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Editorial on the Research Topic
 Methods and Applications of Computational Immunology



Understanding the immune system is of paramount importance for the prevention and treatment of disease as well as the development of novel immunotherapies and immunodiagnostics in the framework of precision immunology and medicine. Recently, the advent of high-throughput biological methods has provided unprecedented insight into the molecular mechanisms underlying immune cell dynamics. The immense complexity of innate and adaptive immunity spanning several orders of spatial and temporal scales may, however, only be grasped by a systems computational immunology approach—specifically, by developing powerful computational approaches, which process, model, and integrate these big immunological data.

This Research Topic was designed to give a comprehensive overview of current methods and applications of computational immunology for the dissection of mammalian immunity. Twenty-nine articles are included in this Research Topic, and are categorized into the following types: 13 Original Research (Chaara et al.; Davidsen and Matsen; Davydov et al.; Dowling et al.; Egorov et al.; Eliyahu et al.; Gadala-Maria et al.; Meyer-Hermann et al.; Neve-Oz et al.; Priel et al.; Simon et al.; Zhou et al.; Toledano et al.), 5 Methods (Cohen et al.; Ma et al.; Manavalan et al.; Nouri and Kleinstein; Safonova and Pevzner), 5 Technology Reports (Avram et al.; Bukhari et al.; Mahajan et al.; Rosenfeld et al.; Vander Heiden et al.), 4 Reviews (Collins and Watson; Gfeller and Bassani-Sternberg; Schramm and Douek; Yermanos et al.), 1 Hypothesis and Theory (Cohen and Efroni), and 1 Perspective (Jansen et al.).

These papers address a broad range of conceptual challenges in computational immunology. The majority of papers focus on the development and application of computational tools for immune repertoire analysis. Specifically, they elucidate B-cell receptor phylogenetics and somatic hypermutation (Davidsen and Matsen; Schramm and Douek; Yermanos et al.), study the inference of immunoglobulin germline genes and polymorphisms (Gadala-Maria et al.; Safonova and Pevzner), shed light on immunoglobulin light chain characteristics (Collins and Watson; Toledano et al.), compare immune repertoires in aging and disease (Egorov et al.), and improve and/or develop novel computational tools for clustering immune receptor sequences (Priel et al.; Nouri and Kleinstein), immune repertoire benchmarking and error correction (Chaara et al.; Ma et al.). Furthermore, storage and standardization of immune receptor data were advanced by the development of a webserver for immunoglobulin analysis pipelines (Avram et al.), a new database of epitope-specific B-cell and T-cell receptors (Mahajan et al.), and guidelines for immune receptor data format standardization (Bukhari et al.; Vander Heiden et al.). The antigen targets of immune receptor repertoires were investigated in works on B-cell epitope prediction (Manavalan et al.) and antigen presentation (Gfeller and Bassani-Sternberg).

In addition to immune receptor biology, the dynamics of immune cells were explored for germinal center B cells (Meyer-Hermann et al.), plasma cell ontogeny (Zhou et al.), and regulatory T-cell proliferation (Dowling et al.). Immune cell signaling was investigated for cytokines (Cohen et al.), the immune synapse (Neve-Oz et al.), and macrophage function (Jansen et al.).

Finally, a conceptual paper summarized the similarities between the mammalian immune system and supervised machine learning (Cohen and Efroni).

We would like to express our deepest gratitude and appreciation to all the authors who contributed papers, and to the reviewers and editors without whose invaluable work the publication of this Research Topic would not have been possible.
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Unique molecular identifiers (MIDs) have been demonstrated to effectively improve immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermutations in antibody repertoire sequencing. However, evaluating the sensitivity to detect rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized approach to estimate T cell clone size from TCR RNA molecule quantification. This limited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as detecting minimal residual disease in lymphoid malignancies after treatment, evaluating effectiveness of vaccination and assessing degree of infection. Here, we describe using an MID Clustering-based IR-Seq (MIDCIRS) method to quantitatively study TCR RNA molecule copy number and clonality in T cells. First, we demonstrated the necessity of performing MID sub-clustering to eliminate erroneous sequences. Further, we showed that MIDCIRS enables a sensitive detection of a single cell in as many as one million naïve T cells and an accurate estimation of the degree of T cell clonal expression. The demonstrated accuracy, sensitivity, and wide dynamic range of MIDCIRS TCR-seq provide foundations for future applications in both basic research and clinical settings.

Keywords: MID clustering-based IR-Seq TCR repertoire sequencing, molecular identifiers, sub-clustering, naïve T cells, CMV-specific T cells


INTRODUCTION

Immune repertoire sequencing (IR-seq) has become a useful tool to quantify the composition of B or T cell antigen receptor repertoires in basic research, such as vaccination (1–3), immune repertoire development (4–9), and lymphocyte lineage tracking (2, 9), as well as in various clinical settings, such as minimal residual disease (MRD) monitoring (10), hematopoietic stem cell transplant recovery monitoring (11), and cancer patient prognosis (12, 13). However, early IR-seq experiments suffered from high PCR and sequencing errors that limited their ability to perform accurate repertoire diversity and abundance quantification. This bottleneck also limits the sensitivity of many IR-seq-based assays, such as MRD monitoring. Recently, we and others introduced molecular identifiers (MIDs) to IR-seq and DNA/RNA sequencing to reduce errors by tracking each RNA molecule through PCR and sequencing. This approach has significantly improved the accuracy of repertoire profiling (9, 14–19), especially to distinguish antibody somatic hypermutations from PCR and sequencing errors. However, several challenges remain regarding how to use MIDs correctly and how to use MIDs for cell clone size estimate. First, erroneous MIDs resulting from PCR or sequencing errors make accurate MID counting difficult. Second, there is a lack of general guidelines of required sequencing depth to saturate MID counts. Third, how to use RNA molecular counting to estimate T cell clone size has yet to be established.

These challenges become roadblocks to accurately quantify T cell receptor (TCR) or BCR RNA molecule copy number, which is important in estimating clonal expansion and identifying rare clones. Robins et al. developed QuanTILfy to attempt to address this problem by counting TILs and assessing T cell clonality in tissue samples through droplet digital PCR (dPCR) of rearranged TCRβ loci (20). However, by partitioning TCR Vβ into eight non-overlapping subgroups, this method lacks the sensitivity to identify unique CDR3 of each clonality, not to mention rare clones. Therefore, a more comprehensive method to quantify TCR or antibody transcripts with high sensitivity while retaining accurate clonal diversity is needed for both standardizing basic IR-seq studies and applying it in clinical decision-making, such as detecting MRD in lymphoid malignancies after treatment, evaluating effectiveness of vaccination, and assessing degree of infection.

We recently developed a more generalized approach with reduced MID length to identify each individual RNA molecule using a sequence-similarity-based clustering method to separate sequencing reads into sub-clusters within a group of sequencing reads that have the same MID. We applied this MID Clustering-based IR-Seq (MIDCIRS) to study age-related antibody repertoire development and diversification during acute malaria (9). In this study, we applied MIDCIRS to TCR [MIDCIRS TCR repertoire sequencing (TCR-seq)] and used CD8+ T cells as a test bed to build a model to count TCR RNA molecule copy number based on input cell numbers, percentage of RNA input, and sequencing depth. We also demonstrated a significant improvement in detection sensitivity. A previous study using a different repertoire sequencing methodology reported the capacity to resolve one in 10,000 cells (21). With MIDCIRS TCR-seq, we were able to detect one unique T cell clone in 1,000,000 T cells. In addition, we applied MIDCIRS TCR-seq to examine T cell clonal expansion in CMV infection and showed that sensitive and accurate quantification of the TCR RNA molecule copy number is essential to quantify a single-cell’s worth of TCR transcripts and to assess the degree of clonal expansion. In summary, we showed the significance of the sub-clustering step of MIDCIRS in preventing false MID group generation, which enabled highly accurate clonal type discovery. This study provides a framework for leveraging the sensitivity and accuracy of molecular barcoded IR-seq in MRD detection and assessing clonal expansion in infection and vaccination.



MATERIALS AND METHODS


Naïve CD8+ T Cell Sorting

Human leukocyte reduction system chambers were obtained from de-identified donors at We Are Blood (Austin, TX, USA) with strict adherence to guidelines from the Institutional Review Board of the University of Texas at Austin. CD8+ T cell enrichment was done following the protocol described previously (22) using RosetteSep CD8+ T Cell Enrichment Cocktail (STEMCELL) together with Ficoll-Paque (GE Healthcare). Then, RBCs were lysed using ACK Lysing Buffer (Lonza). After washing in phosphate-buffered saline with fetal bovine serum, the cell mixture was passed through a cell strainer (Corning) and ready for use. Naïve CD8+ T cells were FACS-sorted into RLT Plus buffer (Qiagen) supplemented with 1% β-mercaptoethanol (Sigma) based on the phenotype of CD8+CD4-CCR7+CD45RA+ using BD FACSAria II cell sorter.



CMV CD8+ T Cell Enrichment and Sorting

CMVpp65:482-490 (NLVPMVATV) was used to prepare streptamers as previously described (23). Miltenyi anti-phycoerythrin microbeads and magnetic column were used to bind and enrich CMVpp65-specific T cells (22). The flow-through was collected for background staining. The enriched fraction was eluted off the column and washed into cell buffer. The following antibody panel was used to stain both the enriched and flow-through fractions: CD4, CD14, CD16, CD19, CD32, and CD56 (BioLegend) as a dump channel to stain residual non-CD8 T cells, and CD45RA, CCR7, CD27, and IL7R (BioLegend). 7-aminoactinomycin D was used as a viability marker. Dump−Streptmer+CD45RA+CCR7−CD27−IL7Rlo live T cells were sorted into RLT Plus buffer supplemented with 1% β-mercaptoethanol using BD FACSAria II cell sorter.



Bulk TCR Library Generation and Sequencing

Total RNA was purified using All Prep DNA/RNA kit (Qiagen) following the manufacturer’s protocol. Library preparation and QC were similar to protocols described previously (9) using TCR primers (Table S5 in Supplementary Material). Reads of the same library from all runs were combined and analyzed.



dPCR of TCR

Total RNA purified from sorted CD8+ T cells and cultured CMV-specific CD8+ T cell lines were reverse transcribed with polyT primers (Table S5 in Supplementary Material) using Superscript III in 20 µl reaction following the manufacturer’s protocol. 2 µl of cDNA was subsequently used on QuantStudio 3D dPCR system following manufacturer’s protocol.



Preliminary Read Processing

We followed the similar procedure as described previously to generate consensus sequences (9). First, only reads that have exact TCR constant sequences were kept for further analysis. These reads were then cut to 150 nt starting from constant region to eliminate high error-prone region at the end of reads. These preprocessed reads were split into MID groups according to 12-nt barcodes.



MID Sub-Cluster Generating and Filtering

For each MID group, a quality threshold clustering was used to group reads derived from a common ancestor RNA molecule and separate reads derived from distinct RNAs as previously described (9). Briefly, a Levenshtein distance of 15% of the read length was used as the threshold (9). For each subgroup, a consensus sequence was built based on the average nucleotide at each position, weighted by the quality score. In the case that there were only two reads in an MID subgroup, we only considered them useful reads if both were identical. Each MID subgroup is equivalent to an RNA molecule. Next, we merged all of the identical consensus to form unique consensus sequences. Further, we applied filtering of unique consensus sequences after sub-cluster generation by (a) removing non-functional TCR sequences and (b) removing sequences with lower MID counts that are one Levenshtein distance away from the other. Then, for each unique consensus sequence, we removed MID sub-clusters if their reads are less than 20% of maximum read count based on the fitting of two negative binomial distribution (Figure S5 in Supplementary Material). Scripts for this section can be downloaded at https://github.com/utjianglab/MIDCIRS.



Theoretical Percentage of MIDs That Need Sub-Clustering

We modeled the process of MID labeling as a Poisson distribution. Given the total number of MIDs being M and the number of target molecules being N, the probability that a unique MID will occur k time(s) is:

[image: image1]

Thus, P0 and P1 are the probability that a MID will be tagged 0 and 1 time, respectively, and the percentage of MIDs that need sub-clustering, F(k > 1), is given by:

[image: image1]

With over 16 million MID combinations from 12 random nucleotides, when the number of target molecules, N is less than 5,000,000, Eq. 2 is an approximate linear function (Figure 1B).


[image: image1]
FIGURE 1 | MID Clustering-based IR-Seq improves accuracy of T cell receptor (TCR) diversity estimation with sub-clustering. (A) The percentage of observed molecular identifiers (MIDs) containing sub-clusters is linearly dependent on RNA input, which is defined as cell number multiplied by percentage of RNA (e.g., 20,000 cells with 10%RNA is equivalent to 2,000 RNA input). Line represents linear regression fit, F-test on the slope, p < 10−9. (B) The theoretical percentage of MIDs with sub-clusters is approximately linearly dependent on copies of target molecules when copies of target molecules are less than 5,000,000 (bottom right insert). The theoretical percentage of MIDs with sub-clusters was calculated by Eq. 2 in Section “Materials and Methods.” (C) Rarefaction curve of unique complementarity-determining regions 3 (CDR3s) with or without sub-clustering. Number of unique CDR3s in three libraries made with three different RNA inputs from sorted one million naïve CD8+ T cells are shown here. Data from other cell inputs are in Figure S2 in Supplementary Material. (D) Illustration of consensus TCR sequence building without (top) and with (bottom) sub-clustering. Top: without sub-clustering, chimera sequences are generated when different TCR RNA molecules are tagged with the same MID; bottom: TCR RNA molecules that are tagged with same MID are sub-clustered to reveal truly represented TCR sequences. Short vertical black lines indicate nucleotide differences between two TCR sequences.




Diversity Coverage and RNA Copy Number Simulation

The estimation of diversity will be affected by the initial RNA input (percentage of initial RNA used to construct the sequencing library). We used a statistical model to estimate the diversity coverage for the naïve T cells we sorted based on RNA sampling depth.

For N observed RNA molecules, there are K different RNA clones. The RNA molecule copy number of each clone is mi (i∈(1,K)), whose sum equals N. After fitting the data, mi follows a power law distribution (Figure S9 in Supplementary Material):

[image: image1]
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where, m is the RNA molecule copy number per cell, which is a constant across all T cells (see Figure 3C). xi represents the cell numbers of each clone, which follows a power law distribution (24), and the parameter α was fitted with an algorithm combining maximum-likelihood fitting and goodness-of-fit test based on Kolmogorov–Smirnov statistic (25) “fit_power_law” function in R package igraph was applied (26).

Specifically, we fitted the RNA molecule distribution (Figure S9 in Supplementary Material) with Eq. 5:

[image: image1]

Since “m” is a constant (see Figure 3C), the alpha in Eqs 4 and 5 should be equal. We fitted across all libraries on log–log scale, and the average slope was taken as α in the above model.

When we sample n RNA molecules from this population, the expected detected diversity, E(D), can be calculated as the following:

[image: image1]

And xi can be sampled from the fitted power law distribution.

Then, the percentage of the RNA diversity coverage, P(D), can be estimated as:

[image: image1]

We scaled the diversity coverage of unique CDR3s to the estimated diversity coverage with 90% RNA input, Dobs. We then used Eq. 8 to get estimated m:

[image: image1]



Statistical Analysis

Mann–Whitney U test was used to calculate the significance of copy number difference between pairs in naïve, effector, effector memory, and central memory CD8+ T cells and p values was adjusted with Benjamini–Hochberg procedure. Adjusted p-value that was less than 0.05 was considered significant.




RESULTS


MIDCIRS Sub-Clustering Improves Repertoire Diversity Estimation Accuracy

Molecular identifiers have been adopted in IR-seq and DNA/RNA sequencing to reduce error rate. However, during reverse transcription, multiple transcripts could stochastically be tagged with same MID. Previous strategies relied on increasing the length of MID to reduce the probability of non-unique MID tagging when the total RNA molecule copy number was either unknown or very large (27). However, longer MID length could reduce the efficiency of reverse transcription (28, 29). Thus, we developed a more generalized approach (MIDCIRS) with reduced MID length. A sequence-similarity-based clustering method was implemented in MIDCIRS to separate sequencing reads into sub-clusters within a group of sequencing reads that have the same MID (9). Here, we developed metrics to validate the accuracy of this sub-clustering method. In addition, we demonstrated the robust ability of MIDCIRS to faithfully represent the diversity and abundance of the TCR repertoire using a large range of RNA inputs.

We reasoned that in order to comprehensively quantify the overall diversity, a large portion of its RNA must be sampled. However, this will inevitably increase the number of TCR transcripts that need to be tagged with MIDs, which increases the portion of MIDs tagging multiple TCR transcripts. We sought to closely examine the relationship between RNA input and multiple TCR RNA tagging by the same MID. The process of MID labeling can be modeled as a Poisson distribution (see Materials and Methods). The percentage of MIDs with sub-clusters follows an approximate linear trend when the copies of target RNA molecules are less than 5,000,000 (Figure 1B). To experimentally validate this, we applied MIDCIRS TCR-seq on a range of sorted naïve CD8+ T cells (from 20,000 to 1 million) with three different RNA inputs (10, 30, and 50%) (Table S1 in Supplementary Material). We have previously used control template sequences and evaluated the clustering threshold that would separate TCR RNA molecules accidentally tagged with the same MID, which is 15% of the sequence length (9). As expected, we found that the observed percentage of MIDs that need sub-clustering is approximately linear with respect to copies of target RNA molecules used in this study (Figure 1A). With the highest amount of RNA molecules used in this study, approximately 8.5% of MIDs require further clustering, while previous method treated these sequences as ambiguous (17). Thus, MIDCIRS sub-clustering significantly improves repertoire diversity coverage.

To evaluate the accuracy of the sub-clustering step by an alternative means, we examined the TCR sequence lengths within MIDs that contain sub-clusters. We reasoned that if indeed each TCR RNA molecule was tagged with a unique MID, then the lengths of CDR3 for all reads would be identical under each MID. However, we showed that of the 8.5% of MIDs that contain sub-clusters, about 87% of MIDs contain TCR sequencing reads of different CDR3 lengths while only 13% have the same length for one million naïve CD8+ T cells (50% RNA input). After performing sub-clustering, over 97% of sub-clusters have a uniform length (Figure S1 in Supplementary Material), demonstrating the accuracy of sub-clustering step in MIDCIRS.

More importantly, to our surprise, we found that, without performing sub-clustering, the number of unique consensus sequences (unique CDR3 sequences) was overestimated, especially in samples with one million cells (Figure 1C; Figure S2 in Supplementary Material). This is because chimera sequences were generated in the consensus building step for two scenarios. In one scenario, multiple true TCR sequences could be tagged with the same MID and quality score weighted consensus building will generate chimera sequences (Figure 1D; Figure S3A in Supplementary Material). In the second scenario, PCR or sequencing errors on MIDs group multiple singletons (MIDs that contain only one read) under the new MID. If sub-clustering is applied, then these singletons will be separated and discarded under the singleton category. However, without sub-clustering, these singletons will be forced to generate a chimera sequence (Figure S3B in Supplementary Material). Taking together, these chimera sequences cause overestimation of the total TCR diversity. The percentage of chimera sequences can be as high as 47% (Table S1 in Supplementary Material). Thus, compared with previous IR-seq with MID method (17), MIDCIRS not only can increase diversity coverage of CDR3 but improve the accuracy of diversity estimation.



MID Read-Distribution-Based Barcode Correction Improves Accuracy and Sensitivity of Counting TCR Transcripts

Besides correcting PCR and sequencing errors, MIDs have also been used for absolute quantification of RNA molecule copy number in single-cell studies to improve precision (30–33). Here, we demonstrated how to use MIDCIRS TCR-seq to digitally count TCR transcripts. The absolute quantification of TCR transcripts is fundamental for accurate clonal size estimation. We noticed that PCR and sequencing errors also affected MIDs, as seen in single-cell RNA sequencing studies (29, 34), leading to an inflated number of RNA molecules when libraries were sequenced exhaustively with respective to the total TCR transcripts in the sample (Figure 2A; Figure S4 in Supplementary Material). To correct MID errors, we first removed singleton reads, which cannot be confidently used in generating MID groups due to sequencing errors. Then, we adopted a similar approach applied in single-cell RNA-seq by fitting the distribution of reads under each MID subgroup into two negative binomial distributions (Figure S5 in Supplementary Material) (34). Erroneous MIDs generated due to PCR errors generally have distinctively lower read counts compared with true MIDs. These two negative binomial distributions distinctly separated true MIDs from erroneous MIDs. MIDs with low read counts were removed accordingly (see Materials and Methods). After MID correction, number of RNA molecules saturated across libraries (Figure 2A; Figure S4 in Supplementary Material).
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FIGURE 2 | MID Clustering-based IR-Seq is capable of accurate digital counting of T cell receptor (TCR) RNA molecules. (A) Rarefaction curve of detected TCR RNA molecules before and after error correction on molecular identifiers (MIDs) in 20,000 naïve CD8+ T cells for three RNA input amounts. Data from other cell inputs are in Figure S4 in Supplementary Material. (B) Comparison of rarefaction curve of detected RNA molecules and unique complementarity-determining regions 3 (CDR3s) in 20,000 naïve CD8+ T cells for three RNA input amounts. (C) Rarefaction curve of number of unique CDR3s with single RNA copy in 20,000 naïve CD8+ T cells for three RNA input amounts. Sequencing reads were subsampled to different depth and unique CDR3s were tallied. Data from other cell inputs are in Figure S6A in Supplementary Material. (D) The percentage of overlapping clones with single RNA copy at different sequencing depths by sub-sampling in 20,000 naïve CD8+ T cells for three RNA input amounts. The overlapping clones were compared between two adjacent sub-samplings and overlap percentage was calculated by dividing the number of overlapping clones by the total number of clones observed in the deeper sub-sampling. Data from other cell input are in Figure S6B in Supplementary Material.


We found that a shallower sequencing depth is required to saturate unique CDR3s than RNA molecules (Figure 2B). In addition, the amount of diversity covered increased with increasing RNA input. Thus, to exhaustively measure the TCR repertoire diversity, with 30–50% of RNA input, a sequencing depth equivalent to 10 times the cell number covers most of the CDR3 diversity (Figure 1C; Figure S2 in Supplementary Material), while a sequencing depth equivalent to about 100 times the relative RNA input (defined as cell number multiplied by percentage of RNA input) is required to saturate the RNA molecules (Figure 2A; Figure S4 in Supplementary Material). For example, 30% RNA of 20,000 cells is equivalent to 6,000 RNA input. Then, it takes about 600,000 reads to saturate the RNA molecules but only 200,000 reads to saturate the unique CDR3s (Figure 2A, middle panel).

After MID correction, with optimal sequencing depth, we stably detected TCR clones with a single TCR RNA molecule (single-copy clones with at least two identical sequencing reads). The number of single-copy clones saturates with adequate sequencing depth (Figure 2C; Figure S6A in Supplementary Material). Meanwhile, we compared the degree of overlapping clones within these single-copy clones at different sequencing depths. To do this, we subsampled each library to different fractions of the total reads. The overlapping clones were compared between two adjacent subsamples, and the overlap percentage was calculated by dividing the number of overlapping clones by the total number of clones observed in the deeper subsample. Thus, for total of 10 subsamples, 9 clonal overlap percentages were calculated and plotted with respect to sequencing depth (Figure 2D; Figure S6B in Supplementary Material). More than 90% of single-copy clones were repeatedly detected between the full sequencing reads and the 0.9 subsample fraction. The overlap percentage was above 80% for the latter part of curve (Figure 2D; Figure S6B in Supplementary Material), which suggested that we have reached optimal sequencing depth to detect single-copy TCR clones.



Estimating TCR RNA Molecule Copy Number and Validation with dPCR

From early analysis, we know that the diversity coverage of unique CDR3s increased as RNA input increased. Here, we performed an in depth analysis on the relationship between these two parameters and found that the diversity coverage of unique CDR3s increased significantly as the RNA input increased initially, then reached a plateau, which resulted in a nonlinear increasing of the diversity coverage of unique CDR3s (Figures 3A,B). We assumed that total diversity for a sample is the diversity discovered when combining all sequencing reads from 10, 30, and 50% RNA input libraries into a pseudo-90% RNA input. With 50% RNA, we could recover about 60% of total diversity (Figure 3B).
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FIGURE 3 | T cell receptor (TCR) RNA copy number per cell estimation and experimental validation. (A) Diversity coverage of unique productive complementarity-determining regions 3 with different RNA inputs and cell numbers (Line represents linear regression fit, F-test on the slope, R2 > 0.99 and p < 10−3 for all different RNA inputs). (B) Diversity coverages with different RNA inputs using 3 as a predicted TCR RNA molecule copy number per cell. Dashed line is the theoretical prediction (see Materials and Methods); red dots are diversity coverages observed in libraries with different RNA inputs as illustrated in panel (A), assuming diversity coverage at 90% RNA input is 1. (C) Digital PCR results of TCR RNA molecule copies per cell in different CD8+ T cell subset (N, naïve; CM, central memory; EM, effector memory; E, effector; NTC, no template control; n.s: p-value > 0.05 by Mann–Whitney U test).


Since the observed diversity is dependent on total TCR RNA molecules in a sample, which is a function of TCR RNA molecule copy number per cell and RNA input percentage, we next sought to use a probability model to predict TCR RNA molecule copy number per cell using the observed diversity coverage of unique CDR3s as a function of RNA input percentage (see Materials and Methods). We used the estimated diversity coverage of different RNA inputs, including 10, 30, and 50% RNA, as well as the computationally combined pseudo-40% (10 + 30%) and pseudo-90% RNA inputs as data points to fit the probability model. The best fit resulted in three copies of TCR RNA molecule per cell (Figure 3B). In another independent experiment, RNA from 20,000 and 100,000 naïve CD8+ T cells were evenly separated into five aliquots, respectively. Four of five aliquots were sequenced (Table S2 in Supplementary Material). Results showed that CDR3 diversity detected by MIDCIRS is very reproducible among the four aliquots and is also proportional to the cell input numbers. In addition, we bioinformatically combined the aliquots into pseudo-40, -60, and -80% of RNA inputs and fitted the diversity coverage using the probability model described in the Section “Materials and Methods.” As with previously, the best fit resulted in three copies of TCR RNA molecule per cell (Figure S7 in Supplementary Material).

However, in order to apply this TCR RNA molecule copy number in estimating T cell clone size, we need to validate it using a different method and also test to see if different phenotypes of T cells might have different TCR RNA molecule copy numbers, which would be similar to the differences seeing in naïve B cells and plasmablasts (35). Next, we validated TCR RNA molecule copy number using dPCR and found that various types of T cells have similar TCR RNA copies (8–12 copies per cell) (Figure 3C). Thus, with MIDCIRS TCR-seq, we could achieve about 30% efficiency in recovering the target TCR RNA molecules, which is expected given dPCR in a nanoliter volume is more efficient than bulk PCR in tubes (36). This ratio also establishes a reference point for rare T cell clone frequency estimate using MIDCIRS method.



Detecting Single-Cell Worth of TCR RNA Using MIDCIRS

The lack of accurate and absolute quantitation of TCR clones limited the evaluation of the sensitivity of various IR-seq methods (37), which slowed the application of detecting rare TCR clones in both basic research and clinical practice. To address the detection sensitivity using MIDCIRS, we spiked-in control TCR RNA with varying copy numbers into naïve T cells and validated the robustness of detecting spiked-in TCRs. 5, 20, and 5 copies of three spike-in cell lines with known TCR sequences were added into 20,000 and 100,000 naïve CD8+ T cells. 3, 13, and 3 copies of three spike-ins were reliably detected, respectively (Figure 4A).
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FIGURE 4 | MID Clustering-based IR-Seq is sensitive to detect both low copy and highly clonal expanded T cell receptors (TCRs). (A) Number of RNA molecules detected by sequencing for each spike-in TCR control sequences (the numbers in the legend denote copies of each TCR spike-in control sequence added). (B) Comparison of clone size distribution in naïve CD8+ T cells and CMVpp65-specific effector CD8+ T cells (dashed line indicates TCR sequences with 20 copies of RNA molecules). (C) The percentage of RNA molecules that varying degree of clonally expanded complementarity-determining region 3 account for.


We also analyzed the ability to detect a single T cell’s worth of control RNA in a larger number of other T cells. We digitally counted the concentration of TCR RNA molecule from the Jurkat cell line and spiked-in 10 copies of TCR RNA into 20,000–1,000,000 naïve CD8+ T cells (Table S1 in Supplementary Material). In all 1,000,000 cells we sequenced, we were capable of detecting Jurkat TCR sequences (Table 1). This sensitivity was a significant improvement compared with previous method, which was demonstrated to be 1 in 10,000 (21). These results demonstrated that MIDCIRS is highly sensitive, capable of detecting a single-cell’s amount of TCR transcripts, and rare clones could be readily and robustly detected. Those single-copy clones (minimum two identical reads) we discovered are thus likely to come from single cells (Figure 2C; Figure S6A in Supplementary Material).


TABLE 1 | Spike-in Jurkat T cell receptor (TCR) RNA detection in naïve CD8+ T cells.

[image: image1]


Meanwhile, we compared the sensitivity of MIDCIRS and 5′RACE protocol using the diversity coverage as the parameter. Briefly, the 5′RACE protocol that was used in Smart-seq2 protocol was used for TCR-seq, which has been demonstrated to significantly improve RNA capture efficiency (38). Equal amount of RNA (20%) from same purification was used for both MIDCIRS and 5′RACE protocol. We then processed sequencing results with MIDCIRS-TCR pipeline and found that 5′RACE protocol only recovered about 44% of diversity compared to what MIDCIRS protocol obtained (Table S3 in Supplementary Material). With improved accuracy and sensitivity to detect rare clones, MIDCIRS is promising in being applied to detect MRD after treatment.



Quantifying T Cell Clonal Expansion in Infection Using MIDCIRS

It has been shown that the clonality and quantity of T cells are strongly correlated with efficacy of therapies, such as cancer chemotherapy and antiviral therapy (20, 39). Accurate quantification of diversity and abundance of T cell clones is important for application of TCR-seq in clinical settings, ranging from prognosis to treatment decision-making. However, there lacks an accurate approach to evaluate the degree of T cell clonal expansion in humans. Therefore, we applied MIDCIRS TCR-seq to examine T cell clonal expansion in infection. We sorted 20,000 and 200,000 CMVpp65-specific effector CD8+ T cells from CMV-infected patients and used 30% of RNA input to perform TCR-seq (Table S4 in Supplementary Material). CMV pp65 peptide has been shown to be the immunodominant target of CD8+ T cell response (40). TCR RNA molecules were digitally counted through MIDCIRS pipeline. We defined TCR sequences with over 20 copies of RNA molecules as expanded clones according to TCR abundance distribution comparing between naïve CD8+ T cells and CMV tetramer positive effector CD8+ T cells (Figure 4B). Over 99% unique RNA molecules were from these expanded clones in CMVpp65-specific effector CD8+ T cells. On the other hand, although we observed uneven clonal distribution in naïve CD8+ T cells, these expanded clones only account for less than 1% unique RNA molecules (Figure 4C). Our data showed that in CMV infection, single CMV-specific TCR clone can have about 70,000 T cell progenies in 200,000 polyclonal CMV-specific effector CD8+ T cells (Table S4 in Supplementary Material). These polyclonal CMV-specific effector CD8+ T cells represent about 2.6% of total CD8+ T cells. In addition, our previous study showed that tetramer positive polyclonal CMV precursor cells existed at a frequency of 1 in 100,000 CD8+ T cells in CMV seronegative individuals (22). Taking together, these results suggest that single T cell clone can have about 900-fold proliferation in infection in humans. Thus, MIDCIRS can be applied to evaluate clone size and degree of clonal expansion in viral infection.




DISCUSSION

In this study, we applied the MIDCIRS, recently developed by our group (9), in T cells to demonstrate (1) the necessity of MID sub-clustering to improve accuracy of repertoire diversity estimation; (2) the accuracy of counting TCR RNA molecules via MID read-distribution based barcode correction; (3) the sensitivity of detecting a single cell in as many as one million naïve T cells; and (4) the ability to quantify T cell clonal expansion due to infection in CMV-seropositive patients.

Previous MID-based IR-seq methods, such as MIGEC, build TCR consensus sequences by grouping MIDs (17, 41). However, the number of target molecules could vary significantly with different sample inputs, which could be challenging for choosing the appropriate MID length to ensure that each target RNA molecule is uniquely tagged by MID. Longer MIDs are likely to decrease the reverse transcription efficiency (28, 29). Thus, the MIDCIRS method offers a flexible strategy for MID-barcoded IR-seq. In addition, MIGEC triages MIDs with high diversity as ambiguous. We compared TCR diversity discovered using MIDCIRS with that of MIGEC, using MID with at least two reads as the threshold for both approaches (see Materials and Methods) and found that MIGEC led to an underestimated TCR diversity (Figure S8 in Supplementary Material, p < 0.001, effect size r = 0.62). We demonstrated that using MID-based sub-clustering approach, MIDCIRS could identify new diversities, prevent chimera sequences from being built, and digitally count RNA molecules (Figure 1; Figures S2 and S3 in Supplementary Material). This corrected diversity is highly consistent with cell input numbers.

While MIDs are useful to correct for sequencing errors and PCR errors that occur on TCR sequences, such errors are also likely to show up on MID sequences. Although these errors do not affect TCR diversity estimation, they lead to an overestimation of transcript copies, thus misestimating TCR clone size (Figure 2; Figure S4 in Supplementary Material). We corrected MID errors based on the distribution of MID read counts under MID subgroups. With MID correction, we were able to accurately count TCR RNA molecule copy number, estimate MIDCIRS detection limit as well as detect T cell clonal expansion.

Noteworthy, we found uneven CDR3 clone size distribution in naïve CD8+ T cells (Figure 4B). The most expanded clone was enriched about 0.27% (Table S1 in Supplementary Material). This could be due to convergent recombination as has been previously noted (42, 43) or uneven clonal expansion during thymocyte maturation and selection in thymus (44, 45).

Furthermore, there is a lack of standard guidelines of how much RNA input to use for library preparation and sequencing. Also, the capacity to evaluate immune repertoire and gene expression profile simultaneously will facilitate clinical practice, such as cancer immunotherapies. Efforts have been made to reconstruct antibody and TCR repertoire from RNA-seq data. This, however, requires very deep sequencing to recover highly expanded T cell clones in the sample, and the exact degree of repertoire coverage is difficult to assess (46–48). Here, we demonstrated that 50% RNA is enough to cover about 60% of CDR3 diversity (Figure 3B), making it beneficial to take advantage of the rest of the RNA from the same sample for other applications, e.g., RNA-seq.

Based on the TCR diversity estimation and its dependency on RNA input, we built a probability model to estimate TCR RNA molecule copies, which resulted in three copies per cell (Figure 3B). We would like to point out that this does not mean that on average there are three copies of TCR RNA in a T cell. Because of the efficiency of RNA purification and reverse transcription, we expect our observed RNA molecule per cell to be lower than the true value. In Fact, dPCR results showed an average of 10 copies of TCR RNA molecule per cell (Figure 3C), suggesting the efficiency of MIDCIRS in TCR RNA molecule digital counting is about 30%, which is consistent with previous finding that nanoliter reaction volume significantly improved PCR efficiency. Thus, quantifying TCR RNA molecule per cell enables us to estimate the extent of T cell clonal expansion that was not possible until now.

We also used spike-in TCR RNA to validate the sensitivity of MIDCIRS. We showed that spiked-in TCR RNA at as few as five copies can be reliably detected across multiple libraries (Figure 4A). More importantly, we were also able to detect a single-cell worth of RNA in as many as one million cells (Table 1). With this demonstrated sensitivity, this method could be extremely useful in MRD detection.

Last, we applied MIDCIRS to evaluate T cell clonal expansion in CMV-infected patients. Through accurate digital counting of TCR RNA molecules and in combination of precursor T cell frequency, we showed that CMV-specific effector CD8+ T cells can expand at least 900 times, and there could be more than 70,000 effector CD8+ T cells derived from the same CMV-specific T cell clone in total of 7,700,000 of CD8+ T cell in infection. We also noticed that there is a potential of same TCR sequences tagged with same MID, which would under estimate the clonal size, especially in highly expanded clones. We calculated the expected number of collisions where same MIDs tag same RNA molecules (Supplementary Methods in Supplementary Material). With MID length being 12, when there are 200,000 identical RNA molecules, the percentage of identical RNA molecules tagged with same MID is only 1%. While long MID decreases the percentage of identical RNA molecules tagged with same MID, it also decreases efficiency of reverse transcription. Our analysis revealed that MID with 12 nucleotides is appropriate. Therefore, MIDCIRS provides the foundation of accurate assessment of clone size and clonal expansion in infection and vaccination, which would be a useful technology to provide a comprehensive quantification of the T cell repertoire in various basic studies and clinical settings.
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High-throughput sequencing (HTS) has the potential to decipher the diversity of T cell repertoires and their dynamics during immune responses. Applied to T cell subsets such as T effector and T regulatory cells, it should help identify novel biomarkers of diseases. However, given the extreme diversity of TCR repertoires, understanding how the sequencing conditions, including cell numbers, biological and technical sampling and sequencing depth, impact the experimental outcome is critical to proper use of these data. Here, we assessed the representativeness and robustness of TCR repertoire diversity assessment according to experimental conditions. By comparative analyses of experimental datasets and computer simulations, we found that (i) for small samples, the number of clonotypes recovered is often higher than the number of cells per sample, even after removing the singletons; (ii) high-sequencing depth for small samples alters the clonotype distributions, which can be corrected by filtering the datasets using Shannon entropy as a threshold; and (iii) a single sequencing run at high depth does not ensure a good coverage of the clonotype richness in highly polyclonal populations, which can be better covered using multiple sequencing. Altogether, our results warrant better understanding and awareness of the limitation of TCR diversity analyses by HTS and justify the development of novel computational tools for improved modeling of the highly complex nature of TCR repertoires.
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INTRODUCTION

Understanding the specificity of T cells involved in immune responses is of utmost importance in many fields of immunology. T cells are characterized by the expression a unique T cell receptor (TR), which is clonally generated by somatic rearrangement of the V, D, and J genes belonging to the TR genomic locus during thymic T cell differentiation (1). This process leads to the generation of a huge diversity of TR, defining a repertoire of antigen recognition, the hallmark of the adaptive immune response. Immunoscope analysis (also called CDR3 spectratyping) has long been the standard technique for TR repertoire analyses (2). Although immunoscope analysis has been very useful, it misses the key parameters of TR diversity, which include nucleotide sequence, codon usage, and amino acid composition. High-throughput sequencing (HTS) of the adaptive immune receptor rearrangements (RepSeq) expressed in a lymphocyte population now overcomes previous limitations, providing a thorough and multifaceted measure of diversity (3). Several studies have already highlighted the feasibility of HTS for the analysis of TR repertoire diversity in various immune contexts (4–17). However, while the amount of information and the depth of analysis provided by this technique are unprecedented, the representativeness and robustness of the data obtained remain to be established.

First of all, although not addressed in this study, the type of starting material (DNA/RNA) as well as the molecular biology method used to prepare a TR/IG template may impact the resulting diversity observed. Indeed, 5’RACE-PCR and multiplex-PCR, the two major methodologies used for TR/IG template amplification, can both introduce biases. Multiplex-PCR is mainly sensitive to primer competition and does not allow new variant identification, while 5’RACE-PCR will be sensitive to transcript integrity and length (18). An additional issue is the quantification of the species. Unique molecular identifiers have been proposed as a molecular method to trace the origin of identical species, thus distinguishing species arising from different cells or from PCR amplifications (19–22). A comparative study considering UMI on TR sequences obtained by 5’RACE-PCR or not suggested fewer intersample variations in quantification of unique TRB clonotypes based on sequences identified with UMI in comparison with randomly selected sequences (23, 24). However, amplification and sequencing errors in those highly variable short oligonucleotides can still occur and be difficult to assess and correct. In addition, UMI can be used only in 5’RACE-PCR methods. Therefore, not all the commercially available protocols include UMI and tools to handle them may need further improvement (25).

RepSeq is a numbers game (26) particularly dependent on sequencing depth and therefore on sampling. When monitoring T cell leukemia or highly expanded antigen-specific TCRs following an infection, the sampling and depth of sequencing might not be critical parameters. But things are different when studying TR repertoire diversity in physiological conditions, when describing the basics of immune repertoire generation and selection or in immune contexts where subtle or qualitative modifications may be involved in the pathophysiological outcome, such as in complex infectious diseases (27–29), autoimmune disorders (13, 30–35), and transplantation follow-up (36–38). However, RepSeq necessarily implies sampling: (i) only a fraction of the cells from peripheral blood or an organ (or a fragment of that organ in humans) is harvested; (ii) only a fraction of the RNA/DNA extracted from these cells is used for sample preparation; and finally, (iii) only a fraction of the library is used for a sequencing run. These different levels of experimental sampling are likely to affect the observed diversity.

This is a genuine issue described in ecology studies, as “the absence of observation of a species can be either real or the effect of a subsampling” (39). Previous studies showed that the number of clonotypes observed is positively correlated with sampling size (30, 40, 41). This is important, as studies performed in humans are mostly based on peripheral blood, a compartment that represents only around 2% of the total T lymphocyte population. Warren et al. (42) compared TR repertoires from two blood samples from the same individual and found a limited number of shared clonotypes (~10%). They concluded that a considerable proportion of the peripheral blood TR repertoire is unseen when observed randomly (42, 43).

The depth of the sequencing is another confounding factor for TR repertoire diversity studies, since an insufficient number of sequences produced would not adequately assess the molecular diversity of the sample analyzed. To ensure the statistical representativeness of the data produced with regards to the population of interest, two rules should be considered (44): (i) the number of sequences produced must be at least equivalent to the clonal richness of the population of interest and (ii) the rarer a clone, the greater the sequencing depth needed to detect it. Therefore, the RepSeq strategy must be adapted to the nature of the samples and the biological questions investigated (45).

While most studies seek to assess the similarity between the TR repertoires of several samples, without any knowledge of what level of similarity can be observed at best, it seems crucial to determine the limits of this approach in order to be able to interpret the data properly. In this study, we first investigated the impact of the depth of sequencing, in relation to the size of the population analyzed, on the observed TR repertoire diversity. We found that a small sample size is negatively affected by a too high, yet average in common practice, sequencing depth, and proposed an analytical approach to recover the “true” repertoire diversity. We then questioned the representativeness of a single RepSeq experiment by multiple sequencing of the same sample and demonstrated that performing a single sequencing run, even at high depth of sequencing, does not allow exhaustive observation of the existing clones in a polyclonal population. Finally, we addressed these experimental biases by computational simulation on RepSeq data reflecting several levels of clonality and sequencing depth, to have a better assessment of the robustness of the experimental observations.



MATERIALS AND METHODS


Mice

Eight- to twelve-week-old female Balb/C Foxp3-GFP (C.129 × 1-Foxp3tm3Tch/J) and 24- to 26-week-old male C57Bl/6 Foxp3-GFP mice, both expressing the green fluorescent protein (GFP) under the promoter of Foxp3 gene, were, respectively, provided by V. Kuchroo, Brigham and Women’s Hospital, Boston, MA, USA and B. Malissen of the Centre d’Immunologie de Marseille Luminy (France). All animals were maintained in the Sorbonne Université Centre d’Expérimentation Fonctionnelle animal facility under specific pathogen-free conditions in agreement with current European legislation on animal care, housing, and scientific experimentation (agreement number A751315). All procedures were approved by the local animal ethics committee.



Cell Preparation

Fresh total cells from spleen were isolated in PBS1X-3% fetal calf serum and stained for 20 min at 4°C with anti-Ter-119-biotin, anti-CD11c-biotin, and anti-B220-biotin antibodies followed by labeling with anti-biotin magnetic beads (Miltenyi Biotec) for 15 min at 4°C. B cells and erythrocytes were depleted on an AutoMACS separator (Miltenyi Biotec) following the manufacturer’s procedure. Enriched T cells were stained with anti-CD3 APC, anti-CD4 Horizon V500, anti-CD8 Alexa 700, anti-CD44 PE, and anti-CD62L efluor 450. 6.105 CD3+CD4+GFP− Teff cells were sorted on a BD FACSAria II (BD Biosciences, San Jose, CA, USA) with a purity >99%. Sorted cells were stored in Trizol (Invitrogen) or RNAAquous (Ambion, Inc./Life Technologies, Grand Island, NY, USA) lysis buffer.



TR Library Preparation

RNA was extracted following the manufacturer’s recommendations and cDNA synthesis was performed with the Qiagen OneStep RT-PCR kit (Qiagen Inc., Valencia, CA, USA) and mouse T cell beta receptor primers provided with the mouse TRB iR-Profile Kit (iRepertoire Inc., Huntsville, AL, USA). cDNA was amplified by two rounds of PCR according to the manufacturer’s recommendations. The TRB library was sequenced using Illumina on a MiSeqv2 kit.



RepSeq Data Processing


Data Annotation

The RepSeq fastq files were demultiplexed by iRepertoire Inc. and then annotated using clonotypeR (46) to identify high-quality productive and non-ambiguous TRB sequences. Clonotypes were defined as unique combinations of TRBV-CDR3-TRBJ segments.



Sequencing Error Correction

Annotated sequences were clustered per TRBV-TRBJ combination and similar clonotypes collapsed as follows: within each TRBV-TRBJ cluster, the clonotypes observed once (singletons) were separated from the others to constitute two groups. A Levenshtein distance was then calculated between the CDR3 peptide sequences of each clonotype of the two groups. The Levenshtein distance (lev) is a string metric measuring the minimum number of single-character edits (insertions, deletions, or substitutions) required to change one sequence into another (47).

When comparing the CDR3 peptide sequences of singleton with that of a “non-singleton” sequences, if levseq1,seq2 = 1, their respective nucleotide sequences are then compared. If the two corresponding nucleotide sequences are also distant by 1, the singleton is considered as erroneous and considered as the “non-singleton” clonotype.



Dataset Normalization

Using the function rrarefy from the Vegan R package (48), randomly rarefied datasets were generated to given sample sizes. Random rarefaction was done without replacement.




Diversity Profiles

Rényi entropy is a generalization of Shannon entropy, initially developed for information theory. We applied this mathematical function to clonotype frequencies to assess their diversity within each dataset. Rényi entropy is function of a parameter α, a strictly positive real number that differs from 1 and allows the definition of a family of diversity metrics spanning from (i) the species richness (α = 0), which corresponds to the number of clonotypes regardless of their abundance, to (ii) the clonal dominance (α → + ∞), corresponding to the frequency of the most predominant clonotype. For α = 1, the Shannon diversity index is computed. The exponential of the Rényi entropy defines a generalized class of diversity indices called Hill diversities, which can be interpreted as the effective number of clonotypes in the datasets (49) and thereby is used to build a diversity profile.



RepSeq Simulation Algorithm

A. 2·106 clonotype library construction with the tcR package

Based on the estimated total number of clonotypes in a mouse, a 2·106 TRB CDR3 library was generated with the tcR package following the probability rules of V(D)J rearrangement established in Murugan et al. (50):
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B. Construction of 6·105 sequence datasets following particular Zipf distributions

Based on the demonstration by Greiff et al. (41) that clonotype frequencies determined from RepSeq datasets generally follow a Zipf distribution with a particular α ∈ [0, 1] parameter, we chose to use the Zipf–Mandelbrot law implemented in the zipfR R package (51) to simulate clonotype distributions. The probability density function used for simulations is given by

[image: image1]

with two free parameters: α ∈ [0, 1] and B ∈ [0, 1] and a normalizing constant C. B corresponds to the probability π1 of the most frequent species (clonotype).

Seven Zipf distributions were generated with the following Zipf parameters:
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For each Zipf parameter combination, a list ZA is randomly generated as follows:

[image: image1]

ZA elements follow a Zipf distribution of A (= 1/α) parameter.
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C. For each A parameter, the 2·106 ZA values were randomly assigned to the clonotype collection to obtain seven TRB clonotype repertoires.

D. To obtain the final seven datasets, each of them was rarefied using the function rrarefy from Vegan R package to datasets of with a size of 6·105 sequences.


Rarefaction at Increasing Sizes

Each of the seven simulated datasets was rarefied into a series of six datasets of size D ∈ {500, 1,000, 5,000, 5·104, 5·105, 1·106}. For each value of D, subsamples of TRB sequences were randomly produced using the vegan:rrarefy function (without replacement). This process was iteratively repeated 100 times with replacement. For each resulting series of subsamples, clonotype counts were calculated and used to assess the median and 95% CI values of Morisita–Horn index [MH; (52)] between them and the original dataset (representativeness) and between each other (robustness).

Subsample compositions were also compared to evaluate the level of overlap between three subsamples according to the dataset size.

For each D, combinations of 3 ZA dataset subsamples were randomly selected to determine the proportion of clonotypes observed once, twice or in the three subsamples. This process was performed 100 times to calculate the median and 95% CI of each result.

Since the 95% CI values obtained for MH and overlap proportion were similar to the medians, they are not indicated in the corresponding figures and tables.





RESULTS


Impact of Sequencing Depth on the Representativeness of the Repertoire Diversity

With advances in HTS technologies, the minimum number of outputs in RepSeq studies is often a million sequences per sample. Besides, small samples are often studied. Thus, to determine the minimum number of sequences required for a representative repertoire, we first explored how the number of raw reads could affect the repertoire description according to the sample size. We chose to analyze a mouse sample with high diversity and used the CD4+Foxp3-GFP− cell population (Teff) previously described as very diverse (4). 6·105 Teff cells from female Balb/C Foxp3 < GFP > splenocytes were sorted. RNA was extracted from these cells and diluted in order to obtain aliquots containing the RNA amount equivalent to what would be obtained from 50,000, 5,000, 1,000, or 500 cells (Figure 1A). Two replicates per dilution were prepared. For simplicity in the text, the sample size will be defined according to the theoretical equivalent cell number for each aliquot. Sequencing was performed on RNA amplified by multiplex-PCR using a commercially available kit. We made this choice for three reasons: (1) a commercially available kit is standardized, avoiding pipetting errors in master mix preparation, (2) multiplex-PCR are template-target based, therefore we know what we are supposed to obtain in terms of V genes, and (3) the bias toward genes should be constant.
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FIGURE 1 | Impact of sequencing depth on measured diversity. (A) Experimental design: 600,000 CD4+Foxp3-GFP− cells were sorted from female Balb/C Foxp3 splenocytes. RNA was extracted (1) and split into aliquots equivalent to the amount of mRNA of 500, 1,000, 5,000, and 50,000 cells (2). Two aliquots were produced for each amount of RNA. The eight prepared aliquots were processed for TRB chain deep sequencing. (B) Dataset summaries. Histograms show, for each resulting dataset, the number of reads (black), productive TRB sequences (gray), observed clonotypes (blue), and clonotypes observed more than once (NoSingletons; light blue). (C) Diversity profiles. For each dataset, a Rényi diversity profile was computed: diversity metrics using clonotype frequencies were calculated for increasing values of Rényi order α until stabilization of the resulting diversity. For α = 1, the Shannon entropy was computed.


On average, 1.13 (±0.16) million reads were produced for each aliquot (Table S1 in Supplementary Material), which is in the average range of common practice (18, 44, 53). As summarized in Figure 1B, 0.99·106 (±0.15·106) TRB sequences were identified per aliquot regardless of the sample size. The point here is to determine whether the sample size will impact the resulting repertoire distribution.

Thus, we analyzed the diversity of the observed repertoires according to sample size. It is noteworthy that the number of unique clonotypes (i.e., unique combination of TRBV-CDR3pep-TRBJ) per sample was always higher than the number of cells per sample. This discrepancy was more marked for small size samples, with approximately 20- to 2-fold more clonotypes per sample than cells with the “500-” and “50,000-cell” samples, respectively. In each dataset, about 50% (±6%) of the clonotypes were observed once (singletons). After removing the singletons, as it is commonly done (44), this bias was reduced for the large samples, while the numbers of clonotypes remained much higher than the actual number of cells in small samples (Figure 1B). Still, overall richness remained equivalent between all sample sizes.

In order to refine the diversity assessment of these TRB repertoires, we computed their diversity profile (Figure 1C) applying Rényi entropy to the clonotype relative frequencies within each dataset. This function is used in ecological science to quantify the diversity, uncertainty, and randomness of a given system (54, 55). As the α order increases, it defines metrics spanning from (i) the species richness to (ii) the clonal dominance that progressively discards the scarcest species. The exponential of these metrics provides comparable effective numbers of species, used here to build a diversity profile. Analysis of the Rényi profiles for the eight aliquots showed that TRB repertoire diversity strongly decreases when the Rényi order α value increases. While richness was comparable between all sample sizes, diversity drops in proportion to sample size when progressively discarding scarce clonotypes to reach a plateau of clonotype counts below the initial number of cells.



Shannon Entropy as a Threshold to Filter the Clonotypes

To avoid bias related to sample size, we normalized each dataset to 700,000 sequences, a value corresponding to the smallest sample size (Table S1 in Supplementary Material). Therefore, we randomly selected 700,000 sequences, ranked the unique clonotypes from the most to the least predominant (clonotype rank) and plotted their abundance (clonotype count) to assess their distribution (Figure 2A). It is noteworthy that, while all the aliquots come from the same sample, the clonotype distributions within each dataset are different. The smaller a sample, the higher the most predominant clonotype counts, making it difficult to apply a filtering rule based on the count values. The Rényi profiles (Figure 1C) showed that the repertoire diversity collapses at a Rényi order α of 1, which corresponds to the Shannon diversity index (56). Since the number of clonotypes assessed by the Shannon index (Table 1) correlates best with sample size (Pearson coeff = 0.966, p = 9.62·10–5 and MH = 0.877 on original clonotype number and Pearson coeff = 0.995, p = 2.92·10−7 and MH = 0.996 after clonotype number determined by Shannon index), we chose to use this metric as a threshold to discard scarce “uninformative” clonotypes (SUC) that could result from experimental noise (shown in gray in Figure 2A) and keep only “informative” ones. As shown in Figure 2B, the clonotype relative distribution within each dataset is not significantly altered by this filtering. Interestingly, as shown in Figure 2C, regardless of the initial number of cells, this transformation regularizes the values of the Piélou evenness index, a measure of clonotype evenness (57) (filled squares), which otherwise strongly decreases for unfiltered datasets when the clonotype number/cell number ratio increases, revealing that a too high sequencing depth for small samples alters clonotype distributions (Figure 2C, empty circles).
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FIGURE 2 | Clonotype distributions before and after data filtering. (A) TRB clonotype counts of the eight aliquots according to sampling size. Within each dataset, clonotypes were ranked according to their counts from the most to the least predominant (decreasing clonotype rank) and their abundance (clonotype count). Both axes are log-scaled. Plots were colored according to the sampling size: “500 cells” in red, “1,000 cells” in green, “5,000 cells” in cyan, and “50,000 cells” in purple. Clonotypes filtered out using the Shannon index (see main text) are colored in gray [scarce uninformative clonotypes (SUC)]. (B) TRB clonotype distributions of the eight aliquots before and after data filtering. Before (left) and after (right) filtering each dataset using the Shannon index as threshold, clonotypes were ranked from the most to the least predominant (decreasing clonotype rank) according to their relative frequencies (clonotype frequency). The X-axis is log-scaled. Distributions were colored according to the sampling size as previously. (C) Impact of clonotype filtering on the clonotype distribution evenness. The ratio between the number of clonotypes and the number of cells (x-axis) was calculated for each aliquot before (circles) and after clonotype filtering either by removing only singletons (triangles) or using the Shannon index as a threshold (squares). For each dataset, the Piélou evenness index was calculated (y-axis). Aliquots are identified according the sampling size as previously. (D) Similarity between datasets before and after Shannon filtering. The Morisita–Horn similarity index between all pairs of datasets is color-coded according to the indicated scale before (lower half-triangle) and after (upper half-triangle) Shannon filtering. Aliquots are identified according to sampling size as previously.



TABLE 1 | Shannon diversity calculated for each dataset.
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To confirm that the filtering does not bias the overall repertoire diversity, we computed the Morisita–Horn (MH) similarity index between the datasets before and after filtering; the high similarity values (0.983; 0.997) shown on the matrix diagonal in Figure 2D confirm that the datasets are not altered in the process. The similarity matrix also reveals a low similarity between replicates, except for the “50,000-cell” samples, which are big enough to share rare clonotypes. Thus, high sequencing depth does not ensure good coverage of clonotype richness. This led us to question the robustness of RepSeq experiment results.



Robustness of the TRB Repertoire Diversity Assessment by RepSeq

We sorted 3·106 Teff cells from splenocytes, extracted the RNA and split it into three equivalent RNA aliquots, and then sequenced them independently at a high-depth targeting the TRB chain using the iRepertoire® multiplex-PCR technology. On average, for each aliquot, 8.33 (±0.66) million reads were produced and 5.63 (±0.56) million TRB sequences were identified, among which an average of 130·103 (±5·103) clonotypes (Table S2 in Supplementary Material). After applying Shannon filtering, the dataset sizes were reduced to 4.7 (±0.6) million TRB sequences for a total of 44,217 (±304) clonotypes. Datasets were rarefied at an equivalent size by randomly selecting 4·106 sequences for each sample.

We first analyzed the clonotype distributions within each dataset. The three distributions were similar between replicates (Figure 3A). However, when we compared the composition of the three TRB repertoires by clonotype overlap, it appeared that about 36% of the clonotypes observed in each dataset are shared by another replicate, with only 6,599 clonotypes common to the three replicates. Although these shared clonotypes represent only 6% of the 105,332 clonotypes identified overall, their expression accounted for approximately 38% of each repertoire (Figure 3B). We then decomposed the clonotype collection by labeling the clonotypes as private (not shared between replicates) or shared by two or three replicates. For each dataset, clonotypes were sorted from the most to the least abundant and enrichment curves were built for each category according to the sharing status of each clonotype (Figure 3C). The resulting clonotype spectrum revealed that the most predominant clonotypes are shared by the three replicates, while the private clonotypes, which are the more numerous, are enriched for scarce clonotypes, therefore reducing the similarity between technical replicates. These results demonstrate that although the sampling of a large and polyclonal cell population has no impact on the observed clonotype distribution, the repertoire composition is affected: even if the most predominant clonotypes are always captured, a major proportion of the clonotypes observed with a single sequencing are private scarce ones. This observation confirms that the more abundant a clonotype, the more likely it is to be observed by sequencing. However, most rare clonotypes will remain unseen with a single sequencing run.
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FIGURE 3 | Robustness of a RepSeq experiment. (A) Clonotype distribution of the three replicates within each dataset. Informative clonotypes were ranked decreasingly according to their abundance and their frequency was plotted. The x-axis is log-scaled. (B) Venn diagram between the three replicates. Out of the 105,332 clonotypes observed in total, only 6,599 are shared by the three replicates; their cumulative frequency covers about 38% of each dataset. (C) Spectrum of unshared (yellow) and shared (by two in orange and by three in magenta) clonotypes in each replicate. Within each dataset, clonotypes were ranked according to their counts from the most to the least predominant (decreasing clonotype rank). Since clonotypes are labeled according to their sharing status, the clonotype enrichment (y-axis) of each sharing group is incremented (+1) when a corresponding clonotype is found in the ranked list.




Computational Assessment of the Impact of Sequencing Depth on Observed Diversity

In order to assess the representativeness of the diversity observed when analyzing a clonotype repertoire by RepSeq, it would be necessary to know a priori its full diversity and distribution, which is not achievable with a classic experimental approach inherently subject to sampling bias.

Several studies have demonstrated that immune repertoires follow a Zipf-like distribution (58–62), which translates a relation between rank order and frequency of occurrence: the frequency f of a particular observation is inversely proportional to its rank r (63) with:
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for Zipf-α parameter ≈ 1 (64).

In addition, the lower the Zipf-α parameter of a distribution, the more evenly represented the clonotypes involved (59). We applied this observation to build clonotype distributions of a fixed size and known diversity to simulate the sampling effect occurring during a RepSeq experiment.

Seven Zipf distributions of 6·105 sequences each were simulated with a parameter A = 1/Zipf-α ranging from 2 to 100. These distributions were then assigned to a list of clonotypes randomly generated using the tcR package (65), leading to seven TRB clonotype repertoires of known diversity.

As observed in Figure 4A, the distribution slope varies according to the depth of sequencing of the clonotypes. For example, for the distribution simulated with A = 2 (A2), the resulting distribution is skewed in a way that clonotype counts range from 1 to 31,109, whereas when A = 100 (A100), clonotype counts do not exceed 9. These different distributions lead to datasets of varying richness, as summarized in Table 2.
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FIGURE 4 | Impact of sequencing depth on the observed diversity. (A) Clonotype distribution within the seven simulated datasets—within each A-dataset, clonotypes were ranked decreasingly according to their abundance and their frequency was plotted. Both axes are log-scaled. Distributions are colored according to the A parameter used to simulate it. (B) Impact of sequencing depth on the observed clonotype richness—for a given A-dataset, clonotype richness was measured within the 100 subsamples produced for each depth and divided by that of the original dataset. The median value by depth is represented for each condition. The 95% CI was calculated but cannot be seen since it merged with the median value. (C) Representativeness of the sequencing—the Morisita–Horn similarity index was calculated between each subsample and its original dataset. Boxplots across the 100 subsamples of a given depth are color-coded according to the A condition. (D) Reproducibility of the sequencing—for each A-dataset, the Morisita–-Horn similarity index was calculated between paired subsamples of a given depth. Boxplots across the 100 subsamples of a given depth are color-coded according to the A condition.



TABLE 2 | Summary of the simulated Zipf distributions.
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For each of our seven “known” repertoire distributions, we generated 100 subsamples at 6 sample sizes (from 500 to 1·106 sequences) reflecting several levels of sequencing depth. The clonotype richness observed within each subsample increased according to the depth, as expected (Figure 4B). We used the MH similarity index to assess (i) representativeness (Figure 4C) by comparing the diversity captured for each subsample with the original repertoire diversity and (ii) reproducibility (Figure 4D) for the 100 subsamples for a given depth. When comparing the seven distributions at a given sequencing depth (5·104 sequences, representing 8% of the original repertoire), the representativeness of the diversity between distributions was different (Figure 4C), yet with similar relative richness values. For the “A2” condition, the similarity index between this subsample and the original repertoire was above 0.8, while it varied from 0.2 to 0.5 for the other conditions (Figure 4C). A dataset of 5·105 sequences (80% of the original repertoire size) is needed to reach a 0.9 similarity for the latter. However, a suitable representativeness does not ensure good reproducibility of the observations. With 500 or 1,000 sequences, even if the diversity observed for the “A2” condition is quite representative (MH ~ 0.8), the high variability between the subsamples implies a low reproducibility and thus an inability to observe exhaustively all the clonotypes (Figure 4D).

We sought to identify which simulated distribution would be the most representative of our experimental datasets. To this end, we compared the slope at the steepest descent point of each simulated distribution with those of all the experimental data analyzed in this study. The experimental distribution slopes are most comparable with the “A3” and “A5” distributions, with the exception of that of the R500_2 sample (Table S3 in Supplementary Material). Thus, we chose the “A3” distribution dataset as the most representative. In order to understand the low overlap observed between experimental replicates in Figure 3B, for each size we compared the “A3” simulated subsamples to determine the proportion of clonotypes shared by three independent subsamples, as performed experimentally in Figure 3. As summarized in Table 3, the proportion of private and shared clonotypes varies according to the coverage of the initial repertoire stretch. For subsamples with sizes representing less than 1% of that of the initial dataset, almost all the clonotypes observed are private (only captured in one subsample). For the “5·104 sequence” subsamples, the size of which represents 8% of the original repertoire size, 16% of the clonotypes observed are captured at least twice. These proportions correspond to the observations we made in Figure 3 between the three experimental replicates. Finally, using subsamples of size close (80%) to that of the original, 95% of the observed clonotypes are shared by at least two replicates. In addition, as represented in Figure 5, at this depth, while one sample only captures about 12% of the overall existing clonotypes, three replicates cover a third of the overall richness. These observations suggest that multiple sequencing experiments can ensure greater clonotype exhaustiveness than a unique very deep sequencing.


TABLE 3 | Sharing proportion between three replicates.
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FIGURE 5 | Clonotype coverage of A3-dataset richness increases with multiple subsamples. The A3-datasets were subsampled at increasing depth (from 500 to 1·106 sequences as indicated in the legend from light to dark blue). For each depth, 100 subsamples were produced. Within each subsample series, an increasing number of subsamples (x-axis) were randomly selected and their cumulative clonotype richness was calculated relative to the original dataset richness (clonotype richness coverage).





DISCUSSION

RepSeq offers new opportunities to identify biomarkers of health or disease by monitoring adaptive immune cell diversity at unprecedented high resolution. Continuing improvements in molecular biology protocols and sequencing technologies are increasing the accuracy of clonotype detection (66). Still, clear evaluation of the reproducibility and representability of the observed diversity is missing. This is particularly true when considering bulk sequencing on small size samples such as small cell subsets or cells from biopsies, though of utmost interest when studying TCR repertoires. Although over-sequencing has been recommended to ensure the identification of rare clonotypes (53), it does increase the risk of generating uninformative, possibly artifactual clonotypes such as duplicate reads and chimeric reads (67). Indeed, when sequencing samples of varying sizes at a commonly used depth, we found that small datasets contained 20 times more clonotypes than would be expected regarding the sample size. This figure decreases when the starting material is increased, demonstrating that over-sequencing small samples dramatically generates noise that cannot be corrected by removing only singletons. Although the relationship between sample size and sequencing depth that we used may appear extreme, it can commonly occur when studying small cell subsets involved in immunological processes. These observations demonstrate the drawbacks of discarding clonotypes based only on their counts and the need for objective approaches in order to assess the actual richness of a repertoire effectively. Single-cell sequencing technologies are an alternative to accurate study of the repertoire of small cell subsets and therefore will surely not require the use of Shannon filtering, because the number of expected unique TR sequences will be at most two per single cell. However, currently the number of required cells is still regularly higher than actually recovered in particularly low-input samples.

Here, we provide a bioinformatics approach to assess accurately the number of unique clonotypes in a large and complex cell population, even when over-sequenced. When analyzing the diversity profiles of repertoires from subsamples of varying sizes of a unique starting sample, we identified Shannon entropy as a reliable threshold to eliminate clonotypes arising from technical noise (SUC) and to focus on informative TR clonotypes (Figures 1C and 2A). This filtering strategy has no impact on the overall clonotype distribution (Figure 2B). Importantly, this approach was validated on subsamples originating from a single starting sample. Therefore, the representability of the smallest subsample was questioned. While the distribution evenness was sample size-dependent when considering all the reads, filtering by the Shannon entropy index removed this variability between replicates (Figure 2C). This proposed strategy therefore offers an accurate assessment of clonotype identification and representability, even in extreme situations. We applied our method to data produced following multiplex-PCR amplification on bulk polyclonal CD4+ T cells, for which the targeted genes and bias should be constant from one experiment to another. Although the number of uninformative clonotypes should be assessed when analyzing datasets prepared by different molecular methods, we believe that the Shannon index should reflect the true diversity by excluding uninformative clonotypes. Once single-cell sequencing becomes standardized and applicable to a range of very small to very large sample sizes, such correction metrics may not be necessary anymore.

Our results strongly suggest that sequencing depth must be adapted to the initial cell amount. We show that “50,000-cell” replicates are closer to each other than lower input pairs of samples (Figure 2D). This observation emphasizes the need to adapt the sample size to the population of interest. All aliquots analyzed here were obtained from a rich and polyclonal cell population. In order to be reliable, a sample needs to be large enough to ensure that most of the clones are represented. Here, about 20% of the clonotypes observed in the two replicates (6,766 out of 30,422 and 35,020 clonotypes) are shared.

Altogether these results show how complex defining a RepSeq strategy can be in guaranteeing the representativeness of the repertoire diversity. If sequencing depth is not adapted to the population size, it can negatively affect the resulting observed diversity, in particular if data are not properly analyzed. This is particularly crucial since the clonality of a population is rarely known before its sequencing, leading to misinterpretation of the results. Since the sequencing depth used was much higher than the size of the samples we analyzed, one would expect good, if not exhaustive, coverage of the overall clonotypes. Conversely, we show that this is by no means the case, with only part of clonotypes being observed with confidence. These observations led us to question the robustness of the results of RepSeq experiments.

Multiple sequencing of the same sample revealed very low overlap between technical replicates, even after filtering out uninformative TR clonotypes, and merely captures the most frequent clonotypes. Rare clonotypes were at best shared by two replicates. As already suggested by Greiff et al. (44), our results are in favor of multiple sequencing when considering very diverse samples. This can be explained by the experimental sampling enforced by the different RepSeq steps (from RNA amplification to library sequencing). In order to validate these experimental observations and propose guidelines for RepSeq studies, we simulated different repertoire distributions and found that the representativeness of a very evenly distributed repertoire, which could be likened to a polyclonal repertoire, is more sensitive to the sequencing depth. The number of sequences produced (by multiple sequencing) needs to be equivalent to the population size to ensure a good assessment of the original diversity (Figure 4C). This is particularly true for small samples for which too deep a sequencing can favor the erroneous sequences possibly generated during library preparation (68) and thereby introduce experimental noise.

Altogether, we provide here a method that accurately discards uninformative clonotypes for small and large samples based on the application of Shannon diversity index threshold filtering, as well as guidelines for RepSeq experimental design. In addition, we show how computational simulation of diversity can improve adaptive repertoire analysis assessment where controlled reference repertoires with known actual diversity can be modeled and subject to experimental design and annotation tool flaws. We believe these will be useful in ensuring better RepSeq analyses when looking at rare or unknown cell populations participating in pathophysiological processes and will facilitate the discovery of HTS-based biomarkers.
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The naïve immunoglobulin (IG) repertoire in the blood differs from the direct output of the rearrangement process. These differences stem from selection that affects the germline gene usage and the junctional nucleotides. A major complication obscuring the details of the selection mechanism in the heavy chain is the failure to properly identify the D germline and determine the nucleotide addition and deletion in the junction region. The selection affecting junctional diversity can, however, be studied in the light chain that has no D gene. We use probabilistic and deterministic models to infer and disentangle generation and selection of the light chain, using large samples of light chains sequenced from healthy donors and transgenic mice. We have previously used similar models for the beta chain of T-cell receptors and the heavy chain of IGs. Selection is observed mainly in the CDR3. The CDR3 length and mass distributions are narrower after selection than before, indicating stabilizing selection for mid-range values. Within the CDR3, proline and cysteine undergo negative selection, while glycine undergoes positive selection. The results presented here suggest structural selection maintaining the size of the CDR3 within a limited range, and preventing turns in the CDR3 region.
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INTRODUCTION

The diversity of immunoglobulins (IGs) is essential for the function of the adaptive immune system. The IG repertoire is shaped first by the V(D)J recombination processes, and then by selection forces. The rearrangement mechanism determines which genes are combined, as well as the makeup of the junction. Bone marrow and peripheral selection alter this initial repertoire to produce the naïve repertoire observed in the peripheral blood. The repertoire is then further shaped by antigen driven selection to produce the memory repertoire.

The diversity of the IG heavy chain has been studied extensively, like that of the T cell beta chain [see Ref. (1) for review]. It has been shown that much of the diversity originates from the V–D and D–J junctions (2). Current methods to estimate the identity and position of DH are inaccurate for short DH genes (3). Errors in the identification of DH can be erroneously considered as nucleotide addition or deletion. Moreover, in short D genes, the V–D and D–J junctions can overlap and introduce another layer of ambiguity. Here, we focus on the less studied IG light chain to study the roles generation and selection have in establishing functional diversity. An added benefit of studying light chain diversity is that with no D gene inside the CDR3, the junction diversity is more readily separated into contributions from gene selection, and from N insertions (4, 5).

We analyze here the kappa light chain locus (IGK), as the Lambda locus (IGL) has fewer germline genes, and as such has a more limited variability.

Counting all possible V and J choices, deletions, and insertions leads to a vast potential diversity. However, multiple lines of evidence now support that the repertoire is limited:

• The choice of IGKV and IGKJ genes in IGK rearrangement is not completely uniform and preferential use of several genes has been shown (5).

• The IGK polymorphism across individuals has been shown to be much lower than the heavy chain IGH in humans (5, 6).

• Recent results have shown that surprisingly over 20% of light chains CDR3 peptide sequences (out of 700,000 IGL sequences) were “public” (i.e., shared by two or more individuals). Moreover, full length IGL protein sequences (VJ recombinants) are also frequently shared. In a recent study, public rearrangements made up of 60.2% of the total sequenced IGK rearrangement (7).

These results together suggest that non-uniform rearrangement, biased junction formation, structural selection, and functional selection can shape the repertoire (5, 8–12). However, the relative contribution of these different mechanisms in the light chain repertoire has never been studied. We here study the extent and origin of IGK diversity using sequences of the recombined gene obtained from blood samples for humans and mice. This observed recombined repertoire is shaped by the rearrangement mechanism and by selection (either positive or negative). To understand how the repertoire is selected, these two processes must be separated.

We do not delve here on the V and J usage and their correlation. Those have been argued based on both theoretical and experimental results to be induced by the receptor editing mechanism (13–16).

The generation and the selection processes are stochastic in nature, with different recombined peptides having different likelihoods of being generated and selected. We use statistical models, where the probability of assigning each observed sequence to appropriate germline genes and junction sequences are computed, to infer and disentangle the two processes. We find that structural selection strongly shapes the observed light chain repertoire.

We have used similar models on T cells and heavy chain B cells (17, 18). Here, these models enable us to study the variability of the IGK light chain during the generation and initial selection stage of B cells. The IGK samples, sequenced from healthy donors and from transgenic mice, are first divided into functional and non-functional recombined genes. The functional sequences are in-frame (IF) and with no stop codon, and as such code for a peptide that can potentially be the light chain of the IG. Out-of-frame (OF) sequences, on the other hand, underwent recombination that resulted in some of the conserved codons of the J template to be out of their normal reading frames and thus lack essential conserved amino acids when translated. They sometimes also have stop codons, which prevent them from being fully translated. These OF sequences, having never coded for any protein, did not undergo selection and represent the results of the raw generation process. By comparing the statistics of the OF sequences (the generation process statistics), to the IF sequences, selection can be inferred (see Materials and Methods). We have studied Rapid Amplification of cDNA Ends (RACE)-based cDNA sequences of human and mouse light chains. The human light chains were taken from peripheral blood and were separated into naïve and memory cells. The mouse cells were separated into blood and bone marrow cells (see Table S1 in Supplementary Material for details).



MATERIALS AND METHODS


Generation Model

The V(D)J recombination process involves a random number of insertions and deletions, and often produces OF sequences. These sequences code for non-functional proteins and can still appear in a blood sample, if the second chromosome in the cell underwent a successful recombination. In such cases, the sequences experienced no selection and owe their survival to the receptor expressed by the other chromosome. Thus, they provide us a glimpse into the pure generation process. We used these OF sequences to infer the statistics of the V(D)J recombination process.

Each observed sequence can be the result of a number of scenarios that include different initial gene choices, followed by a variable number of deleted and inserted base pairs. Estimating the probability of a sequence can be done by summing over all the different possible scenarios for producing a given sequence, weighting each scenario by its probability. Each scenario’s probability (Pgen) is calculated using a probabilistic generation model of the form P(V,J)P(delV\V)P(delJ\J)P(ins). In brief, the various factors account for the probabilities of uncorrelated events leading to a specific VJ rearrangement: choice of which gene segments to recombine P(V,J), probability of the number of deletions from the ends of the V and J genes at the junctions P(delV|V) and P(delJ|J), choice of number of nucleotides to insert P(ins), as well as factors to account for unequal nucleotide preference in the inserted sequences. This type of model was used before to infer the generation process of heavy chain in B cells and beta chain in T cells.

Here, we used the Baum–Welch algorithm to efficiently infer the parameters of the generation model (18). In short, by reformatting the generation model as a Markov model, we used the forward–backward algorithm once per sequence, then summing over all sequences to update the model parameters. This is a dynamic programming approach that bypasses the need to enumerate all possible recombination scenarios.



Selection Model—Probabilistic Model

The naïve productive sequences (IF and with no stop codon), unlike the non-productive ones, have passed an initial selection process before being admitted to the periphery. We used the productive sequences to learn the selective forces acting on amino acids by comparing how their statistics differ from the raw product of V(D)J recombination learned from the OF sequences.

Using the generation model as a starting point, we infer selection factors Q acting on each sequence in the naive repertoire, where Q is defined as the fold increase of the probability to see a sequence in the functional repertoire (naive, productive) compared with the previously learned generation probability: Q = Ppost/Ppre. To infer those factors, we use a factorized model Q = q(V,J)qLΠqi; L(ai), where we assume that selection acts independently on the V,J gene choice [through factor q(V,J)], the length L of the CDR3 sequence (through factor qL), and on each of the amino acids ai at positions 1 ≤ i ≤ L between the conserved cysteine near the end of the V gene and the conserved tryptophan within the J gene [through factors Qi;L(ai)]. We use an expectation–maximization procedure to update the selection factors until convergence (1).



Study Subjects

For the human data, 12 apparently healthy adult subjects (3) were recruited for high-throughput sequencing using the 454 platform. Two 45-ml blood draws were collected in heparin tubes from each subject at a single time point. Mononuclear cells were isolated using Ficoll-Paque Plus (GE Healthcare), and then sorted by flow cytometry into naïve (CD20+, CD27−) and memory (CD20+, CD27+) populations. Informed consent was obtained from all donors. This work was performed in accordance with an IRB-approved protocol at Pfizer, Inc.

For the mouse data, blood and bone marrow RNA was extracted from healthy C57BL/6J mice using Qiagen RNAeasy Mini (19). RNA was provided as input to Clonetech SMARTer 5′RACE reactions, using murine IgK specific primers. Amplicons received Roche 454 adaptors with DNA barcode multiplex identifiers, and then sequenced with Titanium chemistry. The human and mouse data used here are based on previous publications (3, 20).



Target Amplification and 454 Sequencing

Unbiased amplification of repertoires was performed by 25 cycles of 5′RACE, using individual isotype-specific reverse primers. Primers were optimized for efficiency, fidelity, and completeness of repertoire recovery by informatics screening, gel-analysis, and high-throughput sequencing of recovered products. The degree of germline-dependent amplification bias was assessed by comparing amplified products of stimulated naïve B cell pools to direct sequencing of the same pools. Cycle-dependent effects on diversity estimates were evaluated by high-throughput sequencing. All products received multiplex identifiers (barcodes) to allow unambiguous identification of all products by sequence analysis in subsequent processing steps. Multiplex identifiers differed by at least three base pairs from any other multiplex identifier sequence, and only reads with exact-matches were included in the analysis. Products were sequenced with 454 Titanium. Sequencing quality was assessed by keypass control. Sample QC was confirmed by demultiplexing and VK segment genotype. Sequencing depth was determined by diversity estimate rarefaction and simulations of germline-profile stabilization as a function of sequencing depth. A detailed validation of the sequencing methodology has been provided previously (12).



V–J and Clone Detection Pipeline—Deterministic Model

We detected clones by clustering together sequences with similar CDR3 sequences (further explained below), to minimize the effect of potential biases in sequence copy numbers.

Specifically, sequences were grouped into clones using a two-step approach. First, we assigned each sequence V and J germline genes by running the IgBLAST tool (21) against human and mouse germline sequence databases (appropriately). Next, to count the clones, we grouped all sequences according to their V and J usage as well as the distance between V and J, since SHMs usually do not produce insertions or deletions of nucleotides (22). Thus, every clone emerging from the same founder cell should have the same distance between V and J. We then took all of the sequences with the same V–J and the same distance between V and J and grouped them using a phylogenic approach. All the sequences with an identical V–J and an identical distance were aligned together, using an artificial sequence composed of the germline sequences and gaps between them. The beginning and the end of all sequences of each dataset were trimmed so that all the sequences have same length V and J segments. The sequences of each group are thus already aligned and a phylogenetic tree was built using maximum parsimony (23) and/or neighbor joining (24) methods (from the PHYLIP 3.69 program package). We then parsed this tree with a cutoff distance of four mutations into clones. Thus, a clone was defined as a set of sequences similar to one another, up to a distance of four mutations. These methods were extensively validated in previous studies (1–3, 25–27).



Sequence Analysis


CDR3 Length

We calculate CDR3 length according to the number of amino acids between the conserved cysteine and phenylalanine. We then used the same sequence to compute the total CDR3 molecular mass (MW) using the “peptides” R package (values are rounded up to two digits). We then computed the distribution of CDR3 lengths in AA and in MW, and compared the SD of these distributions in different sets. For the MW relative difference, we calculate the SD of the MW in the IF sequence divided by the SD of the MW in the OF sequence minus 1 (to have 0 represent a state of no selection). The AA length SD ratio was calculated similarly. We did the same thing for the relative difference average of the MW and length.



Selection vs. Generation Probabilities

In the p − q plot, we present the log of the selection factor q vs. the log of the generation probability p. We computed the Spearman correlation between these two values for the generation probability of VJ pairs and for the probability of a given amino acid in each position and CDR3 length. Formally, we calculated the correlation between the generation probability and selection factors across amino acids where Pi;L(ai) is the generation probability for amino acid (ai) in position i for length L (for maximum length 19, this can be coded with 20*19*19 parameters, some of which are zeros). The Qi;L(ai) is the selection factors of the same amino acid, length, and position.



Average Selection Factor

To present the selection factors of the different amino acids in the different positions, we averaged all the q-values over CDR3 lengths for each codon. Then, we present the results of the log values on a heat map. We also computed the log of the average of the selection affecting all codons translated to the same amino acid as presented in Figures 2 and 3.





RESULTS


CDR3 Are Selected to Have a Narrower Distribution

Naive B cells have undergone light chain-dependent selection (28). To study this selection, we first investigated the difference in the light chain CDR3 length distribution before and after selection in naïve and memory repertoires (the naïve pool in the peripheral blood, and the memory pool resulting from germinal center driven selection). The length of CDR3, defined as the number of nucleotides between the cysteine and phenylalanine surrounding the CDR3 [see Ref. (29) for CDRs positions definitions], was analyzed in samples from peripheral human blood that contains naïve and memory cells and mice B cell samples in the blood and bone marrow (see Table S1 in Supplementary Material and Materials and Methods for details).

We used deterministic and probabilistic generation model to compare the OF and IF repertoires. The probabilistic generation model was developed to best fit the OF human light chain samples, and the model was then applied to evaluate the generation probability of the IF naïve light chain repertoire. The validity of this method has been extensively tested (17, 18). For the other human and mice samples (mouse blood, mouse bone marrow, and human memory B cells), where the data were more limited, we only used the deterministic model, where each sequence is assigned the most probable V and J genes and the most probable alignment as estimated by our clone detection pipeline, which was also validated in multiple studies (1, 3, 25). The general features, such as V and J genes, are similar in the deterministic and probabilistic models. Note that we here study generic properties of the B cell receptor repertoire, and our results do not require an extreme sequencing depth or a very low-sequencing error level. Thus, the 454 sequencing used here is precise enough for the current analysis.

For each observed clone, only one sequence (the ancestor of the clone) was analyzed. Multiples conditions were compared. We used the OF sequences as representative the output of the rearrangement process, and compared those to naive cells to study the selection taking place in the bone marrow, or in the periphery prior to antigen exposure. We also used memory cells to test the effect of antigen exposure on the L chain repertoire. Finally, we analyzed mouse bone marrow and peripheral B cells and compared them with mouse OF cells to test again selection within the bone marrow and in the transition to the naive repertoire in the periphery. The probabilistic model was applied to the human naive cells and it thus represents again the selection affecting the naive repertoire, probably prior to antigen exposure.

A comparison between the OF-based stochastic model and the length distribution in the IF naïve human sequences indicates that there is a very weak change in the average length of the CDR3 (Figure 1C). The slightly longer CDR3s in functional sequences are in contrast with previously reported shortening of the heavy chain during development (30). This increase is accompanied by a parallel increase in the total molecular mass.


[image: image1]
FIGURE 1 | (A) Comparison of CDR3 length distribution in human in-frame (IF) and out-of-frame (OF) sequences. The continuous lines represent the IF reads, while the dashed lines represent the OF reads. Pre-selection (IF) and post selection (OF) curves (blue) correspond to human naive sequences analyzed using the probabilistic model, whereas the red curves correspond to the same human naive sequences analyzed using the deterministic model. The CDR3 length distribution is narrower after selection, indicating selection against too long or too short sequences. (B) The relative difference between the SD of CDR3 length/mass between IF sequences and OF sequences (the ratio minus 1), for different samples of human and mice. The blue bars represent the CDR3 length ratio, and the red bars represent the calculation of CDR3 mass ratio (the p values of the F-test are less than 0.001 except from the mouse blood sample which are less than 0.01). (C) The same for the average over length/mass of the CDR3, for different samples of human and mice (the p values of the T-test are less than 0.001 except from the mouse BM and the mouse blood which are less than 0.1).


A more drastic change between the IF and the OF rearrangements is the reduction in the length variance (Figure 1B), indicating selection against short or long CDR3 sequences. A similar result can be observed when comparing the results of the deterministic model (full vs. dashed lines in Figure 1A and appropriate bars in Figures 1B,C). The reduction in the length distribution width is highly significant. The length distribution for mice shows the same trends (F test p < 1.e−3 for all tests, except for mouse blood where the IF CDR3 lengths are slightly more diverse than OF).

The difference in the human repertoire CDR3 length variance is much larger than in the mouse repertoire. The main reduction in the CDR3 length variability occurs in the human repertoires between the OF and naïve, and not between the naïve and memory, suggesting a pathogen-independent selection for intermediate CDR3 length. While in the mouse repertoire the SD of the length measured in nucleotides did not decrease significantly in the blood, the SD of the total molecular mass of the CDR3 did decrease significantly (F test, p < 0.01). The difference suggests that in humans, the total mass of the CDR3 is maintained by limiting the CDR3 length variability, in mouse the result is obtained by balancing large and small amino acids within the CDR3. The simplest explanation for the reduction in the light chain mass variability would be structural selection of the shape of the light chain, where too large or small total mass would prevent the binding to the heavy chain or to potential antigens.



Selection Is Not Sensitive to Codon Identity

Beyond the length and size of the CDR3 region, the specific composition of the CDR3 affects its selection and production scores. We have used the human kappa chain probabilistic generation and selection models to estimate selection pressures for amino acids and individual codons (Figures 2 and 3). This is done using selection factors that measure the selection pressures on the different codons or amino acids, for every position and CDR3 length. These are learned from IF data, such that their combined effect amounts to the difference in amino acid usage from the OF sequences (see Materials and Methods for details). For presentation, the factors were averaged over CDR3 lengths (Figures 2A,B), and over codons for the same amino acid (Figure 3). We present the log of the selection factor. Selection factors higher than 1 (log higher than 0—blue values in Figures 2 and 3) represent positive selection (i.e., sequences containing this codon/AA at this specific position are over-represented compared with the expected from the OF sequences), while factors lower than 1 (log lower than 0—red values in Figures 2 and 3) correspond to negative selection.


[image: image1]
FIGURE 2 | Selection factors for sequences. (A) The average of the q-values for each location in CDR3 in log scale [positive selection represented by positive values log(q) > 0 and negative selection represented by negative values log(q) < 0]. (B) The x-axis represents the different location in CDR3; the y-axis represents the different codons. In the right side of the figure, each codon is translated to its amino acid. The blue cells represent log(q) values larger than 0 for codon in a certain position. The red cells represent log(q) values lower than 0. The white cells indicate that there was no selection.



[image: image1]
FIGURE 3 | Subplots of selection factors of different lengths for each amino acid. The x-axis represents the different locations in CDR3; the y-axis represents the different lengths of the CDR3. The blue cells represent log(q) values larger than 0 for codon in a certain position. The red cells represent log(q) values lower than 0. The white cells indicate that there was no selection.


Different codons coding for the same amino acid have highly similar selection patterns (Figure 2B), suggesting that the selection affecting naïve B cell acts on amino acids, and not on codons. Such selection would agree with structural selection on the formed light chain, instead of a genetic mechanism favoring some specific nucleotides in the junctions (the variance of the log selection factors between the codons coding for the same amino acid is 0.154 and the variance between amino acid is 0.372).



Selection Favoring Glycine and Against Proline, Cysteine, and Aspartic Acid

Selection patterns differ between amino acids. Cysteine (Wilcoxon test, V = 203, p-value = 4.618e−15), proline (V = 645, p-value = 1.746e−13), and aspartic acid (V = 773, p-value = 2.955e−08) clearly undergo negative selection, whereas glycine (V = 4206, p-value = 1.168e−06) is under positive selection (in almost all locations along the CDR3) (Figures 2 and 3). In addition, some amino acids such as histidine and arginine have a positive selection in the beginning of the CDR3 and negative selection on the other side. Proline is unique as an amino acid, since its residue (R) is attached to NH atoms. This special structure breaks (spatially) long-peptide chains. Therefore, it is sometimes used in points of sharp folding of proteins (31). Proline may thus undergo negative selection to avoid the curvature and folding. Similar results were observed in the heavy chain (3).

A similar argument may explain selection against cysteine to prevent disulfide bonds, as is also observed in heavy chain (17). The selection in favor of glycine is the precise opposite with a selection for a tiny (the smallest) AA that has very limited interactions with other AA and a limited effect on the shape of the light chain CDR3 region. We currently have no clear model for the negative selection that observed in the aspartic acid, since its properties are highly Ph sensitive, and we cannot determine in which conditions selection shapes the repertoire.



Selection Is Mainly Positive in Positions 5–6 of CDR3 and Mainly Negative in the Following Positions

Selection is not uniform along the CDR3. The log of the selection factors are close to 0 in the third amino acid of the CDR3 that is outside the binding site of the antigen (−0.032 ± 0.4868). For most amino acids, positions 5 and 6 undergo a significant positive selection, showing a clear deviation in favor of rare amino acids (correlation between the log of the selection factor of position 5 with the AA frequency is 0.329, correlation with position 6 is 0.249), exactly at the beginning of the antigen binding site [5th position—(29)]. From positions 7 to 12, on the opposite site of the binding site, a significant negative selection can be observed for most amino acids apart from glycine and in specific positions also alanine, lysine, and glutamine, suggesting that long sequences are quite restrictive in this area, which ties in with the fact that long CDR3 are generally selected against as discussed above (these positions only exist in long CDR3 that are selected against).

For some amino acids, selection is length and position dependent, while for others, it is almost constant. Specifically, certain amino acids undergo different selection when close to the ends of the CDRs, in contrast to the middle (see, for example, alanine or aspartic acid in Figure 3). Other amino acids have positive or negative selection in almost all lengths and positions (glycine and cysteine and proline, respectively) in agreement with previous results (17). Note that this selection occurs in the naive repertoire, and it is thus probably not driven by pathogens.




DISCUSSION

Immunoglobulin genes are created in a stochastic V(D)J recombination process that is function independent. The distribution of possible receptors is not uniform; there is large variability in the generation probability of different elements of the rearrangement [e.g., V(D)J choice, junctional composition]. Beyond these differences, there are differences between the naïve repertoire and the one directly emerging from the rearrangement process.

A possible reason for this last difference may be the relation between the biochemical properties of the receptor and its potential binding to antigens. Such binding is mainly associated with the properties of the variable peptide chain of the CDR3. Many of the sequences generated might not code for receptor proteins that could potentially bind antigen. Some form of selection could then act to purify the generated repertoire into the functional one, observed in the naïve pool in the periphery. For example, there could be positive selection for binding self-antigens.

Here, we explored this notion of initial selection by analyzing the difference between the properties of IF and OF light chain rearrangements in naïve and memory repertoires, in human and mouse cells using probabilistic and deterministic generation models. An important advantage of the light chain repertoire analysis is the absence of the D gene, drastically simplifying the rearrangement process.

We have shown that selection acts mainly on the CDR3 rather than on the templated part of the V and J genes. Within the CDR3, selection tends to limit the variance of the CDR3 size in both human and murine repertoires in the transition from the direct rearrangement process to the naïve repertoire. These variances decrease by more than 45% during this transition. Interestingly, while in human light chains, the variance reduction is mainly through the removal of light chains with a low or high number of nucleotides in the CDR3, in mice the reduction is through a change in the distribution of amino acids in the CDR3, making it more restrictive. The reduction in CDR3 length variance was mainly observed between the repertoire emerging from the rearrangement and the naïve repertoire and not between the latter and memory, suggesting the vast majority of the structural selection occurs in the bone marrow, and is not pathogen driven.

In humans, amino acids affecting the structure of the CDR3 region, such as proline, are selected against, while tiny amino acids such as glycine are favored. Similar preferences have been observed in the heavy chain (18).

A correlation has been observed between the production probability of each amino acid and its selection in the transition from rearrangement to the naïve pool, suggesting a long-term evolutionary process favoring some junctional amino acids, which are later further selected within a host. Such a behavior has been previously reported in the heavy chain and T cell beta repertoires (17, 18). Selection does not seem to be affected by the codon used, but it is both position and CDR3 length dependent, for some amino acids. Among most amino acids, 5′ regions have higher selection scores than 3′ regions.

All of these elements strongly suggest structural selection where the proper structure of the light chain, and possibly its binding to the heavy chain are selected for. The main selection step has been reported between the OF and the IF naïve repertoire.

The V and J composition of the light chain are not independent. However, this dependence could be the direct result of light chain editing (replacement of non-functional rearrangement by new rearrangements) (14–16). Moreover, differences in the VJ pairing of IF and OF are expected even in the absence of selection, since IF rearrangement are typically made after OF rearrangement, due to repeated light chain rearrangement in the same chromosome, and as such favor more distal VJ combinations (13).

The difference between IF and OF B cell receptor repertoire was argued to highlight properties of B cell receptors associated with diseases or pathogenic challenges. However, current and other recent results (2, 3, 17, 18, 25, 26, 30, 32–37) highlight that the observed naïve repertoire is very different from the direct result of the rearrangement process. Thus, three different repertoires should be defined:

(1) A repertoire produced from rearrangement during the early pro- and pre-B cells stages in the bone marrow.

(2) A naïve repertoire, which is the result of bone marrow selection mechanisms that may be either antigen dependent or independent, and

(3) A memory and plasma-blast repertoire shaped by antigen and possibly pathogen driven selection.

The difference between the last two repertoires seems to be more limited than the difference between the first two. The next challenge will be to develop models to detect within the structurally selected naïve repertoire, BCRs with a potential functional CDR3. Using statistical models of the naïve repertoire that went through the initial structural selection step, we will be able to detect minute differences that indicate selection by exposure to pathogens.



AUTHOR CONTRIBUTIONS

AM performed analysis, wrote part of manuscript, and produced figures. YE designed and performed probabilistic analysis, and wrote part of manuscript. YL designed analysis and wrote part of manuscript. AW and TM helped writing the analysis and designing the probabilistic model. JB performed the BCR bioinformatics.



FUNDING

YE, TM, and AW were supported by grant ERCStG no. 306312. YE was supported in part by The V Foundation for Cancer Research Grant D2015-032. YL and AT were supported by ISF grant 98315.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at https://www.frontiersin.org/articles/10.3389/fimmu.2018.01307/full#supplementary-material.

TABLE S1 | The samples that were used for each model and their quantity. In subsets of both the mouse data and of the human data, we perform the analysis only on the deterministic model because of small sample sizes.
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Human aging is associated with a profound loss of thymus productivity, yet naïve T lymphocytes still maintain their numbers by division in the periphery for many years. The extent of such proliferation may depend on the cytokine environment, including IL-7 and T-cell receptor (TCR) “tonic” signaling mediated by self pMHCs recognition. Additionally, intrinsic properties of distinct subpopulations of naïve T cells could influence the overall dynamics of aging-related changes within the naïve T cell compartment. Here, we investigated the differences in the architecture of TCR beta repertoires for naïve CD4, naïve CD8, naïve CD4+CD25−CD31+ (enriched with recent thymic emigrants, RTE), and mature naïve CD4+CD25−CD31− peripheral blood subsets between young and middle-age/old healthy individuals. In addition to observing the accumulation of clonal expansions (as was shown previously), we reveal several notable changes in the characteristics of T cell repertoire. We observed significant decrease of CDR3 length, NDN insert, and number of non-template added N nucleotides within TCR beta CDR3 with aging, together with a prominent change of physicochemical properties of the central part of CDR3 loop. These changes were similar across CD4, CD8, RTE-enriched, and mature CD4 subsets of naïve T cells, with minimal or no difference observed between the latter two subsets for individuals of the same age group. We also observed an increase in “publicity” (fraction of shared clonotypes) of CD4, but not CD8 naïve T cell repertoires. We propose several explanations for these phenomena built upon previous studies of naïve T-cell homeostasis, and call for further studies of the mechanisms causing the observed changes and of consequences of these changes in respect of the possible holes formed in the landscape of naïve T cell TCR repertoire.
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INTRODUCTION

A diverse set of naïve T cell functions (1) and their antigenic receptors—T-cell receptors (TCRs) (2, 3)—protects us from a multitude of infectious and cancer hazards encountered throughout our lifespan. Furthermore, it essentially provides selection of the appropriate amplitude, type, localization, and duration of immune response. Human aging is associated with profound changes in T cell immunity (2–5), compromising our ability to withstand novel pathogens and manage chronic infections. It also dampens the effect of vaccination (6–8) and can lead to higher cancer susceptibility (9–12). These changes may further result in an imbalanced immune response that can develop into non-specific inflammation, provoking neurodegenerative and cardiovascular disorders, and to the loss of tolerance, leading to autoimmunity (3, 13–15). For the latter, a reduction of regulatory T cell (Treg) diversity (16, 17) could be a one of the causative factors.

With aging, accumulating clonal expansions of memory T cells caused by previously encountered antigens gradually begin to dominate in the available T-cell pool. This leads to a homeostasis characterized by a decreased number of naïve T cells, essentially shrinking the precious reservoir of diverse functions and antigenic specificities (2, 18–23). At the same time, thymus function progressively declines after puberty (24, 25), and drops sharply to a very low level after 40 years of age (4, 26). Along with diminished production of T cell progenitors by the bone marrow (27), this leads to a drop in generation of the so-called recent thymic emigrants (RTE)—the not fully mature (28, 29) form of naïve T cells, and thus in the replenishment of the mature naïve T cell pool (5, 26, 30).

The existing naïve T cells may still support their abundance and diversity for a prolonged period. In humans, both mature naïve T cells and—to a lesser extent—RTE-enriched CD45RA+CD31+ subset of CD4 T cells (30)—keep ability to proliferate on the periphery (31, 32). However, the number of allowed divisions is not unlimited. Prominent shortening of telomeres is observed in both CD31+ and CD31− subsets (30) which eventually leads to a gradual, later avalanche, exhaustion of proliferation capacity and depletion of the naïve T cell pool (20, 33). Additionally, prolonged peripheral proliferation could also be associated with the functional deficiency of naïve T cells that fail to differentiate toward memory phenotype upon a specific antigenic challenge (3), although a recent cytokine profile study suggests that naïve T cells derived from elderly individuals retain their functionality and naiveté (26).

How uniform is the naïve T cell proliferation on the periphery remains questionable. Qi et al. demonstrated that both CD4 and CD8 naïve T cells gated as CCR7+CD45RAhighCD28+ gain clonal expansions by the age of 70–85 years (34). This observation suggests that some of the naïve T cell clones are dividing more prominently than others. Furthermore, the most rapidly dividing ones could exhaust and extinguish more rapidly, while those dividing with a moderate rate could form the observed clonal expansions.

Importantly, the peripheral T cell proliferation may be dependent on the so-called “tonic signaling”—recognition of MHC complexes loaded with self antigens while surveying the peripheral lymphoid organs. Such contacts are transient and do not lead to classic T cell activation, but generate sub-threshold signals required for naïve T cell survival and proliferation (35–38).

The desirable (i.e., required to efficiently recognize foreign antigens within MHC) and allowed (i.e., not leading to self-recognition and autoimmunity) TCR affinity to self peptide–MHC complexes is set in the course of positive and negative thymic selection, respectively. The threshold range of such selection is not that narrow, thus naïve T cells that leave the thymus—initially as RTE—have a relatively wide range of self-reactivity. The produced pool of naïve T cells is, therefore, subjected to varying degrees of tonic TCR signaling (38). Therefore, peripheral proliferation of naïve T cells could be potentially biased toward preferential exhaustion of naïve T cell clones carrying TCRs with the highest affinity to MHC. Furthermore, naïve T cells bearing high affinity TCRs could also serve as a preferential source of antigen-responding clones (37) thus being the first one to transit from the naïve T cell pool.

Another factor that could contribute to the dynamics of naïve TCR repertoire landscape is the fate of the specific population of T cells produced in fetal period. We have earlier demonstrated that this subset may survive for decades and contribute to adult TCR repertoire (39). Their TCRs are characterized by a low number of nucleotides that are randomly added by TdT enzyme in the course of VDJ recombination (40, 41). Furthermore, these cells originate from a distinct population of hematopoietic stem cells and are characterized with generally higher proliferation potential (42). However, their fate among other naïve T cells in the elder age remains unexplored.

Altogether, there are number of factors that could shape the landscape of naïve T cell TCR repertoire with aging. To shed light on the nature of ongoing changes, we have focused on the comparative analysis of intrinsic characteristics of the TCR repertoires for the bulk naïve CD8+, bulk naïve CD4+, naïve RTE-enriched CD31+CD4+, and naïve non-RTE CD4+ T cells derived from the peripheral blood of young versus elderly healthy donors, demonstrating that

1) Characteristics of TCR beta CDR3 repertoires change in both CD4 and CD8, both RTE-enriched and mature naïve CD4 T cell subsets with age.

2) Within the same age group, no significant difference is observed in characteristics of TCR repertoire between RTE-enriched and mature naïve CD4 T cell subsets.

3) TRBV and TRBJ gene segment usage also changes prominently and similarly both within RTE-enriched and mature naïve CD4 T cell subsets of different individuals.

4) Relative “publicity” (i.e., sharing between individuals) of TCR repertoires grows both within RTE-enriched and mature naïve CD4 T cell subsets with age.

The observed changes suggest functional differences of young versus middle-age/old naïve T cell TCR repertoires with respect of potential range and characteristics of recognized antigens.



MATERIALS AND METHODS


Donors and Cell Sorting

The study was approved by the local ethics committee and conducted in accordance with the Declaration of Helsinki. All donors were informed of the final use of their blood and signed an informed consent document. The cohort included 18 healthy individuals aged 25–88 years. Individuals with previously diagnosed cancer or autoimmune disease were excluded. Peripheral blood (10–20 ml) was collected into a number of EDTA-treated Vacutainer tubes (BD Biosciences, Franklin Lakes, NJ, USA), PBMCs extracted using Ficoll-Paque (Paneco, Kirov, Russia) density gradient centrifugation with SepMate™ tubes (STEMCELL Technologies, Vancouver, BC, Canada), and stained according to manufacturer’s recommendations. Following antibodies were used: CD3-eFluor450 (eBioscience, clone UCHT1), CD45RA-FITC (eBioscience, clone JS-83), CD27-PC5 (Beckman Coulter, clone O323), CD4-PE (Beckman Coulter, clone 13B8.2), CD25-eFluor450 (eBiosciences, clone BC96), and CD31-PC7 (eBiosciences, clone WM59). T cells of interest were sorted using FACS Aria III (BD Biosciences, Franklin Lakes, NJ, USA), directly in 350 μl of RLT buffer (Qiagen) per 100,000 sorted cells. Total RNA was further isolated using RNeasy Micro kit (Qiagen) and completely used for TCR library preparation. 5′-RACE TCR beta cDNA libraries were prepared according to the previously described protocol (43, 44). See also: https://github.com/repseqio/protocols/blob/master/Human%20TCR%20alpha%20and%20beta%20RNA-based%20RACE%20protocol.md.

Libraries were sequenced with Illumina HiSeq 2000/2500, paired-end 150 + 150 nucleotides.



TCR Beta Repertoires Profiling and Data Analysis

T-cell receptor beta CDR3 repertoires were extracted using MiXCR software (45), version v2.1.5. Decontamination from memory T cell TCR beta clonotypes and comparative post-analysis were performed using VDJtools software v1.1.7 (46).

Resulting decontaminated TCR beta CDR3 repertoires are available from Figshare:

https://figshare.com/articles/Naive_CD4_CD8_subsets/6548921;

https://figshare.com/articles/naive_RTE_and_non-RTE_CD4_T_cells_subsets/6549059.

The obtained repertoires were further filtered to eliminate out-of-frame and stop codon-containing TCR beta CDR3 variants. Averaged physicochemical properties of amino acid residues in the middle portion (5 amino acid residues) of TCR beta CDR3 were calculated using VDJtools, the following metrics were used: strength (47, 48), hydropathy, polarity, and volume (values available from: http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/IMGTclasses.html). During calculation, property values were weighted by the frequency of corresponding clonotypes, so the results favor more frequent clonotypes and do not depend on the sequencing/sampling depth (49). See Table 1 for the values used for each amino acid property. See Tables 2 and 3 for the counts of sorted T cells, the number of CDR3 containing sequencing reads, and the number of unique TCR beta CDR3 clonotypes in each sample.


TABLE 1 | Values used for CDR3 amino acid properties calculation by VDJtools.
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TABLE 2 | CD4 and CD8 naïve and memory cell sorting.
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TABLE 3 | Recent thymic emigrants (RTEs)-enriched and mature naïve CD4 T cell sorting.

[image: image1]




Statistical Analysis

For comparison of repertoire properties, one-sided t-test with unequal variances (Welch’s test) was used. Normality of the distribution of sample means was confirmed by performing Shapiro–Wilk tests, and the decision to reject the null hypothesis was made after adjusting for multiple hypothesis testing as in Benjamini–Hochberg. False discovery rate in normality testing was controlled at a level of 0.05 by setting p-adjusted upper bound at 0.05. Z-score normalization was performed by subtracting the mean value for each TRBV gene segment values and dividing by the SD. Only highly represented TRBV gene segments TRBV9, TRBV7−9, TRBV7−2, TRBV6−5, TRBV29−1, TRBV20−1, and TRBV12−3/12-4, each associated with at least 2% of CDR3 clonotypes in each sample, were taken into analysis.




RESULTS


TCR Repertoires of Both CD4 and CD8 Naïve T Cells Change Properties With Aging

To analyze how the properties of naïve TCR repertoire change with age, we first sorted CD3+CD4+CD27highCD45RAhigh and CD3+CD4−CD27highCD45RAhigh T cell subsets gated as shown on Figure 1 from peripheral blood samples of 4 young (25–35 years old) and 7 middle-age/old (51–88 years old) healthy donors (Table 2). TCR beta profiling was performed as described in Ref. (43), extraction of CDR3 repertoires was performed using MiXCR (45). To exclude possible contaminations from memory T cell pool that could occur during cell sorting, we also performed TCR beta repertoires profiling for memory T cells sorted from the same donors (Figure 1). Naïve TCR beta repertoires were further decontaminated from the clonotypes present in memory subsets using VDJtools “Decontaminate” module with default parameters (20:1 parent-to-child clonotype frequency ratio for contamination filtering). This procedure eliminated from 0.005 to 0.5% of reads and from 0.01 to 0.7% of clonotypes, these numbers did not depend on the donor age group. Despite the low proportion of eliminated reads and clonotypes, such procedure is desirable for accuracy of the whole analysis and general control for cell contamination during sorting.


[image: image1]
FIGURE 1 | CD4 and CD8 naïve T cell gating strategy. Naïve CD4 T cells were gated as CD3+CD4+CD27highCD45RAhigh. Naïve CD8 T cells were gated as CD3+CD4−CD27highCD45RAhigh. 50,000 events were shown.


We complemented our data with multiplex PCR RNA-based TCR profiling data from Ref. (34) for 4 young (20–35 years) and 5 old (70–85 years) healthy donors naïve T cells gated as CD4+CCR7+CD45RAhighCD28+ and CD8+CCR7+CD45RAhighCD28+. Repertoire extraction was performed using the same MiXCR version starting from raw data (dbGaP, www.ncbi.nlm.nih.gov/gap, accession no. phs000787.v1.p1). Similarly, we used memory subsets from the same donors in order to decontaminate naïve T cell repertoires from possible contaminations during cell sorting using VDJtools.

Analysis of the normalized Shannon–Wiener diversity index for the joint data confirmed the conclusion by Qi and coauthors that both CD4 and CD8 naïve T cells accumulate clonal expansion with aging (Figure 2A). The accuracy of the results for young individuals generally confirmed the validity of combining the data from both experiments, in spite of the fact that different gating was used for the naïve T cell sorting in the two studies.


[image: image1]
FIGURE 2 | Both CD4 and CD8 naïve T cell clonality increases with human age. Normalized Shannon–Wiener diversity index for T-cell receptor beta CDR3 repertoires is shown. (A) CD4 and CD8 naïve T cells. Joint data from Qi and coauthors and current work. Welch Two Sample t-test. (B) Recent thymic emigrant (RTE)-enriched and non-RTE naïve CD4 T cells.


Multiplex PCR employed in Qi et al. (34) may cause quantitative biases due to the differing efficiency of primers used to amplify different TRBV segments (50, 51). However, such source of bias does not influence the relative frequency of clonotypes within a particular TRBV segment. Therefore, in order to properly join our 5′RACE and multiplex PCR data from Qi et al., we performed further analysis separately for each of the TRBV gene segments that were abundantly represented in the data.

Notably, this approach has two additional benefits. First, different TRBV genes carry distinct CDR1 and CDR2 regions that participate in TCR–pMHC interaction, and, therefore, could differently influence the averaged properties of CDR3 that we analyze below. Separate analysis of TRBV segments allows to neutralize this bias. Second, distinct TRBV genes correspond to distinct T cell subpopulations allowing for independent evaluation of their properties, that provides better statistics for limited donor cohorts. All analyses were performed “weighted”—per CDR3-covering sequencing read, i.e., accounting for the relative frequency of each clonotype, with Z-score normalization used to combine information from different TRBV segments.

The results of comparative analysis of TRB CDR3 repertoire properties with VDJtools software are shown on Figure 3. Notably, dispersion of all parameters grows prominently with age, which already reflects the non-uniform proliferation of naïve T cells with age.


[image: image1]
FIGURE 3 | Properties of naïve T cell T-cell receptor (TCR) beta CDR3 repertoires and aging. Weighted (accounting for clonotype size) analysis of TCR beta repertoires properties for CD4 and CD8 naïve T cells derived from peripheral blood samples of young and old healthy donors. (A) Average CDR3 length, size of NDN insert, and count of randomly added N nucleotides. (B) Amino acid composition within 5 amino acid residues in the middle of CDR3. Our data and Qi et al. data, n = 8 young and 12 old individuals totally. CDR3 repertoires for the seven largest TRBV segments were analyzed separately, with Z-score normalization to account for TRBV-specific differences.


CDR3 length, size of NDN insert, and number of randomly added N nucleotides significantly decrease with age both for CD4 and CD8 naïve T cells (Figure 3A). Average characteristics of amino acid residues in the middle of CDR3 also change prominently for CD4 naïve T cells (Figure 3B).



Both RTE and Mature Naïve CD4 T Cells Change Their Properties With Aging

To some extent, both CD45RA+CD31− mature naïve CD4+ T cells and RTE-enriched CD45RA+CD31+ subsets may support their counts by peripheral division: “CD45RA+CD31+CD4+ subset also undergoes some in vivo proliferation without immediate loss of CD31, resulting in an accumulation of CD45RA+CD31+ proliferative offspring ” (30). Nevertheless, counts of CD45RA+CD31+ naïve CD4+ T cell notably decrease with time (5, 30). The CD31− subset is believed to proliferate and support their counts more efficiently than CD31+, although the extent of telomere shortening with aging is prominent and comparable for both subsets (30).

Therefore, one could suggest that characteristics of mature naïve CD4+CD31− T cells could change more prominently than those of RTE-enriched CD4+CD31+ T cell pool. The properties of total naïve CD4+ T cells could change with aging because of the intrinsic differences between the properties of RTE-enriched and mature naïve CD4 T cell TCR repertoires, and decrease of CD31+ cell proportion of all naïve CD4 T cells (5).

To verify the latter hypothesis, we compared TCR beta repertoire characteristics for the sorted CD4+CD45RAhighCD27highCD31+ and CD4+CD45RAhighCD27highCD31− T cells of 4 young (29–31 years) and 3 elder (aged 51, 55, and 82 years) healthy donors (Table 3). Importantly, to exclude the potential influence of naïve Tregs which characteristics essentially differ from conventional CD4 T cells, here we gated out the CD25+ cells from all subsets (Figure 4). It should be noted that this strict gating could also cutoff the CD25dull subset of naïve CD4 T cells that was recently reported to accumulate with aging (52), however, these cells were nearly absent (represented less than 2% of naïve CD4 T cells) in our donors.


[image: image1]
FIGURE 4 | Recent thymic emigrant (RTE)-enriched and non-RTE naïve CD4 T cell gating strategy. 50,000 events were shown on the left panel.


Analysis of obtained TCR beta CDR3 repertoires revealed that characteristics of CD4+CD45RAhighCD27highCD25−CD31+ and CD4+CD45RAhighCD27highCD25−CD31−CD4 T cell TCR repertoires are nearly identical within the same age group, but both prominently differ between the younger and elder donors (Figures 5A,B). It should be noted that, since the average CDR3 length decreases with age, larger portions of TRBV and TRBJ segments could be covered by our analysis of the middle 5 amino acid residues of CDR3, which could in turn influence the result amino acid property averages. However, this influence was not prominent since different TRBV segments behaved similarly in our analysis.


[image: image1]
FIGURE 5 | T-cell receptor beta CDR3 repertoire properties for mature naïve and recent thymic emigrant (RTE)-enriched CD4 T cells. (A) Average CDR3 length, size of NDN insert, and count of randomly added N nucleotides. (B) Amino acid composition within 5 amino acid residues in the middle of CDR3. CDR3 repertoires for the seven largest TRBV segments were analyzed separately, with Z-score normalization to account for TRBV-specific differences.


Furthermore, young and old naïve CD4 T cell repertoires were characterized by distinct frequencies of TRBV (Figure 6A), TRBJ (Figure 6B), and paired TRBV–TRBJ (Figure 6C) gene segment usage, without any notable differences observed between the RTE-enriched CD31+ and mature naïve CD4 T cell subsets.


[image: image1]
FIGURE 6 | TRBV and TRBJ gene segment usage in recent thymic emigrant-enriched and mature naïve CD4 T cells of young and old individuals. (A) Heatmap and hierarchical clustering dendrogram for weighted TRBV usage. (B) Weighted TRBJ usage. (C) Hierarchical clustering of TRBV–TRBJ combination frequency (Jensen–Shannon divergence is used as metric). Note that repertoires of young and old individuals cluster separately.


Similarly to naïve CD4 and CD8 subsets, RTE-enriched and mature naïve CD4 subsets showed a tendency toward increased clonality in the elder age (Figure 2B).

We concluded that observed changes in the characteristics of naïve CD4 T cell TCR beta CDR3 repertoire with aging affect both RTE-enriched and mature subsets, and do not result from the changes in CD31+/CD31− subsets ratio.



Publicity of Naïve CD4 T Cell Repertoire Grows With Aging

Shorter CDR3 length and lower number of randomly added N nucleotides are commonly associated with higher publicity of TCR repertoires (53, 54). To analyze how the relative publicity of naïve CD4 TCR beta repertoires changes with aging, we extracted top-3,000 clonotypes from each dataset, with random sampling of clonotypes having the identical low frequency—a normalization step which is highly desirable to minimize biases in comparison of immune repertoires overlaps. As it could be expected based on CDR3 characteristics (Figures 5A and 7A), analysis of relative overlaps between TCR beta CDR3 repertoires revealed that relative publicity of total CD4 naïve [our data only, excluding the data from Ref. (34)], RTE-enriched CD31+ and mature naïve CD31− CD4 T cell subsets grows with aging (Figure 7B). A moderate overlap was observed between the young and middle-age/old CD4 naïve, RTE-enriched CD31+ and mature naïve CD31− CD4 T cell subsets. No clear age-related changes in relative publicity were observed for CD8 naïve T cells (our data only).


[image: image1]
FIGURE 7 | Relative publicity of naïve T cell T-cell receptor (TCR) beta repertoires. (A) Mean number of N-insertions among top-3,000 clonotypes from each sample. Unweighted (per clonotype), only for the clonotypes where TRBD segment borders were identified. (B) Repertoire overlaps calculated as the number of TCR beta amino acid CDR3 clonotypes shared between the top-3,000 clonotype repertoires for each pair of individuals. Each dot represents the number of clonotypes shared between a pair of samples. Welch Two Sample t-test p-values are shown.


We used CDR3 sequence similarity graph to analyze whether naïve TCR repertoires form separate networks in young versus old donors. To build the graph, we selected 3,000 most abundant clonotypes from each donor and pooled them together to form the set of nodes. We connected two clonotypes with an edge if they had the same VJ-combination and CDR3 differed by a single amino acid substitution. Next, we counted the number of edges connecting clonotypes from donors of different age groups (young versus old) and obtained empirical distributions for these counts by running 1,000 random permutations of age group labels.

We found, that in CD8 naive repertoires, the number of edges between clonotypes from young and old donors is larger in data than in simulation in 424 donor age group permutations out of 1,000, so there is no evidence for separate CDR3 networks for young and old donors for this subset. In CD4 naive repertoires, however, there was a weak tendency: only in 95 simulations out of 1,000 (empirical P-value of 0.095) we found a lower number of edges between donors of different age, than the one observed in real data. This suggests that repertoires of naive CD4 T cells include distinct communities of homologous TCR variants in young and old individuals. However, this effect was only marginally significant and requires further investigation.




DISCUSSION

With aging, decreasing thymic output can not efficiently sustain naïve T cell counts, so the homeostatic proliferation becomes the main mechanism to replenish this cell pool in humans. Such proliferation is inevitably associated with certain biases that shape the landscape of naïve T cell TCR repertoire and thus affect the spectrum of the antigens they could recognize.

We have utilized immune repertoire sequencing to study the repertoires of naïve T cells in young and aged donors and revealed notable changes in human TCR repertoires of both CD4 and CD8 peripheral blood naïve T cells with aging:

(1) We confirm the observation of Ref. (34) that relative clonality reflecting the extent of clonal expansion increases both within CD4 and CD8 naïve T cell subsets with age (Figure 2).

(2) We demonstrate that average CDR3 length, NDN insert length, and number of randomly added N nucleotides significantly decrease with aging in all subsets of naïve T cells, including CD4, CD8, CD4 RTE-enriched CD25−, and CD4 mature naïve CD25− subsets (Figures 3A, 5A and 7A). Interestingly, due to spatial restrictions in TCR–pMHC interaction, the length of CDR3 is inversely related to the length of recognized peptide antigen, which affects the spectrum of recognized pMHCs (Shugay et al., manuscript under consideration). The decrease of CDR3 length with aging could, therefore, reflect the averaged properties of pMHCs that are preferentially recognized by naïve T cells in the periphery, and cause better tonic signaling, leading to earlier exhaustion of proliferation capacity of the cells carrying corresponding TCR variants.

(3) As could be expected based on previous works (53, 54), the abovementioned changes favored higher publicity in CD4 naïve T cells (Figure 7B). At the same time, we have not observed clear differences in TCR beta CDR3 repertoire publicity for CD8 compartment. These observations differ from the data from Qi et al. (34) suggesting the decrease of CD8 naïve T cell publicity with aging. Further studies on larger cohorts with thoroughly controlled purity of cell sorting, and proper normalization of the datasets for comparing publicity of repertoires (49) should clarify this point.

(4) Averaged amino acid characteristics in the middle of CDR3 change prominently in CD4, CD8, CD4 RTE-enriched, and CD4 mature naïve subsets (Figures 3B and 5B). In particular, significant decrease is observed for the “strength” metrics, which represents the count of strongly interacting amino acid residues (47, 48). The “strongly interacting” include F, L, I, M, and V that may form hydrophobic contacts, as well as aromatic residues W and Y that are capable of different types of interactions including offset stacked or edge-to-face interactions, thiol–aromatic interactions, and others (55), and may consist of electrostatic, van der Waals, and hydrophobic forces. Correspondingly, similar changes are observed for the “hydropathy” metrics which counts the number of hydrophobic residues in the middle of CDR3.

The “strength” metric efficiently differentiates functional T cell subpopulations, such as Treg and non-Treg CD4 subsets [see Ref. (49, 56) and our data to be published elsewhere]. This metric can be interpreted as an averaged estimation of TCR repertoire affinity to peptide–MHC complexes and in particular to the antigenic peptide, since the middle portion of CDR3 is often in contact with the presented antigen (Figure 8).


[image: image1]
FIGURE 8 | Number of CDR3:antigenic peptide contacts in structural data. Comparing the mean number of contacts for entire CDR3 (All positions) and its central region (central 5 residues and central 3 residues). ANOVA followed by a post hoc Tukey test shows significantly higher number of contacts for the central region: P < 10−8 when comparing 5 and 3 central residues to all residues, but no difference between 5 and 3 central residues (P = 0.42). The analysis was performed for T-cell receptor (TCR) beta chain using 110 human TCR:pMHC complexes from Protein Data Bank.


