately. Complete-
linkage agglomerative hierarchical clustering was used to group
cytokines (variables) with the Pearson’s correlation coefficient as
the distance metric. Complete linkage, which joins subclusters
iteratively based on the closest maximum distance between
pairs of variables in the subclusters, was used because it tends
to form compact clusters. Since the approach suffers from
sensitivity to minor perturbations in the data (56), we employed a
bootstrap clustering method that was previously applied to gene
expression data (61) in order to increase cluster robustness. The
bootstrapping includes repetition of the clustering procedure on
multiple perturbed subsets of the data, each formed by randomly
drawing subject samples (with replacement) from the dataset.We
repeated the clustering procedure on subject-level bootstrapped
datasets 1,000 times. We recorded the number of times that
each pair of cytokines clustered together across these 1,000
runs. The final hierarchical clustering was performed on this
matrix of reliability fractions. Conceptually this can be thought
of as a bootstrap estimate of cluster membership, simulating
the reliability of each pair of cytokines to belong to the same
cluster in repeated experiments on perturbed data under the
same conditions.

The number of clusters (K) for each dataset was determined
using the Tibshirani “gap statistic” heuristic method (62), which
computes themarginal decrease in intracluster distance (ICD) for
different K values, compared to the expected decrease under a
null reference distribution of the data, assumed to be comprised
of a single cluster. The estimate of the optimal K is the K for
which the ICD falls the farthest below the reference curve while
also taking into account the estimated deviation of the sampling
distribution and simulation error (denoted by S). K is chosen as
the first K that satisfies

Gap(K) ≥ Gap(K + 1)− Sk+1.

In our implementation we chose to test K values between 1 and
11 and generate a reference dataset by shuffling each feature
(cytokine) independently of the others with 200 repetitions.
For both real and null data distances between cytokines were
defined using Pearson’s correlation coefficient. For the real
dataset bootstrapped clustering was performed as described
above. To constrain the number of modules to be smaller than
6, and at least 2, in cases where the estimated best K found
was not in these bounds or the condition was not satisfied
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for all K between 1 and 11, we chose K between 2 and 6
for which

max
K

Gap(K)−
(
Gap(K + 1)− Sk+1

)
.

We chose to limit the number of clusters to 6 in order to
reduce the formation of small (and possibly singleton) clusters.
This threshold also affects the increase in statistical power for
detecting associations, since as the number of clusters grows,
more hypotheses will be tested and the adjusted p-values will
decrease accordingly.

Finally, each cluster was used to calculate module scores for
each subject in each dataset. Module scores were computed as
the mean value of all cytokines that belong to the module after
standardizing cytokine values to mean zero and unit variance.

2.4. Associations With Clinical Phenotypes
The primary analysis of cytokine modules included tests for
associations with the clinical measures of disease severity
available for each dataset using regression. All non-binary input
and output variables were mean centered and variance scaled
to unit variance. Logistic regression was used for all binary
response variables and strength of effect was defined by an odds-
ratio per unit increase in log-cytokine titer. For continuous
response variables we used linear regression and strength of
effect was defined using the log-cytokine regression coefficient
(beta). Regression models controlled for the effects of variables
that were previously used in each of the studies (49, 51, 58), as
detailed in section 3.3. P-values for the coefficients describing
the associations of cytokines and symptom scores were adjusted
for multiple hypothesis tests within each cohort, compartment
and adjustment method. P-values for the coefficients between
module scores and symptom scores were also adjusted, separately
from the cytokine coefficients. We report associations using two
types of multiplicity adjustment methods: (1) false-discovery
rate (FDR) using the Benjamini Hochberg procedure (63); (2)
Family-wise error rate (FWER) using the Bonferroni-Holm
method (64). Only associations with FDR-adjusted q ≤ 0.2
are shown. Associations that were significant using the more
stringent FWER-adjusted p-value were marked using asterisks
in each figure. All of the associations discussed below were
FWER significant.

2.5. Defining Cytokine Cores
Cytokine measurements from each dataset were clustered into
modules as described in section 2.3. Since airway samples were
available only for two out of three studies, clustering comparison
was only performed for the blood samples results. Comparison
was performed for the absolute and adjusted clusters separately.
For each we recorded the number of times each pair of cytokines
clustered together in all three blood datasets. Cytokine cores were
defined as groups of cytokines that clustered together across all
three datasets. It should be noted that these cores may be refined
when additional cytokine profile datasets are available.

Cytokine cores associations with phenotypes were calculated
as described in section 2.4. A subject’s score for each core was
calculated based on themean cytokine concentration of cytokines

within the core, after standardizing each cytokine to mean zero
and unit variance. P-values for the coefficients describing the
associations of cytokines and phenotype scores were adjusted
for multiple hypothesis tests within each presented dataset
separately. P-values for the regression coefficients calculated for
the core scores were adjusted separately than the coefficients
calculated for individual cytokines. Individual cytokine p-values
were adjusted across all cytokines and not only for the cytokines
included in the core cytokine set.

Finally, we calculated pairwise Pearson correlations between
cytokine cores within each blood dataset, i.e., PICFLU, SHIVERS,
FLU09 and FLU09-healthy. P-values for the correlation
coefficients were adjusted for multiple hypothesis tests within
each dataset. The correlations were presented alongside each
other in order to highlight trends across all datasets.

