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Editorial on the Research Topic

The role of the interactions viamovements in the spatial and temporal

representation of external objects

Humans execute movements to manipulate their physical surroundings to improve

their survival chances. Successful interaction of the brain with the surroundings,

which produces purposeful movements, depends on many factors, some of which are

highlighted by the contributions in this special issue. The control of movements during

an interaction with the physical environment is simplified by a grouping of muscles,

called muscle synergies, which serve as the functional unit and can be used across task

conditions (d’Avella et al., 2003). Muscle synergies are a small number of fixed patterns

of contractions. Movements also reduce the entropy (a measure of surprise) in the

patterns of the neuronal activities in the brain that will increase knowledge, forming the

basis of voluntary control and perception (Gupta and Bahmer, 2019). In desynchronized

states of the brain, which promote information processing (Petersen, 2019), the temporal

coupling of neuronal events will occur as a result of the interactions with the physical

world (Gupta et al., 2020; Gupta and Bahmer, 2021). Transferring the temporal

relationship between external physical events, namely sensory stimuli and movements

during an interaction, separated by zero to hundreds of milliseconds, to a corresponding

temporal relationship between the neural events triggered by those external physical

events requires an accurate representation of the time axis in the brain. This transfer

of temporal relationships will lead to the temporal coupling of neural activities, given

the external events involved in an interaction. Thus, a “successful interaction” will

reduce entropy in activity patterns when neuronal activities are temporally coupled.

This reduction in entropy or surprise will result in the gain of knowledge about the

interaction, responsible for the sensorimotor control by the brain. Thus, humans control
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movements as they are being executed, which is referred to

as online control (Oostwoud Wijdenes and Medendorp), by

resolving the surprise in the spiking pattern of the cortical areas

via temporal coupling of neuronal activities, given the external

events involved in the interaction.

Online control depends on the instantaneous estimate of

the current state of the arm and body in the world. According

to Optimal Feedback Control theory, this estimate, which is

modulated by context and shaped by experience, is based on

integrating forward motor predictions and sensory feedback,

such as proprioceptive, visual, and vestibular information.

To simplify difficulties, inherent in understanding multimodal

estimate’s role in online control, Oostwoud Wijdenes and

Medendorp have proposed that the earliest online movement

corrections are based on multiple single modality state estimates

rather than one combined multimodal estimate. Indeed, it has

been argued in the past that the detection of visual stimuli

pertaining to movements is a fundamental process for the

control of reaching movements (Reichenbach et al., 2014).

The visuomotor response in a task involving interaction

with physical surroundings is likely to involve both hemispheres,

which is underscored in a study by Hagio and Kouzaki, which

showed that a visuomotor perturbation during a barrier crossing

task affects the movement of the trail leg in addition to the

movement of the lead leg.

In their paper, Kostyukov and Tomiak simulate the shoulder

and elbow joint torques (JTs), using a two-segment model of

the human arm. In contrast to dynamic models, in which the

second-order differential equations define the velocities and

accelerations of different limb segments, the authors use steady

states of the motor system in forced interactions as the chief

elements of analysis. It is assumed that the CNS defines the

equilibrium states in the motor interaction of the organism with

the environment, while movements result from the transitions

between a series of equilibrium states. Authors hope that a

pattern of the torque effects can provide some simplification of

both descending motor programs and their integration at the

spinal level.

Josa et al. have studied the effect of action constraints

on distance estimation. Authors report that subjects’

distance estimation from a cart to a target depended

on the weight of the cart, loaded with books or empty.

The subjects overestimated the distance when the cart

was loaded with books. This, the authors argue, is

consistent with the embodied perception theories, which

suggest that perception depends on the constraints of

potential action.

Avraham et al. (B) investigated the effect of applying a

150ms delay in visual feedback from the left visual workspace

on lateral movements and visual perception of the mid-

point of horizontal lines. The authors observed hypermetric

movements on the left side, which returned to the baseline

during adaptation. In another study by Avraham et al. (A),

also with visual feedback of hand movement (movement of

the cursor) was delayed by 150ms, in right or left or both

workspaces. The hand movement was followed by drawing

circles in the desired direction without any visual feedback.

Avraham et al. observed that “delay presented in left and

both delay caused symmetrical elongation only to left initiated

circles and right delay caused symmetrical elongation to

both left and right initiated circles.” Both works underscore

the importance of the representation of the time-axis in

voluntary movements of the right hand. Presenting the delay

in visual feedback also shifts the representation of time-

axis, which could be responsible for hypermetric or elongated

movements. These findings also suggest that a representation

of the time-axis in the left hemisphere may be responsible

for the laterality of hemispheres since the delay of the visual

feedback in the right workspace (processed by the dominant left

hemisphere) leads to symmetrical elongation of the left and right

initiated circles.

Sorrentino et al. studied the development of spatial

memory in children aged 4–6 years, which required

collecting nine colored balls in buckets arranged in three

different configurations, namely, Matrix, Cluster, and

Cross. The trial ended when all nine colored balls were

collected or 30 visits, wrong or correct visits were made,

including revisits. The authors found that declarative spatial

memory improved with age and movements. Findings

showed spatial ability depended on the complexity of

the environment.

Saccades are rapid movements of the eyes that abruptly

change the point of fixation (Purves and Williams, 2001) when

scanning the space during navigation. Fixation points during

scanning of the scenery image are the most salient locations.

Chauhan et al. present two versions of hierarchical Saccade

Velocity Driven Oscillatory Network models. In these two

hierarchical models, the output of one layer is used as input

for computing the output of the next layer. First, a saccade

trajectory map is generated according to decreasing order of

saliency of different locations of an image. The saliency is

based on three features: intensity, color, and orientation. The

saliency trajectory map is processed by the saccade direction

layer, which computes the animal’s current saccade direction

projection on the preferred direction. The computation in

the next layer, called the path integration layer, incorporates

an amplitude function, resulting in oscillations. The path

integration layer projects to the output SC layer, which exhibits

a grid-like pattern by extracting the principal components of

the oscillatory response. The periodicity in the weights of

the principal component due to oscillations corresponds to

grid cells in the entorhinal cortex that fire action potentials

in navigating animals. The authors argue that oscillations

are critical for grid cell generation. Oscillations encode the

position information in their respective phase. This is also

supported by animal studies that showed a key role for theta
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oscillations in the normal grid cell activity in the entorhinal

cortex (Giocomo et al., 2007).

Gundavarapu et al. present a hierarchical neural field

network model of motion processing. The model architecture

has an input layer followed by either one or two neural fields

(NF), NF1, and NF2, corresponding respectively to the primary

visual cortex and middle temporal area. In this model, the lateral

connections in the neural fields are trained by unsupervised

asymmetric Hebbian learning, to process sequential information

in motion stimuli. Neurons in NF1 respond to the direction

of the component motion, such as gratings and edges, and

the neurons in NF2 respond to the direction of motion of the

whole pattern. Additionally, information about the stimulus’s

temporal sequence is preserved in the network dynamics.

Interestingly, translational random dot stimuli flow motion

was decoded by a classifier with an accuracy of 90% on the

test data, which is a biologically plausible range for most

human activities involving interactions with moving objects.

The success of neural networks in the above neurobiologically

plausible models (Chauhan et al.; Gundavarapu et al.) suggests

that many functions of the brain are due to hierarchical

processing of information by different higher brain areas

and may be driven by learning from experience, similar to

neural networks.

Krüger and Hermsdörfer studied duration and fingertip

position variability in reaching movements involving touching

a target with the right index fingertip at a fixed distance. The

targets were manipulated according to three conditions: forced

choice with certain and uncertain targets, and a third free choice

target. Consistent with previous literature, authors reported that

“within-subject between trial variability of fingertip position

showed an increase-decrease pattern across the time course

of movement execution, with low variability at movement

end.” The initial increase in the “between trial variability” is

consistent with an increase in the entropy of neuronal spiking in

cortical motor areas. However, near the end of the movement,

coinciding with the interaction with the external world, there

is reduced “between trial variability,” suggesting an increase

in correlated activities, which is likely due to an increased

probability of the task-specific activation of temporally coupled

pairs of neurons. This time course of the change in variability

from the beginning to the end of the task is consistent with the

role of an initial increase in entropy followed by an increase

in mutual information (a measure of correlation), representing

information underlying purposeful action (Gupta and Bahmer,

2019). Furthermore, it is expected that the initial increase in the

variability is greater if the number of targets is more than one.

Thus, the authors found greater variability in fingertip position

when two targets instead of one target were presented in a

forced-choice task. Krüger and Hermsdörfer also reported an

increased length of the movement path in the forced-choice task

with two targets. We note that increased length of movement

path in forced-choice task with two targets is likely related to

greater variability and vice versa. Authors have argued that the

increased length of the movement path is responsible for the

significantly increased duration of the movement.

Min et al. used a computational model to argue that a

learned motor skill can be adapted to a novel condition. The

authors proposed that the use of a learned motor skill in a

novel setting will produce feedback gain signals, which can tune

the output of corticospinal neurons in a computational model

of the cortico-basal ganglia-thalamic-cortical circuit. The basal

ganglia dynamically modulate motor output with the synergistic

combination of two control policies: group control policy (CGP)

and individual control policy (ICP). The CGP represents all

muscles controlled by a single peripheral nerve, and the IGP

represents individual muscles. The synergy between two control

policies is optimized by feedback gain signals according to

the feedback signals to produce the movements adapted to a

novel context. Feedback signals via the cortico-basal ganglia-

thalamic-cortical circuit may help in monitoring the movement

in a novel context for successful interaction. Learned motor

skills may be stored in the premotor area as a circuit pattern,

which may be activated in a novel context. The success of

movements in novel conditions, given the use of learned motor

skills, will be determined by themaximumdecrease in entropy in

overall cortical spiking firing patterns, which may depend on the

temporal coupling of a slightly different set of pairs of neuronal

activities. This may occur due to temporal coupling of neuronal

activities, caused by signals from proprioceptors relayed by the

cerebellum to the cortex as well as activities in cortical motor

areas, reflecting actual interactions in novel conditions, which

will lead to the modulation of the learned motor skill.

Cohn et al. have proposed the feasibility theory wherein

a high-dimensional feasible activation space is a family of

valid solutions representing muscle activation patterns, such as

muscle synergies, for a given motor task. The authors argue that

due to the dependence on anatomical constraints of the nervous

system and musculoskeletal system, the feasible activation space

contains valid solutions, i.e., prescriptive synergies for executing

movements. Feasible activation space may also provide a

framework for analyzing how learned motor skills may be

modified in novel situations (Min et al.).

Oshima et al. present experimental evidence showing that

humans adapt to different speeds of locomotion–walking and

running–by altering the spatial coordination patterns, while the

temporal coordination pattern remains unaffected by different

speeds. Their findings based on the study of the motion

of the legs indicate that the control of temporal patterns is

independent of the control of spatial patterns. This is consistent

with the identification of orthogonal components, which include

patterns of muscle contractions, called synergies and temporal

components from the analysis of electromyograms by standard

multidimensional factorization algorithms (d’Avella et al., 2003).

There may be different sets of patterns of muscle contractions–

muscle synergies–at different speeds of locomotion, leading
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to altered spatial patterns. In a related study, Gonzalez-Rubio

et al. observed that motor adaptation in the spatial domain

was susceptible to feedback in the temporal domain, whereas

motor adaptation in the temporal domain was not altered by the

feedback in the spatial domain. Since invariant muscle synergies

represent the spatial domain, there will be no effect of the

feedback in the spatial domain. However, as suggested by other

papers in this special issue, the neural representation of time-

dimension can be dynamically updated during a task (Avraham

et al., A; Avraham et al., B); thus, motor adaptation in the spatial

domain is affected by feedback in the temporal domain.

Various contributions to this Frontiers Research Topic

suggest that voluntary motor control depends on two

independent components: (1) prior, such as muscle synergies,

detected by electromyogram analysis, and (2) instantaneous

sensorimotor interaction, which leads to temporal coupling of

neural events in desynchronized brain states. Moreover, the

temporal coupling of neural events depends on an accurate

representation of physical time-dimension in the brain, in

addition to sensorimotor interactions between the brain and

physical surroundings. A successful sensorimotor interaction

will result in the temporal coupling of neuronal activities that

would reduce the entropy in the patterns of neuronal activities,

given a particular task, contributing to smooth voluntary motor

control. Future works should investigate how the temporal

coupling of neuronal activities and different measures of

surprise play a role alongside prior in voluntary movements.
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Humans are highly skilled in controlling their reaching movements, making fast and

task-dependent movement corrections to unforeseen perturbations. To guide these

corrections, the neural control system requires a continuous, instantaneous estimate of

the current state of the arm and body in the world. According to Optimal Feedback

Control theory, this estimate is multimodal and constructed based on the integration

of forward motor predictions and sensory feedback, such as proprioceptive, visual

and vestibular information, modulated by context, and shaped by past experience.

But how can a multimodal estimate drive fast movement corrections, given that

the involved sensory modalities have different processing delays, different coordinate

representations, and different noise levels? We develop the hypothesis that the earliest

online movement corrections are based on multiple single modality state estimates rather

than one combined multimodal estimate. We review studies that have investigated online

multimodal integration for reach control and offer suggestions for experiments to test for

the existence of intramodal state estimates. If proven true, the framework of Optimal

Feedback Control needs to be extended with a stage of intramodal state estimation,

serving to drive short-latency movement corrections.

Keywords: online movement control, multimodal integration, feedback control, state estimation, vestibular organ

OPTIMALITY IN PERCEPTION AND ACTION

Perceiving and acting can be considered as two sides of the same coin. To serve the perception-
action coupling, the sensory system has to estimate the state of the world (e.g., where and what are
interesting objects) and body (e.g., where are my hands), while the motor system is concerned with
prospective control based on these state estimates, i.e., generating the motor commands needed
to acquire a particular task goal. Recent insights suggest that perception and action are not only
intertwined at the computational level, following optimality principles (Todorov and Jordan, 2002;
Körding and Wolpert, 2004; Shadmehr and Krakauer, 2008; Oostwoud Wijdenes et al., 2016), but
also at the neural level (Cisek, 2006; Klein-Flugge and Bestmann, 2012; Grent-’t-Jong et al., 2014).

From a sensory perspective, optimality is defined as minimizing uncertainty about the state
of the body and world by combining redundant information from different sensory modalities,
weighting each signal in proportion to its reliability (van Beers et al., 1999; Ernst and Bülthoff, 2004;
Körding andWolpert, 2004). Indeed, psychophysical studies have shown that human perception is
near-optimal when integrating visual-proprioceptive (van Beers et al., 1999), visual-haptic (Ernst
and Banks, 2002), visual-auditory (Alais and Burr, 2004; Körding et al., 2007), or visual-vestibular
information (Fetsch et al., 2009; ter Horst et al., 2015). In such studies, the typical approach was to
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estimate noise levels of the two sensory modalities in separate
unimodal experiments, which were then used to predict
perception in the bimodal case (but see Clemens et al., 2011 for
a different approach). Also within the visual system, information
available before and after an eye movement (OostwoudWijdenes
et al., 2015), and current and remembered visual information
appears to be integrated in an optimal manner (Brouwer and
Knill, 2009; Atsma et al., 2016).

From a motor angle, optimality additionally includes factors
other than variability. Next to controlling for task-relevant but
not for task-irrelevant variability of the movement (Todorov and
Jordan, 2002; Franklin and Wolpert, 2008; Scott, 2012), effort
is also minimized, while accuracy and stability are maximized.
These factors are weighted against movement reward, e.g.,
reaching the goal fast (Liu and Todorov, 2007). For any
possible action, the brain needs to know the expected costs
as well as the rewarding nature of the sensory states that it
might achieve. This requires knowledge of body and world
dynamics, called a forward internal model (Miall and Wolpert,
1996; Kawato, 1999; Shadmehr and Mussa-Ivaldi, 2012). Using
this knowledge, the brain can compute the expected costs of
particular movements, and subsequently select the most optimal
movement.

By using the internal model, the brain also relates motor
commands to their sensory consequences, which is mandatory
to differentiate sensations that arise as a consequence of one’s
own movements from those that arise from changes in the
environment (Cullen, 2004; Körding et al., 2007; Reichenbach
et al., 2014). For example, the fact that we cannot tickle ourselves
is evidence that the brain can predict (and thereby nullify) the
consequences of its own action (Blakemore et al., 1998; Bays et al.,
2006). In order to keep sensory predictions accurate, the forward
model must be continuously calibrated to the actual dynamics of
body and world, called motor adaptation (Wolpert et al., 1995;
Shadmehr et al., 2010).

All these considerations imply a natural link between the
sensory and motor systems, which is computationally captured
by the Optimal Feedback Control (OFC) framework (Todorov
and Jordan, 2002; Shadmehr and Krakauer, 2008) (Figure 1A).
This framework proposes that the brain estimates the state of
the body using a combination of sensory feedback from various
modalities and forward predictions about the consequences
of the commanded action, based on an internal model of
the mapping between motor commands and their effect on
the body in the world (Wolpert et al., 1995; Miall and
Wolpert, 1996). This body state is then used to control
action. However, it is still unclear how information from the
forward prediction and the sensory feedback from different
modalities are propagated to achieve a coherent multimodal state
estimate.

In this article we focus on state estimation in the control
of reaching movements. First, we discuss the major problems
that the brain needs to solve in order to successfully integrate
feedforward predictions and sensory feedback from multiple
modalities, then we propose an extension to the OFC model that
may help to solve these problems, and finally we suggest possible
experiments to test the model extension.

CONTINUOUS MOVEMENT CONTROL

To accomplish reach tasks in an ever-changing world, it is
essential to be able to control movements while they are executed,
which we will call online control here. The online control of
movements is arguably also the most demanding type of control
in the link between perception and action because afferent
sensory information is changing continuously and the time to
make adjustments is limited. For online movement control,
sensory information frommultiplemodalities has to be processed
in a very short time frame in order to identify if the current course
of movement will end on the desired location, and, if this is not
the case, to make appropriate adjustments before the movement
ends. For these adjustments to be successful, a reliable estimate of
the current state of the body is essential.

The estimate of the current state of the arm can be
examined by experimentally perturbing information about the
current course of movement via one of the sensory organs
and measuring the movement adjustments made in response
to the imposed perturbation. Two sensory organs that provide
proprioceptive information about the current state of the arm are
muscle spindles and mechanoreceptors in the skin (Crevecoeur
et al., 2017). After a mechanical perturbation, it takes about
50–100ms before the hand shows task-dependent movement
adjustments (for a review see Pruszynski and Scott, 2012).
Within this time frame, movement adjustments depend on verbal
instructions, and target and obstacle configurations (Hammond,
1956; Pruszynski et al., 2008; Nashed et al., 2014). Furthermore
the gains of such task-dependent adjustments can be modulated
throughout the movement (Mutha et al., 2008).

Visual information about the current state of the arm is
provided by the eyes. It has been known for a long time that hand
movements are under continuous visual control (Woodworth,
1899; Gielen et al., 1984; Pélisson et al., 1986). Even the earliest
stages of a movement will be adjusted in response to visual target
jumps (Georgopoulos et al., 1981; Van Sonderen and Denier van
der Gon, 1991). Response latencies are in the order of 100-150ms
and not affected by movement stage (Gritsenko et al., 2009;
Oostwoud Wijdenes et al., 2011; Sarlegna and Mutha, 2015).

Also perturbing visual feedback about current arm position
will result in adjustments of the ongoingmovement (Brenner and
Smeets, 2003; Sarlegna et al., 2003; Saunders and Knill, 2004).
In such experiments, participants reach to targets on a screen
while seeing a cursor representing their hand position. Jumps of
the cursor can probe movement corrections. Like responses to
proprioceptive perturbations, adjustments in response to visual
perturbations of the target and the cursor are dependent on the
task at hand and evolve throughout the movement (Franklin and
Wolpert, 2008; Gritsenko et al., 2009; Knill et al., 2011; Oostwoud
Wijdenes et al., 2011, 2013; Dimitriou et al., 2013; Franklin et al.,
2017) (for a review see Sarlegna and Mutha, 2015).

Furthermore, the vestibular system provides information
about the current state of the body. Its sensory organs, the
otoliths and semi-circular canals, detect linear acceleration and
angular velocity of the head, respectively. It has been shown that
vestibular information is also included in the continuous control
of hand movements. Passive body rotations during reaches to
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FIGURE 1 | (A) Optimal Feedback Control framework (figure based on Shadmehr and Krakauer, 2008). Motor commands produce body movements. An efference

copy of the commands is used to predict the sensory consequences of these commands. With some time delay, the sensory consequences of the actual movement

are registered by different sensory modalities. The predicted and observed sensory consequences are combined to estimate the current state of the body in the world.

This state estimate is fed into the feedback control policy and the feedback gains with which the system responds to perturbations are adapted accordingly (Franklin

and Wolpert, 2008). This loop continues until the final desired state is reached. Although the brain does not use the mathematical tools of the OFC framework, we

assume that it can describe the results of the actual processes. (B) OFC model with different sensory modalities and their time delays. It can be argued that the

earliest stages of movement corrections are controlled via intramodal state estimates that are based on within-modality forward predictions and sensory feedback.

remembered visual targets result in angular deviations of the
hand that correspond to the perceived vestibular perturbation
(Bresciani et al., 2002b; Reichenbach et al., 2016). Electrical
stimulation over the mastoid processes that produces the
illusion of a body rotation (galvanic vestibular stimulation)
during the movement also results in online and task-dependent
movement adjustments (Bresciani et al., 2002a; Keyser et al.,
2017; Smith and Reynolds, 2017). Latencies of reach corrections
in response to vestibular perturbations seem to be substantially
longer than corrections in response to visual and proprioceptive
perturbations, i.e., about 176–240ms (Bresciani et al., 2002a;
Moreau-Debord et al., 2014; Keyser et al., 2017). Preliminary data
of experiments probing movement corrections with visual target
jumps during passive body acceleration suggests that visuomotor
feedback gains are modulated by vestibular input (Oostwoud
Wijdenes and Medendorp, 2017). Thus, sophisticated hand
movement adjustments are observed in response to perturbations
of visual, proprioceptive and vestibular information.

Although the movement adjustment needed to correct for
a perturbation of the world or the body can be the same, for
example compare a 1 cm rightward target jump and a 1 cm
leftward displacement of the representation of the hand (e.g., by

means of a cursor jump), the underlying cause of the perturbation
is different. For accurate perception and action, it is important
that changes in the world are not attributed to changes in the
body, and that changes in perception due to noise in the sensors
are not attributed to changes in the world (Berniker and Kording,
2008). To help solving this agency problem for the visual system,
there is a special binding mechanism that links visual and motor
information about movement of the cursor (Reichenbach et al.,
2014). For the vestibular system, neurons in the cerebellum
are involved in the selective encoding of unexpected but not
self-generated self motion (Brooks and Cullen, 2013).

CHALLENGES FOR ONLINE
MULTISENSORY INTEGRATION

Perturbation experiments can probe a single sensory modality,
e.g., a visual target or cursor jump only perturbs the visual
information, or multiple modalities e.g., a passive body rotation
perturbs vestibular, proprioceptive and visual information. The
current state of the arm can most reliably be estimated by
combining information from different modalities, but this
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involves complex computations taking into account differences
in noise properties, internal dynamics and intrinsic reference
frames of the various sensors.

A challenge with integrating information from different
sensory modalities for the online control of reaching is related to
the processing of information in time (Cluff et al., 2015; Scott,
2016). Different sensors have different internal dynamics and
involve different neural circuitries. Proprioceptive perturbations
induced by a sudden mechanical displacement of the hand cause
a stretch in the muscle spindles that almost immediately results
in a stretch reflex via the spinal cord (Liddell and Sherrington,
1924). However, it takes 50–100ms for the reach response to
show task dependent modulations (for review see Pruszynski and
Scott, 2012). Visual perturbations provoke a change to the input
on the retina. Latencies to visual perturbations are somewhat
longer than to proprioceptive perturbations, in the order of 100–
150ms (for review see Sarlegna and Mutha, 2015). Vestibular
perturbations make the hair cells in the otolith organs or in
the semicircular canals bend, which results in action potentials
projecting to the vestibular nucleus and the cerebellum. Although
for eye movements the first corrections in response to head
motion take less than 15ms (Sparks, 2002), latencies of hand
movement corrections that take into account task demands
are substantially longer, about 176–240ms (Bresciani et al.,
2002a; Moreau-Debord et al., 2014; Keyser et al., 2017). Thus if
someone is thrown off balance during a reach, which perturbs
the perceived position of the body proprioceptively, visually and
vestibularly at the same time, movement corrections in response
to this disturbance are manifested with different delays.

It is unknown which processing stage or stages cause these
differences in behavioral delays. Next to sensor dynamics,
an obvious difference between modalities is the way that
information is encoded. Different sensors collect information
about the current position of the hand in different coordinate
systems. Proprioceptive afferent information is generally defined
in a muscle-centered reference frame (Gardner and Costanzo,
1981). Visual information is initially defined in a retinotopic
reference frame, and vestibular information in a head-centered
reference frame (Raphan and Cohen, 2002). Later processing
steps in the feedforward control of movement, such as reach
planning, are carried out in multiple reference frames in large
cortical networks (Beurze et al., 2006; McGuire and Sabes, 2009;
Cappadocia et al., 2016), and also the hand state estimate is not
defined in a single reference frame, but in a mixture of coordinate
systems (Berniker et al., 2014). To arrive at these multimodal
reference frames may require time-consuming neural coordinate
transformations, although there are also modeling and empirical
suggestions that the multilayer networks in the brain allow for
automatic remapping of sensory inputs in multiple reference
frames (Pouget et al., 2002; Azañón et al., 2010), perhaps
mediated by neuronal oscillations (Buchholz et al., 2011, 2013;
Fries, 2015).

INTRAMODAL STATE ESTIMATES

This raises the question of how the brain achieves fast and
accurate online reach control. To deal with differences in

delays within the Optimal Feedback Control framework, it
has been proposed that the reliability of information from
modalities for which it takes more time to evoke task dependent
corrections should be reduced (Crevecoeur et al., 2016). Such
an approach assumes that modality dependent delays originate
from differences on the input side, thus in the sensor dynamics
and conduction times to the CNS only. This assumption is in
particular questionable when considering the vestibular system
in state estimation for reaching movements. Why does it take
176–240ms to evoke task dependent corrections of the arm?
Vestibular ocular responses proceed much faster. Therefore it is
unlikely that this delay reflects sensory conduction times only. In
the following we will provide alternative reasoning on how the
brain might deal with different sensory delays, which may also
account for recently published findings.

Franklin et al. (2016) investigated if visual estimates of
target and hand position are integrated in a common reference
frame for the early online control of reaching. During forward
reaching movements with a robotic manipulandum, the target
of the reaching movement and the cursor that represented the
unseen hand could both, independently, jump to a range of
new locations. In half of the trials, the actual lateral position
of the robot handle was fixed in order to measure corrective
forces in response to the jumps. If the visual distance between
the neural representations of hand and target location is the
only direct input for the conversion from a spatial to a muscle-
based reference frame (Bullock et al., 1998), changes in cursor
and target position that result in the same visual distance should
result in the same corrective forces (for example the force needed
to correct for a 1 cm rightward target jump is the same as
the force needed to correct for a 2 cm leftward hand-cursor
jump in combination with a 1 cm left target jump). However,
consistent with Brenner and Smeets (2003) who showed that
simultaneous cursor and target jumps of the same size result
in movement corrections, Franklin et al. (2016) found that the
force depended on the relative contributions of target and cursor
displacements rather than the absolute difference vector. Based
on a multichannel model, they conclude that parallel, separate
feedback loops within the visuomotor system control for early
corrections to changes in visual target and visual hand location.
If perturbations of different origin within the same modality are
processed in separate channels, it seems reasonable to suggest
that multimodal control for early corrections might be also
processed in separate channels.

To ensure the short correction latencies that are essential to
act promptly in unpredictable, dynamic environments, one could
propose that the fastest stage of control is based on intramodal
estimates (Figure 1B). Rather than integrating information from
multiple modalities, feedforward and feedback information of
individual modalities are integrated to estimate the state of the
hand based on a single modality. Within this notion, different
modalities project via separate channels to the feedback control
policy, or taking it a step further, there even might be channel-
specific control policies. This type of control circumvents
the spatial and temporal challenges related to integrating
information from different sensory modalities, andmight explain
the different latencies that are found to compensate for changes
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in different modalities. However, such a mechanism lacks in
reliability: integrating information from multiple modalities,
if congruent, will make the estimate more reliable. Thus a
multimodal state estimate probably should control later stages
of the movement. Integration for multimodal state estimation
may hence be based on intramodal state estimates or on direct
feedforward and feedback input from the different sensory
organs.

To our knowledge, only few studies have investigated
multimodal integration for the online control of reaching by
independently perturbing more than one sensory modality.
Mutha et al. (2008) investigated the integration of visual and
proprioceptive information. They asked participants to make 30◦

elbow extensionmovements and on some trials the target jumped
15◦ toward or away from the start position at movement onset. In
addition, 100ms after the visual perturbation, they mechanically
pushed the arm closer to the target, or away from the target.
They found that the response to the proprioceptive perturbation
was affected by the visual perturbation. If the target jump and
the mechanical perturbation were in the same direction, the
force that was produced to correct for the perturbations was
lower than if the visual and proprioceptive perturbation were
in opposite directions. This suggests that the multimodal state
estimate is updated quickly and accurately. However, in a second
experiment they varied the amplitude of the visual perturbation
and were unable to find amplitude related modulations in
the corrections for proprioceptive perturbations. This non-
linearity in the responses might suggest that early components
of the responses may be modulated by separate intramodal
state estimates rather than one multimodal estimate, because a
multimodal estimate should be optimally tuned to the task.

Crevecoeur et al. (2016) also investigated the integration of
visual and proprioceptive information for the online control
of movement. Specifically, they asked if the nervous system
integrates visual and proprioceptive information based on the
sensory reliability, as is typically the case for static perception
(van Beers et al., 1999; Ernst and Banks, 2002), or whether it
also takes into account the differences in time delays between
modalities. They argue that, because it takes longer for visual than
for proprioceptive perturbations to affect the hand movement,
visual feedback is more corrupted by noise and therefore the
brain should discount visual information. Participants were
asked to stabilize their finger on a dot. After a short delay their
arm was either mechanically perturbed without visual feedback,
or the hand-cursor was visually perturbed along a trajectory
corresponding to the path of a mechanically perturbed arm, or
their arm was mechanically perturbed with visual feedback of
the cursor (mechanical + visual perturbation). For mechanical
perturbations, participants were instructed to quickly move
their hand back to the start dot while looking at their unseen
finger. For visual perturbations they were instructed to visually
track the cursor. Inventively, Crevecoeur et al. (2016) took
gaze as a proxy for the state estimate of the hand location.
They found that saccadic latencies were shorter in response
to the mechanical and the mechanical + visual perturbations
than to the visual perturbation alone. This result supports a
multisensory integration model that takes into account the

differences in time delays between visual and proprioceptive
information. Alternatively, the similarities between mechanical
andmechanical+ visual response latencies could be explained by
early intramodal feedback control, because in that case one would
expect an adjustment to start as soon as one of the modalities, in
this case proprioception, detects that movement corrections are
needed.

Finally, Crevecoeur et al. (2017) investigated the integration of
information from skin mechanoreceptors and muscle spindles.
Both sources provide information that supports the control
of finger movements. Crevecoeur et al. (2017) asked how
information from these two sensory modalities is integrated.
Participants were asked to touch a surface that could move
underneath their index finger. When they perceived surface
motion they were asked to push onto the surface to prevent it
from slipping. In a two-by-two design they did or did not restrain
actual movement of the finger, and the mechanoreceptors of
the finger were or were not anesthetized. They found that
the initial response to the surface motion at a latency of
∼60ms was modulated by muscle spindle feedback only, since
anesthetizing themechanoreceptors did not affect the response. It
took∼90ms for mechanoreceptor feedback to start contributing
to the response. After this time, it seems that mainly finger
motion and to a lesser extent strain affects the movement
correction, which is not directly what optimal integration would
predict. They concluded that the two sensors operate in partially
distinct sensorimotor circuits, congruent with the proposal
that intramodal state estimates drive short-latency movement
corrections.

TESTING INTRAMODAL STATE
ESTIMATION

It needs to be tested if the idea of intramodal state estimates
for reach control holds water. This is not straightforward
to do, because it is difficult to continuously track the state
estimate during hand motion (Crevecoeur et al., 2016). Also,
over time predictions for models with and without intramodal
estimates converge because at longer delays the input for
intra- and multimodal state estimation is the same. The critical
moment where intramodal estimates give other predictions than
a multimodal estimate is in the first couple of 100ms after the
perturbation. During this time, corrections would not be based
on a weighted combination of all modalities determined by their
reliability, but they would only depend on the modality that first
detects the perturbation.

One way to test if the brain constructs intramodal estimates
might be to alter the state estimate via one sensory modality
and test how state estimates are updated via other modalities
(Bernier et al., 2007). For example, one could teach participants
a contraction or expansion of the visual consequences of their
movements (Hayashi et al., 2016), or teach them to reach in a
pulling or pushing force field. Throughout learning, on reaches
to the straight-ahead target, one could probe the state estimate
with visual, proprioceptive, and vestibular perturbations. If the
brain uses intramodal state estimates, the earliest movement
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corrections for perturbations of the trained modality should
result in a response congruent with the new sensorimotor
mapping, while the earliest responses of other modalities should
not reflect the new mapping until the multimodal state estimate
is updated. If responses are the same irrespective of whether the
modality was trained directly or indirectly, this would suggest
that that even the fastest stage of control is based on a single
multimodal state estimate.

So far, the majority of studies investigating online movement
corrections used visual and proprioceptive perturbation
paradigms. The vestibular system is known to play an important
role in sensorimotor control as well (for review see Medendorp
and Selen, 2017). We propose to also exploit this modality
more extensively when investigating multimodal integration
for online control. For example, by using Galvanic Vestibular
Stimulation (GVS) (Fitzpatrick and Day, 2004) it is possible
to perturb the vestibular input without mechanically affecting
hand position – all changes in hand position are related to
vestibular feedback responses (Keyser et al., 2017). This enables
one to zoom in on the effect of the perturbation without the
need to control for corrections due to stretching the arm
muscles.

CONCLUDING REMARKS

In conclusion, the online control of reaching movements in
the fast and fine-tuned fashion that humans typically display
puts high demands on reference frame transformations and
requires internal knowledge about conduction time delays

of different sensors. Here we considered the novel idea
that in light of the speed with which corrections are
observed, the earliest adjustments to ongoing movements
may be based on intramodal state estimates. Experimental
and modeling studies should investigate if this would be a
valuable extension to the Optimal Feedback Control framework.
Although we have focused on reaching movements here, the
framework extends to other types of continuously controlled
movements of the arm and hand, such as grasping (Voudouris
et al., 2013), as well as those of the leg (Potocanac et al.,
2014).
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In daily interactions, our sensorimotor system accounts for spatial and temporal

discrepancies between the senses. Functional lateralization between hemispheres

causes differences in attention and in the control of action across the left and right

workspaces. In addition, differences in transmission delays between modalities affect

movement control and internal representations. Studies on motor impairments such

as hemispatial neglect syndrome suggested a link between lateral spatial biases

and temporal processing. To understand this link, we computationally modeled and

experimentally validated the effect of laterally asymmetric delay in visual feedback on

motor learning and its transfer to the control of drawing movements without visual

feedback. In the behavioral experiments, we asked healthy participants to perform lateral

reaching movements while adapting to delayed visual feedback in either left, right, or

both workspaces. We found that the adaptation transferred to blind drawing and caused

movement elongation, which is consistent with a state representation of the delay.

However, the pattern of the spatial effect varied between conditions: whereas adaptation

to delay in only the left workspace or in the whole workspace caused selective leftward

elongation, adaptation to delay in only the right workspace caused drawing elongation

in both directions. We simulated arm movements according to different models of

perceptual and motor spatial asymmetry in the representation of delay and found that the

best model that accounts for our results combines both perceptual andmotor asymmetry

between the hemispheres. These results provide direct evidence for an asymmetrical

processing of delayed visual feedback that is associated with both perceptual and motor

biases that are similar to those observed in hemispatial neglect syndrome.

Keywords: visuomotor delay, space-variant delay, reaching, drawing, adaptation, transfer, hemispatial neglect

INTRODUCTION

When integrating external information for the execution of accurate hand movements, our
sensorimotor system overcomes two challenges: laterality and time delays. Laterality is a result
of processing asymmetrical visual information across space (Reuter-Lorenz et al., 1990). Time
delays are a result of sensory information transmission and processing time, and they may vary
between modalities (Hopfield, 1995). Previous studies investigated how the sensorimotor system
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compensates for differences in the spatial representations
between the left and right workspaces (Heilman and Valenstein,
1979; Ziemann and Hallett, 2001; Koch et al., 2011), and for
the delays between the different modalities (Miall et al., 1985;
Miall and Jackson, 2006; Pressman et al., 2007; Di Luca et al.,
2011; Nisky et al., 2011; Honda et al., 2012; Rohde et al., 2014;
Avraham et al., 2017a; Farshchian et al., 2018). In this study, we
use adaptation and transfer of adaptation paradigms to examine
the interplay between these two compensatory processes.

A widely accepted view of sensorimotor control suggests
that the execution of accurate movements under various
environmental conditions relies on the existence of internal
models (Jordan and Rumelhart, 1992; Wolpert and Miall, 1996;
Wolpert, 1997; Kawato, 1999). A forward model is an internal
representation of the environment that predicts the sensory
consequences of a motor command and helps to compensate
for changes in the sensory feedback during motor adaptation
(Wolpert et al., 1995; Miall et al., 2007). In adaptation studies,
the internal representation is typically evaluated from the
movements of participants during and after exposure to visual or
force perturbations. Throughout the adaptation, the participants
modify the kinematics and dynamics of their movements to
reduce errors and to maximize task success (Shadmehr and
Mussa-Ivaldi, 1994; Cohn et al., 2000; Krakauer et al., 2000;
Simani et al., 2007). A common way to assess the adaptation
and the construction of an internal model is by examining
aftereffects when the perturbation is unexpectedly removed.
Another approach is to test for transfer of adaptation to a
different workspace (Shadmehr and Mussa-Ivaldi, 1994; Rotella
et al., 2015), a different context (Kluzik et al., 2008), or a different
task (Shadmehr and Mussa-Ivaldi, 1994; Botzer and Karniel,
2013). Investigating aftereffects and transfer of adaptation reveals
how the new kinematics or dynamics are represented by the
motor system.

In this study, we examined adaptation to a laterally
asymmetric visuomotor delay. We considered the transfer of
adaptation to a 150ms delay that was applied selectively to the
visual feedback of hand movements according to the direction
of the movement (and consequently, according to the workspace
where the movement was applied). Meaning, participants were
exposed to a lateral perturbation that was inconsistent between
the two workspaces. Previously, spatially uniform visuomotor
delay has been shown to cause alterations in movements’ extent
(Botzer and Karniel, 2013; Avraham et al., 2017a). These studies
suggested that the sensorimotor system copes with delayed
visual feedback by manipulating the current state variables, and
specifically, by changing the gain in the internal representations.
In addition, it was previously shown that the human brain has
the ability to learn context-dependent perturbations, and to use
spatial cues to adapt to multiple different environments (Epstein
et al., 1997; Wolpert et al., 1998; Woolley et al., 2007; Howard
et al., 2010; Ayala et al., 2015). Therefore, we hypothesized that
when presented with an asymmetric delay that is dependent on
the workspace and direction in which the target is presented,
participants will form an asymmetrical state representation.
We expected that this asymmetrical state representation will

be demonstrated by asymmetric aftereffects and asymmetric
transfer of adaptation to different tasks.

The hemispheres are different in both perceptual and
motor processing, and therefore, it is possible that the
hemisphere that processes the visuospatial information will also
influence the effect of asymmetric delay on lateral movements.
Regarding to perceptual processing, the hemispheres exhibit
asymmetrical visuospatial perceptual attention, also known as
“right hemisphere dominance.” The right hemisphere holds
representations of both left and right fields (Heilman and
Valenstein, 1979) and is able to inhibit the left hemisphere
(Ziemann and Hallett, 2001; Koch et al., 2011), whereas the
left hemisphere holds representations of only the right visual
field. This implies that presenting delay only in one workspace,
when the participant is located in the center, between the
two workspaces, might be processed differently between the
hemispheres. Another important aspect of lateral right-handed
movements is an asymmetry in the visuomotor control of the
right hand in right-handers. It is well established that the left
hemisphere is involved in right-handed movements toward both
right and left workspaces. However, it has also been shown that
the right hemisphere can contribute to the control of movements
toward the contralateral hemispace with the right hand (Farnè
et al., 2003; Heilman and Valenstein, 2010). These perceptual
and motor asymmetries in the hemispheres can affect lateral
movements when exposed to asymmetrical visual processing
across space.

To simulate the possible effects of asymmetric delay, we
generated predicted arm movements according to different
possible effects on transfer of adaptation with and without
laterality in the temporal processing. To validate our model,
we performed an experiment in which we exposed participants
to direction- and workspace- specific delay between the hand
and the visual cursor while performing reaching movements
to both left and right targets. We examined the effect of this
delay on the amplitude of the reaching movements. To probe for
laterality-related changes in the internal representation due to the
delay, we investigated the transfer of adaptation to a blind circle-
drawing task, in which participants were requested to draw two-
dimensional circles with multiple movement directions without
visual feedback. We chose a blind drawing task because it allows
for the detection of asymmetries in a continuum of directions
(Punt et al., 2013); also, eliminating the visual feedback allows for
testing the effects of adaptation to delay when participants rely
only on feedforward control and proprioceptive feedback.

We found aftereffects of adaptation to delayed visual feedback
in reaching movements, and transfer of adaptation to blind
drawings. Interestingly, while the reach aftereffects reflected the
spatial pattern of the delay perturbation, the transfer effects had
significant asymmetries between delay conditions: only when the
delay was presented in leftward reaches, regardless of whether
it was also presented in the rightward reaches, participants
exhibited asymmetrical neglect-like blind drawings. These results
are only consistent with a computational model that includes
perceptual and motor asymmetry which involves laterality and
right hemisphere dominance.
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METHODS

Simulation of Arm Movement
To investigate the possible hypotheses for the effect of the
asymmetric delay on participants’ movements, we used a
computational model. Previous studies showed an increase in
movement amplitude following adaptation to visuomotor delay
(Botzer and Karniel, 2013; Avraham et al., 2017a), and therefore,
we simulated the hand movement following adaptation to delay
with a magnifying gain in its amplitude. First, we examined
the effect of delay without considering any effects of laterality.
In this case, the magnifying gain was applied in the control
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of movements that were performed toward the same direction
in which the delay was presented. Second, we examined the
effect of laterality in our experiment by testing the effect of
perceptual and motor asymmetry in the hemispheres (separated
and combined). Here, magnifying gain was applied following
excitation of the relevant hemisphere, and inhibitory effect was
reflected in multiplying the gain by a step function that canceled
all excitation activity.

To simulate arm movements, we modeled arm dynamics
as a two link model with two joints: shoulder (θs) and elbow
(θe) (Pressman et al., 2008; Nisky et al., 2011). We simulated
a simplified control of arm movement with two controllers
of trajectory and end-point (Scheidt and Ghez, 2007; Botzer
and Karniel, 2013), as depicted in Figure 1. The trajectory
controller consisted of a feedforward controller—an inverse
model of the arm, and two feedback controllers—for vision and
for proprioception (Ghez et al., 2007; Scheidt and Ghez, 2007;
Scheidt and Stoeckmann, 2007; Scheidt et al., 2011), and received

as an input a desired trajectory. The endpoint controller was
implemented as a spring and a damper with an equilibrium at the
desired static end of movement, and it stabilized the arm at the
end of movement. This model was used to simulate both reaching
movements and blind circular movements. To simulate lateral
reaching movements, we assumed that the controller tracks a
planned minimum-jerk trajectory defined as a smooth trajectory
from start to end-position along the x-axis (Flash and Hogan,
1985). Desired circular movements were defined by fitting a 12th
order polynomial function to a desired trajectory, in order to
achieve smooth velocity and acceleration along with the desired
path. Note that this particular structure was chosen as an example

to allow for showing the effects of different assumptions of
laterality and delay interplay, and our reasoning does not depend
on this particular structure or the assumption of the existence of
a desired trajectory.

The desired trajectory was presented in Cartesian coordinates,
and therefore we used the inverse kinematics equations with the
parameters of length (l) of the upper and forearm in order to
transform to joints space (Equation 1). The torques required to
perform a desired movement were computed from Equations
(2)–(5). Equation (2) depicts the dynamics of a two links
arm model. Values of arm parameters of mass (m), length (l),
center of mass (lc) and inertia (I) of both upper arm (shoulder)
and forearm (elbow) are similar to those used in (Scheidt
and Ghez, 2007). Additionally, we implemented three PD
controllers for proprioceptive (Equation 3) and visual (Equation
4) feedback, and for end-point controller (Equation 5). The
end-point controller contribution is weighted by a sigmoid
function ∅ (t), and both end-point and feedback controllers are
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FIGURE 1 | Simulation of arm movement with end-point, feedforward and two feedback controllers. The feedforward controller is an inverse model of the arm

(“inverse dynamics” box) that is used to calculate the desired torques for the execution of a desired trajectory. The feedback controller calculates the torques

proportional to the error between the desired and actual position and velocity. This controller includes two separate forward models and PD controllers for vision and

proprioception (“Proprioceptive Forward Model” and “Visual Forward Model” box, and “PDP” and “PDV ” boxes, respectively). The contribution of each modality is

multiplied by the transposed Jacobian (“JT ”) to convert to joint coordinates, and is weighted by a gain (“GP“ and “GV” boxes). An additional end-point controller is

used in order to reduce the error between the actual position of the hand to the desired end point, and is weighted by a sigmoid function ∅ (t), which increases the

contribution of the end-point controller at the end of the movement. The endpoint feedback is also multiplied by the transposed Jacobean (“JT ”) to transform to joints

coordinates. Overall, the final torques are a combination of the output signals from all four controllers.

multiplied by JT . Position and velocity error (e and ė) is
defined as the difference between the actual to the desired arm
position and velocity, respectively. The values of all proportional
(K) and derivative (B) controllers are presented in Table 1. In
addition, hand dynamics were simulated using (Equation 6)—
the dynamics of a two-link arm. Arm parameters are as in
Equations (1) and (2). To transform the desired trajectory from
joint space to Cartesian space we used the direct kinematics
(Equation 7).

The predicted arm position and velocity were computed
from the inverse controller torques with a forward model.
We also assumed that any changes in the inverse model as
a result of adaptation will also lead to changes in the visual
forward model. By using two different forward models and
feedback controllers for vision and proprioception, we were able
to differentiate between movements with and without visual
feedback. The end-point controller did not change throughout
the simulation, and was always used to stabilize the hand
at the desired end-position. This controller was multiplied
by a sigmoid function ∅ (t) =

1
1+e−a(t−c) , which increased

the contribution of the end-point controller according to a
desired timing along the movement (by choosing the value of
c). Before adapting to the delay, the time when the sigmoid
function was equal to 0.5 was at the end of movement.
After adapting to the delay, we assumed that as a result of
uncertainty during the movement, the end-point controller
will be tuned earlier—approximately in the middle of the
movement.

The different stages in the experiment (pre-exposure,
early-adaptation, late-adaptation, and post-exposure) were
simulated by changing the visual delay and the magnifying
gain that represented the delay in the sensorimotor system.
In all simulations, we considered the intrinsic visual and
proprioceptive delay as no delay, as they are present in all
conditions of the experiment. Before the exposure to delay
(pre-exposure), the visual feedback was not altered (1Tv = 0)
and no adaptation process has occurred yet (G = 1). At early
exposure before adaptation has occurred (early-adaptation), the
visual delay was set to 1Tv = 150ms and the gain still did not
change (G = 1). After adapting to the delay (late-adaptation),
the gain was changed to G = 1.2 such that the desired trajectory
was extended in the direction of the movement. In this stage, the
visual delay was 1Tv = 150ms. To simulate the removal of the
delay in the post-exposure stage and the aftereffects, the visual
delay was changed to 1Tv = 0, and the gain in this stage was still
G = 1.2. Throughout the experiment, the proprioceptive delay
was not changed, and therefore we set 1Tp = 0.

Participants and Experimental Setup
Sixty-five right-handed healthy volunteers (ages 18–35, 38
females and 27 males) participated in the study after signing the
informed consent form as approved by the Human Participants
Research Committee of Ben-Gurion University of the Negev,
Be’er-Sheva, Israel. The participants were all naive to the purpose
of the experiment and were reimbursed for their participation.
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The experiment was administered in a virtual reality
environment in which the participant held a robotic arm:
six degrees of freedom (DOF) PHANTOM R© PremiumTM 1.5
haptic device (Geomagic R©), controlled by a dedicated C++

code. Participants held the robotic arm with their right hand
controlling a cursor displayed on a screen and aligned with
their hand location, with a delay of 10ms because of the
display control rate. Participants’ hand was hidden from sight
the entire experiment by the screen that was located horizontally
above their hand, and by a sheet that covered their upper
body. Hand movements were constrained to the horizontal
plane by an air sled wrist-supporter that reduces friction with
the surface.

Protocol
The experiment consisted of two tasks: reaching movements to
left or right targets and circle drawing without visual feedback.
The trials were presented in a random predetermined order. In
the reaching task, a trial was initiated when participants placed
a circular cursor, 1 cm diameter, inside a starting point with the
same size. The task was tomove the cursor from the starting point
to a circular target, 2 cm diameter, which appeared in the left or
the right side of the task space, at a distance of 10 cm away from
the starting position (Figure 2).

Movement started when the color of the cursor changed after a
fixed period of time in which the participant was stationary at the
start position; this instructed the participant to perform a smooth
point-to-point center-out reaching movement. Movement ended
when the velocity was less than 1 cm/s. Following the movement,
the visual feedback was turned off and the robot applied a
spring-like force that returned the hand to the start position.
Due to the nature of our temporal perturbation, we wished to
assure similar movement speeds, and therefore, the participants
received a feedback about the velocity of their movement. When
the maximum velocity was lower than 30 cm/s, the word “Faster”
appeared on the screen, and when the velocity was higher
than 50 cm/s, the word “Slower” was displayed. To motivate
the participants to make accurate movements to the target,
they received feedback about the accuracy of their movement.
Accurate movements were defined as those in which the center
of the cursor was in the range of ± 1 cm from the center of
the target. To provide a feedback about the end movement
position, we presented the location of the cursor with a color
cue that indicated the accuracy of the movement (green for
accurate movement and red for inaccurate movement) after 0.2 s
from movement ending. In addition, we presented a success
rate corresponding to the percentage of successful trials from all
reaching trials in the experiment until that time.

In the circle drawing task, a circle with a radius of 3.5 cm was
displayed on the screen in four different locations: front, back,
right and left. Arrows on the circle indicated the direction of the
drawing to either clockwise or counterclockwise. The location
of the starting point was always in the middle of the task space
in all conditions, identically to the location of the start point in
the reaching task. A trial was initiated when participants placed
a circular cursor, 1 cm diameter, inside the starting point for a
fixed duration. Afterwards, the cursor disappeared and the start

point changed its color, instructing the participants to initiate
a smooth circular movement along the desired circle from the
starting point, in the direction of the arrows. Circular movements
did not have velocity constrains. The movement ended when the
velocity was less than 0.5 cm/s.