The decrease of relative abundance of strongly interacting amino acid residues within TCR beta CDR3 repertoire of naïve T cells with aging may, therefore, reflect more rapid depletion of naïve T cell clones with higher affinity to self pMHC. This could result from more efficient tonic signaling and generally faster proliferation, exhaustion of proliferation capacity, and extinction of such naïve T cells (38).

Notably, similar changes were observed within RTE-enriched CD31+ and mature naïve CD31− CD4 naïve T cells (Figures 5–7). Decrease of the “strength” metric was even more prominent for the RTE-enriched subset (Figure 5B), suggesting that the CD31+ naïve CD4 T cell clones bearing TCR variants with high affinity to self pMHC are prominently switching to the CD31− phenotype due to more efficient TCR signaling.

Complementary explanation for the changes observed in the naïve T cell TCR repertoire characteristics with aging is that the high affinity variants are washed away from the naïve T cell pool in the course of ongoing immune responses. Both CD4+ and CD8+ T cells with strong reaction to self and high tonic signaling dominate in responses to foreign antigens (37, 57, 58). Positive selection in thymus thus favors production of more efficiently responding T cells that should be also more rapidly depleted from the naïve T cell pool. If this is the case, the age-related changes are associated with generation of prominent functional holes in the landscape of naïve T cell receptor repertoire.

An additional factor that could contribute to the observed changes in naïve T cell TCR repertoires is the easier conversion of clones with high affinity to self pMHC to the “memory-like” phenotype, as shown in mice models (59, 60), although such observations have not yet found clear confirmation in humans (3).

Altogether, the observed changes could be interpreted as elimination of generally more “sticky”—having higher affinity to self and non-self peptide–MHC complexes—TCR variants from the naïve T cell pool with aging.

However, there is also an alternative explanation which deserves consideration. Shorter CDR3s, lower numbers of randomly added N nucleotides, and higher publicity are characteristic features of the early wave(s) of naïve T cells generated during fetal period (23, 40, 61–63). Such early wave(s) originate from distinct population(s) of hematopoietic stem cells that may have distinct long-term program including higher proliferation potential (39, 42).

Considering the drop in thymic activity that happens in the middle age (4, 26), one could hypothesize that the counts of conventional naïve T cell decrease after exhaustion of their limited proliferation capacity, while the early-wave naïve T cells of fetal origin with prolonged proliferation capacity persist. Such organization of T cell adaptive immunity in the elderly could be beneficial from the point of more predictable innate-like behavior of the T cells carrying a relatively restricted, more germline-encoded TCR repertoire. To some extent, our network analysis of naïve CD4 T cell TCR repertoires supports this concept.

Summing up, our study sheds light on the intrinsic changes in the naïve T cell TCR repertoire structure with aging, and calls for further functional studies that could clarify the underlying mechanisms.
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Antigen presentation lies at the heart of immune recognition of infected or malignant cells. For this reason, important efforts have been made to predict which peptides are more likely to bind and be presented by the human leukocyte antigen (HLA) complex at the surface of cells. These predictions have become even more important with the advent of next-generation sequencing technologies that enable researchers and clinicians to rapidly determine the sequences of pathogens (and their multiple variants) or identify non-synonymous genetic alterations in cancer cells. Here, we review recent advances in predicting HLA binding and antigen presentation in human cells. We argue that the very large amount of high-quality mass spectrometry data of eluted (mainly self) HLA ligands generated in the last few years provides unprecedented opportunities to improve our ability to predict antigen presentation and learn new properties of HLA molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. Although major challenges still lie on the road toward the ultimate goal of predicting immunogenicity, these experimental and computational developments will facilitate screening of putative epitopes, which may eventually help decipher the rules governing T cell recognition.
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INTRODUCTION

Recognition of infected or malignant cells by T cells relies on the presentation of immunogenic self and non-self peptides at the cell surface. Two main pathways have been identified for antigen presentation and processing (1–3).

In the class I pathway, intracellular proteins are degraded into small peptides by the proteasome. These peptides are transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP) protein complex. There, they can bind to human leukocyte antigen class I (HLA-I) molecules in complex with beta2-microglobulin (β2m). After trafficking to the cell surface, the complexes may be recognized by CD8 T cells. HLA-I proteins are primarily encoded by three genes (HLA-A, HLA-B, and HLA-C), which are widely expressed in most cell types in human. In addition, specialized cell types can express HLA-E, HLA-F, or HLA-G genes. HLA-A, -B, and -C genes (hereafter referred to as HLA-I) are the most polymorphic genes in the human genome and over 12,000 distinct alleles are documented in the human population (4). Humans have in general different combinations of HLA-I alleles and, therefore, express up to six different HLA-I proteins (two for each gene). HLA-I molecules bind short peptides, mainly 9–11 amino acids, and different HLA-I alleles have distinct binding specificities, which implies that a broad spectrum of peptides can be displayed across different individuals.

In the class II pathway, peptides coming from the degradation of phagocytosed extracellular proteins are presented on HLA-II molecules for recognition by CD4 T cells (5). In addition, endogenous proteins can be presented on HLA-II molecules when degraded through autophagy (6). HLA-II proteins are encoded by several genes (HLA-DRA, HLA-DRB1,3,4,5, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1) and also show a very high level of polymorphism in the humans (except for HLA-DRA). HLA-II form heterodimers (HLA-DRA/HLA-DRB1,3,4,5; HLA-DPA1/HLA-DPB1 and HLA-DQA1/HLA-DQB1). These dimers bind longer peptides (12–20 amino acids) within an open-ended peptide-binding site. Several other steps are involved in presentation of class II epitopes, such as loading on HLA-II molecules catalyzed by HLA-DM, peptide exchange catalyzed by HLA-DO, the presence of other enzymes such as cathepsins or pH gradients (7–10). Unlike HLA-I, HLA-II molecules are mainly expressed on specific professional antigen-presenting cells (pAPCs) such as dendritic cells or B cells (1), and rarely also by cancer cells such as melanoma (11). pAPCs can also uptake exogenous antigens and present them on HLA-I (12). This process is called cross-presentation, and it is crucial for priming of naïve T cells (13, 14). Altogether, the cellular antigen processing and presentation machinery ensures that the restrictive loading of either intracellular (class I) or extracellular (class II) peptides of the right length will take place in specialized cellular compartments.

The set of peptides presented on HLA molecules is called the HLA peptidome, also referred to as immunopeptidome or HLA ligandome. The HLA peptidome is a rich and complex repertoire of peptides that inform T cells about abnormalities in the genome, transcriptome, and proteome of infected or malignant cells (15–17). It is constantly modulated by HLA or peptides’ source protein expression levels, by posttranslational modifications and by the many enzymes, chaperones, and transporters that comprise the antigen processing and presentation machinery (7, 18–20). In particular, the catalytic subunits of the constitutive proteasome, the immunoproteasome, and the thymic proteasome are tightly regulated, leading to the production of distinct repertoires of presented peptides in different cell types and under different conditions (21–24).

Historically, the study and predictions of class I and class II T cell epitopes have mainly developed in the field of infectious diseases, and large datasets of peptides displayed at the surface of infected cells and recognized by T cells are available from HIV, dengue, or influenza (25, 26). In the field of cancer immunology, tumor-associated antigens (defined here as genes expressed in cancer cells and not, or very poorly, in normal cells) have received much attention for almost 30 years (27). For instance, T cell recognizing specific epitopes of NY-ESO or MAGE-1 proteins can be found in melanoma patients, indicating that the immune system can mount a response against tumor-specific antigens (27–29). More recently, many evidences have been accumulated indicating that cancer cells express unique mutated antigens, the so-called neoantigens, which can be recognized by the patients’ own (autologous) T cells (15, 30–35). The total number of somatic mutations in some tumors has been shown to correlate with the therapeutic efficacy of checkpoint blockade antibodies (36–39), suggesting that neoantigens could play an important role in tumor immune recognition. Moreover, several studies demonstrated clinical benefit mediated by the administration of highly enriched populations of neoantigen-reactive CD4+ and CD8+ T cells (34, 40) and by neoantigen-based vaccines (41, 42). Potential neoantigens are typically predicted first by identifying non-synonymous alterations from next generation sequencing data and second by predicting the binding to HLA molecules of peptides encompassing these non-synonymous genetic alterations (43). For these reasons, predictions of peptides presented on HLA-I and HLA-II molecules have gained renewed interest in the field of tumor immunology. Predicted neoantigens need to be then experimentally validated for HLA binding and immune recognition in vitro (44–47).

Here, we review approaches developed for predicting antigen presentation in human cells, with a focus on the latest experimental and computational developments to take advantage of in-depth and accurate mass spectrometry (MS) data of HLA peptidomics. Our aim is to describe the main steps of antigen presentation that proved to be successful in making quantitative predictions of antigens. The more biological aspects of antigen presentation and processing are covered in many other reviews (1–3, 8).



MAIN SOURCES OF HLA LIGAND DATA

A cornerstone in our ability to understand and predict antigen presentation has been the experimental identification of specific peptides interacting with HLA molecules. First, from an experimental point of view, HLA-I molecules do not fold stably in the absence of a ligand and, therefore, all biochemical, structural, and functional studies of HLA-I molecules rely on the availability of known HLA-I ligands. Second, all computational methods to predict HLA ligands at a large-scale use data-driven approaches based on sequence patterns identified within known ligands.

Two main classes of experimental assays have been developed to identify HLA ligands. The first class of assays consists of in vitro assays. For HLA-I molecules, refolding assays use conformational pan HLA-I antibodies to test whether the HLA-I complex is properly folded in the presence of a peptide (48–52). Peptide-rescuing assays consist of a photo-cleavable peptide that is stripped by UV radiation in the presence of another peptide (53–55). Competitive assays with radiolabeled peptides have been used to determine relative affinity (IC50) (56). Dissociation assays based on radiolabeled β2m have been used to probe the stability of peptide–HLA-I complexes (57, 58). Surface plasmon resonance techniques can be used to measure actual Kd values (59). In vitro binding assays have also been used for HLA-II ligands (60–62). Compared to class I ligands, screening of class II ligands at high throughput is facilitated since HLA-II molecules have an open-ended peptide-binding site. Therefore, peptides can be fixed on plates, which allow for the use of peptide microarrays (63), or directly encoded in different display systems such as phage or yeast display (64, 65).

In vitro binding assays play a central role in our ability to identify T cell epitopes from viral or cancer-specific antigens (66, 67). When used in combination with state-of-the art predictions tools, they enable rapid validation of predicted targets and are currently key to most neoantigen discovery approaches in cancer immunotherapy (30, 31, 68, 69). The main caveat of in vitro assays for HLA-I ligands is that the peptides have to be determined a priori and chemically synthesized, since both the C- and N-terminus of most HLA-I ligands need to be free in most cases. This limits the use of high-throughput and unbiased peptide screening technologies. Furthermore, the involvement of the components of the antigen-loading complex is missing in in vitro binding assays and, therefore, signals related to antigen loading in vivo cannot be captured.

The second type of experimental assays for HLA ligand identification is based on MS measurement of eluted HLA-binding peptides. This approach is the only methodology to comprehensively interrogate the repertoire of HLA ligands presented naturally in vivo (16, 18, 70, 71). The best-established HLA peptidomics methodology is based on immunoaffinity purification (IP) of HLA complexes from detergent solubilized lysates, followed by extraction and purification of the peptides. Typically, either anti-pan-HLA class I, anti-HLA-DR, or anti-pan-HLA class II monoclonal antibodies are used. The extracted peptides are then separated by high-pressure liquid chromatography and directly injected into a mass spectrometer. The resulting spectra obtained from the fragmentation of the peptides are compared with in silico generated spectra of peptides from protein sequence databases with MS search tools. Therefore, this search is limited to the available databases, usually the annotated human proteome. Moreover, peptides that have features that make them incompatible with ionization, those that are too hydrophobic or too hydrophilic, might not be detected with standards methods. With the new generation of mass spectrometers, thousands of HLA ligands can be identified per sample (15, 18, 72, 73). Cell lines, including human cancer cell lines, tumors, healthy tissues, and body fluids such as plasma have been subjected to HLA peptidomics analyses (18, 70–84). However, MS-based HLA peptidomics approaches have limited sensitivity and require a relatively large amount of biological sample (~1 cm3 of tissue or 1 × 108 cells) (21). Furthermore, despite major improvement in the quality of HLA peptidomics data, one can never exclude small residual contaminations from co-eluted peptides or wrong annotation of spectra depending on the false discovery rate threshold used in spectral searches.

Dedicated proteogenomics computational pipelines for customized reference databases have been developed to expand the search space beyond the canonical human proteome. Customizing references to include somatic alterations observed in tumors have been used for direct identification of neoantigens by MS in murine and human cancer cell line models (31, 35, 80, 85), B cell lymphomas (86), and melanoma tissues (15). Similar approaches were also used for other cryptic peptides resulting from unconventional coding sequences in the genome (87) and new open reading frames (88) (see Non-Canonical HLA-I Ligands).

Historically, the first HLA-I motifs (e.g., HLA-A02:01) were found by looking at peptide sequences of eluted ligands identified by MS (89, 90). To overcome the fact that eluted peptides come from up to six HLA-I alleles in unmodified cell lines or tissue samples, two experimental approaches have been developed. The first approach consists of transfecting a soluble HLA allele into a cell line and pulling down only the soluble HLA-I molecules in complex with their ligands (91, 92). While it has been shown that the repertoire of peptides presented on transfected soluble HLA-I and the endogenous membranal HLA-I molecules are highly similar (93), the non-physiological expression level of the soluble HLA-I molecules and the potential different environment in the loading compartment could affect the overall peptide repertoire. Furthermore, endogenous HLA-I alleles can be shaded or naturally secreted from cells in culture (94) and could contaminate the secreted peptidome (75). Nevertheless, this approach proved very powerful to identify HLA-I motifs (77, 78, 95–97). Of particular interest is the study by Di Marco and co-authors where the motifs of 15 HLA-C alleles could be determined, together with motif for HLA-G01:01 (75). This detailed view of HLA-C alleles binding specificities enabled the authors of this study to identify for the first time specificity determinant residues in the HLA-C-binding site that provide likely molecular mechanisms explaining the differences observed between HLA-C binding motifs. The second experimental approach consists of using genetically modified cell lines that express only one allele (98, 99) and was used to study binding motifs of highly similar alleles, like HLA-B27:02 to HLA-B27:09 (100). This approach was also recently used to screen 16 HLA-A and HLA-B alleles, and this work confirmed that predictors trained on MS data could improve predictions of naturally presented HLA-I ligands (70). One advantage of this approach is that theoretically all peptides come from one single allele (see above for potential sources of contaminations). In parallel, we and others introduced computational techniques based on motif deconvolution (72, 101) and peptide clustering (102, 103) to accurately determine HLA-I restriction of eluted ligands from pooled samples without requiring to experimentally isolate each HLA-I allele and without relying on HLA-I ligand predictors (see below for a detailed description of these approaches).


Comparison of MS and In Vitro Data

Until 2012, the number of MS datasets was significantly lower than in vitro data (Figure 1), which partly explains why in vitro binding data were mainly used for training HLA-I ligand predictors. However, the situation has changed quite dramatically over the last 4 years. Combining data from IEDB (25) together with recent HLA peptidomics studies (see Supplementary Material), we can observe that roughly 10 times more unique HLA-I ligands and three times more unique HLA-I–peptide interactions are currently available from MS studies (Figure 1, the lower number of interactions than peptides for MS data comes from the fact that several MS samples did not have HLA typing information or allele restriction could not be determined with motif deconvolution). The coverage of HLA-I alleles is also larger in HLA peptidomics samples compared to in vitro binding data (Figure 1). Moreover, all curves for MS data do not show signs of saturation, suggesting that these numbers are likely to further increase in the coming years, especially with the growing interest in HLA peptidomics profiling of cancer samples from patients with diverse ethnic backgrounds for neoantigen discovery (15). Similar observations hold for HLA-II ligands, where the number of unique peptides identified by MS largely exceeds the number of peptides identified in in vitro assays. However, the number of HLA-II alleles with documented ligands is still larger for in vitro binding data. This likely reflects the fact that HLA-II ligands are easier to screen in a high-throughput way using peptide microarrays, and that allele restriction in HLA-II peptidomics data is still more difficult to determine with motif deconvolution or peptide clustering than for HLA-I peptidomics data.
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FIGURE 1 | Analysis of HLA-I and HLA-II ligands obtained from human leukocyte antigen (HLA) peptidomics studies and in vitro assays. The number of unique HLA-I ligands, the number of unique interactions, the number of HLA alleles with at least one ligand, and the number of HLA alleles with at least 100 ligands are displayed for both class I and class II, as a function of years (cumulative distributions).





MODELING HLA-I BINDING SPECIFICITY


Allele-Specific Predictors

Modeling HLA-I-binding specificity has been carried out for almost 30 years since the first evidence of HLA-I motifs. Early studies used simple sequence motifs [e.g., xLxxxxxx(L/V) for HLA-A02:01]. However, as more data started to accumulate, it became clear that simple motifs were too restrictive and not quantitative enough. To overcome these limitations, position weight matrices (PWM) (equally referred to as Position Specific Scoring Matrices or simply scoring matrices) were introduced (104–107). The basic idea is to compute the frequency of each amino acid at each position in a set of (pre-aligned) peptides. The score of a new peptide can then be computed by multiplying the PWM entries corresponding to the sequence of the new peptide (see Supplementary Material). Although the idea of computing amino acid frequencies is relatively simple to understand, several steps are important when building a predictor based on PWMs. First, one has to consider the amino acid background distribution and use this distribution to renormalize the scores (see Supplementary Material). In most existing approaches, amino acid frequencies of the human proteome have been used. However, this approach may not be fully justified when using viral epitopes to train predictors. Similarly, eluted HLA-I ligands do not show the same amino acid distribution as human proteins and much lower frequency of cysteine has been reported by ourselves and others (70, 72). As such, the optimal choice of background distribution may depend on the origin (both biological and technical) of the data. Second, in most cases, estimating the frequency of amino acids occurring only a few times (or never) at a given position is highly susceptible to statistical noise. To address this issue, pseudo-counts are often used. A widely used approach is based on the BLOSUM62 matrix (see Supplementary Material) (105, 108, 109). Third, biases due to the design of specific experiments can be found in many in vitro datasets. For instance, if a mutagenesis was carried out at a fairly non-specific position in a given epitope, many sequences will have identical amino acids at all positions except the one used in the mutagenesis. One way to correct for such biases is to add a weight to all peptides that is inversely proportional to the number of highly similar sequences in the dataset (see Supplementary Material).

Since the last decade, most allele-specific HLA-I ligand predictors use machine learning frameworks such as neural networks, hidden Markov Models, support vector machines, or convolutional neural networks (110–114). One attractive aspect of these models is the ability to consider potential correlations between different positions within HLA-I ligands. For instance, we recently observed in HLA-B07:02 ligands that arginine is preferred at P3 or at P6, but not at both positions at the same time (101). This type of correlation is not captured by simple PWMs. However, it is still unclear how frequent these correlations are for HLA-I ligands. In particular, although many studies reported improved predictions of HLA-I ligands using machine learning algorithms (112, 115), one has to be careful before concluding that correlation patterns are prevalent, since improvement in prediction accuracy may also result from more robust regularization frameworks. Finally, machine learning approaches are also susceptible to overfitting and correcting for potential biases in training sets can be more challenging than with simple PWMs.



Pan-Allele Predictors

Enough experimental ligands are available for roughly 100 HLA-I alleles, which represents only a small fraction of the >12,000 HLA-I alleles observed in the human population. To address this issue, pan-allele predictors have been introduced, where the input of the algorithm consists of both the sequence of the ligand and the sequence of the HLA-I allele (or of its binding site) (107, 116–118). These algorithms are powerful at capturing correlations between amino acids in the HLA-I-binding site and in the ligand. The most widely used and likely the most elaborate pan-specific algorithm is the NetMHCpan tool (117), which includes several features specific for HLA-I molecules, such as combining peptides of different lengths in the training and incorporating peptide length preferences.

Table 1 summarizes some of the most common predictors, together with information about the algorithm that is used, the type of training data and the output.


TABLE 1 | Summary of some of the most recent or most widely used human leukocyte antigen (HLA)-I predictors with available web interface or code repository.
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Choosing the Right Training Set

While extensive work has been performed to optimize the algorithms used in HLA-I predictors, less attention has been devoted to the choice of the training set. Prior to 2016, most approaches aimed at predicting binding affinity values (i.e., IC50) and, therefore, were trained on in vitro data mainly obtained from IEDB (25). Although high accuracy could be reached for many common alleles, several potential biases suggest that such data can be suboptimal for training predictors. In particular, it is important to remember that most HLA-I ligands tested in vitro for binding were first predicted with older versions of HLA-I ligand predictors [some exceptions that used random peptide libraries include Ref. (58)]. Unfortunately, this can induce circularity when using these data to retrain predictors, and such biases are difficult to detect and correct for. Of note, the same circularity issue can also affect several published MS datasets when HLA-I ligand predictors or motifs were used to assign allele restriction and filter noise. Here, we argue that high-quality MS data not filtered with existing predictors provide a powerful solution toward overcoming the potential circularity inherent to many in vitro binding data.



Using MS Data for Identifying HLA-I Motifs and Training Predictors

Mono-allelic samples or transfected soluble HLA-I alleles have been used since many years to study the binding motifs of specific HLA-I molecules (91, 92). However, due the experimental work implied by such approaches, they were never applied to a large panel of HLA-I alleles [the largest studies consist of 16 alleles for mono-allelic cell lines (70) and 17 alleles for transfected soluble HLA-I alleles (75)]. For pooled HLA peptidomics dataset, the impossibility to experimentally assign allelic restriction was often considered as an important hurdle to use such data toward studying HLA-I-binding motifs.

However, in the last few years, it became clear that pooled HLA peptidomics data can be used to study HLA-I motifs and improve predictions, thereby overcoming the need of genetically modifying cell lines or transfecting soluble HLA-I alleles. The first attempt to determine HLA-I-binding motifs from pooled HLA peptidomics data was published in 2015 (18). A year later, we published the first evidence that such data can be used to improve predictions of HLA-I ligands (101). Since then, many studies have confirmed these results both for the identification of new motifs (72, 81, 102, 103, 119) and for improving predictions of HLA-I ligands by integrating MS data in the training of predictors (70, 72, 117, 120).

As of today, two algorithms have been used for motif deconvolution and peptide clustering of pooled HLA peptidomics data. One of them (MixMHCp) is based on mixture models and was initially developed for multiple specificity analysis in large PDZ or SH3 ligand datasets obtained by phage display (121–123). In this framework, the idea is to let the algorithm infer K distinct PWMs that optimally model the eluted peptides (101). Since peptides identified by MS come from K different HLA-I alleles (K ≤ 6), it is not surprising that the motifs that optimally describe the data correspond precisely to the specificity of these alleles. The other algorithm (GibbsCluster) is based on simulated annealing to group the peptides into different clusters optimizing a global cost function that models how well each peptide fits into its respective cluster (103, 124). Somehow unexpectedly, both algorithms were initially developed for other purposes (i.e., multiple specificity analysis for MixMHCp and simultaneous clustering and alignments of short peptides for GibbsCluster) and their use for motif identification in HLA peptidomics data was realized only later (18, 101, 102). The two approaches have many conceptual similarities since the likelihood function optimized in MixMHCp differs only slightly from the cost function optimized in GibbsCluster. In practice, the two algorithms lead most of the time to very similar results for HLA-I peptidomics data (101) and nearly identical motifs as those obtained from mono-allelic samples or transfected soluble alleles (72) (see also examples in Figure S1 in Supplementary Material). In some cases, as we have reported, the mixture model tends to be slightly more sensitive to identify motifs supported by few peptides, such as those describing HLA-C alleles (101). Conversely, the GibbsCluster has several advantages, such as the ability to combine peptides of different lengths and the simultaneous clustering and alignment of the peptides (which is critical for HLA-II ligands) (102, 103). Both methods can be used as command line or through webservers (see http://www.mixmhcp.org and http://www.cbs.dtu.dk/services/GibbsCluster-2.0/). The availability of these algorithms strongly supports the notion that allele assignment in MS data should not be done based on HLA-I ligand predictors, since this may remove all peptides that are not well modeled with existing predictors, and hence bias determination of motifs and prevent improving the predictors. It is also important to emphasize that accurate motif deconvolution requires a large number of peptides, and ideally, many samples to test the robustness of the motifs (72). For this reason, it is likely the combination of higher accuracy and throughput of MS instruments (18) together with these novel algorithms that enabled accurate HLA-I motifs identification in pooled HLA peptidomics data.

Annotation of the motifs deconvolved from pooled HLA peptidomics data can be done in different ways. For alleles for which a reasonable description of the motifs is known, one can simply compare the motifs found in MS data to the known references (18). Using Euclidean distance to quantify the similarity between the PWMs appears to provide stable results and most of the time the mapping is quite obvious (72, 101). If the motifs are not known, two approaches have been developed. One fully unsupervised approach was proposed by ourselves based on cooccurrence of HLA-I alleles across different samples (72). In this way, we could identify and annotate HLA-I motifs for more than 40 alleles, including 7 alleles that had no experimental ligands at the time of this study. Another semi-supervised approach that works well in most cases consists of comparing with motifs predicted from pan-allele predictors such as NetMHCpan (119).

An important limitation of motif deconvolution approaches comes from the fact that motifs for some alleles (especially HLA-C alleles) are more difficult to detect in many samples. Also, in the presence of highly similar motifs (e.g., HLA-A23:01 and HLA-A24:02, or HLA-C07:01 and HLA-C07:02), the two motifs often cannot be split (72). Because of this, not all HLA peptidomics datasets are appropriate for training predictors for each allele expressed in the corresponding sample. This limitation can be alleviated by considering large collections of HLA peptidomics studies and focusing on cases where the motifs are clearly visible and can be unambiguously annotated (72). Finally, it is sometimes useful to consider more motifs than the number of alleles in order to identify motifs for each allele (Figure S2 in Supplementary Material).

Figures 2–4 summarize the HLA-A, HLA-B, and HLA-C motifs currently available by combining motifs deconvolved from recent MS studies together with IEDB data (see Supplementary Material). As expected, the clustering based on the similarity between the motifs (see Supplementary Material) broadly recapitulates the supertype assignment for HLA-A and HLA-B alleles and helps highlighting differences among alleles classified within the same supertypes.
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FIGURE 2 | Hierarchical clustering of HLA-A alleles based on their binding specificity. Stars indicate cases where only in vitro binding data were available to generate the motifs. In all other cases, only mass spectrometry data were used. Name colors and their descriptions in the legend indicate supertypes as defined in Ref. (185).



[image: image1]
FIGURE 3 | Hierarchical clustering of HLA-B alleles based on their binding specificity. Stars indicate cases where only in vitro binding data were available to generate the motifs. In all other cases, only mass spectrometry data were used. Name colors and their description in the legend indicate supertypes as defined in Ref. (185).
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FIGURE 4 | Hierarchical clustering of HLA-C alleles based on their binding specificity. Only mass spectrometry data were used. Peptides from both single allele and deconvolved pooled HLA peptidomics samples were used (see Supplementary Material).




Biases in MS Data

While MS data are not suffering from the potential circularity present in many in vitro binding data, they are not free from any biases. First, as already mentioned, only peptides that are part of the database used for spectral searches can be detected in HLA peptidomics data, or else, the less accurate de novo method may be applied. This has direct implication for cysteine-containing peptides. Since this amino acid can be chemically modified by oxidation and as such modifications are typically not included in standard MS searches, cysteine occurs at very low frequency in HLA peptidomics datasets. Attempts to correct for this bias when training predictors tried to renormalize PWMs based on observed amino acid frequencies at non-anchor positions (72) or expand the MS spectral search to include modified cysteines (70). Second, peptides that are too hydrophobic or too hydrophilic might be missed applying the common purification methods that rely on retaining peptides through hydrophobic interactions with the solid phase. Furthermore, some peptides have features that make them incompatible with ionization or lead to poor fragmentation. Combining fragmentation methods, such as higher-energy collision-induced dissociation and electron-transfer dissociation, have been shown to improve spectra annotation of HLA peptides (73). Despite these limitations, inspection of HLA peptidomics data and comparison with motifs obtained from in vitro data did not reveal major differences, except for the low frequency of cysteine [slightly higher frequency of charged amino acids at some positions has been reported in some studies (101, 102)]. Third, immuno-purification based MS data cannot distinguish between HLA-I ligands presented on the cell surface from those resident in the ER. This can be achieved by purifying HLA-I peptides from the cell surface by mild acid elution (125, 126). However, in a head-to-head comparison, the IP method outperformed the mild acid elution in terms of peptide recovery (127). Last, when considering MS data, it is important to remember that these peptides come from human proteins and that proteins or domains within proteins can display significant homology (especially for class II ligands where in addition many peptides can originate from the same core region). This can artificially enhance the frequency of some amino acids. This issue is especially important when building random models of MS data to infer whether amino acid frequencies (either within a motif or at flanking regions) differ from what is expected by chance.




MODELING HLA-II-BINDING SPECIFICITY

Predictions of HLA-I ligands, especially with the recent incorporation of high-quality MS data in the training of predictors, have reached a high level of accuracy (70, 72, 117, 120). The situation is unfortunately not the same for HLA-II ligands, which are still much more difficult to predict despite the large amount of experimental data acquired over the years (Figure 1). Several challenges arise when modeling the binding specificity of HLA-II alleles. First, HLA-II alleles tend to have more degenerate and less specific motifs. Second, all current approaches rely on first aligning peptides with tools such as NN-align (128). Although these tools have been optimized to handle HLA-II ligands, automated alignment of small peptides is known to be a difficult computational problem. Finally, the fact that HLA-II molecules form dimers further increases the diversity for HLA-DP and HLA-DQ alleles where both members of the dimers are polymorphic. Allele-specific HLA-II ligand predictors include NetMHCII (129), ProPred Singh (130), MHCPred (131), TEPITOPE (132), and consensus methods (133). Pan-specific class II predictors mainly consist of NetMHCIIpan (129). While all these predictors show better than random performances, their accuracy is lower than for HLA-I ligand predictors. This may be due to the challenges of determining class II motifs, as well as to the complex machinery of class II presentation, whose specificity is still poorly understood from a quantitative and predictive point of view [see Ref. (7–10) for a detailed discussion of the more biological aspects of this process and the importance of HLA-DM and other enzymes]. In particular, it appears that properties such as conformational flexibility play a role in loading onto HLA-II molecules (134), and these properties are difficult to predict directly from peptide sequences.

Whether similar improvement for class II predictions as for class I will be reached by incorporating class II peptidome data in the training of algorithms has not been investigated at a large scale. Nevertheless, it has been recognized already long ago that eluted ligands could provide important information about HLA-II-binding motifs (135). More recently, HLA-II peptidomics was performed in BALB/c and C57BL/6 mice and demonstrated that clear motifs for H-2 I-Ad and H-2 I-Ab could be obtained (136). A subsequent study suggested that predictors trained on these data perform better than NetMHCIIpan when repredicting the MS data (137). A similar strategy was carried out in transgenic DR1+ and DR15+ mice to identify the motifs of these two alleles (138). Recent studies also indicate that motif deconvolution with the GibbsCluster algorithm may work in pooled HLA-II peptidome datasets (21, 139), which could lead to refinement of HLA-II motifs and improved predictions in the coming years, as suggested in a recent preprint (140). However, the results are still more challenging to interpret and some motifs predicted by GibbsCluster are difficult to annotate, while the motifs for some alleles are sometimes not detected (21, 139, 141).



INVESTIGATING OTHER PROPERTIES OF HLA–PEPTIDE INTERACTIONS

Many other important properties of HLA-I molecules beyond the 9-mer-binding motifs themselves can be studied through the analysis of HLA peptidomics data.


Peptide Length Distribution

Arguably, the most important information beyond the binding motifs that can be extracted from MS data is the characterization of peptide length distributions. Many studies have demonstrated high heterogeneity of peptide length distributions between different alleles, with alleles such as HLA-B51:01 displaying high frequency of 8-mers (only slightly smaller than 9-mers) and very few longer peptide, while others such as HLA-A01:01 show high frequency of longer (≥12 amino acids) peptides, which can still be recognized by T cells (15, 70, 97, 103, 142). Structurally, most longer peptides are known to form bulges, with anchor residues conserved at the second and last positions of the peptides. Some patterns emerged from analysis of peptide length distributions. For instance, HLA-I alleles with anchor residues at middle positions (e.g., HLA-B08:01, HLA-B14:01, HLA-B14:02, HLA-B37:01) displayed peptide length distributions peaked at 9-mers, which is consistent with the fact that the middle anchor residue needs to be structurally conserved in the presence of an anchor at such positions (101). The study by Trolle and co-authors (97) demonstrated that peptide length distributions observed in MS data for five alleles could not be simply explained by differences in binding affinity, suggesting that the pool of peptides available for loading in the ER is skewed toward 9-mers. This likely implies that predictors trained on MS data will differ from those predicting binding affinity when comparing peptides of different lengths. In a recent preprint (143), we performed a large-scale analysis of peptide length distributions across 85 HLA-I alleles and could identify clusters of HLA-I molecules based on the similarity of their peptide length distributions. Peptide length distribution has been incorporated into the latest versions of NetMHC and NetMHCpan, by adding one additional input node encoding for peptide length in the neural networks (110, 117), and into MixMHCpred by directly fitting distributions observed in MS data (143).

As observed in our recent paper (21), peptide length distribution can also be affected by different treatments such as INFγ likely due to modulating the activity of catalytic subunits of the proteasome, and these aspects are not captured by existing predictors.



C- And N-Terminal Extensions

Human leukocyte antigen peptidomics data have been instrumental in exploring non-canonical binding modes in HLA-I ligands. In particular, several recent studies have used MS data to study C- and N-terminal extensions in HLA-I ligands. Although such extensions had been identified long ago [first crystal structure in 1994 (144), PDB:2CLR, followed by another structure in 2009 (145), PDB:3GIV], their prevalence had remained unclear. In 2016, HLA peptidomics profiling and X-ray crystallography were combined to explore C-terminal extensions in HLA-A02:01 and demonstrated that such extensions were especially common among peptides originating from pathogens (146). This was followed by additional work that better described the structural mechanisms and cellular origin of such extensions (147). N-terminal extensions have been identified in HLA-B57:01 (148) and HLA-B58:01 (149). More recently, we have demonstrated that C-terminal extension occur in a substantial fraction of HLA-I molecules and can be recognized by CD8 T cells (120). Our work further enabled us to identify both sequence and structural features predictive of such extensions. In particular, it appeared that C-terminal extensions are especially frequent in alleles displaying specificity for positively charged residues at the last anchor position (e.g., HLA-A03:01, HLA-A31:01, HLA-A68:01). While MS data potentially provide a rich source of information about C- and N-terminal extensions, identifying these extensions by looking at the sequence of the peptides can be challenging, especially when the residue at the extension has similar specificity as the anchor residue (i.e., same residues at P9 and P10 for putative C-terminal extensions, same residues a P2 and P3 for putative N-terminal extensions). Our work suggests that many ambiguous cases may actually follow the bulging conformation (120).



Posttranslationally Modified HLA-I Ligands

Posttranslationally modified peptides have been identified by MS analysis of eluted ligands (15, 150–152). These include mainly phosphorylated peptides, which can be recognized by T cells (153–155). Phosphorylation was observed to occur mainly at position 4 (15), suggesting that it does not impact too much the binding to the HLA-I molecules. Existing HLA-I ligand predictors do not include phosphorylated peptides, although the increasingly larger MS datasets of phosphorylated HLA-I ligands suggest that predictions of phosphorylated HLAI ligands may soon become feasible. As for now, one approach is to treat the phosphorylated residue as its unmodified counterpart and use available predictors to predict such ligands.



HLA-II Molecules

Fewer studies used MS data to investigate properties of HLA-II molecules other than the actual-binding motifs. Studies reported broad peptide length distributions peaked around 15-mers (15, 21, 139, 156, 157), but it is still unclear to what extent distinct alleles show distinct peptide length distributions. Other properties of HLA-II molecules that could be studied based on MS data include the cellular origin of class II peptides (156, 158, 159) and the impact of different biological processes such as autophagy (160). MS studies also indicated preference for proline at the second and second to last position of peptides degraded in the endolysosomal pathway (156, 161), and preference for lysine at the C-terminus and for aspartate at the N-terminally flanking residue of class II epitopes degraded in the cytosolic pathway (156). Along these lines, many studies support the idea that presentation of class II peptides is not only driven by the binding specificity to the HLA-II molecules but also involves some (still uncharacterized) specificity in the processing machinery, flanking regions (162), or presentation hotspots in the human proteome (159).

Considering the increasingly higher quality and throughput of class II HLA peptidomics data (15, 21, 86, 138, 139), we anticipate that analysis of HLA-II peptidomes will further enable researchers to investigate new properties of HLA-II molecules. For instance, it will be interesting to see whether the presence of bulging class II ligands, as recently reported from an analysis of in vitro binding data (163), can be confirmed in large-scale unbiased MS data.




ANTIGEN PRESENTATION—BEYOND BINDING TO HLA


Integrating Cleavage Site and TAP Transport Predictions, Signals from Flanking Regions and Other Proteomic Information

Mass spectrometry-based HLA peptidomics analysis can reveal crucial information about the rules underlying the biogenesis of the HLA peptidome, including signatures of cleavage site specificity, influence of source protein expression or other patterns characterizing naturally presented HLA ligands. Predictions of cleavage sites have been available since many years and have been used to narrow-down the list of predicted HLA-I ligands (164). Although some improvement has been observed, cleavage site predictions have only a limited effect on prediction accuracy of naturally presented HLA ligands. For this reason, it is not widely used in many existing pipelines for neoantigen predictions from exome sequencing data, for instance. Predictions of TAP transport has also been integrated with affinity and cleavage site predictions to model antigen presentation (165–167). Interrogation of properties of thousands of HLA-I ligands source-proteins has revealed that the proteome is not randomly sampled. Several biological determinants correlate with presentation, such as level of translation (71), expression, and turnover rate (18) and selective regions of the human proteome (71). Specific amino acid signals in flanking regions of naturally presented HLA-I ligands, like lower frequency of proline, have also been demonstrated (70). While binding to HLA still appears to be the most selective step of class I antigen presentation, integrating these additional features into a single predictor further improves the accuracy of predictions of naturally presented peptides (70, 71).



Presentation Hotspots

After deep interrogation of HLA peptidomics large scale data, we and others have recently suggested that HLA ligands are not randomly distributed along the protein sequences but are located within “hotspots” (15, 71), which fit proteasomal cleavage, peptide processing, and HLA-binding rules (168). Recently, we envisioned that these hotspots reflect regions of proteins with enhanced proteasomal or endosomal peptide production prior to HLA loading and may, therefore, provide complementary information to HLA-binding predictions (159). To this end, we collected a large dataset of MS detected HLA class I and class II ligands from different cancer and healthy tissues and variety of cell lines. We used this dataset to score potential neoantigens based on how well their un-mutated source proteins are naturally presented. In a proof of concept study, we tested this hypothesis with published data (33) and could show that MS-based features improved the prioritization of confirmed neoepitopes (159). Large scale databases of HLA peptidomics data capture the global nature of the in vivo peptidome averaged over many HLA alleles and, therefore, reflect the propensity of peptides to be presented, which can complement binding-affinity predictions.




FUTURE PERSPECTIVES


Expanding the Description of HLA Motifs

Accurate and unbiased binding motifs are available for a bit more than 100 HLA-I alleles (Figures 1–4). This is only a tiny fraction of the >12,000 HLA-I alleles listed in IMGT/HLA database (4). For this reason, much has still to be learned about the specificity of HLA-I molecules. We anticipate that the ability to deconvolve HLA-I motifs from pooled HLA peptidomics data will play an important role to expand our understanding of HLA-I-binding specificities. This is especially promising in light of the current interest in using MS to identify neoantigens in cancer patients. However, even with the current efforts in HLA peptidomics, extrapolation of the curves in Figure 1 suggests that experimentally determined HLA-I ligands will remain available for only a small fractions of HLA-I alleles in the coming years. For this reason, development of pan-specific HLA-I ligand predictors leveraging high-quality MS data available for a few (~100) alleles to model the binding specificity of other alleles are expected to play an important role in broadening the scope of HLA-I ligand predictions to rarer alleles without document ligands (117). Accurate and in-depth HLA peptidomics data will also likely play an important role in improving our understanding and description of HLA-II motifs. Use of HLA-II gene-specific antibodies (i.e., pan-DR, pan-DP, or pan-DQ) may facilitate accurate motif deconvolution in such datasets.



Better Understanding of Antigen Presentation

While binding to HLA molecules is the most specific and best quantitatively characterized step of the antigen presentation process, it is likely that some additional filtering comes from cleavage in the proteasome, transport with TAP, and loading in the ER. As mentioned earlier, several recent studies suggest that including these additional parameters further improves prediction accuracy (70, 71, 159, 166). One of the challenges there is to disentangle real biological signals from potential technical biases in MS data. Despite this caveat, it is likely that accumulating very large datasets of naturally presented HLA-I ligands is the only way to improve the accuracy of models of antigen presentation that go beyond the binding to HLA molecules. In addition, it could provide new information about how the HLA peptidome can be remodeled in response to extracellular signals, such as IFNγ stimulation (19, 21). We, therefore, envision that screening how inhibition or activation of components of the antigen processing and presentation affect the nature of naturally presented HLA ligands on a large scale may reveal their role in shaping the HLA peptidome.



Non-Canonical HLA-I Ligands

Increasing evidences also suggest that non-canonical and cryptic peptides contribute to the HLA peptidome and expand the range of putative T cell epitopes. Laumont et al. have constructed a reference database of stop-to-stop translation products of six open reading frames of expressed RNAs and revealed that about 10% of the peptidome derive from presumably noncoding genomic sequences or exonic out-of-frame translation (87). Liepe et al. have reported that around 30% of the peptidome is derived from non-contiguous peptides spliced by the proteasome (169). Unexpectedly, spliced peptides displayed significantly lower predicted affinity than the normal peptides identified in the same samples (169) and did not show the expected HLA-I motifs. A very large database that is about two orders of magnitude larger than the typical protein-coding database was used to incorporate theoretical spliced products (169). Searching such large databases, especially in order to identify HLA peptides that have no enzymatic restrictions, may lead to improper control of false positives (170). In a recent preprint (171), we proposed an alternative, more conservative, approach to identify spliced peptides among HLA-I ligands based on de novo interpretation of high-quality spectra, suggesting that the number of such peptides may have been overestimated in the original study. The exact amount of spliced HLA-I ligands is still a matter of debate, and further studies will be needed to precisely estimate the fraction of spliced peptides actually displayed on HLA-I molecules. However, these potential issues suggest that putative spliced peptides may not all be appropriate for training HLA-I ligand predictors. Exploring non-canonical HLA ligands derived from translation of non-conventional regions in our genome or posttranslation events such as splicing is like finding a needle in a haystack. In silico predictions of such potential HLA ligands with existing tools may, therefore, lead to in-controlled numbers of false-positives, since the non-canonical space is theoretically orders of magnitude larger than the current canonical protein space. Hence, intensive proteogenomics based investigation of acquired HLA peptidomics data will likely play a central role in this endeavor and will require advanced computational tools and statistics to properly control for false positives.



Toward Predictions of Immunogenicity

Recent years have witnessed an unprecedented growth of in-depth and accurate MS data (Figure 1) that significantly enhanced our ability to predict antigen presentation. Unfortunately, these data cannot inform us about the most critical step in immune recognition, namely, the recognition of presented antigens by T cells. Much less is known there, and it is for instance, a disappointing fact that most predicted neoantigens from mutations found by exome sequencing of tumors are not recognized by T cells, although many resulting peptides do bind to HLA-I molecules. While direct identification of mutated peptides presented on the surface of cancer cells will likely improve the fraction of truly immunogenic epitopes (101), it is likely that many mutated peptides seen by MS will still not be immunogenic. Moreover, although binding affinity has been demonstrated to be useful for enriching pools of peptide in immunogenic epitopes (especially for class I), many known immunogenic epitopes display low-binding affinity, suggesting that they would be missed by approaches based on affinity predictions only. This is especially true for class II epitopes, where clear evidences indicate that different enzymes, peptide exchange mediates by HLA-DM or HLA-DO, pH gradients and peptide conformational flexibility play a role in selecting immunodominant epitopes (8–10, 134). Unfortunately, currently, very little of this biological knowledge about class II antigen presentation could be used to improve predictions of class II epitopes.

Work by Calis et al. (172) suggested that some amino acids at non-anchor positions confer increased immunogenicity to HLA-I ligands. More recently, it has been observed that dissimilarity to self among mutated peptides predicted to have similar binding affinity as their wild-type counterpart can further help predicting immunogenic epitopes (173). Differences between the affinity of the wild-type and the mutated peptide, as well as stability of the MHC-I peptide interaction were also suggested to narrow down the list of immunogenic epitopes (174). Unfortunately, datasets of true immunogenic peptides from cancer or infectious diseases are still restricted to a few 100 peptides, limiting the power of machine learning approaches to infer properties of immunogenic epitopes (175, 176). This is likely the main bottleneck toward our understanding of the determinants of immunogenicity. Therefore, recent high-throughput methods for screening T cells using for instance DNA barcoded multimers have the potential to provide critical information about the differences between immunogenic and non-immunogenic peptides (46). Importantly, most of these approaches require to select a priori the HLA ligands to be screened [with the exception of a recent phage display system (177)]. Therefore, improved prediction of HLA ligands and antigen presentation will likely play an important role in optimizing the set of ligands currently tested for immunogenicity.




CONCLUSION

The first HLA-I motifs were described almost 30 years ago by looking at sequences obtained from MS analysis of eluted MHC-I ligands (89, 90). Since then, much has been learned about HLA-I and HLA-II molecules through the analysis of their ligands. In human, this has resulted in a detailed description of HLA-I alleles binding specificities for the most common alleles and culminated with the development of pan-allele predictors. Recent years have witnessed an explosion of new high-quality data generated by MS about HLA-I ligands. Combined with advances in algorithms to analyze such data, this has led to refinement of known HLA-I motifs, discovery of new HLA-I motifs, characterization of peptide length distributions, analysis of N- and C-terminal extensions, characterization of antigen processing signals in flanking regions, analysis of the interplay between gene/protein expression, protein localization and peptide presentation, and evidences for presentation hotspots in the human proteome. For HLA-II ligands, MS studies have been recently used to study HLA-II motifs, suggesting that similar improvements may be observed there as well (21, 138–140). Moreover, the current interest in neoantigen discovery will likely result in many more HLA peptidomics datasets from donors with diverse HLA backgrounds and different pathogeneses. This will provide unique opportunities to further improve our understanding of the rules of antigen presentation. To this end, it will be crucial that raw MS data are made publicly available, and that the reporting of HLA peptidomics data will comply with the recent minimal information about an Immuno-Peptidomics Experiment (MIAIPE) guidelines (178). Databases such as IEDB (25), PRIDE (179), or the SysteMHC Atlas (180) play a key role in this process, and it is our hope that soon all journals publishing HLA peptidomics studies will require deposition of the raw MS data in PRIDE and unfiltered lists of peptides in appropriate databases, or at least accessible in supplementary datasets.
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During adaptive immune responses, activated B cells expand and undergo somatic hypermutation of their B cell receptor (BCR), forming a clone of diversified cells that can be related back to a common ancestor. Identification of B cell clones from high-throughput Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data relies on computational analysis. Recently, we proposed an automated method to partition sequences into clonal groups based on single-linkage hierarchical clustering of the BCR junction region with length-normalized Hamming distance metric. This method could identify clonal sequences with high confidence on several benchmark experimental and simulated data sets. However, determining the threshold to cut the hierarchy, a key step in the method, is computationally expensive for large-scale repertoire sequencing data sets. Moreover, the methodology was unable to provide estimates of accuracy for new data. Here, a new method is presented that addresses this computational bottleneck and also provides a study-specific estimation of performance, including sensitivity and specificity. The method uses a finite mixture model fitting procedure for learning the parameters of two univariate curves which fit the bimodal distribution of the distance vector between pairs of sequences. These distributions are used to estimate the performance of different threshold choices for partitioning sequences into clones. These performance estimates are validated using simulated and experimental data sets. With this method, clones can be identified from AIRR-seq data with sensitivity and specificity profiles that are user-defined based on the overall goals of the study.
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1. INTRODUCTION

Next-generation sequencing technologies are increasingly being applied to carry out detailed profiling of B cell receptors (BCRs, also referred to as the immunoglobulin (Ig) receptors). Identification of B cell clones (sequences that are related through descent from a single naive B cell) from these high-throughput AIRR-seq data relies on computational analysis. Accurate identification of clonal members is important, as these clonal groups form the basis for a wide range of repertoire analysis, including diversity analysis, lineage reconstruction, and detection of antigen-specific sequences (1).

Hierarchical clustering is a widely used approach for partitioning sequences into clones (1) and several associated software tools have been developed (2–4). Identifying clonally related BCRs is typically accomplished in two steps. First, sequences are split into groups that share the same V-gene annotation, J-gene annotation, and number of nucleotides in their junction region (5–9). Here, the junction region is defined as the CDR3 plus the conserved flanking amino acid residues. Next, these groups are hierarchically clustered based on the nucleotide similarity of their junction region, and partitioned by cutting the dendrogram at a fixed distance threshold. We previously developed an automated approach for determining this threshold, and demonstrated that using this threshold with single-linkage clustering based on the length-normalized Hamming distance (i.e., the absolute count of differences between two sequences divided by the length of the sequence) detects clones with high confidence on several benchmark data sets (4). However, the actual sensitivity and specificity may differ on any particular data set, and existing methods do not provide a mechanism to estimate or tune study-specific performance. Here, we propose and validate a computationally efficient threshold inference algorithm for partitioning BCR sequences into clones that also allows for study-specific performance estimation.



2. METHOD

The proposed method extends the approach developed by Gupta et al. (4), where identifying clonally related BCRs is accomplished in two steps. First, sequences are split into groups that share the same V-gene annotation, J-gene annotation, and number of nucleotides in their junction region. Next, these groups are hierarchically clustered based on the nucleotide similarity of their junction quantified by Hamming distance, and partitioned by cutting the dendrogram at a fixed distance threshold. In this paper, we specifically develop a new model-based method for determining the fixed distance threshold for partitioning sequences, which allows for estimation of sensitivity and specificity. First, the “distance-to-nearest” distribution is determined using length-normalized nucleotide Hamming distance (i.e., the distribution of minimum distances from each sequence to every other non-identical sequence). This is typically a bimodal distribution (8, 9), with the first mode representing sequences with clonal relatives and the second mode representing those without clonal relatives (i.e., singletons) in the data set. Next, the bimodal distance-to-nearest distribution is explicitly modeled as a mixture of two univariate distribution functions (e.g., a mixture of Gaussian or Gamma distribution) of the form:

[image: image1]

where λ1 and λ2 represent the mixing weights (summing to one), x represents the nearest neighbor distances, and ϕ represents the vector of each component parameters. Here, we investigate all combinations of f1 and f2 as Gaussian and Gamma distributions so ϕ is either the mean and SD (μ, σ) of a Gaussian distribution, or the shape and scale (k, θ) of a Gamma distribution. A maximum-likelihood fitting procedure (function fitdistr from MASS R package) is used to estimate the parameters of the model as follows: (1) parameters of the model are initialized using a standard Gaussian mixture model (GMM). The GMM estimates mixing weight λ1, mean μi, and SD σi where i ∈ {1,2} refers to the first and second distributions. (2) These parameters are then used as initial values to begin the maximum-likelihood fitting procedure (if Gamma distribution is chosen, the initial values are translated accordingly).

After fitting, the two distributions are used to estimate sensitivity (SEN) and specificity (SPC) by the fractions TP/(TP + FN) and TN/(TN + FP), respectively. The statistical rates [true positive (TP), false negative (FN), false positive (FP), and true negative (TN)] are then given by the area under the curves:

[image: image1]

where t1 and t2 are the minimum and maximum values of the distance-to-nearest distribution, respectively. Finally, the optimized threshold t is chosen in the distance interval (t1, t2) to maximize the average of sensitivity and specificity:

[image: image1]



3. RESULTS


3.1. Mixture of Gamma Distributions Is Used to Fit the Bimodal Distribution

To determine the optimal distributions to use for the mixture model, we tested the method using simulated and experimental data sets. Specifically, we used the simulated data sets from Gupta et al. (4). These simulations start with a set of observed lineage tree topologies from lymph node samples from each of four individuals (M2, M3, M4, and M5 from Ref. (6)), and generate a simulated data set for each individual (R1, R2, R3, and R4, respectively) by randomly selecting a new germline sequence for every lineage and then stochastically re-introducing mutations along the lineage branches. This process was repeated 10 times for each individual to create a collection of 40 simulated data sets. We also invoked experimental data from BCR sequencing of PBMCs from 58 individuals with acute dengue virus infection (note that two individuals with total reads <1k sequences were excluded) (10). These samples each contained ~1–13k total reads.

We evaluated all four combinations of Gaussian and Gamma distributions for f1 and f2 on both simulated and experimental data sets. For each combination, the log likelihood was determined once for 40 simulated and 58 experimental data sets. We found that in 80% of trials the choice of Gamma distribution for both f1 and f2 yielded the highest likelihood. Furthermore, in each trial, visual inspection suggested that this choice placed the threshold approximately equidistant between the two distributions. Therefore, Gamma distributions were selected as the default choices and used in all of the analyses below (Figures 1A–C). We note that the Gamma distribution is known to be skewed positively (i.e., an asymmetric distribution with longer right-tail). However, the Gamma distribution becomes more symmetric as its shape parameter k → ∞. This intrinsic feature of the Gamma distribution makes it a strong tool which behaves flexibly according to the notion of how symmetric/asymmetric the observed distributions are. By contrast, the Gaussian distribution is always symmetric, and thus unable to adapt itself to an asymmetric distribution of observed data points.


[image: image1]
FIGURE 1 | Analysis of the distance-to-nearest neighbor plot to define the distance threshold for partitioning clones. For each sequence, the length-normalized nucleotide Hamming distance to every other sequence was calculated, and the nearest (non-identical) neighbor was identified. The histogram of nearest neighbor distances is fitted using Gamma distribution for both modes (solid line) for (A,B) representative peripheral blood B cell samples from patients with acute dengue virus infection (10), and (C) representative simulated data from Gupta et al. (4). For each data set the optimum threshold, where the average of sensitivity and specificity reaches its maximum, was calculated by the findThreshold function (dashed vertical line). Note that the choice of bin size impacts the shape of plotted histograms, while the fitting procedure is independent of this bin size.




3.2. High Correlation Between Actual and Estimated Performance Is Achieved in Simulated Data

The ability of the proposed method to estimate sensitivity and specificity for clonal relatedness was evaluated on simulated data. First, sensitivity and specificity were evaluated using ten simulated data sets (set R1 generated by Gupta et al. (4)). On each data set, a wide range of potential thresholds for partitioning sequences into clones was considered. At each threshold value, we calculated the actual performance based on the known clonal relationships from the simulation (actual), as well as the estimated performance based on the mixture modeling and equation set 2 using the area under the fitted distribution curves (estimated). We found a high correlation between the actual and estimated sensitivity (R2 = 92%) and specificity (R2 = 98%) on average over all ten simulated data sets (Figures 2A,B). We believe that the correlation is useful, as we see that method provides a lower bound on actual performance. On the other hand, sensitivity shows some lack of proportionality. Specifically, at high values for the threshold (between 0.12 and 0.15), the sensitivity estimated from the mixture model becomes saturated (i.e., the area under fitted left distribution reaches one). Although, using the positively skewed-shape Gamma distribution is better than using a Gaussian distribution, the right-tail of the first Gamma distribution still falls off too fast relative to the actual intra-clonal distance distribution in some cases.
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FIGURE 2 | Performance assessment of (A) sensitivity (Sen) and (B) specificity (Spc) for determining membership in a multi-sequence clone. Mixture modeling of the distance-to-nearest distribution was used to estimate sensitivity and specificity for each specified value of the threshold (points) according to equation set 2. The estimated performance (Sen-estimated and Spc-estimated) was compared with actual performance (Sen-actual and Spc-actual) for simulated R1.1–R1.10 data from Gupta et al. (4) across a wide range of thresholds (shades of gray for each point).




3.3. High Correlation Between Actual and Estimated Specificity Is Achieved in Experimental Data

The underlying clonal relationships among sequences in experimental data sets are not known with certainty. However, we reasoned that two sequences are unrelated when they are derived from two separate individuals since, by definition, a B cell clone cannot span two individuals. Therefore, false positives are defined as sequences from different individuals being grouped together in a clone, whereas true negatives are defined as sequences from different individuals that are grouped into separate clones. Specificity is then calculated by dividing the number of true negative classifications by the sum over the number of true negative and false positive classifications. We used this approach to further evaluate the ability of the method to estimate specificity on experimental BCR sequencing data from 58 individuals with acute dengue infection (10). First, one of the individuals was chosen as the “base.” Next, a single sequence was chosen randomly from each of the remaining individuals and added to the sequencing data from the base individual. Specificity was then defined by how often the sequences from non-base individuals were correctly determined to be singletons. Any grouping of these sequences into larger clones must be a false positive. Like the simulated data, specificity was calculated both using the known source of the sequences (actual) and for the mixture model (estimated). This procedure was then repeated 50 times for each of 58 different base individuals. The results indicated a high correlation between the actual and estimated specificity (R2 = 95%) across all 58 base individuals (Figure 3A).


[image: image1]
FIGURE 3 | Performance assessment of specificity (Spc) for determining membership in a multi-sequence clone. Mixture modeling of the distance-to-nearest distribution was used to estimate specificity for each specified value of the threshold (points) according to equation set 2. (A) The estimated performance was compared with actual performance for experimental data from patients with acute dengue infection (10) across a wide range of thresholds (shades of gray for each point). (B) The estimated performance (Spc-estimated) was compared with actual performance (Spc-actual) across two independent experimental studies (6, 10) across a wide range of thresholds (shades of gray for each point).




3.4. High Correlation Between Actual and Estimated Specificity Is Achieved Across Experimental Data Sets

Within a single study, spurious sharing of BCRs may occur by cross clustering within the same flow cell, by contamination or by chance with low frequency. To address the possibility that these occurrences impacted our estimation of specificity, we repeated the same specificity analysis described in the previous section, but using individuals from two independent experimental data sets. First, subject M2 (with ~100k total reads from lymph node samples collected by Stern et al. (6)) was chosen as the “base.” Next, a single sequence was chosen randomly from each of the 58 individuals with acute dengue infection (10) and added to the sequencing data from the base. Like the previous analysis, specificity was then defined by how often the sequences from non-base individuals were correctly determined to be singletons, and was calculated both using the known source of the sequences (actual) and for the mixture model (estimated). This procedure was then repeated 50 times. High correlation between the actual and estimated specificity (R2 = 97%) was obtained (Figure 3B). These results show that the proposed approach provides a reliable estimate of specificity on experimental data.



3.5. The Mixture Method Is Computationally Efficient

The threshold inference algorithm developed in this work (gmm) is computationally more efficient than its density-based predecessor by Gupta et al. (4) (Figure 4). The improvement does not arise from the nearest neighbor identification, which is identical for both methods. Rather, the improvement comes in how to identify the fixed threshold to cut the hierarchy in order to identify discrete clonal groups. The density-based approach is computationally demanding since it is associated with a fourth derivative kernel density estimation with a sequential time complexity of O(n3), where n denotes the number of sequences. The gmm exhibits faster performance by replacing this computationally expensive step with an optimization algorithm with a sequential time complexity of O(n), where n denotes the number of sequences. We compared the run times of both approaches using the implementations under the findThreshold function as part of the SHazaM R package (version 0.1.9) in the Immcantation framework (www.immcantation.org). The density-based method by Gupta et al. (4) and the model-based method described here are implemented as methods density and gmm, respectively. On a Linux computer with a 2.20 GHz Intel processor and 32 GB RAM, we found, for example, that using the gmm approach it took <5 min to find the threshold in a data set of ~10k sequences, while the density approach completed in ~15 min (Figure 4).


[image: image1]
FIGURE 4 | The gmm approach is computationally efficient while the density approach run time scales exponentially. Comparison of running times (y-axis) between density (dashed line and gray bars) and gmm (solid line and black bars) approaches performed over 58 individuals from a study of acute dengue infection (10) (x-axis). The x-axis is ordered ascending by the number of sequences in the individual sample.





4. CONCLUSION

We have proposed and validated a computationally efficient threshold inference algorithm that can be used to automatically partition BCR sequences into clonally related groups. The method gmm is based on a mixture model fit to the bimodal distance-to-nearest distribution, and allows for direct estimation of the sensitivity and specificity for membership in a multi-sequence clone. This is an important advantage over previous methods, such as the density-based method by Gupta et al. (4), which are unable to provide estimates of accuracy for new data. The ability to estimate sensitivity and specificity directly from a BCR sequencing data set allows researchers to identify B cell clones with performance characteristics that optimize study-specific goals. For instance, a threshold with high-sensitivity may be ideal for identifying sequences that are part of a clone expansion including a known antigen-specific sequence, while a threshold with high-specificity may be ideal for determining biological connections between tissue compartments or B cell subsets. In the evaluations presented in this study, we have chosen to maximize the average of sensitivity and specificity.

BCR sequencing data contain errors, although methods such as the inclusion of UMIs (11) can dramatically reduce their frequency. Thus, the distance-to-nearest distributions being fit by the mixture model contain a combination of true somatic hypermutation and errors (e.g., PCR and sequencing errors). Rather than being a problem, this is an important feature of the method. It is critical to take both sources of diversity into account when determining the threshold for partitioning sequences into clones. If members of a clone were truly <10% different, but experimental errors increased their difference to <11%, then the proper choice is to use the 11% as the threshold.

The choice of distributions (e.g., Gaussian or Gamma) that accurately describe the observed distance-to-nearest distribution for clonally related sequences in one data set may not be ideal for other sequencing data sets. The shape of the distance-to-nearest distribution depends on various experimental and physiological factors such as initial B-cell population, sampling depth, sequencing error, polarized or flat repertoire, and unusual BCR junction length distribution. These factors may influence the quality of mixture model fits. Therefore, we recommend users visually inspect the resulting fit from each data set. If a mixture of Gamma distributions results in a poor fit, then other combinations of mixture models should be tried. The density method provides a robust backup to these model-based methods, although it would be at the cost of losing the estimation of cloning performance. Our empirical observations of peripheral blood B cell repertoires suggest the bimodality of the distance-to-nearest distribution is detectable for a repertoire of minimum 1k total reads. From statistical point of view, increasing number of sequences will improve the fitting procedure, although it would be at the potential expense of higher demand in computational time complexity.

The method used in this study has been developed for partitioning BCR heavy (H) chain sequences. More specifically, the method leverages the high diversity of the H chain junction region as the main “fingerprint” to infer clonal relatedness. Emerging techniques, including single-cell sequencing, can provide paired H and L chain data (12–14). The methods presented here can be applied to such data by extending the criteria for the initial grouping of sequences to include the same VH gene, JH gene, CDR3H length, VL gene, JL gene, and CDR3L length. Clustering of the H chain junction region can then be carried out as before on these more refined groups. The low diversity of the L chain junction region (12) makes it unlikely that including this region in the clustering will provide a significant performance improvement.

Overall, the results on the simulated and experimental data sets indicate that the mixture modeling method provides an accurate estimate of sensitivity and specificity for hierarchical clustering-based clonal partitioning of BCRs, and is also time-efficient. This new procedure has been implemented under the findThreshold function as part of the SHazaM R package (version 0.1.9) in the Immcantation framework (www.immcantation.org).
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Identification of B-cell epitopes (BCEs) is a fundamental step for epitope-based vaccine development, antibody production, and disease prevention and diagnosis. Due to the avalanche of protein sequence data discovered in postgenomic age, it is essential to develop an automated computational method to enable fast and accurate identification of novel BCEs within vast number of candidate proteins and peptides. Although several computational methods have been developed, their accuracy is unreliable. Thus, developing a reliable model with significant prediction improvements is highly desirable. In this study, we first constructed a non-redundant data set of 5,550 experimentally validated BCEs and 6,893 non-BCEs from the Immune Epitope Database. We then developed a novel ensemble learning framework for improved linear BCE predictor called iBCE-EL, a fusion of two independent predictors, namely, extremely randomized tree (ERT) and gradient boosting (GB) classifiers, which, respectively, uses a combination of physicochemical properties (PCP) and amino acid composition and a combination of dipeptide and PCP as input features. Cross-validation analysis on a benchmarking data set showed that iBCE-EL performed better than individual classifiers (ERT and GB), with a Matthews correlation coefficient (MCC) of 0.454. Furthermore, we evaluated the performance of iBCE-EL on the independent data set. Results show that iBCE-EL significantly outperformed the state-of-the-art method with an MCC of 0.463. To the best of our knowledge, iBCE-EL is the first ensemble method for linear BCEs prediction. iBCE-EL was implemented in a web-based platform, which is available at http://thegleelab.org/iBCE-EL. iBCE-EL contains two prediction modes. The first one identifying peptide sequences as BCEs or non-BCEs, while later one is aimed at providing users with the option of mining potential BCEs from protein sequences.

Keywords: B-cell epitope, ensemble learning, extremely randomized tree, gradient boosting, immunotherapy


INTRODUCTION

The humoral immune system is a complex network of cells that work together to protect the body against foreign substances or antigens such as bacteria, viruses, fungi, parasites, and cancerous cells. Generally, antigens are larger in size, however, only certain parts of antigenic determinants, called B-cell epitopes (BCEs), are recognized by specific receptors on the B-cell surface, generating soluble forms of antigen-specific antibodies (1). These antibodies play an important role in neutralization, cell-mediated cytotoxicity, and phagocytosis for the adaptive arm of immunity (2, 3). Thus, the identification and characterization of BCEs is a fundamental step in the development of vaccines, therapeutic antibodies, and other immunodiagnostic tools (4–7). Today, interest in epitope-based antibodies in biopharmaceutical research and development is rising due to their selectivity, biosafety, tolerability, and high efficacy.

B-cell epitopes are broadly classified into two categories: continuous/linear and discontinuous/conformational. Continuous/linear BCEs comprise linear stretches of residues in the antigen protein sequence, while the discontinuous/conformational BCEs comprise residues placed far apart in the antigen protein sequence, which are brought together in three-dimensional space through folding (8, 9). Experimental methods to identify BCEs include X-ray crystallography, cryo-EM, nuclear magnetic resonance, hydrogen–deuterium exchange coupled to mass spectroscopy, peptide-based approaches, mutagenesis, and antigen fragmentation (5, 10). However, these methods could be expensive and time-consuming. Therefore, new sequence-based computational methods need to be developed for rapid identification of potential BCEs. To this end, several computational methods based on machine learning (ML) algorithms have been developed to predict linear BCEs. These methods can be classified into local and global methods. Local methods such as Bcepred (11), BepiPred (12), and COBEpro (13) classify each residue as a BCE or non-BCE in a given protein sequence; global methods such as ABCpred (14), SVMTriP (15), IgPred (16), and LBtope (17) predict whether a given peptide is a BCE or non-BCE. Among global methods, LBtope is the most recently developed one and is also publicly available.

Although global prediction methods for linear BCEs have contributed to some development in this field, further studies are needed for the following reasons. (i) With the rapidly increasing number of BCEs in the Immune Epitope Database (IEDB) (18, 19), developing more accurate prediction methods using non-redundant (nr) benchmark data sets remain an important and urgent task. (ii) Most of the existing methods use random peptides as negative data sets. Experimentally determined negative data sets are necessary for developing efficient methods. Thus, better methods that use ML algorithms based on high-quality benchmarking data sets are necessary to accurately predict BCEs.

In this study, we constructed an nr data set of experimentally validated BCEs and non-BCEs from the IEDB and excluded sequences that showed more than 70% sequence similarity to avoid performance bias. We investigated six different ML algorithms [support vector machine (SVM), random forest (RF), extremely randomized tree (ERT), AdaBoost (AB), gradient boosting (GB), and k-nearest neighbors (k-NN)], five compositions [amino acid composition (AAC), amino acid index (AAI), dipeptide composition (DPC), chain-transition-distribution (CTD), and physicochemical properties (PCP)], 23 hybrid features (different combinations of the five compositions), and six binary profiles (BPF). We propose a novel ensemble approach, called iBCE-EL for predicting BCEs. The ensemble approach combines two different ML classifiers (ERT and GB) and uses the average predicted probabilities to make a final prediction. Furthermore, iBCE-EL achieved a significantly better overall performance on benchmarking and independent data sets and was capable of more accurate prediction than state-of-the-art predictor.



MATERIALS AND METHODS


Construction of Benchmarking and Independent Data Sets

To build an ML model, an experimentally well-characterized data set is required. Therefore, we extracted a set of linear peptides from IEDB that tested positive for immune recognition (BCEs) and another set that tested negative (non-BCEs) (18, 19). Less than 1% of the peptides had lower than 5 or greater than 25 amino acid residues. We excluded these peptides from our data set because including them may result in outliers during prediction model development.

As mentioned in IEDB, one of the following seven different B-cell experimental assays (Qualitative binding, decreased disease, neutralization, disassociation constant KD, antibody-dependent cellular cytotoxicity, off rate, and on rate) are used to determine whether a peptide belongs to a positive or negative set of epitopes. Indeed, all this assay information is clearly specified for each peptide in IEDB (sixth column of the following link: http://www.iedb.org/bcelldetails_v3.php). It is worth mentioning that the criteria for categorizing positive and negative data set are the same as the one used in the recent study (12). To generate high confidence in our data set, we carefully examined each peptide assay information and considered as positive only when it has been confirmed as positive in two or more separate B-cell experiments. Similarly, peptides shown as negative in two or more separate experiment and never observed as positive in any of the above assays were considered as negative ones. To avoid potential bias and over-fitting in the prediction model development, sequence clustering and homology reduction using CD-HIT were performed, thus removing sequence redundancy from the retrieved data set. Based on the design of previous studies (20, 21), pairs of sequences that showed a sequence identity greater than 70% were excluded, thus obtaining an nr data set of 5,550 BCEs and 6,893 non-BCEs. Furthermore, each peptide present in our nr data set was mapped onto the original protein sequence, thus confirming the nature of linear epitopes. From this nr data set, 80% of the data was randomly selected as the benchmarking data set (4,440 BCEs and 5,485 non-BCEs) for development of a prediction model and the remaining 20% was used as the independent data set (1,110 BCEs and 1,408 non-BCEs).



Feature Representation of Peptides

A peptide sequence (P) can be represented as:

[image: image1]

where p1, p2, and p3, respectively, denotes the first, second, and third residues in the peptide P, and so forth. N denotes the peptide length. It should be noted that the residue pi is an element of the standard amino acid {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. To train a ML model, we formulated diverse-length peptides as fixed-length feature vectors. We exploited five different compositions and BPF that cover different aspects of sequence information as described below:

(i) AAC

Amino acid composition is the percentage of standard amino acids; it has a fixed length of 20 features. AAC can be formulated as follows:

[image: image1]

where [image: image1] is the percentage of composition of amino acid type i, Ri is the number of type I appearing in the peptide, while N is the peptide length.

(ii) DPC

Dipeptide composition is the rate of dipeptides normalized by all possible dipeptide combinations; it has a fixed length of 400 features. DPC can be formulated as follows:

[image: image1]

where [image: image1] is the percentage of composition of dipeptide type i, Ri is the number of type i appearing in the peptide, while N is the peptide length.

(iii) CTD

Chain-transition-distribution was introduced by Dubchak et al. (22) for predicting protein-folding classes. It has been widely applied in various classification problems. A detailed description of computing CTD features was presented in our previous study (23). Briefly, standard amino acids (20) are classified into three different groups: polar, neutral, and hydrophobic. Composition (C) consists of percentage composition values from these three groups for a target peptide. Transition (T) consists of percentage frequency of a polar followed by a neutral residue, or that of a neutral followed by a polar residue. This group may also contain a polar followed by a hydrophobic residue or a hydrophobic followed by a polar residue. Distribution (D) consists of five values for each of the three groups. It measures the percentage of the length of the target sequence within which 25, 50, 75, and 100% of the amino acids of a specific property are located. CTD generates 21 features for each PCP; hence, seven different PCPs (hydrophobicity, polarizability, normalized van der Waals volume, secondary structure, polarity, charge, and solvent accessibility) yields a total of 147 features.

(iv) AAI

The AAindex database has a variety of physiochemical and biochemical properties of amino acids (24). However, utilizing all this information as input features for the ML algorithm may affect the model performance due to redundancy. Therefore, Saha et al. (25) classified these amino acid indices into eight clusters by fuzzy clustering method, and the central indices of each cluster were considered as high-quality amino acid indices. The accession numbers of the eight amino acid indices in the AAindex database are BLAM930101, BIOV880101, MAXF760101, TSAJ990101, NAKH920108, CEDJ970104, LIFS790101, and MIYS990104. These high-quality indices encode as 160-dimensional vectors from the target peptide sequence. Furthermore, the average of eight high-quality amino acid indices (i.e., a 20-dimensional vector) was used as an additional input feature. As our preliminary analysis indicated that both feature sets (160 and 20) produced similar results, we employed the 20-dimensional vector to save computational time.

(v) PCP

Amino acids can be grouped based on their PCP, and this has been used to study protein sequence profiles, folding, and functions (26). The PCP computed from the target peptide sequence included (i) hydrophobic residues (i.e., F, I, W, L, V, M, Y, C, A), (ii) hydrophilic residues (i.e., S, Q, T, R, K, N, D, E), (iii) neutral residues (i.e., H,G, P); (iv) positively charged residues (i.e., K, H, R); (v) negatively charged residues (i.e., D, E), (vi) fraction of turn-forming residues [i.e., (N + G + P + S)/n, where n = sequence length], (vii) absolute charge per residue (i.e., [image: image1]), (viii) molecular weight, and (ix) aliphatic index [i.e., (A + 2.9V + 3.9I + 3.9L)/n].

(vi) BPF

Each amino acid type of 20 different standard amino acids is encoded with the following feature vector 0/1. For instance, the first amino acid type A is encoded as b(A) = (1, 0, 0, …., 0), the second amino acid type C is encoded as b(C) = (0, 1, 0,…., 0), and so on. Subsequently, for a given peptide sequence P, its N or C-terminus with length of k amino acids was encoded as:

[image: image1]

The dimension of BPF(k) is 20 × k. Here, we considered k = 5 and 10 both at N-terminus and C-terminus, which resulted BPFN5, BPFN10, BPFC5, and BPFC10. In addition to this, we also generated BPFN5-BPFC5 and BPFN10-BPFC10.



Performance Assessment

A brief description of ML method employed in this study is given in the supplementary information, whose performances were evaluated using the receiver operating characteristic (ROC) analysis and the corresponding area under the ROC curve (AUC). An AUC value of 0.5 is equivalent to random prediction and an AUC value of 1 represents perfection. ROC analysis is based on the true positive rate and false positive rate at various thresholds. Furthermore, we used sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) to assess prediction quality, which were defined as:

[image: image1]

where TP is the number of true positives, i.e., BCEs classified correctly as BCEs, and TN is the number of true negatives, i.e., non-BCEs classified correctly as non-BCEs. FP is the number of false positives, i.e., BCEs classified incorrectly as non-BCEs, and FN is the number of false negatives, i.e., non-BCEs classified incorrectly as BCEs.



Cross-Validation

In this study, we adopted the 5-fold cross-validation method, where benchmarking data set is randomly divided into five parts, from which four parts were used for training, and the fifth part was used for testing. This process was repeated until all the parts were used at least once as a test set, and the overall performance with all five parts was evaluated.




RESULTS


Methodology Overview

Figure 1 shows a flowchart illustrating the methodology of iBCE-EL, which comprises four stages: (1) construction of an nr benchmarking data set of 9,925 peptides (4,440 BCEs and 5,485 non-BCEs) and an independent data set of 2,518 peptides (1,110 BCEs and 1,408 non-BCEs) from IEDB; (2) extraction of various features from peptide sequences, including AAC, AAI, CTD, DPC, and PCP, and generation of hybrid features (various combinations of individual compositions); (3) exploration of six different ML algorithms and selection of the appropriate ones and their corresponding features; and (4) construction of an ensemble model.


[image: image1]
FIGURE 1 | Overall framework of the proposed predictor. iBCE-EL development involved the following steps: (1) dataset curation, (2) feature extraction, (3) exploration of six different ML algorithms and selection of an appropriate algorithm and the corresponding features, and (4) construction of ensemble model.




Compositional and Positional Information Analysis

Prior to the development of the ML-based prediction model, we performed compositional analysis using combined data set (i.e., benchmarking and independent) to understand the nature of the preference of amino acid residues in BCEs and non-BCEs. AAC analysis showed that Asn (N), Asp (D), Pro (P), and Tyr (Y) were predominant in BCEs (Figure 2A). However, Ala (A), Glu (E), Leu (L), Val (V), and Met (M) were predominant in non-BCEs (Welch’s t-test; P ≤ 0.05). DPC analysis showed that 32.25% of dipeptides differed significantly between BCEs and non-BCEs (Welch’s t-test; P ≤ 0.05). Of these, the 10 most abundant dipeptides in BCEs and non-BCEs were PP, SP, NK, NN, PN, NP, KY, QP, PY, and DP and LA, LT, KE, LL, VL, LQ, GL, AL, LE, and LS, respectively (Figure 2B). These results suggested that the most abundant dipeptides in BCEs were mostly pairs of aromatic–aromatic residues or a positively or negatively charged residue paired with proline. The most abundant dipeptides in non-BCEs were aliphatic-aliphatic residues with hydroxyl group and aliphatic–aromatic amino acids. Overall, the differences observed in compositional analyses (AAC and DPC) can be used as an input feature for ML algorithms, where it can capture hidden relationships between features allowing a better classification. Therefore, we considered them as input features.


[image: image1]
FIGURE 2 | Compositional and positional preference analysis. (A) and (B) respectively represent the amino acid and dipeptide preferences of BCEs and non-BCEs. (B) Shows significant differences in top 30 dipeptides. (C,D) Represent positional conservation of 10 residues at the N- and C-terminals, respectively, between BCEs and non-BCEs, generated using two sample logos. In (A,B), error bar is the SE that indicates the reliability of the mean. A smaller SE indicates that the sample mean is more accurate reflection of the actual population mean.


To better understand the positional information of each residue, sequence logos of the first 10 residues from the N- and C-terminals of BCEs and non-BCEs were generated using two sample logos (http://www.twosamplelogo.org). To test their statistical significance, the height of the peptide logos was scaled (t-test; P < 0.05). As shown in Figure 2C, at the N-terminal, Pro (P) at positions 2, 3, 4, and 6–10; Asn (N) at positions 2–8 and 10; Asp (D) at positions 1, 2, 8, and 10; and Tyr (Y) at positions 4, 5, 8, and 9 were significantly overrepresented, compared with other amino acids, while Leu (L) at positions 1, 2, 5, and 7–10; Ala (A) at positions 2, 3, and 6–9; Met (M) at positions 3, 6, 7, and 9; and Cys (C) at positions 4, 5, and 9 were significantly underrepresented. As shown in Figure 2D, at the C-terminal, Pro (P) at positions 1–7 and 10; Asn (N) at positions 1, 2, 5–7, and 9; Asp (D) at positions 3, 4, 6, and 7; and Tyr (Y) at positions 1, 3, 4, and 6–10 were significantly overrepresented, compared with other amino acids, while Leu (L) at positions 1, 2, and 5–8; Ala (A) at positions 3, 4, 7, and 8; Glu (E) at positions 1, 9, and 10; and Met (M) at positions 2, 7, 8, and 10 were significantly underrepresented. Notably, the predominant amino acids in the non-BCEs (particularly Leu, Val, and Met) were expected to be inside the proteins and if exist on the surface were likely to be present on the protein–protein interfaces. Conversely, the amino acids enriched in BCEs were mostly expected to be present on the protein surface. Overall, these results showed that BCEs and non-BCEs have contrasting amino acid preferences, which is consistent with the compositional analysis. Furthermore, positional preference analysis will be useful for researchers to design de novo BCEs by substituting amino acids at the specific position for increasing peptide efficacy. Interestingly, the properties of linear epitopes described here based on our data set are different from conformational epitopes (27), which is mainly due to the local arrangement of amino acids.



Construction of Prediction Models Using Six Different ML Algorithms

In this study, we explored six different ML algorithms, including SVM, RF, ERT, GB, AB, and k-NN, using five different encoding schemes (AAC, AAI, CTD, DPC, and PCP) and their combinations (17 hybrid features), which included H1 (AAC + AAI); H2 (AAC + DPC + AAI); H3 (AAC + DPC + AAI + CTD); H4 (AAC + DPC + AAI + CTD + PCP); H5 (AAC + DPC); H6 (AAC + CTD); H7 (AAC + PCP); H8 (AAI + DPC); H9 (AAI + DPC + CTD); H10 (AAI + DPC + CTD + PCP); H11 (AAI + CTD); H12 (AAI + PCP); H13 (DPC + CTD); H14 (DPC + CTD + PCP); H15 (DPC + PCP); H16 (CTD + DPC); and H17 (AAC + AAI + PCP). Furthermore, we used six features set based on binary profiles, including BPFN5, BPFC5, BPFN5 + BPFC5, BPFN10, BPFC10, and BPFN10 + BPFC10. For each feature set, we used six different ML algorithms as inputs and optimized their corresponding ML parameters (Table S1 in Supplementary Material) using 5-fold cross-validation on the benchmarking data set. We repeated 5-fold cross-validation 10 times by randomly portioning the benchmarking data set and considering median ML parameters and average performance measures. The average performances of these six methods in terms of MCC is shown in Figure 3. RF, ERT, and GB performed consistently better than other ML-based methods (SVM, AB, and k-NN), regardless of the input features, indicating that decision tree-based methods are better suited for BCE prediction. Next, we investigated the features that produced the best performance for each ML algorithm. We found that SVM and k-NN performed best when using N10C10 binary profile as input feature; ERT, RF, GB, and AB performed best when H7, H12, H15, and PCP were used as input features, respectively. This analysis showed that the use of PCP-containing hybrid features as inputs could improve the performance of the ML method. Among the 6 ML methods, surprisingly, RF, ERT, and GB showed similar performances with MCC of 0.437, 0.443, and 0.426, respectively, which was significantly better than MCC of other 3 ML methods (SVM: 0.287, AB: 0.398, and k-NN: 0.221).
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FIGURE 3 | Performance of six different ML-based classifiers. Performance of various classifiers in distinguishing between B-cell epitopes (BCEs) and non-BCEs. A total of 27 classifiers were evaluated using 10 independent 5-fold cross-validation techniques, and their average performances in terms of AUC is shown. The final selected model for each ML-based method is shown with arrows. Abbreviations: AAC, amino acid composition; DPC, dipeptide composition; CTD, chain-transition-distribution; AAI, amino acid index; PCP, physicochemical properties; H1: AAC + AAI; H2: AAC + DPC + AAI; H3: AAC + DPC + AAI + CTD; H4: AAC + DPC + AAI + CTD + PCP; H5: AAC + DPC; H6: AAC + CTD; H7: AAC + PCP; H8: AAI + DPC; H9: AAI + DPC + CTD; H10: AAI + DPC + CTD + PCP; H11: AAI + CTD; H12: AAI + PCP; H13: DPC + CTD; H14: DPC + CTD + PCP; H15: DPC + PCP; H16: CTD + DPC; H17: AAC + AAI + PCP; N5: BPFN5; C5: BPFC5; N5C5: BPFN5 + BPFC5; N10: BPFN10; C10: BPFC10; and N10C10: BPFN10 + BPFC10.




Construction of iBCE-EL

An ensemble model (EM) refers to a combination of several prediction models to make the final prediction (28). The major advantage of EMs over single models is the reported increase in robustness and accuracy (29). Here, we generated six ensemble models by combining different ML-based models, EM1 (GB + ERT); EM2 (GB + ERT + RF); EM3 (GB + ERT + RF + SVM); EM4 (GB + ERT + RF + SVM + AB); EM5 (GB + ERT + RF + SVM + AB + NN); and EM6 (GB + SVM + ERT). EM was calculated as follows: [image: image1], where n is the number of ML-based models and P is the predicted probability value. Notably, we optimized the probability cut-off values (P) with respect to MCC using the grid search to define the class (BCEs or non-BCEs), which is a quite common approach and has been applied in various methods (30, 31). A model that produced the highest MCC was considered as the optimal one for each ensemble model. Surprisingly, all these ensemble models showed similar performances (Figure S1A in Supplementary Material) and hence it seems difficult to pick the best one. However, we checked its transferability on an independent data set and selected a model that showed consistent performance both on benchmarking and independent data sets (Figure S1B in Supplementary Material). According to this criterion, EM1 was selected as the best model and was labeled as iBCE-EL. To compare the performance of iBCE-EL with other ML-based models developed in this study, same optimization procedure was applied (Figure 4). Our results showed that iBCE-EL, RF, ERT, GB, AB, SVM, and k-NN produced the highest MCC with an optimal cut-off of 0.35, 0.47, 0.45, 0.26, 0.50, 0.41, and 0.41, respectively.


[image: image1]
FIGURE 4 | Optimization of probability value threshold. The x- and y-axes, respectively, represent the probability value threshold and Matthews correlation coefficient. The optimal value selected for each method is shown with a circle.




Performance of Various Methods on Benchmarking Data Set

We compared the performance of iBCE-EL with that of the other 6 ML-based methods (RF, ERT, SVM, GB, AB, and k-NN). The results are shown in Table 1, where the methods are ranked according to the MCC associated with predictive capability. iBCE-EL had the highest MCC, accuracy, and AUC of 0.454, 0.729, and 0.782, respectively. Interestingly, MCC, accuracy, and AUC of iBCE-EL were 0.8–15.9, 0.4–9.5, and 0.6–21.9% higher than those of the other six ML-based methods (RF, ERT, SVM, GB, AB, and k-NN). McNemar’s Chi-square test (32) was used to evaluate the statistical significance of the differences in the performances of methods. At a P-value threshold of 0.05, iBCE-EL significantly outperformed SVM, k-NN, and AB and performed better than RF, ERT, and GB, thus indicating the superiority of iBCE-EL. To the best of our knowledge, iBCE-EL is the first ensemble approach for BCE prediction. For comparison, we also included LBtope (LBtope_variable_nr) cross-validation performance on an nr data set published previously (17). Although four variants are available for LBtope (LBtope_variable, LBtope_confirm, LBtope_variable_nr and LBtope_nr), LBtope_variable_nr is the only model that was developed using nr data set with variable length. Hence, we included only this model for comparison and evaluation. The accuracy, AUC, and MCC of iBCE-EL were higher than those of LBtope by ~6, 12.4, and 5.2%, respectively. To assess generalization and practical applicability of these models, we evaluated them using independent data set and compared their performances.


TABLE 1 | Performance comparison of iBCE-EL with other ML-based methods on the benchmarking data set.
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Performance of Various Methods on Independent Data Set

By comparing the newly developed method with existing algorithms on the same data set, we could estimate the percentage of improvement. We compared the performance of iBCE-EL with those of LBtope and six other ML-based models. As shown in Table 2, iBCE-EL showed MCC, accuracy, and AUC of 0.463, 0.732, and 0.789, respectively. Indeed, the MCC, accuracy, and AUC of iBCE-EL were ~2.0–19.4, ~0.5–11.7, and ~1.0–10.4% higher than those of the other methods, thus indicating the superiority of iBCE-EL.


TABLE 2 | Performance comparison of the iBCE-EL with other methods on independent data set.

[image: image1]


At a P-value threshold of 0.05, iBCE-EL significantly outperformed SVM, AB, k-NN and LBtope, and performed better than ERT, RF and GB, thus indicating that our approach is indeed a significant improvement over the pioneering approaches in predicting linear BCEs. Interestingly, iBCE-EL performed consistently in both benchmarking and independent data sets (Figure 5) among the methods developed in this study suggesting its suitability for BCE prediction, despite the complexity of the problem. We made significant efforts to curate a large nr data set, explore various ML algorithms, and select an appropriate one for constructing an ensemble model thus resulting in consistent performance.


[image: image1]
FIGURE 5 | Receiver operating characteristic curves of the various prediction models. Results of 5-fold cross-validation on (A) a benchmarking data set and (B) independent data set.




Comparison of iBCE-EL With LBtope Methodology

We compared our method and LBtope (LBtope_variable_nr) in terms of algorithm characteristics. Since the variation in the number of B-cell experiments were considered to classify the peptides (positive or negative), LBtope used ~2-fold larger benchmarking data set than iBCE-EL. Moreover, we tested for significant differences in the data set using positional information analysis. However, we did not observe any significant differences between these two methods (Figure S2 in Supplementary Material). The choice of ML algorithm is different between these two methods, i.e., SVM used in LBtope, however, a combination of ERT and GB (ensemble model) were used in iBCE-EL. Interestingly, three features such as AAC, PCP, and DPC provide the most discriminative power for identifying BCEs; however, only DPC was used in LBtope.



Web Server Implementation

Prediction methodologies available as web servers will be helpful for experimentalists, and several web servers for protein function predictions have been reported (23, 33–38). A web server has been developed to implement the iBCE-EL method and made publicly accessible at www.thegleelab.org/iBCE-EL for the use of the wider research community. Python, JAVA script, and HTML languages were employed to construct the web server. Users can submit amino acid sequences in the FASTA format. The output of the web server contains the class and predicted BCE probability values. The data set used in this study can also be downloaded from the iBCE-EL web server.




DISCUSSION

Computational identification of BCEs is one of the hot research topics in bioinformatics. An increasing number of experimentally validated BCEs is growing exponentially in IEDB, where most BCEs are found to be derived from protein sequences. To identify BCEs from a given protein sequence, experimental methods seem to be time-consuming, highly expensive, and complex to be utilized in a high-throughput manner. Therefore, recent efforts have focused on the development of computational methods to accelerate the identification of BCEs (12–15, 17, 39–46). Most existing BCE prediction methods were developed using very small data sets, with negative ones derived from randomly chosen peptides that are not experimentally validated (13–15, 17, 40, 42). This practice is quite common in other peptide-based prediction methods, including those for anticancer, antifungal, and cell-penetrating peptides (30, 47, 48). Among existing methods, LBtope is the latest publicly available tool with three different prediction models (17). It was developed using an nr data set that produced an accuracy of 66.7%, which is far from satisfactory. Hence, a novel method with better accuracy is necessitated. In this study, we developed a novel software called iBCE-EL, which allowed us to predict BCEs from a given primary peptide sequence based on the features derived from a set of experimentally validated BCEs and non-BCEs.

To the best of our knowledge, the data set we utilized was the most stringent redundancy-reduced data set with variable length of epitopes (12–25 amino acid residues). Recent studies demonstrated that BCEs with shorter lengths (7–12 amino acids) bind antibodies poorly (49). Therefore, such shorter peptides were not considered in our data set. In general, models developed using such high-quality data sets would have a wide range of applications in modern biology (50). Before developing the prediction model, we analyzed our data set to understand the compositional and positional preferences of BCEs and non-BCEs. We found that Pro and Asn were highly abundant in BCEs, compared to non-BCEs. These observations were consistent with the results of previous reports, where immunoglobulin binding antigenic regions were found to be rich in Pro/Gly (51, 52) residues. Future studies should focus on the experimental validation of the biological significance of various dipeptides we found to be involved in B-cell induction.

It is essential to explore different ML algorithms using the same data set and then select the best one, instead of arbitrarily selecting an ML algorithm (47, 53–58). We explored six different ML algorithms (SVM, RF, ERT, AB, GB, and k-NN) and 23 different features encoding schemes for classifying BCEs and non-BCEs. All the features and ML algorithms used in this study have been successfully applied in various sequence-based classification methods (53–55, 59–61); however, only SVM and DPC were used in LBtope (17). To the best of our knowledge, this is the first study to evaluate several ML algorithms for BCE prediction. Our systematic evaluation of features and ML algorithms revealed that RF, ERT, and GB showed similar performances, respectively, with a combination of PCP and AAI, a combination of PCP and AAC, and a combination of DPC and PCP as input features. Subsequently, we constructed an ensemble method called iBCE-EL by fusing ERT and GB. iBCE-EL performed better than individual component classifiers. The ensemble approach has been successfully applied for various problems, including signal peptide prediction (62), membrane protein type classification (63), protein subcellular location (64), and DNase I hypersensitive site prediction (65). However, this is the first instance where this approach has been utilized for BCE prediction. iBCE-EL performed significantly better than the existing method and six other methods developed in this study, when objectively evaluated on an independent data set. Interestingly, the performance of iBCE-EL was consistent on both benchmarking and independent data sets, thus indicating its ability to classify unseen peptides well when compared to other methods. The superior performance of iBCE-EL was primarily due to the larger size of the benchmarking data set, rigorous optimization procedures to select the final ML parameters, and the choice of ML methods to construct the ensemble model. Future studies should focus on identifying novel features that can be combined with the current feature set to further improve prediction performance. Furthermore, we expect that our proposed algorithm could also be applied to other fields of peptide or protein function prediction. Several authors still query whether BCE could be considered as a discrete feature of a protein molecule or not. Indeed, van Regenmortel suggests that an epitope is not an intrinsic feature of a protein molecule, but is a relational entity that can be defined only by its ability to react with the paratope of an antibody molecule (6, 27, 43, 49, 66).

In conclusion, we proposed a novel ensemble method called iBCE-EL to classify a given primary peptide sequence as BCE or non-BCE. The essential component of this study is the generation of high-quality data sets with several manually curated BCEs and non-BCEs. iBCE-EL showed consistent performance with both benchmarking and independent data sets, thus indicating its effectiveness and robustness. We have also created a user-friendly web interface, allowing researchers to use our prediction method. iBCE-EL is the second publicly available method for predicting BCEs, and its accuracy is remarkably higher than that of currently available methods. We anticipate that iBCE-EL will become a very useful tool for BCE prediction.
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FIGURE S1 | Optimization of probability value threshold. The x- and y-axes, respectively, represent the probability value threshold and MCC. The optimal value selected for each method is shown with a circle. (A) A benchmarking data set and (B) independent data set.

FIGURE S2 | Comparison of position preference analysis using iBCE-EL and LBtope data set. (A,B) Represent positional conservation of 10 residues at N- and C-terminal, respectively, using iBCE-EL data set. (C,D) Represent positional conservation of 10 residues at N- and C-terminal, respectively, using LBtope data set.
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Reproducible and robust data on antibody repertoires are invaluable for basic and applied immunology. Next-generation sequencing (NGS) of antibody variable regions has emerged as a powerful tool in systems immunology, providing quantitative molecular information on antibody polyclonal composition. However, major computational challenges exist when analyzing antibody sequences, from error handling to hypermutation profiles and clonal expansion analyses. In this work, we developed the ASAP (A webserver for Immunoglobulin-Seq Analysis Pipeline) webserver (https://asap.tau.ac.il). The input to ASAP is a paired-end sequence dataset from one or more replicates, with or without unique molecular identifiers. These datasets can be derived from NGS of human or murine antibody variable regions. ASAP first filters and annotates the sequence reads using public or user-provided germline sequence information. The ASAP webserver next performs various calculations, including somatic hypermutation level, CDR3 lengths, V(D)J family assignments, and V(D)J combination distribution. These analyses are repeated for each replicate. ASAP provides additional information by analyzing the commonalities and differences between the repeats (“joint” analysis). For example, ASAP examines the shared variable regions and their frequency in each replicate to determine which sequences are less likely to be a result of a sample preparation derived and/or sequencing errors. Moreover, ASAP clusters the data to clones and reports the identity and prevalence of top ranking clones (clonal expansion analysis). ASAP further provides the distribution of synonymous and non-synonymous mutations within the V genes somatic hypermutations. Finally, ASAP provides means to process the data for proteomic analysis of serum/secreted antibodies by generating a variable region database for liquid chromatography high resolution tandem mass spectrometry (LC-MS/MS) interpretation. ASAP is user-friendly, free, and open to all users, with no login requirement. ASAP is applicable for researchers interested in basic questions related to B cell development and differentiation, as well as applied researchers who are interested in vaccine development and monoclonal antibody engineering. By virtue of its user-friendliness, ASAP opens the antibody analysis field to non-expert users who seek to boost their research with immune repertoire analysis.
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INTRODUCTION

The power of the adaptive immune system relies on its ability to generate an exceptional diversity in the genes encoding the variable region of B cell receptors and their secreted form, the antibodies. This diversity of antibodies is achieved by several unique molecular mechanisms, including chromosomal V(D)J rearrangement during B cell maturation in the bone marrow, N-P addition/deletion in the ligated V(D)J genes and somatic hypermutations (SHM) following antigen stimuli in the peripheral lymph nodes (1) (Figure 1A).


[image: image1]
FIGURE 1 | The diversity of antibody sequences and structures and molecular methodologies for next-generation sequencing. (A) Antibodies are comprised of two identical heavy chains and two identical light chains, each encoded on a different chromosome, both in human and in mouse. Diversity is achieved by chromosomal rearrangement, where different V, D, and J (V and J) genes are combined to construct the variable region of the heavy (light) chain of the antibody. In yellow are random nucleotides introduced during the chromosomal rearrangement process. (B) A detailed view of the variable region. Shown are the forward and reverse primers used for amplification. Several alternative primers, both forward and reverse, are used in order to capture the diversity of the variable region and its associated isotypes. The forward primers anneal to the framework 1 (FR1) region. Red regions within the primers represent adaptor sequences.


Antibodies can reach an enormous theoretical diversity of 1013–1018. However, the actual diversity is more restricted and was estimated to reach 1011–1012 in humans (2). Due to labor and cost considerations, as well as the lack of suitable high-throughput technologies, analysis of such complex repertoires using traditional Sanger sequencing was impractical for many years, resulting in major knowledge gaps regarding antibodies molecular composition. This precluded the ability to address many fundamental immunological questions related to the development of the immune response in health, disease, and following vaccination.

The introduction of next-generation sequencing (NGS) platforms has significantly advanced research in many scientific fields and opened new avenues in genomics and transcriptomics research. For immunoglobulin sequencing (Ig-Seq), which is also termed adaptive immune receptor repertoire sequencing (AIRR-Seq), NGS provided the means to underline quantitative measures of the immune response in an unprecedented throughput and since 2009 (3), the number of studies that applied NGS to analyze immune repertoires has increased substantially.

AIRR-Seq is based on targeted sequencing of genomic DNA or mRNA and in principle focuses on recording the diversity of the variable region (which includes the V(D)J genes) encoding the heavy (VH) and/or light (VL) chains of antibodies (Figure 1B). The variable region encodes the most diversified sites of the antibodies as they are the product of chromosomal rearrangements and SHMs and comprise three complementary determining regions (CDR1-3) in each antibody chain (Figure 1B). Due to the recombination and non-templated diversification mechanisms that generate the CDR3 of the heavy chain (CDR-H3), it is considered the most diverse determinant in terms of length and sequence of AIRR. CDR-H3 is thus pivotal for antibody specificity, although it was recently suggested that CDR-H3 is necessary, albeit insufficient, for specific antibody binding (4).

Accumulating AIRR-Seq data provide invaluable insights regarding the nature of the immune response in health and disease. These data were shown to be important for isolation and expression of antigen-specific monoclonal antibodies (5, 6), sequencing and cloning antibodies from single cells (7, 8), and proteomic analyses of secreted antibodies (9–11). These sequencing data can further facilitate the elucidation of the properties of antigen-specific antibodies that mediate protection against infectious diseases, are induced following vaccination, and generated in cancer and autoimmune diseases.

While AIRR-Seq is a powerful tool for immune repertoire analysis, errors accumulated during the experimental procedure (e.g., PCR and sequencing errors) make it extremely difficult to confidently/reliably determine the qualitative and quantitative measurements of the immune repertoire and establish an error-free antibody variable region sequence database. High confidence antibody variable region archives are particularly important when AIRR-Seq is combined with the utilization of serum antibodies proteomics (12–16), as these archives define the search space to interpret the proteomic spectra.

To overcome these challenges, experimental and computational strategies can be employed to reduce error-derived “noise” (17, 18). One such strategy utilizes replicate samples (either technical or biological) (19, 20). The main advantage of this approach is that it does not require complex experimental protocols that may prevent researchers from exploring the potential usage of AIRR-Seq in their research. Noteworthy, while great effort is invested in the development AIRR-Seq analysis tools, there is still no consensus on standard operating procedures for data processing and deposition. To address these issues, the AIRR Community was established in 2014 (http://airr.irmacs.sfu.ca/home) (21, 22).

Here, we report ASAP (A webserver for Ig-Seq Analysis Pipeline), a webserver for the analysis of AIRR-Seq data from several replicates, that is user-friendly, simple, free, and open to all users. ASAP is easily accessible to researchers who are interested to address basic questions related to B-cell development and differentiation in health and disease, as well as to researchers interested in applicable vaccine development and monoclonal antibody engineering. ASAP provides several unique features that are absent from other published webservers dedicated for AIRR-Seq data processing, analysis, and visulation (Table 1). ASAP and its associated source code are freely available at https://asap.tau.ac.il and https://github.com/orenavram/ASAP, respectively.


TABLE 1 | Summary of the analyses supported in ASAP compared to other related webservers.
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RESULTS

The webserver ASAP allows analysis of the complete B cell receptor repertoire based on NGS replicates of antibody variable region sequencing experiments. Implemented in Python 3, ASAP is simple, user-friendly, and freely available for all users.

The simplicity of the webserver allows researchers of diversified expertise levels to submit up to six replicates, given that the replicates use different barcodes. ASAP consists of two major parts: the individual part, in which each replicate is analyzed separately, and a joint part, in which the commonalities and differences among the replicates are analyzed. A complete overview of the ASAP workflow and output information is shown in Figure 2. A detailed description of all types of analyses provided by ASAP can be found on the webserver’s Gallery section.


[image: image1]
FIGURE 2 | Schematic flowchart for the analysis of each next-generation sequencing replicate (individual) as well as the analyses of the entire set of replicates (joint).


To exemplify the advantages of ASAP, we present here a demonstration of the entire webserver workflow by analyzing previously published antibody sequence data (23). These data were obtained from murine pools of plasmablasts and plasma cells in technical triplicates, i.e., three samples prepared from the same starting cDNA pool. All samples were sequenced using Illumina MiSeq platform, 2 × 250 bp paired-end reads (European nucleotide archive study accession: PRJEB4643).


Individual Processing

The input to ASAP is two FASTQ files for each replicate (paired end files). These files are initially processed by the ASAP webserver using the MiXCR software (24), which provides full V(D)J assignment, frameworks, and CDR3 annotations.

Alignment files that were generated by MiXCR are further processed. Aligned sequences are filtered out if at least one of the following conditions is met: (1) sequence contains a stop codon in the variable region ORF; (2) the two paired-end reads do not overlap; (3) the obtained sequences are shorter than a specified threshold (default set to be 300 nucleotides); (4) read quality is lower than a specified threshold (default set to be 20). A file describing the number of sequences filtered due to each criterion is provided. In case the reads are associated with a unique molecular identifier (UMI), reads with the same UMI are collapsed to a single sequence and errors are corrected based on the consensus sequence (25). For UMI analyses, the user has to provide the UMI pattern according to the IUPAC nucleotide code. Notably, UMI are handled in cases where the UMI is found only on the forward read, only on the reverse read, or both, as described in Ref. (19).

Each chain type has a different output section as follows. The first output of the processed data is an annotation file (e.g., “IGH_aa_sequence_annotations,” for the IGH chain). In this file, each row contains the following information regarding unique amino acid sequences (identical sequences are grouped to a single line): [1] chain type (VH, Vκ?, or Vλ); [2] antibody isotype associated with the VH sequences (e.g., for human sequences: IgM, IgD, IgG, IgA1, IgA2, or IgE); [3] the trimmed nucleotide read (without the adapter sequence); [4] the corresponding amino acid sequence; [5] amino acid sequence of the CDR3 region; [6] V family subgroup; [7] D family subgroup; [8] J family subgroup; [9] the number of reads for this amino acid sequence (counts).

The isotype assignment is computed by string matching to peptides defining each isotype. These peptides correspond to the N terminus of the antibody CH1 region (Figure 1A) and were derived from IMGT (26) (Table 2). Isotypes are assigned by searching for an exact match between a substring of the translated read and these peptides. Specifically, the peptides are searched against the C terminal region to the Framework-4. This region is defined by the string VTVSS in human and by the strings VTVSS, LTVSS, and VTVSA in mouse. In case no match is found, the server searches for the closest match. In case the difference between the closest match is more than a single amino acid mismatch, the isotype is classified as “unknown.” In addition, for certain human samples, the server is unable to distinguish between the A1 and A2 isotypes, e.g., when the relevant peptide motif information used for this classification is ambiguous (the peptide motif ends with CSTQP for A1 and DSTPQ for A2; Table 2). In this case, the isotype is defined as “IgA.” This isotype information is included in the annotation file described above. The frequencies of each isotype are graphically presented as a pie chart (Figure 3). Of note, the ability to detect the various isotypes depends on the primers used within the experimental setup.


TABLE 2 | The sequence fingerprint characteristic of each isotype in human and mouse.
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FIGURE 3 | A pie chart showing the distribution of isotypes in a specific next-generation sequencing (NGS) replicate. Note, this chart was generated using unpublished human NGS data.


Next, ASAP provides information regarding SHM. For each DNA read, the number of mutations with respect to the germline is recorded (Figure 4A). Mutations are stratified to silent and non-silent (synonymous and non-synonymous, respectively). These data are provided as a file and are also displayed as boxplots (Figure 4B). ASAP additionally allow conducting this step using germline sequences provided by a user.


[image: image1]
FIGURE 4 | Somatic hypermutation analysis. (A) A histogram showing the frequency of the number of base pair mutations in a next-generation sequencing replicate. The X axis represents the number of mutations (both synonymous and non-synonymous) defined by comparison to the germline genes. (B) The number of non-synonymous (Ka) and synonymous (Ks) mutations and their ratios (Ka/Ks), based on comparison to the germline genes. The Y axis is the number of mutations per codon. Each dot represents a unique variable region nucleotide sequence.


CDR3 length distribution was shown to vary in response to specific challenges (27–30). ASAP hence provides the distribution of CDR3 length for each replicate, both as a file and as a histogram (Figure 5).


[image: image1]
FIGURE 5 | The distribution of CDR3 length (number of amino acids) in a next-generation sequencing replicate.


Each of the V, D, and J genes can be encoded by several distinct alleles termed subgroups (26). Thus, for each gene, the server provides the frequency of unique amino acid sequences included in each subgroup. These data are graphically shown as three histograms. An example of such a histogram is shown in (Figure 6). Data regarding the subgroup usage and combination were previously shown to be important for understanding the nature and dynamics of the immune response, facilitating the distinction between cell types (31, 32). ASAP thus also provides the frequencies of all possible subgroup combinations. An example of the histogram is shown in Figure 7.


[image: image1]
FIGURE 6 | The distribution of V subgroups in a replicate. Shown is the distribution of the subgroup families for the heavy chain of IgG.



[image: image1]
FIGURE 7 | The distribution of the V(D)J combinations in a next-generation sequencing replicate. Shown are the frequencies of the various combinations between the V and J subgroups.


A clone is defined as the collection of antibody sequences that likely originated from a single B cell lineage. Clonal analysis may provide insights into the evolution of the antigen-specific response of that lineage (11). In practice, clones are defined by clustering variable region sequences that comprise highly similar CDRH3 regions, although the exact definition of this similarity varies among studies (10, 15, 33). Here, we define a clone as all variable region sequences with an identical CDRH3 region (at the amino acid level). Let y be the number of reads that are associated with a specific clone. Some of the reads are identical, and some differ in their nucleotide sequence. Let x be the number of unique amino acid sequences within a clone (these sequences differ in regions other than the CDRH3 region; x ≤ y). Both x and y are biologically important: y is indicative of the level of sequence variance within a clone, a phenomenon called clonal expansion (2) and x is indicative of the proliferation tendency of the clone (or when cDNA is used, high values of x may also indicate high expression levels). In ASAP, the data regarding these x and y values are provided for each clone, as well as a graph showing these values for the K clones (the default is K = 100) with the highest y values (Figure 8).


[image: image1]
FIGURE 8 | Clonal expansion. The X axis shows the most prevalent 100 clones. For each clone, the Y axis represents the number of variable region amino acid reads supporting each clone (in blue) and the number of contributing unique variable region amino acid sequences (in green).


For each of the above K clones, ASAP also provides a file for the multiple sequence alignment between all clone members. These multiple sequence alignments are also visualized by Wasabi (34). An addition annotation file includes the following information for each clone: [1] CDRH3 amino acid sequence; [2] CDRH3 counts (the y parameter described above); [3] unique variable region amino acid sequence counts (the x parameter described above); [4] the consensus sequence; [5] the amino acid sequence of the clone member which is most similar to the consensus sequence; [6] the similarity score; [7] the DNA sequence of the most similar sequence. Finally, for each clone a sequence logo graph is also provided (Figure 9).


[image: image1]
FIGURE 9 | Sequence logo of one of the top clones.


In addition, ASAP generates a specific FASTA file for each chain type (e.g., VH AA Sequences.fasta). In each such a file, all amino acid sequences of the variable region are given. For each sequence, the following information is given in its header: chain type and isotype, the CDR3 amino acid sequence, the V, D (only in VH), and J subgroup families, and unique variable region occurrences (at the amino acid level). For proteomic analyses, and in particular, those aimed to analyze antibody repertoires, the C terminus of the variable region sequence (i.e., the N terminal of the CH1 region) must include a proteolytic cleavage site (9). To this end, the server allows concatenating for each of the sequences in the above FASTA file a proteolytic cleavage site. By default, the “ASTK” and “AK” peptides are added after the FR4 motif (Figure 1B) of the heavy chain, for the human and mouse sequences, respectively. These suffixes introduce a trypsin cleavage site at the C terminus of IgG sequences. Alternatively, users can introduce other suffixes of their choice, including isotype-specific suffixes in case that non-IgG isotypes are proteomically analyzed.

ASAP provides a supportive file that maps each amino acid sequences in the abovementioned file to the associated nucleotide sequences. A file is provided for each chain type (e.g., VH AA TO DNA reads, fasta). Within each file, for each amino acid sequence the following information is given: the header includes the variable region amino acid sequence itself. For each header, the nucleotide sequences that are associated with the amino acid sequences are provided coupled with the original index from the FASTQ file.



Joint Analysis

After each replicate is analyzed as outlined above, the server also reports statistics based on replicate integration (a “joint” analysis). Importantly, while valuable information can be obtained by analyzing individual runs, the benefit of the joint analysis is that a single graph for each attribute of the data is generated based on shared reads, e.g., the top K clones based on the ensemble of all repeats. Thus, the joint analysis is beneficial for filtering out dataset specific reads, which may be unreliable, for pointing out problematic repeats, and as a platform to get characteristics and statistical measurements from the entire data. Notably, establishing a single reliable data is of vast importance for downstream applications, such as mass spectrometry (see below).

The first step in this joint analysis is to construct a joint annotation file, in which the reads from all replicates are aggregated, and which is otherwise in the same format as the individual files for each replicate analysis (individual analysis). Based on this joint analysis, ASAP produces the entire set of statistics, as described above for the single replicates (see previous section). The differences and commonalities among the multiple runs are further characterized, as outline below.

The correlation between each pair of runs is reported in terms of the frequencies of each sequence. High correlation (Figure 10A) point to reproducible replicates while lower levels of correlations (Figure 10B) can point to biases that may be derived from experimental or sequencing problems.


[image: image1]
FIGURE 10 | Pearson correlation between two next-generation sequencing replicates. Each dot represents a unique amino acid variable region. The X and Y axes indicate the number of times each such read appears in the first and the second replicate, respectively. (A) Replicates with high reproducibility and (B) with lower reproducibility between replicates.


Similar to the single individual processing, ASAP generates a FASTA file, which provides the entire list of amino acid sequences shared among all replicates. Unlike the individual processing file, information regarding the unique variable region occurrences summed over all replicates (at the amino acid level) and a comma separated list of these occurrences in each replicate is also provided. The server additionally provides a Venn diagram that depicts the intersections among the different replicates, presenting the number of unique variable region amino acid sequences shared between the replicates (Figure 11).


[image: image1]
FIGURE 11 | Venn diagram showing the number of variable region amino acid sequences that are shared among next-generation sequencing replicates.





DISCUSSION

The ASAP webserver described here provides bioinformatic support for AIRR-Seq analysis. It is simple, free, and does not require a login information. Several webservers for analyzing AIRR-Seq obtained via NGS have been recently reported (35–39). However, the ASAP server offers a number of unique advantages, including the analysis of multiple replicates, defining custom search space to include new germlines, preparation of the data for proteomic analyses, and single push button analysis of raw data directly obtained from the NGS platform, without requiring any pre-analyses. This latter feature allows non-expert users to readily use ASAP for analyzing their data. Table 1 summarizes the analyses supported by ASAP compared to other related webservers.

Clonality is an important concept in antibody repertoire analysis. Yet, its exact definition varies among different studies and tools. For example, clonality may be defined based on either DNA or amino-acid sequences. Most commonly, computational clustering of variable region sequences into clones is based on the CDR-H3 region (2). Clearly, with the enormous increase in NGS data available for such studies, concepts such as clonality are rapidly evolving and choosing a specific criterion may result in too narrow or too wide clustering (under-clustering and over-clustering, respectively). Thus, clustering analysis such as the one provided in this webserver should be taken with a grain of salt when interpreting biological data.

We rely on the MiXCR software for the initial processing that uses germline information from IMGT. Novel germline alleles are inferred and discovered in an accelerated pace (40–42). Thus, it is clear that the set of germline sequences found in IMGT is restricted. This emphasizes the need to enable flexibility in defining the annotation search space to include new germlines. The inclusion of such alleles will directly affect the V(D)J usage profile, clonality, and level of SHM, thus eventually reflecting on the obtained biological insights. ASAP provides the option to append the germline space with provisional novel alleles. This option enables to annotate the AIRR-Seq data with these alleles and to inspect the impact of missing germline alleles on downstream analyses.

In various fields of biology, analyzing multiple repeats is a requirement, e.g., in expression analyses (43) or ChiP Seq data (44). The importance of repeats is critical in high-throughput analyses in order to remove random noise, thereby increasing the signal to noise ratio. While experimental and computational methodologies to increase this ratio do exist (19, 45, 46), these approaches often require sophisticated experimental setups, precluding their utilization by non-experts. Moreover, even when applying these experimental approaches, a further increase in signal to noise ratio can be achieved by experimental repeats. This motivated us to implement robust inference procedures for analyzing multiple repeats, e.g., the correlations between repeats, a Venn diagram showing the intersections among repeats, etc. Given the constant reduction in NGS costs, we expect repetitions in NGS experiments to become the standard procedure in the field of AIRR-Seq.

AIRR-Seq can also be used for proteomic identification of monoclonal antibodies within the polyclonal pool present in biological fluids. B cells effector function is the expression and secretion of antibodies into the blood or mucosal tissues. However, the composition of these antibodies remained elusive for many years. Proteomic identification of secreted antibodies requires the consolidation of a high confidence individual specific antibody archive in order to interpret the LC-MS/MS spectra. The utilization of proteomic analysis of antibodies from serum or secretion is emerging as a powerful tool to investigate their molecular composition, relative concentrations, temporal dynamics, and the relationship to well-studied B cells (6, 8–10, 12, 13, 15).

ASAP currently allows analyzing antibody sequences obtained from either human or mouse. While most studies involving AIRR-Seq focus on these two model organisms, in the future, antibody repertoire analyses from an extended taxonomical sampling should provide information about the differences among organisms, thereby providing insights into the evolution of the adaptive immune response.
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The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These “substitution profiles,” whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
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INTRODUCTION

In order to combat an arbitrarily large number of unknown pathogens, the humoral immune system relies on three mechanisms to generate diversity in antibody variable domains. In the primary repertoire, combinatorial diversity is created by the random joining of germline-encoded V, D, and J heavy chain or V and J light chain gene segments. During this process, junctional diversity is also introduced through the action of exonucleases and terminal deoxynucleotidyl transferase. This results in an estimated 1015–1018 possible unique naive B cell (1, 2). Furthermore, upon encountering cognate antigen, a naive B cell can enter a germinal center and begin to undergo somatic hypermutation (SHM), increasing the number of realizable antibodies by several additional orders of magnitude. However, the total number of circulating B cells in a human is only ~109 (3, 4), meaning that if all possible antibodies were equally likely to be made, the odds of correctly producing one capable of binding to and clearing a particular antigen would be minuscule. In fact, precisely such arguments were initially used to argue against the “somatic” theory of antibody diversity predicting the existence of SHM (5). Hood and Talmage even pointed out that potential number of wasted mutations alone (i.e., those leading to non-functional antibodies and cell death) would far exceed the total number of cells thought to be produced over a human lifetime (6).

Nonetheless, the immune system has also evolved mechanisms for biasing the generation of diversity in ways, which presumably optimize the search for effective antibodies. For instance, different V gene segments are used at different frequencies (7, 8) and certain D genes may be more often recombined with specific J genes (9, 10). Many studies have shown that the parameters governing recombination vary dramatically from a uniform distribution and are generally reproducible between individuals (2, 11–14). Indeed, they appear to be optimized to produce B cells that can pass tolerance checkpoints and mature into naive B cells (2).

The SHM process is similarly biased. Soon after the first experimental confirmations of SHM (15, 16), it was quickly noted that mutations are more clustered together than random expectation (17) and fall into intrinsic hot spots (18, 19). Since the discovery of activation-induced cytidine deaminase (AID), the enzyme that initiates SHM by deaminating cytidine to uridine (20–22), much progress has been made in understanding the molecular origins of these biases. Many factors have been described that participate in targeting AID activity to the Ig loci by associating it with enhancer transcription and polymerase stalling [reviewed in Ref. (23–25)]. Studies of the specificity loop of AID (26–28) have elucidated the basis for the preferential deaminations of cytidines within specific microsequence motifs. Finally, investigations of uracil-DNA glycosylase, MutSα, DNA polymerase η, and many other components of the base excision and mismatch repair pathways have revealed some of the mechanisms behind patterns of mutations other than the C→T transitions generated directly by AID [reviewed in Ref. (25, 29, 30)].

The study of AID and other molecular components of the SHM machinery has always been complemented and even driven by computational approaches. For instance, the two-phase model of SHM (deamination by AID, followed by removal of the resulting uracil and error-prone repair) was first proposed in response to the observation that SHM is more focused on RGYW (where R is A or G; Y is C or T; and W is A or T) hot spots in MSH2-deficient mice (31). Similarly, the role of DNA polymerase η was deduced in part by comparing the motifs mutated by that enzyme to the WA hot spot motifs observed in SHM (32).

In addition, computational analysis can be clarifying, abstracting away molecular details to reveal higher level patterns such as the canonical RGYW hot spot motif itself. Recent work has suggested that the repertoire of nucleotide mutations generated by SHM can be further abstracted to amino acid substitution profiles (33, 34). These profiles point toward a new, simpler avenue for predictive analyses of the immune system, such as understanding potential responses to a specific vaccine immunogen. Here, we review the history, use, and limitations of microsequence motifs for predicting the targeting of SHM; the evidence that evolution has focused the SHM machinery toward producing specific types of amino acid changes at specific positions; the emerging use of substitution profiles and other similar predictive frameworks (FWR) for amino acid usages, along with their potential challenges and limitations; and how substitution profiles might find use in rational vaccine design.



MICROSEQUENCE MOTIFS

The idea that the diversity of antibody specificities could be attributed to ongoing accumulation of genetic mutations in proliferating lymphocytes was first proposed by Lederberg (35). Brenner and Milstein then suggested a mechanism based on DNA cleavage targeted to specific genetic loci, followed by exonuclease activity and error-prone repair (36). After the emergence of experimental support for this hypothesis (17, 37), analogy to the action of known mutagenic agents led Rogozin and Kolchanov to examine the possible influence of neighboring bases on the occurrences of mutations in antibodies. This resulted in the discovery of the now-canonical RGYW/WRCY hot spot motif (where the underline indicates the mutated base), as well as the apparently equally mutable TAA motif (38). Later, a disfavored cold spot motif of SYC (where S is C or G) was also reported (39).

However, despite the usefulness of the WRCY and TAA motifs, only about 30% of observed SHMs fall into such hot spots (38). Moreover, it quickly became clear that not all 8 WRCY sequences were equally “hot,” with AGCT being favored (19, 40–42) and AGCC or TGCG being disfavored (43, 44). At various times, WRCH (where H is A, C, or T) (45), WRCR (46), and WRCW (47) have been suggested as more accurate motifs, with the WRC thought to be the core motif (39, 46), with the last base possibly influencing the choice of repair pathways (45). Similarly, the originally proposed TAA motif was later refined to WA (32). In addition, other potential hot spot motifs have been suggested, such as CRCY and ATCT (48).