3. RESULTS

We applied CytoMod to cytokine profiles of three independent
cohorts (see section 2.1 for details) of consented subjects
naturally infected with influenza virus: (1) PICFLU—a
prospective multi-center study of children admitted to intensive
care units with severe influenza virus infection (51); (2)
FLU09—a prospective study of children presenting to the
emergency room with influenza like-illness and their household
members (49); and (3) Southern Hemisphere Influenza and
Vaccine Effectiveness Research and Surveillance (SHIVERS)—a
prospective study of influenza virus infected New Zealanders
(58). The cohorts included 221, 161, and 87 subjects, respectively,
who all tested positive for influenza. The FLU09 study provided
an additional cohort of 142 healthy control volunteers that were
not included in the main analyses and were analyzed separately
in section 3.5.

To allow a direct comparison between the different
cohorts, we limited our analysis to 37 cytokines that were
measured from the blood of subjects in all three studies.
These cytokines were also used to profile nasal wash from
FLU09 subjects and endotracheal aspirates of PICFLU subjects.
Cytokine concentrations (pg/mL) and subject ages were log-
transformed for all analyses. Cytokine measurements from
each study were analyzed independently of the others due
to differences in subject characteristics and measurement
methods. Measurements from different compartments (e.g.,
blood, nasal) were also analyzed separately due to notable
differences in signaling patterns, as shown previously (49, 51).
In total, five datasets were analyzed: FLU09 plasma, FLU09
nasal wash, PICFLU serum, PICFLU endotracheal aspirates
and SHIVERS serum. We also analyzed an additional
dataset of healthy controls that were sampled in the FLU09
study (49).

3.1. Generating Cytokine Modules
To capture the underlying correlation structure induced by co-
signaling cytokines, we developed a clustering-based approach

to group cytokines into data-driven modules. Each module,

represents a group of cytokines that co-vary across individuals

within a given cohort. Modules are therefore defined separately
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for each cytokine dataset. The similarity between each pair

of cytokines is defined by their Pearson correlation coefficient
across all subjects, within a cohort. The similarity matrix is
computed separately for each compartment, based on previous
observations that found relatively low levels of correlations
between cytokines across compartments as compared to
within compartment similarities (49, 51). We computed the
cytokine pairwise similarity matrices for each of the five
datasets used in this study as outlined above (Figure 2A and
Figures S2A, S3A, S4A, S5A). To define cytokine modules, we
used an unsupervised hierarchical clustering algorithm that
groups cytokines based on their pairwise similarity. Importantly,
the algorithm does not incorporate any information regarding
clinical phenotypes (i.e., clusters are not defined based on
outcomes). The number of clusters was automatically selected.
Specifically, we used complete-linkage agglomerative hierarchical

clustering and the number of clusters (K) for each dataset
was determined using the Tibshirani “gap statistic” method
(62) (Figure 3A and Figures S6A–C), which selects the number
of clusters based on the marginal decrease of within-cluster
distances (see methods). Since minor perturbations of the data
could affect the clusters obtained, a reliability score over each
pair of cytokines was defined by computing the fraction of
times a pair of cytokines were assigned to the same cluster
over 1,000 randomly perturbed datasets (Figure 3B; see section
2.3). The final cytokine modules were defined over this pairwise
reliability matrix. Cytokine values within each module were
standardized (zero mean and unit variance) to ensure that
each was given equal weight within a module. Given a set of
cytokine modules, a subject-specific score was computed for
every module defined by the mean cytokine concentration of all
cytokines in the module, cytokine modules were subsequently

FIGURE 2 | Cytokine levels are highly correlated to each other and to the mean cytokine level of each subject. (A) Pairwise Pearson’s correlations among the absolute

plasma cytokine levels in the FLU09 cohort. Cytokines were sorted along both axes using hierarchical clustering (complete-linkage). (B) Correlations between cytokine

levels and mean cytokine levels for each subject. (C) Pairwise Pearson’s correlations between cytokines following adjustment to the mean cytokine level (see Methods

for details). Cytokines were sorted along both axes using complete-linkage.
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FIGURE 3 | Defining cytokine modules on the FLU09 adjusted plasma cytokine profiles. (A) Automated selection of the optimal number of modules. The Tibshirani

gap statistic is used to automatically determine the optimal number of modules. The cytokine profiles are clustered into K = 1− 11 clusters and the optimal K is

selected. The plot shows the δ gap statistic, defined as Gap(K)−
(
Gap(K + 1)− Sk+1

)
for K = 1− 11. The optimal number of modules (K=6) is selected by identifying

the first value of K for which this measure is positive, while also constraining it to vary between 2 and 6. (B) Heatmap of cytokine modules - Complete linkage

clustering over the Pearson pairwise correlation similarity measure is used to cluster cytokines into K modules, where K is decided using the gap statistic. A clustering

reliability score is computed over 1, 000 samplings of subjects that are sampled with replacement. The score for each pair of cytokines represents the fraction of times

they clustered together across 1, 000 random samples. The reliability score of K = 6 is presented here. The final modules are then constructed by clustering the

pairwise reliability scores, and are represented by the colored stripes below the clustering dendrogram.

used to detect associations between cytokine concentrations and
clinical phenotypes.