Participants were assigned to one of four groups according
to the workspace where they were exposed to delay: (1) only in
leftward reaching movements (Left Delay, N = 15), (2) only in
rightward reaching movements (Right Delay, N = 15), (3) in
both leftward and rightward movements (Both Delay, N = 20),
and (4) a control group that was not exposed to any perturbation
throughout the entire experiment (No Delay, N = 15).

The first block of the experiment (40 trials) was training
for the circle drawing task. In these training trials, participants
drew the circles without visual feedback. After each trial, the
drawn circle was displayed along with the desired circle and
the start point. The purpose of these trials was to acquaint the
participants with the task and to train them to draw circles
according to a desired trajectory when no visual feedback is
presented. The data from the training trials were not included
in data analysis. Then, the experiment was divided into three
sessions: Baseline, Adaptation, and Washout. In the Baseline
session (160 reaching movements and 40 circle movements),
participants performed reaching without any perturbation and
with interleaved blind circle-drawings. After the baseline session,
we presented participants with another block of training for the
circle drawing task (16 trials). The purpose of this block was to
verify that the circles drawn in the Adaptation session originated
from the exposure to the applied perturbation and not from
forgetting how to draw the blind circles. In the adaptation session
(416 reaching movements and 104 circle movements), the visual
feedback between the hand and the cursor in the reaching task
was delayed by 150ms either when the left target appeared (Left
Delay, LD), when the right target appeared (Right Delay, RD),
or when both right and left targets appeared (Both Delay, BD),
depending on the experimental group. For the No-Delay group
(ND), there was no change in the Adaptation session. During
Washout (160 reaching movements and 40 circle movements),
the delay was unexpectedly removed, which enabled us to
examine the aftereffect of adaptation. The entire experiment
lasted approximately 90min with four breaks of 1.5min every
160 reaching trials.

Data Analysis
Position and velocity were recorded during the entire experiment
at 200Hz and were analyzed off-line using custom-written
Matlab R© code (The MathWorks, Inc., Natick, MA, USA). Both
position and velocity were filtered by low pass Butterworth
filter with a cutoff frequency of 10Hz [Matlab function
filtfilt()]. In addition, the position was interpolated to fit
the number of samples using Matlab function interpft(),
which resulted in different sampling rate for each signal that
depended on the number of samples in the original signal. For the
purpose of data analysis, we defined reach movement initiation
when the velocity rose above 5% of the maximum velocity, and
movement ending when the velocity decreased below 5% of the
maximum velocity. We examined the trajectory in each direction
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FIGURE 2 | Experimental protocol. In each trial, participants were required to make a reaching: move a cursor between a start and an end target to the left (blue bar)

or the right (red bar), or to make a blind drawing: draw a circle without visual feedback (beige bar). In the reaching, a start point (light yellow), a target (blue circle), and a

cursor were presented. To motivate the participants, we presented a success rate representing the percentage of accurate trials—the trials in which the participants hit

the target—out of all reaching trials in the experiment until that time. In the blind drawing, a desired circle path (blue) was presented together with arrows that indicated

movement direction (magenta triangles), but no cursor was presented. Overall, there were eight different kinds of circular movements: four different locations—front,

back, right, and left, and two different directions—clockwise and counterclockwise. The experiment was divided into three sessions: Baseline, Adaptation, and

Washout. During the Baseline and Washout sessions, the cursor movement in the reaching task was concurrent with the movement of the hand. During the

Adaptation session, the visual feedback was delayed by 150ms in movements toward the leftward, the rightward, or both targets (see section Methods for details).

separately, by measuring the amplitude of the movement as the
maximum displacement.

In the circle drawing task, due to the importance of the
drawing’s direction in our study, we first removed all circles that
were mistakenly drawn in the direction that was opposite to
the instructed direction (1.65% of all circles). Then, we defined
the initiation and end of the movement by using both position
and velocity. Initially, we found the locations where the hand
first leaves and returns to the start position area. This was done
to account for only one circle in cases when the participants
drew more than one complete circle. Afterwards, we defined
the actual initiation and end of the movement based on the
velocity thresholds as we defined in the reaching movements.
To calculate the deviation of the drawn circles from the desired
circle, we measured the peak amplitude (maximum distance) of
hand movement in the x and y directions.

In the analysis of the drawn circles, we did not include the data
from the early-adaptation stage. From the results of the reaching
task in all the conditions, we saw that participants adapted
to the perturbation quite fast. Therefore, we could not verify
that all drawn circles in all 8 conditions, used for the analysis,

were performed in this phase of post-exposure and early-
adaptation.

Statistical Analysis
The effect of the perturbation in each condition on the reaching
movements was assessed by using a two-way repeated measures
ANOVA with between factors of Stage (Late-Baseline/Early-
Adaptation/Late-Adaptation/Early-Washout) and Direction
(Leftward Movements/Rightward Movements). For the blind
drawings, we initially examined the effect of delay on left and
right error separately, using one-way repeated measures ANOVA
with factor Stage (LB/LA/EW). After dividing between the
circles according to initiation workspace, the lateral effect on the
blind drawings was examined using two-way repeated measures
ANOVAwith within factors of Stage (LB/LA/EW) and Initiation-
workspace (Left/Right). Then, we examined the differences in the
Late Adaptation stage between the experiments using two-way
repeated measures ANOVA with between factor of Experiment
(LD/RD/BD/ND) and within factor of Initiation-workspace
(Left/Right). Data were tested for normality distribution using
Lilliefors test. Additionally, we used Mauchly’s test to examine
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FIGURE 3 | The effect of delay in left, right, or both hemispaces on rightward and leftward movements. (A) The effect of the hemispheres on movement extent toward

both hemispaces. The left hemisphere controls movements of the right hand toward left (blue) and right (red) sides, and the right hemisphere can mediate leftward

movements (dashed blue). (B) The effect of delayed visual feedback on the hemispheres according to the visual fields. Delay in left visual field (blue) affects motor

circuits responsible for movement extension in the right hemisphere, and delay in the right visual field (red) affects both hemispheres. Following excitation of the right

hemisphere after exposure to left delay, the right hemisphere inhibits motor circuits in the left hemisphere, thereby canceling any deviation toward the right hemispace

after exposure to left delay (blue arrow).

whether we can assume sphericity of the data. In case the
sphericity assumption was not met, we used Greenhouse-Geisser
adjustment. When found significant effects, post-hoc t-test was
performed with the Bonferroni correction. Significant effects
were defined at the p < 0.05 probability level.

RESULTS

Simulation Study
Using a computational model (Figure 1), we simulated the
possible effects of exposure to delay, adaptation, and transfer to
blind circle drawing. To validate our simulation and to choose
the different parameters, we used the previously observed effect
of delay on reaching movements (Botzer and Karniel, 2013). We
simulated the effect of asymmetrical delay on the lateral reaching
movements before and after adaptation has occurred. Then we
used the obtained simulation to examine different hypotheses
for the effect of delay on transfer to vision-omitted circular
movements according to motor- and perceptual-based models of
hemispheric asymmetry (Figure 3).

In the pre-exposure phase, no perturbation was applied,
and the simulated arm followed the desired trajectory properly
(Figure 4, solid lines). Before adaptation took place, the visual
feedback was delayed, but no change in the feedforward or
feedback controllers has occurred yet. Hence, a misalignment
between the estimated location and the actual observed location
of the hand during the reaching task resulted in a positive error,
and the feedback controller of the visual modality caused target
over-reaching (Figure 4, dotted lines).

After adapting to the delay, movement overshoots gradually
decreased. We simulated adaptation to delay based on the
use of gain representation (Avraham et al., 2017a). For the
late-adaptation condition, we used magnifying gain (G > 1),
multiplied by the output of the forward model. Meaning, the
desired trajectory was extended in the direction of themovement.
The visual forward model was multiplied by the inverse gain,
causing a reduction of the error in the visual feedback controller,
and leading to a reduction of the over-reaching pattern (Figure 4
dashed line). Following abrupt removal of the delay, the forward

FIGURE 4 | Simulation results for reaching movements with the presence of

delayed visual feedback. We simulated the movements in the different phases

of pre-exposure, early-adaptation, late-adaptation and post-exposure. Positive

displacement indicates a rightward movement. The simulation demonstrate

overshoot of the target when initially exposed to delay and undershoot when

the delay is removed.

and inverse models were still tuned to the delayed condition.
However, the visual feedback matched the real location of the
hand, which resulted in negative error of the visual modality
and under reaching of the target (Figure 4 dashed and dotted
line).

After simulating the reaching movements without laterality,
we simulated the different models for the effect of asymmetric
delay on transfer circular movements (Figure 5). First, we
simulated the transfer of adaptation without any effects of
laterality. This resulted in elongation of the circles toward the side
where the delay was applied (Figures 5A–F). Then, we inserted
laterality effects of perceptual, motor, and both perceptual
and motor asymmetries (Figure 5G, Table 2). Considering only
perceptual asymmetry, the gain in movement amplitude was
applied when motor circuits in the left hemisphere were excited.
In this case, excitation of the right hemisphere could affect the
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FIGURE 5 | Simulation results for transfer movements after adaptation to asymmetric delay using different predictions. (A–C) Simulated blind circles after adaptation

to delay for the No-Laterality model in clockwise (orange) and counterclockwise (green) directions. The circles are elongated toward the hemispace where the delay

was applied. (D–F) Left and right error as a function of the location (front, back, right, and left) and the direction (clockwise—CW—and counterclockwise—CCW) of

the drawn circle for the No-Laterality model. The dashed line divides the circles to left- and right-initiated circles. Both left- and right-initiated circles are elongated in

the side where the delay was applied. (G) Summary of all possible effects for asymmetric delay. For each condition of delayed side, we expect movements to be

elongated toward either the left or the right hemispaces, according to the modeled mechanism.

applied movements by inhibiting the activity of right hemisphere
on the left hemisphere. Therefore, an elongation of the circles
was only observed in the case of delay in rightward movements,
for both left- and right-initiated circles. For motor asymmetry,
when motor circuits in the left hemisphere were excited, the
magnifying gain was uniform, causing elongation of both left-
and right-initiated movements. In contrast, when motor circuits
in the right hemisphere were excited, the gain was only applied
in the leftward movements, and only they were elongated. This
asymmetry yielded an elongation of both left- and right initiated
circles in two conditions: delay in only the right workspace,
and delay in both left and right workspaces. Delay in the
left workspace resulted in only leftward elongation. Applying
both perceptual and motor asymmetry resulted in elongation
of both sides of the circles in the cases of delay in the right
workspace, and only leftward elongation when the delay was in
the left workspace or in both workspaces. The authors will be
happy to share the code for the simulation with the interested
reader.

In the next step, by using the results of the behavioral
experiment, we were able to reject some of the hypothesized
models for the transfer effect.

Behavioral Experiment
Reaching Movements-Adaptation to Delay Affects

Reaching Movements Toward the Delayed

Workspace
To assess adaptation to delay, we first examined the extent of
the lateral reaching movement. Reaching movement analysis of
the left, right and both delay groups suggest that all groups
adapted to the delay (Figure 6). Upon early exposure to the delay,
participants over-reached the target in the workspace where the
delay was applied. With repeated exposure to the perturbation,
they adjusted their movements, and by the end of adaptation,
they restored baseline performance. For the two groups that were
exposed to asymmetrical delay (LD and RD), the participants
also initially started to under-reach the target in the opposite
direction, but this effect was weaker and vanished quickly. After
the delay was removed, we observed an aftereffect of target
under-reach only in movements toward the delayed workspace.

These observations were supported by a statistical analysis.
We divided the experiment to four stages of Late Baseline (LB,
5 last movement before exposure to delay), Early Adaptation
(EA, 5 first movements with the presence of delay), Late
Adaptation (LA, 5 last movements with the presence of delay)
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TABLE 1 | Values of proportional and derivative controllers.

Parameter Value

Kp 0.9 N/m

Bp 0.7 N·s/m

Kv 0.9 N/m

Bv 0.7 N·s/m

KEP 0.9 N/m

BEP 0.7 N·s/m

Visual Gain (Gv) 0.7

Proprioception Gain (Gp) 0.3

Adaptation Gain (G) 1.2

These values were consistent for all simulations.

TABLE 2 | Summary of all possible effects for asymmetric delay.

Experimental group LD RD BD

Elongated workspace L R L R L R

No laterality + – – + + +

Perceptual asymmetry – – + + – –

Motor asymmetry + – + + + +

Perceptual-motor asymmetry + – + + + –

Simulating the different mechanisms for the effect of asymmetric visuomotor delay

enabled us to better understand the observed effect of adaptation.

and Early Washout (EW, 5 first movements after removing the
delay). Within each experimental group that was exposed to
asymmetric delay groups (LD and RD), we found significant
changes in the movement amplitude between the different stages
in the experiment, and these changes were different between left
and right movements [Stage-Workspace interaction effects—LD:
F(0.87, 12.15) = 95.14, p< 0.001; RD: F(3, 42) = 45.92, p< 0.001]. In
the leftward reaches of the left delay group, we observed a typical
adaptation pattern: overshoot in EA [t(14) = 3.59, p < 0.05];
no difference in LA [t(14) = 0.48, p = 1]; and undershoot in
EW [t(14) = 4.53, p < 0.01] (all with respect to LB, Figure 6C).
The rightward reaches of this group exhibited a different pattern:
undershoot in EA [t(14) = 5.92, p < 0.001]; and no difference
in LA [t(14) = 0.27, p = 1] and EW [t(14) = 1.53, p = 0.88].
A similar but opposite pattern was observed in the right delay
group [rightward reaches: EA: t(14) = 5.22, p < 0.001; LA:
t(14) = 1.57, p = 0.83; EW: t(14) = 5.47, p < 0.001; leftward
reaches: EA: t(14) = 4.83, p < 0.001, LA: t(14) = 2.01, p = 0.38,
and EW: t(14) = 1.14, p = 1, Figure 6F]. Overall, in both
the left and right delay groups, the participants adapted to
the asymmetric visuomotor delay by adjusting their movement
amplitude selectively in the workspace where the delay was
applied, and exhibited significant aftereffects of adaptation. The
initial undershoot to the other workspace during early exposure
to the delay quickly vanished, and there were no aftereffects in the
non-delayed workspace.

The extent of reaching movements for the both delay group
demonstrated a typical pattern of adaptation that was similar

in both directions (Figures 6G–I). There was a statistically
significant difference in movement extent between the stages
[Stage- F(1.55, 29.26) = 60.51, p < 0.001], but no difference
between leftward and rightward movements in the different
stages [Direction- F(0.51, 9.75) = 2.78, p = 0.13 and Direction-
Stage interaction- F(1.55, 29.26) = 2.38, p = 0.12]. When the
delay was first introduced, movements over-reached the target
in both sides [t(19) = 4.27, p < 0.01]. Continued exposure
to delay in both workspaces led to a reduction of the over-
reaching pattern, though the adaptation was not fully achieved
compared to baseline performances [t(19) = 3.11, p < 0.05].
When the delay was removed, participants under-reached the
target in both sides [t(19) = 7.74, p< 0.001]. These results indicate
that when the visual feedback is delayed in both workspaces,
the participants adapted to the perturbed visual feedback, and
exhibited aftereffects in both workspaces.

The control group did not experience any visual perturbation
(Figures 6J–L), and did not demonstrate any deviation in
movement extent. This corroborates our claim that the observed
spatial deviations are a result of the delayed visual feedback.

Blind Drawing Task-Transfer of Adaptation Causes

Spatial Asymmetry That Depends on the Delayed

Workspace
To test the transfer of adaptation, we examined the symmetry
of blind circle drawing movements that were interleaved with
reaching movements. To assess the symmetry, we calculated the
left and right error by measuring the maximum deviation in each
direction relatively to the ideal circle (that was presented on the
screen).

In all the groups that were exposed to the delay, the transfer
of adaptation yielded a clear spatial elongation in the blindly
drawn circles. However, the pattern of elongation was distinct
between the different delay conditions. In a striking contrast to
the effects of left and right delay on the reaching movements,
the patterns of elongation differed substantially between the
asymmetric delay groups LD and RD in the circle drawing task.
An example of drawings following adaptation to left delay is
depicted in Figure 7A. By examining the left and right errors
for each circle (Figure 7A, dark blue and light red bars), we saw
that following adaptation to left delay, the circles that started
in the left workspace (left-initiated circles) were elongated to
the left, whereas the circles that started in the right workspace
(right-initiated circles) were not elongated at all. In contrast,
following adaptation to right delay, participants drew both left-
and right-initiated circles that were elongated to the direction of
their initiation; i.e., left-initiated circles were elongated to the left,
and right-initiated circles were elongated to the right (Figure 7B).
The effect of the initiation workspace is especially highlighted in
the front and back circles: the side of the elongation is determined
by the clockwise (CW) and counterclockwise (CCW) drawing
direction (orange and green traces, respectively) rather than by
the spatial location of the circle.

We divided between the circles according to their initiation
workspace—left-initiated circle are: left, front CW and back
CCW, and right-initiated circles are: right, front CCW and back
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FIGURE 6 | Reaching movements from the Left Delay (LD, A–C), Right Delay (RD, D–F), Both Delay (BD, G–I) and No Delay (ND, J–L) conditions. (A) Examples of

movements of a typical participant in the Left Delay group from the Late Baseline (LB), Early adaptation (EA), Late adaptation (LA), and Early Washout (EW) stages.

Positive displacement indicates a rightward movement. The participants overshoot the left target when initially exposed to delay, but they quickly adapt and restore

baseline movements, and exhibit undershoot in the washout. Interestingly, the movements in the other direction are initially affected, but no aftereffects are observed.

(B) Amplitude (line) and 95% confidence intervals (shaded region) of the leftward and rightward movements from the Left Delay condition. Results are presented after

subtraction of the movement amplitude at the end of the baseline session and taking absolute value. Positive (negative) value indicates overshoot (undershoot) in the

direction of movement. Leftward movements demonstrate typical pattern of adaptation, and the rightward movements exhibit an initial undershoot that is reduced

with adaptation and no aftereffect. (C) Mean Amplitude in the presence of left delay in the first and last five movements of the Adaptation stage and the first five

movements of the washout for all participants. Asterisks represents significant difference from zero: *p < 0.05, **p < 0.01, ***p < 0.001. (D–F) Similar but mirror

results were observed in the Right Delay condition. (G–I) Results for the No Delay condition. Graphs and colors are as in (A–C). Here, The participants overshoot both

targets when initially exposed to delay, but they quickly adapt and restore baseline movements, and exhibit undershoot in the washout. (J–L) Results for the No Delay

condition. Graphs and colors are as in (A–C). No spatial deviation is observed, as expected.
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FIGURE 7 | Left and right deviation from the desired trajectory in the circle drawing task. (A) At the center, examples of individual movements of a typical subject that

illustrate the deviation of the drawn circles, for both clockwise (orange) and counterclockwise (green) circles. Large black circles are the ideal drawings, and the two

small circles are the targets from the reaching task (drawn at scale). Panels around the center present mean of left (dark blue) and right (dark red) error for circles

drawn in the end of adaptation session in the presence of delay only in the left side of the tasks space. The panels are located spatially to represent the location and

drawing direction of the circles. Asterisks represents significant difference from zero: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Similar to (A) following adaptation to a

delay only in the right side of the tasks space. Asterisks are as in (A). (C) Left and right error following adaptation to Left Delay as a function of the location (front, back,

right and left) and the direction (clockwise—CW—and counterclockwise—CCW) of the drawn circle. The dashed line divides the circles to left- and right-initiated

circles. The elongation is observed only in the left side of the left-initiated circles. (D) Left and right error following adaptation to Right Delay. Surprisingly, the result of

the Right Delay is not a mirror picture of the Left Delay condition. Instead, both left- and right-initiated circles are elongated in the side of their initiation hemispace.

(E) Both delay condition. The error is different according to the side where the drawing is initiated: when the drawing is initiated in the left–left error is larger than right

error, and when the circles are initiated in the right–no deviation is observed. (F) No Delay condition. No similar pattern of difference between left and right error is

observed. (G) Statistical analysis of the difference in left and right error for all groups in the experiment. Asterisks are as in (A). Left and Both Delay groups show

deviation only toward the left side. Right Delay group shows deviation to both sides.

CW (Figures 7C,D). Applying similar analysis for the both-
delay group, revealed that transfer of adaptation to the blind
drawing task resulted in a striking resemblance to those of the
left-delay group, showing only elongation of left-initiated circles
(Figure 7E). In the control experiment, with no perturbation
(Figure 7F), the circles were nearly symmetrical without any
lateral pattern. This corroborates that the elongation of the
blind circles is not caused by unrelated effects of our setup or
fatigue.

The transfer effect of delay on the blind circular drawing
movements persisted also in the washout stage. This was despite
the fact that the extent of the reaching movements returned very
quickly to those observed in the Baseline.

To highlight the laterality in the spatial effects, we performed a
summarizing analysis. In this analysis, we distinguished between
the circles based on the workspace of the initial drawing
movement. Then, we calculated the difference between the
left and right errors for each group (Figure 7G). In the LD
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group, we found a significant change in the elongation of the
circles between the stages [Workspace-Stage interaction effect:
F(0.97, 57.23) = 18.14, p < 0.001]. Specifically, the left errors
were significantly larger than the right errors (meaning left
elongation) only for the left-initiated circles during both Late
Adaptation [LA: t(59) = 3.47, p < 0.01] and Washout [W:
t(59) = 3.96, p < 0.001]. In the RD group, we also found a
significant change in the elongation of the circles between the
stages [Workspace-Stage interaction effect: F(0.96, 57) = 76.44,
p < 0.001]. However, following adaptation to right delay, the
left errors were significantly larger than the right errors in left-
initiated circles [LA: t(59) = 6.74, p < 0.001; W: t(59) = 4.83,
p < 0.001] and right errors were significantly larger than the left
errors (meaning right-elongation) in right-initiated circles [LA:
t(59) = 3.29, p < 0.01; W: t(59) = 4.17, p < 0.001]. For the BD
group, we found a significant main effect of initiation workspace,
stage, and the interaction between stage and initiation workspace
[F(0.54,42.75) = 226.45, p < 0.001, F(1.1,85.5) = 7.8, p < 0.01, and
F(1.1, 85.5) = 11.68, p< 0.001, respectively]. Even though the delay
perturbation was presented in both sides, only the left-initiated
circles were elongated to the left [Figure 7G, positive difference
between left and right error compared to the baseline difference
LA: t(79) = 4.75, p < 0.001; W: t(79) = 3.65, p < 0.01], and the
right-initiated circles were not elongated at all [LA: t(79) = 0.23,
p= 1; W: t(79) = 0.25, p= 1]. The comparison of this elongation
pattern with the simulation results (Figure 5G) suggests that
the effects are caused by a perceptual-motor asymmetry in the
processing of the delayed feedback.

We performed another control analysis on the drawings of
participants from all four conditions (LD, RD, BD, and ND)—
we calculated the front and back deviation from ideal circles.
There were no consistent elongation to the front and to the back
of neither right- or left-initiated circles (Figure 8), suggesting
that the transfer effect was specific to the lateral dimension
of movement. However, in our experimental setup, movements
toward front and back directions were partly constrained.
Therefore, to fully assess the effect of asymmetric delay on
movements in these directions, further experiments are required.

From these results we conclude that after adapting to a
visuomotor delay between the movement of the hand and its
visual feedback in either or both left or the right workspaces,
participants presented aftereffects in reach movements to the
workspace in which the delay was presented, consistent with
context-dependent adaptation. They also exhibited transfer to
blind drawing that caused spatial elongation of the drawing,
and the pattern of elongation along the frontal plane depended
on the workspace in which the delay was presented—left and
both delay caused asymmetrical elongation only to left initiated
circles and right delay caused symmetrical elongation to both
left and right initiated circles. This shows that exposure to delay
might be processed differently according to the workspace in
which it was presented, and that the laterality in the visual
feedback is important for shaping our representation of the
environment when adapting to temporal misalignment between
the different sensory streams. Importantly, between the models
that we simulated, this pattern of transfer is only consistent with
the perceptual and motor asymmetry model.

DISCUSSION

In this study, we set out to establish the link between
spatial representation of information across workspaces and
adaptation to temporal misalignment between the senses. We
computationally modeled and experimentally validated the effect
of delayed visual feedback of cursor movement that is presented
exclusively in one or in both workspaces on participants’
movements with and without visual feedback. Consistent with
previous studies, the behavioral results show that following an
exposure to a visuomotor delay either in one or both workspaces,
participants modified the extent of their reaching movements:
the abrupt presentation of the delay caused hypermetria—
participants made larger reaching movements; they reduced this
hypermetria throughout adaptation, and exhibited aftereffects in
the workspace where the delay was applied. This means that
to reduce the overshoot of the target, participants compensated
for the changes in the visual feedback by constructing an
internal representation of the perturbation that was specific to
the workspace it was applied in. Importantly, the effects of
asymmetric delay in the left and right workspaces mirrored each
other.

In contrast, transfer of adaptation to the blind circle-
drawing task revealed a different picture. Following adaptation
to visuomotor delay, we observed hypermetric circles that were
elongated only in one side. Whether the circles were hypermetric
dependent on the workspace where the drawing was initiated
(left or right) and on the workspace in which the delay was
presented (left, right or both). The effect of the workspace of
drawing initiation on the side of the circle that was hypermetric
was demonstrated most clearly in the circles that were drawn
in the front and the back locations. Although these circles were
all in the middle of the task space, the drawings were different
depending on the workspace where they were initiated.

Interestingly, the hypermetria in the drawings was different
between the left delay, right delay, and both delay groups.
Adaptation to left delay or delay in both workspaces caused
elongation of only leftward blind drawings. In contrast,
adaptation to right delay caused elongation in both directions.
A simulation study confirmed that simple generalization
without laterality effect cannot explain these findings. Instead,
we had to include an asymmetrical, workspace-dependent,
transfer of adaptation. The pattern of asymmetry was not
consistent with an asymmetrical transfer model that is based
exclusively on perceptual and motor asymmetry, but rather
required the combined effect of laterality in perception
and action. We concluded that visuomotor delay might be
processed differently depending on the workspace in which
it was presented, and we further suggest that this difference
resulted from Perceptual-Motor Asymmetry between the
hemispheres.

Adaptation and Representation of
Visuomotor Delay
Visuomotor delay was investigated in various types of
movements, such as driving (Cunningham et al., 2001),
tracking (Foulkes and Miall, 2000; Leib et al., 2017), and
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FIGURE 8 | Deviation of the drawn circles toward front (gray) and back (black) directions, divided to left and right initiation (dashed line), for (A) Left delay group,

(B) Right delay group, (C) Both delay group and (D) No delay group. The X-axis represents the location of the drawn circle (front, back, right, and left) and the

direction of clockwise (CW) and counterclockwise (CCW). No pattern of deviation is observed in those directions. (E) Statistical analysis of Back error - Front error

Difference for the circles initiated in the left (dark blue) and in the right (light red). Empty bars are for Late Adaptation session and bars with stripes are for Washout

session. From the graph, no similar pattern of elongation toward front or back is observed.

reaching (Botzer and Karniel, 2013). However, the effect of
asymmetrical visuomotor delay was not investigated. One
exception is a recent study in which participants were exposed
to visuomotor delay while performing a complex task of Pong
game in one side of the task space. The effect of the delay was
examined by reaching movements with no visual feedback
performed at the other side. The results of this study showed
asymmetrical generalization from left to right but not from
right to left (Farshchian et al., 2018). In our study, we found
evidence for initial generalization in the reaching movements
toward the opposite direction: when the perturbation was first
applied, the participants under-reached the target in movements
toward the non-delayed side. This initial generalization was

consistent between the left and right workspace specific delay
groups. However, after adaptation, no aftereffects were observed
in movements toward the non-delayed side in both groups.
We believe that our results do not contradict the mentioned
study findings: in the Farshchian study, participants played
and adapted to the delay only in one workspace, and after
adaptation, they were examined for aftereffects in the other
workspace. In contrast, in our study, the participants adapted
and examined for aftereffects in the entire workspace, but
with the presence of delay in movements toward only one
workspace.

We found that the effect of adaptation to asymmetric delay
during a reaching task transferred to the blind circle drawing
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task. These circle-drawing movements can be considered as
rhythmic movement, which are considered significantly distinct
from discrete reaching movement in various aspects (Spencer
et al., 2003; Buchanan et al., 2006; Hogan and Sternad, 2007).
Therefore, our results are consistent with a study that showed
transfer of adaptation to visuomotor delay between reaching
movements to out-and-back rhythmic movements and vice
versa (Botzer and Karniel, 2013). Furthermore, transfer of
adaptation to delayed visual feedback during reaching task
to rhythmic movements without visual feedback was also
observed (Botzer and Karniel, 2013). Our results are also
in agreement with previous results that showed transfer of
adaptation to visuomotor rotation during discrete reaching
movements to rhythmic slice movements (Scheidt and Ghez,
2007).

In the effort to understand how the brain copes with the
inherent delay between the senses, it is well accepted that the
brain uses forward models that estimate the outcome of the
movement from an efferent copy of the motor command. These
forward models were suggested to be formed in the cerebellum
(Wolpert et al., 1998; Miall et al., 2007) given the evidence for
its role in timing of movements (Ivry, 1996; Spencer et al., 2003),
the compensation for circuit delays (Suvrathan et al., 2016), and
in the scaling of the muscular action (Diener and Dichgans,
1992). In addition, the cerebellum is important for adaptation
from sensory prediction errors, i.e., the difference between the
predicted and the actual sensory feedback (Taylor et al., 2010;
Morehead et al., 2017). It is likely that the cerebellum is involved
in adapting movement amplitude when exposed to visuomotor
delay, but further investigation is needed to directly examine this
hypothesis.

The jury is still out on the question how delay is represented
in the motor system. Adaptation to delayed information can
be obtained by representing the perturbation as time-based or
state-based. On one hand, recent studies provided support for
time-based representation of delayed feedback (Witney et al.,
1999; Levy et al., 2010; Rohde et al., 2014; Leib et al., 2015;
Avraham et al., 2017b). In contrast, other studies provided
evidences for state-based representation, and that participants
were not able to correctly represent the delay as time difference.
For example, adding a delay to force feedback affects stiffness
perception (Pressman et al., 2007; Nisky et al., 2008, 2010,
2011; Di Luca et al., 2011). Other example comes from the
effect of visuomotor delay on movements during adaptation
and its transfer (Botzer and Karniel, 2013; Avraham et al.,
2017a). This suggest that humans are not able to perceive
the delay as time difference between the sensory inputs, and
therefore, are unable to realign the different sensory inputs
to avoid perceptual biases. Our results are inconsistent with
a time-based representation—the participants modified their
movements’ extent following exposure to delay, and exhibited
aftereffects when the delay was unexpectedly removed—if they
would represent the delay as time difference they would have
modified the timing of their movements rather than the
amplitude.

Once agreed on a state-based representation, which one is
used? One possible representation of delay is modification of

mass estimation when interacting with robotics arm (Farshchian
et al., 2018). This representation cannot be used in our case,
as the construction of robotic arm used in our experiment was
symmetric. In addition, it was suggested that the misalignment
between the hand and the cursor is interpreted as a mechanical
load of mass (the cursor) with a spring and a damper that
connects between the hand and the cursor. This model was used
to explain the changes in grip forces accompanied with delayed
visual feedback (Sarlegna et al., 2010), the changes in resistive
sensation following adaptation to visuomotor delay (Takamuku
and Gomi, 2015), and the generalization between adapting to a
visuomotor delay or to a mechanical system between the hand
and the cursor (Leib et al., 2017). Another possible state-based
representation of visuomotor delay is considering an increase
in gain between the hand and the cursor (Avraham et al.,
2017a). Both mechanical system and gain representation can
be used to explain the hypermetria in our results. Therefore,
for simplicity of implementation and interpretation, in our
computational model we used the simple gain representation of
the delayed visual feedback. Using this gain representation, we
were able to simulate the results observed in our experiment both
in reaching and blind drawing tasks. However, this particular
choice is not critical in our current work, and any remapping
that could reproduce elongated reaches and circles could be
used to demonstrate the predictions of the different laterality
effects.

On the Other Hand?
It is potentially interesting to repeat our experiments with the
left hand of either right- or left-handed individuals. However,
right-handed individuals use additional cognitive structures
outside of the motor system to learn a motor task with the left
hand (Grafton et al., 2002). Therefore, examining adaptation to
delay with the left hand is not likely to provide a substantial
contribution to the validation of our model. Furthermore, testing
our model with left-handed participants may also be of limited
value for testing our current hypotheses as there are many
differences between left and right handed, as demonstrated in
the evidence that the cerebral organizations of the hemispheres
are not mirror images of each other (Wolff et al., 1977).
Such differences were observed in the functional connectivity
between motor areas in the two hemispheres in a resting state,
which was significantly higher for right handed participants
(Pool et al., 2015). This functional connectivity between the
hemispheres in right handed may play an important role in
learning lateralized perturbation such as the one presented in
our study. Therefore, we think that it is interesting to study left-
handed individuals, but it is outside of the scope of the current
study.

Right Hemisphere Dominance and a Model
for Laterality in the Processing of
Visuomotor Delay
When faced with an imbalanced stimulation across space, the
hemispheres demonstrate different patterns of activation and
inhibition, and these are reflected in asymmetric attention,
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perception, and action across workspaces (Reuter-Lorenz et al.,
1990). An example of an asymmetric perception in healthy
individuals is leftward perceptual bias—a spatial deviation
toward stimuli located on the left side. This bias was suggested
to arise from asymmetries in hemispheric activation: the left
hemisphere is activated only by stimuli in the right hemispatial
field, while the right hemisphere is activated in response to
stimuli in both the left and the right hemispatial fields (Heilman
and Valenstein, 1979). In addition, the right hemisphere can
also interact more strongly with the left hemisphere, by exerting
inhibition activity over cortical areas in the left hemisphere (Koch
et al., 2011; Gotts et al., 2013). Because the activation process in
the right hemisphere occurs in different locations for right or left
stimuli (Corbetta et al., 1993), it is possible that the inhibition
activity from right to left will only take place in response to left
stimuli. Regarding to the control of right hand movements in
right handers, it is well known that the left hemisphere controls
movements toward both workspaces. However, studies suggested
that the right hemisphere is involved in right-hand movements
only toward the left workspace (Farnè et al., 2003; Heilman and
Valenstein, 2010). This explains why in the case of processing
delayed visual feedback in our experiment, leftward movements
with the right hand can be strongly affected also by the right
hemisphere.

Although we were unable to fully control the participants’
gaze direction, and to maintain their middle visual field fixed
at the mid-point location, we received strong evidence that
our results cannot be attributed solely to the effect of delay
on the sensorimotor system without considering the differences
between the hemispheres. Based on both of our computational
model and experimental results, we suggest that exposure to delay
excites motor circuits associated with movement extension in
the relevant hemisphere, such that: (1) Delay only in the left
workspace has an excitatory effect on brain areas responsible
for movement extension in the right hemisphere (Figure 1B).
Therefore, an exposure to delay only in the left visual field
causes only leftward hypermetria (Figure 1A). (2) Delay in the
right workspace affects both hemispheres (Figure 1B), resulting
in transfer of hypermetria toward both workspaces (Figure 1A).
(3) Delay in both workspaces excites motor areas in both
hemispheres. However, as a result of exposure to left delay, the
right hemisphere inhibits the left, and cancels the excitatory
effect of delay (Figure 1B). Overall, excitation effect is only
maintained in the right hemisphere, thereby affecting leftward
movements performed without visual feedback and causing
leftward hypermetria.

In the current study, we coupled betweenmovement direction
and the hemispace toward which the movement is performed.
This is because we wanted to understand the basis of the
adaptation to asymmetrical delay, without having to consider
multiple factors. Future studies should investigate the effect of
decoupling these two factors.

The asymmetrical leftward hypermetria in the drawings of the
participants can be related to the recently reported asymmetrical
expansion of drawings in patients with right brain damage,
which is known as “hyperschematia.” This disorder affects
the representation of extra-personal space, resulting in left

asymmetric expansion both when copying an object or drawing
from memory (Rode et al., 2014). In our study, participants’
drawings without visual feedback were asymmetrically leftward
elongated after adaptation to left delay and delay in both
sides.

The observed pattern of activation and inhibition in
the hemispheres can also potentially explain some motor
impairments that involve asymmetrical perception and action,
such as the motor aspects of Hemispatial Neglect. Neglect
patient may exhibit unilateral temporal disorders of slowness in
initiation and execution of movements (directional hypokinesia
and directional bradykinesia, respectively), and unilateral spatial
disorders of reduction in movement amplitude (directional
hypometria) (Mattingley et al., 1994). In light of motor
impairments such as neglect, previous studies proposed a
model to explain the imbalance between the hemispheres
(Heilman and Valenstein, 2003). In this study, the authors
argued that the asymmetry in perception and intention between
the hemispheres is a result of asymmetrical representation of
the workspaces, such that the right hemisphere incorporates
representations for both workspaces, yet the left hemisphere
holds representation only for the right workspace. However,
in addition to the spatial deficit observed in neglect, several
studies also reported time-related impairments. For example,
reports of a considerable delay in visual awareness of left stimuli
compared to right stimuli (Robertson et al., 1998). Previous
studies suggested that neglect is a spatial-temporal rather than
a purely spatial deficit (Becchio and Bertone, 2006), and that
there is a link between laterality and temporal aspects of
information processing. We show here that after an exposure
to asymmetrical delay, healthy participants exhibit hypermetric
asymmetrical movements. Although the participants exhibited
hypermetria rather than hypometria, we believe that this spatial
asymmetry can be related to the mechanisms underlying the
spatial disorders in neglect. Hence, we suggest that the imbalance
between the hemispheres can also be associated with visuo-
temporal processes. However, further research is needed in order
to ascertain this possibility.

The observed connection between time and space,
demonstrated through our model, can help to explain the
motor deficits observed in neglect, which has been suggested
to be associated with distortions in time processing (Becchio
and Bertone, 2006). By integrating the model for unilateral
neglect with our proposed model, we can further establish the
connection between temporal perturbations and spatial-motor
impairments. Understanding the role of each hemisphere in
mediating time and space representation can provide important
insights on pathological cases involving injury in only one side
of the brain and also to provide new directions for diagnosis and
rehabilitation.
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Wepresent Feasibility Theory, a conceptual and computational framework to unify today’s

theories of neuromuscular control. We begin by describing how the musculoskeletal

anatomy of the limb, the need to control individual tendons, and the physics of a

motor task uniquely specify the family of all valid muscle activations that accomplish

it (its ‘feasible activation space’). For our example of producing static force with a

finger driven by seven muscles, computational geometry characterizes—in a complete

way—the structure of feasible activation spaces as 3-dimensional polytopes embedded

in 7-D. The feasible activation space for a given task is the landscape where all

neuromuscular learning, control, and performance must occur. This approach unifies

current theories of neuromuscular control because the structure of feasible activation

spaces can be separately approximated as either low-dimensional basis functions

(synergies), high-dimensional joint probability distributions (Bayesian priors), or fitness

landscapes (to optimize cost functions).

Keywords: feasibility, neuromechanics, motor control, tendon-driven, dimensionality, synergies, optimization,

forces

1. INTRODUCTION

How the nervous system selects specific levels of muscle activations (i.e., a muscle activation
pattern) for a given motor task continues to be hotly debated. Some suggest the nervous system
either combines low-dimensional synergies (Dingwell et al., 2010; Kutch and Valero-Cuevas,
2012; Alessandro et al., 2013; Bizzi and Cheung, 2013; Rácz and Valero-Cuevas, 2013;
Steele et al., 2013, 2015), learns probabilistic representations of valid muscle activation
patterns (Körding and Wolpert, 2004; Sanger, 2011; Berniker et al., 2013; Kording, 2014), or
optimizes physiologically-tenable cost functions (Chao and An, 1978; Crowninshield and Brand,
1981; Prilutsky, 2000; Todorov and Jordan, 2002; Scott, 2004; Higginson et al., 2005). At the
core of this problem lies the nature of “feasible activation spaces,” and the computational
challenge of describing and understanding their high-dimensional structure (for an overview,
see Valero-Cuevas, 2015). A feasible activation space is the family of valid solutions (i.e., muscle
activation patterns) that meet themechanical constraints1 of a givenmotor task. Figure 1 illustrates
these neuromechanical interactions that define the feasible activation space for a particular task.

1Mechanical constraints is a formal way to call the physical demands, requirements, or characteristics of a given physical task.
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FIGURE 1 | Emergence and interpretation of feasible activation spaces for a particular motor task. The descending motor command for a given task is issued by the

motor cortex (a), which projects onto inter-neurons and alpha-motor neuron pools in the spinal cord (b). The combined drive to all alpha-motor neurons of a muscle

can be considered its total muscle activation level (a value between 0 and 1). If we consider that muscles can, to a large extent, be controlled independently and in

different ways, then the overall motor command can be conceptualized as a multi-dimensional muscle activation pattern (i.e., a point) in a high-dimensional muscle

activation space (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Valero-Cuevas et al., 1998; Todorov and Jordan, 2002) (c). For that muscle activation

pattern to be valid, it has to elicit muscle forces (d) capable of satisfying the mechanical constraints of the task—in this case defining a well-directed sub-maximal

fingertip force (e). Given the large number of muscles in vertebrates, there can be muscle redundancy: where a given task can be accomplished with a large number

of valid muscle activation patterns. We propose that our novel ability to characterize the high-dimensional structure of feasible activation spaces (i) allows to us to

compare, contrast, and reconcile today’s three dominant approaches to muscle redundancy in sensorimotor control (f–h).

The most the nervous system can do, therefore, is select and
apply a specific muscle activation pattern fromwithin the feasible
activation space. This is because muscle activation patterns
outside of this space are, by definition, inappropriate for the
task. In fact, the feasible activation space defines the landscape
upon which all neuromuscular learning and performance must
occur for that task. Studying neuromuscular control is, therefore,
equivalent to studying how the nervous system finds, explores,
inhabits, and exploits the contents and structure of feasible
activation spaces (Dingwell et al., 2010; Kutch and Valero-
Cuevas, 2012; Bizzi and Cheung, 2013; Rácz and Valero-Cuevas,
2013; Steele et al., 2013, 2015; Gallego et al., 2017).

But the “curse of dimensionality” (Bellman and Osborn, 1958;
Avis and Fukuda, 1992; Bellman, 2015) makes it computationally
challenging to calculate, describe, and understand the nature and
structure of high-dimensional feasible activation spaces (Chao
and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Scholz and
Schöner, 1999; Valero-Cuevas et al., 2009a; Dingwell et al.,
2010; Theodorou and Valero-Cuevas, 2010)—even for an isolated
human finger or cat leg generating everyday static forces (Kutch

and Valero-Cuevas, 2012; Sohn et al., 2013; Valero-Cuevas, 2015;
Valero-Cuevas et al., 2015b). This is due to the computational
complexity of algorithms to map the geometric details of objects
embedded in high dimensions (Smith, 1984; Lovász, 1999;
Fukuda, 2014).

Current theories of neuromuscular control2 are alternative
responses to overcome the curse of dimensionality in this context.
These alternative approaches, however, are seldom combined and
often the insights from one realm are not readily applicable to
the others. Here we emphasize how the mechanics of the body
and the physics of the task constitute the common ground for all
theories.

We now propose “Feasibility Theory,” which is a conceptual
framework to characterize feasible activation spaces in detail.
While prior work has described how to find such feasible
activation spaces for static force production (Valero-Cuevas et al.,
1998, 2015a; Venkadesan and Valero-Cuevas, 2008; Kutch and

2Neuromuscular control is variously referred to as, inter alia, neural, motor,

sensorimotor control.
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Valero-Cuevas, 2012;Marjaninejad andValero-Cuevas, 2019), we
now explain why the structure of a feasible activation space can
be approximated with low-dimensional synergies and probability
distribution functions, and can be associated withmultiple fitness
landscapes over which to optimize (Table 1).

2. METHODS

In the case of the seven muscles of the human index finger
producing static fingertip force, we show that the family
of feasible commands, the feasible activation space, is a
3-dimensional polytope embedded in 7-dimensional muscle
activation space (Valero-Cuevas et al., 1998). A “polytope” is the
formal name for bounded polyhedra in dimensions higher than
three. With 4 task constraints applied to 7 muscles, the result
is a 3-dimensional polytope embedded in the 7-dimensional
muscle activation space. By construction of anatomy, producing
static force with a fixed posture naturally leads to a relationship
between muscle forces and endpoint torques. The linear
constraint equations that define this relationship (and in
parallel the polytope that arises from the constraints) accurately
represent the set of feasible motor commands (Valero-Cuevas
et al., 1998; Sohn et al., 2013; Valero-Cuevas, 2015). Our
computational approach hinges on the efficient sampling and
complete representation of the geometric structure of high-
dimensional polytopes which fully characterizes the family of all
valid muscle activation patterns–each of which solves the same
task. By definition, this polytope is the null space of the task.

The methods to obtain feasible activation spaces for
“tendon-driven” limbs are described in detail in the
textbook Fundamentals of Neuromechanics and references
therein (Valero-Cuevas, 2015). This tendon-driven approach

explicitly and distinctly avoids the conceptual approach to
calculate net torques at each joint. Rather, it emphasizes studying
the individual actions of all muscles at all levels of analysis, from
their neural activation to their contributions to fingertip force.
We describe them briefly here.

Consider a tendon-driven limb, such as a finger, with n
independently controllable muscles, where we define the neural
command to eachmuscle as a positive value of activation between
0 (no activation) and 1 (maximal activation), where a value of
1 would produce the maximum possible tendon force for that
muscle. We do not differentiate between concentric or eccentric
contraction—we define muscle activation as the net static tendon
tension, normalized by the maximum tendon tension possible
by that muscle. We can then visualize the set of all feasible
neural commands (i.e., all possible muscle activation patterns)
as the points contained in a positive n-dimensional cube with
sides of length equal to 1. A specific muscle activation pattern
is a point (i.e., an n-dimensional vector a) in this n-dimensional
cube (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993;
Valero-Cuevas et al., 1998). Now consider a specific task, such
as producing a vector of static force with the fingertip, as when
holding an object. Clearly, not all muscle activation patterns
inside the n-dimensional cube can produce that desired static
fingertip force vector: bone lengths, kinematic degrees of freedon,
anatomical routing, posture, and muscle strength inequities
define the subset of points in the n-cube which produce a
fingertip force vector of a specific magnitude and direction. As
described in Chao and An (1978), Spoor (1983), Kuo and Zajac
(1993), Valero-Cuevas (2015) the musculoskeletal anatomy of the
limb, the need to control individual tendons, and the physics
of a motor task uniquely specify a polytope embedded in R

n

(i.e., the feasible activation space). This polytope contains the

TABLE 1 | Applicability and compatibility of Feasibility Theory with dominant theories of neuromuscular control.

Dimensionality Reduction PCA, NMF, etc. describe the general shape and structure of the feasible activation space. The resulting basis functions serve as

an approximation of the input-output relationship of the system (i.e., descriptive synergies).

Motor Primitives / Synergies

/ Modular Organization

If the basis functions mentioned above are of neural origin, they would be the means by which the nervous system inhabits the

feasible activation space and executes valid solutions (i.e., prescriptive synergies).

Uncontrolled Manifold (UCM)

Theory

The UCM Theory emphasizes that the temporal evolution of muscle activation patterns in the interior of the feasible activation

space need not be as tightly controlled as those at its boundaries. This is because moving between interior points has no impact

on the output as they constitute the null-space of the task (i.e., they are “goal-equivalent” as in Scholz and Schöner, 1999). In

contrast, Feasibility Theory describes details of the structure of the feasible activation space.

Exploration-Exploitation Heuristic and trial-and-error approaches can be used to find points within the Feasible Activation Space because it is a

needle-in-a-haystack problem. By definition, there is a small likelihood of finding a point on a low-dimensional manifold embedded

in a high-dimensional space (e.g., the volume of a line is zero). Thus, the families of valid solutions found are preferentially adopted

(e.g., as motor habits De Rugy et al., 2012). Such a heavily iterative approach is compatible with reinforcement

learning (Valero-Cuevas et al., 2009a), motor babbling (Touwen, 1976), the hundreds of thousands of steps children take when

learning to walk (Adolph et al., 2012), or the mass practice a patient needs for effective rehabilitation (Lang et al., 2009).

Probabilistic Neuromuscular

Control

If muscle activation patterns within the feasible activation space can be found (by any means), they can be combined to build

probability density functions (i.e., Bayesian priors). A likely valid action for a particular situation can then be selected via Bayes’

Theorem (e.g., Körding and Wolpert, 2004).

Optimization / Minimal Intervention

Principle/

Optimal Control

Every point in the feasible activation space is, by definition, valid. However, if a cost function is used to evaluate each point in it, the

feasible activation space is transformed into a fitness landscape. Optimization methods can then navigate this fitness landscape

to find local and global minima (e.g., Crowninshield and Brand, 1981; Anderson and Pandy, 2001; Todorov and Jordan, 2002).
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family of (potentially infinite) valid muscle activation patterns
that can produce this static force production task. However, these
valid muscle coordination patterns are not arbitrarily different
because, by construction, the geometric structure of the polytope
that contains them defines strict spatial correlations among
them (Kutch and Valero-Cuevas, 2012).

System of Linear Equations to Simulate
Static Force Production by a
Tendon-Driven System
Consider producing a vector of static force with the endpoint
of the limb in a given posture. The constraints that define
that task (i.e., the direction and magnitude of the force vector
at the endpoint) are linear equations (Valero-Cuevas, 2015)
that come from the mapping between neural activation of
individual muscles to static endpoint forces and torques the
limb can produce. This mapping is linearly modeled by the
equation
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, a ∈ [0, 1]n (1)

where H is the matrix of linear constraints defined by the
musculoskeletal anatomy of the limb (Valero-Cuevas et al.,
2015b), a is the input vector of nmuscle activations, and f ∈ R

m

is the m-dimensional limb output “wrench” (i.e., the forces and
torques the finger can produce at the endpoint).

The output wrench, w, is at most 6-dimensional (i.e., 3 forces
and 3 torques) depending on the number of kinematic degrees
of freedom of the limb, and usually m < n because limbs have
more muscles than kinematic degrees of freedom Valero-Cuevas
(2015). Muscles can only pull, so elements of a cannot be
negative, and are capped at 1 (i.e., 100% of maximal muscle
activation).

What are the muscle coordination patterns that produce a
given task? As explained in Valero-Cuevas (2015), the task of
producing a static fingertip force vector is defined by specifying
the desired values for the elements of the endpoint forces and
torques of w. Each value yields a constraint equation, which
in turn defines a hyperplane of dimension n − 1, and their
combination defines the task completely. The feasible activation
space of the task, if it is well posed (Chvatal, 1983), is defined by
the points a that lie within the n-cube and at the intersection of
all constraint hyperplanes.

Geometrically speaking, the feasible activation space is a
(n − m)-dimensional convex polytope P embedded in R

n that
contains all n-dimensional muscle coordination patterns (i.e.,
points a) that satisfy all constraints, and therefore can produce
the task. Increasing task specificity by adding more constraints
naturally decreases the dimensionality and changes the size and
shape of the feasible activation space (Kuo and Zajac, 1993; Sohn
et al., 2013; Inouye and Valero-Cuevas, 2016).

The Hit-and-Run Algorithm Uniformly
Samples From Feasible Activation Spaces
Calculating the geometric properties of convex polytopes in
high dimensions is computationally challenging. Taking the
generalized concept of an n-dimensional volume as an example of
a geometric property of interest, the exact volume computations
for n-dimensional polytopes is known to be tractable only in a
polynomial amount of time (i.e., #P-hard) (Dyer et al., 1989).
Currently available volume algorithms can only handle polytopes
embedded in small dimensions like 10 or slightly more (Büeler
et al., 2000). Studying vertebrate limbs in general, however, can
require including several dozen muscles, such as our studies
of a 17-muscle human arm and a 31-muscle cat hindlimb
model (Valero-Cuevas et al., 2015b); and other models have over
40muscles of the human lower limb (Arnold et al., 2010; Hamner
et al., 2010; Kutch and Valero-Cuevas, 2012; De Sapio et al.,
2014).