Another approach has been to explicitly calculate mutation rates for each possible nucleotide sequence of a given length. In the first such study, Smith estimated the relative mutability for all possible di- and trinucleotide motifs using downstream JK sequences from mouse hybridoma lines, concluding that the dinucleotides explained most of the variation in mutational targeting (40). They later extended this analysis to mouse and human heavy chains (49) and human kappa chains (50), using non-productive rearrangements instead of intronic sequences to calculate mutabilities in humans (49, 50). They found broad similarity between species and between heavy and kappa (49, 50), while a later analysis of non-productive human IgL sequences with higher mutation levels suggested substantial differences from IgH (51). Ohm-Laursen used non-productive rearrangements of VH3-23 with JH4 or JH6 to derive a quartet model and showed that the frequency of mutation at specific motifs in the D and J genes correlated well with those in the V gene (43). A different quartet model used the V gene region of all publicly available antibody sequences and modeled the effects of the flanking nucleotides as independent from the position of the mutation itself (52). These authors found a high correlation of observed quartet mutation frequencies (~0.7) between heavy and light chains and between human and mouse antibodies. However, the full model could only explain around half of the variation in mutation frequencies in the real data (52).

More recently, with the advent of high-throughput sequencing technologies, attempts have been made to build out more finely discriminatory models. Yaari constructed a 5 nucleotide motif model using only synonymous mutations from functional sequences (44). The frequency at which each motif was targeted was highly correlated between individuals (~0.9), but the correlation between expected and observed mutations was only 0.67. Moreover, 46% of possible 5-mer motifs were not observed directly and had to be estimated from other similar motifs (44). The same group also immunized mice transgenic for the B1-8 heavy chain with (4-hydroxy-3-nitrophenyl)acetyl, which produces a response heavily biased toward λ chain usage (53). They sequenced the non-productive kappa chains from these animals and confirmed that the 5-mer mutation frequencies from functional and non-functional sequences correlated well with each other (48). They also built 5-mer models for mouse heavy chains and human light chains, finding an overall correlation of only 0.63 between the species. Specifically, C:G base pairs were observed to be more likely to mutate in mice and also to have a higher probability to result in a transition substitution than in humans (48).

To overcome the limitation of motifs that do not appear in the repertoire of germline Ig sequences, Elhanati et al. constructed a 7-nucleotide position weight matrix (PWM) that treats each position independently, finding a correlation of 0.8 between predicted and observed mutations frequencies (2). A later refinement of this model also calculated 7-mer PWMs for D and J gene-derived nucleotides, finding that those differed sharply from the PWMs learned for V genes (54). Another new approach, termed “samm,” uses a proportional hazards model with a lasso penalty and a flexible motif dictionary to extract the most important features and construct motifs accordingly (55). When used to build a 5-mer motif model and compared directly to Cui et al. (48), the results are similar, but samm tended to discount the effect of the final nucleotide, inferring only 382 unique mutability values instead of 1,015 (55).

In addition to calculating the frequency of mutations at each motif, many groups have investigated the resulting mutation spectrums, or the relative rates of mutation to each possible destination nucleotide. Although a preference for transitions over transversions was first reported in the early 1990s (19, 56), Cowell and Kepler were the first to report a dependency on neighboring bases for mutations spectrums (57). They found that both nucleotides in a homodimer have an increased propensity for transitions, while AT and TA dinucleotides have a preference to mutate to AA or TT homodimers (57). Ohm-Laursen calculated mutation spectrums for all 4-nucleotide motifs (43), but did not specifically analyze the effects of context. The quartet model of Cohen calculated mutation frequencies independently for each possible destination nucleotide, finding that the particular substitution had as much impact on the variability of mutation frequencies as did the microsequence context (52). Several other groups have calculated mutation spectrums, as well (2, 44, 48, 54) though those authors all deemphasized mutation spectrums compared to mutation frequencies or general properties of the antibody repertoire. This is due to the fact that mutation spectrums are considered less computationally tractable, as the underlying molecular machinery is significantly more complex and less well understood. In addition, they have been thought to be less useful, as the observed substitutions are presumed to be heavily influenced by selection for antigen binding, which acts on the amino acid sequence. One attempt has been made to parameterize an amino acid substitution matrix for antibodies (58), which does not compare favorably to real data when used to simulate SHM (33).

Even extended to 5- and 7-nucleotide motifs, microsequence context can only account for 70–80% of variability in mutation frequencies (2, 44, 52, 54). Much of the residual variation appears to be due to positional effects within the antibody sequence. Differences between FWR and complementarity determining regions (CDR) have been reported (49, 50, 52, 59), and regional variation can be observed even in non-Ig transgenes (59). In addition, mutation frequencies for the same sequence decay exponentially with distance from the transcription start site (60). In addition, differences between the heavy, kappa, and lambda chain loci are consistently observed (48, 49, 51, 52). The complex interdependence among all of these factors suggests that an evolutionary balancing has optimized the types and distributions of mutations produced by SHM.



EVOLUTIONARY OPTIMIZATION OF SHM

One of the primary selective pressures driving antibody gene evolution is the need for functional diversity. Antibody genes were originally thought to be subject to “coincidental” or “concerted” evolution, as seen for other multigene families like ribosomal RNA and histone genes, with diversity generated by unequal crossing over and/or gene conversion (61, 62). However, an early study of the phylogenetic relationships between mouse and human VH genes suggested that the rate of VH gene duplication would have to be over 100-fold lower than for other multigene families (63). Later, studies with access to more sequences from more species were able to show that V gene evolution is instead governed by a “birth-and-death” process, which results in a more dynamic and diverse repertoire between species (64, 65). Within VH genes, moreover, the germline sequences of the CDRs, but not FWRs, are under diversifying selection (63, 66). In addition, SHM is itself an evolutionarily ancient diversification mechanism, preceding the emergence of combinatorial V(D)J joining and the full diversification of VH genes (67). SHM has been observed in vivo in the horn shark (67), and AID orthologs with in vitro deaminase activity have been isolated from cartilaginous fish (68) and even jawless vertebrates (69). Although all of the AID orthologs tested retained a general preference for WRC motifs over non-WRC substrates, the exact microsequence specificity varied substantially (68), suggesting co-evolution of the SHM machinery with antibody gene sequences to optimize the humoral immune response.

The interplay between evolution of the primary sequences of the germline repertoire and the biased mechanisms of SHM can also be seen in the fact that the codon composition of CDRs make them more prone to replacement mutations, while the structurally important FWRs use codons that are biased toward silent mutations (70–72). Similarly, Wagner et al. found that highly mutable AGY codons are preferentially used to encode serines in CDRs, while less mutable TCN codons tend to appear in FWRs (73). Kepler reported a general difference in codon usage between CDRs and FWRs, which was strongly correlated with differential mutability (74). Moreover, both the specific serine bias (75–77) and the general codon bias (78) appear to be phylogenetically conserved, emphasizing the importance of plasticity in the CDRs. In fact, recent work has demonstrated that AGC hot spot triplets in the CDRs are specifically conserved in the serine reading frame (79). These codons are exceptionally plastic, and mutated AGY serine codons are disproportionately involved in antigen contacts seen in crystal structures (79).

Shaping of the action of SHM extends beyond differences between CDRs and FWRs. For instance, Zheng et al. showed that C→T transitions are predominantly silent, and that those which would lead to replacement mutations are found primarily in cold spots (80). A similar, though less strict, distribution was reported for G→A transitions. Those authors speculate that this pattern might have evolved to keep mutations created directly by AID from overwhelming those caused by error-prone repair in phase II (80).

Somatic hypermutation is also targeted to be able to introduce gross structural changes to antibodies in a favorable way. For instance, mutations are frequently observed in human Vκ1-derived antibodies at two FWR positions, which affect interdomain dynamics and enhance thermostability (81). Similarly, sequences that can give rise to an NxS/T glycosylation motif with only one nucleotide change are concentrated in the antigen-proximal loops of the variable domains (82).

Evolution appears to shape the naive repertoire, as well. Recent work has demonstrated that observed biases in the usages of various V gene segments correlates with the predisposition of each gene to focus SHM toward its CDRs (72). More generally, the likelihood that the antibody encoded by an immature B cell can survive central tolerance and get selected into the naive repertoire correlates with the likelihood of that sequence being generated by the recombination machinery in the first place (2). In a similar vein, mouse antibodies have substantially less DH gene variation and junctional diversity than humans, which has been hypothesized to overcome the limitations of a numerically small B cell population by focusing the naive repertoire on the most critical specificities (83).

Even in humans, these biases allow the development of stereotyped antibodies, specific recombinations using particular genetic elements that can be reproducibly elicited by a particular antigen (12). These stereotyped antibodies can even target complex antigens such as influenza HA (84–86) and HIV Env (87, 88). In addition to stereotyped genes, the antibody response can reproducibly make use of specific amino acid substitutions generated by SHM. This had been observed in both mice (18, 89) and humans (84, 85, 90), and even when the mutation in question occurs in a cold spot of AID activity (91). Moreover, substitutions that appeared in VH1-46-derived antibodies targeting the CD4-binding site of HIV Env from multiple donors were also observed in VH1-46-derived antibodies from HIV-uninfected donors (92). This demonstrates that shared substitutions can occur in the selected functional repertoire even without a common antigen and may reflect the way that the SHM machinery has evolved to sample the mutations that are most likely to be useful.



SUBSTITUTION PROFILES

It seems counterintuitive that a priori predictions can be made about the state of the selected functional repertoire without reference to the antigens that have driven that selection. However, the number of unique clones in which a particular position has been substituted is correlated with the diversity of germline amino acids available at that position, in both CDRs and FWRs (93). Strikingly, the diversity of substitutions at changed positions is also correlated with germline diversity, though the diversity of the germline amino acids is less than that of the substitutions (93). While this at least partially reflects the structural constraints of the antibody domain, the physicochemical properties of the observed substitutions did not generally parallel those of the germline residues at the same positions (93).

In fact, the diversity of the observed substitutions is constrained not only by the diversity of all germline genes at a position but specifically by the particular gene from which the antibody was derived (33, 34) (Figure 1). As seen in studies of microsequence motifs (44) and V(D)J recombination (2, 11, 13, 91, 94), these substitution profiles are stable between individuals and across time (33). Similar findings have been reported both for sequences isolated from peripheral memory B cells (33) and from bone marrow cells (34). Both substitution frequency and the diversity of observed substitutions are generally higher in CDRs than in FWRs, though several FWR positions have substitution profiles similar to those characteristic of CDRs (33, 34). In addition, assorted VH genes accumulate substitutions in CDRH1 versus CDRH2 at different rates, and similar variations appear in the preferred locations of insertions and deletions (34).


[image: image1]
FIGURE 1 | Substitution profiles and the accumulation of rare mutations. (A) Substitution profile of VH1-69 as calculated by Sheng et al. (33). The germline amino acid sequence is shown below the logo plot. (B) Sequence alignment of VH1-69-derived influenza antibodies capable of neutralizing multiple subtypes. Dots indicate the germline amino acid and extremely rare substitutions [as defined in Ref. (33)] are shown in red. (C) Substitution profile of VH1-2. (D) Sequence alignment of VH1-2-derived broadly neutralizing HIV antibodies targeting the CD4 binding site. Each contains greater than ~20% or more extremely rare substitutions.


Many expected factors contribute to the observed substitution profiles. For instance, the frequencies of substitution are generally lower at structurally important residues such as the charge cluster (95), though individual genes may display higher rates, as for R95 of VH1-8 (34) [residue numberings are reported using the IMGT convention (96)]. Similarly, when a particular gene carries a residue that is distinct from other genes in its VH family (e.g., L71 in VH1-18 and T46 of VH1-8), substitutions at that positions are frequently biased toward the germline residue(s) encoded by the other members of the gene’s family (in this case, F and P, respectively) (34). The presence or absence of a microsequence hot spot also clearly impacts the observed differential substitution rates at some positions, such as S29 in VH5-51, which forms an AGCT hot spot and diversifies extensively, while the same serine in VH4 genes is encoded by a TCC codon and mutates only rarely (34). However, it cannot account for all such differences; for instance, R80 in VH1-8 diversifies extensively despite the absence of a canonical hot spot, while the equivalent arginine in VH3 genes is almost complete conserved, without the presence of an AID cold spot (34). Simulations indicate that microsequence motifs can account for about 70% of the variation in substitution frequencies, similar to previous reports (44), but only about 50% of the variation when the identity of the substitutions is included (33). Another contributing factor to substitution profiles is the fact that observed substitutions are typically those that can be reached by a single nucleotide change. However, the same codon can have substantially different profiles even in a highly similar sequence context. Thus, the TCC codon encoding S83 of VH1-2 is most likely to be substituted to A, followed by T and P, while the most likely substitutions for S83 of VH1-46 are P and F, followed by A (33). Furthermore, while biases in substitutions are somewhat correlated with the physicochemical similarity between the germline amino acid and the observed substitution, many commonly seen substitutions are non-conservative, and even conservative substitutions are frequently asymmetric (e.g., E→D and K→R substitutions are more likely to occur than D→E and R→K substitutions, respectively) (33, 97).

In addition to highly significant similarities in substitution profiles between individuals with presumably distinct antigen-exposure histories, substitution profiles observed in the selected functional repertoire are also correlated to those derived from non-functional passenger alleles (33). This convergence of the selected and unselected repertoires is quite surprising and implies stricter limitations on the action of SHM than had previously been understood. One possibility is that the evolutionary optimizations described above are fine-tuned enough to strongly bias the production of mutations toward those that are most likely to be selected for by the suite of antigens that has been most commonly encountered over the evolutionary history of a species (33). In this vein, recent work has shown that relatively low-affinity antibody lineages can persist in germinal centers responding to complex protein antigens (98–100). This results in a memory response with increased clonal diversity compared to that generated by haptens, and it has been hypothesized that this diversity enhances the capacity of the immune system to respond to future challenges from novel but structurally related antigens (101). It may be that the characteristic substitutions observed in substitution profiles serve to optimize the structure to this diversity. An additional, perhaps complementary, alternative is that the biases in the mutations produced by the SHM machinery are strong enough that most mutations are not produced frequently enough to be acted upon by selection. In either case, there would appear to be drastic implications for rational vaccine design efforts, as certain substitutions may not be reliably available in a typical repertoire, even with an optimal antigen.

More generally, the existence of substitution profiles indicates that there are preferred pathways for antibody affinity maturation that depend powerfully on the germline gene used. This, in turn, suggests that germline-based substitution profiles contain useful information about which substitutions are likely to be tolerated at each position, which can be leveraged for antibody engineering. As most engineering efforts begin from a known monoclonal antibody, a narrower substitution profile, encompassing a single antibody lineage, may be of particular use (102). These lineage-specific substitution profiles are expected to be different from gene-specific substitution profiles (33), but may better reflect the constraints of binding to a specific antigen. They also provide an opportunity to extract information about which substitutions can be tolerated at positions in CDR3 and FWR4, which are absent in V gene-specific profiles. Frequently, however, the antibody that is being engineered is the only known member of its lineage; even when deep repertoire sampling is done with high-throughput sequencing, most lineages are represented by only one or a few members (103).

A new program named SPURF attempts to overcome that limitation by combining several types of substitution profiles derived from a large public data set to predict the substitution profile of an antibody lineage from the sequence of a single member (102). In training the SPURF model, the authors found that the most important sources of information are the V gene-specific substitution profile and the inferred naive sequence, in addition to the input sequence itself. They also use a gene-family substitution profile (i.e., derived from all VH1 genes, etc.) and a substitution profile calculated from simulations of neutral mutation of the inferred naive sequence using the S5F model from reference (44, 102). In particular, the inclusion of the inferred naive sequence allows the prediction of a substitution profile for CDR3 and FWR4, which are not encoded by the V gene and, therefore, missed by a V gene-specific profile alone.



OPEN QUESTIONS

While SPURF performs well predicting the lineage-specific substitution profiles of an out-of-sample validation set (102) and is designed to be used for antibody engineering and improvement, it has not yet been tested in that context. Similarly, it remains to be seen if substitution profiles can be successfully incorporated into a predictive model of SHM. And while rare substitutions can be functionally important (104), systematic comparisons of the structural and biophysical effects of common versus rare substitutions are ongoing. In addition, substitution profiles treat the mutations observed at each position as being independent. However, recent work suggests that affinity-enhancing mutations may be co-selected with structurally stabilizing ones (105), and the possibility of correlations between the substitution profiles of different positions should be investigated.

Another open question involves the effects of allelic variants on substitution profiles. Even silent polymorphisms could theoretically change the pattern of mutations generated by SHM by the introduction or removal of a microsequence hot spot. More importantly, allelic variants are sometimes distinguished by replacement mutations (e.g., G55 versus R55 in VH1-69). Since the germline residue remains the most commonly observed amino acid at most positions, these variants will have a large impact on the resulting substitution profile. So far, this has been handled in an ad hoc manner, by either excluding genes from donors who have previously been determined to be heterozygous for such variants (34) or by collectively excluding all possible germline residues at each position from the substitution profile, irrespective of individual genotype (33). Since the germline residues at homologous positions in closely related genes are frequently observed substitutions (34), a more systematic way of investigating the effects of allelic variants is necessary. This is especially true as it has recently become clear that many such variants remain to be discovered (106–109).

Finally, one of the most striking findings about substitution profiles is the similarity of the selected and unselected repertoires. Yet, this observation rests on mere 650 non-productive rearrangements derived from a single VH–JH gene pair (33, 110). Although the strong correlations between substitution profiles from different individuals also support the idea that SHM is capable of generating only a limited set of mutations, more data are needed to test this. Meanwhile, it is clear that mutation and selection are distinct biological processes. In order to avoid possible confounding effects of selection, studies of microsequence motifs have typically used sequences derived from introns, transgenes, or non-productive rearrangements; or, if using sequences from functional antibodies subject to selection, have included only silent mutations extracted from those data sets.

Separately, many efforts have been made to detect and quantify the action of selection on affinity maturation. Initially, these evaluated the frequency of replacement mutations observed in CDRs versus FWRs using a binomial (111) or multinomial (112) distribution. The binomial model has also been extended to account for codon biases that lead to a higher neutral rate of replacement mutations CDRs (70) and to account for general differences in mutability driven by microsequence context (113). However, determining the appropriate null distribution of replacement versus silent mutations in antibodies has proven challenging, as the intrinsic biases of SHM can give the appearance of selection (114) even when microsequence motifs are accounted for (113). One strategy for addressing this difficulty has been to use a focused binomial test examining the replacement mutations from only a single CDR or FWR at time, while using the silent mutations from all regions (115, 116). Another strategy exploited a large data set of non-productive rearrangements to normalize the ratio of replacement to silent mutations on a germline- and position-specific basis (94). Other recent advancements include the use of a log-odds ratio of the posterior distribution of the replacement mutation frequency compared to the expected distribution for the germline sequence, to quantify the strength of selection (117); the integration of phylogenetic information (118, 119); and estimation of the null distribution for the number of replacement mutations so that selection effects can be calculated for a single sequence (120).

While there is general agreement that purifying selection typically acts on FWRs, reports have been inconsistent as to whether diversifying selection acting on CDRs can (94, 115, 117) or cannot (114, 121) be detected at the repertoire level. Meanwhile, a review of available structural data found no relation between hot spot motifs and observed substitutions; the latter were instead strongly correlated with antigen contacts and contributions to calculated binding energy (122). In addition, a recent study found that the need to distinguish between closely related foreign and self antigens can drive the expansion of higher affinity clonal variants that remain subdominant in the absence of self antigen (123), demonstrating another way in which selection can influence the observed substitutions in a repertiore. On the other hand, an in-depth analysis of an antibody against influenza hemagglutinin found that mutability and selection synergized, such that replacement mutations expected to occur more frequently under a neutral model were also more like to be selected once generated (124). It is, therefore, clear that more work is needed to resolve when the effects of selection must be explicitly accounted for and when they can be implicitly included by the use of substitution profiles or other similar abstractions. Structural and biophysical characterizations of common versus rare substitutions should help resolve this question and will also be important for understanding the underlying biological mechanisms.



VACCINE IMPLICATIONS

Reverse vaccinology 2.0 (125, 126) is a strategy for rational vaccine design that starts by characterizing the epitope targeted by an effective natural antibody and selecting or designing an immunogen that can elicit a similar antibody in other individuals. One particular implementation is lineage-based vaccine design, which attempts to find a series of immunogens that can together induce a vaccine-elicited antibody to recapitulate the ontogeny of a known lineage (127–130). Both strategies rest on the assumption that antibody elicitation is fundamentally reproducible. Thus, lineage-based vaccine design for HIV has focused on “classes” of antibodies (128) with similar genetic characteristics that have been observed in multiple donors. Despite genetic and structural similarity, however, several obstacles to the successful design of a vaccine capable of eliciting protective classes of antibodies remain to be overcome.

In particular, antibodies capable of broad neutralization of HIV have particularly high levels of SHM (128, 131, 132) and tend to be enriched for rare substitutions (104, 133, 134) (Figure 1). Extraordinary levels of SHM (15–35% nucleotide mutations) are characteristic of antibodies targeting HIV (135), and elevated levels of SHM have also been observed in other types of chronic infection and in systemic autoimmune disorders (136). By contrast, the maximum level of SHM that has been observed in vaccine-responsive antibodies is 8–10% nucleotide mutations, even after multiple doses (137, 138).

Fortunately, however, many mutations found in broadly neutralizing antibodies (bnAbs) against HIV appear to be unnecessary for full function (139, 140). In fact, two HIV bnAbs have recently been reported with at least 50% breadth and less than 10% nucleotide mutation in VH: CAP256-VRC26.25 (141) and DH270.1 (142). Importantly, though, both contain other unusual features. CAP256-VRC26.25 has an extraordinarily long heavy chain CDR3 of 38 amino acids, including a 1 amino acid insertion relative to the inferred naive ancestor (141), while the neutralization activity of DH270.1 depends on a critical Gly64Arg (IMGT numbering) mutation in a canonical SYC cold spot (142). As noted above, such rare mutations are generally enriched in HIV bnAbs compared to flu bnAbs (Figure 1) and antibodies from normal repertoires or induced by a vaccine (104). While accumulation of some rare substitutions may be incidental to the overall level of SHM (33, 104), a recent report demonstrated that half of the HIV bnAbs studied have accumulated significantly more rare mutations than expected under a neutral evolutionary model of SHM (104). Similarly, several positions with low intrinsic mutation rates were determined to be significantly enriched in a class of VH1-2-derived HIV bnAbs, based on their recurrence in members of that class (133). These observations suggest that, as for the DH270 lineage, at least some rare mutations may be functionally important. Indeed, this has recently been confirmed for three additional HIV bnAbs (104). The identification of critical rare mutations and strategies to reproduce them will be central to the success of lineage-based vaccine design.

One possible approach is to design immunogens capable of exerting strong selection on rare mutations as soon as they occur (104). However, even mutations that increase the affinity of an antibody 10-fold take much longer to dominate a germinal center reaction than would be expected from a simple model of SHM (91, 143). Moreover, recent work has shown that lower affinity subclones can persist in germinal centers (98–100), which may prevent antibodies with the desired rare substitution from reaching protective levels, even with an optimal immunogen. Indeed, while several recent studies in transgenic mice have elicited B cells enriched for substitutions present in the targeted mature antibody (144–146), none have yet specifically elicited critical rare substitutions or fully recapitulated the neturalization activity of the target antibodies. Notably, however, the most successful example focuses on PGT121 (146), which contains fewer rare substitutions than many other HIV antibodies (104, 134). It may, therefore, be more prudent to choose lineage-based vaccine design targets by avoiding those with functionally important rare substitutions (33, 134).



CONCLUSION

The mechanisms of antibody diversification have evolved to achieve a balance between the plasticity needed to successfully bind to unknown novel antigens and the robustness needed to do so in a biologically feasible manner. This results in a series of patterns and variations that can be studied computationally both to illuminate the underlying cellular processes and to predict the response to specific manipulations. As advances in technology have made it possible to collect ever larger datasets, our ability to detect and understand these patterns has grown, as well. The insights provided thus far by substitution profiles and related concepts have already begun to be applied to antibody engineering and vaccine design. Concurrently, work is ongoing to understand the biology behind these patterns and to develop them into predictive models of immune function.
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The adaptation of high-throughput sequencing to the B cell receptor and T cell receptor has made it possible to characterize the adaptive immune receptor repertoire (AIRR) at unprecedented depth. These AIRR sequencing (AIRR-seq) studies offer tremendous potential to increase the understanding of adaptive immune responses in vaccinology, infectious disease, autoimmunity, and cancer. The increasingly wide application of AIRR-seq is leading to a critical mass of studies being deposited in the public domain, offering the possibility of novel scientific insights through secondary analyses and meta-analyses. However, effective sharing of these large-scale data remains a challenge. The AIRR community has proposed minimal information about adaptive immune receptor repertoire (MiAIRR), a standard for reporting AIRR-seq studies. The MiAIRR standard has been operationalized using the National Center for Biotechnology Information (NCBI) repositories. Submissions of AIRR-seq data to the NCBI repositories typically use a combination of web-based and flat-file templates and include only a minimal amount of terminology validation. As a result, AIRR-seq studies at the NCBI are often described using inconsistent terminologies, limiting scientists’ ability to access, find, interoperate, and reuse the data sets. In order to improve metadata quality and ease submission of AIRR-seq studies to the NCBI, we have leveraged the software framework developed by the Center for Expanded Data Annotation and Retrieval (CEDAR), which develops technologies involving the use of data standards and ontologies to improve metadata quality. The resulting CEDAR-AIRR (CAIRR) pipeline enables data submitters to: (i) create web-based templates whose entries are controlled by ontology terms, (ii) generate and validate metadata, and (iii) submit the ontology-linked metadata and sequence files (FASTQ) to the NCBI BioProject, BioSample, and Sequence Read Archive databases. Overall, CAIRR provides a web-based metadata submission interface that supports compliance with the MiAIRR standard. This pipeline is available at http://cairr.miairr.org, and will facilitate the NCBI submission process and improve the metadata quality of AIRR-seq studies.

Keywords: immune-repertoire sequencing, Rep-seq, antibody, B cell receptor, T cell receptor, National Center for Biotechnology Information, ontology


INTRODUCTION

Recent advances in next-generation sequencing technology have made it possible to profile the adaptive immune receptor repertoire (AIRR) in exquisite detail. AIRR sequencing (AIRR-seq) (1) studies can generate tens- to hundreds-of-millions of B and T cell receptor gene rearrangements per experiment. Categorization of receptor diversity and gene segment usage, along with identification of clonal lineages and shared hypervariable region motifs provide a rich and detailed view of the adaptive immune landscape (1). Since first developed in 2009 (2, 3), AIRR-seq has been broadly applied in basic and clinical research settings. For example, it has been used to monitor immune responses to vaccines and natural infections, cancer therapies, and to track autoimmune and malignant clones over time (2, 4). Secondary analyses and meta-analyses, which combine independent AIRR-seq studies, could enhance reproducibility and facilitate new scientific discoveries provided that the AIRR-seq data adhere to the findable, accessible, interoperable, and reusable (FAIR) data principles (5).

Effective sharing of large-scale experimental data is a significant challenge. Minimal information about an adaptive immune receptor repertoire (MiAIRR) sequencing experiment (6) was proposed by the AIRR Community (7) as a standard for making AIRR-seq studies sharable. Community-accepted data standards, such as MiAIRR, lower the barriers to data sharing, as experimental results can easily be transferred without the need for lengthy and error-prone descriptions of experimental conditions. In addition, analysis software can be written once to work on all data, and the standards specify the availability of key information in a machine readable format. More broadly, the availability of common standards for AIRR-Seq studies benefits the wider immunology community, with implications for both basic research and clinical medicine.

We used Center for Expanded Data Annotation and Retrieval (CEDAR) technology (8) to develop a submission pipeline for AIRR-seq studies into National Center for Biotechnology Information (NCBI) repositories. Four NCBI repositories are needed to cover the full set of required MiAIRR data elements (6): BioProject, BioSample (9), the Sequence Read Archive (SRA) (10), and GenBank (11). Study, subject, and sample information is submitted to BioProject and BioSample, while the sequencing information and linked raw sequencing data are submitted to SRA. Processed sequencing data are submitted to GenBank. Submissions of AIRR-seq data to the NCBI repositories typically use a combination of web-based and flat-file templates and include only a minimal amount of terms validation. As a result, metadata at these NCBI repositories are often described using inconsistent terminologies, limiting scientists’ ability to access, find, interpret, and reuse the data sets, and to understand how the experiments were performed. Ontologies help to contextually interpret the heterogeneous metadata by associating the metadata concepts with ontology classes (12, 13). CEDAR develops technology that takes advantage of data standards and ontologies to improve metadata consistency and interoperability (8, 14, 15). We have leveraged CEDAR technology to improve metadata quality and ease the AIRR-seq study submission process by developing an AIRR-seq data submission pipeline named CEDAR-AIRR (CAIRR) (Figure 1).
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FIGURE 1 | CAIRR Submission Pipeline Workflow. (1) The CEDAR Template Designer is employed to create a set of templates according to the Minimal Information about an Adaptive Immune Receptor Repertoire (MiAIRR) standard. (2) Scientists can log into the CEDAR Workbench and use these templates to edit ontology-controlled metadata associated with their AIRR-sequencing study. The edited metadata is pre-validated through the National Center for Biotechnology Information (NCBI) validation service. (3) Scientists can start the submission process by accessing the Submission Manager within their CEDAR Workbench workspace. (4) The Submission Manager connects the CEDAR Workbench to the NCBI. (5) The Submission Manager facilitates uploading the metadata and data (FASTQ files) to the NCBI. (6) The CAIRR pipeline periodically checks the submission status at the NCBI. (7) Alert messages from NCBI are received by the Submission Manager. (8) These alert messages provide step-by-step processing detail to the scientists.


CAIRR uses CEDAR technology to: (i) create web-based data submission templates whose values are mapped to ontology terms, (ii) generate and validate metadata, and (iii) submit the ontology-linked metadata and sequence files (FASTQ) (16) to the NCBI BioProject, BioSample, and SRA databases. Overall, CAIRR provides a web-based metadata submission interface that supports compliance with MiAIRR standard, with the exception of GenBank data submission (which is still in progress). The interface enables ontology-based validation for several data fields, including: organism, disease, cell type and subtype, and tissue (17). This pipeline (Figure 1) will facilitate the NCBI submission process and improve the metadata quality of AIRR-seq studies.



MIAIRR-COMPLIANT TEMPLATE DEVELOPMENT LEVERAGING CEDAR TEMPLATE EDITOR

The CEDAR Workbench provides the CEDAR Template Designer, a module to create metadata templates or web forms for metadata editing. These templates consist of fields each of which contains one or more atomic pieces of information, such as a text or date field, or may be recursively composed from other template fields (Figure 2, right panel) (18). Fields can be restricted to accept certain data types (e.g., number and text) and can be configured to make them mandatory or to accept multiple values. To enrich the template fields with controlled vocabularies or ontologies, the CEDAR Template Designer provides a utility for searching and linking the ontology-controlled vocabularies from the NCBO (National Center for Biomedical Ontology) BioPortal. BioPortal is a repository for biomedical ontologies (Figure 2, organism panel view) (18, 19). Linking ontologies with template fields makes the resulting metadata interoperable, which helps to accelerate the meta-analysis process and enhances study reproducibility.
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FIGURE 2 | The Minimal Information about an Adaptive Immune Receptor Repertoire (MiAIRR) fields are transformed into a CEDAR template using the CEDAR Template Designer. Fields specified by MiAIRR (left panel) are transformed into a CEDAR template (right panel).


We used the CEDAR Template Designer to design metadata submission templates implementing the MiAIRR standard. To effectively share AIRR-seq studies, MiAIRR specifies a list of 82 fields (Figure 2 left panel) which are categorized into six sets: (i) study, subject, and diagnosis, (ii) sample collection, (iii) sample processing and sequencing, (iv) raw sequences, (v) data processing, and (vi) processed sequences with annotations (6). The CEDAR-based MiAIRR template currently includes the first four MiAIRR sets with 66 fields because the CAIRR pipeline is not covering the submission to GenBank yet. In addition, we have included four SRA database specific fields (library_startegy, library_source, library_layout), which are not part of MiAIRR, but are mandatory elements for the repositories (e.g., isolate, geolocation, and library information in SRA, etc.) (20). The MiAIRR elements are mapped to BioProject, BioSample, and the SRA repositories in the NCBI. Overall, we have created three templates for the BioProject, BioSample, and the SRA and then grouped them into a single template called “MiAIRR Template.”

To make an AIRR study findable, we devised a scheme to link the components (e.g., BioSample and the SRA records of an AIRR study) to each other through unique identifiers in the MiAIRR template. For example, a typical AIRR study consists of multiple BioSample and SRA records and these records should be anchored to each other in a way that a human or machine can navigate from a particular BioSample record to the related SRA record. Since each BioSample is represented with a unique identifier, we used BioSample identifier as a prime identifier and linked BioSample records to the related SRA records with unique BioSample identifiers. This functionality helps to reduce an AIRR study metadata creation and submission time, since users can instantiate multiple BioSample and the SRA submission without worrying how the NCBI translates the resulting AIRR study data.

Linking ontologies with template fields can help make the entered metadata interoperable. In the MiAIRR template, we have constrained the field values to ontology terms. For instance, we restricted the organism, cell type, cell subtype, disease, and tissue fields to terms from AIRR community recommended ontologies such as: National Center for Biotechnology Information Taxonomy Ontology (NCBITAXON) (21), cell ontology (CL) (22), Brenda Tissue Ontology (23), and Human Disease Ontology (DOID) (24) (note that CL covers both the cell type and cell subtype). By employing the CEDAR Template Designer module, we created a MiAIRR template to fulfill the AIRR data submission needs.



ONTOLOGY-CONTROLLED METADATA EDITING

In the CAIRR pipeline, fields are associated with available ontologies. These associations allow CEDAR to provide autocomplete functionality using the controlled vocabularies from the linked ontologies. Moreover, CEDAR ensures that all ontology-linked field values come only from ontologies and prevents free text from being used. For instance, when a user starts typing “Homo sapiens” in the organism field, controlled metadata from the NCBITAXON ontology shows up (Figure 2) (21). This ontology-based auto-completion reduces typographical errors and promotes consistent metadata entry practices. Moreover, filling a template with ontology-linked metadata enhances the ability to carry out semantic search of the submitted studies. NCBI does not make pervasive use of controlled terms as NCBI does employ the NCBI taxonomy for the organism field but features are not still implemented for the semantic search. If semantic search interface is implemented at the NCBI, a study could be searched based on its related metadata. For example, since Homo sapiens is a subclass of mammalia in the ontology hierarchy of NCBITAXON, it would be possible to expand the query search scope based on parent class or to narrow down the scope of a query based on the subclasses of “Homo sapiens” only.

The CAIRR pipeline provides a user-friendly interface for metadata creation. Features such as spreadsheet mode make the metadata editing process easy and efficient (Figure 3). For example, an AIRR study may hold multiple BioSample and SRA records, and the CAIRR pipeline allows users to add multiple records. Entering metadata into web-based templates is not always the preferred option for scientists who already have metadata available in spreadsheets (Figure 3). Therefore, we introduced a toggle spreadsheet view which works like any other traditional spreadsheet. Scientists can import existing spreadsheet hosted data into CAIRR pipeline by copying and pasting through the CAIRR spreadsheet toggle feature. Importantly, metadata validation based on ontologies and other template level constraints still works in spreadsheet view, which otherwise is not possible without writing special macros in programs like Microsoft Excel (25) or by using third-party spreadsheet ontology utilities such as RightField (26). Thus, CAIRR helps scientists to edit ontology-controlled metadata with ease and efficiency.
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FIGURE 3 | An ontology-controlled adaptive immune receptor repertoire study metadata editing process. (1) CEDAR’s Metadata Editor presents this web form based on the MiAIRR template produced by the Template Designer. The paging option allows a data submitter to add or delete BioSample and sequence read archive (SRA) records. (2) Some of BioSample and the SRA metadata are controlled through ontologies, which allow for auto-completion during data entry. (3) The toggle spreadsheet option allows data submitters to edit metadata using a traditional spreadsheet view.




AIRR STUDY METADATA VALIDATION AND SUBMISSION

The CAIRR pipeline provides ontology-controlled suggestions at entry-time along with data type checks for the entered values (e.g., date, string, and number). To ensure the quality of the submitted metadata to the NCBI, we have designed a metadata validation module by employing the NCBI validation service which provides an additional layer of quality control (Figure 4). The NCBI validation service is publicly available for any external user or application. It detects missing mandatory BioSample fields, such as BioSample Identifier, age, isolate, and sex, and generates alerts with error messages. To use the validation service inside the CAIRR pipeline, a user fills in an AIRR study’s metadata in the MiAIRR template and invokes the validation service through the Validate Metadata option within the Metadata Editor. The validation service fetches the entered metadata and reports any non-compliant metadata. This validation service could be invoked multiple times by a data submitter during the AIRR study metadata authoring process. Thus, the CAIRR pipeline includes multi-layered validation mechanism to ensure that the submitted metadata is of a high quality and compliant with the NCBI repositories.
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FIGURE 4 | CAIRR data submission. (1) Data submitters choose National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) as the target repository, and then upload the related datasets to submit. (2) CAIRR provides submission acknowledgment and data-processing-level messages generated by the NCBI system.


An AIRR study consists of AIRR metadata along with raw and processed sequence reads which are stored in FASTQ format (16). The available options for data and metadata submission using the NCBI submission interface are depositing through email or submitting through the file transfer protocol (FTP) using command line or third-party FTP utilities. In order to make the submission process easier, the CAIRR pipeline provides a user-friendly data submission interface. This data uploading facility can be accessed through the CEDAR Workspace—the first CEDAR interface users see after logging in—where users can select the generated metadata file and submit it to the NCBI repositories (Figure 4, submission dialog to the NCBI).

The CAIRR pipeline provides post-submission processing information to the submitters. Data submitters are informed within the CAIRR pipeline if any error is automatically detected after an AIRR study submission to the NCBI. The post-processing at the NCBI involves both computer-based validation and a human curator check. The computer automatically checks for the sequence reads length and its format details while a human curator looks for data relevancy and submitted metadata anomalies. Each computerized stage generates processing logs which are stored as a report. The logs capture the submitter detail, IP address, number of submitted files, and time zone information, along with the NCBI approval and rejection status information. The CAIRR pipeline parses this log file and displays the messages in the submitter’s workspace (Figure 4, NCBI submission acknowledgment panel).



DISCUSSION

The CAIRR pipeline was designed in compliance with the MiAIRR standard to facilitate AIRR study metadata generation and submission (see Figure S1 in Supplementary Material). In order to help users improve their metadata quality through ontology-constrained AIRR metadata selections, the CAIRR pipeline employs CEDAR technology in conjunction with NCBO BioPortal ontologies to develop the MiAIRR template. CAIRR makes AIRR study submission to the NCBI straightforward by providing a Submission Manager which handles data uploading and notifies users about post-submission processing at the NCBI. CAIRR also generates its output in JSON-LD and RDF (Resource Description Framework) formats which could be deposited into other AIRR-specific repositories such as VDJServer (27) and iReceptor (28), or into general repositories such as Zenodo.1

The possibility of re-analysis and meta-analysis of datasets made available through the NCBI offers the potential for important insights. However, such analyses largely depend on the effective sharing of large-scale experimental data such as that generated by AIRR sequencing studies. As next-generation sequencing technologies continue to improve, scientists are adopting these technologies to get insights into the adaptive immune response in healthy individuals and in individuals with a wide range of diseases (29, 30). The number of published and publicly available AIRR-seq datasets is also steadily increasing in repositories such as NCBI. Because metadata production is not a straightforward process, we observe some existing metadata at the NCBI with several metadata anomalies (31). The CAIRR pipeline simplifies AIRR study metadata editing and submission, thus improving the production and sharing of AIRR-seq data for further analysis.

The CAIRR pipeline can be extended in several ways. The current production version of the CAIRR pipeline supports the generation of metadata and deposition into three repositories at the NCBI (BioProject, BioSample, and the SRA). MiAIRR standard also mandates the deposition of processed data, which is not covered by these repositories. To address this, CAIRR will be extended to support submission to the NCBI GenBank. Another future extension will involve the development of an AIRR ontology, which will address the fact that not all the MiAIRR template fields are linked to ontology classes because of the unavailability of the appropriate ontology classes (e.g., forward and reverse PCR primer target locations, physical linkage of different loci). Finally, a community-level evaluation will be carried out to supplement the more limited evaluation described here.



CONCLUSION

To improve AIRR study metadata quality and to facilitate the metadata creation and submission process we have developed the CAIRR pipeline2 using the CEDAR Workbench. By linking MiAIRR template fields with ontologies, and providing validation checks, CAIRR minimizes metadata anomalies, such as metadata inconsistency, incomplete metadata, and incorrect metadata. Through CAIRR, users can submit MiAIRR-compliant data to the NCBI BioProject, BioSample, and the SRA repositories. To promote the maximum use of CAIRR, we have created a mailing list, online documentation with step-by-step instructions3 along with a video tutorial. More generally, CAIRR demonstrates how the CEDAR Workbench can be tailored for metadata editing and submission according to the needs of a particular scientific community.
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Among Immunotherapeutic approaches for cancer treatment, the adoptive transfer of antigen specific T cells is still a relevant approach, that could have higher efficacy when further combined with immune check-point blockade. A high number of adoptive transfer trials have been performed in metastatic melanoma, due to its high immunogenic potential, either with polyclonal TIL or antigen-specific polyclonal populations. In this setting, the extensive characterization of T cell functions and receptor diversity of infused polyclonal T cells is required, notably for monitoring purposes. We developed a clinical grade procedure for the selection and amplification of polyclonal CD8 T cells, specific for two shared and widely expressed melanoma antigens: Melan-A and MELOE-1. This procedure is currently used in a clinical trial for HLA-A2 metastatic melanoma patients. In this study, we characterized the T-cell diversity (T-cell repertoire) of such T cell populations using a new RNAseq strategy. We first assessed the added-value of TCR receptor sequencing, in terms of sensitivity and specificity, by direct comparison with cytometry analysis of the T cell populations labeled with anti-Vß-specific antibodies. Results from these analyzes also confirmed specific features already reported for Melan-A and MELOE-1 specific T cell repertoires in terms of V-alpha recurrence usage, on a very high number of T cell clonotypes. Furthermore, these analyses also revealed undescribed features, such as the recurrence of a specific motif in the CDR3α region for MELOE-1 specific T cell repertoire. Finally, the analysis of a large number of T cell clonotypes originating from various patients revealed the existence of public CDR3α and ß clonotypes for Melan-A and MELOE-1 specific T cells. In conclusion, this method of high throughput TCR sequencing is a reliable and powerful approach to deeply characterize polyclonal T cell repertoires, and to reveal specific features of a given TCR repertoire, that would be useful for immune follow-up of cancer patients treated by immunotherapeutic approaches.
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INTRODUCTION

Among solid tumors, metastatic melanoma is a relevant model for immunotherapeutic approaches because of a high immunogenicity, partly due to a high mutation rate, favoring the development of specific T cell immune responses (1). In previous studies, it has been documented that the specific immune response against melanoma is dominated by two vast T cell repertoires specific for the melanoma antigens Melan-A and MELOE-1, which can be selected and amplified from the peripheral blood of HLA-A2 melanoma patients (2, 3). These two antigens share common features regarding their frequent expression in melanoma tumors, the presence of immunodominant HLA-A2 epitopes and of vast specific TCR repertoires in HLA-A2 melanoma patients. Blood frequencies of Melan-A and MELOE-1 specific T cells are respectively around 10−4 and 10−6 among CD8 T cells. In addition, these T cell repertoires also contain high avidity T cells making these T cell repertoires relevant for a use in adoptive transfer.

For a long time, Melan-A has been regarded as a self-antigen, potentially eliciting a suboptimal T-cell repertoire due to negative selection. However, recently it was reported that the immunodominant HLA-A2 Melan-A26−35 epitope is not presented by human medullary thymic epithelial cells, due to a misinitiation of gene transcription (4), and leading to the evasion of central self-tolerance toward this epitope. This finding, together with the strong bias documented in Vα usage (5, 6) could explain the abundance of this specific-T cell repertoire and the presence of high avidity T cells among this repertoire.

On the other hand, MELOE-1 antigen is expressed from a polycistronic RNA, whose expression is controlled by specific transcription factors and epigenetic mechanisms in the melanocytic lineage (7). The translation of MELOE-1 from one of the short ORFs of this RNA is controlled by an IRES sequence, exclusively activated in melanoma cells, conferring to this antigen a strict tumor expression profile (8, 9). Like Melan-A specific T cell repertoire, MELOE-1 specific T cell repertoire also contains high avidity T cells, and is also strongly bias toward the preferential usage of a specific TRAV chain (2), probably contributing to the relative high frequency of MELOE-1 specific T cells in the peripheral blood of HLA-A2 individuals. All these features confer to these two antigen-specific-T cell repertoires interesting properties for a use in adoptive transfer setting in a large subgroup of melanoma patients (HLA-A2), contrary to neo-antigen-based therapeutic personalized strategies.

Based on this, we developed a clinical grade method to select and expand ex-vivo Melan-A and MELOE-1 specific CD8 T cells from the blood of HLA-A2 patients. This method, relying on the sorting of specific T cells through the use of HLA/peptide-coated magnetic beads (3), is currently used in the MELSORT clinical trial to treat metastatic melanoma patients (NCT02424916, https://clinicaltrials.gov). This standardized procedure allows the production of fully specific, polyclonal and tumor reactive specific T cells. Nonetheless the diversity of these polyclonal populations has been addressed so far through the use of anti-Vß specific antibodies, and we could document that these populations were composed with various Vß subfamilies, but the number of T cell clonotypes present among a given Vß subfamily remained unknown. Furthermore, the available panel of 24 Vß-specific antibodies does not always cover the entire T cell repertoire of all antigen-specific T cell populations.

We thus took advantage of a recent high throughput TCR sequencing method developed by Qiagen, to fully characterize Melan-A and MELOE-1 T cell populations, selected and amplified according our standardized producing method. We first documented the sensitivity and reliability of this method, and we report here an extensive characterization of Melan-A and MELOE-1 specific T cell repertoires. This analysis reveals a high diversity of these antigen-specific sorted T cells that exhibit common and specific TCR features.

Thus, this method enables the complete and accurate characterization of T cell repertoires that is a main issue for immune follow-up purposes, in adoptive transfer setting, but also for other immunotherapeutic approaches including immune-checkpoint blockade (10).



MATERIALS AND METHODS


Melan-A and MELOE-1 Specific T Cell Populations

Peripheral blood mononuclear cells (PBMC) were isolated from 40 mL of blood of HLA-A2 metastatic melanoma patients (Unit of Dermato-cancerology, Nantes hospital) after written informed consent (approval number: DC-2011-1399). PBMC were seeded in 96 well/plates at 2 × 105 cells/well in RPMI 1640 medium supplemented with 8% human serum (HS), 50 IU/mL of IL-2 (Proleukin, Novartis) and stimulated either with 1 μM of Melan-AA27L peptide (ELAGIGILTV) or 10 μM of natural MELOE-136−44 peptide (TLNDECWPA), purchased from Genecust. After 14 days, each microculture was evaluated for the percentage of specific CD8 T lymphocytes by double staining with the relevant HLA-peptide tetramer (from the SFR Sante recombinant protein facility) and anti-CD8 mAb (Clone RPA-T8, Biolegend) using a FACS Canto HTS. Microcultures that contained at least 1% of specific T cells were selected, pooled and sorted with the relevant multimer-coated beads as previously described (3). After a 14-day amplification period on irradiated feeder cells, in presence of PHA-L (1μg/mL) and IL-2 (150U/mL), purity of expanded sorted T cells was assessed by double staining with the relevant HLA-peptide tetramer and anti-CD8 mAb (Figure S1).



Vß Repertoire of Specific T Cells

Vß diversity of sorted Melan-A and MELOE-1 specific T cell lines was analyzed by labeling with 24 anti-Vß mAbs included in the IOTest Beta Mark TCR V Kit (Beckman-Coulter, IM3497). These cytometric analyses were performed on a Facs Canto II (BD Biosciences).



T-Cell Receptor Sequencing

Total RNA was extracted from 5 × 10∧5 antigen specific T cells using QIAGEN RNeasy Kit. RNA from normal PBMC (purchased from Precision for Medicine) was used as a reference control. 10 or 25 ng of RNA was used to build libraries with the QIAseq Immune Repertoire -T-cell Receptor Panel (Catalog 333705- IMHS-001Z). With this kit, RNA is reverse transcribed with a pool of gene specific primers against the C (constant) region for the T cell receptor alpha, beta, gamma, and delta genes. The reverse transcribed cDNA is then used in a 5′ ligation reaction which adds an oligo which contains one side of sample index and unique molecular index. Following reaction cleanup, a single primer extension is used to capture the T-cell receptor using a pool of gene-specific primers. Resulting captured sequences are amplified and purified using QIAseq beads. The libraries then are sample indexed on the other side by using a unique sample index primer and a universal primer. The final dual sample indexed PCR fragment is purified and then quantitated for abundance using real-time qPCR.

For sequecning, each library was diluted to 4 nM, pooled and denatured. 12 pM of denatured library pool was run on a MiSeq using V3 chemistry for 502 cycles with a pair-end 251 base read.



Read Trimming/Clonotype Calling

FASTQ files were analyzed in the QIAGEN GeneGlobe Data Analysis Center (https://www.qiagen.com/us/shop/genes-and-pathways/data-analysis-center-overview-page/) using the Immune Repertoire Application The web-based read processing service generates clonotype calls and quantity estimates from reads generated by the QIAseq Immune Repertoire Library Kit. The clonotype calls are generated using the IMSEQ software (11). The main tasks of IMSEQ are to align the reads to model V-region and J-region sequences, extract the CDR3 region sequence, and cluster together highly similar CDR3 sequences that likely came from the same input sample clones. A detailed description of the IMSEQ algorithm is at the following URL: http://www.imtools.org.



Read Processing Steps

Trim Reads

We first trim from the reads the constant regions generated by the enrichment protocol, and move the UMI sequence to the read identifier line.

Trim 3′ end of reads with less than 18 base quality score.

Trim ligation common oligo AGGACTCCAAT from the 3′ end of R1.

Trim uPCR common oligo CAAAACGCAATACTGTACATT from the 3′ end of R2.

The 12 bp UMI sequence is moved from the start of R2 to the FASTQ read identifier comment region of R1 and R2.

Down-Sample Reads

When read depth rises above about 8 to 10 read pairs per UMI, very few new real UMIs are observed, but false UMIs caused by PCR or sequencing errors are observed at an increasing rate. The same is true for CDR3 sequences. To control this over-sequencing error in the UMI and CDR3 sequences, we randomly discard the reads until the remaining reads contain about 8 reads per UMI.



Merge Overlapping R1 and R2 Reads

To accommodate IMSEQ requirement for R1 being entirely VDJ sequence, and R2 being V-only, we merge overlapping R1 and R2 and rename them as R1. The reads are then split by gene (TRAC, TRBC, TRDC, TRGC). To accommodate IMSEQ input requirements, we split reads by gene using “cutadapt” search for the C-region sequence between the 5′-most SPE primer and the start of the J-region.



Trim V Region

To accommodate the IMSEQ requirement that reads do not overhang the V-region model sequences, we align the reads to the V-region models using BWA mem, and trim overhang regions (e.g., 5′ UTR regions).



Run IMSEQ

We run IMSEQ with the following parameters: -ev 0.15 -mq 25 -mcq 25 -ma -qc -sc -scme 2 -sfb.

The model V and J sequences used with IMSEQ can be found here: https://storage.googleapis.com/qiaseq-rna-mmrep/QIAseqRNA_immrep_TCR_model_seqs.zip.

We are using two important features of IMSEQ that are designed to minimize false clonotype calls caused by sequencing error. We are using both the “quality-score clustering” and the “simple edit-distance clustering” with edit distance < = 2 (the IMSEQ default). The main idea here is that reads that contain highly similar CDR3 sequences are putatively from the same clone in the sample, so they are grouped together to generate one CDR3 call, as described previously (11).



Assign Each Read to a Called Clonotype

Although IMSEQ clusters highly similar CDR3 sequences, it does not output detail regarding which reads were clustered together. In part, this is because IMSEQ sometimes counts partial reads, i.e., when a sequence is equal distance from two different CDR3 centroid sequences. To enable UMI counting, we restore the connection between each read and one CDR3 call from IMSEQ, using CD-HIT clustering. We run CD-HIT with the following parameters:

cd-hit-v4.6.8-2017-0621/cd-hit-est-2d -n 5 -g 1 -r 0 -d 0 -G 1 -t 0 -c 0.90 -p 1 -S 2 -S2 2.





Filter Low-Evidence Clonotypes

To leverage the power of UMI tagging to reduce NGS errors leading to false clonotype calls, we discard IMSEQ CDR3 calls that do not have at least one UMI supported by three reads. Users can set more stringent filters on reported clonotype calls (such as frequency or minimum number of supporting UMIs) depending on application needs.



Data and Statistical Analyses

For statistical analyses, clonotypes are defined on the basis of unique amino-acid sequences of CDR3 alpha and CDR3 beta regions. In our set of data, the total number of unique TCR sequences was identical to the number of clonotypes. The standardized residuals of chi-squared is used to determine if a V or J chain is preferentially used in antigen-specific repertoire, score = (observed—expected)2/expected, the expected values are calculated from the control sample distribution, the observed values are actually the number of clonotypes using each gene in one given antigen specific repertoire. We considered as significantly used the V or J segment having a score >4.

CDR3 amino acid sequences length has been compared between antigen-specific populations and the control sample using the two-tailed Student's T-test. All the calculations were done using R statistical software.




RESULTS


TCR Diversity of Melan-A and MELOE-1 Specific T Cell Populations

We analyzed the TCR diversity of 6 Melan-A and 4 MELOE-1 specific CD8+ T cell polyclonal populations, derived from the specific sorting of HLA-A2 patient PBMC stimulated with the cognate peptides (3). These polyclonal populations were fully specific, as assessed by specific tetramer labeling (Figure S1) and reactive against their target peptides and HLA-A2 melanoma cell lines.

Table 1 summarizes the specific richness of these 10 CD8 T cell populations (numbers of CDR3α and CDR3ß amino-acid sequences, thereafter called “clonotypes,” detected from libraries prepared from 10 to 25ng of total RNA). The RNAseq library includes unique molecular indexes (UMIs) which are added during library construction to remove amplification duplicates and sequencing errors. For our analysis, we considered data where we had at least 1 UMI and 3 reads per UMI to be a true clonotype. For Melan-A-specific T cell repertoires, we observed high numbers of CDR3α and CDR3ß clonotypes with the highest amount of starting RNA, consistent with increased sensitivity in detecting rare clonotypes when starting with more sample. Concerning MELOE-1 specific T cell repertoires, the differences between the number of clonotypes detected with 10 or 25 ng of RNA are either null or rather modest, in accordance with the fact that MELOE-1 specific T cell repertoires are less diverse than Melan-A-specific ones. Thus, the majority of MELOE-1 specific-T cell clonotypes are already detected with 10 ng of starting RNA.



Table 1. Number of CDR3 alpha and CDR3 beta clonotypes identified in Melan-A and MELOE-1 specific T cell populations, starting from 10 to 25 ng of total RNA.
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Figure 1 illustrates the rank of individual CDR3α and ß clonotypes identified for the 6 Melan-A (1A) and MELOE-1 (1B) specific populations, and the relative abundance of each sequence (number of reads of each sequence associated to a unique UMI), for the two starting RNA quantities. Globally, for Melan-A, and MELOE-1 specific T-cell repertoires, the number of counts for CDR3α (blue circles) and CDR3ß sequences (red circles) was higher when starting with 25 ng (dark circles) vs. 10 ng (light circles) of total RNA. This analysis illustrates the presence of dominant clonotypes within each individual T cell populations, the number of counts for a unique TCR sequence being comprised between 1 and 104. Furthermore, considering the total number of identified clonotypes, we also observed that scarce CDR3 sequences are not identified for some T cell populations with the lowest RNA quantity (Figure 1).
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FIGURE 1. Rank and relative abundance of UMI for individual CDR3α (blue circles) and CDR3ß clonotypes (red circles) identified for 6 Melan-A specific T-cell populations (A) and 4 MELOE-1 specific T-cell populations (B), starting from 10 ng (light circles) or 25 ng (dark circles) of total RNA.



Thus for more diverse populations, higher amounts of RNA will favor the characterization of the complete TCR repertoire, and for less diverse T cell repertoire, RNA quantity will only affect the number of counts for all CDR3 sequences.



Comparison of TRBV Chain Frequencies Using TCR Sequencing or Specific Antibodies

The proportion of T cells expressing a given Vß chain was determined by flow cytometry within the 10 antigen-specific subpopulations, using a panel of 24 Vß-specific antibodies, covering the most frequently expressed Vß chains. Some of the antibodies cross-react with various TRBV subtypes, such as TRBV4-1, 4-2, and 4-3; TRBV6-5, 6-6 and 6-9; TRBV12-3 and 12-4. In order to compare the frequencies of the different TRBV subfamilies detected either by flow cytometry or sequencing approaches, we gather all TRBV sequences potentially detected by a single anti-Vß antibody and calculated their cumulated frequencies. Figure 2 illustrates the correlation between frequencies of TRBV chains detected through the sequencing approach (starting from 25ng of total RNA) and antibody-labeling. TRBV chains for whom there is no available Vß-specific antibody are indicated with red circles. These TRBV chains (especially TRBV6 and TRBV7 subfamilies) are rather frequent within the two antigen-specific T cell repertoires and could only be detected through TCR sequencing. With the exception of these particular TRBV chain the correlation between TRBV frequencies detected with the specific antibodies and cumulated frequencies calculated from sequence counts is satisfying, unless the presence of some outliers only detected through sequencing analysis (blue circles). Generally, the frequency of the concerned TRBV chain is rather low, probably under the detection threshold of specific antibodies. Only the TRBV4-2 chain is detected through TCR sequencing for P7 patient with a high frequency (64%) but is not detected by the specific antibody (Figure 2A). Of note, TRBV4-2 chain is supposed to be detected by an antibody also cross-reacting with TRBV4-1 and 4-3, and we can hypothesize that the reactivity of this antibody against the TRBV4-2 chain is suboptimal. Conversely, some TRBV chains identified through antibody labeling are not detected by the sequencing analyses (green circles on Figure 2). Again, these Vß subfamilies represented only small frequencies, and these discrepancies can be attributed to some degree of cross-reactivity of the concerned antibodies.
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FIGURE 2. Comparison of Vß chain detection with antibody labeling or high throuput sequencing. The frequencies of Vß subfamilies in each polyclonal Melan-A-specific (A) and MELOE-1-specific (B) T cell populations were documented through labeling with a 24 Vß-specific antibody panel (X axis). CDR3ß clonotypes identified by sequencing were gathered according to their corresponding Vß chain, and their cumulative frequencies are indicated on the Y axis. Red circles represent Vß chains not covered by the antibody panel. Blue and green circles illustrate respectively Vß chain only detected by TCR sequencing despite the use of a specific Ab, and Vß chain only detected by flow cytometry.



This comparison validates the reliability of this TCR sequencing method to estimate the proportion of a specific TRBV chain within a given T cell repertoire. This method is undeniably much more powerful than antibody labeling that leads to underestimate the diversity of a polyclonal population, due to the number of distinct clonotypes within the same TRBV subfamily, to the absence of some TRBV-specific antibodies, and to the cross-reactivity of some specific Vß antibodies.



TRAV and TRBV Usage of Melan-A and MELOE-1 Specific T Cell Repertoires

Melan-A specific T cell repertoire has been largely studied and it is well known that this T cell repertoire present a strong bias in TRAV12-2 gene usage (5, 6). Likewise, a clear TRAV bias toward TRAV19 chain has also been reported for 18 MELOE-1 specific CTL clones (2). With the aim to increase the statistical value of antigen-specific repertoire analyses and to smooth individual variations, we analyzed TRAV and TRBV usage of all the Melan-A and MELOE-1 clonotypes (originating respectively from 6 and 4 HLA-2 metastatic melanoma patients). The same analyses have been conducted for each individual populations and are illustrated by Figure S2. We clearly confirm the strong recurrent usage of the TRAV12-2 and TRAV19 chains, used respectively by 185/411 Melan-A-specific CDR3α clonotypes (Chi2 score value = 34.7) and 79/154 MELOE-1-specific CDR3α clonotypes (Chi2 score value = 21) (Figure 3A, left panel). These two chains are also frequently used in the control sample, but their preferential usage by Melan-A and MELOE-1-specific T cells remains strongly significant. This strong recurrence is also remarkable for individual populations (Figures S2A,B, left panels). We also analyzed TRBV usage for these two specific T cell repertoires. A diverse TRBV usage was previously reported for Melan-A specific T cell repertoire (5, 6, 12, 13), nonetheless with some studies highlighting a frequent usage of TRBV20-1, TRBV27, TRBV28, and TRBV19 (14, 15). Here we documented the significant preferential usage of TRBV19 chain for Melan-A specific T cell repertoire, with 43/355 CDR3ß clonotypes (Chi2 score value = 6.18). The other described recurrent TRBV chains (TRBV20-1, 27, and 27) were also frequently used by Melan-A specific CDR3ß clonotypes, but this usage was not statistically different from that of the control sample (Figure 3A, right upper panel). At individual population level, although frequently used in each population, TRBV19 usage is only dominant in 2/6 Melan-A specific T cell populations (Figure S2A, right panel).
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FIGURE 3. TRAV and TRBV usage of specific-T cell populations. Number of clonotypes using individual TRAV (A) and TRBV (B) chains in control (upper panels); Melan-A-specific T cell repertoire (sum of the clonotypes originating from the 6 populations; middle panels); and MELOE-1-specific T cell repertoire (sum of the clonotypes originating from the 4 populations; lower panels). Black histograms illustrate TRV chains preferentially used in each T cell repertoire, and the same chains are marked with an asterisk in the control sample. (C) Cumulative frequencies (UMI) of each TRAV (left panel) and TRBV (right panel) chains in the control sample, Melan-A specific and MELOE-1 specific T cell repertoires.



No preferential TRBV usage has been reported so far for MELOE-1-specific TCR repertoire, and here we documented a significant bias toward the use of the TRBV2 chain, for this TCR repertoire, with 14/153 CDR3ß clonotypes (Chi2 score value = 4.58). At individual population level (Figure S2B, right panel), TRBV2 usage is frequent in each T cell population.

We next analyzed the cumulated frequencies of these preferentially used TRAV and TRBV chains within each specific TCR repertoire (Figure 3C). This parameter illustrates the relative abundance of CDR3α and ß clonotypes using these particular TRV genes, within a given repertoire. Within Melan-A and MELOE-1 TCR repertoire, CDR3α clonotypes using respectively the TRAV12-2 and the TRAV19 genes represented almost 80 and 90% of amplified clonotypes, strengthening the crucial role of these TRAV chains in the specificity toward the HLA-peptide complexes. The preponderance of TRAV12-2 and TRAV19 clonotypes, in terms of abundance is also observed in each individual specific-T cell population (Figures S2A,B, inserts on left panel). TRBV19 Melan-A specific clonotypes represented the most abundant ones, with almost 20% of amplified Melan-A specific CDR3ß clonotypes, suggesting that this TRBV19 segment also participates to TCR specificity. Indeed, in individual Melan-A-specific T cell populations, TRBV19 clonotypes are overrepresented in 3/6 Melan-A-specific T cell populations (Figure S2A, inserts on right panel). Conversely, TRBV2 clonotypes represented only 3.5% of total MELOE-1 specific CDR3ß clonotypes, suggesting that the use of a specific TRBV chain is less crucial for MELOE-1 specific T cell repertoire. Indeed, with the exception of P5 patient, TRBV2 clonotypes are not part of the most abundant ones in individual MELOE-1 specific T cell populations.



TRAJ and TRBJ Usage of Melan-A and MELOE-1 Specific T Cell Repertoires

Within the Melan-A and MELOE-1 specific repertoires, we looked for the preferential usage of TRAJ and TRBJ segments (Figure S3) and to particular TRAV-TRAJ and TRBV-TRBJ combinations (Figure 4). We found a significant preferential usage of the TRAJ45 (31/411 clonotypes, Chi2 score value = 4.5, Figure S3A) and TRBJ1-5 (67/355 clonotypes, Chi2 score value = 8.05, Figure S3B) segments within Melan-A-specific clonotypes. For MELOE-1 specific repertoire, although non-significant, we found some biases in TRAJ usage, with TRAJ22 (9/154 clonotypes, Figure S3A) and TRAJ44 (11/154 clonotypes, Figure S3A) and we also observed a significant preferential usage of the TRBJ2-1 segment within MELOE-1 repertoire (38/153 clonotypes, Chi2 score value = 4.3, Figure S3B).
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FIGURE 4. TRAJ and TRBJ usage of specific-T cell populations. (A) Number of TRAV-12-2 clonotypes using individual TRAJ in the control sample and Melan-A specific T cell repertoire. (B) Number of TRAV-19 clonotypes using individual TRAJ in the control sample and MELOE-1 specific T cell repertoire. Black histograms illustrate TRAJ chains preferentially used in each T cell repertoire, and the same chains are marked with an asterisk in the control sample. (C) Heatmaps of TRBV-TRBJ combination usage for Melan-A (upper panel) and MELOE-1 (lower panel)-specific T cell repertoires. Numbers of clonotypes using a given combination are indicated in the corresponding square.



As these Melan-A and MELOE-1 TCR repertoires are strongly biased toward the use of TRAV12-2 and TRAV19 chains, we further investigated whether these dominant TRAV chains were associated with a given TRAJ segment (Figure 4A). For Melan-A-specific repertoire, we confirmed the bias already reported (15, 16) toward the association of the dominant TRAV12-2 chain with the TRAJ45 segment (23/51 TRAV12-2 clonotypes used this segment, i.e., 45%). So far, no specific TRAV-TRAJ association has been reported for MELOE-1-specific T cell repertoire, due to the low number of analyzed T cell clones. Within TRAV19 clonotypes, the preferential use of TRAJ22 (9/51 TRAV19 clonotypes, Chi2 score value = 6.02) and TRAJ44 (9/51, Chi2 score value = 4.61) segments is significant (Figure 4B).

We also looked for a preferential TRBV-TRBJ association for the two specificities, represented by heatmaps on Figure 4C. For the Melan-A specific repertoire, the significantly preferentially used TRBJ1-5 segment was associated with 21 TRBV chains, that confirms the diversity of Melan-A TRB repertoire. Nonetheless, the most dominant TRBV-TRBJ association was observed with the TRBV19 recurrent BV chain, with 15 CDR3ß clonotypes using the TRBJ1-5 segment among the 43 TRBV19 clonotypes.

For MELOE-1 specific T cell repertoire (Figure 4C, lower panel), the frequently used TRBJ2-1 segment was associated with 21 different TRBV chains, with no obvious specific TRBV-association.



CDR3 Lengths and Motif Recurrence Within Melan-A and MELOE-1 Specific T Cell Repertoires

CDR3 sequences were defined according international criteria, beginning by a cysteine residue at the C-terminal end of the V-gene and ending with a phenylalanine residue coded by the N-terminal end of the J segment (17).

Lengths of CDR3α and ß sequences of Melan-A and MELOE-1 specific clonotypes were first compared with those of the reference sample (Figure 5A). The average lengths of CDR3α and CDR3ß sequences are between 13 and 14 aa for the control sample. For Melan-A specific repertoire, the mean length of CDR3α is significantly shorter (Student test, p = 2.10−16), with a length centered on 12 amino acids, and the length of CDR3ß is not different from the control sample. The lengths of CDR3α and ß are more heterogeneous and both significantly longer than those of the reference sample for MELOE-1 specific T cell clonotypes, centered on 17 amino acids for CDR3α and 15 amino acids for CDR3ß (CDR3α: p = 2.10−8; CDR3ß: p = 8.10−6).
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FIGURE 5. CDR3α and CDR3ß lengths and sequence composition of the most abundant CDR3 lengths. (A) Amino acid length distribution of CDR3a (left panel) and CDR3ß (right panel) clonotypes, from the control sample and antigen-specific populations. (B) Logotypes of amino acid CDR3α (left panel) and CDR3ß (right panel) composition for the most abundant lengths, for antigen-specific T cell clonotypes.



We further investigated the presence of a conserved motif within these CDR3α and CDR3ß sequences (Figure 5B). For the Melan-A specific CDR3α sequences, we found no clear recurrent motif (upper left). This absence of recurrent motif in the CDR3α sequence is consistent with the fact that the predominant interaction between the TRAV12-2 chain and the HLA-A2/Melan-A peptide is located in the CDR1loop (Gln31), and the CDR3α sequence probably does not participate to this interaction (4, 18). Interestingly we also confirmed the presence of the conserved central motif “GLG” for 48/355 CDR3ß sequences (Figure 5B, upper right), that has been already reported (15), suggesting a non-negligible role of CDR3ß in HLA-peptide interaction for this repertoire.

The picture is totally inverted for MELOE-1 specific TCR repertoire, with a strong recurrence of a “GP” motif, formed by non-template added nucleotides, in 58/154 CDR3α sequence (position 5-6 of the CDR3α sequence, Figure 5B, lower left). This motif was previously found in 5/18 MELOE-1 specific CTL clones (2). This suggests a crucial role of the CDR3α sequence for the HLA-peptide interaction. Conversely, no clear recurrent motif was identified in MELOE-1-specific CDR3ß sequences (Figure 5B, lower right).



Particular Features of CDR3 Sequences Harboring a Conserved Amino Acid Motif

The presence of recurrent motifs in CDR3ß and CDR3α clonotypes specific for Melan-A and MELOE-1 antigens prompted us to investigate whether these particular sequences could be associated with specific features. We first analyzed the lengths and the relative abundance of these CDR3 sequences (Figures 6A,C). For Melan-A repertoire, CDR3ß sequences harboring the “GLG” motif were mainly of 14 aa-length (41/48), and these 48 clonotypes represented 32% of total CDR3ß sequences, in terms of abundance (Figure 6A). For MELOE-1 specific repertoire, the lengths of the 58 CDR3α clonotypes harboring the conserved “GP” motif at positions 5–6, are distributed between 15 and 19 amino acids, centered on a length of 17 amino acids. In terms of abundance, these sequences are the majority of MELOE-1-specific CDR3α repertoire, representing more than 62% of total MELOE-1 CDR3α repertoire (Figure 6C).
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FIGURE 6. CDR3 length distribution and TRJ usage of clonotypes harboring a conserved motif in their CDR3 sequences. (A) CDR3ß length distribution for Melan-A-specific clonotypes with the conserved “GLG” motif. Insert in the figure illustrates the abundance of these 48 clonotypes within the global Melan-A specific repertoire (UMI frequency). (B) Heatmap illustrating TRBV-TRBJ association of these 48 Melan-A specific clonotypes. (C) CDR3α length distribution for MELOE-1-specific clonotypes with the conserved “GP” motif. Insert in the figure illustrates the abundance of these 58 clonotypes within the global MELOE-1 specific repertoire (UMI frequency). (D) TRAJ usage of the 57/58 TRAV19 MELOE-1 specific clonotypes, with the conserved “GP” motif.



We further investigated whether these chains harboring a specific motif were associated with particular TRV and TRJ segments. Figure 6B illustrates the use of TRBV and TRBJ segments by the 48 Melan-A-specific CDR3ß clonotypes sharing the “GLG” motif in their sequences. As for the global analysis of TRBV-TRBJ association (Figure 4B), we observed the dominant usage of the TRBJ1-5 segment (31/48 clonotypes), associated with 9 TRBV chains. Of note, the dominant TRBV19 chain is strictly associated with this TRBJ segment for these particular CDR3ß sequences.

All but one (57/58) CDR3α clonotypes harboring the “GP” conserved motif used the TRAV19 dominant chain, that was found preferentially associated with the two previously identified dominant TRAJ segments: TRAJ44 (9 clonotypes) and TRAJ22 (8 clonotypes; Figure 6D).



Presence of Public Melan-A and MELOE-1 Specific Clonotypes

We finally looked for Melan-A and MELOE-1 CDR3α and CDR3ß specific sequences shared between the different populations that originated from distinct metastatic melanoma patients.

Heatmaps on Figure 7 illustrate the sequences and the abundance of each shared CDR3 sequences. Numbers indicated in boxes correspond to the frequency of each clonotype, within a given sample. In order to strengthen the value of our results, we reported here CDR3 clonotypes that have been found as shared between patients with both 10 and 25 ng of starting RNA.
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FIGURE 7. Heatmaps illustrating the sequences and frequencies (UMI) of semi-public CDR3 clonotypes shared by melanoma patients. (A) Heatmap of the 21 public CDR3α Melan-A specific clonotypes. (B) Heatmap of the 5 public CDR3b Melan-A specific clonotypes. The conserved “GLG” motif is indicated in italics in the sequence. (C) Heatmap of the 6 public CDR3α MELOE-1 specific clonotypes. The conserved “GP” motif is indicated in italics in the sequence. The frequencies of each clonotype in individual patients are indicated by the numbers in squares.



Twenty-one semi-public CDR3α clonotypes were identified for Melan-A specific repertoire (Figure 7A), among them 17 use the TRAV12-2 dominant chain and 3 of them use the preferential association TRAV-12-2/TRAJ45. The majority of these clonotypes are shared between two distinct Melan-A specific T cell populations, and one of them was identified in 3 populations. Frequencies of these shared clonotypes are highly variable in individual samples, but some of them are substantially represented in terms of abundance, reaching 48% of individual CDR3α Melan-A specific repertoire. To a lesser extent, we also identified CDR3ß sequences fully conserved and shared by two distinct Melan-A specific populations (Figure 7B). Among these 5 common CDR3ß sequences, 3 harbored the public “GLG” motif.

Finally, we also performed the same study on the 4 MELOE-1-specific T cell populations, and Figure 7C illustrates the characteristics of the 6 CDR3α sequences that are conserved between 2 and 3 patients. All these sequences use the TRAV19 chain, and thus harbor the public motif “GP” in positions 5–6. As for Melan-A-specific CDR3α shared sequences, the frequencies of these common sequences vary from sample to sample, but can reach up to 43% of individual MELOE-1 repertoire in terms of abundance.




DISCUSSION

In this study, we analyzed the TCR repertoires of CD8+ T cells specific for the immunodominant A2/Melan-AA27L and the A2/MELOE-136−44 melanoma epitopes, originating from the peripheral blood of HLA-A2 melanoma patients, using a recently developed high throughput TCR sequencing method. This method, based on UMI (Unique molecular indexes) technology strongly reduces PCR duplicates and amplification bias, that are major issues in current RNAseq workflows. These molecular barcodes allow the counting of original transcript levels instead of PCR duplicates, thereby enabling digital sequencing and resulting in unbiased and accurate gene expression profiles (19). TCR sequencing was performed on 6 Melan-A and 4 MELOE-1-specific CD8+ T cell populations, amplified in vitro after sorting with HLA-peptide coated magnetic beads (3, 10). Libraries prepared from 10 to 25 ng of total RNA revealed that the initial quantity of material is an issue to reveal the entire diversity of the most polyclonal populations, especially for clonotypes present at the lowest frequencies. Indeed, the total number of sequenced CDR3α and CDR3ß clonotypes (cumulated from all populations) increased by nearly half for Melan-A specific repertoire, when starting with the highest RNA quantity. For the less diverse MELOE-1 specific repertoire, the number of total CDR3α and CDR3ß clonotypes is rather similar with the two RNA starting quantities. As expected, and illustrated by Figure 1, the highest quantity of starting material allows the detection of the highest number of low frequency clonotypes.

In this study, we also assessed the reliability of this TCR sequencing method comparing the frequencies of CDR3ß clonotypes sharing the same TRBV chain, detected either through TCR sequencing or labeling of polyclonal T cells with Vß-specific antibodies (Figure 2). For most TRBV chains, for which a specific antibody is available, there was globally a good correlation between the cumulated frequencies obtained from TCR sequencing and the fraction of Vß positive cells detected by cytometry. Nonetheless, we observed some outliers, detected at low frequencies either by TCR sequencing, or antibody labeling. This could be explained by the lower sensitivity of antibody labeling and to some degree of cross-reactivity of some specific antibodies (Figure 2). Globally, this TCR sequencing method is a very powerful, sensitive and reliable method to reveal the diversity of polyclonal T cell populations.

The quality of obtained results was also assessed by the confirmation of specific features already described for Melan-A specific T cell repertoire. First, we confirmed a very strong bias in TRAV usage, with the dominant use of TRAV12-2 for Melan-A specific repertoire. This dominance has been widely explored in Melan-A-specific T cells from different origins (TIL, T cell clones originating from tumors or blood from melanoma patients or HLA-A healthy donors), (5, 6, 20). This TRAV12-2 recurrence occurs for T cells specific for the natural epitope Melan-A26−35 almost all cross-reactive with the heteroclitic Melan-AA27L peptide, despite the fact that TCR engagement of these two peptides differs in terms of the strength of the interaction (18, 21). Indeed, it has been demonstrated that the TCR is extremely sensitive to minor alterations in peptide conformation and that the use of heteroclictic peptide can skew the natural specific T-cell repertoire (22). Therefore we cannot formally assert that observed features for Melan-AA27L-specific T cell repertoire would be observed in the same proportions for Melan-A26−35 specific T cell repertoire, although a high degree of similarity between the two repertoires has been reported in structural studies. Indeed, structural analyses of the interaction between HLA-peptide complexes and both Melan-A26−35- and Melan-AA27L specific TCR revealed a strong interaction between the TRAV12–2 CDR1 and the Melan-A 26−35 peptide, presented in the HLA-A2 molecule (4, 23), the CDR1 loop acting as the classical CDR3 loop considering peptide contacts. This unusual TCR binding mode (involving a germline-encoded region) has been proposed to explain the high frequency of naive Melan-A-specific precursors. Supporting this hypothesis, two other T cell repertoires, with a very high frequency of naive precursor, also exhibit a strong bias in TRAV12-2 usage, with a major role of the CDR1 loop: the T cell repertoire specific for the HTLV-1/A2 dominant epitope, (24) and for Yellow fever/A2 dominant one (23). We also confirmed the dominant usage of TRAJ45 segment (16), in the whole Melan-A specific T cell repertoire and even more significant for the TRAV-12-2 expressing clonotypes (Figure 4A), also suggesting a combinatorial constraint favoring the association of these two segments for Melan-AA27L repertoire.

A diverse TRBV usage has been reported for Melan-A specific T cell repertoire (5, 6), nonetheless with the recurrence of some TRBV chains, such as TRBV19, BV20-1, BV27 and BV28 (14, 15). It has been documented that TRBV repertoires -specific for the natural and analog Melan-A peptides were overlapping, nonetheless with the preferential usage of TRBV19 by Melan-AA27L specific TCR (16). Our results confirmed this bias, with 43/355 clonotypes using the TRBV19 chain, representing almost 20% of amplified clonotypes. The TRBV20-1, BV27, and BV28 chains are also frequently used, but as these chains are very frequent in the control population, their preferential usage in Melan-A-specific repertoire does not appear significant. Results also confirmed the preferential usage of TRBJ1-5 segment (Figure S3), that was also found strongly associated with the dominant TRBV19 chain (15/43 clonotypes, Figure 4B). A recurrent usage in TRAJ1-5 segment had been previously reported (15), with a preferential combination with TRBV28 chain. In our study, the combination TRBV28-TRBJ1-5 is also present although less dominant (8/36 TRBV28 clonotypes used this segment) than the TRBV19-TRBJ1-5.

The analysis of CDR3α and ß amino acid composition revealed no specific features concerning CDR3α sequence, but a recurrent central motif “GLG” in CDR3b region (Figure 5B) already documented (15, 16). The resolved TCR/HLA-A2-Melan-AA27L structure revealed that the residues “LG” of the CDR3b made interactions with the IleP7 of the Melan-AA27L peptide. Thus, the CDR3ß loop may contribute to the stability of the TCR-Melan-AA27L complex (18). Interestingly, TCR clonotypes harboring this specific motif represented more than 30% of total CDR3ß clonotypes (Figure 6A), strengthening the role of this conserved motif for TCR/HLA-peptide interactions. CDR3ß regions harboring this specific motif are mainly of 14 aa-length (41/48 clonotypes), with a clear biased usage of TRBJ1-5 segment (Figure 6B). Of note, all the TRBV19 clonotypes harboring this specific motif were associated with this segment, also dominant within TRBV28 clonotypes, in accordance with previous report (15). Our results thus confirmed the existence of a conserved “GLG” amino acid motif in CDR3ß sequences of Melan-A-specific T cells, together with the preferential usage of TRB1-5/TRBV19 combination, and to a lower extent of TRBJ1-5/TRBV28. This strengthens the hypothesis that, besides the well-documented role of the CDR1 region of TRAV12-2 chain, the role of TRB chain, and especially that of the CDR3ß region is far from anecdotal for the sharpness of TCR interaction with Melan-A peptides.

We perform the same analysis on MELOE-1 specific T cell repertoire, that has been far less extensively characterized. Indeed, we reported before that MELOE-1 specific T cell repertoire was also a vast T cell repertoire in HLA-A2 healthy donors and melanoma patients, and that MELOE-1 specific T cells were strongly biased toward TRAV19 usage (2). This initial study was performed on 18 specific T cell clones of diverse origins, and here we clearly confirmed this strong bias on 79/154 clonotypes from 4 different melanoma patients (Figure 3). These TRAV19 clonotypes represented more than 90% of total clonotypes, in terms of frequency, strengthening the crucial role of this TRAV chain in the specificity toward the HLA-2-MELOE-136−44 complexes. This TRAV19 chains appears preferentially associated with TRAJ44 and TRAJ22 segments (Figure 4B). The analysis of CDR3α sequences reveals interesting features. First, the lengths of CDR3a appeared significantly longer than in the control population, with a mean-length situated around 16–17 amino acids. Furthermore, this analysis also revealed the presence of a very highly conserved motif at the beginning of the CDR3α sequence: CALSGP, in which GP residues are encoded by the diversity. The presence of this conserved motif was previously observed in 12/18 of MELOE-1 specific T cell clones (2), and suggested that, contrary to that described for Melan-A repertoire, the CDR3α region of these TCR could be a key player in the specific interaction with MELOE-136−44 peptide. Of note, all but one clonotypes harboring this specific motif, and representing 62% of total clonotypes in terms of frequency, used the TRAV19 chain (Figure 6C). The dominant length of these clonotypes is of 17 amino acids, and in this subgroup, the TRAV19 chain is mainly associated with TRAJ44 and TRAJ22 segments. This study also revealed a preferential usage of the TRBV2 chain with 14/153 clonotypes, nonetheless representing only 3.5% of expanded clonotypes (Figures 3B,C). Thus TRBV chain may be less crucial in conferring TCR specificity, also confirmed by the absence of any clear conserved motif in CDR3ß sequences (Figure 5B). The most significant feature concerning TRB chain for MELOE-1 specific repertoire was the dominant usage of the TRBJ2-1 segment (38/153 clonotypes), associated with 21 different TRBV chains. This suggest, that TRBJ segment, rather than TRBV chain could be involved in TCR-peptide interaction.

Overall, these data suggest two different structural hypotheses that could explain the high frequencies of Melan-A and MELOE-1 specific T lymphocytes, based either on a specific role of the germline encoded CDR1α and the somatically rearranged CDR3ß regions for Melan-A T cell repertoire, or based on probable interactions within the somatically rearranged CDR3α region, for MELOE-1 specific T cell repertoire, as suggested by the presence of the highly conserved “GP” motif in TRAV19 chain, and also possibly involving the TRBJ2-1 segment.

Based on these particular features, we investigated the presence of public or semi-public clonotypes shared by the different patients from whom these T cells have been derived. Such CDR3α clonotypes have been previously described for Melan-A specific repertoire (5, 6, 16), as also reported for T cells submitted to chronic exposure to antigens (25, 26). Here we found 21 CDR3α semi-public sequences, shared at least by 2 patients (one shared by three patients). Among these clonotypes, 17/22 use the TRBV12-2 chain, and some were highly frequent in individual Melan-A TCR repertoires. Interestingly, 2 of these TRAV12-2 public clonotypes (CAVNNARLMF and CAVGGGADGLTF) have been previously identified from the blood of patients either vaccinated with the natural or the analog Melan-A peptides (16). Nonetheless, no conserved motif was identified within these semi-public clonotypes, strengthening again the fact that CDR3α chain is not involved in TCR-peptide interactions (Figure 7). We also observed 5 semi-public CDR3ß sequences, among them 3 harboring the conserved “GLG” motif, and one of these clonotypes (CASSFLGTASYEGYF) being previously reported has a public one (16).

No public CDR3 sequences have been described so far for MELOE-1 specific T cell repertoire, and here we documented the existence of 6 CDR3α sequences shared by 2 distinct melanoma patients. All of them were associated with the TRAV19 chain and harbored the conserved “GP” motif, previously identified. However, no public CDR3ß sequences were found for MELOE-1 repertoire. This final result supports the potential crucial role of CDR3α region in conferring the specificity toward MELOE-1 epitope, and could also explain the lower frequency of MELOE-1 specific T cells (around 10−5 in CD8+) compared to Melan-A specific ones (around 10−4), whose TCR specificity is mainly conferred by the TRVA12-2 germline encoded CDR1 loop.

Globally this study highlighted common and specific features between T cell repertoires specific for two melanoma antigens, that are relevant targets for immunotherapy. We cannot formally rule out the possibility that ex-vivo peptide stimulation, sorting and amplification steps could introduce some biases in the relative abundance of some clonotypes harboring particular features. Nonetheless, results obtained about the dominance of TRAV12-2 and TRAV19 usage, and on specific features of Melan-A-specific CDR3beta sequences, confirmed already reported results, some of them obtained without any culture biases. Therefore, it appears quite plausible to suggest that the new described T cell repertoire features could arise at least partly from in vivo amplified T cell repertoires. Beyond these specific results, high throughput TCR sequencing approaches provide reliable and exhaustive T cell repertoire analyses, and will be a real asset to monitor immunotherapy-treated patients, with the aim to improve immunotherapeutic treatments.
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In response to external stimuli, naïve B cells proliferate and take on a range of fates important for immunity. How their fate is determined is a topic of much recent research, with candidates including asymmetric cell division, lineage priming, stochastic assignment, and microenvironment instruction. Here we manipulate the generation of plasmablasts from B lymphocytes in vitro by varying CD40 stimulation strength to determine its influence on potential sources of fate control. Using long-term live cell imaging, we directly measure times to differentiate, divide, and die of hundreds of pairs of sibling cells. These data reveal that while the allocation of fates is significantly altered by signal strength, the proportion of siblings identified with asymmetric fates is unchanged. In contrast, we find that plasmablast generation is enhanced by slowing times to divide, which is consistent with a hypothesis of competing timed stochastic fate outcomes. We conclude that this mechanistically simple source of alternative fate regulation is important, and that useful quantitative models of signal integration can be developed based on its principles.
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INTRODUCTION

Increased understanding of the regulation of cell differentiation, division and death is crucial in many fields of biology (1–5). While population-level consistency in the proportion of cells taking on distinct fates has long-since been observed, advancing technologies that enable direct observations of individual cells and their lineages reveal significant heterogeneity (6–14). In order to manipulate population-level fate allocation, determining the primary drivers of this cell-level heterogeneity is an essential precursor to designing interventions, and so the search for the sources of heterogeneity has been a topic of much recent research.

B lymphocytes are an essential component of the immune response and provide a useful model for assessing methods of fate control. During activation, they integrate signals from multiple sources that modify the resulting cell response by altering lifespan, the type of antibody made, the speed of cell proliferation, and the rate of development into antibody secreting plasma cells (15). T cells provide one important source of signals that influence the B cell (16, 17). During an immune response, antigen captured by the B cell is presented to reactive T cells that are, in turn, induced to express CD40L on their surface. This ligand engages the constitutively expressed receptor CD40 found on the B cell surface. CD40 stimulation alone can activate and promote B cell proliferation, but its impact is amplified by T cell derived cytokines, such as IL-4 and IL-5, that further shape fate changes including isotype switching and the rate of development into Antibody Secreting Cells (ASCs) (18). Importantly for quantitative studies, a CD40 agonist and cytokines can replace the T cell, making it an excellent model system for studying the impact of variations in signals on fate outcomes in vitro.

Activated lymphocytes vary in the times they take to divide and, in culture, are usually found spread across multiple generations. Notwithstanding that, numerous studies report that the greater the number of divisions cells have experienced, the more likely they are to have undergone a change, regardless of time from stimulation. For example, isotype switching is linked to division, and is influenced by the concentration of switch-inducing cytokines (19–21). Similarly, the development into ASC also has been reported to be promoted by progressive passage through division cycles, and this likelihood, in turn, is modulated by the concentration of cytokine delivered signals (18, 22). These studies proposed that alternative division-linked cell changes, such as switching and development to ASC, could arise as the combination of a series of independent fate decisions underway in each cell (18, 20, 23–25).

This hypothesis of independent fate competition was evaluated and extended upon by Duffy et al. (26), by assessing data taken from experiments where individual B cells that had undergone given numbers of divisions, as determined by CTV staining, were sorted by flow cytometry and subsequently followed with long-term imaging. Once these cells were observed to divide, their sibling offspring were examined with times to divide, to die, to differentiate to ASC, and to antibody isotype-switch from last mitosis recorded. Probabilistic analysis established that the complex array of heterogeneous fate outcomes and times to fates were consistent with a simple hypothesis where, within each single cell, times to each fate (isotype switching, differentiation, death, and division) were selected independently from a probability distribution and behaved in competition with each other, such that short times to fate censor later fate outcomes (26). Sibling fates, however, had significantly greater commonality than unrelated cells of the same generation, indicating a substantial element of familial lineage priming.

As external regulators are known to influence the proportions of cells assuming fates at a population level, we reasoned that investigation of their impact at the single cell level would provide additional discriminating insight. Here we examine the cell-level impact of changing CD40 stimulation strength on ASC development. This analysis suggests that CD40 has no direct impact on differentiation rate or asymmetric fate changes, but exerts its influence by altering the time to divide distribution, thereby regulating the proportion of cells that differentiate as the result of alterations to the inherent cellular competition.



MATERIALS AND METHODS


Mice

Blimp-1-GFP reporter mice on a C57BL/6 background (22) were bred and maintained in specific pathogen free conditions at the Walter and Eliza Hall Institute (WEHI) animal facility according to institutional guidelines. All experiments were approved by the WEHI Animal Ethics Committee. Ten-week-old female reporter (Blimp-1+/GFP) and wild type (Blimp-1+/+) mice were used for the flow cytometry and filming experiments.



Cell Isolation and Labeling

Naïve, resting B cells were isolated from murine spleens using a discrete Percoll (GE Healthcare, cat#17089101) density gradient (50/65/80%, cells collected from 65/80% interface), followed by purification using magnetic beads (negative selection, mouse B cell isolation kit, Miltenyi Biotech cat#130-090-862). Enriched cells were verified to be >98% B220+ and CD19+ by flow cytometry. Cells were labeled with CellTrace Violet (Invitrogen, cat#C34557) at 7.5 μM final concentration, with 107 cells/mL in phosphate buffered saline containing 0.1% bovine serum albumin (PBS/0.1%BSA), and incubated in a 37°C water bath for 20 min. Cells were washed twice with cold culture medium prior to culture.



Cell Culture

For flow cytometry and for bulk cultures, cells were cultured in “B cell medium,” made from Advanced RPMI 1640 (Gibco cat#12633-012) supplemented with 5% fetal calf serum (Gibco, cat#10099-141, Australian origin), 10 mM HEPES (Gibco, cat#15630-130), 2 mM GlutaMAX (Gibco, cat#35050-061), 10 U/mL penicillin, 100 μg/mL streptomycin (Penicillin/Streptomycin, Gibco, cat#15140-148), and 50 μM 2-mercaptoethanol (2-ME, Sigma-Aldrich, cat#M7522). For filming, cells were cultured in phenol red-free Advanced RPMI 1640 (Gibco custom order) with the same supplements. Imaged cells were stimulated with 1,000 U/mL IL-4 (WEHI), and 10, 2.5, or 0.625 μg/mL anti-CD40 antibody (1C10, WEHI Antibody Facility), and incubated at 37°C with 5% CO2. Differentiation promoting effects of IL-4 were saturating at concentrations above 316 U/ml [(18) and data not shown].



Flow Cytometry

For flow cytometry experiments, 200 μL wells containing 104 cells were cultured in triplicates across 96 well flat-bottomed plates. Blimp-1+/GFP and wild type cells stimulated with IL-4 and 10, 2.5, or 0.625 μg/mL of anti-CD40 antibody, or IL-4 alone were harvested periodically for flow cytometry analyses (BD FACSCantoII). Propidium iodide (PI, 0.5 μg/mL final, Sigma cat#287075) for dead cell exclusion and 5,000 beads (Sphero Rainbow Calibration particles [6 peaks] 6.0–6.4 μm, BD Biosciences, cat#556288) for cell counting were added just prior to sample acquisition.



Cell Sorting and Long-Term Live Cell Imaging

For filming, 5 mL cultures (2 × 105 cells/mL) of cells stimulated with IL-4 and 10, 2.5, or 0.625 μg/mL of anti-CD40 antibody were harvested 85 h after stimulation. Cells were labeled for expression of IgG1 (clone X56, BD Pharmingen cat#550874), and sorted (BD FACSAriaIIu), for generation four cells that were undifferentiated (Blimp-1-GFP−) and unswitched (IgG1-APC−), to ensure that cells with a similar starting phenotype were tracked and compared in each CD40 stimulation condition.

Sorted cells were re-cultured in phenol red-free B cell medium with the same stimuli concentrations as prior to the sort, at 5 × 104 cells/mL. For each of the three anti-CD40 conditions, 250 μL of cell suspension was placed into a separate well of a pre-prepared chamber slide (Ibidi, cat#80826) where each well was lined with a polymer imprinted with a microgrid array of cell “paddocks” (Microsurfaces, cat#MGA-050-02) (27). Microgrids were prepared aseptically, rinsed with 100% ethanol for sterilization, then left to dry completely to ensure adherence; before wetting again with ethanol such that B cell medium could be introduced to the hydrophobic grids. Chambers were rinsed 10 times with B cell medium, prior to resting overnight in an incubator to aid the dissolution of any air bubbles. Chambers and polydimethylsiloxane (PDMS) microgrids were exposed to 470 nm LEDs (custom made) for at least 30 min prior to the addition of cells, to photobleach the grids and reduce autofluorescence during imaging. The seeding cell density was determined to yield not more than an average of one cell per paddock for filming.

Microscopy images were acquired using a Zeiss Axiovert 200M widefield inverted microscope, equipped with an incubation chamber (37°C, 5% CO2, humidifier), plan-apochromat 20x objective (0.8 n.a.), 0.63x c-mount, and a Zeiss AxioCam MRm (1.4 MP) camera. Fluorescence (GFP) and bright field images were acquired for 141 positions, at 15-min intervals, encompassing 7,896 paddocks for the three culture conditions, across 360 time points over the following 89.75 h. The remainder of the sorted cells were placed into triplicate or duplicate cultures in 96-well plates for a concurrent flow-cytometry time course of events, and were run twice-daily for the duration of the filming experiment as a parallel control.



Single Cell Fates Were Manually Tracked With Visual Cues and Fluorescence Thresholding

For consistent tracking of imaged cells, fluorescence images were first processed using the pipeline reported by Duffy et al. (26). All images from the GFP channel were corrected for uneven illumination of the microscopy stage, thresholded for fluorescence, and binarized to produce an objective indicator of GFP positivity. The image processing method is automatic, and threshold values were computed relative to background illumination using intensity histograms for each image. Resultant images were cropped into individual paddocks, and the processed GFP, unthresholded GFP, and bright field images with GFP overlay for each paddock were concatenated for ease of viewing and stacked into time-lapse films.

Paddocks with individual, undifferentiated cells were identified, and those observed to divide were followed to record the fates of paired offspring. Bright field images were used to manually track cells using their location, size, shape, granularity and trajectory. These properties allowed for the reliable identification of division, as well as death. Shortly before division, cells appeared to lose adhesion and formed large spheres, before cleaving into two smaller cells that do not immediately produce pseudopodia. For death, cells sharply increased in granularity and the circumference of the membrane appeared ruffled, likely due to blebbing, several frames before cell fragmentation was observed, or the membrane perforated and the cell swelled from osmotic intake. This first change in texture was recorded as the cell death time.

For identifying differentiation to ASC, thresholded and binarized images in the GFP channel were followed as a reporter for Blimp-1 expression. Dim light settings are required for extended imaging to avoid phototoxicity, hence chosen voltage and exposure settings also allowed some noise to be detected above the low threshold, from the autofluorescence of the cells and grids. Consequently, differentiation times were only recorded when the cell's fluorescence remained above threshold for three or more consecutive frames (45 min), and then did not disappear for more than one frame at a time; GFP expression would later brighten and cover a larger area. Unthresholded images from the GFP channel were referenced for noise exclusion, and also used for cell identification and tracking based on differentiation status and level of fluorescence.

Sister cells fates were tracked until they either divided again or died. Some cells survived until the end of filming, or were lost due to falling out of focus, migration away from their paddock, or failure to maintain cell ID—these times were also recorded. Homotypic adhesion prevented the tracking of four or more cells using this experimental design.



Statistical Analysis

Data was processed in Matlab 2017b by custom software utilizing in-built functionality. Pearson's correlation coefficient was evaluated using corr, and the reported confidence intervals (CIs) were determined by Fisher's Transformation. We used Yule's Q, a traditional measure of association between pairs of variables, to quantify association between division and death or differentiation and no differentiation. Its asymmetric CIs were determined from a normal approximation to errors in the logarithm of the Odds Ratio. Non-parametric survival function (i.e., Kaplan-Meier) estimates were made using the censoring option of the in-built function ecdf.



Parametric Model Fitting Procedure

Custom software utilizing the Optimization Toolbox in Matlab 2017b was used for model fitting. The uncensored distributions were assumed to lie in the class of log-normal distributions. For all stimulation conditions, there was a single log-normal time to death Tdeath parameterized by a mean μdeath and covariance [image: image]. For all stimulation conditions, there was a probability, pdiff, that the differentiation process is active in the cell whereupon it occurs at a log-normally distributed time with parameters μdiff and [image: image]. If the process was not on, then the differentiation time was set to be +∞. For each of the three concentrations of 1C10 (0.625, 2.5 and 10 μg/mL), labeled j in (1, 2, 3), it was assumed there was a distinct probability, [image: image], that the division process is active in the cell whereupon it occurs at a concentration-dependent log-normally distributed time with parameters [image: image] and [image: image]. If division was not active, the time was set to be +∞.

For θ = (μdeath, [image: image], pdiff, μdiff, [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image]), a function was written that numerically calculates the likelihood of generating a data point d ∈ D given that parameterization. For example, if a time-lapse frame is taken every h units of time, for a data point d ∈ D in which a cell in stimulation condition j is observed to differentiate in the frame number fdiff and undergo death in the frame number fdeath, the likelihood of generating that data point d given the model parameterization θ is

[image: image]

where the cumulative distribution functions were evaluated using Matlab's logncdf. For a set D composed of the fates of stochastically independent cells, the likelihood of generating the set is the product of the likelihoods of generating each point in the data

[image: image]

We used Matlab 2017b's Optimization Toolbox function fmincon to identify the maximum likelihood model parameters θ that would generate the data:

[image: image]

As sibling cells have correlated times to fate, they are not independent and so the function given above does not describe their likelihoods. Despite that, assuming symmetry in the joint underlying distribution of times to each fate of siblings, the maximum likelihood marginal parameters are obtained by optimizing over the same objective function given above computed on all data, including siblings.



Reshaped Distributions

Competition and censorship alters the underlying distributions of times to differentiation, division and death into those that are observed. For example, the observed marginal probability density function for division under stimulation condition j is related to the uncensored distributions for division and death through the following equation:

[image: image]

which differs from the uncensored density of [image: image]. Similar expressions hold for [image: image] and [image: image]. Rather than perform numerical integrals to evaluate these, a Monte Carlo approach was taken where 106 samples were drawn from the uncensored distributions parameterized by θMAP, censoring rules were applied to the sampled values, and the resulting empirical distribution functions and densities of the observed variables were determined.




RESULTS


Population-Level Generation-Based Rate of Differentiation Is Increased by Weak CD40 Stimulation

To determine the effect of modulating CD40 signal strength, we utilized B cells from Blimp-1-GFP reporter mice to indicate expression of the ASC differentiation program within plasmablasts. In this system, cells expressing GFP secrete Ig at high efficiency (22). Purified resting naïve B cells from reporter mice were labeled with CellTrace Violet (CTV), and equal numbers of cells were placed in culture with varying concentrations of anti-CD40 agonist antibody (clone 1C10) (28) and saturating IL-4 (500 U/mL), and harvested over time (Figures S1, 1). As expected, increasing concentrations of CD40 led to greater cell numbers and increased progression through consecutive generations (Figures S1A,B). Furthermore, division-linked effects on ASC development were apparent as a greater proportion of cells produced Blimp-1-GFP in the advanced generations (Figures 1C,D), consistent with published findings (18). These data also confirmed the observation of Hawkins et al. (29) that lower CD40 stimulation levels resulted in a greater proportion of ASC per generation when compared to equivalent generations in cultures with high CD40 stimulation (Figures 1C,D). An increased rate of differentiation was also measurable in the population as a whole (Figure 1C). Thus, modulating CD40 stimulation strength has two distinct effects on the B cell response: high concentrations promote increased proliferation, whilst low concentrations increase the rate of observed differentiation events per generation. To identify the mechanism that alters cell differentiation by changes in stimulation strength, we undertook direct observation by live imaging.


[image: image]

FIGURE 1. Anti-CD40 concentration alters division and differentiation rates. CTV labeled resting Blimp-1gfp/+ B cells were cultured in 500 U/mL IL-4 and 10, 2.5, 0.625, or 0 μg/mL anti-CD40 and harvested over time for flow cytometry analysis. (A) Total cell numbers over time. (B) Total cells found in each generation. (C) The proportion of total viable cells also GFP+ (ASC). Dashed lines are from equivalent wild-type control cells used to set GFP gates. (D) The proportion of cells in each generation that were GFP+. Data points are mean of triplicate cultures ± SEM, and representative of several repeated titration experiments.





Long-Term Imaging Allocates Fate Assignments for Single Cells

B lymphoblasts stimulated by CpG can be tracked individually through multiple cell generations (30, 31). In contrast, observing differentiation by live imaging following CD40 stimulation is challenging due to homotypic adhesion. The development of cell aggregates restricts tracking of individual progenitor cells for more than one or two generations (30). A new method was introduced in Duffy et al. (32) to circumvent this problem. By harvesting and disaggregating CTV labeled, proliferating B cells after a few days in culture, then seeding sorted, individual cells into microgrids to maintain segregation, (27) cells from different generations were observed to divide and their progeny followed until their next fate (32). Here we adapted this protocol, illustrated in Figure 2, to observe the effect of CD40 stimulation strength changes on differentiation and division times, as well as concordance in sibling fates.


[image: image]

FIGURE 2. Schematic of live cell imaging experiment. CTV labeled Blimp-1gfp/+ B cells were incubated in two stages. Upper panels indicate the initial bulk culture at multiple anti-CD40 concentrations. After 85 h, cells were harvested, labeled with anti-IgG1, and unswitched, GFP− cells identified and sorted from generation 4. Cells were returned to stimulation conditions identical to that prior to sorting, and a portion plated into control cultures for flow cytometry. For microscopy, phenol red-free media was used, and cells from each culture condition were placed into a separate chamber of an imaging slide, each lined with a microgrid of 50 μM cell paddocks. Once settled, the cell density was such that, on average one cell would randomly deposit within one paddock. Media containing pH indicator was placed in surrounding wells to buffer for evaporation and monitor CO2 availability. Microgrids were tiled and imaged at 15 min intervals for 89.75 h. Acquired bright field and fluorescence images were processed and manually annotated to record cell fate.



In initial bulk cultures CTV labeled Blimp-1-GFP reporter B cells were incubated with IL-4 and varying concentrations of anti-CD40 (10, 2.5, 0.625, and 0 μg/ml) for 4 days, resulting in the expected variation in division and differentiation rates (Figure S1A). To compare the subsequent fate of undifferentiated cells from the same generation, cells from each culture were sorted by flow cytometry for those in generation 4, and seeded into 250 μL chambers containing microgrids for a further 90 h of live cell imaging (see Materials and Methods). Control cell cultures were prepared in parallel at the same density in 96 well plates, and triplicate 200 μL cultures were analyzed periodically to ensure the overall population response of the sorted cells was consistent (Figure S2). Control analyses indicated that sorted cells were GFP− and in generation 4 at the time they were re-cultured (Figure S2B). These cultures also confirmed that cells stimulated with higher concentrations of anti-CD40 divided faster, resulting in greater CTV dye dilution (Figure S2B), and higher total cell numbers (Figure S2C). Despite the variation in progression through generations, a greater proportion of cells in 2.5 μg/mL anti-CD40 were GFP+ than in 10 μg/mL (Figure S2D). As these proliferation and differentiation features were consistent with earlier studies, manual tracking and analysis of the parallel single cell imaged cultures were undertaken.



Single Cell Data Recapitulated Fate Changes Seen at Population Level

Acquired images were processed and thresholded to facilitate GFP scoring, as described in Methods and illustrated in Figure 3A. After initial visual inspection, “paddocks” identified with single cells that undertook their first division as GFP− cells were selected, and the resulting two siblings followed manually, to record their times to changes in fates (Figure 3). For the data presented here, the time of the cell's first division (therefore from generation 4 to 5) is set as time 0, the initiating event time, and the siblings being tracked are in generation 5. The complete annotated data set was converted to such times by calculating the times between the first observed division and subsequent fates (differentiation to ASC, division or death). Histograms of these times are plotted in Figure 3B, illustrating the heterogeneity in each outcome.


[image: image]

FIGURE 3. Tracking individual cell fates over time. (A) Example microscopy images from one cell paddock, with selected frames from the bright field and GFP channels over time. Sorted cells (generation 4) observed to divide (generation 5) and, if still GFP−, were tracked further to record subsequent division, death, and differentiation times. The initial mitotic event was assigned time = 0 in subsequent analyses. Division and death were visually discernible in the bright field channel (top row). Fluorescence images in the GFP channel (middle row) were corrected for uneven illumination, thresholded, and binarized for annotating differentiation to ASC (bottom row). (B) Histograms of the total data for each fate recorded, timed from first observed cell division and allocated to 3 h bins. Number of recorded cells indicated in panels (N). Cells that reached the end of the imaging period and had neither divided nor died were recorded as “end” and appear in the blue bar. Number of lost cells also indicated.



To visualize differences between culture conditions, observed proportions to undergo each fate are shown in Figure 4A, and mean times to reach each fate in Figure 4B. These data suggest that cells stimulated with high concentrations of anti-CD40 were more likely to divide and less likely to die (Figure 4A), and when they did divide they completed mitosis more quickly (Figure 4B) The proportion of cells observed to differentiate is also consistent with flow cytometry time courses, in that a higher proportion of cells differentiated to ASC with lower CD40 stimulation (Figure 4A). Thus, despite segregation into cell paddocks by the microgrids, the filmed cells recapitulated the fate outcomes measured by flow cytometry at the population level.


[image: image]

FIGURE 4. Features of single cell imaged data. (A) The proportion of tracked single cells that underwent each fate. Fisher's exact test was performed to compare proportions of cells to undergo fates between 0.625 vs. 2.5, 0.625 vs. 10, 2.5 vs. 10 μg/mL anti-CD40. Division vs. death: p = 4.18 × 10−6, 1.77 × 10−23, and 3.01 × 10−7, respectively. Differentiation vs. no-differentiation: p = 0.15, 0.0007, and 0.078, respectively. (B) For cells reaching each fate the average time is shown with 95% CIs. Kruskal-Wallis test was performed to compare the times to fates between different anti-CD40 concentrations. Division: p = 3.8741 × 10−8, death: p = 0.2386 and differentiation: p = 0.1354. (C) Yule's Q, a measure of concordance in fate, shows that sibling fate selection (death or division, differentiation or no differentiation) is highly symmetric at all anti-CD40 stimulation levels with 95% CIs indicated by bars. (D) Cumulative frequency distributions of raw data for time to each fate. (E) Uncensored times to fate as determined by Kaplan-Meier survival function estimates overlaid for each anti-CD40 concentration. Division was uncensored from the influence of death, death was uncensored from division, and differentiation was uncensored from both division and death. Data from all tracked cells are included.





Stimulation Strength Does Not Affect Sibling Correlations or Concordance

Whether stimulation strength affected differentiation by influencing asymmetry in fate was first assessed. For each of the three concentrations (0.625, 2.5, and 10 μg/mL, respectively) 78, 68 and 75% (±8, 9, 8% as 95% CIs) of siblings take the same differentiation or no differentiation and death or division fates. Figure 4C plots Yule's Q, a measure of concordance for opposing fates (division vs. death, and differentiation vs. no differentiation) relative to their frequency of occurrence in the population. The consistent, high values of Q indicate the significant concordance found for both division-death and differentiation-no differentiation fates of siblings was not affected by CD40 stimulation strength. Thus, strong sibling concordances and correlations were found in this experiment, in line with earlier findings. Interestingly, these sibling similarities did not appear to be controlled by altered CD40 stimulation strengths, despite the marked changes in division times, and differentiation rates.



Uncensoring Cell Fate Time Distributions

Having eliminated modulation of asymmetric fates as a control feature regulated by anti-CD40 concentration, we turned to the theory of competing fates as a potential driver of heterogeneity. Under this hypothesis, autonomous processes leading to each fate are underway within the cell. The order in which they complete determines the fate that the cell is observed to take. As observed times to fate are heterogeneous, the mathematical framework of probability is necessary to describe them. It encapsulates the heterogeneity irrespective of whether its source is truly stochastic processes within each single cell, or arises as a result of unidentified heterogeneous lineage properties. The hypothesis suggests that the apparently complex correlation structures observed in cell fate data are a consequence of observed times to fate being the product of competition and censorship, and leads one to query the role of external regulation on each of the autonomous processes (26, 32).

Figures 4D,E shows the result of applying the standard non-parametric survival function estimator, the Kaplan-Meier estimator (33), to the raw cumulative frequency data for each fate (Figure 4D) to reveal the pre-competition, uncensored time-to-fate distributions (Figure 4E), assuming probabilistic independence of these underlying timed mechanisms. For these plots division is assumed to censor death, death censor division, and both division and death censor differentiation. In some instances, the remaining proportion is >0 (i.e., plot does not reach a height of 1), indicating the observation time was too short to capture all possible events in this category; or alternatively that the remaining proportion of cells were incapable of undergoing that fate.

Within this competing timers model, these results are consistent with the hypothesis that CD40 stimulation strength had a significant impact on cell division times with little direct effect on the underlying distributions of times to death or differentiation. Higher levels of anti-CD40 reduces division times, positively impacting the proportion of cells in the population that progress to the next generation, while reducing the proportion of cells that differentiate. Together, these results are consistent with the hypothesis that CD40 stimulation controls the time to divide, but not the times to differentiate or die.



Parametric Model Based on Competition and Changes in Division Time Only

Under the stochastic competition hypothesis, not all processes need to be in operation in every cell. In particular, there is a possibility that neither differentiation nor division partake in the competition. To extract these propensities to differentiate and divide (i.e., likelihood that the underlying division or differentiation machinery is active within a cell), we created a parametric statistical model by assuming that underlying time-to-fate distributions are log-normal given fate is in operation, but with a possibility that differentiation and division are inactive (discussed in Materials and Methods). Based on the observations from application of the Kaplan-Meier estimator, we assumed that the uncensored differentiation and death distributions were unchanging with stimulus and that only the division distribution and the propensity to divide were altered. This resulted in a single three-parameter description for differentiation (mean, variance, propensity to differentiate) and a two-parameter description for death (mean, variance) across all three stimulation conditions, along with a three-parameter description for division (mean, variance, propensity) per stimulation condition.

The uncensored lognormal curves with the highest likelihood of fitting to the data are shown in Figure 5A for comparison with the per-condition non-parametric uncensoring. The parametric and non-parametric estimates are in good agreement, further supporting the hypotheses of the parametric model. Having ascribed lognormal curves to the probability distributions of times to fate, fitted parameters from different conditions could be compared for deviations in means, variations, and probabilities (Figure 5B). For decreasing anti-CD40 concentrations (10, 2.5, 0.625 μg/mL), the model fit division time distributions to the data with increasing mean (15.60, 20.09, 30.89 h) and variance (5.37, 9.37, 17.81 h), while the propensity for division being “on” in the cell decreased (0.84, 0.71, and 0.58, respectively). Death times (mean 51.20 h, variance 79.87 h) and differentiation times (mean 36.35 h, variance 34.43 h, propensity 1) were fitted with one distribution each for all of the CD40 stimulation concentrations, with the assumption that the probability of death is always ultimately 1. The best-fit propensity for differentiation was 1, suggesting that differentiation is always “on” in a stimulated cell and so is the default action that occurs when either division or death does not censor it. Overlaying the raw data, Figure 5C provides the extrapolation from these best-fit uncensored probability distribution functions to what they predict would be observed as a consequence of competition and censorship. The model predicts that a small proportion of cells will take their fate, typically death, after cessation of filming. A small number of cells are, indeed, observed to have neither died nor divided by the end of the microscopy session, and these are plotted at the end of the death-time histograms, according well with the out-of-sample model prediction.


[image: image]

FIGURE 5. Parametric model fitting with constrained parameters to censored data. (A) Maximum likelihood parametric model-fits to the data, under the constraints that death and differentiation time distributions were the same for all conditions, while the division time distribution and propensity for division could change with CD40 stimulation; overlaid with Kaplan-Meier analyses. (B) Uncensored parametric plots drawn as probability density functions; mean division times (μ) get longer with less CD40 stimulation, as variance (σ) increases and propensity (p) to divide decreases. (C) Predicted outcomes calculated from these constrained parametric distributions overlaid onto the observed data.





Further Features of the Data Consistent With Competition

Figure 6 plots an additional interesting feature of the data that might appear to require an involved explanation. The upper panels display the empirical cumulative distribution of the times to divide of cells that did not differentiate for each stimulation condition, while the corresponding lower panels display the times to divide for cells that were observed to differentiate. For each condition, these two distributions are distinct, with division times being—on average—longer for cells that differentiated. The equivalent plots for times to death can be found in Figure S3, where the same phenomenon is exhibited.


[image: image]

FIGURE 6. Times to divide given differentiation or not. For each stimulation condition, upper panels display the empirical distribution of times to divide for cells that did not differentiate (solid black lines) with 95% confidence intervals (dotted black lines) computed with Greenwood's Formula. The lower panels display the same information for cells that were observed to differentiate before dividing. Also shown on both are the model-predicted distributions (cyan) of times to divide conditional on a cell differentiating or not, which differ as a consequence of the reshaping by competition.



Outside of the competition model, this seems to suggest distinct distributions for times to division or death fates dependent on whether a cell differentiates or not. Within the competition hypothesis, however, it is instead an intrinsic consequence of the model structure. Also displayed in the upper panel of Figure 6 is the conditional distribution of the time to divide given that the cell did not differentiate as determined by the model, while the lower panel displays the model's conditional distribution of the time to divide given a cell did differentiate. Within the competition model, these two observed distributions are expected to be distinct as a consequence of censoring: knowing that a cell differentiates ensures a lower bound on the time to divide, conditioning it to be larger. Thus, the competition model inherently anticipates and accounts for these apparently involved features of the data within one mechanistically simple hypothesis that would otherwise require a model with significantly more parameters to explain.




DISCUSSION

The B lymphocyte is an ideal model system for studying cell fate control, being highly tractable to in vitro manipulation and sensitive to many alternative receptor driven signals that alter its behavior. Here we adopted this system and sought an answer to how varying the strength of one significant signal, transmitted through CD40 on the B cell surface, could affect the rate of development to ASC. This question is of particular interest as earlier studies noted the effect to be “paradoxical”: weaker stimulation leads to a greater rate of differentiation with each generation (29). Building on previous filming experiments (26, 30), chamber slides were used to sustain and image cells in varying levels of anti-CD40 stimulation. Miniature paddocks segregated the individual cells and reduced interference from homotypic adhesion (27). These data consisted of the recorded times to fates of hundreds of sibling pairs, making it suitable for quantitatively challenging hypotheses.

Analyzing these data allowed the elimination of the hypothesis that the paradoxical differentiation effect was due to changes in asymmetric cell division, as siblings had a high concordance in fate that was unaffected by stimulation strength. Our attention turned to ask whether the theory of competing fates (26, 32) could explain the phenomena. We hypothesized that increased differentiation could arise by cells transitioning faster within each generation, or by division times slowing, and thus allowing cells more time to differentiate before they divided again. Consistent with the latter hypothesis, the data, when uncensored, revealed that CD40 stimulation level regulated division times and division proportions, but had no effect on either differentiation or death times. Parametric fitting to differentiation times only required one set of parameters (mean, variance, propensity), whereas constraining division times to a single set of parameters would have produced poorly fitted outcomes. Hence, assuming independently timed control of fates, we were able to reject the hypothesis that CD40 stimulation was controlling either the proportions of cells capable of differentiating to ASC, or the time required for cells to differentiate. Instead, changes in division times were sufficient to re-create the differentiation patterns seen with flow cytometry.

This analysis supported the hypothesis that low CD40 stimulation slows division times, and consequently allows more time for cells to differentiate. Thus, regulation of division time by stimulation strength is identified as a controlling feature of fate decisions by the stimulated B cell. An influence of cell cycle length on differentiation has been noted in other cell systems suggesting this may be a biologically widespread regulatory mechanism (34, 35). We also assume the likelihood of differentiation is dependent on, and in turn altered by, the concentration of cytokines in culture. Further experiments will be required to assess this possibility.

These studies raise the question of how signals and internal molecular processes alter the time to different fates. One mechanism reported to date posits accumulation of transcriptional regulators. Kueh et al. (36) imaged hematopoietic progenitor cells and noted the choice between becoming a macrophage-lineage cell or a B cell was dependent upon the timed accumulation of transcriptional regulator PU.1. The longer cells took to divide, the more likely they were to accumulate the higher levels of PU.1 needed for macrophage commitment. A variant of this mechanism requiring both timed production and loss was noted by Heinzel et al. (37) for expression of Myc as a controller of division progression. Myc accumulated in proportion to signal strength and decayed at a constant rate, independently of division, eventually leading to a timed cessation of mitosis. As transcriptional regulators are important drivers for many fate changes, equivalent timed changes in expression level based on accumulation are likely to be in operation in mature B cells. Further experiments measuring levels of transcriptional regulators and correlating levels with fate outcomes in individual cells will be informative to identify this and other putative molecular mechanisms (15).

These findings also offer insights into the controlling systems for antibody generation during a T-dependent immune response. T and B cell cooperation is an active process that occurs in two distinct sites during an immune response. Initial engagement occurs in the extrafollicular zones of lymphoid tissue and leads to the heterogeneous production of antibody secreting plasmablasts, that are typically short-lived and of weak to moderate affinity (38). Effective T and B cell collaboration requires an unbroken sequence of graded quantitative events that begins with antigen capture by the B cell receptor (BCR) and upregulation of T cell costimulatory surface molecules such as CD28, class II MHC and CD40 (39, 40). For effective stimulation by T cells, antigen must also be internalized by the B cell and presented on the cell surface, providing further opportunities for quantitative titration of the outcome (41). These variables in turn determine the level of stimulation received by an engaged T cell and subsequently the level of CD40L expression, and the rate of cytokine production provided to the B cell during the collaborative event (42). While the combinatorial possibilities are large, given the results here, we can identify a key principle in operation: even if holding all other variables constant, quantitative differences in CD40L, as the result of the chain of early events, will lead to proportional variations in average division times as well as the number of divisions completed (43). By slowing division, the weaker cells automatically assume a greater likelihood of differentiating and of dying. The more strongly stimulated cells will divide rapidly, automatically holding back their differentiation to ASC and leading to greater selection and expansion. Based on these findings we suggest that, as stimulated cells lose access to T cells, B cells slow division and automatically transition to secreting plasmablasts, provided cytokines are also present. Thus, the more avid and competent B cells are naturally selected for expansion while their differentiation is suppressed, leading, ultimately, to an increased net number of higher affinity plasmablasts overall (illustrated in Figure 7). This model is consistent with the studies of Paus et al. showing greater proliferation and overall generation of plasmablasts by higher affinity B cells (44). As antibody isotype switching is also strongly linked to progressive division and unaffected by the strength of CD40 stimulation (18, 19), this selection mechanism will, without additional cellular machinery, result in higher affinity clones that transition, automatically, to produce specialized antibody subtypes. It seems likely that the quantitative relation between all of these processes has evolved to provide an optimal balance for generating protective antibody over time.