3.2. High Correlation Among Cytokines
Motivated Adjustment for Mean
Concentration
The high positive correlation among the majority of cytokines
in each compartment (or dataset) was also reflected in the
significant positive correlations between each cytokine
and the mean cytokine level within each subject (51)
(Figure 2B and Figures S2B, S3B, S4B, S5B). Thus, subjects
with a high concentration of one cytokine were relatively

likely to have high concentrations of most of the other
cytokines. We hypothesized that overall levels of immune
activation (e.g., absolute number of immune cells in the
blood) drive absolute cytokine concentrations. A high level

of immune activation could therefore obscure cytokines

expressed at relatively low levels. Furthermore, the absolute
cytokine concentration could also be affected by technical

artifacts such as sampling variability introduced by sample
collection methods. Therefore, we developed an approach

for adjusting cytokine measurements for the mean level
within each sample using regression (detailed in section

2.2). An adjusted cytokine measurement reflects the level of
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unexplained deviation of that cytokine in a specific sample,
from the expected cytokine level according to its association
with the mean estimated across all samples. Correlations
among cytokines after the adjustment can be substantially
different, revealing associations that were previously obscured
by the strong correlation with the mean (Figure 2C and
Figures S2C, S3C, S4C, S5C). Therefore, following our previous
work modules were constructed and analyzed using both
absolute and adjusted cytokine concentrations separately for
each dataset (51).

3.3. Modules Based on Absolute Cytokine
Levels Were Associated With Influenza
Clinical Phenotypes in Two Cohorts
For each study, we evaluated the association between each
absolute cytokine module and the relevant clinical phenotypes
recorded in the study, using linear or logistic regression models
(detailed in section 2.4). Regression models controlled for
the effects of age and other variables, as previously chosen
for each of the three cohorts (49, 51, 58). For purposes
of comparison, we also evaluated the association of each
absolute individual cytokine with the phenotypes. P-values
for the coefficients describing the associations of modules
and cytokines with clinical phenotypes were adjusted for
multiple hypothesis tests within each figure presented (i.e.,
across cytokines or cytokine modules, but within cohort,
compartment and absolute/adjusted module set). The P-
values for the module and cytokine coefficients were adjusted
independently. Family-wise error rate (FWER)-adjusted p-values
using the Bonferroni-Holm method (64) were calculated and
are presented in each figure using asterisks. Only associations
with a false-discovery rate (FDR)-adjusted q ≤ 0.2 are shown
[using the Benjamini’ Hochberg procedure (63)]. However,
only associations with FWER-p ≤ 0.05 were considered
statistically significant.

FLU09 - The associations with clinical phenotypes in
influenza-positive FLU09 absolute datasets were calculated
using linear regression adjusted for age (Figures 4A,C
and Tables S1, S3). Modules and cytokines were tested for
associations with several clinical phenotype groups recorded in
the study (detailed in section 2.1): upper respiratory tract (Upper
RT) symptoms, lower respiratory tract (Lower RT) symptoms,
systemic symptoms, gastrointestinal symptoms, total symptoms
and (log) viral-load (log-VL). Significant positive associations
were observed with the absolute plasma modules. For example,
absolute Blood Sample 3 module (BS3) was positively associated
with total and systemic symptoms, and absolute BS4 was
associated with lower RT symptoms (regression coefficients
of 0.529, 0.605, 0.322, and FWER p-values of 0.0035, 0.0037,
0.0304, respectively). Individual cytokines within these modules
were also significantly associated as follows: BS3 cytokines EGF,
GRO and IP-10 positively associated with total symptoms and
IP-10 also associated with systemic symptoms; the BS4 cytokine
Fractalkine (FKN) was positively associated with lower RT
symptoms. While most of the regression coefficients of these
cytokines were slightly higher than those of their modules, the

statistical significance of the absolute associations after FWER
adjustment was stronger for the modules than the individual
cytokines in 4 of 5 (significant) cases; only the significance of the
Fractalkine association was stronger than that of the BS4 module
to which it belongs. In addition, IL-10 was significantly associated
with both upper and lower RT, while the BS2 module to which
it belonged was not significantly associated with any symptoms.
This increase in statistical significance is directly attributable
to the reduction in the number of statistical tests across which
multiplicity adjustment is applied. In the absolute-module set
analysis of the nasal wash samples, the majority of cytokines
clustered together into one module (NW2), perhaps due to
high immune activation at the site of infection. Absolute NW2
was significantly positively associated with upper RT symptoms
(regression coefficient 0.46, FWER p = 0.029), however, NW2
cytokine IL-6 had a stronger significant positive association
with the same phenotypes. It should be noted that all of the
previously reported cytokine associations with symptom scores
identified using data from years 1 to 2 of the FLU09 study
(using an FDR threshold of 0.2) (49), were re-confirmed in
our current analysis using the complete cohort from years 1
to 5 (Figure S9), and additional associations were found in the
current analysis.