Similar difficulties arise when computing other geometric
properties such as the shape and aspect ratio of P in
high dimensions. We and others have described polytopes
P by their bounding box (i.e., the range of values in every
dimension) (Kutch and Valero-Cuevas, 2011; Sohn et al., 2013),
but that singularly overestimates the shape and volume of the
feasible activation space as discussed in Valero-Cuevas et al.
(2015b). Consider a 3-muscle system with only one constraint,
producing a 2-dimensional polygon as the feasible solution
space. The bounding box of the polygon has a volume—even
though a plane has zero volume—, and can be almost as large
as the positive unit cube itself. Similar problems arise in the
interpretation of the inscribed and circumscribed ball (Inouye
et al., 2014).

We applied the Hit-and-Run method to sample points from
the feasible activation space. We have presented a detailed
explanation of the Theory (In Chapter 9 of Valero-Cuevas,
2015), and have justified the utility of this method on tendon-
driven models of the index finger (Valero-Cuevas et al., 2015a).
This complete probabilistic method describes the structure of
feasible activation spaces P with a set of uniformly-at-random
muscle activation patterns that produce the same wrench. This
enables us to derive descriptive statistics, histograms, and point
densities of the set of valid muscle activation patterns a uniformly
sampled from the polytope. To do so, we use the Hit-and-Run
method.

This approach can scale up to ∼40 dimensions (i.e., limbs
with ∼40 independent muscles). This suffices to study extant
vertebrate limbs, and thus compare, contrast, combine—and
reconcile—today’s three dominant approaches to neuromuscular
control.

Example of a Tendon-Driven System

Realistic 3-D model of a 7-muscle human index finger
We applied this methodology to our published model of an
index finger for static fingertip force production. The model
is described in detail elsewhere (Valero-Cuevas et al., 2009a).
Briefly, the input to the model is a 7-D muscle activation pattern
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a, and the output is a 4-Dwrenchw (i.e., static forces and torques)
at the fingertip:

w = Ha (2)

H = J−TRFo,H ∈ R
4×7 (3)

where

a =
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aDI
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(4)

In Cartesian coordinates, the 4-D output wrench corresponds to
the anatomical directions shown in Figure 1e.
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(5)

The biomechanical modelH includes three serial links articulated
by four kinematic degrees of freedom (ad-abduction, flexion-
extension at the metacarpophalangeal joint, and flexion-
extension at the proximal and distal interphalangeal joints).
The action of each of the seven muscles (FDP: flexor digitorum
profundus, FDS: flexor digitorum superficialis, EIP: extensor
indicis proprius, EDC: extensor digitorum communis, LUM:
lumbrical, DI: dorsal interosseous, and PI: palmar interosseous) on
each joint to produce torque is given by the moment arm matrix
R ∈ R

4×7. Lastly, J ∈ R
4×4 and F0 ∈ R

7×7 are the Jacobian of the
fingertip with 4 kinematic degrees of freedom, and the diagonal
matrix containing the maximal strengths of the seven muscles,
respectively (Valero-Cuevas, 2000; Valero-Cuevas, 2015). The
finger posture was defined to be 0◦ ad-abduction and 45◦ flexion
at the metacarpophalangeal joint, and 45◦ and 10◦ flexion,
respectively, at the proximal and distal interphalangeal joints.

Feasible activation space for a static fingertip force task
Our goal is to find the family of all feasible muscle activation
patterns that can produce a given task. In particular, the task
we explored is producing various magnitudes of a submaximal
static force in the distal direction fdistal — in the absence of any
τradial, shown in Figure 1e. Therefore the feasible activation space
is a polytope P in 7-dimensional activation space that meets the
following four linear constraints in a (Valero-Cuevas et al., 1998;
Valero-Cuevas, 2000; Valero-Cuevas, 2015)

fradial = 0 (6)

fdistal = desired magnitude as % of maximal (7)

fpalmar = 0 (8)

τpalmar = 0 (9)

These four constraints on the static output of the finger yield
a 3-dimensional (i.e., 7 − 4 = 3) polytope P embedded in 7-
dimensional activation space. For details on how to create such
models, apply task constraints and find such polytopes via vertex
enumeration methods, (see Valero-Cuevas, 2015).

For the index finger model used in this paper, the published
maximal feasible force in the distal direction is 28.81 Newtons.
We defined the normalized desired distal task intensity as a value
ranging between 0 and 1, i.e., each submaximal force can be
produced by any of the points contained in its corresponding
feasible activation space. For the production of a maximal force,
the feasible activation space shrinks to a single point (Chao and
An, 1978; Chvatal, 1983; Spoor, 1983; Valero-Cuevas, 2000).

Analysis of Feasible Activation Spaces

Parallel coordinate visualization
For us to understand the structure of the feasible activation space,
we aim to visualize the data. If we had a simple model with only
three muscles (and one task force dimension), we could plot the
feasible activation space as a plane within a 3D cube, as illustrated
in Figure 2A. However, in our model, we have seven muscles. In
our 3D reality, we cannot create a 7D scatter plot to highlight how
muscle activation patterns are spatially located across the muscle
dimensions, so we must project the data in a different way.

Parallel coordinates are a common graphical approach to
visualize interactions among high-dimensional data (Krekel
et al., 2010; Bachynskyi et al., 2013). To build familiarity with
this visualization method, consider the results of a simple 3-
dimensional (3-muscle) toy example shown in Figure 2A. This
is the dimensionality of a finger with only 3 muscles, aiming to
create a unidimensional pressing force. We begin by drawing n
parallel vertical lines for each of the dimensions n (i.e., 3muscles).
With the axis limits of each line set between 0 and 1 (at the bottom
and top of the plot, respectively), each muscle activation pattern
(Figure 2A) is then represented by a zig-zag line that connects
to the coordinates between 0 and 1 on each axis, as shown in
Figure 2B. The blue zig-zag line that is connected at the top of
m1 in Figure 2B represents the muscle activation point equal to
(m1 = 0.8,m2 = 0.9,m3 = 0.4). You can see its corresponding
location in the 3D cube, mapped to the parallel coordinate zig-
zag line (the gray dotted line connects the two representations of
the muscle activation pattern).

Neural and metabolic cost functions
As mentioned in the Introduction, the field of neuromuscular
control has a long historical tradition of using optimization
to find muscle activation patterns that minimize effort,
which requires the (often contentious) definition of cost
functions (Chao and An, 1978; Crowninshield and Brand,
1981; Spoor, 1983; Prilutsky, 2000). Therefore, we used four
representative cost functions to calculate the relative fitness of
each of the muscle activation patterns sampled—in effect also
calculating the fitness landscape across all possible solutions. The
cost functions are defined at the level of neural effort (L1, and L2
norms, representing the normalized sum of descending neural α-
drive to the motor neuron pools); and at the level of metabolic
cost, thought to be approximated by neural drive weighted by the
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FIGURE 2 | Parallel coordinates characterize the high-dimensional structure of a feasible activation spaces. Consider four points (i.e., muscle activation patterns) from

the polygon that is a feasible activation space (A). The activation level for each muscle (i.e., the coordinates of each point) are sewn across three vertical parallel axes

(B). As is common when evaluating muscle coordination patterns, each point can also be assigned a cost as per an assumed cost function. The associated cost for

each muscle activation pattern can also be shown as an additional dimension. We show three representative cost functions (C). Activation levels are bound between 0

and 1, and costs are normalized to their respective observed ranges.

strength of each muscle (Lw1 and Lw2 norms) (Crowninshield and
Brand, 1981; Prilutsky, 2000).

To visualize the costs associated with each valid muscle
coordination pattern we simply added three vertical lines at
the far right of the parallel coordinates plot, one for each of
the three cost functions, as shown in Figure 2C. The variables
ai and F0i represent the activation of the ith muscle in a
given muscle activation pattern, and the maximal strength
of each muscle (Crowninshield and Brand, 1981; Prilutsky,
2000). Maximal muscle strengths are approximated by the
multiplying each muscle’s physiological cross-sectional area, in
cm2, by the maximal active muscle stress of mammalian muscle,
35 N/cm2 (Zajac, 1993). These four cost functions are but
four examples from the literature; an investigator is free to use
this visualization of the feasible activation space with any cost
function deemed relevant to their study.

Histograms of the activation level of each muscle across all

valid solutions
Muscle-by-muscle histograms are another straightforward way
to visualize the many points sampled from the convex polytope.
Histograms are particularly helpful because they illustrate the
structure of the space of all feasible activations, allowing us to see
which muscle activation patterns are on the edge of the space,
which solutions exist in the middle of the space, and how the
bounds of the space and the distribution change across different
tasks (in this case, as the task force increases). They visualize
the relative number of solutions (i.e., density of solutions) that
required a particular level of activation from a particular muscle
within its range of [0, 1]. In addition, the upper and lower bounds
of the histograms show, in fact, the size of the side of the
bounding box of the polytope in every dimension (i.e., for each
independently controlled muscle).

Dimensionality reduction
Investigators have repeatedly reported that electromyographical
signals (i.e, experimental estimates of muscle activation
patterns) tend to exhibit strong correlations with one
another. In these experimental descriptions of dimensionality

reduction of neuromuscular control only few independent
functions—sometimes called synergies—suffice to explain the
majority of the variability in the observed muscle activation
patterns (Krishnamoorthy et al., 2003; Dingwell et al., 2010;
Kutch and Valero-Cuevas, 2012; Alessandro et al., 2013; Bizzi and
Cheung, 2013; Steele et al., 2013, 2015). Principal components
analysis (PCA) is a widely used technique to extract these few
independent basis functions (correlation vectors called principal
components, PCs) from high-dimensional data (Clewley et al.,
2008). In this case, PCs are often called the experimental
representations of synergies of neural origin (Kutch and
Valero-Cuevas, 2012).

Therefore, we applied PCA to points (i.e., muscle coordination
patterns) sampled from the feasible activation space at each
force level. This provides the PCs that describe the correlations
among valid muscle activation patterns for a given task. For
example, the feasible activation space P in a 3-muscle system
with one constraint is a 2-dimensional polygon embedded in
3-dimensional activation space. Thus, applying PCA to points
sampled from the polygon will extract 2 synergies (i.e., 3-
dimensional correlation vectors PC1 and PC2) that wholly
explain the feasible activation space. By extension, in the
case of fingertip force production in Figure 1, the feasible
activation space is a 3-dimensional polytope embedded in the
7-dimensional activation space. PCA should also extract, by
construction, as many synergies as there are dimensions in the
feasible activation space. For static force production with the
index fingertip (i.e., 7 muscles and 4 constraints), we know that 3
principal components will describe 100% of the variance in points
sampled from the feasible activation space (i.e., 7-dimensional
correlation vectors PC1, PC2, and PC3).

Applying PCA to our data allows us to test whether and
how its results change when applied to feasible activation spaces
for different magnitudes of fingertip force. We applied PCA to
feasible activation spaces for fingertip task intensities ranging
from 0 to 90% of maximal. Specifically, we applied the prcomp
function in R, and specified that the calculation operates on
the covariance matrix of the raw data. We compare both
the variance explained by each PC and their loadings (e.g.,
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correlations among muscles) as the force level increases (Valero-
Cuevas et al., 2016). Lastly, we tested whether the dispersion
(i.e. the two central quartiles) and median of our PCA estimates
are sensitive to the number of points sampled from each
feasible activation space. This is important in practice because
experimental studies tend to record and analyze a practical
number (e.g., 10) of repetitions of the same motor task from a
given subject, and aggregate data from different subjects (Valero-
Cuevas and Santello, 2017). Although we have reported that
subjects tend to exhibit similar muscle activations for a given task
(Valero-Cuevas, 2000), performing dimensionality reduction on
such few trials and across multiple non-identical subjects (i.e.,
samples in Figure 5) may lead to imprecise (i.e., uncertain)
estimates of the synergies when sampling from high-dimensional
spaces.

3. RESULTS

We used our realistic index finger model to calculate the
feasible activation space for the task of producing static fingertip
force in the distal direction (see Figure 1). By showing how
this same space can be interpreted from three dominant
perspectives, we propose a conceptual paradigm to unify
today’s theories of neuromuscular control. The model contains
the contribution of each of the seven muscles of the finger
to the resultant static fingertip force vector (Valero-Cuevas,
2015). As described briefly in the Methods, all valid muscle
activation patterns to produce a given fingertip force vector
(i.e., all ways in which one can combine the actions of
the seven muscles to produce a given fingertip force vector)
are contained in a low-dimensional polytope embedded in
7-dimensional space. Hit-and-Run is a method for uniform
polytope sampling that collects thousands of muscle activation
patterns, which become a valid geometric approximation to
the structure of the feasible activation space (Valero-Cuevas
et al., 2015a). We examined how these feasible activation spaces
(and their alternative representations) change with increasing
task intensity (i.e., fingertip force magnitude, Figure 1e). In
particular, we studied task intensities between 0% (i.e., pure
co-contraction without output force) and 100% of maximal
static force (i.e., a unique solution Valero-Cuevas et al.,
1998).

Parallel Coordinate Visualization Naturally
Reveals the Structure of the Feasible
Activation Space
Parallel coordinate visualization effectively reveals correlations
that exist among the 1,000 valid muscle activation patterns for
each intensity of desired fingertip force, and activation pattern
cost, Figures 2, 3.

Parallel coordinate visualization provides deep insight into
the interactions among muscles that can produce a given
task. Because it allows interactive exploration of the feasible
activation space, one can restrict the activation level of any
one or multiple muscles to see the associated activation
levels of the remaining muscles (i.e., see a subsample of

the feasible activation set). Figure 4 shows how, for 80% of
task intensity, only 46% (i.e., 461

1,000 ) of all possible solutions
survive when we only keep solutions where EIP and EDC
are below 80% of maximal excitation. We chose to limit the
extensors, as they are both innervated by the radial nerve and
are susceptible to limitation from, for example, neuropathy or
stroke. This robustness-related system behavior is visible in
other muscle pairs via the interactive parallel coordinates plot.
We find that even a minor neural or muscle dysfunction can
disproportionally compromise the solution space—even for sub-
maximal forces. These results further challenge the definition of
muscle redundancy as discussed in detail in Kutch and Valero-
Cuevas (2011), Valero-Cuevas (2015), Marjaninejad and Valero-
Cuevas (2019), in that our description of redundancy may need
to incorporate the structure of the feasible activation space to best
describe how motor control can occur with perturbation to one
or more muscles.

While we know from experience that a limitation on one
muscle yields compensation from the others, Figure 4 explains
why, and how much to expect. All data used for Figure 4 are
for a task intensity of 80%. When we select only the lowest 5%
of L2 weighted costs (Figure 4, middle figure) there exist many
“near-optimal” solutions that are dramatically different (note the
broad ranges and criss-cross patterns in the second panel of in
Figure 4). This wide space exists in spite of this strong criterion.

Evaluating the slope of the lines connecting muscles enables
an intuitive understanding of inter-muscle correlations. The
Pearson product-moment correlation coefficients were 0.99,
−0.50, and −0.06 in the adjacent muscle pairs FDP—FDS,
LUM—DI, and EIP—EDC, respectively. The interactive parallel
coordinate visualization also allows for any pairwise comparison
by simply dragging and reordering the vertical axes. This is an
effective ad-hoc method to viewing the inter-muscle correlations
for exploratory data analysis.

Low-Dimensional Approximations to the
Feasible Activation Space
We applied Principal Component Analysis (PCA) to sampled
muscle activation patterns for 10 levels of task intensity. However,
to replicate the fact that experimental studies can only collect
a finite amount of data from each subject, we did this in an
iterative fashion as follows. We collected 10,000 points sampled
uniformly at random from each feasible activation space via
Hit-and-Run (Valero-Cuevas et al., 2015a). From these 10,000
points, we sampled 10, 100, and 1,000 points at random (to
simulate “experimental” sample sizes), and applied PCA to each
set of sampled points. For each of the sample sizes, we replicated
the sampling 100 times, producing a distribution of principal
component results, and thus, a distribution of variance-explained
metrics for PC1 (and the same for the other components). This
bootstrap analysis serves to inform how many samples one
must collect from a subject to get an effective set of principal
components. The H matrix was fixed across all replicates and
samples.

Figure 5 shows the box plots describing the variances
explained by the three principal components (PC1, PC2, and
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FIGURE 3 | Activation patterns of the seven muscles of the index finger across six intensities (magnitudes) of a fingertip force vector in the distal direction. The

connectivity across parallel coordinates visualizes the correlations among muscle activation patterns at different task intensities. At the extremes of 0 and 100% we

have, respectively, the coordination patterns that produce pure co-contraction and no fingertip force, and the one unique solution for maximal fingertip force

(Valero-Cuevas et al., 1998). In between, we see how the structure of the feasible activation spaces changes, and that much redundancy is lost rather late (at

intensities >80%, in agreement with Sohn et al., 2013). In blue are the activation values, and in red are normalized costs for four common cost functions in the

literature. For each task intensity, we produced 1,000 points that are uniformly distributed in the polytope via the Hit-and-Run method. The muscles are FDP: flexor

digitorum profundus, FDS: flexor digitorum superficialis, EIP: extensor indicis proprius, EDC: extensor digitorum communis, LUM: lumbrical, DI: dorsal interosseous,

PI: palmar interosseous. Color is used solely to differentiate muscle activations (blue) from cost values (red).

PC3) across task intensities. The third PC, PC3, explains the
remainder of the variance (13—15%) for the resulting 3-
dimensional polytope. Recall that the 4 task constraints (fradial,
fdistal, fpalmar , τpalmar) applied to 7 muscles yield a 3-dimensional
polytope embedded in the 7-dimensional muscle activation space
(Valero-Cuevas et al., 1998); as such, the sum of all three
PCs is exactly 100%. The supplemental website (linked in the
Data Availability Statement below) contains alternate versions of
Figure 6 with varying input transformations.

The box plots in Figure 5 quantify how different amounts of
data change the estimates of variance explained by a PC with
task intensity (c.f. labels a vs. b vs. c). We see this dispersion
is small in the center and right columns. Note that the ratio of
variance explained between PC1 and PC2 between 50 to 80% of
task intensity reveals changes in the aspect ratio of the feasible
activation space with task intensity.

Importantly, we observe how using experimentally realistic
sample sizes of 10 same-task repetitions per subject (the leftmost
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FIGURE 4 | Exploration of the feasible activation space for task intensity of 80%. Here we show three informative examples of constraints applied to the points

sampled from the feasible activation space (n=1,000; axes match those of Figure 3). With this interactive visualization, we can easily see how the size (i.e., number of

solutions) and characteristics of the family of valid muscle activation patterns change. For example, in the event of (Top) weakness of a group of muscles (54%

reduction), (Middle) selection of the lowest 5% of a given cost function (95% reduction), and (Bottom) enforcing the lowest 10% of cost range across multiple cost

functions (99.6% reduction). In all cases, the family of valid muscle activation patterns retains a wide range of activation levels for some muscles. While it is challenging

to understand the structure of the feasible activation space with a static plot of the parallel coordinates, interactively manipulating the muscle ranges on one or multiple

axes makes it very easy to view and describe how muscle activations change in the face of different constraints.

column in Figure 5) not only does not capture this change, but its
standard deviation is large enough to blur the notable differences
that are known to appear with larger (but experimentally
unrealistic) sample sizes. The impact of impoverishing the
number of independent samples fed to PCA reminds us that
inadequate amounts of data obfuscate the underlying changes in
the structure of the data analyzed (Figure 5).

There were also changes in the loadings of the PCs, especially
above 60% task intensity. While the ratio of variance explained
between PC1 and PC2 gives a sense of the aspect ratio of the
feasible activation space, the loadings of PC1 and PC2 speak to
its orientation (Valero-Cuevas, 2015; Valero-Cuevas et al., 2016).
Figure 6 shows how the loadings of PC vectors change across
labels a, b, and c, Figure 5. These loadings indicate that the
orientation of the feasible activation space in 7-dimensional space

changes mildly at forces <65% of the maximal task force, and
changes more dramatically with higher forces.

These changes we see in (i) the lower and upper bounds
of activations, (ii) the relative variance explained and (iii) the
loadings for all three PCs, demonstrate that the size, shape,
and orientation of the feasible activation space changes with
task intensity. The muscle activation distribution “between the
bounds” has profound implications for prior work which chiefly
examines the ultimate upper- and lower-bounds of activation
for tasks in different directions (Simpson et al., 2015; Valero-
Cuevas et al., 2015b). Moreover, detecting changes in these
high-dimensional structures is done in the best-case scenario,
as it exists in the absence of experimental noise, within- and
across-subject variability, and measurement error. As will be
elaborated in the Discussion, this implies that PCs (i.e., synergies)
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FIGURE 5 | Approximating the structure of feasible activation spaces via principal components analysis (PCA) is sensitive to both the task intensity and the amount of

input data used. Rows show the variance explained by the first (top) through third (bottom) principal components with increasing data points for a given replicate (left

to right). Hit-and-Run sampling provides the ground truth for the high-dimensional structure of the feasible activation set at each task intensity. Each box plot, across

all subplots, is formed from 100 metrics (replicates), where each metric is the PC variance explained for a replicate “subject” which performed the task n times (where

n is one of 10, 100, or 1000 task repetitions). We find that PCA approximations to this structure do not generalize across tasks intensities (i.e., the polytope changes

shape as redundancy is lost), and numbers of points. That is, > 100 muscle activation patterns should be collected from a given subject to confidently estimate the

real changes in variance explained as a function of task intensity. Compare points labeled a, b, c, corresponding to 11, 66, and 88% of task intensity, respectively.

are laborious to obtain experimentally, and even then do not
necessarily generalize across intensity levels.

Changes in the Probabilistic Structure of
the Feasible Activation Space With
Increasing Task Intensity, or How Muscle
Redundancy Is Lost
The maximal static fingertip force vector in a given direction
is produced by a single and unique combination of muscle
activations. In contrast, any sub-maximal magnitude of that same
vector is produced by an infinite number of solutions (Chao
and An, 1978; Spoor, 1983; Valero-Cuevas, 2000; Valero-Cuevas,
2015). Our analysis of feasible activation spaces at different task
intensities also allows us to characterize how this redundancy
changes, and is eventually lost. The histogram heatmaps in
Figure 7 illustrate the changes and shrinking of within-muscle
histograms (the space upon which probability density functions
must operate) of valid activation levels across task intensities,
converging to a single solution at maximal force output. These
surface plots show how the normalized histograms (of 1,000 valid
activation levels for each muscle at each intensity level) change at
each of 100 equally-spaced levels of task intensity between 0 and

1. Following a muscle’s column from bottom to top shows the
activation histograms converge, naturally, to a spike at the unique
value for maximal force production.

The low flat areas on the sides of each surface plot (e.g., clearly
visible for DI) represent muscle activation levels that are not
valid for that task intensity. That is, there exist no valid muscle
activation patterns that contain that muscle at that level, and thus
no points are found there.

These plots show within-muscle probability functions and the
rate of convergence to the unique solution for maximal force
output across muscles. This is in contrast with the parallel
coordinate plots in Figure 3 that shows the correlation across
muscles. Importantly, the histograms of activation levels for
each muscle need not be symmetric, nor have the same shape
(skewness and kurtosis) as the magnitude of the output force
increases. For some muscles, the convergence accelerates after
60 or 80% of task intensity (as in LUM and EIP), while others
converge monotonically along the entire progression (e.g., DI
and PI). The peaks (i.e., modes or most common values) of
each histogram at each task intensity represents the slice of
the polytope that has the largest relative volume along that
muscle’s dimension (i.e., greatest frequency of that level of
muscle activation across all valid solutions). Importantly, for
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FIGURE 6 | PCA loadings change with task intensity. For each of 1,000 task

intensities, we collected 1,000 muscle activation patterns from the feasible

activation space and performed PCA. The facet rows show the changes in PC

(Continued)

FIGURE 6 | loadings, which determine the direction of all PCs in

7-dimensional space. Note that the signs of the loadings depend on the

numerics of the PCA algorithm, and are subject to arbitrary flips in sign

(Clewley et al., 2008)—thus for clarity we plot them such that FDP’s loadings in

PC1 are positive at all task intensities. Dotted vertical lines connect loadings of

PC2 and PC3 in spite of flips in sign. A discontinuity here is not indicative of a

major change to the feasible activation space. It instead, is a result of how

PCA selects loadings. The shape of the activation space has tilted at these

points, thereby flipping the sign. Note that the values are the same before and

after the jump, less the sign. These loadings (i.e., synergies) change

systematically, as noted for representative task intensities a, b, c in Figure 5,

and more so after b. This reflects changes in the geometric structure of the

feasible activation space as redundancy is lost.

most muscles (FDP, FDS, EIP, EDC, and LUM), the mode is not
necessarily located at the same relative level of activation needed
for maximal force output—even when scaling it linearly with task
intensity. That is, the histogram at high levels of force is not
simply a shifted version of the histogram at low levels of force.
The histograms for DI are the exception, whose modes seem to
scale linearly with task intensity.

These histograms and the parallel coordinate visualizations
demonstrate that the probabilistic and correlation structure,
respectively, of feasible activation spaces, do not necessarily
generalize across task intensities. Nor can they be inferred from
their bounding boxes alone (i.e., upper and lower activation
bounds for eachmuscle). An immediate example is how, for most
task intensities, both EIP and LUM have similar lower and upper
bounds near 0 and 1, respectively—yet their distributions are
thoroughly distinct.

4. DISCUSSION

Summary
Feasibility Theory, as a conceptual and computational approach,
is a means to pierce the curse of dimensionality to establish
a physics-based ground truth for neuromuscular control.
This practical approach can now characterize—in an arguably
complete way—the space of all valid ways to activate multiple
muscles to produce a given task. This initial presentation is
limited to the case of static force production. Additional work
is needed to extend to sequences of tasks, as has been done
for optimization during gait analysis—where the dynamical
constraints during movement are applied in the context of static
optimization (Anderson and Pandy, 2001; Simpson et al., 2015).
But we can already say that feasible activation spaces are, in fact,
the high-dimensional landscapes upon which all neuromuscular
learning, control, and performance must occur. These landscapes
are predicated upon the strong experimental evidence for
linearity in tension-to-force transduction in cadaveric (Kutch
and Valero-Cuevas, 2011), live (Kamper et al., 2006), and
modeled (Synek and Pahr, 2016) studies. Therefore, they provide
an integrative and unifying perspective that demonstrates
how today’s dominant theories of neuromuscular control
are alternative approximations to feasible activation spaces
from optimization, synergistic, and probabilistic perspectives.
Feasibility Theory unifies these alternative approaches to motor
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FIGURE 7 | The within-muscle probabilistic structure of feasible muscle activation across 1,000 levels of fingertip force intensity. The cross-section of each density

plot is the 50-bin histogram of activation for each muscle, at that task intensity. The changes in the breadth and height for each muscle’s histogram reveal

muscle-specific changes in their probability distributions with task intensity. Height represents the percentage of solutions for that task. The axis going into the page

indicates increasing fingertip force intensity up to 100% of maximal. Color is used to provide perspective. It is interesting to note that, for example, both extensor and

flexor muscles are used to produce this “precision pinch” force. This is to be expected as the activity in the extensors is necessary to properly direct the fingertip force

vector (Valero-Cuevas and Hentz, 2002).

control in the sense that feasible activation spaces represent an
objective conceptual and computational common ground for
these theories.

Changes in the structure of the feasible activation space do
not imply a given control strategy. They merely establish the
bounds within which a species evolves a control policy for a
given body morphology. It is possible that the nervous system
operates within a very small subset of this space—which could be
described by different principal components and even probability
distribution functions. Feasibility Theory, however, allows us to
formally phrase and test such hypotheses.

The Value of a Cost Function
Optimization is the oldest computational approach to
finding valid muscle activation patterns that produce limb
function (e.g., Chao and An, 1978). While optimization is,
of course, a reasonable hypothesis to explore neuromuscular
control (Todorov and Jordan, 2002), some criticize it as a
mathematical abstraction that anthropomorphizes neurons
with the ability to choose, evaluate and follow cost functions
in high-dimensions (De Rugy et al., 2012; Loeb, 2012). There
is, nevertheless, an intimate relationship between optimization
and feasible activation spaces (Chvatal, 1983). Optimization
is analogous to finding the best solution in the dark—guided
by repeated small steps based on evaluations of cost- and
constraint-function. Computing the feasible activation space
is then a means to “turn on the lights” to see all possible valid
solutions independently of cost (Valero-Cuevas, 2015). Our

complete sampling of high-dimensional feasible activation
spaces (Smith, 1984; Lovász, 1999) allows us to compare and
contrast families of solutions as per alternative cost functions
instead of individual optimal solutions for a particular cost
function. Figure 3 demonstrates a complete description of
families of valid coordination patterns and their relationship
to alternative cost functions. Importantly, similar valid muscle
activation patterns can have dissimilar costs and vice versa.

Thus, Feasibility Theory allows us to compare, in detail,
alternative “cost landscapes” across the entire set of feasible
motor commands. By not having to insist on (or settle for)
individual optimal—or near-optimal—solutions, we now have
the same ability the nervous system has to explore, compare, and
contrast multiple valid (be they optimal or suboptimal) ways to
coordinate muscles. Importantly, the relationships among valid
muscle activation patterns emerge naturally from the physical
properties of the limb and definition of the task. This cost-
agnostic approach allows us to re-evaluate our assumptions
about what the nervous system cares—and does not care—about.
Lastly, this cost-agnostic approach also provides a powerful tool
for inverse optimization, i.e., uncovering latent cost functions
from data (Tsirakos et al., 1997). Our comparison across cost
functions using parallel coordinates is already a form of inverse
optimization.

Freedom Under Constraints
We have so far only used “hard” task constraints which must
be met exactly. However, Feasibility Theory also holds for soft
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constraints. For example, if a tendon-driven system is required
to produce a 3D force vector in general distal direction and
of a general magnitude (defined, say, as a sphere of 1.0 N
radius centered on the nominal force), then we can apply
these tolerances to the constraints defining the task. In effect,
Feasibility Theory allows us to study both soft and hard
constraints where the latitude of the accuracy of the task naturally
defines the precision with which muscle activation patterns must
be selected. One can define the task intensity to be, say, anywhere
between 50 and 60%, and study the concomitant increase in
options available to produce forces within that range. Thus, one
can characterize the changes in the feasible activation space as
the task constraints are relaxed or tightened. Similarly, adding
task constraints, such as the need to produce a particular stiffness
at the endpoint (Inouye and Valero-Cuevas, 2016), naturally
reduces the dimensionality of the feasible activation space.

How to Apply Feasibility Theory in an
Experiment
The most important input to this analysis is the relationship
betweenmuscles and the endpoint wrench.With this relationship
composed as the H matrix as in 1, and a desired wrench w,
Hit-and-Run can be used to produce parallel coordinate plots
and density histograms for static force production with vertebrate
limbs. For example, using a measure of muscle activation (such
as fine-wire EMG), an experimentalist can compare the muscle
activation pattern chosen by a research participant in comparison
to the full feasible activation space that could achieve the same
force, and see how those patterns change across fatigue, disability
of a muscle, or manipulation of the feedback. After a tendon-
transfer surgery, for example, the subject may initially inhabit
only a specific part of the feasible activation space to produce
a task, but must use feedback from the parallel coordinate plot
to find solutions which take less effort. In effect, visualizing the
entire feasible activation space could help us understand how
rehabilitation can be guided toward more advantageous local
minima (Towles et al., 2008).

In parallel, a scientist with a cost function to test on a model
can quickly identify how different cost function parameters can
affect the space of feasible activations, and see how specific
the global optima is, with respect to other muscle activation
patterns. Importantly, anthropometric differences affect the
shape of the feasible activation space, so those subject-specific
differences must be either incorporated or may be addressed
through sensitivity analysis (such as Monte-Carlo manipulation
of moment arm values, as in Valero-Cuevas et al., 2015b).

Extension to Dynamical Force Production
or Movement
Limbs are valuable for more than just their ability to produce
isometric forces. First, there is the extension to “non-static
isometric” force production (e.g., rotating a grasped object
with respect to gravity), which must contend with time-varying
muscle activation-contraction dynamics and target grasp wrench

(i.e., such that the object is always securely held against a time-
varying gravity vector Rácz et al., 2012). Joint angles, the end-
effector Jacobian, moment arm matrix, and vector of maximal
feasible contraction levels per muscle will vary nonlinearly, and
with kinematic redundancy as a possibility for a given endpoint
location, we can introduce multiple feasible activation spaces that
are capable of producing a given task force. Even a simple task
in the workspace likely exhibits redundancy at different levels of
abstraction, where redundancy is sourced from feasible activation
spaces and joint null spaces simultaneously.

As muscles exhibit state dependence, the ability of an animal
to produce precise dynamic forces is affected by the tendon
tensions from moment to moment. The inter-muscle dynamics
across a human index finger, for example, would necessarily
require a feasible activation trajectory—which may or may
not be representable by a convex hull. Applying Feasibility
Theory to non-static isometric force production may require
detailed investigation into the dynamics of musculoskeletal force
transduction. In parallel to the dynamics, non-convexities may
emerge from neural constraints or even nonlinearities and
hysteresis of muscle function.

Secondly, Feasibility Theory can be extended to address
dynamical behavior by applying it to a sequence of slices in
time. That is, a dynamical task can be equivalently analyzed as a
sequence of “slices” (Anderson and Pandy, 2001; Cianchetti and
Valero-Cuevas, 2009; Simpson et al., 2015; Trinler et al., 2018)—
where one can define a feasible activation space at each slice
to determine how the nervous system must change activation
patterns such that it is always implementing a valid solution
(Simpson et al., 2015). When strung together, these individual
spaces give rise to a “spatiotemporal tunnel”—the time-varying
extension of the feasible activation space (Figure 8).

Structure, Correlation, and Synergies
The physical properties of the limb and the definition of the task
together give rise to a low-dimensional structure of the feasible
activation space (Valero-Cuevas, 2015). Therefore, experimental
recordings of muscle activations during limb function will
exhibit a dimensionality that is smaller than the number of
muscles (Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 2012;
Alessandro et al., 2013). Thus, applying PCA to the points
sampled from the feasible activation space will inevitably find
that few PCs can explain the variance in the data (Brock and
Valero-Cuevas, 2016).

Our application of PCA at increasing task intensities (i.e.,
as muscle redundancy is lost) allows us to demonstrate—for
the first time to our knowledge—several important features and
limitations of dimensionality reduction. For example, we see
that the aspect ratio (Figure 5) and orientation (Figure 6) of the
feasible activation spaces change as their size shrinks (Figure 7).
Thus, such descriptive synergies (Brock and Valero-Cuevas,
2016) extracted from limited experimental observations likely
do not generalize well across task intensities. Producing further
insights into the feasibility-synergy relationship necessitates
more objective metrics of the feasible activation space’s structure.

The intensity-dependent structure of feasible activation spaces
also has important consequences for motor control and learning.
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FIGURE 8 | Spatiotemporal Tunneling. A dynamical movement can be

decomposed into a sequence of slices in time, where each slice has a

corresponding feasible activation space. Strung together, the sequence of

feasible activation spaces form the “spatiotemporal tunnel” through which the

neuromuscular system must operate. In this 3-dimensional schematic

example, the black line represents one valid time-varying sequence of

activations for three muscles. Because this sequence exists within each

feasible activation space, it necessarily meets the constraints of the dynamical

task at each instant.

Producing force vectors at the endpoint of a finger or limb
with accurate magnitude and direction are critical for versatile
manipulation and locomotion (Valero-Cuevas et al., 1998;
Donelan et al., 2004; Cole, 2006). If a given synergy can
produce such accurate force vectors only for a given task
intensity (and thus inaccurate vectors at other intensities),
then the attractiveness of task-specific synergies to simplify the
neuromuscular control of the limb is reduced. Although we do
not present an analysis of task-irrelevant synergies, data from this
paper can be concatenated prior to PCA analysis to explore how
principal components vary across the entire distal task.

To compensate, the nervous system would need to learn,
recall, and implement intensity-specific synergies. Prior
experimental work has shown that the nervous system produces
accurate fingertip forces of different magnitudes by, instead,
likely scaling a remembered muscle activation pattern to produce
forces of different magnitudes (Valero-Cuevas, 2000), together
with full-dimensional error correction (Valero-Cuevas et al.,
2009b). The observation of higher forces yielding more variable
PC loadings indicates that lower dimensional substructures
could approximate low- and medium-level forces for a given
direction, motivating further analyses of PCA effectiveness
across task-intensity (and with NMF, for example).

Our results also show how experiments with realistically
moderate numbers of participants and test trials likely do not
contain sufficient information to produce robust estimates of

descriptive synergies across task intensities. As per the curse
of dimensionality, sampling uniformly at random from high-
dimensional spaces is exponentially difficult. Thus, even for this
anatomically complete 7-muscle finger model, PCA depends
strongly on the number of independent observations, such
as uncorrelated trials from one subject or different subjects.
Figure 5 shows that 100 to 1,000 such ideal data points from a
simulated “test subject” are needed to produce accurate estimates
of changes in the PCs with task intensity (c.f. labels a vs. b
vs. c). Future studies should explore how many experimental
data points are sufficient from a given subject when recording
from only a subset of the many (20+) muscles of human limbs
in the presence of experimental noise, inherent stochasticity
of EMG, and within- and between-subject variability. Some
studies have begun to ask subjects to explore different ways
to perform a given task (Kuxhaus et al., 2005; Berger and
d’Avella, 2014) (i.e., estimate the structure of the feasible
activation space), but in practice, such studies cannot likely
collect sufficient data uniformly at random to obtain accurate
estimates of the descriptive synergies (Kutch and Valero-Cuevas,
2012).

PCA is one of several methods to extract lower-dimensional
representations of motor patterns (d’Avella et al., 2003; Ting and
Macpherson, 2005; Clewley et al., 2008). Alternative techniques
do not impose orthonormality constraints or over-estimate the
real dimensionality of nonlinear underlying manifolds (Clewley
et al., 2008). Similarly, Non-Negative Matrix Factorization
(NMF) would not be subject to the flips in sign observed
in Figure 5 (Tresch et al., 2006). We noted that for a
given task intensity a muscle’s activation across the sampled
solutions can have different variance than the other muscles,
and these variances change as task intensity increases (and
the feasible activation space shrinks) (see the supplemental
website for the task-variance figure). While PCA helps us
uncover how these shapes change in this study, PCA can
be leveraged to uncover different intramuscular relationships
(e.g., analyzing the eigenvalue decomposition of the correlation
matrix, as opposed to using PCA on the covariance matrix).
Bootstrapping or data shuffling technique for sensitivity analysis
are also applicable to dimensionality reduction techniques
(Valero-Cuevas et al., 2016).

Feasibility Theory allows us to put dimensionality reduction
in perspective. First, as a natural consequence of the definition
of a task (i.e., the need to meet specific mechanical constraints).
And second, as an approximation to the structure of the latent
feasible activation space embedded in high-dimensions. While
our results suggest caution when interpreting synergies obtained
experimentally, we underscore that dimensionality reduction is,
nevertheless, a useful approach to capture the general geometric
properties of feasible activation spaces.

Toward Probabilistic Neuromuscular
Control
Our results are particularly empowering for the emerging
field of probabilistic neuromuscular control (Körding and
Wolpert, 2004; Sanger, 2011; Kording, 2014). Suppose that the
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nervous system uses some form of probabilistic or Bayesian
learning and control strategy. Such approach requires two
enabling—and biologically plausible—elements: trial-and-error
iterative exploration to build prior distributions, and memory-
based exploitation of the probability density functions used
to approximate the feasible activation spaces (Körding and
Wolpert, 2004). The parallel coordinate plots and histograms in
Figures 2, 7 provide, to our knowledge, the first complete (Smith,
1984; Lovász, 1999) characterization of such multi-dimensional
conditional motor control spaces for a realistic tendon-driven
system performing a well-defined task (i.e., activation of one
muscle is contingent upon the activations of the other muscles).
With a better understanding of the physical task, future studies
into optimal motor control can leverage the feasible activation
space to contextualize motor control policies, whether they
are experimentally-observed or theoretically predicted (Berniker
et al., 2013). As mentioned above, the muscle activation patterns
that the nervous systems actually use will necessarily be a subset
of these feasible activation spaces.

Feasibility Theory critically empowers the study of
fundamental aspects of probabilistic control. For example,
an organism can only execute so many trial-and-error iterations
during learning, likely too few to completely and exhaustively
sample the high-dimensional feasible space of interest. This
makes it much more likely that, by virtue of being more easily
found, an organism will find and preferentially exploit the
strong modes (i.e., narrow and high peaks in Figures 3, 4,
and 7) of the multi-dimensional probability density functions
than any other region of feasible activation spaces. Thus, first,
the maximal ranges of feasible activations described by the
bounding box (Sohn et al., 2013; Valero-Cuevas et al., 2015b)
may have little practical bearing on how those tasks are learned
and executed. And second, those same strong modes would
represent strong attractors to create and reinforce motor habits.
Habitual control has been proposed based on experimental
and empirical data as an alternative to a strict optimization
approach to neuromuscular control (De Rugy et al., 2012;
Fu et al., 2014). Our work now provides the computational
means to link habitual to probabilistic control in isometric force
production. This allows us to generate testable hypotheses of how
these motor habits are defined by the structure of the feasible
activation space, how easily they are learned by the organism,
and how difficult or easy it is to break out of them (Raphael et al.,
2010).

Motor function likely emerges from trial-and-error (Adolph
et al., 2012) or imitation (Oztop et al., 2006; Cattaneo and
Rizzolatti, 2009) to identify, remember and adopt easily-
found, good enough solutions in the feasible activation space—
independently of their cost. It is then possible to use some
heuristic approach to improve performance to transition to less
likely—but potentially “better” solutions as per some metric
relevant to the individual—subregions of the solutions space.
But this likely requires numerous iterations in practice, which
explains why few are experts at a given motor task, or why
rehabilitation is so difficult (Gladwell, 2008; Adolph et al., 2012;
Lohse et al., 2014).

Feasibility Theory as a Theory of Motor
Control
Feasibility Theory goes beyond Bayesian control by underscoring
how the physics of the body, and the properties of the
task are the arbiter that guides the biological process of
finding, exploring, inhabiting, and exploiting low-dimensional
solution spaces embedded in high-dimensions. Feasibility Theory
espouses heuristic local searches—driven by the memory of
likelihoods of different individual solutions—to create what
ultimately are useful, yet likely sub-optimal, motor habits. These
processes hinge on trial-and-error, memory, pattern recognition,
and reinforcement that come naturally to neural systems. Even
though Feasibility Theory is presented in the context of neural
control of the human hand, it applies to tendon-driven organisms
in general.

Importantly, organisms perform strict optimization or
synergy control at their peril. A feasible activation set is low-
dimensional because it loses one dimension with each functional
constraint that is being met (Valero-Cuevas et al., 1998; Inouye
and Valero-Cuevas, 2016). Thus, moving along such low-
dimensional spaces to find a new valid solution is equivalent to
moving along a line (which has zero volume) in 3-dimensional
space. Taking a step from any one valid point to another valid
point on the feasible space runs the risk of “falling off” and
failing at the task—a risk that is exponentially exacerbated in
higher-dimensions. Thus, searching for improvements in the
neighborhood of a known solution necessarily risk task failure
and potential injury. These are all arguments in support of
the evolutionary and developmentally useful strategy to use
good-enough control based on habit or sensorimotor memory
rather than optimization or synergy control (De Rugy et al., 2012;
Fu and Santello, 2012).

This line of thinking has consequences to neurorehabilitation.
Neurological conditions disrupt feasible activation spaces,
be it by affecting anatomy of the limb, muscle strength,
and independence with which muscles are controlled.
Functional recovery following the disruption, if not
destruction, of the landscape of valid muscle activation
patterns, requires re-learning existent or building new
probability density functions. Older adults suffering from
reduced perceptuo-motor learning rates are presented
an even more constrained feasibility space (Coats et al.,
2014).

A probabilistic landscape for neuromuscular function begins
to explain why neurorehabilitation in aging adults is so
difficult (e.g., Lohse et al., 2014; Hardwick et al., 2016)
and why motor learning in children takes thousands of
repetitions (Adolph et al., 2012). But it empowers us to
leverage knowledge of the families of feasible solutions to create
new rehabilitation strategies and testable hypotheses around
them.

DATA AVAILABILITY

The datasets generated and analyzed for this study can
be found freely available (Git Repository Link), and at
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the supplemental website (Supplemental Site Link). We
designed a web-based parallel coordinate visualization
that lets users interactively limit muscles, select solutions,
and calculate effects on the feasible activation space from
each post-hoc constraint (Figure 4). Our companion site
includes ample documentation, code implementation
in Scala (with a comprehensive test suite), and all data
visualization code in R, including an overhead view of
Figure 7.
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The two-segment model of the human arm is considered; the shoulder and elbow joint

torques (JTs) are simulated, providing a slow, steady rotation of the force vector at any

end-point of the horizontal working space. The sinusoidal waves describe the JTs, their

periods coincide with that of the rotation, and phases are defined by the slopes of the

correspondent lines from the joint axes to the end-point. Analysis of the JTs includes an

application of the same discrete changes in one joint angle under fixation of the other

one and vice versa; the JT pairs are compared for the “shoulder” and “elbow” end-point

traces that pass under fixation of the elbow and shoulder angles, respectively. Both

shifts between the sinusoids and their amplitudes are unchanged along the “shoulder”

traces, whereas these parameters change along the “elbow” ones. Therefore, if we

consider a combined action of both JTs acting at the proximal and distal joints, we

can assume that for the end-point transitions along the “shoulder,” and “elbow” traces

this action possesses isotropic and anisotropic properties, respectively. The model also

determines the patterns of the torques of coinciding and opposing directions (TCD, TOD),

which would evoke a simultaneous loading of the elbow and shoulder muscles with the

coinciding or opposing function (flexors, extensors). For a complete force vector turn,

the relationship between the TCD and TOD remains fixed in transitions at the “shoulder”

end-point traces, whereas it is changing at the “elbow” ones.

Keywords: motor control, electromyography, two-joint movements, joint torques, muscle synergy

INTRODUCTION

Experimental analysis of the central commands that define the parameters of real movements often
combine electromyography (EMG) and kinesiology methods. To describe movements of both the
entire human body and its separate parts, such as upper and lower limbs, standard approaches
of theoretical mechanics are also applied (Hibbeler, 2016). Analysis of multi-joint movements
includes the internal models of inter-segmental dynamics (Hollerbach, 1982). Many movement
control studies have analyzed relatively fast movements, when velocities of the body segments and
their masses are taken into account. To evaluate the central nervous system (CNS) mechanisms
for controlling the movements under study, researchers often apply the inverse internal model
describing details of biomechanical events (Wolpert and Kawato, 1998; Kawato, 1999; Wolpert
and Ghahramani, 2000). Control signals in such a model contain information about the muscle
torques defined by inverse dynamics equations. At least partly, the dynamic simulations use
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Kostyukov and Tomiak Two-Joint Arm Model

the second-order differential equations defining the velocities
and accelerations of different limb segments. An alternative
method including the theory of position-dependent control
(Feldman, 1986, 2011; Bizzi et al., 1992) could be more suitable
for the examination of slow movements when the static states
of the motor system serve as primary elements of the analysis.
An example of this approach is the equilibrium point hypothesis
elaborated by Feldman (2011, 2016). The hypothesis assumes that
the CNS defines the equilibrium states in the forced interaction of
the organism with the environment, while movements constitute
transitions between a series of equilibrium states. One of the
advantages of the static models is the possibility of accounting
for non-linear properties of the neuromuscular system, such as
muscle hysteresis (Kostyukov, 1998). Recent studies on various
problems of the position-dependent control of the robotic arms
can be found elsewhere (Aguilar Ibañez, 2016; Meda-Campana,
2018; Rubio, 2018; Rubio et al., 2018).

Records of slow movements of upper and lower limbs
with parallel EMG analysis are frequently used to find the
relationships between movements and their central commands.
The above approach becomes especially compelling when the
same test movements are repeated many times during an
experiment in order to apply an off-line averaging procedure.
Moreover, thismethod is suitable for the examination of naturally
repeated cyclic movements, such as walking (Bogey and Barnes,
2017) or bicycling (Ting et al., 1999; Wakeling and Horn,
2009). Previously studied examples of voluntarily controlled
movements include cyclic planar movements of the arms (Levin
et al., 2001) and writing and drawing movements (Dounskaia
et al., 2002). Recently, the planar circular movements of the
hand with a fixed wrist were studied during the action of elastic
tangential loads (Tomiak et al., 2016). Such an experimental
model allows one to determine the shoulder and elbow joint
torques (JTs) along the movement trajectory, based on the
load value and lengths of the limb segments. The above-cited
study demonstrates the correspondence between the JTs and
the intensities of EMGs recorded from the appropriate muscles.
During a complete movement period, each of the JTs includes
two components, positive and negative, correlating with activity
in the flexor and extensor muscles, respectively. Timings and
relative durations of the JTs and EMGs waves are dissimilar for
different joints. One of us proposed a simple geometric method
that allows us to define the exact positions of the points where
the JTs change sign, which simplifies the determination of these
points at various curvilinear movement traces in the working
space (Kostyukov, 2016). While analyzing two-joint movements,
we have also suggested an additional method for marking the
sectors of coinciding and opposing synergy along the trajectory
ofmovement (Kostyukov, 2016; Tomiak et al., 2016). The synergy
sectors define the sections of the movement trajectory, in which
muscles of the same or different function (flexors, extensors)
are simultaneously active. A similar procedure for searching the
interrelationships between the JTs and EMGs has been applied

Abbreviations: EMG, electromyography; CNS, central nervous system; JT, joint

torque; TCD, torques of coinciding directions; TOD, torques of opposing

directions; CA, characteristic angle; FSP, force singular point.

to the analysis of the isometric muscle contractions when a
subject must slowly change the direction of the end-point force
in reaction to a visual command signal (Lehedza et al., 2016;
Lehedza, 2017).

Following the approaches proposed by Feldman (2011, 2016),
the slow (quasi-static) movements are traditionally used to
describe the system statics for movement production. In such an
approach, the sets of equilibrium states in the system under study
usually serve to predict its dynamic behavior. Evaluations of the
system statics by temporary changes of the JTs (Lehedza et al.,
2016) allow for providing a satisfactory prediction of the EMGs
in the muscles generating these forces; however, it seems to be
difficult to obtain such data for any point in the working space.
In this theoretical study, we have tried to model the essential
parameters in the positioning of the limb segments that directly
influence the JTs. Two important elements were included in
the modeling. First, to take into account all possible directions
of the generated forces, we used a steady turning of the force
vector within a full cycle of its rotation. Second, to simulate
the force generation, we have considered the JTs as functions of
two variables representing the current values of the joint angles.
Standard methods of analysis allowed us to explore the system
behavior for two sets of positioning traces with sequential fixation
of variables. This approach led us to find the fundamentally
important differences in a combined action of the torques for
different types of positioning within the working space. At the
same time, we comprehend that the model can be applied only to
the analysis of the two-joint muscle contractions in isometry; for
considering a real arm movement, the inertial properties of the
arm segments, as well as the non-linear effects of neuromuscular
dynamics, should be taken into account.