[image: image]

FIGURE 7. Model of division-based control of B cell fate. Quantitative differences in CD40 signaling leads to proportional differences in division times, as well as the number of divisions completed. Even without modifications to underlying differentiation times, cell populations can differentiate as a result of competing cell fates. With slow divisions, the multitude of weakly stimulated cells automatically differentiate, and rapidly form large numbers of unswitched, low affinity antibody secreting cells. Meanwhile, those cells that receive strong stimulation divide rapidly, and hold back their differentiation mechanism until the clone has undergone expansion and isotype modifications, thus leading to an increased net number of higher affinity plasmablasts.



An important second site of T-B cell collaboration is the germinal center. A subset of activated T and B cells migrate to primary follicles to initiate and sustain this reaction (45–47). At this site B cells undertake successive rounds of somatic hypermutation and selection that generates fully differentiated plasma cells and long-lived high affinity, memory B cells. Selection of B cell clones in the germinal center is critically dependent upon T cells and CD40-CD40L interactions (17, 48, 49). B lineage cells in the germinal center are distinct from those generated in vitro, and seen in extrafollicular sites (50). However, labeling studies in vivo have determined that the division rate is affected by the strength of stimulation provided by T cell help (51, 52). These observations taken together with the in vitro findings of the present paper, imply a general mechanism where the rate of proliferation is linked to, and tempers, the fate of competent, highly stimulated cells to achieve an optimal dynamic outcome with minimal direct control over differentiation.
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Molecular interactions across intercellular interfaces serve to convey information between cells and to trigger appropriate cell functions. Examples include cell development and growth in tissues, neuronal and immune synapses (ISs). Here, we introduce an agent-based Monte-Carlo simulation of user-defined cellular interfaces. The simulation allows for membrane molecules, embedded at intercellular contacts, to diffuse and interact, while capturing the topography and energetics of the plasma membranes of the interface. We provide a detailed example related to pattern formation in the early IS. Using simulation predictions and three-color single molecule localization microscopy (SMLM), we detected the intricate mutual patterning of T cell antigen receptors (TCRs), integrins and glycoproteins in early T cell contacts with stimulating coverslips. The simulation further captures the dynamics of the patterning under the experimental conditions and at the IS with antigen presenting cells (APCs). Thus, we provide a generic tool for simulating realistic cell-cell interfaces, which can be used for critical hypothesis testing and experimental design in an iterative manner.

Keywords: cell signaling, T cell activation, kinetic segregation model, single molecule localization microscopy, photoactivated localization microscopy, direct STORM, microvilli, agent based Monte-Carlo simulation


INTRODUCTION

Cells associate and form functional interfaces to create tissues, to exchange molecular content and to convey information. Such interfaces form in multicellular organisms between adherent and developing cells in tissues (1), between neurons (2) and immune cells (3). Cell contacts can also occur in unicellular organisms, e.g., between bacteria in biofilms and between bacteria and their host cells (4).

A wide range of physical structures appear in intercellular interfaces, including junctions (e.g., plasmodesmata and gap junctions, tight junctions, and desmosomes) (5), neuronal synapses and immune synapses (IS). The dynamics of the interfaces may vary widely, from seconds to days. For instance, neuronal synapses may persist over much longer times, but still show surprising remodeling dynamics (6, 7).

In this study, we focus on the IS between CD4+ T Cells and antigen presenting cells (APCs) as an example of a dynamic intercellular interface of outstanding importance and interest (Figures 1A,B). This synapse serves T cells to probe the outer surface of APCs for cognate antigens, and to mount an appropriate immune response (8). Advancements in microscopy have shown that such structures demonstrate complex levels of dynamic organization (9). The IS starts with early contacts that mature within a few minutes to form molecular segregation into supramolecular activating clusters (SMACs) (10). Such experiments often turn to artificial mimics of the APC for high resolution microscopy. Examples include coverslips coated with antibodies (11) (Figures 1C,D) or with lipid bilayers that include molecules of interest (12).


[image: image]

FIGURE 1. Cell interfaces of the immune synapse. (A) A scheme of a physiological interface between a T cell and an antigen presenting cell (APC). (B) A physical model of the interface in panel (A). (C) A scheme of an experimental interface between a T cell and a coverslip. (D) A physical model of the interface in panel (C).



Recently, super-resolution cell imaging, and especially single molecule localization microscopy, has allowed to resolve the organization of molecules in live cells with resolution down to ~20 nm (13). Such methods include Photoactivated Localization Microscopy (PALM) (14) and direct Stochastic Optical Reconstruction Microscopy (dSTORM) (15). Through these techniques, whole (or a large part of) molecular populations of specific protein species can be directly visualized with such resolution. For instance, imaging of signaling molecules in CD4+ T cells has shown surprising nanoscale patterning of proteins, in the form of hierarchical and functional clusters (16, 17). Specifically, the nanoscale segregation of the TCRs from bulky glycoproteins, such as CD45, has been detected (18). Still, the latter patterns of kinetic segregation in early contacts (18–20) have not been related to the hierarchical ordering of TCRs, integrins and glycoproteins into central, proximal and distal SMACs (c-, p- and d-SMACs; known also as the “bull's eye” pattern) that has been detected at the mature IS (10, 21, 22).

For gaining further insight on the structure, dynamics and functional role of interfaces, experimental techniques can be complemented with computational cell modeling and simulations. Indeed, multiple computational simulations have been developed and employed for studying cells (23). Such methods may vary widely in their details, from atoms to entire cells, time-scale, from microseconds to minutes and length-scales, from angstroms to microns and more.

Here, we introduce an agent-based Monte-Carlo simulation of user-defined cellular interfaces. The simulation, called InterCells, is based on detailed physical modeling of the interface and embedded molecules within. The simulation allows for the molecules to diffuse and interact, while capturing the topography and energetics of the interacting plasma membranes (PMs). It relies on simple and inexpensive computation that is still complex enough to capture realistic complexity and dynamics of the interfaces. Recently, similar modeling and simulations have served to resolve possible mechanisms of cooperativity and localized activation in TCR clusters (24) and to identify kinetic segregation of TCR and glycoproteins at the engaged tips of microvilli (18).

A special emphasis in our simulation is its easy operation by non-experts. For that, we provide a friendly graphical user interface (GUI) for rapid configuration and deployment of the simulation. Multiple analytical tools are provided for data analysis and interpretation. A key property of the simulation is its ability to confront the results and predictions of realistic simulations with experimental data, acquired by single molecule localization microscopy. We provide a detailed example related to pattern formation in intercellular contacts that characterize the early IS between CD4+ T cells and antigen presenting cells (APCs) (18, 20). Specifically, our simulation results predict a new feature of pattern formation—the intricate mutual patterning of T cell antigen receptors (TCRs), integrins and glycoproteins in the early contacts. We confirm this patterning by SMLM imaging of T cells on functionally-coated coverslips. Thus, we provide a generic tool for simulating cell-cell interfaces, which can be used for critical hypothesis testing and experimental design in an iterative manner.



RESULTS


Intricate Patterning of Membrane Proteins at the IS

To study molecular patterning at the IS, we imaged Jurakt E6.1 CD4+ T cells, as they adhered and spread on functionally coated coverslips (11) (see details in Materials and Methods). Anti-CD3-coated coverslips result in direct TCR stimulation, T cell activation and spreading. In contrast, coverslips coated with poly-L-lysine (PLL) show reduced levels of TCR stimulation and smaller cell footprints (25). For imaging, we used three-color single molecule localization microscopy (SMLM) in total internal reflection (TIRF; Figure 2). Our SMLM approach included PALM imaging of TCRζ-Dronpa, stably expressed by the cells. CD11 and CD45 molecules were immunostained using an anti-CD11-Alexa568 and anti-CD45-Alexa647, respectively (see Materials and Methods) and imaged by two-color dSTORM.
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FIGURE 2. Intricate molecular patterning at the immune synapse. Three-color PALM/dSTORM imaging of fixed E6.1 Jurkat cells expressing TCRζ-Dronpa (green) and stained for CD45 (red) and CD11 (blue). The cells were dropped on coverslips coated with either (A) poly-L-lysine (PLL; top raw) or (B) αCD3 (bottom raw). Cells were let spread on the coverslip for 1.5 min before fixation. Shown are representative cells (N = 40 cells on PLL and 31 cells on αCD3). Bars−2 μm.



Our images showed a striking patterning of molecules where CD11 clusters (blue) localized in between TCR clusters (green) and CD45 clusters (red) on either TCR-stimulating and non-stimulating conditions. On PLL-coated coverslips, TCR clusters occupied the center of the interface, while CD45 showed an outer ring. CD11 clusters localized outside TCR clusters and in the formed gaps between TCRs and CD45. On αCD3-coated coverslips, CD11 also localized in between TCR and CD45. However, on these coverslips, the cells formed larger footprints and TCR was more clustered.

The segregation of TCRs from CD45 has been shown by diffraction limited microscopy, and more recently, in early contact (18). Also, the localization of CD11 was shown before in the pSMAC while CD45 localized to the dSMAC (22). However, such mutual patterning has not been resolved in early ISs and at the nanoscale. Thus, our imaging captured an intricate mutual patterning of TCRs, integrins and glycoproteins in the early contacts. The occurrence of the mutual patterning on coverslips coated with either αCD3 or PLL indicates that this patterning is caused by the physical contact of the cell with the opposing interface of the coverslip.



Modeling and Simulation of Molecular Patterning Under the Experimental Conditions

For testing the robustness and dynamics of the patterns that we have detected, we turned to the modeling and simulation of the cell interfaces. The simulation is described in details in the Materials and Methods and in the User's Guide (provided in the Supplemental Information). Briefly, the simulation employs physical modeling of the PM of the interacting cells and of the molecular interactions (Figure 3, and below). The simulation structure is described in Figure 4, the simulation process is described in Figure 5 and its GUI is shown in Figure 6.


[image: image]

FIGURE 3. A computational model of the intercellular interface between T cells and a coverslip. (A) A top view of a simulated membrane. The membrane is shown as a grid, where molecules (colored circles) are embedded and can diffuse and interact. Membrane height is marked by variable gray levels. (B) A 3D view of the simulated membrane. (C) The interaction potential between molecules embedded in the simulated membrane.
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FIGURE 4. A schematic description of the cell interface simulation. A detailed account of the simulation, its structure and interface are provided as a User's Guide in the Supplemental Information.
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FIGURE 5. A schematic description of the simulation process.
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FIGURE 6. The graphical user interface. A snapshot of the graphical user interface (GUI) of the simulation. The GUI includes dynamic menus for setting all simulation parameters and a live interface for presenting the simulated parameters (top) and initial conditions (bottom). All menus, parameters and operation instructions are provided in the User's Manual in the Supplemental Information.



An important feature of our agent-based Monte-Carlo simulation, is its ability to integrate experimental measurements at the single molecule level (as in Figure 2). Such data can be integrated as initial conditions for the simulation, or as dynamic physical constraints [as previously demonstrated (18)]. Here, we demonstrate the setting of initial conditions by cropped data from the footprints of cells, imaged by SMLM (Figure 2). Specifically, coordinates were taken for TCRζ molecules (in green). To complete the initial conditions, the initial coordinates of CD11 and CD45 molecules were manually determined via the available tools of the simulation in the GUI.

In our simulation, the plasma membrane of the interacting cells are modeled as grids where molecules, modeled as agents, diffuse and interact within and across the grids (Figures 3A,B). The simulation included a model that captured the energetic of the PMs of interacting T cell and APC (26) (Figure 3C). Specifically, the simulation balanced forces due to attractive and repulsive interactions. Specific attraction occurred between the TCR and αCD3 and self-clustering of CD11 and TCR molecules. Non-specific attraction affected the molecules at the T cell PM by the PLL. Repulsive interactions occurred between the molecule (and esp. for the bulky glycoprotein) and the coverslip (Figure 3C). The PM underwent thermal fluctuations during the simulation. The positions of the molecules were updated in each step of the simulation. The simulations included 10,000 steps of 400 × 400 pixels of 10 nm each and took ~5 min (~100 s in cell time) each, using a PC (i7 quad processor). Simulated parameters are detailed for the interacting molecules (Table S1).

The simulation resulted in a redistributed pattern of molecules that was embedded within the interface, and evolved over time (Figures 7A,B, Movies M1, M2). Strikingly, the simulations could recreate realistic patterning of CD45 molecules around the evolving TCR clusters. CD11 molecules were distributed in between TCR clusters and CD45. These results correlated well with experimentally imaged positions of these molecules on either PLL- or αCD3-coated coverslips (compare left and right columns in Figures 7A,B with Figures 2A,B).
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FIGURE 7. The dynamics of molecular patterning in simulations. The dynamic evolution of molecular patterning of TCRs (green), CD11 (blue) and CD45 (red) at the cell interface. Simulated results are shown as a function of time for individual cells on either a PLL–coated coverslip (A) or on an αCD3-coated coverslip (B) along time. The simulations start from user-defined initial conditions (top raw) that are set for the simulated molecules. Membrane height is marked by variable gray levels. Bars−1 μm.





The Effect of Simulation Parameters on the Molecular Patterning

Multiple parameters could affect the resultant molecular patterns that we observed. Such parameters include the initial conditions of molecular placement (e.g., in Figure 7 at t = 0); the density of the molecules; their diffusion coefficient and their interaction potential. Thus, we repeated the simulations shown in Figure 7, yet with modifying one of the described parameters in each simulation. Recent publications showed that TCRs are clustered in microvilli (27) that form early contacts (18, 28). Hence, we started with changing the initial placement of CD11 and CD45 molecules in relation to TCR clusters. The cells were attached to a coverslip coated with PLL and αCD3, for engaging the TCRs. Figure S1 shows the results for applying the initial conditions as in Figure 7B (Figures S1A–C), a diffused pattern of CD45 (Figures S1D–F) or a diffused pattern of both CD45 and CD11 (Figures S1G–I). The variability in initial conditions was applied to simulations that either included molecular self-clustering of TCR and CD11 (Figures S1B,E,H) or did not include such self-clustering (Figures S1C,E,I). Strikingly, the molecular patterning under all conditions showed the mutual patterning of TCRs, CD11 and CD45, as in Figure 7B an in our experiments (Figure 2B). As expected, TCR and CD11 were more diffused within these mutual patterns when the simulations did not include self-clustering of these molecules (Figures S1C,E,I). Our results indicate the robustness of the mutual patterning of TCR, CD11 and CD45 to variations in initial molecular placements and to their self-clustering.

We next conducted a sensitivity analysis of molecular patterning to variations in the density of CD45 (Figure S2A), the diffusion coefficient of the molecules (namely, TCR, CD11 and CD45; Figure S2B), and the interaction potential of CD45 (Figure S2C). Parameter values were taken as half, equal or twice the values that were chosen in the simulation shown in Figure S1B. The mutual patterning of TCR, CD11 and CD45 was robust to most of the conditions. Still, the following differences can be observed for the different conditions. For instance, the CD45 outer ring became relatively thicker with the increase of CD45 concentration (Figure S2A). The mutual shape of the TCR, CD11 and CD45 became more diffused and occupied a bigger area with the increase in the diffusion coefficients of the molecules (Figure S2B). Last, we observed a less diffused pattern of CD45 when its spring constant became stronger (Figure S2C).



Modeling and Simulation of Molecular Patterning at the T Cell-APC IS

Next, we studied the effects of the patterning in simulated physiological interface between T cells and APCs. Nanoscale imaging of T cells and APCs is technically complicated, yet is readily accessible to our modeling and simulation. Here, we included mobile ligands at the PM of the APC, namely pMHC and ICAM. These molecules exerted specific attraction forces on the TCR and CD11 molecules (respectively) as they diffused at the PM of the opposing T cell. The PM of the APC was given similar physical properties to the PM of the T cell (as detailed in Table S2). The molecular positions at the T cell PM were set manually as initial conditions, and were kept identical for the simulations on APCs (Figures 8C,D) and on coverslips coated with either PLL (Figure 8A) or αCD3 (Figure 8B). In this way, results could be directly compared across different interfaces.
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FIGURE 8. Simulation results of molecular patterning at the immune synapse (A,B) The molecular patterning of TCRs (green), CD11 (blue) and CD45 (red) at the cell interface, on either (A) a PLL-coated or (B) an αCD3-coated coverslip. (C,D) The molecular patterning at the T cell-APC immune synapse. (C) ICAM (blue) and pMHC (green) molecules are shown at the PM of the APC. (D) TCRs (green), CD11 (blue) and CD45 (red) are shown at the PM of the T cell. Membrane height in panels (C,D) is marked by variable gray levels. Bars−1 μm.



Our simulations showed that the mutual patterning of CD11, TCRs and CD45 occurred not only on coverslips, but also at the PM of T cells conjugated to APCs (Figures 8C,D). Corresponding patterning of pMHC and of ICAM molecules appeared at the PM of the APCs (Figure 8C). Interestingly, CD11 was less self-clustered in such interfaces in comparison to the cell interface with αCD3-coated coverslips (Figure 8B).

Under physiological conditions, APCs typically carry only a small fraction of cognate peptides. Thus, we repeated our simulations for interface of T cells with APCs, while considering only 1% of cognate peptides (Figures S3A,B). As expected, the interface was not as tight as for the previous simulation (compare height levels with Figures 8C,D). Importantly, the molecular patterning of TCR, CD11 and CD45 seemed more diffused and their segregation was less pronounced.

Another important physiological condition is the translocation of TCR molecules toward the center of the IS 21 (29, 30). To simulate this process, we created an interactive tool within the software. Using this tool, we set a target coordinate for TCRs translocation at the center of the interface and set a constant velocity of 19 nm/s (29) toward the center to all TCRs. Along with translocation, we assumed TCR diffusion but no self-clustering, in order not to hinder its mobility further. Expectedly, the TCRs concentrated at the center of the IS, while a relatively pronounced and well-segregated CD45 ring formed at the periphery (Figures S3C,D). As before, CD11 molecules localized between the segregated TCRs and CD45 molecular patterns.

To quantitatively assess the mutual patterns of TCR, CD11 and CD45, we introduced a topological analysis (see details in the Materials and Methods and in Figure 9A). This analysis related the density of CD11 and CD45 molecules to individual TCR clusters. The density of the molecules as a function of the distance from TCR clusters is shown in Figures 9B–E. The results of the topological analysis of our experimental results (in Figure 2) clearly show the hierarchical ordering of TCR clusters at the center, surrounded consecutively by CD11 and CD45 molecules (Figures 8B,C). Moreover, the evolution of this pattern could now be captured using our simulated results on either PLL- or αCD3-coated coverslips (Figures 9D,E). As expected, the self-clustering of TCRs (the peak height of the green manifold) was higher, and more persistent for αCD3-coated coverslips relative to PLL-coated coverslips. Strikingly, the mutual patterning of TCR, CD11 and CD45 occurred within a few 10 s of seconds from the start of the simulations. The mutual patterning of CD11 and CD45 from TCR can be further compared between the experimental data and the simulated results (Figures 9F,G). Our simulations captured the shift in the peak of the molecular distributions of CD45 relative to the TCRs on both PLL (Figure 9F, red lines), and on αCD3 coated coverslips (Figure 9G, red lines). The separation of CD11 was captured more accurately on PLL-coated coverslips than on aCD3-coated coverslips (Figures 9F,G, blue lines). Thus, our simulations now set the stage for seeking parameters that would minimize the differences between the density distributions of the molecules under study (18).
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FIGURE 9. Topology analysis of molecular patterning in experiments and simulations. (A) Topology analysis of molecular densities of different species (red and blue dots) relative to a cluster of reference (green dots). The cluster perimeter is defined by consecutive dilations. (B,C) Results of the analysis of molecular patterning in experimental results on either (B) a PLL–coated coverslip or (C) on an αCD3-coated coverslip. (D,E) Results of the analysis of molecular patterning in simulated results, on either (D) a PLL–coated coverslip or (D) on an αCD3-coated coverslip. (F,G) The shift in the peak of the molecular distributions of the topology analyses, on either (F) a PLL–coated coverslip or (G) on an αCD3-coated coverslip. Experimental results are shown as dashed colored lines while simulated results are shown as continuous colored lines.






DISCUSSION

In this work, we introduce “InterCells”—a generic agent-based Monte-Carlo simulation of intercellular interfaces in molecular detail. Our study focused on dynamic molecular patterning at the early IS, as an important example of a dynamic intercellular interface. The study combined three-color SMLM imaging of fixed CD4+ T cells on functionally coated coverslips, as well as modeling and simulations of the IS of such CD4+ T cells with APCs. Our imaging and simulation showed an intricate patterning of TCRs, glycoproteins (e.g., CD45) and integrins (e.g., CD11) at the PM of the interacting T cells. In the detected patterns, clusters of CD11 localized in between segregated clusters of TCR and of CD45. Such patterning has been instructed by diffraction limited microscopy (12), recent detection of segregation of TCRs and CD45 molecules in early contacts (18), and by preliminary simulations. To our knowledge, such mutual patterns have not been observed at the nanoscale before and thus, have not been related to the macroscopic “bull's eye” patterns detected at the IS (10, 21).

To test the robustness of the detected pattern, we simulated a range of relevant interfaces, including coverslips with different coatings, different sets of initial conditions, and ISs with APCs. Varying such conditions in the simulation can be readily achieved through the design and the GUI of the simulation. Notably, our agent based simulation allows for the seamless integration of experimental data at the single molecule level, as captured by PALM and dSTORM. We have previously demonstrated the use of SMLM data as constrains for setting hybrid simulations (18). The results of such simulations can be directly compared to experimental results (18). The robustness of the molecular segregation between TCR, CD11 and CD45 clusters, which persisted in all simulations, indicates that it is driven by mechanical forces acting between molecules and the opposing surfaces of the IS. Notably, our simulation did not include translocation of molecules, such as TCRs or integrins, across the IS (31). Such translocation plays a role in the spatial sorting of newly appearing clusters at the cell periphery in the mature IS, while our simulation and imaging focused on relatively less mature ISs.

Multiple simulation tools have been developed to study molecular interactions in the cell, such as signaling pathways and enzymatic reactions. Such modeling often assumes complete molecular mixing via ordinary differential equations (ODEs) (32), or the use of cell automata with cell compartmentation that could average out critical spatial variations in local concentration of signaling proteins. The virtual cell [Vcell; (33)] allows for solving partial differential equations (PDEs) and ODEs, and the integration of spatial constraints from 2D and 3D optical microscopy. Still, such simulations cannot account for molecular heterogeneities and non-synchrony that are inherent to stochastic processes of molecular diffusion and interaction within cells. Such heterogeneities can be captured by Monte Carlo simulations of finite numbers of interacting molecules that are embedded in realistic models of cellular compartments [e.g., Smoldyn (34) and MCell (35)]. Specifically, MCell contains extensive simulation tools, including the generation of arbitrary meshes through integration with a powerful graphical package (Blender), the simulation of cytosolic proteins, allowing stochastic state transitions of molecules, various mobility states including diffusion and drift and running batches for scanning parameters. Notably, MCell is not designed to account for dynamically changing meshes. In contrast to MCell, InterCells is currently more modest in its flexibility and in its integration of advanced features and tools. For instance, multiple dynamic processes, such as molecular endocytosis and recycling are currently lacking and will become available in an upcoming update of the simulation. Also, it is currently limited to simulating membrane proteins, while cytosolic proteins will be integrated, but will not be explicitly simulated as diffusing agents in the 3D environment of the cytosol. Still, our simulation specializes in capturing complex and dynamic interactions and pattern formation in intercellular interfaces. It focuses on surface molecules interacting in a dynamic, fluctuating surfaces. To our knowledge, the integration of SMLM data into cell simulations and the effects of embedded molecules on the cells' surface are important features that have not been attempted in current simulations.

Our simulation has been designed as an accessible tool to non-experts. It operates on a PC with a standard (i7 quad) processor. It is coded in Matlab, in a modular structure that can be easily expanded to include additional membrane and cortical structures, such as cortical cytoskeleton, membrane bound proteins, channels, etc. Still, expansion of the simulation to whole cells will require much stronger computational power than is currently employed. It integrates a wide range of physical parameters of simulated entities (membranes, molecules) that are accessible via an intuitive GUI. We provide multiple analysis tools, including univariate and bivariate PCFs (36), clustering algorithms and the topological analysis demonstrated here (Figure 9). Additional analyses of relevance may include Minkowski functionals (37), conditional second order PCFs (13), and more. Our simulation enable batch runs for scanning systematically values of parameters of choice. The results of such batch simulations can be presented graphically using our statistical analyses tools. The user can then quantitatively compare the results of such statistics to experimental results, for further refinement of the simulation. We have recently demonstrated this approach to study inaccessible properties of the PM (e.g., its rigidity and its ligand density) (18). The further integration of iterative simulations with sensitivity analyses such as the Sobol method could enable more systematic evaluation of the wide parameter space of our agent-based simulation.

We believe that InterCells, esp. with its upcoming tools, will allow the study of molecular patterning at cell surfaces and interfaces in a wide range of cases. We provided in the User's Manual a second example, demonstrating how InterCells can be employed to quantify the effects of molecular trapping and self-clustering on molecular organization at the PM. Additional cell interfaces that can be studied using InterCells may include cell junctions between cells in a tissue, the evolution of interfaces in development, neuronal synapses, immune synapses of multiple types, and under various experimental conditions, and more.

To conclude, we provide here a generic simulation of intercellular interfaces. The simulation was applied to nano-scale pattern formation at the IS, which was resolved by three-color SMLM. The detailed simulations combined data from SMLM imaging, coarse-grained physical model PM of the interacting cells, and simulative data from multiple Monte-Carlo simulations. During this process, the simulation has proved to be an invaluable predictive and hypothesis generating tool. It further provided an elaborate test of our physical understanding of molecular patterning at the IS and of the forces behind it. The iterative application of novel experimental tools and modeling could provide critical feedback to future experiments and the adaptation of working models; thus, in this case, enhancing our mechanistic understanding of early T cell activation. Our simulations are modular, flexible and accessible, such that they can be employed for studying a wide range of intercellular interfaces and molecular interactions within.



METHODS


Sample Preparation

Jurkat E6.1 cells and such cells stably expressing TCRζ-Dronpa were available for this study from a previously published work (16). Positive expression was routinely monitored using fluorescence microscopy. For three-color, SMLM TCRζ-Dronpa were immunostained with antibodies: 1. αCD45-Alexa647 conjugated (BioLegend, 304056); 2. αCD11 (LFA1) primary (BD Pharmingen, 555378) and αMouse secondary antibody labbled with Alexa568.

Cells were dropped onto glass coverslips coated with 0.01% poly-L-lysine (Sigma) with or without following coating αCD3 (UCHT1, eBioscience 16-0038-85). The cells were incubated at 37°C for a specific spreading time on the coverslips of 1.5 min. After this time the cells were fixed with 2.4% Paraformaldehyde for 30 min at 37°C. Combined SMLM (PALM-dSTORM) imaging was performed in a dSTORM buffer (50 mM TRIS pH = 8, 10 mM NaCl, 0.5 mg/ml glucose oxidase, 40 μg/ml catalase, 10% glucose, 10 mM MEA).



PALM and STORM Microscopy

Three-color SMLM (combined PALM/dSTORM) imaging was performed using a total internal reflection (TIRF) microscope (TI-E, Nikon). Imaging in TIRF mode served to visualize molecules at the PM of spreading cells in close proximity to the coverslip (up to ~100–200 nm). PALM images were analyzed using the N-STORM module in NIS-Elements (Nikon) or a previously described algorithm (ThunderSTORM) (38) to identify peaks and group them into functions that reflect the positions of single molecules (14). PALM acquisition sequence typically took ~5 min for three channel imaging at 50–100 frame/s. Custom algorithms were then applied for statistical characterization of the SMLM images of the detected molecules (see Supplementary Information for further details). The fluorescent proteins were imaged sequentially in the different channels using dedicated emission filters that minimized cross talk between the channels. Photoactivation illumination at 405 nm was changed over the imaging sequence of fixed cells. Drift compensation and channel registration were performed using dedicated algorithms in ThunderSTORM.




DETAILED MOLECULAR SIMULATION


Modeling Approach and Structure of the Simulation

Here, we take a reductionist approach for modeling, aiming to explain complex spatio-temporal patterns of molecular organization at intercellular interfaces. All simulation files are available online on Github (https://github.com/ShermanLab/InterCells). These files should be downloaded to the User's computer under a directory that can be accessed by Matlab.

Requirements

For ease of use, the simulation Basic computational power, employing a standard PC (with an i7 processor). It is coded in Matlab (MathWorks). The structure of the simulation is depicted in Figures 4,5 and is explained in detail in the User's Manual (provided in the Supplemental Information).

Input

Input parameters include parameters that describe the physical properties of the interacting surfaces and of the molecules that interact within and across the interfaces. The parameters are typically extracted from experimental measurements, on molecular interactions that govern the signaling cascade (39, 40). In the case of hybrid simulations, initial conditions are set by single molecule data on molecular positions and their state from SMLM imaging (see User's Manual). Benchmark runs for testing a range of predetermined parameters. Such benchmark runs have previously served for critical evaluation of mechanistic models of T cell activation (24) and for studying the effects of variations in critical physical parameters on molecular patterning at the IS (18).

Simulation Core

The simulation includes detailed models of relevant stochastic processes, including reaction-diffusion processes and relevant force fields. The details of the simulation algorithm are provided in separate sections below. Briefly, in our simulation we assume specific Hamiltonians of a quasi-equilibrium system and with mean-field approximations. The simulation relies on hierarchical levels of simplification. Continuous entities that are not the focus of the simulations are “coarse-grained.” Such entities include lipids in the PM and water molecules, and are not specifically described in the simulation. In contrast, protein molecules of interest are described individually. The simulation algorithms is realized using “importance sampling” Monte-Carlo simulations (41). Molecular identities are maintained for the reactant molecules of interest. Metropolis criterion is applied to determine the transition probability between consecutive configurations.

Outputs

Quantifiable readouts of the numeric simulations include the position and state of individual proteins, the morphology of the PM and their energetics. Visualization tools are provided for showing the simulation results. For instance, live evolution of molecular patterning is provided during the simulation run. The patterns can then be shown for each step individually, or as a movie.

Analyses

Here we integrated multiple statistical tools for quantitative analyses and interpretation of the results. Our tools include clustering algorithms and second-order statistics (16, 36), and the topology analysis (Figure 3). These tools are important for the quantitative comparison between results from experiments and from simulations. Moreover, the analyses provide a critical feedback for generating experimentally testable hypotheses and the adaptation of working models in an iterative way. In fact, our imaging in this study was instructed by early simulative results that indicated the mutual patterning of TCR, CD11 and CD45.

Simulation Setup

The simulations are based on a rectangular grid, of a size of few microns. The array is made of square 10 nm pixels. We used periodic boundary conditions (molecules that exit on one side appear on the opposite side). The initial height (z) of the membrane is set to 70 nm. The PM height in pixels that accommodate either TCR or CD11 molecules are set to the molecular height. The z-value of each pixel changes randomly at every iteration by Δz that has a normal distribution with σ = 1 nm, according to the Metropolis criterion.

A specific limitation of our simulation to the number of simulated molecules originates from the occupancy of only one molecule (regardless of its species) in a single pixel. Thus, considering a pixel size of 10 nm and a rectangular grid of 1 × 1 μm2, a limit of 10 K molecules can be simulated. Larger grids are often needed to show complex molecular patterns within a cell footprint. Thus, we often simulated tens of thousands of molecules within grids of 400 × 400 pixels. Such grids were chosen to include a region of interest of a cell footprint with an area of 4 × 4 μm2 (i.e., each pixel representing an area of 10 × 10 nm). Such a size should leave a wide enough margin (e.g., ~50–100 pixels), such that boundary effects are minimized. Such simulations took ~15 min using a PC with a standard (i7 quad) processor. Acceleration of the simulation can be improved via operating parallel computing, computation via GPUs and more. A bigger grid size minimizes the effect of the boundary, yet requires longer (actual) simulation time, computational power and memory. Similar consideration may restrict the iteration time, overall simulation time, the save rate and the number of runs (Table S3). While other simulations, such as MCell, can accommodate millions of molecules and states, they require compartmentation of the simulated space for efficiently running.

We simulated multiple different types of proteins, as follows. TCRs behave as binding proteins to immobile ligands (αCD3) on a coverslip or to mobile pMHC molecules at the PM of APCs. CD11 may bind ICAM at the PM of APCs. The z coordinates of the TCRs and CD11 are kept at 13 nm and at 35 nm, respectively, throughout the simulation runtime. The molecules, and esp. bulky CD45 molecules, act as repulsive springs. Non-specific binding occurs between all molecules and the PLL coating of coverslips. The numbers of simulated molecules remains constant throughout the simulation. All simulated parameters are detailed in Tables S1–S3.



Monte Carlo Simulations

Simulation Energetics

In the simulations we used the Hamiltonian H = Hint + Hel, to calculate the energetics of the overall interactions between the T cell membrane and the coverslip (represented by the term Hint) and the elasticity of the T cell membrane (represented by the term Hel). The interaction part, Hint, is defined as:
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where,
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Single pixels from any surface (i.e., either a PM or a coverslip) can accommodate only one molecule at a time. The interaction potential of the molecule with its ligand, Vmol−lig, is defined as:

[image: image]

where Umol−lig is the interaction strength of a molecule and its ligand, lmol−lig is the length of an engaged molecule-ligand conplex. zi is the inter surface distance at pixel i. The width of the molecule-ligand potential is set and its depth are set according to published results (see Table S3). The repulsion potential of the molecule is defined as:

[image: image]

The physical parameters of kmol, the compressional stiffness of the molecule and lmol, the length of the uncompressed molecules, are detailed in Table S1.

The elastic part of the Hamiltonian, Hel, is defined as:

[image: image]

where κ = κ1·κ2/(κ1 + κ2), is the general effective bending rigidity of two membranes. In this case, the bending rigidity is effectively κ ≈ κ1, since κ2 >> κ1 and is simulated at different values. The lattice constant, a, is 10 nm and dzi = zi1+zi2+zi3+zi4−4zi, (where i1, i2, i3, i4 are the indices of the four nearest neighbors of pixel i).

Simulations Dynamics

The simulation propagates in time by iterations of 0.01 s. In every iteration all molecules attempt to hop to one of the neighboring pixels according to their diffusion coefficient. The hopping attempts of the molecules are accepted or rejected according to the following rules:

1. The target pixel is not occupied.

2. The probability of acceptance is according to Metropolis criterion is:

at an old pixel:

[image: image]

and at a new pixel:
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While
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3. If more than one molecule attempted to hop to the same pixel, the molecule with the highest energy gain will hop.

4. The height, z, of each pixel of the surface is changed randomly by Δz, that has a normal distribution with σ = 1 nm and according to Metropolis criterion. The value of σ is set by receiving 40–50% of acceptance of the membrane attempts 27.



Topology Analyses

The topology analysis measures the conditional density of molecules from a spatial reference set by clusters of a chosen molecular type. In the example presented in Figure 9A, the cluster of reference is set by green molecules. Next, circles are placed around each green molecule (middle panel), and we consider the perimeter of their unified area. The densities of the other molecules (namely, red or blue points in our example) can now be calculated on this perimeter. The consecutive operation of these steps with growing radii from the molecules yields the Minkowski perimeter functional (37). The conditional densities of the molecules are then calculated for the growing perimeters, as shown in Figures 9B–E. Last, the density of the molecules of reference (here, green dots) is determined and presented by its univariate PCF as a function of the perimeter radius.
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ImmuneDB is a system for storing and analyzing high-throughput immune receptor sequencing data. Unlike most existing tools, which utilize flat-files, ImmuneDB stores data in a well-structured MySQL database, enabling efficient data queries. It can take raw sequencing data as input and annotate receptor gene usage, infer clonotypes, aggregate results, and run common downstream analyses such as calculating selection pressure and constructing clonal lineages. Alternatively, pre-annotated data can be imported and analyzed data can be exported in a variety of common Adaptive Immune Receptor Repertoire (AIRR) file formats. To validate ImmuneDB, we compare its results to those of another pipeline, MiXCR. We show that the biological conclusions drawn would be similar with either tool, while ImmuneDB provides the additional benefits of integrating other common tools and storing data in a database. ImmuneDB is freely available on GitHub at https://github.com/arosenfeld/immunedb, on PyPi at https://pypi.org/project/ImmuneDB, and a Docker container is provided at https://hub.docker.com/r/arosenfeld/immunedb. Full documentation is available at http://immunedb.com.
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INTRODUCTION

The study of immune cell populations has been revolutionized by next-generation sequencing. It is now commonplace to have hundreds of thousands or even millions of sequences from a single sample or individual (1, 2). With this increase in experimental data output, many tools have been created for pre-processing sequences (3), germline association and clonal inference (4–7), and post-processing analysis (8, 9). Lacking from this space, however, is a system to store fully-annotated sequences, their inferred germline sequences, clonal associations, and study-specific metadata. This paper describes ImmuneDB (10) and introduces new features added since its original publication including: additional importing & exporting formats, a more flexible metadata system, extra clonal assignment methods, integration of a novel allele detection tool (11), and the ability to analyze other species and light chains. ImmuneDB provides an easy to use immune-receptor sequence database, which has been optimized for and tested with datasets of up to hundreds of millions of sequences (1). It can take as input raw FASTA/FASTQ sequence files, or import pre-annotated sequences from an array of formats including the Change-O data standard (5) and the AIRR data standard currently being implemented and further refined (2). With either method, it can infer clonal associations, calculate selection pressure, generate lineages, and make all resulting information available both from the command line and as a web-interface. For interoperability with other systems, ImmuneDB can output data in AIRR, Change-O, VDJtools, and genbank formats. ImmuneDB's usage of MySQL also allows for rapid querying and data-sharing using a variety of existing tools.



MATERIALS AND METHODS

The methods below describe the ImmuneDB pipeline in the context of human B-cell heavy chain rearrangements. We then extend the methods to T cells, light chains, and other species (Figure 1).


[image: image]

FIGURE 1. A general overview of the ImmuneDB pipeline. To start, sequences are optionally pre-processed with pRESTO to remove poor-quality sequences and mask bases below a user-defined threshold. Next, using a conserved region anchoring method, sequences are either assigned V- and J-genes or labeled as “unidentifiable” which optionally can be corrected by local alignment. After gene assignment, sequences are collapsed across samples and grouped into clones based on one of three methods (see text). Lastly, downstream analyses such as selection pressure, and lineage construction are performed. A web interface is available to browse the resulting data and analyzed data can be exported in a variety of formats. Inset: Examples of downstream analysis: cosine similarity between inferred B-cell rearrangements in tissue samples from an organ donor, diversity (calculated as defined in Equation 1) plotted at different orders from the same tissue samples; rarefaction calculated for B-cell rearrangements amplified from colon samples.




Computer Hardware and Software Requirements

ImmuneDB is primarily written in Python and can therefore run on most common Unix-based operating systems (including macOS). Local installation of the version described in this paper (v0.24.1) requires Python 3.5+, although legacy versions support Python 2.7. The setup will automatically install all Python library dependencies. Additionally, MySQL (or a drop-in replacement like MariaDB) is required, although it need not run on the same host as ImmuneDB.

Optional steps require installation of additional external tools. Local alignment requires Bowtie 2 (12), lineage construction depends on Clearcut (13), selection pressure calculations utilize BASELINe (9), novel gene detection requires TIgGER (11), and the web-frontend exists in a separate repository1.

Alternatively, a Docker image2 is available with all these dependencies pre-installed along with helper scripts, and is therefore the recommended method for using ImmuneDB.

Hardware requirements depend on the input data, but as a general guideline it is recommended that ImmuneDB be run on a machine with enough available memory to store at least three times the largest input sample (e.g., for a 5 Gb input file, 15 Gb of memory should be available). Any number of cores are acceptable and ImmuneDB uses Python's multiprocessing library to utilize as many cores as possible.



Germline Reference Database

ImmuneDB can use any IMGT aligned V- and J-gene database which it accepts as a pair of FASTA files. We suggest always using the most recent IMGT/GENE-DB (14) database including only functional germlines.



License

ImmuneDB is released under the GNU General Public License, version 33 allowing for unlimited use, modification, and distribution under the same license and with any changes explicitly stated.



The ImmuneDB Pipeline

ImmuneDB is comprised of sequential steps, run via the command line, that generate a database with analyzed immune receptor data as shown in Figure 1. Before running ImmuneDB, it is recommended that pRESTO (3) be used for quality control and, when applicable, paired-read assembly. ImmuneDB itself begins with V- and J-gene identification and optional local-alignment. Then, duplicate sequences are identified across samples originating from the same subject. These sequences are then grouped into clones using one of three methods of clonal inference (described in section Clonal Inference). Finally, aggregate statistics are generated and results can be exported, explored in a web browser, or further analyzed with an integrated set of downstream-analysis tools.

Each step of the pipeline is detailed in this section along with an example of the command to run. In all cases passing the –help flag will list all possible parameters and their default values (if any).

Raw Data Processing

Before running the ImmuneDB pipeline itself, raw FASTQ reads from a sequencer should be quality controlled using pRESTO. First, sequences are trimmed of poor-quality bases on the end farthest from the primer where base call confidence tends to degrade. Using default parameters, sequences are then trimmed to the point where a window of 10 nucleotides has an average quality score of at least 20. If reads are paired, the next step is to align the R1 and R2 reads into full-length, contiguous sequences. Short sequences, those with less than 100 bases, are then removed from further analysis. Finally, any base with a quality score less than 20 is replaced with an N and any sequence containing more than 10 such bases is removed from further analysis. In the case of FASTA input which has no quality information, only paired-end assembly and short sequence removal are recommended. A detailed script for running this process can be found in Rosenfeld et al. (15).

After this process, the remaining filtered sequences are presumed to be of adequate quality for germline inference and clonal assignment.

Creating a Database

ImmuneDB allows users to separate their datasets into individual ImmuneDB project, each with their own database. To create a properly structured MySQL database, the immunedb_admin command is used:

$ immunedb_admin create db_name ~/configs

Running this command with db_name replaced with an appropriate name will create a database named db_name and create a configuration file in ~/configs with information for the remainder of the pipeline to access it. Specifically, it records a unique username and password for the database so each project you create is separated from others. Database names must consist of only alphanumeric characters, integers, and underscores.

Sample Metadata Assignment

Each ImmuneDB project is designed to house data across many samples and subjects. It is recommended that each quality-controlled FASTA/FASTQ file contains the sequences from one biologically independent sample. This implies that, if a given sequence is found in multiple independent samples, it actually occurred in multiple cells. Although not recommend, ImmuneDB will still operate normally if samples originated from multiple sequencing runs of the same PCR aliquot. However, many measures of sequence abundance and clone size break down under this conditions [see section Sequence Collapsing (copies, uniques, instances) for discussion].

For the ImmuneDB pipeline, some metadata about each sample are required: a unique sample name and a subject identifier. Samples with the same subject identifier came from the same source organism. Additional custom metadata (e.g., cell subset, tissue) can be attached to each sample, which can be useful for later analysis and grouping.

To generate a template metadata file in the directory with the FASTA/FASTQ files for processing, the user runs:

$ immunedb_metadata –use-filenames

This will generate a metadata.tsv file that should be further edited with the appropriate information, and will be used in the next step of the pipeline. The optional -use-filenames flag pre-populates the sample names with the associated filename, stripped of its.fasta or.fastq extension.

Germline Assignment (Anchoring, Local Alignment)

The first portion of the ImmuneDB pipeline infers V- and J-genes for each set (sample) of quality-filtered reads using the approach in Zhang et al. (4). This method was chosen because it is quicker than local-alignment and works for the majority of sequences which are not mutated in conserved regions flanking the CDR3. Given a small number of restrictions detailed in the documentation, this method can accept user-defined germlines so long as they are properly IMGT numbered (16). Specifics about the numbering scheme can be found at4.

For each sequence, the anchor method first searches for a conserved region of the J gene. If it is found, all germline J-gene sequences are compared to the same region in the sequence, and the one with the smallest Hamming distance (17) is assigned as the putative J gene. Since ImmuneDB requires sequences to have a J- and V-gene assignment to be included in clones, if no anchor is found the sequence is marked as unidentifiable and is excluded from V-gene assignment for efficiency.

Then, a conserved region near the 3′ end of the V-segment is used to position each sequence correctly relative to the IMGT numbered germline sequences. As with J-genes, each germline sequence is then compared using Hamming distance, and the one with the smallest distance is assigned as the putative V gene. If the conserved region is not found, the sequence is marked as unidentifiable and excluded from the rest of the anchoring process.

After every sequence is assigned a V and J gene (or marked as unidentifiable) the average mutation frequency and sequence length are calculated. For each sequence, other germline genes which are statistically indistinguishable from the putative genes are added as “gene-ties.” Thus, each sequence may have multiple V- and J-gene assignments.

As a post-identification quality control step, ImmuneDB then marks sequences with a low V-germline identity (defaulting to 60%) as unidentifiable. Further, any sequence which has a window of 30 nucleotides with less than 60% germline identity is marked as a “potential insertion or deletion”.

To run this step, the user enters the following commands:

$ immunedb_identify /path/to/config.json \

       /path/to/v_germlines.fasta \

       /path/to/j_germlines.fasta .

After this command finishes, the anchoring portion of alignment is complete. Due to insertions or deletions, mutations in the conserved regions, and other anomalies, there are generally sequences which cannot be identified with this approach. To rectify such sequences, ImmuneDB can then optionally use Bowtie 2 (12) to attempt local-alignment on each of these sequences. Any insertion or deletions that Bowtie 2 finds are also stored with the sequence. The command to locally align sequences is similar to identification:

$ immunedb_local_align /path/to/config.json \

       /path/to/v_germlines.fasta \

       /path/to/j_germlines.fasta .

Sequence Collapsing (Copies, Uniques, Instances)

After sequences are assigned V and J genes, sequences that differ only at N positions—those which had low quality calls from the sequencer—are collapsed within each sample resulting in one set of unique sequences per sample. Each unique sequence maintains a count called “copy number” of how many duplicates occurred in the sample. Then, all the sample-level unique sequences within the same subject are compared to one another and duplicates are marked and collapsing information is stored.

After this process, each subject-level unique sequence has two fields associated with it: total copies and instances. When samples are biologically distinct, which is recommended in section Sample Metadata Assignment, the instance count of a sequence is the number of samples in which that sequence occurred (which can be interpreted as the lower bound on number of cells that contained that sequence) and the total copies is the number of duplicates across all samples. Although the latter is subject to PCR artifacts, it can give an indication of true sequence abundance. Alternatively, when samples are not biologically independent, the instances of a sequence no longer give a bound on cell count and the copy number of a sequence may be inflated, leading to skewed sequence and clone abundance calculations.

An overview of the terms copy number, instances, and unique sequences is provided in Table 1.



Table 1. Summary of terms for sequence collapsing.
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To run the collapsing process, run:

$ immunedb_collapse /path/to/config.json

Novel Allele Detection and Correction

The ImmuneDB gene identification process assumes the germline allele database provided, from IMGT or another repository, are indeed those present within the subjects being analyzed. Users can add or remove genes as needed by modifying the germline FASTA files input into ImmuneDB. However, in many cases it may not be known a priori which genes are or if the subjects have novel germline alleles. To determine which genes are present in a dataset, ImmuneDB may optionally run TIgGER (11) on sequences to identify potential differences from the standard germline database. To do so, the identification and collapsing processes above is run with a presumed germline database followed by:

$ immunedb_export /path/to/config.json

       changeo \

      ––min-subject-copies 2

$ immunedb_genotype /path/to/config.json \

       /path/to/v_germlines.fasta

This exports the sequences, as identified with the presumed germline genes, with at least two copies in the subject and then runs TIgGER. If novel alleles are found, a new set of input germlines is generated, and ImmuneDB can be re-run with these germline reference genes.

Clonal Inference

ImmuneDB incorporates two methods of clonal inference, all of which start with the same set of sequences: the subject-level unique sequences calculated previously. By default, only such sequences with a copy number of at least two are considered eligible for clonal assignment. This eliminates some of the sequences that potentially arose from sequencing error and could cause spurious construction of clones. After this process, each clone has three defined levels of size. The number of unique sequences are the number of distinct sequences that comprise a clone. Copies and instances are defined as the sum of copies and instances over the clone's constituent unique sequences. These clone size metrics are reviewed in detail in Rosenfeld et al. (15).

CDR3 Similarity

The first method of clonal inference is for B cells. It uses CDR3 similarity to group sequences from the same subject with the same gene assignments and CDR3 length into clones. Initially an empty list of clones C is created. Let S be the set of all subject-level unique sequences.

Each sequence s∈S is visited in order of decreasing copy number. If there is a clone c∈C such that every sequence already assigned to c has the same V gene, J gene, CDR3 length in nucleotides, and has 85% CDR3 amino-acid similarity, s is added to the clone c. Otherwise, a new clone is added to C containing only s. This results in a set of clones such that all the sequences in a clone share the same gene assignments, CDR3 length, and pairwise are at least 85% similar in the CDR3. The percent similarity can be tweaked by the user as necessary.

This method of clonal inference can be run with:

$ immunedb_clones /path/to/config.json \

        similarity

Lineage Separation

The newest method of clonal assignment in ImmuneDB is based on (18). For each subject, sequences are placed into buckets based on their V gene, J gene, and CDR3 length in nucleotides. Then, a lineage is made out of each bucket. Working from the root node of the lineage (the germline) each edge is traversed until a specified number (by default four) mutations accumulates. The subtree starting at that point is then grouped into a clone. This method, unlike similarity-based methods, is order-agnostic and can be run with:

$ immunedb_clones /path/to/config.json \

        lineage

Selection Pressure

After clonal inference, ImmuneDB can optionally use BASELINe (9) to estimate clonal selection pressure. It first runs on each clone as a whole, providing an overview of selection pressure in the framework and complementary regions. Then, it runs independently on the subset of sequences that occur in each sample. This can be useful when a clone spans multiple samples with various biological features. For example, a clone may appear in samples from different tissues or cell subsets.

To run BASELINe via ImmuneDB, the path to the Baseline_Main.r script must be specified.

$ immunedb_clone_pressure /path/to/config.json \

       /path/to/Baseline_Main.r

Lineages

ImmuneDB integrates Clearcut (13) to infer clonal lineages using neighbor-joining. For each clone, a lineage is constructed and every node maintains information about its associated sequence, as shown via the web-interface in Figure 2. This process can be parameterized in different ways including filtering sequences or mutations that occur less than a set number of times. Generally, it is recommended to run Clearcut excluding mutations that happen exactly once with:

$ immunedb_clone_trees

       /path/to/config.json \

       /path/to/clearcut \

       ––min-count 2

Figure 3 shows the same clone's lineage constructed with Figure 3A no mutation threshold, Figure 3B a threshold requiring mutations to occur in at least 2 sequences, and Figure 3C a threshold requiring mutations to occur in at least 5 sequences. The large expansion of nodes in Figure 3A is likely due to sequencing error. A higher threshold like in Figure 3C may be useful when there is high sequencing depth or when clones are extremely large (such as in some hematopoietic malignancies). In these cases it is quite likely that the same sequencing error will occur multiple times. However, thresholding mutations means the lineages may not accurately reflect recent or rare clonal events.
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FIGURE 2. In (A) an example clonal lineage as viewed through the web interface for ImmuneDB. Node diameter is proportional to the total number of sequence copies at that node and the edge numbers show the number of mutations between the parent and child nodes. The colors indicate the tissue(s) that make up the sequences at the node. In this case green is Bone Marrow, red is Lung, and black is a combination of both. As shown in (B), hovering over a node gives more information such as the specific mutations, copy number, and sequence metadata.
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FIGURE 3. Comparison of mutation thresholding on lineage shape. A comparison of a single clonal lineage constructed from bulk IgH V-region sequencing data where (A) all mutations are included, (B) only mutations found in at least 2 sequences are included, and (C) only mutations in at least 5 sequences are included. The drastic elimination of leaf nodes between (A) and (B) indicate that they are most likely due to sequencing error. In very deeply sequenced samples or in malignancies where clones are very large, an even higher threshold may be required, such as in (C), since the same sequencing error may occur multiple times.



Web Interface

ImmuneDB comes with a web interface for browsing analyzed data. It allows users to group and filter data to generate interactive plots, view clones, and inspect sequences. It is primarily intended to explore data at a high-level, visualizing individual samples or comparing different samples in various ways. The command line tools can then be used for more fine-grained analysis. An example interface can be found at http://immunedb.com/tissue-atlas.

To utilize the web interface using the Docker container simply run the following and open http://localhost:8080 in a browser:

$ serve_immunedb.sh /path/to/config.json

Information about running the web interface without the Docker container or with more sophisticated configurations, such as hosting multiple databases, are described in the documentation.



Importing Gene Assignments and Clonal Inference From Other AIRR Tools

Although ImmuneDB has the features to fully analyze sequences from raw reads through clonal assignment, a concerted effort has been made to allow users to import both identified sequences and clonal assignments from other tools. For pre-identified sequences, ImmuneDB can import files in the Change-O data format (5) with:

$ immunedb_import /path/to/config.json \

       /path/to/v_germlines.fasta \

       /path/to/j_germlines.fasta \

       /path/to/changeo_files

Note that this requires a metadata file identical to that needed by the identification step.

Clonal assignments can be imported from either ImmuneDB-identified sequences or imported sequences. First, the command below is run to output a template file with a list of clonal-assignment eligible sequences:

$ immunedb_clone_import /path/to/config.json \

       ––action export sequences.tsv

Users then fill in the clone_id column in sequences.tsv as they desire and import it back into ImmuneDB with:

$ immunedb_clone_import /path/to/config.json \

       ––action import sequences.tsv

Assuming that no constraints are broken (clones must still have the same V gene and J gene and originate from the same subject), the custom clonal assignment will then be accepted by ImmuneDB.

As members of the AIRR Community (19), the authors will continue to integrate data standards (2) as they are defined.



Aggregate Analysis and Data Export

ImmuneDB automatically aggregates data for some common analyses in the last step of the pipeline with:

$ immunedb_clone_stats /path/to/config.json

$ immunedb_sample_stats /path/to/config.json

This auto-generated, aggregate analysis is not exhaustive, and is meant to provide sufficient data for the web-interface and to guide further investigation. To assist with this, ImmuneDB allows users to easily export all portions of the analyzed dataset in useful, common formats. Specifically, ImmuneDB has integrated export capabilities for the Change-O (5),vdjtools (8), genbank, and FASTA/FASTQ formats. This enables users to quickly use common downstream analysis tools including VDJtools and those included with the Immcantation Framework5, or submit their datasets in the AIRR-compliant GenBank format. The basic template for this command is as follows, replacing the term format with changeo, vdjtools, or genbank:

$ immunedb_export /path/to/config.json \

       format



Applications to Other Data Types

T-Cells

ImmuneDB can analyze T-cell receptor sequences, in addition to B-cell receptor sequences. When compared to B-cell analysis, the two changes necessary in the pipeline for T-cell analysis are to use T-cell germline sequences during germline assignment and to specify the T-cell method during clonal inference. The T-cell method groups sequences with the same V gene, J gene, and 100% CDR3 nucleotide identity into clones. Like the B-cell similarity method described in section CDR3 Similarity, the T-cell method does not take into account any mutations in the V- and J genes. In the case of T cells, mutations are assumed to be experimental artifacts as T cell receptors do not undergo somatic hypermutation due to lack of activation-induced cytidine deaminase (AID). Putative T-cell clones may be comprised of sequences which appear to differ in the V- and J-gene sequences. Spurious intra-clonal diversification is likely from sequencing error whereas consistent divergence from the germline within a clone likely arises from allelic differences from the germline database. The latter case can be corrected with TIgGER as described in section Novel Allele Detection and Correction.

Light Chains

Because ImmuneDB does not attempt to determine D-genes for sequences during germline assignment, light-chains are naturally supported when a proper germline database of the V- and J genes are provided. At the present, the germline genes for kappa and lambda chains must be placed in separate files and run independently. This restriction will be lifted in future versions. Additionally, because of lower junctional diversity, it is recommended that clonal assignment be considered. For example, when using the similarity method, it is likely appropriate to lower the default amino-acid similarity threshold to a value below 85%.

Other Species

Species other than humans are supported by ImmuneDB, but with two restrictions. First, for the built-in anchoring method for gene identification, germline genes must have conserved anchoring points as described in Zhang et al. (4) and be IMGT aligned. Second, the length of all J genes past the 3′ end of the CDR3 must be fixed, which is the case for all species currently in the IMGT database.




COMPARISON TO MIXCR

It is difficult to verify the results of clonal and germline association methods as there is no agreed upon gold standard. We attempt to associate different types of diversity to their underlying cause(s), but in the end, this is still just an educated guess. Our methodology, as described above, is based on the best practices described in Yaari and Kleinstein (20): stringent pre-processing, correcting for allelic differences between subjects, identification of insertions and deletions, and multiple clonal assignment methods for different datasets. ImmuneDB also provides the option of varying the stringencies of both data filtering and clonal assignment to ensure reproducible and robust results.

As a final argument for the efficacy of ImmuneDB, we show that repertoires analyzed with ImmuneDB take a form similar to those observed with other tools. In this section we compare ImmuneDB to a commonly used pipeline, MiXCR (6), on two datasets. First, we compare the germline gene assignment and clonal inference of the two methods on five samples, one each from five different tissues, all from one human organ donor. Second, we inspect how similar the overall view of a larger repertoire (19 biological replicates from a single organ donor's colon) appears with each method (1).


Germline Assignment and Clonal Inference

To determine how similarly MiXCR and ImmuneDB assign germline genes and infer clones, both pipelines were run on five samples from one human subject selected from Meng et al. (1) as listed in Table 2. The associated SRA accession information can be found in Table S1. This data set has a total of 651,988 reads. Sequences which were considered incorrect or misleading were discarded from both result sets: sequences had to have at least 160 bases in the V gene (at least all of CDR2), between 3 and 96 nucleotides in the CDR3, a functional V-gene assignment (no pseudogenes), and all V-gene calls (V-ties) for a given sequence had to be from the same V-gene family. For clonal comparisons, clones with only one total copy were discarded.



Table 2. Input reads for germline assignment comparison.
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Germline Assignment

First, we compared which sequences each method was able to identify given this filtering. MiXCR identified 599,930 while ImmuneDB identified 611,252, and both identified the same 577,750. The corresponding Jaccard index of 0.91 indicates that the two methods identified a similar set of sequences.

Next, we compared how many of the identified sequences were assigned to the same genes. Since both methods allowed multiple assignments for both V genes and J genes, we considered two sequences to have the same gene call if the intersection of their gene calls contained at least one shared gene. For V genes, the two methods agreed on 98% of the sequences, for J-genes 95%, and when considering both genes, 93%. Of the sequences that differed with either gene, less than 1% differed in their gene family calls. Thus, overall both methods generally agreed on which germline genes gave rise to each sequence.

Clonal Inference

Next, we compared how similarly the two methods inferred clonotypes for the 19 biologically independent colon sample replicates. The associated SRA accession information can be found in Table S2. For this process, we assigned each clone one or more labels from each method:

• If clone A from one method contained exactly the same sequences as clone B from the other, we labeled both “identical”.

• If clone A from one method contained a strict superset of sequences compared to clone B from the other method, we labeled A “superset” and B “subset”.

• If clone A from one method contained a portion of sequences compared to a clone B from the other method, we labeled both “intersecting”.

• If clone A from one method was disjoint from all clones from the other method, we labeled it “disjoint”.

Note that a clone could potentially have both the labels superset and intersecting simultaneously if it contained all the sequences from a clone inferred by the other method and contained sequences from another clone. Further, a clone could have multiple superset labels if it contained all the sequences from multiple clones inferred from the other method.

As shown in Table 3, ImmuneDB inferred 13,736 clones whereas MiXCR inferred 14,453. Of these 10,786 were identical; that is both methods constructed clones with exactly the same set of sequences. In 1,665 cases, an ImmuneDB clone was a subset of a MiXCR clone. There are two reasons this occurred. First, different amounts of N nucleotides in the either the V- or J-region can cause sequences, that are otherwise similar, to be assigned different sets of gene ties and therefore placed in different clones. Second, since ImmuneDB requires pairwise 85% similarity of CDR3 amino-acid sequences in clones, some sequences that may actually originate from the same clone are separated. Conversely, 2,819 MiXCR clones are subsets of an ImmuneDB clone. Nearly all of these are due to overly-strict J-gene assignment, resulting in separation of likely clonally related sequences. For example, some sequences that are one nucleotide away from IGHJ1 and two away from IGHJ4 could easily be confused due to sequencing error (4).



Table 3. Label assignments for clonal inference comparison.
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Overall Repertoire Features

Repertoire analysis pipelines should reveal similar overall trends in acceptably large datasets even if the minutiae of sequence assignment and clonal inference differ. Specifically, when looking at sufficiently large clones, the overlap across samples and diversity should lead to similar conclusions. It is generally acceptable to only look at larger clones as smaller clones have likely been under-sampled or are an artifact of sequencing error (21).

To compare repertoire-level metrics generated from ImmuneDB and MiXCR processed data, 19 biologically independent colon replicates were analyzed. We assessed the similarity of the two pipelines by comparing their clone size distributions, diversity measures, rarefaction, and clonal overlap between samples as described in Meng et al. (1).

Clone Size Distribution

We first looked at clone size distributions from the two pipelines. In Figure 4, the left panel shows a comparison of clone sizes as measured by copy number. The overall landscape is similar with both methods, especially when looking only at clones with 10 or more sequence copies. For smaller clones, the difference in clone sizes can be attributed to the more stringent CDR3 similarity measure MiXCR uses compared to ImmuneDB. The right panel shows the same comparison but instead measures the size of clones as the number of instances comprising the clone. Both methods have nearly identical clone size distributions, especially when considering clones with at least 2 instances.
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FIGURE 4. Comparison of clone size distributions between ImmuneDB and MiXCR in 19 colon samples subjected to bulk antibody heavy chain V-region sequencing from one organ donor [data from (1)]. Clone size is given as copies in (A) and instances in (B). Both plots have been restricted to a maximum X-value of 50, but the trends continue beyond that.



Diversity

We next considered the diversity of the clones assigned by each method. The diversity indexqD, as defined by Equation 1 quantifies how many different clones there are.

Equation 1: Diversity indexqD
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Here, R is the number of clones (richness), pi is the fraction of the repertoire (either as copies or instances) inferred to be in clone i, and q is the order. When the order is zero, the diversity is richness, or total number of clones. Increasing the order, q, gives more weight to the larger clones (21, 22). Figure 5 shows the diversity at orders 1 through 15 for ImmuneDB and MiXCR, measuring clone size both as copies and instances.
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FIGURE 5. Comparison of diversity calculations between ImmuneDB and MiXCR in 19 colon samples from one donor (same data as in Figure 4). As order increases, more weight is given to larger clones. For both copies and instances, MiXCR inferred more diverse clonal populations for low order numbers. As order increases, however, the two methods begin to converge.



It is clear that MiXCR infers more clones than ImmuneDB. However, when the order number is increased (more weight is given to large clones) the diversity of the two methods converges.

Rarefaction

Rarefaction gives insight into how many clones are estimated to occur given a certain number of samples (biological replicates) from the same source. A rarefaction curve that levels out indicates that fewer new clones will be found with further sampling. Figure 6 shows the rarefaction curves for ImmuneDB and MiXCR for clones with at least 2, 5, 10, and 20 instances. The x-axis shows the number of samples and the y-axis shows the normalized richness (the richness divided by the richness at 19 samples). The solid lines (up to 19) are calculated from the 19 samples being compared, whereas the dashed lines past sample 19 show the projected number of additional clones if more replicates had been acquired. As only larger clones are considered, the rarefaction curves both begin to level out, indicating that those larger-clone populations have been more adequately sampled. Both pipelines tended to agree on when clones had been sampled enough, even though the overall diversity appears to be higher with MiXCR (indicated by lower fractional richness).
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FIGURE 6. Rarefaction analysis for both ImmuneDB and MiXCR for clone size cutoffs of 2 instances (A), 5 instances (B), 10 instances (C), and 20 instances (D) in 19 colon samples from one donor. The Y-axis shows the number of predicted clones when the population has been sampled between 1 and 25 times. A rarefaction curve that plateaus indicates the underlying clonal population has been adequately sampled. For all cutoffs, although the overall richness varies, the conclusion drawn would likely be the same: for clones under 10 instances, more sampling is required, while larger clones have been sampled sufficiently.



Sample Overlap

We next evaluated the amount of clonal overlap using the cosine similarity, as defined by Equation (2):

Equation 2: Cosine similarity between vectors A and B
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In this case, A and B are vectors corresponding to two samples both of which have a length equal to the total number of clones in the dataset. The ith value in each vector indicates the number of copies of the ith clone in the sample represented by the vector.

Figure 7 shows the cosine similarity for clones with a minimum of 2, 5, 10, and 20 sequence instances. MiXCR infers less overlap between samples, but the general trend between both methods is the same: as expected, with larger clones, more overlap is discovered. Further, the distribution of cosine similarities about the median of each method are not significantly different. That is for both methods, clones over a given instance count tend to be distributed across a similar number of samples with a similar fraction of sequences in each sample.
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FIGURE 7. The distribution of cosine similarities (a measure of clonal overlap) between each pair of 19 colon samples for clone size cutoffs of 2 instances (A), 5 instances (B), 10 instances (C), and 20 instances (D). The boxes represent the interquartile range, the purple lines are the median, and the whiskers show the range of data. MiXCR finds less overlap across samples, because it has a more stringent CDR3 similarity requirement for clonal sequences than ImmuneDB, but both methods show a similar trend: larger clones overlap across more samples as one may expect.






DISCUSSION

ImmuneDB provides a unified method for the storage and analysis of large amounts of high-throughput immune receptor sequencing data. Like other pipelines such as Change-O (5) and MiXCR (6), it can analyze data from raw reads through clonal assignment. ImmuneDB has two method of germline calculation, anchoring and local-alignment, and provides the option of filtering the data at different QC and copy number cut-offs, which is desirable when samples with different sequencing depths are being compared. In addition, ImmuneDB provides multiple methods of clonal assignment. Combined, these features provide a variety of ways to analyze different types of data.

ImmuneDB is also flexible in that it can import pre-annotated data in a variety of formats supported by other AIRR software tools. This allows users to use custom tools for their dataset, using ImmuneDB for only a portion of the analysis. To provide a comprehensive suite of repertoire analysis tools, ImmuneDB also integrates downstream analyses such as selection pressure via BASELINe (9), lineages via clearcut (13), and novel allele detection via TIgGER (11), reducing the need for users to learn individual tools. Unlike most other tools, ImmuneDB stores the data in an easily queryable MySQL database and provides a web-interface for easily sharing data with non-technical users.

It is worth noting that ImmuneDB does make some assumptions when using other tools, however. For example, it is assumed that sequences in a clone have the same V gene, J gene, and CDR3 length and that they come from the same organism. Although generally this is likely acceptable, there are certain situations where such assumptions may not hold, such as donor/recipient data where a clone may span multiple recipients. As such, it is important to consider the limitations of all tools before using them on non-traditional datasets.

Additionally, since ImmuneDB calculates clones on a per-subject basis, adding new samples to a subject requires clonal inference to be re-run for that subject. However, the rest of the database will remain unchanged.

Finally, in section Comparison to MiXCR we compared ImmuneDB to MiXCR, a pipeline that similarly determines germline usage and infers clonotypes to show that the benefits of using ImmuneDB do not come at the cost of drastically changing conclusions one may draw from the data. Although the methods differ in their approach to clonal assignment, both yield similar clone size distributions, rarefaction plateau points, and sample overlap.



CONCLUSION AND FUTURE PLANS

In this paper we have provided a comprehensive description of ImmuneDB, a system for the analysis of large-scale, high-throughput immune repertoire sequencing data. ImmuneDB can operate either independently, providing an integrated collection of analysis tools to process raw reads for gene usage, infer clones, aggregate data, and run downstream analyses, or in conjunction with other AIRR tools using its import and export features. Thus, ImmuneDB can be an all-in-one solution for repertoire analysis or serve as an efficient way to visualize and store annotated repertoire data, or both. In either case, the ImmuneDB web-interface can be used to easily interact with the underlying dataset.

ImmuneDB is regularly being updated to address user needs and handle the increasing complexity of adaptive immune receptor repertoire sequencing data. In the future we plan to add a feature to allow users to assess the quality of individual sequencing libraries (replicates) before running the entire pipeline. As pRESTO provides a per-sequence quality control step, this new feature will provide a post-identification quality control step, informing users if their samples have insufficient depth or quality. Further, the CDR3 similarity clonal inference method will receive two additional features. First, it will be extended to allow for different similarity thresholds for different CDR3 lengths. Second, this method will allow users to set a required minimum number of shared V-gene somatic hypermutations for sequences to be grouped into a clone.
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Clonal evolution of B cells in germinal centers (GCs) is central to affinity maturation of antibodies in response to pathogens. Permanent or tamoxifen-induced multi-color recombination of B cells based on the brainbow allele allows monitoring the degree of color dominance in the course of the GC reaction. Here, we use computer simulations of GC reactions in order to replicate the evolution of color dominance in silico and to define rules for the interpretation of these data in terms of clonal dominance. We find that a large diversity of clonal dominance is generated in simulated GCs in agreement with experimental results. In the extremes, a GC can be dominated by a single clone or can harbor many co-existing clones. These properties can be directly derived from the measurement of color dominance when all B cells are stained before the GC onset. Upon tamoxifen-induced staining, the correlation between clonal structure and color dominance depends on the timing and duration of the staining procedure as well as on the total number of stained B cells. B cells can be stained with 4 colors if a single brainbow allele is used, using both alleles leads to 10 different colors. The advantage of staining with 10 instead of 4 colors becomes relevant only when the 10 colors are attributed with rather similar probability. Otherwise, 4 colors exhibit a comparable predictive power. These results can serve as a guideline for future experiments based on multi-color staining of evolving systems.

Keywords: germinal center, multiphoton imaging, sequencing, clonal selection, brainbow, computer simulation, mathematical modeling


1. INTRODUCTION

Permanent multi-color recombination of cells allows monitoring the fate of the stained cells. Cre-dependent recombination of colors based on the Brainbow fluorescent protein reporter construct was applied in the past years to the nervous system (1–4) and to developmental biology (5, 6). As the adopted color is transmitted to the progeny of the cell, this method not only allows to follow the fate of the stained cell itself but also to visualize cell division and the fate of the daughter cells. This particular property of the brainbow allele made it suitable for the study of evolutionary systems like the germinal center (GC) reaction (7), which is an important part of the acute immune response to pathogens (8, 9). While the full repertoire of GC B cells might be assessed in the future at particular time points by sequencing, the brainbow method can be used to monitor the evolution of BC clones in GCs over time (10).

GC reactions are central not only for the clearance of infections but also for generating immune memory. As such they form the basis for the success of vaccinations and are central to the prevention of diseases. The fundamental principle of a GC reaction is an evolutionary process on the scale of a few weeks inside the living organism in lymphoid organs. There, B cells divide and mutate (11) and subsequently undergo a selection process giving rise to high affinity antibodies in response to a pathogenic challenge. The emerging B cells encode a different antibody than their germline counterparts, with better binding properties to the pathogen. The GC reaction is also responsible for a diversification of the pool of antibodies ready to fight against the next infection.

The evolution of B cells in GCs is difficult to monitor. One possibility is sequencing of all B cells at different time points of the reaction (7, 12). Multi-color recombination of B cells bears information of the clonal evolution of the B cells and, thus, would allow us to learn about selection and diversification of B cells. Recent experiments using this approach suggested that B cells are not only optimized for high affinity to the pathogen, as widely accepted, but also for an optimal antibody diversity (7), which was also supported by modeling (13). Here, we analyse the predictive power of the measured color distributions for properties of the GC reaction like clonal dominance and diversification.



2. METHODS

The in silico GC reactions used as the backbone of the present analysis of B cell clonality is fully described in the Supplementary Material. The model architecture is a stochastic event generator with cellular agents in a three-dimensional discretized space. It is complemented by a reaction-diffusion system for chemokines, which are generated and sensed by cellular agents. In addition, each cellular B cell agent carries a position in a shape space, which reflects its similarity to the antibody, which binds optimally to the antigen in question. Somatic hypermutation is modeled as displacement in this shape space. All agents move according to published two-photon measurements. They interact according to the current state-of-the-art model of how GC B cell affinity maturation evolves. Events like movement, division, interaction, and selection are based on rate-derived probabilities per time step, unless stated otherwise (see Supplementary Material). Possible fates of B cells are apoptosis, differentiation to output cells, or recycling to the DZ phenotype (14, 15). The simulations reproduce the population kinetics, affinity maturation, and output cell production in agreement with experimental constraints.

The previously published model (16), was corrected by a substantially higher number of founder cells (7) and was extended by a dynamic-number of division (DND), which states that B cells receiving more signals from T follicular helper cells would divide more (16–18).


2.1. Increased Number of Founder Cells

By extrapolation from the number of different founder clones found by sequencing of randomly picked GC B cells to the real number of GC founder clones (7), the old picture of an oligoclonal GC (12, 19) was revised. Instead the number of founder clones was estimated in the range of 100 cells (7). The GC simulation (16) needs to be revised correspondingly. Following Meyer-Hermann and Binder and Meyer-Hermann, A continuous influx of new founder cells during the first days after GC onset is assumed (17, 20). Although influx rates of GC founder cells are currently unknown, in our model we assumed 2 cells per hour limited to the first 4 days of the GC reaction, which generated a number of founder cells consistent with Tas et al. (7). This value might also be estimated with a simple ODE model (see Supplementary Information: B cell influx rate).



2.2. Color Probabilities

The brainbow allele as implemented in the Rosa26Confetti allele (1) randomly tags cells with one of 4 different colors. Applying this to both alleles in GC B cells, stains the B cells with one of 10 different color combinations (7). Recombination can be induced prior to the GC reaction or by injection of tamoxifen. In order to simulate the color dynamics in GCs in silico, the probability of each color combination was determined as the mean over all GCs in AID-KO experiments, in which mutation and selection are suppressed in GCs (Table 1). The probabilities for 4 color stainings in silico were assumed. These values were used in all simulations unless stated otherwise.



Table 1. Probabilities of staining B cells with one of either 4 or 10 colors.
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2.3. Delayed Action of Tamoxifen

Injection of tamoxifen induces Cre-lox recombination of one or two alleles. The GC B cell then expresses one of ten possible color combinations. Tamoxifen-activity continues for a finite time. An exponential decay of tamoxifen and, consequently, of the recombination probability was assumed in silico. The initial probability pstain, 0 of tamoxifen-induced recombination is not known. It was chosen such that the experimentally observed fraction of stained cells fstained, which is known from experiment (see Table 1, one minus black).

The initial probability of recombination pstain, 0 after injection of tamoxifen is estimated with the help of a simplifying model. Staining is initiated in the simulation in time steps Δtstain. With the tamoxifen decay time τtamoxifen, the fraction of stained cells can be approximated as:

[image: image]

Note that this holds only for probabilities pstain, 0, sufficiently small such that double staining can be neglected.

For practical reasons, tamoxifen activity was stopped at time τstainstop. This modifies Equation (1) to
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This condition approximates the initial staining probability pstain, 0 to

[image: image]

This relation was used in the simulations in order to fix pstain, 0 with τtamoxifen = 24 h, τstainstop = 2 days, and fstained equal to 1 minus black in Table 1. In order to save computation time in the simulations, the staining procedure is called with Δtstain = 1 h. In the simulations, a color is only attributed once to a cell, unless stated otherwise, i.e., in the case of an attempt to restain an already stained cell, this attempt is ignored.




3. RESULTS


3.1. Correlation of Clonal and Color Dominance

It is known that high affinity B cells emerge from the GC reaction in a process of cycles of mutation and selection. The dynamics of clonal selection and shift toward high affinity clones in the course of the reaction was recently analyzed with the help of random attribution of colors to either GC founder cells or to GC B cells in an early phase of the reaction (7). This allowed them to follow GC B cells of a particular color and was interpreted to provide information on the clonal evolution of GC B cells. In particular, the largest fraction of cells stained by a single color, short the color dominance, was considered as a measure of the clonal dominance, i.e., the largest fraction of GC cells that stem from a single clone (see Table 2). A clonal dominance of 100% would correspond to all GC B cells being derived from a single clone, which would be the result of strong selection of an advantageous clone. The smaller the clonal dominance, the more different B cell clones coexist in the same GC.



Table 2. Definition of the terminology used throughout.
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Here, we replicate these experiments in silico, and determine under which conditions the evolution of clonal and color dominance in GCs is correlated and delineate the limits of this correspondance as a guideline for future experiments. The analysis was restricted to the dominant color because, in our hands, the inclusion of the second most dominant color did not improve the results.



3.2. Staining of Founder Cells

In a setting in which B cells are stained before the GC reaction, most B cells entering the GC already carry a color (Table 1 column founder). This corresponds to spontaneous recombination of B cells in the Mx1-Cre-mice in Tas et al. (7) and allows monitoring the clonal evolution inside GC reactions based on the evolution of color dominance. However, this relies on a good correlation between clonal and color dominance. We replicated the color dynamics in silico (Figure 1A). The color dominance starts from a baseline level, which is basically reflecting the probability distribution of getting the different colors (Table 1). Around day 5 post GC onset, GCs differ markedly in the fraction of cells expressing the dominant color, which is at the time after B cell expansion when the selection pressure on BCs is getting strong. The diversity of color dominance reaches a saturated level around day 8 post GC onset, which coincides with the time associated of take over of high affinity clones (21), and is kept by the end of the GC reaction.
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FIGURE 1. Staining of GC founder cells guarantees a good correlation of color and clonal dominance. The GC founder cells were stained with 10 colors before the GC reaction. The size of the largest color (A) (first 100 out of 1,000 GC simulations) and its correlation with the clonal dominance (B) were monitored over the duration of the GC reactions. The impact of imposing a staining threshold onto the correlation was tested in (B) (colors). Pearson correlation coefficient from 1,000 in silico GCs. 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation. The distribution of color (red) and clonal (black) dominance are shown at day 2 (C) and 13 (D) post GC onset.



In the simulations, full information on the clonal evolution is known as well, which puts us in the position to determine the degree of correlation between the color and the clonal dominance (Figure 1B). The correlation is sufficiently strong to allow for an association of clonal with color dominance. It was tested whether imposing a threshold staining level for each GC to be included in the analysis would change the correlation. The level of correlation was rather independent of this threshold (Figure 1B).

This correlation can be confirmed by the explicit comparison of the color and the clonal dominance (Figures 1C,D). During expansion at day 2 post GC onset, the B cells only divided and mutated but only underwent selection processes in rare cases. As a consequence, clonal dominance is rather low and color dominance reflects the staining probabilities. Both peaks are clearly seperated. Later at day 13 post GC onset when affinity maturation is accomplished, both distributions largely overlap. However, it can also be seen that the color dominance has the tendency to over-estimate the clonal dominance.



3.3. Tamoxifen-Induced Staining of Cells

Next, we investigated the attribution of colors to B cells at day 2 post GC onset, which corresponds to tamoxifen induced recombinations in AID-CreERT2 mice (7). At day 2 of the reaction, founder clones already expanded and diversified their encoded B cell receptor by somatic hypermutations. This leads to a random staining of many copies of cells descendent of the same initial founder clone. Thus, a correlation of cell color with B cell clones is not expected.

The evolution of the color dominance in silico and in vivo is compared in Figure 2A. As in Figure 1A, the color dominance starts from a baseline and increases over time. While the overall agreement between theory and experiment is convincing, there is a small subset of GC simulations with a higher color dominance at days 5 and 7 post tamoxifen. This might be a hint to an overestimation of the selection pressure or of the GC diversity in silico. Note, that the number of in silico GCs is higher than in vivo at both days.
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FIGURE 2. Predictivity of tamoxifen-induced staining. (A) Evolution of color dominance in response to tamoxifen-induced staining. Thirty simulations (black open squares) are compared to the experimental color dominance behind Figure 3F in Tas et al. (7) (closed red squares). Correlation between lineage dominance and (B) color dominance or (C) the product of color dominance and color density (PDD). Different staining thresholds were distinguished (line colors). Following tamoxifen induced staining as in Table 1, GC B cells were stained at day 2 post GC onset with 10 colors. Pearson correlation coefficient from 1,000 in silico GCs. 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation.



B cells stained in the course of a reaction each define a new lineage. The evolution of colors is now interpreted to provide information on the evolution of those lineages. Indeed, a correlation between color and lineage dominance exists (Figure 2B, red line). However, it is much weaker than in the case of founder cell staining and limits the interpretation of the data on the evolution of color dominance.

3.3.1. A Staining Threshold Guarantees a Correlation of Color and Lineage Dominance

We sought for a possible filter for the in silico GC data that improves the correlation between lineage and color dominance. Given that a large proportion, in the range of 50% of lineages, is not stained by tamoxifen in silico and in vivo, there is a substantial fraction of GCs that are dominated by a black lineage. This results in an underestimation of the lineage dominance by the color dominance. Indeed, the introduction of a staining threshold, i.e., a minimum fraction of total stained cells in each in silico GC that has to be reached for inclusion of the GC in the analysis, substantially increases the correlation between lineage and color dominance (Figure 2B, blue and magenta lines). However, the level of correlation was still not comparable to that observed when staining founder cells before entering the GC reaction.

The lineage dominance is also (weakly) correlated to the fraction of stained cells in a GC (Figure S2), referred to as color density in the following (see Table 2), provided a staining threshold is imposed. This is the case because a staining fraction above the initial mean staining level is more likely to occur for GCs with high lineage dominance. We tested the degree of correlation between lineage dominance and the product of color dominance and color density, shortly denoted as PDD in the following (Figure 2C). PDD approximates the normalized density score (NDS), which was used in vivo and is defined as the product of color dominance with the density of colored cells in the dark zone, measured as number of colored cells per 10μm2 (7). While the correlation is even weaker in GCs with low color density (yellow, orange, and red lines), the staining threshold allows to reach the same high degree of correlation as was found for the staining of founder cells. Thus, we recommend to use a staining threshold in the range of 40%. With lower thresholds, the correlation gets weaker. With higher thresholds, the correlation hardly improves. Instead, the statistics get critical because a large fraction of GCs is left out of the analysis.

In order to illustrate how the removal of GCs dominated by black, i.e., not stained, B cells improves the correlation we plot lineage dominance against color density (Figure 3). The perfect correlation would correspond to all symbols being concentrated on the diagonal line. The symbols above the diagonal are those with a low color dominance but high lineage dominance. These can be attributed to the cases described above when the staining procedure failed to stain the lineage which became dominant later on during the GC reaction. These GCs are dominantly black. The introduction of a threshold removes these GCs from the analysis as can be seen by the reduction of the number of GCs above the diagonal line with increasing threshold. Note that a staining threshold of 50% also eliminates a part of the GCs at the day of staining (day 0, red symbols) from the analysis, which by definition exhibit a staining level of 48%. By random fluctuations, there is still a subset of GCs with a staining level above the threshold of 50%. The impact of increasing the threshold from 40 to 50% on later time points of the GC reaction is comparably weak, which explains the minor change in the correlation in Figure 2C.
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FIGURE 3. Higher staining thresholds eliminate GCs dominated by unstained lineages. Lineage dominance vs. the product of color dominance and staining density (PDD) with a staining threshold of 0 (A), 30 (B), 40 (C), and 50% (D). GC days are distinguished by symbol/line colors. GC B cells were stained at day 2 post GC onset with 10 colors (Table 1) in 1,000 in silico GCs.



The graph also illustrates that the product of color dominance and color density has the tendency to overestimate lineage dominance. These are the GCs with symbols below the diagonal line in Figure 3. Overestimation is a result of different persisting lineages being stained with the same color. If this happens, different lineages contribute to the same color, while the lineage dominance only corresponds to one of those lineages. This effect is less pronounced for large PDD, as was confirmed by sequencing in vivo (7). The introduction of a staining threshold to select a subset of GCs for analysis makes the fraction of GCs with an overestimation of the lineage dominance more prominent.

3.3.2. The Dominant Color Switches During GC Selection

It is possible that the inhomogeneous color distribution to the B cells (Table 1) is dominating the subsequent fate of the color dominance. If the color reflects the progression of the selection process during the GC reaction, the dominant color should switch between the time point of staining and the time point of evaluation when the selection of lineages was completed. We assumed that this would be the case at day 11 post staining (21). Indeed, a large fraction of GCs switched the dominant color between the time of staining and day 11 (Figure 4). This result further supports that the analysis of color distributions is a suitable measure for the analysis of selection in GCs.
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FIGURE 4. The dominant color switches in the course of GC affinity maturation. Lineage dominance vs. the product of color dominance and staining density (PDD) with a staining threshold of 40% at day 11 post staining (subset of data in Figure 3). Black and gray squares are GC reactions with a staining level below the threshold, while red and green ones are above the threshold, thus, kept for analysis. Black and red GCs have the property that the initially dominant color was also dominant at day 11 post staining. Thus, in gray and green GCs the dominant color has switched between the time of staining and the time of analysis. GC B cells were stained at day 2 post GC onset with 10 colors (Table 1) in 1,000 in silico GCs.



3.3.3. The Time of Tamoxifen-Induced Staining Is Important

The time of lineage definition by tamoxifen is critical for the analysis. For one shot stainings it holds that the earlier recombination is induced the better the correlation with the lineage dominance (Figure 5A), provided we use a staining threshold of 20% or higher. Two lineages that will survive on long-term might be stained with the same color, which overestimates the lineage dominance. At day 3 or 4 of the GC reaction, many low affinity B cells were already eliminated such that the fraction of long-term survivor lineages increases at the time of staining. Hence, an attribution of the same color to different long-term surviving lineages becomes more probable the later the staining is induced.
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FIGURE 5. The staining time point determines the predictive power. Correlation between lineage and the product of color dominance and color density in dependence on the time point of staining. Simulations with single shot (A) or dynamic decay (B) of tamoxifen-induced staining with 10 colors (Table 1). For dynamic tamoxifen decay in (B), a half life of τtamoxifen = 24 h was assumed in Equation (3). Lineages were defined at the time of tamoxifen injection. For lineages complemented by all founder cells entering the GC after injection see Figure S1. For dynamic tamoxifen decay with tamoxifen given at day 2 post GC onset, the lineage dominance distribution is compared to the distribution of the product of color dominance and color density (PDD) without threshold at day 2 (C) and 13 (D) and with a staining threshold of 40% at day 13 post GC onset (E). Data in (A,B) show the Pearson correlation coefficient from 1,000 in silico GCs at day 11 post tamoxifen with different staining thresholds (line colors). 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation.



In addition, lineages become less dominant the later they are defined. This is because similar variants of potentially dominant lineages are defined as different lineages, although neither has a fitness advantage over the other. Hence, it is unlikely that one of them gets lost during further selection. The later staining is induced, the more probable it is to define two similar lineages as different lineages. As a consequence, lineage dominance gets more and more limited the later staining is induced (Figure S3). While with a lineage definition at day 1 post GC onset 100% lineage dominance is frequent, at day 4 the largest dominance found in 1,000 GC simulations was at 60%.



3.4. Decay of Tamoxifen-Induced Staining of Cells

The staining induced by tamoxifen is not a one shot event. Upon tamoxifen injection, recombination of B cells can be induced for a limited time and the probability of recombination decreases over time. The detailed dynamics of the reduction of the recombination probability is not known. We assumed an exponential decay (Equation 3), which reflects a linear decay of tamoxifen activity. As we are interested in the correlation of the color dominance with the dominance of the lineages existing at the time of tamoxifen injection, we decided to define a new lineage not at the time of color attribution but at the time of tamoxifen injection. The correlation between lineage dominance and the product of color dominance and color density is reduced in absolute terms when such staining dynamics are included (Figures 5A,B). The comparison of the distribution of lineage dominance and PDD shows how the two distributions approach each other in the course of GC development but stay separate with a substantial fraction of GCs under-estimating the lineage dominance (Figures 5C,D). This can be repaired by imposing a staining threshold of 40% (Figures 5E).

3.4.1. The Set of Lineages Depends on the Time of Tamoxifen Injection

The marking difference to the one-shot staining is the existence of a time point between day 2 and 3 post GC onset at which correlation is maximized. A population of GCs not observed in one-shot stainings and characterized by low lineage dominance and high color dominance emerges. This new GC population exists for early stainings only (day 1 or 2 post GC onset) and is robust against staining thresholds (Figure S4). It is associated with founder cells entering the GC reaction after the starting time of staining. Indeed, if these late founder cells are included in the set of lineages, this population of GCs disappears again together with the optimal time of staining (Figure S1). At late staining times, correlation is lost due to staining ambiguities. At early staining times, it is lost because of stained cells not belonging to any monitored lineage, giving rise to the observed optimal time point for initiation of B cell lineage staining (Figure 5B). This result emphasizes that it is important to consciously chose the time point of tamoxifen injection because it impacts on the resulting set of lineages and may change the interpretation of the experimental results.

3.4.2. A Decay of the Staining Probability Effectively Retards Staining

As described for the one-shot staining scenario, there is a general tendency that later staining reduces the correlation. By the decay of tamoxifen-induced staining activity, staining is distributed onto 2 days, which corresponds effectively to a retardation of staining by roughly 1 day. Indeed, inititation at day 3 with tamoxifen decay is effectively rather similar to initiation at day 4 with one-shot staining (Figure 5). This effective retardation of staining reduces the overall level of correlation.

3.4.3. The Impact of Recombination of Already Recombined Cells

During the time period of tamoxifen activity, it is possible that a cell undergoes multiple recombination events. This would imply that a cell already expressing a color may switch color. Here, we investigated whether this process would impact on the interpretation of color dominance in terms of lineage dominance. When restaining of already stained cells was allowed in silico, the resulting correlation between lineage dominance and color dominance is further reduced (Figures S5A,B). However, only a small impact was found on the correlation between lineage dominance and PDD (Figures S5C,D). While the possibility of ongoing and repetitive recombination makes the resulting color dominance more fuzzy, the correlation with PDD appears robust.

3.4.4. A Decay of the Staining Probability Induces a Fuzzy Color Distribution

The resulting distribution of colors at the end of the staining procedure is less well defined compared to the one-shot staining, where the distribution reflects the color probabilities (see Table 1). With tamoxifen decay, a lineage stained right at the beginning of the extended staining period will also stain all of the progeny of this lineage. In contrast, for a lineage stained at the end of the staining period, only a small subset of the progeny is stained, for the cell defining the lineage has divided a number of times and only one of these daughter cells is stained together with its progeny. Other progeny from the very same lineage might not be stained or be stained with different colors. As a consequence, the color dominance under-estimates the lineage dominance (Figure S3). Thus, at the end of the staining period, the number of stained cells from a lineage does not necessarily reflect the size of the lineage and adds to the uncertainties associated with staining different lineages with the same color (over-estimation) or staining the same lineage with different colors (under-estimation). This limitation gets even more important for late initiation of staining, when it gets more likely that two similar parts of a lineages both survive GC selection. The higher variability of the color distributions at the end of the staining process, overall reduces the correlation of color and lineage dominance.

3.4.5. A Shortened Tamoxifen Staining Activity Would Improve Color Analysis

Some of these stained GCs under-estimating lineage dominance are removed by the staining threshold (Figures 5D,E). As tamoxifen activity was assumed to decay exponentially, in many cases staining happens only one division after the time of initiation of staining, which may still induce a high degree of staining. Also the staining of other progeny from the same lineage with a different color would keep the stained cell fraction high. Thus, a relevant proportion of GCs exists, which exhibits a high fraction of stained cells above the staining threshold but still results in an under-estimate of lineage dominance (Figure S4). A slow decay of tamoxifen activity in the range of days, requires a higher staining threshold for the analysis of 50% or higher in order to keep up with the correlation level of one-shot stainings. In view of the reduced statistics (see absolute counts of GCs in Figures 5D,E), it would be more advantageous to stop tamoxifen activity at defined time points in experimental settings. For example, one might consider shortening the period of tamoxifen activity by administering the drug already in its active form as 4-hydroxy-tamoxifen.

3.4.6. Later Staining Limits Lineage Dominance

The later the lineages are defined, the more the lineage dominance achieved is limited (Figure S3). While lineages fully dominating the GCs exist for stainings initiated at day 1–3 post GC onset, their frequency decreases. In stainings at day 4, the highest dominance is reduced to 60%. For late stainings, the identification of GCs dominated by single clones becomes rare based on tamoxifen-induced staining.



3.5. Colored GCs Are Predictive of Black GCs

Imposing a staining threshold in the range of 40% or higher turned out to be critical in order to ensure predictive power of the color dominance for the lineage dominance. This was tested for the GCs satisfying the staining threshold. It would be of particular interest, whether the statements on lineage dominance are not only valid for the highly stained GCs but apply to all GCs.

In order to test this, we compared the lineage dominance distribution for GCs above and below the staining threshold (Figure 6). There exists an optimal staining threshold of 45% for which the lineage dominance of the GCs kept (green bars) and deleted (red bars) from the analysis are widely identical (Figure 6B). With higher staining thresholds (Figure 6C), lineage dominance in the range of 30% are more frequent in the GC subset deleted from the analysis. Thus, the GC subset kept for analysis will underestimate the lineage dominance in this regime. For lower staining thresholds (Figure 6A), the situation is inverted. The difference between both subsets scales with the deviation of the staining threshold from 45%. The optimal staining threshold of 45%, shown in Figure 6 for the case of decaying tamoxifen activity, equally holds true for one-shot stainings (data not shown). In conclusion, the staining threshold of 45% not only guarantees a fairly good correlation with lineage dominance with acceptable statistics. It also guarantees that the lineage dominance estimated with the subset of GCs stained to more than 45% remains valid for the whole set of GCs.
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FIGURE 6. Estimation of the lineage dominance of GCs below the staining threshold. The distribution of lineage dominance is shown for the GCs above (green) and below (red) the staining threshold separately. Data were derived from the 1,000 simulations with dynamic tamoxifen decay as described in Figure 5 at day 11 post tamoxifen. The comparison of the GC subsets was repeated for staining thresholds of 40 (A), 45 (B), and 50% (C).





3.6. Impact of the Fraction of Stained Cells

The fraction of stained GC B cells induced by tamoxifen was in the range of 50% in vivo (7). It is not clear whether a different fraction of stained cells would improve the correlation between color and lineage dominance or reduce it. An increase of the stained fraction would allow to achieve better statistics. We varied the fraction of stained cells between 10 and 90% (Figure 7). Without imposing a staining threshold the intuitive result that staining more infers a better correlation of color and lineage dominance is confirmed (Figure 7, red lines).
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FIGURE 7. Staining less cells improves predictive power. Correlation between lineage and the product of color dominance and color density in dependence on the fraction of stained cells. Simulations with single shot staining (A) or dynamic decay (B) with 10 colors (Table 1) at day 2 post GC onset. Pearson correlation coefficient from 1,000 in silico GCs at day 11 post tamoxifen with different staining thresholds (line colors). 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation.



This relationship is turned around for higher staining thresholds. The lower the stained fraction of GC B cells the better the color dominance informs about the lineage dominance. Compared to 50% stained cells with a staining threshold of 40%, the same correlation is found for 10% stained cells with a staining threshold of less than 20% (Figure 7A). There is a trade-off between less stained cells, which reduces the statistics, and a lower cut-off, which increases the statistics again. Experiments should be planned to stain a comparably low fraction of cells in order to facilitate the analysis and to improve the predictive power of the color distribution. Staining of lower fractions of cells requires less repetitive dosing of tamoxifen, such that the limitations due to extended staining periods (Figure 5) are also reduced.

The same trend holds true for a tamoxifen activity spread over 2 days. However, the overall level of correlation is lower (Figure 7B).

Tamoxifen-induced cell staining induces a color distribution that carries information on the lineage distribution but not on the clones. Information on the founder cells is widely lost. In the limit of low staining fractions with high staining thresholds it is possible to get a fair correlation of early one-shot induced color dominance and clonal dominance (Figure S6). However, already at day 2 the correlation becomes rather weak.



3.7. The Predictive Power of 4 and 10 Colors Is Similar

In experimental settings, the variety of colors is generated making use of the so-called brainbow allele (1), which was implemented in the Rosa26Confetti mice (5). The random Cre-recombination of the color segments is induced by injection of tamoxifen and generates cells with 4 different colors. When the brainbow staining is implemented on both alleles, the diversity of colors is enhanced to 10 colors (7). Here we investigated, whether 10 colors are more predictive for the lineage dominance in GCs than single allele Confetti mice. It turns out that the correlation of lineage dominance and the product of color dominance and stained fraction of cells is rather similar with 4 or 10 colors (compare Figure 8 to Figures 5A,B and Figure 7). In particular, in one-shot stainings it is found that the predictive power of 4 colors is even better than with 10 colors for early stainings and low fractions of stained cells (Figures 8A,C). Further, for simulations with decaying tamoxifen-activity, the optimal time point (day 3 post GC onset) for the initiation of staining is the same as for 10 colors and the overall correlation is reduced to a similar degree (Figure 8B). This can be rescued by reducing the fraction of intially stained cells (Figure 8D).
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FIGURE 8. Four colors have similar predictive power than 10 colors. Correlation between lineage and the product of color dominance and density in dependence on the time point of staining (A,B) or the fraction of stained cells (C,D). Simulations with single shot (A,C) or dynamic decay (B,D) of tamoxifen-induced staining with 4 colors (Table 1) (full lines) or with 10 colors with equal probabilities (dashed lines). For dynamic tamoxifen decay, a half life of τtamoxifen = 24 h was assumed in Equation (3). Lineages were defined by the cells present at the time of tamoxifen injection. Pearson correlation coefficient from 1,000 in silico GCs at day 11 post tamoxifen with different staining thresholds (line colors). 95% approximate confidence intervals to the Pearson product moment correlation were computed using the Fisher transformation.



The unexpected result that 10 colors would not be substantially better predictors than 4 colors prompted us to test whether the reason for this lack of improvement by more colors would be related to the rather inhomogeneous probability of activation of the different colors (Table 1). Indeed, when assuming equal probabilities for all 10 colors, the predictive power is better than for 4 colors and also better than for 10 colors based on real activation probabilities in Table 1 (compare Figure 8B, dashed and full lines).




4. DISCUSSION

The present analysis supports that the Brainbow construct is suitable for the analysis of an evolutionary system like the evolution of GC B cells in the context of an immune response. When all germline B cells are stained before the GC reaction, the color distribution during and at the end of the evolutionary process in the GC reaction is predictive of the clonal distribution. Thus, staining and fate monitoring of colors is a good approximation for the analysis of clonal evolution. Sequencing of B cells is only necessary to account for specific clones, but the clonal dominance is well evaluated based on the colors alone.

When the Cre-dependent recombination is employed to stain the B cells in the course of a GC reaction, the color is predictive of the clonal composition provided the staining is limited to a rather short time interval. The longer the staining progresses, the weaker the correlation to the clonal distribution. With a prolonged staining procedure, staining ambiguities like staining of two lineages with the same color, is aggravated by the variability of initial states of the color distributions. A lineage is defined at the beginning of the staining procedure, such that a late staining event leads to a few stained cells in comparison to an early staining event, where the whole lineage branch would be stained. For that reason, it is recommended to limit the action of tamoxifen to a short time period.

An important source of ambiguity is that there is only a fraction of cells stained by tamoxifen-induced recombination. This implies that there is a proportion of GCs in which the unstained B cells would become dominant. A good predictive power relies on the elimination of black-dominated GCs, which can be achieved by imposing a staining threshold. This threshold eliminates all poorly stained GCs from the analysis. A suitable staining threshold is in the range of 40%. With longer staining periods, 50% leads to better results. A staining threshold of 45% was identified that allows to extrapolate the lineage dominance derived from the subset of GCs above the staining threshold to the whole set of measured GCs, including the GCs left out from the analysis.

Intuitively, one would expect that staining more B cells would improve the predictive power. This is only true without a staining threshold, thus, including all GCs irrespective how strongly they are stained. However, together with imposing a staining threshold, the relationship is inverted. Low staining fractions are substantially more predictive of clonal dominance than high staining fractions. At the same time, the total number of GCs eliminated by the threshold increases if only a small fraction of B cells per GC is stained. Thus, in the future design of such experiments it is important to find the right balance between statistical significance and low staining. Staining of 30% of the GC B cells appears as a good starting point from the point of view of in silico GCs.

The time point of staining is an important parameter. The general tendency is the earlier the better. At later time points, a pre-selected set of B cells is stained, which increases errors of staining different lineages with the same color, thus, further over-estimating the clonal dominance by the color dominance. This happens because the pre-selected B cells are more likely to both survive and persist in the continuation of the GC reaction. However, at very early time points, the set of different lineages is limited. Physiologically, it might make sense to wait until a minimum of B cell diversity was achieved. Otherwise, it would make more sense to use the Mx1-Cre system, in which founder GC B cells carry a color already when they start the GC reaction.

Depending on the question under consideration, one might want to analyse the set of cells present in the GC at the particular time point at which staining is induced, or of all cells getting stained in the course of the GC reaction. In the latter case, earlier staining increases predictive power. In the former case, earlier staining reduces predictive power. This is due to late founder cells that enter the in silico GC reaction and still get stained. Colored B cells exist without any lineage counterpart in the analysis. If lineages defined at a particular time point are in the focus of the research, there exists a time point of inducing the staining between day 2 and 3 post GC onset, which is optimal for the analysis of lineage dominance.

The analysis is based on a set of 1,000 in silico GC simulations in agreement with data from two-photon imaging (22–24) and anti-DEC205-OVA experiments (15). This set of GC simulations was used to interpret the data in Tas et al. (7) and correlates well with the results therein. Clonal and color dominance are likely depending on model parameters like affinity of founder cells to the antigen, division rate, selection pressure, strength of antibody feedback, etc. A different set of simulations might well quantitatively shift one or the other result, provided the change would influence the timing of selection or the number of mutations in the GC reaction. For example, the quality of the GC founder cells might vary depending on the type of immunization and the existence of transgenic B cells with a particular affinity to the immunizing antigen. This implies that the planning of new experiments would ideally go hand-in-hand with a specifically adapted set of simulations.
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Increased interest in the immune system's involvement in pathophysiological phenomena coupled with decreased DNA sequencing costs have led to an explosion of antibody and T cell receptor sequencing data collectively termed “adaptive immune receptor repertoire sequencing” (AIRR-seq or Rep-Seq). The AIRR Community has been actively working to standardize protocols, metadata, formats, APIs, and other guidelines to promote open and reproducible studies of the immune repertoire. In this paper, we describe the work of the AIRR Community's Data Representation Working Group to develop standardized data representations for storing and sharing annotated antibody and T cell receptor data. Our file format emphasizes ease-of-use, accessibility, scalability to large data sets, and a commitment to open and transparent science. It is composed of a tab-delimited format with a specific schema. Several popular repertoire analysis tools and data repositories already utilize this AIRR-seq data format. We hope that others will follow suit in the interest of promoting interoperable standards.
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RATIONALE

The increasing use of next-generation sequencing technology to study antibody (IG) and T cell receptor (TR) repertoires led to the establishment of the Adaptive Immune Receptor Repertoire (AIRR) Community in 2015. The goal of the AIRR Community (which was incorporated into The Antibody Society in 2017 to amplify its membership and activities) is to promote community-driven best-practices around the generation, use, and sharing of AIRR sequencing (AIRR-seq or Rep-Seq) data (1). A major goal of the AIRR Community is to facilitate comparative and integrative analyses of AIRR data. So far, the community effort has defined a list of minimal metadata elements (MiAIRR) for describing published AIRR-seq datasets (2) and is actively developing simple interfaces for depositing these datasets in established repositories (3). As a first step toward standardization, the MiAIRR data standard focuses primarily on metadata describing the study design and the type of information to be collected. Providing a standardized machine-readable format, as described herein, will remove a substantial barrier to cross-repository interoperability and cross-dataset analyses. With the proliferation of software tools for the analysis of AIRR-seq data (4–6), there is a pressing need to be able to share data between different applications, pipelines, and databases. To bridge these gaps, the AIRR Community has tasked the Data Representation Working Group (DRWG) to develop data models, schema specifications, file formats, and application programming interfaces (APIs) to promote interoperability and reusability of AIRR-seq data. This paper has two goals: (i) a description of the guiding philosophy we have adopted for defining data representations and (ii) a description of the schema and associated file format we have released specifically for annotated rearrangement data.



DESIGN GOALS

Standardized file formats are key to interoperability and effective data sharing of high-throughput AIRR-seq data because they function as a grammar that provides structure to a potentially large set of heterogeneous data. One of the challenges of developing a standard is finding the right balance between rigor and usability that will lead to wide community adoption. The format has to allow the accurate representation of the complexity of the experiment while maintaining flexibility and human-friendliness. The formats and schema developed by the DRWG have been designed to promote accessibility, scalability, and transparency, especially in light of the rapidly changing technological landscape.


Accessibility

A major goal is to make AIRR-seq data sets the easiest to use for the broadest possible set of researchers and applications. Our primary specification is a relational-compatible schema for commonly used objects in AIRR-seq, which are stored as tab-delimited text files. There exist an enormous number of tools for processing such tabular data supporting a range of expertise levels and applications. Non-programmers can use common spreadsheet applications like Microsoft Excel or Google Sheets to perform simple exploratory data analysis. Programmers can process datasets and perform more complex analyses using flexible and fully-featured environments like R and Python. Large production operations can make data available through SQL databases or through the cloud using distributed computing frameworks like Hadoop and Apache Spark. The key idea is that all of these tools trivially support the ingestion and processing of tab-delimited text data. The tradeoff in this design choice is that we are restricted to a less expressive tabular data model, in contrast to formats like XML, JSON, or Protocol Buffers. Text data also requires parsing different data types, in contrast to binary formats like Apache Parquet. A further goal is compliance with the tidy data structure philosophy (7) wherein all columns are variables and each row contains a single observation of those variables. A tidy structure simplifies analyses employing split-apply-combine strategies and is readily importable into tabular databases. An additional benefit to a tabular format is that it is readily extensible by simply appending columns when a tool or database requires custom fields.



Scalability

The continued increase in DNA sequencing throughput, combined with increasing interest in the immune repertoire, anticipates the generation of massive AIRR-seq datasets. Indeed, multiple projects propose the generation of billions of IG/TR sequences over the next several years with the intent to mine them for biomarkers, vaccine design, and many other applications. While most analyses of AIRR-seq data today are typically performed in single-node environments by loading data into memory (e.g., via R's data.frame or Python's pandas.DataFrame), the scale of future datasets will likely require the use of distributed computing. A key design consideration in choosing a line-oriented format is therefore to ensure our data files are splittable. Splittable data formats are such that a process can start reading a file from any arbitrary byte position in the file and find the correct record boundaries. This allows a system to read a single, large file from multiple start points in parallel, rather than requiring a process to read data from the beginning of a file. Similarly, it is simple to consider a collection of tab-delimited files with a compatible schema as a single dataset by logically concatenating them, allowing the parallelized writing of datasets.

Importantly, certain compression schemes (e.g., gzip) are not splittable, while others do allow reading from arbitrary byte offsets (e.g., bzip2, blocked gzip). We strongly encourage the use of splittable compression formats. One way in which our accessibility and usability goals might conflict with scalability is our preference for tidy data structures, which necessarily introduces redundancy and may require reshaping of data as a preprocessing step to certain computations. On the other hand, redundancy compresses well. We leave open the possibility of endorsing the use of a binary container format for tabular data, including columnar schemes like Apache Parquet (https://parquet.apache.org/) in the future. Finally, our group is coordinating with the AIRR Community's Common Repository Working Group (CRWG) to define a compatible API for repositories containing large volumes of AIRR-seq data.



Transparency

The DRWG develops implementations openly on GitHub and we welcome the participation of the community. We are using software engineering best-practices, including continuous integration and delivery to ensure our standards, libraries, and documentation remain consistent. Our format is continuing to evolve and we do not wish to require users to repeatedly reformat possibly large sets of data. Therefore, we have implemented a variation of the semantic versioning scheme (https://semver.org) to ensure that no changes to field definitions occur without a corresponding change in the version number (X.Y.Z). Specifically, because the development repository contains the work of multiple AIRR Community working groups, the major version number (X) is reserved for changes that impact multiple standards, such as updates to the MiAIRR data standard; the minor version number (Y) reflects changes in the schemas and APIs; and the patch version number (Z) is for updates to the associated software packages or documentation that are not accompanied by schema modifications. To further maintain backward-compatibility, a key design goal is that the definitions and names of fields will not be changed unless a major flaw has been revealed. Rather, the schema changes will be preferentially introduced by adding fields with new names and deprecating obsolete fields.

Adoption is critical to the success of any format. Bioinformatics is plagued with format conversion, and we are wary of simply defining yet-another-format for AIRR-seq data without a clear path to adoption (Figure 1).
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FIGURE 1. Standards proliferation. The DRWG has been actively engaging as many community members as possible to drive adoption of our new standard. https://xkcd.com/927/.



To that end, we have developed reference APIs for both R and Python to facilitate addition of the format to existing tools (see section AIRR reference APIs for further details). Furthermore, we have engaged a broad community of authors of popular AIRR software packages and resources to contribute in the design and implementation of the annotated rearrangement schema described herein, including IgBLAST (8), Immcantation (9, 10), iReceptor (11), VDJServer (12), SONAR (13), ImmuneDB (14, 15), TRIgS (16), Partis (17), MiXCR (18, 19), IGoR (20), OLGA (21), and Vidjil (22, 23) (Table 1). Direct involvement of the stakeholders will help ensure our standards continue to evolve to meet the needs of the community. We will continue active outreach to new tool and database developers as part of the AIRR Community's broader efforts.



Table 1. Tools and databases supporting the AIRR Rearrangement schema.
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ANALOGOUS EFFORTS

There exist a multitude of standardization efforts in bioinformatics. Indeed, FAIRsharing (24) is a centralized registry of standards, databases, and policies containing over 500 standards related to the life sciences alone (including MiAIRR). In this section, we review some analogous efforts and cover some existing formats that we believe are not suitable for our goals.


Minimal Reporting Standards

There exist a large array of “minimal standards” in different life sciences domains that strive to capture necessary information for other research groups to fully reproduce each other's experiments and analyze each other's data (25). For example, the MIAME (Minimum Information About a Microarray Experiment) standard (26) describes the six components of information necessary to describe a microarray experiment, including the study design, the array design, the experimental conditions of hybridization, a description of the biomaterial sample, the actual raw data, and any normalizations. Analogously, the MINSEQE (Minimum Information about a high-throughput SEQuencing Experiment) standard (27) enumerates the five elements of experimental description which are necessary to interpret a high-throughput nucleotide sequencing experiment.

Reporting information about AIRR-seq experiments is unique because datasets may represent samples of B cells and T cells from a variety of different cell types. Furthermore, other standards do not take into account the unique genetic architecture of the IG and TR loci. To address these issues, the AIRR Community has defined its own set of minimal standards [MiAIRR; see (2)]. Most importantly, like many of the other minimal standards efforts, the MiAIRR data standard defines what should be reported, but not how it should be reported, and certainly not in a machine-readable format. In an effort to follow the FAIR principles for data management and promote interoperability, we describe herein our efforts at a machine-readable file format for AIRR-seq experiments that is compliant with MiAIRR.



Bioinformatics File Formats

Here we review a number of commonly used bioinformatics file formats, including which design features we emulated and which design elements are not appropriate for storing AIRR-seq data.

At its core, annotation of IG and TR sequences is derived from alignments against a reference database or an analogous operation. The SAM and BAM formats are ubiquitous for storing aligned NGS data [(28) and https://samtools.github.io/hts-specs/]. However, the genetic architecture of IG and TR sequences requires that each read be separately aligned to the reference set of individual V, D, and J genes. This would require multiple SAM/BAM records per IG/TR sequence, complicating data processing. Furthermore, a given BAM file is mandated to be globally sorted relative to a reference set of contigs, effectively partitioning all V, D, and J alignments into separate parts of the file (or into separate files entirely). The BAM format also implements a custom binary format which requires maintenance of a large toolchain in order to manipulate. Its non-canonical structure has led to considerable effort in porting its toolchain to achieve compatibility with Hadoop-based architectures (29).

Similarly to the VCF format for storing genome variation, we chose an easily readable tab-delimited text-based format. However, VCF files are actually structured into three sections. The meta-information section contains information about the version of the VCF and optional lines about processing of the data. The header section contains the standardized field names for the data captured within each column of the third section, along with additional lines specifying how to parse certain columns. The data section captures the genomic variations per sequence at each line. However, because VCF includes certain fields that have a user-defined structure, these fields must be parsed, leading to considerable complications in interpreting such files. Finally, VCF files tend to grow horizontally (i.e., more samples requires more columns), which is a barrier to scalable architectures that generally assume only the ability to append data.

Another set of common bioinformatics formats are designed to store range annotations on genomes, including BED (30), GFF, and GTF (31). They are also text-based delimited formats. However, their column-set is highly constrained so that a single record contains only a single annotation. To store AIRR-seq data, each IG or TR would have to span multiple lines, complicating the processing of such files and sacrificing a degree of human readability. Furthermore, a significant number of IG/TR annotations are not keyed to genomic coordinates. Finally, these architectures would necessitate storing the sequences themselves in separate files and do not have a natural way to store alignments.



Other General-Purpose Container File Formats

Accessibility is one of the primary design goals of our format, which strongly suggests using a standard general-purpose storage format for AIRR-seq data. Both JSON and XML are standard formats with parsers in every language that support the description of complicated data records, including nested data. However, both JSON and XML are very verbose (as field names must be replicated into each record), and XML in particular is notoriously finicky to parse, in addition to being unsplittable. Moreover, enforcing the use of a particular schema would be more difficult. Most significantly, necessitating the use of JSON/XML would exclude less computationally-savvy users that depend on spreadsheet software, and preclude the use of many popular statistical tools that assume a tabular data model.

Another family of general-purpose container formats are built around the serialization frameworks in the Hadoop ecosystem, such as Protocol Buffers, Thrift, Avro, and Parquet (32). These are binary file formats that support the use of either tabular or nested data models. The tools can strictly enforce a particular schema and can achieve very high performance, including from the use of columnar storage (33). However, they are not as user-friendly because they require special tools for reading/writing the data and do not have ubiquitous language support.

SQLite represents another option for tabular data storage with broad language support, including the ability to run SQL queries. However, similar to the binary formats above, this would eliminate ease-of-use and require users to use the SQLite API.



IG- and TR-Specific Formats

Our work was heavily influenced by previous attempts at developing formats for IG and TR sequences, including VDJML, the output of IMGT/HighV-QUEST (34), and the Change-O format. Indeed, our working group includes members of several of these previous efforts. For the reasons described below, it was decided a new annotated rearrangement format was required to meet the needs of the broader community.

VDJML is an XML-based file format specifically designed for AIRR-seq data and describes the alignments of rearranged sequences to germline genes with the accompanying set of annotations (35). It only represents annotations directly related to the alignment and does not represent the additional downstream annotations. We considered enhancing VDJML to include those annotations, as the expressivity of XML allows a large number of annotations to be stored in a nested structure for each record. However, based on the downsides of XML described above, we ultimately decided that VDJML was not a suitable format. We provide a mapping between the VDJML tags and the data elements in the AIRR Rearrangement schema in Supplementary Table S1.

IMGT provides a text-based serialization format designed for storing annotated IG and TR data that is a variation on the INSDC format (like GenBank and EMBL formats). However, this format is difficult to parse and incompatible with many standard tools for analyzing data. The IMGT/HighV-QUEST tool for annotating IG and TR sequences also provides output in a tabular delimited format. However, the results are spread across multiple TSV files that must be manually joined, including duplicate field names with content that differs between files, which complicates analyses. IMGT's format is also not openly developed, breaking our requirement for transparency.

The Change-O delimited format was most similar to our ultimate design, as it has an IG/TR-specific schema and meets many of our design goals. However, similar to IMGT's tabular format, the Change-O format was designed to meet the needs of a specific tool suite (Immcantation), and therefore lacks some requirements germane to support for a broad range of software tools. Ultimately, due to MiAIRR compatibility requirements, the need for features to support the efforts of other AIRR working groups (e.g., CRWG APIs), and backwards-incompatible technical choices (e.g., end vs. length fields, CIGAR vs. BTOP), we decided to specify a new schema under the AIRR umbrella. In large part, our schema represents a superset of the data elements defined by the Change-O format, with the exception of a few elements that were excluded due to their inapplicability outside Immcantation. A complete correspondence of the fields between the AIRR Rearrangement schema, the Change-O format, VDJML, and IMGT/HighV-QUEST's tabular output is shown in Supplementary Table S1.




AIRR DATA REPRESENTATION FOR ANNOTATED REARRANGEMENTS

We propose a versioned data representation standard for reference alignments and rearrangement annotations for AIRR-seq data using a tab-separated values (TSV) format with a well-defined schema of column names, data types, and encodings for reference alignment results and common upstream/downstream non-alignment annotations. This paper describes v1.2.0 of the data representation standard. The schema is provided in a machine-readable YAML document that follows the OpenAPI v2.0 specification. Strict typing enables interoperability and data sharing between different AIRR-seq analysis tools and repositories, and we are considering the use of controlled vocabularies for certain fields as well. We define a dataset in this context as: a TSV file, a TSV with a companion YAML file containing metadata, or a directory containing multiple TSV files and YAML files. The v1.2.0 schema, TSV format specification, and an example data file are provided in the Supplementary Materials (Supplemental Data Sheet 1).


AIRR Rearrangement Schema Specification

The main data type of interest is an “annotated rearrangement,” which describes a rearranged adaptive immune receptor chain (e.g., antibody heavy chain or TCR beta chain) along with a host of annotations. These data elements are defined by the AIRR Rearrangement schema, which comprises eight categories as shown in Figure 2. By default, data elements representing sequences in the schema contain nucleotide sequences except for data elements ending in “_aa,” which are amino acid translations of the associated nucleotide sequence. The Input category consists of the input sequence to the V(D)J assignment process. The Primary Annotations category consists of the primary outputs of the V(D)J assignment process, which includes the gene locus, V, D, J, and C gene calls, various flags, V(D)J junction sequence, copy number (duplicate count), and the number of reads contributing to a consensus input sequence (consensus count). The Alignment Annotations and Alignment Positions categories contain detailed alignment annotations including the input and germline sequences used in the alignment; score, identity, statistical support (E-value, likelihood, etc); the alignment itself through CIGAR strings for each aligned gene; and start/end positions for genes in both the input and germline sequences. The Region Sequence and Region Positions categories consists of sequence and positional annotations for the framework regions (FWRs) and complementarity-determining regions (CDRs). Lastly, the Junction Lengths category provides lengths for junction sub-regions associated with aspects of the V(D)J recombination process. The online documentation (https://docs.airr-community.org) will always have the most in-depth and up-to-date description of the format.
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FIGURE 2. AIRR Rearrangement schema v1.2.0. Overview of the schema for representing annotated rearrangements. Fields in bold are required columns in the TSV. All fields, including those that are required columns in the TSV header, can be set to null by assigning an empty string as the value.



The specification includes two classes of fields. Those that are required and those that are optional. Required is defined as a column that must be present in the header of the TSV. Optional is defined as column that may, or may not, appear in the TSV. All fields, including required fields, are nullable by assigning an empty string as the value. There are no requirements for column ordering in the schema, although the Python and R reference APIs enforce ordering for the sake of generating predictable output. The set of optional fields that provide alignment and region coordinates (“_start” and “_end” fields) are defined as 1-based closed intervals, similar to the SAM, VCF, GFF, IMGT, and INDSC formats (GenBank, ENA, and DDJB; http://www.insdc.org).

Most fields have strict definitions for the values that they contain. However, some commonly provided information cannot be standardized across diverse toolchains, so a small selection of fields have context-dependent definitions. In particular, these context-dependent fields include the optional “_score,” “_identity,” and “_support” fields used for assessing the quality of alignments which vary considerably in definition based on the methodology used. Similarly, the “_alignment” fields require strict alignment between the corresponding observed and germline sequences, but the manner in which that alignment is conveyed is somewhat flexible in that it allows for any numbering scheme (e.g., IMGT or KABAT) or lack thereof.

While the format contains an extensive list of reserved field names, there are no restrictions on inclusion of custom fields in the TSV file, provided such custom fields have a unique name. Furthermore, suggestions for extending the format with additional reserved names are welcomed through the issue tracker on the GitHub repository (https://github.com/airr-community/airr-standards).



AIRR Reference APIs

One of our key design principles was simple programmatic access to the data using commonly-available parsers for tab-delimited formats. While the AIRR Rearrangement schema is fully functional and portable using this approach, we have also implemented Python and R reference libraries that perform type conversion and validate standards compliance for applications that require strict adherence. These libraries also provide a programmatic interface to the entire MiAIRR annotation set and the experimental schemas that are currently under development. These APIs, with bundled schema definitions, are available for download from the AIRR Standards GitHub repository (https://github.com/airr-community/airr-standards), the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/airr), and the Python Package Index (https://pypi.org/project/airr) under a permissive license (CC BY 4.0).