PICFLU - Positive significant correlations were also observed
in the absolute PICFLU serum associations with clinical
phenotypes portrayed in Figure 5A and Table S5. These
associations, calculated using logistic regression, were adjusted
for age and bacterial coinfection (see section 2.1 for details).
The absolute BS3 module was positively associated with both
shock and ECMO or death (odds ratio 2.75, 2.04, FWER p-
values 0.00002, 0.0286, respectively). The BS3 cytokines IL-
6 and IP-10 had an association with shock, while IL-8 and
MCP-1 had an association with both shock and pneumonia-
ARDS. The BS3 association with ECMO or death was significant
while none of the individual cytokines in the module were
significantly associated. The strength of the association with
shock for all individual BS3 cytokines was weaker than for
the module as a whole. On the contrary, absolute IL-8
and MCP-1 had a significant association with pneumonia-
ARDS, while the absolute BS3 module did not. The PICFLU
absolute endotracheal samples did not have any significant
associations with outcomes (FWER-p > 0.05; Figure S7A

and Table S7).
SHIVERS - Due to differences in sampling strategy during

the first and second years of the study, associations with
phenotype were calculated only for subjects from the first year
of the SHIVERS study (n = 52). Logistic Regression models
included adjustment for age, ethnicity and sampling time. No
significant associations were detected among absolute individual
serum cytokines, with severe acute respiratory illness (SARI)
(Figure S8A and Table S9). However, we note that univariate
associations previously reported for this cohort (58), which
were not adjusted for multiplicity testing across cytokines, were
in overall agreement with the cytokine associations reported
here for FLU09. In particular, EGF, GRO, sCD40-L and MCP-
1, all clustered together in SHIVERS to absolute module BS3
and positively correlated with SARI in the SHIVERS previous
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FIGURE 4 | FLU09 cytokine associations with clinical phenotypes. Associations were identified using linear regression controlling for patients age using both absolute

and adjusted plasma samples (A,B), and absolute and adjusted nasal wash samples (C,D). Modules of covarying cytokines were constructed separately for absolute

and adjusted cytokine measurements from plasma or nasal wash samples. We then tested associations with several clincal phenotypes described in section 2.1:

upper respiratory tract (URT) symptoms, lower respiratory tract (LRT) symptoms, systemic symptoms, gastrointestinal symptoms and log viral load (VL). Each cytokine

or module is indicated along the rows, grouped by their assigned module. Heatmap color indicates the direction and magnitude of the regression coefficient between

cytokine or module level with a given clinical phenotype. Only associations with false-discovery rate (FDR)-adjusted q-value ≤ 0.2 are colored. Asterisks indicate

family-wise error rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

analysis. In our current analysis of FLU09 these cytokines belong
to the absolute BS3 module, which was positively associated
with total and systemic symptom scores. In addition, Fractalkine,
VEGF, TNF-α and GCSF belong to the BS4 absolute module in
FLU09 which was positively associated with lower respiratory
tract symptom scores (LRT). They were also previously reported
to be positively associated with SARI in SHIVERS. In particular,
Fractalkine was also significantly associated with LRT scores
In FLU09 and had an odds-ratio of 16.52 for SARI in
SHIVERS (58).

3.4. Adjustment for Mean Cytokine Level
Reveals Negative Associations Between
Modules and Clinical Phenotypes
While none of the absolute concentrations of cytokines or their
modules were negatively associated with clinical phenotypes, we

found several significant negative associations using cytokines
and cytokine modules that had been adjusted for the mean
cytokine concentration. Interestingly, some, but not all of
the significant positive associations that were identified using
absolute cytokine concentrations were also significant after
adjustment for the mean.

FLU09 - as seen in Figure 4B, the adjusted BS1 module
containing FLT3L, IL-13, IL-1β , IL-4, IL-5, IL-7, IL-9, and
TNF-β was found to be significantly negatively associated
with total and systemic symptoms (regression coefficients –
0.557, –0.582, FWER p-values 0.0011, 0.008, respectively, as
detailed in Table S2). Individual cytokines in this module were
predominantly negatively associated with symptom scores, some
with FDR ≤ 0.2, however, none of these associations were
significant after FWER adjustment. The adjusted nasal wash
modules did not have any significant positive associations
with symptom scores (Figure 4D and Table S4). A single
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FIGURE 5 | PICFLU serum cytokine associations with clinical phenotypes

identified using logistic regression while controlling for patients age and

bacterial coinfection. Modules constructed of covarying cytokines [absolute (A)

and adjusted (B) measurements separately] from serum samples, were tested

for associations with the clinical phenotypes described in section 2.1: shock,

pneumonia-ARDS and ECMO or death. Each cytokine or module is indicated

along the rows, grouped by their assigned module. Heatmap color indicates

the direction and magnitude of the regression coefficient between cytokine or

module level with a given clinical phenotype with and without the complication.

Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are

colored. Asterisks indicate family-wise error rate (FWER)-adjusted p-values

with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

significant negative association was found between adjusted
EGF concentrations and viral load (regression coefficient -0.281,
FWER-p= 0.0157).