EXPERIMENTAL BACKGROUND AND
SIMULATION METHODS

Figure 1 schematically describes a process of generation of
isometric force by the human hand with an immobilized wrist.
The distal segment is interpreted as an “elongated” forearm;
the arm and the force vector are located within the horizontal
plane passing via the shoulder joint. In experimental studies of
the two-joint isometric arm contractions (Lehedza et al., 2016;
Lehedza, 2017), the subject’s hand grips the top part of a rigid
vertical manipulandum, which allows the researcher to register
the direction and amplitude of the created force. Lehedza et al.
(2016) describe a construction of the manipulandum in detail.
The position of the manipulandum can be changed within the
working space before a subject; the correspondent hand location
coincides with the end-point position of the generated force. In
such experimental setups, lengths of the arm segments do not
usually differ significantly from each other; the possible difference
is not more than 5–7% of the shoulder segment length; therefore,
for the sake of simplicity, the segments are assumed to be of the
same length (Ls = Le = L). The first letters of the “shoulder” (S)
and “elbow” (E) terms designate the proximal and distal joints
the joint angles (αs, αe), the lengths of segments (Ls, Le), and
the torques (Ms, Me). Therefore, our task consists in searching
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the torques Ms and Me, which are necessary to create in the
proximal (S) and distal (E) joints to generate the force vector
F(θ) by the hand in the end-point belonging to the working
space � (Figure 2). The forces created by the hand could vary
in both their amplitude and direction; when the angle argument
θ is changed from 0 to 2π radians, the force vector F(θ) is
turning in the counter clockwise direction. The JTs Ms and Me

are generated by the cooperative action of the shoulder and elbow
muscles. However, we do not consider a possible co-activation
of the antagonistic muscles belonging to each of the joints. It is
assumed that the force amplitude |F| and the length of segments
(L) are constant, so the problem consists in finding the JTs as
function of the angles θ, αs, and αe. For a given force vector,
the maximal effectiveness of the muscles participating in its
creation corresponds to a full inactivity of their antagonists; any
contraction of the antagonists would diminish the forced action
of the agonists. The co-activation introduces indeterminacy in
the system behavior; the co-activation extent can be defined only
in a real experiment.

For computer simulations and graphical plotting, we used
Origin 8.5 software (OriginLab Corporation, USA). The formulae
were computed using the internal language of the software, based
on operations with the worksheets; the used worksheets consisted
of 1,000 rows and from 6 to 15 columns. To change sets of the
fixed parameters in the formulae, we used the replication of basic
worksheets.

RESULTS OF MODELING

Determination of the JTs by the Virtual
Work Method
To determine the JTs Ms and Me, which a subject creates
by activation of the corresponding muscles acting around the
proximal and distal joints, we used the method of virtual work
described in detail in textbooks on theoretical mechanics [for
example, (Hibbeler, 2016)]. Thus, the problem is to find the
sum of works produced by the JTs Ms and Me during virtual
infinitesimal changes in the joint angles δαs and δαe (Figure 1A).
On the other hand, this summed work may be equalized to work
produced by the force F(θ) along the corresponding path vector
r, presenting a sum of the two consecutive infinitesimal vectors,
r1 and r2 (Figure 1B):

Msδαs+Meδαe = F · (r1 + r2) = F · r = Fxrx + Fyry. (1)

Figure 1B defines the projections of the force and transition
vectors on the coordinate axes:

Fx = F cos θ; Fy = F sin θ; rx= r1x + r2x; ry = r1y + r2y. (2)

The first transition presented by vector r1 corresponds to a fixed
αe; in this case, hs turns on the angle δαs. The second transition r2
coincides with turning the distal segment on the angle δαe. Due
to small values of δαs and δαe, the lengths of the arcs correspond
closely to the lengths of vectors r1 and r2:

r1 = hsδαs; r2 = Lδαe. (3)

Following Figure 1A, it is possible to define the distance hs
between the shoulder axis S and the end-point H:

hs = L [cos (γs − αs)+cos (γe − γs)]. (4)

Due to the importance of the angles γs and γe for further
considerations, we will call them the characteristic angles (CAs).
The following expressions define these parameters:

γs = tan−1

[

sin+ sin (αs + αe)

cos αs + cos (αs + αe)

]

; γe = αs + αe. (5)

The slopes of vectors r1 and r2 to the abscissa and ordinate axes
are equal to γs+π/2; γe+π/2 and γs; γe, respectively. Therefore,
we can find projections of the vector r on the coordinate axes:

rx = −hsδαs sin γs − Leδαe sin γe; ry = hsδαs cos γs

+Leδαe cos γe. (6)

After applying appropriate substitutions, Equation (1) is as
follows:

Msδαs+Meδαe = −F cos θ(hsδαs sin γs + Lδαe sin γe)

+Fsin θ (hsδαs cos γs + Lδαe cos γe). (7)

Using proper trigonometric conversions, Equation (7) is
transformed as follows:

Msδαs+Meδαe = Fhs sin (θ − γs) δαs + F Lsin (θ − γe) δαe. (8)

Finally, we can write apparent expressions for the shoulder and
elbow JTs:

Ms = Fhs sin (θ − γs) ;Me = FL sin (θ − γe). (9)

Therefore, the combined action of JTs in both joints completely
and uniquely determines the amplitude and direction of the end-
point force F(θ). Within a complete cycle of the force angle
change (0 ≤ θ ≤ 2π), two sinusoids describe changes in the
shoulder and elbow JTs at a given end-point. The sinusoids have
the same period coinciding with the period of the force angle
turning; the CAs γs and γe define shifts of the sinusoids to the
beginning position of the force vector (θ = 0). The elbow JT
has an unchanged amplitude FL within the entire working space,
while the amplitude of the shoulder JT is changed from 2FL (for a
completely extended elbow joint) to zero (in an “idealized” case of
a completely flexed elbow joint). In difference from the previous
models of the human arm (Feldman, 1986, 2011; Bizzi et al., 1992;
Wolpert and Kawato, 1998; Kawato, 1999), the present model
describes the patterns of the JTs for the end-point traces that
pass under consecutive fixation of the elbow and shoulder angles.
Such an approach allows obtaining a simple graphical form of the
JTs presentations, what can be highly effective for a preliminary
evaluation of the characteristics of the two-joint movements in
real experiments.
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FIGURE 1 | Simplified geometry of the two-joint system with designation of the mechanical parameters defining equilibrium with the surrounding space. (A) A right

human arm including the shoulder (S) and elbow (E) joints is chosen as an anatomical analog of the system; a similar two-link configuration is used as a basic element

in the models of the robotic arm. A simplified forced interaction of the hand (H) with the environment is considered for the case of rigid wrist immobilization. Main

characteristics of the system: Ls, Le are the lengths of the proximal (shoulder) and distal (elbow) segments; F(θ) is the vector of the isometric force presenting the

result of the interaction of the joint torques Ms(θ) and Me(θ), which are directed perpendicularly to the plane upwardly/downwardly for counter clockwise/clockwise

turning actions. The problem consists in finding the joint torques Ms(θ) and Me (θ) for all possible directions of the force vector F(θ) (θ ∈ [0, 2π ] rad). Other

designations: hs is the distance between the shoulder joint axis (S) and the hand (H), which is considered the end-point; γs and γe are the angles between axis X’ and

the lines passing via the axes of the joints (S, E) and the end-point (H). The force reaction of the body at the shoulder joint is shown by the vector R = –F(θ). (B)

Graphical presentation of the method of virtual work used to define the functional interdependence between the generated force and joint torques. A detailed

description is presented in the text; note that the simulations in this study have been done under a simplifying assumption that lengths of the proximal and distal

segments are equal to each other: Ls = Le = L.

Dependence of the CAs on the Joint Angles
Standard methods, allowing one to analyze the CAs γs and
γe as functions of two variables αs and αe (see Equation 5),
include determination of their dependencies on each of the
arguments when another one is fixed. Therefore, two pairs of the
functions should be considered: (1) γs(αs|αe = const); γe(αs|αe =
const), and (2) γs(αe|αs = const); γe(αe|αs = const). Successive
procedures of the numerical analysis, based on the equations of
the previous section, are presented in Table 1; the results of the
simulations are shown in Figures 2, 3. Figure 2 describes the CAs
γs and γe, as well as their difference (γe – γs), which are defined
depending on αs for fixed values of αe. Figure 3 presents similar
data based on an opposite relationship between the varying and
fixed arguments.

One can see that both γs and γe depend linearly on each of
the arguments, αs and αe, although it is possible to point out
some essential differences. When comparing the dependencies
of the CAs on αs (Figures 2A,B), the slopes of the lines are
equal (δγs/δαs = δγe/δαs = 1), and there is a two-fold difference
in the distance between adjacent lines (1γs = π/20, 1γe =

π/10). On the other hand, the dependencies of the CAs on
αe (Figures 3A,B) demonstrate a coincidence of the distances
between the lines (1γs = 1γe = π/10), while their slopes show a

two-fold difference (δγs/δαe = 0.5; δγe/δαe = 1). Such properties
of the CAs lead to essential distinctions in the corresponding
behavior of their subtraction. The difference between CAs (γe
– γs) defines a relative shift between the JT sinusoids at various
end-point positions within the working space. As shown below
(section Patterns of Activation of the Proximal and Distal
Muscles), such a shift is the primary parameter influencing the
torque patterns of the muscles belonging to different joints. In
other words, in the two-joint movements, the difference between
CAs directly affects the interaction of activity in the muscles of
different joints.

The dependency of (γe – γs) on αs remains constant for
any fixed value of αe, and it linearly rises with the αe increase
(Figure 2C). It should be noticed that a linear increase in the
CA difference (γe – γs) with a rise in αe under fixed values of
αs is associated with a complete coincidence of the separate lines
belonging to different αs (Figure 3C). A definite interest may
present the traces of the CA differences, which are plotted against
the frontal coordinate of the end-point position (compare right
panels in Figures 2C, 3C). For fixed values αe (Figure 2C), these
traces present horizontal lines, shifting in an upward direction
with a rise of αe. In contrast, when αs is fixed, the correspondent
traces have a complex curvilinear appearance, which changes
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FIGURE 2 | Changes in the characteristic angles γs and γe and their difference in dependence on αs provided that αe is fixed. Steps of changes in both arguments

are chosen as π/10 rad; separate dependences from αs are drawn for 10 fixed values of αe, ranging from α
(0)
e = 0 to α

(9)
e = 9π/10 rad. Successive procedures of

numerical analysis are presented in Table 1, left column. The right columns in (A–C) present the same data as in the left ones after changing the end-point angles by

their projections on the X-axis of the working space � (shown in D). For better distinguishing, the traces α
(0)
e and α

(5)
e are marked by open circles. For purposes of the

data treatment, additional quantitative information about slopes of the characteristics and distances between them is placed in squares at the correspondent panels.

Note the same ordinate calibrations in the paired plots of (A–C) and the conformity between the points in these plots and their positioning within the working space �

(D). All dimension characteristics in this and other figures are normalized with respect to the radius of the working space (R = 2 L = 1).

TABLE 1 | Sequences of the procedures used to determine the characteristic angles γe and γs in various end-point positions within the working space.

“Shoulder” end-point traces “Elbow” end-point traces

fixed : αe
(K)

= K π
10 ; K = 0 . . . 9;

varying : αs
(i)
= i π

10 , i = 0 . . . 9;

fixed : αs
(L)

= L π
10 ; L = 0 . . . 9;

varying : αe
(j)
= j π

10 , j = 0 . . . 9;

1 x(i|K) = 0.5
[

cos
(

αs
(i)

)

+ cos
(

αs
(i)

+ αe
(K)

)]

;

y(i|K) = 0.5
[

sin
(

αs
(i)

)

+ sin
(

αs
(i)

+ αe
(K)

)]

;

x(j|L) = 0.5
[

cos
(

αs
(L)

)

+ cos
(

αs
(L)

+ αe
(j)
)]

;

y(j|L) = 0.5
[

sin
(

αs
(L)

)

+ sin
(

αs
(L)

+ αe
(j)
)]

;

2 hs(i|K) =
√

x2(i|K)+ y2(i|K); hs(j|L) =
√

x2(j|L)+ y2(j|L);

3 γe(i|K)− γs(i|K) = cos−1 hs(i|K); γe(j|L)− γs(j|L) = cos−1[hs(j|L)];

4 γs(i|K) = cos−1
[

x(i|K)
hs (i|K)

]

; γs(j|L) = cos−1
[

x(j|L)
hs (j|L)

]

;

5 γe (i|K) = γs (i|K) + [γe (i|K) − γs (i|K)]. γe (j|L) = γs (j|L) + [γe (j|L) − γs (j|L)].

The positions are changed along the lines of the fixed elbow and shoulder joint angles (left and right columns, respectively). Pairs of the indexes noted by small (i, j) and capital (K, L)

letters belong to the varied and fixed parameters, respectively. Figures 2, 3 describe the results of the simulation.

with the increase in αs (Figure 3C). Therefore, one can see
that the torque patterns are not changed in the first case and
demonstrate a complex modification in the second one.

The joint angles αs, αe are defined unambiguously for any end-
point within the working space. Thus, it is possible to change
arguments in plots γs(αs), γe(αs) and γs(αe), and γe(αe), which
are shown in the left panels in Figures 2A,B, 3A,B, replacing
the joint angles by projections of the correspondent points on
the X-axis. The right panels in Figures 2A,B, 3A,B demonstrate
the results of such a change in the variables. The sets of points
in the plots γs(X) presented in Figures 2A, 3A coincide with
each other; the only difference relates to the lines connecting the

points at these plots. The discrepancy between the lines is due
to a difference in the varying and fixed arguments in both sets
(compare Figures 2D, 3D). Two sets of the plots γe(X) presented
in Figures 2B, 3B show similar behavior. The sets of the points
γs(X) and γe(X) demonstrate both similarities and differences.
The similarities consist in the likeness of the point distributions,
both of which take up more areas at the left part of the working
space. The differences lie in the observation that, at the right
part of the working space, the γe(X) points are distributed over
a relatively broader area compared with the γs(X) points. Such a
distribution is mainly well seen near the position of the shoulder
joint axis (X = 0). We also note that the γe(X) points cover a
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FIGURE 3 | Changes in the characteristic angles γs and γe and their difference in dependence on αe provided that αs is fixed. The steps of the joint angles are the

same as in Figure 2; successive procedures of numerical analysis are presented in Table 1, right column. The right columns in (A–C) present the same data as in the

left ones after changing the end-point angles by their projections on the X-axis of the working space � (shown in D). For ease of distinguishing, the traces α
(0)
s and α

(5)
s

are marked by open circles. Quantitative information about slopes of the characteristics and distances between them is placed in squares at the correspondent

panels. Note the same ordinate calibrations in the paired plots of (A–C) and the conformity between the points in these plots and their positioning within the working

space � (D).

more significant range of the angles, compared with the γs(X)
ones (about six radians vs. four).

Dependence of the JTs on the Force
Direction
By using the above CA plots, it is possible to analyze the JTs
at various angles of the end-point force. For simplicity, we do
not take into account potential problems associated with the
existence of two-joint muscles or with the co-activation of the
muscle-antagonists. The controlled changes in the direction of
the isometric force vector (change of angle θ in Figure 1A) are
realized in our experimental conditions as follows [for details see
(Lehedza et al., 2016; Lehedza, 2017)]. A subject creates with his
right hand isometric pressure on an unmovable handle, allowing
one tomeasure both the amplitude and direction of the generated
force. When performing a task of visual tracing of the force
vector, a subject slowly changes the force vector direction under
the command signal specified by a point slowly moving along
a circular trace on the monitor screen. The center of the circle
corresponds to the human’s hand position; its radius defines the
force amplitude.

Figures 4, 5 present the results of computing the JTs Ms (θ)
and Me (θ) for different positions of the subject’s hand. Figure 4
demonstrates the changes in the JTs’ dependencies on αs for

two fixed elbow positions, α
(3)
e (Figure 4A) and α

(7)
e (Figure 4B).

The Ms and Me families of curves in Figures 4A,B contain the
sinusoids that are consecutively shifting to the right with a rise in
their order, and the shifts are equal for both joints. Such a picture

corresponds to the equality of the gradients of both CAs with
respect to the αs (δγs/δαs = δγe/δαs = 1) (Figure 2A). At the

same time, a change in the fixed parameter [i.e., α
(3)
e → α

(7)
e in

Figures 4A,B] evokes different shifts of both sets of curves while
keeping a distance between the curves in each of the sets. The
Ms sets of curves shift twice as slowly as the Me ones (1γs =

π/20; 1γe = π/10 in Figures 2A,B). While comparing two Ms

sets relating to different values of the shoulder angle [α
(3)
e and α

(7)
e

in Figures 4A,B], one can notice a drop in the torque amplitudes,
which corresponds to a shortening of the torque arm hs (see
Equation 9). In contrast, the Me amplitudes remain unchanged
due to the steadiness of the similar parameter coinciding with the
segment’s length L.

Figure 5 demonstrates the elbow angle-dependent changes
of the JTs. In contrast to the above-described changes, the
amplitudes of the Ms curves change in this case even within the
same set (Figures 5A,B). The interval between curves in the Ms

sets is half that of the Me ones, which is due to a correspondent
inequality in the slopes of CAs (δγs/δαe = 0.5; δγe/δαe = 1, see
Figures 3A,B).

Patterns of Activation of the Proximal and
Distal Muscles
Schematic presentation of various combinations of the activity
of flexor and extensor muscles belonging to different joints, as
is shown in Figures 3D, 4D, allows us to present in graphical
form the changes in the torque patterns (TCD, TOD) for separate
transition movements in the joints. As has been shown for
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FIGURE 4 | Results of numerical simulation of the joint torques Ms and Me (A,B) for different positions of the subject’s hand in the working space � (C). Two sets of

the torque records with fixation of the elbow joint angle in positions 3π/10 [α
(3)
e ] and 7π/10 [α

(7)
e ] rad are chosen. The torques Ms and Me are defined by Equation( 9)

using the characteristic angles presented in Figure 2A. Thicker lines highlight the torque traces for shoulder positions α
(0)
s and α

(5)
s . Horizontal lines in (D) mark phases

of the sign coincidence of the shoulder and elbow torques, both positive (M+
s M+

e ) and negative (M−
s M−

e ), in different traces. Throughout the study, the torques are

defined for the action of unit forces at the hand positions; therefore, their calibrations are given in arbitrary units.

two-joint circular movements under a tangential load, central
commands to the muscles depend predominantly on positions
of the force singular points (FSP), where the JTs change their
directions (Kostyukov, 2016; Tomiak et al., 2016). In the above-
cited studies, the torque patterns in two-joint movements
are considered through the functions of the simultaneously
contracted muscles that belong to different joints. The TCD
corresponds to contractions of the muscles of the same function
(flexors–flexors; extensors–extensors), while the TOD belongs to
combinations of the muscles of the opposite modalities (flexors–
extensors; extensors–flexors). The proposed approach allows us
to analyze the torque patterns for isometric contractions using
the CAs (Figure 6). For changes in the force vector angle from 0
to 2π rad, the lines, which are used to designate the CAs, γs and
γe, define two pairs of the torque sectors: TCD (M+

e M
+
s , M

−
e M

−
s )

and TOD (M+
e M

−
s , M

−
e M

+
s ) (Figures 6A,B). The weights of the

torque sectors (see Figures 6C) are defined as follows:

wTOD =
(γe − γs)

π
; wTCD = 1−

(γe − γs)

π
. (10)

The maximal weight of the TCD, equal to 1, relates to a fully
extended elbow joint (αe = 0) for any αs. A rise in the αe
decreases the TCD weight linearly, converging to a limit value
of 0.5 in a hypothetical case of a complete joint flexion (αe
= 180◦), whereas the weight of the TOD rises from 0 to 0.5
during an increase in the αe from 0 to 180◦. Therefore, one
can conclude that in movements around the shoulder joint, the
torque patterns remain invariable; at the same time, they are
noticeably dependent on the elbow joint angles. During a rise
in the αe, the weights of TCD and TOD change linearly in
the opposite direction, whereas the relationship between them
remains unvaried for any fixed αe.

DISCUSSION

The JTs that accompany generation of forces by the human right
hand are simulated in our study in a framework of a two-joint
model of the right arm placed horizontally. The simulation is
based on a method of virtual work [for example, see (Hibbeler,
2016)] that had allowed us to define the JTs at each of two
joints for any direction of the end-point force and position in
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FIGURE 5 | Results of the numerical simulation of the joint torques Ms, Me (A,B) for different positions of the subject’s hand in the working space � (C). Scheme of

the data presentation coincides with that in Figure 4; two sets of the torques with fixation of the shoulder joint angles α
(0)
s and α

(5)
s are considered The torques Ms and

Me are defined by Equation (9) using the characteristic angles presented in Figure 2B. Thicker lines highlight the torque traces for the elbow joint angles α
(0)
e and α

(5)
e .

Horizontal lines in (D) mark phases of the sign coincidence of the shoulder and elbow torques. Other designations are similar to those in Figure 4.

the working space. When the frontal slopes of the force vectors
(angle θ) change in the range 0–2π, the JTs Ms and Me are
presented in dependency on the angle by the sinusoidal functions
of different amplitudes and phase lags. The CAs γs and γe define
the phase lags of the sinusoids; the elbow JTs are not changed,
being equal to the product of the force amplitude and segment
length FL; the shoulder JTs, equal to Fhs, vary with the distance
from the axis of the shoulder joint to the end-point, hs. For
a complete cycle of the force vector turning, the relative times
of the flexor and extensor contractions in each of the joints
are equal. From the basic geometric definitions, it follows that
γe ≥ γs for the entire working space (see Figure 1). Therefore,
during continuous turning of the end-point force vector in the
counter clockwise direction, the shoulder flexors should always
be activated earlier than the elbow flexors, and this has been
demonstrated experimentally (Lehedza et al., 2016; Lehedza,
2017).

When considering the isometric muscle contractions for
different end-point positions in the curvilinear coordinate system
{αs; αe}, it is entirely reasonable to evaluate changes of the
shoulder and elbow torque waves for isolated changes in the joint
angles, i.e., during the end-point transitions along the “shoulder”

and “elbow” traces (Figure 6). The gradients of the phase shifts
for the both Ms and Me waves coincide with each other along
the “shoulder” traces: δγs/δαs = δγe/δαs = 1, while along the
“elbow” traces, the Ms phases shift half as fast as the Me: δγs/δαe
= 0.5; δγe/δαe = 1 (Figure 7). Taking into account experimental
findings of the correspondence between the timings of the EMGs
and related parts of the JTs waves (Lehedza et al., 2016; Lehedza,
2017), the above results may be applied to predict the shifts of
the central commands for the respective muscle contractions
(Figure 7). In the end-point transitions along the “shoulder”
traces (αs-varying; αe-fixed), shifts between Me and Ms waves
remain unchanged; therefore, the torque waves are changing in
an isotropic manner. In contrast, for the end-point transitions
connected with the shoulder joint and fixed elbow one, the
torques waves demonstrate the anisotropicmanner of changing.

The central commands to themuscles in two-jointmovements
depend predominantly on the relative positions of FSPs, where
the JTs change their directions (Lehedza et al., 2016; Tomiak
et al., 2016; Lehedza, 2017). The FSPs may be used to identify
different zones of the torques of coinciding and opposing
directions (TCD, TOD), which would evoke a simultaneous
loading of the elbow and shoulder muscles with the coinciding
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FIGURE 6 | Schematic presentation of the patterns of the torques of coinciding and opposing directions (TCD, TOD) in dependence on the positioning of the

end-points within the working space. (A) The torque combinations are depicted by the shadowed (TCD) and white (TOD) sectors at the circles interposed in the nodes

of intersection of the “shoulder” and “elbow” end-point traces with fixed values of αe and αs, respectively. (B) Combinations the joint torques and related patterns of

loading of the flexor (f) and extensor (e) muscles belonging to different joints. (C) Changes in the TCD and TOD weights in dependency on the elbow joint angle (plot in

accordance with Equation 10).

or opposing function (flexors, extensors). The distribution of
the CA difference (γe – γs) in the working space defines the
TCD and TOD sectors (Figure 6). A maximal weight of the
TCD (equal to 1) corresponds to a fully extended elbow joint
(αe = 0) for any αs-value. The weight is linearly decreased with
a rise of αe, converging to a limit value 0.5 at the hypothetical
case of the complete flexed elbow, αe = 180◦. Contrastingly,
the TOD weight rises from 0 to 0.5 during the αe increase of
from 0 to 180◦. Therefore, the torque patterns are not changed
for the isolated movements around the shoulder joint, being,
at the same time, noticeably dependent on the elbow joint
angles. During a rise of the αe, weights of the TCD and TOD
change linearly in opposite directions; however, for fixed αe, the
relationship between the torque patterns remains unvaried for
all αs-values (Figure 6B). A predominance of the TCD effects
for the entire working space can exert an essential influence on
the central commands to the muscles. If we assume an equal
probability for all possible directions of the end-point forces

in a variety of movement programs, one can encounter more
frequently the associations of descending activities to the muscles
of the same function in different joints (i.e., flexors–flexor or
extensors–extensors). The predominance of the TCD effects
becomes more and more pronounced with the increase in the
end-point distances from the proximal joint; and their maximal
weight is achieved at the circular boundary of the working space
(Equation 10; Figure 6C). Such a pattern of the torque effects can
provide some simplification of both descending motor programs
and their realization at the spinal level. At the same time, the
above inferences might be related only to a restricted class of
movement tasks associated with a generation of the isometric
forces F(θ) in all possible directions (0 ≤ θ < 2π) and locations
of the end-points within the working space.

The present study includes the analysis of the steady states in
two-joint movements, whereas real fast movements are inevitably
much more complicated and diversified. Directional preferences
in the arm movements were previously revealed for horizontal
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FIGURE 7 | Schematic description of possible differences given changes in the central commands to muscles during the end-point transitions along “shoulder” and

“elbow” traces. These differences can be strongly connected with related patterns of the JT changes: isotropic in the first case and anisotropic in the second. Isotropy

and anisotropy in changes to the JTs along the “shoulder” and “elbow” traces could be directly related to the equality (inequality) of the relative changes to the CAs γs

and γe with respect to the correspondent joint angles.

arm movements and interpreted by a simplified joint control
program that involves predominantly passivemotion at either the
shoulder or elbow (Dounskaia and Goble, 2011; Dounskaia et al.,
2011; Dounskaia and Wang, 2014). In studies of skilled throwing
in baseball, Hirashima et al. (2007) supported the idea that the
CNS could control complex movements by using a hierarchical
strategy such as described by the leading joint hypothesis
proposed by Dounskaia (2005). The theory suggests that
planning of complex movement becomes simpler by choosing
one “leading” joint, which provides the dynamic foundation
for the entire movement. The kinematics of the leading joint
is controlled actively with agonist-antagonist muscle activity
similar to that used for the control of single-joint movements.
The adjacent “subordinate” joint is strongly influenced by passive
dynamics, with activity in the “subordinate” muscles used to
adjust the joint kinematics to meet the requirements of the
task. In two-joint arm movements, the shoulder joint is usually
considered the “leading” one due to a large volume of the
musculature and higher inertia of the upper arm. However, fast
movements, in which the elbow plays the leading role while the
shoulder is subordinated, have been described as well (Debicki
et al., 2011).

Subjects can produce arm movements with different speeds
and trajectories. In general, however, it is unclear how the CNS
plans and coordinates shoulder and elbowmotions. The so-called
“interaction torques” participate in fast movements, which arise
at one joint due to the rotation of adjacent joints (Hollerbach and

Flash, 1982). For example, rotation of the proximal shoulder joint
influences the motion of the distal elbow and wrist joints through
interaction of the torques in the proximal-to-distal direction;
similarly, rotation of the distal joints can influence proximal joint
motion (Latash et al., 1995; Gribble and Ostry, 1998; Dounskaia
et al., 2002; Debicki et al., 2011). On the other hand, in statics
(during isometric contractions or slow movements), it seems
possible to exclude the above intersegmental interactions. In
difference from existing models of the two-joint movements,
we concentrated main attention on the positioning of the end-
point force vector within the working space. Such an approach
allows finding the patterns of the JTs that provide various slopes
of the generated efforts in any point of the space. As follows
from the present consideration, it is possible to evaluate the
interdependence between the end-point force and the JTs at the
both joints.

We would like to stress that any consideration of the
equilibrium states in two-joint arm movements must also
take into account the numerous non-linear properties of a
transformation of the efferent signals to muscle contraction.
At least three essential elements of uncertainty are present in
the static states of the arm under given conditions of loading.
First, the prehistory of activation and movement strongly affects
the steady states in the system; these processes are directly
related to muscle hysteresis (Kostyukov, 1998). Second, both
agonist and antagonist muscles provide the resultant torque
in each joint; co-activation of the antagonists can constitute a
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substantial source for the uncertainty in the equilibrium states
of the joints (Gorkovenko et al., 2012). Third, the redistribution
activity among different parts of individual muscles and between
different muscles can be highly expressed, which inevitably leads
to ambiguity of motor control.

CONCLUSIONS

The two-segment model of the human arm simulates the
shoulder and elbow JTs, providing a slow, steady rotation of
the force vector in any end-point of the horizontal working
space. The model can be only applied to the analysis of the two-
joint muscle contractions in isometry; for considering a real arm
movement, the inertial properties of the arm segments, as well
as the non-linear effects of neuromuscular dynamics, should be
taken into account.

For the force vector slowly rotating at a constant speed, two
sinusoidal waves of the same period, equal to that of rotation,
describe the elbow and shoulder JTs; the phases of the sinusoids
coincide with the slopes of the correspondent lines from the joint
axes to the end-point.

For the analysis of the JTs, we propose considering
the “shoulder” and “elbow” end-point traces, in which the
correspondent joint angle changes under fixation of the other
one. Both shifts between the shoulder and elbow JTs and
their amplitudes remain unchanged along the “shoulder” tracks,
whereas these parameters change essentially at the “elbow” ones.

Therefore, the combined action of both JTs possesses isotropic
and anisotropic properties at the “shoulder,” and “elbow” traces,
respectively.

The proposed model determines the patterns of the TCD,
TOD, which would evoke a simultaneous loading of the
elbow and shoulder muscles with the coinciding or opposing
function (flexors, extensors). The relationship between the
TCD and TOD remains fixed in transitions at the “shoulder”
end-point traces, whereas it is changing at the “elbow”
ones.
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Grid cells and place cells are believed to be cellular substrates for the spatial navigation

functions of hippocampus as experimental animals physically navigated in 2D and 3D

spaces. However, a recent saccade study on head fixated monkey has also reported

grid-like representations on saccadic trajectory while the animal scanned the images on

a computer screen. We present two computational models that explain the formation of

grid patterns on saccadic trajectory formed on the novel Images. The first model named

Saccade Velocity Driven Oscillatory Network -Direct PCA (SVDON—DPCA) explains how

grid patterns can be generated on saccadic space using Principal Component Analysis

(PCA) like learning rule. The model adopts a hierarchical architecture. We extend this

to a network model viz. Saccade Velocity Driven Oscillatory Network—Network PCA

(SVDON-NPCA) where the direct PCA stage is replaced by a neural network that can

implement PCA using a neurally plausible algorithm. This gives the leverage to study the

formation of grid cells at a network level. Saccade trajectory for both models is generated

based on an attention model which attends to the salient location by computing the

saliency maps of the images. Both models capture the spatial characteristics of grid

cells such as grid scale variation on the dorso-ventral axis of Medial Entorhinal cortex.

Adding one more layer of LAHN over the SVDON-NPCA model predicts the Place cells

in saccadic space, which are yet to be discovered experimentally. To the best of our

knowledge, this is the first attempt to model grid cells and place cells from saccade

trajectory.

Keywords: saccades, grid cells, salience map, hippocampus, principal component analysis-PCA, oscillator

INTRODUCTION

A map that aids (Andersen et al., 2009) spatial navigation of an animal was believed to be
represented in the hippocampal-entorhinal complex (O’Keefe and Dostrovsky, 1971; Taube et al.,
1990a,b; Rolls, 1999; Solstad et al., 2008). Grid cells reported in the dorso-caudal medial entorhinal
cortex (MEC), fire periodically such that the firing fields of the neuron form a hexagonal grid-like
structure in the physical space in which the animal navigates. There is a general consensus that grid
cells code for the distance of movement and hence they have been assigned the function of path
integration which is essential for spatial navigation (Hafting et al., 2005). There are other spatial
cells, fewer in number, like the place cells, border cells, view cells, speed cells etc., that code for one
or other aspect of the ambient space (O’Keefe and Dostrovsky, 1971; Taube et al., 1990a,b; Rolls,
1999; Franzius et al., 2007; Solstad et al., 2008; Kropff et al., 2015). The aforementioned neurons are
thought to collectively form an internal map of the external space in which the animal navigates.

Killian et al. (2012) reported hexagonal grid-like representations in the MEC of monkeys
during mere visual exploration of a scene, even when the animal was not performing active

64
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navigation in the external space. Recordings were taken from
neurons in Entorhinal Cortex (EC) and hippocampus of
three head fixed monkeys, performing a free-viewing visual
recognition task, the visual preferential looking task (VPLT;
Jutras et al., 2009; Jutras and Buffalo, 2010). Monkeys were
shown a sequence of novel images on a computer screen. The
displayed images consisted of diverse themes like art, animals,
landscape, and people. These static images were scanned by
the monkey using a dynamic sequence of fixation. Neurons in
MEC emitted action potentials on the multiple fixation points,
as the monkey scanned the images; the firing field resembled
the canonical grid cells in navigation with distinct hexagonal
firing fields (Hafting et al., 2005; Killian et al., 2012). The grid
representations generated by the saccadic movements resembled
those of spatial navigation in many respects. Gridness scores of
saccade grids were comparable with those of the navigation grids.
Saccade grids also exhibited theta modulation in its activity. The
gradient of the grid scale along the dorso-ventral axis ofMECwas
reported in the case of saccade grid too and Local Field Potentials
(LFPs) showed theta band oscillations (Killian et al., 2012).

Apart from the grid representations on saccade trajectory,
experimental studies reported neurons coding for the direction
of saccade movement viz. saccade direction (SD) cells (Killian
et al., 2015). These cells are analogous to head direction
cells, corresponding to spatial navigation, reported in the rat
postsubicular region (Taube et al., 1990a,b). SD cells were
reported from the posterior EC of two monkeys performing
a visual recognition memory task (Manns et al., 2000; Jutras
and Buffalo, 2010). During the tasks, the monkeys were allowed
to freely scan the complex visual images. These neurons were
reported to be preferentially active when the eye movement was
made in a particular direction. SD cells showed a gradient in their
tuning width such that with the increase in distance from rhinal
sulcus, the width of tuning of individual neuron to preferred
saccade direction also increased.

There exists a large corpus of literature on the computational
models of the grid representation during active navigation.
Models of grid cells generally fall into two categories: oscillatory
interface models (OI) and attractor network models. Proposed
by O’Keefe and Recce (1993), spatial periodicity in OI models
arises as a result of the interference between velocity-controlled
dendritic and constant somatic oscillations (Burgess et al., 2007)
or from purely velocity-driven oscillators (Zilli and Hasselmo,
2010; Burgess and O’Keefe, 2011). In the case of neural attractor
model, spatial periodicity arises due to the intrinsic symmetry
of the attractor network (Fuhs and Touretzky, 2006; Burak and
Fiete, 2009). A hybrid approach has also been used wherein
these two methods were combined to explain spatial periodicity
(Bush and Burgess, 2014). However, the aforementioned models
are based on a biologically unrealistic assumption such as 60◦

phase difference in the head direction inputs of the oscillatory
interference model, or the assumption of the weight connectivity
of the attractor network having special symmetry conditions
(Mhatre et al., 2012).

The proposed model for the neural representations on the
saccade trajectory is built on the principles derived from a recent
model that usedmultisensorymodalities to explain the formation

of spatial representations during active navigation (Soman et al.,
2018a). It was a hybrid neural model that used both oscillatory
and rate coded dynamics. The model captured the empirically
reported spatial cell representations and the influence of multiple
sensory modalities on such representations. We take the general
principle of this model and currently adapt it to explain the grid
cell representations in saccade trajectory.

We present Saccade Velocity Driven Oscillatory Network
(SVDON) model that captures the empirically reported neural
representations on saccade trajectories and also makes novel
predictions on saccade representation. The input image
presented to the SVDON is passed through four stages viz:
saccade generation, saccade direction encoding, path integration,
and unsupervised neural network stage which are explained in
detail in the methods section.

METHODS

In this Section, we present two versions of Saccade Velocity
Driven Oscillatory Network (SVDON) model (Shown in
Figure 1): SVDON Direct PCA (SVDON-DPCA) and SVDON-
Network PCA (SVDON-NPCA). Both the models capture the
responses of grid cells to saccadic trajectories. SVDON-DPCA
model consists of a Saccade Generating stage (SG), Saccade
Direction encoding layer (SD), Path Integration layer (PI), and
Spatial Cell layer (SC). SVDON-NPCA model shares a similar
architecture except SD layer and SC layer, where it uses the
self-organizing map (SOM) and Lateral Anti-Hebbian Network -
Spatial cell layer (LAHN-SC) as the output layer. SVDON-NPCA
is a network extension of SVDON-DPCA.

SVDON-DPCA Architecture
The information flow in the model can be described as follows.
The images to be scanned are given as input to the SG stage
of the SVDON model to produce saccade trajectory. Velocity
vectors are computed from the generated saccade trajectory.
These velocity vectors are further passed on to the SD layer,
where each neuron encodes for saccadic direction. Responses
from the SD layer are passed on to the PI layer via one-
to-one connection. Each neuron in the PI layer is a phase
oscillator that receives SD response as its input. This further
encodes the saccade position information along that direction
component as the phase of the respective oscillator. The PI
layer projects to the output SC layer which exhibits grid-
like pattern by extracting the principal components of the
oscillatory response. Each stage of the model is described
below.

Saccade Generation (SG) Stage
The model used for saccade generation is a bottom-up model of
attention that is based on locating the single most salient location
on the saliency map. Given the input color image, different
feature maps are produced by applying linear filters to a specific
stimulus property like color, orientation, or intensity. The feature
maps are then combined to give three Conspicuity Maps and
finally, a saliency map is computed for the Conspicuity maps
(Walther and Koch, 2006). A winner-take-all (WTA) mechanism
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FIGURE 1 | Model Architecture of SVDON: The model consists of a saccade

generation stage, Saccade Direction Encoding stage, Path Integration stage

and the output SC layer. (No copyright permission is required).

finds the coordinates of the most salient location after scanning
the saliency map. Inhibition of return (IOR) of a circular shape
with fixed radius is applied around the attended location in the
saliency map. Subsequent iteration of the WTA network attends
to the locations in decreasing order of saliency. The model is
verified in several human psychophysical experiments (Itti, 2005;
Peters et al., 2005).

Saliency-Based Bottom-up Attention Model
The input image I is first sub-sampled into a Gaussian pyramid.
The Gaussian pyramid is created by convolution of input image I
with a set of Gaussian filters and subsampling with a decimation
factor of 2 to generate a sequence of reduced resolution images.
This process is repeated and a total of 9 different scales are
created σ = [0, .., 8] (level: 0 corresponds to the original input
image; Walther and Koch, 2006). At level σ , the resolution
of the image is 1/2σ of the original image. For level eight
i.e., σ = 8, the resolution equals to 1/256th of the input
image I and (1/256)2 of the total no of pixels of the input
image.

The intensity map MI is computed by adding the r (red), g
(green), b (blue) values of the color image (Walther and Koch,
2006).

MI = (r + g + b) /3 (1)

Intensity Pyramid MI(σ ) is created by repeating the same
operation at different levels.

Using the Image Pyramid, blue-yellow (BY), and red-green
(RG) opponency maps are created at every level (Walther and
Koch, 2006).

MRG =
r − g

max(r, g, b)
(2)

MBY =
b − min(r, g)

max(r, g, b)
(3)

Orientation maps Mθ are obtained from intensity maps by
convolving the various levels of Intensity pyramids with Gabor
filters (Walther and Koch, 2006):

Mθ (σ ) = ||MI (σ ) ∗ G0 (θ) || + ||MI (σ ) ∗ Gπ/2 (θ) ||, (4)

Multiscale feature extraction is done by across scale subtraction
2 between two maps levels c and s in these pyramids. Across
scale subtraction 2, is defined as interpolation to the finer
scale, followed by point-to-point subtraction between maps. In
other words, it is the difference between fine and coarse scale
features of an image. Using many different values for c and s
provides truly multiscale feature extraction (Walther and Koch,
2006).

Fl,c,s = (|Ml (c)2Ml (s)|)∀l ∈ L = LI ∪ LC ∪ LO (5)

where
LI = {I}, LC = {RG, BY} , LO = {0o, 450, 900, 1350}

(·) is a non-linear iterative operator, which promotes
local completion among neighborhood salient
locations. At each iteration step, self-excitation and
neighbor-induced inhibition is implemented with a
“difference of Gaussians” filter and then followed by
rectification.

Using across scale addition⊕ features maps are then summed
over then normalized again.

Fl = (⊕4
c=2 ⊕

c+4
s=c+3 Fl,c,s)∀l ∈ L (6)

Three conspicuity maps of general features are created: one for
intensity, one for color and one for orientation (Walther and
Koch, 2006).

CI = FI , (7)

CC = (
∑

l∈Lc
Fl), (8)

Co = (
∑

l∈Lo
Fl). (9)

Then, a single saliency map is created by combining all the three
conspicuity maps (Walther and Koch, 2006).

S =
1

3

∑

k∈{I,C,O}
Ck (10)

Within the saliencymap, different locations compete for saliency.
The most salient location is selected for attention. Inhibition of
Return (IOR) is applied to the selected area for some time within
a given radius. In the second iteration, the remaining locations
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FIGURE 2 | Two sample images used (A1,A2) and overlapped trajectory (Yellow) generated on them (B1–B2) by bottom-up model of attention. Sample images are

taken from: Caltech-256 Object Category Dataset. (No copyright permission is required).

compete for saliency and the second most salient location is
selected. Thus, a saccadic scan path is created on the image in
order of decreasing saliency (Walther and Koch, 2006).

In the simulation, to match with the experimental paradigm,
we used 36 novel images wherein each image is presented twice,
for 10 s each to produce the saccade trajectory (Killian et al.,
2012). Two sample figures with trajectories superimposed on
them are shown in Figures 2A,B. Image Source: Caltech-256
Object Category Dataset (Griffin et al., 2007).

Saccade Direction Layer (SD) Layer
Saccade trajectory generated from the SG stage is passed to
the saccade direction layer (SD). SD layer encodes the animal’s
current saccade direction as given in Equation (11). The response
of ith cell of SD layer is computed as the animal’s current saccade
direction projection on the ith preferred direction given as.

αi = cos(θ − θi) (11)

θ , θi are the current direction and the preferred direction of ith

SD cell, respectively.

Path Integration (PI) Layer
SD layer connects to PI layer via one-to-one connections. The
response of the ith PI cell is given as,

ηi = A ∗ sin[

∫

2π(fo + βsαi)dt] (12)

β is a spatial scaling parameter, A = Amplitude of oscillations.
s is the speed of the Saccade. fo is the base frequency of the PI
neuron. The ith PI neuron is then thresholded by the following
equation.

ηThri = H
(

ηi − εη
)

.ηi (13)

where, H is Heaviside function and εηthe threshold value.
Power of oscillation is given in decibel as:

P = 20 ∗ log10(A) (14)

Output Layer (SC)
PI values project to SC layer via the weight stage (W–PC).Weights
(WPC) from PI layer to SC layer are computed by performing
Principal Component Analysis (PCA) over η Thr. PCA was done
by extracting the top few eigenvectors of the covariance matrix
of the ηThri . The response of the ith neuron in the SC layer is
computed as:

Oi =

N
∑

j=1

H
[(

WPC
ij .ηThrj

)

− εSC

]

(15)

where, H is Heaviside function.
N is the number of PI neurons, εSC is the threshold value.
The top few components of the computed principal

component (PC) will be shown to reveal a variety of spatial cell-
like responses including grid cells (Figure 3). Spatially periodic

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 10767

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chauhan et al. Saccade Model of Grid Cells

FIGURE 3 | Spatial representations from SC layer: (A–F) Firing fields (Left): Blue is the trajectory of the Saccade and red dots are the spike locations; Firing Rate map

(Middle): red is peak rate and blue is no firing; Autocorrelation map (Right) of SC layer neuron in SVDON-PCA model.

firing emerges due to the inherent periodicity in the PC weights.
Hexagonal grid-like activity is shown by the neurons whose peaks
are separated by≈ 60◦ (PC= 6).

SVDON-NPCA Architecture
SVDON-NPCA model has a similar architecture to SVDON-
DPCA. Here a neural network implementation of PCA is
used instead of direct PCA, we replaced 1D SD layer with a
Self-Organizing Map (SOM) where a two-dimensional layer of
neuron is used to represent saccade direction. Lateral Anti-
Hebbian Network (LAHN) is the network implementation of
PCA (Foldiak, 1989) which is used to extract the optimal features
from the input data by variance maximization principle. The
changes made in this model permit us the leverage to study grid
cells from network perspective.

Below we explain the SOM architecture of SD layer and the
LAHN layer in detail.

Saccade Direction Layer
Like in SVDON-DPCA, here also saccade velocity vectors are
passed on to the SOM in the next layer to obtain a direction map.
SOM neuron response is given as:

θSD = ψTW (16)

ψT
= [sin(θ), cos(θ)] where θ is current direction of navigation,

is given as input given to SOM.
W= Normalized afferent weight matrix of SOM.

Lateral Anti Hebbian Network (LAHN) Layer
LAHN is an afferent Hebbian and lateral anti-Hebbian
unsupervised neural network, which extracts the variance feature
from the input.

The network is described as

ξi(t) =
∑m

j=1
qijχj (t)+

∑n

k=1
wikξk(t − 1) (17)

q is the weight of the afferent connection
χ is input PI value
m is the input dimension
n is the number of LAHN neurons, ξ is the network response
Hebbian rule is used to update afferent connection and a anti-

Hebbian rule is used to update lateral connection as described
below

1wik=−ηLξi (t) ξk (t − 1) (18)

1qij = ηF[χj (t) ξi (t)− qijξi
2(t)] (19)

Where ηL and ηF lateral and forward learning rate, respectively.
After training network weights of LAHN network converges to
subspace of principal components of input vector.
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Gridness Measure
The hexagonal gridness measure is quantified using Hexagonal
Gridness score (HSG) on firing fields of each neuron. HGS
is computed using Equations 20, 21 (Hafting et al., 2005).

r(τx, τy) =

M
∑

x,y
λ(x, y)λ(x− τx, y− τy)−

∑

x,y
λ(x, y)

∑

x,y
λ(x− τx, y− τy)

√

{M
∑

x,y
λ(x, y)2 − [

∑

x,y
λ(x, y)]2]}{M

∑

x,y
λ(x− τx, y− τy)

2
− [λ(x− τx, y− τy)]

2
}

(20)

r is an autocorrelation map, λ (x, y) is firing rate at (x,y) location
of the rate map, M is the total no of pixels in the rate map, τx and
τy correspond to x and y coordinates with a spatial lag

HGS = min[cor(r, r60
0
), cor(r, r120

0
)]−max[cor(r, r30

0
),

cor(r, r90
0
), cor(r, r150

0
)] (21)

HGS stands for Hexagonal Gridness Score;
r◦ is the autocorrelation map rotated by θ degree;
cor(·) stands for correlation function;
min(·) function returns the minimum of its two arguments.

RESULTS

SVDON-DPCA
SC neuron activity is mapped onto saccadic trajectory. Figure 3
shows the firing field, firing rate map and autocorrelation map

of the six SC layer neuron receiving the first six principle
components.

Hexagonal Firing field is shown by the neuron which received
the sixth principal component (Figure 4). A neuron is considered
to be canonical if it had a HGS>0 (Hafting et al., 2005).

Oscillation Power and β Modulation
Necessity of oscillations to produce grid patterns was contested
by varying the oscillatory power in the PI layer. Power is a
function of amplitude of oscillations (Equation 14). Hence by
changing the amplitude variable (Equation 12), we were able
to change the power of the oscillations. By reducing oscillation

FIGURE 4 | Spatial representations from sixth SC layer neuron: Firing field (A): Blue is the trajectory of the Saccade and red dots are the firing locations; Firing map

(B): red is peak rate and blue is no firing; Autocorrelation map (C) of the sixth SC layer neuron in SVDON- PCA model.

FIGURE 5 | Oscillation power modulation (A): loss of grid field formation on reducing oscillation power (A1); grid field reemerged as the oscillation power was restored

(A2). β modulation (B): loss of grid field when β = 0 (B1), grid field reemerged when β = 0.2.
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power there was a loss of Grid Field formation, but grid field
reemerged as the oscillation power was restored (Figure 5A).

We also analyzed the criticality of the modulation of
oscillations in the PI layer by varying the β parameter (Equation
12). Similar loss of grid field is seen with β modulation
(Figure 5B).

SVDON-NPCA
LAHN (SC) network of the model shows the spatially periodic
firing in Figure 6. The firing fields of LAHN (SC) neurons have
more heterogeneity compared to PCA.

Spatial Characteristics of Grid Cells
Grid Scale variation across the dorso-ventral axis of MEC has
been demonstrated in experimental studies of rodent navigation
(Brun et al., 2008; Stensola et al., 2012). A similar gradient was

observed in the case of saccadic trajectories also (Killian et al.,
2012). To capture this in the model, we varied the β parameter
as shown in Figure 7A. This variation is shown in Figure 7B1

contrasted with the experiment results in Figure 7B2. Grid scale
was quantified by computing the distances between the six inner
hexagonal vertices from the central peak in the autocorrelation
map, minimum of these values represents the grid scale. (Burn,
Solstad et al., 2008).

Predicting Place Cells Activity
SVDON-NPCA model is capable of exhibiting place cell like
activity on saccadic space when a second LAHN (place cells)
layer is added after the first LAHN (SC Layer in Figure 1).
Experimental Studies have shown that the number of neurons
(Akdogan et al., 2011) in rat CA1 region is about 90 percent of
EC (considering only layer 2 and layer 3 of MEC as they form

FIGURE 6 | Spatial representations of three different neurons (A–C) from LAHN (SC) layer. Left Column is firing field of the neurons (A1–C1); Middle Column is the

firing rate of the neurons (A2–C2); and the Right column is autocorrelation map of the neurons (A3–C3).
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FIGURE 7 | Effect of modulation factor β. (A) Grid Scale gradient is captured by varying spatial scale parameter β. (B) Comparison between the model and the

experiment. (B1) Grid scale variation in the model by varying β (Grid scale is averaged for 10 trajectories). (B2) Empirically observed grid scale variation at different

locations of medial to dorsal rhinal sulcus axis (Killian et al., 2012).

major afferent synapse with CA1). Accordingly, a similar ratio
of neurons is kept in LAHN (SC) and LAHN (PC) layers. The
output the LAHN (SC) is passed on to LAHN(PC) layer and the
activity of the LAHN(PC) layer is observed, LAHN(PC) neurons
showed a highly localized firing activity similar to that of place
cells. To qualify a neuron as a place cell, the number of peaks
in autocorrelation map is examined. A cell is characterized as
a place cells if the number of peaks in autocorrelation is one
(Soman et al., 2018b) due to its localized firing field and lack of
spatial periodicity. LAHN (PC) layer also predicted spatial cells
that showed spatial periodicity as shown in Figure 8.