Furthermore, the specification of the AIRR Rearrangement schema using OpenAPI v2.0 provides a standards based mechanism for describing the interface to tools and resources that share AIRR-seq data through APIs. For example, it is possible to utilize automatic documentation and code generation tools such as those found on https://swagger.io to develop web-based AIRR-seq client and server applications.



AIRR Rearrangement Schema Implementations and Support

Several AIRR-seq analysis tools and data repositories have already implemented the AIRR Rearrangement schema while several others are planning support for a future release (see Table 1 for a complete list). An updated list of software and resources that support the various AIRR standards is maintained on the documentation site (https://docs.airr-community.org).



Example Use Case

An example use case showcasing the tool interoperability provided by the AIRR Rearrangement schema is shown in Figure 3A. The flowchart demonstrates generating annotated AIRR-seq data with IgBLAST along with additional data processed by IMGT/HighV-QUEST and converting the combined data into an AIRR Rearrangement compatible TSV using Change-O (part of the Immcantation framework). Finally, the merged output of these two distinct tools is used to (a) perform analysis and (b) create MiAIRR-compliant GenBank/TLS submission files. More details regarding each step, the commands used, and an example data set are available from the documentation site (https://docs.airr-community.org).
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FIGURE 3. Interoperability example. Shown is a set of flowcharts depicting examples of the interoperability facilitated by the AIRR Rearrangement schema. (A) Starting with repertoire sequencing data in the FASTA format, either IgBLAST or IMGT/HighV-QUEST in combination with Change-O's conversion tool may be used. Once data conforms to the AIRR Rearrangement schema, Change-O can be used to generated MiAIRR-compliant GenBank/TLS submissions. AIRR-seq data from separate tools and pipelines can easily be combined for aggregate analysis. (B) Data may be exported from or imported to the iReceptor or VDJServer repositories using the TSV format. Data is returned from queries to the separate repositories using the TSV format and can be integrated into a single collection for downstream analysis.



A further example of the power of the AIRR Rearrangement schema is the ability to perform federated queries across repositories that adhere to the REST API being developed by the CRWG (section Roadmap). For example, the iReceptor Scientific Gateway can search for data of interest (e.g., twin and non-twin sibling data) from multiple studies and across multiple repositories (e.g., the VDJServer and iReceptor Public Archive repositories). Because both repositories support the AIRR Rearrangement schema and provide their output in the TSV format, the gateway can collate those results and further process them into a format suitable for downstream analysis. Such a use case is shown pictorially in Figure 3B and is described in detail in (11).




DISCUSSION

In collaboration with many stakeholders, we have defined a schema and associated file format for representing annotated IG/TR rearrangements. By choosing to use a ubiquitous tabular container format (TSV), we have ensured that data coming from AIRR-seq pipelines will be available in a way that is accessible to a broad population and will scale to massive data sizes. We have developed this machine-readable format in coordination with other AIRR working groups on GitHub with the goal of enabling tool and database interoperability guided by the goals of accessibility, scalability, and transparency. We have also laid the groundwork for defining additional schemas for AIRR-seq related objects in the future.

The DRWG is engaged in continuous dialog and coordination of efforts with other AIRR Community working groups. We have coordinatedd with the Minimal Standards Working Group to use the MiAIRR data standard as a guide for classifying certain fields as required or optional. We are coordinating with the CRWG to ensure our schema is compatible with the REST API they are developing. The DRWG is also working with the Germline Database Working Group to ensure compatibility with their strategies for curating newly discovered germline reference genes and alleles derived from allele inference tools and sequencing projects. As the AIRR Community effort develops, further data representations will be released to meet these needs. A partial list of schemas under active development and scheduled for near-term release are described in the Roadmap sections that follow.


Roadmap: Detailed Alignment Schema

A core intermediate step in annotating AIRR-seq data is generating possible alignments of the IG/TR sequences to standard germline databases. While many researchers may be primarily interested in only the optimal reference alignment annotations described by the AIRR Rearrangement schema, some applications also require a list of sub-optimal reference alignments. As such, we are developing an additional TSV specification specifically for representing multiple annotation assignments on a single query sequence as a hit table, similar to the output of tools such as BLAST. Typically, this type of data set will be used as intermediate output, for tasks such as performance evaluation of an alignment tool, reassignment of optimal gene calls using alternative criteria, or performing genotyping with ambiguous gene assignments as a starting guide (36–38). This Alignment schema is available on the main AIRR standards documentation site (https://docs.airr-community.org) under the Data Representations / Alignment Schema section. This specification is in an experimental state, but under active development, and we expect to release an official draft late in 2018.



Roadmap: Metadata Schema

Along with the primary data files, a dataset may contain metadata corresponding to the MiAIRR description of the experiment. This may include, but is not limited to, study design, sample demographic data, various experimental conditions, analysis tool versions, and pipeline provenance data. Representing both MiAIRR defined metadata and provenance is somewhat more complex because it contains a hierarchy of relationships that cannot be easily encoded in a tabular format. In this case, we recommend the storage of such data using YAML, a human-friendly superset of JSON. YAML/JSON metadata can be easily modified using a text editor and parsed in virtually every programming language.

The AIRR Metadata schema is also under active development at the time of writing. Currently, a full specification of MiAIRR data elements is complete and available online at the AIRR Standards GitHub repository (https://github.com/airr-community/airr-standards). Completion of the data representation schema and associated API is planned for a future release.



Roadmap: AIRR Data Commons

The CRWG has developed a set of recommendations (https://github.com/airr-community/common-repo-wg/blob/master/recommendations.md) for an AIRR Data Commons that promotes the deposition, sharing, and use of AIRR-seq data. The recommendations (i) state the general principles for sharing of AIRR-seq data; (ii) outline the characteristics of compliant repositories for data deposit, storage and access; and (iii) describe a distributed model for compliant repositories for AIRR-seq data, linked by a central registry. The integration between the iReceptor platform and the VDJServer repository (Figure 2B) makes use of the AIRR Rearrangement schema as an early version of a REST API for querying AIRR-seq data. CRWG is currently developing a more comprehensive REST API, which will include the AIRR Rearrangement and Metadata schemas. AIRR compliant data repositories will implement a set of recommendations, including a REST API service, thus providing a standardized query capability and interoperable data format for all data repositories part of the AIRR Data Commons. Specifications and reference service implementations will be released through the AIRR standards GitHub repository (https://github.com/airr-community/airr-standards) at a future date.




CONCLUSIONS

We have described the design goals of the AIRR Community's DRWG along with a schema and file format for annotated IG/TR AIRR-seq data. The data representations described herein can function as a standardized communication tool across different parts of the AIRR-seq data ecosystem, including users, data repositories, and analysis tools. We hope that our guiding design principles of accessibility, scalability, and transparency will help promote wide adoption. We welcome and actively encourage contributions and involvement from the broader community with the ultimate goal of simplifying tool interoperability and data sharing in the study of adaptive immune receptor repertoires.
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Antibody evolution studies have been traditionally limited to either tracing a single clonal lineage (B cells derived from a single V-(D)-J recombination) over time or examining bulk functionality changes (e.g., tracing serum polyclonal antibody proteins). Studying a single B cell disregards the majority of the humoral immune response, whereas bulk functional studies lack the necessary resolution to analyze the co-existing clonal diversity. Recent advances in high-throughput sequencing (HTS) technologies and bioinformatics have made it possible to examine multiple co-evolving antibody monoclonal lineages within the context of a single repertoire. A plethora of accompanying methods and tools have been introduced in hopes of better understanding how pathogen presence dictates the global evolution of the antibody repertoire. Here, we provide a comprehensive summary of the tremendous progress of this newly emerging field of systems phylogeny of antibody responses. We present an overview encompassing the historical developments of repertoire phylogenetics, state-of-the-art tools, and an outlook on the future directions of this fast-advancing and promising field.
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INTRODUCTION

B cells are the foundation of humoral immunity and are defined by their characteristic B cell receptors (BCR, or secreted version: antibodies), which bind foreign pathogens and initiate effector functions, such as pathogen opsonization, neutralization, complement activation, and cellular cytotoxic and phagocytosis signaling (1). Antibodies are composed of two identical heavy chains and two identical light chains, where each chain consists of a variable region and a constant region. The variable regions dictate antigen-binding specificity (2), whereas the constant regions enable interactions with other molecular and cellular components of the immune system (1). Initial variable region diversity is encoded in the organism's genome through the presence of multiple V-, D- (heavy chain only), and J-gene segments, which pseudo-randomly recombine in both the heavy and light chain loci (3, 4). During somatic recombination, the variable regions can undergo further diversification due to deletions or insertions at the V-D and J-D junctions, rendering a potential theoretical amino acid diversity in humans and mice of >1013 (5–7). The region encompassing the last few nucleotides of the V-gene segment, the entire D-gene segment (in the case of heavy chain rearrangement), and the start of the J-gene segment is known as the complementary determining region 3 (CDR3), and has been shown to largely dictate antigen specificity (2).

Selective pressures are present during early B cell development to ensure binding specificity is not directed toward self-antigens through interactions with stromal cells in the bone marrow. This is done via deletion or induction of anergy in B cells expressing BCRs exhibiting self-reactivity. B cells surviving this selection emigrate from the bone marrow and enter the circulating population of mature B cells. These newly produced B cells circulate between blood and secondary lymphoid organs until encountering their respective antigen. The BCRs which bind their respective target can subsequently engulf the foreign antigen via receptor-mediated endocytosis and display these pathogen-derived peptides on the cell surface using major histocompatibility class (MHC)-II proteins (8, 9). This prepares the B cell for further differentiation via binding of CD4+ T cells, which interact specifically with the foreign peptides displayed on the B cell's MHC-II molecules. Both the strength and duration of this interaction between B and T cells have been implicated in dictating the fate of the B cell (10). Longer conjugate interactions may preferentially lead to a germinal center (GC) reaction, where affinity maturation and class switching occur (11, 12).

GCs are structurally divided into a dark zone, where B cells rapidly proliferate while mutations are selectively introduced into the antibody locus, initially via the enzyme activation-induced cytidine deaminase (AID) and the upregulation of the error-prone DNA polymerase eta (13–15), a process referred to as somatic hypermutation (SHM) (16). A number of reviews exist describing the complex biochemistry underlying SHM and are available for further reading (17, 18). The light zone in GCs is where T follicular helper (TFH) cells mediate the selection of B cell clones with higher antigen affinity and their differentiation into plasma cells (Figure 1A) (12, 19, 20). B cell clones incurring SHM that increase the strength of the antibody-antigen binding interaction will subsequently receive more survival signals, such as ICOS, CD40, and interleukin-21 (IL-21) (11, 21, 22).
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FIGURE 1. Evolutionary dynamics of the Germinal center reaction. (A) Naïve and memory B cells are recruited into germinal center reactions where they undergo subsequent rounds of somatic hypermutation in the dark zone and selection via follicular dendritic cells in the light zone. This leads to successive rounds of division and mutations (shown by colored antibody receptors) or apoptosis (shown by gray cells). Different selection pressures can lead to either balanced selection, in which multiple independent clones expand and undergo SHM, or imbalanced selection where a few clones dominate the GC reaction and undergo many rounds of SHM. (B) Ig-Seq can capture the sequence diversity within populations of B cells. Systems phylogeny aims to assign the recovered sequences into clonal families, followed by the inference of evolutionary histories. The resulting phylogenetic trees can then be compared both within one host and between hosts.



It has been shown that antibodies surviving the selective pressures faced during affinity maturation are capable of producing high affinity antibodies with binding disassociation constants (Kds) hundreds to thousands of times higher than their germline progenitor (23). Furthermore, recent work in mouse models of chronic viral infection have revealed that the continued presence of TFH cells is crucial for the development of neutralizing antibodies (24). While it is intuitive that affinity maturation holds an essential role to improve the specificity and affinity of B cells against complex antigens (such as pathogens and their proteins), a recent study has questioned this, as it was proposed that there is a continuous recruitment of naïve or memory B cells equipped with high affinity BCRs into an ongoing humoral immune response (25). This suggests that SHM might play a prominent role in broadening the antibody response with respect to its ability to recognize antigenic variants (26, 27). Despite these recent findings, the exact nature regarding whether and how affinity maturation instructs antibody evolution remains at the forefront of contemporary antibody repertoire research. What recent studies have made abundantly clear, however, is that B cells with unique V-(D)-J rearrangements exist contemporarily, both within an organism and even within a single germinal center (Figure 1B) (27, 28). The utilization of new experimental techniques (e.g., multiphoton microscopy, confetti mice, and bone marrow chimeras) in concert with sequencing technologies have provided an unprecedented insight into how biological factors such as BCR affinity or clonal diversity can influence the evolutionary landscape.

Over the past decade, many fields of research have leveraged the increased resolution and decreased cost of high throughput sequencing (HTS) to better understand genomic diversity and evolution. Similarly, the field of immunology has employed HTS to investigate the genetic diversity of antibody variable regions, also referred to as immunoglobulin sequencing or Ig-Seq. This application has been instrumental in providing a quantitative description and profile of antibody repertoires (29–31). Ig-Seq experiments capture the diversity found in the variable regions of co-existing antibodies, enabling the reconstruction of multiple antibody lineages within a single host over time (32–34). Given the immense wealth of sequencing data arising from Ig-Seq, phylogenetic inference is a well-suited methodology to better understand clonal selection and expansion mechanisms that drive B cell evolution.

The standard evolutionary analysis of a B cell involves the reconstruction of a phylogenetic tree, in which the temporal relationships between recovered antibody sequences are modeled. The phylogenetic tree is often referred to as a clonal lineage, whereas a “phylogenetic lineage” represents a branch in the tree. In the case of antibody repertoire phylogenetics, each phylogenetic tree represents a clonal lineage descending from an independent V-(D)-J recombination event. From a single Ig-Seq experiment, a multitude of phylogenetic trees can be inferred, demanding a novel analysis pipeline not typically required in conventional phylogenetic studies examining species or viral evolution. The sequencing reads covering the full V-(D)-J region (~350–400 base pairs) are represented as nodes in the tree, while the edges indicate the relationship between the tips, and the edge lengths represent the time between branching events. These representations provide valuable information regarding the evolutionary history of a given antibody or B cell clone and can be employed to understand the selective pressures experienced during affinity maturation.

Studying how antibodies evolve in the context of pathogen neutralization has the potential to both answer basic biological questions pertaining to clonal selection and to aid in the development of precision vaccines or discovery of therapeutic monoclonal antibodies. Extensive research efforts have already been dedicated to better comprehend a subset of antibodies capable of neutralizing the infectious potential of multiple strains of HIV-1 (broadly neutralizing antibodies, bNAbs) (35–38). A prominent example involves the VRC01 bNAb lineage, originally identified from B cells of an HIV-1 patient, which has been shown to neutralize 90% of HIV-1 strains after undergoing extensive SHM (39). Using traditional phylogenetic methods, the evolutionary steps preceding virus-neutralizing capability were inferred, enabling the inference of both ancestral and intermediate sequences (38, 39). Further work has attempted to design vaccine immunogens that target these intermediate progenitor sequences in hopes of directing the subsequent evolution of antibodies toward the broadly neutralizing phenotype (40, 41). Additionally, how affinity, avidity, and the initial concentration of these progenitor BCRs influence the subsequent GC reactions and incurred mutations was recently described, providing further insight about the appearance and propagation of bNAbs (42).

While the various HIV-1 bNAbs have ignited hopes of utilizing phylogenetics to design vaccines for rapidly mutating viruses, most research employing antibody phylogenetics has been confined to single clonal lineages (35–37, 43, 44). Despite the emphasis on single antibody lineages, the majority of the sequencing data used to describe these neutralizing antibodies has been recovered via Ig-Seq experiments. Thus, while individual trees describing the evolution of HIV-1-neutralizing antibodies have been well characterized, several unanswered questions remain regarding how to partition the sequencing reads into the individual V-(D)-J recombination trees, and how this antibody “forest” of distinct phylogenetic trees evolves as a system.

The unique opportunity to apply sequencing technologies to the study of B cells has led to the development of several tools and practices specifically tailored to the investigation of antibody evolution (45–47). It is foreseeable that this trend will only continue to increase as Ig-Seq experiments become increasingly commonplace in immunological research given the applications both to antibody therapeutics and rational vaccine design (48). Despite the lack of standardization, many studies have already incorporated phylogenetic analyses in concert with Ig-Seq (34, 38, 49). These studies have employed various tools, inference methods, and heuristics. We provide here a comprehensive review tailored specifically to antibody repertoire phylogeny. We outline both contemporary practices and software, in addition to the problems currently faced by this promising field.



CLONAL LINEAGE ASSIGNMENT

As opposed to traditional phylogenetic studies, the somatic diversification mechanisms inherent to B cell development present an additional pre-processing step even before the selection of a tree-inference method. V-(D)-J recombination creates an immense starting pool of roots, each of which has the potential to encounter its cognate antigen and subsequently undergo clonal expansion and evolution (polyclonal response). Therefore, at any given point in a single individual host, multiple co-evolving lineages will be present. Phylogenetic analyses involving pathogens traditionally assume that all recovered sequences are related to a single common ancestor. Thus, correctly assigning a given B cell clone to a particular clonal lineage presents a challenge not found in other phylogenetic analyses. Upon successfully sequencing the B cell populations of interest, the recovered reads need to be first assigned to a given phylogenetic tree, representing a group of clones expanded from a single V-(D)-J recombination event (Figure 1B). A given Ig-Seq experiment can produce millions of sequencing reads per sample (4, 29, 50), rendering it difficult to disentangle the simultaneous, independently co-evolving lineages. Several strategies and tools have been recently developed in response to this problem and are outlined below.

A common starting approach is to initially cluster sequences by their germline genes, and subsequently infer an individual tree for each cluster. Based on the number of possible combinations of V-, D-, and J-genes, this implies that thousands of phylogenetic trees could be inferred within a single individual. In practice, not all germline genes and combinations thereof are used at the same frequency, which dramatically reduces the number of actual trees produced within one host (4, 51). Additionally, low alignment accuracy of the D-gene segment has led many studies to only consider the V- and J-gene segments during clustering. The number of trees within a single individual can be further reduced by setting a threshold for a number of sequences per tree. Unfortunately, the value to define the threshold is less clear and often depends on the context of biological questions. For example, there exist studies which have set thresholds of 10 sequences per tree when tracing B cells across various compartments (e.g., B cells trafficking to the central nervous system) (52), whereas other studies that depict differentiated memory B cells within a tree have omitted a threshold altogether (49). In addition to lower limits set on the number of sequences required per tree, upper limits can also be set depending on the computational demands of the selected phylogenetic method. Multiple HIV studies, for example, have restricted each lineage tree to a maximum of 200 randomly sampled sequences for the root of interest (36, 43).

The challenge of assigning reads to a clonal lineage can be addressed by taking advantage of the nature of SHM to preferentially introduce nucleotide substitutions during GC reactions (53). This implies that insertions and deletions are mainly introduced via V-(D)-J recombination. Therefore, information regarding insertions and deletions can be utilized to restrict sequences with identical clonal (CDR3) lengths to a given tree. This dramatically increases the number of trees per individual, while decreasing the number of sequences assigned to a given clonal lineage. Under the assumption that clonal lineages evolve independently, phylogenetic trees from a particular individual can be computed in parallel. Thus, this heuristic approach can dramatically reduce the necessary computation time while incorporating relevant biological insight regarding a constant CDR3 length throughout the affinity maturation process.

Commonly used tools capable of aligning Ig-Seq data are MiXCR, IMGT, IgBlast, SONAR, IGoR, iHMMunealign, and Partis (54–60), which work by assigning germline genes to sequencing reads and additional annotation [Framework regions (FRs) and CDRs] (Table 1). In some cases, such as with MiXCR, Partis, and IgBlast, a user is able to include a custom reference germline database (particularly useful in cases where germline genes of a given species have not yet been fully annotated) (54, 56, 57); this can be used in concert with software capable of predicting germline alleles from Ig-Seq data. While Partis has this capability built in (61), other standalone software includes 62, IgDiscover and TigGER (62, 63). Additionally, one can extract germline information from whole genome shotgun sequencing, as performed by VGeneRepertoire (64). One of the major drawbacks of the previously mentioned lineage assignment is the large reliance on an initial alignment of recovered reads to the germline. Furthermore, any rare insertions or deletions introduced during SHM will be excluded due to restricting trees to an identical clonal (CDR3) length.



Table 1. Comparison of tools and methods used for clonal lineage assignment and phylogenetic inference.
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Several methods have been developed to circumvent problems arising during alignment-based lineage assignment. These methods include both seeded and unseeded lineage assignment. Seeded lineage assignment aims to extract all clonally-related transcripts to an input antibody sequence. Conversely, unseeded lineage assignment attempts to decompose the entirety of input sequences into their constitutive clonal families. Three prominent tools specifically tailored to clonal lineage determination are Partis, Clonify, and SONAR (57, 58, 65). Partis models B cell evolution with a likelihood function that avoids the need to strictly define rooting assumptions, such as an arbitrarily defined percentage of CDR3 sequence homology (57). This tool can perform both unseeded and seeded lineage assignment, with input sizes reaching hundreds of thousands and millions of sequences, respectively. Another tool, Clonify, uses hierarchical clustering based on an antibody specific edit distance to determine clonal lineage inclusion (65). One benefit of this proposed algorithm relative to the aforementioned alignment tools is that neither CDR3 lengths nor germline alignments explicitly define a clonal lineage. Instead, CDR3 similarity, germline alignment scores, and information regarding shared mutational histories are included in the clonal assignment. Finally, SONAR first aligns reads to germlines provided by IMGT and can subsequently perform either seeded or unseeded lineage assignment (58). Their unseeded alignment relies upon first separating transcripts into groups based on V- and J- genes, with subsequent clustering based on CDR3 sequence similarity. Multiple algorithms for seeded lineage assignment are available, in addition to functions which allow visualization of homology to germline genes and other known antibodies (58). While the subsequent phylogenetic tree inference is possible with SONAR, clonal lineages can also be easily exported to formats compatible with other commonly used tree inference software. Finally, both Partis and SONAR are available as Docker containers, which can dramatically simplify the installation process. While these methods are a promising step to improve the delineation of independent V-(D)-J recombination events from bulk sequencing data, further benchmarking studies are still required to illustrate how clonal lineage assignment algorithms influence the downstream evolutionary conclusions. Such studies, for example, could examine how the amount, topologies, and sizes of lineage trees from a single repertoire change based on preprocessing and lineage assignment pipelines.



STRUCTURE OF THE B CELL TREE

Phylogenetic trees are commonly defined such that each node represents a recovered B cell sequence (or clone), whereas the branches represent the relationship between sequences. However, there exist several important differences between traditional phylogenetic trees and models specifically tailored to describe B cell evolution (Figure 2). One important characteristic of B cell maturation is clonal selection during expansion, which results in multiple B cells that have identical BCR sequences. Therefore, Ig-Seq can return identical reads corresponding to different B cells, adding a frequency attribute to each recovered sequence. The most common method currently employed by repertoire studies has been to remove replicate sequences, producing a phylogenetic tree entirely composed of unique sequences. However, this approach is inherently biased given the disregard for clonal expansion, a biological phenomenon seminal to B cell immunity. In particular, evolutionary rates are over-estimated as the periods without mutation during clonal expansion are disregarded.
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FIGURE 2. Tree topologies for B cells. (A) The inclusion of polytomies in the phylogenetic tree allows a B cell to produce more than two distinct offspring at a given internal node. (B) Experimentally recovered sequences can be inferred as either internal nodes or tips in the phylogenetic tree. (C) Persisting ancestral sequences can be sampled at multiple time points while also producing distinct offspring. (D) Clonal frequencies have often been illustrated by the size of the nodes. Therefore, information regarding clonal expansion can be incorporated into the resulting topologies.



Furthermore, it has been recently shown that the starting amount of antigen-specific memory (precursor) B cells (i.e., ancestral sequences) in a given lineage directly impacts the ability to engage in GC reactions and undergo further mutations (42). This stresses the importance of implementing phylogenetic methods that can incorporate clonal frequencies into the tree reconstruction calculation. To account for clonal expansion, antibody studies have displayed phylogenetic trees where the size of the node refers to the number of identical sequences (Figure 2A). While this leads to a visual representation of clonal abundance, this information does not contribute to the phylogenetic inference, thereby ignoring valuable information describing the evolutionary processes underlying clonal selection. Therefore, recent progress has been made to combine traditional phylogenetic inference methods with this clonal abundance data (66). In what are referred to as GCTrees, clonal abundance information was explicitly modeled into the phylogenetic inference process, leading to increased accuracy based on simulated trees (66). Furthermore, this reconstruction method allows for the inclusion of recovered sequences to serve as internal nodes (for the rationale, see section The Mutation Process Along the Tree) (66). This methodology highlights the progress toward integrating the biologically relevant information recovered from Ig-Seq experiments into the reconstruction of antibody phylogenies.

The traditional phylogenetic framework produces trees where the recovered sequences are positioned as leaves of the trees. However, there are several antibody evolution studies that have conceptualized the internal structure of the phylogenetic tree to better suit B cell evolution and selection. This involves the allowance of polytomies (more than two descendants from a single internal node) and intermediate sequences serving as internal nodes (Figures 2B,C). The underlying logic behind this dramatic shift from traditional evolutionary studies relies on the assumption that a given B cell clone can produce multiple distinct offspring (somatic variants), each of which may be separated by only a single mutation. Furthermore, this same ancestral B cell may persist long after giving rise to progenitor cells without incurring further mutations (Figure 2D). To account for both of these biological considerations, antibody-specific phylogenetic tools such as IgTree and ImmuniTree allow for both the presence of polytomies and the presence of recovered sequences as internal nodes in the resulting lineage tree. While these topological frameworks diverge from traditional phylogenetic analyses, they introduce a flexibility that allows for the incorporation of antibody-relevant information. However, it remains unknown how these adjustments to the phylogenetic model tree impact the biological conclusions such as tree shape and mutation rates. It would be interesting to investigate into how the tree structure of HIV neutralizing antibodies, for example, would change if polytomies were allowed in the phylogenetic reconstruction.



THE MUTATION PROCESS ALONG THE TREE

The enzymatic nature of how AID induces mutations during affinity maturation dictates the evolutionary trajectories possible for a given B cell. AID introduces mutations by preferentially targeting the immunoglobulin locus via the deamination of deoxycytidine residues into deoxyuridines. This newly introduced deoxyuridine results in a mismatch pairing in the DNA and is subsequently corrected by either MMR or BER. The majority of mutations introduced after these nucleotide repair pathways are in the form of point mutations, although there are occasional deletions or insertions present (67, 68). These substitutions must not only maintain stability of the BCR, but also provide a functional antibody capable of surviving antigen selection imposed during GC reactions (Figure 1A). This selection has been implicated in improving binding affinity, broadening of antigen recognition and the development of specific effector functions such as pathogen neutralization (24, 39). Interestingly, the shift from pathogen binding to pathogen neutralizing is not always associated with a large increase in binding affinity, suggesting a more nuanced role of affinity maturation than solely promoting high affinity antibodies (69).

Given that mutations are introduced through enzyme-mediated mechanisms, it is somewhat intuitive that particular patterns in the genome would be preferentially targeted. Even before the advent of HTS, certain nucleotide motifs, termed “hotspots,” have been demonstrated to incur point mutations at greater than average frequency (70). One initial example supporting this neighbor-dependent model of SHM was the discovery of the RGYW motif (where W = A/T, R = A/G, Y = C/T), where the adjacent nucleotides influence the mutability of the central G nucleotide (70). Subsequent experiments uncovered additional motifs targeted by AID, albeit at low numbers due to limitations arising from low-throughput experimental settings (71–73). However, recent studies employing Ig-Seq have provided a thorough analysis of how neighboring nucleotides influence the probabilities of point mutations (74, 75). One prominent example compared synonymous and non-synonymous mutations across multiple Ig-Seq datasets to infer mutational probabilities for 5mers (nucleotide sequences with length 5), termed the “S5F” model (74). This substitution model contains inferred transition probabilities for the middle nucleotide of all possible 5mers, both verifying historical, low-throughput experimental data, and discovering novel motifs. In subsequent work, similar models were developed to describe the specific mutational properties of the 5mer motifs found in light chains arising from human and mouse data, providing a wealth of pertinent information to the mutational landscape of SHM (75). The refinement of distinct hotspot models for heavy and light chain evolution is crucial because the inference of heavy and light chain phylogenies can be performed separately, as performed in studies comparing the evolution of heavy and light chains in the context of HIV infection (38). However, when the pairing of heavy and light chains is known, the loci can be combined (concatenated to each other) and treated as a single evolving entity. This can increase the information used when inferring evolutionary parameters such as mutation rates and tree structure, given that both loci must share the same tree topology. Despite these findings describing the neighbor-dependent nature of AID, most modern phylogenetic methods rely on the assumption of site-independent substitution models, in which the neighboring nucleotides play no role in the evolutionary inference calculation. Thus, current studies analyzing B cell lineages typically do not account for this well-established biological phenomenon that may also have evolutionary ramifications.

One promising step to incorporate the properties of SHM hotspot motifs into the phylogenetic inference process has been demonstrated by the implementation of the HLP17 codon substitution model, which accounts for neighbor-dependent hotspot mutations, germline sequence knowledge, and irreversible evolution (76). This substitution model (available in the IgPhyML program) has been shown to perform better on Ig-Seq data than conventional phylogenetic substitution models because of the inclusion of phylogenetic inference parameters that describe the WRC hotspot (76). Specifically, it could be observed that the use of this codon model reduced bias in evolutionary parameters such as tree length (76), which has been previously shown to be difficult to estimate for multiple bNAb lineages with traditional substitution models (38). Their model allows for any motifs of length three nucleotides to be incorporated while still assuming that these hotspot motifs (i.e., codons) evolve independently to maintain computational feasibility (76). While all motifs cannot yet be explicitly accounted for simultaneously due to computational limitations, this work represents important progress toward incorporated motif-specific properties of SHM. One additional drawback remains that this substitution model is not yet available in many commonly used phylogenetic tools, potentially limiting its application.



FROM SEQUENCES TO TREES

Multiple phylogenetic inference methods exist to construct the antibody lineages, each of which have their strengths and weaknesses (Table 1). A variety of these methods have been employed for the analysis of Ig-Seq data, including distance-based methods (44, 45, 77), maximum parsimony (36, 52, 78, 79), maximum likelihood (37, 43, 44, 80, 81), and Bayesian inference (38, 47, 82). Most methods initially require a multiple sequence alignment (MSA), which allows for lists of sequences with varying lengths to be compared in a site-dependent manner. Some common examples of MSA tools include ClustalOmega, Kalign, MUSCLE, and T-coffee (83–86). The output of the MSA file will usually be in fasta, nexus, or phylip format, which is easily integrated with the phylogenetic reconstruction methods described below.


Distance-Based Methods

Distance-based methods involve first filling a matrix by an all-against-all calculation of a given metric comparing pairwise sequence similarity (87). The distances between sequences are often calculated using a substitution model. This allows for the incorporation of certain characteristics of sequence evolution, such as indicating different rates of evolution for transitions (purine <-> purine, pyrimidine <-> pyrimidine), and transversions (purine <-> pyrimidine), as well as taking into account the possibility of hidden mutations (such as backward mutations). A neighbor-joining algorithm is utilized to produce the tree, which involves successively joining two sequences together with newly created internal nodes (88, 89). One major advantage of this method is that tree inference is very fast. Therefore, this method can be especially useful for exploring large Ig-Seq data sets, particularly when there are many sequences in each lineage tree. A noteworthy example of this implementation was seen when examining the evolution of HIV-1 bNAbs, in which the neighbor-joining method was used exclusively for large datasets (45). There exist many tools that can produce neighbor-joining trees, either found online with ClustalOmega or EBI bioinformatics server, in addition to R packages such as phangorn or ape (84, 90, 91). One notable example of a distance metric that does not require a MSA is the Levenshtein distance. The Levenshtein distance describes the number of changes (mutations, insertions, or deletions) required to change one string into another, and has been used extensively in Ig-Seq experiments in the past (4, 92).



Maximum Parismony

Another non-parametric method of inferring antibody evolution involves the use of maximum parsimony, in which the output phylogeny is the tree that can explain the evolution with the least amount of mutations (93, 94). This method does not allow for the incorporation of parameters specific to antibody evolution, which can be a disadvantage when there is abundant background knowledge of the experimental system. Conversely, the lack of assumptions regarding the substitution process may prevent model misspecification and thereby erroneous conclusions. Maximum parsimony has been used in multiple studies pertaining to Ig-Seq data, with some notable examples, examining B cell migration to the cervical lymph node or the development of neutralizing antibodies against West Nile virus (4, 74). Several tools exist to create maximum parsimony trees, although the most common among them is PHYLIP (95). Additionally, R packages such as Rphylip and phangorn have both incorporated maximum parsimony, allowing one to work within the R framework (91, 96). Finally, as previously stated, the GCTree utilizes a modified maximum parsimony to allow for clonal frequencies to influence the phylogenetic inference (67).

One of the earliest methods specifically tailored to inferring antibody evolution, IgTree, utilized a customized parsimony metric to produce lineage trees (45). This tool additionally introduced the concept of inferred intermediate sequences, in which all direct ancestral sequences were restricted to the separation of a single mutation (46). For example, two “inferred” internal nodes would be created when two sequences differing by three nucleotides are in the same clonal family. Thus, even if an intermediate sequence was not explicitly sampled, there would be a corresponding internal node in the output phylogeny. IgTree has been used to characterize how B cells evolve under a variety of selective pressures, such as lymphomas, multiple sclerosis, and autoimmunity (33, 77, 97).



Maximum Likelihood

Another method applied to study antibody evolution is maximum likelihood, which relies on the optimization of a likelihood function. This parametric method incorporates a substitution model that can dictate parameters such as nucleotide/amino acid frequencies and allow for different substitution rates for transitions and transversions. Thus, maximum likelihood can utilize evolutionary models that may better describe antibody evolution than the neutral assumption that all nucleotides are the same. Some of these models include the HKY, GTR gamma, and JC69 (98–100), which allow for nucleotide specific behavior (e.g., A mutating to C can have a different rate as C mutating to G). It may not be immediately apparent which substitution model best fits the data at hand, whereby tools that include model selection capabilities may be useful. Notable programs utilized in the context of Ig-Seq data include FastML, MEGA, IQ-TREE, and Phylip's dnaml (33, 90, 94–96, 98, 101–103). As mentioned above, one notable limitation of these substitution models is that the transition probability of a given site is independent to the neighboring nucleotides. Thus, building upon models which incorporate information regarding hotspot mutability represents a cornerstone of contemporary systems phylogenetics research (76).

A multitude of studies have employed the maximum likelihood method to analyze Ig-Seq data, with many focusing on the evolution of HIV-neutralizing antibodies (35, 37, 39, 43, 44, 80, 104, 105). Despite most maximum likelihood programs producing a “traditional” phylogenetic tree, where recovered sequences cannot serve as intermediate nodes and polytomies are absent, the biological relevance of these maximum likelihood trees has been proven by the inference and production of intermediate and ancestral germline sequences which possessed virus-binding capabilities (36, 40).



Bayesian Inference

The final considered method of phylogenetic inference relies upon Bayesian statistics, which is thus capable of incorporating prior biological information (known as priors) into the inference process. This includes information regarding the evolution of the B cells, in particular the mutation rate, and the replication of the B cells generating the tree, in particular B cell duplication and death rates. The most commonly used tool is BEAST (106, 107), which has many learning resources and user-contributed modules that are available for download. This method involves the largest computational demands compared to other phylogenetic methods both in terms of memory and calculation time (87). This largely is due to the inference process, which utilizes a Markov chain Monte Carlo (MCMC) algorithm to explore parameter space. This provides a sample from the posterior probability distribution, i.e., the output consists of millions of trees, which are a sample of the probability distribution. One can summarize this distribution into a single tree, termed as the most credible clade (MCC) tree, allowing for an easier comparison between multiple trees.

One further advantage of BEAST is that one can easily specify the time at which sequences were sampled, and that the output consists of trees with branch lengths in calendar time units (rather than number of substitutions as in all methods above). This kinetic information restricts the position of the sequence in the tree, in addition to inferring mutation rates in calendar time units. Thus, Bayesian methods present a strong advantage when time-resolved Ig-Seq data is available. One major drawback is the limited number of sequences that can be included in each phylogenetic tree, as trees with more than ~500 antibody sequences often require substantial computation time (e.g., months on a server) and do not always converge to the posterior distribution. Furthermore, if many lineage trees are desired, running the MCMCs in parallel is essential given the slow computation time. BEAST has been used to infer mutation rates of neutralizing antibodies and subsequently compared to viral evolution (39). An interesting result from this analysis was that the heavy and light chains evolved at similar rates for this particular bNAb. Furthermore, it was shown that different neutralizing antibody lineages evolve at different rates, suggesting multiple mechanisms underlying the maturation of bNAbs.

An antibody-specific tool, ImmuniTree, has been developed that incorporates a Bayesian framework into the inference of lineage trees (48). ImmuniTree allows for recovered sequences to be placed at internal nodes, polytomies, and accounts for spurious diversity arising from sequencing errors. Furthermore, the trees produced by ImmuniTree can depict the percentage of mutations a given immunoglobulin sequence has, thereby incorporating information not included in most other inference methods. Practically, this tool has been used to reconstruct lineages of bNAbs and to infer ancestral intermediates of these antibodies (47, 82). The phylogenetic data was subsequently used to direct experiments which displayed that the neutralizing breadth of these intermediate antibodies was still present, despite a lesser extent of SHM (48).



Rooting the Phylogenetic Tree

The presented phylogenetic methods (with the Bayesian methods as exceptions) return trees without a root, i.e., the tree does not consist of information regarding on which branch the clonal expansion process started. Thus, these unrooted trees need to be rooted, which is typically done using an outgroup (for example, when inferring an ape tree, one can use a-non-ape primate sequence as an outgroup for rooting). For B cell phylogenies, we have knowledge regarding the underlying V-(D)-J recombination, meaning that unmutated V-(D)-J germline sequence can be incorporated into the tree reconstruction process as the outgroup. One major assumption of this strategy is that there is sufficient confidence in the germline annotations. This assumption may increase the information present during the phylogenetic analysis for inbred model organisms, such as mice or zebrafish. However, when the exact genomic composition of the V-(D)-J germline segments is unknown (e.g., in humans, where there are slight allelic changes in the germline between individuals), this discrepancy could alter the inferred mutation rate.

BEAST produces rooted trees even without explicitly designating any germline sequences as the outgroup. This can be advantageous when an exact annotation of the germline genes is lacking. While it is possible in BEAST to explicitly specify the root of a tree, it is not immediately straightforward due to the nature of the software. In the case where no germline sequences are supplied as a root, there exists an additional tool in the program that allows for the user to infer the sequence at the root (in addition to sequences at internal nodes). Important to note, however, is that the accuracy of this method has not yet been explicitly validated for antibody evolution (i.e., compared unmutated ancestors inferred from BEAST to the known germline sequences). Further benchmarking on both simulated data and experimental data is required to better understand how rooting with the germline segments influences the subsequent biological conclusions, for example mutation rates and topology metrics.



Simulations

Simulations of antibody evolution represents a powerful approach to validate and explore the consequences of various phylogenetic tools and heuristic strategies. Initial antibody repertoire simulation frameworks did not possess a temporal component (i.e., no explicit rate at which sequences change in regard to time), hence preventing the investigation of how traditional phylogenetic methods perform on Ig-Seq data (108). Recently, multiple tools have been developed to account for evolutionary properties specific to B cell evolution. Elements such as hotspot motifs, clonal abundances, and mutation rates can be defined to produce an output phylogenetic tree along with the accompanying mutated sequences. These sequences can then be fed as input into various phylogenetic inference methods to validate tree reconstruction accuracy. Tree accuracy is validated by comparing the inferred to the simulated tree, e.g., via the Robinson Foulds distance, clade accuracy, and treescape metrics (46, 109, 110). While simulations are commonly incorporated in Ig-Seq experiments, these are largely in-house and not always publically available. An important step to improve benchmarking tools and strategies for Ig-Seq experiments includes making these simulation platforms publicly available to increase their use.




DOWNSTREAM ANALYSIS

One of the difficulties of including phylogenetic trees into Ig-Seq studies is the extraction and interpretation of biologically relevant conclusions. An emerging trend has been to focus on a few select lineages and leave the majority of the repertoire unanalyzed. Thus, major questions regarding how the entirety of the antibody repertoire evolves remain unanswered. The hurdles of inferring potentially hundreds to thousands of phylogenetic trees per individual is daunting both due to the computational demands and the subsequent analysis. Furthermore, comparing trees within a single host, and to other organisms introduces a further layer of complexity.

One of the most immediate results of phylogenetic inference is the output of a phylogenetic tree. The topology of these trees provides a visualization of the evolutionary relationship between a set of antibodies, which can be both qualitatively understood and quantitatively compared. Qualitatively, an imbalanced tree (defined as the two daughter lineages of a node have very different numbers of descending nodes) can be interpreted in that a single progenitor clone continuously out-survives the other clones. Thus, tree imbalance may describe the breadth of underlying selection pressures. This selective pressure where a single clone outcompetes the remaining population has been seen in other infectious species, for example influenza between hosts or HIV within a host (111). Conversely, when selection occurs evenly throughout a lineage, many clones may simultaneously proliferate, which can be observed as a balanced structure of the tree (Figure 1). Balanced trees have e.g., been observed for HIV between hosts (111). While Ig-Seq papers have mentioned these topological characteristics, few have thoroughly analyzed these phylogenetic structures. There exist metrics arising from the evolutionary biology field capable of describing tree topology in a way that allows comparison of the lineage trees both from within a single host and across individuals. Metrics such as the Colless number, the Sackin index, and the average number of ladders characterize tree “imbalance” (112, 113). Mathematically, these metrics account for the number of descendant sequences in right and left sub-trees at all internal nodes, producing a single value for the entire tree. This value can then be directly compared to other clonal lineage trees, providing a framework for a systems analysis of lineages. This concept of analyzing tree shape and imbalance has been implemented in the comparison of vaccine-responsive lineages to persistent lineages (highly abundant lineages that did not change in response to vaccination) (114). Lineages that were unresponsive to vaccination showed a more balanced evolution, whereas the vaccine-enriched lineages often had a focus on multiple positively selected subclones (114).

While the metrics above have not often been applied to Ig-Seq experiments, other topological metrics have been used to quantify clonal selection. For example, clonal lineage trees were produced to better understand the diversification processes underlying a subset of B cells residing in the bone marrow of human patients suffering from light chain amyloidosis (115). The downstream analysis described structural properties of the phylogenetic trees, such as the number of sequences per tree, the length of the trunk (distance from root to first branching event), pass-through nodes (internal nodes with a single offspring), the distance to the nearest branching event (thus quantifying how mutations separate a sequence's direct ancestor), and tree branching (determined by the outgoing number of internal nodes). Similarly, another study found that during gastric lymphomas, B cell evolution results in trees with longer trunks and path lengths when compared to gastritis, correlating with a higher initial affinity and a higher selection threshold (34).

While these structural motifs and tree-imbalance metrics provide a natural analysis of phylogenetic trees in biological terms, there additionally exist less intuitive metrics yet to be applied to Ig-Seq data. Phylogenetic trees are essentially acyclic graphs (graphs = networks), suggesting that novel methods in graph theory may potentially find their use in Ig-Seq studies. One potential example of utilizing graph theory arises from examining the Laplacian spectra of the many trees within an individual. This approach was suggested recently to possess a multitude of parameters describing individual tree shape and branch length in the context of eigenvector distributions (116). However, few studies have leveraged such topological analyses of unlabeled antibody trees, thus, the extent to which meaningful biological conclusions can be drawn remains unseen.

In contrast to qualitative topological analysis, statistically derived parameters may be of further interest to provide a quantitative description of the evolutionary process of antibody lineages. Traditionally, repertoire studies have been interested in counting the number of mutations found at a given time point, however, leveraging phylogenetics, one can quantify how often a given lineage accumulates mutations in a time-resolved fashion. As previously stated, Bayesian phylogenetics has already been utilized to calculate the mutation rates of heavy and light chain lineages of HIV-neutralizing antibodies (39). Furthermore, parameters describing population size, the speciation and extinction of species, and tree age can be further inferred, providing a set of parameters that lends itself easily to the comparison both within a single host and across different individuals.


Toward Systems Phylogeny of Antibody Repertoires

The aforementioned metrics to quantify phylogenetic trees require just a single phylogenetic tree as input. The values arising from multiple trees can then be collectively analyzed to describe the selective pressure exerted upon the antibody repertoire as a whole. This traditional manner of studying the collection of antibody lineages, however, assumes a significant degree of independence between each phylogenetic tree. In an attempt to describe the population of antibody lineage trees, the UniFrac metric was applied to quantify the divergent evolution of immune systems arising during aging (35). The UniFrac metric was originally developed to measure the distance between microbial communities based on which branches are present in each sample, presenting a community-based statistic that can be easily adapted to Ig-Seq data (117). Another recent study aiming to characterize the dynamics of BCR evolution during HIV infection developed statistical models to describe clonal competition across multiple antibody lineages (118). Taken in concert, these studies represent important steps in the direction of statistics and analyses capable of describing the dynamic nature and evolution of antibody repertoire forests.




CONCLUSION

Quantifying how antibody repertoires change over time represents an emerging field only possible due to the increased resolution of HTS and Ig-Seq. While the earliest phylogenetic metrics specifically tailored to antibody repertoire evolution were developed over a decade ago, more work remains necessary to comprehensively incorporate our experimental knowledge of antibodies into clonal lineage assignment, phylogenetic tree inference, and downstream analyses. Furthermore, benchmarking the aforementioned tools and strategies on both Ig-Seq data and multiple simulation frameworks can identify biases arising from the currently employed methodologies. The usage of lineage trees has immediate applications with medicinal relevance, such as vaccine design by targeting intermediate sequences or the discovery of therapeutic monoclonal antibodies. Furthermore, phylogenetics provides a unique opportunity to describe the clonal selection and competition underlying the pathogen-driven evolution of B cells. While phylogenetics has long held a role in the field of antibody research, the full potential of systems phylogenetics to delineate the complex co-evolving landscape between several independent lineages has not been realized. Other research fields such as machine learning, statistical entropy, and network analysis are becoming integral in antibody repertoire analysis, reinforcing the potential for phylogenetics to similarly take the stage to help delineate the complex picture of the B cell immunity.
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Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.

Keywords: immunoglobulin light chain, receptor editing, self-tolerance, antibody repertoire, V(D)J rearrangement, models of autoimmune disease, sub-species of the house mouse


INTRODUCTION

The success of the humoral arm of the adaptive immune system depends upon a diversity of antibody specificities within an individual's population of circulating B cells. This diversity is made possible by the process of gene recombination that takes place during B cell development, creating functional antibody heavy and light chain V(D)J transcripts from relatively small sets of Variable (V), Diversity (D), and Joining (J) genes. The basic processes underlying V(D)J recombination are now well understood (1, 2) and recently, thanks to advances in sequencing technologies that allow millions of different V(D)J gene rearrangements to be explored in a single individual, much has been learnt about the nature of the expressed antibody repertoire (3–8). Most repertoire studies, however, have focused upon the heavy chain repertoire. The nature of the light chain repertoire is less clear.

The diversity of the antibody repertoire is a consequence of the permutations of heavy chain V, D, and J genes, and light chain V and J genes, that are possible given the size of these sets of genes within the genome, and of the permutations of heavy and light chain pairings. This component of the overall diversity is referred to as combinatorial diversity, and is a simple reflection of the number of available heavy chain genes and κ and λ light chain genes. Additional diversity is generated during the recombination processes by imprecise joining at the V(D)J junctions. This is referred to as junctional diversity, and is principally determined by the extent to which random nucleotides are inserted between joining genes (4, 6).

In this review, we highlight important consequences for repertoire development that result from the organization of light chain genes within the mammalian genome. In particular, this organization facilitates repeated rounds of light chain gene rearrangement through the process of receptor editing. This helps to ensure that virtually all developing B cells successfully generate productive light chain rearrangements.

A number of biases and constraints are discussed which lead to substantially less diversity in the light chain repertoire than is usually calculated, and this limited diversity appears to be present in a wide range of species. We conclude that diversity is not the raison d'être of the light chain repertoire. In light of substantial evidence for a special role for light chains in autoimmune reactivity, we propose that the co-evolution of heavy and light chain genes has resulted in a limited light chain repertoire that usually serves to avoid self-reactivity. This hypothesis is explored through an examination of the generation of light chain repertoires in inbred mouse strains that are widely used in models of autoimmune disease.



THE NUMBER AND ORGANIZATION OF LIGHT CHAIN GENES WITHIN THE MAMMALIAN GENOME

To properly understand how the heavy and light chain repertoires are generated, it is essential to have a detailed knowledge of the number of rearranging germline genes that give rise to these repertoires, and of their organization within the genome. The number of genes per species is highly variable as a result of dynamic evolutionary processes in these complex gene families. This can be appreciated by examining the phylogenetic relationships among genes within and between species, and is demonstrated in a phylogeny of functional human and mouse heavy and light chain variable genes (Figure S1). However, our understanding of the precise evolutionary histories of these genes across a larger range of species remains limited, largely due to a paucity of available genomic data.

The organization of the light chain genes is particularly complex, and quite different to that of the heavy chain genes. Heavy chain genes are found within a single gene locus (IGH), while light chain genes are generally found as two separate gene loci-the κ locus (IGK) and the λ locus (IGL). These two loci are found in virtually all mammalian species, while loci for these and other light chain variants are found in bony and even cartilaginous fish (9, 10). Such a general distribution of light chain genes between separate loci is intriguing, and suggests that this genomic organization may carry evolutionary advantages.

Within the κ chain loci of humans, mice and most other species, genes are organized in a similar fashion to the genes of the heavy chain locus (11–15). That is, a cluster of IGKV genes are found 5′ of a small number of IGKJ genes, with the IGKJ gene cluster located 5′ of a single IGKC gene. The dog genome is unusual in that half the canine IGKV genes are located upstream, and half are located downstream of the IGKJ and IGKC genes (16).

The number of functional IGKV genes varies widely between species, and this number may have some relationship to species size (Figure S1). We have argued that small species may require more germline genes because of the small burst size of the germinal center reaction in those species (17). As the number of cells responding to antigen is limited in small species, there is less chance for important higher affinity antibodies to emerge from the germinal center through the process of somatic point mutation. Critical specificities must therefore be encoded in the germline.

Sequencing of the human κ locus has identified 44 functional IGKV genes and open reading frames, which are found in two clusters that arose through segmental duplication (18, 19). An additional three functional IGKV sequences may be present in some haplotypes (20). A comparable number of functional IGKV genes (n = 54) was recently characterized in genomic sequences from the rhesus macaque, a commonly used non-human primate model (21). In contrast, studies of the horse genome reference sequence identified only 19 apparently functional IGKV genes (22), while 111 and 135 potentially functional IGKV genes have been found in the guinea pig and rat genome reference sequences, respectively (23, 24). Among mammalian species studied to date, the microbat (Myotis lucifugis) is unique in that it lacks a κ locus (25). It has been suggested that this may be part of a general simplification of immune function in a species that has met the weight to muscle challenge that is necessary for flight capability (26). This hypothesis is indirectly supported by the fact that the κ locus is also absent from the genome of chickens (25) and zebra finches (27), and it may have been lost from the genomes of all bird species.

In line with numbers reported in the small rodent species mentioned above, the genome of C57BL/6 mice carries around 101 functional IGKV genes (28). This number may, however, not be accurate for other inbred mouse strains. We recently reported that the heavy chain loci of different inbred strains of mice are derived from different sub-species of the house mouse. As a result, the C57BL/6 strain carries 99 functional IGHV genes, but the BALB/c strain carries 163 functional IGHV genes (29). We have also noted that based on available whole-genome SNP data (30), almost all inbred strains carry κ chain loci that appear to be derived from the Mus musculus domesticus sub-species (17). NOD/ShiLtJ mice are unusual in that they carry a M. m. castaneus-derived κ locus (17). Interestingly, many of the distinct κ genes of this diabetes-prone strain are identical to κ genes of the Systemic Lupus Erythematosis (SLE)-prone (NZB × NZW)F1 and MRL strains (31). SNP analysis shows that parts of the IGKV loci of NZB and MRL mice are also derived from the M. m. castaneus sub-species (Figure 1). This confirms an observation from a very early study of BALB/c and NZB-derived myeloma proteins. It was reported that NZB and BALB/c mice share some κ light chain sequences, but that other κ genes differ markedly between the strains (32). SNP analysis shows that the chr6:67.5m−68.2m region of the κ locus of the NZB strain is of M. m. castaneus origin. The chr6:68.2m−68.5m region is of uncertain origin, and the remainder of the NZB κ locus is M. m. domesticus-derived. Genes of M. m. castaneus origin are also found in the MRL strain, in the region chr6:68.8m−70.7m (see Figure 1).
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FIGURE 1. Predicted sub-specific origins of germline haplotypes found in the (A) immunoglobulin IGHV and (B) immunoglobulin IGKV loci among selected classical inbred and wild-derived mouse strains. The MRL/MpJ strain is the parental strain of the MRL/lpr strain, and although MRL/MpJ mice carry a normal Fas gene, they are also prone to autoimmunity. The lowest three strains shown are wild-derived, with genomes that are representative of the three major subspecies. M. m. domesticus-derived sequences are shown in blue, M. m. musculus-derived sequences are shown in red, and M. m. castaneus-derived sequences are shown in green. Data from Yang et al. (30). Graphics by Mouse Phylogeny Viewer (33).



The λ locus of most species investigated to date includes a set of IGLV genes that are located 5′ from a variable number of tandem cassettes, each made up of an IGLJ gene and an IGLC gene. The human locus includes as many as 38 functional IGLV genes and Open Reading Frames (18) and five functional J-C gene pairs (34). In the rhesus macaque, 47 IGLV genes are predicted to be functional based on genomic data (21), and in the pig, there are nine functional IGLV genes (35). In these species too, the IGKV genes are located 5′ of functional J-C pairs, but this organization is not invariant. 144 IGLV genes of uncertain functionality have been identified in the horse, with 110 genes being located upstream and 34 being located downstream of the IGLJ/IGLC cluster (22, 36). The locus of the mouse is also differently organized.

The C57BL/6 genome includes just three IGLV genes (Figure S1), and there has been speculation that IGLV genes might have been lost during the inbreeding of laboratory strains. In fact, diversity is lacking in wild mice of all three Mus musculus subspecies (37). Two of the C57BL/6 IGLV genes are associated with one functional J-C gene pair, while the third IGLV gene is associated with a second J-C pair. Lambda rearrangement in the mouse takes place within each of the two VJC units, with little or no recombination between the units (38).

The genes of both the human and mouse λ IGLV loci are all in the same transcriptional orientation as the λ J-C gene clusters (18, 39). The V, D, and J genes of the heavy chain loci of mammalian species are also found in the same orientation as their associated constant region genes (40–42). The κ chain locus of these species, on the other hand, includes many IGKV genes that are found in the opposite orientation to their associated IGKJ and IGKC genes. In the human, the orientation of the distal κ gene cluster is opposite to that of the IGKJ genes and IGKC gene, while all but the two most 3′ genes of the proximal gene cluster share their orientation with the IGKJ and IGKC genes (20). The κ locus of the mouse also includes IGKV genes in both the same and the opposite orientation to their respective IGKJ and IGKC genes (13). Such variable orientations of IGKV genes have also been reported in other species including the elephant (43), horse (22), pig (14), dog (16), and rhesus macaque (21).

In the horse, which is a species with a λ -dominant repertoire, IGLV genes are found both upstream and downstream of the λ J-C gene clusters. Many of these sequences are pseudogenes, but the few functional genes in the downstream cluster are found in the opposite orientation to that of the horse J-C genes, thereby allowing the genes to recombine (36).

The orientation of genes has other consequences for the generation of diversity. The opposite orientation of many IGKV genes within the murine and human κ loci means that primary rearrangements of such genes do not lead to deletion of the genes that are located between recombining IGKV and IGKJ genes (see Figure 2). This retention of genes becomes important if a rearrangement results in a non-productive chain or a self-reactive B cell receptor (BCR). In such situations, all other IGKV and IGKJ germline genes remain available for secondary rearrangements (see discussion below). In any cell that experiences such successive rounds of recombination, the order and orientation of the genes within the locus will be subject to complex changes, and this will have consequences for the repertoire that is generated by secondary rearrangements (Figure 2).
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FIGURE 2. Three rounds of VJ rearrangement of the κ locus, that might result from non-productive rearrangements or rearrangements resulting in self-reactive BCR. The initial configuration of genes (top) shows four IGKV genes in the reverse orientation to the IGKJ and IGKC genes, and 3 IGKV genes in the orientation shared with those genes. Gene loss, as well as the changing order and orientation of genes is highlighted through successive rounds of rearrangement. Expression of the final configuration (shown in row 4), which threatens allelic inclusion and possible continuing auto-reactivity, is terminated through the action of the Kappa Deleting Element (bottom).



The frequencies with which different V, D, and J genes are utilized in gene rearrangements vary by many orders of magnitude. This appears to reflect, at least in part, the accessibility of genes, and their positions within the genome (28, 44, 45). Dramatic changes in the order of genes and in the distances between IGKV and IGKJ genes, arising from a primary rearrangement of genes, should therefore lead to changes to gene accessibility. This may mean that the utilization frequency of a gene can vary between primary, secondary and subsequent rearrangements. Complex changes could therefore compromise the tight regulation that otherwise appears to guide the generation of the antibody repertoire. In many species, this risk to the regulation of the repertoire may be mitigated by the action of Kappa Deleting Elements (KDE). The consecutive rearrangements that are possible within the κ locus can be terminated by KDE-mediated recombination, driving B cells to the expression of genes of the λ locus (46). This may also prevent or lead to the resolution of allelic inclusion, which can arise because of the orientation of IGKV genes within the locus (see Figure 2) (47).

Kappa Deleting Elements (KDE) are located downstream of IGKC genes, and they appear to be highly conserved within the mammalian genome (48). The mouse KDE is referred to as the Recombining Segment (RS), and it is distinct but very similar to the Recombination Signal Sequences (RSS) located adjacent to the 3′ ends of the IGKV genes and the 5′ ends of the IGKJ genes (49). KDEs of all species studied are made up of conserved heptamer and nonamer sequences separated by 23 base pair spacers (48). The KDEs function by allowing recombination between the KDEs and recombining elements that contain the palindromic heptamer CACAGTG. These are located within the IGKJ-IGKC intron and in the RSS at the 3′ ends of the IGKV genes. Such recombination effectively terminates the involvement of the rearranging locus in the generation of diversity. This will drive recombination from the first to the second κ locus (i.e., on the alternate chromosome), or from the second κ locus to the λ gene-bearing chromosomes (see Figures 2, 3). It is likely that despite the conservation of this element within the κ locus, the strength of action of the elements varies between species. The preponderance of κ chains in the expressed antibody repertoire of the mouse, for example, suggests that the mouse RS usually fails to drive rearrangement to the λ locus. Instead, each murine κ locus will likely be rearranged to exhaustion, and this will prevent the overexpression of the handful of λ genes that remain in the mouse genome. The activities of RS in different sub-species of the house mouse have not been explored.
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FIGURE 3. Light chain rearrangements provide multiple pathways to the production of self-tolerant B cells. Alternative pathways are a consequence of rearrangements of the light chain loci that result in non-productive or auto-reactive BCR. Beginning with rearrangements of the κ locus on the first selected chromosome, a succession of light chains can be paired with an existing heavy chain that is already expressed on the surface of the pre-B cell. Each resulting BCR is assessed for affinity to self-antigen. Cells expressing autoreactive antibodies can be rescued via further rounds of receptor editing. If repeated rounds of rearrangements of a locus fail to generate a functional, self-tolerant antibody, and the possibilities of rearrangement are exhausted, the process may continue on other chromosomes. Rounds of κ rearrangement may be prematurely curtailed by the action of the kappa deleting element. B cells unable to generate self-tolerant antibodies despite multiple rounds of receptor editing will ultimately be deleted or rendered anergic. In contrast, B cells that generate successful light chain rearrangements that result in self-tolerant antibodies will go on to develop further into immature B cells.




Gene Rearrangement of the Light Chain Loci

The light chain repertoire is shaped by the order of gene rearrangement, and early studies in the mouse and human showed that rearrangement begins with the κ locus (34, 50). This may not be true for all species. It has recently been shown that the λ locus rearranges first in the fetal and neonatal pig (51, 52). Timing therefore requires further investigation, particularly in species with repertoires that are dominated by the λ light chain, for regulation of the expressed repertoire could be more difficult if the minor locus was to rearrange first. If a species had just a handful of functional κ genes, and abundant functional λ genes, initial rearrangements of the κ locus would risk over-expression of the few available IGKV genes.

In the mouse and human, if an initial κ rearrangement is unproductive or self-reactive, additional rounds of secondary rearrangement can proceed, in a process known as receptor editing (53–55). Receptor editing is usually discussed as a pathway to resolution of auto-reactivity, either in developing B cells in which self-reactivity is generated by primary rearrangements (56), or in mature antigen-selected B cells where self-reactivity may result from somatic point mutations (57). Less attention has been paid to the more general role that receptor editing plays in shaping the formation of the repertoire.

The organization of genes within the light chain loci facilitates receptor editing, and this increases the likelihood that each B cell will form an in-frame light chain rearrangement (58). As long as unrearranged V genes remain 5′ of a VJ rearrangement, and unrearranged J genes remain 3′ of the rearrangement, receptor editing can continue (see Figure 2). In the mouse, the potential of κ chain receptor editing is maximized by a bias toward rearrangement of the 5′ IGKJ1 gene (59), and this targeting results from the action of the proximal IGKJ germline transcript promoter (60).

A process of serial rearrangement of the κ chain locus may continue on one chromosome until all possibilities of recombination have been exhausted. Recombination will then proceed on the second κ chromosome (Figure 3). A failure to produce a productive, self-tolerant rearrangement on the second chromosome, after multiple rounds of rearrangement, will be followed by rearrangement of the λ loci.

The human λ locus also seems permissive of receptor editing (61), and the absence of deletional elements in the λ locus should maximize the potential of serial λ recombination in the human. This should ensure that relatively few human B cells fail to make a suitable productive light chain rearrangement that is self-tolerant when expressed in association with the cell's heavy chain rearrangement. The possibility of repeated rounds of λ rearrangement could be particularly important for the avoidance of self-reactivity, for it has been suggested that λ -bearing human B cells are less prone to self-reactivity than κ-bearing B cells (61). The λ chains of these cells may also provide stability during an ongoing immune response, for it has been shown that the codon usage of λ genes reduces the likelihood of structural changes arising from accumulating somatic point mutations (62).



Population Variation in the κ and λ Gene Loci

Combinatorial diversity is expanded by heterozygous gene loci, and such diversity appears to be of functional significance (63). It is therefore important that repertoire studies include a focus on alleles and gene heterozygosity. Although a few new allelic variants of human IGKV genes have recently been reported (19), the reported IGKV germline gene repertoire appears to be relatively complete (64). According to the IMGT reference directory, 26 IGKV genes have no known allelic variants, while 15 IGKV genes have only one reported variant and five have two known variants. The extent of allelic variation within the κ light chain locus could be even less than is indicated in the IMGT reference directory, for some of the reported variants are likely to be artifacts arising from sequencing errors. This is certainly the case for many reported IGHV alleles that were identified in early sequencing studies (65).

The reported human IGLV germline gene repertoire may also be relatively complete, for only five new alleles have been reported since 1997. These sequences are more varied than genes and allelic variants of the IGH and κ loci (66), but like the IGKV repertoire, there appears to be relatively little allelic variation amongst the IGLV genes. Functional and ORF allelic variants have been reported for 24 IGLV genes, but not for 15 other IGLV genes. No more than four alleles are identified in the IMGT reference directory for any IGLV gene (http://www.imgt.org/vquest/refseqh.html).

In contrast to the genes of the κ and λ loci, there is just a single functional IGHV gene (IGHV3-NL1) that lacks reported allelic variants in the IMGT reference directory or in the IgPdb database (https://cgi.cse.unsw.edu.au/~ihmmune/IgPdb/). So many common variants are known for some genes that heterozygosity in any individual is almost assured. For example there are 16 IGHV1-69 gene sequences in the IMGT reference directory, and a further 13 alleles have been inferred from analysis of high throughput genomic and AIRR-seq data (67, 68). Although the larger number of IGHV allelic variants could reflect the greater attention that has been given to defining this set of germline genes, there is additional evidence that points to a lack of diversity in the light chain gene repertoire.

A lack of allelic variation in the human κ locus is supported by AIRR-seq studies of κ rearrangements. In a study of four individuals, involving the dominant three human IGKV gene families (IGKV1, IGKV2 and IGKV3), VJ rearrangements were seen involving between 20 and 25 genes (69). One individual was homozygous at all gene loci. In the three other individuals, heterozygosity was only seen at 1 or 2 of the IGKV loci (69). The contrast with the heavy chain locus is striking. A recent AIRR-seq study of 95 individuals explored heterozygosity at 50 heavy chain IGHV gene loci (70). Other than in three individuals from whom relatively few sequences were generated, study participants were shown to be heterozygous at between 20% and 40% of the loci. Six gene loci were heterozygous in over 50% of study participants. Only six genes that were relatively abundantly present in the datasets showed homozygosity in all individuals (70). Similar patterns of heterozygosity within IGHV coding segments have also been noted from targeted genomic sequencing data (67).

In addition to allelic variation, gene copy number variation is also enriched in the IGHV locus, relative to IGLV and IGKV. Greater than half of the known human functional/ORF IGHV genes have evidence of copy number variation (45, 67, 70–75), compared to only one and three IGLV and IGKV genes, respectively (76–78).

Additional albeit indirect evidence for an evolutionary drive to conserve rather than diversify the human κ locus comes from the similarity of the genes in the proximal and distal IGKV clusters. The large segmental duplication that gave rise to the human κ locus appears to have occurred since the divergence of the human lineage from the most recent shared ancestor with other great apes (11). There are 23 functional IGKV genes and ORFs in the proximal cluster, and 22 in the distal cluster. Eighteen paired sequences are found in both clusters, and no coding changes have evolved at eight of these paired gene loci. In addition, one sequence in each of two other sequence pairs are now non-expressible pseudogenes. Expressed variation is therefore concentrated in just 8 of the 18 sequences. Furthermore, comparisons of nucleotide variation across the entirety of the sequence comprising the large proximal and distal gene clusters reveal strong similarity. Diversity within the large segmental duplications harboring these gene clusters appears to be much lower on average (>6 fold less) than that observed within segmental duplications found in the IGHV locus (19). We have speculated that this lack of diversity in IGKV may be the result of homogenizing effects of gene conversion events between the proximal and distal regions, as such events have been explicitly documented (19). We also reported that locus-wide IGHV diversity is ~3-fold higher than IGLV diversity; in fact, IGHV diversity appears to be generally higher than the genome average (19). Earlier analyses based on limited datasets have suggested that nucleotide and amino acid substitution patterns within V segments may differ between IGHV, IGKV, and IGLV loci (79); specifically, and consistent with decreased genomic diversity in κ locus haplotypes, Schwartz and Hershberg showed that, relative to κ chain V segments, heavy and λ chain genes exhibit greater amino acid diversity in both framework and complementarity determining regions (66). Together, these data suggest contrasting evolutionary histories that have resulted in different genetic features being associated with the human heavy and light chain loci.

The κ locus of the mouse seems to display the same lack of variation that is seen in the human locus. The IGKV locus was first mapped using YACs and BACs derived largely from C57BL/6 and C3H mice (12, 80, 81), and these sequences dominate the IMGT mouse IGKV database. An alternative assembly of the mouse κ locus was later produced based upon data from the C57BL/6, A/J, 129 and DBA/2 strains (82). Each of the IGKV genes previously reported by Zachau and colleagues were mapped to this new assembly, and they were all found to have >99% identity. Not a single allelic variant was reported from this study, although it is true that their approach means that some highly similar but previously unreported polymorphisms may have been overlooked (82).

Evidence of a lack of allelic variation amongst germline genes within mouse strains also comes from analysis of the IMGT database. Studies of light chain germline genes have included a sampling of a wide variety of inbred strains, and from wild-derived M. m. musculus and M. m. castaneus mice (83–85). Yet the IMGT database includes allelic variants for just 11 functional IGKV genes, and when analysis is confined to reports from studies of strains appearing to carry M. m. domesticus-derived genes, variants have only been seen for 6 IGKV genes. Confirmation that the apparent lack of variation is genuine, rather than reflecting insufficient investigation of mouse light chain genes, needs to be pursued through more comprehensive surveys of variation across wild mice from each of the sub-species.



The Diversity of the Expressed Light Chain Repertoire

It is generally held that a stupendous diversity is the defining characteristic of the antibody repertories of all species. This was famously expressed by Peter Medawar as the miracle of immunology: “that a rabbit yet unborn will be able to make antibodies to an antigen not yet synthesized” (86). We have recently argued that the production of antibodies that target molecules never before seen, and unlikely to be seen, could be a costly investment for many species (17). The immune repertoires of different species may have developed varying levels of diversity in response to the quite differing evolutionary pressures faced by each species. Some of the most significant pressures may result from basic aspects of the biology of species, including their differing reproductive strategies and longevity, and especially from their varying sizes. The antibody repertoires of small species are necessarily small, and there is therefore a greater need for regulatory processes to steer the development of their repertoires toward specificities that target key pathogens (17). This may explain why in comparison to the human antibody repertoire, the murine repertoire includes more heavy chain clonotypes that are shared by many individuals of the species (6, 17, 87).

Public clonotypes may be rare in the human heavy chain repertoire, but there is a surprising lack of diversity in the human light chain repertoire, and public clonotypes account for about 60% of the human κ (69) and λ (88) light chain repertoires. This is in part a consequence of very strong biases in light chain gene usage. Six IGKV sequences dominate reported human IGK rearrangements: IGKV3-20*01, IGKV3-15*01, IGKV3-11*01, IGKV1-5*01, IGKV2-30*01, and IGKV1-39*01/IGKV1D-39*01 (69). The IGKV3-20*01 gene alone is seen in over 30% of rearrangements in some individuals (69). On the other hand, some genes are utilized at very low frequencies. In fact, amongst 22,193 rearrangements analyzed from four individuals, we saw no sequences that utilized eight reportedly functional IGKV genes (69).

Similarly, while the mouse may have over 100 available IGKV genes, just seven genes are responsible for over 40% of rearrangements, and the utilization frequencies of some IGKV genes are as low as 0.001% (28).

Biased usage of λ IGLV genes is also seen. Three IGLV genes account for more than 50% of human rearrangements, and individual IGLV genes are used at frequencies that range from 0.02 to 27% (89). In the neonatal pig, biases are even more extreme, with three IGLV genes accounting for 70% of rearrangements (51). The utilization of the four functional human IGLJ genes are also affected by biases, with frequencies varying from just 5% for IGLJ1 to almost 55% for IGLJ7 (90, 91).

The lack of D genes in light chain rearrangements limits their diversity. Diversity is further limited by the fact that relatively few nucleotides are lost from κ and λ V and J gene ends by exonuclease removals and few N nucleotides are added to the junction of the joining genes. Public human κ clonotypes have on average just 0.4 added N nucleotides, while even private clonotypes have an average of only 2.5 N additions (69). Similarly, on average, public λ VJ junctions include a single N addition, and private junctions average around two additions (88). There is even less N addition in the mouse (92), and interestingly, this is also true in the humanized mouse (88). This severely limits junctional diversity of the complementarity determining region 3 (CDR3) of light chains in the mouse. Together with the lack of combinatorial diversity, this ensures that the light chain repertoire of the mouse and human are highly constrained. In an analysis of over 250,000 mouse κ chain VJ rearrangements from 59 mice, over 90% of the sequences encoded just 1000 amino acid sequences (28). A similar number of amino acid sequences dominate the human κ chain repertoire (69).




LIGHT CHAINS AND THE CONTROL OF SELF-REACTIVITY

The light chain repertoire is constrained, and there is an extensive body of research that suggests that an important factor that constrains the repertoire is the need for light chain rearrangements to minimize BCR self-reactivity. Human antibodies formed with κ chains may have a greater tendency toward self-reactivity (61), but through repeated rounds of κ rearrangement, and through similar rounds of λ rearrangement, much self-reactivity seems to be avoided. This may explain the recent observations that reduced light chain editing is associated with several autoimmune conditions in the human, including Systemic Lupus Erythematosis (SLE), type 1 diabetes (T1D), and myasthenia gravis (47, 93). This has also been observed in several mouse models of autoimmunity (47). It has also been shown that reduced KDE rearrangements can lead to dual κ and λ chain expression, through a failure to delete κ rearrangements in λ-switched cells, and this disturbance of light chain editing is associated with SLE (94).

The study of cells in which both κ and λ rearrangements are present has highlighted the fact that certain IGKV genes may be prone to self-reactivity. Biases in IGKV gene expression are seen when productive κ rearrangements are studied in λ-bearing B cells, and compared with κ rearrangements from κ-bearing cells (95). This comparison is possible because of the persistence of κ VJ rearrangements in cells that have switched to a λ light chain rearrangement as a consequence of the earlier generation of a self-reactive κ positive BCR. The biased gene expression therefore points to a tendency of some genes to mediate self-reactivity.

Some heavy chain IGHV genes are also associated with autoreactivity, and human IGHV4-34 in particular has been implicated in anti-red blood cell autoimmune responses (96). It may be, however, that this association should be seen as resulting from a difficulty in finding a suitable light chain partner for IGHV4-34. The persistence of IGHV4-34 in the human population, and its expression at relatively high frequency within the antibody repertoire, points to the value of IGHV4-34 heavy chains when a self-tolerant light chain partner is found.

Evidence in support of a special role for light chains in the etiology of autoimmune diseases also comes from a consideration of mouse disease models. There are several types of mouse model of autoimmune disease (97). Autoimmunity can be induced by challenging animals with self-antigen in the presence of powerful adjuvants. An example is the Experimental Allergic Encephalitis (EAE) model that involves the challenge of SJL mice with spinal cord homogenate (97). Other models of autoimmune disease involve the spontaneous development of disease. This is the case with the NOD Type 1 Diabetes model and models of SLE using MRL/lpr mice and (NZB × NZM)F1 mice (97). These spontaneous models may more closely approximate human disease than the antigen challenge models.

A third kind of model relies upon genetic manipulation of animals using gene knockout and transgenic techniques. These models have been particularly important for the study of self-reactive B and T cells, and how they are deleted or otherwise controlled. Some of these models involve the use of transgenic antigen and antibody pairs (eg HEL/anti-HEL) (98). Other models use transgenic immunoglobulin chains derived from autoreactive B cells arising in autoimmune-prone mice. For example, Andrews and colleagues recently published a study exploring receptor editing in mice that carry an IGKV4-IGKJ4 anti-DNA transgene (99). Although more self-reactive cells were seen when the transgene was expressed in autoimmune-prone MRL/lpr mice, self-reactive B cells were also generated when the transgene was expressed in C57BL/6 mice (99).

This IGKV4-IGKJ4 anti-DNA transgene sequence is derived from a monoclonal antibody that was first isolated from an MRL/lpr mouse in 1987 (100, 101). In describing this and other anti-DNA antibodies, the authors acknowledged their lack of knowledge of the germline genes in MRL/lpr mice, but concluded that the mAb antibody gene sequences were relatively unmutated, based upon a consensus sequence created from both the anti-DNA and other non-DNA-specific antibodies. The apparent presence of some somatic point mutations was, however, deemed to be highly significant. In fact studies describing these antibodies stand as the first evidence for the possibility that self-reactive B cells can arise from self-tolerant B cells by the accumulation of somatic point mutations within the germinal center reaction (100, 101).

Thirty years later, our understanding of MRL/lpr germline genes is still far from complete, but comparisons can now be made between the anti-DNA antibodies and the complete repertoire of C57BL/6 IGKV genes and other murine IGKV genes. This includes sequences that are likely to be NOD IGKV germline genes, many of which are identical to MPL-derived IGKV sequences in GenBank (31). The IGKV sequence in the transgene includes 18 nucleotide differences with respect to the nearest reported IGKV gene (IGKV4-81) in the IMGT reference directory. The sequence is, however, much more similar to a NOD sequence reported by Henry and colleagues, differing only within the CDR3 region of the sequence (31). We believe that the many differences with respect to C57BL/6 IGKV genes are a consequence of the separate evolutionary origins of the IGKV loci of the C57BL/6 and MRL/lpr mouse strains. Based upon the haplotype analysis depicted in Figure 1, the MRL/MpJ-derived transgene appears to be of M. m. castaneus origin. In the absence of further information about the MRL/lpr IGK locus, there can now be no certainty regarding the presence or absence of somatic point mutations in the anti-DNA sequences reported in 1987. Only when the germline IGKV genes of MRL mice have been properly documented will it be possible to say whether or not these anti-DNA antibodies arose through an accumulation of point mutations in previously self-tolerant cells.

We believe that the autoreactivity of the light chain product of the IGKV4-IGKJ4 transgene may be the result of its M. m. castaneus origin, and of its association with M. m. domesticus and M. m. musculus-derived heavy chains. We also believe that M. m. castaneus genes may also explain the spontaneous autoreactivity that is seen in NOD and other inbred mice. The complete κ light chain locus of the NOD strain, and portions of the loci of the MRL/lpr and NZB strains, are derived from the M. m. castaneus sub-species of the house mouse (Figure 1). The heavy chain locus of the NOD mouse, on the other hand, comes from the M. m. musculus sub-species, while the MRL/lpr and NZB strains appear to carry IGH loci that are M. m. domesticus-derived.

The three major sub-species of the house mouse emerged from a common ancestor about 350,000 years ago (102), and it is reasonable to assume that their heavy and light chain genes co-evolved as the sub-species diverged. This co-evolution would be required to minimize self-reactivity, and to ensure that each heavy chain could successfully partner with light chains encoded by at least a subset of the IGKV genes. It appears, however, that the breeding histories of many laboratory mice have resulted in heavy and light chain gene sets that did not evolve together being found in their genomes. A few common laboratory strains, including BALB/c and 129 mice, carry matching M. m. domesticus-derived IGH and IGK loci, whereas others like the AEJ, C57BL/6, C57BL/10, and SJL strains carry a M. m. domesticus-derived IGH locus but a M. m. musculus-derived κ locus (Figure 1).

Not all inbred mice that have been reported to be prone to autoimmunity harbor obviously mismatched loci. For example, C57BLKS/J mice are diabetes-prone, but have heavy and light chain loci that appear to be derived from M. m. domesticus (103). DBA mice are used in a collagen-induced arthritis model of rheumatoid arthritis (104), and both their heavy and light chain loci also appear to be M. m. domesticus-derived. It is also true that not all strains that carry mismatched loci have been reported to be susceptible to autoimmunity. An example is the RF/J strain, which appears to have a M. m. domesticus IGH locus and a M. m. castaneus IGK locus. However, it is striking how many models of autoimmunity involve mismatched heavy and light chain gene loci. In addition to the NOD, MRL/lpr, and NZB models, SJL mice that are used in the EAE model of multiple sclerosis (97) appear to have a M. m. musculus IGH locus and a M. m. domesticus IGK locus. A model of autoreactivity to matrix collagen uses a C57BL/6-derived IGKV3 transgene in C57BL/6 hosts (105). In this strain, the IGH locus seems to be M. m. musculus-derived, while the IGK locus is M. m. domesticus-derived. Hybrid (129 × C57BL/6) mice spontaneously develop an SLE-like condition (106), and these mice express M. m. domesticus heavy chains in association with both M. m. domesticus and M. m. musculus-derived κ chains. Finally, the BXSB mouse spontaneously develops lupus-like pathology (107). SNP analysis suggests that it has a M. m. domesticus IGH locus and a M. m. musculus κ locus (Figure 1).

For over 30 years, mouse models have provided profound insights into the nature of autoreactivity and self-tolerance. It may be though that an ignorance of the makeup of the immunoglobulin gene loci has kept hidden a key genetic contributor to autoimmunity. To determine if this may be the case, the repertoires of laboratory mice will need to be compared to repertoires generated in animals in which the heavy and light chain loci and all critical regulatory elements, as well as self-antigens, are all derived from the same sub-species of the house mouse. The immunoglobulin genes of the different strains will also need to be properly characterized. It is possible that this may reveal that the apparently matched loci of some autoimmune-prone strains are derived from disparate sources. SNP analysis at present characterizes mouse strains with respect to the three major sub-species of the house mouse, but other minor sub-species may also have contributed genes to the laboratory mouse. We believe that such a focus on heavy and light chain pairings, in mouse models and in human studies, may help explain some of the mysteries that still surround autoimmune diseases.
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Age-related changes can significantly alter the state of adaptive immune system and often lead to attenuated response to novel pathogens and vaccination. In present study we employed 5′RACE UMI-based full length and nearly error-free immunoglobulin profiling to compare plasma cell antibody repertoires in young (19–26 years) and middle-age (45–58 years) individuals vaccinated with a live yellow fever vaccine, modeling a newly encountered pathogen. Our analysis has revealed age-related differences in the responding antibody repertoire ranging from distinct IGH CDR3 repertoire properties to differences in somatic hypermutation intensity and efficiency and antibody lineage tree structure. Overall, our findings suggest that younger individuals respond with a more diverse antibody repertoire and employ a more efficient somatic hypermutation process than elder individuals in response to a newly encountered pathogen.
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INTRODUCTION

A number of previously published studies suggests that the function of adaptive immunity is impaired in aged individuals (1, 2). The findings include functionally exhausted immune repertoire displaying a substantially lower diversity of T cell and B cell receptors compared to young individuals (3–6), impaired antigen-driven selection mechanisms (7, 8), and attenuated response to vaccines (9–16).

Functional defects of antibody-mediated vaccine-induced immunity in elderly adults are manifested both in the hampered generation of a primary response and in decreased effect of booster vaccination: low production of vaccine-specific antibodies, low affinity and opsonic capacity of generated antibodies, reduced vaccine longevity (9, 13, 14, 17–23). Altogether, this leads to lower protection achieved in the elderly than in young adults. However, the exact reasons of poor vaccine response in old people have not been fully elucidated.

Recent advances in high-throughput sequencing (HTS) allow performing a targeted readout of hundreds of thousands of B-cell receptor (BCR) heavy chain (IGH) sequences from samples of interest (24–30), providing a powerful tool for investigation of age-related changes in B cell immunity. HTS profiling of BCR repertoires reveals contracted clonal diversity both in naive and antigen-experienced B memory subsets, and accumulation of highly mutated immunoglobulin genes and persistent clonal expansions with aging (25, 31, 32). The latter resembles the age-related changes in T cell repertoire (5, 33–35), and altogether these effects can be linked to the decreased efficiency of vaccination in the elderly adults (32, 34, 36).

The HTS approach was also employed for studies of influenza (25, 27), tetanus (37), and hepatitis B (38, 39) vaccines. It was demonstrated that B cell repertoire has the ability to rapidly expand and contract in a highly dynamic mode in response to vaccination (27). Stereotypic changes of B cell repertoires include increase in mutation frequency and decrease in diversity 4–10 days after vaccination, which corresponds to the maximum concentration of mutated plasma cells released into the peripheral blood (38–40). Interestingly, highly homologous “public” BCR variants can be produced in response to the same antigen in different individuals by convergent recombination and selection (27, 41, 42).

There is also an increasing number of data characterizing changes in the antibody repertoires with respect to vaccine immune stimulus and age. We have found three HTS-based studies of BCR repertoires aimed at revealing the age-related differences in vaccine response, all tracking the changes upon influenza vaccine challenge (25, 32, 43).

Wu et al. (43) analyzed cDNA-based BCR repertoires obtained from the peripheral blood mononuclear cells (PBMC) of young (19–25 years) and old (70–89 years) individuals, where responding B cell clones (groups of homologous clonotypes) could be distinguished by their large size at D7 in terms of the number of included clonotypes. In the old individuals, they reported decreased average clone size within IgA isotype, and increased CDR-H3 length and lower mutation frequency for the large IgA and IgM clones.

Jiang et al. (25) analyzed cDNA-based BCR repertoires obtained from PBMC of 8–17, 18–32, and 70–100 years old groups of individuals at D0, D7-8, and D28 (±4) after vaccination. At D7-8, plasmablasts were sorted as CD3–CD19+CD20–CD27+CD38+ cells. The oldest age group was characterized by fewer B cell lineages compared to other age groups both in PBMC samples obtained before and after vaccination and within the vaccine-responding plasmablast repertoire.

de Bourcy et al. (32) analyzed cDNA-based BCR repertoires obtained from the PBMC of young (21–27 years) and old (73–93 years) individuals, where responding B cell lineages were distinguished as those that were detected at both D0 and D7 and increased their transcript abundance between these time points. They reported reduced intralineage mutational diversification, and decreased proportion of radical (prominently changing the amino acid properties) mutations in the clones responding to vaccination in old individuals. These observations may indicate generally impaired affinity maturation in the old age, as well as accumulated original antigenic sin and the requirement of only fine-tuning of the existing flu-specific memory B cell repertoire in old individuals with long history of response to influenza (32).

All these data have highlighted the importance of B cell repertoire dynamics consideration in vaccine studies in the elderly adults, but were limited to tracking the response to a common pathogen with a substantial exposure history. Here we focused on investigation of the age-related differences in BCR repertoire structure of the plasma B cells responding to the live yellow fever (YF) virus vaccine in young (19–26 years old) versus middle-age (45–58 years old) individuals as a model of response to a previously unencountered pathogen.

We utilized our protocol based on 5′-RACE with unique molecular identifiers (UMI) that allows nearly error-free, full-length (FR1-FR4 plus IgD/IgM/IgG/IgE/IgA isotypes identification) sequencing of IGH variable region repertoires (44), with minor modifications. Given that sufficient coverage is achieved in terms of sequencing reads per cDNA molecule, the use of UMIs dramatically increases the quality of long range high-throughput sequencing, and endues the algorithms of PCR errors correction with high power and precision, critical for resolving the true somatic hypermutation events (44–47).

To focus the analysis on the immunoglobulin repertoires specifically responding to vaccination, we isolated CD20-CD19+CD27highCD38high plasma B cells from peripheral blood samples obtained from healthy volunteers 9 days after their first vaccination with live YF vaccine. In this time frame, the concentration of plasma B cells in peripheral blood increases dramatically and mainly represents the cells that respond specifically to the vaccine antigens (40, 48).

It should be noted, that a minor portion of peripheral blood plasma B cells analyzed 9 days after vaccination could include clones responding to the current antigens other than the YF, such as self-antigens and antigens arising from commensal microorganisms or chronic infections. Thus the picture of the differences observed in the plasma B cell repertoires of young and middle-age donors after YF immunization could include imprint from the general differences in the ongoing plasma B cell response between the young and middle-age volunteers, as well as differences in memory-track prehistory of these responses. According to our observations, 9 days after YF vaccination, relative abundance of plasma B cells in peripheral blood increased more than 10-fold and reached 15.5% ± 10% of CD19+CD27high B cells (Supplementary Figure 1), similar for both age groups, which corresponds well to the previous data with influenza vaccination (48). Thus we estimate the contribution of such non-YF vaccination related B cell clones as ~10% of the analyzed cDNA quantity.

It should be also noted that since our approach to immunoglobulin profiling is RNA-based, the resulting IGH repertoires yield the picture that intrinsically accounts for the difference in the IGH mRNA expression levels, thus favoring B cell clones with high production of immunoglobulins.

In our data analysis, we have focused on three groups of variables that together provide a comprehensive repertoire characterization:

1) V-D-J rearrangement structure and CDR3 physicochemical properties;

2) Antibody lineage structure (clonal trees);

3) Profiles of newly acquired and potentially pre-existing somatic hypermutations.

We reveal a number of antibody repertoire features that were distinct between young and middle-age individuals, highlighting age-related differences in humoral immune response directed against newly encountered antigens, that are already detectable by the age of 50.



METHODS


Blood Donors and Samples

This study was approved by the local ethical committee and conducted in accordance with the Declaration of Helsinki. All donors were informed of the final use of their blood and signed an informed consent document. The cohort of healthy donors (n = 10, Table 1) has been immunized for the first time by the yellow fever vaccine (live freeze-dried preparation of the 17D strain of YFV licensed in Russia, FSUE of Chumakov IPVE, RAMS). Yellow fever is not endemic in Russia and the volunteers have not previously traveled to areas known to be endemic for yellow fever. Peripheral blood (9 ml per sample) was collected on the 9th day after vaccination into EDTA-treated Vacutainer tubes (BD Biosciences). The B cells were stained for surface markers by incubating with following monoclonal antibodies: CD38-PE (clone HB7, eBioscience), CD19-FITC (clone J3-119, Beckman Coulter), CD20-Vio Blue (clone LT20, Miltenyi Biotec), CD27-PC5 (clone O323, eBioscience). The plasma B cells were gated as CD20-CD19+CD27+CD38high and collected directly into RLT buffer (Qiagen) for storage and RNA extraction. The numbers of sorted plasma cells per sample are shown in Table 1.



Table 1. Donor and sample metadata.
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RNA Extraction, cDNA Libraries Preparation, and Sequencing

UMI-barcoded IGH cDNA libraries for the vaccinated donors were prepared as described previously (44) with minor modifications which allow to introduce Illumina Nextera adapters and indexes during PCR. Briefly, total RNA was extracted from sorted B cells using RNeasy Micro Kit (QIAGEN) and converted to cDNA using 5′ template switch adapter containing UMI. The cDNA was treated with UDG (NEB), and purified using AMPure Beads (Beckman Coulter). A portion of cDNA equivalent to 200 sorted plasma B cells (Table 1) was used for further PCR amplification. Appropriate amount of cDNA used for the library preparation is critical in order to achieve sufficient coverage in terms of sequencing reads per UMI, which is a prerequisite for the efficient error correction (44–46). IGH libraries were amplified using a set of IGHC-specific and 5′ template switch adapter-specific primers introducing indexed Nextera sequencing adapters. Please refer to the Table 2 for the oligonucleotides used. The resulting libraries were analyzed on 2 runs of Illumina MiSeq, paired-end 310+310 nt sequencing. All 10 samples were analyzed within each run, and results of the 2 runs were pooled before further bioinformatic analysis.



Table 2. Oligonucleotides used.
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Data Preprocessing and Analysis

UMI extraction and UMI-based consensus assembling was performed using MIGEC software (45), with a 5 reads-per-UMI threshold. Further reads mapping and clonotypes (unique full length IGH nucleotide sequences) assembling was performed using MiXCR as described previously (44) with some changes in MiXCR analysis pipeline (KAligner alignment algorithm was used that allows to detect indels of more than 2 nt). Resulting clonesets deposited at https://figshare.com/articles/Comparative_analysis_of_B-cell_receptor_repertoires_induced_by_live_yellow_fever_vaccine_in_young_and_middle_age_donors/6853961.

All analyses except for depicted in Figure 5A were performed using mean values for repertoire features and summary statistics computed for each donor, statistical testing was performed by comparing values for n = 5 young and n = 5 middle-age donors.



Antibody Lineage Analysis

Reconstruction of clonal trees was done using in-house algorithm that takes into account VJ assignment and NDN sequence of IGH and can be briefly described as follows. First, IGH clonotypes are clustered into groups containing sequences with matched V and J segments. Then, a pairwise comparison is performed for each group: if the K-mer (K = 5) composition of NDN regions of two sequences is highly similar the sequences are considered to originate from one ancestor sequence and connected by an edge on the lineage tree.

An edge connects a pair of clonotypes that are likely to come from a pair of cells, one of which is a hypermutated [bears a B-cell receptor with mutation(s)] sub-variant of another. The direction of edge shows which of the clonotypes is a parent one and which is a child one. As we use full-length immunoglobulin sequencing data, one can infer edge direction using parsimony principle: parent clonotype mutations should be a subset of child mutations.

The similarity is computed by summing the information content of each K-mer (that is, the logarithm of its probability to be found in random VDJ rearrangements), thus K-mers containing many non-template bases are scored the most. The similarity score threshold for drawing an edge was selected according a benchmark performed by in-silico mixing Raji hypermutating cell line repertoire and PBMC IGH samples. CDR3 hypermutations were obtained using Smith-Waterman alignment for each pair of connected nodes with different CDR3 sequences. Parsimony principle was applied to remove improbable nodes and infer the direction of edges. In order to eliminate duplicate paths and form a tree structure we next removed all incoming edges except the one with lowest number of mutations. To normalize samples for accurate comparison, we extracted 10,000 randomly sampled IGH cDNA molecules from each dataset.



CDR3 Physicochemical Property Analysis

Averaged CDR3 physicochemical properties of repertoires accounting for the clonotypes size were computed using custom R script. To estimate the energy of the interaction between CDR3 and a random epitope, we used Miyazawa-Jernigan statistical potential (49), that is based on calculating the frequencies of certain amino acids being in close proximity with each other in available structural data, and assuming that these frequencies follow Boltzmann distribution parameterized by corresponding energy values. For each amino acid among the five positions in the middle of CDR3, we computed the average interaction energy with all 20 amino acids. We then summed values across amino acid residues to estimate the energy of the interaction between CDR3 and a random epitope. Other physicochemical properties were analyzed similarly.



Selection Strength

The selection strength was estimated using BASELINe framework (50) which compares the observed frequencies of replacement and silent mutations with the expected ones. BASELINe was applied to a subset of Variable segment sequences (FR1-FR3) that do not contain indels and the closest germline alleles as a reference. For each donor, clonal groups of sequences were collapsed to consensus sequences using SHazaM R package (51) as recommended by BASELINe authors. The probability density functions of the selection strength were compared using built-in statistical test.




RESULTS


CDR3 Characteristics

Analysis of the averaged CDR3 characteristics was performed for IgA, IgG, and IgM isotypes, weighted by the abundance of each clonotype (i.e., the input of each clonotype was proportional to its frequency within repertoire), and included CDR3 length, added N nucleotides, and physicochemical characteristics for the five amino acid residues located in the middle of CDR3 [having the highest probability to contact with antigen, by analogy with TCRs, (52)]. The latter included averaged statistical potential of CDR3:epitope interactions [the estimated “energy” of interaction between CDR3 and a random epitope (49)], “strength” of interaction [derivative of “energy,” VDJtools (53)], hydrophobicity (Kidera factor 4) (54, 55), and “volume” (VDJtools, values from: http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/IMGTclasses.html) for the young versus middle-age individuals (see Table 3 for the values used for each amino acid property).



Table 3. Values used for CDR3 amino acid properties calculation.
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The analysis revealed several features that significantly differed between the responding plasma cell IGH repertoires of the two age groups but not between the isotypes (Figure 1). Of note, differences in “energy,” and hydrophobicity (Kidera factor 4) were previously demonstrated to be critical for antibody affinity and specificity (56). Altogether, observed differences indicated that middle-age individuals tend to respond to a new challenge with IGH variants carrying longer CDR3s [in agreement with (43)], with higher content of bulky, hydrophobic, and strongly interacting amino acid residues in the middle of CDR3.


[image: image]

FIGURE 1. CDR3 characteristics. (A) CDR3 length, aa. (B) Number of non-template added N nucleotides within V-D-J junction. (C) Physicochemical properties for the 5 amino acids residues in the middle of CDR3: Kidera factor 4 (hydrophobicity, lower values refer to more hydrophobic amino acids), potential “energy” of interaction (49) (lower values refer to stronger interaction), “strength” and “volume.” All characteristics were calculated “weighted”—i.e., accounting for IGH clonotype size. ANOVA p-values for age and for isotype adjusted using Benjamini & Hochberg correction are shown on top of each plot.





Isotype and IGHV Gene Segments Usage

We have not detected prominent differences in IGHV gene segment usage as well as in isotype usage between plasma cell IGH repertoires of young and middle-age individuals vaccinated with YF (Figures 2A,B). The list of most commonly used IGHV segments included the IGHV4 (IGHV4-31, IGHV4-34, IGHV4-59, and IGHV4-39) family, IGHV3 (IGHV3-74, IGHV3-30, IGHV3-53, IGHV3-24) family, as well as IGHV1-18 and IGHV5-51.
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FIGURE 2. Isotype and IGHV segments usage for YF-vaccinated subjects from the two age groups. (A) Isotype usage. (B) IGHV usage.



Note that potential biases in isotype and IGHV gene segment usage are corrected by UMI-based analysis, since sequencing reads that cover the same cDNA molecule (irrespectively to the efficiency of amplification of each particular isotype or gene segment) are clustered together, each cDNA molecule to a single UMI-labeled group of sequencing reads.



Differences in Immunoglobulin Clonal Lineage Structure

The analysis of antibody repertoires can be extended by grouping IGH clonotypes into clonal lineages (trees) that share a common ancestor (57) and represent a B-cell clone undergoing the affinity maturation process. UMI-based full-length immunoglobulin sequencing (44) and dedicated antibody tree building algorithm (see section Methods) allowed us to accurately infer and analyze clonal lineage structure.

This analysis revealed that basic graph characteristics, such as the Gini inequality coefficient, and number of singletons (clones including only one clonotype) were significantly different between young and middle-age YF-vaccinated donors (Figure 3A). The Gini coefficient measures the inequality of tree size (number of nodes) distribution. Large Gini coefficient values mean that large trees with many mutated variants dominate over small trees, i.e., most of the observed immunoglobulin variants come from few B-cell clones. Smaller values mean that more distinct clones enter the affinity maturation process during an immune response. Thus the direction of the observed differences suggests that young individuals have a more diversified responding repertoire, while middle-age individuals display a more biased lineage architecture with larger trees that account for the majority of observed clonotypes (Figures 3B,C).
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FIGURE 3. Antibody lineage analysis. (A) Diversity of antibody lineages: Gini inequality coefficient for the number of nodes (clonotypes) in a tree (clone), and number of “trees” that include only one node. Both parameters are significantly different (p < 0.05) between young and middle-age donors. Two-tailed T-test, p-values adjusted using Benjamini & Hochberg method. (B,C) Top IGH trees by size containing equal number of 270 nodes for united data of all young (B) and middle-age (C) individuals are shown.



Note that the trees may include impossible lineage relations such as IgA to IgM isotype conversion. This reflects the fact that our analysis is limited by sampling depth and particular time point. We do not observe the whole pre-history of hypermutation process, thus additional unseen IGH sequence variants that can resolve this ambiguity may exist, e.g., unseen IgM sequence variant parent to observed IgM and IgA variants.



Bulk Analysis of Somatic Hypermutations

Bulk load of somatic hypermutations per clonotype obtained without using the information on the trees structure was comparable between young and middle-age plasma cell IGH repertoires (Figure 4A). We controlled for isotype which is necessary in such comparisons as there are substantial differences between base mutation burden for each isotype (e.g., mean number of SHMs in an IgG clonotype is about 2 times higher than per IgM clonotype).
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FIGURE 4. Bulk analysis of somatic hypermutations. (A) Somatic hypermutations per clonotype, without using trees information (NS, ANOVA). (B) Somatic hypermutations within roots of the trees with >2 nodes (NS, ANOVA). (C) Selection strength estimated using BASELINe framework. Adjusted p = 0.011 for CDR, 0.011 for FWR.



In order to estimate the burden of somatic hypermutations that could earlier accumulate within memory B cells clones currently participating in immune response, we analyzed the frequency of hypermutations within the identified roots of the trees—the IGH sequence variants that were closets to germline within each tree. This analysis also has not revealed significant differences between the young and middle-age individuals in a load of root somatic hypermutations, potentially pre-existing within responding IGH clones (Figure 4B).

To test for the intrinsic differences in the structure of hypermutations, we estimated the average “selection strength” that drived the accumulation of somatic hypermutations in young versus middle-age individual repertoires using BASELINe framework (50), which is based on estimation of expected versus observed frequencies of replacement and silent mutations. This analysis indicated higher “selection strength” in the young versus middle-age individual IGH repertoires (Figure 4C).



Observed History of Ongoing Somatic Hypermutations

Finally, we focused on the newly generated mutations that are directly observed (identified in the edges of the trees), i.e., hypermutations that are supported by both observed “parent” and “child” clonotypes in the dataset. A dedicated tree building algorithm allowed us to infer the set of currently ongoing hypermutations on the entire length of the immunoglobulin sequence (Figure 5A). Note that in the full length analysis of clonal IGH evolution, we are able to identify all hypermutations that occurred within V gene segment, by comparing with the germline. For CDR3 region, we are only able to identify those mutations that differentiate the evolving clones from the identified root. We cannot determine the exact original CDR3 sequence that was generated during IGH recombination and thus cannot identify the hypermutations that have not been sampled by our analysis. This explains the lower proportion of hypermutations observed with CDR3 compared to CDR1 and CDR2 regions.
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FIGURE 5. Patterns of newly acquired somatic hypermutations in young and middle-age donors vaccinated with YF. (A) Summary profile of somatic hypermutations observed in the study. IGH regions are marked with color. The distribution of silent (S) and replacement (R) hypermutations are shown with dashed and solid lines, respectively. For CDR3 region, mutation analysis was done using the root as reference. Data were pooled for all young and all middle-age individuals. (B) Frequency of newly acquired somatic hypermutations (SHMs) in young (red) and middle-age (blue) donors. ANOVA p = 0.0005 for age, 0.14 for isotype. (C,D) Mean replacement:silent ratio (R:S ratio) for newly acquired somatic hypermutations (SHMs) in young and middle-age donors, for isotypes (C, ANOVA p = 0.058 for age, 0.69 for isotype) and regions (D, ANOVA p = 0.0013 for age, 0.00014 for regions).



Middle-age individuals had higher total numbers of the newly acquired unique somatic hypermutations (Figure 5B), while the replacement-to-silent (R:S) ratio among such hypermutations was significantly lower compared to the young donors (Figures 5C,D).




DISCUSSION

Our comparative analysis of immune response to a novel pathogen, performed using immune repertoire sequencing and modeled by a live YF vaccine, revealed several differences between the two age groups indicating that humoral adaptive response already undergoes significant changes by the age of 50.

First, physicochemical properties of the hypervariable IGH CDR3 region that are linked to antigen recognition (58, 59) changed significantly (Figure 1). Differences in the interaction “energy,” Kidera factor 4, “strength” and “volume” indicate the increase of relative number of bulky, hydrophobic and strongly interacting amino acid residues in the middle of CDR3 with aging, potentially associated with increased cross-reactivity (60). In agreement with Wu et al. (43), responding repertoire of the middle-age donors also displayed longer CDR3s.

Second, the analysis of clonal lineages suggests that young individuals produce a more diverse IGH repertoire implying higher efficiency of the adaptive immune response (61). Middle-age individuals responded to YF vaccination with higher proportion of clonal hypermutating B cell trees of a larger size (Figure 3), which echoes the observation that elderly individuals have generally decreased numbers of B-cell lineages (25). Older individuals responded with lower lineage diversity, for which general decrease of B cell diversity with aging, correlating with the health status, could be one of the reasons (6, 62). While the exact reason behind the observed differences in the structure of IGH repertoire responding to novel antigens in young and middle-age individuals is unknown, one can speculate that they could be attributed to overall decrease in circulating B cells (63, 64), including memory B cells that initially recognized unrelated antigens but could respond to YF vaccination, decreased production and counts of naive B-cells (65, 66) and their diminished ability to enter somatic hypermutation (66, 67). All these factors narrow the capability of B cell immunity to select novel immunoglobulin variants.

Third, responding clonal lineages of the middle-age individuals hypermutated more intensely (Figure 5B) but less efficiently in terms of replacement-to-silent mutations ratio compared to young individuals (Figures 4C, 5C,D). The latter result overlaps with previous works, which show that loss of functional repertoire diversity is determined by not only the reducing the number of different B cell lineages but also by decreased proportion of replacement mutations (68) and mutations prominently changing the amino acid properties (32). This observation suggests that the parameters of affinity maturation may essentially vary between young and middle-age individuals, and is in line with previous works demonstrating impaired ability to produce high affinity protective antibodies against newly encountered antigens in the older individuals (13), and general changes in the mechanisms of IGH affinity maturation and memory B cells generation with aging (66).

Of note, it was earlier demonstrated that AID levels and intensity of hypermutation decrease with aging, but only after the age of 60 (63, 69, 70)—beyond the age of the cohorts that we have studied in the current work.

We have not obtained data on serum titers of YF-specific antibodies due to technical unavailability of samples. In general, it is known that the serum titers are similar for these age groups (71, 72), and are sufficiently high to provide protection for many years: (73). Thus the observed differences in the B cell response to the live YF vaccine between young and middle-age individuals are not detrimental for generation of protective immunoglobulin repertoire. However, these differences reveal the dynamics of changes in humoral response architecture that are already detectable by the age of 50 years.

Further studies involving a larger set of novel antigens and comprehensive longitudinal tracking of the response, as well as studies of vaccinations with vaccine boost, can shed more light on the fine properties of age-related changes in B cell response.
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Understanding how the strength of an effector T cell response is regulated is a fundamental problem in immunology with implications for immunity to pathogens, autoimmunity, and immunotherapy. The initial magnitude of the T cell response is determined by the sum of independent signals from antigen, co-stimulation and cytokines. By applying quantitative methods, the contribution of each signal to the number of divisions T cells undergo (division destiny) can be measured, and the resultant exponential increase in response magnitude accurately calculated. CD4+CD25+Foxp3+ regulatory T cells suppress self-reactive T cell responses and limit pathogen-directed immune responses before bystander damage occurs. Using a quantitative modeling framework to measure T cell signal integration and response, we show that Tregs modulate division destiny, rather than directly increasing the rate of death or delaying interdivision times. The quantitative effect of Tregs could be mimicked by modulating the availability of stimulatory co-stimuli and cytokines or through the addition of inhibitory signals. Thus, our analysis illustrates the primary effect of Tregs on the magnitude of effector T cell responses is mediated by modifying division destiny of responding cell populations.
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INTRODUCTION

CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a critical role in immune homeostasis. However, the precise mechanism of regulatory function on effector T cells remains contentious. Important roles for modulation of co-stimulation by dendritic cells (1–4), absorption of cytokines such as IL-2 (5–8), secretion of inhibitory cytokines such as TGF-β, IL-10 and IL-35 (9–13) and direct cell-contact dependent mechanisms (9, 14) have all been demonstrated in a variety of in vitro and in vivo systems (15–18). The relative quantitative importance of these different mechanisms is unknown and may depend on context. Apart from suppressing proliferation, Tregs are also known to modulate the function of effector T cells. For example, Maeda et al. recently showed that Tregs can induce self-reactive human CD8+ T cells (Melanin-A specific) to adopt a CCR7+CTLA-4+ anergic phenotype in response to peptide stimulation in vitro, as well as reducing their proliferation via modulation of dendritic cell co-stimulation (19).

Recent work by Marchingo et al. has defined a quantitative framework for understanding signal integration by T cells (20). A key concept is the notion of “division destiny”—the number of divisions a cell undergoes before ceasing proliferation and reverting to a quiescent state, first described in B cells (21–23). The mean division destiny of CD8+ T cells was shown to be the linear sum of independent contributions from antigen, co-stimulation and cytokines, allowing quantitative prediction of the magnitude of the T cell response from knowledge of the individual stimuli. Heinzel et al. subsequently demonstrated that this quantitative signal integration to determine division destiny can be inferred by levels of Myc within T cells and B cells, providing a molecular mechanism for this phenomenon (24).

We tested whether the calculus of division destiny could be used to quantify the action of Tregs during suppression of effector T cell proliferation. We hypothesized that Tregs may potentially function in an opposing mechanism to T cell co-stimulation, and thus manifest suppression of effector T cell proliferation via a reduction in division destiny in the effector T cell population. Here, using quantitative methods, we illustrate that the dominant action of Tregs is through “subtracting” division destiny in responding T cells in a dose-dependent manner, in comparison to inducing more rapid death or slowing proliferation. These results provide a quantitative framework for studying different mechanisms of suppression in immune responses including genetic polymorphisms associated with autoimmunity or inflammation. Furthermore, they highlight that division destiny is a universal cellular parameter central to not only positive regulation of immune responses, but also effector response suppression.



MATERIALS AND METHODS


Mice

All experiments were performed using C57BL/6 mice bred and maintained under specific pathogen-free conditions in the Walter and Eliza Hall Institute (WEHI) animal facilities (Parkville, Victoria, Australia) and used between 6 and 12 weeks of age. All experiments were performed under the approval of the WEHI Animal Ethics Committee.



CD4+CD25+ Treg and CD4+CD25-CD62L+ Teff Cell Purification

CD4+CD25−CD62L+ effector T cells (Teff) were isolated from pooled mouse lymph nodes (inguinal, axillary, brachial, superficial cervical, and lumbar) and spleens by negative and positive selection using the mouse naïve CD4+ T cell isolation kit (Miltenyi). CD4+CD25+ Tregs were prepared from pooled spleen and total lymph nodes (inguinal, axillary, brachial, superficial cervical, and lumbar) of C57BL/6 mice. Cell suspensions were stained with anti-CD4−PerCP-Cy5.5, anti-CD25-FITC, and enriched for CD25+ cells using anti-FITC beads (Miltenyi). Cells were then sorted for CD4+ CD25hi on a BD FACSAria. Treg purity was checked using intracellular staining for Foxp3 and in all experiments was >90%. Irradiated splenocytes were prepared by red cell lysis of whole spleen suspension and irradiated at 3,000Gy.



Celltrace Oregon Green Labeling

For division tracking, Teffs were labeled with a final concentration of 20 μM Cell Trace Oregon Green (Invitrogen) by incubation for 10 min at 37°C at a cell density of 107 cells/mL in phosphate-buffered saline (PBS) with 10% bovine-serum albumin (BSA).



Cell Culture

Cells were cultured in RPMI 1640 medium (Invitrogen) supplemented with non-essential amino acids, 1 mM Sodium-pyruvate, 10 mM HEPES, 100 U/mL Penicillin, 100 μg/mL Streptomycin (all Invitrogen), 50 μM 2-mercaptoethanol, 2 mM L-glutamine (both Sigma) and 10% FCS (JRH Biosciences and Invitrogen). Cells were incubated in a humidified environment at 37°C in 5% CO2.

The in vitro Treg suppression assay was set-up as follows (25). Twenty thousand Teffs were co-cultured with 80,000 irradiated splenocytes and 2 μg/mL anti-CD3 (clone 2C11, WEHI antibody facility, Australia) and a varying ratio of Tregs. Proliferation was analyzed by flow cytometry for the next 4 days.

For experiments mimicking suppression the following reagents were added to cultures: CTLA4-Ig (prepared from COS cells, provided by Peter Lane), anti-mouse IL-2 monoclonal antibody (purified from hybridoma cell line S4B6, WEHI), TGF-β (eBioscience), recombinant murine IL-10 (purified from baculovirus-transfected Sf21 insect cell supernatant, DNAX).



Flow Cytometry Analysis

Triplicate wells were harvested at each time point after addition of a known number of CaliBRITE microbeads (BD) to facilitate quantification of absolute cell numbers. Cells were analyzed on a BD FACSCanto.



BrdU Labelling

Detection of intracellular BrdU was performed using a BrdU staining kit (BD Pharmingen) as per manufacturer instructions.



Calculation of Cell Numbers Per Division, Cohort Number and Mean Division Number of Dividing Cells

The number of cells per division, ni, i = 0, 1, …, 7, 8+, was determined by flow cytometry with gating for 2-fold dilution of Cell Trace Oregon Green intensity and the ratio of analyzed cells to the known number of microbeads (division number >7 could not be resolved above background autofluorescence, and 8+ refers to all cells gated as having divided 8 or more times).

The number of undivided cells is n0, and the number of dividing cells is:

[image: image]

Following (26), the precursor cohort numbers for each division, ci, were calculated by dividing the cell number per division by two to the power of division number, in order to remove the expected expansion of cell number with division in the absence of death:

[image: image]

The total cohort number, C, is the sum of the cohort numbers over all divisions:
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The cohort number would remain equal to the starting cell number if there were no cell death in the system, and therefore comparison of differences in cohort number over time according to a varying condition can be used to identify effects on survival (20, 24, 26–28).

Plots of mean division number against harvest time can be used to estimate proliferation features, including average time to first division, subsequent division rate and division destiny (20, 26, 28, 29). A number of methods have been used to calculate mean division number. Here, as not all anti-CD3 stimulated T cells enter division, we averaged the dividing cells only. This value, mean division number of dividing cells (MDNdiv), is calculated as:
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A plateau in MDNdiv can indicate that the cells have stopped dividing having reached their division destiny.




RESULTS


Regulatory T Cells Do Not Reduce Survival or Activation of Effector T Cells in vitro

In principle, regulatory T cells may suppress effector T cells by directly inducing death, by reducing activation and recruitment into division, by slowing the division rate, or by reducing division destiny. To decipher the effects on these different parameters, we analyzed an in vitro suppression assay using the established precursor cohort method (26, 29). This approach uses quantitative graph-based methods to track the fate of founder cells seeded in culture during in vitro proliferation assays and allocate effects to changes in division rate, division destiny or overall cell survival. We designed our experimental approach using a suppression assay that reflects the majority of assays used in studies of Treg biology. Teffs labeled with the division tracking dye Cell Trace Oregon Green were co-cultured with varying ratios of Tregs, irradiated splenocytes as antigen-presenting cells (APCs), and anti-CD3 as a polyclonal T-cell-receptor stimulus (25). Addition of counting beads at the time of harvest allowed quantification of absolute cell numbers per division.

Figure 1A demonstrates the suppressive effect of Tregs on division of Teff over the time course of T cell stimulation as measured by dilution of cell division tracking dyes. When two ends of the spectrum are compared (no Tregs vs. a high Treg:Teff ratio), the progression through division of the Teff population is significantly reduced. In this system not all T cells are activated to enter division, and cells that are not activated display different survival kinetics than activated cells (27, 30). We first asked whether the suppressive effect of Tregs could be ascribed to a reduction in either the survival of undivided cells or in the proportion of cells induced to divide, as either conclusion could be reached by comparing division profiles shown in Figure 1A. Either of these processes would affect the number of undivided cells measured in culture over time. Figure 1B shows that the number of undivided cells is unaffected by the Treg ratio over the course of the experiment. Thus, contrary to the above expectation, survival of undivided cells and recruitment into division is not affected by Tregs, and an alternate explanation must be sought.
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FIGURE 1. Quantitative analysis of the effect of Tregs on Teff stimulation. CD4+CD25−CD62L+ effector T cells (Teffs) labeled with cell division dyes were co-cultured with varying ratios of Tregs and the response measured. (A) Example timecourse of cell division progression in cultures without Tregs (top panel) and with Tregs (lower panel). (B) Number of undivided Teff cells in culture over time. Data shown are mean +/– SEM of triplicate samples. One representative data set from three independent experiments is shown. (C) The effect of Tregs on the total live cell number of Teffs over time for varying ratios of suppression is shown. For each graph, the Treg ratio (closed circles) is overlaid with the control culture with no Tregs added (open circles). (D) The cohort number over time of Teff cells is shown for varying ratios of Tregs. For each graph, the Treg ratio (closed circles) is overlaid with the control culture with no Tregs added (open circles).



Next, we examined total cell numbers in culture. Figure 1C quantifies the response of Teffs in culture over time as represented by total cell numbers in the context of varying the Treg ratio. The peak of the response was ~60 to 70 h post stimulation for all Treg ratios, followed by a decline thereafter. Late in the culture, after 70 h, the highest cell numbers were observed in the absence of Tregs, and the addition of Tregs reduced the Teff number in a dose-dependent manner, as expected. Interestingly, between ~40 and 60 h we noted an increase in cell number at intermediate ratios of Tregs (1:16, 1:8, 1:4), compared with lower or higher ratios of Tregs, which was unexpected and did not correlate with the overall trend seen in cell numbers at the end of the experiment.

We investigated how the Teff response was altered in the presence of increasing numbers of Tregs by applying the precursor cohort method (20, 26, 27). As described in Methods, the cohort number is defined as the sum of the cell numbers in each division divided by two to the power of division number. Calculating the cohort number removes the effect of cell division on cell number, allowing an analysis of survival of the original cohort of cells placed in culture, independently of other kinetic changes. Figure 1D illustrates the effect of Tregs on the cohort number over time. In general, increasing numbers of Tregs did not induce a more rapid decline in the cohort numbers over time, indicating the mechanism of suppression is not via active induction of death of Teffs. This result is also supported by observing survival early in the culture, prior to entry into first division (< 50 h—Figure 1C), where Teffs appeared to die at a rate that was independent of Treg ratio. The exception is that we observed a small increase in cohort number at ~40–60h with intermediate Treg ratios (as represented by a slight shift in the cohort plot to the right in 1:16, 1:8, 1:4), revealing a small effect on promoting survival. This explains the increased cell numbers seen in Figure 1C at this time. As undivided cells were not affected by Tregs (Figure 1B), this unexpected survival-enhancing effect of intermediate ratios of Tregs can be ascribed to the activated dividing-cell population.



Regulatory T Cells Subtract From the Mean Division Destiny Reached by Activated Effector T Cells in a Dose-Dependent Manner

Late in the culture (after 70 h), there is a clear dose-dependent effect of Tregs on Teff cell number (Figure 1C), which represents the predominant suppressive effect of Tregs, and is the time at which in vitro Treg assays are typically measured. The number of times cells divide before they return to quiescence (division destiny) has recently been demonstrated as a critical component of T cell responses (20, 24). Division destiny is observed in cohort analysis as a plateau in the mean division number over time. We hypothesized that the suppressive effect of Tregs might be explained by regulation of division destiny or other features of cell division rate.

Figure 2A shows the effect on cell division for varying Treg ratios illustrating a progressive reduction in T cell proliferation as Treg numbers are increased. The consequence of this effect on expansion of cell numbers is highlighted by the significant effect on the number of cells in each division (Figure 2B). Given the absence of Treg induced cell death (Figure 1D), we used the cohort method to investigate other potential kinetic influences that could explain the reduced division progression associated with increasing Treg numbers, namely time to first division, subsequent division rate (after first division) and division destiny. Figure 2C illustrates how changes to these distinct proliferation parameters (i.e., time to first division, division rate or division destiny) will affect cohort plots of mean division number vs. time (20, 21, 24, 27, 28, 31, 32). Figure 2D shows the effect of Treg co-culture on MDNdiv, the calculated mean division number of cells that have entered into division (i.e., excluding undivided cells) using the cohort method. This analysis demonstrates three important points of interest regarding the effect of Tregs on T cell stimulation: (1) Increasing the ratio of Tregs had no effect on the mean time taken for the Teff cell population to respond to stimulation and enter the first division (as indicated by the overlapping line for early divisions on the y-axis for all Treg ratios—Figure 2D). This is consistent with division tracking data from early time points in Figure 1A (37.50 h) shown with and without high Treg exposure. Here, no difference is observed in the first entry of responding cells into division; (2) The rate of division (the gradient of the mean division number vs. time curve) was unaffected by the presence of Tregs, but division destiny was reached earlier, consistent with a timed regulation of division destiny (24); and, (3) Increasing the ratio of Tregs reduced the maximum mean division number reached by Teff in a dose-dependent manner. Together, in the absence of a significant effect observed in all other parameters measured, this suggests that the predominant effect of Tregs is limiting the division potential of responding effector T cells.
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FIGURE 2. Using cohort analysis to dissect the effect of Tregs on Teff cell division. (A) Cell division profiles of Teff cells at 77.25 hours with varying ratios of Tregs. (B) Cell numbers per division at 77.25 h as determined by quantification to a known number of added beads. (C) Cohort plot examples illustrating how trends in graphs are altered by changes in mean time to 1st division, the subsequent division rate and division destiny, as labeled. MDN - mean division number. (D) Cohort analysis plot of Mean division number of divided Teff cells over time (cohort method, excluding undivided cells). (E) Divided Teff cell number (excluding undivided cells) vs. mean division number of divided cells (cohort method) in the presence and absence of Tregs. The darker horizontal and vertical dashed lines indicate division destiny in the absence of Tregs, the lighter dashed lines indicate the reduction in division destiny at the maximum ratio of Tregs:Teffs (1:1), and the predicted reduction in total live cell number. BrdU incorporation at 63 h as a function of Treg:Teff ratio for the total culture (F) and per division basis (G) during a 2 h BrdU pulse. Data shown are mean +/– SEM of triplicate samples. One representative data set from three independent experiments is shown.



To further demonstrate the quantitative effect of regulation of division destiny, we calculated the expected reduction in cell number that can be attributed to the diminished division destiny. This calculation is illustrated in Figure 2E. We compared proliferation in the absence of Tregs (ratio 0:1), to the highest ratio of Tregs (1:1). The difference in mean division destiny (dark blue vs. light blue lines) was determined to be 1.1 (Figure 2D); thus the expected reduction in cell number is 21.1 = 2.14. We compared the number of divided cells vs. mean division number of divided cells (Figure 2E). Here, the dark blue horizontal line indicates the peak response measured in the absence of Tregs, while the light blue horizontal line represents the predicted reduction in cell number. Strikingly, the vast majority of the effect of adding Tregs to stimulating T cell conditions can be explained by changes in division destiny alone.