PICFLU - The adjusted BS4 module containing EGF, Eotaxin,
FGF-2, Fractalkine (FKN), GRO, IFN-α2, IL-12-P70, IL-7, MDC,
and sCD40-L was negatively associated with shock, pneumonia-
ARDS and ECMO or death (odds ratio 0.463, 0.598, 0.494,
FWER-p = 0.0002, 0.0155, 0.0283, respectively; Table S6). The
adjusted concentration of EGF (member of BS4) was also found
to be negatively associated with ECMO or death (OR = 0.211,
FWER-p 0.043), albeit more weakly that of the BS4 module. No
other individual adjusted cytokines were found to be negatively

associated with clinical phenotypes. The adjusted BS3 module,
which contained a similar group of cytokines to that of the
absolute BS3 module, had positive associations with shock,
pneumonia-ARDS and ECMO or death (odds ratio 3.01, 1.75,
2.46, FWER p-values 0.000002, 0.0095, 0.0042, respectively). The
BS3 adjusted cytokines IL-6 and IP-10 were associated with
shock, while IL-8 and MCP-1 were associated with both shock
and pneumonia-ARDS. As with the absolute cytokine analysis,
adjusted BS3 was associated with ECMO or death, while none of
its constituents were associated on their own. The significance of
all adjusted BS3 member cytokines with shock was weaker than
themodule’s; the significance of the adjusted IL-8 associationwith
pneumonia-ARDS was also weaker than that of BS3. However,
the significance of the association of adjusted MCP-1 with
pneumonia-ARDS was stronger than that of its module BS3.

SHIVERS - While no significant associations were detected
among adjusted individual serum cytokines, we found that
the adjusted BS6 module was positively associated with severe
acute respiratory illness (SARI) (Figure S8B and Table S10).
Furthermore, IL-4, IL-13, and TNF-β were part of the adjusted
BS1 module of SHIVERS and were also in the adjusted BS1
module of FLU09 that was negatively associated with total and
systemic symptom scores, as well as negatively associated with
SARI in the previous report on SHIVERS (58).

3.5. Subsets of Cytokine Clusters Were
Similar Across Datasets
We next asked whether cytokine modules were consistent across
datasets, i.e., were there cytokine “cores”—clusters of cytokines
that were consistently correlated during influenza infection. Since
airway samples were available only for two out of three cohorts,
this analysis was only performed using blood sample (serum
or plasma) modules. To identify cytokine cores, we tallied the
number of times that each pair of cytokines clustered together
across the three blood datasets (Figures 6A,B). Cytokine cores
were defined as groups of cytokines that clustered together in
all three datasets. Cytokine cores were defined separately for
the absolute and adjusted cytokine modules (Table 2). There is
overall agreement between the absolute and adjusted cytokine
cores. The most striking difference is the division of IP-10,
MCP-1, IL-8, and MIP-1α into two different subsets.

To determine whether the cytokine cores were unique to
influenza infected subjects, we constructed modules of adjusted
and absolute plasma samples provided by 142 healthy volunteers
in the FLU09 study. We found that overall, cytokine cores were
consistent across influenza-infected and healthy controls with
two exceptions: in the absolute cores, GCSF did not cluster
together with other core-6 cytokines and cores-4 and -6 were not
identified in the adjusted modules of healthy controls.

3.6. Core Modules Were Also Associated
With Clinical Phenotypes
Each absolute or adjusted core was composed of cytokines that
clustered together into the same module in all three cohorts
(Tables 3, 4). For example, adjusted core-2 was composed of
IL-12-P40, IL-15 and IL-2, which were members of PICFLU
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FIGURE 6 | Defining cytokine cores. By leveraging information across cytokine profile datasets, we can identify cytokine cores—subsets of cytokines that consistently

co-signal across all three blood datasets used in this study. Heatmaps of the number of times each pair of cytokines clustered together in all three cohorts, for

adjusted (A) and absolute (B) blood sample data independently. Cytokine names are colored by cytokine cores.
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TABLE 2 | Cytokine cores identified in absolute and adjusted blood samples

independently.

Adjusted blood cores Absolute blood cores

(1) GRO, MDC, sCD40-L, EGF (1) GRO, MDC, sCD40-L

(2) IL-2, IL12-P40, IL-15 (2) IL-2, IL-12-P40, IL-15

(3) IL-1β, IL-4, IL-13 (3) IL-1β, IL-4, IL-13, IL-3

(4) MIP1-β, TNF-α (4) MIP1-β, TNF-α

(5) IP-10, MCP-1, IL-8, MIP1-α (5) IP-10, MCP-1

(6) GCSF, IL-6 (6) GCSF, IL-6, IL-8, MIP-1α

(7) IL-7, IL-9

TABLE 3 | Modules that construct the absolute cytokine cores by dataset.

Absolute core PICFLU FLU09 SHIVERS

(1) BS4 BS3 BS3

(2) BS1 BS2 BS2

(3) BS1 BS1 BS1

(4) BS5 BS4 BS3

(5) BS3 BS3 BS3

(6) BS3 BS4 BS3

(7) BS5 BS1 BS2

adjusted BS1, FLU09 adjusted BS5 and also SHIVERS adjusted
BS5. We noted that most adjusted and some of the absolute
cores (Figure 6) were composed of cytokines that were members
of modules that exhibited strong associations with clinical
phenotypes. For example, adjusted core-1 contained GRO,MDC,
sCD40-L, and EGF, members of the PICFLU adjusted module
BS4 (Figure 5B), which was negatively correlated with poor
clinical phenotypes. Surprisingly, they were also members of
the adjusted module BS3 from FLU09 (Figure 4B), which in
contrast had mostly positive associations (significant only in the
absolute measurements). Adjusted core-3 contained IL-1β , IL-
4, and IL-13 that were part of the FLU09 adjusted module BS1,
which was negatively associated with several symptom scores.
Adjusted core-5 contained IP-10, MCP-1, IL-8, and MIP-1α
that were part of FLU09 adjusted BS3 mentioned above, and
also of adjusted PICFLU module BS3 which had significant
positive associations with all phenotypes. Absolute core-5 and
absolute core-6 cytokines were part of FLU09 and PICFLU
absolute modules that had significant positive associations with
phenotypes (Figures 4A, 5A).