Place Activity on Single Image
In the simulations described in the previous sections, the
trajectories were obtained from a large number of images and
grid and place cell responses are generated from that combined
trajectory. In this section, we generate a trajectory from single
images and superimpose the place cells generated from that
trajectory back on the original image. The objective is to see if
the grid and place cells obtained from the trajectory correspond
to salient features/objects in the image. To produce saccade
trajectory, we presented a single image for 125 s to the saccade
trajectory generating model. The trajectory is then used to train
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FIGURE 8 | LAHN (PC) layer activity of six different neurons. (A1–F1) firing field (blue is the trajectory of the Saccade and red dots are the spike locations) and

(A2–F2) firing maps (red is peak rate and blue is no firing) of 6 different neurons in LAHN(PC). Characterization of LAHN (PC) layer showing the % of cells type vs. the

number of neurons in layer. Here PC is Place cells, GC is Grid Cells and NC is non-spatial cells.

the model of Figure 1 with the added module of LAHN (PC).
Figure 9 shows results from two images. Place cells obtained
from these images are indeed localized on salient objects in the
image such as face of the person (Figure 9A3) or the bat of the
batsman (Figure 9B3). Image source : ImageNet: A large scale
hierarchical Image Database (Deng et al., 2009).

DISCUSSION

We present two models: SVDON-DPCA and SVDON-NDPCA
to capture the saccadic representation based on the input saccadic
trajectory formed on a series of images. In the SVDON-DPCA,
we have shown the formation of hexagonal grid cell periodicity
using Direct PCA. The model is simple and transparent and gives
an insight into the origins of the grid cell spatial periodicity.

In SVDON—NPCA, we used LAHN layer instead of direct
PCA to produce hexagonal grid cells. This substitution is
made since LAHN is based on a biologically more plausible
learning mechanisms viz. lateral anti-Hebbian and afferent
Hebbian learning, than the PCA. LAHN weight vectors have
been shown to converge to the principal component subspace
(Foldiak, 1989). Such a connectivity pattern is critical for a self-
organization process because the excitatory Hebbian connections
to a neuron could essentially correlate its activity to the input
features and the lateral inhibitory connections could ensure
competition among the ensemble of neurons to extract out
diverse features of the input. This sort of connectivity pattern
is biologically plausible and is consistent with the empirically
reported GABArgic interneuron connections between the stellate
cells in the superficial layer of the medial entorhinal cortex
(Couey et al., 2013). In addition to this, anti-Hebbian network
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FIGURE 9 | Spatial cell response to a single image. (A1,B1) Images given as the input. (A2,B2) are the outputs of LAHN(SC) and (A3,B3) are the outputs of

LAHN(PC). Red dots are the firing locations on the image (Images source is ImageNet: A Large-Scale Hierarchical Image Database).

has been previously shown to encode the input data optimally by
minimizing a representation error/multidimensional scaling cost
function (Pehlevan et al., 2015). Hence the model gives insight
to the self-organization among the grid/quasi-grid units and
the relevance of such a connectivity pattern for optimal spatial
representation.

The primate visual system scanning a complex visual scene
seems to employ a serial search strategy. In primates, object
identification and spatial analysis of the image is achieved
by a series of rapid saccadic eye movements. Saccades occur
reflexively whenever the eyes are open and also can be elicited
voluntarily (Liversedge and Findlay, 2000). Different visual
locations compete for activity and the strongest response draws
the visual attention. These are called visually salient locations
(Slllito et al., 1995; Sillito and Jones, 1996; Levitt and Lund,
1997). The bottom-up model used in our architecture for
saccade generation is based on a similar approach that generates
a two-dimensional saliency map of the visual environment.
Experimental evidence has shown the existence of neural maps in
the pulvinar, the superior colliculus, and the intraparietal sulcus
which encode for the saliency for visual stimulus (Robinson and
Petersen, 1992; Gottlieb et al., 1998; Colby and Goldberg, 1999;
Rockland et al., 1999). The results from the models discussed
above are similar to the grid cells that have been reported
in the rat and bat during locomotion (Hafting et al., 2005;
Yartsev et al., 2011). These results imply that ideas of spatial
representation for navigation also apply to complex visual scene

analysis because these results show that visual exploration of
space can give rise to representations for that space even without
performing active navigation over the corresponding physical
space.

The results produced by our model are consistent with the
experimental literature. The variation in the gradient of the grid
scale along the dorso-ventral axis of the entorhinal cortex is
reported in the experimental literature (Brun et al., 2008; Stensola
et al., 2012). It is shown that the grid scale varied from low
to high value with the distance from the rhinal sulcus (Killian
et al., 2012), which is consistent with a dorsal-ventral gradient in
rodents and bats for navigation (Hafting et al., 2005; Yartsev et al.,
2011). To incorporate this in our model, we varied the parameter
β in Path Integration layer. β determines the modulation factor
for the path integration neuron. Even though the model captures
gradient in the grid scale by varying the β parameter, it does
not explain the modular formation of grid cells along the dorso-
ventral axis of MEC where, in each module, grid cells with the
same grid scale and grid orientation and different grid phases
occur and the grid scale varies across the modules in a geometric
progression fashion with a scale ratio of

√
2. Here, the grid scale

can be fitted to any ratio by varying the β parameter accordingly.
From the model results it is understood that oscillations are

critical for the grid cell generation. Oscillations introduce the
first spatial periodicity by encoding the position information in
their respective phase. This periodicity is further transformed to
grid-like representations in the higher layer. It was empirically
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shown in rats that abolition of theta activity in the MEC causes
the grid representations to fade out (Giocomo et al., 2007). In the
model, we tested the same by decreasing the oscillatory power
of the path integration neurons and found a corresponding
disruption in the grid representations (Figure 5A). However, we
would like to pose this oscillation and grid cell phenomenon
as a prediction from the model since this phenomenon has
not been reported yet in saccade studies. Further analysis
also showed the criticality of modulation in oscillation for
the grid formation. Modulation is set to off by making β

set to zero. No grid fields are observed in that condition.
When β is set to a non-zero value, grid fields start to appear
(Figure 5B).

Place cell like activity is predicted by the model on the
scaddic space upon adding an extra layer of LAHN(PC) on top
of LAHN(SC). Although place cell like activity have not been
experimentally reported yet. On giving saccadic trajectory of
single images as a input to the model, LAHN(PC) neurons fired
on naturally significant locations on image like the face and the
bat of the batsman shown in Figure 9. These predictions are
consistent with the recent observation that navigation in physical
space can be just one of the many roles played by place cells, grid
cells and other hippocampal spatial cells.

Taken together, these models computationally try to
explain the generation of grid cell representations in the
entorhinal cortex based on the saccade trajectory generated
during visual exploration of a natural scene. They also
predicts the place cells like activity on saccadic space. The
grid field generated by the SVDON—DPCA does not have
the central firing field which we consider as the limitation of
this model, this limitation is overcome by the second model
viz. SVDON—NPCA. In the future work, we would like to
extend this model by including visual and locomotor input
along with the saccadic input and search for the possible
existence of joint representations arising out of the spatial
navigation of the physical space and saccadic exploration
of the image space. Virtual Reality (VR) environments
offer a convenient setting for conducting such simulation
studies.
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The processes underlying motor decision-making have recently caught considerable
amount of scientific attention, focusing on the integration of empirical evidence
from sensorimotor control research with psychological theories and computational
models on decision-making. Empirical studies on motor decision-making suggest
that the kinematics of goal-directed reaching movements are sensitive to the level
of target uncertainty during movement planning. However, the source of uncertainty
as a relevant factor influencing the process of motor decision-making has not been
sufficiently considered, yet. In this study, we test the assumption that the source of
target uncertainty has an effect on motor decision-making, which can be proven by
analyzing movement variability during the time course of movement execution. Ten
healthy young adults performed three blocks with 66 trials of goal-directed reaching
movements in each block, across which the source and level of reach target uncertainty
at movement onset were manipulated (“no uncertainty”, “extrinsic uncertainty”, and
“intrinsic uncertainty”). Fingertip position of the right index finger was recorded using
an optical motion tracking system. Standard kinematic measures (i.e., path length and
movement duration) as well as variability of fingertip position across the time course
of movement execution and at movement end were analyzed. In line with previous
studies, we found that a high level of extrinsic target uncertainty leads to increased
overall movement duration, which could be attributed to increased path length in
this condition, as compared to intrinsic and no target uncertainty (all p < 0.001).
Movement duration and path length did not show any differences between the latter
two conditions. However, the time course analysis of movement variability revealed
significant differences between these two conditions, with increased variability of
fingertip position in the presence of intrinsic target uncertainty (Condition × Sampling
point: p = 0.01), though considerably less than under high extrinsic target uncertainty
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(p ≤ 0.001). These findings suggest that both the level and source of uncertainty have
a significant effect on the processing of potential action plans during motor decision-
making, which can be revealed through the analysis of the time course of movement
variability at the end-effector level.

Keywords: reaching movements, sensorimotor control, movement planning, motor control, embodied decision
making, time course of variability, kinematics

INTRODUCTION

In everyday life, we are constantly forced to make decisions, often
under dynamic and uncertain conditions. This encompasses
simple, practical decision, such as whether to take along an
umbrella to protect oneself from the potential rain in the
afternoon, as well as complex, more abstract decisions, e.g., how
the invest the savings to maximize return in 20 years from now.
While in some fields of research, e.g., psychology and economics,
decision making has a long scientific history (Edwards, 1954;
Kahneman and Egan, 2011), motor decision making has more
recently caught scientific interest (see e.g., Wu et al., 2015;
Gallivan et al., 2018). In this context, motor decision-making
can be broadly defined as the process of choosing an action
plan from a range of multiple potential actions (Wolpert and
Landy, 2012; Wu et al., 2015). Movement planning (often mainly
referring to the process of action specification) has been widely
investigated for different motor tasks and populations in motor
control research. However, the integration of this work with
computational models and psychological theories of decision-
making has only recently begun (e.g., Trommershäuser et al.,
2008; Song and Nakayama, 2009; Ramakrishnan and Murthy,
2013).

Traditionally, movement planning has been assumed to
consist of serially organized processes. This includes the selection
of the required action to achieve the movement goal, followed
by the specification of this action, and finally the issuing of
the respective motor command for action execution. Whether
perceptual decision making on the movement goal should also
be considered as part of the movement planning processes
or not is still under debate (Wong et al., 2015) and may
depend on the precise definition of motor decision-making.
While the theory of serially organized movement planning
processes seems to be able to explain a wide range of
observable movement patterns, it is not well able to describe
rapid changes in movement execution that might be necessary
in the presence of dynamic environmental conditions. In
addition, recent neurophysiological studies found simultaneous
activity in different brain areas assumed to be involved in
either action selection or specification in humans and non-
human primates (Cisek and Kalaska, 2010; Petzschner and
Krüger, 2012). As a theoretical explanation of these findings,
the affordance competition hypothesis was proposed (Cisek,
2007). The key assumption of this theory is the parallelism
of action selection and specification processes to account for
the dynamics and uncertainties in the environment during
movement planning. However, the human motor system not
only has to account for uncertainties and environmental

dynamics during movement planning, but also during movement
execution. In order to reflect this point, Cisek and Pastor-Bernier
(2014) postulated the theory of embodied decision making.
Following this theory, action selection and specification run in
parallel not only until movement initiation, but are ongoing
processes even during movement execution. This would allow
for flexibly changing movement plans during the course of
movement execution. In line with this assumption, Gallivan
and colleagues provided empirical evidence for the competition
of multiple potential action plans even after movement onset
using kinematic movement analysis (e.g., Gallivan and Chapman,
2014; Nashed et al., 2017; Gallivan et al., 2018). These studies
tested their assumptions using a research paradigm in which
participants had to perform rapid reach movements under target
uncertainty.

Uncertainty is a central term in (motor) decision-making
research. Critically, Downey and Slocum (1975) noted already
more than 40 years ago that this term is commonly used without
further definition, in the assumption that everybody knows what
it means. A study by Lipshitz and Strauss (1997) revealed the
many different conceptualizations of uncertainty in the literature,
including for example the equalization of uncertainty with risk
or ambiguity. Based on this, they propose the classification
of uncertainty either according to its issue or according to
the source of uncertainty. In that context, they identify three
basic sources of uncertainty: incomplete information, inadequate
understanding or undifferentiated alternatives. Following the
logic of Lipshitz and Strauss (1997), incomplete information
refers to the complete lack or only partial knowledge about the
(probability of) occurrence of events and their consequences.
It is often also referred to as “risk” in the literature (e.g., Hsu
et al., 2005). Lipshitz and Strauss (1997) further mention it
to be the most commonly cited source of uncertainty. This
might be explained by the fact that this source of uncertainty
is experimentally or externally well controllable. Inadequate
information, on the other hand, refers to the inability to
decide on actions because of the lack of understanding of
the available information and their consequences. To put it
simply, individuals who are uncertain about their decision
due to inadequate understanding just do not know what
to do with the available information. Last, undifferentiated
alternatives correspond to the source of uncertainty that
arises from the presence of equally attractive choice option,
given that all relevant information are available and fully
understood. It is also sometimes referred to as “conflict” in
the literature [see Lipshitz and Strauss (1997) for an overview
about synonyms used in the literature for the different sources
of uncertainty].
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With this differentiation in mind, a closer look on the
manipulation of uncertainty in studies on motor decision-
making in reaching movements seems appropriate. Generally,
two different choice conditions can be found in the literature –
forced choice and free choice. In forced choice conditions, which
draw on the externally imposed (in-)completeness of target
information as the source of uncertainty, participants are cued
to rapidly reach towards one of multiple potential reach targets.
This cue can appear either before or after movement onset
[termed “go-after-you know” or “go-before-you-know” tasks,
respectively, Gallivan et al. (2018)]. While in the first version of
this condition, the level of target uncertainty is minimal, since
the participants have complete information of the reach target
before movement onset, the level of target uncertainty is high
in the second version. In general, the less predictable the cue
on the final reach target is or the later it appears, the greater is
the extrinsic uncertainty during movement planning. In contrast,
the free choice condition draws on ambiguity (“undifferentiated
alternatives”) as source of uncertainty, which originates from
an intrinsic indecision about choice options. In this condition,
individuals have to process and weigh available information
and, based on the outcome, freely choose between multiple
potential actions. Thus, intrinsic uncertainty does not arise from
an externally controlled incompleteness of available information
that are required to decide on an action plan, but from an intrinsic
limitation to decide for one action plan against another in the
presence of all relevant information. Consequently, the more
similar potential actions are (e.g., in their costs or likelihood
of success), the greater is the intrinsic uncertainty about which
motor action to decide on in free choice-tasks. While in the
studies reported above (Gallivan and Chapman, 2014; Nashed
et al., 2017; Gallivan et al., 2018) the “go-after-you-know”- and
free choice-tasks are commonly used as control conditions for the
“go-before-you-know”-task, the different source of uncertainty
(extrinsic vs. intrinsic) in these conditions is not made explicit.

However, this distinction becomes of fundamental relevance
when considering the implications of different sources of
uncertainty for motor decision-making strategies. While
experimental set-ups using a “go-before-you-know”-task, i.e.,
causing “extrinsic uncertainty”, enforce the parallel processing
of multiple potential action plans even after movement onset
(at least up until the final reach target is cued), free choice
conditions, inducing “intrinsic uncertainty”, principally allow a
serial order of action selection-specification and action execution
processes, similar to the “go-after-you-know”-task. While the
parallel preparation of multiple potential action plans might
be beneficial to cope with uncertainties and environmental
dynamics during movement execution, a serial processing
strategy is beneficial for minimizing target uncertainty at
movement onset. Thus, when individuals can freely choose
between ambiguous movement targets, a strategy to reduce
uncertainty at movement onset would be to decide for one
of the potential action plans immediately after stimulus onset
and executing the movement with a minimum of reach target
uncertainty. The question of whether and how different
sources of uncertainty (extrinsic vs. intrinsic) affect the parallel
processing of multiple potential action plans during motor

decision-making still needs to be investigated and is addressed in
this study.

A promising methodological approach to reveal the
differences in motor decision-making related to different
sources of uncertainty is to analyze movement variability during
the time course of movement execution. The analysis of endpoint
variability as a kinematic measure of task performance is well
established in motor control research, at least since Fitts’ seminal
work on the relationship between movement speed and accuracy
(Fitts, 1954; Fitts and Peterson, 1964). Ample empirical evidence
suggests that endpoint variability is generally low in healthy
young and older adults, but sensitive to different environmental
and task constraints (e.g., Gordon et al., 1994; Desmurget
et al., 1997; Faisal and Wolpert, 2009; Krüger et al., 2011). The
time course of movement variability is supposed to contain
additional relevant information about the process through which
the underlying motor control strategies come into effect (e.g.,
Morishige et al., 2006; Krüger et al., 2011; Krüger et al., 2012;
Verrel et al., 2012; Krüger et al., 2013). Important for the context
of this study, changes in the time course of movement variability
at the effector level (e.g., joint angles of the arm) have previously
been explained as adjustments of the sensorimotor system to
uncertain planning conditions (de Freitas et al., 2007). Empirical
evidence has accumulated suggesting that these adjustments
become evident as changes in the coordination of the naturally
abundant effector degrees of freedom (DoF). In effect, variability
in task-relevant directions is minimized, by simultaneously
allowing flexibility (i.e., variability) in task-irrelevant directions
(e.g., Scholz and Schöner, 1999; Latash et al., 2002; Müller and
Sternad, 2004; Liu and Todorov, 2007; Gera et al., 2010; Krüger
et al., 2012). This assumption is supported by motor control
theories, e.g., optimal feedback control: Todorov and Jordan
(2002); Todorov (2004); also see Harris and Wolpert (1998).

In sum, recent scientific efforts have established a link
between motor decision-making and sensorimotor control.
Empirical evidence suggests a parallelism of action selection
and specification to account for uncertainties during movement
planning (Chapman et al., 2010; Gallivan and Chapman, 2014).
Further, theories hypothesize multiple action planning as an
ongoing process even during movement execution to cope
with the dynamics in the environment (Cisek and Pastor-
Bernier, 2014). These assumptions were supported by empirical
evidence highlighting differences in movement kinematics
(e.g., movement duration and path length) between reaching
movements with or without target uncertainty. However, the
source of target uncertainty as a relevant factor influencing the
competition of multiple potential action plans during motor
decision-making has not been sufficiently considered, yet. In
this study, we test the assumption that the source of target
uncertainty has an effect on the parallel processing of multiple
potential action plans during motor decision-making, which
can be proven by analyzing movement variability during the
time course of movement execution. On that account, we
performed an experiment where participants had to reach
towards circular targets for which we varied the sources and levels
of target uncertainty. Besides kinematic measures, which can be
standardly found in studies on motor decision-making [e.g., path
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length and movement duration, Gallivan and Chapman (2014)]
we analyzed the time course of variability of the fingertip position
to gain additional insight into to underlying motor control
strategies to cope with uncertainties during motor decision-
making.

METHODS

Participants
Ten healthy adults (six female, mean age ± SD: 29.3 ± 4.1 years)
voluntarily participated in this study. All were dominantly right
handed, as assessed by means of the Oldfield Handedness
Inventory (Oldfield, 1971), had normal or corrected-to-normal
vision, no neurological impairment and gave written informed
consent before participating in the study. The study protocol was
in accordance with the Declaration of Helsinki and approved
by the Ethical committee of the Medical Faculty, Technical
University of Munich.

Procedure
In this study, participants had to perform goal-directed reaching
movements under target uncertainty during motor decision-
making. For that purpose, participants were seated in front of a

FIGURE 1 | Experimental set-up. (A) Side view on the set-up, depicting the
reach distance and sitting position of the participants. (B) Top view, showing
the principal configuration of potential target locations, fixation cross and
potential reach trajectories.

table, on which a 15′′ Laptop (Dell Vostro 3550) and a number
pad were placed (see Figure 1A). The number pad was used
to spatially control the start position of the fingertip and the
reaching distance by defining a start button at the bottom row
of the number pad. While this start button was covered by red
tape, all other buttons were covered in a black sleeve. Because of
using the number pad, movement initiation as the time point of
button release could later be exactly defined and used to control
the participants’ adherence to the reaction time constraint (see
below). A passive reflective marker was attached on top of the
fingernail of the right index finger to record fingertip trajectories
towards the targets. Fingertip trajectories were recorded at a
recording frequency of 150 Hz using a five camera optical motion
tracking system (Qualisys Motion Capture Systems, Oqus5,
Sweden). The cameras were mounted on a customized frame
of 2.60 × 2.70 × 2.70 m in size (width × length × height).
The volume covered by all five cameras was approximately
2 × 2 × 2 m (width × length × height), with the participants
and the apparatus positioned fully within the covered area. The
seating position of the participants was adjusted so that they were
able to touch the screen of the laptop without moving the upper
body and that fingertip position was always visible for the motion
tracking system the at all times during movement execution. The
presentation of the targets on the screen was controlled through
Presentation R© software (Version 17.2, Neurobehavioral Systems,
Inc., Berkeley, CA, United States1).

Target uncertainty during motor decision-making was
systematically manipulated across three blocks (i.e., three
conditions) of 66 trials each, with the order of conditions
being pseudo-randomized across participants. Condition A &
B manipulated the level of uncertainty in a forced choice task
between low and high, respectively, with Condition A (“no
uncertainty”) following a “go-after-you-know”-paradigm, and
Condition B (“extrinsic uncertainty”) following a “go-before-
you-know”-paradigm (Gallivan et al., 2018). In contrast, the
source of uncertainty was altered in Condition C (“intrinsic
uncertainty”), originating from the ambiguity of reach targets
in a free choice task. All three conditions followed the general
procedure as described in Gallivan and Chapman (2014).
Participants were visually presented to circular targets (size:
1.3 cm) on the screen, which were located in 7.5 cm distance
either above or on the left or right hand side of a fixation
cross (i.e., three possible target locations, target size: 1.3 cm,
see Figure 1B). At the beginning of each block, participants
were informed about the following testing condition and its
consequences for the target display through written instructions
on the screen. In Condition A, participants were presented to
only one circle in each trial, i.e., either on the left, above or on
the right of the fixation cross. In contrast, in Condition B and
C, participants were always presented to two circles (i.e., three
possible combinations of target locations: left-above, left-right,
above-right). Each trial started by the participants pressing the
start button on the number pad. Subsequently, and depending on
the experimental condition, 1–2 unfilled circles were presented
at any of the three locations (see Figure 2) following a random

1www.neurobs.com
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FIGURE 2 | Experimental procedure. In each trial, following a random waiting period of 1–2 s after an initial button press, the potential reach targets were displayed
as unfilled circles, appearing at any of the three potential target locations surrounding the fixation cross. Simultaneously, an acoustic start signal triggered
participant’s response. Upon button release, the final reach target was indicated through filling of the respective circle. Each trial ended with participants touching a
circle on the screen. This figure exemplifies the procedure for one potential trial of Condition A. The same temporal procedure applied for Condition B and C.
However, for Condition B and C, two circles were displayed at any of the three location-combinations in each trial.

waiting period of 1–2 s. Simultaneously, an acoustic start signal
sounded and requested participants to initiate their reaching
movement within 100–325 ms. Immediately following the release
of the start button the final reaching target was indicated through
filling of the respective circle. In Condition A (“no uncertainty”)
participants were presented to only one target before and after
movement onset, so that there was no uncertainty about the reach
target during motor decision making (see Figure 3, 1st column).
In Condition B (“extrinsic uncertainty”) participants were
presented to two targets on the screen, of which only one filled
after release of the start button (see Figure 3, 2nd column). Last,
in Condition C (“intrinsic uncertainty”) participants had the free
choice to which of the two presented unfilled circles they point.
Accordingly, both circles filled after movement initiation (see
Figure 3, 3rd column). Participants were asked to perform fast
and accurate reaching movements from button release to hitting
the reach target and to finish the movement within 1 s. Trials
that did not meet the reaction time or movement time constraint
were excluded from further analysis. In Conditions A and B, each
of the three targets were indicated 22 times as the pointing target
(i.e., Condition A: 3 targets × 22 trials = 66 test trials; Condition
B: 3 targets × 2 possible target combinations × 11 trials = 66
test trials), while in Condition C participants were asked to point
about equally often to each of the three targets. Participants were
instructed to strictly follow the visual instructions on the screen.
Between each block, participants had the chance to rest for a
maximum of 5 min to minimize fatigue-induced changes in task
performance and motor behavior. Before the start of each block,

participants had the chance to familiarize themselves with the
task at hand in a practice block consisting of five trials.

Data Analysis
Data was analyzed using customized Matlab scripts (MATLAB
R2011a, Mathworks, Natick, MA, United States). In a first
step, to identify endpoints of single reaching movements (i.e.,
trials) in the continuous data recording of the fingertip marker
position in 3D across all trials, local maxima in depth direction
were identified separately for each participant and condition.
Endpoints were defined as largest position in depth direction
with a minimum distance of 34 cm from the start button and
within a range of 5 cm. Subsequently, trials were extracted by
going backwards 150 sample in time from the sample of the local
maxima. Due to the imposed movement time constraint of 1 s,
going backwards 150 samples, which were recorded at 150 Hz,
was sufficient to extract the complete fingertip trajectories of valid
trials. Subsequently, movement velocity was calculated for each
trial and sample as the first derivative of the fingertip trajectory
with respect to time. Maximum velocity in depth direction (vmax)
was then identified and further used to define movement start and
movement end as the first and last sample crossing the threshold
of 5% vmax. Subsequently, overall movement duration between
movement start and end, as well as deceleration duration, as the
duration between vmax and movement end were calculated. To
gain insight into the symmetry of the velocity profile, deceleration
duration was additionally determined as proportion of overall
movement duration in %. Further, path length was calculated as
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FIGURE 3 | Experimental conditions. Example target displays before and after movement initiation are depicted to highlight the differences between the three
experimental conditions. Condition A and B were forced choice conditions with different levels of uncertainty with regard to the amount of available information about
the final reach target before movement onset. Condition A (“no uncertainty”) was characterized by very low level of target uncertainty, while Condition B (“extrinsic
uncertainty”) was characterized by high level of target uncertainty. In Condition C (“intrinsic uncertainty”) the source of uncertainty was manipulated, i.e., not
originating from the limited amount of available target information as in Condition A and B, but from the ambiguity between potential reach targets. Please note that
in each of the three experimental conditions, reach targets could be located at any of the three locations and this figure shows different example target locations for
each condition.

the cumulated positional change between samples in horizontal
and vertical direction, summed across all samples. Path length
in depth direction was not included in this parameter, since
the distance between the start button and the screen was fixed
by the experimental set-up and could not vary across trials or
conditions. For later statistical analyses of experimental condition
effects, overall movement duration, deceleration duration and
path length of each participant were first averaged across all trials
directed towards the same reach target and then averaged across
the three targets.

In a next step, to be able to analyze the time course of
movement variability, reach trajectories were space-normalized
to allow for comparison across reach targets and conditions.
Space-normalization was preferred over normalizing the
trajectories in time, as we assumed differences in movement
duration between experimental conditions, which potentially
would have affected later analysis [for a more detailed discussion
on this issue, see Gallivan and Chapman (2014)]. To illustrate one
relevant potential issue related to time normalization, assume
unconstrained reaching movements under low target uncertainty
being characterized by bell-shaped velocity profiles with equal
amount of time spent for acceleration and deceleration of the
fingertip. Empirical evidence suggests that an experimentally
induced increase in reach target uncertainty results in an increase
in overall movement duration (Gallivan and Chapman, 2014).
This increase could in principal result from an increase in (A)
only acceleration duration, (B) only deceleration duration, or

(C) both symmetrically. If (A) or (B) would prove to be true,
comparing time normalized reach trajectories performed under
low and high target uncertainty would result in the comparison
of data samples from different phases (i.e., acceleration and
deceleration phase). Because of the hypothesized different
contribution of both phases to the control of voluntary
movements (Woodworth, 1899; Elliott et al., 2001; Elliott et al.,
2010), we aimed for normalizing the reach trajectories to a
dimension that did not differ between experimental conditions,
namely, the distance between movement start and end, to
avoid potential artifacts in the outcome of the data analysis.
Each trial was normalized to 11 equidistant samples between
movement start and movement end. Consequently, each sample
corresponds to 10% of the traveled distance in depth direction
(i.e., between the start button and laptop screen) starting
from 0% (1st sample). Reducing the sample resolution with
respect to important kinematic events (e.g., peak velocity, peak
acceleration) or certain percentages of movement distance or
time is a standard approach in motor control research, especially
with regard to the analysis of movement variability across the
time course of movement execution (e.g., Scholz and Schöner,
1999; Cuijpers et al., 2004; Krüger et al., 2011; van der Steen and
Bongers, 2011). Subsequently, variability in fingertip position was
calculated following the procedure of previous work from our
group (Krüger et al., 2011) as the within-subject between-trial
standard deviation of the mean horizontal fingertip position,
separately for each participant, condition, target position and
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each of the 11 samples. Following that, fingertip variability was
averaged across the three reach targets.

Statistical Analysis
Statistical analysis was calculated using SPSS Statistics 23
(IBM Corp., Armonk, NY, United States). Differences in
overall movement duration, acceleration duration, deceleration
duration, and path length between experimental conditions were
analyzed using repeated measurement ANOVA with Condition
as within-subject factor. The time course of variability of fingertip
position was analyzed using repeated measurement ANOVA
with Condition as within-subject factor and time sample as
repeated factor. In addition, endpoint variability was analyzed
as the variability of fingertip position at the 11th sample by
using repeated measurement ANOVA with Condition as within-
subject factor. Post-hoc comparisons were calculated using
paired-sample t-test to further investigate significant differences
between Conditions, and one-way ANOVA for further analyses
of significant differences between samples. The critical level
of statistical significance was set to α ≤ 0.05. Greenhouse-
Geisser corrections of the degrees of freedom were applied
if the assumption of sphericity for the ANOVA was violated.
Partial eta-square (ηp2) was calculated to aid in the interpretation
of the magnitude of observed effects. In accordance with the
recommendation of Sink and Stroh (2006) ηp2 ≥ 0.06 was
considered as medium effect and ηp2 ≥ 0.14 as large effect.

RESULTS

Qualitatively, the different levels and sources of target uncertainty
had a clear influence on reaching movements (see Figure 4).
These differences could also be supported by the outcomes
of the statistical data analyses, which will be described in the
following. Reported absolute values for the different experimental
conditions refer to the mean± SE.

Spatial and Temporal Movement
Characteristics
Target uncertainty had a significant influence on temporal and
spatial movement characteristics. Path length was significantly
increased under extrinsic target uncertainty (Condition B:
588.28 ± 10 mm, vs. A: 553.90 ± 8 mm, and C: 555.83 ± 9 mm,
see Figure 5A), as indicated by a main effect of condition
(F(2,18) = 16.26, p < 0.001, ηp2 = 0.64) and subsequent post-
hoc comparisons (A vs. B: t(9) = −5.03, p = 0.001; A vs. C:
t(9) = −0.30, p > 0.05; B vs. C: t(9) = 4.58, p < 0.001).
Similarly, overall movement duration was significantly longer
under extrinsic uncertainty (Condition B: 562 ± 112 ms, see
Figure 5B) as compared to intrinsic or no target uncertainty
(Condition C: 455 ± 142 ms and Condition A: 434 ± 129 ms,
respectively) which did not differ from each other, as indicated by
a significant main effect of condition (F(2,18) = 13.74, p< 0.001,
ηp

2 = 0.60) and subsequent pairwise comparisons (A vs. B:
t(9) = −5.41, p < 0.001; A vs. C: t(9) = −1.06, p > 0.05; B vs.
C: t(9) = 3.75, p = 0.005). The differences in overall movement
duration could be attributed to a significantly longer deceleration

duration under extrinsic target uncertainty as compared to the
two other experimental conditions (Condition A: 255 ± 71 ms,
B: 322 ± 65 ms, C: 265 ± 78 ms, see Figure 5B) as indicated
by a significant main effect of condition (F(2,18) = 12.39,
p < 0.001, ηp2 = 0.58) and post-hoc pairwise comparisons (A vs.
B: t(9) = −3.84, p = 0.004; A vs. C: t(9) = −0.73, p > 0.05; B
vs. C: t(9) = 5.07, p = 0.001). The absolute values of deceleration
duration represented 59.02%, 61.67%, and 58.93% of overall
movement duration for Condition A, B, and C, respectively.
While the absolute amount of time spent after peak velocity was
significantly different between the three experimental conditions,
the proportion of time was not (p> 0.05).

Movement Variability
Variability of fingertip position across the time course of
movement execution showed a clear increase-decrease pattern
for all conditions. This qualitative observation was supported
by a significant main effect of Sample (F(10,90) = 26,60,
p < 0.001, ηp2 = 0.75). Importantly, the time course of
variability of fingertip position also showed clear differences
between experimental conditions (see Figure 6). This qualitative
observation was supported by a significant main effect of
Condition across all samples (F(2,18) = 28.39, p < 0.001,
ηp

2 = 0.76) and at movement end (F(2,18) = 3.85, p = 0.04,
ηp

2 = 0.30). In addition, the interaction of Condition × Sample
was significant (F(20,180) = 18.80, p < 0.001, ηp2 = 0.60).
Post-hoc comparisons to further elucidate the differences in
variability of fingertip position across the time course of
movement execution revealed a graded pattern. First, fingertip
trajectories in Condition A (“no uncertainty”) showed a generally
lower variability as compared to Condition B (“extrinsic
uncertainty”), as indicated by a significant main effect of
Condition (F(1,9) = 36.24, p < 0.001, ηp2 = 0.80). This
difference became evident especially shortly after movement
start until movement end (see Figure 6), as indicated by a
significant interaction of Condition × Sample (F(10,90) = 21.61,
p < 0.001, ηp2 = 0.71) and post-hoc comparisons of single
samples (see Table 1).

The time courses of movement variability also showed
significant differences between the experimental conditions
with different sources of target uncertainty during motor
decision-making. Specifically, fingertip trajectories showed
lower variability early after movement start until movement
end in the case of intrinsic uncertainty as compared to
extrinsic target uncertainty (Condition C vs. B, respectively, see
Figure 6 and Table 1). This observation was supported by a
significant main effect of Condition (F(1,9) = 26.44, p = 0.001,
ηp

2 = 0.75), a significant interaction of Condition × Sample
(F(10,90) = 10.64, p < 0.001, ηp2 = 0.54) and post-hoc
comparisons of single samples (see Table 1). Interestingly,
significant differences in variability of fingertip position also
became evident between Condition A and C, especially during
the mid of movement execution, but not at movement start
or end (see Figure 6), as revealed by a significant interaction
of Condition × Sample (F(10,90) = 2.57, p = 0.01, ηp2 = 0.22)
and subsequent post-hoc comparisons of single samples
(see Table 1).
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FIGURE 4 | Reach trajectories of one representative participant. Each subfigure depicts all reach trajectories executed in one of the three experimental conditions.
The different colors relate to the different final reach targets. The axes represent the three dimension in space plotted in mm. The differences in between-trial
variability of fingertip trajectories become clearly visible.

FIGURE 5 | Spatial and temporal movement characteristics. (A) The group averages (±SE) of path length (horizontal and vertical direction, in mm) are displayed for
the three experimental conditions. Path length was significantly increased under extrinsic uncertainty as compared to the other two conditions. (B) Average overall
movement duration and duration of deceleration are displayed. Again, the mean ± SE are plotted. Overall movement duration was significantly increased under
extrinsic uncertainty, which was related to the significantly increased deceleration duration in this condition. Note that although the proportion of time spent after
peak velocity was not statistically different between experimental conditions; ∗∗p < 0.01.

DISCUSSION

In this study, healthy young adults performed reaching
movements under three different conditions of target
uncertainty. The aim was to investigate the influence of
different levels and sources of target uncertainty during motor

decision-making on movement execution. To quantify the effect
of target uncertainty, variability of fingertip position during
the time course of movement execution and at movement end
was analyzed, in addition to temporal and spatial movement
characteristics. Overall, the results of the study suggest that the
time course analysis of movement variability can reveal the effect
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FIGURE 6 | Time course of variability of fingertip position. For each of the three experimental conditions, the time course of movement variability (mean ± SE) is
displayed. Each of the three time courses show an increase-decrease pattern of movement variability, which is most strongly pronounced for Condition B (“extrinsic
uncertainty”). There is no difference in variability of fingertip position at movement start between the three experimental conditions.

TABLE 1 | Statistical parameters regarding the analysis of the time course of variability of fingertip position for the three experimental conditions.

Time course Condition A vs. B Condition A vs. C Condition B vs. C

Movement start n.s. n.s. n.s.

10% n.s. n.s. t(9) = 2.40, p = 0.04

20% t(9) = −3.79, p = 0.004 n.s. t(9) = 3.80, p = 0.04

30% t(9) = −5.01, p = 0.001 t(9) = −2.55, p = 0.03 t(9) = 4.54, p = 0.001

40% t(9) = −6.04, p < 0.001 t(9) = −2.46, p = 0.04 t(9) = 4.94, p = 0.001

50% t(9) = −6.63, p < 0.001 t(9) = −2.35, p = 0.04 t(9) = 5.10, p = 0.001

60% t(9) = −6.34, p < 0.001 t(9) = −2.29, p = 0.05 t(9) = 4.92, p = 0.001

70% t(9) = −5.91, p < 0.001 n.s. t(9) = 4.51, p = 0.001

80% t(9) = −5.25, p = 0.001 n.s. t(9) = 4.14, p = 0.003

90% t(9) = −5.13, p = 0.001 n.s. t(9) = 3.58, p = 0.006

Movement end t(9) = −2.89, p = 0.02 n.s. t(9) = 3.16, p = 0.01

For clarity reasons, only statistical parameters of significant differences are displayed, with the significance level at α ≤ 0.05. Each line corresponds to the pairwise
comparison of variability at one sample, which equals 10% of the traveled reach distance.

of different sources of target uncertainty on the processing of
potential action plans during motor decision making, which
are not captured with standard temporal and spatial kinematic
analyses.

Influence of Different Levels of
Uncertainty
The first main outcome of our study is that different levels
of extrinsic target uncertainty directly affect temporal and
spatial movement characteristics of goal-directed reaching
movements. This supports existing empirical evidence,
which has been accumulated in the last recent years
(e.g., Trommershäuser et al., 2005; Song and Nakayama, 2009;

Gallivan et al., 2011; Gallivan and Chapman, 2014). During
that time, the theoretical approach to movement planning
has changed from a hierarchical system, assuming a serial
process of action planning, to a theory of parallel action
planning (Cisek, 2007; Cisek and Kalaska, 2010). The basic
assumption is that the motor system, to account for uncertainties
and dynamics in the environment, specifies and prepares
multiple potential actions in parallel, of which one is finally
selected. More recently, Cisek and Pastor-Bernier (2014)
proposed that these two processes, action specification and
selection even go in parallel with action execution – termed
“embodied decision making”. Empirical evidence stemming
from neurophysiological and kinematic data seems to support
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this view. Work by e.g., the group of Chapman, Gallivan and
colleagues provided empirical evidence that, in the presence
of target uncertainty, multiple potential action plans are
prepared in parallel and that action planning is influenced
by e.g., the spatial distribution of targets or their likelihood
of appearance (Chapman et al., 2010; Gallivan et al., 2011;
Gallivan and Chapman, 2014). They analyzed spatial and
temporal characteristics of the movement trajectories (e.g.,
movement duration, path length, etc.) to highlight differences in
movement execution between conditions with low or high target
uncertainty due to the availability of information about the final
reach target.

In our study, we were able to replicate these findings. We
found a significant increase in overall movement duration in
the presence of high as compared to no extrinsic uncertainty
about the final reach target (Condition B vs. A, respectively). This
increase could be attributed to a significantly longer deceleration
duration in that condition, which suggests greater amount of
online correction processes taking place in the presence of high
extrinsic target uncertainty (Elliott et al., 2001; Elliott et al.,
2010). However, the proportion of time spent after peak velocity
was statistically similar between groups, which limits the general
validity of the previous suggestion. In all three conditions,
about 60% of overall movement time was spent after peak
velocity, indicating a general asymmetry in the velocity profile
with longer times spent for deceleration in all conditions. This
finding, in combination with the significantly longer absolute
time spent after peak velocity, suggests that, under high extrinsic
uncertainty, both acceleration and deceleration duration are
increased as compared to no uncertainty, with only deceleration
duration reaching the statistical level of significance. In the
existing literature, increased movement duration under higher
levels of extrinsic target uncertainty are explained as resulting
from the simultaneous increase in path length, as also observed in
our study (see Figure 4), reflecting greater lateral deviation from
a straight path between movement start and endpoint (Gallivan
and Chapman, 2014). This finding is commonly discussed as
resulting from a competition between two different movement
plans (for reaching to either one or the other target). Because
of this competition, trajectories are initially directed towards a
midpoint between the two potential targets, and only after the
final reaching target is known, redirected towards it (Gallivan and
Chapman, 2014; Gallivan et al., 2018). Alternatively, this finding
is discussed as reflecting the execution of a movement plan
that optimizes costs for later motor corrections (Nashed et al.,
2017; Gallivan et al., 2018). The analyzed spatial and temporal
movement parameters in our study do not allow any conclusion
in favor or against any of the two options.

Similarly, fingertip variability during the time course of
movement execution was by far the highest when motor decision-
making took place under high level of extrinsic target uncertainty
(Condition B) as compared to the other two conditions. This is
a striking evidence for the impact of different levels of extrinsic
target uncertainty during motor decision-making on movement
execution. It also reflects the dynamics of the motor decision-
making process in case of high target uncertainty (Condition B).
Even in trials with similar environmental conditions, i.e., with

regard to the location of potential reach targets or the onset
of the final target display, the competition between multiple
potential action plans varied across trials, directly affecting the
finally performed movement path, and the variability between
movement paths across trials. Overall, within-subject between-
trial variability of fingertip position showed an increase-decrease
pattern across the time course of movement execution, with low
variability at movement end (∼5–10 mm from mean endpoint,
see Figure 6). This pattern is similar to previous studies of
our group analyzing movement variability to gain insight into
movement planning and control processes (see e.g., Krüger et al.,
2011, 2012) and illustrates the effectiveness of online-control
mechanisms.

Effect of Different Sources of Uncertainty
The second main outcome of our study is that not only the level
of target uncertainty affects the parallel processing of multiple
potential action plans during motor decision-making, but also
the source of target uncertainty and that this can be revealed
through analyzing the time course of movement variability.
Lipshitz and Strauss (1997) highlighted the existence of different
types of uncertainty, which can be classified e.g., according to
their source. Following their proposition, decision uncertainty
can originate from the limited amount of information about
the final reach target (“extrinsic uncertainty” in our study) as
well as from the ambiguity of reach options between which
participants can freely choose (“intrinsic uncertainty” in our
study). Manipulating the amount of information about the final
reach target is a common experimental procedure in motor
decision making-research (see Gallivan et al., 2018 for a review)
and also used in our study to imply conditions of no and
high level of extrinsic target uncertainty (Condition A and
B, respectively). Implying different sources of uncertainty are
much less common experimental manipulations, yet. So far,
conditions of free choice are commonly used to reveal and
manipulate individual preferences of choice options [see Gallivan
and Chapman (2014) for a short summary on these results].

In our study, target preference should not have been a relevant
aspect in the free choice condition (Condition C, “intrinsic
uncertainty”), as the potential reach targets were not associated
with any kind of reward or penalty. In contrast, participants were
instructed to reach about equally often to each of the three targets
across all trials. This allowed us to focus on the different source of
decision uncertainty in this condition as compared to the other
two experimental conditions and its consequences on the process
of motor decision-making. In the two forced choice conditions
(Condition A and B) the motor decision-making strategies were
externally imposed by the time point of indication of the final
reach target. In Condition A, where the final reach target was
cued immediately with stimulus onset, decision uncertainty was
minimal, thus, allowed participants to straightly reach towards
the indicated target. In contrast, in Condition B, where the
final reach target was cued only after movement onset, the
experimental set-up enforced the ongoing parallel processing of
multiple potential action plans during movement execution. This
“embodied decision-making” strategy is supposed to be beneficial
to cope with uncertainties and environmental dynamics during

Frontiers in Psychology | www.frontiersin.org 10 January 2019 | Volume 10 | Article 4185

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00041 April 23, 2019 Time: 18:38 # 11

Krüger and Hermsdörfer Target Uncertainty During Motor Decision-Making

movement execution (Cisek and Pastor-Bernier, 2014). The same
strategy would also allow to successfully cope with the intrinsic
target uncertainty in the free choice condition (Condition C),
which should then reflect in the movement kinematics of the
reach trajectories. However, when participants were allowed to
freely choose between potential reach targets, an alternative
motor decision-making strategy of serial action planning could
have also been applied. To minimize reach target uncertainty
at the time point of movement start, participants could have
decided for any of the two potential reach targets immediately
after stimulus onset, which would have allowed them to reach
straightly to the chosen target, similarly to Condition A, where
the reach target was cued before movement onset.

The analysis of spatial and temporal movement characteristics
revealed significant differences in path length and overall
movement duration between intrinsic and extrinsic target
uncertainty (Condition C and B, respectively), but not between
the intrinsic and no uncertainty condition (Condition A).
This finding seems to support the assumption that, under
free choice conditions, decisions on the final reach target are
made using a strategy that minimizes uncertainty at movement
start. However, the analysis of movement variability revealed
a distinct pattern. In contrast to the findings in spatial and
temporal movement characteristics, the time course analysis
of fingertip variability revealed significant differences between
reaching movements under extrinsic (Condition A and B) and
intrinsic target uncertainty (Condition C). It became evident
that under intrinsic uncertainty (i.e., target ambiguity during
free choice) fingertip variability was higher than under low
extrinsic target uncertainty early after movement onset until
the last quarter of the reach trajectory. This suggests that
competition between action plans related to reaching towards
different potential targets was still ongoing during movement
execution and not finalized at movement onset and supports
the theory of embodied decision making (Cisek and Pastor-
Bernier, 2014). The results are also compatible with attention
based models of selective reaching (Tipper et al., 1997, 1998;
Welsh et al., 1999; Welsh and Elliott, 2004). In these models,
it is hypothesized that the presence of a non-target stimulus in
the environment automatically evokes a neural response, which
has to be inhibited to successfully reach towards the target
stimulus. This inhibition process acts as a distractor on the
initiation and execution of the actual reach movement. From
this perspective, the pure presentation of the second potential
reach target in the free choice condition (Condition C) could have
affected the time course of movement variability by interfering
with the preparation and execution of the reaching movement
towards the selected target. Thus, even if response selection in
the intrinsic uncertainty condition (Condition C) would have
been finished before movement initiation, the response inhibition
process of the non-selected reach target could have affected the
kinematics towards the selected reach target. In general, all of the
three above mentioned models (Tipper et al., 1998; Welsh and
Elliott, 2004; Cisek and Pastor-Bernier, 2014) agree in their basic
assumption that the presence of multiple potential reach targets
in the environment automatically evoke parallel responses that
compete against each other. At the present moment, we cannot

finally conclude whether the observed differences in the time
course of movement variability result from the ongoing decision
process between potential action plans, as proposed by Cisek and
Pastor-Bernier (2014), or from the inhibition process of the non-
selected reach target, as proposed by Tipper et al. (1998) and
Welsh and Elliott (2004). Further research will be necessary to
clarify this point.

Overall, the findings suggests that the time course analysis of
movement variability of the end-effector can reveal dynamics in
the motor decision-making process, which cannot be captured by
standard kinematic movement analyses. The observed differences
in the time course of fingertip variability between the conditions
of intrinsic uncertainty (Condition C) and low level of extrinsic
uncertainty (Condition A) are much smaller as between those
two conditions and Condition B (“extrinsic uncertainty”, see
Figure 6). This might suggest different levels of uncertainty
between the experimental conditions and highlights the relevance
of accounting for the different sources and levels of uncertainty in
future studies on that topic.

Methodological Considerations
To the best of our knowledge, this is the first study investigating
the effect of different sources of target uncertainty on reach
kinematics. On this basis, we are aware that it does not take
sufficient account for all critical points, which need further
consideration in future research. First, we were able to show
differences in end-effector variability related to different sources
of uncertainty. It is intriguing to conclude that a higher
amount of movement variability during movement execution
directly relates to a higher level of uncertainty during motor
decision-making. However, in the current study we cannot
exactly determine the level of uncertainty for the free choice
condition. Further studies investigating the effect of different
levels of uncertainty in the presence of target ambiguity
(“intrinsic uncertainty”), or comparing the effect of similar
levels of uncertainty between different sources of uncertainty
are needed to further elucidate that point. Second, in this
study we analyzed the time course of fingertip variability during
movement execution, providing information about end-effector
movement control process. However, sophisticated mathematical
approaches have been developed, which allow gaining insight
into the coordination of the abundant effector degrees of
freedom that underlies the control of fingertip position (e.g.,
Scholz and Schöner, 1999; Müller and Sternad, 2004; Krüger
et al., 2017). The application of these approaches might prove
to be valuable for further progress in integrating empirical
evidence on movement planning and control with psychological
theories and computational models on decision-making. Last,
we acknowledge the existence of different methodological
approaches in calculating movement variability and its changes
over time, in particular with regard to (1) time- vs. space-
normalization of the movement trajectories and (2) reducing
the time resolution to relevant events vs. functional comparison
(FDA). For the trajectory normalization we provided our
rationale – to normalize to the dimension that varies the least
between conditions (cf., Gallivan and Chapman, 2014). While
space-normalization is less common in the existing literature,
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we are convinced by its adequacy for our current study.
With regard to the second critical methodological decision, we
followed the common procedure in motor control research,
without having any reason for considering FDA as more or less
appropriate for the purpose of our study. Future studies with a
stronger methodological focus might target this aspect.

CONCLUSION

In this study, we investigated the effect of different levels and
sources of target uncertainty during motor decision making on
the kinematics of reaching movements. In line with previous
research, we found increased path length, overall movement
duration and deceleration duration with increasing level of
extrinsic target uncertainty. Similarly, we found differences
in the time course of within-subject, across-trial fingertip
variability between different levels of extrinsic target uncertainty,
with higher amount of variability going along with higher
level of uncertainty. Importantly, we also found increased
variability of fingertip position during the time course of
movement execution in the presence of intrinsic uncertainty
as compared to low level of extrinsic uncertainty, but no
differences in path length or movement duration. This suggests
that under intrinsic uncertainty, i.e., target ambiguity in free
choice condition, multiple potential actions are planned and
compete for action during movement execution. This is a
remarkable finding, since under the condition of free choice,
as tested in this study, in principal a motor decision-making
strategy of serial action planning could have been applied to
minimize decision uncertainty before movement onset. However,
the time course analysis of movement variability revealed
that the motor decision-making process was still ongoing
during movement execution. Importantly, these differences
were not captured by standard kinematic movement analyses.
In conclusion, during motor decision making under intrinsic
target uncertainty, the strategy of ongoing parallel processing

of multiple potential actions during movement execution
that allows coping with uncertainties and environmental
dynamics seems to be favored over a strategy of serial action
planning that minimizes decision uncertainty before movement
onset.
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A Corrigendum on

Target UncertaintyDuringMotorDecision-Making: The TimeCourse ofMovement Variability

Reveals the Effect of Different Sources of Uncertainty on the Control of Reaching Movements

by Krüger, M., and Hermsdörfer, J. (2019). Front. Psychol. 10:41. doi: 10.3389/fpsyg.2019.00041

In the original article, there was a mistake in Figure 2 and the corresponding figure legend as
published. The mistake relates to an incorrect description of the timeline of stimulus presentation
and the occurrence of the start signal. While it was stated, that the start signal occurred
1,000–2,000ms after target display, both actually occurred at the exact same time. The correct
Figure 2 and legend appears below.