To confirm the effect of Tregs on proliferation, we investigated cell cycle turnover by measuring BrdU incorporation. As expected, the presence of Tregs reduced BrdU incorporation in a dose-dependent manner indicating fewer cells were actively dividing at higher Treg:Teff ratios at 63 h post stimulation when measured at either the total population (Figure 2F) or per division basis (Figure 2G). Thus, while consistent with in vitro Treg assays, our analyses provide further detail regarding suppressive mechanisms that regulate Teff kinetics.



The Quantitative Effect of Tregs on Teff Proliferation Can Be Mimicked by Known Mechanisms of Suppression

Many mechanisms of suppression by Tregs have been demonstrated in a range of different in vitro and in vivo systems (16, 17). We therefore investigated whether the observed reduction in division destiny could be replicated by previously-studied mechanisms. In Figure 3, the effect of previously implicated mechanisms on the kinetics of Teff responses is investigated using the same quantitative assays outlined above. Total cell number (left panel), cohort number (survival—middle panel) and mean division number (Division analysis—right panel) is displayed for each experiment in order to illustrate effects on cell death and division destiny.
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FIGURE 3. The kinetic effects of Treg suppression may be mimicked by some, but not all, known mechanism of Treg action. Teffs were stimulated with irradiated splenocytes (APCs) and anti-CD3. (A) Titration of an anti-IL-2 blocking antibody (S4B6)—total cell number (left panel), cohort number (middle panel) and mean division number of divided cells (MDNdiv, right panel). Titration of (B) CTLA4-Ig, (C) APC number, (D) TGF-β and (E) Titration of IL-10. Data shown are mean +/– SEM of triplicate samples. One representative data set from two independent experiments is shown.



The availability of IL-2 has been shown to increase division destiny in a dose-dependent manner in T cells (20). Absorption of IL-2 by Tregs, and therefore reducing the access to free IL-2 has been described as a mechanism of Treg suppression (5–8). To mimic this effect, we added an anti-IL2 blocking antibody (S4B6) to cultures of Teffs stimulated with anti-CD3 and APCs (Figure 3A). Similar to the effect of Tregs, anti-IL-2 reduced division destiny without affecting cohort number. Next, we mimicked the effect of inhibition of co-stimulation, by adding CTLA4-Ig to cultures (Figure 3B). CTLA4-Ig binds to CD80 and CD86 and competitively blocks engagement of CD28 on T cells (33). Again, similar to the effect of Tregs, CTLA4-Ig did not affect cohort number but had a clear effect on reducing division destiny. There was also a small reduction in time to first division consistent with the effect of CD28 co-stimulation in the presence of IL-2 (29). By contrast, the number of APCs added to Teff cultures affected predominantly cohort number (Figure 3C). APC ratios between 1:1 and 8:1 did not appear to regulate division destiny. Thus, the APCs in this system appear to be important for survival of Teffs, through a mechanism that is not fully recapitulated by inhibition of IL-2 or co-stimulation.

Finally, we analyzed the effect of inhibitory cytokines, TGF-β and IL-10 (9, 10, 12–14). TGF-β modestly increased cohort number while reducing division destiny in a dose-dependent manner (Figure 3D, middle and right panels). The net effect of TGF-β was suppressive, as indicated by a decrease in total cell number (Figure 3D, left panel). This suppressive effect is interesting and unusual, as previous studies have shown that the addition of cytokines or increasing the level of receptor stimulation leads to an increase in division destiny as opposed to the direct subtraction observed here (20). Similar to TGF-β, addition of IL-10 modestly increased cohort number, however there was no effect on division destiny (Figure 3E, middle and right panels). Therefore, the net effect of IL-10 was to increase total cell number (Figure 3E, left panel). Thus IL-10 was not directly suppressive in this in vitro system. While surprising, a similar lack of suppression has been previously reported using a quantitative in vitro CD8+ T cell system (20).




DISCUSSION

Our results demonstrate that the predominant effect of Tregs is on reducing the division destiny of effector T cells, rather than directly reducing survival or division rate. This finding underscores the importance of division destiny as a key mechanism regulating the T cell expansion in activating as well as suppressive conditions.

We propose a “log-dampener” model of Treg suppression as illustrated in Figure 4. As shown in (20), contributions of antigen (signal 1), co-stimulation (signal 2) and cytokines (signal 3) to T cell division destiny can be summed linearly to predict the magnitude of the response (Figure 4A), thus providing a quantitative basis for classic two- and three-signal theories (34–37). Figure 4B shows the effect of Tregs in removing or reducing some of the positive signals (left panel), as well as supplying negative signals (right panel). Examples of reducing positive signals include CTLA4 binding to CD80/86 and inhibition of IL-2 by absorption or decreased production. Tregs also reduce CD80/86 directly on APCs to regulate co-stimulation strength (2, 38–40). Examples of addition of negative signals include TGF-β produced by Tregs acting on effector T cells. We were not able to show a similar mechanism for IL-10 in the in vitro system, suggesting a more complex mechanism of action to induce suppression in vivo, rather than a direct effect on the proliferation of effector T cells. Figure 4C illustrates the effect of removal of positive signals and addition of negative signals by Tregs on effector T cell numbers over time. As changes in division destiny translate to exponential effects on cell numbers, seemingly small perturbations can result in orders of magnitude difference in the peak number of T cells. Multiple pathways may sum independently to achieve suppression, and it is likely that the different pathways vary in their importance in different in vivo systems. Figure 4D illustrates the log-dampener model in schematic form. Our data highlights the dominant role of reducing division destiny in Treg action under these commonly employed culture conditions. It remains possible that other features might be targeted under different stimulation conditions (for example, antigen-specific T cells and dendritic cells). We anticipate that our assay methods employed here can be adapted and will prove useful to dissect such alternative cell arrangements.
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FIGURE 4. Log-dampener model of suppression of CD4+ effector T cell proliferation by Tregs. (A) In the absence of Tregs, signals from antigen (signal 1—gray), co-stimulation (signal 2—blue) and cytokines (signal 3—red) sum linearly according to the number of divisions contributed to division destiny by each signal, resulting in an exponential increase in the magnitude of the T cell response (20) (note the log scale on the y-axis). “a” and “b” refer to different types of co-stimulatory and cytokine signals contributing positively to the T cell response. (B) Tregs regulate division destiny by reducing positive signals (1, 2a and 3a) and by adding negative signals (2c and 3c). (C) Illustration of the effect of Tregs on the size of the effector T cell response (note the linear y-axis). The blue dots represent the peak of the T cell response in the absence of Tregs (dark blue), after subtracting of positive signals (medium blue) and after addition of negative signals (light blue). (D) Schematic showing different types of signals being integrated within the CD4+ effector T cell according to the rules of the “cellular calculus”.



A corollary of this model is that the classic in vitro suppression assay (frequently used for studies of Treg function and mechanism), is finely tuned to demonstrate this suppressive effect. The difference in division destiny of dividing Teffs between no Tregs and an equal ratio of Tregs was only slightly more than a single division cycle (Figure 1). The classic assay of tritiated thymidine incorporation on day 3 cannot distinguish between direct induction of cell death, slowing proliferation rate or reduction in division destiny. Studies of Treg function following genetic manipulation may benefit from using these quantitative methods to study the full kinetics, to assist with drawing conclusions as to the effect of the manipulation on function. Further studies with similar quantitative methods investigating different levels of TCR stimulation/affinity or varied sources of APC may be useful for dissecting whether division destiny is a universal mechanism that is affected by Treg regardless of culture conditions. Our study also indicated the surprising result that at some ratios Tregs enhanced net cell numbers by promoting survival of effector T cells. Two cytokines produced by Treg, TGF-β and IL-10 also promoted survival, potentially explaining this result. Thus, it appears the net outcome of Treg interaction with Teff results from combinations of positive effects on survival and negative influences on division destiny.

In conclusion, our results demonstrate that the complex and multifactorial suppressive effect of Tregs is amenable to study using rigorous quantitative techniques. The many known mechanisms of suppression either remove positive signals or supply negative signals, and combinations act on division destiny according to a simple cellular calculus – addition or subtraction from division destiny. Thus, by reducing division destiny of effector T cells, Tregs act as a “log-dampener” on the magnitude of the Teff response. The net effect is that small changes in division destiny induced by Tregs can have large effects on the peak size of the effector T cell response, with consequences for achieving the balance between protective immunity and tolerance of self.
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B cell receptor sequences evolve during affinity maturation according to a Darwinian process of mutation and selection. Phylogenetic tools are used extensively to reconstruct ancestral sequences and phylogenetic trees from affinity-matured sequences. In addition to using general-purpose phylogenetic methods, researchers have developed new tools to accommodate the special features of B cell sequence evolution. However, the performance of classical phylogenetic techniques in the presence of B cell-specific features is not well understood, nor how much the newer generation of B cell specific tools represent an improvement over classical methods. In this paper we benchmark the performance of classical phylogenetic and new B cell-specific tools when applied to B cell receptor sequences simulated from a forward-time model of B cell receptor affinity maturation toward a mature receptor. We show that the currently used tools vary substantially in terms of tree structure and ancestral sequence inference accuracy. Furthermore, we show that there are still large performance gains to be achieved by modeling the special mutation process of B cell receptors. These conclusions are further strengthened with real data using the rules of isotype switching to count possible violations within each inferred phylogeny.
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INTRODUCTION

B cells play a key role in adaptive immunity. After successful VDJ gene recombination of the variable part of the B cell receptor (BCR), and various selection steps, mature B cells are exported from the bone marrow. At this stage the mature B cells have not yet bound antigen and they are therefore referred to as naive. Upon infection some cells from this repertoire of naive BCRs will bind the infectious agent, initializing a cascade of events called affinity maturation leading to pathogen neutralization.

Affinity maturation is a micro-evolutionary process consisting of coupled mutation and selection. This essential process takes place in specialized anatomic compartments called germinal centers (GCs), with the objective of improving antigen binding of the BCR (1). Affinity maturation results in “clonal families” of thousands of B cells for each of the naive ancestors. Sequences in a family are related to a common naive B cell but with higher affinity BCRs and accumulation of mutations in their sequences.

The study of B cell evolution in the GCs is an important and active field of research including response to infections, mechanisms of vaccines (2) and immunological memory (3). Furthermore, the field has experienced a boost of interest and capability in recent years due to the advancements of high-throughput sequencing of BCR repertoires (Rep-Seq) (4). Rep-Seq now enables sequencing of BCRs on massive scale (millions of cells) and is being increasingly applied in different areas from vaccine studies (5, 6) to antibody engineering (7, 8). Following Rep-Seq, computational methods can be used to group the BCRs into clonal families, each consisting of the descendants of a single naive cell (9).

The events of the affinity maturation process can be interrogated by inferring the phylogenies of sequences within each such clonal family, as well as inferring ancestral sequences on the phylogenies. Phylogenetic methods have given great insight into the long and complex development process of broadly-neutralizing antibodies (10, 11). Phylogenetic methods are equally important for shorter-time-scale investigations of affinity maturation, such as of the response to vaccination (12). One may also use trees equipped with ancestral sequences to make statements about the strength of natural selection (13).

Given the importance of these methods to understanding affinity maturation, there has been surprisingly little validation of their performance in the parameter regime relevant to the study of affinity maturation. Although dozens of studies benchmarking phylogenetic methods via simulation in the general phylogenetic case have appeared since (14), methods for BCR sequences deserve special treatment because of special aspects of the evolutionary process of affinity maturation. These include:

1. The somatic hypermutation (SHM) process in affinity maturation is driven by purpose-built molecular machinery (15) that results in a highly context-dependent process with local sequence contexts that either favor (“hotspots”) or disfavor (“coldspots”) mutation (16, 17). The complexity of this process is at odds with both the usual phylogenetic assumption of independent and identical processes between sites and with the assumptions of commonly-used sequence simulators (18, 19) used for benchmarking.

2. Sampling and sequencing, especially for direct sequencing of GCs (20), is dense compared to divergence between sequences. Because the resulting sequences will have limited divergence between them, it raises the possibility that simpler methods with fewer free parameters such as parsimony would be an appropriate choice (21). Also, because of the resulting distribution of short branch lengths, zero-length branches and multifurcations representing simultaneous divergence are common. When these zero-length branches lead to a leaf, they represent a “sampled ancestor” – a sequence with an identical genotype to an ancestral cell. Because of these differences, previous conclusions about performance of phylogenetic estimators in the classical regime of millions of years of divergence need not hold here.

3. Rep-Seq typically sequences the coding sequence of antibodies, which are under very strong selective constraint in GCs. This contrasts strongly with the neutral evolution assumptions of most phylogenetic algorithms, as well as the neutral assumptions of the most common software used for phylogenetics benchmarks (18, 19).

4. In contrast to typical phylogenetic problems where the root sequence is unknown, one has significant information about the root sequence for BCR sequences. Even our current imperfect knowledge of germline genes greatly constrains the space of possible ancestral sequences compared to the typical phylogenetic case where the ancestor is completely unknown. Evolution of BCR sequences happens in a directed fashion from this ancestral sequence.

For these reasons, we believe that BCR-specific validation of phylogenetic tools is an essential prerequisite to their use.

Practitioners frequently use standard phylogenetic tools for BCR sequences. Many studies performing phylogenetic reconstruction on BCR sequences have used the PHYLIP package (22) such as the maximum likelihood (ML) tool dnaml (11, 23–25) or the maximum parsimony (MP) implementation dnapars (26–28). For general phylogenetics use, PHYLIP's dnaml is now less frequently used compared to faster or more feature-rich programs such as RAxML (29), PhyML (30), FastTree2 (31), and the most recent popular ML program, IQ-TREE (32). However, not all of these programs return ancestral sequence estimates so are less interesting for antibody researchers.

Four tools have been developed specifically for inferring BCR phylogenies: IgTree (33), ARPP (34), IgPhyML (35), and GCtree (36). IgTree aims to find the minimal sequence of events that could have led to the observed sequences (i.e., a maximum parsimony criterion), allowing a known root and sampled ancestors. ARPP is an implementation of a BCR specific ML model to infer ancestral sequences on trees produced by PHYLIP's dnaml. Both IgTree and ARPP have limited availability: IgTree is not available for download at all, while ARPP is only available for Windows. ARPP cannot be run from a script, thus we could not include it in this large-scale benchmark. IgPhyML adapts the Goldman-Yang (GY94) codon substitution model (37) by adding parameters to model the motif dependent mutation rate. However, to achieve a tractable likelihood the motif contribution is marginalized across codons to achieve a independent-across-codon likelihood function that works well with the usual ML setup. IgPhyML is built on codonPhyML (38) which is used for tree inference and likelihood calculations; ancestral sequence reconstruction can be done in a post processing step using an auxiliary script (provided in the supplement of (35)). GCtree ranks equally parsimonious trees found by PHYLIP's dnapars according to a likelihood function derived from a Galton-Watson branching process (39). In this branching process, the cellular abundance of a given genotype is used and therefore single cell data is a necessary requirement for optimal ranking with GCtree. Both IgPhyML and GCtree are freely available through GitHub. Additionally, we have implemented an alternative method, called SAMM v0.2, for ranking equally parsimonious trees based on the sum of log likelihoods of the observed mutations between nodes on a tree given a substitution model based on SHM motifs. This ranking is implemented using the SAMM package (40) and described in more detail in Methods.

To benchmark phylogenetic methods for BCRs, we desired a simulator for full-length BCR sequences that modeled context-sensitive mutation, natural selection on amino acids, and had publicly available source code. Many interesting simulators have different goals. Detailed mechanistic models have been proposed to model all cells and all interactions in a GC using first principles from biophysics (41–43). Others have suggested probabilistic frameworks modeling summary statistics of SHM (44, 45) and, as a middle ground between ultra fine grained models and plain summary statistics, models attempting to explain population level trends using systems of differential equations have been suggested (46). Even simulators that use a notion of sequence don't necessarily use nucleotides or model mutation in an accurate way. For example, (41) uses a reduced-size alphabet to obtain an appropriately rugged fitness landscape, while (47) use uniform per-site nucleotide mutation in the complementarity determining region and selection based on a subset of key residues.

No existing simulator fit our needs and so we designed a simple model of affinity maturation of BCR sequences in a clonal family. In this model, sequence fitness is solely a function of the amount of antigen bound by the BCR at equilibrium. Antigen binding is calculated using standard binding kinetics applied to a GC with B cells carrying BCRs with different sequences and affinities, competing to bind a limited amount of antigen. Our simple design is motivated by the observation that antigen binding is the main driver and limiting factor of affinity maturation (48). By modularizing the simulation code we have one module preforming mutation and proliferation as a neutral branching process and an optional module to change the birth/death rate through affinity selection.

This simulator has enabled a primary goal of our work: to benchmark methods for ancestral sequence reconstruction. Such methods infer sequences at ancestral nodes of a phylogenetic tree according to some optimality criterion. Ancestral sequence reconstruction is heavily used in BCR sequence analysis, in which it is common to synthesize and test ancestral sequences in order to understand the impact of historical substitutions on binding (49, 50).

A recent and independent effort by Yermanos et al. (51) did a benchmarking study using simulated BCR sequences without selection and compared phylogenetic method performance, including ML and MP tools. Our study has the following differences with this previous work:

• we simulate sequences under selection using an affinity-based model, which we show makes the inferential problem significantly more difficult,

• we compare accuracy of ancestral sequence inference,

• we include additional software tools, several of which are BCR-specific,

• we provide evidence that our simulations have similar characteristics to real data,

• and we use isotype data as a further non-simulation means of benchmarking methods.

This previous work also worked to understand the results of phylogenetic inference using a “toy” clonal family inference method with necessarily bad performance, whereas here we assume that clonal families have been properly inferred.

In this paper we attempt to answer some of the unresolved questions about BCR phylogenetic inference, including a benchmark of the performance of relevant phylogenetic tools (dnaml, dnapars, IgPhyML, IQ-TREE, GCtree and an undescribed SHM motif based tree ranking method), an investigation of the influence of SHM motifs; and a comparison between simulations with neutral or selection-based evolution (Figure 1). We apply our proposed sequence simulation framework to simulate under different realistic models that include SHM motifs and affinity selection. Finally, we show how the biological mechanism of isotype switching can be used to empirically test phylogenetic inference.


[image: image]

FIGURE 1. Graphical abstract summarizing the work presented in this paper. We use sequence simulation to establish a ground truth phylogeny from which a sample of sequences is used to infer the phylogeny using different inference methods. The inferred tree is then compared to the simulated true tree to measure inference performance. Lastly, the different inference methods are compared.



All simulation code is open source and can be found on our GitHub repository together with sequence data for the isotype validation (https://github.com/matsengrp/bcr-phylo-benchmark). All simulation data is organized to reproduce figures and is available for download on Zenodo (https://doi.org/10.5281/zenodo.1306301).



METHODS

Although statisticians have made substantial strides in proving identifiability (52, 53) of phylogenetic models and consistency (54) of inferential procedures, proving consistency of phylogenetic methods under context-sensitive BCR evolution models with selection is out of reach because no likelihood function is available. Therefore, we chose the general approach of simulating phylogenies, and benchmark tools based on their inference on samples from these known trees. As ancestral sequence reconstruction is of special interest among the users of BCR phylogenetics (11, 50, 55) we developed a metric to measure ancestral sequence reconstruction performance. In the following subsections we present these simulations and performance metrics, as well as a method to use empirical data to assess performance via the principle of irreversibility of isotype switching.


Simulation

We devised two simulation strategies for BCR evolution: (1) a neutrally evolving branching process, and (2) a branching process with a birth/death rate controlled by BCR antigen binding. Both simulations start with a single naive sequence as a starting point for the tree simulation; this is evolved a number of generations to a population of BCR sequences from which a sample is drawn and used for inference. To get realistic starting sequences for the simulations we created a set of 288 naive sequences inferred by partis (56) from the healthy donor human single cell dataset in Briggs et al. (57). These sequences were selected because they have many unique unique molecular identifier (UMI) tagged reads, which gives a high confidence consensus over the full VDJ region. When a simulation run is initialized a naive sequence is drawn randomly from this set.

Our neutral model is controlled by two parameters which are used to control two Poisson distributions determining the simulation: the progeny distribution (λ) and the mutation generating distribution (λmut). Each evolving sequence has its own λ which expresses the fitness of that sequence in comparison to the other sequences in the population (details below). All sequences have the same mutation probability i.e., λmut is the same for all sequences and constant throughout the simulation. The simulation starts with a single cell carrying the naive sequence; a draw from Pois(λ) will yield the number of progeny cells in the first generation. If a zero is drawn the cell dies, if one is drawn it propagates without division, if two is drawn it splits into two cells, etc. Next, for each progeny cell a draw from Pois(λmut) will determine how many mutations to introduce into its sequence. Mutations are drawn either from a uniform distribution over both sites and substitutions, or using a context sensitive motif model (e.g., S5F (16)). Multiple mutations are introduced stepwise, one at a time, and if a context sensitive mutation model is chosen the sequence context is updated between each introduced mutation. The simulation process can be terminated in three ways: (1) when all cells have died, (2) at fixed time point T, or (3) when a fixed number of cells, N, has been reached.

As mentioned above, birth and death rates are controlled through the Poisson rate λ. One can think of this as measuring the level of T helper cell signal, in which lots of signal promotes proliferation while insufficient signal leads to death (1). In our neutral simulations, λ is held constant and is the same for all cells. For simulations with selection we use a very simplistic view of the maturation process, in which selection is purely driven by T helper cell signal which is strong for BCRs binding a lot of antigen and weak for BCRs binding little antigen. To translate this into selection in our simulation framework we devise a simple model to transform a BCR sequence into an affinity value, solve for its antigen binding and then use this to control λ, thus making it sequence dependent. In essence, this “affinity selection” is just a mapping between a BCR sequence and a λ; this enables us to use the same simulation framework for both neutral and affinity simulations. We emphasize that cells with a small λ will tend to draw a 0 from the Poisson distribution and die, so this framework incorporates cell death in addition to division and persistence.

Here we review the basics of fitness assignment; a detailed description of the model as well as model choices can be found in the Supplementary Material. For any BCR sequence indexed by i, its fitness is λ(i) = Y(x), where Y is a transformation of some information, x, specified in the simulation. For a neutral simulation Y(x) is constant and independent of x, while for the affinity simulation Y is variable with respect to x. To model BCR sequence affinity we introduce the concept of a “mature sequence” which is the sequence with the highest attainable fitness in the simulation run. Once the simulation starts the mature sequence acts as an attractor to which evolution tends to converge by rewarding amino acid sequences closer to the attractor with higher λ. The choice of mature sequence is arbitrary so we chose to simulate it by randomly mutating the naive sequence until it accumulates a predefined number of amino acid substitutions. Next, the naive and mature sequence are assigned their own affinity values and the span between these define the affinity gain during affinity maturation. To calculate the affinity of a BCR sequence we calculate its amino acid Hamming distance to the mature sequence and transform this into an affinity value using an appropriate power function calibrated on the naive and mature sequences. We then model the BCR binding kinetics by defining a total GC volume with a constant concentration of antigen and solve for the B cells' antigen occupancy at equilibrium. Antigen occupancy is mapped to B cell fitness (λ(i)) using a logistic function returning a value between 0 and 2. These steps describe the general setup of calculating Y(x) for the affinity simulation.

Inspection of the simulation runs confirm that affinity simulation recapitulate a number of desired properties (Figures 2, 3): (1) sequence evolution is converging toward the mature sequence, (2) cells are competing for the limited supply of antigen establishing a “carrying capacity,” and (3) favorable mutations are rapidly fixed through selective sweeps (59) analogous to clonal bursts (1, 20).
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FIGURE 2. Time series of the distribution of cells at different distances from the mature sequence (Dist 1, 2, …, 8) as it appears in a typical affinity simulation (corresponding tree shown in Figure 3). The simulation is started from a single naive sequence, five amino acid substitutions away from the mature sequence (Dist 5), and simulated sequences converge toward the mature sequence as generations progress.




[image: image]

FIGURE 3. A collapsed tree made from 60 sequences sampled from GC generation 35 of the simulated population. Nodes are labeled with numbers indicating the number of collapsed tips (genotype abundance) and node size is proportional to this number. Branch lengths are Hamming distance between nucleotide sequences with dashed lines indicating purely synonymous mutations and solid lines indicating one or more non-synonymous mutations. Branch thickness is proportional to the number of non-synonymous mutations. The tree was rendered with ETE3 (58) and colored according to distance from the mature sequence with the same colors as Figure 2.



We set the expected number of mutations, introduced into the sequence at each mutation step, to be approximately 0.365. This corresponds to the frequently cited SHM rate at around 10−3 (60) given the average length of our naive BCR sequences of 365 nucleotides. We define λmut = 0.365 as the “normal” mutation rate, but because the estimates of SHM rate vary in the literature we also include half and double of this rate (λmut∈{0.1825, 0.365, 0.73}) in all our simulations. We observe high correlation between the method performance across all three λmut (Figures S2, S3), showing that our conclusions are robust to differences in mutation rate. For neutral simulations the branching parameter (λ) and the population size termination criterion (N) are adjusted (λ = 1.5 and N = 75) to recapitulate summary statistics of the single cell GC experiment in Tas et al. (20) (Figure S25), following a similar procedure as DeWitt et al. (36). For the affinity simulations the branching parameter is cell-specific and adjusts dynamically, in the range between 0 and 2, according to antigen competition. Each affinity simulation uses 100 “mature” sequences, which act as a collection of targets for the convergent evolutionary process. These mature sequences are generated by randomly introducing 5 amino acid substitutions to the naive sequence (in depth description in Supplementary Material). Affinity simulations are run with an antigen concentration sufficient to maintain a cell population of approximately 1,000 cells, and after 35 generations a random sample of 60 cells is recovered for inference, again, roughly recapitulating summary statistics of the single cell GC experiment (Figure S26). We also performed intermediate sampling for the affinity simulation: in such cases 30 cells are sampled at generation 15, 30 and 45 and pooled to a total of 90 cells. Neutral simulations were run with 1,000 replicates and affinity simulations were run with 500.



Inference Methods

From each simulation run a subset of sequences was sampled and used for phylogenetic inference along with the correct naive sequence which was used as an outgroup. We tested a number of relevant tools either previously used in the context of BCR phylogenetic inference or with potential use in this field:

• dnaml v3.696: PHYLIP's implementation of ML using the F84 model (22)

• dnapars v3.696: PHYLIP's implementation of MP (22)

• GCtree v1.0: Branching process likelihood ranking of MP trees (36)

• SAMM v0.2: Mutation motif based likelihood ranking of MP trees (40)

• IgPhyML v0.99: GY94 codon model with hot/cold spot motif parameters (35)

• IQ-TREE v1.6.beta5 (IQT): Fast ML inference with many substitution models (32)

For all methods the naive sequence was used as an outgroup, furthermore, the naive sequence was used to reroot the tree after inference. For all methods no sequence partitioning was used. IQ-TREE was run using either JC, HKY or GTR nucleotide substitution models and using the “ASR” flag, but otherwise with default settings. IgPhyML was run as described in Hoehn et al. (35) and using the “-o tlr –motifs WRC_2:0,GYW_0:1,WA_1:2,TW_0:3,SYC_2:4, GRS_0:5 –hotness e,e,e,e,e,e” flags to optimize branch lengths and topology with NNI moves under the full HLP17 model containing a free parameter for all six degenerate hot/coldspots. dnaml was run using gamma distributed rates, a coefficient of variation of substitution rate among sites of 1.41, four rate categories and otherwise default parameters. dnapars was run using default settings. In the case of dnapars it is common to observe many equally parsimonious trees, and in those cases a random tree was drawn. GCtree was run as described in DeWitt et al. (36), passing both sequences and their abundances to the program. Both GCtree and SAMM use the equally parsimonious trees generated with dnapars for likelihood ranking, hence in the case when only a single MP tree is found, dnapars, GCtree and SAMM will by definition yield the same result.

The use of all the above methods has been described previously, except SAMM which is part of a statical framework to infer DNA mutation motifs using survival analysis (40). As it is well known that SHM is context sensitive (16, 17, 61) we ranked equally parsimonious trees according to their SHM motif likelihood, inspired by the branching process ranking of DeWitt et al. (36). Using SAMM we calculate the likelihood of the observed mutations given a tree equipped with ancestral sequences at the internal nodes (in this application from parsimony) and a motif model by using Chib's method (62) to integrate out event orders on the branches. This likelihood is then used to rank the equally-parsimonious trees, and the highest-ranked tree is chosen as the tree returned by SAMM. More detail on the likelihood calculation used in SAMM can be found elsewhere (40).

We would like to make it very clear that we use the same motif model for both simulating mutations and calculating SAMM likelihoods. This gives SAMM an unfair advantage, however, the selection process is not modeled as part of the motif model. We are not formally proposing SAMM ranking as a competing inference method, but rather as a yardstick with which to measure how much improvement would be possible taking a fully context-sensitive mutation process into account. On the other hand, SAMM has no inherent advantage on the isotype scoring experiment, and it is limited to the MP trees.



Genotype Collapsing

Due to our focus on ancestral sequence inference we have adopted the use of genotype collapsed trees from DeWitt et al. (36) throughout this work. Briefly, a genotype collapsed tree is made by inferring a phylogenetic tree, inferring ancestral sequences at the internal nodes and recalculating the branch lengths as Hamming distances between the node sequences. In the branch length recalculation step nodes are “collapsed” if their sequences are identical, thereby collapsing tips upwards and adding observations to internal nodes (Figure 3). Genotype collapsing deals conveniently with the very short branch lengths, typically observed in binary trees for BCR sequences, since these most often collapse into a single node.



Tree and Sequence Reconstruction Metrics

We scored trees both in terms of tree structure and in terms of ancestral sequence inference. For tree structure, we used the commonly used Robinson-Foulds (RF) distance (63), which is half the size of the symmetric difference between the sets of bipartitions obtained by cutting each edge. We define bipartitions using both tips and sampled internal nodes, as opposed to standard RF using only tips. Because we perform RF on genotype-collapsed trees, this measure in fact combines accuracy estimation of ancestral sequences and tree topology.

We also used several means to more directly compare ancestral sequence reconstructions: the “most recent common ancestor” (MRCA) metric, and the “correctness of ancestral reconstruction” (COAR) metric. The MRCA metric compares ancestral sequences on the true vs. the inferred phylogeny in a way that does not depend on agreement between the two topologies. Specifically, the MRCA distance is calculated by iterating through all pairs of leaves. For each such pair there is a well defined MRCA node on the tree. The MRCA metric is the average Hamming distance between the inferred and the true ancestral sequence for these pairs. Using i and j (i≠j) to iterate over all combinations of pairs of leaves to find their true (Ti, j) and inferred (Ii, j) most recent common ancestor, this can be written as:
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Here N is the number of leaves and L is the length of the sequence. Thus, MRCA gives an overall view of how ancestral sequence reconstruction is performing.

There is also a special interest in benchmarking tools to reconstruct a lineage of ancestral sequences going from the root (the naive sequence) to a tip of interest (11, 55). Hence, we developed the COAR metric which is measuring the average number of sequence mismatches across all true vs. inferred lineages going from the root to any tip. It is not initially obvious how to compute such a distance if the true and inferred lineage contains a different number of nodes. We solve this problem by finding the node to node comparison that minimizes the distance while maintaining the root-to-tip order. Please see the Supplementary Information for details on COAR metric calculation.

We chose COAR as our principal metric for comparison because it was well correlated with other metrics (see section Results) and because it reflects how researchers use ancestral sequence reconstruction of BCRs.



Isotype Scoring

We used sequences with isotype information as another means of characterizing phylogenetic accuracy. The isotype-determining constant region is located downstream of the heavy chain BCR variable region, and isotype changes through a process called class-switch recombination. In mice the isotype constant regions are ordered, from closest to furthest to the J gene: IgM, IgG, IgE, then IgA. Naive BCRs use IgM, but during affinity maturation isotype switching can occur by looping out one or more of the constant regions. For instance if IgM is looped out the resulting BCR is IgG and if IgM, IgG, and IgE is looped out the resulting BCR is IgA. Because the isotype is physically removed from the chromosome this process is irreversible, hence a parent cell with an IgA BCR can never give rise to a child cell of IgM isotype.

We use the irreversible nature of isotype switching to measure the performance of tree inference by mapping back isotype labels to the nodes on the inferred tree and counting the number of nodes with an edge to a child that violate the rules of isotype switching. We use the BCR data from Laustsen et al. (64) which is generated with unique molecular identifier (UMI) technology and primers targeting the isotype region on splenocyte whole mRNA from five outbred mice undergoing an immunization campaign. After extensive quality filtering using pRESTO (65) we ran partis (9) to partition sequences into clonal families. These clonal families were filtered based on having minimum 10 and maximum 200 unique sequences and containing at least two different isotypes. Furthermore, we discarded all clonal families where inference exceeded 24 h of compute time for any single tool on a single core. This left 697 clonal families to do isotype validation.

We defined an isotype mismatch as an observed violation of the isotype switching order (namely the order IgM, IgG, IgE, IgA). That is, an edge connecting a parent and a child node is an isotype mismatch if the isotype order of the parent is farther along the order than its child (Figure S18). To calculate the “isotype score” we iterate over all the tips and use each tip as a starting point to collect the list of isotypes between this tip and the root. This list is made by progressing from a tip to the root and collecting isotypes sequentially, however, unobserved internal nodes will not have an associated isotype and therefore they “reverse inherit” the isotype from their child. Once this list has been filled, each edge is evaluated and if an isotype mismatch is encountered the parent node is marked as a violator. The number of isotype switching violations is found by counting all the violator nodes.

This sum is dependent upon the shape of the inferred tree, potentially leading to a bias associated with each inference tool. To address this, for each inferred tree we created 10,000 samples of trees with the same topology but shuffled labels and from these we calculated a “baseline” isotype score to be expected given this topology. We divided the violation count by the baseline to obtain the final isotype score.



Comparison to Joint Reconstruction

There are two approaches to maximum-likelihood ancestral sequence reconstruction. For joint reconstruction, one infers the collection of ancestral sequences that jointly maximize the likelihood of the sequence data given the tree and a substitution model (66). For marginal reconstruction, one infers the maximum likelihood ancestral sequences at each internal node individually, marginalizing over all the possible states of the other internal nodes. Under the maximum parsimony objective, ancestral sequence reconstruction is an inherent part of the tree construction and thus it is conceptually more similar to a joint ancestral sequence reconstruction.

All the ML based tools (dnaml, IgPhyML, and IQ-TREE) we test use marginal reconstruction, raising the question of whether this could influence the results of our benchmark and if the relatively good performance of parsimony could be explained by it being a joint-reconstruction technique. In order to investigate this question, we applied the FastML tool (66), capable of doing both joint and marginal ancestral sequence reconstruction. FastML was run using the HKY model and neighbor joining to build trees resulting in two reconstructions with the same tree: one joint and one marginal reconstruction. One thousand simulations under neutral and affinity simulation was performed using the previously defined three mutation rates. Finally, the joint and marginal reconstructions were compared with IQ-TREE as a visual reference (Figures S13–S17).



Boxplot Layout

Tool performance is plotted in boxplots. Colored boxes cover from lower to upper quartiles, with the median marked by gray vertical lines and whiskers extending to 1.5 times the interquartile range. Points beyond the range of the whiskers (outliers) are hidden for clarity. Red triangles mark the mean metric value of all simulations, with 1,000 replicates for neutral and 500 replicates for affinity simulations, with an overlapping horizontal red line showing the 95% confidence interval of the mean. Confidence intervals on the mean were computed using non-parametric bootstrapping, using sampling with replacement on the set of metric values to generate 10,000 bootstrap replicates (67). Tools are ordered according to their mean metric values.




RESULTS


Metrics are Correlated

The RF, MRCA, and COAR metrics are highly correlated, with COAR being the most central metric (Figure 4). We checked this for both neutral and affinity simulation and over a range of mutation parameters (Figure S1) and conclude that the high correlation between metrics is robust over many parameter choices. To reduce the number of comparisons we chose COAR as our principal metric because this was the most central metric as well as being interpretable as the expected number of per-site errors per reconstructed lineage. However, all metrics have been run on all simulations (see Supplementary Figures), except RF distance which does not deal well with reoccurring sequences that appear multiple times in the affinity simulation.
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FIGURE 4. Correlation between metrics for the neutral simulation across the three mutation rates described in section Results. Same trend is true for affinity simulation (Figure S1). (A) Correlation between COAR and MRCA metrics. (B) Correlation between COAR and RF metrics.





Joint and Marginal Reconstruction Performs Equally Well

We found that joint reconstruction does not have an advantage over equivalent methods using marginal reconstruction according to our criteria. To investigate this question, we ran default FastML v3.1 (66) with neighbor-joining tree inference to infer ancestral sequences with both joint and marginal reconstruction over a range of simulation methods and parameters. Using our three performance metrics: RF, MRCA and COAR, the two reconstruction methods performed essentially identically (Figures S13–S17). Because none of the ML methods initially tested had available joint reconstruction implementations, we cannot make specific conclusions about their performance using joint reconstruction. However, the fact that between joint and marginal reconstruction perform essentially identically is suggestive that this may be a general phenomenon in this parameter regime.



Methods Differ in Performance Consistently Across Simulations

We observe similar trends across varying simulation methods, performance metrics, and mutation rates. A higher mutation burden (λmut) leads to more complex trees resulting in decreased inference performance, and this is true for all methods and performance metrics (Figures S4–S10). Tools perform better on neutral simulation compared to affinity simulations (Figure 5), which is to be expected due to the added complexity of the affinity simulation. Overall, the distributions of performance metrics are heavy tailed with several outliers far outside of the interquartile range. We have chosen to hide such outliers for the interpretability of our boxplots but their impact can be observed in the means (red triangles) and their confidence intervals.
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FIGURE 5. COAR performance for different tools under neutral and affinity simulation using normal SHM rate (λmut = 0.365) and mutations drawn from the S5F motif model. Colored boxes cover the lower to the upper quartiles, with the median marked by gray vertical lines and whiskers extending to 1.5 times the interquartile range. Points beyond the whiskers (outliers) are hidden for clarity. Red triangles mark the mean COAR value of all simulations (1,000 replicates for neutral and 500 replicates for affinity simulations) with the overlying red lines showing the 95% confidence interval found by bootstrapping the mean with 10,000 replicates. Black dashed lines mark highest and lowest mean COAR values. Tools are ordered according to their mean COAR value.



We find that SAMM and GCtree, which rank equally-parsimonious trees, perform better than a uniformly-selected equally parsimonious tree from dnapars. For all 15 tests across mutation rates, performance metrics and simulation methods SAMM is better than dnapars while GCtree is better than dnapars 13/15 times (Figures S4–S10). SAMM is the best ranked tool 12/15 times and often with a substantial margin to the second best. Thus the equally-parsimonious tree set contains better and worse trees, and the likelihood ranking of these is effective at distinguishing between them. However, given that SAMM were using the S5F model for likelihood calculations on simulated mutations also drawn from an S5F motif model, it should be not surprise to see that SAMM consistently outperforms all other tools.

Because SAMM is constrained by dnapars and the criterion of only ranking equally parsimonious trees, we consider the performance of SAMM compared to other tools as a conservative estimate of the potential improvement available when correctly modeling SHM motif bias. As a control, we note that when mutations are drawn from a uniform distribution over sites and substitutions, SAMM is not any better than dnapars (Figures S11, S12) showing that SAMM's performance can be ascribed to the mutational context bias. Thus, we can use the performance difference between SAMM and dnapars to measure how much inference performance can improve by incorporating SHM motif bias.

Simulated datasets include information on sequence abundance, which enables good performance of the GCtree method. Normally, phylogenetic trees are made from a set of unique sequences while the cellular abundance of each sequence, referred to as genotype abundance, is discarded. GCtree, on the other hand, utilizes this genotype abundance information by ranking equally parsimonious trees via a likelihood using abundances. Our results show that GCtree is the second best performing tool, and consistently better than picking a random equally parsimonious tree, indicating that the integration of genotype abundance information does improve tree inference. Here GCtree is given the correct abundances, giving an upper bound on the performance gain obtainable by incorporating abundance information. In a situation with real data GCtree would rely on single cell data to gain estimates of genotype abundances; while single cell data is becoming more widespread (57, 68–70) the majority of Rep-Seq studies are still based on bulk RNA sequencing resulting in unknown genotype abundances.

Performing third best after SAMM and GCtree comes dnaml and dnapars, both with similar performance, after that IgPhyML and lastly the three mutation models implemented in IQ-TREE which are all performing very similarly (Figure 5). dnapars performs slightly better than dnaml in neutral simulations while the opposite is true in affinity simulations. Practically, the difference between the two programs is so small that we suggest users to choose whichever program they find to be fastest or most convenient to use for their application.

Surprisingly, on simulated sequences IgPhyML performs consistently worse than the simpler dnaml or dnapars alternatives. Although, it is clear from the SAMM results that SHM motifs are present and provide useful information for inference, it does not seem to improve IgPhyML performance beyond SHM naive methods such as MP. IgPhyML's model was preferred (by likelihood ratio test) in the examples provided in the paper introducing it, which were large trees of long-term broadly-neutralizing anti-HIV antibodies (35). We suspect that IgPhyML's model is too rich for the less complex data provided here.

All three IQ-TREE methods, using different mutation models, perform consistently worse than any other tool tested in this study. We find it surprising that IQ-TREE using the HKY model is so far off dnaml using F84 despite the high similarity between the two substitution models. We therefore conclude that implementation differences e.g., tree space search, convergence criteria etc. must be the reason for this discrepancy, which is in concordance with our observation that IQ-TREE is much faster than dnaml.



Isotype Data Confirms That Raw Parsimony Can Be Improved by Likelihood Ranking

The results of our investigation using isotype were somewhat inconclusive. This measure had an extraordinarily large variance observed in both the confidence intervals and the changed rankings upon rerunning the analysis (Figure S19). Although SAMM did perform best among all tools when using a custom motif model fitted on the whole isotype dataset (using means for ranking), the difference to other tools was small relative to the variance, thus we cannot conclude from this comparison that SAMM is better than the next few tools.

We find that most methods are slightly, but significantly, better than dnapars (Figure S19). Furthermore, we find that SAMM improves upon raw parsimony (Figure 6), again confirming the notion that the SHM mutation process is important and contains residual information not captured by the parsimony objective. Notably, the parsimony ranking of GCtree is also significantly better than dnapars (Figure S19) despite the fact that this dataset did not contain genotype abundance information. This indicates that the branching process prior used by GCtree can also yield useful results using the tree topology alone. Testing the full potential of GCtree would require a single cell dataset and this may also result in even better performance. However, we emphasize that the difference in the isotype score distribution between dnapars and the other methods is quite small, especially when compared to the variance. Indeed, there are many trees for which dnapars performed much better than SAMM according to this metric (Figure S19, points < 0).


[image: image]

FIGURE 6. Isotype score differences between dnapars and SAMM for all clonal families with non-zero isotype score. Positive points are clonal families where dnapars had higher (worse) isotype score than SAMM and vice versa for negative values. The horizontal width of the red rectangle marks the 95% confidence interval of the mean difference.






DISCUSSION

In this work we have benchmarked the performance of phylogenetic algorithms for use in B cell sequence analysis, with a special emphasis on ancestral sequence reconstruction. Our sequence simulation deviates from the standard independent-across-nucleotides models, often used in such benchmarking, by both introducing mutations using a realistic SHM motif model and rewarding convergent mutations via an affinity model of the binding equilibrium between BCRs and antigen. To our knowledge this is the first simulation method to model affinity maturation using BCRs represented as DNA sequences such that selection is based on the corresponding amino acid sequences. Inference based on affinity simulated sequences is more challenging, resulting in ~10 fold higher COAR values (Figure 5), underlining the importance of considering selection to get realistic error estimates on BCR phylogenetic reconstruction. Still, the average COAR values for affinity simulation is 0.0003–0.0005 which translates to an expectation of 1–2 total nucleotide errors in a lineage with 5 heavy+light chain BCR sequences reconstructed (~3,600 nucleotides). With the added benefit that about 1/3 of these expected mutations will be silent, reconstruction of BCR affinity matured lineages using ancestral sequence reconstruction in this parameter regime appears to be of high fidelity. However, this estimate should be tempered with the fact that the correct naive sequence was provided to the algorithm, and the general fact that complex processes happening in real data can make the problem significantly harder. In real applications there will be uncertainty in the inference of the naive sequence. In cases where an erroneous naive sequence is used in tree reconstruction, such nucleotide errors are likely to propagate toward the tips of the tree, increasing the expected number of errors.

Our simulations generally follow same summary statistics as a single instance of germinal center maturation starting from an unmutated naive B cell (Figures S25, S26). However, upon repeated exposures, germinal center maturation is more likely to be based on memory recall e.g., chronic or seasonal infections like HIV and influenza (71). Memory recall will naturally accumulate more mutations than maturation on a naive B cell and hence will constitute a more complex reconstruction task. As we do not simulate the conditions of memory recall our results cannot be directly applied to such cases, however, we do expect that in such cases the success of reconstruction is lower and that the expected number of nucleotide errors in a reconstruction is substantially higher than the expectations reported above. It also follows from the simulation summary statistics (Figures S25, S26) that our simulated trees are quite densely sampled, giving rise to sampled ancestors and short branch lengths. This stands in contrast to typical repertoire-wide data where clonal families are sampled more sparsely and therefore have longer branches on their corresponding phylogenetic trees. The short branch lengths of our simulations may favor simpler reconstruction methods such as parsimony. Because of these limitations our findings are not directly applicable to repertoire-wide datasets, although they do indicate that we cannot assume the results of simulations in the classical long-branch phylogenetic regime (e.g., (14)) hold for all cases of B cell lineage evolution.

Looking at the more subtle differences between tools two observations stand out: first, accounting for SHM motifs is the biggest contributor to accuracy, and second, implementation matters. The performance of SAMM on simulations clearly shows how SHM motifs leave a useful trace that can be integrated into an inference method. One such method is the HLP17 model used by IgPhyML (35), but it may suffer from noisy parameter estimates in cases with relatively few sequences per clonal family. An extension to IgPhyML may alleviate these problems by either fixing the hot/cold spot parameters with a predetermined motif model, or the means of combining information across clonal families. Yet, there are still reasons to attempt other ways of integrating SHM motifs, as well as other affinity maturation specific information like genotype abundances, into inference methods in more principled ways than mean field approximations or likelihood ranking of MP trees. Our benchmark also gives a reminder that implementation matters. Under otherwise similar substitution models two different implementations (dnaml and IQ-TREE) vary substantially and consistently in performance. We do not know what causes these differences, but we speculate that tree space sampling could be a critical point as this appears to be the most important difference between these two implementations, and because IQ-TREE experiences the same pathologies with multiple different substitution models. IQ-TREE's heuristics were probably tuned with the traditional phylogenetic case (of deeply diverging sequences) in mind, which is different from our use case.

BCR isotype switching is an irreversible event and contains useful information about the phylogenetic relationship among BCR sequences in the same clonal family. We observed that the two MP tree ranking methods (SAMM and GCtree) did significantly decrease the isotype score compared to picking a random equally parsimonious tree, thus confirming our simulations. Despite this it appears to be very difficult to use the isotype score as an empirical performance metric because of its high variance. We believe that this is in part due to sparse sampling of the clonal families (only few tens of sequences out of the thousands evolved in a GC). In such cases, incomplete sampling can cause penalization of correct reconstructions because of missing observations and the isotype score will not reach zero even with perfect reconstruction. However, on average the best reconstructions should have lower isotype scores than the worst reconstructions. With better sampling and more clonal families we expect the isotype score to be better resolved, with lower variance, and then it may be a more useful metric for assessing the performance of BCR phylogenetic inference, or simply used as a constraint in the inference model itself (72).

In this work we provided phylogenetic algorithms with the correct naive sequence. The impact of naive sequence uncertainty was in a way benchmarked by Yermanos et al. (51), in which they used a coarse method for clonal family inference and then asked if phylogenetic methods could later disentangle the families. Both our study and Yermanos et al. (51) leave open the question of the performance of phylogenetic methods when supplied with a potentially noisy estimate of the naive sequence supplied by current clonal family inference tools. We will perform the appropriate benchmarking as part of our future development of methods to perform phylogenetic reconstruction and naive sequence estimation simultaneously.

In this work we also have not tested the impact of insertion-deletion (indel) mutations, which do happen in BCR phylogenies (61, 73, 74). Current tools leave a lot to be desired for ancestral sequence inference in the presence of indels, as in our experience they “fill in” nucleotides at every site of an ancestral sequence inference, even if a gap is clearly the right choice. In addition, indels are not treated as the informative characters they are in mainstream phylogenetics software; rather, they are treated as missing data. Benchmarking phylogenetic tools would also require benchmarking the alignment step, which has an effect on ancestral sequence reconstruction accuracy (75). Nevertheless, this will be another important focus for future tool development and ancestral sequence reconstruction benchmarking within the field of BCR phylogenetic reconstruction.



AUTHOR CONTRIBUTIONS

KD carried out the data analysis, otherwise KD and FM equally contributed to this work.



ACKNOWLEDGMENTS

We would like to thank Francois Vigneault and Andreas Laustsen for sharing the mouse B cell receptor sequencing dataset from Laustsen et al. (64), Gabriel Victora for sharing single germinal center data, and David A. Shaw for preparing mutability and substitution matrices specific for this dataset using SAMM, and for providing the SAMM-rank code. Our simulation framework relies on code developed by William DeWitt and was greatly improved by comments and suggestions from Amrit Dhar and Vladimir Minin. This research was supported by National Institutes of Health grants R01 GM113246, R01 AI120961, and U19 AI117891. The research of FM was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2018.02451/full#supplementary-material



REFERENCES

 1. Mesin L, Ersching J, Victora GD. Germinal center B cell dynamics. Immunity (2016) 45:471–82. doi: 10.1016/j.immuni.2016.09.001

 2. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell (2006) 124:849–63. doi: 10.1016/j.cell.2006.02.019

 3. Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y, Nakayama M, et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat Immunol. (2016) 17:861. doi: 10.1038/ni.3460

 4. Benichou J, Ben-Hamo R, Louzoun Y, Efroni S. Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology (2012) 135:183–91. doi: 10.1111/j.1365-2567.2011.03527.x

 5. Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C, Leung K, et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat Med. (2016) 22:1456. doi: 10.1038/nm.4224

 6. Laserson U, Vigneault F, Gadala-Maria D, Yaari G, Uduman M, Vander Heiden JA, et al. High-resolution antibody dynamics of vaccine-induced immune responses. Proc Natl Acad Sci USA. (2014) 111:4928–33. doi: 10.1073/pnas.1323862111

 7. Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH, Hoi KH, et al. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol. (2010) 28:965–69. doi: 10.1038/nbt.1673

 8. Parola C, Neumeier D, Reddy ST. Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology (2018) 153:31–41. doi: 10.1111/imm.12838

 9. Ralph DK, Matsen IV FA. Likelihood-based inference of B cell clonal families. PLoS Comput Biol. (2016) 12:e1005086. doi: 10.1371/journal.pcbi.1005086

 10. Wu X, Zhang Z, Schramm CA, Joyce MG, Do Kwon Y, Zhou T, et al. Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell (2015) 161:470–85. doi: 10.1016/j.cell.2015.03.004

 11. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN, DeKosky BJ, et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature (2014) 509:55. doi: 10.1038/nature13036

 12. de Bourcy CF, Angel CJL, Vollmers C, Dekker CL, Davis MM, Quake SR. Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci USA. (2017) 114:1105–10. doi: 10.1073/pnas.1617959114

 13. Liberman G, Benichou JI, Maman Y, Glanville J, Alter I, Louzoun Y. Estimate of within population incremental selection through branch imbalance in lineage trees. Nucleic Acids Res. (2015) 44:e46. doi: 10.1093/nar/gkv1198

 14. Huelsenbeck JP. Performance of phylogenetic methods in simulation. Syst Biol. (1995) 44:17–48. doi: 10.1093/sysbio/44.1.17

 15. Methot S, Di Noia J. Molecular mechanisms of somatic hypermutation and class switch recombination. In: Alt FW, editor. Advances in Immunology. Vol. 133. Boston, MA: Elsevier (2017). p. 37–87.

 16. Yaari G, Vander Heiden JA, Uduman M, Gadala-Maria D, Gupta N, Stern JN, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. (2013) 4:358. doi: 10.3389/fimmu.2013.00358

 17. Cui A, Di Niro R, Vander Heiden JA, Briggs AW, Adams K, Gilbert T, et al. A model of somatic hypermutation targeting in mice based on high-throughput Ig sequencing data. J Immunol. (2016) 197:3566–74. doi: 10.4049/jimmunol.1502263

 18. Rambaut A, Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics (1997) 13:235–8. doi: 10.1093/bioinformatics/13.3.235

 19. Grassly NC, Adachj J, Rambaut A. PSeq-Gen: an application for the Monte Carlo simulation of protein sequence evolution along phylogenetic trees. Bioinformatics (1997) 13:559–60. doi: 10.1093/bioinformatics/13.5.559

 20. Tas JM, Mesin L, Pasqual G, Targ S, Jacobsen JT, Mano YM, et al. Visualizing antibody affinity maturation in germinal centers. Science (2016) 351:1048–54. doi: 10.1126/science.aad3439

 21. Sanderson MJ, Kim J. Parametric phylogenetics? Syst Biol. (2000) 49:817–29. doi: 10.1080/106351500750049860

 22. Felsenstein J. PHYLIP: Phylogenetic Inference Program, Version 3.6. Seattle, WA: University of Washington (2005).

 23. Moody MA, Zhang R, Walter EB, Woods CW, Ginsburg GS, McClain MT, et al. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS ONE (2011) 6:e25797. doi: 10.1371/journal.pone.0025797

 24. Pappas L, Foglierini M, Piccoli L, Kallewaard NL, Turrini F, Silacci C, et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature (2014) 516:418–22. doi: 10.1038/nature13764

 25. Gao F, Bonsignori M, Liao HX, Kumar A, Xia SM, Lu X, et al. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell (2014) 158:481–91. doi: 10.1016/j.cell.2014.06.022

 26. Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, et al. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr Biol. (2015) 7:1587–97. doi: 10.1039/C5IB00169B

 27. Jelcic I, Combaluzier B, Jelcic I, Faigle W, Senn L, Reinhart BJ, et al. Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Sci Trans Med. (2015) 7:306ra150. doi: 10.1126/scitranslmed.aac8691

 28. Roy B, Neumann RS, Snir O, Iversen R, Sandve GK, Lundin KE, et al. High-throughput single-cell analysis of B cell receptor usage among autoantigen-specific plasma cells in celiac disease. J Immunol. (2017) 199:782–91. doi: 10.4049/jimmunol.1700169

 29. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (2014) 30:1312–13. doi: 10.1093/bioinformatics/btu033

 30. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. (2010) 59:307–21. doi: 10.1093/sysbio/syq010

 31. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE (2010) 5:e9490. doi: 10.1371/journal.pone.0009490

 32. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. (2014) 32:268–74. doi: 10.1093/molbev/msu300

 33. Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. IgTree: creating immunoglobulin variable region gene lineage trees. J Immunol Methods (2008) 338:67–74. doi: 10.1016/j.jim.2008.06.006

 34. Kepler TB. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Research (2013) 2:103. doi: 10.12688/f1000research.2-103.v1

 35. Hoehn KB, Lunter G, Pybus OG. A phylogenetic codon substitution model for antibody lineages. Genetics (2017) 206:417–27. doi: 10.1534/genetics.116.196303

 36. DeWitt WS, Mesin L, Victora GD, Minin VN, Matsen I, Frederick A. Using genotype abundance to improve phylogenetic inference. Mol Biol Evol. (2018) 35:1253–65. doi: 10.1093/molbev/msy020

 37. Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. (1994) 11:725–36.

 38. Gil M, Zanetti MS, Zoller S, Anisimova M. CodonPhyML: fast maximum likelihood phylogeny estimation under codon substitution models. Mol Biol Evol. (2013) 30:1270–80. doi: 10.1093/molbev/mst034

 39. Harris TE. The Theory of Branching Processes. Mineola, NY: Courier Corporation (2002).

 40. Feng J, Shaw DA, Minin VN, Simon N, Matsen I, Frederick A. Survival analysis of DNA mutation motifs with penalized proportional hazards. arXiv:171104057 (2017).

 41. Childs LM, Baskerville EB, Cobey S. Trade-offs in antibody repertoires to complex antigens. Philos Trans R Soc B (2015) 370:20140245. doi: 10.1098/rstb.2014.0245

 42. Robert PA, Rastogi A, Binder SC, Meyer-Hermann M. How to simulate a germinal center. Methods Mol Biol. (2017) 1623:303–34. doi: 10.1007/978-1-4939-7095-7_22

 43. Amitai A, Mesin L, Victora GD, Kardar M, Chakraborty AK. A population dynamics model for clonal diversity in a germinal center. Front Microbiol. (2017) 8:1693. doi: 10.3389/fmicb.2017.01693

 44. Shlomchik M, Watts P, Weigert M, Litwin S. Clone: a Monte-Carlo computer simulation of B cell clonal expansion, somatic mutation, and antigen-driven selection. In: Kelsoe G, Flajnik MF, editors. Somatic Diversification of Immune Responses. Durham: Baltimore, MD: Springer (1998). 173–197.

 45. Reshetova P, van Schaik BD, Klarenbeek PL, Doorenspleet ME, Esveldt RE, Tak PP, et al. Computational model reveals limited correlation between germinal center B-cell subclone abundancy and affinity: implications for repertoire sequencing. Front Immunol. (2017) 8:221. doi: 10.3389/fimmu.2017.00221

 46. Shahaf G, Barak M, Zuckerman NS, Swerdlin N, Gorfine M, Mehr R. Antigen-driven selection in germinal centers as reflected by the shape characteristics of immunoglobulin gene lineage trees: a large-scale simulation study. J Theor Biol. (2008) 255:210–22. doi: 10.1016/j.jtbi.2008.08.005

 47. Murugan R, Buchauer L, Triller G, Kreschel C, Costa G, Marti GP, et al. Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci Immunol. (2018) 3:eaap8029. doi: 10.1126/sciimmunol.aap8029

 48. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell (2010) 143:592–605. doi: 10.1016/j.cell.2010.10.032

 49. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science (2011) 333:1593–602. doi: 10.1126/science.1207532

 50. Soto C, Ofek G, Joyce MG, Zhang B, McKee K, Longo NS, et al. Developmental pathway of the MPER-directed HIV-1-neutralizing antibody 10E8. PLoS ONE (2016) 11:e0157409. doi: 10.1371/journal.pone.0157409

 51. Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, et al. Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics (2017) 33:3938–46. doi: 10.1093/bioinformatics/btx533

 52. Allman ES, Rhodes JA. Identifying evolutionary trees and substitution parameters for the general Markov model with invariable sites. Math Biosci. (2008) 211:18–33. doi: 10.1016/j.mbs.2007.09.001

 53. Allman ES, Ane C, Rhodes JA. Identifiability of a Markovian model of molecular evolution with gamma-distributed rates. Adv Appl Probabil. (2008) 40:229–49. doi: 10.1239/aap/1208358894

 54. RoyChoudhury A, Willis A, Bunge J. Consistency of a phylogenetic tree maximum likelihood estimator. J Stat Plan Inference. (2015) 161:73–80. doi: 10.1016/j.jspi.2015.01.001

 55. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature (2013) 496:469. doi: 10.1038/nature12053

 56. Ralph DK, Matsen IV FA. Consistency of VDJ rearrangement and substitution parameters enables accurate B cell receptor sequence annotation. PLoS Comput Biol. (2016) 12:e1004409. doi: 10.1371/journal.pcbi.1004409

 57. Briggs AW, Goldfless SJ, Timberlake S, Belmont BJ, Clouser CR, Koppstein D, et al. Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion. bioRxiv (2017) 134841.

 58. Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. (2016) 33:1635–8. doi: 10.1093/molbev/msw046

 59. Horns F, Vollmers C, Dekker CL, Quake SR. Signatures of selection in the human antibody repertoire: selective sweeps, competing subclones, and neutral drift. bioRxiv (2017) 145052.

 60. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. (2012) 30:429–57. doi: 10.1146/annurev-immunol-020711-075032

 61. Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, Jakubauskaite A, et al. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell (2015) 163:1124–37. doi: 10.1016/j.cell.2015.10.042

 62. Chib S. Marginal likelihood from the Gibbs output. J Am Stat Assoc. (1995) 90:1313–21. doi: 10.1080/01621459.1995.10476635

 63. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. (1981) 53:131–47. doi: 10.1016/0025-5564(81)90043-2

 64. Laustsen AH, Engmark M, Clouser C, Timberlake S, Vigneault F, Gutierrez JM, et al. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus. PeerJ (2017) 5:e2924. doi: 10.7717/peerj.2924

 65. Vander Heiden JA, Yaari G, Uduman M, Stern JN, OConnor KC, Hafler DA, et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics (2014) 30:1930–2. doi: 10.1093/bioinformatics/btu138

 66. Pupko T, Pe I, Shamir R, Graur D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol Biol Evol. (2000) 17:890–6. doi: 10.1093/oxfordjournals.molbev.a026369

 67. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. New York, NY: CRC Press (1994).

 68. Gierahn TM, Wadsworth II MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods (2017) 14:395. doi: 10.1038/nmeth.4179

 69. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell (2015) 161:1202–14. doi: 10.1016/j.cell.2015.05.002

 70. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell (2015) 161:1187–201. doi: 10.1016/j.cell.2015.04.044

 71. Tan YC, Blum LK, Kongpachith S, Ju CH, Cai X, Lindstrom TM, et al. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin Immunol. (2014) 151:55–65. doi: 10.1016/j.clim.2013.12.008

 72. Horns F, Vollmers C, Croote D, Mackey SF, Swan GE, Dekker CL, et al. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. Elife (2016) 5:e16578. doi: 10.7554/eLife.16578

 73. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, Finzi A, et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science (2010) 329:811–17. doi: 10.1126/science.1192819

 74. Kepler TB, Liao HX, Alam SM, Bhaskarabhatla R, Zhang R, Yandava C, et al. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe (2014) 16:304–13. doi: 10.1016/j.chom.2014.08.006

 75. Vialle RA, Tamuri AU, Goldman N. Alignment modulates ancestral sequence reconstruction accuracy. Mol Biol Evol. (2018) 35:1783–97. doi: 10.1093/molbev/msy055

 76. Kuraoka M, Schmidt AG, Nojima T, Feng F, Watanabe A, Kitamura D, et al. Complex antigens drive permissive clonal selection in germinal centers. Immunity (2016) 44:542–52. doi: 10.1016/j.immuni.2016.02.010

 77. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. (1970) 48:443–53. doi: 10.1016/0022-2836(70)90057-4

 78. Ulrich HD, Mundorff E, Santarsiero BD, Driggers EM, Stevens RC, Schultz PG. The interplay between binding energy and catalysis in the evolution of a catalytic antibody. Nature (1997) 389:271–5. doi: 10.1038/38470

 79. Phan TG, Paus D, Chan TD, Turner ML, Nutt SL, Basten A, et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med. (2006) 203:2419–24. doi: 10.1084/jem.20061254

 80. Romppanen T. A morphometrical method for analyzing germinal centers in the chicken spleen. APMIS (1981) 89:263–8.

 81. Kroese F, Timens W, Nieuwenhuis P. Germinal center reaction and B lymphocytes: morphology and function. In: Grundmann E, Vollmer E, editors. Reaction Patterns of the Lymph Node. Berlin; Heidelberg: Springer (1990). 103–48.

 82. Berek C, Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. (1987) 96:23–41. doi: 10.1111/j.1600-065X.1987.tb00507.x

 83. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol. (2017) 18:583. doi: 10.1038/ni.3693

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Davidsen and Matsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	TECHNOLOGY REPORT
published: 20 November 2018
doi: 10.3389/fimmu.2018.02688






[image: image2]

Epitope Specific Antibodies and T Cell Receptors in the Immune Epitope Database


Swapnil Mahajan1, Randi Vita1, Deborah Shackelford1, Jerome Lane1, Veronique Schulten1, Laura Zarebski1, Martin Closter Jespersen2, Paolo Marcatili2, Morten Nielsen2,3, Alessandro Sette1,4 and Bjoern Peters1,4*


1Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States

2Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark

3Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina

4University of California San Diego, La Jolla, CA, United States

Edited by:
Victor Greiff, University of Oslo, Norway

Reviewed by:
Pieter Meysman, University of Antwerp, Belgium
 Andreas Lossius, University of Oslo, Norway

* Correspondence: Bjoern Peters, bpeters@lji.org

Specialty section: This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology

Received: 04 September 2018
 Accepted: 31 October 2018
 Published: 20 November 2018

Citation: Mahajan S, Vita R, Shackelford D, Lane J, Schulten V, Zarebski L, Jespersen MC, Marcatili P, Nielsen M, Sette A and Peters B (2018) Epitope Specific Antibodies and T Cell Receptors in the Immune Epitope Database. Front. Immunol. 9:2688. doi: 10.3389/fimmu.2018.02688



The Immune Epitope Database (IEDB) is a free public resource which catalogs experiments characterizing immune epitopes. To accommodate data from next generation repertoire sequencing experiments, we recently updated how we capture and query epitope specific antibodies and T cell receptors. Specifically, we are now storing partial receptor sequences sufficient to determine CDRs and VDJ gene usage which are commonly identified by repertoire sequencing. For previously captured full length receptor sequencing data, we have calculated the corresponding CDR sequences and gene usage information using IMGT numbering and VDJ gene nomenclature format. To integrate information from receptors defined at different levels of resolution, we grouped receptors based on their host species, receptor type and CDR3 sequence. As of August 2018, we have cataloged sequence information for more than 22,510 receptors in 18,292 receptor groups, shown to bind to more than 2,241 distinct epitopes. These data are accessible as full exports and through a new dedicated query interface. The later combines the new ability to search by receptor characteristics with previously existing capability to search by epitope characteristics such as the infectious agent the epitope is derived from, or the kind of immune response involved in its recognition. We expect that this comprehensive capture of epitope specific immune receptor information will provide new insights into receptor-epitope interactions, and facilitate the development of novel tools that help in the analysis of receptor repertoire data.
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INTRODUCTION

The adaptive immune system in vertebrates has evolved to recognize and combat an ever changing repertoire of pathogenic organisms such as viruses, bacteria, and parasites. The ability to recognize this plethora of attackers is vastly due to B and T lymphocytes which express a highly diverse repertoire of antigen receptors. Both B and T cell receptors are generated through a stochastic process in which segments from several genes are re-arranged (1). B cell receptors (BCRs) or antibodies (secreted BCRs) are typically heterodimers of two different proteins, a heavy and a light chain, while T cell receptors (TCRs) are made up of α and β or γ and δ chains. Chromosomes encoding the heavy and β chains proteins in every B- and T cells, respectively, have DNA modules composed of variable (V), diversity (D), joining (J), and constant (C) genes. On the other hand, light and α chains are encoded by modules of V, J, and C genes. For example, the IMGT database (2) reports 68 V, 2 D, 14 J, and 2 C genes in the human TCR locus of the β chain and 54 V, 61 J, and 1 C genes in the complementary α chain locus.

The recombination process rearranges one each of these possible V, D, and J gene segments to be adjacent to each other. B and T cells with productive rearrangements of the two chains express BCRs and TCRs on their surface, respectively. The protein domain encoded by V(D)J recombination in heavy and light chains is known as the variable domain. This combinatorial rearrangement process is the key to receptor diversity. Receptor diversity is further amplified by insertions and deletions at the junctions between the various gene segments (3). While TCRs are stable after this initial V(D)J re-arrangement, BCRs can further mutate due to somatic hypermutations and affinity maturation, resulting in even higher BCR diversity which is associated with high affinity with their cognate antigen (4). These processes ultimately supply the host with a broad array of BCR and TCR receptors capable of binding to immune epitopes that allow the immune system to distinguish self from non-self.

The Immune Epitope Database (IEDB) contains data gathered by manual curation of the scientific literature and through direct submissions of experimentally identified B- and T-cell epitopes and MHC ligands (5). As of August 2018, the IEDB has over 462,000 epitopes from over 19,500 manually curated references and direct submissions. In addition to capturing the identity of these epitopes, the IEDB also captures a vast array of information on the host organism in which the epitope is recognized, immune exposures of the host that led to the epitope recognition, the type of immune response targeting the epitope, and the epitope specific TCRs or BCRs/antibodies (Figure 1).
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FIGURE 1. Information captured in the IEDB. Detailed information related to the immune exposure of the host, type of assay used to test the immune response, and the reference of the data is captured in the IEDB. Data shown in this figure is from IEDB Assay ID: 1479091.



Originally, BCR and TCR sequence information was only curated in the IEDB if a formal sequence record was available in GenBank or UniProt. This was nearly exclusively the case for 3D structures of receptor-epitope complexes, as immune receptor sequencing was expensive and labor intensive. However, with the advent of next generation receptor sequencing experiments, also known as Rep-Seq (6), epitope specific BCR and TCR sequences are increasingly becoming available. The sequence data from such experiments is typically limited to one of the two receptor chains, and often targets the highly variable CDR3 (Complementarity Determining Region 3). Capturing these data appropriately and making it compatible with the existing full length receptor sequence data in the IEDB required modifying the IEDB curation approach and database design, as well as the query and reporting interfaces. These changes are described in the present article.



CHANGES IN THE IEDB DATABASE STRUCTURE AND CURATION PROCESS FOR IMMUNE RECEPTORS


Extension of Information Captured on Immune Receptors

In the past, IEDB receptor data was captured as part of the B- and T-cell assay tables, and included the receptor names (e.g., OT-2), types (e.g., α/β), isotypes (e.g., IgG4), immunoglobulin (Ig) domains (e.g., Fab, Fv, Whole antibody) and links to their sequence records (e.g., UniProt or NCBI accessions) for each of the chains (Table 1). As pointed out, above, next generation immune receptor sequencing experiments often provide partial receptor sequences. To store this information, we added fields to capture CDR1, CDR2, and CDR3 amino acid sequence information, as well as VDJ gene usage (Table 1). We used the IMGT definition for CDRs (7), and followed the WHO-IUIS nomenclature for VDJ genes (8). As sequencing experiments often target nucleotide sequences, a field to store them was also added to the assay table (See Table 1).



Table 1. Data structure and grouping of captured receptor information.
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We wanted to capture the same information on CDRs and gene usage for receptor data for which full length protein sequences were previously curated. Thus, we identified CDRs, their position in the full length sequence, variable domain sequences and VDJ gene usage from full chain protein sequences based upon the IMGT numbering scheme (7) using ANARCI software v1.1 (9). This “calculated” information was stored in the assay table side by side with the “curated” information provided by the author if both are available (Table 1). The calculated and curated receptor information is displayed on the assay details pages in the IEDB (Figure 2).
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FIGURE 2. Assay receptors. The curated and calculated assay receptor information is displayed side by side on the assay details pages in the IEDB. Data shown in this figure is from the IEDB Assay ID: 2723539.





Distinct Receptor Identifiers

As we do for epitopes and assays, we wanted to assign numeric IEDB identifiers to receptors that serve as a stable reference, and group together all information available for a specific receptor studied. As an epitope database, the IEDB considers two immune receptors to be distinct if they have different specificities. For example, addition of a histidine tag to an antibody is not expected to significantly change its specificity, so we would want data from an antibody with and without such a tag to be grouped together, and want to assign it the same identifier to be able to interlink such reports. Similarly, differences in the nucleotide sequences of TCRs that encode for the same amino acid variable domain are not expected to result in different specificities. Based on these considerations, we identified the subset of information in Table 1 that is clearly linked to receptor specificity, namely the species of the host organism making the receptor, the receptor type, and the sequence of the variable domain/s. If the full length variable domain sequence is not available, all the available CDR sequences are considered. For several values, such as CDR3 regions, an assay may have both curated data (which reflects what the author stated to be the CDR3), and calculated data (which is based on automated analysis of the full length sequence). If both curated and calculated data are available and they are in conflict, we prioritize the calculated information, as it is easier for us to guarantee that it follows the IMGT numbering scheme. Overall, the rows in “distinct receptor” column of Table 1 identify the subset of properties that are used to identify distinct receptor entries, and which are linked to all assay entries that have receptors that match these fields.



Receptor Groups

While the definition of distinct receptors interlinks records for which the same receptor sequence information is given, it keeps records separate for which information is provided at different levels of granularity. For example, receptors for which only the TCR-beta chain is sequenced will be separated from receptors that have both the TCR-alpha and TCR-beta sequence available. Given that the CDR3 region of immune receptors is the most variable and is typically responsible for most contacts of the receptor with the epitope recognized, we decided to provide groups of receptor data that share the same CDR3 sequence.

Specifically, we grouped together distinct receptors that had the same host species, receptor type, and CDR3 sequence/s (shown in “receptor group” column of (Table 1). This classification is hierarchical, so that the receptor group sharing the same TCR-α CDR3 sequence, can be subdivided into multiple receptor groups based on their TCR-β CDR3 sequence. Figure 3 illustrates how different distinct receptors are assigned to receptor groups. All the curated receptors were grouped into 18,292 receptor groups using above mentioned criteria.
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FIGURE 3. Receptor groups. Receptors are grouped based on their type, CDR3 sequence/s and host organism. Next generation repertoire sequencing experiments can report only a single chain CDR3 sequence for a receptor. Therefore, we group receptors hierarchically in groups with identical single chain CDR3 sequences (receptor group ID: 11040) which are divided in receptor groups based on CDR3 sequences from the other chain (receptor group ID: 1162 and 1525).





Receptor Types: Special Cases

While the majority of vertebrates produce heterodimeric antibodies with heavy and light chains, camelids (camels, llamas and alpacas) produce naturally occurring heavy chain only antibodies devoid of light chains (HCAbs) (10). Similarly, sharks and other cartilaginous fish produce IgNARs (Immunoglobulin New Antigen Receptors) which are homodimeric heavy chain only antibodies (11). These observations have led to the development of engineered antibodies with a single heavy chain variable domain, known as VHH or nanobodies. Nanobodies and other types of antibody and TCR constructs, such as single chain antibodies (scFv), single chain TCRs (TscFv), single domain antibodies (sdAbs), and bispecific dual-variable- domain (DVD) antibodies or diabodies (12, 13), pose additional challenges in curation of receptor information.

To date, the available camelid and shark HCAbs curated in the IEDB-3D were engineered single-variable-domain antibodies (monomeric nanobodies or vNAR), so these were captured under receptor type “heavy” (Figure 4). ANARCI software cannot assign variable domain sequences and CDRs to IgNARs, so we captured IgNARs by manual curation, but were not able to assign calculated CDRs, gene usage and variable domains to these receptors. The sdAbs are either heavy or light chain variable domain antibodies (13). Therefore, they were captured as receptor type “heavy” or “light.” Engineered single chain antibodies (scFv) and single chain TCRs (TscFv) with full length sequences were split into their individual variable domains (heavy, light, α or β) before populating the assay table (Figure 4). The receptor type “construct” is included to capture additional types of engineered antibodies and TCRs, e.g., engineered bi-specific diabodies. The diabodies or dual-variable-domain (DVD) antibodies with two pairs of variable heavy and light domains were also split into individual pair of heavy and light variable domains. Only the author specified pair of heavy and light variable domains in the diabodies that interacts with the epitope were stored in the assay table. If the 3D structure of a diabody bound to a single epitope was solved by authors, then the pair of heavy and light chain variable domains interacting with the antigen was identified using the IEDB-calculated receptor-antigen contacts within 4Å atomic distance. If both pairs of heavy and light chain variable domains were in contact with two different antigens, then they were stored as two different receptors.
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FIGURE 4. Capturing engineered, camelid and other special receptor types in the IEDB. The nanobodies and HCAbs in the IEDB are captures under heavy and heavy-heavy receptor types. The heavy and light chain variable domains in the scFv are captured as individual chains under scFv receptor type. The diabodies are captured as constructs. The heavy and light chain pairs in the diabodies which bind to two different epitopes are captured as two different assays.





Re-curation

The process of extending the IEDB database and reviewing previously captured data resulted in the identification and correction of curation errors, as well as merging of duplicate records. We identified cases where the chain sequences were missing from the 3D data, as well as cases where the chain type was incorrect. The Ig domains from the 3D assays were identified based on chain lengths and presence or absence of the binding chain using an in-house script. The CDR sequences and their positions were extracted using another in-house script utilizing outputs from an ANARCI (9) analysis that assigns IMGT numbering to the receptor chain sequences, and identifies the chain types (heavy, light, α, and β). Conflicts between calculated and curated Ig domains and chain types were resolved by manual re-curation of the articles. We also identified a few TCR and MHC assays where MHC allele names did not follow the correct nomenclature or were insufficiently specified. Such alleles were re-curated using an in-house script to identify the MHC allele based on their epitope binding groove domains [or G-domain (14)] sequence identity to known MHC alleles captured in the MRO database (15). G-domains are composed of α1 and α2 domains in MHC class I molecules and α1 and β1 domains in MHC class II molecules, and were identified from MHC chain sequences using IMGT MHC G-domain numbering (14). These changes in MHC allele names were verified using manual re-curation.



Identifying Data for Curation

To date, we have identified 1,604 references having TCR or antibody sequence information from several strategies. One ongoing strategy is the introduction of screening all newly published articles relevant to the IEDB scope for receptor sequence information during our regular manual screen step (16). This process was introduced into our normal workflow, which includes an automated PubMed query (17) that is run every 2 weeks followed by an automatic document classifier that excludes articles highly likely to not have any epitope specific information, and manually reviewing the remaining articles. We also sought out public resources that capture information on antibody or TCR sequences. We searched the ATLAS (18), McPAS (19), VDJdb databases (20), and the Adaptive Biotechnologies website for references to journal articles that contain epitope specific receptor information and downloaded all PubMed IDs. These identified articles were manually reviewed to ascertain if the receptors mentioned were epitope specific. If an article contained such data, we manually curated the entire article following the established IEDB curation rules (16). We also screened publications with links to GenBank entries to determine if the entry is an adaptive immune receptor utilizing ANARCI to identify TCR and antibody protein sequences. We then manually screened the associated publications and curated them when they were found to contain epitope specific data. We have curated 22,510 of these for antibody or TCR sequence data and are continuing to curate the remainder on an ongoing basis. We also added TCR sequence information to articles having TCR transgenic mice as the host, wherever clear TCR sequences were available for these mice. All previously curated assays having 3D structures were reviewed and receptor sequence data were verified for accuracy and gene usage, V domains, and CDR3 sequences were calculated. These calculations have been implemented as an ongoing automated process for all newly curated 3D structures.




QUERYING IEDB FOR EPITOPE SPECIFIC ANTIBODIES AND TCRS


Addition of Receptor Specific Query Interface

To enable queries for receptor data in the IEDB, we added a new set of parameters to the “refine search results” page that is available after starting a search from the IEDB home page. Figure 5C depicts the parameters that are available, which include limiting results to those where any receptor information is available, and more specifically querying for receptor type, such as for α-β chain TCR data or heavy-light chain antibodies. Moreover, users can search by a CDR sequence or a full length receptor protein sequence with the added feature of searching for exact identity or for matches at 60, 70, 80, or 90% identity, as well as a substring match (Figure 5). Importantly, any such queries can be combined with the general IEDB search criteria, such as limiting the results to receptors recognizing viruses, or those present on T cells producing IL-10 upon epitope recognition.
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FIGURE 5. Querying IEDB using antibody or TCR sequences. (A) In the past, user query results in the IEDB were displayed in different tabs named epitopes, antigens, assays, and references. We added a new results tab for receptors to display different receptor groups corresponding to the user query. (B) All the receptor information in results can be downloaded using “export results” link in the “receptors” tab. Similarly, more detailed results are downloaded from “assays” tab. (C) Users can filter any query results by receptor full length protein or CDR sequences using the new receptor search panel. The example shown is to filter results by antibody (receptor type is BCR heavy-light) heavy chain with “CSYAGGKSLV” as CDR3 sequence.





Report of Receptor Groups Matching Any IEDB Query

The receptors groups matching any query in the IEDB are displayed in the newly added “receptor” tab (Figure 5A). This receptor tab describes receptor group IDs, receptor types, and their host organisms along with CDR3 sequences. All information on the receptors pertaining to the query can be downloaded in the CSV format from “export results” link on “receptor” tab (Figure 5B). Similarly, detailed query results including information on assay, immunization, epitopes, and receptors can be downloaded in the CSV format from “Assays” tab.

When clicking on the receptor group ID, all data on the distinct receptors matching this group (organism, receptor type, CDR3 sequences, and variable domain sequences) are provided to the users with a comprehensive overview of the data available within the IEDB for these receptors (Figure 6). All experimental assays utilizing any given receptor can be retrieved, enabling full access to all biological activities, immunological responses and associated cellular phenotypes, binding constants, and 3D structures available for each receptor, across all epitopes that they were shown to recognize. For example, the human monoclonal antibody (receptor group ID: 651) shown in Figure 6 has been tested against two Dengue virus epitopes and one Zika virus epitope in a total of 4 neutralization assays, two ELISA qualitative binding assays and two 3D structural assays with antibody-antigen complexes (PDB IDs: 4UTB and 5LCV).


[image: image]

FIGURE 6. Receptor details. Receptor details are split into 3 sections. (A) The first section is a short summary of receptor group. This section has information on accessions of receptor chains and PDB IDs of receptor-antigen complexes involving individual receptors from this receptor group, if available. (B) The second section provides information of individual receptors in the receptor group. This section provides CDR sequences, VDJ gene usage, variable domain sequences and epitopes which are recognized by each receptor. (C) The last section provides a short summary of epitopes recognized by receptor group including assays and publications, e.g., an antibody in group ID 651 recognizes two different epitopes from Dengue and one epitope from Zika genome polyproteins.





Exports of Complete Receptor Datasets

In addition to the targeted query described above, the entire receptor data in the IEDB can be downloaded from the “Database Export” option from “More IEDB” drop-down menu on IEDB website as a zipped CSV file (http://www.iedb.org/database_export_v3.php). This export file contains extensive details on assays, immunization, epitopes, and receptors.




SUMMARY OF EPITOPE SPECIFIC RECEPTOR CONTENT CAPTURED SO FAR

We curated a total of 22,510 receptors which are known to bind to 2,241 distinct epitopes in 9,901 assays from 1,604 publications as of August 2018 (Table 2). A total of 4,874 curated chains had full length protein sequences and 5,526 chains had nucleotide sequences. These 22,510 curated receptors were grouped into a total of 19,537 distinct receptors (Table 2) with 21,066 distinct chains. The distribution of distinct receptors in different organisms is shown in Figure 7. Over 90% of the distinct receptors were from humans and 8% from mice. A total of 2,319 distinct receptors had paired CDRs. All the distinct receptors were further clustered into 18,292 receptor groups, out of which 16,949 were for TCR groups and 1,343 were antibody groups.



Table 2. Receptor groups.
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FIGURE 7. Distribution of the available receptors from different organisms. Over 90% of the antigen receptor data in the IEDB are from humans and around 8% from mice.





DISCUSSION

We here report our efforts to better represent epitope specific BCR and TCR data in the IEDB. As mentioned, this is not the first such effort. Epitope-specific BCR and TCR sequences have been curated as a part of 3D structural databases such as IEDB-3D (21) and IMGT/3Dstructure-DB (22). The Epitome (23), SabDab (24), and STCRDab (25) databases store information on 3D antibody-antigen (Ab-Ag) complexes, where the focus of SabDab and STCRDab is unbound antibody and TCR structures, respectively. A complementary resource, IMGT database (2), stores germline sequences of antibodies and TCRs. Recently published databases, such as VDJdb (20) and McPAS-TCR (19), are focused on curating CDR3 sequences of TCRs from Rep-Seq experiments (6). VDJdb stores epitope specific TCR-pMHC data, while McPAS-TCR curates TCR sequences with their cognate antigens, and associated pathologies. Many of our design decisions reported here were informed by inspecting how these other databases represented immune receptors, and were aimed at creating a unifying representation of immune receptor data that is appropriate across different applications.

The IEDB is the only resource that provides information related to the host, such as species, gender age, and importantly what the host was exposed to, infected by or allergic to and other information relevant to the host's immune response, such as which cytokines are produced by T cells or if the antibodies are neutralizing and so on. With our updated curation scheme, much more information regarding BCR and TCR receptors can now easily be linked to the epitopes they bind and the immune responses associated with them in the IEDB. We have curated BCR and TCR sequence information from the past articles with low-throughput data as well as the recent articles with the high-throughput data, unlike VDJdb and McPAS-TCR databases which focus on the high-throughput data only. This task was not without its challenges. While a large amount of sequencing data has been becoming available in the literature; the vast majority of this data is not epitope specific. IEDB curators must screen all such publications related to TCR and antibody data to find the relevant records that can be curated. In many cases when receptor data is presented as being epitope specific, the epitope that it is specific for is not clearly defined. This occurs when authors sequence a large number of receptors specific to a variety of epitopes derived from the same pathogen but present CDR3 sequences in tables that do not specify which receptor was bound to which epitope.

Differences in formatting have also been a challenge as different authors describe VDJ gene usage using differing nomenclatures and describe CDR sequences using different numbering schemes especially for antibodies (26–29). Different receptor numbering schemes and the author reported CDR sequences from repertoire sequencing experiments can also include additional flanking junction region residues as a part of the CDR which create inconsistencies in storing the CDR sequences from different sources. Other related receptor sequence databases provide CDR3 sequences from TCRs with the conserved flanking anchor residues such as Cys and Phe or Cys and Trp. Such conserved anchor residues are not present for CDR1 and CDR2 sequences and also, they are excluded from the CDR regions in the IMGT numbering scheme. To provide consistent information based on the IMGT numbering scheme, we have not included the conserved anchor residues in any CDR sequences in the IEDB. We expect that as the field matures, standards for reporting experimental protocol and analysis of receptor repertoire data such as those developed by the AIRR community (30, 31) will become widely adopted, and these issues will resolve over time.

Lastly, a key challenge for the IEDB is to define what identifies a truly epitope specific receptor. The experimental procedures used to isolate and sequence receptors can be quite variable and can result in more or less stringency in what is deemed “epitope specific.” For example, one author may simply re-stimulate a PBMC culture with a peptide and sequence and report all receptors from the culture (low stringency). The use of or lack of experimental controls also varies widely, with some authors demonstrating that the epitope specific receptor is not found in controls, while others may have no such controls. We are in the process of establishing curation rules for receptor data to take these variables into account, with the goal of consistent and accurate receptor curation.

While the field is maturing, the IEDB curation procedures are adapting. This means that the exact data structure utilized might change, and the persistence of receptor identifiers cannot yet be guaranteed. We expect receptor identifiers to be stable by the end of 2018, and will at that point adhere to FAIR standards (32).
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The T cell repertoire potentially presents complexity compatible, or greater than, that of the human brain. T cell based immune response is involved with practically every part of human physiology, and high-throughput biology needed to follow the T-cell repertoire has made great leaps with the advent of massive parallel sequencing [1]. Nevertheless, tools to handle and observe the dynamics of this complexity have only recently started to emerge [e.g., (2, 3, 4] in parallel with sequencing technologies. Here, we present a network-based view of the dynamics of the T cell repertoire, during the course of mammary tumors development in a mouse model. The transition from the T cell receptor as a feature, to network-based clustering, followed by network-based temporal analyses, provides novel insights to the workings of the system and provides novel tools to observe cancer progression via the perspective of the immune system. The crux of the approach here is at the network-motivated clustering. The purpose of the clustering step is not merely data reduction and exposing structures, but rather to detect hubs, or attractors, within the T cell receptor repertoire that might shed light on the behavior of the immune system as a dynamic network. The Clone-Attractor is in fact an extension of the clone concept, i.e., instead of looking at particular clones we observe the extended clonal network by assigning clusters to graph nodes and edges to adjacent clusters (editing distance metric). Viewing the system as dynamical brings to the fore the notion of an attractors landscape, hence the possibility to chart this space and map the sample state at a given time to a vector in this large space. Based on this representation we applied two different methods to demonstrate its effectiveness in identifying changes in the repertoire that correlate with changes in the phenotype: (1) network analysis of the TCR repertoire in which two measures were calculated and demonstrated the ability to differentiate control from transgenic samples, and, (2) machine learning classifier capable of both stratifying control and trangenic samples, as well as to stratify pre-cancer and cancer samples.

Keywords: T cells, T cell repertoire, network analysis, graph theory, machine learning, breast cancer, repertoire sequencing, HER2


1. INTRODUCTION

The way by which the immune system deals with complexity of signals, is by building a complex regulation system through its arsenal of tools. This regulation system relies on the ability of T cells and of B cells to present and to communicate through a set of highly variable receptors. In T cells, these receptor are called T cell receptors (TCRs), and their sequence complexity is achieved through a delicate recombination mechanism (5) of T cell DNA. As the sequences determining these recombined regions are unique to each T cell clone (mean length around 13-aa), and since they are relatively short, the recent progress in genome sequencing has made it possible to sequence millions of T cells in parallel, for their TCR type, thereby determining the collection of TCRs from those T cell. This collection has been termed the T Cell Repertoire.

The interaction between T cells and tumor cells during tumor progression is the subject of extensive study. Further, Immunotherapy, which over the past few years have been heralded as a great hope in the fight against cancer, relies on the ability to revert tumor progression, by encouraging some T cells to revert from a previous state of tolerance. In some cases, the immune system is able to eliminate tumors before they become uncontrollable. The role of presentation of tumor specific antigens, Neoantigens, is rapidly taking center stage in such immunotherapy research and treatment, with recent major progress in the clinic (6) pushing the field forward. The mirror image of these neoantigens lies in the immunological repertoire. An ability to respond to antigens is an ability coded into the T cell repertoire. The ability to account for the dynamics of the T cell repertoire is therefore critical to our understanding of immune response to tumor cells.

High-throughput biology, needed to follow the T-cell repertoire, has made great leaps with the advent of massive parallel sequencing (1). Nevertheless, tools to handle and observe the dynamics of this complexity have only recently started to emerge [e.g., 2–4, 7, 8] in parallel with sequencing technologies. Collectively, the sequencing step provides the CDR3 (and possibly flanking regions, with some longer-read technologies) for each of the collected cells. The outcome table, often describing millions of cells, indicates involved clones and is referred to as the Repertoire.

The computational study of T-cell repertoires is challenging due to the complexity of the high-dimensional receptors sequences landscape, as well as its time dependency. Several methods for the computational and statistical analysis of large-scale rep-seq data have been developed to resolve its complexity, and less so its dynamics, and to gain insight into the mechanisms controlling the immune system behavior under various conditions. We mention here, and use later, two major approaches: (1) Network-based analysis, in which clones are associated with vertices of the graph, and edges represent some distance measure between pairs of clones, and (2) Machine learning techniques to relate physiological conditions to a state vector composed of the magnitude of particular clones. In Bashford-Rogers et al. (9) BCR sequences were organized into networks which demonstrated that differences in network connectivity may distinguish between repertoires of healthy individuals from those with Chronic Lymphocytic Leukemia, and possibly other clonal blood disorders. They used measures defined by the Gini Index and cluster sizes. Madi et al. (10) applied network analysis of TCR sequencing data to show that substantial numbers of public CDR3-TCRβ are identical in mice and humans. They further used annotated TCR sequences associated with self-specificities such as autoimmunity and cancer, to demonstrate a link to network clusters.

Greif et al. (11) applied machine learning to develop an SVM-classifier for separating private from public TCR sequences. Their machine is reported to achieve 80% prediction accuracy of public and private status in humans and mice, and was sufficiently robust for public clone prediction across individuals and studies using different library preparation and sequencing protocols. In Ostmeyer et al. (12) the authors developed a statistical classifier to diagnose individuals with multiple sclerosis. Their method includes feature selection step based on snippets derived from the BCR sequences that are converted into a set of chemical features using Atchley factors. Those features are combined using logistic regression function whose weights are trained. The outcome is further transformed to a single score (probability) used for diagnosis.

In Miho et al. (13) a computational method is proposed to overcome the hurdle posed by the amount of unique sequences [[image: image] and higher]. The resulting sparse distance matrix is then used to assess global and local properties of the network over individuals, and at the local (clonal) level. Of interest to our study is the redundancy found in the repertoire space of sequences.

In the following we propose to view the immune repertoire dynamics as a nonlinear dynamical system [see e.g., (14)] whose attractor landscape is characterized by the clusters of similar sequences, hence denoted as Clone-Attractor (CA). This representation assumes an inherent robustness, or redundancy, in the repertoire. By this we mean that a cluster of highly similar sequences may be viewed as an attractor, where larger clusters have larger basin of attraction. Sequences belonging to the same cluster-attractor may be relevant to a specific antigen. This representation is used to demonstrate the differences between experiment and transgenic mice via two approaches: (1) network analysis of the TCR repertoire and, (2) machine learning study aim at developing a classification tool to separate experiment from transgenic, as well as the status of a sample as pre-cancer vs. cancer.



2. METHODS

Temporal TCR repertoire analysis poses a unique problem, as the number of different sequences is very large and (unlike, e.g., gene expression data) changes over time, whereas the amount of samples available in each experiment is relatively small. Since data is collected over several time points, sequences are observed in part of the samples, part of the time, rendering the association of particular clones to complex physiological conditions uniquely challenging. This assertion is even stronger assuming the condition is dominated by multiple clones with possible interactions between their members. We used a cluster-based representation of the repertoire to tackle these difficulties. This representation further makes the analyses more robust. This robustness is gained by treating each cluster as “Clone-Attractor” (CA) whose amplitude is the sum of its members amplitude at each time point.

In the following we describe the clustering algorithm used, followed by a description of two analysis approaches: (1) Graph theoretic measures of the various networks, and (2) Machine learning methods applied to the space of CAs in order to expose a subspace sufficient for classification of control vs. transgenic samples, as well as to stratify pre-cancer and cancer samples.


2.1. Experimental Setup, Data Collection and Preprocessing

Full details of the data collection and preprocessing are given in Gordin et al. (15). TCR sequencing data, from FASTQ files, has been analyzed using MiXCR (16) to produce CDR3 abundance levels per sample. Table summarizing the number and groups of samples and time points and the number of sequences obtained per sample and time point is given in the Supplementary Material. These repertoires were the basis for the network analyses described in the next sub sections. The setup is depicted in Figure 1.


[image: image]

FIGURE 1. Experimental procedure 120 blood samples were drawn from the retro-orbital sinus of 10 FVB/N-Tg (MMTVneu), a mouse model of HER2 human breast cancer mice, and from 5 FVB/NJ control mice. Over these 8 time points, none of the control mice (blue) developed any tumors. Progress of tumor in the ten transgenic mice is demonstrated using the red colored samples in the figure. The last time point before tumors are shown was defined as pre-cancer and marked light red. From each time point, the peripheral blood mononuclear cells were isolated and stained for flow cytometry. Cells were analyzed and gated for sorting using a FACS ARIA III sorter, and CD4+CD62L+CD44- naive population was separated for RNA extraction and T cell receptor library preparation.



2.1.1. Transgenic Mice

Transgenic Mice expressing the inactivated rat neu (Erbb2) oncogene under the transcriptional control of the mouse mammary tumor virus promoter were purchased from Jackson Laboratories [FVB/N-Tg(MMTVneu) 202 Mul/J]. The female mice of this strain represent a mouse model of mammary tumor in humans, model of HER2/ Erbb2 / Neu human breast cancer (17). FVB/NJ strain with the same genetic background as the transgenic mice, serve as a non-transgenic control mouse that does not develop tumors. Mice were housed in accordance with all applicable laws and regulations following approval by the responsible animal care and ethical committee, under specific pathogen-free conditions. Mice were monitored by palpitation for tumor development monthly for up to 9 months.

2.1.2. Antibody Staining and Cell Sorting

Blood was sampled from the retro-orbital sinus of 15 mice once per month for 8 time points (total of 120 samples). Mononuclear cells from the peripheral blood was isolated by density gradient centrifugation using Ficoll (Ficoll PaqueTM plus, GE Health Care), Single cell suspensions were prepared from thymus and spleen that were removed from each mouse at the end of the experiment. For cell sorting, cells were stained with the following fluorescently labeled monoclonal antibodies: anti-CD4 Pacific Blue (BD), anti-CD25 PE (eBioscience), anti-CD44 APC (BD) and anti-CD62L PE-Cy7 (eBioscience) and viability using the Fixable Viability stain 450 (BD Horizon). Cell sorting was performed using FACS ARIA III sorter. CD4+ D44loCD62Lhi were sorted as naive T cells. After sorting, cells were pelleted and resuspended with 300μl of RNA protect cell reagent (Qiagen). Cells were stored at minus 80°C until RNA extraction. RNA was purified from RNAprotect-stabilized cells using the RNeasy Plus Mini Kit. After RNA extraction, samples were run on TapeStation to estimate quality.

2.1.3. High-Throughput Sequencing of the T Cell Repertoire

The method for high-throughput sequencing of the T cell repertoire was performed as previously described in Di Niro et al. (18) and Tsioris et al. (19). Briefly, RNA was reverse-transcribed into cDNA using a biotinylated oligo dT primer. An adaptor sequence was added to the 3' end of all cDNA, which contains the Illumina P7 universal priming site and a 17-nucleotide unique molecular identifier (UMI). Products were purified using streptavidin-coated magnetic beads followed by a primary PCR reaction using a pool of primers targeting the TCRα and TCRβ regions, as well as a sample-indexed Illumina P7C7 primer. The TCR-specific primers contained tails corresponding to the Illumina P5 sequence. PCR products were then purified using AMPure XP beads. A secondary PCR was performed to add the Illumina C5 clustering sequence to the end of the molecule containing the constant region. The number of secondary PCR cycles was tailored to each sample to avoid entering plateau phase, as judged by a prior quantitative PCR analysis. Final products were purified, quantified with Agilent Tapestation and pooled in equimolar proportions, followed by high-throughput paired-end sequencing on the Illumina MiSeq platform. For sequencing, the Illumina 600 cycle kit was used with the modifications that 325 cycles was used for read 1, 6 cycles for the index reads, 300 cycles for read 2 and a 20% PhiX spike-in to increase sequence diversity.



2.2. Clustering Algorithm

The clustering method we used, roughly follows the UClust (20) algorithm with some modifications. Its purpose is twofold: (1) data reduction, i.e., mapping the very large space of unique sequences to the space of representative clusters, 2–3 orders of magnitudes smaller, and (2) reducing the inherent fluctuations in the data, assuming very similar TCR-sequences are associated. In addition, we naturally minimize the occurrence of missing values, a phenomenon in which many algorithms struggle [e.g., see (21, 22)], since the activity of each cluster (CA) is now based on several sequences. The graph nodes (or features) are considerably less sensitive to the noise in measuring the single sequences.

The algorithm begins by sorting the sequences according to their length and starting from the smallest. It then iteratively checks for existing cluster to associate the next sequence whose editing distance from the cluster's representative is smaller than a given threshold. The association step is greedy, namely, to the first cluster that meets the constraint. The editing distance used was 'Levenshtein' with parameters [deletion = 1.1, insertion = 1.1, substitution = 1.9]. The association threshold was set to λ = 3. This choice of parameters ensures at most 2 deletions/insertions, or 1 substitution plus 1 insertion/deletion with respect to the 'cluster-representative' sequence.

Following is the pseudo-code describing the algorithm. Let us denote the current set of already found clusters by C = c1, c2, ⋯ , ck, where each cluster's representative is denoted by Cr = cr1, cr2, ⋯ , crk. Each cj is the set of all sequences associated with the j'th cluster.

1. Read one sequence, denoted as [image: image]

2. Calculate similarity measure [image: image], i.e., Levenshtein distance, between the sequence and the j'th cluster representative

3. Find the nearest cluster ci to [image: image]

(a) Associate [image: image] to the most similar cluster ci if [image: image]. Update cluster representative by searching for a new member of the cluster that minimizes the distance from all other members

(b) If no cluster found, i.e., [image: image], create a new cluster ck+1 with representative [image: image] and add it to the set C

4. Repeat the above steps until exhausting all sequences

The algorithm goes over all sequences once, and the number of clusters found depends on the threshold λ defining the “radius” of the CAs, i.e., the ensemble of highly similar sequences. As mentioned, to reduce the complexity of the algorithm, we adopted a greedy strategy in which the current sequence is associated to the first cluster that is found close enough (winner takes all).



2.3. Graph Theoretic Analysis

Our temporal data give rise to multiple graphs, each represents a sample at a given time-point. Graphs were generated based on the CAs as nodes, and the distance between the representative sequences of each pair of CA as edges. Nodes with < 10 members (||CAi|| < 10) were eliminated. Edges of distance >8 were eliminated as well. Finally, we kept only CAs that appeared in more than 60% of the time points. So, starting from ~ 360k sequences, we obtained ~ 57k CAs, from which ~ 550 CAs remained after applying the above filtering process. Nevertheless, those remaining CAs account for ~ 100k of all sequences. The above parameters were chosen empirically, taking into consideration both robustness and complexity issues. That is, we opt for taking considerable amount of CA's, however, those CA's should be statistically significant (hence the cutoff at 10 members). In addition, we require them to cover enough time points to ensure they represent a phenomenon and not a sample. The exact parameters' value is less important, and one can vary them to filter more or less CAs. The results shown below are not sensitive to these parameters. We tested various sets of parameters that resulted in an amount of CA's that roughly varies in the range 400 − 1, 000.

To compare the various graphs, we build the following quantities to reflect measures of the graphs (other than visual inspection), which are required for an unbiased comparison of non-trivial and large networks. Many such measures have been developed within the field of graph theoretical analysis [see (23)]. We demonstrate the differences between the control/transgenic groups using two measures, namely, the Betweenness Centrality (BWC) which is a node level measure, and the Molecular Topological Index (MTI) which is a graph level measure.

The molecular topological index originated from the study of graph representation in (mathematical) chemistry (24), and some of its properties can be found in Gutman (25). The MTI is defined by

[image: image]

where n is the number of vertices of the graph, di is the degree vector of the vertices, Aij are the entries of the adjacency matrix A (Aij is 1 if vertices i and j are adjacent and 0 otherwise), and D the graph distance matrix, i.e., the number of edges on the shortest path. One of its properties, relevant to our case, is the inverse relation between its value and the graph “branchness.”

The betweenness centrality (one of several centrality measures) is defined as follows:

[image: image]

where gjk is the total number of shortest paths from node j to node k and gjk(i) is the subset of paths that pass through i. The BWC is a measure of accessibility, i.e., the number of times a node is crossed by shortest paths in the graph between pairs of nodes j − k.

Since the BWC is a node level measure, we basically evaluate its quantity for every graph node. Although we begin the process of building the graph for each sample from the same set of CA's, the effective size of each graph (based on the activity of the nodes/CA's at that time-point) is different. To facilitate the comparison between the graphs, we evaluate a single global variable from each vector of [image: image] values, being the sum of all components above some threshold taken as the median of all BWC vectors (th50). This global variable is in fact the temporal-graph-mean-BWC (since the original number of nodes is the same). It's biological meaning is then: “the average amount of influential CA's.”

[image: image]

We note that the results presented below are not sensitive to the threshold chosen, i.e., other statistical values will work as well.



2.4. Machine Learning Methods

While using graph theoretic measures can shed light on global level differences between networks (in our case, of different genetic and/or physiologic origin), the purpose of applying machine learning methods is to identify particular representations that will provide efficient classification results, but, just as important, an efficient geometrical representation. Since the number of data points in our experiments, i.e., samples at different time points, is small in terms of statistical machine learning, especially with respect to the original dimensionality of the data, it is imperative from the generalization point of view to obtain a robust, low-dimensional solution.

2.4.1. Feature Selection

The first step involves feature selection. In our case, the features are the magnitudes of each Clone-Attractor, taken per sample per time point. Since the number of CAs is relatively high, while the number of data points is very small, we first reduced the set of CAs to the subset that is active across samples (> 95% of samples). “Active” in this context means that at least one sequence in the CA is expressed in a sample/time-point. This process resulted in < 100 CAs.

To search this, still very high, feature space we adopted a sequential bottom-up (forward) scheme. The two classes for this step where Control/Transgene for which there were 24/49 data points respectively. The classifier used was SVM with “Gaussian” kernel (26, 27). Instead of starting from choosing among all single features, we trained 2D classifiers on all pairs of CA features. Based on the leave-one-out cross validation (LOOCV) (28), the top-50 pairs were chosen to continue. This process has been repeated for the subsequent iterations until the overall performance converged. At the end of this stage we obtained the best k = 50 sets of features for each dimension.

2.4.2. Robust Model Evaluation

One of the major problems in assessing performance of a learning machine based on a very small data set is the robustness of the solution, or the generalization error. Since its impractical to apply the standard statistical learning methodology, i.e., to subdivide the data set into training/validation/test sets, due to its size, we combined the following techniques:

1. Using LOOCV, as described above for the feature selection phase

2. Naive form of ensemble averaging (29) - committee of classifiers trained on different feature subspace

3. Model testing via noisy versions of the original data

Using ensemble averaging of m = 10 machines reduced the variance of the combined (meta) classifier, as expected. In order to obtain a more robust evaluation of the model, we generated noisy data sets, each with a higher noise amplitude. Each noisy set has been generated as follows. Let us denote the original set by [image: image], then the k'th noisy set [image: image] is obtained by multiplying the data by random normally distributed variable with variance [image: image], i.e.,

[image: image]

We used noise amplitudes varying in the range [0, …, 0.25].




3. RESULTS


3.1. Cluster Analysis Results

The fundamental step in our analysis is clustering the T-Cell repertoire sequences and generating “Clone-Attractors” (CAs). Due to the smaller amount of TCRα sequences, and the higher occurrence of time points absent of TCRα sequences, we show results of TCRβ only.

The original data set obtained comprised of ≈ 360kTCRβ sequences. Following the clustering procedure, the number of clusters found was ≈ 57k. Figure 2 depicts the network of the CAs obtained from all the sequences. The size of each red circle is proportional to the size of the CA (number of sequences associated) and the blue lines correspond to the graph edges (line width is inversely proportional to the distance between each pair of CAs). The figure has been generated using “Gephi” (30).


[image: image]

FIGURE 2. Clone-Attractors network. Red dots represent nodes (CAs) of the graph (size proportional to the number of sequences in the CA), and blue lines are the edges (line width is inversely proportional to the distance.



A quick examination of Figure 2 reveals a small number of highly connected CAs (hubs) and numerous more isolated ones. This qualitative observation is verified in Figure 3, where the distribution of cluster sizes is shown to follow a power-law scaling (31),

[image: image]

This result holds for all samples/time-points, with different pre-factors and slightly different power values, where α≈3. This is a strong indication that the network belongs to the class of scale-free networks.


[image: image]

FIGURE 3. Cluster size distribution in log-log scale, showing a power-law relation. The analysis was done for all the active CAs combined from the Control/Transgenic samples, respectively.



Before we provide results of the graph theoretic analysis, it is useful to see the panel (Figure 4) of example Control vs. Transgenic networks at two time points along the experiment, early/late (denoted T1/T2 respectively). It is evident from the figure that while the network of the Control mice becomes more sparse, the network of the Transgenic mice remains densely connected. In the next subsection we elaborate on the quantitative results regarding this behavior.


[image: image]

FIGURE 4. Graph dynamics of Control (up) and Transgenic samples (down), depicted at 2 time points, T1<T2. The Transgenic graph remains dense, whereas the Control becomes branched and diluted at later time.





3.2. Graph Theoretic Results

Using the clustering algorithm for all repertoire sequences, resulted in an array of CAs as described in 2.2. Since the TCR repertoire was generated for each sample, control and transgenic, at several time points, we generated multiple graphs from the active CAs from each pair (time ↔ sample). As mentioned above, we filtered the CAs such that the remaining subset contained only those clusters that were found active in most samples/time-points. As mentioned in section 2.3, the filtering process resulted in ~ 550 CAs upon which the results below were obtained, i.e., these CAs were the graph's nodes.

The measures described in 2.3, Betweenness Centrality and Molecular Topological Index, were calculated for each sample/time-point. In the next two figures we present the median value of all time points per sample. In both figures the median and std are presented for each sample, where the std is calculated over time points.

Figure 5 shows the variable sBWC (Equation 3) averaged over time per each sample. The separation between the two groups is apparent, where 80% success rate was achieved in distinguishing control (4 out of 5) from transgenic sample (8 out of 10). The same result is obtained using the MTI in Figure 6.


[image: image]

FIGURE 5. Samples graph Betweenness-Centrality. The sum of BWC of each sample (indices [1–5] - Control, [6–15] - Transgenic) is shown along with the 1σ errorbar.




[image: image]

FIGURE 6. Samples graph Molecular-Topological-Index. Similar to Figure 5, but for the MTI measure.



It is worth noting that the lower levels of the MTI measure in the control group may be attributed to the graph 'branchness' observed at later times (see Figure 4). Similarly, the lower levels of the sBWC are associated with the decreasing number and amplitude of significant nodes (or hubs), again at later times, in the control group.



3.3. Machine Learning Based Classification

As mentioned earlier, the overall data available for analysis (from the 5-control and 10-transgenic mice) consisted of 73 time points, of which 24 from control and 49 from transgenic. Prior to the feature selection process described in 2.4, the data is about hundred dimensional, originated from the CAs.

We applied the machine learning pipeline described in section 2.4 in two stages. First, we applied to classify the Control and Transgen groups. Assuming the first stage is successful, we then used the same pipeline to generate another classification machine to classify the pre-cancer and cancer sub populations within those classified as Transgenic. Indeed, it turns out that the subset of features found in the second stage are mostly different than those found in the first stage. This hierarchical scheme allowed us to separate the two problems and control the learning process, in particular in view of the small size data set at hand.

Figure 7 summarizes the results of the first stage. The left side panel shows the Area-Under-Curve (AUC) of several classifier models trained as described above. Each classifier model (an ensemble of 10 machines of the same input dimension) operates on a different dimensional space, shown are Dim = 3, …, 8. The models were tested with various levels of noise amplitudes, ranging noise = 0, …, 0.25. The best model, according to the AUC is obtained for D = 5. The middle panel shows the Receiver-Operating-Characteristic curve (ROC), i.e., the true positive rate (TPR) vs. the false positive rate (FPR) calculated at various threshold values of the classifier's output. The values of each point are the average over the noise level tested. The models D = 5, 6 perform the best, hence we shall take the lower dimensional model. Finally, the graph on the right shows the ROC for the chosen model (D = 5) for various noise levels. The robustness of the model is evident by the gradual decrease in performance as a function of the noise. One can set the operating point of the classifier at FPR = 0.1 to obtain TPR≈0.9. The TPR value is taken at the worst noise level.


[image: image]

FIGURE 7. Machine learning results of the first classification stage: separating Control from Transgenic classes. Left panel: AUC of models trained on different dimensional features space (see legend) at various noise levels (Equation 4). The 5-dimensional model is preferred. Middle panel: ROC of the same models as the left panel, where each point is the average over the noise levels. This curve allows us to prefer the model D = 5 assuming our operating point is FPR = 0.1. Right panel: Zoom in the best model, showing the performance degradation for various levels of noise added to the data.



Note that the FPR refers to the expected error in the Control group, whereas the TPR refers to the Transgenic group. More specifically, at this operating point, there is a 0.1 probability of misclassifying a Control sample as a Transgenic, and about 0.9 of correctly classifying a Transgenic sample.

The results depicted in Figure 8 refer to the second classification stage, i.e., of separating the classes pre-cancer/cancer of the Transgenic group. The details of the three panels in the figure are identical to Figure 7. However, the main conclusion here are that the performance of the best ensemble are reduced with-respect-to the first classification stage. One may expect at FPR≈0.2 to obtain TPR≈0.8.


[image: image]

FIGURE 8. Machine learning results of the second classification stage: separating precancer from cancer classes of the Transgenic group. The structure of the figure are as Figure 7. The main difference between the two stages is the reduced performance observed here. In particular, the best model achieves a TPR≈0.8 at an operating point where FPR≈0.2.



As noted, the set of features (CAs) found for the two classification stages are different, indicating that there might be two biological processes involved. Referring to Table S1 in the Supplementary Material, the list of sequences denoted as: [1, 2, 10, 13, 17, 23, 26, 44, 48, 60, 68, 71] was found best for stage-1, and the list: [3, 5, 11, 16, 32, 33, 35, 38, 42, 63, 64, 77, 82] was found best for stage-2.



3.4. Correlation With Public TCR DataBase

The growing number of availble rep-seq datasets, over multiple phenotypes, enabled the production of curated databases of T-cell receptor (TCR) sequences with associated antigens. One such database is the VDJdb (32) (see project web-page https://vdjdb.cdr3.net), whose primary goal is to facilitate access to existing information on T-cell receptor antigen specificities, i.e., the ability to recognize certain epitopes in a certain MHC contexts.

Out interest in these types of Db's is 2-fold: analyzing the extent of public sequences in private repertoire, and correlating the sequences with our CA representation. The VDJdb currently contains ≈16k β− sequences. Analysis of the distance matrix between the VDJdb sequences and our CAs reveals the following interesting results. When taking into account the CAs used for the graphs analysis (≈550, section 2.3), the number of sequences from the VDJdb whose distance (d) from any of those CAs is d = 0, 1 amount to 4, 126, respectively. That is, four sequences were identical to CAs representatives, and another 126 differ by a single insertion/deletion from CAs. Of interest is the fact that out of those 126 sequences, 38 are identical to one of the members of the respective CAs.

As for the CAs chosen for the machine learning (ML) study (section 2.4), the number of sequences from the VDJdb whose distance from any of those (ML)CAs is d = 0, 1 amount to 2, 64 respectively. Again, out of those 64 sequences, 30 are identical to one of the members of the respective (ML)CAs.

Table 1 presents the set of sequences from the VDJdb that matches CAs found in the ML process described above, i.e., they are among the CAs comprising the feature space upon which the classification machines were built. First 4 sequences matches features found in stage-1 (section 3.3), and the next 4 sequences corresponds to features found in stage-2.



Table 1. List of sequences from the VDJdb that matches CAs revealed via the machine learning process.

[image: image]







4. DISCUSSION

We have proposed a new way to look at TCR rep-seq data. By rebuilding the sequences into a network, and by following this network over temporal changes in the phenotype, we were able to identify changes in the repertoire that associate with changes in the phenotype. Using the proposed methodology, we demonstrated its utility in two different disciplines, namely, graph/network theory and statistical machine learning. Following a clustering process and further pruning, we generated a network for each sample/time-point. By summing up the sequences associated with the respective clusters measured at that time-point per sample, the nodes of each network represent the “activity” of the Clone-Attractors. We applied two graph measures on the networks: Betweenness-Centrality and Molecular-Topological-Index, and demonstrated its ability to discriminate the two populations, control and transgenic, with a rate of 0.8. The same Clone-Attractors were used for developing a two-stage classifier machine, separating control from transgenic, and further separating pre-cancer from cancer samples in the transgenic sub-population. This machine achieves an estimated true positive rate of 0.9 at a false positive rate of 0.1. A word of caution is in order here regarding the machine learning results at this time. As the amount of data available for the study was limited, it is reasonable to assume a certain level of over fitting, although this concern has been addressed by applying a robust estimation. Additional experimental data is required to further test our method.

This new way provides, in essence, a biologically-inspired means to perform dimensionality reduction on repertoire data. The Clone-Attractors are built using their biology, namely, their sequence similarities. When we collapse sequences onto the network representation, we use this biology to raise an alternative view of the system, in a different set of dimensions. However, this dimensionality reduction, as useful as it might be for data compression and representation, would not be interesting without exposing utility. Indeed, such utility is readily presented, by 1. stratifying different network behaviors in the two phenotypes we have studies: mice that develop tumor vs. mice that do not, and by 2. using the behavior of the Clone-Attractors to classify different samples according to their origin, as well as physiological state.

Further, we find that the CA themselves are associated with a number of curated sequences, that appear in context of a set of related and unrelated pheotypes, curated in the VDJdb database. This association, which may be interesting in and of itself, further provides context to the possible cognate peptides of the T cells. Since many of the TCR sequences identified in this manner (see Table 1) are associated with human and mouse viral peptides, the biology behind the association between these specific peptides and the tumor phenotype remains to be seen.

It is important to emphasize, however, that part of the public nature of many of the sequences is, in fact, an artifact of the measurement itself. The method used here is unable to provide a match between the alpha and beta sequences. In that case, a single beta sequence may actually represent a number of distinct T cell clones, which differ in their alpha sequence. In spite of this limitation, the conclusion of the computation used here, which is the success in classification, overcomes this issue and is able to deliver the reported results. It might be that with the progress in single-cell sequencing, we would be able to significantly improve over these classifications.

However, the Clone-Attractor phase space representation is more than merely a dimensionality reduction tool. We hypothesize that this space reflects the temporal status of the immune response to tumor progression as follows. CAs having small basin of attraction, i.e., that are composed of a small number of sequences, may be a normal immune response to antigens, pathogens, etc. This can be viewed as an extension of the clone notion. When the immune response fails to control those cells and the tumor evolves, it is possible that the immune system replicates further T cells with similar TCRs to explore the adjacent sequence space, resulting in a larger basin of Clone-Attractor. This CA is also expected to be more active as the tumor progress. As temporal data become more abundant, it might be possible to chart certain regions of the CA landscape and associate both dynamics and specific attractors with particular pathologies.

The work described here succesfuly stratifies two classes: mice that would devlop tumors and mice that would not. However, in the context of machine learning, these are also the only two classes included in the experimnet. That is, we do not know if the classification easily carries into the complexity of the heterogenetiy of human subjects. To be able to carry the method further, much research is still needed, both in animal models and in human samples. The actual span of relevant classes is not binary, but huge, and probably, since T cells are involved in most aspects of physiology, contains any phenotype in the physiology of organisms. To be able to achieve such resolutions, a larger set of data needs to combine over multiple experiments, to feed a much more informative model.

With continuous research into T Cell Repertoires, especially with recent progress in the ability to associate TCRs with specific peptides (34, 35), we expect many future studies to produce TCR repertoire data. These data may benefit from a network perspective such as the one proposed here. The example we provide here raises interesting questions regarding the biology behind Clone-Attractors in general and specifically in breast cancer. Our own research continues to follow these specific clones and their role in tumor progression. Other data sets may raise to the surface a novel set of clones. Combined, these efforts, the networks that they use and the attractor-network that they would build, may further promote our understanding of this complex phenomena.
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Antibody Repertoire Analysis of Hepatitis C Virus Infections Identifies Immune Signatures Associated With Spontaneous Clearance
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Hepatitis C virus (HCV) is a major public health concern, with over 70 million people infected worldwide, who are at risk for developing life-threatening liver disease. No vaccine is available, and immunity against the virus is not well-understood. Following the acute stage, HCV usually causes chronic infections. However, ~30% of infected individuals spontaneously clear the virus. Therefore, using HCV as a model for comparing immune responses between spontaneous clearer (SC) and chronically infected (CI) individuals may empower the identification of mechanisms governing viral infection outcomes. Here, we provide the first in-depth analysis of adaptive immune receptor repertoires in individuals with current or past HCV infection. We demonstrate that SC individuals, in contrast to CI patients, develop clusters of antibodies with distinct properties. These antibodies' characteristics were used in a machine learning framework to accurately predict infection outcome. Using combinatorial antibody phage display library technology, we identified HCV-specific antibody sequences. By integrating these data with the repertoire analysis, we constructed two antibodies characterized by high neutralization breadth, which are associated with clearance. This study provides insight into the nature of effective immune response against HCV and demonstrates an innovative approach for constructing antibodies correlating with successful infection clearance. It may have clinical implications for prognosis of the future status of infection, and the design of effective immunotherapies and a vaccine for HCV.
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INTRODUCTION

HCV infection can lead to hepatitis, cirrhosis, liver failure, and hepatocellular carcinoma (HCC); it is the leading cause of liver transplantation (1). HCC is the fifth most common cancer, and the third leading cause of cancer-related death worldwide. Unfortunately, its prevalence in the US and Western Europe is increasing (1). No vaccine is currently available for HCV, and immunity against the virus is not well-understood. Cure rates are expected to increase with the recent approval of Direct-Acting Antiviral Drugs (DAAs). Yet, despite this progress, many challenges remain, such as limited implementation, efficacy, and protection from reinfection (2). Thus, global eradication of HCV by implementing DAAs is currently not a feasible goal (3–6). Since vaccination is considered the most effective means of eradicating viral infections (5), a prophylactic HCV vaccine is an urgent, unmet medical need (3–6). However, critical gaps in understanding the correlates of protective HCV immunity have hindered the design of anti-HCV vaccines and novel immunotherapeutics (3–6).