We then tested for associations between the cytokine cores
and clinical phenotypes, using the same methodology described
above. A subject’s score for each core was calculated based
on the mean cytokine concentration of cytokines within the
core, after standardizing each cytokine to mean zero and unit
variance. Figure 7 portrays the associations to clinical outcomes
and symptoms for absolute and adjusted blood cytokines of
influenza-positive FLU09 and PICFLU subjects, respectively.
P-values for the coefficients describing the associations of
cytokines and symptom scores were adjusted for multiple

TABLE 4 | Modules that construct the adjusted cytokine cores by dataset.

Adjusted core PICFLU FLU09 SHIVERS

(1) BS4 BS3 BS3

(2) BS1 BS5 BS5

(3) BS1 BS1 BS1

(4) BS3 BS4 BS3

(5) BS3 BS3 BS3

(6) BS3 BS4 BS4

hypothesis tests within each presented dataset separately. P-
values for the regression coefficients calculated for the core scores
were adjusted independently of the coefficients calculated for
individual cytokines. Individual cytokine p-values were adjusted
across all cytokines and not only for the cytokines included in the
core cytokine set.

FLU09 - None of the adjusted plasma FLU09 cores were
significantly associated with clinical symptoms, but trends were
in agreement with the module associations (Figure 7 and
Tables S11, S12). However, absolute cores were associated with
symptoms: absolute core-1 was associated with total symptoms;
core-4 was associated with lower and upper RT symptoms;
and core-5 was associated with total and systemic symptoms.
Each core’s corresponding module was similarly associated with
symptoms: BS3 which contained absolute core-1 and core-5
cytokines was associated with total and systemic symptoms; BS4
which contained absolute core-4 cytokines was associated with
lower RT symptoms but not with upper RT symptoms (while
core-4 itself was associated with both).

PICFLU - Significant associations were found with both
absolute and adjusted cores (Figure 7 and Tables S13, S14).
Absolute core-5 was positively associated with shock, absolute
core-6 was positively correlated with shock and ECMO or death.
Absolute core-5 and core-6 cytokines were members of absolute
module BS3, which was also positively associated with shock
and ECMO or death. Three adjusted cores, originating in two
different modules, were associated with outcomes: adjusted core-
1 was negatively associated with shock and ECMO or death,
adjusted core-5 was positively associated with shock, pneumonia-
ARDS and ECMO or death, and adjusted core-6 was positively
associated with shock. Adjusted BS4 which contained adjusted
core-1 cytokines was associated with all outcomes, while core-1
was negatively, but not significantly associated with pneumonia-
ARDS after FWER adjustment. Adjusted BS3 which contained
adjusted core-5 and -6 cytokines was positively associated with
all outcomes.

SHIVERS - In the SHIVERS cohort, neither the absolute
or adjusted cores were significantly associated with the SARI
phenotype. The lack of associationmay be due in part to the small
sample size in the first year of the study (n= 52).

3.7. Correlations Among Core Modulations
Were Consistent Across Cohorts
We computed correlations between cores within each of the
blood cytokine profile datasets, including the FLU09 healthy
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FIGURE 7 | Cores constructed from groups of covarying cytokines (absolute and adjusted measurements separately) as detailed in section 3.5. Associations

between cytokine cores and clinical phenotypes are shown for FLU09 (A,C) and PICFLU (B,D) for both raw and adjusted cytokine levels. Blood cytokine cores

associations with phenotypes were estimated using regression while also controlling for other variables as described in section 3.3. Each cytokine or core is indicated

along the rows. Heatmap color indicates the direction and magnitude of the regression coefficient. For each individual cytokine FDR and FWER adjustments are

shown are controlled over all 37 cytokines. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error rate

(FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

controls (see section 2.5 for details). Overall we found mostly
positive significant correlations between absolute cores that were
consistent across all datasets, with a few notable exceptions:
cores-1 and -7 and cores-3 and -4 (Figure 8A).

We also computed pairwise correlations for the adjusted cores
(Figure 8B). Similarly to the absolute cores, overall correlations
between cores were consistent across datasets except for one pair
of cores (core-1 and core-5).