Due to the error in the description of the timeline of stimulus presentation and the occurrence of
the start signal described above, a correction has beenmade to theMethods, subsection Procedure,
paragraph two:

“Target uncertainty during motor decision-making was systematically manipulated across
three blocks (i.e., three conditions) of 66 trials each, with the order of conditions being
pseudo-randomized across participants. Condition A & B manipulated the level of uncertainty
in a forced choice task between low and high, respectively, with Condition A (“no uncertainty”)
following a “go-after-you-know”-paradigm, and Condition B (“extrinsic uncertainty”) following a
“go-before-you-know”-paradigm (Gallivan et al., 2018). In contrast, the source of uncertainty was
altered in Condition C (“intrinsic uncertainty”), originating from the ambiguity of reach targets in
a free choice task. All three conditions followed the general procedure as described in Gallivan
and Chapman (2014). Participants were visually presented to circular targets (size: 1.3 cm) on
the screen, which were located in 7.5 cm distance either above or on the left or right hand side
of a fixation cross (i.e., three possible target locations, target size: 1.3 cm, see Figure 1B). At the
beginning of each block, participants were informed about the following testing condition and its
consequences for the target display through written instructions on the screen. In Condition A,
participants were presented to only one circle in each trial, i.e., either on the left, above or on the
right of the fixation cross. In contrast, in Condition B and C, participants were always presented to
two circles (i.e., three possible combinations of target locations: left-above, left-right, above-right).
Each trial started by the participants pressing the start button on the number pad. Subsequently,
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FIGURE 2 | Experimental procedure. In each trial, following a random waiting period of 1–2 s after an initial button press, the potential reach targets were displayed as

unfilled circles, appearing at any of the three potential target locations surrounding the fixation cross. Simultaneously, an acoustic start signal triggered participant’s

response. Upon button release, the final reach target was indicated through filling of the respective circle. Each trial ended with participants touching a circle on the

screen. This figure exemplifies the procedure for one potential trial of Condition A. The same temporal procedure applied for Condition B and C. However, for

Condition B and C, two circles were displayed at any of the three location-combinations in each trial.

and depending on the experimental condition, 1–2 unfilled
circles were presented at any of the three locations (see Figure 2)
following a random waiting period of 1–2 s. Simultaneously,
an acoustic start signal sounded and requested participants
to initiate their reaching movement within 100–325ms.
Immediately following the release of the start button the final
reaching target was indicated through filling of the respective
circle. In Condition A (“no uncertainty”) participants were
presented to only one target before and after movement onset,
so that there was no uncertainty about the reach target during
motor decision making (see Figure 3, 1st column). In Condition
B (“extrinsic uncertainty”) participants were presented to two
targets on the screen, of which only one filled after release of the
start button (see Figure 3, 2nd column). Last, in Condition C
(“intrinsic uncertainty”) participants had the free choice to which
of the two presented unfilled circles they point. Accordingly,
both circles filled after movement initiation (see Figure 3, 3rd
column). Participants were asked to perform fast and accurate
reaching movements from button release to hitting the reach
target and to finish the movement within 1 s. Trials that did
not meet the reaction time or movement time constraint were
excluded from further analysis. In Conditions A and B, each of
the three targets were indicated 22 times as the pointing target
(i.e., Condition A: 3 targets× 22 trials= 66 test trials; Condition
B: 3 targets × 2 possible target combinations × 11 trials = 66
test trials), while in Condition C participants were asked to point
about equally often to each of the three targets. Participants were
instructed to strictly follow the visual instructions on the screen.
Between each block, participants had the chance to rest for a
maximum of 5min to minimize fatigue-induced changes in task

performance and motor behavior. Before the start of each block,
participants had the chance to familiarize themselves with the
task at hand in a practice block consisting of five trials.”

In addition, there was an error in the summary of the
results on endpoint variability in the Discussion. It was stated
that endpoint variability was equal at movement end for all
three conditions. In fact, as correctly reported in Table 1
and the Results, endpoint variability was significantly higher
for Condition B.

A correction has been made to the Discussion, subsection
Influence of Different Levels of Uncertainty, paragraph three:

“Similarly, fingertip variability during the time course of
movement executionwas by far the highest whenmotor decision-
making took place under high level of extrinsic target uncertainty
(Condition B) as compared to the other two conditions. This is
a striking evidence for the impact of different levels of extrinsic
target uncertainty during motor decision-making on movement
execution. It also reflects the dynamics of the motor decision-
making process in case of high target uncertainty (Condition B).
Even in trials with similar environmental conditions, i.e., with
regard to the location of potential reach targets or the onset
of the final target display, the competition between multiple
potential action plans varied across trials, directly affecting the
finally performed movement path, and the variability between
movement paths across trials. Overall, within-subject between-
trial variability of fingertip position showed an increase-decrease
pattern across the time course of movement execution, with low
variability at movement end (∼5–10mm from mean endpoint,
see Figure 6). This pattern is similar to previous studies of
our group analyzing movement variability to gain insight into
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movement planning and control processes (see e.g., Krüger
et al., 2011, 2012) and illustrates the effectiveness of online-
control mechanisms.”

The authors apologize for these errors and state that they do
not change the scientific conclusions of the article in any way.
The original article has been updated.
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Neurons in the dorsal pathway of the visual cortex are thought to be involved in motion

processing. The first site of motion processing is the primary visual cortex (V1), encoding

the direction of motion in local receptive fields, with higher order motion processing

happening in the middle temporal area (MT). Complex motion properties like optic flow

are processed in higher cortical areas of the Medial Superior Temporal area (MST). In this

study, a hierarchical neural field network model of motion processing is presented. The

model architecture has an input layer followed by either one or cascade of two neural

fields (NF): the first of these, NF1, represents V1, while the second, NF2, represents

MT. A special feature of the model is that lateral connections used in the neural fields

are trained by asymmetric Hebbian learning, imparting to the neural field the ability to

process sequential information in motion stimuli. The model was trained using various

traditional moving patterns such as bars, squares, gratings, plaids, and random dot

stimulus. In the case of bar stimuli, the model had only a single NF, the neurons of which

developed a direction map of the moving bar stimuli. Training a network with two NFs

on moving square and moving plaids stimuli, we show that, while the neurons in NF1

respond to the direction of the component (such as gratings and edges) motion, the

neurons in NF2 (analogous to MT) responding to the direction of the pattern (plaids,

square object) motion. In the third study, a network with 2 NFs was simulated using

random dot stimuli (RDS) with translational motion, and show that the NF2 neurons can

encode the direction of the concurrent dot motion (also called translational flow motion),

independent of the dot configuration. This translational RDS flow motion is decoded by

a simple perceptron network (a layer above NF2) with an accuracy of 100% on train

set and 90% on the test set, thereby demonstrating that the proposed network can

generalize to new dot configurations. Also, the response properties of the model on

different input stimuli closely resembled many of the known features of the neurons found

in electrophysiological studies.

Keywords: neural field models, weight asymmetry, pattern selectivity, lateral interactions, primary visual area (V1),

middle temporal area (MT), medial superior temporal area (MST)
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INTRODUCTION

Visual motion is experienced by living organisms either due to
self-motion with respect to the environment or by the motion
of individual objects in the environment. Nearly half a century of
research has provided a detailed description ofmotion processing
in mammalian visual cortex. For example, we know that motion
is processed along the visual motion pathway that consists of
at least three hierarchical cortical stages—primary visual cortex
(V1), middle temporal area (MT), and medial superior temporal
area (MST) (Adelson and Movshon, 1982; Movshon et al., 1985;
Movshon and Newsome, 1996; Pack et al., 2001; Orban, 2008;
Gilaie-Dotan, 2016). Neurons in each of these stages have diverse
response properties and are involved in different aspects of
motion processing.

The first cortical stage of primate motion processing starts at
V1 where a subset of cells is highly direction selective (Hubel
and Wiesel, 1968; Movshon and Newsome, 1996). These cells
have relatively small spatiotemporal receptive fields (Hubel and
Wiesel, 1974) and encode the direction of motion of local
features. These motion cues are often different from the motion
of the visual pattern; hence locally encoded motion cues are
ambiguous (Wallach, 1976) and result in the so-called aperture
problem (Fennema and Thompson, 1979; Wuerger et al., 1996;
Pack et al., 2001, 2003). These local motion cues are integrated by
the second stage cells at MT (Adelson and Movshon, 1982; Pack
et al., 2001; Born and Bradley, 2005) that have relatively larger
receptive fields and compute the direction of pattern motion.
Earlier experimental studies of pattern motion selectivity were
conducted with stimuli consisting of moving plaids (Rodman
and Albright, 1989). They showed that MT cells are capable of
encoding two-dimensional motion (pattern motion) while V1
cells encode one dimension of stimulus motion (component
motion: the motion of a pattern boundary segment such as bar,
edge and sinusoidal grating). MT is also thought to estimate
overall pattern velocity by combining local velocity cues from
V1 (Adelson and Movshon, 1982; Bowns, 1996, 2018). However,
some cells in MT (Majaj et al., 2007) selective to components
moving in preferred direction rather than the direction of
pattern motion. From optical imaging and single-cell recording
studies we know that MST cells receive projections from MT,
and respond selectively to the higher order optic flow motion,
including translation, radial, rotation and combinations of the
latter two (Tanaka and Saito, 1989; Duffy andWurtz, 1991; Orban
et al., 1995; Morrone et al., 2000).

Efforts to model the properties of neurons in the motion
pathway had progressed with the accumulation of physiological
results. There are models that successfully account for various
properties of V1 cells, such as orientation selectivity, ocular
dominance, and direction selectivity. Adelson and Bergen
(1985) used phase independent spatiotemporal filters (created
using oriented Gabor functions) to achieve direction selectivity.
The filters were designed as quadrature pairs tuned for both

Abbreviations: NF, Neural Field; V1, Primary Visual Cortex; MT, Middle

Temporal Area; MST, Medial Superior Temporal Area; RDS, Random Dot

Stimulus; RF, Receptive Field.

directions. Saul and Humphrey (1990) achieved direction
selectivity by designing both lagged and non-lagged cells. A
model of Simoncelli and Heeger (1998) demonstrated direction
selectivity of V1 cells and pattern selectivity of MT cells by
integration of constraints. The Heeger model is non-linear and
simulated the moving stimulus-response as the sum of the
responses to a set of sequential stimuli evenly spaced in time, with
an explicit time variable. Others showed that activity-dependent
self-organization results in direction selectivity (Shouno and
Kurata, 2001; Miikkulainen et al., 2006). Miikkulainen et al. used
intra-cortical circuitry to incorporate excitatory and inhibitory
effects along with LGN lagged cells to achieve direction selectivity
(Miikkulainen et al., 2006).

These early studies either processed the entire stimulus
trajectory, or a subset of the trajectory via time-lagged input
at a single time step, which is biologically unrealistic. Some
models (Somers et al., 1995) focus on explaining a single
functional property like orientation selectivity or direction
selectivity, therefore accounting only for a subset of visual
neural behaviors. The models proposed by Miikkulainen
et al. (2006) attempt to explain diverse properties such
as orientation selectivity, direction selectivity and ocular
dominance of neuronal population in the Primary visual
cortex which is the first stage in the motion pathway.
Bichler et al. proposed an interesting 2 layer feedforward fully
connected neural network model that can learn temporally
correlated features directly from vision sensor data using
biologically plausible unsupervised STDP learning scheme
(Bichler et al., 2012). The biologically plausible motion
estimation model (Bowns, 2018) which is an enhanced version
of Component-Level Feature Model (Bowns, 2011), can estimate
the motion trajectories successfully from 7,000 synthetic
moving images.

In this paper, we describe a computational model that can
explain the diverse properties of the neurons, such as direction
selectivity, pattern selectivity, and translation flow selectivity at
different regions of the motion pathway. The proposed network
can develop Gabor like receptive fields (Marcelja, 1980; Bowns,
2018) as a result of training the weight connections with moving
bars using biologically plausible unsupervised learning rule.
A study (Fu, 2004) reported that visual response properties
like orientation selectivity, direction selectivity etc. are crucially
dependent on the lateral interactions in the visual cortical
circuit. They hypothesized that during adaptation Spike-Time-
Dependent Plasticity (STDP) allows motion stimuli to induce
asymmetry in the intracortical connections. The crucial role
of lateral interactions in the development of the retinotopic
map (Philips and Chakravarthy, 2015) was recently modeled
using LISSOM (Philips and Chakravarthy, 2015) which can be
considered as a neural field model with short-range excitation
and long-range inhibition. Thus, each neural field unit has
excitatory lateral connections with its neighboring units and
inhibitory lateral connections with units farther away. We take
our lead from this model and used asymmetric Hebb rule
to introduce asymmetry in the intra-cortical circuit during
adaptation to visual motion stimuli. The famous Hebb postulate
(Morris, 1999) can be described as follows:
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When an axon of cell A is near enough to excite cell B or
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

MODEL ARCHITECTURE

The architecture of the proposed hierarchical motion processing
network with two NFs is shown in Figure 1A. As described
in Figure 1A every neuron makes lateral connections with
neurons in its neighborhood in two ways: (i) short-range lateral
excitatory connections and (ii) long-range lateral inhibitory
connections. These lateral connections are permitted to be
asymmetric. Also, every neuron is connected to its receptive field
via afferent connections. All afferent and lateral connections are
randomly initialized.

Training Procedure
A number of simulations were conducted using traditional
patterns used in earlier studies (Simoncelli and Heeger, 1998;
Bowns, 2018) such as moving bars, moving plaids, moving
RDS etc. to ensure the role of asymmetric lateral interactions
in driving motion selective responses. To begin with, various
network properties (number of NFs, NF dimension, and number
of iterations in settling process) and parameters (receptive field
size, excitatory and inhibitory radius, learning rates used during
weight adaptation, scaling factors used in lateral interaction) need
to be defined depending on the cortical region intended tomodel.
For example, direction selectivity of V1 cells was modeled by a
single NF, whereas the pattern selectivity ofMT cells wasmodeled
with a network of two NFs. The general strategy adopted for
choosing the model parameters is discussed in the subsequent
sections. In each simulation, for each NF, parameter set varies
(as shown in Table 1) and is determined through trail-and-
error method.

The training set is created with short sequences/videos, each
composed of 10 images/frames at the most. During training, the
individual sequence from the training set was drawn randomly
and presented to the network image by image over the time
period T (Figure 1B) so that, at a given time step t, the network
has access only to the current image.

Each neuron in a given NF at time t first calculates its
instantaneous afferent response, which is further modified by
neighboring neurons through lateral interactions that result in
a stabilized activity pattern. For a given time “t” the lateral
interactions were allowed to proceed for several time steps “s,”
called the settling time. Once the settled activity is obtained in
the NF, the weights (both afferent and lateral) will get updated
through asymmetric Hebbian learning (see the following section
for details). Now the network is ready for the presentation of
the next image at time t+1. This process is repeated until we
present the last image of the sequence. Before presenting the next
sequence, the neuron activity in the NFwas reset to zero, bringing
the neurons to the resting state. Presenting the entire training set
once to the network is termed as an epoch. Training was carried
out until the weights are saturated. Weights are called saturated
if 80% of the change in weights (1W) approaches to 0. Once the

training is completed, the network response was abstracted as a
map (using the procedure described in the following sections)
to check for the topographic self-organization. Also, the model
results were compared with motion sensitivity results from
electrophysiological experiments. All simulations were carried
out using MATLAB.

Equations Used for Training
Initial Response
For each image presentation, the initial activity Sij of the neuron
at (i,j) is computed as a scalar product of afferent weight vector
Wij and its receptive field Xij Equation (1); σ is piecewise linear
sigmoid activation function; γaff is a constant scaling factor.

Sij = σ
(

γaff ∗
(

Wij.Xij

))

(1)

As the afferent connections are random initially, the initial
activity pattern on the NF was widespread and distributed all
over the NF. This distributed activity was focused into a localized
response by the effect of lateral interactions as follows.

Lateral Interactions
Each neuron’s initial response was strengthened and sharpened
by both short-range lateral excitation and long-range lateral
inhibition over several time steps (Figure 1B). A number of
time steps are represented by a parameter called the settling
time (Table 1). At each of these discrete time steps “s,” the
neuron combines its afferent stimulation with lateral interactions
(Equation 2). During the iterations, the initial activity pattern
that spreads over the substantial part of the NF was slowly
converged into a focused patch of activity bubble and settles
in the best responding area of the NF. Note that while
the NF response settles down, the afferent input remains
constant. The overall response of a neuron that combines
both afferent and lateral interactions is described by the
following equation.

ηij (s) = σ (Sij + γexc

∑

kl
ηij (s− 1)∗ Eij,kl

− γ inhb

∑

kl
ηij (s− 1)∗ Iij,kl) (2)

where ηij stands for the activity of the neuron at (i,j),
Eij,kl, and Iij,kl are excitatory and inhibitory weights
from the neuron (k,l) to (i,j). The relative strengths of
excitatory and inhibitory lateral connections of each
NF can be represented by constant scaling factors γexc
and γinhb.

Weight Adaptation
Once the activity has settled, both afferent and lateral weights
for each neuron were modified. The afferent weight connection
between NF unit (i,j) and input pixel (k,l) is modified as

1Wij,kl(t) = αaff ∗Xkl ∗ηij(t) (3)

The lateral weights are modified according to a variation of
the Hebbian learning. Classical Hebbian learning is temporally
symmetric: weight update is dependent on the correlation
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FIGURE 1 | The architecture of the motion processing system. (A) Neural field Model: It consists of two NFs, analogous to V1 and MT of the visual cortex. Input layer

represents the receptor surface such as the retina. Each NF is organized as a two-dimensional array of neurons with lateral connections. Every neuron has excitatory

afferent (incoming; shown in dotted lines) connections from units in their square-shaped RF. Neighboring neurons have overlapping RFs. In addition, every neuron

receives inputs from two types of lateral connections: excitatory connections (green circle represents excitatory radius) with nearby neighbors and inhibitory with

neurons farther away (red circle represents inhibitory radius). (B) the timeline of input sequence presentation to the network: The model response to a moving stimulus

was simulated at two different time scales. The sequence of n frames was presented to the network over a period of time T. Motion within the stimulus sequence was

generated at several discrete time steps “t.” The number of time steps is equal to the number of frames within the sequence. For a given time “t” the lateral

interactions were allowed to proceed for several time steps “s,” called the settling time.

TABLE 1 | Parameters used in various simulations.

Parameter Direction

selectivity

Component and Pattern motion selectivity Translational flow selectivity

Thin bar Gratings and Plaids Square object RDS Translate

NF1 NF1 NF2 NF1 NF2 NF1 NF2

Dim 20 × 20 20 × 20 13 × 13 13 × 13 15 × 15 29 × 29 22 × 22

RF 64 × 64 24 × 24 8 × 8 12 × 12 13 × 13 4 × 4 8 × 8

rexc 3 2 3 3 3 3 3

rinhb 10 10 4 6 7 4 5

γaff 1 1 1 1 1 0.3 1

γexc 3.9 8.2 4.8 2.8 2.2 0.68 15.68

γinhb 1 1 3 1 1.5 1 1

αaff 0.05 0.05 0.05 0.3 0.3 0.05 0.05

αexc 0.05 0.05 0.05 0.3 0.3 0.05 0.05

αinhb 0.05 0.05 0.05 0.3 0.3 0.05 0.05

Ts 10 10 8 10 10 10 10

e 500 1,500 500 500 500 200 200

Image size 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 16 × 16 16 × 16

between pre- and post-synaptic activity. We employ an
asymmetric Hebbian rule (Schulz and Reggia, 2004) where
the change in weight connection 1Wij,kl from (k,l) to (i,j) is
computed as a dot product of pre- and post-synaptic neuron
activities at different time steps as shown in Equation (4).
Presynaptic activity is the settled activity of (k,l) for the previous
frame η kl(t-1) and postsynaptic activity is the increase in the
settled activity of (i,j) for the current frame η ij(t) relatively to
the previous frame. The asymmetric Hebbian rule is combined
with postsynaptic divisive normalization (Turrigiano, 1999)
[Equation (5)] to prevent weights from increasing without

bounds. The calculated new weight is used until the end of the
next settling process.

1Wij,kl(t) = α∗max(0, (ηij (t) − ηij(t − 1)))∗ηkl(t − 1) (4)

where α is the parameter determining the rate of learning. For
each type of connection (excitatory, inhibitory) separate learning
rates were used.

Wnew
ij,kl =

Wold
ij,kl

+ 1Wij,kl
∑

u (W
old
ij,kl

+ 1Wij,kl)
(5)
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where Wnew
ij,kl

is new weight connection from neuron (k,l) to

neuron (i,j) at each “t.” Lateral excitatory, inhibitory, and afferent
weight connections are normalized separately.

In the neural network theory, the connection weight between
two neurons is considered as a parameter that can be adjusted
to optimize the performance of the network. This process of
parameter adaptation is called learning. In biological terms, it
may refer to synaptic changes during development (Gerstner
and Kistler, 2002). The famous Hebb postulate (Morris, 1999) is
phrased as synaptic changes are driven by the correlated activity
of pre- and post-synaptic neurons. Experimental evidence (Tsien,
2000) suggest that the correlation-based synaptic adaptation
processes are involved in neural plasticity. The mathematical
formulation of Hebb’s rule also called correlation-based learning
is an interest of our study because of three aspects: locality,
cooperativity, and competition. Locality means a change in the
synaptic connection depends on local variables. Cooperativity
implies that the pre and postsynaptic neurons have to be
active simultaneously for synaptic weight change to occur.
Competition is essential for any form of self-organization and
topographic pattern formation, where weights of a certain
subgroup of synapses are strengthened at the expense of others.
In simulations, competition can be implemented by inhibitory
interactions and the normalizing sum of all weights converging
onto the same postsynaptic neuron (Gerstner and Kistler, 2002).
Hebb’s original postulate does not contain a rule for a decrease
of synaptic weights. In such a system all weights saturate at
maximum value. To make learning rule more competitive and
useful divisive normalization was proposed (Miikkulainen et al.,
2006) where each weight is intended to scale down in proportion
to its original value. They also stated that initially normalization
terms were introduced for a computational reason (Rochester
et al., 1956) but many works (Turrigiano, 1999) has uncovered
a number of neural regulatory mechanisms within the cell
that regulate the overall synaptic strength during adaptation.
There are many variants of Hebbian learning rule (Gerstner and
Kistler, 2002). STDP is one variant of Hebbian learning where
synaptic weight gets strengthen if presynaptic neuron fires just
before postsynaptic neuron. Another variant is an asymmetric
Hebbian rule (Schulz and Reggia, 2004) and closely resemble
the experimentally observed temporal asymmetry embodied in
the Spike-Time-Dependent Plasticity (STDP) (Fu, 2004; Caporale
and Dan, 2008).

General Procedure Used to Model the Parameters
All the parameters were chosen through systematic manual trial
and error exploration (Table 1). For each parameter set, a model
with initial random connections was trained and check for the
unique spatial representation for each of the input sequences. The
parameters that transform different input sequences into very
similar spatial representations are discarded.

While conducting a simulations rexc, γinhb are fixed at 3
and 1 and varied rinhb, γexc systematically to find the suitable
parameter values. A parameter is said to be suitable if the
model learns to spatially represent the sequences in the train set
uniquely. rinhb is set to global (the maximum allowable radius
in NF) initially and reduced in steps of 2. Initially, γexc is given

such a value that assures excitatory-inhibitory balance. When
building a computational model, assumptions must be made
about biological processes that are not well-understood. The
above assumption was also made out of computational necessity
and has not been characterized experimentally. The afferent
connection strength γaff is set to 1, except in the third simulation.
Here γaff is set to 0.3 to reduce the effect of fixed afferent
connection on initial activity. All the three learning parameters
(αaff , αexc, αinhb) take the same value and are chosen as 0.05. Each
moving stimulus is created with a set of images/frames of size 64
× 64. RF is chosen randomly based on the simulation. Using the
parameters Image size and RF, NF dimension was calculated as:

Dim =
Image size− RF

stride
+ 1 (6)

where stride=Number of pixels through which we slide the filter
at every step

The systematic exploration of varying parameters one at a
time showed that the parameters such as αaff, αexc, αinhb, and
settling time are less sensitive and result in a network that is
robust to small changes. However, The parameters rexc, rinhb,
γexc, γinhb that controls the influence of excitatory and inhibitory
inputs, are relatively sensitive and need to fit in the given
temporal sequence.

Generating the Topographic Map of Neuron

Responses
Neurons in the trained network respond selectively to the
direction of motion feature. The preferences of each neuron
often vary systematically across the sheet of neurons in the NF
revealing an underlying topographic structure. Also, due to the
push-pull effect of lateral interactions, short-range excitation
ensures correlated activity to similar stimuli over nearby neurons
and anti-correlated response over long distances. This effect
assembles the neurons within the NF into small patches and each
patch becomes active in the specific direction of stimulus motion.
Such cortical maps were delineated experimentally in monkeys
striate cortex (Blasdel, 1992).

The set of all time-varying stimuli was presented to the trained
network to determine the neurons’ preferred direction of motion.
A neuron is said to be preferred to the specific direction of the
motion of the stimulus if and only if the stimulus is effective
in achieving a maximum response in the neuron. Each neuron’s
preferred direction of motion was used as an entry in the map.

RESULTS

Single NF Simulated Using Moving Bar
Stimuli Shows Direction Selective
Responses Analogous to Those of V1 Cells
In this study, we construct a direction sensitivity map by training
a single NF, using a set of sequences of a moving bar pattern.
The architecture of the network used for this purpose is shown in
Figure 2A, where input images are presented in the input layer,
which is then used to stimulate responses in the NF. NF size,
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FIGURE 2 | Direction sensitivity. (A) The Architecture used to simulate the direction sensitivity of V1 cells: The model consists of two stages: (a) an input layer where

moving bar is presented (b) NF (20 × 20 units) analogous to V1. Green arcs represent the excitatory connections and the red arcs represent the inhibitory

connections. The afferent connections are represented with blue dotted lines (B). Sample bar stimulus moving in 135◦: the bar of size 30 × 2 pixels are placed on 64

× 64 pixels black background and is made to move in 8 directions with the direction of motion perpendicular to the orientation. The motion is captured in a sequence

of 8 frames. (C) Network response to moving bar stimulus after 500 epochs of training: the first and the third columns display the first frame of the moving bar

sequence, the label above it shows the direction of motion of the bar. The response of NF has plotted in the second and fourth columns. Each input is mapped to the

unique spatial position on NF. (D) Direction selectivity map: Direction selectivity map is plotted using the convention described in the section “Generating topographic

map.” We observed that the patch of neurons selective to one direction of motion often has an adjacent patch with opposite direction preference. The arrows indicate

the direction preferences developed by the neurons on NF. The arrow with the highest magnitude indicates the peak response of the neuron (E). The afferent weights

developed by the selected neurons in NF: Initial afferent weights are random. After training Gabor like afferent weights are developed. Different varieties of tuned

afferent weights (64 × 64 pixels each) are selected from the whole population (Figure S1) and displayed here.

number of epochs and other network parameters used in the
simulation are shown in Table 1.

The training set consists of 8 sequences of a bar moving in 8
directions: 0, 45, 90, 135, 180, 225, 270, and 315◦. For instance, in
0◦, the bar is placed in vertical position and is moved from left to
right. Complete details about the stimuli generation are given in
the Methods section.

During the training, each moving bar sequence (Figure 2B)
was drawn randomly and presented to the network frame after
the frame. Training was carried out as described earlier. Next
we examined the response properties of the neurons by plotting
the network activity (Figure 2C) to the bar sequence moved
in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315◦ The

activity patch under “NF-Resp” column denotes the population
of neurons fired to a given drifting bar. Eight different population
bubbles were seen, each specifying its preference to a specific
direction of motion. Some populations were overlapped (for
example 135 and 315◦, 225 and 45◦), indicating that some
neurons have a preference for more than one direction of motion.
Such multiple preferences can be seen in the case of stimuli
having different directions of motion with the same orientation.

Direction selectivity map with the neuron’s best preferences
is plotted in Figure 2D. The color patches indicate a different
population of neurons has different direction preferences.
The arrows indicate the neuron preferred directions and the
magnitude indicate the neuron activity. Almost all adjacent color
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patches have opposite direction preferences. For instance neuron
patches preferential to 135 and 315◦ are adjacent. Similarly,
patches preferential to 45 and 225◦ are adjacent.

Figure 2E shows the developed afferent weights for the
selective neurons. Initial afferent weight values were random and
were bounded between 0 and 1. During training, these random
weights were self-organized in such a way that the neurons that
have the same orientation and opposite direction preferences
were pruned as a continuous patch and seen as four big patches
in response to 8 moving stimuli. In each patch, neurons were
clustered into two subgroups with opposite direction preferences.
As shown in Figure 2E some neurons afferent weights are tuned
to the specific direction of bar motion, others, particularly
neurons present at the boundaries of the patches, showed tuned
weight preferences to more than one motion direction. These
results were inconsistent with experimental studies (explained in
the Discussion section).

Component and Pattern Motion
In case of a moving 2D object, parts of its boundary seen
through narrow apertures seem to move in various directions,
quite different from the direction of motion of the entire object.
This problem is referred to as the aperture problem (Figure 3;
Fennema and Thompson, 1979; Wuerger et al., 1996; Pack
et al., 2001, 2003). The motion of the boundary segments is
called component motion while that of the whole object is called
pattern motion. Electrophysiological studies suggest that while
V1 neurons respond to the component motion, neurons of MT
respond to pattern motion (Rodman and Albright, 1989; Priebe
et al., 2003; Bradley and Goyal, 2008). The problem of computing
pattern motion from local component cues has been studied
extensively using computational modeling (Rust et al., 2006),
Psychophysics (Adelson and Movshon, 1982; Movshon and
Newsome, 1996), functional Magnetic resonance imaging (Huk
and Heeger, 2002), and single unit Electrophysiology (Movshon
and Newsome, 1996).

Two-NF Network Simulated Using Moving
Two-Dimensional Object (Plaids, Solid
Square) Sequences Show Pattern Selective
Responses
We now propose an expanded version of the direction sensitive
architecture to model component and pattern selectivity. The
proposed hierarchical pattern selectivity model has 3 stages:
input layer followed by two NFs (as shown in Figure 1A),
corresponding to V1 and MT. We simulated the network
with two types of input stimuli: (i) moving the solid square,
and (ii) moving plaids, and showed that the neurons in NF1
respond to the direction of component motion (edges, gratings)
while those in NF2 respond to the direction of pattern motion
(square, plaids).

The training set consists of 2D patterns (square, plaid)
moving in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315◦.
Complete details about stimuli generation and the parameters
used in the simulations are given in the Methods section and
Table 1 respectively.

FIGURE 3 | Aperture Problem. (A) A grating pattern consisting of alternating

black and white bars. The grating is allowed to move in different directions.

Thin arrows in (A) represent the set of physical motions of the grating pattern

in various directions. The motion of all these grating patterns is indifferent

when viewed through a small window, and this motion direction is

perpendicular to the orientation of the grating (as a thick arrow shown in B).

This ambiguity in determining the direction of motion of the grating is termed

as aperture problem. In case of motion of a two-dimensional object (e.g.,

square or diamond), local motion cues (dotted arrows show in C) are divergent

and are very different from the actual object motion. In (D) thin arrows

represent the local motion of each edge seen through RF. An intersection of

two constraint lines from both the edges represents the true motion of an

object (thick arrow in D).

Case 1: Moving Solid Square
NF1(13 × 13 units) was trained using moving square stimuli
whose frame size is 64 × 64 pixels and square size is 24 × 24
pixels. The RF of NF1 neuron is of size 12 × 12 pixel. Hence at
every instance, NF1 neurons either look at part of a square or
no square at all. The parts of a square are horizontal and vertical
edges which are also called its components. Due to the smaller
receptive fields, NF1 neurons encode only that local motion
direction that is orthogonal to edge orientation. As result, NF1
neurons become selective to 4 directions of an edge motion (0,
90, 180, 270◦) even though the square moved in 8 directions. To
verify that the NF1 neurons respond to the component motion
in the input sequence, we created moving edge stimuli that move
in four directions (left to right, right to left, top to bottom, and
bottom to top). Each moving edge stimulus is made up of 64
frames with frame size 64 × 64 pixels (i.e., for each time step
the edge moves one pixel ahead). Eight sample frames of edge
moving from left to right are shown in Figure 4A. The responses
of NF1 neurons (that was earlier trained using moving square
stimuli), to the 4 moving edge stimuli are displayed in Figure 4B.
The figure shows four independent neuronal populations, each
is selective to the specific edge motion. Figure 4D depicts the
direction selectivity map to the edge moving in four directions.
Figure 4C represents tuned afferent weights of NF1 selected
neurons. We observed that the afferent weights of NF1 neurons
were tuned to the direction of motion of an edge.
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FIGURE 4 | NF1 neuron preferences to moving edge stimuli. NF1 of the

two-NFs network is trained using moving square stimuli. 24 × 24 pixel white

square is moved on 64 × 64 pixel black background. As neurons in NF1 has

small receptive fields (12 × 12 pixels), at any instance, it can see a part of a

square and become selective to local motion cues also called component

motion which is an edge motion in this case. (A) Sample input of an edge (64

× 64 pixels) moving from left to right. An edge can be moved in four possible

directions [left to right (L to R), right to left (R to L), top to bottom (T to B) and

bottom to top (B to T)] and the response of NF1 to an edge motion is

displayed in (B). Even though NF1 is trained using moving square objects,

most of the NF1 neurons tuned to local edge motion (i.e., component motion).

(C) Depicts the trained afferent weights (12 × 12 pixel each) for the selected

neurons. (D) Topographic map formed out of NF1 response to edge motion:

The arrows indicate the neuron preferences in the direction of edge motion.

Next, we train NF2 keeping NF1 weights fixed. The moving
square stimulus was presented to the network frame by frame.
The NF1 neuron responses (the local component cues) were
presented as input to NF2 neurons. Training was carried out for
500 epochs. We observed that the NF2 neurons are selective to a
specific direction of square motion.

We inspected the development of pattern selective properties
of the NF2 neurons by computing the network response to a
two-dimensional moving object (square). Figures 5A–D displays
the network responses to four moving square stimuli. Each
cluster depicts the firing patterns of neurons in NF1 and NF2,
in response to the presentation of a moving square sequence. The
square pattern was translated spatially from one end to another
across the frames. Accordingly, NF1 firing pattern (as shown
under NF1 column in Figures 5A–D) also displaces, since the
neurons here encode the edge motion seen within the RF. In NF2
(as shown under the NF2 column in Figures 5A–D), the activity
pattern is stabilized across the frames and the corresponding
neuron population is found to be encoded uniquely the true
direction of stimulus motion. The pattern selective properties
of NF2 neurons are abstracted as a map in Figure 5E. Like
neurons in the direction selectivity map of Figure 2D, here also

NF2 neurons preserve topography. That is, the patch of neurons
responding to a certain direction of motion often have adjacent
neuron patch with firing preferences to the opposite direction.
Trained afferent weights for the sample of NF2 neurons are
plotted in Figure 5F.

Case 2: Moving Plaids
Moving gratings and moving plaids are created as described in
the Methods section. NF1 was trained with sinusoidal gratings
moving in 8 directions. The trained network response is shown
in Figure 6B. Eight different firing responses are shown, each
corresponding to a specific direction of motion grating. Also,
overlapped populations are noticed in case of drifting stimuli
with similar orientations and opposite motion directions. The
component selectivity map to moving gratings is depicted
in Figure 6C.

Now the question is: Does NF1, trained using moving
grating stimuli, respond to the direction of plaid components by
extracting them from the moving plaid stimulus? To this end,
we examined NF1 responses to moving plaid stimuli, which is
constructed by superimposing two orthogonal moving gratings
(chosen from the training set used to train NF1) separated by
90◦ (Figure 6A). As shown in Figure 7A (under column NF1-
Resp) two distinct activity bubbles are observed in response to the
moving plaid stimuli. To verify whether these response profiles
derived exactly from the same two gratings used to construct the
plaid, we compared it to Figure 6B. We were able to ascertain
that the NF1 neurons that were trained using moving grating
stimuli will produce two distinct population responses; each is
corresponding to the moving gratings using which the moving
plaid was made of.

We proceed to train NF2 using moving plaid stimuli, with
NF1 weights kept constant. We illustrate the response properties
of trained NF2 neurons in Figure 7B. We observed that distinct
widely separated clusters of neurons become selective to each
moving plaid stimulus. The neuron preferences to different
directions of moving plaids are displayed as the pattern selectivity
map (Figure 7C).

Three-Layer Network (With Two NFs)
Simulated Using Translated Random Dot
Stimuli Shows Translational Flow Selective
Responses
In this study, we present an extension of the model of the
previous study to respond to translated random dot patterns.
The architecture of the network used for this purpose (shown in
Figure 8A) is similar to the earlier study except that it consists
of a single layer perceptron above NF2, which receives input
from NF2 in fully connected fashion and was trained using
backpropagation. Network properties and the parameters for
NF1 andNF2 are fine-tuned according to the present study.More
details about the size of the NFs, the number of epochs and other
scaling and learning parameters used in the simulation are shown
in Table 1.

The stimulus of this study, a translational flow sequence, was
created by moving randomly placed tiny squares (assumed as
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FIGURE 5 | NF2 response to moving Square stimuli. (A–D) are four clusters. In each cluster first column depicts the frames of moving squares stimuli (64 × 64

pixels), and the corresponding activity on NF1 (13 × 13 units), and NF2 (15 × 15 units) are shown in the next two columns. The label on the first column represents

the direction of motion of a square object (A: 180◦, B: 45◦, C: 0◦, and D: 225◦). Neurons in NF1 respond to local motion cues. At each frame presentation, different

neurons receive afferent input from the square object and become active, according to its preferred direction of motion, thus the activity pattern follows the square

stimulus. In NF2 neurons are selective to the entire object motion (also called pattern motion) by aggregating local motion cues from NF1. Nearly stabilized activity can

be seen over the presentation of the whole moving square sequence. Different patches of neurons uniquely become selective to different directions of square motion.

(E) Shows the pattern selectivity map plotted out of NF2 neuron responses to moving square stimuli. The arrows indicate the neuron preferences to 8 motion

directions: 0, 45, 90, 135, 180, 225, 270, and 315◦. The magnitude of the arrow represents the activity of the neuron. Peak activity is represented by neurons with the

highest magnitude. (F) Represents the NF2 afferent weights (13 × 13 pixels each) of the selected neurons. It shows that the NF2 neurons developed spatiotemporal

receptive fields in the direction of pattern motion.

dots) coherently in 4 directions: 0, 90, 180, and 270◦. Sixteen
tiny squares, each of size 2 × 2 were placed randomly on a
32 × 32 matrix. We assumed it as dot configuration. Twenty
five such random dot configurations were created and each of
those configurations is translated in four directions to create 100
translational flow sequences. Out of these, 80 sequences were
used for training and the remaining 20 for testing. Complete
details about flow stimuli generation were furnished in the
Methods section.

During training, each translational flow sequence from
the training set was drawn randomly and presented to the
network frame after frame. The two NFs in the network
were trained one by one as is described in the previous
sections. A lower NF was first trained to saturation before
the next NF is trained. We fixed afferent weights of NF1
as “1” and maintained them as constant throughout the
simulation. This small variation was adapted to ensure the
NF1 neurons encode position independent motion selective
responses. NF2 afferent weights are random initially and were
adapted during training.

We examined the response properties of the trained neurons
in both the NFs by plotting the network response to the training
set. Figure 8B shows the response of the NF2 neurons to the
selected configurations of the training set. It can be observed
that in NF2 four different neuron clusters were formed each
is selective to the specific direction of translational flow and is
independent of dot configuration. The resulting NF2 response of
the 80 sequence training set is abstracted as a translational flow
selectivity map as shown in Figure 8C. The arrows indicate the
preferred direction motion of the neurons.

Generalization capability of NF2 neurons was verified by
presenting a test set to the network. We observed that the
activity pattern appeared in both the NFs is nearly similar to
the activity pattern seen for the training set. To quantify these
observations, we added a single layer perceptron network (acts as
a classifier) as an additional layer above NF2 and are trained using
NF2 neuron responses of the training set. Training was carried
out for 300 epochs and the corresponding error bar is shown
in Figure 8D. The trained perceptron network successfully
classified translational flow sequences into 4 directions with an
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FIGURE 6 | NF1 response to moving grating stimuli. Grating stimulus consists of alternating black and white bars. Gratings (64 × 64 pixels) are moved in 8 different

directions such that the direction of motion is orthogonal to the grating orientation. Plaid stimulus moving in 0◦ is created by superimposing two gratings moving in

45◦ and 135◦ as shown in (A). NF1 (20 × 20 units) is trained with moving grating stimuli for 1,500 epochs and the response is plotted as shown in (B). Here the first

and third columns display the frames of moving grating. The label above it indicates the direction of motion of the grating. The second and the fourth columns

represent the neuronal preferences to a given grating. As seen in other simulations, different neuron patches become active to different motion directions. Also,

component selectivity map is shown in (C). The arrows indicate the neuron preferred directions of motion.

accuracy of 100 % on the training set and 90% on the test set with
2 misclassifications.

Model Behavior in Response to Variations
in rexc, rinhb
Neurons in the neural field (NF) receive initial activity as a
weighted sum of input. Each input causes initial activity in many
neurons, and most of this activity is redundant. To achieve
efficient coding this redundant activity must be reduced where
the role of lateral interactions come into the picture. Lateral
inhibition introduces competition among the neurons by de-
correlating activity between distant neurons in the NF and
increasing correlation among nearby neurons. In the simulations,
these effects were controlled by 4 parameters: rexc, rinhb, γexc,

γinhb.

Case 1: If rexc is too small (e.g., <3) small neuron populations
respond to each stimulus. This result in the inefficient
use of available map space and smooth topographic
maps cannot be produced.

Case 2: If rinhb is low (e.g., close to rexc), decorrelation between
distant neurons decreases and the correlation between
nearby neurons increases (due to high excitatory),
results in highly saturated response spreads across
the sheet. Most of the neurons have preferences in
multiple directions. Thus, during training inputs are
transformed into overlapped spatial representations.

Case 3: If rexc is too high (e.g., half of the network
space), a large population of neurons responds
to each stimulus, resulting in redundant coding.

Different input sequences transform to same spatial
representations

Case 4: Too high rinhb (global inhibition) results in the
elimination of excitatory activity during settling. As a
result, none of the weights get updated in response to
the input sequence. Training will not take place.

The same effects can be achieved in small scales by adjusting
overall strength of excitatory and inhibitory effects represented
by γexc, γinhb. In most of the simulations, γinhb is set to 1 and the
only γexc is varied.

Decoding Stimulus Information From the
Neuronal Responses of the Trained
Network
In all the simulations described above, we showed that the
network response and its corresponding map can encode the
direction of the moving stimuli. The proposed hierarchical
feedforward neural field model acts like encoder where the pixel-
based visual representation is transformed into high-level neural
population activity patterns. In data analysis terms, the proposed
model is creating a spatial map of spatiotemporal input patterns.
To quantify the efficiency of this mapping, we used a simple
single layer perceptron network as a decoder. Perceptron is a
supervised learning algorithm to classify only linearly separable
data points (Minsky and Papert, 1969). Here perceptron is not the
part of dorsal motion detection stream which we are modeling;
rather it is a proof of principle to show that the inputs can be
decoded from the abstractmaps of theNFs using a linear classifier
like perceptron.
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FIGURE 7 | Two-NFs network response to moving plaid stimuli. the Plaid (64 × 64 pixels) stimulus is created from its components (two gratings) and is allowed to

move in 8 different directions. NF1 (analogous to V1) is trained with plaid components (i.e., moving gratings) and its response to moving plaid stimuli is plotted in (A).

First, third, fifth, and seventh columns display a frame in moving plaid sequence. The label above it indicates the direction of motion of a plaid. Second, fourth, sixth,

and eighth columns represent the NF1 response to plaids, and two neuron populations are active in response to every moving plaid stimulus. As each plaid is

composed of two gratings, neurons that are preferential to these moving gratings are becoming active. For example, the plaid moving in 315◦ is made from gratings

moving in 270 and 0◦. The activity pattern of these two plaid components (shown in Figure 6B) gets integrated and produces a plaid response as two activity

bubbles. NF2 (analogous to MT) is trained using plaid pattern moving in 8 directions, by keeping NF1 weights constant. The response of NF2 to four sample stimuli is

shown in (B). The first column represents frames of moving plaid stimuli, second and third columns labeled as NF1-Resp (20 × 20 units) and NF2-Resp (13 × 13

units) represents the responses of NF1 and NF2, respectively. We observed that in response to 8 moving plaid stimuli 8 different patches of neurons become selective

to different directions of motion, and the corresponding pattern selectivity map is shown in (C).

Figure 9 represents the sum square error obtained during the
perceptron training for the three tested stimuli. Three different
learning curves represent the nature of information given to the
perceptron network. In case 1: moving bar is a simple stimulus.
This information is encoded by single layer neural field network,
as a topographically ordered map. The perceptron learned this
representation as shown in the error curve and converges at 500
epochs. In case 2: moving square is a two-dimensional object.
A two-layer neural field network encoded it as a topographically
ordered map, but it is less regular than that formed with bar.
Fluctions seen in the error curve before the perceptron converges
at 300 epochs, shows that the map generated is more complex
than in the previous case. In case 3: moving plaids is more
complicated input. A two-layer neural field network encodes this
information in much more of complex map form. Perceptron
trained with this input converged at nearly 500 epochs.

We made small modifications to the model from one
simulation to other. With the simulation using moving square

both NF1, NF2 are trained using moving square stimuli whereas
in simulation using moving plaids, NF1 is trained using moving
gratings and NF2 is trained using moving plaids. In the case of a
square, NF1 encodes the direction of motion of an edge. As the
square is moving on a black background, at any instance edge
motion can be seen through the small receptive field that covers
part of a square. NF1 need not be trained by creating a moving
edge separately. However, NF1 that trained on plaids, cannot
see the direction of motion of gratings from the plaid motion.
Plaid moving in 0◦ was created by a pair of gratings moving in
45 and 315◦. The NF1 trained using moving plaids can neither
encode the direction of motion of gratings nor the direction of
motion of plaids. Also with the simulation using random dots we,
made variation to the afferent weights. All initial afferent weights
are taken as 1 (unlike other simulations where they are random
initially) and keep them constant throughout the simulation to
make network learn only one feature, –that is the direction of
motion, –and ignore the position information of dot. Due to such
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FIGURE 8 | NF2 response to translational random dot stimuli. (A) Proposed 2NFs network: both NFs are trained using unsupervised asymmetric Hebbian rule and

the third single layer perceptron is trained using backpropagation. Random dots stimulus (RDS) is created by placing tiny squares of size 2 × 2 pixel (assumed as

dots) on 32 × 32 pixel size grid randomly with a constraint that each 8 × 8 pixel grid can accommodate only one dot. Thus, 16 dots are placed randomly and moved

dots coherently in 4 directions: 0, 90, 180, 270◦ to create translational flow sequences. Thus, each dot configuration creates 4 sequences for the train set. First, third

and fifth columns in (B) shows three different dot configurations moving in the same direction. Second, fourth and sixth columns show the NF2 activity, when these

configurations moved in 4 directions. Here the neurons encode the coherent motion direction, independent of the precise dot configuration. (C) It represents the

translational flow selectivity map in response to the train set consisting of 80 sequences. The arrow direction indicates the neurons preferred direction of motion to the

translational flow stimuli. (D) Error plot obtained while training single layer perceptron using NF2 responses of the train set. Single layer perceptron has an input layer

and an output layer; the weights (all-to-all connections) between them are trained using regular backpropagation. Perceptron took nearly 300 epochs to learn the input.

spatial homogeneity in the afferent weights, the neuron’s response
in NF1 is insensitive to the position of the dots.

Robustness of the Model
In this section, we present the robustness of the trained network
weights to various noisy stimuli and to the input of varying

RI =
1− Number of neurons deviated from its preferred direction of motion

Total number of neurons on NF
(7)

bar length. Two types of noises are added to the moving
bar stimuli.

Salt and pepper noise is added to the training set with the
initial noise pixel density 0.01. Fifty noisy sets were generated
by increasing the noise pixel density up to 0.99 in steps of
0.02. The density 0.02 indicates 1% (40 pixels approximately)
of the image pixels (64 × 64). To increase the noise density
in the current noisy set, 1% of the non-noisy image pixels
were made noisy by choosing them randomly. All these 50

noisy sets were presented to the network (trained earlier
on non-noisy moving bar stimuli) in the sequence and the
robustness of the trained weights are abstracted as a robustness
index (RI) using the Equation (7). We observed that the
RI value was decreased with the increase of noise pixels in
the stimuli.

Note that each neuron in the network that was trained earlier
on non-noisy moving bar stimuli shows a high response to the
specific direction of bar motion and this direction is considered
as the preferred direction of that neuron.

Gaussian noise was added to moving bar stimuli with mean
0 and variance varied from 0.02 to 1 in steps of 0.02. Thus, 50
noisy sets were generated, presented to the trained network in
the sequence and observed the decrease in the RI value with the
increase of the noise variance.
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FIGURE 9 | Error graphs obtained during the perceptron training. (A–C) Represents the error plots obtained for Bar, Square, and Plaids respectively, during the

perceptron training. The NF layer encodes the motion information of moving stimuli as a unique neuronal population response over a network space. Perceptron takes

this population values as input and learns the pattern in the input. The complexity of this response pattern is low to the bar and high to the plaids. The perceptron

trained on less complex bar input converges with smooth error graph and the fluctuations were seen in the error graphs of the other two which were proportional to

the complexity of the input.

FIGURE 10 | Robustness of the trained network: NF1(20 × 20 units) trained using non-noisy moving bar is used to test the robustness of the proposed network.

(A,B) represents the decrease in the robustness index (RI)of the network with an increase in the noise density. The thick black lines in (A,B) indicates the RI average

across 20 trials. In the case of salt and pepper noise, RI reaches zero when 50% of the training set pixels were made noisy. Similar results can be seen with Gaussian

noise with variance = 1. The network shows high tolerance: to the Gaussian noise with a variance of <0.5 and to the salt and pepper noise whose density of <0.3.

(C,D) represents the number of pixels deviated from its preferred direction in relation to the noise density. (E) represents the robustness of the network to the varying

bar length. RI reduced slightly with a change in the bar length. (F) shows the number of neurons deviated from their preferred directions to the change in bar length.

The RI value calculated above indicates that the network is less
tolerant of the highly noisy inputs. To know, the amount of noise
allowed in the training set, to produce clear motion selective
responses, we conducted 20 trials. In each trial Gaussian, salt and
pepper noises are added to the training set as described above

and estimated the network performance: by plotting RI value
(shown in Figures 10A,B) and by visually inspecting the map
generated while presenting the input with varying noise. In the
case of Gaussian noise, network shows high tolerance to the noise
whose variance is <0.5. Eighty percent of the trials indicate the
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TABLE 2 | Network robustness statistics across 20 trials.

Noise Noise

density

% of trials

Gaussian 0.02–0.5 1

0.5–0.8 16

0.8–1 3

Salt and Pepper 0.01–0.3 4

0.3–0.7 14

0.7–1 2

Columns 2 and 3 together indicate the noise range at which network deviates from its

clear motion selective clusters and fails to converge across trials.

network fails to converge when the noise variance lies between
0.5 and 0.8 (Table 2). Similarly, in case of salt and pepper noise,
network displays high tolerance to the input with pixel density
≤0.3 (i.e., 15% percentage of the image pixels were made noisy)
and fails to converge when noise pixels density varies between 0.3
and 0.7 (Table 2). Thus, given network shows high tolerance (i) to
the stimuli with Gaussian noise whose noise variance is <0.5 and
(ii) to the stimuli with salt and pepper noise whose pixel density is
<0.3. Figures 10C,D represents the percentage of pixels deviated
from its preferred direction in relation to the noise density.