Unlike HIV-infections, which are not spontaneously cleared, 20–40% of HCV-infected individuals experience spontaneous recovery (7). A multitude of evidence suggests that induction of an efficient HCV-specific natural immunity can control the infection. Therefore, using HCV as a model for comparing immune responses between spontaneous clearer (SC) and chronically infected (CI) individuals will enable the identification of unique mechanisms that govern human disease outcomes. Until recently, protection against persistent HCV infection was thought to be associated with a vigorous T-cell response (8). However, it is now widely accepted that neutralizing antibodies (nAbs) also play a key role in viral clearance (8–12). This point was strengthened by demonstrating that natural clearance correlates with the early development of nAbs (13), and with nAbs that exhibit distinct epitope specificity (14). Extensive characterization of monoclonal HCV-neutralizing antibodies (mnAbs), combined with crystal structures of the HCV envelope protein E2, which is the target of most HCV-nAbs, has provided valuable information regarding the E2 antigenic landscape (15–19). However, since most HCV mnAbs characterized to date were generated from CI patients (12, 20, 21), the nature and epitope specificities of mnAbs in SC individuals remain to be elucidated. Recent studies have demonstrated that the early appearance of broadly neutralizing antibodies (bnAbs) is associated with spontaneous clearance (13). Interestingly, bnAbs also protect against HCV infection in animal models (22–24). Very recently, the first panels of bnAbs isolated from SC infections have been developed (25, 26). The panel reported by Bailey et al. displayed a low number of somatic mutations compared with the well-characterized nAbs from chronic patients exhibiting higher neutralization breadth, but were similar to nAbs from chronic infections in terms of clonality and epitope specificities (26). It remains unknown whether and how the immune response of SC individuals is distinct from that of CI patients.

New emerging technologies empowering high-throughput direct screening for specific antibodies have provided deep insights into the immunogens that elicit broad antibody responses (27, 28). In the case of HIV, such technologies led to the generation of broadly neutralizing monoclonal antibodies with significantly higher potency, breadth, and novel epitope specificities [reviewed in (29)]. These novel revolutionary methods of studying immune responses can offer important insights into the nature of immune responses to infections. The antibody repertoire of an individual stores information about current and past threats that the body has encountered, and thus has the potential to shed light on screening antibodies and vaccine design (27, 30). Comparing the features of antibody repertoires between distinct patient populations may provide information that can be correlated with clinically relevant outcomes (31, 32). Indeed, recent studies have found common antibody sequences in unrelated individuals following Dengue (33), influenza (34), and HIV (35) infections, as well as autoimmune diseases such as celiac (36) and pemphigus vulgaris (37). In chronic lymphocytic leukemia, 30% of patients carry highly similar antibodies (38). Here we utilized high-resolution technologies to identify unique antibodies that stratify between CI and SC HCV infection outcomes. We also used antibody repertoires in combination with phage display to construct HCV-specific broadly nAbs associated with HCV infection clearance.



MATERIALS AND METHODS


Cell Lines

Huh-7.5 cells (a generous gift from Charles Rice, Rockefeller University) and Huh7/FT3-7 cells (a generous gift from Stanley M. Lemon, University of North Carolina at Chapel Hill) are human hepatoma cell lines that are highly permissive for infection and replication of cell culture infectious HCV (HCVcc) (39). Cells were cultured in Dulbecco's modified Eagle's medium (DMEM) containing high glucose; 10% fetal bovine serum (FBS); 1% L-glutamine; 1% penicillin streptomycin; and 1% non-essential amino acid. The cells were incubated in a humidified incubator at 37°C containing 5% CO2. The irradiated 3T3-msCD40L feeder cells that express CD40L were obtained from the National Institutes of Health (NIH) and cultured as previously described (40).



Virus

Virus stocks from HJ3–5 chimeric virus [a generous gift from Stanley M. Lemon, University of North Carolina at Chapel Hill (39)] and the other chimeric viruses containing E2 envelope protein from genotypes 1-7: HJ3-5/1a, H77C/1a, j6/2b, s52/3a, ED43/4a, sa13/5a, HK6A/6a, QC69/7a [a generous gift from Jens Bukh (41)], were produced in Huh7/FT3-7 cells and viral titers were determined by FFU assay in Huh-7.5 cells, as described previously (39).



Antibodies

A panel of HCV mnAbs CBH-4B, CBH-4D, HC-1, HC-11, CBH-7, HC84.22, HC84.26, HC33.1, and HC33.4 that are representative E2 antigenic domain A-E antibodies, and a control non-specific antibody R04 (12, 20, 21) were kindly provided by Steven Foung, Stanford Univ., Stanford, California.



Sample-Collection

All blood samples were collected from the Liver Institute at Belinson and the Galilee Medical Center, Israel. In total, we obtained blood samples from 80 individuals; of these, 18 were individuals that spontaneously cleared HCV infection, 52 were with persistent chronic HCV infections, and 10 were from healthy controls. Subjects were defined as spontaneously cleared HCV if anti-HCV antibodies are detectable, with undetectable HCV RNA assessed by the Taqman reverse-transcription polymerase chain reaction (RT-PCR) quantitative assays. HCV chronic infections were defined as viremia if there were detectable viral loads for more than 1 year. Both cohorts were not treated with any anti-viral treatment. All blood samples were collected using protocols approved by the Institutional Review Boards and were in accordance with the ethical standards of the Helsinki Declaration. Sample data are summarized in Supplementary Table 1. For the isolation of peripheral blood mononuclear cells (PBMCs), 30–50 ml of whole blood from each donor was separated on Ficoll-Paque gradient (Lymphoprep™) according to the manufacturer's instructions.



Expression and Purification of the E2 Glycoprotein

The H77 genotype 1a E2 sequence (GenBank accession no. AF009606), spanning residues 384–661 (not containing the transmembrane domain), was amplified by PCR using HCV plasmid pHJ3-5 (39) and primers pSHOOTER-sec-E2-1a-SE and pSHOOTER-sec-E2-1a-As (primers are listed in Supplementary Table 2). The PCR product was digested with NotI and NcoI and cloned into plasmid pCMV-SEC-MBP (a generous gift from Itai Benhar, Tel-Aviv University, Tel-Aviv, Israel) containing signal peptide for secretion, His and Myc tags, and fused to maltose-binding protein (MBP) for higher expression and stabilization. The resulting plasmid was termed pCMV-SEC-MBP-E2-384-661-1a-His-Myc.

For production of E2 protein, 293T cells were transfected with 12 μg pCMV-SEC-MBP-E2-384-661-1a-His-Myc expression plasmid by PEI transfection reagent. At 72 h post transfection, medium containing the secreted protein was collected from cells for protein purification. The E2 protein was purified using Ni-NTA agarose beads (Qiagen) according to the manufacturer's instructions. Purified E2 glycoprotein was stored at −20°C. E2 glycoprotein-containing fractions were analyzed on SDS 10% polyacrylamide gels.



Construction of an Immune anti-HCV Antibody Phage Display Library

We constructed a phage display antibody library from a source of pooled PBMCs obtained from 10 SC patients. For library construction, we designed a degenerative primer set by using the IMGT database (IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org (founder and director: Marie-Paule Lefranc, Montpellier, France) (42) (primers are listed in Supplementary Table 2). The phage antibody library was produced using a protocol as previously described (43). In brief, total RNA was extracted from 107 PBMCs using the RNeasy mini kit (Qiagen). cDNA was produced from mRNA by reverse transcription using the AccuScript Hi-Fi cDNA Synthesis Kit (Agilent). Heavy and light chain variable domains were amplified from the RT-PCR cDNA product by PCR using the primer sets we have designed. The heavy variable domains were amplified using the primer sets Hu-VH1-6-NcoI-BACK and Hu-JH1-6-FORF and the light variable domain was amplified using primer sets Hu-VK1-6-BACKF and Hu-JK1-5-NotI-FORF (for amplifying Kappa light chains) or Hu-VL1-10-BACKF and Hu-JL1-7-NotI-FORF (for amplifying Lambda light chains). For the combinatorial assembly of the heavy and light chain variable domains into complete single-chain variable fragments (scFv), the fragments were mixed according to their natural frequencies, and PCR was performed using the assembly primer (forward) and the primers set Hu-JK1-5-NotI-FORF for Kappa scFv or the primers set Hu-JL1-7-NotI-FORF for Lambda scFv (reverse) (primers are listed in Supplementary Table 2). The amplified scFvs were cloned into the phagemid vector pCC16 (43). The ligated DNA was used for electroporation into electrocompetent XL-1 cells (Agilent Technologies) under the following conditions: 2.5 kV, 200 Ω, 25 μF. In total, we conducted 75 electroporations that yielded a total library size of 6*107 individual clones. To test the diversity of the libraries, we amplify the scFv genes from 30 colonies from the library by PCR. The PCR products were digested by BstNI (NEB). The digested samples were separated on 2.5% agarose gel. A diverse running pattern indicates sequence diversity. Rescue of the library using helper phage and preparation of library stocks was performed essentially as described (43).



Biopanning and Isolation of Monoclonal Anti-E2 Phages

To enrich E2-specific phages, five cycles of biopanning were performed for the SC library essentially as described (43). In brief, phages were first rescued from the library. Then, the first cycle of enrichment was performed by coating the wells with E2 glycoprotein, and then 1011 phages were added to the wells. Non-specific phages were washed by PBST and then specific phages were eluted with 100 mM triethylamine. For neutralization, 1 M Tris•Cl pH 7.4 was added. Eluted phages were used for the next cycle of biopanning. Phages were pooled from the 4th and 5th biopanning cycles. Next, 96 colonies were picked from each cycle and rescued essentially as described (43). Their specificity to E2 was screened by ELISA, as described below.



Expression and Purification of Full-Length Antibodies

To produce full-length IgGs, the heavy and light chains from scFvs were cloned into pMAZ-IgH and pMAZ-IgL vectors (a generous gift from Itai Benhar, Tel-Aviv University) that contain the constant regions of IgG1and a signal peptide for secretion (44). The variable heavy chain region was recovered by PCR from pCC16 vector, which carries the selected scFv using primers TAB-RI and CBD-As (Supplementary Table 2). Alternatively, the variable Heavy chain region sequences identified and selected by bioinformatic analysis were custom-synthesized (IDT, Israel). The variable Kappa and Lambda chain regions were recovered by PCR from pCC16 vector, which carries the selected scFv using primers TAB-RI and CBD-As (Supplementary Table 2). PCR products were digested with BssHII and NheI for heavy chains, BssHII and BsiwI for the light Kappa chain, and BssHII and AvrII for the light Lambda chain, and cloned into the appropriate vectors.

For antibody production, 293T cells were transfected with pMAZ-IgH expressing the Heavy chain and with pMAZ-IgL expressing the Light chain. At 72 h post transfection, medium was collected from the cells and antibodies were purified using Protein A Sepharose CL-4B beads (GE healthcare) according to the manufacturer's instructions. Purified antibodies were stored at −20°C. Fractions containing antibodies were analyzed on SDS 15% polyacrylamide gels.



ELISA

For Detecting Specific Antibodies in Patients' Sera

Each well of the ELISA plate was coated with 0.5 μg of rE2 diluted in 100 μl of coating buffer and the plates were incubated at 4°C overnight. The plates were washed twice with PBST and blocked with 3% skim milk in PBS for 1 h at 37°C. Next, the plates were washed twice with PBST and serum (diluted 1:1,000) from different patients were added to the wells, followed by 1 h incubation at RT. The plates were washed three times with PBST and goat α human HRP-conjugated antibody diluted 1:10,000 was added to each well, followed by 1 h incubation at RT. Then, 100 μl of Tetramethylbenzidine (TMB) was added to each well and following incubation of 5–10 min, the reaction was stopped by adding 50 μl of H2SO4 0.5 M to each well. The signal was detected at a wavelength of 450 nm by a plate reader.

For Detecting Binding Phages

ELISA was performed as previously described (43). First, 96-well ELISA plates were coated with 5 μg of rE2 or negative control protein (BSA). Plates were incubated overnight, then washed × 3 with PBS, and blocking buffer was added to the plates for 2 h at 37°C. Next, individual rescued phages were added from the master plate. Plates were incubated at RT for 1 h and washed ×3 with PBS. Next, 1:5,000 HRP conjugated to α M13 antibody was added. Then, 100 μl of TMB was added and following an incubation of 30 min, the reaction was stopped by adding 50 μl of H2SO4 0.5 M to each well. The signal was detected at a wavelength of 410 nm by a plate reader. Specific phages were picked by detection of positive signal for rE2 compared with BSA.

For Determining Antibodies' Specificity

For detecting antibodies binding to rE2, ELISA plates were coated with 5 μg of rE2. The plate was incubated and blocking buffer was added. Then, antibodies were added in concentration of 16 μg/ml and incubated for 1 h at RT. HRP-conjugated Goat α Human was added at 1:10,000 dilution and the plate was incubated for 1 h at RT. TMB was added and following an incubation of 5–10 min, 50 μl of H2SO4 0.5 M was added to each well. The signal was detected at a wavelength of 450 nm by a plate reader.



Focus-Forming Unit (FFU) Reduction Neutralization Assay

Neutralization assays were carried out essentially as we described previously (45). Huh7.5 cells were seeded on an eight-chamber slide and incubated overnight at 37°C. The next day, 5*1011 of each selected phage or different concentrations of purified IgGs were incubated for 1 h with 100 FFU of HCVcc HJ3-5 chimeric virus or viruses containing E2 from genotypes 1–7 [1a (H77/JFH1); 2b (J8/JFH1); 3a (S52/JFH1); 4a (ED43/JFH1); 5a (SA13/JFH1); 6a (HK6a/JFH1); 7a (QC69/JFH1)]. Next, phages/IgGs and virus mixtures were added to the wells. The slides were incubated for 24 h. Next, 200 μl of DMEM was added to each well and the slide was incubated for another 24 h. Then, the slides were washed twice with 200 μl PBS. The PBS was gently removed and 100 μl of Methanol:Acetone 1:1 was added to each well, followed by 10 min incubation at RT. Each well was washed twice with 200 μl PBS. Then 7.5% BSA in PBS was added with serum from a CI HCV patient at a dilution of 1:1,000, followed by 1 h of incubation at 37°C. Each well was washed twice with 200 μl PBS. Next, 100 μl of 7.5% BSA in PBS with fluorescently labeled goat anti-human antibody diluted 1:100 was added to each well, followed by 1 h of incubation at RT. Each well was washed 3 times with 200 μl PBS. Neutralization was measured by immunofluorescence microscopy, followed by manual counting of foci of infected cells. The percent neutralization was calculated as the percent reduction in FFU compared with virus incubated with an irrelevant control antibody.



Isolation of HCV-Specific B Cells

We established a platform for the propagation and isolation of HCV-specific B cells. PBMCs from CI and SC patients were isolated and CD19+ B cells were separated by a FACS sorter. B cells were then plated on feeder irradiated 3T3-msCD40L cells that express CD40L, which induces proliferation, Ab class switching, and secretion (46). B cells were activated with 5 μg/ml rE2 protein and a combination of IL2 (10,000 U/ml) and IL21 (100 μg/ml) (47). The combination of CD40L feeder cells and the addition of cytokines IL2 and IL21 can successfully stimulate switched memory B cells to produce high concentrations of IgG to the supernatant.

Supplementary Figure 1 demonstrates the successful propagation of memory B cells following separation of CD19+ B cells from a healthy individual, that were grown on 3T3-msCD40L cells and stimulated with a pool of positive peptides and IL2 and IL-21. Evaluation of CFSE staining following 14 days of culture demonstrates CFSE fading, only under stimulated conditions. This indicates the proliferation of the activated culture (Supplementary Figure 1A). Moreover, in the activated culture, 23% of the population was memory B-cells that are positive for CD27+, compared with very low numbers of CD27+ cells in the non-activated culture (Supplementary Figure 1B). For evaluating the ability of B cells to differentiate and produce IgG, we measured the concentrations of IgG secreted to the culture medium 3 or 8 days following B-cell activation by ELISA. As shown in Supplementary Figure 1C, the activation induced IgG secretion, in a time and cell number-dependent manner.

For isolation of HCV-specific B-cells, B-cells from CI, and SC patients were isolated and stimulated as described above. The cultures were incubated for 14 days and then HCV-specific B cells were isolated. Activated B cells were incubated with rE2 and stained with CD19-PE, CD27-BV421, and tagged rE2 (anti-cMyc, alexa fluor 633). Viable CD19+, CD27+, and E2+ were isolated by FACS. These HCV-specific B cells were then grown for 1 week, as described above. Supernatants were collected at each step and used in the HCV-neutralization assays. The background was compared to healthy individuals, stained, and gated as the tested samples.



Sequencing B-Cell Repertoires

Library Preparation

Total RNA was purified from 5*106 PBMCs from each sample (using RNeasy Mini kit, Qiagen). RT-PCR was performed using an oligo dT primer. An adaptor sequence was added to the 5' end, which contains a universal priming site and a 17-nucleotide unique molecular identifier (48–51). Products were purified, followed by PCR using primers targeting the IgD, IgM, IgG, and IgA regions, and the universal adaptor. PCR products were then purified using AMPure XP beads. A second PCR was performed to add the Illumina P5 adaptor to the constant region end, and a sample-indexed P7 adaptor to the universal adaptor. Final products were purified, quantified with a TapeStation (Agilent Genomics), and pooled in equimolar proportions, followed by 2 × 300 paired-end sequencing with a 20% PhiX spike on the Illumina MiSeq platform according to the manufacturer's recommendations.



Bioinformatic Analyses

Pre-processing of raw sequencing reads: Repertoire Sequencing TOolkit (pRESTO version 0.5.8) (52) was applied to the raw reads using the following steps: (a) Removal of low-quality reads (mean Phred quality score < 20). (b) Removal of reads where the primer could not be identified or had a poor alignment score (mismatch rate >0.1). (c) Identification of sets of sequences with identical molecular IDs (corresponding to the same mRNA molecule). These are collapsed into one consensus sequence per set, after removing sets with a mean mismatch rate >0.2. (d) Assembly of the two consensus paired-end reads into a complete antibody sequence. Then, V(D)J segments were assigned for each of the antibody sequences using IMGT/HighV-QUEST (53). This was followed by quality control and additional filtering: (a) Removal of non-functional sequences due to a stop codon or a reading frame shift between the V and the J gene. (b) Sequences with CDR3 length < 12 nucleotides. (c) Samples with an unusually abundant single V-J CDR3 length combination were excluded: samples CI4 and SC12 met this criterion, since they had a single sequence in >50% of the raw reads. (d) For mutation analysis sequences with read numbers (CONSCOUNT) lower than two were removed. (e) For IGHV gene usage we showed analysis for only functional genes that were in the 15 topmost frequent in at least one sample.



Clustering of Related B-cell Sequences Across all Samples

Sequences were first grouped according to their V-gene, J-gene, and CDR3 length. For each group, the difference in amino acids between each pair of CDR3s was calculated by Hamming distance. Hierarchical clustering by a complete linkage method was applied and sequences were clustered by genetic distance, using a threshold of 0.15, i.e., the maximal dissimilarity between any two CDR3 sequences in a cluster never exceeded 15%. As an additional quality control step, sequence clusters for which >90% of sequences came from a single sample were removed.



Comparing HCV-Specific B Cells and General Repertoires From SC and CI Clinical Groups by Amino Acid Conservation Levels

The frequency of each amino acid (AA) at each CDR3 position was calculated for each B-cell cluster. The sums of frequency squares were calculated for each clinical group. B-cell clusters containing CDR3 positions for which the sum of frequencies in SC was greater than the corresponding sum for CI by more than 0.5 were selected. Only clusters with sequences originating from more than one sample, and sequences with CONSCOUNT >1 were used.



Prediction Model Based on the Patients' Repertoire

1. Sequences were grouped to clusters as described above.

2. The frequency of each cluster per sample was calculated.

3. A classification model was applied as follows:

a. The data set was randomly divided into 18 (~90%) and 2 samples (~10%) of training and test sets, respectively.

b. Feature selection was performed by a random forest model, choosing the most informative 18 features.

c. Logistic regression with an L2 regularization penalty was applied to these 18 remaining features, and the model was applied to the test set. The accuracy rate was measured.

d. The process was repeated 100 times; each time two different samples were taken as a test set.

e. Random predictions: to ensure that our results are not biased, clinical group labels were randomly shuffled. Then, steps a-d were applied to this permuted labels model.

4. A similar model was applied to T-cell repertoires, except that clusters of sequences were defined by identical CDR3 regions at the amino acid level.



Data Availability

The antibody repertoires sequencing datasets for this study were deposited in the European Nucleotide Archive. The accession numbers are ERR2843386-ERR2843427.




RESULTS

Our overall approach is summarized in Figure 1; it included a collection of blood samples from CI and SC HCV infections in addition to healthy controls, and a screen to identify samples containing high levels of HCV-nAbs. Selected samples were used for sequencing of total and HCV-specific antibody repertoires, as well as total T-cell receptor repertoires. This was followed by constructing monoclonal antibodies associated with infection clearance, based on phage display antibody library and repertoire data (Figure 1).
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FIGURE 1. Scheme of workflow. The workflow included the following steps: collection of blood samples from SC, CI, and healthy individuals, sequencing of total B-cell repertoires, T-cell repertoires, and HCV-specific B-cell repertoires, analysis of repertoires and identification of antibody clusters and TCR sequences associated with viral clearance, construction of an antibody phage display library, isolation of a panel of HCV-binding antibody sequences that associate with cleared infections, and integration of all data to construct HCV-broadly neutralizing antibodies associated with clearance.




Anti-HCV Antibodies in Resolved Infections Are Potent Neutralizers

We collected PBMCs and sera from 80 individuals. Of these, 18 were individuals that spontaneously cleared HCV infection, 52 were with persistent chronic HCV infection, and 10 were from healthy controls. To validate the presence of nAbs in sera from CI and SC HCV infections, we first screened these sera by ELISA for antibodies able to bind a recombinant HCV envelope protein E2 (rE2) that we have produced. Although high levels of anti-rE2 were detected in chronic HCV infections, very low levels were detected in resolved HCV infections (Supplementary Figure 2A). This is expected, since the ongoing infection in CI patients results in the generation of large numbers of anti-HCV antibodies from plasma cells, whereas in resolved individuals, anti-HCV antibodies are secreted from lower number of circulating HCV-specific long lived plasma cells or memory B-cells. Then, we screened these sera for HCV-neutralization by performing an HCVcc neutralization assay. Approximately a 2-fold drop in neutralization efficiency was observed in resolved infections (an average of 45%) compared with chronic infections (an average of 85%) (Supplementary Figure 2B).

To validate that we indeed measured HCV-specific immunity, we collected two CI samples before and after successful anti-viral therapy (SVR). The blood samples were collected between 6 months and 1 year after achieving SVR. Using these samples, we again tested binding to rE2 and HCV-neutralization. As expected, we observed a significant drop both in binding and in neutralizing HCV following treatment (Supplementary Figures 2C,D). Collectively, these results suggest that although the anti-HCV antibodies in resolved infections are at low levels, they are potent neutralizers. The samples that displayed high neutralization efficiency were selected for further analysis.



Differentiating Features Between SC and CI Antibody Repertoires

Previous studies suggested defining a successful immune response to HCV by studying SC vs. CI (8, 9, 13, 26). However, a deep insight into these responses is lacking. Here, we sought to use high-resolution technologies that will significantly increase the number of screened samples and the screening depth of each sample. We sequenced antibody repertoires from 28 individuals; among these are 10 HCV CI, 11 SC that displayed the highest neutralization efficiency as described above (Supplementary Figure 2B), and 7 healthy control samples. We identified 104-105 unique full-length heavy chain sequences for each sample (Figure 2A).
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FIGURE 2. Characterization of B-cell repertoires in SC, CI, and healthy individuals. (A) The number of unique sequences per sample after pre-processing. (B) The CDR3 length distribution. (C) The IGHV gene distribution. Only functional V genes that were in the 15 topmost frequent in at least one sample are shown. (D) The IGHJ gene distribution. (E) Feature combinations whose abundance differ between the SC and CI groups are presented for sequence clusters grouped by identical IGHV and IGHJ and by high CDR3 similarity, which were significantly more abundant in either SC or CI cohort (|#samplesSC-#samplesCI| >3 samples). Sequence logos CDR3 of these clusters are presented in Supplementary Figure 4.



To identify features in B-cell repertoires that are unique to CI or SC HCV infections, we evaluated the usage frequency of each V and J gene segment, the CDR3 length, as well as the mutation frequencies across the V genes. Sequences were grouped by their V gene, J gene, and CDR3 length, clustered by genetic distance, and the frequencies within and between the clinical groups were compared. We did not observe significant differences in CDR3 length, V, and J gene distributions between the clinical groups (Figures 2B–D). V-J gene combinations, as well as V-J-CDR3 length also did not yield significant results. We performed a similar analysis for β chains of TCRs from the same individual groups (Supplementary Figure 3A), and did not observe differences in CDR3 length, V, and J gene usage between SC and CI clinical groups (Supplementary Figures 3B–D).

We next sought to explore the possibility that clusters of similar antibody sequences are enriched in either SC or CI groups. To this end, we grouped the antibody sequences by V-J-CDR3 similarity. We identified 337 clusters that are different between the clinical groups by more than four samples. Of these, 165 clusters were enriched in SC samples and 172 clusters were enriched in CI samples. To narrow down the list of candidate clusters for classification, we increased the threshold for calling a cluster enriched, from four samples to five. Using this higher threshold, we identified 13 enriched clusters. Of these, 11 clusters were unique to SC, and one was unique to CI (Figure 2E and Supplementary Figure 4)

To evaluate the mutation frequencies between the clinical groups, we first subdivided the sequences into IgM, IgD, IgG, or IgA isotypes. No significant differences in the frequencies of the different isotypes were observed between the clinical groups (Supplementary Figure 5A). Supplementary Figure 5B displays a violin plot comparing the distribution of somatic mutation frequencies across IgA, IgD, IgG, and IgM. As expected, higher mutation numbers were observed in the IgG and IgA isotypes, compared with the IgM and IgD isotypes. No significant differences were observed in mutation numbers within each isotype between the clinical groups (Supplementary Figure 5C). We also compared mutation numbers for each isotype across V genes between the clinical groups. Interestingly, 14 isotype-specific V genes were significantly different when comparing the clinical groups (Supplementary Figure 5D). Of these, four displayed higher mutation numbers in SC than in CI, including IGHV3-53, IGHV2-70, IGHV1-8, and IGHV3-33. The remaining ten V genes displayed lower mutation numbers in SC than in CI.



A Machine Learning Model Predicts Clinical Outcomes Based on the Antibody Repertoire

To determine whether a combination of features, rather than one at a time, would provide better insight into the antibody sequences that participate in the response to HCV, we used a machine learning approach, which predicts the clinical group based on a combination of features. This approach can be utilized not only as a prediction model; it can also be used as a tool to identify significant features that did not arise in the single-feature analysis.

For feature selection, we calculated frequency per sample for each cluster of sequences. To avoid false clusters that may occur due to grouping of several erroneous sequences with correct ones, we removed rare clusters that appeared at low frequencies or in fewer than four samples. Then, we left out two samples as a test set, and we trained the model on the remaining samples.

We applied a random forest model to extract the best 18 clusters (equal to the size of the training set), followed by logistic regression on the selected clusters to generate the prediction model. Finally, we applied the model to the remaining two samples and calculated their accuracy. The process of sampling and training was repeated 100 times, to ensure that the model was not biased toward specific samples.

The final predication results, summarized in Figure 3, indicate 91% accuracy of the prediction. As a control, when we randomly shuffled the clinical groups and trained our model, the prediction rates were 49 and 35% for the SC and CI groups, respectively (Figures 3A,B for T cells), suggesting that we did not achieve the high accuracy predictions due to over fitting or another random bias of any specific sample. Therefore, we identified sequence clusters that can accurately stratify between the SC and CI samples (termed “stratifying clusters”). Of the 10 best clusters (Figure 3C; Supplementary Figure 6), four (IGHV3-15*IGHJ4*8**130, IGHV4-34*IGHJ6*14**103, IGHV3-23*IGHJ4*10**707, and IGHV3-23*IGHJ6*20**367) were also previously found in the single-feature comparisons (Figure 2E).
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FIGURE 3. Machine learning model used to stratify between SC and CI. (A) Accuracy was based on the B cells' repertoire. Original labels represent clustered sequences by identical IGHV and IGHJ and the high similarity of the CDR3 amino acid sequence. For validation purposes, the model was trained and applied on randomly labeled data. (B) Prediction model based on the T cells' repertoire. The training for the T-cell repertoires model is very similar to the B-cell model, except that the data were clustered solely by CDR3 amino acid identity. (C,D) The top 10 clusters used by the model to stratify between the cohorts. (C) In B-cell clusters. (D) In T-cell clusters. Sequence logos of the CDR3 of the B cell clusters are presented in Supplementary Figure 6.



Possible inaccuracies in multiplexed sample sequencing as a result of rare barcode impurities might cause biases. To overcome this difficulty we determined a strict cutoff. We used only clones in which at most 90% of the sequences originated from one sample. If we had not used any cutoff, the prediction precision would improve by only 2%. Lowering the cutoff to 80% decreases the precision by 13.5%. Still, a high performance of the algorithm.

Training the model for T-cell repertoires was very similar to the one for the B-cell repertoires, except that the data were categorized by identical AA CDR3 sequences. The average accuracy was ~79 and 85% for the SC and CI groups, compared with 50% using shuffled labels (Figure 3B). Of the 10 best CDR3 sequences (Figure 3D), two sequences, CASSTAGQGLTEAFF and CASSLGTPNEQFF, were also found in the single feature comparisons.



Differentiating the Features of HCV-Specific B-cell Repertoires

Previous studies reported the frequencies of circulating, antigen-specific B cells in humans of up to 1% of the overall B-cell population (54). Therefore, the polyclonal nature of the immune response may impose significant background noise that interferes with characterizing the HCV-specific immune response. Thus, we sought to isolate HCV-specific B cells and characterize their properties. Here, we have established a novel platform for the in vitro propagation and isolation of HCV-specific memory B cells (described in the Materials and methods). The HCV E2+-specific populations were separated from six CI and three SC individuals and healthy individuals as controls (Figure 4A). The fold enrichment of HCV-specific B cells from each sample was calculated compared to the number of B cells isolated from healthy individuals, as demonstrated in Supplementary Figure 7. The fold enrichment of cells isolated from HCV-specific B cells ranged from 2 to 466 (Figure 4A). To validate the enrichment of HCV-specific B cells, the growth media of the cells were used for the HCV-neutralization assay, which displayed higher neutralization in the CI and SC samples compared with healthy controls. Neutralization was further enhanced following separation of HCV-specific B cells (Figure 4B).
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FIGURE 4. Isolation of HCV-specific B cells from resolved and chronic HCV infection. (A) HCV-specific B-cells isolated from six CI and three SC individuals, as compared with control healthy individuals. The fold enrichment of HCV-specific B cells from each sample was calculated compared with the number of B cells isolated from a healthy individual, as demonstrated in Supplementary Figure 7. (B) HCVcc-neutralization assays using supernatants of cultured B cells from healthy, SC, and CI samples after two 2 weeks of activation in vitro. (*P < 0.03, **P < 0.003, ***P < 0.0001, ****P < 0.00003, t-test). (C) Dendogram of CDR3s from HCV-specific B cells, generated based on Levenshtein distances. Each color of the CDR3 sequence corresponds to an individual. (D) Mutation numbers in IGHV genes in the general repertoire compared with the HCV-specific repertoire. Each specific sequence was randomly matched to a non-specific sequence with the same IGHV and IGHJ genes. The sequences were grouped by isotype and mutations were compared by Mann Whitney test (IGA p = 3.488873e-07, IGG p = 6.849511e-08, IGM p = 3.764229e-04). (E) Mutation number in the IGHV genes in the specific repertoire for SC and CI (IGA p = 0.000574, IGG p = 0.435930). (F) Conserved amino acids in CDR3 from the HCV-specific repertoire (binders) compared with the general repertoire (non-binders). For each specific sequence, a non-specific sequence was randomly matched. Sequences were then grouped by IGHV, IGHJ, and CDR3 length. Cases where CDR3 amino acids were very conserved for binder sequences but not for non-binders are shown.



The variable regions of the antibody's heavy chains of the HCV-specific B cells were sequenced. First, we evaluated the genomic distance of the VDJ region sequences between the different samples by the Levenshtein distance. Interestingly, some of the most closely related sequences originated from different samples (Figure 4C). This observation implies that similar antibodies convergently evolve in different patients to bind HCV. To compare the repertoire of HCV-specific binding sequences with the total repertoire of a given donor, defined here as the “general repertoire,” we searched for sequences in the general repertoire that are similar to the specific binders. Similarity was defined as having the same V gene, J gene, and CDR3 sequence that are at least 75% identical at the AA level. In total, we detected 5,447 clusters in the general repertoire that were similar to the HCV-specific repertoire. In the specific repertoire we identified 17 clusters that were enriched in SC samples in the general repertoire, and 15 clusters that were enriched in CI samples in the general repertoire. An enriched cluster was defined as being represented in more than three samples in the cohort, and in addition, the fraction of samples in the cohort representing this cluster out of the total number of samples representing it is larger than 2/3. The lists of these clusters are presented in Supplementary Tables 3,4. A comparison between these two lists reveals that except for the V-J combination IGHV3-33*IGHJ4, which is abundant in both lists, different HCV-binding clusters are enriched in the two clinical groups.

Another feature that we have analyzed in the general repertoire, compared to the specific repertoire, is mutability. Against each specific sequence, one non-specific sequence was randomly sampled from the general repertoire. The sampled sequence contained the same V and J gene as the corresponding specific sequence. Then, sequences were grouped by isotype, and mutation numbers in the V gene were compared. Both for IgA and IgG, we detected significantly higher mutation numbers in specific compared with non-specific repertoires. For IgM, however, we observed an opposite trend (Mann Whitney test, IGA p = 3.488873e-07, IGG p = 6.849511e-08, IGM p = 3.764229e-04) (Figure 4D). This might result from the long infection period of the chronic HCV patients.

We then evaluated the mutation number in the HCV-specific repertoire in SC compared with CI. All specific sequences of SC samples were unified into one bulk, and CI samples were unified in a second bulk. Then, the sequences were grouped by isotype and the mutation numbers in the V genes were compared. The number of mutations in the SC-specific repertoire bulk was lower than that in the CI-specific repertoire (Figure 4E). This is expected, as in CI the B cells have been through longer and repeated rounds of somatic hypermutation process which is consistent with a chronic situation that allowed the accumulation of mutations, compared with the short period of infection in SC.

The heavy chain CDR3 is the most diverse region in the antibody sequences. Therefore, conservation of AAs in this region can highlight positions that are important for antigen binding. Here we searched for conserved AAs in the CDR3 region in the HCV-specific repertoire compared to the general repertoire. Against each binder sequence, we selected a random sequence with identical V, J, and CDR3 lengths from the general repertoires, defined as non-binder. Then, amino acids that were conserved in binder sequences but not in non-binders were selected. We identified four combinations of V, J, and CDR3 lengths containing differentially conserved AAs in CDR3 (Figure 4F). Interestingly, IGHV4-39–IGHJ6–17 contained a stretch of seven conserved residues in CDR3 and was observed in three different samples (CI56H, CI57H, and CI59H). These results imply that clones evolved independently in different subjects and converged to similar CDR3 AA patterns.



Identifying Binder Antibody Sequences Associated With HCV Infection Clearance

We next sought to construct antibodies that are associated with infection clearance, and to explore their properties. One limitation of constructing mAbs directly from bulk repertoire analysis is the pairing of heavy and light chains. We applied an approach for matching heavy with light chains, by constructing a phage display antibody library. These antibodies contain the variable regions of both heavy and light chains as a single chain (scFv), and thus enable the design of full antibodies (55).

Since we specifically focused on nAbs associated with HCV clearance, we have constructed a phage display antibody library from a source of pooled PBMCs obtained from 10 SC individuals (Supplementary Table 1). The scFv library was constructed by amplification of the VH and VL genes separately, and then their combinatorial assembly and cloning into a phagemid vector. In total, we obtained a library of 6*107 individual scFvs. We screened for HCV E2 binders, and identified and validated six different phages that displayed 2- to 15-fold binding to rE2 compared with BSA as background (Figure 5A). We then identified clusters of sequences from the general repertoire that were similar to the isolated scFv sequences, and selected the closest sequence to each scFv (Figure 5B).


[image: image]

FIGURE 5. Identification of HCV-specific antibody sequences associated with HCV infection clearance. (A) Binding of the phage-displayed antibodies to the rE2 protein (5 μg/ml) by ELISA. Each bar indicates the mean fold change ± SD in the OD compared with BSA binding, from three independent experiments. (B) Violin plot of the distances between HCV-specific sequences and the healthy, CI and SC repertoires. (C,D) Phylogenetic trees of the two closest clusters to scFv SC11 (C), and SC28 (D).



We searched for candidates for constructing full-length antibodies from these six scFvs. We decided to focus on scFv SC11 and SC28, since they showed the highest binding to HCV E2 protein (Figure 5A) and were the most similar to the SC general repertoires (Figure 5B;Supplementary Figure 8). The closest cluster to scFv SC28 was IGHV4-39*IGHJ4*13*861, which was detected in the repertoires of four out of nine SC samples, and the closest cluster to scFv SC11 was IGHV6-1*IGHJ6*17**20, which was detected in repertoires of five out of nine SC samples (Figure 2E). Both clusters were not detected in CI repertoires. Cluster IGHV6-1*IGHJ6*17**20 was also enriched in the HCV-specific repertoire (Supplementary Table 4). Lineage trees revealed that the closest sequences to SC11 and SC28 are positioned relatively high in the tree (Figures 5C,D), suggesting that these sequences appeared earlier during the infection. We therefore selected scFvs SC11 and SC28 as candidates for constructing full-length antibodies and characterizing their properties.



Construction of Broadly Neutralizing Antibodies Associated With HCV Infection Clearance

We constructed and produced full-length antibodies from scFvs SC11 and SC28. In addition, we constructed and produced full-length antibodies with identical light chains, but the heavy chains were replaced with one of the nearest sequences to the heavy chains of scFv SC11 and scFv SC28 from the general repertoires (RMS11 and RMS28, respectively). We evaluated the binding specificities of these four antibodies to HCV rE2 protein. We observed more than 35-fold higher binding signals in antibodies RMS11 and RMS28 than with antibodies SC11 and SC28 (Figure 6A). To further characterize the binding capacity of RMS11 and RMS28, we compared the binding of these antibodies to a well-characterized panel of mAbs, including CBH-4B, CBH-4D, HC-1, HC-11, CBH-7, HC84.22, HC84.26, HC33.1, and HC33.4, which are representative E2 antigenic domain A-E antibodies [(12) and reviewed in (20, 21)]. ELISA results with rE2 protein indicated binding capacity of RMS11 and RMS28 comparable to the well-defined panel (Figure 6B). To evaluate neutralization breadth, we performed neutralization assays with these antibodies across all HCV genotypes using a panel of infectious HCVcc containing envelope proteins from HCV genotypes 1–7 (41). The percent neutralization was calculated as the percent reduction in FFU compared with virus incubated with an irrelevant control antibody RO4 (56–59). Antibodies RMS11 and RMS28 efficiently neutralized all seven HCV genotypes, including genotype three which was less efficiently neutralized by previous panels of HCV antibodies including a recent SC panel (26), pointing out their exceptionally high neutralization breadth (Figures 6C,D).
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FIGURE 6. Construction and characterization of antibodies correlated with infection clearance. (A) Binding of antibodies RMS28 and RMS11 to the rE2 protein (5 μg/ml) compared with the phage display antibodies SC28 and SC11 by ELISA, using 16 μg/ml Ab. Each bar indicates the mean fold change ±SD in binding, compared with BSA, from three independent experiments. (B) Binding of antibodies RMS11 and RMS28 to the rE2 protein (5 μg/ml), compared with a well-defined panel of nAbs and a non-specific control antibody RO4 by ELISA, using 16 μg/ml Ab. Presented are mean OD (450 nm) values ±SD, from three independent experiments. (C,D) HCVcc neutralization assays were carried out with genotypes G1-G7 using 20 μg/ml of antibodies RMS11 (C) and RMS28 (D). The percent neutralization was calculated as the percent reduction in FFU compared with virus incubated with an irrelevant control antibody (RO4). Presented are means of % neutralization ±SD from three independent experiments.






DISCUSSION

This study provides the first in-depth analysis of HCV-specific immune response and identifies features that correlate with infection outcome. The landscapes of B- and T-cell repertoires, including usage of specific V and J genes, CDR3 lengths, and mutation numbers, did not significantly differ between the SC and CI groups. The most prominent differences between SC and CI are specific sequence clusters enriched in one of the groups, identified both in the general and in the HCV-specific B-cell repertoires. Strikingly, we found that enrichment of specific clusters in SC or CI is indicative of infection outcome, and with an accuracy of over 90% for B-cell repertoires and 80% for T-cell repertoires. This may have important clinical relevance as well as prognostic value for the outcome of an active infection. In the DAAs era, when the availability of effective HCV therapy is limited by the high costs (2), using the platform we have established may indicate the best clinical decisions for treatment.

Fewer mutations were observed in the general B-cell repertoires compared with HCV-specific B-cell repertoires. In addition, fewer mutations were observed in HCV-specific B-cell repertoires from SC vs. CI. These findings validate a recent study demonstrating that a panel of HCV- nAbs isolated from SC contained a lower number of mutations compared with HCV- nAbs isolated from CI (26). Our findings expand the above results to many HCV-specific sequences from multiple individuals. Moreover, we validated the broad neutralization potential of two of the identified HCV-specific sequences observed in SC. Broadly nAbs were suggested to be induced in the early stages of infection in SC, whereas CIs were associated with the induction of such antibodies at later stages. Furthermore, CI antibodies require higher mutation numbers to achieve broad neutralization to the variable quasi-species population of viruses that evolved in these later stages. Therefore, it has been suggested that bnAbs with a relatively low number of mutations are associated with viral clearance (26). In contrast to HCV, in the case of HIV infection, bnAbs require high mutation numbers and many years to evolve (60–62). Indeed, the ability to provoke broad neutralization with low mutation numbers in HCV infection is translated to approximately 30% SCs, compared with none in HIV infections (7). Here, we show that HCV-specific antibodies in SC are characterized by not only low mutation numbers and high neutralization breath compared with antibodies in CI, but also that the context of these differences is within different clusters of sequences between the two clinical groups. These findings point to the conclusion that the immune response to HCV infection provoked in SC is largely different from that provoked in CI. Therefore, we provide the first evidence that the nature of the immune response is associated with infection outcome and not only with the timing of the appearance of bnAbs, as was suggested previously (13, 26).

It will be most interesting to determine whether antibodies that are unique to SC are also characterized by binding to distinct epitopes. Similar epitope specificities were demonstrated for the recent panel of nAbs isolated from SC infections (26). Still, it has been suggested that nAbs with distinct epitope specificities do exist but remain to be discovered (12). Discovering novel epitopes will point to new mechanisms driving infection outcome.

The construction of two antibodies, identified by combining phage display antibody library technology and antibody repertoires of SC, yielded HCV- nAbs with exceptional potential of broad neutralization breadth. Our finding that specific clusters are specific for clearance of HCV infection, whereas others are specific for progression to chronic infection, demonstrates that similar antibodies convergently evolved in different individuals. Identifying fractions of these clusters in the HCV-specific repertoire validates that they are provoked in response to the infection and consequently likely bind the virus. Sharing identical CDR3 sequences by different individuals was suggested to be very rare (63), although such immunological signatures were reported in viral-specific responses (33). These discoveries raise the intriguing question of what governs these pronounced similarities in the antibody's response to HCV in different individuals, which is indicative of infection outcome.

Previous publications have suggested that VH1-69 is enriched in clusters identified in both SC and CI, based on isolating a panel of HCV-nAbs (25, 26, 64). However, our high-resolution approach, which provides a wide overview of the general repertoire and HCV-specific repertoire, demonstrates that this gene is more abundant in CI than in SC repertoires, and that it is not enriched in HCV-specific repertoires.

In summary, this study provides a novel high-resolution insight into the nature of the HCV-specific immune response, and demonstrates for the first time that the outcome of infection is determined by the unique features of the immune response. Our innovative approach combines antibody repertoire analysis and antibody engineering tools that provide the high sensitivity necessary to identify antibody sequences enriched in SC vs. CI infections, and use this information to produce full antibodies. Identifying the epitopes of these antibodies may provide translational information for designing a rational prophylactic vaccine. In addition, passive immunization with combinations of mAbs possessing well-defined epitope specificities may overcome virus resistance (65), confer a prophylactic effect, such as in liver transplantation (66), where re-infection of the transplant is rapid (67), and may also prove effective in treating existing HCV infections (24). From a more general point of view, the in-depth analysis of immune repertoires demonstrated here may open a world of possibilities for advancing monoclonal antibody discovery and engineering strategies, which bear many potential clinical implications.
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Supplementary Figure 1. Enrichment of the HCV-specific B-cell population in vitro. For the in vitro proliferation of B cells, CD19+ cells were isolated from PBMCs of healthy donors using a FACS sorter. Isolated B cells were labeled with CFSE, cultured in the presence of IL2, IL21, and feeder irradiated 3T3-msCD40L cells, and activated with a pool of positive peptides for 8 days. (A) CFSE profile of CD19+ B cells. CFSE fading (right panel) indicates the proliferation of the activated culture, compared with the non-activated culture (left panel). (B) Evaluating the proliferation of memory B cells. In the activated culture, 23% of the population consists of memory B cells that are positive for CD27+ (right panel), compared with very low numbers of CD27+ cells in the non-activated culture (left panel). (C) Evaluating the ability of B cells to differentiate and produce IgGs. The concentrations of IgG secreted to the culture medium 3 or 8 days following B-cell activation were measured by ELISA. (**P < 0.003, ***P < 0.0003, ****P < 0.00003). Presented are means ±SD from three independent experiments.

Supplementary Figure 2. Characterization of sera from HCV-infected individuals. (A) HCV antibodies binding to rE2 protein (0.5 μg/ml) performed with 1:1,000 diluted sera of CI (n = 52) and SC (n = 18) by ELISA. Each dot represents a patient. The background of the binding to BSA was subtracted from all samples. Presented are mean OD (450 nm) values from three independent experiments. (B) The HCVcc neutralization assays were performed with 1:1,000 diluted sera of CI (n = 52) and SC (n = 18) to screen for antibodies that can neutralize HCV infection. The Y axis shows the percentage of neutralization capacity compared with neutralization by sera from a healthy control. Each dot represents the mean neutralization for a patient, from three independent experiments. (C,D) Characterizing HCV binding and neutralizing in sera obtained from two patients (CI21 and CI22) before and after anti-HCV treatment and following SVR by ELISA (with 0.5 μg/ml rE2 protein and 1:1,000 diluted sera) (C) and by the HCVcc neutralization assay (with 1:1,000 diluted sera) (D). The HCV-cured blood samples were collected from 6 months to 1 year after achieving a sustained virological response. **P < 0.003, ***P < 0.0003. Presented are means ±SD from three independent experiments.

Supplementary Figure 3. General characterization of T-cell repertoires of resolved and chronic HCV infection. (A) The number of sequences per sample after pre-processing. (B) TRBJ gene usage, colored by clinical group. (C) CDR3 length distribution per sample, colored by clinical group. (D) TRBV gene usage, colored by clinical group.

Supplementary Figure 4. CDR3 from the SC and CI abundant B cells clusters. Sequence logos of the overall AA composition of the CDR3s in copious clusters. The individual abundance of these clusters is shown in Figure 2E.

Supplementary Figure 5. IGHV mutation characterization in SC and CI infections. (A) Isotype usage distribution. (B) IGHV mutation distribution, per isotype. (C) IGHV mutation distribution per isotype per cohort. (D) IGHV mutation distribution per isotype per cohort per IGHV gene. Only statistically significant combinations are shown (P < 0.05, t-test).

Supplementary Figure 6. CDR3 from the SC and CI B cells clusters used for the Logistic Regression model. Sequence logos of the overall AA composition across the CDR3s in the top 10 clusters used by the model to stratify between the cohorts. The individual abundance of these clusters is shown in Figure 3C.

Supplementary Figure 7. Isolation of HCV-specific B cells from SC, CI, and healthy donors by FACS. CD19+ B cells from SC17 and CI58 were grown with feeder-irradiated 3T3-msCD40L cells and activated with 5 μg/ml rE2 protein, IL2, and IL21 for 13–14 days. After 14 days, activated B cells were incubated with 5 μg/ml rE2 and stained with CD19-PE, CD27-BV421, and tagged rE2 (anti-cMyc, alexa fluor 633). Viable, CD19+, CD27+, and HCsAg+ were isolated by FACS. The gating region is shown as a black rectangular.

Supplementary Figure 8. The distance between scFv antibody sequences and clusters from B-cell repertoires of SC and CI infection. Each dot represents the average distances between the scFv antibody sequence and the 10 closest sequences (by VDJ, amino acid sequence) of the B-cell repertoire from healthy controls (light blue), CI (blue), and SC (green). The lower the distance, the more similar is the scFv antibody sequence.

Supplementary Table 1. Features of studied subjects.

Supplementary Table 2. List of primers.

Supplementary Table 3. Clones detected in HCV-specific B cell repertoire and enriched in CI.

Supplementary Table 4. Clones detected in HCV-specific B cell repertoire and enriched in SC samples.
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Here, we outline an overview of the mammalian immune system that updates and extends the classical clonal selection paradigm. Rather than focusing on strict self-not-self discrimination, we propose that the system orchestrates variable inflammatory responses that maintain the body and its symbiosis with the microbiome while eliminating the threat from pathogenic infectious agents and from tumors. The paper makes four points:

1) The immune system classifies healthy and pathologic states of the body—including both self and foreign elements—by deploying individual lymphocytes as cellular computing machines; immune cells transform input signals from the body into an output of specific immune reactions.

2) Rather than independent clonal responses, groups of individually activated immune-system cells co-react in lymphoid organs to make collective decisions through a type of self-organizing swarm intelligence or crowd wisdom.

3) Collective choices by swarms of immune cells, like those of schools of fish, are modified by relatively small numbers of individual regulators responding to shifting conditions—such collective inflammatory responses are dynamically responsive.

4) Self-reactive autoantibody and T-cell receptor (TCR) repertoires shared by healthy individuals function in a biological version of experience-based supervised machine learning. Immune system decisions are primed by formative experience with training sets of self-antigens encountered during lymphocyte development; these initially trained T cell and B cell repertoires form a Wellness Profile that then guides immune responses to test sets of antigens encountered later. This experience-based machine learning strategy is analogous to that deployed by supervised machine-learning algorithms.

We propose experiments to test these ideas. This overview of the immune system bears clinical implications for monitoring wellness and for treating autoimmune disease, cancer, and allograft reactions.
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THE IMMUNE SYSTEM MANAGES INFLAMMATION

In the beginning, it was taught that the function of the immune system was to distinguish between the self and the foreign—whatever was foreign was to be rejected and, in contrast, what belonged to the self was to be ignored (1). We need not bother to define the tricky terms self and foreign (2) because we now know that the functions of the immune system are much more varied than a simple self-not-self binary distinction (3, 4): The immune system clearly protects the body from invading pathogens, but it also welcomes and manages our symbiosis with the essential bacterial microbiome and viral components of the body (5); the immune system also heals wounds and repairs injuries to maintain us in the face of the accidents of life (6, 7); it detects and destroys aged cells and transformed tumor cells (8, 9); and it rejects tissues transplanted from allogeneic individuals, while tolerating our foreign symbionts (10).

These complex functions of the immune system can be reduced to a common process: in one way or another, all the effects of immune activity involve the management of what is called inflammation (6). Where grossly visible, inflammation is marked by redness and swelling due to changes in tissue blood flow and edema; microscopically, inflammation is marked by accumulations of immune system cells; by the death and growth of many types of cells; by the proliferation of scar-forming connective tissues; and, often, by the regeneration of blood vessels and damaged tissue cells. The process of inflammation usually terminates when the injury heals, but sometimes an inflammatory process persists chronically or periodically exacerbates, or may develop unnecessarily in otherwise healthy tissue. In these instances, the inflammatory process itself can be the cause of disease—autoimmune diseases result from such misguided inflammatory processes.



THE IMMUNE SYSTEM CLASSIFIES THE STATE OF THE BODY

In the beginning, it was thought that an adaptive immune response was the exclusive property of individual antigen-specific lymphocyte clones, each bearing an antigen receptor of a single specificity (11). The population of mature lymphocytes was presumed to be purged during development of receptors that could possibly recognize molecules of the host (self-antigens); mature lymphocytes could recognize only foreign antigens. But, as we mentioned above, body maintenance obliges the immune system to interact with self-molecules as well as with not-self- molecules. Immunity is not merely a reflex to a foreign presence, but an act of cognition (12).

Now, if we define computation as the ordered transformation of input into output (13), we can perceive the immune system to be a computational, living reactive system (4, 14); the system gathers input about the state of the body, locally, and generally, and reacts to arrange an output of appropriate inflammatory procedures that feedback on the body to maintain, heal, regenerate and protect it; immune experience also feeds back to modify the immune system itself (Figure 1).
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FIGURE 1. Immune cells compute the state of the body. Individual immune cells bear receptors (blue corner on cell surface), innate receptors or antigen receptors, which are activated by input signals from the body. The individual responding cell, innate, or adaptive, then transforms the input signals into outputs that can mediate inflammatory responses. The inflammatory state then feeds back to heal or protect the body. The immune response also provides feedback to immune system cells and tissues—thus, the immune system organizes itself through experience.



Immune computation differs in many ways from computer-based algorithms and classifiers: First, note that the hardware is the software; the programed activities of the molecules, cells and organs comprising the physical system actually constitute functioning algorithms. The performer and the program are identical—a living cell is defined by the way the cell's components behave programmatically.

Secondly, computation is distributed throughout a living body; each immune system cell computes in parallel; each cell (lymphocyte, macrophage, dendritic cell, stem cell, endothelial cell, etc.) receives whatever signals its array of receptors can detect; each cell then responds to transform (compute) its input information into an output of signal molecules, receptors, metabolic reactants, antibodies, or other products that comprise an inflammatory output (Figure 1). The response of the cell and its outputs are determined by the state of the individual computing cell; this state reflects the cell's differentiation and its history, along with the input to the cell from other cells and molecules. In other words, immune system cells have no central processor—each cell is its own information processor.

The clonal selection paradigm focuses on the behaviors of individual, receptor-bearing lymphocytes, and clones. Individual cells, however, must integrate their disparate behaviors to generate a systemic decision; an ordered immune response emerges from the way a collective of cells integrate their behaviors—a type of swarm intelligence or crowd wisdom (15). Immune crowd wisdom emerges from crowds of cells, including T cells and B cells that bear each its own antigen receptor along with other types of immune system cells that express only innate receptors and do not recognize antigens at all. Moreover, collectives of responding cells have to dynamically adjust their system-wide behaviors as the inflammatory situation changes over time for better or worse. How do immune crowd behaviors take place?



CO-RESPONDENCE, BYSTANDER CELLS, AND IMMUNE ANATOMY

Each immune system cell is exposed to only a partial and limited view of its surroundings—the cell's perceptions are dictated by the particular receptors expressed by the cell and the ligands impinging on them. Even a specific antigen receptor can tell only a partial story: any antigen receptor can see only an epitope fragment or domain of the antigen that may or may not have originated from an infection, a tumor, an injury, or a healthy tissue. Moreover, a single T-cell receptor has been estimated to be able to interact functionally with many different peptides with varying avidity (3); how then can a T cell know which of its potential antigen epitopes it is seeing? Innate receptors borne by lymphocytes and other immune cells are also restricted to particular domains of their ligand molecules. A lone cell, necessarily, is blind to information that does not activate its receptors—each cell is confined to a world compressed by its own shortsightedness.

Moreover, just as a single clone has a limited view of the world, a single clone is not sufficient to effect an immune response; an appropriate inflammatory response requires the participation of large collectives of a variety of different cells. The doubling time of a T cell is about 10 h; a single T cell simply cannot generate enough progeny in the time needed to respond to an infection or potential tumor. How are individually limited views integrated to generate a diagnostic consensus and how can a coherent and dynamic multi-cellular inflammatory response be mobilized in a relatively short time?


Co-respondence

Co-respondence helps (Figure 2). Co-respondence describes the ability of lone immune cells to sense and respond to the states of adjacent immune and body cells (3); this mutual responsiveness generates a type of swarm intelligence or crowd wisdom. By interacting with neighboring cells, a collective of immune cells together can construct a relatively broad assessment of the situation. A cell may not see the antigens or other signals perceived by adjacent immune cells, but each cell can sense, by its receptors for cytokines, metabolic products, and other innate response mediators, the state and degree of activation of adjacent cells. The collective of cells, one-by-one, is able to modify its local behavior according to the output signals of the collective crowd wisdom. An integrated crowd response arises from the mutual summation of adjacent responses (16). The input string of individual antigens and mediator molecules is thus transformed into a collective computation.
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FIGURE 2. Co-respondence between cells generates immune computation at the systemic scale. An integrated immune response results from the ability of individual immune cells to tune their inflammatory responses in the light of the responses they sense from adjacent cells (the curved blue lines connecting cells); this co-respondence is mediated by innate receptors. Bystander cells, which may lack direct input signals from the body, are enlisted into the response by co-respondence with adjacent immune cells.



This strategy for achieving system-wide integration of piecemeal perceptions is common throughout nature. Schools of fish, colonies of ants, migrating locusts, and flocks of birds (and even relatively simple robots) can exhibit collective responses that appear to be miraculously coordinated and highly complex (Figure 3). Yet upon examination and mathematical modeling, these collective behaviors turn out to be the products of relatively simple cues transmitted between adjacent individuals (16). Such collective behaviors do not require an external, all-knowing manager to impose its will on the group; the collective of individuals self-organizes (17). A mutually interacting collective of individuals may appear to define a goal, as it were, and can manifest complex, seemingly goal-directed behavior merely by the exchange of relatively simple signals between adjacent individuals (Figure 3, dashed line inset). Local signaling then spreads through the group as a kind of integrating epidemic (from the Greek epi—upon; demos—the population). Biological self-organization emerges, as it were, from crowd wisdom. The epidemic spread of local cell responses, like the spread of information in a school of fish or flock of birds, quickly leads to highly coordinated group “decisions” that effectively integrate the individual immune cell responses into a collective inflammatory response—a few initiating immune cells mobilize bystander, crowd support (Figure 4).
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FIGURE 3. Schools of fish manifest self-organized behavior. A school of fish, as an organized group, effectively flees from a predator fish. The dashed-line inset shows that the shape and direction of the school of fish is actually self-organized by a relatively small number of visual signals exchanged between adjacent fish.
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FIGURE 4. Adaptable crowd wisdom. A swarm of immune cells is depicted as a school of fish initially proceeding in the direction of Destructive Inflammation; but a small number of Regulators (by spreading Co-respondence; see Figure 3) can shift the behavior of the entire swarm toward Healing Inflammation.



Integrated collective immune responses need to finetune themselves as the environment changes—greater or lesser tissue damage, many or few infectious agents, the evolving state of a tumor, the mending of a broken bone, and so forth. This integrated crowd behavior can be adjusted on the run by a few regulator cells in the collective who have sensed a change in the infection or in tissue healing; adjacent neighbors adjust their responses, which then spread to the other participants in the immune response. The immune system, like a school of fish or a crowd of people, is dynamically adaptive. Figure 4 depicts an about-face shift in collective direction from Destructive Inflammation to Healing Inflammation, brought about by a small number of regulatory individuals who have sensed the need for change. Such manipulations of group inflammatory behavior by small numbers of regulatory elements is termed “infectious tolerance” (18); indeed, a few percent of Tregs are all that is needed to influence major inflammatory decisions (19).



Bystanders

Bystander activation refers to the fact that most of the activated lymphocytes and other leukocytes accumulating at an inflammatory site do not bear antigen- receptors specific for antigens borne by the agent that triggered the inflammation (20). Unfortunately, the word bystander bears a negative connotation—the cells that migrate to the site of the antigen without receptors for the antigen, in the eyes of the classical clonal selection theory, don't belong there. They are merely chance lookers on. But we now know that co-respondence is of the essence—bystanders are the expression of crowd wisdom; it's the way the immune system works. The informed few who see the antigens arouse a cohort of “bystander” cells to help mediate the inflammation (Figure 2). Crowd wisdom is an integral part of immune computation of body state.



Immune Anatomy

The functional anatomy of the immune system is a key factor in integration and decision making. The immune system in real life, unlike our laboratory experiments, is not a culture of cells dispersed in a flask—the immune system is organized anatomically into defined organs (lymph nodes, bone marrow, thymus, spleen, Peyer's patches, etc.), which are connected by specific flows of molecules and cells in blood vessels, lymph vessels, and extracellular fluids (3). Cells and molecules do not meet merely by chance; immune interactions are organized in space and time by anatomic structure, flow, and signaled migrations—organized interactions are analogous to “hard wired” connections. Thus, collective decision-making and immune response phenotypes are decisively organized by the anatomical infrastructure of the system—machine learning, as we shall discuss below, emerges from this organization. The anatomic details are beyond the scope of this bird's-eye overview. Here, we only direct attention to the importance of “anatomically wired” influences on immune decision making.




IMMUNE MACHINE LEARNING

Mainstream immunology, steeped in the clonal selection theory of adaptive immunity (21), has tended to attribute regulation of the immune response to single clones of lymphocytes and their antigen receptors; binding a specific antigen triggers a response—no antigen or antigen receptor, no response (Figure 1). Our present discussion of immunological swarm intelligence and crowd wisdom (Figures 2–4) connects immune system behavior by analogy to the collective behavior of schools of fish, flocks of birds, and hives of bees along with other collective biologic entities. What is the basis of this immune group behavior? Note that the immune system is uniquely like the brain; both brain and immune system develop fully, far beyond their genes, as a result of somatic lifetime experience (3). In this section, we would like to suggest that immune experience requires preliminary training reminiscent of supervised machine learning.

What is machine learning? The term machine learning was coined to describe the way an algorithm running on a computer can be used to uncover meaningful patterns hidden in diverse sets of data. Supervised Machine learning is a type of pattern recognition in which previous training subsequently enables detection of informative patterns buried in test sets of new data (22). The computer algorithm is first educated by way of primary interactions with selected training sets of model data. The machine learns to identify correlations or statistical associations between the component entities that comprise the data included in its training sets.

Unlike a computer algorithm, the immune system does not process electronic signals: Antigens, metabolic products, cell interaction molecules, and other molecular signals make up the sets of data perceived by the cells of the immune system. The correlations between the components comprising a set of data can be very subtle and obscure to the human observer, yet such correlations are detectable by machine learning algorithms, and, by analogy, by networks of cells and antibodies in the immune system. As a consequence of exposure to training sets of input, the computer algorithm—and the immune system—can accumulate a bank of learned correlations. These formative correlations can then be used by the computer or the repertoire networks of the immune system to interpret new test data.


Learning Similarities

Interpretation of new data emerges from the presence or absence in the data of correlations previously learned during primary training. A preexisting algorithm is not needed to learn each individual pattern of components; the machine or the biologic system need only be programmed generally to detect any patterns shared by both the learning and test sets of data. A characteristic feature of one type of machine learning—deep neural networks–is the interaction between multiple sets of hidden networks that process the input. The current science of deep learning does not completely understand how such network architectures actually work to interpret patterns of input, and we cannot get into the arcane details here. The important point is that it works.

The new data may appear to the human observer to be new, but the correlations, through prior training, are already familiar to the computer or to the acquired repertoires of the immune system; in a word, the new data are not new to the expert system—artificial or biological. Similar patterns in the training and test sets of input data are uncovered by a process involving iterations within and between different levels of hidden, internal networks organized within the deep neural network (Figure 5). In other words, the immune responses to test sets of antigens are supervised, as it were, by the training sets of immune activation experienced during development.
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FIGURE 5. Supervised Machine learning from experience. (A) represents a simplified Architecture of computer Machine Learning in which Hidden Layers of interacting networks are organized as Deep Neural Networks. Input information is interpreted by comparing the present test Input to training sets of information previously experienced. The processing of test Input through hidden layers of networks generates an informative Output. (B) represents an analogous Immune supervised Machine Learning Architecture. Input from the body—healthy or ill—is gathered by receptors of immune cells and processed through interactions organized as hidden layers of networks of Innate cells, B cells, and T cells. By comparing the input data to the training data obtained during immune cell development, the immune system generates an immune response suitable to the situation. The output feeds back to serve the needs of the body and to update the internal organization of the immune networks themselves.



The power of artificial deep neural networks to deal with complexity is evident in image analysis and in natural language processing. The ability of driverless cars to negotiate their way through traffic requires precise, dynamic image analysis; refinements are still needed, but the technology promises to significantly change human transportation. Similarly, the ability of computers to process natural language will significantly influence human culture. Likewise, smart houses will use deep neural networks to affect the way we live. As we mentioned above, experts are still not sure how deep neural networks work and how they succeed where other methods have failed. Some have gone as far as calling machine learning “alchemy” or “alien technology” (23). We know how to build and use them, but we do not know exactly how they do what they do.

Deep learning “black boxes” are now built using about 150 million parameters. This is a large parameter space, and it may explain why such machine learning models have outgrown our ability to understand precisely how they work. Note, however, that networks comprising 150 million parameters express only a fragment of the complexity available for computational use by the immune system. For example, a milliliter of blood contains 2 million T cells; each T cell expresses tens of thousands of proteins on its surface. Add to that the additional dimension of spatial changes over time, and even a droplet of blood contains orders of magnitude more complexity than one of the larger deep learning networks, such as the VGG19 model (24).

Don't let the term machine learning mislead you: living systems do not use computer algorithms and are not machines in the way that computers are machines (artificial computers made of DNA are in very early stages of development). Fortunately, your brain serves as a familiar example of a biological learning machine. Consider the fact that you are able to recognize a familiar three-dimensional face when you see it as a two-dimensional cartoon because layers of networks deep in your brain are able to detect a similar pattern of key face features shared by both the real face and the caricature. You can use a map to drive your car through a new environment because your brain has learned to see common patterns shared by the map and the real world perceived by your eye—a map is a caricature of a landscape. Past experience has taught your brain to extract essence from accident. Likewise, Google Photos uses machine learning algorithms to recognize and catalog the photographed faces of an individual as he or she proceeds from childhood into old age; the person is identifiable both by computer algorithm and our brains despite the marked changes in physiognomy during aging. (Indeed, the Google algorithm can help reveal relationships hidden in brains: one of us finds it most intriguing that Google clustered photos of a daughter-in-law with photos of one's daughters—was a son's spouse preference trained by early visual input training from his sister or his mother?).



Learning Differences

Conversely, prior experience with learning sets of data can also teach your brain to detect meaningful differences between grossly similar signals. For example, the more familiar you are with a set of monozygotic “identical” twins, the easier it is for you to tell them apart, even when they are not both present for side-to-side comparison. Indeed, very subtle differences are often easiest to detect on a background of close similarity—a minor difference in the strips or stars of army rank is most visible when all the soldiers wear grossly similar uniforms. Amotz Zahavi has claimed that the vividly colored markings on bird species evolved to enable females to see genetic differences between apparently similar male suiters (25). We here propose that early training enables the immune system, like the brain, to detect meaningful differences as well as similarities.

The ability of your immune system to distinguish, for example, a symbiotic bacterium from a pathogenic bacterium requires the recognition and distinction of particular input patterns present in the myriads of molecular signals impinging on your collectives of immune cells. Both pathogenic bacteria and bacteria of the symbiotic microbiome express LPS or peptidoglycans and both types of bacteria share a great many other foreign antigens and innate signals; but the invading pathogen damages the host and so appears accompanied by signals produced by damaged body tissues and by metabolic changes (5). By profiling the mixture of bacterial and body signals, your immune system can discriminate between very similar bacteria by attending to informative differences in patterns of signals—a lone antigenic signal rarely suffices for a definitive diagnosis.

Your immune system can also sense patterns of antigens compatible with general health; markedly different tissues like lungs, hearts and kidneys can signal a pattern of health, despite their obvious differences in molecular structure and behavior. Just as there is a diagnostic profile difference between infectious pathogens compared to similar symbionts, there is a profile of similarity that designates health in highly dissimilar body organs. Indeed, we have recently learned that growing tumors may trick the immune system into tolerating them as normal tissue despite their abnormal mutations—the tumors express health signals that prevail over tumor signals and neoantigens that might otherwise expose a state of pathology; the tumor, as it were, exploits profiled signals of well-being that enable it to masquerade as healthy tissue (26). Fortunately, the tumors in some individuals, in due course, can become targets for spontaneous immune destruction, or medically engineered destruction in response to anti-checkpoint immunotherapy (27).



Two Requirements for Immune System Supervised Machine Learning

In summary, deep learning requires two elements: data for training and networks for data processing. Training sets of data provide the immune system with reference criteria for interpreting new data; processing the data emerges from layers of network interactions that take place deep within the system. Experimental evidence shows that healthy individuals share autoreactive TCR and autoantibody repertoires. The clonal selection paradigm cannot explain the possible function of this healthy, immune self-reactivity; here we propose that these repertoires serve to supervise a type of immune machine learning.



Training Sets

Immune supervised machine learning requires training sets of antigen experience that initially prime the immune system for its subsequent performance in dealing with test immune challenges that arise when confronting the real world. The initial T cell and B cell training repertoires both arise early during development in isolated body locations protected from the environment; this adaptive learning is driven by healthy self-antigens.

The primal TCR repertoire develops in the thymus through genetically programed experience with self-antigens expressed, processed and presented by innate dendritic cells (28). Thymic T-cell development has been studied in detail for some decades and much is known about it (29). There is no need to recount the details here; the bottom line is that programed thymic selection to particular self-antigens is critical to the normal development of the mammalian immune system (30); faulty thymic T-cell development can lead to autoimmune disease and immune system deficiency in dealing with pathogens (31). T-cell experience with a healthy self-training set of antigens is necessary (but, alas, not sufficient) for developing a healthy immune system. The specificity of healthy self-antigen training is exemplified by mutations in AIRE and other transcription factor genes that lead to severe autoimmune disease resulting from the lack of expression of certain tissue antigens by thymic epithelial cells (32). Note that T-cell development in the thymus is associated with TCR repertoires that are shared by different individual humans; some of these public TCR structures are identical in humans and mice and are organized in networks of very similar amino acid sequences (33).

The primal B cell repertoire has been much less studied than has the primal T-cell repertoire. Early studies of autoantibodies in the bloods of healthy subjects were done using relatively crude western blot technology (34). Most relevant to immune system computation are recent antigen-microarray studies of autoantibody repertoires in the bloods of young mothers and in the cord bloods of their healthy newborns. The antibodies in cord blood are important because they reflect initial training of the B-cell repertoire with which the newborn faces life outside the safety of mother's womb. We have carried out two such studies: the first used 10 mother-cord pairs (35) and the second used 71 mothers and their 104 newborns; we measured IgG and IgM antibody binding to 295 self-antigens, compared to 27 standard foreign antigens (36). The results have been published; here we briefly summarize the key findings:

1. The binding of some cord blood autoantibodies to self-antigens is at least as strong as the binding of maternal antibodies to some foreign antigens; thus, the congenital autoantibody repertoire recorded by microarray technology appears to reflect significant immune priming to healthy self-antigens.

2. Because maternal IgG is actively transported across the placenta to the developing fetus, the IgG repertoire of each newborn is strongly correlated with that of its mother; there is relatively less correlation between the IgG repertoires of different newborns or different mothers.

3. Human newborns manifest a strong correlation of IgM autoantibody repertoires amongst themselves as a group that differ from the IgM repertoires of each of their mothers. In contrast to maternal IgG antibodies, antibodies of the IgM isotype do not cross the placenta from mother to fetus (37). Hence, any IgM autoantibodies in cord blood had to have been produced by the fetus during development in the isolation of the womb. Thus, genetically diverse human babies undergo B-cell training experience to develop standard repertoires of IgM autoantibodies during pre-natal life. Healthy autoantibody repertoires, like public T-cell repertoires, manifest networks (38) of connectivity linking certain dominant self-antigens (33).

At the present time, we do not know of early training experiences of innate leukocytes, which do not bear receptors for antigens. However, dendritic cells, epithelial cells and probably other innate cells do participate in the training of the adaptive T-cell and B-cell repertoires (39)—it remains to be seen if this early innate-cell experience also trains innate leukocyte development.



Layers of Network Interactions

The second element essential to machine learning algorithms based on neural networks is an architecture that features multiple layers of interacting networks that process input data (Figure 5A). In computer parlance these deep layers of interacting networks have been termed “hidden”; the internal networks in living systems such as the brain and the immune system are molecular and they too are essentially “hidden” from view. Figure 5B depicts network interactions between innate cells, T cells and B cells as if they were deep layers of immune processing. Advanced imaging technics can show the movements and contacts of groups of individual cells, but we have no way, yet, of observing the information transferred between such interacting cells nor can we see the molecules involved. Experiments teach us that innate antigen-presenting cells interact with T cells and B cells, and that T cells and B cells interact between themselves in various ways. Moreover, T cells of various types interact with other T cells and B cells and antibodies interact with each other (33, 40); through regulatory (41), idiotypic (42), ergotypic (43), and other types of network connections. The anatomy of lymphoid organs includes discreet layers of interacting cell types, as we mentioned briefly above. Here, we propose that this architecture of anatomically layered immune networks has evolved to materialize a biologic version of experience-based machine learning.

Classically, the existence of networks of interacting cells and molecules has been explained ad hoc by the need to satisfy a list of functional binary distinctions in the immune response: IgM vs. IgG antibodies; innate vs. adaptive recognition; memory vs. transience; helpers vs. killers; suppressors vs. effectors; Th1 vs. Th2 helper types; and so on and so forth. Each newly discovered cell or interaction was assigned to fulfill a singular need, a particular goal, to account for its evolution. Immunology had no single organizing principle, or fundamental strategy that would make sense of all the system's seemingly redundant complexity.

Here, we support the idea that these sets of interacting immune elements serve immune decision-making by constituting a multi-level network architecture that serves experience-based supervised machine learning. Like a deep learning machine learning contrivance, the immune system is organized to include multiple levels of interacting cells and molecules triggered into motion by an immunological experience, which is them interpreted by reference to early training sets of data. Obviously, other explanations are conceivable; experimentation is needed.




MACHINE LEARNING AND IMMUNE WELLNESS

Note that the primary immune reference repertoires selected during early development of B-cell and T-cell repertoires arise through interactions with healthy tissues; we can reason that the emerging repertoires of selected lymphocytes signify a pattern of health—it is reasonable to hypothesize that healthy self-antigens are what lymphocytes see in the thymus and in utero. In other words, the adaptive immune system is first trained to recognize relative wellness. Consequently, the similarity of a profile of test antigens to the training set profile means that all looks well and no destructive inflammation is needed. In contrast, a functional dissimilarity of a test antigen pattern to the healthy reference pattern should spur the immune system into inflammatory action (Figure 5B). Hypotheses do their job by inviting experimentation, and the existence of a positive wellness profile needs experimental support. Below, we shall suggest some novel experiments and predictions.

We can view the immune supervised machine learning process as a wellness theory of adaptive immunity; the immune process begins with a seminal perception of the healthy body. The reference set of antigen receptors are tuned to the state of wellness; disease is manifested by a significant fall, however slight, from a healthy pattern.

Obviously, this wellness view is at odds with the disease-oriented view developed by Western biomedicine as a corollary to the germ-theory of disease: According to the standard paradigm, health is a given; health is freedom from pathogenic agents such as bacteria, viruses, or malignant cells (44). The discovery of the DNA genetic code has added mutant or abnormal DNA to the causes of disease. Immune machine learning would suggest that immune wellness is not merely the absence of a specific disease but a particular body state, one that must be learned during early immune repertoire development. This shifts our perception of the immune response away from an exclusive preoccupation with disease and adds to the immune system the task of maintaining one's state of health (3). Wellness theory would suggest that a chronic or recurrent disease might arise from replacement of a healthy reference set of immune body data with an aberrant reference set; indeed, the chronic autoimmune disease lupus appears to be characterized by an aberrant autoantibody signature that is relatively stable (45)—the sick immune system views a lupus immune profile as if it were the patient's normal state. If this is true, then treatment of an autoimmune disease might aim at immune re-education toward a healthy reference profile rather than primarily at suppression of the autoreactivity. Likewise, successful allograft transplantation might be advanced by educating the host immune system to include key allo-antigens in the host's reference repertoire of health—this might explain the effect of allogeneic bone marrow transplantation of the induction of tolerance to an allogenic graft. Effective tumor immunotherapy, as we have mentioned in passing, deprives the tumor of its resemblance to healthy wellness—rejection then follows (27).



EXPERIMENTAL TESTING

Hypothesis and theory contribute to empirical science in two important ways: First, they can help initiate new thinking regarding known observations, and second, and most importantly, they can inspire new experiments. We have raised two related points that invite novel experimentation: the concept of a Wellness Profile and its function as a training set of data that guides the type of inflammatory immune response to variable test data.

The Wellness Profile hypothesis proposes that healthy individual humans (and by extension other mammals) share common sets of autoantibodies and TCR repertoires. This hypothesis was inspired by our finding that the cord bloods of different newborns are highly correlated in their IgM autoantibodies produced in utero. Healthy adults go on to modify their initial cord blood repertoires of IgM and IgG through physiological immune experience.

If indeed there is a Wellness Profile in adult life, then we predict that we will be able to discover a list of autoantibody reactivities shared by most healthy people. Some antibodies in this Wellness autoantibody list will be absent in people with chronic autoimmune disease. Indeed, we predict that we will find a number autoantibodies that are shared by people suffering from different chronic autoimmune diseases—a type of Illness Profile. We plan to carry out these experiments using the antigen microarray device developed by one of us (45); informatic analyses of sufficient numbers of samples will test whether our prediction is borne out.

The Wellness Profile hypothesis also includes TCR repertoires, which are technically more difficult to study. Shared, public TCR receptors have already been published, and we predict that public TCR sequences will include repertoire features that are shared by healthy people and absent in the TCR repertoires of people suffering from chronic autoimmunity problems or tumors. We can carry out such a study by informatic analysis of published TCR data from healthy “controls” compared to samples from persons with chronic autoimmune conditions or cancer.

We here have proposed that the immune inflammation phenotype is influenced by training sets of autoantigen reactivities arising during healthy development. This idea can be tested by introducing, during development, otherwise immunogenic antigens such as allogeneic cells to induce specific lifelong “tolerance” to specific allografts in inbred mice. We would predict that modified training sets of autoreactive autoantibody and TCR repertoires would be detected in these mice and would persist throughout adult life; these modified training reactivities would be added to the standard, shared profile of wellness present in the mice.

These predictions can be tested using a model of alloantigen tolerance induced in mice before birth in utero or shortly after birth. The newborn mice exposed to allo-antigens during development will manifest modified Wellness Profiles that include specific allo-antibodies and modified TCR repertoires; the mice with modified profiles should accept H2-specific allografts, according to our proposed theory. Adoptive transfer of modified TCR and autoantibody repertoires in inbred mice would make it possible to isolate the key elements in the transferred repertoires.

In contrast to inducing tolerance to foreign transplantation antigens, it appears that enhanced autoimmune T-cell mediated inflammation in adults can be induced in newborn mice by injection of selected autoimmune T cells: adult rats of the Fischer strain can mount T-cell proliferative responses to myelin basic protein but they resist developing inflammation that causes experimental autoimmune encephalomyelitis (EAE); however, injecting newborn Fisher rats with anti-MBP T cells renders the rats susceptible to inflammatory EAE induced by active immunization later in adult life (46); the injected T cells did not cause EAE in the newborn rats, but the injected T cells migrated to the thymus and spleen and persisted there. These early findings suggest that it might indeed be feasible to modulate a later inflammatory immune response by manipulating the developing T-cell repertoire. Some of the novel concepts outlined here do stimulate novel research programs.



CODA

To summarize, the standard clonal selection paradigm fails to account for new findings that confound simple binary, self-non-self explanations of complex immune behavior. Here, we propose immune system computation, swarm intelligence, and experience-based training repertoires as strategies for intelligent, self-organizing body maintenance, healing, and protection.



AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.



ACKNOWLEDGMENTS

We acknowledge the Weizmann Institute of Science and Bar-Ilan University for providing environments conducive to research and to thinking about the results.



REFERENCES

 1. Langman RE, Cohn M. A minimal model for the self-nonself discrimination: a return to the basics. Semin Immunol. (2000) 12:189–195; discussion: 257–344. doi: 10.1006/smim.2000.0231

 2. Swee LK, Nusser A, Curti M, Kreuzaler M, Rolink H, Terracciano L, et al. The amount of self-antigen determines the effector function of murine T cells escaping negative selection. Eur J Immunol. (2014) 44:1299–312. doi: 10.1002/eji.201343840

 3. Cohen IR. Tending Adam's Garden: Evolving the Cognitive Immune Self. San Diego, CA: Academic Press (2000). 

 4. Efroni S, Cohen IR. The heuristics of biologic theory: the case of self-nonself discrimination. Cell Immunol. (2003) 223:87–9. doi: 10.1016/S0008-8749(03)00151-5

 5. Swiatczak B, Cohen IR. Gut feelings of safety: tolerance to the microbiota mediated by innate immune receptors. Microbiol Immunol. (2015) 59:573–85. doi: 10.1111/1348-0421.12318

 6. Cohen IR. Discrimination and dialogue in the immune system. Semin Immunol. (2000) 12:215–9; discussion: 257–344. doi: 10.1006/smim.2000.0234

 7. Schwartz M, Cohen IR. Autoimmunity can benefit self- maintenance. Immunol Today (2000) 21:265–8. doi: 10.1016/S0167-5699(00)01633-9

 8. Cohen IR. The cognitive principle challenges clonal selection. Immunol Today (1992) 13:441–4. doi: 10.1016/0167-5699(92)90071-E

 9. Cohen IR. Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: a comprehensive review. J Autoimmun. (2014) 54:112–7. doi: 10.1016/j.jaut.2014.05.002

 10. Hagedorn PH, Burton CM, Carlsen J, Steinbruchel D, Andersen CB, Sahar E, et al. Chronic rejection of a lung transplant is characterized by a profile of specific autoantibodies. Immunology (2010) 130:427–35. doi: 10.1111/j.1365-2567.2010.03246.x

 11. Burnet FM. The nobel lectures in immunology. The nobel prize for physiology or medicine, 1960. Immunologic recognition of self. Scand J Immunol. (1991) 33:3–13. 

 12. Cohen IR. The cognitive paradigm and the immunological homunculus. Immunol Today (1992) 13:490–4. doi: 10.1016/0167-5699(92)90024-2

 13. Dyson G. Turing centenary: the dawn of computing. Nature (2012) 482:459–60. doi: 10.1038/482459a

 14. Cohen IR. Real and artificial immune systems: computing the state of the body. Nat Rev Immunol. (2007) 7:569–74. doi: 10.1038/nri2102

 15. Jolles JW, Boogert NJ, Sridhar VH, Couzin ID, Manica A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr Biol. (2017) 27:P2862–2868.e7. doi: 10.1016/j.cub.2017.08.004

 16. Hein AM, Rosenthal SB, Hagstrom GI, Berdahl A, Torney CJ, Couzin ID. The evolution of distributed sensing and collective computation in animal populations. Elife (2015) 4:e10955. doi: 10.7554/eLife.10955

 17. Couzin ID, Franks NR. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci. (2003) 270:139–46. doi: 10.1098/rspb.2002.2210

 18. Kendal AR, Chen Y, Regateiro FS, Ma J, Adams E, Cobbold SP, et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med. (2011) 208:2043–53. doi: 10.1084/jem.20110767

 19. Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol. (2013) 4:190. doi: 10.3389/fimmu.2013.00190

 20. Boyman O. Bystander activation of CD4+ T cells. Eur J Immunol. (2010) 40:936–9. doi: 10.1002/eji.201040466

 21. Cohn M, Mitchison NA, Paul WE, Silverstein AM, Talmage DW, Weigert M. Reflections on the clonal-selection theory. Nat Rev Immunol. (2007) 7:823–30. doi: 10.1038/nri2177

 22. Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From Theory to Algorithms. New York, NY,: Cambridge University Press (2014). 

 23. Hutson M. Ai researchers allege that machine learning is alchemy. Science (2018) 360:861. doi: 10.1126/science.aau0577

 24. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014). 

 25. Zahavi A. Mate selection-a selection for a handicap. J Theor Biol. (1975) 53:205–14. doi: 10.1016/0022-5193(75)90111-3

 26. Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol. (2014) 10:41–62. doi: 10.1586/1744666X.2014.865519

 27. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. (2015) 125:3335–7. doi: 10.1172/JCI83871

 28. Barik S, Miller M, Cattin-Roy A, Ukah T, Zaghouani H. A distinct dendritic cell population arises in the thymus of IL-13Ralpha1-sufficient but not IL-13Ralpha1-deficient mice. Cell Immunol. (2018) 331:130–6. doi: 10.1016/j.cellimm.2018.06.006

 29. Balakrishnan A, Jama B, Morris GP. Endogenous co-expression oftwo T cell receptors promotes lymphopenia-induced proliferation via increased affinity for self-antigen. J Leukoc Biol. (2018) 104:1097–104. doi: 10.1002/JLB.1AB0618-214RRR

 30. Covacu R, Philip H, Jaronen M, Almeida J, Kenison JE, Darko S, et al. System-wide analysis of the T cell response. Cell Rep. (2016) 14:2733–44. doi: 10.1016/j.celrep.2016.02.056

 31. Abramson J, Anderson G. Thymic epithelial cells. Annu Rev Immunol. (2017) 35:85–118. doi: 10.1146/annurev-immunol-051116-052320

 32. Bruserud O, Oftedal BE, Wolff AB, Husebye ES. AIRE-mutations and autoimmune disease. Curr Opin Immunol. (2016) 43:8–15. doi: 10.1016/j.coi.2016.07.003

 33. Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, et al. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. Elife (2017) 6:e22057. doi: 10.7554/eLife.22057

 34. Nobrega A, Haury M, Grandien A, Malanchere E, Sundblad A, Coutinho A. Global analysis of antibody repertoires. II Evidence for specificity, self-selection and the immunological “homunculus” of antibodies in normal serum. Eur J Immunol. (1993) 23:2851–9. doi: 10.1002/eji.1830231119

 35. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. (2007) 117:712–8. doi: 10.1172/JCI29943

 36. Madi A, Bransburg-Zabary S, Maayan-Metzger A, Dar G, Ben-Jacob E, Cohen IR. Tumor-associated and disease-associated autoantibody repertoires in healthy colostrum and maternal and newborn cord sera. J Immunol. (2015) 194:5272–81. doi: 10.4049/jimmunol.1402771

 37. Niewiesk S. Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front Immunol. (2014) 5:446. doi: 10.3389/fimmu.2014.00446

 38. Ben-Hamo R, Efroni S. The whole-organism heavy chain B cell repertoire from Zebrafish self-organizes into distinct network features. BMC Syst Biol. (2011) 5:27. doi: 10.1186/1752-0509-5-27

 39. Lacroix-Desmazes S, Kaveri SV, Mouthon L, Ayouba A, Malanchere E, Coutinho A, et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods (1998) 216:117–37. doi: 10.1016/S0022-1759(98)00074-X

 40. Madi A, Kenett DY, Bransburg-Zabary S, Merbl Y, Quintana FJ, Tauber AI, et al. Network theory analysis of antibody-antigen reactivity data: the immune trees at birth and adulthood. PLoS ONE (2011) 6:e17445. doi: 10.1371/journal.pone.0017445

 41. Svetlicky N, Ortega-Hernandez OD, Mouthon L, Guillevin L, Thiesen HJ, Altman A, et al. The advantage of specific intravenous immunoglobulin (sIVIG) on regular IVIG: experience of the last decade. J Clin Immunol. (2013) 33(Suppl. 1):S27–32. doi: 10.1007/s10875-012-9842-5

 42. Lider O, Reshef T, Beraud E, Ben-Nun A, Cohen IR. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science (1988) 239:181–3. doi: 10.1126/science.2447648

 43. Lohse AW, Mor F, Karin N, Cohen IR. Control of experimental autoimmune encephalomyelitis by T cells responding to activated T cells. Science (1989) 244:820–2. doi: 10.1126/science.2471264

 44. Nobile M. The who definition of health: a critical reading. Med Law (2014) 33:33–40. 

 45. Putterman C, Pisetsky DS, Petri M, Caricchio R, Wu AHB, Sanz I, et al. The SLE-key test serological signature: new insights into the course of lupus. Rheumatology (Oxford) (2018) 57:1632–40. doi: 10.1093/rheumatology/key149

 46. Volovitz I, Mor F, Machlenkin A, Goldberger O, Marmor Y, Eisenbach L, et al. T-cell seeding: neonatal transfer of anti-myelin basic protein T-cell lines renders Fischer rats susceptible later in life to the active induction of experimental autoimmune encephalitis. Immunology (2009) 128:92–102. doi: 10.1111/j.1365-2567.2009.03074.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Cohen and Efroni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	ORIGINAL RESEARCH
published: 13 February 2019
doi: 10.3389/fimmu.2019.00129






[image: image2]

Identification of Subject-Specific Immunoglobulin Alleles From Expressed Repertoire Sequencing Data


Daniel Gadala-Maria1†, Moriah Gidoni2†, Susanna Marquez3, Jason A. Vander Heiden4, Justin T. Kos5, Corey T. Watson5, Kevin C. O'Connor4,6, Gur Yaari2*‡ and Steven H. Kleinstein1,3,6*‡


1Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States

2Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

3Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States

4Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States

5Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States

6Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT, United States

Edited by:
Deborah K. Dunn-Walters, University of Surrey, United Kingdom

Reviewed by:
Michael Zemlin, Saarland University Hospital, Germany
 Anne Corcoran, Babraham Institute (BBSRC), United Kingdom

* Correspondence: Gur Yaari, gur.yaari@biu.ac.il
 Steven H. Kleinstein, steven.kleinstein@yale.edu

†These authors have contributed equally to this work and are co-first authors

‡These authors have contributed equally to this work and are co-senior authors

Specialty section: This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology

Received: 31 August 2018
 Accepted: 16 January 2019
 Published: 13 February 2019

Citation: Gadala-Maria D, Gidoni M, Marquez S, Vander Heiden JA, Kos JT, Watson CT, O'Connor KC, Yaari G and Kleinstein SH (2019) Identification of Subject-Specific Immunoglobulin Alleles From Expressed Repertoire Sequencing Data. Front. Immunol. 10:129. doi: 10.3389/fimmu.2019.00129



The adaptive immune receptor repertoire (AIRR) contains information on an individuals' immune past, present and potential in the form of the evolving sequences that encode the B cell receptor (BCR) repertoire. AIRR sequencing (AIRR-seq) studies rely on databases of known BCR germline variable (V), diversity (D), and joining (J) genes to detect somatic mutations in AIRR-seq data via comparison to the best-aligning database alleles. However, it has been shown that these databases are far from complete, leading to systematic misidentification of mutated positions in subsets of sample sequences. We previously presented TIgGER, a computational method to identify subject-specific V gene genotypes, including the presence of novel V gene alleles, directly from AIRR-seq data. However, the original algorithm was unable to detect alleles that differed by more than 5 single nucleotide polymorphisms (SNPs) from a database allele. Here we present and apply an improved version of the TIgGER algorithm which can detect alleles that differ by any number of SNPs from the nearest database allele, and can construct subject-specific genotypes with minimal prior information. TIgGER predictions are validated both computationally (using a leave-one-out strategy) and experimentally (using genomic sequencing), resulting in the addition of three new immunoglobulin heavy chain V (IGHV) gene alleles to the IMGT repertoire. Finally, we develop a Bayesian strategy to provide a confidence estimate associated with genotype calls. All together, these methods allow for much higher accuracy in germline allele assignment, an essential step in AIRR-seq studies.
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INTRODUCTION

Affinity maturation, in which B cells expressing receptors with an improved ability to bind antigen are preferentially expanded, is a key component of the B cell-mediated adaptive immune response (1, 2). This selection process requires a diverse pool of B cell receptors (BCRs) which is generated both through V(D)J recombination [in which each B cell creates its own BCR by recombining variable (V), diversity (D), and joining (J) genes], and through the subsequent somatic hypermutation (SHM) of these sequences during T-dependent adaptive immune responses. SHM is an enzymatically-driven process that introduces mainly point substitutions into the BCR at a rate of about one mutation per 1,000 base-pairs per cell division (3, 4). Leveraging next-generation sequencing technologies to profile this adaptive immune receptor repertoire (AIRR) allows tens- to hundreds-of-millions of unique BCR sequences to be collected from a single subject and has become a prevalent method for studying aspects of the B cell-mediated immune response, including topics related to gene usage, mutation patterns, and clonality (5–9).

An accurate immunoglobulin (Ig) germline receptor database (IgGRdb) is a key part of the typical AIRR-seq data analysis pipeline (10). Analysis generally begins with pre-processing tools specifically designed for BCR sequencing, such as pRESTO (11). Following this, computational methods [e.g., IMGT/HighV-QUEST (12), IgBLAST (13), or iHMMune-Align (14)] are used to align sample sequences to the set of unmutated reference alleles from an IgGRdb, such as the one maintained by IMGT (3). However, these IgGRdbs have been shown to be incomplete, and studies continue to discover new alleles (5–9). Immunoglobulin (Ig) loci are rarely fully sequenced in a single subject due to the large locus size and similarity of genes confounding many modern high-throughput sequencing methods (7, 15, 16). Thus, if a subject carries a novel allele, it can lead to incorrect interpretations of which positions have been mutated and can subsequently affect the reconstruction of clonal lineages. We previously created the TIgGER method, and an associated software package, to detect novel V gene alleles from AIRR-seq data, infer the genotype of a subject, and correct the initial allele assignments (8). Since the development of TIgGER, several other methods have been proposed to discover novel alleles (17–20). While the application of TIgGER to several subjects revealed a high prevalence of novel alleles, the design of the method limited its ability to detect novel alleles differing by more than five polymorphisms from a known IgGRdb allele, which we previous found covers ~10% of alleles in the IMGT IgGRdb (8).

Here we present and apply improvements upon the original TIgGER method that allow for the detection of novel alleles that differ greatly from IgGRdb alleles as well as for the assignment of levels of confidence to each genotype call. This updated version of TIgGER (version 0.3.1 or higher) is available for download as an R package from The Comprehensive R Archive Network (CRAN; http://cran.r-project.org), with additional documentation available at http://tigger.readthedocs.io. The input and output formats of TIgGER conform to the Change-O file standard (21), and thus the method can be used seamlessly as part of the Immcantation tool suite, which provides a start-to-finish analytical ecosystem for high-throughput AIRR-seq datasets (http://immcantation.org), including methods for pre-processing, population structure determination, and advanced repertoire analyses.



RESULTS


Detecting Distant Alleles Using Dynamic Positioning of the “Mutation Window”

TIgGER detects novel alleles by analyzing the apparent mutation frequency pattern at each nucleotide position as a function of the sequence-wide mutation count. The input to the method consists of a set of rearranged BCR sequences (which may be mutated, but should contain at least some sequences that have not accumulated mutations) from a single subject and the alignment of those sequences to IgGRdb alleles, such as the output of running IMGT/HighV-QUEST (4, 22) or IgBlast (13). TIgGER searches for novel V alleles among the sequences that fall in a specified “mutation window” relative to each of the IgGRdb alleles. The mutation window of the original algorithm (8) had an upper bound of at most 10 sequence-wide mutations, while the lower bound was defined as minimum(L, 5), where L was the most frequent mutation count among sequences with at most 10 sequence-wide mutations. Positions were considered as potentially polymorphic if a linear fit predicted a mutation frequency (y value) above a threshold level of 0.125 at a mutation count (x value) of zero (i.e., the y-intercept). While this method had excellent sensitivity and specificity, the definition of the lower bound meant that TIgGER could only detect novel alleles that differed by at most five single nucleotide polymorphisms (SNPs) from some previously known IgGRdb allele. We hypothesized that by modifying the TIgGER algorithm to dynamically shift the mutation window to the most relevant region for discovery of the polymorphic position, it would be possible to detect novel V alleles that differed by any number of polymorphisms from the nearest IgGRdb allele.

The updated TIgGER algorithm described here defines the lower bound of the mutation window for each allele as the mutation count of the most frequent sequence assigned to that allele. The upper bound of the mutation window is always nine bases greater than the lower bound. Positions are analyzed within this window, and considered as potentially polymorphic if a linear fit predicts a mutation frequency (y value) above a threshold level of 0.125 at a mutation count (x value) one less than the start of the mutation window (see Methods for details). The behavior of the updated TIgGER algorithm (Figure 1, bottom row) is equivalent to the original TIgGER algorithm (Figure 1, top row) when analyzing sequences derived from a novel allele with a single nucleotide polymorphism (Figure 1, first column). The behavior of the two algorithms diverges slightly in cases where 2–5 polymorphisms are present in the novel allele (Figure 1, middle column), as the updated algorithm allows both the upper bound of the mutation window and the location where the mutation frequency threshold is evaluated to dynamically shift based on the start of the window. The greatest divergence is observed in detecting novel alleles with over 5 single nucleotide polymorphisms. In this case, the mutation window of the original algorithm ends before the window of the updated algorithm (Figure 1, right column). When confronted with such distant novel alleles, the linear fits of the polymorphic positions constructed by the original algorithm often failed to yield y-intercepts large enough to identify the positions as polymorphic, whereas the updated algorithm can identify all polymorphic positions.
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FIGURE 1. Distant V gene alleles can be detected by dynamic shifting of the mutation window. The original TIgGER algorithm (top row) and the updated method (bottom row) were applied to BCR sequences generated from two subjects, hu420143 and 420IV, as part of a vaccination time course study (18). In both cases, the mutation frequency (y-axis) at each nucleotide position (gray lines) was determined as a function of the sequence-wide mutation count (x-axis). For each position known to be polymorphic (dark gray lines) (12), linear fits (red lines) were constructed using the points within the mutation window (red shaded region). The linear fit was then used to estimate the mutation frequency at the intercept location (blue dotted line). Sequences that best aligned to IGHV1-2*02 from hu420143 were used to demonstrate the behavior when detecting a germline with a single nucleotide polymorphism (left column), while sequences that best aligned to IGHV3-43*01 from 420IV were used to demonstrate the behavior when detecting a germline with three polymorphisms (middle column), as novel alleles with that number of polymorphisms had been previously discovered in those subjects (12). Data to assess the behavior when detecting a novel allele with seven polymorphisms (right column) was simulated using sequences from hu420143 that best aligned to IGHV1-2*02 by artificially adding six base changes to the germline sequence used for alignment, as no novel allele with more than five polymorphisms had been discovered. In all cases, only sequences from pre-vaccination time points were used from these individuals.



To test the performance of the updated TIgGER method, we simulated data in which novel alleles differed by n SNPs from the nearest IgGRdb allele by randomly changing n nucleotides in the IgGRdb alleles utilized by TIgGER (i.e., by removing the true allele from the IgGRdb and replacing it with a distant one). Using AIRR-seq data from subject PGP1 described in our previous study (23), the 38 IGHV alleles assigned to at least 500 unique BCR sequences were each tested for every value of n from 1 to 30. This process was repeated 100 times per value of n random single nucleotide polymorphisms, to ensure a diversity of polymorphic positions and base changes would be tested. The fraction of times the original germline sequence was recovered was determined as a function of n and averaged across all germline alleles tested. The updated version of TIgGER had 100% sensitivity in the range of 1 ≤ n ≤ 5, and was also able to detect novel alleles with high sensitivity (over 99%) for all values of n tested (Figure 2). Additionally, only the removed germline alleles were discovered by the algorithm; no false positive sequences were predicted. Thus, TIgGER can detect novel V alleles that are far from any known IgGRdb allele with high sensitivity and specificity.
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FIGURE 2. The updated TIgGER method detects distant alleles with high sensitivity. Detection of novel V gene alleles differing from IgGRdb alleles by n polymorphisms was simulated by extracting experimental sequences best aligning to a single IgGRdb allele in a single subject, then inserting into the IgGRdb an allele n polymorphisms in silico and providing only the modified IgGRdb allele to TIgGER. Each sensitivity measurement at distance n (x-axis) included modification of all IgGRdb alleles best-aligning to at least 500 sequences in subject PGP1. The variance in sensitivity was estimated by repeating this procedure for 100 randomly-modified IgGRdb alleles and the mean sensitivity as a function of n was determined for 1 ≤ n ≤ 30. Error bars represent the standard error of the mean.



To search for distant novel alleles, the updated version of TIgGER was applied to AIRR-seq data from the seven individuals described in our previous study (8), including three subjects receiving influenza vaccination (23) and four subjects with multiple sclerosis (24, 25). However, this yielded the same alleles previously reported, with the most-distant novel alleles differing from the nearest IgGRdb allele by at most three polymorphisms (Table S1). We next applied the updated TIgGER algorithm to 24 additional individuals. This included published AIRR-seq data from five pairs of monozygotic twins (10), 10 subjects with myasthenia gravis and 4 subjects that served as healthy controls (26). Considering all 31 individuals, TIgGER identified a total of 28 novel alleles that were part of the genotype inferred for one or more of the individuals (Figure 3 and Table S1). All of the novel alleles differed from IgGRdb alleles by at most three single nucleotide polymorphisms. Thus, while it was demonstrated on synthetic data that the updated version of TIgGER has the potential to detect alleles that differ greatly from known IgGRdb alleles, none of the novel alleles discovered in the repertoires of 26 genetically distinct individuals (monozygotic twins are considered genetically indistinguishable) differed by more than three polymorphisms.


[image: image]

FIGURE 3. TIgGER identifies high diversity in the inferred IGHV genotypes of 26 genetically distinct subjects, and high similarity among 5 monozygotic twin pairs. IGHV genotypes of 31 subjects (columns) were inferred using the frequency method from the updated TIgGER algorithm, under the default settings. Monozygotic twin pairs are indicated as TW***A and TW***B; multiple sclerosis subjects are denoted as M*; influenza vaccination time course subjects are denoted PGP1, 420IV, and hu420143; myasthenia gravis subjects are indicated by AR** and MK** with the associated healthy controls indicated by HD**. Each row represents an IGHV gene, and the color(s) in each column represent(s) the allele(s) present in that subject using the IMGT designation shown in the color bar. Note that the size of the bars does not represent relative allele frequency. Clustering of the genotypes was performed using Ward's method.





Experimental Validation of Novel IGHV Gene Alleles Predicted by TIgGER

The application of TIgGER to AIRR-seq data from 26 genetically distinct individuals identified 28 novel IGHV gene alleles (Figure 3 and Table S1). We selected four of these novel alleles that were each predicted by TIgGER in multiple individuals for experimental validation: IGHV1-2*02_T163C, IGHV1-8*02_G234T, IGHV3-20*01_C307T and IGHV1-69*06_C191T. Three of these alleles were also predicted independently by other groups. IGHV1-2*02_T163C was identified in (5, 9), IGHV1-8*02_G234T was identified in (9) and IGHV3-20*01_C307T was identified in (27). IGHV1-69*06_C191T has not been previously reported.

To validate the TIgGER predictions, we cloned and sequenced the relevant gene locus directly from genomic DNA. For each allele, we chose one of the subjects where it was predicted for validation: MK04, MK05, MK05, and MK06 for the alleles of IGHV1-2, IGHV1-8, IGHV3-20, and IGHV1-69, respectively. PCR primers were designed to fully amplify the exons and introns of each target IGHV gene locus (IGHV1-2, IGHV1-8, IGHV3-20, and IGHV1-69) from genomic DNA; sequences for each primer set are provided in Table S2. PCR amplicons for each gene were then generated individually from the genomic DNA samples of the donor where they were predicted to be present, and subsequently cloned. DNA was isolated from 4 to 15 clones per gene target, and Sanger sequenced from both ends. These sequences were compared directly to the allele sequences inferred by TIgGER from the same donor to assess the degree of concordance. In all cases (4/4), genomic DNA sequencing provided validation of the putative IGHV polymorphisms inferred by TIgGER from the AIRR-Seq data suggesting that TIgGER has high specificity for identifying new IGHV alleles.

Single representative clones for each genomic sequence validating the TIgGER predictions were submitted to GenBank and have been assigned the following accession numbers: MH267285 (IGHV1-2*02_T163T), MH267286 (IGHV1-8*02_G234T), MH332884 (IGHV3-20*01_C307T), and MH359407 (IGHV1-69*06_C191T). These predicted alleles were also submitted to IMGT for inclusion in their IgGRdb. Three of these alleles were accepted for inclusion in the IMGT IgGRdb as novel alleles, and have been assigned the following allele names: IGHV1-2*06 (MH267285), IGHV3-20*03 (MH332884), and IGHV1-69*17 (MH359407). The fourth allele that we experimentally validated (IGHV1-8*02_G234T) was added to the IMGT IgGRdb as IGHV1-8*03 during the course of this study, and was thus no longer considered novel. Along with IGHV1-8*03, several other alleles identical to TIgGER predictions were added to IMGT during this study: IGHV1-18*01_T111C as IGHV1-18*04, IGHV2-70*01_T164G as IGHV2-70*15, IGHV3-64*05_A210C_G265C as IGHV3-64D*06, and IGHV3-9*01_C296T as IGHV3-9*03. Overall, eight of the 28 novel IGHV genes predicted by TIgGER in 26 genetically distinct individuals are now part of the IMGT IgGRdb, including three novel IGHV alleles that directly resulted from this study.



Inference of IGHV Genes Starting From a Sparse IgGRdb

TIgGER relies on the ability to make initial assignments of BCR sequences to alleles from an IgGRdb. However, such IgGRdbs may be sparse or non-existent for certain species; IMGT/GENE-DB has only a single IgGRdb IGHV allele for most genes in mouse, and only a single allele for all genes in rat and rhesus macaque. Nevertheless, IGHV variation was observed in all of these species [for example, Mouse (28, 29), Rat (30), Macaque (31, 32)]. In principle, the deep coverage of repertoire sequencing data could obviate the need for IgGRdbs by inferring the set of alleles for each subject based solely on the observed set of rearranged sequences. Here we consider whether a very sparse IgGRdb may be sufficient to discover the IGHV alleles of a subject's IGHV genotype. This is theoretically possible given the ability of the updated TIgGER algorithm to detect alleles that differ greatly from the nearest known IgGRdb allele.

To evaluate the ability of TIgGER to identify the set of alleles carried by an individual when starting from a sparse IgGRdb, we simulated the extreme case of each IGHV gene family containing only a single allele in the IgGRdb. The performance was evaluated on published sequencing data from three subjects (PGP1, hu420143, and 420IV; see Methods). For each subject, the IgGRdb was defined by the single alleles from each IGHV family that were most frequently assigned by IMGT/HighV-QUEST. All sequences initially assigned to any allele in that family were then reassigned to that single IgGRdb allele. The set of IGHV genes carried by each individual was then identified by iterative applications of TIgGER. After each application of TIgGER, the set of novel alleles discovered by running the algorithm was added to the IgGRdb to be used for subsequent iterations, and sequences were reassigned to their most similar IgGRdb allele (measured by Hamming distance). The process was repeated until no new allele assignments were made (at most five iterations in these studies). The final set of alleles of each IGHV family discovered by this method was compared to the result obtained when running the TIgGER algorithm followed by genotype inference using the original IMGT/HighV-QUEST allele assignments and full IgGRdb (Figure 4).
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FIGURE 4. Iterative application of TIgGER detects most IGHV alleles beginning from a sparse IgGRdb containing only one allele per IGHV family. Sequences from subject PGP1 that best aligned to any IgGRdb allele from the IGHV1 family were all reassigned to the most common allele, IGHV1-18*01 (first panel). The updated TIgGER algorithm was used to detect “novel” alleles that were not in the IgGRdb (initially consisting only of IGHV1-18*01). Five alleles were discovered after this first iteration, and sequences were reassigned based on this expanded IgGRdg consisting of 6 alleles (second panel). After a second iteration of TIgGER (third panel), 5 additional alleles were discovered, and the resulting sequence assignments closely matched the control case where TIgGER was used with all known IGHV IgGRdb alleles (fourth panel). The height of each bar indicates the number of sequences assigned to the indicated IGHV allele, while the bar colors indicate the allele assignment given to sample sequence in the control case.



The updated TIgGER algorithm discovered up to 95% (79% average) of the alleles in each of the three subjects' IGHV families when starting with a single IgGRdb allele per family (Table 1). To understand how TIgGER achieves this performance, consider sequences from the IGHV1 family in subject PGP1. In this case, the first application of TIgGER was able to identify five of the correct novel alleles and reassign the sequences to the better allele (Figure 4, first and second panels). This success was due to the fact that the mutation ranges of interest (i.e., the mutation windows described in Figure 1) differed for many of the novel alleles. We expect this will generally be true, and since the number of positions differentiating different novel alleles from a shared most-similar IgGRdb allele varies, relevant mutation windows of alleles to be discovered are unlikely to overlap and result in a dilution of signal. Nevertheless, a single run of TIgGER was not able to detect all of the IGHV alleles. TIgGER was then run a second time using the new IgGRdb and assignments determined from the first run, leading to the identification of five additional novel alleles. This second iteration discovered less-used alleles, as the initial group of sequences assigned to the starting allele was broken into smaller subgroups (Figure 4, third panel). Three low-frequency alleles from two genes present when running TIgGER with access to the full IgGRdb (Figure 4, fourth panel) remained undiscovered after repeated iterations. The difficulty of discovering alleles that are expressed at low frequency highlights the dependence of TIgGER's performance on sequencing depth. For subject 420IV, who had the largest sequencing depth (112K sequences), TIgGER detected 55 alleles out of the 58 in the genotype (95%). Subject hu420143 had 80K sequences and TIGgER detected 77% of alleles, while subject PGP1 had 55K sequences and TIgGER detected 66% of alleles. However, even at lower sequencing depth, TIgGER was able to discover alleles that were far away from known alleles. For example, for PGP1 (shown in Figure 4), the inferred “new” alleles in the first iteration were 29–49 SNPs away from the starting germline repertoire, and 19–30 SNPs away in the second iteration. This could not be done with the previous version of TIgGER. Overall, these results demonstrate that TIgGER can be run iteratively to discover a large fraction of the IGHV alleles carried by an individual (with better performance at higher sequence depth), even when there is very little prior knowledge of the set of alleles in the population.



Table 1. Performance of TIgGER in detecting the set of V gene alleles comprising each IGHV family starting from a sparse IgGRdb.
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Bayesian Inference of BCR Genotypes Can Differentiate Subjects

Given the diverse nature of the IGHV locus (7), we expected that genotypes inferred by TIgGER would vary across unrelated subjects, but should be the same within the five pairs of monozygotic twins. While the genotypes that were constructed for the individuals in this study were observed to be unique across subjects, the inferred genotypes of the monozygotic twin pairs were similar but not identical (Figure 3). Due to the relatively small number of sequences, not all novel alleles discovered in one twin were also discovered in the other. However, for the majority of genes, TIgGER assigned the same genotype alleles to each twin. Additionally, hierarchical clustering (using Ward's method) of the genotypes properly grouped pairs of twins and excluded the genotypes of the other subjects (Figure 3, top).

In order to quantify our confidence in the assignment of genotypes, a Bayesian approach to genotyping was developed. This method analyzes the posterior probabilities of possible allele distributions, considering up to four distinct alleles per V. The posterior probabilities for these four possible models are compared and a Bayes factor is calculated for the two most probable models (see Methods). This Bayes factor reflects our confidence in the genotyping call of the method, and different models (i.e., different combinations of alleles) can be compared in a quantitative way. In the current implementation of the Bayesian approach, up to four alleles are considered (14), allowing for the possibility of a gene duplication with both loci being heterozygous (see Methods). This Bayesian method was applied separately to 10 independent samples from subjects PGP1, hu420143, and 420IV (corresponding to 10 different time-points pre- and post-influenza vaccination) to test if we could confidently group samples from the same subject. The similarity of these personalized genotypes (for each combination of subject and time point) was estimated by determining the Jaccard distance metric for each gene. These individual gene distances were combined by calculating a weighted average of them using the Bayes factors as weights (see Methods). Using this distance metric, all samples from the three subjects could be differentiated with perfect accuracy, as the maximal weighted Jaccard distance of samples coming from the same subject was lower than the distance between samples coming from different subjects (Figure 5). Similar high classification accuracy was found for a wide range of model parameters showing the robustness of this approach. Overall, this Bayesian approach enables us to relax the strict cutoff criterion used by TIgGER in the previous sections (wherein the minimum number of alleles explaining 88% (7/8) of apparently-unmutated sequences are included in the genotype) to decide whether an allele should be included in an individual's genotype or not.


[image: image]

FIGURE 5. Bayesian inference of the subject-specific IGHV genotype identifies the same subject across independent samples in an influenza vaccination time course. BCR repertoire sequencing was carried out from a total of 10 blood samples taken before and after influenza vaccination of three subjects (PGP1, 420IV, and hu420143) as part of a previous study (23). The Bayesian model was applied to the data from each of 10 time points from each individual separately to determine a subject-specific IGHV genotype. The distance (colors) between each pair of inferred genotypes (rows/columns; numbered 1–30, labeled by color according to subject) is based on the Jaccard distance of the alleles of each gene (see Methods for details).



To compare the new Bayesian approach with the previously used method, we assessed the ability of each method to generate matching IGHV genotypes for each of the five twin pairs that were part of our cohort of 31 individuals. Genotype similarity was computed as the average Jaccard distance between the genotypes of each twin pair (similar to the dendrogram in Figure 3). As the certainty threshold (K) is increased, the genotypes of the twin pairs become more and more similar (Figure 6). At K ≥ 1, the genotypes inferred by the Bayesian method are a significantly better match than those inferred by the non-Bayesian method.
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FIGURE 6. The Bayesian method improves the similarity of IGHV genotypes inferred for twin pairs. The Jaccard distance was calculated for each IGHV gene for each twin pair, and was averaged over all genes. This calculation was carried out for the basic cutoff method of TIgGER (Non-Bayesian) or using the genotype from the Bayesian method (Bayesian). In the Bayesian cases, only genes with certainty above the indicated confidence level (K ≥ 0, 1, or 2) were taken into account. Each point corresponds to a twin pair.






METHODS


Sample Preparation, Sequencing, and Processing of Influenza Vaccination Data

Data from subjects PGP1, hu420143, and 420IV result from previously published BCR sequencing from blood samples taken at ten times relative to the administration of an influenza vaccine: −8 days, −2 days, −1 h, +1 h, +1 day, +3 days, +7 days, +14 days, +21 days, and +28 days. Peripheral blood was collected under the approval of the Personal Genome Project. Samples were prepared, sequenced and processed as described (23). Briefly, VH mRNA was selectively amplified by PCR using IGHV and IGHC region specific primers followed by sequencing on the Roche 454 platform. Sequence data were quality controlled and processed using custom scripts and aligned against the IMGT germline references using IMGT/HighV-QUEST version v1.1.1 (12).



Sample Preparation, Sequencing, and Processing of Multiple Sclerosis Data

Samples from subjects M2, M3, M4, and M5 were collected from autopsy material that included central nervous system and draining cervical lymph node tissue derived from patients with multiple sclerosis (24). Sequencing was performed as described in (24). Briefly, VH mRNA was selectively amplified by PCR using IGHV and IGHC region specific primers with 15 nucleotide unique molecular identifiers (UMIs). Amplicons where sequencing on the Illumina MiSeq platforming using the 2 × 250 kit according to the manufacturer's recommendations. The version of the sequence data used here was previously used to generate lineage tree topologies as simulation constraints (25). Briefly, sequence data was processed using pRESTO v0.3 (11) and Change-O v0.3.4 (21). Reference alignment was performed using IMGT/HighV-QUEST v1.1.1 (12) with the February 4th, 2013 version of the IMGT gene database.



Sample Preparation, Sequencing, and Processing of Healthy Monozygotic Twin Pair Data

Subjects with identifiers beginning with TW represent five pairs of monozygotic twins whose BCR repertoires were previously sequenced from blood samples (33). Peripheral blood was collected after obtaining written informed consent from all subjects, who participated in studies of licensed seasonal influenza vaccines under the Institutional Review Board approval at the Stanford University School of Medicine. Samples were prepared, sequenced and processed as described (33). Briefly, FACS sorted cells were used to prepare sequencing libraries from RNA using a protocol employing 5′RACE and 10 nucleotide UMIs. Libraries were sequencing on the Illumina MiSeq platform using the 2 × 300 kit according to the manufacturer's recommendations. UMIs and constant region primers were exacted from the raw reads using VDJPipe (34). Further processing was performed using usearch (35), pRESTO (11), Change-O (21), and IMGT/HighV-QUEST v1.3.1 (12).



Sample Preparation, Sequencing, and Processing of Myasthenia Gravis Data and Associated Healthy Controls

Subjects with identifiers beginning AR, MK, and HD are from patients with myasthenia gravis with autoantibodies targeting the acetylcholine receptor (AR) or muscle specific kinase (MK) or from healthy controls (HD). Peripheral blood was obtained from subjects after acquiring informed consent and the study was approved by the Human Research Protection Program at Yale School of Medicine. Naive and memory B cells sorted from these subjects were previously published (26). New data described here includes unsorted B cells from an additional subject MK06, and unsorted B cells from all subjects described in (26). All samples were prepared, sequenced and processed as previously described (26). Briefly, unsorted or FACS-sorted cells were used to prepare VH and VL sequencing libraries from mRNA using a protocol employing 5′RACE and 17 nucleotide UMIs. Libraries were sequenced on the Illumina MiSeq platform with the 2 × 300 kit according to the manufacturer's recommendations, except for performing 325 cycles for read 1 and 275 cycles for read 2. Sequence data was processed using pRESTO v0.5.0 (11), Change-O v0.3.0 (21), SHazaM v0.1.2 (21), and IMGT/HighV-QUEST v1.4.0 (12) with the July 7, 2015 version of the IMGT gene database. Sequence data was deposited in the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under BioProject accession PRJNA338795; sequencing runs used for this study are denoted A79HP, AAYFK, AAYHL, AB0RF, and AB8KB.



Genomic Sequencing of Predicted IGHV Alleles

Genomic DNA was extracted using the Qiagen DNeasy Blood & Tissue Kit from the peripheral blood of subjects MK04, MK05, and MK06; peripheral blood was collected as part of the previously published myasthenia gravis study (26). PCR primers were designed to fully amplify the exons and introns of each target IGHV gene locus (IGHV1-2, IGHV1-8, IGHV3-20, and IGHV1-69) from genomic DNA; sequences for each primer set are provided in Table S2. PCR amplicons for each gene were generated individually from respective genomic DNA samples using the Qiagen HotStarTaq Kit (Cat. No. 203443), and subsequently cloned using the Invitrogen pCR4 TOPO TA kit (Cat. No. K457502). DNA was isolated from 4 to 15 clones per gene target, and sequenced from both ends using Sanger. Sequence chromatograms were viewed and analyzed using SeqMan Pro (DNASTAR 13.0.2).



The Updated TIgGER Algorithm

The original TIgGER algorithm (8) was modified so that, for any set of sequences isolated from a single subject and best aligning to the same IgGRdb allele, the range of mutation counts analyzed would begin at the most frequent positive mutation count m and end at a mutation count of m + 9 (If m = 1, the updated algorithm will behave as the original). Additionally, any other mutation count at least 1/8 of the most frequent defines the start of a mutation range that is additionally analyzed, for improved sensitivity in cases where multiple novel alleles are assigned to the same IgGRdb allele; this mutation count may be either greater or less than the most frequent.



Application of TIgGER to a Human Cohort

For novel allele detection and genotype inference, TIgGER was applied on functional, unique sequences with detectable junction sequences. For each sample, the “findNovelAlleles” function with default parameters was applied with IMGT IGHV germline reference (downloaded on May 17, 2018). Next, the set of putative novel alleles were used in genotype inference using the “inferGenotype” function with default parameters. Alleles that were included in the resulting genotype, but were not present in the IgGRdb, were considered novel alleles.



Calculation of Distant Allele Detection Sensitivity

Pooled pre-vaccination sequences from subject PGP1 (i.e., samples taken at −8 days, −2 days, −1 h relative to vaccination and sequenced on the 454 platform) were used. This dataset was chosen because it did not show significant clonal expansions in response to vaccination; did not have sequencing primers extending into the 5′ ends of sequences, as was the case in the multiple sclerosis and twin subjects, giving us confidence in the true set of alleles carried by the subject. For all sequences that best aligned to a particular IGHV germline allele, a number of positions n between IMGT-numbered positions 1 and 312 (inclusive) were modified (“mutated”) in the germline being used by the updated TIgGER algorithm. Mutations of a nucleotide to itself we not allowed, in order to ensure n differences between the starting germline and the resulting sequence. This was done 100 times for each n between 1 and 30, to simulate a situation in which the nearest IgGRdb was n polymorphisms away from the novel allele to be discovered, with each iteration using a separate random set of polymorphisms. The fraction of times the correct allele was detected by TIgGER for each value of n vs. those detected at n = 0 (i.e., when TIgGER is allowed access to all IgGRdb alleles) was averaged across each germline sequence tested to determine the sensitivity as a function of n. For example, if for n = 15, 100/100 mutated variants led to the proper detection of the germline allele for 19 of 38 alleles, and in the remaining 19 alleles 90/100 mutated variants led to the proper detection of the germline allele in each case, then the sensitivity at n = 15 would be calculated as (19*100% + 19*90%) / 38 = 95%.