4. DISCUSSION

Here we presented CytoMod—a data driven approach for
analyzing cytokine profiles and their association with clinical
phenotypes. Our approach leverages the inherent redundancy

of cytokines to form modules—clusters of cytokines whose
signals correlate across a cohort of individuals. CytoMod is an
unsupervisedmethod—i.e., it does not use any information about
clinical phenotypes or outcomes to identify cytokine modules.
Using cytokine modules increases the statistical power to detect
associations with clinical phenotypes, by amplifying the signal
within a module relative to the noise, as well as reducing the
number of tests subject to multiplicity adjustment. It also allows
for the identification of data-specific co-signaling cytokines,
which may provide clues about the underlying immunological
pathways. A preliminary version of CytoMod was applied in the
analysis of the PICFLU cohort (51). Importantly, the method
presented here includes automated selection of the number of
modules using the gap-statistic heuristic. Indeed, when applied
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FIGURE 8 | Pairwise Pearson correlations between absolute (A) and adjusted (B) blood cytokine cores within each dataset, presented with vertical stripes from left to

right: PICFLU, SHIVERS, FLU09, and FLU09-healthy. Heatmap color indicates the correlation coefficient. P-values for the coefficients were adjusted for multiple

hypothesis tests within each dataset separately. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error

rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

to the PICFLU cohort, it identified different numbers of modules
than those analyzed in our previous work.

To our knowledge CytoMod is the first method for the
analysis of cytokine profiles and clinical phenotypes that utilizes
modules identified within cytokine expression data. In the age
of multi-omics approaches, novel strategies for the integration
of multiplex data with clinical outcome information can assist
in the identification of complex pathological alterations of
physiological networks. CytoMod only requires a dataset of
cytokine measurements and (optionally) clinical phenotypes.
Importantly, it does not assume that modules necessarily capture
biological function.

CytoMod is based on unsupervised clustering which can help
uncover inherent structures within a given dataset. Our work
is related to previous work on methods for cluster analysis of
variables (65–67), which groups together variables which are
strongly related to each other and hold similar information.
CytoMod can also be viewed as a dimensionality reduction
method for cytokine profiles. There are a variety of other
methods for dimensionality reduction that have been widely used
for visualization and analysis of biological data. These include
methods such as Principal Components Analysis (PCA) (68, 69),
Linear Discriminant Analysis (LDA) (70), Factor Analysis (71)
and t-sne (72). Most of these methods project the samples
into a low-dimensional space by creating new features from
linear combinations of the original features. In this new space
the original coordinates (or features/cytokines) are not retained,
thereby reducing the ability to draw biological interpretation.
In contrast, our modules retain interpretability by grouping
together individual cytokines that are co-expressed and can be
further studied to allow gaining new insights into the underlying
biological processes that generate these structures.

We applied CytoMod to three independent cohorts of
influenza-infected subjects. The analyses of SHIVERS and
FLU09 datasets presented here included previously unpublished

data from additional study years, as well as data from healthy
volunteers. To allow comparisons between the cohorts, we
limited the number of cytokines analyzed to a subset of 37
cytokines that were quantified in all three cohorts. We found that
in two of these cohorts, modules were significantly associated
with clinical phenotypes, and in most cases the associations
were stronger than those of individual cytokines within the
module. Specifically, we found that across all modules in these
two datasets, the association of the module with outcomes
was more significant than that of an individual cytokine in
14 out of 22 cases in which the cytokine’s association was
significant. Furthermore, in 6 cases, a module had a significant
association with a phenotype while non of its cytokines had any
significant association.

In our previous analysis of FLU09, we analyzed only 11
pre-selected cytokines using data from years 1 to 2. In our
current manuscript, we analyzed data from the entire study
(years 1–5). We identified novel associations between modules
and clinical phenotypes. Specifically, the adjusted BS1 module
containing FLT3L, IL-13, IL-1β , IL-4, IL-5, IL-7, IL-9, and TNF-
β was found to be significantly negatively associated with total
and systemic symptoms. Out of these cytokines, only IL-1β
was included in the previous analysis. In addition, we found
novel associations of the absolute EGF, GRO, FKN levels that
were not previously reported. In the analysis of the PICFLU
study, which only included children admitted to the ICU with
influenza infection, we found that the serum module BS3 is
significantly associated with Shock and ECMO/death outcomes.
Interestingly, this module contains IL-6, IL-8, and MCP-1, which
have been previously reported to be hyperactivated in subjects
with severe influenza infection (28). No significant associations
with clinical phenotypes were detected in the SHIVERS cohort,
though this may be due in part to its small sample size (n =

52), and sampling variability (58) which further limits the ability
to detect associations. Interestingly, we note that univariate
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associations previously reported for this cohort (58), which were
not adjusted for multiplicity testing across cytokines, were in
overall agreement with the module associations reported here for
FLU09 and in some cases with the cytokine cores.

We focused here on analyzing cytokine associations with
outcomes that were significant following a stringent FWER
adjustment procedure. In fact, all of the previously reported
FDR-adjusted FLU09 associations based on data from years
1–2 (49) were also significant using FDR-adjustment on the
complete years 1–5 dataset, and three of them were also FWER
significant (when adjusted across all 37 cytokines analyzed
here). These findings suggest that many of the associations with
FDR q-values ≤ 0.2 may also be worth further exploration
(Figure S9). The fact that many individual cytokines within
FWER significant modules have associations with clinical
phenotypes with the less stringent FDR q-value threshold
of 0.2, while only a few of them have FWER significant
associations, demonstrates the increase in statistical power
provided by the modular cytokine approach. The CytoMod
method considers both absolute and adjusted cytokine levels,
since immune cells may be sensitive both to absolute and
relative cytokine concentrations (73–75). While some positive
associations with clinical phenotypes were observed using both
the absolute and adjusted cytokines and modules, we found
that significant negative associations with clinical phenotypes
were found only with the adjusted modules. This is likely due
to the fact that adjustment to the overall cytokine expression
level may uncover differences in cytokine levels that are
expressed at relatively low levels. Specifically, we found that
the adjusted BS1 module in FLU09 was negatively associated
with total and systemic symptoms, and that the adjusted
BS4 module in PICFLU was negatively associated with the
clinical phenotypes of shock, pneumonia-ARDS and ECMO-
death. Interestingly, some of the BS4 cytokines were positively
associated to FLU09 symptom scores when considering the
less stringent FDR q-value ≤ 0.2. These results highlight
the importance of analyzing both absolute and adjusted
cytokine levels.