Varying the Bar Length
The robustness of the trained network to varying bar lengths
was also investigated. The test set was created by varying bar
length from 15 to 35 pixels in steps of 1 pixel. The bar length
in the training set was 30 pixels. The response of the network was
abstracted as robustness index. Figure 10E shows that network is
highly robust to the changes in the bar length. The slight decrease
in the robustness index is proportional to the difference between
the bar lengths in training and test stimuli. Figure 10F shows
the number of neurons deviated from its preferred direction
of motion.

DISCUSSION

The proposed model can explain the diverse properties of the
neurons present in different regions of the motion pathway.
The model reproduces the motion-selective properties of cells
in V1, MT, and MST. We used a hierarchical architecture
consisting of neural fields to model the direction-selective cells
in V1 and pattern selective cells in MT, and translational flow
selective cells in MST complex. All the simulations carried out
in this study, follow the same training procedure, and used the
same biologically plausible asymmetric Hebb’s rule to adapt the
weights. The difference lies only in network size and parameter
values (Table 1).

We show that the asymmetric intracortical circuitry can
learn motion trajectories. In conventional symmetric Hebbian
learning the pair of weights connecting a given pair of neurons,
converge to the same value since symmetric Hebbian learning
leads to symmetric weights. NF with symmetric weights is
essentially a Hopfield network and therefore has only fixed
point attractors. Such fixed point dynamics are suitable for
storing static patterns as in a Hopfield network, but not for

storage or generation of sequences. Even in his original paper on
associative memories (Hopfield, 1982), Hopfield had suggested
an asymmetric variation of the Hebb’s rule for storing and
generating sequences. However, such simple schemes do not
perform well on large sequences and, due to the emergence
of spurious states; the sequence information is quickly lost.
Buchmann and Schulten (Buhmann and Schulten, 1989) have
proposed a more sophisticated version of the same basic model
but with extra conditions that prevent transitions to states
that are not the immediate next state. Asymmetric Hebbian
learning has been applied even for the problem of sequence
recognition. Schultz and Reggia (Schulz and Reggia, 2004)
have developed an extension of Self-Organizing Map with
lateral connections trained by asymmetric Hebbian learning
for recognizing phonetic sequences of words. The proposed
neural field model is fashioned on similar lines as the models
described above. It uses temporally asymmetric Hebbian learning
to represent moving stimuli. In order to show that the
temporally asymmetric is crucial to our results, we trained
the network on moving oriented stimuli with both symmetric
and asymmetric Hebbian learning (see Supplementary Results).
The results show that the network learns to distinguish the
direction of motion only when asymmetric Hebbian learning
is used. It confuses between two moving bar stimuli of the
same orientation and moving in opposite directions in case of
symmetric Hebbian learning.

Earlier models of direction selectivity (Miikkulainen et al.,
2006) and pattern selectivity by Rust et al. (2006) achievedmotion
sensitivity by either of two scenarios: (i) by giving the entire
sequence as a stack of frames at a single time step, or (ii) a part
of the stimulus is presented to the network via lagged cells. By
contrast, the model proposed here has only access to the current
frame. Information about the history of the stimulus is preserved
in the network dynamics. When the input changes from one
frame to the next the lateral interactions that were adapted to the
previous frame will drive the new afferent activity and the weights
updated with a new settled response will keep the memory of
the history.

The Main Findings of the Study
Simulation-1
The model with a single NF is trained to demonstrate
direction selective properties of V1 cells. Motion selectivity
is demonstrated by showing a tuned neuron response to
a moving stimulus. Each neuron becomes selective to the
inherent motion feature specified through a sequence of frames.
Different neuron populations showed preferences to different
motion directions of moving bar. Direction selectivity maps
illustrated here resemble what has been observed in animals
(Weliky et al., 1996). For instance, a patch of neurons with
preference to a specific direction of motion will usually have a
neighboring patch with preference to an opposite direction of
motion (Shmuel and Grinvald, 1996). We also observed the self-
organized tuned afferent weights. We revealed that the push-
pull effect of lateral interactions in conjunction with weight
asymmetry, develop spatiotemporal receptive fields selective for
the direction of motion as found experimentally in the cortex
(DeAngelis et al., 1995).
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Simulation-2
We modeled the pattern selective responses of MT cells using
the hierarchical feed-forward network, using two types of moving
stimuli: (i) moving square, (ii) moving plaids.

In case-i, both the NFs were trained with moving square
stimuli and showed that neurons in NF1 (analogous to V1)
encode the direction of local edge motion (component motion).
These local motion cues are integrated and passed on to NF2
(analogous to MT) where neurons respond to the true direction
of square motion. Integration of local motion cues by MT
neurons was shown earlier in various experimental andmodeling
studies (Movshon et al., 1985; Movshon and Newsome, 1996;
Simoncelli and Heeger, 1998; Pack et al., 2001; Born and Bradley,
2005). To our knowledge, ours is the first modeling study to
explain the component and pattern motion selectivity using a
two-dimensional object, the square.

In case-ii, the first NF (analogous to V1) was trained with
moving gratings and the second NF (analogous to MT) was
trained with moving plaids (composed with 2 gratings). We
showed that in response to moving plaid stimuli, neurons in
V1 produced two activity bubbles, representing the direction of
motion of plaid components (i.e., gratings). In MT single activity
bubble was observed, representing the true direction of motion
of plaids. These results are in accordance with earlier studies
where they showed bimodal polar plots to depict responses of
V1 cells and unimodal polar plots for MT cells to the moving
plaid stimulus (Albright, 1984; Movshon and Newsome, 1996;
Rust et al., 2006). We also plotted pattern selectivity maps and
spatiotemporal receptive fields that are selective in the direction
of pattern motion.

Simulation-3
In this study we simulated a network with two NFs, using
more complex stimuli: RDS sequences that follow translational
trajectories, to simulate the translational flow selective properties
of the neurons at MST. A set of 25 random dot configurations
were created and each move in 4 directions to create 100
sequences. NF1, NF2, and perceptron were trained one after the
other with sequences created from 20 configurations. Remaining
5 sequences considered as a test set. Now the trained network
was presented with the training set. It showed that the NF2
neurons can encode the coherent motion direction of the dots,
independent of the dot configuration. When the test set was
presented, it showed that the network can extract the direction
of motion of the dots in unseen sequences with an accuracy of
90%. Thus, the proposed network can be generalized to extract
the motion direction in translational flow sequences. Unlike in
earlier simulations in this simulation, we considered RDSmoving
in 4 directions. Also, the image size is reduced to 32 × 32 pixels.
This reduction is done to reduce the computational expense.

Future Studies
In the third study, we proposed and explored network for
translational flow selectivity using translational random dot
sequences. There are other variants of optic flow, such as radial
flow (expansion/contraction) and circular flow (clockwise and
anticlockwise rotation). The brain region that is selective to the
translational flow is different from the region that is selective

for radial and rotational flow (Morrone et al., 2000). In future
studies, we would like to explore and simulate the neurons (as
NF3) that are selective for radial and rotational flow. Also, we
would like to simulate the more biologically plausible models
on real-world visual motion inputs. For example, instead of
NFs consisting of sigmoidal neurons, we would like to explore
more realistic neuron models like the FitzHugh-Nagumo neuron
which is likely to present richer dynamics more suitable for
motion processing.

METHODS

Moving Bar Stimuli
Rectangular white bars of length 30 pixels and width 2 pixels
were oriented in the orthogonal direction of motion were made
to move on black background of size 64 × 64 pixels. The bar
moving from one end to other in a specific direction creates a
single sequence. A set of 8 such sequences were created to train
the network by moving the bar in 90, 135, 180, 225, 270, 315, 0,
and 45◦. Each video sequence is made up of 8 frames with bar
displacement (step size) of 7.8 pixels. Single neuron experiments
reported that most of the V1 direction-selective neurons are
highly selective if stimulus motion direction is perpendicular to
its orientation (Albright, 1984).

Moving Gratings and Plaids Stimuli
Moving plaid patterns were generated by superimposing two
orthogonal sinusoidal gratings, having the same spatial frequency
and moving at the same speed. Two orthogonal gratings with
the same spatial frequency have a strong tendency to cohere
(Adelson and Movshon, 1982). So first we generated drifting
gratings that move orthogonally to its spatial orientation. A single
point at which the loci of grating motions intersect will give the
plaid motion (Adelson and Movshon, 1982), so we combined
gratings separated by 90◦ to generate plaids. Gratings and plaids
are allowed to move in 8 directions: 0, 45, 90, 135, 180, 225, 270,
and 315◦. For instance, the plaid moving in 45◦ is generated by
the perceptual coherence of two gratings moving in 0 and 90◦.
The training set was generated with video sequences of moving
gratings and moving plaids. Each moving grating sequence is
composed of 10 frames with a frame size of 64 × 64. The spatial
frequency of the grating is set to 5 pixels.

Moving Square Stimuli
The training set is made up of 8 fixed length sequences with
5 frames each. Each moving stimulus consists of White Square
of size 24 × 24 pixels, moving through the origin over a black
background of size 64 × 64 pixels. The white square was moved
in 8 possible directions: 0, 45, 90, 135, 180, 225, 270, and 315◦

from 8 different starting positions.

RDS-Translation Stimuli
Random dot stimuli were generated by positioning 16 white dots
(actually they are tiny squares and assuming them as dots for
simplicity) of size 2× 2 pixels randomly upon a black square grid
of size 32 × 32 pixels with a constraint that each 8 × 8 window
of black background can accommodate only one dot. A set of 25
such dot configurations were created and each configuration is
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moved (displacing X, Y coordinates one location ahead at a time)
in 4 directions (θ): 0, 90, 180, 270◦. If the dot exceeds the square
boundary of the frame, it was wrapped around to reappear on the
opposite side of the frame; thus the dot density across the frames
was kept constant. Hundred translational random dot sequences
were produced with 5 frames each. Out of 100, 80 sequences were
used as training set, and the remaining 20 sequences were used as
a test set. All the above inputs were programmed in MATLAB.

Perceptron
Single layer multiclass perceptron with input and output layers
were used to classify the response of the neural field network and
assess its performance. The number of units in the perceptron
input layer is equal to a number of neurons in the NF layer from
which perceptron receives input. The number of units in the
output layer is equal to the number of classes. Thus, perceptron
network size is different for different simulations. The equations
that govern learning are:

Oi = g(
∑

j
WjiIj + b)

E = yi − Oi

1Wj = αIjE
1bj = αE

where g = Sigmoid function, yi be the correct output, Oi be the
actual output, E is the error, α is the learning rate whose value is
0.1 in the simulation.
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This study investigated the role of action constraints related to an object as regards
allocentric distance estimation in extrapersonal space. In two experiments conducted
in both real and virtual environments, participants intending to push a trolley had to
estimate its distance from a target situated in front of them. The trolley was either
empty (i.e., light) or loaded with books (i.e., heavy). The results showed that the
estimated distances were larger for the heavy trolley than for the light one, and that
the actual distance between the participants and the trolley moderated this effect.
This data suggests that the potential mobility of an object used as a reference affects
distance estimation in extrapersonal space. According to embodied perception theories,
our results show that people perceive space in terms of constraints related to their
potential actions.

Keywords: distance estimation, action constraints, extrapersonal space, allocentric reference frame, spatial
perception

INTRODUCTION

According to various theoretical approaches, visual space perception depends in part on action
constraints [i.e., the phenotypic account (Proffitt and Linkenauger, 2013); the action-specific
account (Witt and Riley, 2014); and the evolved navigation theory (Jackson and Willey, 2011)].
Sparrow and Newell (1998) refer to action constraints as every property of an organism
(e.g., morphology, physiology, and behavior), a task (e.g., explicit rules, tool properties, and
biomechanical rules), and/or the environment (e.g., obstacles and topographical variations)
defining the action potentialities of an organism. Despite some disparities, the action constraint
theories (ACT) of perception all claim that visual space perception is embodied (Coello and
Delevoye-Turrell, 2007; Proffitt, 2013), meaning that body-based information plays a major role
in perceptual processes. For a more detailed presentation of these theories, see Morgado and
Palluel-Germain (2015).

This approach is debated, however, and alternative theories of spatial perception consider the
influence of action constraints to be primarily effective at the response stage rather than at the
perceptual stage (Hutchison and Loomis, 2006; Durgin et al., 2009, 2011, 2012; Firestone and Scholl,
2016; for a review, see Philbeck and Witt, 2015). Nevertheless, King et al. (2017) have recently
presented new empirical evidence, as well as strong theoretical arguments, for the claim that action
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constraints have a genuine effect on space perception (see also
Philbeck and Witt, 2015). The aim of the present study was not
to wind up this debate but to investigate the effects of action
constraints on allocentric distance estimation in extrapersonal
space. More precisely, we were interested in the effect of an object
used as an allocentric reference frame on distance estimation.
Throughout this article, we refer to an allocentric reference frame,
following Fini et al. (2015), as an object used as a reference for
estimating a distance between two objects which are independent
of the perceiver’s body.

The literature has shown that space perception can be altered
by variations in behavioral capabilities (Witt and Sugovic, 2010;
Taylor et al., 2011), physiological state (Schnall et al., 2010; Proffitt
and Linkenauger, 2013; White et al., 2013), tool-use (Kirsch et al.,
2012; Osiurak et al., 2012; Morgado et al., 2013; Bourgeois et al.,
2014), or social support (Fini et al., 2015, 2017). For example,
someone’s peripersonal space can be increased when using a tool
that enlarges one’s reaching capabilities (Farnè and Làdavas, 2000;
Maravita et al., 2001; Serino et al., 2007; Costantini et al., 2011b).
The mere presence of others can also enlarge one’s reaching
capabilities (Costantini et al., 2011c; Cardellicchio et al., 2013).
Recently, similar effects have also been found for extrapersonal
space (Fini et al., 2014, 2015, 2017). In a 3D virtual environment,
Fini et al. (2015) asked participants to estimate the location
(“Near” or “Far”) of a target object located at progressively
increasing or decreasing distances from an instructed reference
frame. The reference frame was either a virtual human agent or
a static object. They found that participants estimated that the
target was closer to the agent than to the static object. More
interestingly, the results showed that this effect was observable
only when the virtual human body was free to move, but not
when it was tied to a pole with a rope. These results suggest
that using a virtual agent (with movement capabilities) as a
reference frame for space categorisation triggers a representation
of the action potentialities offered by the environment. Fini et al.
(2015) therefore shed a new light not only on the effect of
action constraints on distance in extrapersonal space, but also
on the effect of the reference frame. This conclusion is in line
with several studies suggesting that people tend to automatically
adopt other people’s visual perspective when making judgments
about their direct environment (Tversky and Hard, 2009; Samson
et al., 2010; Surtees and Apperly, 2012). As Fini et al. focused
on the comparison between a virtual agent and static objects,
however, it is not yet known whether this spatial remapping holds
when the allocentric reference frame is a non-human object with
action potentialities.

The objective of the present study was to fill this gap in the
literature by manipulating the action constraints of a mobile
object used as an allocentric reference frame. We hypothesized
that when people intend to push an object toward another object
located in their extrapersonal space, they perceive the distance
between these two objects depending on the anticipated effort
needed to move the first object. To test this hypothesis, we
designed two experiments in which participants had to estimate
several distances between a library trolley and a target, both being
in the participant’s extrapersonal space. The library trolley served
as an allocentric reference frame. We manipulated the trolley

weight by having an empty trolley (i.e., light trolley) and a loaded
trolley (i.e., heavy). We manipulated this variable between-
subject in Experiment 1 and within-subject in Experiment 2.
Experiment 1 took place in a real environment (i.e., a corridor in
a library), whereas Experiment 2 took place in a virtual 3D scene
(i.e., images representing similar scenes as in Experiment 1). Due
to action constraints related to the trolley weight, we expected
that the participants would estimate the distances between the
trolley and the target as further when the trolley was heavy, than
when it was light.

EXPERIMENT 1

In order to reduce the bias related to potential demand
characteristics (Durgin et al., 2009), we manipulated the
trolley weight in a between-subject design. The objective of
this manipulation was to avoid that participants would be
compliant with the experimental task demands. In this case,
each participant experienced only one condition (i.e., one
level of action constraint) and therefore should not be able
to somehow strategically adjust her performance according to
another condition.

Methods
Participants
Forty students from the University Paul Valery of Montpellier,
France (21 females) participated (mage = 23.5, SDage = 3.06). All
participants read and signed a written informed consent about
the experimental protocol, which was approved by the local ethics
committee. All participants had normal or corrected-to-normal
vision as indicated by self-report. They were a priori naïve to the
purpose of the experiment and they did not participate in prior
distance-perception experiments.

Apparatus and Procedure
The experiment took place in a 15-m-long and 2.5-m-wide
corridor. The participants were randomly assigned to the light-
trolley group or to the heavy-trolley group. In the light-trolley
group, the trolley was empty and weighted 12 kg. In the heavy-
trolley group, the trolley was filled with books and weighted
nearly 170 kg (see Figure 1). The participants had to estimate
allocentric distances between the trolley and a cone (i.e., T-C
distances) aligned with their midsagittal axis in two conditions
depending on the trolley distance to the participants (i.e., P-T
distances). In the near condition, the trolley was at 3 or 4 m from
the participants, and the T-C distances that the participants had
to estimate were equal to 5, 6, 7, and 8 m. In the far condition,
the P-T distance was equal to 6 or 7 m, and the T-C distances
that the participants had to estimate were equal to 3, 4, 5, and
6 m. We varied the distances to prevent the participants to
anchor their estimations in one condition on their estimations
in another condition. Both the P-T distances and T-C distances
varied randomly within-subject from one trial to another. The
participants completed a total of 12 trials, including four practice
trials and eight test trials (one test trial∗four T-C distances∗two
trolley’s positions). For these practice trials, the P-T distance
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FIGURE 1 | Experimental apparatus of Experiment 1 from the participants’
perspective for the light group (A) and the heavy group (B). These pictures
represent the near P-T distance condition, with the trolley located 3 m from
the participant and the cone (target) located 8 m away from the trolley. Written
and informed consent about the potential publication of these images was
obtained from the individual appearing on the figure.

could be equal to 3, 4, 5, or 6 m and the T-C distance could
be equal to 4, 5, 7, or 8 m. At the beginning of each trial, the
participants turned back while the experimenter set the trolley
and the cone at a selected distance by using small marks on
the floor. We empirically determined the size of these marks
so that they were unnoticeable from the participants’ position.
The participants then turned back again to face the trolley and
verbally estimated the T-C distance in meters without time limit.
The participants had to stand at the same location throughout the
experiment without leaning to one side.

Before starting the experiment, the experimenter indicated
to the participants that they would have to estimate all the
T-C distances as spontaneously as possible, to cover all the
T-C distances while walking and pushing the trolley, and to
estimate all the T-C distances again. We gave this instruction
to lead participants to anticipate the effort needed to push
the trolley (Witt et al., 2004). However, at the end of the
test, the participants did not push the trolley and did not
estimate the T-C distances again. Finally, the experimenter
recorded the participants’ height with a tape measure at the
end of the experiment (mheavy−group = 172.6 cm, SD = 8.96;
mlight−group = 170.2, SD = 7.69).

Results
We computed the median estimated distance per condition for
each participant (regarding the use of similar method, see Kirsch
et al., 2017). Moreover, given that distances for the near position
and for the far position were different, we computed a bias ratio
expressing the medians of the estimated distances as a ratio of
medians of the actual distances to compare estimations in near
and far P-T distances (see the Supplementary Tables S1, S2,
available online). A bias ratio of 1 means that the participants
estimated the distances perfectly. A bias ratio above 1 or below
1 means that the participants overestimated or underestimated
the distances, respectively. We discarded from our analysis the

participants who showed inconsistent mean bias ratio between
near and far P-T distances as indicated by a difference between
these conditions equal to or larger than plus-or-minus 3 SD. This
led us to exclude one participant in each group.

We ran a 2 × 2 mixed-designed analysis of variance (ANOVA)
with the trolley weight as a between-subject independent variable
and P-T distance as a within-subject independent variable.
The dependent variable was the bias ratio. This analysis
revealed a significant Trolley Weight × P-T Distance interaction,
F(1,36) = 4.2, p = 0.047, η2

p = 0.10 (Figure 2), and a significant
main effect for the P-T distance, F(1,36) = 15.3, p < 0.001,
η2

p = 0.298. The main effect of weight was not significant,
F(1,36) = 2.4, p = 0.13, η2

p = 0.062.
An a priori contrast analysis showed that, when the

P-T distance was near, participants from heavy-trolley group
(mnear/heavy = 0.94, SDnear/heavy = 0.26, N = 19) estimated
that the T-C distance was larger than participants from
light group (mnear/light = 0.79, SDnear/heavy = 0.21, N = 19),
F(1,36) = 3.95, p = 0.05, η2

p= 0.10. According to our data,
the more plausible value for this effect in the population was
mheavy trolley−light trolley = 0.15, 95% CI for µheavy trolley−light trolley
[0.00, 0,30]. The contrast analysis also showed that this difference
vanished when the P-T distance was far, participants from
heavy group (mfar/heavy = 0.83, SDfar/heavy = 0.25, N = 19) did
not statistically estimate larger distances than participants from
the light group (mfar/light = 0.76, SDfar/light = 0.22, N = 19),
F(1,36) = 1.05, p = 0.31, η2

p = 0.03, which accounts, in part, for
the absence of a significant main effect of weight. Finally, no
correlation was found between the estimations and the height of
the participants (r = 0.06).

Discussion Experiment 1
For a near P-T distance, participants estimated that the T-C
distance was significantly longer when the trolley was heavy than
when it was light. For far P-T distance, this effect decreased and
was not statistically significant. These results suggest that the
trolley weight effect on distance estimation depends on the P-T
distance. This interpretation is consistent with the action-specific
account of perception, according to which action potentialities
affect space perceptions.

Alternative explanations of our results cannot be ruled out.
For instance, one could argue that this effect might arise from
the fact that participants anticipated covering a longer average
distance while pushing the trolley in the near condition than in
the far condition. Indeed, as these conditions differed in terms
of actual T-C distances, the participants anticipated pushing the
trolley for 65% of the total average distance that they had to
cover in the near condition and only for 41% of the total average
distance that they had to cover in the far condition. Thus, pushing
the trolley required more effort in the near condition than in the
far condition, which could explain our results.

Another explanation of the interaction effect could be that
visual variables, rather than action constraints, are the sources
of the observed differences between the light- and heavy-trolley
groups. Indeed, the floor was more occluded by the heavy trolley,
which was full of books and with its top being higher in the visual
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FIGURE 2 | Mean bias ratio expressing the median estimations as a ratio of the actual median distances depending on trolley weight and the P-T distance factors.
A bias ratio above 1 or below 1 means that the participants overestimated or underestimated the distances, respectively. Error bars indicate one SEM. ∗p ≤ 0.05.

field, than by the light one that was empty. The visibility of the
ground plane and the angular declination of the gaze are both
known to play a role in distance perception (Ooi et al., 2001),
however, if it was the case, we should have observed a larger
difference between the heavy and the light trolley groups when
the P-T distance was far than when it was near, because the heavy
trolley occluded a larger part of the T-C distance. It also seems
somewhat counterintuitive to overestimate a partially occluded
distance because it would have meant that they overcompensated
to account for the occluded portion of the T-C distance. Indeed,
experimental arguments have been provided by He et al. (2004)
showing that when the ground surface between an observer and a
target is disrupted by an occluding object, this leads to egocentric
distance underestimation. We think, therefore, that we can rule
out this visual interpretation.

EXPERIMENT 2

The results of Experiment 1 revealed a statistically significant
Trolley Weight × P-T distance interaction. Given that the effect
observed was rather small, some reservations remain whether it
really reflected the influence of the manipulated factors. Also, and
as claimed earlier, it is possible that participants have anticipated
covering a longer average distance while pushing the trolley in
the near P-T distance than in the far P-T distance. This confound
could compromise the internal validity of our conclusions. Given
these limitations, Experiment 2 was a conceptual replication
of Experiment 1. Moreover, as people generally make larger
distance underestimations in virtual environments than in real
environment (Creem-Regehr et al., 2005; Armbrüster et al.,
2008), we aimed to extend the conclusions about our effect
of interest to virtual environments. Thus, using virtual images

instead of real distances and objects allowed us to (1) keep the
visual inputs constant across participants, (2) use the same T-C
distances in near and far P-T distances, and (3) increase the
number of estimations for each distance. Finally, because the lack
of power in Experiment 1 is partially due to our between-subject
manipulation of the trolley weight, we used a within-subject
design in Experiment 2, with systematic order effect addressed
by randomization.

Methods
Participants
Given the effect size reported in Experiment 1 (η2

p = 0.10),
the required sample size for Experiment 2 was determine by
conducting an a priori power analysis using G∗Power software
(version 3.1; Faul et al., 2009). The analysis indicated that a
minimum sample size of 14 participants was required in this
study to detect a medium to large effect size with an adequate
power (1 – ß > 0.80) and an alpha of 0.05. Following this,
fifteen students from the University Paul Valery of Montpellier,
France, participated (mage = 21.7, sage = 3.8, nine females and
six males). All participants had normal or corrected-to-normal
vision as indicated by self-report. They were a priori naïve to
the purpose of the experiment and they did not participate
in prior distance-perception experiments. All participants read
and signed a written informed consent about the experimental
protocol, which was approved by the local ethics committee.

Apparatus and Procedure
The experiment took place in an experimental room (3.15-m-
long and 3-m-wide). A video projector (Epson EB-U04 Tri-
LCD) projected the 20 images of a virtual 3D environment
depicting allocentric T-C distances on a wall located at 2.5 m
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FIGURE 3 | Experimental apparatus of Experiment 2 from the participants’
perspective for the light condition. This picture represents the near P-T
distance condition, with the light trolley located 3 m from the participant.
Written and informed consent about the potential publication of these images
was obtained from the individual appearing on the figure.

from the participants (Figure 3). The images were designed with
Archicad 18 and Artlantis 6. The size of the projected images was
108 cm × 180 cm. Each image represented a third person scene
were an avatar was standing in a corridor with a trolley and a
cone aligned with his midsagittal axis (Figure 4). We chose a
third-person view because it appears there is no apparent gain
of immersion from first- over third-person view in video games
(Black, 2017). On half of the images the trolley was empty (i.e.,
light trolley) and on the other half the trolley was full of books
(i.e., heavy trolley). The trolley was at 3 and 6 m from the avatar
in the near and far P-T distance, respectively. The T-C distances
varied from 3 to 7 m (five distances with a step of 1 m). The
participants had to estimate four times each T-C distance in each
experimental condition (2 Trolley Weights × 2 P-T Distances × 5
T-C distances × 4 Blocks × 1 Trial). Within each block, the
T-C distance, the P-T distance and the trolley weight randomly
varied within subject from one trial to another. For each trial,
the participants had to verbally estimate T-C distance with no
time limit. Then, they had to press the space bar on a keyboard
positioned on their left side to start the next trial. We used the
same cover story as in Experiment 1 by telling the participants
that they would have to actually push the trolley afterward.

Results
We used the same statistical procedure as in Experiment 1
to compute our bias ratio and to discard inconsistent data.
This led to the exclusion of two participants. We also ran
a 2 × 2 within-subject ANOVA with trolley weight and P-T
distance as within-subject independent variables. The dependent
variable was the bias ratio for each condition. This analysis
revealed a statistically significant Trolley Weight × P-T Distance
interaction, F(1,12) = 5.1, p = 0.04, η2

p = 0.30 (Figure 2), a
statistically significant main effect of trolley weight, F(1,12) = 7.3,
p = 0.02, η2

p = 0.38, and statistically main effect of P-T distance,
F(1,12) = 6.4, p = 0.03, η2

p = 0.35. An a priori contrast analysis

FIGURE 4 | 3D images used as stimuli in Experiment 2. Image A represents
the near P-T distance in light condition, with the trolley located 3 m from the
avatar and the cone located 3 m away from the trolley. Image B represents
the far P-T distance in the heavy condition, with the trolley located 6 m from
the avatar and the cone located 7 m away from the trolley.

showed that, when the trolley was near, participants in the
heavy-trolley condition (mnear/heavy = 0.51, SDnear/heavy = 0.22,
N = 13) estimated that the T-C distance was larger than
participants in the in the light-trolley condition (mnear/light = 0.44,
SDnear/heavy = 0.19), F(1,12) = 11.6, p = 0.005, η2

p = 0.49.
According to our data, the more plausible value for this effect
in the population was mheavy trolley−light trolley = 0.07, 95% CI
for µheavy trolley−light trolley [0.03, 0,11]. The contrast analysis also
showed that this difference vanished when the P-T distance was
far as participants did not estimated longer distances in the
heavy-trolley condition (mfar/heavytrolley = 0.40, SDfar/heavy = 0.16)
than in the light-trolley condition (mfar/lighttrolley = 0.40,
SDfar/light = 0.20), F(1,12) = 0.14, p = 0.72, η2

p = 0.00 (see the
Supplementary Tables S1, S2, available online).

Discussion Experiment 2
One of the goals of this second experiment was to replicate
with virtual stimuli what was found in Experiment 1. For a
near P-T distance, participants estimated that the T-C distance
was significantly longer when the trolley was heavy than when
it was light. For far P-T distance, this effect disappeared and
was not statistically significant. Despite this Trolley Weight × P-
T Distance interaction, the results of this experiment differ
from those of Experiment 1 for two reasons. First, the main
effect of trolley weight was statistically significant in Experiment
2, even though it was not in Experiment 1. Given that
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the unstandardised trolley weight effect size was stronger in
Experiment 1 (mheavy trolley−light trolley = 0.09) than in Experiment
2 (mheavy trolley−light trolley = 0.03), this difference in statistical
significance is likely due to the unaccounted between-subject
variability in the between-subject design. Second, participants
underestimated the distances to a larger degree than in
Experiment 1 (less than half the actual distances). This was
consistent with previous studies showing that distance perception
is more compressed in a virtual environment than in real
life (Thompson et al., 2004; Creem-Regehr et al., 2005). More
importantly, our results indicate that despite a larger bias in
distance estimation, the pattern of results from Experiment 2
was consistent with those of Experiment 1. This suggests that
our conclusions might hold for the real environment as well as
virtual ones. We believe that such similarities in results could be
explained by the reliable sense of presence provided by the third-
person perspective (Draper et al., 1996; Thompson et al., 2004;
Creem-Regehr et al., 2005), but this interpretation would need
further investigation.

GENERAL DISCUSSION

As shown in numerous studies, action performance (Witt and
Dorsch, 2009) or social factors can bias the estimation of
allocentric extent within extrapersonal space (Fini et al., 2014,
2015). In the present study, we investigated the role of action
constraints related to an object used as a reference on the
estimation of allocentric distances. For this purpose, we designed
an experiment in which participants estimated the distances
between a trolley and a cone (Experiment 1) while believing
that they would push the trolley later. The results showed that
the participants estimated longer distances when the trolley was
heavy (i.e., loaded with books) than when it was light (i.e., empty).
Importantly, such an impact was moderated by the location of
the trolley with regard to the participants. Finally, we observed
similar results with virtual stimuli (Experiment 2).

Our interpretation of this result is that the anticipated
effort required to push the trolley affected the way participants
perceived the distance between the trolley and the cone. This
interpretation is consistent with the ACT, which claims that
action constraints affect visual perception of space (Proffitt
and Linkenauger, 2013; Witt and Riley, 2014; Morgado and
Palluel-Germain, 2015; Zadra et al., 2016). Our analysis also
revealed that the trolley weight affected distance perception only
when the trolley was near the participants. This suggests that
we met a boundary condition of the effect of the allocentric
reference frame – and its related action constraints – on
space perception.

The Role of the Reference Frame
Characteristics
Some studies have shown that people spontaneously adopt
other people’s perspectives when judging space (Tversky and
Hard, 2009; Samson et al., 2010; Surtees and Apperly, 2012).
For instance, people might take into account the potential
movements of others to judge whether a target located in

extrapersonal space is near or far from themselves (Fini et al.,
2015). One reason for adopting another person’s perspective
is the common mapping of one’s own and the other’s motor
potentialities (Tversky and Hard, 2009; Samson et al., 2010;
Surtees and Apperly, 2012), which can be explained by the
remapping of one’s space representation depending on the
potential actions of others. As mentioned by Fini et al.
(2015), however, it is possible that the human body could
affect space perception as a tool with motion opportunities
and not necessarily because it is a human reference frame.
To answer this question, we used a non-human object with
motion potentialities as a reference frame and we tested
whether people could remap their space perception according
to these potentialities. Our results indicated that distance
estimations were indeed different depending on the reference
frame characteristics (i.e., trolley weight). Considering that
this characteristic has a direct impact on the way someone
might plan to interact with an object, it seems likely that
they will also integrate it as physical constraint in their own
motor potentialities. As tool-use affects perceived distances
(Witt et al., 2005), extrapersonal space could also be processed
according to the potential actions offered by an allocentric
reference frame, which would contribute to scaling the
environment to the bioenergetic resources required to traverse
the distances (Zadra et al., 2016).

The results of these experiments also revealed that trolley
weight affected the participants’ estimations only when the
trolley was near them. This suggests that the participants
did not integrate the physical constraints of the allocentric
reference frame for the far P-T distance. This interpretation
is consistent with studies showing that motor simulation and
affordances are spatially constrained (Costantini et al., 2010,
2011a), which implies that, depending on the reachability of
an object, their perception activates different neural processes,
in particular certain motor processes (Rizzolatti et al., 1996;
Gallese, 2016). Thus, depending on their spatial relationship
with an object, people would not use the same neural
patterns when planning to interact with it. We therefore
propose that an allocentric reference frame with motion
opportunities would lead to different distance estimations of
the extrapersonal space depending on such factors as (1) the
physical effort needed to move it, and (2) its location in
reference to the viewer. We cannot, however, exclude the
possibility that the interaction effect is due to alternative
explanations and this first interpretation would benefit from
further experimental replications.

Alternative Explanations
The experience of perception is known to resist researchers’
attempts to directly measure it in behavioral and
neuropsychological studies. An important theoretical and
experimental debate is still ongoing regarding whether action
genuinely affects either perceptual or post-perceptual processes
(for a review, see Philbeck and Witt, 2015). Among the different
questions raised by this debate, the one that we are interested
in here is whether higher-level cognitive and/or bodily states
can “penetrate” perception (Firestone and Scholl, 2016).
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In other words, whether what one sees is a combination of both
bottom-up factors and one’s beliefs, linguistic representations, or
action performances.

This question could be asked regarding our results, because
the participants performed verbal estimations, which can be
affected by both perceptual differences and response-based
processes (Poulton, 1979; Witt et al., 2016). For example,
one could argue that if participants truly engaged in a
motor simulation process and simulated walking with the
trolley before their estimations, it would not necessarily mean
that perception itself (i.e., visual processing) was altered.
The participants could have transposed the number of steps
needed to cover the different distances and based their
estimations on this mental simulation. Also, and apart from
the perceived effort of pushing, this mental process could
have led participants to bias their judgments depending on
temporal estimates (i.e., the estimated time to move the
trolley to the cone).

Visual perception is known to rely on various sources of
information, including visual information (Cutting and Vishton,
1995), physiological information (White et al., 2013; Witt and
Riley, 2014), action intentions (Witt et al., 2010, 2004, 2005),
as well as on multisensory integration processes (Campos et al.,
2012, 2014; Kirsch et al., 2017). More precisely, these works show
that visual and bodily variables are differently weighted during
the estimation of space or object size, depending on the available
sources of information. Both the intention to push the trolley and
the anticipation of the effort therefore seem likely to be involved
in the perceptual process. The extent to which this bodily variable
can be accounted for in the final estimation remains, however,
an open question.

Witt et al. (2018): see also (Witt and Sugovic, 2013; King
et al., 2017; Witt, 2017) recently provided strong experimental
arguments in favor of the action-specific approach of perception.
Using the Pong task experiment, they showed that when
participants were explicitly told the hypothesis and instructed
to resist the effect of their ability to block the ball, their
ability still affected their perception of the ball’s speed. Those
results highlight that visual experience seems affected by
one’s ability to act, as well as by the consequences of one’s
actions in the environment. More importantly, such findings
not only refute the idea of reducing visual experience to
mere visual processes, but also question the relevance of
the perceptual/post-perceptual distinction when studying the
experience of perceiving.

CONCLUSION

We observed that a heavy trolley used as an allocentric reference
frame led participants to estimate longer distances than a light
trolley. This distinction was only observed when the trolley was
located near the participants and not when it was far from
them. This therefore suggests that during visual space perception,
an allocentric reference frame with motion potentialities can

constrain distance estimation in extrapersonal space. Such
results are in line with previous studies showing the effects
of action constraints on distance perception (Stefanucci and
Geuss, 2009; Witt, 2011; Proffitt and Linkenauger, 2013; Morgado
et al., 2013; King et al., 2017) and suggest going further by
considering an external and a non-living reference frame as a
potential “tool” that could increase or decrease people’s action
opportunities. The moderation effect of the P-T distance also
suggests that the integration of the potentialities offered by an
allocentric reference frame is space-dependent. These findings
are consistent with an embodied view of perception (Proffitt,
2013) and contribute to emphasizing the relevance of taking into
account both visual and body-based information when studying
distance perception.
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The present study is aimed at investigating the development of spatial memory in 
pre-school children aged 4–6 years using an ecological walking task with multiple rewards. 
The participants were to explore an open space in order to find nine rewards placed in 
buckets arranged in three spatial configurations: a Cross, a 3 × 3 Matrix, and a Cluster 
composed of three groups of three buckets each. Clear age-related improvements were 
evident in all the parameters analyzed. In fact, there was a general trend for younger 
children to display worse performance than the older ones. Moreover, males performed 
better than females in both the search efficiency and visiting all buckets. Additionally, the 
search efficiency proved to be a function of the difficulty of the configuration to be explored: 
the Matrix and Cluster configurations were easier to explore than the Cross configuration. 
Taken altogether, the present findings suggest that there is a general improvement in the 
spatial memory abilities in preschoolers and that solving an open space task could 
be  influenced by gender. Moreover, it can be  proposed that both the procedural 
competences and the memory load requested to explore a specific environment are 
determined by its specific features.

Keywords: spatial exploration, cognitive map, spatial memory, behavioral task, children

INTRODUCTION

Navigational abilities are strongly correlated with spatial memory processes, including both 
procedural and declarative components. In fact, when encoding the spatial relationships of an 
environment (declarative spatial knowledge), one has to learn “how” to move in that environment 
(procedural spatial knowledge), thus suggesting that procedural competences and mapping 
abilities are equally necessary for efficient exploration (O’Keefe and Nadel, 1978; Mandolesi 
et  al., 2009). An important role in these processes is played by spatial working memory, which 
is involved in retention and processing of visuospatial information (Baddeley, 1986; Fenner 
et  al., 2000) and correlated with attentional control (Awh et  al., 2006; Gigliotta et  al., 2017). 
In fact, when exploring a new environment, besides the awareness of spatial features, one also 
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needs to temporarily store and manipulate visuospatial 
information in order to find objects or reach a target, thus 
inhibiting distracting stimuli (Flouri et  al., 2018).

Although spatial competences appear very early and are 
age-related (Acredolo, 1977; Hermer and Spelke, 1994; Lehnung 
et  al., 1998; Nardini et  al., 2009; Bullens et  al., 2010; Piccardi 
et  al., 2014), these cognitive processes are not fully developed 
in children younger than about 7  years of age, and mapping 
abilities only appear at 10  years of age (Overman et  al., 1996; 
Lehnung et  al., 1998; Mandolesi et  al., 2009). Behavioral 
studies in this field are in accordance with neuroimaging 
research showing functional maturation of cerebral correlates 
of spatial competences in late childhood and adolescence 
(Klingberg, 2006). Recently, it has been evidenced that spatial 
working memory develops throughout childhood and is 
associated with the maturation of specific white matter tracts 
(Krogsrud et  al., 2018). These findings are in accordance with 
a recent fMRI study investigating the neurological mechanisms 
underlying the ability to orient oneself in a virtual environment. 
In fact, children from 8 to 10 years of age displayed increased 
neural activity in cerebral areas associated with visuospatial 
processing and navigation, such as the left cuneus and the 
mid-occipital area, the left inferior parietal region and precuneus, 
the right inferior parietal cortex, the right precentral gyrus, 
the cerebellar vermis, and the medial cerebellar lobes bilaterally 
(Murias et  al., 2019).

In developmental research, it has been seen that, at around 
6 months of age, infants possess the ability to use visual 
landmarks (Acredolo and Evans, 1980; Crowther et  al., 2000; 
Lew et  al., 2000) and, by the end of the first year, they are 
aware of their own position in the environment and learn 
information about the spatial context in which they are located 
(through movement and proprioceptive information) (Loomis 
et al., 1993). In this context, it has been evidenced that 5-year-
old children are able to find locations in a spatial array, 
starting from a novel perspective, using landmarks alone 
(Nardini et  al., 2006).

The evidence regarding gender differences in the development 
of spatial abilities is more controversial. On one hand, it is 
clear that, from puberty onward, males display a more efficient 
use of spatial competencies than females, which might be related 
to the maturation of specific cerebral structures such as the 
corpus callosum, the hippocampus, and the frontal cortex (Giedd 
et al., 1999; Vuontela et al., 2003; Alejandre-Gomez et al., 2007; 
Méndez-López et  al., 2009). On the other hand, the evidence 
of gender differences during childhood is more debated. Some 
behavioral studies evidenced that males and females use different 
strategies to explore the environment and to acquire spatial 
information (Lawton, 1994, 1996; Robinson et  al., 1996; Astur 
et  al., 1998, 2004; Sandstrom et  al., 1998; Gibbs and Wilson, 
1999; Beilstein and Wilson, 2000; Grön et  al., 2000; Blanch 
et al., 2004). Recently, it has been observed that in some spatial 
competencies, as well as in object localization, females perform 
better than males do before the age of 13 (Bocchi et  al., 2018).

However, further evidence documented similar performances 
in both genders with regard to spatial tasks (Linn and Petersen, 
1985; Aliotti and Rajabiun, 1991; Anderson and Lajoie, 1996; 

Overman et  al., 1996; Lehnung et  al., 1998, 2003;  
Nichelli et  al., 2001; Leplow et  al., 2003).

In a previous work, we  analyzed the spatial abilities of 
preschoolers and schoolers using a large-scale radial arm maze 
(RAM), an ecological instrument that allows the analyses of 
different facets of spatial function (Mandolesi et  al., 2009). In 
particular, the RAM consists of a central area from which a 
number of identical arms radiate. At the end of each arm, 
there is a hidden reward. In the free-choice paradigm, the 
subject is required to recover all the rewards without making 
mistakes. Provided that there is only one reward per arm, and 
that revisiting an arm is considered a mistake, the subject will 
need both declarative and procedural competencies to perform 
the task. In this specific setting, we  showed a clear age- and 
gender-related effect in all the parameters analyzed (Mandolesi 
et al., 2009). In short, younger children (3.5–4 years) performed 
poorly as compared to older ones (4  years older), and females 
exhibited acquisition of spatial competences earlier in comparison 
to males up to 5.5  years old (Mandolesi et  al., 2009). However, 
in the RAM task, children have to find the hidden rewards 
according to a fixed spatial configuration, and the searching 
strategies are limited by the number of alternative routes. To 
overcome this limitation, we  investigated the spatial abilities 
of children aged 4–6  years in a large-scale task without any 
spatial constraint, so as to make the task harder and potentially 
uncover developmental trends of spatial memory in this age 
range, as well as possible gender differences and specific 
environmental features that might facilitate the exploration. In 
this spatial task, the child is free to move, adopting exploratory 
behaviors in accordance with the environment. Thus, the 
environmental affordances influence the construction of the 
search strategies as well as the knowledge of the positions of 
the rewards (Foti et al., 2011, 2015). In particular, in the present 
study, the participants were asked to explore an open space 
to search for nine rewards hidden in buckets arranged in three 
spatial configurations: a Cross, a 3 × 3 Matrix, and a Cluster 
composed of three groups of three buckets each. We  believe 
that the analysis of spatial exploration in open environments, 
without any constraints, could increase our knowledge of the 
development of spatial abilities in children. In the current study, 
we  hypothesize that the characteristics of the environment 
define the specific spatial memory competencies needed to 
explore it and, consequently, the implementation of appropriate 
navigational strategies. For this reason, we  expect that the 
difficulties in exploring will decay as a function of age. 
Furthermore, we  went on to evaluate the locomotion of the 
participants. To do this, we computed the total distance travelled 
to complete a task. This information is relevant as it has been 
shown that locomotion facilitates the acquisition of spatial 
competencies (Lehnung et  al., 2003).

MATERIALS AND METHODS

Participants
Thirty-six healthy Italian children (17  M and 19  F) aged 
from 4  years and 1  month (4.1) to 6  years and 2  months 

119

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Sorrentino et al. Development of Spatial Abilities

Frontiers in Psychology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 728

(6.2) (mean age: 5.3  ±  SEM 1.3) participated in the present 
study. Participants were divided into two groups based on 
the classes of the kindergarten: group I  (N  =  18; 9  M and 
9°F; mean age: 4.7  ±  0.8) and group II (N  =  18; 10  M and 
8°F; mean age: 5.8  ±  0.9). All the children attended a public 
kindergarten in Southern Italy, and none had had previous 
experience with the multiple reward task. Moreover, none 
of the children presented neurological or neuropsychological 
disorders, and all had normal or corrected-to-normal vision. 
To verify typical cognitive development, all participants were 
assessed by Raven matrices test (Raven, 1938; Raven Court 
and Raven, 1995). Written informed consent to perform the 
task was obtained from the children’s parents. The study 
was conducted according to the 1964 Declaration of Helsinki 
and was approved by the Internal Review Board of the 
University of L’Aquila.

Apparatus
The apparatus was situated in open-air, in a large garden, 
and consisted of nine orange plastic buckets (18  cm wide × 
28  cm high) containing the reward (a little-colored ball). 
The buckets, along with a swinging cover, were arranged in 
three different spatial configurations as described in the 
Procedures section. The apparatus was surrounded by extra-
maze cues (trees, swings, benches, etc.) held in constant spatial 
relations among each other throughout the experiment. During 
the test phases only, children could see or have physical 
access to the three different spatial configurations. In order 
to increase the motivation to pick up the rewards, at the 
end of each trial, the child received a reward (a little toy) 
in exchange for all the colored balls found in the buckets 
(Foti et  al., 2011, 2015).

Procedures
Spatial configurations were derived from previous experimental 
studies that demonstrated reliability in emphasizing task features 
and have been accurately described in our previous research 
(Foti et al., 2011, 2015). In the Matrix configuration, the buckets 
were arranged 4  m apart in a 3 × 3 square matrix. In the 
Cross configuration, the buckets were arranged 4  m apart in 
an “X” formation. In the Cluster configuration, the buckets 
were arranged 4  m apart, in triplets 120° away from each 
other (in the lower part of Figures 1, 2, the arrangement of 
the buckets in the three configurations is depicted).

Each child was allowed to freely explore the apparatus 
to retrieve the rewards. A trial ended when all nine rewards 
had been collected or 30 visits (correct or wrong) had been 
made. Since the buckets were never filled with two rewards 
in the same trial, the optimal performance consisted of 
visiting each bucket only once, collecting nine rewards through 
nine visits. A bucket was considered visited when the child 
looked inside the bucket. An error was recorded when the 
child re-visited a bucket  already visited during the same 
trial or when a bucket was never visited. Each participant 
performed two trials a day (inter-trial interval: 2  h) with a 
given spatial configuration. On the first day, the children 

performed two trials with one spatial configuration. The next 
day, they performed two trials with a different spatial 
configuration. On the third day, they performed two trials 
with the remaining spatial configuration. The order of 
presentation of the three configurations was randomized 
among children.

At the beginning of the first test day, the experimenter 
used the same simple verbal instructions to explain the task 
to each child (“The game is to find some little colored balls. 
Do you  see the orange buckets? You  have to reach a bucket, 
take the little ball inside, until you  have collected all the balls. 
Go and have fun!”). No other instruction or verbal encouragement 
was provided during the testing. Each participant wore an 
actigraph device (wActiSleep-BT, ActiGraph, Pensacola, Florida) 
to record the steps taken during the exploration of 
each configuration.

Behavioral Parameters
In each of the two trials of a given configuration, the following 
parameters were analyzed: the search time, i.e., the time (in 
seconds) to complete the task; the search efficiency, i.e., the 
number of appropriate visits (successes) performed in the trial; 
the total errors, i.e., the percentage of total errors out of the 
total visits (considering both re-visits (visiting a previously 
depleted bucket) and no-visits to a bucket (skipping a bucket)); 
and the re-visit errors, the no-visit errors, and the spatial span, 
i.e., the longest sequence of correct visits. Moreover, in order 
to evaluate the locomotion, we  calculated the total distance 
(in centimeters) traveled to complete the task.

Drawings
In order to evaluate the graphical and mental representation 
mapping abilities, after the second trial of each configuration, 
all children were asked to draw the setting where they had 
just “played.” Thus, each child drew three drawings, one for 
each configuration. No instructions were provided either about 
representing the individual objects, the global setting, or about 
indicating how many buckets (or rewards) were present in 
the setting.

In examining the drawings of the three spatial configurations, 
we  evaluated the type of representation, an index rating the 
egocentric/allocentric ratio of drawings, using a 5-point Likert 
scale (from 1: clearly egocentric, to 5: clearly allocentric), 
according to Foti et  al., 2018. To objectively assess this 
parameter, we  asked two coders, blind to experimental 
conditions and expert in mental spatial representations and 
human navigation, to score each drawing according to its 
egocentricity/allocentricity. The scoring was considered reliable 
only when the Cohen’s kappa coefficient showed sufficient 
consistency (k  >  0.75).

Statistical Analysis
The results of each participant belonging to experimental 
groups were presented as mean values of the two trials of 
any configuration ± SEM. The data were first tested for 
normality (Shapiro-Wilk normality test) and homoscedasticity 
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A

C

B

FIGURE 1 | Performances of group I and group II on the search task in Matrix, Cluster, and Cross configurations. Bucket arrangement in the three configurations is 
depicted in the figures below the graphs (A,B,C). Data are presented as mean ± SEM. Asterisks and the p values inside the graphs (A,C) indicate the significance 
level of post hoc comparisons on the second-order interactions: ***p < 0.0005. The p values of the main factors are reported on the right side of each graph.
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A

C

B

FIGURE 2 | Performances of group I and group II on the search task in Matrix, Cluster, and Cross configurations. Bucket arrangement in the three configurations is 
depicted in the figures below the graphs. Data are presented as mean ± SEM (A,B,C). The p values inside the graph (C) indicate the significance level of post hoc 
comparisons on the second-order interaction. The p values of the main factors are reported on the right side of each graph.
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(Levene test) and then compared using three-way analyses of 
variance (ANOVA) by applying the mixed model for the 
independent variables (Age and Gender) and repeated measures 
(Configurations), followed by post hoc using Duncan’s test.

Since in the present study a number of analyses were run, 
controlling for the alpha inflation was needed. We  controlled 
the proportion of type I errors among all rejected null hypotheses 
by setting the false discovery rate (FDR) to 0.05. The FDR 
was estimated through the procedure described in Storey and 
Tibshirani, 2003. In our results, the 0.05 level of significance 
corresponded to an FDR  <  0.05.