Bayesian Approach to Genotyping

A Bayesian framework with a Dirichlet prior for the multinomial distribution was adapted to genotype inference. To model the possible allele distributions, up to four distinct alleles were allowed in an individual's genotype (e.g., four alleles could correspond to a gene duplication with both loci being heterozygous). From the observed allelic frequencies, a posterior probability is calculated for a continuum of underlying biological models that set allelic distribution for each gene. For example, a gene can include two equally abundant alleles, or one allele that is twice as abundant as the second one due to gene duplication in one of the chromosomes (17). Prior distributions were initially set to reflect naive biological assumptions about the underlying dynamics that determine the allelic usage (see Figure S1). Following this initial approach, priors were modified by fitting empirically genotypes of the three subjects (all time points combined): PGP1, hu420143, and 420IV, constructed using the naive priors. The posterior probability for each model is given by: [image: image], where [image: image] is the allele probability distribution and [image: image] is the counts for the top four alleles. The certainty of the most probable model was calculated using a Bayes factor, [image: image], where [image: image] and [image: image] correspond, to the most and second-most likely models, respectively. The larger the K, the greater the certainty in the model. For clarity, consider a case where the most abundant four alleles appeared in 334, 295, 209, and 1 independent rearrangements (see Table S3). In this case, [image: image] is (334,295,209,1), the expected allele probability distributions for each of the different models are [image: image] (homozygous), [image: image], [image: image], or [image: image] (heterozygous with two alleles), [image: image] or [image: image] (heterozygous with three alleles), and [image: image] (heterozygous with four alleles, see Figure S1). [image: image] is set to [image: image]. In this case, the resulting likelihoods for the four different models are: log (KH) = −1000, log (KD) = −218.3, log (KT) = −3.17, and log (KQ) = −103.2, which results in the genotype call of three alleles with log (K) = 106.34. An output example of the Bayesian method is shown in Table S3.



Calculation of the Jaccard Distance

To estimate distance between genotypes of two subjects a Jaccard distance was calculated in the following way: (i) for each gene, one minus the ratio between the number of shared alleles over the number of unique alleles from both samples was calculated. For example, for two genotypes with allele assignments a and b the Jaccard distance was defined as [image: image]. Genes that appeared in only one of the samples were excluded. (ii) The overall distance between two genotypes was calculated by a weighted average of all individual gene distances, where the weights are the mean of the two Bayes factors (K) for each.




DISCUSSION

While the original TIgGER algorithm was very successful at detecting novel alleles, a significant limitation was that it could not detect novel V gene alleles that differed from known germline alleles by more than five SNPs. In addition, the original TIgGER genotyping approach was dependent on an arbitrary cutoff value for including genes in each subject's genotype, and did not quantify the certainty of these genotype calls. Here we have described how modifying the “mutation window” in which the algorithm searches for mutation patterns that are indicative of polymorphisms was able to overcome the five mutations limitation. We also developed a Bayesian approach for genotyping that does not depend on a strict cutoff and provides a certainty level for each genotype call. We applied the updated algorithm to AIRR-seq data from 26 genetically distinct individuals (23, 24, 26, 33), and were able to identify 28 novel IGHV alleles. Although we showed on simulated data that TIgGER could detect alleles an arbitrary distance from known alleles, the most distant novel allele identified in this cohort contained three polymorphisms relative to the closest known IgGRdb allele. Based on the distances between alleles in the IMGT IgGRdb, we previously showed that ~10% of these alleles differ by more than five SNPs from the nearest IgGRdb allele (8). While this does not directly imply that 10% of novel alleles will have more than 5 SNPs, we do expect that as TIgGER continues to be applied to datasets from more subjects, especially ethnically diverse populations, such alleles will be discovered.

The IMGT gene IgGRdb maintains its requirement of direct DNA-based allele evidence of any alleles to be included in the IgGRdb. We generated such validation for several TIgGER predictions, resulting in the inclusion of three novel IGHV gene alleles in IMGT: IGHV1-2*06, IGHV3-20*03, and IGHV1-69*17. Validation of the other gene alleles discovered via AIRR-seq by TIgGER will be a priority going forward. While the IMGT standard for inclusion is intended to help ensure the quality of the IgGRdb, it inhibits the ability of the IgGRdb to benefit from the large number of non-IgGRdb alleles that are being rapidly discovered from AIRR-seq analyses. The Germline Gene Database (GLDB) Working Group of the AIRR Community is currently working to develop alternative criteria for judging the validity of Ig genes that are inferred from AIRR-seq data (22). In the meantime, we have chosen to deposit the novel alleles we have detected into an alternative IgGRdb, the Immunoglobulin Polymorphism IgGRdb (IgPdb) (36). Dependency on the completeness of IgGRdb can be reduced by TIgGER, as we demonstrated in deriving the majority of several subjects' germline IGHV alleles starting from only a single gene allele per family. Further, a multiple alignment of the several sequences most-observed in a blood-based repertoire sample may be sufficient to remove the dependency on having a IgGRdb allele of each family, allowing for a more fully IgGRdb-blind derivation of alleles and V(D)J genotypes. Besides detecting several novel IGHV gene alleles in the genotypes of the 32 subjects in this study, we observed that no two IGHV genotypes appeared to be the same (37, 38), barring those of the five pairs of monozygotic twins. It may be the case that IGHV genotypes alone are sufficient to uniquely identify a subject. This would additionally be improved if IGKV/IGLV genotypes, as well as D and J genotype were also determined, and this is an important area of future work. However, we observed notable variation even in the inferred genotypes of monozygotic twins due to the depth of sequencing. Though we adapted a Bayesian approach that presents an additional criterion for evaluating the certainty level of the genotype (based on the K value), in order to accurately differentiate samples coming from different individuals additional work is still required. One direction for further improvement of sample differentiation, was suggested recently by applying a Bayesian approach to haplotype inference (38). We were able to accurately separate samples based on their genotypes from the subjects in the influenza time course, but these methods are affected by the sequencing depth. The influence of sequencing depth on the genotype call and its associated K value, was assessed on a single gene and is shown in Figure S2. It remains unclear how to adjust the Jaccard distance cutoff on the basis of sequencing depth, and we hope to explore this question and integrate dataset-tailored cutoffs into TIgGER's genotyping functionality in the future.

Overall, we have expanded upon the capabilities of the TIgGER algorithm, demonstrated its persistent need in the analysis of AIRR-seq data, and hope that it will continue to be of use to the AIRR-seq community. The latest version of TIgGER is available for download as an R package from The Comprehensive R Archive Network (CRAN; http://cran.r-project.org) with additional documentation available at http://tigger.readthedocs.io. TIgGER is part of the Immcantation framework (http://immcantation.org), which provide a start-to-finish analytical ecosystem for high-throughput AIRR-seq data analysis, and is also available through the Immcantation Docker container builds at https://hub.docker.com/r/kleinstein/immcantation.
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The V(D)J recombination forms the immunoglobulin genes by joining the variable (V), diversity (D), and joining (J) germline genes. Since variations in germline genes have been linked to various diseases, personalized immunogenomics aims at finding alleles of germline genes across various patients. Although recent studies described algorithms for de novo inference of V and J genes from immunosequencing data, they stopped short of solving a more difficult problem of reconstructing D genes that form the highly divergent CDR3 regions and provide the most important contribution to the antigen binding. We present the IgScout algorithm for de novo D gene reconstruction and apply it to reveal new alleles of human D genes and previously unknown D genes in camel, an important model organism in immunology. We further analyze non-canonical V(DD)J recombination that results in unusually long CDR3s with tandem fused IGHD genes and thus expands the diversity of the antibody repertoires. We demonstrate that tandem CDR3s represent a consistent and functional feature of all analyzed immunosequencing datasets, reveal ultra-long CDR3s, and shed light on the mechanism responsible for their formation.
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INTRODUCTION

Antibodies provide specific binding to an enormous range of antigens and represent a key component of the adaptive immune system. The antibody repertoire is generated by somatic recombination of the V (variable), D (diversity), and J (joining) germline gene segments. Immunosequencing has emerged as a method of choice for generating millions of reads that sample antibody repertoires and provide insights into monitoring immune response to disease and vaccination (1).

Information about all germline genes in an individual is a pre-requisite for analyzing immunogenomics data. However, nearly all immunogenomics studies rely on the population-level germline genes rather than germline genes in a specific individual that the immunosequencing data originated from. This approach is deficient since the set of known germline genes is incomplete (particularly for non-Europeans) and contains alleles that resulted from sequencing and annotation errors (2, 3). Moreover, it is non-trivial to figure out which known allele(s) is present in a specific individual since the widespread practice of aligning each read to its closest germline gene results in high error rates (3). These errors hide the identity of the individual germline genes, make it difficult to analyze somatic hypermutations (SHM) and complicate studies of antibody evolution (4–6).

Personalized immunogenomics (i.e., identifying individual germline genes) is important since variations in germline genes have been linked to various diseases (7), differential response to infection, vaccination, and drugs (8, 9), aging (10), and disease susceptibility (7, 11, 12). However, since the International ImMunoGeneTics (IMGT) database is incomplete even in the case of well-studied human germline genes (13), there exist still unknown human allelic variants that are difficult to differentiate from SHMs. In the case of immunologically important but less studied model organisms, such as camels or sharks, the germline genes remain largely unknown. Unfortunately, since assembling the highly repetitive immunoglobulin locus from whole genome sequencing data faces challenges (14), the efforts like the 1,000 Genomes Project have resulted only in limited progress toward inferring the population-wide census of germline genes (14–16).

In addition to personalized immunogenomics, the incompleteness of the IMGT database negatively affects analysis of monoclonal antibodies. Existing tools for antibody sequencing from tandem mass spectra (17, 18) rely on a comprehensive database of V, D, and J genes to assemble tandem mass spectra into an intact antibody. Lack of such databases for many species limits applications of Valens (Digital Proteomics), SuperNova (Protein Metrics), and other software tools for antibody sequencing.

Although the personalized immunogenomics approach was first proposed by Boyd et al. (19), the manual analysis in this study did not result in a software tool for inferring germline genes. Gadala-Maria et al. (20) developed the TIgGER algorithm for inferring germline genes and used it to discover 11 novel allelic V segments. However, 20 stopped short of de novo reconstruction of the germline genes and acknowledged that it is important to develop algorithms for finding diverged alleles that TIgGER is not able to find. In the case of V and J genes, this challenge was addressed by Corcoran et al. (21), Zhang et al. (22), and Ralph and Matsen (3). However, as Ralph and Matsen (3) commented, the more challenging task of de novo reconstruction of D genes remains elusive. This is unfortunate since D genes contribute to the complementarity determining region 3 (CDR3) that covers the junctions between V, D, and J genes and represents the highly divergent part of antibodies. We describe the IgScout algorithm for de novo inference of D genes and apply it to diverse immunosequencing datasets with the goal to reconstruct dominant variants of highly abundant D genes and discover novel highly abundant variations.

Although many studies analyzed patterns of V-D-J pairing (23, 24), there is still a shortage of studies of unusual recombination events such as V(DD)J recombination incorporating two D genes into a single unusually long CDR3 with tandem fused IGHD genes (or tandem CDR3). Meek et al. (25) were the first to reveal a few tandem CDR3s, thus confirming the V(DD)J recombination conjecture put forward by Kurosawa and Tonegawa (26). However, since tandem CDR3s are rare, they remained elusive for the next two decades and (27, 28) even argued that tandem CDR3s found in Meek et al. (25) represent artifacts. However, Briney et al. (29) and Larimore et al. (30) demonstrated that tandem CDR3s do exist (at frequency 1 per 800 B-cells) by analyzing high-throughput immunosequencing datasets.

As emphasized in Briney et al. (29), detecting V(DD)J recombination has to be done with caution since it is often confused with standard V(D)J recombination. Although they came up with a heuristic for detecting tandem CDR3s, there is still no software for detecting tandem CDR3s and it remains unclear how many tandem CDR3s found in Briney et al. (29) represent false positives. We thus extended the functionality of the IgScout algorithm to finding tandem CDR3s and revealed that V(DD)J recombination is a functional (rather than aberrant) feature with frequency varying from 1 per 200 to 1 per 2,500 B-cells across various datasets. Finally, we revealed ultra-long tandem CDR3s and shed light on the mechanism responsible for their formation.



RESULTS


Immunosequencing Datasets

We analyzed the following datasets described in the Supplemental Note “Immunosequencing datasets”:

• HEALTHY: 14 datasets from 14 healthy human donors,

• ALLERGY: 24 datasets from six allergy patients (31),

• HIV: 13 datasets from two HIV-infected patients (32),

• NAÏVE: 7 datasets from naïve B cells of healthy human donors,

• PROJECT10: 600 datasets from various humans resulting from 10 NCBI projects

• CAMEL: 6 datasets from three healthy camels (33).



Constructing CDR3 Datasets

We illustrate the work of IgScout using one of the HEALTHY datasets (Set 1) containing heavy chain repertoires extracted from peripheral blood mononuclear cells (PBMC). The IgReC tool (34) extracted 228,619 distinct CDR3s from this dataset. To minimize impact of sequencing and amplification errors, we clustered similar CDR3s (differing by at most three mismatches) and constructed consensus for each cluster resulting in 98,576 consensus CDR3 of average length 46 nucleotides.

Each CDR3s typically starts from a short suffix of a V gene and ends with a short prefix of a J gene. Since these suffixes and prefixes negatively affect reconstruction of D genes, IgScout trims them as described in the Supplemental Note “Preprocessing CDR3 datasets.” This procedure reduces the average length of CDR3 strings (46 nucleotides) to 30 nucleotides strings that represent substrings of CDR3s that are not encoded by IGHV or IGHJ genes. The result of the procedure is the set of strings CDR3*. We refer to the number of strings in CDR3* as |CDR3*|.



Overview of Human D Genes

The human immunoglobulin (IGH) locus contains 27 D genes that vary in length from 11 to 37 nucleotides. Since two pairs of human D genes are identical, there exist only 25 distinct D genes. Since the IMGT database refers to D genes using rather long names and since these names do not reveal the ordering of D genes in the IGH loci (that is important for analyzing tandem CDR3s), it is difficult to visualize the IgScout results across all D genes and across multiple immunosequencing datasets. We thus renamed distinct human D genes from D1 to D27 in the increasing order of their positions in the IGH locus. The IMGT database also contains seven alleles of D genes denoted D2*2, D2*3, D3*2, D8*2, D10*2, D16*2, and D21*2. See Table 1 and Supplemental Note “Information about human D genes” for details.



Table 1. Positions and lengths of human D genes.
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Frequent k-mers in D Genes

The problem of inferring germline genes can be formulated as the Trace Reconstruction Problem (35) in information theory described in the Methods section. IgScout is a heuristic for solving this problem that is inspired by the RepeatScout algorithm for de novo repeat finding (36) and that is based on analyzing frequent k-mers (contiguous strings of length k) in CDR3s. We illustrate the work of IgScout using k-mers of size 15 (all human D genes are longer than 15 nucleotides except for 11 nucleotide long gene D27).

The human D genes contain 305 15-mers. We classify a k-mer as known if it occurs in a human D gene (from IGHD1-1 to IGHD7-27), mutated if it differs from a known k-mer by a single substitution, and trimmed if it contains a known (k-2)-mer. All other k-mers are called foreign. Twenty-seven percent of strings in the CDR3* dataset contain a known 15-mer and 35% contain either a known, or a mutated, or a trimmed 15-mer.

We classify a k-mer as common if its abundance exceeds fraction* |CDR3*| (the default value fraction = 0.001). Figure 1 and the Supplemental Note “Common k-mers” present distributions of frequencies of all common 15-mers in various datasets. Although the vast majority of common k-mers are known, mutated, or trimmed, some of them are foreign. These foreign common k-mers have to be treated with caution since they may trigger false positive inferences of D genes.
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FIGURE 1. Abundances of all 443 common 15-mers (top) and the motif logo constructed for the most abundant 15-mer CGATTTTTGGAGTGG in the CDR3* dataset constructed from the Set 1 dataset (bottom). (Top) The CDR3* dataset contains 91% of all 15-mers appearing in human D genes (all 15-mers in human D genes are unique, i.e., appear in a single D gene). Four hundred forty-three common 15-mers in the CDR3* set have abundances varying from 83 to 3,141. The y–axis represents the number of common 15-mers with given abundance (in logarithmic scale). Red, yellow, violet, and blue bars represent the number of common 15-mers with given abundance among known, mutated, trimmed, and foreign 15-mers, respectively. There exist 175 known, 195 mutated, 70 trimmed, and three foreign common 15-mers. The histogram represents 100 bins of width 30 each. (Bottom) The [image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image] is the initial 28-nucleotide long sequence formed by positions in the motif logo with high information content (37). The motif logo was constructed using 3,141 sequences from the set CDR3* containing the most abundant k-mer. After extending this 28-mer, IgScout reconstructed the 30-mer [image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image] that is a substring of the 33-nucleotide long IGHD3-3 gene [image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image][image: image] acc shown below the logo.





From Frequent k-mers to D Gene Reconstruction

IgScout selects a most abundant k-mer in the CDR3* dataset, aligns all CDR3 that contain this k-mer (using this k-mer as the alignment seed), and constructs the motif logo of the resulting alignment (Figure 1). It further trims all positions of the motif logo with the information content below IC (the default value IC = 0.5) and computes the consensus string. Afterwards, it extends the consensus strings to the right and to the left (the PrefixExtension and SuffixExtension steps in the Supplemental Note “IgScout pseudocode”) to construct a putative D gene as described in the Methods section. Finally, the algorithm removes the sequences that contain k-mers from the identified putative D gene from the set CDR3*, finds a most abundant k-mer in the resulting dataset, and iterates. IgScout stops when a most abundant k-mer is not a common k-mer (see Supplemental Notes “IgScout pseudocode,” “IgScout parameters,” and “Benchmarking IgScout on simulated immunosequencing datasets”). Figure 2 demonstrates that IgScout reconstructs many known human D genes.
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FIGURE 2. IgScout results on the CDR3* dataset. Each row shows a reconstructed string (strings are inferred in the order from the top to the bottom). Dark green segments correspond to reconstructed substrings of human D genes (flanking non-reconstructed nucleotides are shown in standard green). The most frequent 15-mers that were used for reconstructing the corresponding D genes are shown in red (their abundances are shown on the left). The reconstructed substring of the D2 gene (IGHD2-2) also occurs in D2*2 and D2*3 genes. Seventeen strings reconstructed by IgScout represent substrings of 17 human D genes. IgScout misses short prefixes and suffixes of D genes: 1.4 nucleotides on the left and 1.7 nucleotides on the right, on average for the Set 1 dataset (0.9 nucleotides on the left and 1.5 nucleotides on the right, on average after combining reconstructions over all HEALTHY datasets). IgScout did not reconstruct eight human D genes: D1 (IGHD1-1), D4 (IGHD4-4), D7 (IGHD1-7), D14 (IGHD1-14), D20 (IGHD1-20), D23 (IGHD4-23), D25 (IGHD6-25), and D27 (IGHD7-27) that contributed to few CDR3 in the Set 1. These genes have the following abundances of their most frequent 15-mers: 43 for D1, 59 for D4, 83 for D7, 0 for D14, 33 for D20, 75 for D23, 0 for D25, and 0 for D27.



Similarly to the existing tools for reconstructing V and J genes (that typically trim a few nucleotides in the beginning/end of the reconstructed genes), IgScout also trims a few nucleotides in the beginning/end of the reconstructed D genes. Although lowering the IC threshold would reduce the number of trimmed nucleotides, we decided not to do it since lowering this parameter may result in erroneous reconstructions and since the trimmed nucleotides hardly affect the downstream applications of IgScout. See Supplemental Note: “How trimmed (rather than complete) D genes affect the downstream analysis of immunosequencing datasets.”

Indeed, the personalized immunogenomics applications [such as the discovery of “deficient” germline variants that lead to poor responses to vaccination (12)] are hardly affected by the fact that all existing tools for inferring the V, D, and J genes trim a few nucleotides from the ends. Reconstruction of monoclonal antibodies from tandem mass spectra and various proteogenomics applications are also hardly affected by this trimming. Moreover, in the case of human germline genes (and other genomes with well-characterized germline genes) the trimmed nucleotides can be tentatively reconstructed based on similarity with known germline genes (as has been done in previous studies of V and J genes). However, in some cases, assigning terminal nucleotides by homology might lead to the inference of erroneous alleles (38–40). Ideally, the gene inference problem should be followed by validation using genomic data that raises need in paired Rep-Seq and WGS datasets from the same individual. The antibody analysis and engineering in model organisms can also be done with partial D genes.



Limitations and Advantages of IgScout

The IgScout pipeline consists of three steps: (i) preprocessing Rep-seq reads; (ii) inferring D genes; (iii) analyzing VDJ recombinations based on the inferred genes (Figure 3). The preprocessing step extracts CDR3s, constructs consensus CDR3s, and trims prefixes and suffixes of CDR3s to exclude suffixes of V genes and prefixes of J genes. The inference step derives D genes from the set of trimmed CDR3s and combines them with the set of known D genes (if available). The final step computes usage of D genes (including analysis of the allele usage of heterozygous D genes) and finds CDR3s with tandem D-D fusions.
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FIGURE 3. The IgScout pipeline. (Top) IgScout steps. (Bottom). IgScout performance on a hypothetical naive dataset (left), a dataset with small clonal lineages (middle), and a dataset with large clonal lineages (right). We assume that all CDR3s are derived from the same D gene (shown in gray). CDR3s corresponding to the same ancestral VDJ recombination are shown by the same color. Sequencing and amplification errors are shown in red; somatic hypermutations are shown in green. The reconstructed (missing) part of the inferred D gene is shown in gray (light gray).



Analysis of simulated CDR3s suggests that IgScout correctly reconstructs long D genes (length at least 20 nucleotides) if they give rise to at least 1% of CDR3s but misses short D genes (length < 20 nt) if they give rise to < 2.5% of CDR3s (see Supplemental Note “Benchmarking IgScout on simulated immunosequencing datasets”).

Since it is difficult to distinguish amplification artifacts from SHMs, IgScout takes a conservative approach and partially removes the clonal diversity (step “Hamming Graph (HG) Constructor” in Figure 3) to avoid propagation of amplification errors. Since naïve B cells do not have SHMs, the preprocessing step results in correcting amplification errors and enables reconstruction of long fragments of D genes. As a result, IgScout performs well on datasets with a sufficiently large number of consensus CDR3s (Figure 3). Below we analyze how the number of consensus CDR3s in real datasets affects the IgScout performance.

If a dataset contains hypermutated sequences, then the processing step keep SHMs in the consensus CDR3s. However, if the dataset does not have large clonal lineages (e.g., PBMC from a healthy donor) and the number of consensus CDR3 is large (Figure 3), IgScout treats unremoved SHMs as random errors and still reconstructs mutation-free D genes. However, if a dataset is formed by large clonal lineages, the preprocessing step creates a small number of consensus CDR3s with abundant SHMs. Although IgScout is able to reconstruct some over-represented D genes for such datasets, some of the inferred D genes may still contain SHMs (Figure 3). We thus suggest to use caution while applying IgScout to clonally expanded datasets (see Supplemental Note “How IgScout results are affected by the number of consensus CDR3s and cell types”).



Reconstruction of Human D Genes

IgScout is best suitable for reconstructing D genes in the case of naive datasets and PBMC datasets with small clonal lineages. To illustrate this point, we applied IgScout to the NAÏVE, HEALTHY, ALLERGY, and HIV datasets. The number of consensus CDR3s in the NAIVE datasets varies from 1,000 to 115,000. Figure 4 shows that IgScout reconstruct the same set of D genes as on the simulated datasets for naïve datasets with at least 20,000 consensus CDR3s. Figure 4 shows that IgScout performs well on the HEALTHY and ALLERGY datasets and reconstructs the same set of D genes as for the simulated and NAÏVE datasets. Since number of consensus CDR3s in some of the HEALTHY and ALLERGY datasets is as low as 40,000, we recommend applying IgScout to dataset with small clonal lineages if the number consensus CDR3s exceeds 40,000. Although the HIV datasets also has many consensus CDR3s (varying from 19,000 to 55,000), the high SHM rate in the HIV datasets makes it difficult to reconstruct some short D genes (Figure 4). We thus suggest to use caution while applying IgScout to highly hypermutated datasets (such as repertoires of HIV and lymphoma patients.
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FIGURE 4. De novo reconstructions of D genes across NAÏVE, HEALTHY, ALLERGY, and HIV datasets. Human D genes that were reconstructed (missed) are shown by colored (gray) cells. Green and orange cells correspond to reconstructed D genes listed in the IMGT database. Green cells correspond to substrings of known D genes. Orange cells correspond to substrings that differ from substrings of known D genes by the first or the last nucleotide. Blue cells correspond to novel variants of D10 (IGHD3-10) and D16 (IGHD3-16) genes. For the Set5, Set7, ALLERGY1–ALLERGY4, ALLERGY17–ALLERGY20, HIV1–HIV13, IgScout inferred two variants (novel and known) of D10 (IGHD3-10). The NAIVE datasets are listed in the increasing order of the number of consensus CDR3s in them.



Figure 5 illustrates that IgScout reconstructed 18 out of 25 human D genes across all HEALTHY datasets, Supplemental Note “Summary of IgScout results across diverse immunosequencing datasets” describes inference of 20 human D genes across multiple immunosequencing datasets. Supplemental Note “Reconstructing variants of human D genes” describes inference of five allelic variants of the D7, D10, D16, D17, and D23 genes, However, since variations in D7, D17, and D23 genes affect the first or last nucleotides of the corresponding D genes, they likely represent computational artifacts caused by abundant nucleotides at the flanking positions of the D genes within CDR3s. In contrast, variations of the D10 and D16 genes (referred to as D10+ and D16+, respectively) have mutations in the middle of D genes (Figure 5). They were inferred from multiple datasets (Set 5 and Set 7 for D10+, and Set 5, Set 7, Set 9, and Set 13 for D16+) and are consistent with alleles identified in previous studies [alleles IGHD3-10*p03 and IGV3-16*p03 reported in Lee et al. (41) and Boyd et al. (19)], but still missing in IMGT. Supplemental Note “Reconstructing variants of human D genes” illustrates that 50 (42) samples among 600 samples in the PROJECTS10 dataset support D10+ (D16+) variants and presents two more variants D10++ and D16++.
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FIGURE 5. De novo reconstructions of D genes across HEALTHY datasets (top) and allelic variants D10+ and D16+ inferred by IgScout (bottom). (Top) Genes reconstructed at consecutive steps of IgScout for all HEALTHY datasets. Rows correspond to the datasets and columns correspond to the IgScout steps. Each cell is marked by a reconstructed D gene (each D gene is assigned a unique color). Cells marked with the “+” sign refer to strings that differ from known D genes by at most two nucleotides and correspond to putative novel variants (shown in red). (Bottom) Allelic variants D10+ and D16+ inferred by IgScout. Differences from human D genes and their allelic variants listed in the IMGT database are shown in red.



To demonstrate that D10+ and D16+ indeed represent new variants of D10 and D16 genes, we analyzed 40 whole genome sequencing datasets from the population-wide study of esophageal cancer (PRJNA427604 project) and searched for exact occurrences of D10+ and D16+ in reads. Both variations were detected in five out of 40 datasets (SRR6435661, SRR6435676, SRR6435686, SRR6435691, and SRR6435692) with the number of reads supporting D10+ (D16+) varying from 8 to 14 (30 to 58) across these five datasets.

In general, IgScout has limitations with respect inferring both variants of a heterozygous D gene. Specifically, if two variants of the same D gene share a k-mer and IgScout selects this k-mer as a seed, the current version of IgScout may only reconstructs the most abundant variant of this D gene. We plan to enable inference of heterozygous D genes with two novel alleles and thus address this limitation in the next version of IgScout. Currently, to analyze allele usage of heterozygous human D genes, IgScout combines the inferred D genes with known D genes.



Reconstruction of Camel D Genes

Although camel V genes were inferred in Conrath et al. (43), camel D genes remain unknown. We analyzed six CAMEL datasets from three camels (VH and VHH libraries for each camel) labeled as Camel 1VH, 1VHH, 2VH, 2VHH, 3VH, and 3VHH (33). While the VH libraries contain the heavy chain of the conventional (both heavy and light chain) camel antibodies, the VHH libraries contain the heavy chains of the single-chain antibodies.

We extracted camel CDR3s by aligning camel antibody repertoires against the known camel V and J genes using the IgReC tool (34). For the Camel 1VH dataset, IgScout constructed 60,066 consensus CDR3 sequences of average length 48 nucleotides. The CDR3* dataset for Camel 1VH has total length 1,400,360 nucleotides (the average length 23 nt).

IgScout reconstructed four D genes in the case of the Camel 1VH dataset that we refer to as D1, D2, D3, and D4 (see Supplemental Note “Reconstructing camel D genes”). It reconstructed four putative D genes in datasets Camel 1VHH, and Camel 2VH, and three putative D genes in the remaining three camel datasets (17 strings in total) that are largely consistent with genes D1, D2, D3, and D4 derived from the Camel 1VH dataset (previous studies assumed that the camel genome has a single germline D gene (43). Supplemental Note “Reconstructing camel D genes” illustrates that all camel D genes are shared between the VH and VHH datasets. Supplemental Note “Usage of camel D genes” demonstrates that the camel D genes have strikingly different usage in the VH and VHH antibodies.



D Gene Usage

Twenty-five human D genes form a set of strings that we refer to as D-Genes. Given an arbitrary string Target, a string D from D-Genes, and a parameter k, we say that a string Target is formed by D if it contains a k-mer from D but does not contain k-mers from other strings in D-Genes (the default value k = 11). We classify a CDR3 as traceable if it is formed by a D gene and non-traceable, otherwise. The percentage of traceable CDR3s is rather conservative across all HEALTHY datasets: ≈60% of CDR3s in the HEALTHY datasets are traceable (Supplemental Note “Traceable CDR3s”).

Given a set of strings Strings and a string D from D-Genes, we define usage(Strings, D-Genes, D) as the fraction of traceable strings in Strings formed by the string D. We are interested in usage(CDR3*, D–Genes, D) for each human D gene. Supplemental Note “Traceable CDR3s” analyzes the usage of all human D genes across all HEALTHY datasets. Supplemental Note “D gene classification by IgScout and IgBlast” compares IgScout and IgBlast classification of D genes forming CDR3s.

We analyzed the usage of known and novel allelic variants (D10+ and D16+) across all HEALTHY datasets. Figure 6 reveals that usage of allelic variants of D2 and D3 is consistent across all datasets with D2*2 and D3 as dominant variants. However, the Set 5 has different dominant variants as compared to other datasets: D8*2 (compared to D8 in all other datasets); D10+ (compared to D10 in all other datasets); and D21 (compared to D21*2 in all other datasets). The variant D16+ is dominant in Sets 5, 7, 9, and 13, while the D16 gene is dominant in the remaining eight datasets.
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FIGURE 6. Usage of D genes with known and novel allelic variants across all HEALTHY datasets. Horizontal black lines sub-partition the matrix into six sub-matrices corresponding to allelic variants of D2 (IGHD2-2), D3 (IGHD3-3), D8 (IGHD2-8), D10 (IGHD3-10), D16 (IGHD3-16), and D21 (IGHD2-21). For each D gene and each dataset, we computed the percentage of usage of each variant. Values in cells vary from 0 (blue) to 100 (red). White cells correspond to values ~50% and likely represent cases when a single individual carries different variants of a given D genes on two different chromosomes.





Tandem CDR3s

Given strings D and D', and a parameter k, we say that a string Target is formed by D and D' if it contains k-mers from both D and D' and a k-mers from D' starts after a k-mer from D ends. Since tandem CDR3s represent a small fraction of all CDR3s, we set the default value k = 11 (rather than k = 15 for all CDR3s) to increase the number of identified tandem CDR3s. Although a smaller value of k may lead to identification of pseudo-tandem CDR3s, the Methods section describes how to filter out such pseudo-tandem CDR3s.

There exist 187 tandem CDR3s formed by two D genes in the CDR3* dataset (Figure 7). We denote the longest substring between a tandem CDR3 Target and D (Target and D') as Dmatch(D'match) and represent a tandem CDR3 Target as a concatenate of five strings prefix [image: image] Dmatch [image: image] middle [image: image] D'match [image: image] suffix. We define the span of a tandem CDR3 formed by D and D' as the substring Dmatch [image: image] middle [image: image] D'match and inter-D insertion as the substring middle (Figure 7).


[image: image]

FIGURE 7. A tandem CDR3 formed by genes D3 (IGHD3-3) and D5 (IGHD5-5) (top), a pseudo-tandem CDR3 formed by genes D10 (IGHD3-10), and D16 (IGHD3-16) (middle), and the tandem matrix for all tandem CDR3s across all HEALTHY datasets (bottom). (Top) A tandem CDR3 with Dmatch = [image: image], middle = CAGCCA, and D'match = [image: image]. (Middle) The pseudo-tandem CDR3, formed by genes D10 (IGHD3-10) and D16 (IGHD3-16). This CDR3 was formed by a single gene D10 (IGHD3-10) with three mutations (shown in red). IgScout filters out most pseudo-tandem CDR3s. (Bottom) The number in a cell (i,j) shows the total number of tandem CDR3s formed by genes Di and Dj across all HEALTHY datasets. Empty cells correspond to pairs of D genes that do not form tandem CDR3s. Genes D4 and D5 appear in two copies in the IGH loci. The second copy of D4 (IGHD4-11) appears between D10 (IGHD3-10) and D12 (IGHD5-12). The second copy of D5 (IGHD5-18) appears between D17 (IGHD4-17) and D19 (IGHD6-19). The vast majority of tandem CDR3 correspond to cells in the upper half of the matrix. The only populated column in the lower part of the tandem matrix corresponds to the D5 gene and likely results from tandem CDR3s formed by the second copy of D5 in the IGH locus.



Briney et al. (29) emphasized that detecting tandem CDR3s has to be done with caution since they are often confused with pseudo-tandem CDR3s formed by the standard V(D)J recombination (Figure 7). The Methods section describes how IgScout detects pseudo-tandem CDR3s. One hundred and fourteen out of 187 tandem CDR3s are not pseudo-tandem in the CDR3* dataset.



Tandem Bias

There exists 114 tandem CDR3s in the Set 1 dataset and 1900 tandem CDR3s across all HEALTHY datasets. Figure 7 represents all tandem CDR3s as a tandem matrix and reveals that the vast majority of them correspond to cells in the upper half of this matrix. If tandem CDR3s were computational artifacts, we would expect similar numbers of CDR3s in the upper and lower parts of the tandem matrix. We define the tandem bias as Nlower / (Nupper + Nlower), where Nupper, and Nlower is the sum of entries in the upper and lower parts of the tandem matrix, respectively (we assume that the main diagonal belongs to the lower part of the matrix). The tandem bias varies from 0.03 to 0.21% across various datasets (see Supplemental Note: “Analysis of tandem CDR3s).

Since most pairs of D genes in tandem CDR3s contribute to the upper part of the tandem matrix (and thus follow the order of D genes in the IGH locus), entries in the lower part of the tandem matrix likely represents false positives. However, some of them may reveal possible duplications of D genes, e.g., the D22 row in the lower part of the tandem matrix in Figure 7 reveals many tandem CDR3s. Analysis of the hepatitis patient 1,776 in the PROJECTS10 dataset (44) revealed particularly many entries in the D22 column in the lower part of the tandem matrix, suggesting a duplication of the D22 gene in this patient (see Supplemental Note “Analysis of tandem CDR3s”). Kidd et al. (23) analyzed biases in the D-J pairing and also suggested that D22 may be duplicated in some individuals.



Ultra-Long CDR3s Reveal Unusual Recombination Events

One thousand nine hundred tandem CDR3s across all HEALTHY datasets contain 1,081 distinct inter-D insertions, varying in length from 0 to 153 nucleotides. The two longest inter-D insertions (denoted I1 and I2) appear in the Set 1 and have length 153 nucleotides. They are formed by genes D9 and D10, differ by a single nucleotide, and appear in CDR3s differing by six nucleotides. Surprisingly, the inter-D insertion I2 coincides with the sequence of the IGH locus between the D9 and D10 genes. Germline D genes are flanked by recombination signal sequences (RSSs) with 12-nucleotide long spacer and the inter-D insertion I2 starts with the right RSS of D9 and ends with the left RSS of D10 (Supplemental Note “Ultra-long tandem CDR3s”).

Thus, ultra-long tandem CDR3s reveal unusual RSS skipping events during somatic recombination: skipping the right RSS of D9 and left RSS of D10 led to a tandem CDR3 representing a concatenate D9 + I2 + D10. Although the found example is not productive, we also detected RSS skipping in nine productive ultra-long CDR3s across all HEALTHY and ALLERGY datasets. All productive CDR3s are formed by skipping of the right RSS of D22. Instead of it, somatic recombination uses a cryptic RSS (CACAGCA + ACCCAAACA) located at the distance 129 nt from the end of D22 and forms ultra-long CDR3s containing a genomic fragment of the IGH locus that starts with the right RSS of D22 (Supplemental Note “Ultra-long CDR3s”). The discovery of productive ultralong CDR3s challenges the conventional view of germline genes as non-overlapping substrings of DNA and reveals the first example of nested D genes, when one D gene is contained within another D gene.

The existing immunosequencing protocols are likely to miss ultra-long immunoglobulins since they are not designed to capture the abnormally long variable regions (exceeding ~400 nt). We captured reads containing ultra-long tandem CDR3s because the 300-nucleotide long paired reads (overlapping by only 50 nucleotides) in the Set 1 and ALLERGY datasets are longer than reads used in most other immunosequencing datasets. Thus, even if ultra-long tandem CDR3s were common, they would likely remain below the radar of most immunosequencing studies.



Tandem CDR3s Contribute to Adaptive Immune Response

We investigated whether tandem CDR3s contribute to the adaptive immune response by analyzing their isotypes. Since IgG, IgA, and IgE isotypes occur in plasma and memory B cells subjected to the antibody-antigen interactions, these isotypes they indicate (in difference from IgM isotypes common in memory and naïve B cells) that the corresponding antibodies participate in the adaptive immune response.

We inferred isotypes in the ALLERGY and HIV datasets using markers described in Levin et al. (31) (Figure 8). The vast majority of tandem CDR3s from the ALLERGY dataset correspond to the IgM isotype and thus are produced by memory and naïve B cells. In contrast, ~60% of tandem CDR3s in the HIV dataset correspond to the IgG type. This observation suggests that tandem CDR3s in the HIV-infected patients arise from immunoglobulins that are produced by plasma cells and thus might contribute to the immune response against HIV antigens.


[image: image]

FIGURE 8. Fractions of IgM, IgG, IgE, and IgA isotypes representing tandem CDR3s in the repertoires from the ALLERGY and HIV datasets.






DISCUSSION

Since many human germline alleles remain unknown (particularly for non-European subjects), missing alleles may mislead clinical decisions (45) and lead to erroneous derivation of clonal lineages due to misinterpretations of SHMs. Thus, finding new germline alleles and building personalized sets of germline genes for each individual is important for downstream analysis of immunosequencing datasets.

Although there exists a number of tools for inferring V and J genes (3, 21, 22), a more difficult problem of reconstructing D genes remains open. IgScout aims to reconstruct all D genes explaining a large percentage of the VDJ recombination in an antibody repertoire rather than to reconstruct all D genes. The IMGT database reflects the genomic diversity of D genes but not their recombinant diversity (information about rearrangements, transcription, and translation of D genes). Since assemblies of the highly repetitive IGH loci are fragmented and error-prone (7, 14, 42, 46) reconstruction of all germline genes from the whole-genome sequencing data is a difficult problem. Although the IGH locus is extremely diverse (16), it remains largely unknown how it varies across the human population. Moreover, even in the case when the IGH locus is correctly assembled, prediction of the functional germline genes is a non-trivial problem (2, 13).

Immunosequencing datasets reflect the recombinant diversity of antibody repertoires and thus complement the genomic datasets. If some D genes do not contribute to the VDJ recombination (e.g., our analysis suggests that genes D1, D14, D20, D25, and D27 do not significantly contribute to VDJ recombination in any of the analyzed datasets), they have limited contribution to immune response. In this paper, we focused on reconstructing D genes shaping the recombinant diversity rather than all D genes.

IgScout reconstructed 20 out of 25 human D genes across multiple datasets and missed genes D1, D14, D20, D25, D27 that form a small number of CDR3s (< 0.1% each) across all analyzed datasets. It remains unclear whether some of these genes ever contribute to any CDR3s, for example genes D14 and D25 do not form any CDR3s in most datasets (few CDR3s formed by these D genes in some datasets may represent computational artifacts).

IgScout revealed four new allelic variants (D10+, D10++, D16+, and D16++), thus increasing the number of known variants of human D genes from 7 to 11. These new variants are unlikely to be computational artifacts since they were found in dozens immunosequencing datasets from distinct individuals and many whole genome sequencing datasets. The frequency of the already known Single Nucleotide Polymorphisms (SNPs) in D genes exceeds the frequency of SNPs in the entire human genome by two orders of magnitude (12 SNPs for all D genes of total length only 288 nucleotides).

Although IgScout revealed four novel variants of human D genes and inferred camel D genes, these genes will not be included in the IMGT database since they haven't been experimentally confirmed yet. Similarly to Gadala-Maria et al. (20), we argue that, like in other areas of genomics, the time has come to add such prediction to the IMGT database. For example, the lion's share of genes in genomic databases represent computational predictions that haven never been experimentally confirmed. We argue that IMGT should classify alleles with varying levels of supporting evidence, not unlike classification systems used in other biological databases and in the recently established Open Germline Receptor Database (OGRDB), a new repository of germline genes maintained by The Adaptive Immune Receptor Repertoire (AIRR) Community (47).

Although IgScout is not specifically designed for reconstructing V and J genes, it turned out that its applications are not limited to reconstructing D genes (see Supplemental Note “De novo reconstruction of human J genes”). In addition to de novo reconstruction of D genes, it also detects tandem CDR3s. Briney et al. (29) postulated that tandem CDR3s mostly appear in naïve B cells and thus do not contribute to adaptive immune response. In contrast, our analysis revealed that ~60% of tandem CDR3s in the HIV dataset correspond to plasma and memory B cells.



METHODS


Inferring Germline Genes as the Trace Reconstruction Problem

In information theory, a string S yields a collection of traces, where each trace is independently obtained from S by substituting each symbol in S by another symbol from a fixed alphabet with a given probability δ. Given the traces and the value δ, the Trace Reconstruction Problem (35) is to reconstruct the original string S. De novo reconstruction of D genes results in a more complex version of the Trace Reconstruction Problem where traces are generated by multiple strings and each trace is obtained from one of these strings by (i) randomly trimming it from both sides, (ii) adding a randomly generated prefix in the front of the string, and (iii) adding a randomly generated suffix in the end of the string. Given a set of such traces (modeled by a set of trimmed CDR3s extracted from an immunosequencing dataset), the goal is to reconstruct the original set of strings.



Extending the Consensus String

IgScout trims all positions of the motif logo with the information content below IC and computes the consensus string. Afterwards, it extracts the first k-mer of the consensus string and finds all CDR3s that contain this k-mer. If the position preceding the first k-mer in these reads has information content exceeding a threshold, IgScout adds the most frequent nucleotide at this position to the consensus and iterates. Afterwards, it applies a similar procedure to the last k-mer of the consensus string. The resulting extended consensus is reported as a putative D gene (Figure 1).



Detecting Pseudo-Tandem CDR3s

Given strings Span and S, we define distancet(Span,Target) as the minimum Hamming distance between t-mers in Span and S. Given a parameter Δ (the default value Δ = 5) we define the Δ-distance between strings Span and Target as distancet(S,Target) for t = |Span|-Δ, where |Span| stands for the length of the string Span. Finally, we define the Δ-distance between a string Span and a set of strings Strings as the minimum Δ-distance between Span and all strings in Strings.

We computed the Δ-distance between the spans of all 187 identified tandem CDR3s in CDR3* and all string in D-Genes. Seventy-three out of these 187 CDR3s can be explained as CDR3s originating from a single D gene (for the Δ-distance threshold three). However, the remaining 114 CDR3s have Δ-distance at least nine. We thus classify a CDR3 sequence Target formed by genes D and D' as pseudo-tandem if the Δ-distance between the span of this pseudo-tandem CDR3 and D-Genes does not exceed a predefined threshold (the default value is three), and (truly) tandem, otherwise. See Supplementary Note “List of tandem CDR3s.”
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This perspective outlines an approach to improve mechanistic understanding of macrophages in inflammation and tissue homeostasis, with a focus on human inflammatory bowel disease (IBD). The approach integrates wet-lab and in-silico experimentation, driven by mechanistic mathematical models of relevant biological processes. Although wet-lab experimentation with genetically modified mouse models and primary human cells and tissues have provided important insights, the role of macrophages in human IBD remains poorly understood. Key open questions include: (1) To what degree hyperinflammatory processes (e.g., gain of cytokine production) and immunodeficiency (e.g., loss of bacterial killing) intersect to drive IBD pathophysiology? and (2) What are the roles of macrophage heterogeneity in IBD onset and progression? Mathematical modeling offers a synergistic approach that can be used to address such questions. Mechanistic models are useful for informing wet-lab experimental designs and provide a knowledge constrained framework for quantitative analysis and interpretation of resulting experimental data. The majority of published mathematical models of macrophage function are based either on animal models, or immortalized human cell lines. These experimental models do not recapitulate important features of human gastrointestinal pathophysiology, and, therefore are limited in the extent to which they can fully inform understanding of human IBD. Thus, we envision a future where mechanistic mathematical models are based on features relevant to human disease and parametrized by richer human datasets, including biopsy tissues taken from IBD patients, human organ-on-a-chip systems and other high-throughput clinical data derived from experimental medicine studies and/or clinical trials on IBD patients.
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INTRODUCTION

Macrophages are heterogeneous cells with key functions in inflammatory immune responses, tissue homeostasis, and immune regulation. They are a first line of defense against pathogens, and, play a major role in maintaining tissue integrity by accelerating repair processes (1). Macrophages are also involved in the pathogenesis and progression of human inflammatory diseases including rheumatoid arthritis (RA), atherosclerosis, and inflammatory bowel disease (IBD). Common polymorphisms that confer disease susceptibility and Mendelian genetic disorders that can present with IBD and RA clearly suggest an important role for macrophage signaling pathways. Loss of function defects in IL-10 signaling induce early onset IBD with complete penetrance and in mouse models macrophage specific loss of IL10R expression causes the spontaneous development of severe colitis (2, 3). Monocyte-derived macrophages are also major sources of inflammatory cytokines such as TNF-α, IL-12/23, and IL-6, all therapeutic targets in IBD and/or RA (4).

Despite genetic and pharmacological evidence that macrophages are important in IBD pathophysiology, the mechanistic details of this role remain to be fully elucidated. For example, the complex intracellular signaling pathways and extrinsic macrophage interactions with other cells within diseased gastrointestinal tissues are still incompletely understood. Key questions include to what degree do hyperinflammatory processes and immunodeficiency intersect to drive human IBD and other inflammatory diseases, and, what is the role of macrophage heterogeneity in IBD onset and progression? Addressing such questions may inform the rational development of next generation treatments for IBD that target macrophage function.

Lack of efficacy is a source of clinical trial failure. Furthermore, mechanistic understanding of the role of drug targets in human disease is a key indicator of therapeutic success (5). Multiple drug targets, successful in mouse IBD models, have subsequently failed in clinical IBD trials (6). We therefore see future opportunities for the use of data derived from human cells and tissue, including biopsy data from normal and diseased intestinal tissues, to potentially increase the reliability and relevance of mathematical models for human IBD pathophysiology (7, 8).

The development of high-throughput experimental methods has made it possible to obtain increasingly rich data from relevant human cells and tissues. Integration of genomics, transcriptomics, proteomics, and immunohistochemistry datasets derived from macrophages and other cells requires the use of bioinformatics tools and machine learning, to organize and analyse these integrated datasets. The ever-growing availability of large-scale quantitative and structured human datasets provides a unique opportunity to rationally and systematically test hypotheses via calibrated models that may provide deeper mechanistic insights into IBD pathophysiology. In this perspective, the term “modeling” is used to describe the use of mechanistic mathematical models to conduct in-silico experiments, focusing on exploring macrophage roles in inflammation and tissue homeostasis. Observed discrepancies between a mathematical model and experimental data can generate biological insight by challenging assumptions on which the model is based, such as the assumption of a perfectly mixed population by Zhou et al. (discussed in Section Modeling macrophage behavior in the context of tissue microenvironments). However, the fact that a model matches a certain dataset need not generate biological insight on its own (9). We therefore propose an iterative approach of wet-lab and in-silico experimentation.



APPLICATION OF MATHEMATICAL MODELS TO INFLAMMATORY MACROPHAGE BIOLOGY

Mathematical models have been utilized to analyse the role of macrophages in inflammatory processes and better understand macrophage intracellular signaling pathways. Relevant models were identified via PubMed and Web-of-Science searches (executed 1st January 2018) containing the words “computational” or “mathematical,” and “macrophage” or “monocyte” in their abstract and published within the last 10 years. These searches identified 605 and 736 references via PubMed and Web-of-Science. As summarized in Supplementary Table 1, sixty-one models were identified from these references by selecting mechanistic models of macrophage function in inflammation while excluding those focused on: (i) interactions between tumors and the immune system (10), (ii) macrophages in tissue repair and replacement; and (iii) the role of macrophages in debris engulfment. Although not the focus of this perspective, tissue repair, and macrophage debris engulfment are important functions in the context of the gut tissue microenvironment, with modeling conducted by Weavers et al. (11), Martin et al. (12), and Ford et al. (13) and reviewed by Dunster (14). For just over half the selected models (n = 31), mathematical modeling was complemented by wet-lab experimentation. The vast majority (n = 28/31) of associated experimental systems consisted of mouse models, murine or other animal/human immortalized cell lines. However, animal models and cell lines do not recapitulate all features of human disease pathophysiology and response to drug exposure (47). As cellular pathways are both type and species specific, we see future opportunities to develop models parametrized solely by data derived from human cells and tissue.

Note that the models listed in the table are all dynamic, describing time-dependent changes in macrophage cell numbers and/or cytokine concentrations and knowledge-driven, i.e., model development was guided and informed by relevant biology. Data-driven modeling is a more recent approach, driven by advances in computational power and the availability of large and complex data sets, including, whole genome sequencing (WGS), single cell imaging and transcriptomics derived data. As this perspective focuses on mechanistic models, no data-driven models were included in Supplementary Table 1. Machine learning techniques have been utilized to infer possible gene interaction networks from gene expression data alone, without leveraging relevant prior biological knowledge. However, gene network inference is challenging and its accuracy is low (15). Nonetheless, in the longer-term, as more complete datasets become available, these approaches may inform automated mathematical model development workflows. Examples of the many algorithms used to infer gene interaction networks from expression data [see for a comparison of methods (16)], include CLR (Context Likelihood of Relatedness) (17), ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) (18) and GENIE3 (GEne Network Inference with Ensemble of trees) (19). ARACNe has been used to identify key genes involved in macrophage activation from a human macrophage gene expression data set generated under varying stimulatory conditions (20).

These methods are purely data-driven and produce static gene networks. However, cellular interactions are dynamic and, in part, driven by, dynamic protein interactions (e.g., signaling pathways). Furthermore, intracellular protein concentrations and related functional activity levels do not necessarily correlate with corresponding gene transcription levels (21). Accordingly, we anticipate that as gene interaction knowledge becomes richer and integrated with other data types such as proteomic data, future data-driven models will be increasingly dynamic in nature and more deeply integrated with mechanistic modeling approaches. Examples of data driven modeling techniques used in a variety of other cell types to construct dynamic gene networks from gene expression data include not only differential equation models, but also Boolean and dynamic Bayesian models [reviewed by Hecker et al. (22)]. A key challenge for data-driven modeling is integration with existing knowledge of pathway interactions, and more generally, known biological mechanisms. Of note, emerging algorithms that integrate prior knowledge of gene interactions typically outperform algorithms solely using gene expression data (15). Advances in machine learning and data driven tools, together with richer datasets, will improve our ability to identify the critical biological determinants (e.g., key cell types, interactions, proteins, and associated pathways and networks) mediating the observable behavior of human tissues and organs (e.g., human intestine) and thereby inform the development of dynamic mechanistic in silico models.



MODELING MACROPHAGE BEHAVIOUR IN THE CONTEXT OF TISSUE MICROENVIRONMENTS

The dynamic crosstalk between macrophages and their microenvironment is key to understanding the role of macrophages in normal, healthy, and diseased, IBD gastrointestinal tissues. Their behavior depends on both their origin (tissue resident vs. monocyte derived inflammatory macrophages) and the stimuli they have previously encountered. Activated monocyte-derived macrophages have historically been identified as two mutually exclusive groups: pro-inflammatory, classically activated, M1 and anti-inflammatory, alternatively activated, M2 macrophages. Differentiation into one of these two subtypes was assumed to be driven by the different stimuli the macrophage receives within their resident tissue. Furthermore, macrophage cytokine and growth factor production modulate their microenvironment, within the intestinal lamina propria (Figure 1A). Although the binary M1/M2 framework provides a useful distinction between inflammatory and non-inflammatory (tissue repair) macrophage populations, tissue macrophages are extremely heterogeneous, existing in an essential continuum of functional states, depending on the various stimuli they have received and integrated over time (26).
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FIGURE 1. (A) TLR-2 can sense the bacterial product LPS both outside the cell and in vesicles, after engulfment of the bacterium. NOD-2 can sense the bacterial product MDP that is exported from vesicles (23). The NF-κB activation in response to TLR-2 or NOD-2 signaling results in the production of cytokines such as pro-inflammatory cytokine TNF-α, IL-6, or IL-8 (with positive feedback loops) or anti-inflammatory cytokine IL-10 (a negative feedback loop to downregulate inflammation). Apart from the autocrine regulation, many cytokines stimulate other cell types (IL-12 for instance drives naïve T-cells toward a Th1 phenotype, while IL-23 promotes Th17 differentiation etc.). Activated T cells in turn produce macrophage response shaping mediators themselves, such as IFN-γ, IL-17, and IL-22. (B) Wiring diagram of the macrophage-fibroblast growth factor model by Zhou (24) and Adler (25). Fibroblasts produce both macrophage growth factor (CSF1) and fibroblast growth factors (PDGFD, HBEGF), while macrophages produce a fibroblast growth factor (PDGFB), mediating cross talk between macrophages and stroma. The dimensionless model derived from this diagram consists of two ODEs describing the population sizes of the macrophages and fibroblasts and two algebraic equations describing the concentration of the two growth factors. Different wiring possibilities were explored (gray arrows), i.e., the addition of positive or negative feedback of one growth factor on the production rate of the other (1, 2), removal of a growth factor through receptor mediated endocytosis (3, 4), or autocrine growth factor production (5, 6). Of the 144 possibilities considered, only 48 networks allowed for a stable steady state for a wide range of parameters, corresponding to a stable number of macrophages and fibroblasts. The final experimentally tested circuit is depicted by the solid arrows. (C) Phase portrait of the macrophage and fibroblast cell population numbers of the model by Zhou (24) and Adler (25). Given initial cell numbers, the system will end up in one of the three stable steady states. All initial values at the left-hand side of the separatrix (dashed line) will converge to the trivial steady state (yellow, no fibroblasts or macrophages). At the right-hand side of the separatrix, the system will converge to the positive steady state if the initial system contains macrophages (red, positive numbers of fibroblasts and macrophages), and converge to the “fibroblast only” steady state (green, only fibroblasts) otherwise. Several figure components taken from the “Library of Science & Medical Illustrations” by SomerSault1824 were used in panel (A,B) (http://www.somersault1824.com/science-illustrations/). panel (B,C) are based on Zhou et al. (24), Figures 3A, 4E, 5B.



Mesenchymal derived fibroblasts support the integrity of intestinal and other mucosal barriers via synthesis of extracellular matrix and growth factors required for both barrier repair and macrophage homeostasis. Recently, Ruslan Medzhitov and colleagues utilized a combination of experimentation and modeling based on an in-vitro system of bone-marrow derived macrophages and primary mouse embryonic fibroblasts to dissect feedback signaling loops between macrophages and stromal fibroblasts (24, 25). In this system the macrophages and fibroblasts were plated together in culture medium without addition of growth factors and cell numbers determined by flow cytometry. The mathematical model describes how simple macrophage-fibroblast interactions can reach stable cell populations. This is an illustration of how modeling can provide a useful framework for qualitative understanding of the dynamics between different cells. The model also proved useful on a quantitative level; cell-density had to be taken into consideration to match experimentally observed cell numbers predicted by the model. This in turn led to experimentally tested findings that close macrophage-fibroblast contact is essential for growth factor exchange.

Specifically, the experimentally confirmed findings were (1) fibroblasts in the system produce both macrophage and fibroblast growth factors, while the macrophages only produce a fibroblast growth factor; (2) the growth rate of the fibroblasts, but not the macrophages, is limited by their carrying capacity, which was found to be dependent on available space. Based on these two findings, a mathematical model was constructed describing macrophage and fibroblast cell counts and growth factor concentrations over time. Different wiring possibilities for the model network were explored mathematically. Of the 144 possibilities considered, only 48 networks allowed for a stable steady state across a wide range of parameters, corresponding to a stable number of macrophages and fibroblasts. It was found that all 48 networks that allowed for such a stable steady state included a negative regulatory loop on the macrophage growth factor. This is a necessary condition for stability, as a cell population that is not limited by its carrying capacity will keep expanding indefinitely if its growth factor is not regulated. Experimental studies subsequently showed that macrophage growth factor is negatively regulated by receptor internalization. Furthermore, it was found that fibroblast growth factor is also negatively regulated, both by receptor internalization and by the macrophage growth factor, however the model indicates that this regulation of fibroblast growth factor does not significantly alter system dynamics (Figure 1B). The mathematical model based on the final circuit generated in this way predicts that apart from the stable steady state, there also exists a state with only fibroblasts, sustaining themselves, and a state without macrophages and fibroblasts. Depending on the initial absolute cell numbers, the system will converge to one of these states (Figure 1C), which was experimentally tested by quantifying cell numbers over time using a combination of flow cytometry and fluorescent imaging. Finally, it was found that the initial cell numbers required to converge to the steady state of coexisting cell populations was larger than the model predicted. This was explained by density-dependent effects; the model assumes a perfectly mixed population, but cell-dependent contact decreases when cell numbers decrease. Thus, the discrepancy of the model predictions with the experimental results suggested that cell-cell contact is essential for growth factor dynamics and the regulation of tissue homeostasis.



MODELING MACROPHAGE INTRACELLULAR SIGNALLING

Macrophages sense and respond to their localized tissue microenvironments and in this role must integrate different external stimuli and respond appropriately. Multiple macrophage receptor systems detect specific changes in local tissue microenvironments including the presence of pathogens [Toll-like receptors and NOD-like receptors (27, 28)], cell damage [RAGE and Toll-like receptors via alarmins (29)], cytokines (cytokine receptors that detect growth factors including M-CSF, interleukins such as IL-1,6,10, tumor-necrosis factor-α, and chemokines), and neurotransmitters (30). The resulting macrophage responses may result in the production of activating and inhibitory cytokines, orchestrating the timing of pathogen specific innate and adaptive immune responses and associated intra- and extra-cellular microbial clearance (23) (Figure 2A). To better understand macrophage sensing and response behaviors, intracellular signaling network models have been constructed and used to generate experimentally testable predictions about the effect of blocking individual proteins including TLR3 (33), TLR4, TNF, IFN-β, and IL-10 (34), TLR3, TLR7, Type-1-IFNs, and IL-10 (35), TLR, JAK/STAT, and ITAM (36), and TLR, JAK/STAT and nitric oxide (37) on intracellular signaling dynamics (38). Many models were based on experimental mouse models or immortalized cell lines. Thus, the species and lineage specificity of these networks and the interacting cell types needs to be critically analyzed to understand their relevance to human IBD pathophysiology (39).


[image: image]

FIGURE 2. (A) The activation of macrophage signaling pathways by various pathogens. Macrophage output in the form of cytokine production is amongst others dependent on the type of pathogen and the receptor location. Green, yellow, and red arrows correspond to a Th1, Th17, and Th2 polarizing response, respectively. Macrophage responses exist in a continuum. (B) The free nuclear NF-κB concentration against time generated by the equations of the model by Alexander Hoffmann et al. (31). The model provides an explanation for the oscillatory dynamics of the nuclear NF-κB concentration that are observed in wild-type mice, but not in mice that lack an active form of IκBα. Each NF-κB inhibitor can bind to a NF-κB molecule, forming an NF-κB-inhibitor complex. When IκB kinase (IKK) also binds to this NF-κB-inhibitor complex, the inhibitor degrades, and the free NF-κB can travel to the nucleus and bind DNA. This results in the synthesis of various proteins, one of which is IκBα. The production rate of the NF-κB inhibitor IκBα is thus dependent on the concentration of free NF-κB. The negative NF-κB–IκBα feedback loop generates oscillations in the concentration of NF-κB. In contrast, the other two NF-κB inhibitors, IκBβ and IκBε, are produced at a constant rate, independent of the amount of free NF-κB. Therefore, they have a damping effect on the oscillations generated by the IκBα negative feedback loop. A model without IκBβ or IκBε, but with IκBα therefore produces oscillations (left, yellow), while a model without IκBα, but with IκBβ and IκBε does not (right, black). (C) Left: the wiring network from the NF-κB model by Alexander Hoffmann et al. (31). The model derived from this network consists of 26 ODEs, one for every node in the network. The interactions between nodes, denoted by arrows in the network, are included in the terms of these 26 ODEs. Right: a map of all protein interactions thought to be involved in mammal macrophage TLR signalling pathways, with the relationship of Hoffmann's NF-κB signaling model also illustrated. The map was constructed by Kanae Oda and Hiroaki Kitano (32). Several figure components taken from the “Library of Science & Medical Illustrations” by SomerSault1824 were used in (A–C) (http://www.somersault1824.com/science-illustrations/). Panel (C) is based on Oda and Kitano (32), Figure 1.



A key integrator of different macrophage signaling pathways is the NF-κB pathway, which regulates nuclear localization of NF-κB transcriptional regulators controlling expression of hundreds of genes involved in inflammation (40). One of the seminal mathematical descriptions of NF-κB signaling was developed by Hoffmann et al. This model provided a quantitative description of three NF-κB inhibitor isoforms, IκBα, IκBβ, and IκBε (31). It was one of the first studies to use an iterative approach of modeling (in-silico experimentation) and wet lab experimentation to better understand intracellular signaling mechanisms. The model was calibrated with data obtained from an experimental mouse model with only one active NF-κB inhibitor isoform and provides a mechanism-based explanation for the oscillatory dynamics of nuclear NF-κB concentration observed in wild-type mice, but not in mice that lack an active form of IκBα (Figure 2B). Many more mathematical models of NF-κB dependent processes were subsequently constructed, including models of TNF-α receptor signaling (41), TNF-α secretion (42), TLR4 receptor signaling, and the addition of extrinsic noise to the synthesis rate of TLR4, the activation rates of TRIF and MyD88 and the endosomal maturation rate, to incorporate cell-to-cell variability (43) [see (44) for a review of earlier models].

The above modeling frameworks (31) were developed by converting a signaling, protein interaction network diagram into a system of ODEs to quantitatively represent key reactions of the network driving dynamic changes in the concentrations of corresponding key proteins. In general, mass action, Michaelis-Menten, or Hill equation kinetics were used to derive reaction equations (45).

Static maps of all protein interactions believed to be involved in mammalian macrophage TLR signaling pathways have previously been generated [Figure 2C (Right), reproduced from Oda and Kitano (32)], with the relationship of Hoffmann's NF-κB signaling model [Figure 2C (Left)] also illustrated. The model derived from this latter network consists of 26-ODEs, one for every network node. The interactions between nodes, denoted by arrows in the network, are included in the terms for these ODEs. Advances in computational power, high-throughput data generation, data driven model parameterization and machine learning techniques will empower larger scale modeling of signaling pathways and their integration with extracellular signals. For example, high-dimensional quantitative analysis of macrophage signaling pathways in human tissue biopsies from diseased and non-diseased regions of the intestine may be used to inform model structure(s) and parameterization. There are however remaining challenges including parameter identifiability. These challenges stem from the fact that current high-throughput datasets tend to have poor temporal and spatial resolution, whereas biological systems including human intestinal tissue are often spatially heterogeneous, and relevant pathophysiological processes occur across a broad range of time scales. Nonetheless, such approaches are becoming feasible, and may allow explicit in silico identification of key IBD mediators and processes, driving subsequent wet-lab experimental exploration, testing, and verification.



FUTURE DIRECTIONS

Despite increasingly rich datasets on human inflammatory processes, macrophage function is still not well understood. Open questions include: (1) how do macrophage hyperinflammatory processes and immunodeficiency intersect to produce human IBD; (2) what are the functional consequences of genetic variant burden across the multiple human polymorphisms associated with inflammatory diseases and that intersect with macrophage signaling pathways; (3) what factors and cellular processes drive granuloma formation in Crohn's disease and other granulomatous disorders; (4) what is the relationship between peripheral blood monocytes and tissue resident macrophages; (5) what is the role of macrophage heterogeneity in IBD disease dynamics; (6) what is the role of long lived tissue-resident macrophages, monocyte derived macrophages, dendritic cells, neutrophils, and non-professional APCs during active IBD inflammation and remission? Mathematical models can help answer these questions at the level of experimental design, data analysis, and interpretation.

Models can be developed to predict the effects of perturbing specific protein networks, from single cell to localized tissue pathology, through to effects on higher-level physiology. Additionally, they can identify the relative importance of bacterial handling and cytokine production in tissue pathology. Proposed mechanisms can be discarded based on simulations, and new mechanisms proposed and experimentally tested (24). Many challenges remain in both the proposed application of human datasets including tissue biopsies from healthy donors and IBD patients, and the combination of modeling with high-throughput data. Parameter identifiability is challenging due to high variability and poor spatial and temporal resolution of available human datasets. Another key challenge is data integration across different spatial and temporal scales, and, in an informative way, while selecting optimal model scope and granularity for the specific scientific questions under investigation. Furthermore, within this context one should note that the hypotheses on which mathematical models are based can only be falsified, but never proven. Therefore, mathematical modeling should be seen as an investigative tool that can be used to challenge assumptions and identify key uncertainties (46). For example, models based on different mechanisms might equally well describe an observed phenomenon and discrepancies between two such models can inform experiments to distinguish between the two alternatives (9).



CONCLUSIONS

There is a growing body of work focused on the mathematical modeling of macrophage function, e.g., modeling intracellular signaling pathways and the dynamic cross talk between these cells and other cell types such as fibroblasts. However, to date many modeling efforts have been disconnected from wet-lab experimentation or guided by experimental work on mouse models and isolated murine and human cell lines. These experimental systems do not recapitulate important features of human gastrointestinal pathophysiology, and, therefore, are limited in the extent to which they can inform mechanistic understanding of the role of macrophages in human IBD pathophysiology. Consequently, there are many open questions about the role of macrophages in human IBD. Thus, we envision a future were mechanistic mathematical models will be based on features relevant to human disease and parametrized by richer human data sets, including high-throughput assessments of biopsy tissues taken from IBD patients with increasing spatial and temporal resolution. Furthermore, we envisage deeper integration of mechanistic modeling with experimental design whereby models are used to both inform experimental medicine study designs and provide a knowledge constrained framework for the quantitative analysis and interpretation of the resulting clinical data.
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Cytokines and chemokines are key signaling molecules of the immune system. Recent technological advances enable measurement of multiplexed cytokine profiles in biological samples. These profiles can then be used to identify potential biomarkers of a variety of clinical phenotypes. However, testing for such associations for each cytokine separately ignores the highly context-dependent covariation in cytokine secretion and decreases statistical power to detect associations due to multiple hypothesis testing. Here we present CytoMod—a novel data-driven approach for analysis of cytokine profiles that uses unsupervised clustering and regression to identify putative functional modules of co-signaling cytokines. Each module represents a biosignature of co-signaling cytokines. We applied this approach to three independent clinical cohorts of subjects naturally infected with influenza in which cytokine profiles and clinical phenotypes were collected. We found that in two out of three cohorts, cytokine modules were significantly associated with clinical phenotypes, and in many cases these associations were stronger than the associations of the individual cytokines within them. By comparing cytokine modules across datasets, we identified cytokine “cores”—specific subsets of co-expressed cytokines that clustered together across the three cohorts. Cytokine cores were also associated with clinical phenotypes. Interestingly, most of these cores were also co-expressed in a cohort of healthy controls, suggesting that in part, patterns of cytokine co-signaling may be generalizable. CytoMod can be readily applied to any cytokine profile dataset regardless of measurement technology, increases the statistical power to detect associations with clinical phenotypes and may help shed light on the complex co-signaling networks of cytokines in both health and infection.

Keywords: innate immunology, cytokines, chemokines, influenza, biomarker


1. INTRODUCTION

Cytokines and chemokines are key signaling molecules of the immune system, mediating a complex network of interacting cells that govern the immune response (1, 2). These small proteins secreted by a broad range of cells, regulate host responses to infection, trauma and sepsis and are involved in inflammatory and autoimmune diseases. The role of cytokines in disease as well as the associations between cytokine production levels and the occurrence of diseases and their phenotypes has been extensively studied (3), and many studies have shown that cytokine signaling is context-dependant (4). Cytokine expression and dysregulation have been linked with a variety of diseases such as diabetes (5, 6), Alzheimer's (7), cancer (8–11), heart disease (12, 13), and various viral infections including influenza, EBV, RSV, HIV and dengue (14–18).

Influenza is a respiratory virus that accounts for significant rates of hospitalizations and deaths, especially among very young or old individuals (19). Due to the variety of influenza subtypes and their rapid evolution, influenza causes annual epidemics and occasional catastrophic pandemics (20, 21). Influenza infection in humans can result in asymptomatic to serious illness with symptoms such as fever, myalgia, headache and upper and lower respiratory symptoms. The respiratory tract infection can progress to various acute conditions, e.g., pneumonia and acute respiratory distress syndrome (ARDS) or a “cytokine storm” causing widespread tissue damage (22, 23). In some cases, complications are caused by a secondary bacterial infection such as Staphylococcus aureus.

Cytokine expression in response to influenza infection has been studied using human blood and nasal samples, immune cell cultures and animal models (23, 24). Numerous studies have reported associations of individual cytokines with various influenza phenotypes and outcomes such as hospitalization and death. Each study tested a specific subset of cytokines. From these studies, several prominent cytokines have been repeatedly found to be associated with illness and symptoms including IL-6, TNF-α, IL-10, IL-8, IP-10, IFN-γ, and MCP-1 (23–32). Differences in cytokine expression levels were found between subjects infected with different Influenza strains, as well as different severity and symptoms. For example, the H5N1 strains were found to induce high serum levels of IP-10 and monokine induced by interferon-γ (MIG) (25, 33) and also higher levels of TNF-α and IFN-β compared to H3N2 or H1N1 strains (29). Another study reported hyperactivation of IL-6, IL-8, and MCP-1 in blood of subjects infected with pandemic H1N1 that developed pneumonia and in complicated seasonal influenza, but not in milder pandemic H1N1 infections (28). A significant correlation has been reported between disease severity and the levels of IL-6, IL-10, and IL-15 (32), and in contrast, IL-17 was lower in more severe patients (28, 32).

Despite our partial understanding of cytokine biology there are a variety of therapeutic treatments that target specific cytokines, which are in wide clinical use to treat autoimmune diseases and cancer. There are a variety of licensed monoclonal antibody (Ab) treatments that target cytokines or their receptors. Examples include: anti TNF-α Abs (34, 35), an anti IL-6 receptor Ab (35, 36), anti IL-1 Abs (35), anti IL-10 Abs (37), anti IL-23 Abs (38), and anti Herceptin Abs (39). Most notably, Humira-an anti TNF-α Ab is widely used to treat a variety of autoimmune diseases and was the best selling drug in 2017 (40).

Since cytokines and chemokines (hereafter referred to as cytokines) reflect the local or systemic immune state, they have the potential to serve as indicators of various clinical conditions. Various studies suggested the use of measurements of circulating cytokines as biomarkers in order to aid clinicians in patient prognosis and care (41–46). Furthermore, as the understanding of cytokine biology improves, new treatment strategies emerge to leverage this knowledge (47). Several methodologies have been developed for quantification of secreted cytokines in body fluid samples, including immunoassays such as ELISA and bead-based multiplex immunoassays (48), allowing the collection and analysis of cytokine “profiles”: a broad and unbiased assessment of cytokine levels that typically includes 10–50 cytokines of interest.

While numerous studies have reported associations between cytokine levels and various clinical phenotypes, the analysis of cytokine profiles is often statistically underpowered to detect such associations, due to the large number of cytokines and the requirement for multiplicity adjustment. Furthermore, the relatively high-cost of cytokine profiles limits the sizes of cohorts for which they are measured. A typical cytokine profile dataset can have measurements obtained from tens to hundreds of subjects. These opposing trends make it increasingly important to develop new computational tools for analyzing cytokine profiles that are statistically efficient and provide interpretable results.

One possible solution for preserving statistical power, is to select a small subset of cytokines for a primary analysis with phenotypes, with a secondary/exploratory analysis that includes all remaining cytokines. For example, in previous work on cytokine profiles following influenza natural infection we pre-selected a subset of 11 cytokines for the primary analyses based on published studies (49). Multiplicity adjustment was performed across the 11 cytokines pre-selected in our analysis plan. While this approach identified several significant associations with phenotypes, it failed to detect other significant associations of cytokines that were not selected in the primary set as we demonstrate below. Furthermore, it required pre-existing knowledge for selecting the primary set of cytokines, limiting the ability to discover novel associations.

Another important property of cytokine signaling is its inherent redundancy (2, 50). Many of the same cytokines may be simultaneously secreted by different immune cells, and activation or attenuation of an immune pathway can often be mediated by multiple cytokines. Therefore, cytokine profiles typically exhibit high levels of pairwise correlations among cytokines, across subjects, as previously demonstrated (49, 51). These complexities pose particular challenges in the interpretation and analysis of cytokine data by practitioners.

Motivated by previous work, and the growing abundance of cytokine profile datasets, we developed CytoMod: a novel method for the analysis of cytokine profiles based on identifying cytokine modules. The modular-based approach is partly inspired by similar approaches used for analyzing gene expression data (52–57). Our proposed method aims to increase statistical power to detect associations of cytokines with clinical phenotypes by grouping cytokines into putative functional modules, using a data-driven clustering approach. Cytokines are grouped based on their pairwise correlations using hierarchical clustering. Modules are formed over absolute and adjusted cytokine levels. Associations are then assessed between cytokine modules and phenotypes as opposed to individual cytokines (Figure 1). An earlier version of this method was used to analyze cytokine profiles of influenza infected children that were admitted to the intensive care units (51). Here we extended this method to allow fully automated identification of modules and applied it to three independent clinical cohorts of natural influenza infection in which cytokine profiles were obtained and clinical phenotypes were collected. We found that in two of these cohorts, cytokine modules were significantly associated with clinical phenotypes, and in many cases these associations were stronger than the associations of the individual cytokines within each of the modules. Applying our method to these three independent cytokine profile cohorts we identified specific subsets of cytokines (cytokine “cores”) that clustered together across the three cohorts, and which were also associated with clinical phenotypes. These cytokine cores identify subsets of cytokines that are co-expressed during influenza infection, and most were also observed in healthy individuals. Our method can be readily applied to any cytokine profile dataset, and is publicly available for use using Python code or an interactive Jupyter Notebook.
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FIGURE 1. CytoMod—a modular data driven approach to identify cytokine modules and assess their associations with clinical phenotypes. Traditionally, associations between cytokine data (1) and clinical phenotypes (5) are tested directly using univariate models. CytoMod independently uses absolute cytokine profiles (1) or adjusted cytokine profiles (2) to generate cytokine modules (3)-sets of co-signaling cytokines within a given cohort. Modules are generated using unsupervised hierarchical clustering. Associations are then tested between module levels (4) and clinical phenotypes (5). By significantly reducing the number of associations tested CytoMod increases the statistical power to detect associations. By comparing modules across datasets, CytoMod can also identify “cores” of cytokines that consistently co-signal together.





2. MATERIALS AND METHODS


2.1. Data

We analyzed cytokine profiles of 611 subjects collected from three independent studies (49, 51, 58) of subjects naturally infected with influenza virus as well as healthy controls: (1) PICFLU-a prospective multi-center study of children admitted to intensive care units with severe influenza infection (51); (2) FLU09-a prospective study of children admitted to the emergency room with influenza like-illness and their household members (49); and (3) The Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS)—a prospective study of influenza infected subjects collected in New Zealand (58). Influenza positive cohorts included 221, 161, and 87 subjects, respectively, which were all tested and found positive for influenza (by DFA, PCR, RT-PCR, or culture). The FLU09 study also included 142 healthy control subjects.

PICFLU - The PICFLU study was a prospective multi-center study of severe influenza infections in children aged 0.06–18.19 years (median 6.97) (51). Blood samples were collected from a total of 221 children diagnosed with influenza critical illness that arrived at intensive care units (ICUs) at 35 hospitals between December 2008 and May 2015. An endotracheal sample was collected from all subjects that were intubated. Samples were provided at enrollment (mostly within 24 h of intensive care unit admission). Almost half of the enrolled subjects received vasoactive agents for septic shock and a similar fraction met criteria for Acute Respiratory Distress Syndrome (ARDS) with the majority having the severe form. Most subjects (n = 175, 79.2%) were influenza type A positive, while the remaining cases (n = 46, 20.8%) were influenza type B positive. Eighty-one subjects (36.6%) had a bacterial coinfection, predominantly with Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. Additional information regarding the design, sampling, and subjects in PICFLU cohort can be found in Table 1.



Table 1. Characteristics and clinical information of patients from the analyzed cohorts.
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FLU09 - The FLU09 study was a prospective study of children and their household members. It included samples of blood plasma and nasal swab/lavage from influenza infected subjects as well as their asymptomatic Influenza-positive household contacts. Three hundred and three subjects aged 0.05–69.53 years (median 17.23) were enrolled during 2009–2014 and included 142 healthy household members. A preliminary analysis of cytokine profiles (49) included only subjects from 2009 to 2011. Most samples were provided at enrollment and only few were taken within the first week. The cohort included 36 (22.4%) individuals who were hospitalized, four of them (2.5%) were admitted to the ICU. 5 (3.1%) suffered from febrile acute respiratory disease and another single subject (0.006%) had ARDS and died. Three subjects (1.8%) suffered from a bacterial coinfection. Study subjects were asked to rank their symptom severity daily according to a visual analog scale (VAS) until study completion. The symptoms considered were upper respiratory tract (URT) symptoms (sore throat, stuffy/runny nose, sinus fullness/facial pain); lower respiratory tract (LRT) symptoms (cough, shortness of breath, wheezing); systemic symptoms (feverishness, fatigue or malaise, headache, body aches or myalgia, chills, lethargy); gastrointestinal symptoms (nausea, vomiting, diarrhea). The FLU09 study also included 142 healthy control subjects for which cytokine profiles were also measured. These data were analyzed separately in section 3.5. Additional information regarding the design, sampling and subjects in FLU09 cohort can be found in Table 1.

SHIVERS - The Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS) study included 87 Influenza infected subjects recruited from 16 sentinel general practices and 4 hospitals (58). Subjects were enrolled between 2013 and 2015 (aged 12–78 years, median 44.5). Sixty (68.9%) subjects recruited from hospitals demonstrated symptoms of Severe Acute Respiratory Illness (SARI), defined as “an acute respiratory illness with a history of fever or measured fever of ≥ 38°C, and cough, and onset within the past 10 days, and requiring inpatient hospitalization” (59), while the rest suffered from a milder form of Acute Respiratory Illness (ARI), i.e., do not require hospitalization (59). The majority of the SARI cases were relatively mild. Four subjects (4.59%) were admitted to the ICU. Blood specimens were taken from subjects after their Influenza infection was confirmed and also 2 weeks later. Our analysis only included samples from the acute phase (first timepoint). Subject samples were analyzed for cytokines, chemokines, growth factors and other mediators using bead-based Luminex multiplex assays or ELISA technology. In a preliminary analysis of the cytokine profiles, we detected significant differences between the measurements in year 1 and 2 of the study. These were likely caused by two factors: (1) The sampling strategy was modified between the two study years; and (2) Different labs quantified cytokines in each study year (personal communication, Sook-San Wong). We therefore used year 2 data for generating cytokine modules, but did not include it in our association analyses with clinical phenotypes presented below. Additional information regarding the design, sampling and subjects in SHIVERS cohort can be found in Table 1.



2.2. Adjustment for Mean Cytokine Concentration

To obtain the relative concentration of cytokines with respect to the overall level of cytokine secretion within each subject, cytokine concentrations were adjusted as follows: for a given cytokine, the levels for all subjects were regressed against the mean cytokine concentration. The adjusted cytokine concentrations were defined as the residuals from the regression. Formally, the adjusted values represent the level of unexplained deviation of that cytokine, from the expected cytokine level, given the average cytokine level of the subject. The full adjustment procedure for each Cytokinej is as follows:

1. Compute the mean cytokines level for each subject in the dataset. Construct a vector of the means (with the length of the sample size).

2. Construct a regression model for Cytokinej, such that the vector of the means is used as a predictor for Cytokinej's level in the sample, defined as the response variable:
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3. For each sample compute the expected Cytokinej level using the regression model defined in II. Calculate the residue of the regression as:

[image: image]

As shown in Fiore-Gartland et al. (51) and above, adjustment can reveal interesting information about the relative deviation in cytokine levels in different individuals, which cannot be observed when analyzing absolute cytokine concentrations.

We note that the CytoMod adjustment procedure utilizes the values of all cytokines in a given dataset and may therefore be sensitive to the specific cytokines that were measured. To quantify the sensitivity of the adjustment procedure to cytokine selection, we conducted the following analysis: Subsets of cytokines were randomly selected from the original set of 37 cytokines in the PICFLU dataset; their size ranged between 2 and 36 cytokines. For the size of 36 cytokines, 37 subsets of cytokines were drawn, each containing the entire set of cytokines except for a single cytokine that was left out in each. For each subset size between 2 and 35, 50 different subsets of cytokines were randomly drawn. For each subset the adjustment procedure was conducted over the selected subset and the Spearman correlation was computed between the adjusted cytokine values of this subset, and their corresponding adjusted values over the entire set of 37 cytokines. Figure S1 presents the average median correlation across all 50 subsets, where the median was computed for each subset across all cytokines tested. We found that when drawing subsets of more than 10 cytokines, the average correlation to the original adjusted dataset was >0.95. Furthermore, when drawing subsets of 25 cytokines, the average correlation was 0.9899. This suggests that our adjustment method is robust given a sufficiently large set of cytokines.



2.3. Clustering

CytoMod is a modular approach for cytokine analysis that clusters cytokines based on pairwise correlations, to both amplify the signal they share and aid in interpretation by grouping putatively co-signaling molecules. Cytokines are grouped using a hierarchical clustering technique which iteratively pairs cytokines (and groups of cytokines) with similar behavior to generate a series of nested clusters. The clustering hierarchy can be represented by a tree-like graph (dendrogram) in which branches indicate the similarity between the formed subgroups of cytokines. By slicing the tree at a certain level we can obtain a set of distinct clusters. The dendrogram allows to graphically portray the clusters hierarchy and visualize the structure and data distribution in a manner that is intuitive for both computational and non-computational practitioners (55, 56, 60).

In this study, cytokine measurements from each dataset were clustered independently of the others. Measurements of different compartment samples in the same study were clustered independently due to notable differences in signaling patterns as shown in two different studies (49, 51). Importantly, clustering is performed over cytokines and not over subjects, to obtain groups of cytokines with similar expression profiles across subjects. Clusters were formed based on the correlation of adjusted and absolute cytokine levels, separately. Complete-linkage agglomerative hierarchical clustering was used to group cytokines (variables) with the Pearson's correlation coefficient as the distance metric. Complete linkage, which joins subclusters iteratively based on the closest maximum distance between pairs of variables in the subclusters, was used because it tends to form compact clusters. Since the approach suffers from sensitivity to minor perturbations in the data (56), we employed a bootstrap clustering method that was previously applied to gene expression data (61) in order to increase cluster robustness. The bootstrapping includes repetition of the clustering procedure on multiple perturbed subsets of the data, each formed by randomly drawing subject samples (with replacement) from the dataset. We repeated the clustering procedure on subject-level bootstrapped datasets 1,000 times. We recorded the number of times that each pair of cytokines clustered together across these 1,000 runs. The final hierarchical clustering was performed on this matrix of reliability fractions. Conceptually this can be thought of as a bootstrap estimate of cluster membership, simulating the reliability of each pair of cytokines to belong to the same cluster in repeated experiments on perturbed data under the same conditions.

The number of clusters (K) for each dataset was determined using the Tibshirani “gap statistic” heuristic method (62), which computes the marginal decrease in intracluster distance (ICD) for different K values, compared to the expected decrease under a null reference distribution of the data, assumed to be comprised of a single cluster. The estimate of the optimal K is the K for which the ICD falls the farthest below the reference curve while also taking into account the estimated deviation of the sampling distribution and simulation error (denoted by S). K is chosen as the first K that satisfies
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In our implementation we chose to test K values between 1 and 11 and generate a reference dataset by shuffling each feature (cytokine) independently of the others with 200 repetitions. For both real and null data distances between cytokines were defined using Pearson's correlation coefficient. For the real dataset bootstrapped clustering was performed as described above. To constrain the number of modules to be smaller than 6, and at least 2, in cases where the estimated best K found was not in these bounds or the condition was not satisfied for all K between 1 and 11, we chose K between 2 and 6 for which

[image: image]

We chose to limit the number of clusters to 6 in order to reduce the formation of small (and possibly singleton) clusters. This threshold also affects the increase in statistical power for detecting associations, since as the number of clusters grows, more hypotheses will be tested and the adjusted p-values will decrease accordingly.

Finally, each cluster was used to calculate module scores for each subject in each dataset. Module scores were computed as the mean value of all cytokines that belong to the module after standardizing cytokine values to mean zero and unit variance.



2.4. Associations With Clinical Phenotypes

The primary analysis of cytokine modules included tests for associations with the clinical measures of disease severity available for each dataset using regression. All non-binary input and output variables were mean centered and variance scaled to unit variance. Logistic regression was used for all binary response variables and strength of effect was defined by an odds-ratio per unit increase in log-cytokine titer. For continuous response variables we used linear regression and strength of effect was defined using the log-cytokine regression coefficient (beta). Regression models controlled for the effects of variables that were previously used in each of the studies (49, 51, 58), as detailed in section 3.3. P-values for the coefficients describing the associations of cytokines and symptom scores were adjusted for multiple hypothesis tests within each cohort, compartment and adjustment method. P-values for the coefficients between module scores and symptom scores were also adjusted, separately from the cytokine coefficients. We report associations using two types of multiplicity adjustment methods: (1) false-discovery rate (FDR) using the Benjamini Hochberg procedure (63); (2) Family-wise error rate (FWER) using the Bonferroni-Holm method (64). Only associations with FDR-adjusted q ≤ 0.2 are shown. Associations that were significant using the more stringent FWER-adjusted p-value were marked using asterisks in each figure. All of the associations discussed below were FWER significant.



2.5. Defining Cytokine Cores

Cytokine measurements from each dataset were clustered into modules as described in section 2.3. Since airway samples were available only for two out of three studies, clustering comparison was only performed for the blood samples results. Comparison was performed for the absolute and adjusted clusters separately. For each we recorded the number of times each pair of cytokines clustered together in all three blood datasets. Cytokine cores were defined as groups of cytokines that clustered together across all three datasets. It should be noted that these cores may be refined when additional cytokine profile datasets are available.

Cytokine cores associations with phenotypes were calculated as described in section 2.4. A subject's score for each core was calculated based on the mean cytokine concentration of cytokines within the core, after standardizing each cytokine to mean zero and unit variance. P-values for the coefficients describing the associations of cytokines and phenotype scores were adjusted for multiple hypothesis tests within each presented dataset separately. P-values for the regression coefficients calculated for the core scores were adjusted separately than the coefficients calculated for individual cytokines. Individual cytokine p-values were adjusted across all cytokines and not only for the cytokines included in the core cytokine set.

Finally, we calculated pairwise Pearson correlations between cytokine cores within each blood dataset, i.e., PICFLU, SHIVERS, FLU09 and FLU09-healthy. P-values for the correlation coefficients were adjusted for multiple hypothesis tests within each dataset. The correlations were presented alongside each other in order to highlight trends across all datasets.




3. RESULTS

We applied CytoMod to cytokine profiles of three independent cohorts (see section 2.1 for details) of consented subjects naturally infected with influenza virus: (1) PICFLU—a prospective multi-center study of children admitted to intensive care units with severe influenza virus infection (51); (2) FLU09—a prospective study of children presenting to the emergency room with influenza like-illness and their household members (49); and (3) Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS)—a prospective study of influenza virus infected New Zealanders (58). The cohorts included 221, 161, and 87 subjects, respectively, who all tested positive for influenza. The FLU09 study provided an additional cohort of 142 healthy control volunteers that were not included in the main analyses and were analyzed separately in section 3.5.

To allow a direct comparison between the different cohorts, we limited our analysis to 37 cytokines that were measured from the blood of subjects in all three studies. These cytokines were also used to profile nasal wash from FLU09 subjects and endotracheal aspirates of PICFLU subjects. Cytokine concentrations (pg/mL) and subject ages were log-transformed for all analyses. Cytokine measurements from each study were analyzed independently of the others due to differences in subject characteristics and measurement methods. Measurements from different compartments (e.g., blood, nasal) were also analyzed separately due to notable differences in signaling patterns, as shown previously (49, 51). In total, five datasets were analyzed: FLU09 plasma, FLU09 nasal wash, PICFLU serum, PICFLU endotracheal aspirates and SHIVERS serum. We also analyzed an additional dataset of healthy controls that were sampled in the FLU09 study (49).


3.1. Generating Cytokine Modules

To capture the underlying correlation structure induced by co-signaling cytokines, we developed a clustering-based approach to group cytokines into data-driven modules. Each module, represents a group of cytokines that co-vary across individuals within a given cohort. Modules are therefore defined separately for each cytokine dataset. The similarity between each pair of cytokines is defined by their Pearson correlation coefficient across all subjects, within a cohort. The similarity matrix is computed separately for each compartment, based on previous observations that found relatively low levels of correlations between cytokines across compartments as compared to within compartment similarities (49, 51). We computed the cytokine pairwise similarity matrices for each of the five datasets used in this study as outlined above (Figure 2A and Figures S2A, S3A, S4A, S5A). To define cytokine modules, we used an unsupervised hierarchical clustering algorithm that groups cytokines based on their pairwise similarity. Importantly, the algorithm does not incorporate any information regarding clinical phenotypes (i.e., clusters are not defined based on outcomes). The number of clusters was automatically selected. Specifically, we used complete-linkage agglomerative hierarchical clustering and the number of clusters (K) for each dataset was determined using the Tibshirani “gap statistic” method (62) (Figure 3A and Figures S6A–C), which selects the number of clusters based on the marginal decrease of within-cluster distances (see methods). Since minor perturbations of the data could affect the clusters obtained, a reliability score over each pair of cytokines was defined by computing the fraction of times a pair of cytokines were assigned to the same cluster over 1,000 randomly perturbed datasets (Figure 3B; see section 2.3). The final cytokine modules were defined over this pairwise reliability matrix. Cytokine values within each module were standardized (zero mean and unit variance) to ensure that each was given equal weight within a module. Given a set of cytokine modules, a subject-specific score was computed for every module defined by the mean cytokine concentration of all cytokines in the module, cytokine modules were subsequently used to detect associations between cytokine concentrations and clinical phenotypes.
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FIGURE 2. Cytokine levels are highly correlated to each other and to the mean cytokine level of each subject. (A) Pairwise Pearson's correlations among the absolute plasma cytokine levels in the FLU09 cohort. Cytokines were sorted along both axes using hierarchical clustering (complete-linkage). (B) Correlations between cytokine levels and mean cytokine levels for each subject. (C) Pairwise Pearson's correlations between cytokines following adjustment to the mean cytokine level (see Methods for details). Cytokines were sorted along both axes using complete-linkage.
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FIGURE 3. Defining cytokine modules on the FLU09 adjusted plasma cytokine profiles. (A) Automated selection of the optimal number of modules. The Tibshirani gap statistic is used to automatically determine the optimal number of modules. The cytokine profiles are clustered into K = 1 − 11 clusters and the optimal K is selected. The plot shows the δ gap statistic, defined as Gap(K) − (Gap(K + 1) − Sk + 1) for K = 1 − 11. The optimal number of modules (K = 6) is selected by identifying the first value of K for which this measure is positive, while also constraining it to vary between 2 and 6. (B) Heatmap of cytokine modules - Complete linkage clustering over the Pearson pairwise correlation similarity measure is used to cluster cytokines into K modules, where K is decided using the gap statistic. A clustering reliability score is computed over 1, 000 samplings of subjects that are sampled with replacement. The score for each pair of cytokines represents the fraction of times they clustered together across 1, 000 random samples. The reliability score of K = 6 is presented here. The final modules are then constructed by clustering the pairwise reliability scores, and are represented by the colored stripes below the clustering dendrogram.





3.2. High Correlation Among Cytokines Motivated Adjustment for Mean Concentration

The high positive correlation among the majority of cytokines in each compartment (or dataset) was also reflected in the significant positive correlations between each cytokine and the mean cytokine level within each subject (51) (Figure 2B and Figures S2B, S3B, S4B, S5B). Thus, subjects with a high concentration of one cytokine were relatively likely to have high concentrations of most of the other cytokines. We hypothesized that overall levels of immune activation (e.g., absolute number of immune cells in the blood) drive absolute cytokine concentrations. A high level of immune activation could therefore obscure cytokines expressed at relatively low levels. Furthermore, the absolute cytokine concentration could also be affected by technical artifacts such as sampling variability introduced by sample collection methods. Therefore, we developed an approach for adjusting cytokine measurements for the mean level within each sample using regression (detailed in section 2.2). An adjusted cytokine measurement reflects the level of unexplained deviation of that cytokine in a specific sample, from the expected cytokine level according to its association with the mean estimated across all samples. Correlations among cytokines after the adjustment can be substantially different, revealing associations that were previously obscured by the strong correlation with the mean (Figure 2C and Figures S2C, S3C, S4C, S5C). Therefore, following our previous work modules were constructed and analyzed using both absolute and adjusted cytokine concentrations separately for each dataset (51).



3.3. Modules Based on Absolute Cytokine Levels Were Associated With Influenza Clinical Phenotypes in Two Cohorts

For each study, we evaluated the association between each absolute cytokine module and the relevant clinical phenotypes recorded in the study, using linear or logistic regression models (detailed in section 2.4). Regression models controlled for the effects of age and other variables, as previously chosen for each of the three cohorts (49, 51, 58). For purposes of comparison, we also evaluated the association of each absolute individual cytokine with the phenotypes. P-values for the coefficients describing the associations of modules and cytokines with clinical phenotypes were adjusted for multiple hypothesis tests within each figure presented (i.e., across cytokines or cytokine modules, but within cohort, compartment and absolute/adjusted module set). The P-values for the module and cytokine coefficients were adjusted independently. Family-wise error rate (FWER)-adjusted p-values using the Bonferroni-Holm method (64) were calculated and are presented in each figure using asterisks. Only associations with a false-discovery rate (FDR)-adjusted q ≤ 0.2 are shown [using the Benjamini' Hochberg procedure (63)]. However, only associations with FWER-p ≤ 0.05 were considered statistically significant.

FLU09 - The associations with clinical phenotypes in influenza-positive FLU09 absolute datasets were calculated using linear regression adjusted for age (Figures 4A,C and Tables S1, S3). Modules and cytokines were tested for associations with several clinical phenotype groups recorded in the study (detailed in section 2.1): upper respiratory tract (Upper RT) symptoms, lower respiratory tract (Lower RT) symptoms, systemic symptoms, gastrointestinal symptoms, total symptoms and (log) viral-load (log-VL). Significant positive associations were observed with the absolute plasma modules. For example, absolute Blood Sample 3 module (BS3) was positively associated with total and systemic symptoms, and absolute BS4 was associated with lower RT symptoms (regression coefficients of 0.529, 0.605, 0.322, and FWER p-values of 0.0035, 0.0037, 0.0304, respectively). Individual cytokines within these modules were also significantly associated as follows: BS3 cytokines EGF, GRO and IP-10 positively associated with total symptoms and IP-10 also associated with systemic symptoms; the BS4 cytokine Fractalkine (FKN) was positively associated with lower RT symptoms. While most of the regression coefficients of these cytokines were slightly higher than those of their modules, the statistical significance of the absolute associations after FWER adjustment was stronger for the modules than the individual cytokines in 4 of 5 (significant) cases; only the significance of the Fractalkine association was stronger than that of the BS4 module to which it belongs. In addition, IL-10 was significantly associated with both upper and lower RT, while the BS2 module to which it belonged was not significantly associated with any symptoms. This increase in statistical significance is directly attributable to the reduction in the number of statistical tests across which multiplicity adjustment is applied. In the absolute-module set analysis of the nasal wash samples, the majority of cytokines clustered together into one module (NW2), perhaps due to high immune activation at the site of infection. Absolute NW2 was significantly positively associated with upper RT symptoms (regression coefficient 0.46, FWER p = 0.029), however, NW2 cytokine IL-6 had a stronger significant positive association with the same phenotypes. It should be noted that all of the previously reported cytokine associations with symptom scores identified using data from years 1 to 2 of the FLU09 study (using an FDR threshold of 0.2) (49), were re-confirmed in our current analysis using the complete cohort from years 1 to 5 (Figure S9), and additional associations were found in the current analysis.
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FIGURE 4. FLU09 cytokine associations with clinical phenotypes. Associations were identified using linear regression controlling for patients age using both absolute and adjusted plasma samples (A,B), and absolute and adjusted nasal wash samples (C,D). Modules of covarying cytokines were constructed separately for absolute and adjusted cytokine measurements from plasma or nasal wash samples. We then tested associations with several clincal phenotypes described in section 2.1: upper respiratory tract (URT) symptoms, lower respiratory tract (LRT) symptoms, systemic symptoms, gastrointestinal symptoms and log viral load (VL). Each cytokine or module is indicated along the rows, grouped by their assigned module. Heatmap color indicates the direction and magnitude of the regression coefficient between cytokine or module level with a given clinical phenotype. Only associations with false-discovery rate (FDR)-adjusted q-value ≤ 0.2 are colored. Asterisks indicate family-wise error rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.



PICFLU - Positive significant correlations were also observed in the absolute PICFLU serum associations with clinical phenotypes portrayed in Figure 5A and Table S5. These associations, calculated using logistic regression, were adjusted for age and bacterial coinfection (see section 2.1 for details). The absolute BS3 module was positively associated with both shock and ECMO or death (odds ratio 2.75, 2.04, FWER p-values 0.00002, 0.0286, respectively). The BS3 cytokines IL-6 and IP-10 had an association with shock, while IL-8 and MCP-1 had an association with both shock and pneumonia-ARDS. The BS3 association with ECMO or death was significant while none of the individual cytokines in the module were significantly associated. The strength of the association with shock for all individual BS3 cytokines was weaker than for the module as a whole. On the contrary, absolute IL-8 and MCP-1 had a significant association with pneumonia-ARDS, while the absolute BS3 module did not. The PICFLU absolute endotracheal samples did not have any significant associations with outcomes (FWER-p > 0.05; Figure S7A and Table S7).
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FIGURE 5. PICFLU serum cytokine associations with clinical phenotypes identified using logistic regression while controlling for patients age and bacterial coinfection. Modules constructed of covarying cytokines [absolute (A) and adjusted (B) measurements separately] from serum samples, were tested for associations with the clinical phenotypes described in section 2.1: shock, pneumonia-ARDS and ECMO or death. Each cytokine or module is indicated along the rows, grouped by their assigned module. Heatmap color indicates the direction and magnitude of the regression coefficient between cytokine or module level with a given clinical phenotype with and without the complication. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.



SHIVERS - Due to differences in sampling strategy during the first and second years of the study, associations with phenotype were calculated only for subjects from the first year of the SHIVERS study (n = 52). Logistic Regression models included adjustment for age, ethnicity and sampling time. No significant associations were detected among absolute individual serum cytokines, with severe acute respiratory illness (SARI) (Figure S8A and Table S9). However, we note that univariate associations previously reported for this cohort (58), which were not adjusted for multiplicity testing across cytokines, were in overall agreement with the cytokine associations reported here for FLU09. In particular, EGF, GRO, sCD40-L and MCP-1, all clustered together in SHIVERS to absolute module BS3 and positively correlated with SARI in the SHIVERS previous analysis. In our current analysis of FLU09 these cytokines belong to the absolute BS3 module, which was positively associated with total and systemic symptom scores. In addition, Fractalkine, VEGF, TNF-α and GCSF belong to the BS4 absolute module in FLU09 which was positively associated with lower respiratory tract symptom scores (LRT). They were also previously reported to be positively associated with SARI in SHIVERS. In particular, Fractalkine was also significantly associated with LRT scores In FLU09 and had an odds-ratio of 16.52 for SARI in SHIVERS (58).



3.4. Adjustment for Mean Cytokine Level Reveals Negative Associations Between Modules and Clinical Phenotypes

While none of the absolute concentrations of cytokines or their modules were negatively associated with clinical phenotypes, we found several significant negative associations using cytokines and cytokine modules that had been adjusted for the mean cytokine concentration. Interestingly, some, but not all of the significant positive associations that were identified using absolute cytokine concentrations were also significant after adjustment for the mean.

FLU09 - as seen in Figure 4B, the adjusted BS1 module containing FLT3L, IL-13, IL-1β, IL-4, IL-5, IL-7, IL-9, and TNF-β was found to be significantly negatively associated with total and systemic symptoms (regression coefficients –0.557, –0.582, FWER p-values 0.0011, 0.008, respectively, as detailed in Table S2). Individual cytokines in this module were predominantly negatively associated with symptom scores, some with FDR ≤ 0.2, however, none of these associations were significant after FWER adjustment. The adjusted nasal wash modules did not have any significant positive associations with symptom scores (Figure 4D and Table S4). A single significant negative association was found between adjusted EGF concentrations and viral load (regression coefficient -0.281, FWER-p = 0.0157).

PICFLU - The adjusted BS4 module containing EGF, Eotaxin, FGF-2, Fractalkine (FKN), GRO, IFN-α2, IL-12-P70, IL-7, MDC, and sCD40-L was negatively associated with shock, pneumonia-ARDS and ECMO or death (odds ratio 0.463, 0.598, 0.494, FWER-p = 0.0002, 0.0155, 0.0283, respectively; Table S6). The adjusted concentration of EGF (member of BS4) was also found to be negatively associated with ECMO or death (OR = 0.211, FWER-p 0.043), albeit more weakly that of the BS4 module. No other individual adjusted cytokines were found to be negatively associated with clinical phenotypes. The adjusted BS3 module, which contained a similar group of cytokines to that of the absolute BS3 module, had positive associations with shock, pneumonia-ARDS and ECMO or death (odds ratio 3.01, 1.75, 2.46, FWER p-values 0.000002, 0.0095, 0.0042, respectively). The BS3 adjusted cytokines IL-6 and IP-10 were associated with shock, while IL-8 and MCP-1 were associated with both shock and pneumonia-ARDS. As with the absolute cytokine analysis, adjusted BS3 was associated with ECMO or death, while none of its constituents were associated on their own. The significance of all adjusted BS3 member cytokines with shock was weaker than the module's; the significance of the adjusted IL-8 association with pneumonia-ARDS was also weaker than that of BS3. However, the significance of the association of adjusted MCP-1 with pneumonia-ARDS was stronger than that of its module BS3.

SHIVERS - While no significant associations were detected among adjusted individual serum cytokines, we found that the adjusted BS6 module was positively associated with severe acute respiratory illness (SARI) (Figure S8B and Table S10). Furthermore, IL-4, IL-13, and TNF-β were part of the adjusted BS1 module of SHIVERS and were also in the adjusted BS1 module of FLU09 that was negatively associated with total and systemic symptom scores, as well as negatively associated with SARI in the previous report on SHIVERS (58).



3.5. Subsets of Cytokine Clusters Were Similar Across Datasets

We next asked whether cytokine modules were consistent across datasets, i.e., were there cytokine “cores”—clusters of cytokines that were consistently correlated during influenza infection. Since airway samples were available only for two out of three cohorts, this analysis was only performed using blood sample (serum or plasma) modules. To identify cytokine cores, we tallied the number of times that each pair of cytokines clustered together across the three blood datasets (Figures 6A,B). Cytokine cores were defined as groups of cytokines that clustered together in all three datasets. Cytokine cores were defined separately for the absolute and adjusted cytokine modules (Table 2). There is overall agreement between the absolute and adjusted cytokine cores. The most striking difference is the division of IP-10, MCP-1, IL-8, and MIP-1α into two different subsets.
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FIGURE 6. Defining cytokine cores. By leveraging information across cytokine profile datasets, we can identify cytokine cores—subsets of cytokines that consistently co-signal across all three blood datasets used in this study. Heatmaps of the number of times each pair of cytokines clustered together in all three cohorts, for adjusted (A) and absolute (B) blood sample data independently. Cytokine names are colored by cytokine cores.





Table 2. Cytokine cores identified in absolute and adjusted blood samples independently.
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To determine whether the cytokine cores were unique to influenza infected subjects, we constructed modules of adjusted and absolute plasma samples provided by 142 healthy volunteers in the FLU09 study. We found that overall, cytokine cores were consistent across influenza-infected and healthy controls with two exceptions: in the absolute cores, GCSF did not cluster together with other core-6 cytokines and cores-4 and -6 were not identified in the adjusted modules of healthy controls.



3.6. Core Modules Were Also Associated With Clinical Phenotypes

Each absolute or adjusted core was composed of cytokines that clustered together into the same module in all three cohorts (Tables 3, 4). For example, adjusted core-2 was composed of IL-12-P40, IL-15 and IL-2, which were members of PICFLU adjusted BS1, FLU09 adjusted BS5 and also SHIVERS adjusted BS5. We noted that most adjusted and some of the absolute cores (Figure 6) were composed of cytokines that were members of modules that exhibited strong associations with clinical phenotypes. For example, adjusted core-1 contained GRO, MDC, sCD40-L, and EGF, members of the PICFLU adjusted module BS4 (Figure 5B), which was negatively correlated with poor clinical phenotypes. Surprisingly, they were also members of the adjusted module BS3 from FLU09 (Figure 4B), which in contrast had mostly positive associations (significant only in the absolute measurements). Adjusted core-3 contained IL-1β, IL-4, and IL-13 that were part of the FLU09 adjusted module BS1, which was negatively associated with several symptom scores. Adjusted core-5 contained IP-10, MCP-1, IL-8, and MIP-1α that were part of FLU09 adjusted BS3 mentioned above, and also of adjusted PICFLU module BS3 which had significant positive associations with all phenotypes. Absolute core-5 and absolute core-6 cytokines were part of FLU09 and PICFLU absolute modules that had significant positive associations with phenotypes (Figures 4A, 5A).



Table 3. Modules that construct the absolute cytokine cores by dataset.
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Table 4. Modules that construct the adjusted cytokine cores by dataset.
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We then tested for associations between the cytokine cores and clinical phenotypes, using the same methodology described above. A subject's score for each core was calculated based on the mean cytokine concentration of cytokines within the core, after standardizing each cytokine to mean zero and unit variance. Figure 7 portrays the associations to clinical outcomes and symptoms for absolute and adjusted blood cytokines of influenza-positive FLU09 and PICFLU subjects, respectively. P-values for the coefficients describing the associations of cytokines and symptom scores were adjusted for multiple hypothesis tests within each presented dataset separately. P-values for the regression coefficients calculated for the core scores were adjusted independently of the coefficients calculated for individual cytokines. Individual cytokine p-values were adjusted across all cytokines and not only for the cytokines included in the core cytokine set.
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FIGURE 7. Cores constructed from groups of covarying cytokines (absolute and adjusted measurements separately) as detailed in section 3.5. Associations between cytokine cores and clinical phenotypes are shown for FLU09 (A,C) and PICFLU (B,D) for both raw and adjusted cytokine levels. Blood cytokine cores associations with phenotypes were estimated using regression while also controlling for other variables as described in section 3.3. Each cytokine or core is indicated along the rows. Heatmap color indicates the direction and magnitude of the regression coefficient. For each individual cytokine FDR and FWER adjustments are shown are controlled over all 37 cytokines. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.



FLU09 - None of the adjusted plasma FLU09 cores were significantly associated with clinical symptoms, but trends were in agreement with the module associations (Figure 7 and Tables S11, S12). However, absolute cores were associated with symptoms: absolute core-1 was associated with total symptoms; core-4 was associated with lower and upper RT symptoms; and core-5 was associated with total and systemic symptoms. Each core's corresponding module was similarly associated with symptoms: BS3 which contained absolute core-1 and core-5 cytokines was associated with total and systemic symptoms; BS4 which contained absolute core-4 cytokines was associated with lower RT symptoms but not with upper RT symptoms (while core-4 itself was associated with both).

PICFLU - Significant associations were found with both absolute and adjusted cores (Figure 7 and Tables S13, S14). Absolute core-5 was positively associated with shock, absolute core-6 was positively correlated with shock and ECMO or death. Absolute core-5 and core-6 cytokines were members of absolute module BS3, which was also positively associated with shock and ECMO or death. Three adjusted cores, originating in two different modules, were associated with outcomes: adjusted core-1 was negatively associated with shock and ECMO or death, adjusted core-5 was positively associated with shock, pneumonia-ARDS and ECMO or death, and adjusted core-6 was positively associated with shock. Adjusted BS4 which contained adjusted core-1 cytokines was associated with all outcomes, while core-1 was negatively, but not significantly associated with pneumonia-ARDS after FWER adjustment. Adjusted BS3 which contained adjusted core-5 and -6 cytokines was positively associated with all outcomes.

SHIVERS - In the SHIVERS cohort, neither the absolute or adjusted cores were significantly associated with the SARI phenotype. The lack of association may be due in part to the small sample size in the first year of the study (n = 52).



3.7. Correlations Among Core Modulations Were Consistent Across Cohorts

We computed correlations between cores within each of the blood cytokine profile datasets, including the FLU09 healthy controls (see section 2.5 for details). Overall we found mostly positive significant correlations between absolute cores that were consistent across all datasets, with a few notable exceptions: cores-1 and -7 and cores-3 and -4 (Figure 8A).
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FIGURE 8. Pairwise Pearson correlations between absolute (A) and adjusted (B) blood cytokine cores within each dataset, presented with vertical stripes from left to right: PICFLU, SHIVERS, FLU09, and FLU09-healthy. Heatmap color indicates the correlation coefficient. P-values for the coefficients were adjusted for multiple hypothesis tests within each dataset separately. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.



We also computed pairwise correlations for the adjusted cores (Figure 8B). Similarly to the absolute cores, overall correlations between cores were consistent across datasets except for one pair of cores (core-1 and core-5).




4. DISCUSSION

Here we presented CytoMod—a data driven approach for analyzing cytokine profiles and their association with clinical phenotypes. Our approach leverages the inherent redundancy of cytokines to form modules—clusters of cytokines whose signals correlate across a cohort of individuals. CytoMod is an unsupervised method—i.e., it does not use any information about clinical phenotypes or outcomes to identify cytokine modules. Using cytokine modules increases the statistical power to detect associations with clinical phenotypes, by amplifying the signal within a module relative to the noise, as well as reducing the number of tests subject to multiplicity adjustment. It also allows for the identification of data-specific co-signaling cytokines, which may provide clues about the underlying immunological pathways. A preliminary version of CytoMod was applied in the analysis of the PICFLU cohort (51). Importantly, the method presented here includes automated selection of the number of modules using the gap-statistic heuristic. Indeed, when applied to the PICFLU cohort, it identified different numbers of modules than those analyzed in our previous work.

To our knowledge CytoMod is the first method for the analysis of cytokine profiles and clinical phenotypes that utilizes modules identified within cytokine expression data. In the age of multi-omics approaches, novel strategies for the integration of multiplex data with clinical outcome information can assist in the identification of complex pathological alterations of physiological networks. CytoMod only requires a dataset of cytokine measurements and (optionally) clinical phenotypes. Importantly, it does not assume that modules necessarily capture biological function.

CytoMod is based on unsupervised clustering which can help uncover inherent structures within a given dataset. Our work is related to previous work on methods for cluster analysis of variables (65–67), which groups together variables which are strongly related to each other and hold similar information. CytoMod can also be viewed as a dimensionality reduction method for cytokine profiles. There are a variety of other methods for dimensionality reduction that have been widely used for visualization and analysis of biological data. These include methods such as Principal Components Analysis (PCA) (68, 69), Linear Discriminant Analysis (LDA) (70), Factor Analysis (71) and t-sne (72). Most of these methods project the samples into a low-dimensional space by creating new features from linear combinations of the original features. In this new space the original coordinates (or features/cytokines) are not retained, thereby reducing the ability to draw biological interpretation. In contrast, our modules retain interpretability by grouping together individual cytokines that are co-expressed and can be further studied to allow gaining new insights into the underlying biological processes that generate these structures.

We applied CytoMod to three independent cohorts of influenza-infected subjects. The analyses of SHIVERS and FLU09 datasets presented here included previously unpublished data from additional study years, as well as data from healthy volunteers. To allow comparisons between the cohorts, we limited the number of cytokines analyzed to a subset of 37 cytokines that were quantified in all three cohorts. We found that in two of these cohorts, modules were significantly associated with clinical phenotypes, and in most cases the associations were stronger than those of individual cytokines within the module. Specifically, we found that across all modules in these two datasets, the association of the module with outcomes was more significant than that of an individual cytokine in 14 out of 22 cases in which the cytokine's association was significant. Furthermore, in 6 cases, a module had a significant association with a phenotype while non of its cytokines had any significant association.

In our previous analysis of FLU09, we analyzed only 11 pre-selected cytokines using data from years 1 to 2. In our current manuscript, we analyzed data from the entire study (years 1–5). We identified novel associations between modules and clinical phenotypes. Specifically, the adjusted BS1 module containing FLT3L, IL-13, IL-1β, IL-4, IL-5, IL-7, IL-9, and TNF-β was found to be significantly negatively associated with total and systemic symptoms. Out of these cytokines, only IL-1β was included in the previous analysis. In addition, we found novel associations of the absolute EGF, GRO, FKN levels that were not previously reported. In the analysis of the PICFLU study, which only included children admitted to the ICU with influenza infection, we found that the serum module BS3 is significantly associated with Shock and ECMO/death outcomes. Interestingly, this module contains IL-6, IL-8, and MCP-1, which have been previously reported to be hyperactivated in subjects with severe influenza infection (28). No significant associations with clinical phenotypes were detected in the SHIVERS cohort, though this may be due in part to its small sample size (n = 52), and sampling variability (58) which further limits the ability to detect associations. Interestingly, we note that univariate associations previously reported for this cohort (58), which were not adjusted for multiplicity testing across cytokines, were in overall agreement with the module associations reported here for FLU09 and in some cases with the cytokine cores.

We focused here on analyzing cytokine associations with outcomes that were significant following a stringent FWER adjustment procedure. In fact, all of the previously reported FDR-adjusted FLU09 associations based on data from years 1–2 (49) were also significant using FDR-adjustment on the complete years 1–5 dataset, and three of them were also FWER significant (when adjusted across all 37 cytokines analyzed here). These findings suggest that many of the associations with FDR q-values ≤ 0.2 may also be worth further exploration (Figure S9). The fact that many individual cytokines within FWER significant modules have associations with clinical phenotypes with the less stringent FDR q-value threshold of 0.2, while only a few of them have FWER significant associations, demonstrates the increase in statistical power provided by the modular cytokine approach. The CytoMod method considers both absolute and adjusted cytokine levels, since immune cells may be sensitive both to absolute and relative cytokine concentrations (73–75). While some positive associations with clinical phenotypes were observed using both the absolute and adjusted cytokines and modules, we found that significant negative associations with clinical phenotypes were found only with the adjusted modules. This is likely due to the fact that adjustment to the overall cytokine expression level may uncover differences in cytokine levels that are expressed at relatively low levels. Specifically, we found that the adjusted BS1 module in FLU09 was negatively associated with total and systemic symptoms, and that the adjusted BS4 module in PICFLU was negatively associated with the clinical phenotypes of shock, pneumonia-ARDS and ECMO-death. Interestingly, some of the BS4 cytokines were positively associated to FLU09 symptom scores when considering the less stringent FDR q-value ≤ 0.2. These results highlight the importance of analyzing both absolute and adjusted cytokine levels.

By analyzing three independent cohorts of subjects naturally infected with influenza, we were able to identify cytokine “cores”—subsets of cytokines that consistently clustered together across datasets. Cores were extracted from the modules directly and were identified without using any information about clinical outcomes or subject demographics. Interestingly, the majority of these cores clustered together in the set of 142 healthy controls from the FLU09 study, suggesting that these cores may represent sets of co-signaling cytokines. Some of these cores include cytokines that have been reported to have similar roles: For example: (1) adjusted core-3 which includes IL-1β, IL-4, and IL-13 contribute to epithelial repair mechanisms (4); (2) IP-10, MCP-1, IL-8, and MIP-1α which belong to adjusted core-5 are chemokines that are key inflammatory mediators (1); (3) IL-2, IL-15, and IL-12-p40 in adjusted and absolute core-2 are involved in T-cell activation (76, 77).

While we found that the cytokine cores were significantly associated with clinical phenotypes, the associations of the cytokine modules that were defined separately for each dataset were overall stronger. This is not surprising for two reasons: (1) using the strict definition of cores used here (co-clustering in all 3 datasets), cores are typically smaller than data-driven modules and are more sensitive to measurement noise; (2) Data driven modules of a specific cohort may also be affected by other covariates which may be specific to that cohort, and are not captured by the cytokine “cores” which are created using multiple datasets.

We analyzed correlations between cytokine cores, and compared these across datasets in both the absolute and adjusted datasets. We found that overall, the correlations between different cytokine cores were consistent across the three datasets, as well as in a cohort of healthy controls. However, we found one notable exception: adjusted core-1 and core-5 were negatively associated only in the PICFLU dataset. This is also reflected in the fact that core-1 (EGF, GRO, MDC, and sCD40-L) was weakly positively associated with outcome in a cohort of mild influenza infection (FLU09) and was negatively associated with outcome of severe influenza infection (PICFLU).

The existence of cytokine cores, and their association with clinical phenotypes despite a variety of differences between the cohorts suggest that these cores may represent stable underlying cytokine modules that consistently co-signal during influenza infection, and in some cases also in a healthy state. Cytokine cores may relate to specific functions and underlying biological processes that govern the complex cytokine signaling network. Nonetheless, defining robust cytokine cores requires large scale analysis of multiple cytokine datasets. As additional cytokine profile datasets are generated and made publicly available, cores can be dynamically re-defined, including defining “softer” probabilistic cores based on frequency of co-occurrence across many datasets and conditions. Identification of consistent cytokine subsets may provide a basis for the selection of biomarkers and the development of targeted immune assays, as part of a novel approach for developing future point-of-care diagnostic tests based on cytokine measurements that may be used for many different infections.

CytoMod groups cytokines into modules so that each cytokine belongs to a single module. We hypothesize that similar to genes, each cytokine may play several functional roles under different immune contexts. This would be best captured by “soft” modules, in which each cytokine may belong to more than one module. Once a sufficiently large number of cytokine datasets are analyzed such softer modules may be identified and annotated, similar to annotations of gene modules (52, 57). Our analysis of three datasets should be viewed as a first step in this direction.

CytoMod can be applied to any cytokine profile dataset and does not make any assumptions regarding the specific technology that was used to quantify cytokines. Furthermore, the modular approach allows identification of co-signaling cytokines across study years, even if the specific kit used to quantify cytokines was changed during the study, or other changes to the study were implemented. This is due to the fact that correlations are computed between cytokines across study subjects. Indeed despite significant differences between the cytokine measurements in years 1 and 2 of the SHIVERS study, we used both years to generate cytokine modules for this dataset.

In summary, using a modular approach to analyze cytokine profile datasets provides two major advantages: (1) It increases statistical power to detect associations with clinical phenotypes; and (2) By comparing modules obtained from different independently sampled datasets, we can identify cytokine cores - sets of consistently co-signaling cytokines. By aggregating cytokine information across datasets, this approach may help identify inherent, and condition-specific groupings of cytokines, providing the basis for future mechanistic molecular studies. A Python implementation code of CytoMod can be found at https://github.com/liel-cohen/CytoMod as well as in an interactive Jupyter Notebook available at https://nbviewer.jupyter.org/github/liel-cohen/CytoMod/blob/master/cytomod_notebook.ipynb.
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