By analyzing three independent cohorts of subjects naturally
infected with influenza, we were able to identify cytokine
“cores”—subsets of cytokines that consistently clustered together
across datasets. Cores were extracted from the modules directly
and were identified without using any information about
clinical outcomes or subject demographics. Interestingly, the
majority of these cores clustered together in the set of 142
healthy controls from the FLU09 study, suggesting that these
cores may represent sets of co-signaling cytokines. Some
of these cores include cytokines that have been reported
to have similar roles: For example: (1) adjusted core-3
which includes IL-1β , IL-4, and IL-13 contribute to epithelial
repair mechanisms (4); (2) IP-10, MCP-1, IL-8, and MIP-
1α which belong to adjusted core-5 are chemokines that are
key inflammatory mediators (1); (3) IL-2, IL-15, and IL-12-
p40 in adjusted and absolute core-2 are involved in T-cell
activation (76, 77).

While we found that the cytokine cores were significantly
associated with clinical phenotypes, the associations of the

cytokine modules that were defined separately for each dataset
were overall stronger. This is not surprising for two reasons:
(1) using the strict definition of cores used here (co-clustering
in all 3 datasets), cores are typically smaller than data-driven
modules and are more sensitive to measurement noise; (2) Data
driven modules of a specific cohort may also be affected by
other covariates which may be specific to that cohort, and are
not captured by the cytokine “cores” which are created using
multiple datasets.

We analyzed correlations between cytokine cores, and
compared these across datasets in both the absolute and
adjusted datasets.We found that overall, the correlations between
different cytokine cores were consistent across the three datasets,
as well as in a cohort of healthy controls. However, we found one
notable exception: adjusted core-1 and core-5 were negatively
associated only in the PICFLU dataset. This is also reflected in
the fact that core-1 (EGF, GRO, MDC, and sCD40-L) was weakly
positively associated with outcome in a cohort of mild influenza
infection (FLU09) and was negatively associated with outcome of
severe influenza infection (PICFLU).

The existence of cytokine cores, and their association with
clinical phenotypes despite a variety of differences between the
cohorts suggest that these cores may represent stable underlying
cytokine modules that consistently co-signal during influenza
infection, and in some cases also in a healthy state. Cytokine
cores may relate to specific functions and underlying biological
processes that govern the complex cytokine signaling network.
Nonetheless, defining robust cytokine cores requires large scale
analysis of multiple cytokine datasets. As additional cytokine
profile datasets are generated and made publicly available,
cores can be dynamically re-defined, including defining “softer”
probabilistic cores based on frequency of co-occurrence across
many datasets and conditions. Identification of consistent
cytokine subsets may provide a basis for the selection of
biomarkers and the development of targeted immune assays,
as part of a novel approach for developing future point-of-care
diagnostic tests based on cytokine measurements that may be
used for many different infections.

CytoMod groups cytokines intomodules so that each cytokine
belongs to a single module. We hypothesize that similar to genes,
each cytokine may play several functional roles under different
immune contexts. This would be best captured by “soft” modules,
in which each cytokine may belong to more than one module.
Once a sufficiently large number of cytokine datasets are analyzed
such softer modules may be identified and annotated, similar
to annotations of gene modules (52, 57). Our analysis of three
datasets should be viewed as a first step in this direction.

CytoMod can be applied to any cytokine profile dataset
and does not make any assumptions regarding the specific
technology that was used to quantify cytokines. Furthermore,
the modular approach allows identification of co-signaling
cytokines across study years, even if the specific kit used to
quantify cytokines was changed during the study, or other
changes to the study were implemented. This is due to the
fact that correlations are computed between cytokines across
study subjects. Indeed despite significant differences between
the cytokine measurements in years 1 and 2 of the SHIVERS
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study, we used both years to generate cytokine modules for
this dataset.

In summary, using a modular approach to analyze cytokine
profile datasets provides two major advantages: (1) It increases
statistical power to detect associations with clinical phenotypes;
and (2) By comparing modules obtained from different
independently sampled datasets, we can identify cytokine cores
- sets of consistently co-signaling cytokines. By aggregating
cytokine information across datasets, this approach may
help identify inherent, and condition-specific groupings
of cytokines, providing the basis for future mechanistic
molecular studies. A Python implementation code of CytoMod
can be found at https://github.com/liel-cohen/CytoMod
as well as in an interactive Jupyter Notebook available at
https://nbviewer.jupyter.org/github/liel-cohen/CytoMod/blob/
master/cytomod_notebook.ipynb.
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