RESULTS

Search Time
With regard to the time spent to complete the test, a three-way 
ANOVA (Age × Gender × Configuration) was used. Results 
are reported as F statistic (F), statistical significance (p), and 
bias effect size estimation (hp

2 ). The statistical analysis revealed 
significant Age (F1,32  =  11.71, p  =  0.002, hp

2   =  0.27)  
and Configuration (F2,64  =  36.99, p  <  0.000001, hp

2   =  0.53) 
effects, while the Gender (F1,32  =  0.0001, p  =  0.99) effect was 
not significant. Also, the first-order Age × Gender (F1,32  =  4.9, 
p  =  0.03, hp

2   =  0.13) and Age × Configuration (F2,64  =  3.78, 
p  =  0.03, hp

2   =  0.10) interactions were significant.  
Conversely, the first-order Gender × Configuration (F2,64 = 1.08, 
p = 0.34) and the second-order Age × Gender × Configuration 
(F2,64  =  1, p  =  0.37) interactions were not significant.

As revealed by the post hoc comparisons performed on the 
first-order Age × Gender interaction, the male children of 
group II were significantly faster than the male children of 
group I  (p  =  0.001), while the two groups of females took 
similar times (p  =  0.4). Moreover, the post hoc comparisons 
performed on the first-order Age × Configuration interaction 
showed that, in the Matrix configuration, group I took a similar 
time in comparison to group II (p  =  0.15). However, in the 
Cross and Cluster configurations, group I  was significantly 
slower than group II (at least p  =  0.0005) (Figure 1A).

Search Efficiency
A three-way ANOVA (Age × Gender × Configuration) showed 
significant Age (F1,32  =  6.94, p  =  0.01, hp

2   =  0.18), Gender 
(F1,32  =  4.99, p  =  0.03, hp

2   =  0.13), and Configuration 
(F2,64  =  3.69, p  =  0.03, hp

2   =  0.10) effects. None of the 
interactions were significant (Age × Gender: F1,32  =  2.12, 
p = 0.15; Age × Configuration: F2,64 = 0.09, p = 0.91; Gender × 
Configuration: F2,64  =  2.57, p  =  0.08; Age × Gender × 
Configuration: F2,64  =  0.47, p  =  0.62).

Interestingly, post hoc comparison performed on the Age 
and Gender effects revealed that group II obtained higher 
values of search efficiency than group I  (p  =  0.01) and that 
male children performed better than female children (p = 0.03). 
Moreover, post hoc comparisons performed on the Configuration 
effect revealed that the Cross configuration was more difficult 
than the Matrix and Cluster configurations (Cross vs. Cluster 
or Matrix: at least p  <  0.0001) (Figure 1B).

Total Errors
A three-way ANOVA (Age × Gender × Configuration) revealed 
significant Age (F1,32  =  10.66, p  =  0.003, hp

2   =  0.25) and 
Configuration (F2,64  =  10.32, p  =  0.0001, hp

2   =  0.24) effects, 
while the Gender (F1,32 = 2.06, p = 0.16) effect was not significant. 
Moreover, also the first-order interaction Gender × Configuration 
was significant (F2,64  =  4.24, p  =  0.02, hp

2   =  0.12). The 
remaining interactions were not significant (Age × Gender: 
F1,32 = 1.27, p = 0.26; Age × Configuration: F2,64 = 0.21, p = 0.81; 
Age × Gender × Configuration: F2,64  =  0.70, p  =  0.5). Post 
hoc comparisons performed on the Age effect revealed that 
group I  had significantly higher total errors than group II 
(p = 0.003). Moreover, as revealed by the post hoc comparisons 
performed on the first-order Gender × Configuration interaction, 
the performance of female children was worse in the Cross 
configuration than the performance of male group (p = 0.002), 
while there were no significant differences between female and 
male children in the Matrix (p  =  0.46) and Cluster (p  =  0.07) 
configurations (Figure 1C).

Re-visit Errors
A three-way ANOVA (Age × Gender × Configuration) revealed 
significant Age (F1,32  =  9.28, p  =  0.005, hp

2   =  0.22)  
and Configuration effects (F2,64 = 10.89, p = 0.00008, hp

2  = 0.25), 
while Gender effect was not significant (F1,32  =  1.56, p  =  0.22). 
None of the interactions were significant (Age × Gender: 
F1,32 = 0.22, p = 0.64; Age × Configuration: F2,64 = 1.04, p = 0.36; 
Gender × Configuration: F2,64 = 0.95, p = 0.39; Age × Gender  × 
Configuration: F2,64  =  0.14, p  =  0.86). Post hoc comparisons 
on the Age effect revealed that group I  had a significantly 
higher percentage of re-visit errors than group II (p  =  0.005). 
Moreover, post hoc comparisons performed on the Configuration 
effect revealed that Cross configuration was more difficult than 
Matrix and Cluster configurations (Cross vs. Cluster or Matrix: 
at least p  <  0.001) (Figure 2A).

No-Visit Errors
A three-way ANOVA (Age × Gender × Configuration) revealed 
a significant Gender effect (F1,32  =  4.89, p  =  0.03, hp

2   =  0.13), 
while Age (F1,32 = 3.46, p = 0.07) and Configuration (F2,64 = 3.1, 
p  =  0.06) effects were not significant. None of the interactions 
were significant (Age × Gender: F1,32  =  2.5, p  =  0.12; Age × 
Configuration: F2,64  =  0.16, p  =  0.85; Gender × Configuration: 
F2,64 = 2.85 p = 0.06; Age × Gender × Configuration: F2,64 = 1.11, 
p  =  0.34). Post hoc comparisons performed on the Gender 
effect revealed that female children made more no-visit errors 
than male children did (Figure 2B) (p  =  0.03).

Spatial Span
The spatial span is represented by the longest sequence of correct 
visits. A three-way ANOVA (Age × Gender × Configuration) 
revealed significant Age (F1,32 = 11.64, p = 0.002, hp

2  = 0.27) and 
Configuration (F2,64  =  12.85, p  =  0.00002, hp

2   =  0.29) effects, 
while Gender (F1,32  =  0.37, p  =  0.55) effect was not significant. 
Moreover, the first-order interaction Gender × Configuration 
was significant (F2,64  =  2.94, p  =  0.04, hp

2   =  0.02), while the 
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remaining interactions were not significant (Age × Gender: 
F1,32 = 0.13, p = 0.72; Age × Configuration: F2,64 = 0.71, p = 0.5; 
Age × Gender × Configuration: F2,64  =  0.32, p  =  0.73).

Post hoc comparisons performed on the Age effect showed 
that group II exhibited higher values of span than group I 
(p  =  0.002). Moreover, post hoc comparisons performed on 
the first-order interaction Gender × Configuration showed that 
male children exhibited significantly higher values of span than 
female children in the Cross configuration (p  =  0.045), while 
there were no significant differences between female and male 
children in the Matrix (p  =  0.22) and Cluster (p  =  0.45) 
configurations (Figure 2C).

Total Distance
A three-way ANOVA (Age × Gender × Configuration) revealed 
significant Age (F1,32  =  4.48, p  =  0.04, hp

2   =  0.12)  
and Configuration (F2,64  =  39.27, p  <  0.000001, hp

2   =  0.55) 
effects, while the Gender (F1,32  =  3.37, p  =  0.08) effect was 
not significant. None of the interactions were significant (Age × 
Gender: F1,32 = 0.14, p = 0.71; Age × Configuration: F2,64 = 0.09, 
p  =  0.91; Gender × Configuration: F2,64  =  0.29 p  =  0.75; Age  × 
Gender  × Configuration: F2,64  =  2.20, p  =  0.12). Post hoc 
comparisons performed on the Age effect showed that group  I 
exhibited higher values of total distance than group I (p = 0.04). 
Moreover, post hoc comparisons performed on the Configuration 
effect showed that children exhibited higher values of total 
distance in the Cross and Cluster configurations than in the 
Matrix and Cluster configurations (Cluster or Cross vs. Matrix: 
at least p  <  0.0001) (Figures 3A,B).

Drawings
All children willingly drew the spatial setting where they had 
just “played.” A three-way ANOVA (Age × Gender × 
Configuration) revealed a significant Age effect (F1,28  =  6.55, 
p  =  0.02, hp

2   =  0.19), while Gender (F1,28  =  0.16, p  =  0.69) 
and Configuration (F2,56  =  2.29, p  =  0.11) effects were not 
significant. None of the interactions were significant (Age × 
Gender: F1,28 = 0.14, p = 0.71; Age × Configuration: F2,56 = 0.51, 
p  =  0.6; Gender × Configuration: F2,56  =  0.89 p  =  0.42; Age  × 

Gender × Configuration: F2,56  =  1.72, p  =  0.19). Post hoc 
comparisons performed on the Age effect revealed that the 
values of younger children (mean score: 1.24  ±  0.44) were 
significantly different in comparison to older children (mean 
score: 2.3  ±  0.81) (Figure 4).

DISCUSSION

The present research focused on the development of spatial 
abilities using ecological settings with different configurations 
and without spatial constraints. The three configurations children 
explored were placed outdoor. Thus, our experimental setting 
allowed children to consider themselves as participants in a 
search game, thus motivating them to perform the task. Another 
positive aspect of our task is that it allows the analyses of 
different facets of spatial memory. In fact, the analysis of all 
the parameters provides information on procedural competences, 
on declarative knowledge, on the mental representation of the 
environment, and on spatial working memory abilities.

The main results of the present study are severalfold.
Firstly, the development of spatial abilities follows a precise 

developmental trend with a clear age-related improvement. 
In particular, younger children displayed worse performances 
as compared to the older ones with regard to the total time 
employed to complete Cluster and Cross configurations, in 
the number of total and re-visit errors, in search efficiency, 
in spatial span, and in distance travelled (Figures 1–3). 
However, older children did not always have error-free 
performance or maximum span value, suggesting that at 6 
years of age such abilities are not fully developed. To 
be  confirmed, such a hypothesis should be  further tested 
with older children. These findings are in accordance with 
previous developmental psychological evidence showing that 
children younger than 7 years of age fail to resolve spatial 
behavioral tasks (Overman et  al., 1996; Lehnung et  al., 1998; 

A B

FIGURE 3 | (A) Total distance of group I and group II travelled to complete 
the task in Matrix, Cluster, and Cross configurations. Data are presented as 
mean ± SEM. (B) Trajectories traveled by all children of each group are 
depicted.

FIGURE 4 | Selected drawings of group I and group II. At the end of each 
configuration, the children were required to draw the setting they had just 
experienced.
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Mandolesi et  al., 2009; Foti et  al., 2011). Moreover, our study 
is in accordance with Lehnung et  al. (2003) who have shown 
that locomotion facilitates the acquisition of declarative 
knowledge in children under the age of 7 and with Boccia 
et  al. (2017) who have shown that navigational training 
enhances allocentric spatial recall. Our results suggest that 
the acquisition of declarative knowledge is more effective if 
the children are allowed to move in the open space, without 
spatial constraints. According to this, the children belonging 
to group II (mean age: 5.8  ±  0.9), besides scoring higher in 
all parameters as compared to children of group I, drew the 
configurations mainly as observed from above, thus suggesting 
a growing capacity of mental representation (Figure 4). However, 
their mental representative mapping abilities are not fully 
developed, as evidenced by their drawings, where the 
representation of the configurations is not always complete 
and still flawed by elements of egocentric perspective. Conversely, 
the drawings of younger children were characterized exclusively 
by the egocentric perspective. These data suggest a clear 
age-related improvement in the mental representative mapping 
abilities and support the idea that exploring the space 
appropriately is a necessary condition in order to build a 
cognitive spatial map (Mandolesi et al., 2003; Foti et al., 2018).

Other evidence provided in this paper concerns gender 
differences in solving the multiple reward task. We  observed 
better performance of males than females in search efficiency 
and in no-visit errors in all configurations (Figures 1, 2) and 
better performance of males than females in total error and 
in the spatial span only for the Cross configuration  
(Figures 1, 2). As will be discussed later, the Cross configuration 
is the hardest to explore, and it is interesting to note that 
in this specific experimental condition gender differences 
emerged. Altogether, these data might appear to be  in 
contradiction with our previous results (Mandolesi et  al., 
2009). In fact, we  found a precocious acquisition of spatial 
competencies in females both in the procedural components 
and in the working memory abilities. However, it is important 
to stress that gender differences may vary widely depending 
on several factors, such as the spatial task used. In our 
previous work, we  analyzed spatial abilities in children using 
the radial maze task that is strongly influenced by spatial 
constraints. Here, children have to explore an open space, 
without any spatial constraints, and therefore, they had to 
organize (plan) a path suitable for the configuration to 
be explored. Thus, it is reasonable to conclude that any gender 
difference observed in children in a given spatial task cannot 
be  generalized to other spatial tasks. In particular, the Cross 
configuration is the hardest configuration, where the optimal 
strategy is not immediately suggested by the geometry. This 
feature requires further cognitive abilities, such as cognitive 
flexibility. In fact, the child has to change of strategy when 
finishing one line and starting a new one. Such peculiarity 
might make gender differences emerge in this specific task. 
Thus, one might speculate that spatial constraints are dealt 
with differently according to the gender of the participant. 
However, more studies will be  needed to confirm or falsify 
such a hypothesis.

One more piece of evidence provided in this manuscript 
is that the environment strongly affects spatial exploration. In 
fact, as explained before, we observed that some configurations 
are easier to explore than others. In particular, in the Matrix 
and Cluster configurations, children made fewer re-visit errors 
and exhibited higher levels of search efficiency than they did 
in the Cross configuration (Figure 1). Moreover, the Matrix 
configuration was explored by traveling the shortest distance 
(Figure 3). To explain these differences, it is important to 
take into account the characteristics of the three configurations.

Efficient strategies for exploring the Matrix configuration 
are structured search patterns that follow rows (or columns) 
sequentially or, conversely, that travel the perimeter of the 
external “square” to reach the most internal bucket at the end 
(Foti et  al., 2011, 2015). In previous studies, we  highlighted 
that pre-school children explored the Matrix configuration using 
a structured search patterns characterized by the shortest 
transitions from one bucket to another (Foti et al., 2011, 2015), 
thus suggesting that children can orientate themselves in an 
open environment already at about 6 years of age, as long as 
structured internal patterns are present. This may be the reason 
why children explored the Matrix configuration more easily. 
The Cluster configuration offers the possibility of using a 
chunking strategy, first visiting the locations within the same 
cluster and then moving to another one. The chunking theory 
(Murdock, 1995, 2005; Schyns et  al., 1998) predicts that, once 
the chunks have been retrieved, the burden on memory will 
be  a function of the number of clusters to be  explored in the 
search space (in our case, three) rather than of the total number 
of locations to be  explored (in our case, nine). Thus, the 
chunking strategy implies a hierarchical organization of memory, 
substantially reducing the working memory load, thus improving 
the overall performance (Terrace and McGonigle, 1994; Cohen 
et  al., 2003). Given its reduced mnesic load, even this 
configuration is not particularly difficult to explore. Hence, 
one might speculate that the hierarchical organization of 
particular facets of spatial memory starts to develop earlier 
than 4  years of age. Finally, the Cross configuration is 
characterized by strong spatial constraints. As explained before, 
the most effective strategy to fully explore the Cross configuration 
requires that the children use an end-to-end search pattern 
twice, moving along the lines and visiting the next bucket at 
each step. However, once a line is completed and the children 
reach its end, it is necessary to switch to the second line by 
reaching to the farthest bucket (thus modifying the strategy). 
This change of strategy requires cognitive flexibility, an ability 
that matures later on during the growth, along with the 
maturation of the frontal lobes (Oyefiade et  al., 2018). This 
interpretation would explain why the Cross configuration is 
more difficult to explore in comparison to the Matrix and the 
Cluster ones.

In conclusion, it can be  proposed that both the procedural 
competences and the memory load requested to explore a 
specific environment are determined by its specific features. 
The memory load required might partly explain the difficulties 
in the exploration of more complex environments by younger 
children who have not yet completed the maturation of cerebral 
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areas involved in the processing of spatial memory. Likewise, 
the complexity of the environment to be  explored requires 
specific spatial abilities, which might be related to the emergence 
of gender differences. Finally, our study shows how the exploration 
of the environment facilitates the building of its internal 
representation and highlights that movement plays an important 
role in the development of spatial abilities.

Overall, our findings provide information about the timing 
of the development of spatial orientation and spatial memory 
and are in line with previous evidence. Further investigation 
is needed to characterize the developmental trend of spatial 
cognitive functions.
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Split-belt treadmills that move the legs at different speeds are thought to update internal

representations of the environment, such that this novel condition generates a new

locomotor pattern with distinct spatio-temporal features compared to those of regular

walking. It is unclear the degree to which such recalibration of movements in the spatial

and temporal domains is interdependent. In this study, we explicitly altered subjects’

limb motion in either space or time during split-belt walking to determine its impact on

the adaptation of the other domain. Interestingly, we observed that motor adaptation

in the spatial domain was susceptible to altering the temporal domain, whereas motor

adaptation in the temporal domain was resilient to modifying the spatial domain. This

non-reciprocal relation suggests a hierarchical organization such that the control of timing

in locomotion has an effect on the control of limb position. This is of translational interest

because clinical populations often have a greater deficit in one domain compared to the

other. Our results suggest that explicit changes to temporal deficits cannot occur without

modifying the spatial control of the limb.

Keywords: locomotion, motor learning, split-belt, spatio-temporal, sensorimotor adaptation, kinematics

1. INTRODUCTION

We are constantly adapting our movements to demands imposed by changes in the environment
or our body. In walking, this requires the adaptation of spatial and temporal gait features to control
“where” and “when” we step, respectively. Particularly, in split-belt walking when one leg moves
faster than the other, it has been observed that subjects minimize spatial and temporal asymmetries
by adopting motor patterns specific to the split environment (e.g., Malone et al., 2012). It is thought
that this is achieved by updating internal representations of the treadmill for the control of the
limb in space and time (Malone et al., 2012). There is a clinical interest in understanding the
interdependence in the control of these two aspects of movement because pathological gait often
has a greater deficiency in one domain compared to the other (Malone and Bastian, 2014; Finley
et al., 2015). Thus, there is a translational interest to determine if spatial and temporal asymmetries
in clinical populations can be targeted and treated independently.
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Ample evidence supports that the adaptation, and hence
control, of spatial and temporal gait features is dissociable.
Notably, studies have shown that inter-limb measures, such
as step timing (temporal) and step position (spatial) adapt at
different rates (Malone and Bastian, 2010; Sombric et al., 2017),
they exhibit different generalization patterns (Torres-Oviedo
and Bastian, 2010), and follow distinct adaptation dynamics
throughout development (Vasudevan et al., 2011; Patrick et al.,
2014) or healthy aging (Sombric et al., 2017). In addition,
several behavioral studies show that subjects’ adjustment of
spatial metrics can be altered (Malone and Bastian, 2010; Malone
et al., 2012; Long et al., 2016) without modifying the adaptation
of temporal gait features. However, the opposite has not been
demonstrated. For example, altering intra-limb measures (i.e.,
characterizing single leg motion) of timing, such as stance time
duration (Afzal et al., 2015; Krishnan et al., 2016) also leads to
changes in intra-limb spatial features, such as stride lengths. In
sum, the spatial and temporal control of the limb is thought to
be dissociable, but it remains unclear if the adaptation of internal
representations of timing can be altered and what is the impact of
such manipulation in the temporal domain on the spatial control
of the limb.

In this study we aimed to determine the interdependence
between the spatial and temporal control of the limbs during
walking, particularly of inter-limb parameters characterizing
bipedal coordination. We hypothesized that spatial and temporal
inter-limb features are adapted independently based on previous
studies demonstrating their dissociation. To test this hypothesis,
subjects walked on a split-belt treadmill, which requires the
adaptation of spatial and temporal inter-limb coordination. We
further altered subjects’ movements during split-belt walking
by either instructing them “where” (spatial feedback) or
“when” (temporal feedback) to take a step. We contrasted
the impact of explicitly manipulating movements in one
domain on the adaptation of the other domain to determine
their interdependence.

2. MATERIALS AND METHODS

We recruited twenty-one healthy young subjects (13 women,
8 men, mean age 24.69 ± 4 years) to voluntarily participate
in this study. Subjects were randomly assigned to three groups
(n = 7, each): (1) control, (2) spatial feedback, (3) temporal
feedback to determine if explicitly altering the limb motion on
either the spatial or the temporal domain with visual feedback
during split-belt walking had an impact on the adaptation of the
other domain (Figure 1A). Notably, if the control of these two
domains was dissociable, altering one would not have an effect on
the other. Alternatively, if they were interdependent, modifying
the adaptation of one domain not only would have an effect
on the targeted domain, but will also alter the other one. The
protocol was approved by the Institutional Review Board of the
University of Pittsburgh and all subjects gave informed consent
prior to testing.

2.1. Experimental Protocol
All subjects walked on a split-belt treadmill during four
experimental phases: Baseline, Familiarization, Adaptation, and

Post-adaptation. The speed for each belt during these phases
is shown in Figure 1B. This speed profile enabled individuals
to walk at an averaged speed of 0.75 m/s throughout the
experiment. In the Baseline phase, individuals walked with the
two belts moving at the same speed of 0.75 m/s for 150
strides (∼ 3 min). Recordings from these phase were used as
the reference gait for every individual. In the Familiarization
phase, all participants also walked at 0.75 m/s for 150 strides,
but only subjects in the feedback groups received the same
visual feedback that they were going to experience during the
subsequent Adaptation phase. This was done to allow feedback
groups to become habituated to use the provided visual feedback
to control either spatial (spatial feedback group) or temporal
(temporal feedback group) gait features. In the Adaptation phase,
the belts weremoved at a 2:1 ratio (1:0.5 m/s) for 600 strides (∼13
min). We selected these specific belt speeds because other studies
have indicated that they induce robust sensorimotor adaptation
(Reisman et al., 2005; Mawase et al., 2014; Sombric et al., 2017;
Vervoort et al., 2019) and we observed in pilot tests that subjects
with visual feedback at these speeds could successfully modify the
spatial and temporal gait features of interest. The self-reported
dominant leg walked on the fast belt. In the Post-adaptation
phase, all individuals walked with both belts moving at 0.75
m/s for 450 strides (∼10 min). This phase was used to quantify
gait changes following the Adaptation phase. The treadmill belts
were stopped at the end of each experimental phase. A handrail
was placed in front of the treadmill for safety purposes, but
individuals did not hold it while walking. A custom-built divider
was placed in the middle of the treadmill during the entire
experimental protocol to prevent subjects from stepping on the
same belt with both legs. Subjects also wore a safety harness
(SoloStep, SD) that did not interfere with their walking (no body
weight support).

We tested three groups: (1) control group, (2) spatial feedback
group, (3) temporal feedback group. The control group was
asked to “just walk” without any specific feedback on subjects’
movements. Each subject in the spatial or temporal feedback
groups was instructed to either maintain his/her averaged
baseline step position (spatial feedback group) or averaged
baseline step time (temporal feedback group) when the feedback
was on. Step position was defined as the sagittal distance between
the leading leg’s ankle to the hip at heel strike (Figure 1C).
Step time was defined as the time period from heel strike
(i.e., foot landing) of one leg to heel strike of the other leg
(Figure 1D). We chose to manipulate step position and step
time for consistency with other studies (Malone et al., 2012;
Long et al., 2016) and because these parameters are adjusted
during split-belt walking to reduce spatial and temporal inter-
limb asymmetries, respectively (Malone et al., 2012). Panels
C and D in Figure 1 show sample screen shots of the visual
feedback observed by each group on a screen placed in front of
them. More specifically, we permanently displayed either spatial
or temporal targets (blue rectangles) indicating the averaged
step position (spatial feedback group) or averaged step time
(temporal feedback group) across legs during baseline walking.
These targets turned green when subjects achieved the targeted
baseline values and they turned red when they did not. A
tolerance of±0.75 and±1.25% of the baseline value was given to
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FIGURE 1 | Expected outcomes, paradigm and feedback visualization. (A) Expected outcomes for dissociable and interdependent internal representations of space

and time. If dissociable, the feedback manipulation will only affect the targeted domain without changing the other domain. For example, spatial feedback (indicated

with blue outline) would alter spatial features (S) of the motor pattern while temporal ones (T) remain invariant. On the other hand, if the domains are interdependent,

feedback manipulation of one domain will also alter the other domain. For example, spatial feedback modifying spatial features of the motor pattern would also

change temporal ones. (B) Split-belt walking paradigm used in all groups. Dashed lines separate the different experimental phases. All groups experienced the same

number of strides during each phase (Baseline: 150, Familiarization: 150, Adaptation: 600, and Post-adaptation: 450). The two belts moved at the same speed

(0.75m/s) during the Baseline and Familiarization phases. Only subjects in the feedback groups walked while observing their movements on a TV screen placed

directly in front of them (Feedback On) during the familiarization phase. The feedback to these groups was also given during the Adaptation phase (gray shaded area)

during which one belt (fast belt) moved at 1m/s and the other one (slow belt) moved at 0.5m/s. Finally, during Post-adaptation subjects walked again with the two

belts moving at the same speed (0.75m/s). (C,D) Visual feedback schematic. Schematic of the legs in the top row illustrate the step position (e.g., αf and αs) and

step time (e.g., ts), which were the walking features used in the spatial and temporal feedback tasks, respectively. Bottom rows in (C,D) illustrate the screen shots

observed by individuals in the spatial feedback group (C) or in the temporal feedback group (D). Blue rectangles indicated the target step position or step time value

that subjects had to achieve with each leg. These rectangles turned green when subjects met the desired step position or step time values and red when they did not.

Yellow lines indicated either the step position value (C) or the step time value (D) at heel strike (HS) when taking a step with the right or left leg (e.g., left leg’s step

position is shown in the screen shot #1). In the example shown, the step position was correct for the right leg but not for the left leg. The light gray progression bars

showed in real-time either the distance from the ankle to the hip markers as subjects swing the leg forward (C) or the time that the subject had spent on the standing

leg since it hit the ground (D).

subjects in the spatial and temporal feedback groups, respectively.
Yellow lines indicated the actual step position and step time
for each leg at every step. Thus, subjects could appreciate how
far they were from the targeted spatial or temporal value at
every step.

2.2. Data Collection
Kinetic and kinematic data were collected to quantify subjects’
gait. Kinematic data was collected at 100 Hz with a motion
capture system (VICON motion systems, Oxford, UK). Passive
reflective markers were placed bilaterally on bony landmarks at
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the ankle (malleolus) and the hip (greater trochanter). Kinetic
data was collected at 1,000 Hz with the instrumented split-belt
treadmill (Bertec, OH). The normal ground reaction force (Fz)
was used to detect when the foot landed (i.e., heel strike) or was
lifted off (i.e., toe off). A threshold of 10 N was used for detecting
heel strikes and toe offs for data analysis, whereas a threshold of
30 N was used for counting strides in real-time.

2.3. Data Analysis
2.3.1. Gait Parameters

We computed six gait parameters previously used (Malone et al.,
2012) to quantify the adaptation of spatial and temporal control
of the limb during split-belt walking: Sout , Tout , SA, TA, SnA,
and TnA. We used Sout and Tout because our feedback was
designed to directly alter these metrics. For example, subjects
in the spatial feedback group were given feedback to maintain
the same baseline step position in both legs. Sout is, therefore, a
goodmetric of performance for the spatial feedback group since it
quantifies the difference in step positions, αf and αs, when taking
a step with the fast and slow leg, respectively. Formally expressed:

Sout =
αf − αs

αf + αs
(1)

αi is a lengthmeasurement that indicates the position of the ankle
marker relative to the hip marker at heel strike. The subscript i
can be either f or s for the leg that is on the fast belt or slow
belt, respectively. By convention, Sout is positive when the fast
leg’s foot lands farther away from the body when taking a step
than the slow leg’s one (i.e., αf > αs). Sout is zero during baseline
and subjects in the feedback group were instructed to maintain
this value during split-belt walking.

Similarly, subjects in the temporal feedback group were given
feedback to maintain the same baseline step times in both legs.
Tout is, therefore, a good metric of performance for the temporal
feedback group since it quantifies the difference in step times, ts
and tf . Step time ts is defined as the time interval to take a step
on the slow belt (i.e., duration from heel strike on the fast belt to
the subsequent heel strike on the slow belt) and vice versa for ts.
Formally expressed:

Tout =
ts − tf

ts + tf
=

ts − tf

Tstride
(2)

Where Tstride is the stride time (i.e., time interval between two
consecutive heel strikes with the same leg). By convention, Tout

is positive when the slow leg’s step time is longer that the
fast leg’s one. Tout is zero during baseline and subjects in the
feedback group were instructed to maintain this value during
split-belt walking. It has been previously shown that Sout and
Tout are adapted during split-belt walking tominimize spatial and
temporal baseline asymmetries defined as SA and TA, respectively
(Malone et al., 2012). Therefore, we also quantified SA and TA

because these are adaptive parameters (Reisman et al., 2005;
Malone and Bastian, 2010; Malone et al., 2012) that could be
indirectly altered by our spatial and temporal feedback even

if subjects in these groups were not explicitly instructed to
modify them.

SA quantifies differences between the legs in where they
oscillate with respect to the body. The oscillation of each leg was
computed as the ratio between two distances: step position (α)
and stride length (γ ) (i.e., anterior-posterior distance from foot
position at heel strike to ipsilateral foot position at toe off). Thus,
SA (legs’ orientation asymmetry) was computed as the difference
between these ratios when taking a step with the slow leg (i.e.,
slow leg leading) vs. the fast leg (see Equation 3).

SA =
αs

γs
−

αf

γf
(3)

In the temporal domain, TA quantified the difference in double
support times (i.e., period during which both legs are on the
ground) when taking a step with the fast leg (DSs) or slow
leg (DSf ), respectively (see Equation 4). In other words, DSs is
defined as the time from fast heel strike to slow toe off and DSf as
the time from slow heel strike to fast toe off.

TA = DSs − DSf (4)

Lastly, we computed gait parameters defined as SnA and TnA, to
test the specificity of our feedback. Namely, it has been previously
observed that these parameters do not change as subjects walk in
the split-belt environment (Reisman et al., 2005; Malone et al.,
2012; Yokoyama et al., 2018). Thus, these measures are thought
to simply reflect the speed difference between the legs, and hence,
we expected that our feedback would not alter them. Specifically,
SnA quantifies the difference between the fast and slow leg’s ranges
of motion γf and γs. Formally expressed as:

SnA =
γf − γs

γf + γs
(5)

The non-adaptive measure in the temporal domain TnA

quantifies the difference between the slow and fast leg’s stance
time durations (which is defined as the interval when the foot
is in contact with the ground), which we labeled as STs and STf ,
respectively. Formally expressed as:

TnA =
STs − STf

Tstride

(6)

2.3.2. Outcome Measures

We computed steady state and after-effects to respectively
characterize the adaptation and recalibration of walking in the
spatial and temporal domains. Both of these outcome measures
were computed for each gait parameter described in the previous
section. Steady state was used to characterize the spatial and
temporal features of the adapted motor pattern once subjects
reached a plateau during split-belt walking. Steady state was
computed as the averaged of the last 40 strides during the
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Adaptation phase, except for the very last 5 strides to exclude
transient steps when subjects were told to hold on to the
handrail prior to stopping the treadmill.After-effectswere used to
characterize the recalibration of subjects’ internal representation
of the environment (Roemmich and Bastian, 2015) leading to
gait changes that were sustained following split-belt walking
compared to baseline spatial and temporal gait features. After-
effects were computed as the averaged value for each gait
parameter over the first thirty strides of post-adaptation.We used
30 strides, rather than only the initial 1–5 strides, because we were
interested in characterizing long lasting after-effects (Long et al.,
2015; Roemmich and Bastian, 2015; Mawase et al., 2017). We
removed baseline biases from both measures by subtracting the
baseline values for each gait parameter averaged over the last 40
strides during baseline (minus the very last transient 5 strides).
This was done to exclude individual biases before aggregating
subjects’ outcome measures in every group.

2.4. Statistical Analysis
We performed separate two-way repeated measures ANOVAs
(factors: group and epoch) comparing the control group to
either the temporal or spatial feedback groups. This was done
to determine the effect of experimentally altering either spatial
or temporal measures during split-belt walking on outcome
measures in both domains. When main effects of group or epoch
were found (p < 0.05), we used Fisher’s LSD post-hoc testing
to assess if main effects were driven by differences between the
control group and feedback group in either domain. We applied
a Bonferroni correction to account for 2 comparisons of interest
resulting in a significance level set to α = 0.025. We selected to
do our analysis with unbiased data (i.e., subject-specific baseline
bias removed) to reduce inter-subject variability due to distinct
baseline biases and focus on group effects due to the distinct
experimental manipulations. Lastly, we performed independent
sample t-tests to determine if steady state or after-effects were
significantly different from baseline. We applied Bonferroni
corrections to account for four comparisons of interest (baseline
vs. steady state and baseline vs. after-effects for each of the
experimentally targeted Sout and Tout parameters) setting the
significance level to α = 0.0125. For all other parameters, we
set the significance level to α = 0.025 to account for only two
comparisons of interest (baseline vs. after-effects in the spatial
and temporal domains). This was done since we were primarily
interested in the impact of the experimental manipulation on the
after-effects of the parameters that were not explicitly targeted
with the visual feedback.

3. RESULTS

3.1. Confirmation of Results Supporting
Dissociable Representation of Spatial and
Temporal Walking Features
Spatial and temporal gait features adapted and recalibrated
independently when feedback was used to alter the spatial
control of the limb. This is indicated by the group differences
qualitatively observed in the Sout ’s time courses during

Adaptation and Post-adaptation (left panel in Figures 2A,B,
respectively) contrasting the overlapping time courses of Tout

in the control group (red trace) and spatial feedback group
(blue trace) (right panel in Figures 2A,B). Accordingly, we
found a significant group effect on Sout (p = 0.0039), but not
a group (p = 0.3748) or group by epoch interaction effect on
Tout (p = 0.2293). Post-hoc analysis indicated that the spatial
feedback reduced the steady state of Sout relative to the control
group (S → S : p = 0.0021); such that the steady state values
reached by the spatial feedback group were not significantly
different from zero (p = 0.0481), whereas those of the control
group differed from zero (p = 0.0004). This indicated that
individuals in the spatial feedback group were able to maintain
their baseline Sout values with the visual feedback on this metric.
In contrast, the steady state values of Tout were significantly
different from zero in both groups (control group: p < 0.0001;
spatial feedback group: p = 0.0004). The dissociation between
spatial and temporal control was also shown by the after-effects
of Sout and Tout in the control vs. spatial feedback groups
(Figure 2B). Post-hoc analysis indicated that the spatial feedback
group had reduced after-effects of Sout compared to the control
group (S → S : p = 0.0159) and that only the control group
had after-effects different from zero (control group: p = 0.0003;
spatial feedback group: p = 0.0164). Conversely, Tout was
once again not qualitatively different between the groups and
the after-effects were non-significantly different from zero on
either group (control group: p = 0.4235; spatial feedback group:
p = 0.1023). In sum, spatial feedback had a domain-specific
effect: it altered the adaptation and recalibration of Sout (targeted
spatial parameter) without modifying the adaptation and
aftereffects of step time (Tout).

The dissociation in adaptation and recalibration of spatial
and temporal representations of walking was also supported
by the analysis of spatial and temporal features known to
be adapted by the split-belt task, but not directly targeted
by our feedback. Namely, the spatial feedback also modified
the Adaptation and Post-adaptation time courses of the legs’
orientation asymmetry quantified by SA, which is expected given
its relation to Sout . Note that the time courses of SA for the spatial
feedback group (blue trace) and control group (red trace) do
not overlap during Adaptation and Post-adaptation (left panel
Figures 3A,B). In contrast, the time courses of double support
asymmetry (TA) were not altered by the spatial feedback, as
shown by the overlap of TA values during Adaptation and Post-
adaptation of the temporal feedback and control groups (right
panel Figures 3A,B). Consistently, we found a significant group
effect in SA (p = 0.0091) and a non-significant group (p =

0.8679) or group by epoch interaction (p = 0.2229) in TA.
Post-hoc analyses revealed that between group differences in
SA were driven by the significantly different SA’s steady state
(S → SA : p = 0.0177) and trending differences in SA’s after-
effects (S → SA : p = 0.0358); such that after-effects were
significant in the control group (p = 0.0009) but not in the
spatial feedback group (p = 0.0542). Conversely, after-effects in
double support asymmetry (TA) were significantly different from
zero in all groups (control group:p = 0.0044; spatial feedback
group:p = 0.0007). These results reiterated that changes in the

Frontiers in Human Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 207132

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Gonzalez-Rubio et al. Interdependent Spatio-Temporal Recalibration of Walking

FIGURE 2 | Adaptation and post-adaptation of the parameters Sout (targeted) and Tout in the spatial feedback and control groups. Stride-by-stride time courses

show the effect of altering step positions in the adaptation (A) and post-adaptation (B) of Sout and Tout. Each data point in the time courses represents the average of

five consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest

(indicated with the black rectangles), gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars

illustrate significant differences between groups (p < 0.025). (A) Steady state values of Sout and Tout: we found a significant group difference in Sout’s steady state.

Colored asterisks indicate that the mean steady state for that group is significantly different from zero (p < 0.0125). (B) After-effect values of Sout and Tout: we found a

significant group difference in Sout’s after-effects. Colored asterisks indicate that the mean after-effect for that group is significantly different from zero (p < 0.0125).

spatial domain did not modify the temporal control of the limb
in the temporal domain, replicating previous findings (Malone
et al., 2012; Long et al., 2016).

3.2. New Evidence for Interdependent
Representations of Spatial and Temporal
Walking Features
Interestingly, we found that spatial and temporal gait features
were not independent in their adaptation and recalibration when
feedback was used to alter the temporal control of the limb.
This is indicated by the qualitative differences between the time
courses of Tout and Sout during the Adaptation (Figure 4A) and
Post-adaptation phases (Figure 4B). Namely, the control group
(red traces) and temporal feedback group (yellow traces) are
different in both spatial and temporal parameters. Consistently,
we found a significant group effect on Sout (p = 0.0005) and
Tout (p = 0.0034). Post-hoc analyses revealed that the Tout ’s
steady state was significantly different from zero in the control
(p = 0.0004) and temporal feedback group (p = 0.0092). Thus,
subjects in the temporal feedback group did not fully maintained
the baseline values of Tout , even if they were able to use the visual
feedback to significantly reduce the Tout steady state during split-
belt walking relative to the control group (T → T : p < 0.0001).
While the temporal feedback group was designed to alter Tout , we

did not anticipate a reduction in the Sout ’s steady state relative to
the control group (T → S : p = 0.0027) because this parameter
was not directly targeted by the feedback. The interdependence
between spatial and temporal domains was also shown by the
analysis of after-effects in Post-adaptation (Figure 4B). Post-
hoc analyses indicated that temporal feedback did not change
the recalibration of Tout (T → T : p = 0.4663), but altered
the recalibration of Sout (T → S : p = 0.0010). The non-
significant effect on the recalibration of Tout was expected given
that after-effects in this parameter are very short lived resulting in
Tout after-effect values that are non-significantly different from
zero (control group: p = 0.4235; temporal feedback group:
p = 0.8550). In contrast, both groups had after-effects in Sout
that were significantly different from zero (control group: p =

0.0003; temporal feedback group: p = 0.0021), but they were
unexpectedly smaller in the temporal feedback group compared
to the control group. In sum, the temporal feedback impact on
adaptation and recalibration of Sout (spatial parameter) indicated
an interdependence between the spatial and temporal control of
the limb.

The possible interdependence in space and time was further
supported by the analysis of spatial and temporal features
known to be adapted by the split-belt task, but not directly
targeted by our feedback. Namely, the temporal feedback also
modified the Adaptation and Post-adaptation time courses of
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FIGURE 3 | Adaptation and post-adaptation for the adaptive but non-targeted parameters SA (leg orientation asymmetry) and TA (double support time asymmetry) in

the spatial feedback and control groups. Stride-by-stride time courses show the effect of altering the step positions in the adaptation (A) and post-adaptation (B) of

SA and TA. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard

errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots indicate values for individual subjects,

and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). We found a significant group

effect in SA. (A) Steady States for SA and TA: the significant group effect on SA was driven by differences between the spatial feedback and control group in the

non-targeted spatial motor output (adaptive motor output). (B) After-Effects values of SA and TA: we found significant group differences in SA. Colored asterisks

indicate after-effect values are significantly different from zero (p < 0.025) according to post-hoc analysis.

the legs’ orientation asymmetry, quantified by SA, which is a
spatial measure related to step position. Note that the time
courses of SA for the temporal feedback group (yellow trace) and
control group (red trace) do not overlap during Adaptation and
Post-adaptation (left panel Figures 5A,B). In contrast, the time
courses of double support asymmetry (TA) were not altered by
the temporal feedback, as shown by the overlap of TA values
during Adaptation and Post-adaptation of the temporal feedback
and control groups (right panel Figures 5A,B). Consistently, we
found a group effect in SA (p = 0.0029) and a non-significant
group (p = 0.8151) or group by epoch interaction (p = 0.3189)
in TA. post-hoc analyses revealed that these effects were driven
by group differences in SA’s steady state (T → SA : p = 0.0138)
and SA’s after-effects (T → SA : p = 0.0163). Surprisingly, we did
not find differences on TA’s steady state and after-effects, which
we expected given the relation between TA and the temporal
measure (Tout) directly altered with the temporal feedback. Thus,
after-effects in SA and TA were significantly different from zero in
all groups (control group: SA : p = 0.0009 and TA : p = 0.0044;
temporal feedback group: SA : p = 0.0080 and TA : p = 0.0009),
but only those of SA were reduced in the temporal feedback
group compared to controls. In sum, these results indicate that
temporal feedback did not have a ubiquitous effect in all gait
parameters, but it did alter the adaptation and recalibration of

the legs’ orientation, which also characterizes the spatial control
of the limb in locomotion.

3.3. Temporal Feedback Modified the
Split-Belt Task to a Greater Extent Than the
Spatial Feedback
Surprisingly, temporal feedback altered the difference in stance
times between the legs (TnA), whereas the spatial feedback did
not. This was unexpected given previous literature indicating
that SnA and TnA do not change as subjects walk in the split-
belt environment (Reisman et al., 2005; Malone et al., 2012;
Yokoyama et al., 2018). Thus, we anticipated that either type
of feedback (spatial or temporal) would not alter these “non-
adaptive” gait features. Qualitatively, we observed that this
was the case for the spatial (SnA), but not for the temporal
(TnA) “non-adaptive” parameter (Figure 6A). Note that SnA
has the same time course for both groups, whereas TnA has
a different time course for the control group (red trace) and
the temporal feedback group (yellow trace). Consistently, we
found a significant group effect (p = 0.0030) and group
by epoch interaction (p = 0.0047) in TnA, whereas a non-
significant group (p = 0.3860) or group by epoch interaction
effect (p = 0.3719) in SnA. Post-hoc analysis revealed that
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FIGURE 4 | Adaptation and post-adaptation of the parameters Sout and Tout (targeted) in the temporal feedback and control groups. Stride-by-stride time courses

show the effect of altering step times in the adaptation (A) and post-adaptation (B) of Sout and Tout. Each data point in the time courses represents the average of five

consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest

(indicated with the black rectangles), the gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars

illustrate significant differences between groups (p < 0.025). There was a significant group effect on Sout and Tout. (A) Steady States values of Tout and Sout: we

found significant group differences in Sout’s and Tout’s steady state. Colored asterisks indicate that the mean steady state for that group is significantly different from

zero (p < 0.0125). (B) After-effect values of Tout and Sout: we found a significant group difference in Sout’s after-effects. Colored asterisks indicate that the mean

after-effect for that group is significantly different from zero (p < 0.0125).

the temporal feedback group reached a significantly lower
steady state when compared to the control group (T →

TnA : p < 0.0001). Conversely, the spatial feedback group
exhibited the non-adaptive behavior of these parameters SnA
and TnA that we anticipated. Namely, the time courses of
SnA (Figure 6B, left panel) and TnA (Figure 6B, right panel)
were overlapping in these two groups. This similarity is
substantiated by the non-significant group effect (SnA : p =

0.2338 and TnA : p = 0.3002) or group by epoch interaction
(SnA : p = 0.7452 and TnA : p = 0.8163) in the non-adaptive
spatial and temporal parameter. In sum, feedback modifying
the adaptation of spatial and temporal gait features had a
distinct effect on “non-adaptive” temporal parameters thought
to only depend on the speed difference between the legs in the
split-belt task.

4. DISCUSSION

4.1. Summary
Our study confirms previous results suggesting that there
are internal representations of space and time for predictive
control of movement. We replicated previous results showing
that altering the recalibration in the spatial domain does

not impact the temporal domain. However, we also observed
that the opposite was not true. That is, explicitly reducing
the recalibration in the temporal domain altered movement
control in space, suggesting some level of interdependence
between these two domains. Interestingly, double support
asymmetry was consistently corrected across the distinct spatio-
temporal perturbations that subjects experienced, whereas
spatial asymmetries were not. This indicates that correcting
asymmetries in space and time is prioritized differently by
the motor system. Our results are of translational interest
because clinical populations often have greater deficits in
either the spatial or the temporal control of the limb
and our findings suggest that they may not be treated
in isolation.

4.2. Separate Representations for
Predictive Control of Movements in Space
and Time
We find that adaptation of movements to a novel walking
situation results in the recalibration of internal representations
for predictive control of locomotion; which are expressed as
robust after-effects in temporal and spatial movement features.
This is consistent with the idea that the motor system forms
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FIGURE 5 | Adaptation and post-adaptation for the adaptive but non-targeted parameters SA (leg orientation asymmetry) and TA (double support time asymmetry) in

the temporal feedback and control groups. Stride-by-stride time courses show the effect of altering step times in the adaptation (A) and post-adaptation (B) of SA
and TA. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard

errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots indicate values for individual subjects,

and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). There was a significant group

effect in SA, but no in TA. (A) Steady State values of TA and SA: the significant group effect on SA was driven by differences between the temporal feedback and

control group in the non-targeted spatial motor output (adaptive motor output). (B) After-effects of TA and SA: we found a significant group difference in SA. Colored

asterisks indicate after-effect values are significantly different from zero (p < 0.025) according to post-hoc analysis.

internal representations of space (Marigold and Drew, 2017)
and time (Drew and Marigold, 2015; Avraham et al., 2017;
Breska and Ivry, 2018) for predictive motor control. Several
behavioral studies suggest separate recalibration of these internal
representations of space and time in locomotion because

spatial and timing measures exhibit different adaptation rates
in the mature motor system (Malone and Bastian, 2010;

Darmohray et al., 2019) throughout development (Vasudevan
et al., 2011; Patrick et al., 2014) or healthy aging (Sombric
et al., 2017). Spatial and temporal recalibration also have

distinct generalization patterns across walking environments

(Torres-Oviedo and Bastian, 2010; Mariscal et al., 2018) and
most importantly, altering the adaptation of spatial features

does not modify the adaptation and recalibration of temporal
ones, as shown by us and others (Malone et al., 2012;
Long et al., 2016). This idea of separate representations of
space and time in locomotion is also supported by clinical
and neurophysiological studies indicating that different neural
structures might contribute to the control (Lafreniere-Roula
and McCrea, 2005; Rybak et al., 2006) and adaptation
(Choi et al., 2009; Vasudevan et al., 2011; Statton et al.,
2018) of the spatial and temporal control of the limb
in locomotion.

4.3. Hierarchic Control of Timing Leads to
Interdependent Adaptation of Movements
in Space and Time
Nonetheless, we also found that explicit control of step timing
modifies the adaptation and recalibration of movements in
space. This result directly contradicts the dissociable adaptation
of spatial and temporal features upon explicitly modifying the
adaptation of step position (spatial parameter) (Malone et al.,
2012; Long et al., 2016). We find two possible explanations
to reconcile these findings. First, there might be a hierarchical
relationship between the spatial and temporal control of the limb,
such that timing cannot be manipulated without obstructing
the adaptation of spatial features. We believe that this type of
hierarchical organization is not exclusive to explicit control, but
it is also applicable to implicit control of the limb in space
and time. This is supported by a recent study indicating that
lesions to interpose cerebellar nuclei altering the adaptation of
double support asymmetry (temporal parameter) also reduced
the after-effects of spatial features (Darmohray et al., 2019),
whereas the recalibration of spatial features can be halted without
modifying the temporal ones (Darmohray et al., 2019). Future
studies are needed to determine if similar results would be
observed in human bipedal locomotion. This type of hierarchical
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FIGURE 6 | Adaptation of SnA and TnA measures that are non-adaptive and non-targeted parameters in temporal feedback and control group (A) and spatial

feedback and control group (B). Stride-by-stride time courses show the effect of altering the step times or step positions on “non-adaptive” temporal and spatial

measures (SnA and TnA) during adaptation. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data

points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots

indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups

(p < 0.025). (A) Steady State values of TnA and SnA: we found a significant group effect and group by epoch interaction driven by differences between the temporal

feedback and control group in the non-targeted temporal motor output (adaptive motor output). (B) Steady State values of SnA and TnA: we did not find a significant

group effect or group by epoch interaction for the spatial feedback and control group in the parameters of interest.

organization suggests that the execution of spatial and temporal
control of the limb can be encoded by separate interneuronal
networks (Lafreniere-Roula and McCrea, 2005; Rybak et al.,
2006), but the volitional recruitment of those networks cannot
occur in isolation. Second, it is possible that the observed
interdependence arose as a byproduct of how we tested it.
Namely, it remains an open question if our findings result from
altering step time, or similar interdependence would be observed
if we had manipulated other temporal measures, such as double
support asymmetry. More specifically, our feedback on step time
inadvertently reduced the stance time asymmetry associated to
split-belt walking. The stance time asymmetry is thought to
be critical for forcing subjects to adjust their gait during split-
belt walking (Reisman et al., 2005). Therefore, subjects in the
temporal feedback group might have reduced the adaptation
of spatial parameters because the “perturbation” inducing their
update was reduced. In sum, future work is needed to determine
the generality of temporal measures influencing spatial ones,
however our study provides initial evidence for interdependence.

4.4. Relevance of Double Support
Symmetry Over Spatial Asymmetries
We demonstrated that double support symmetry (i.e., TA)
is recovered in all groups, regardless of the task. This is

in accordance with multiple observations that individuals
consistently reduce double support asymmetries induced by
split-belt walking since very early age (Patrick et al., 2014) or after
lesions to cerebral (Reisman et al., 2007) or cerebellar regions
(Vasudevan et al., 2011). Only children with hemispherectomies,
where half of the cerebrum is missing, do not correct double
support asymmetry when this is augmented (Choi et al.,
2009). The adaptation and after-effects of double support were
surprising to us because previous work showed that halting
the adaptation of step position (Sout ≈ 0) limited the
correction of spatial errors (defined as SA) (Malone et al.,
2012). In an analogous manner, we anticipated that preventing
the adaptation of step times (Tout ≈ 0) during split-
belt walking was going to limit the adaptation of double
support asymmetry (i.e., temporal error Malone et al., 2012).
However, we observed that individuals prioritize differently the
correction of spatial and temporal asymmetries: they minimize
temporal asymmetries, but not spatial ones. This might be
because double support time is the transition period when
the body mass is transferred from one leg to the other,
which is demanding in terms of energy expenditure (Perry,
1992). Therefore, double support symmetry might be critical
for efficient body transfer between the limbs (Kuo et al.,
2005; Ruina et al., 2005). Taken together our results suggests
that the motor system prioritizes the maintenance of double
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support symmetry, which might be critical for balance control in
bipedal locomotion.

4.5. Explicit vs. Implicit Processes in
Locomotor Adaptation
Our study contributes to recent efforts to unveil the
potential interaction between explicit corrections and implicit
sensorimotor recalibration in locomotion (Malone et al., 2012;
Long et al., 2016; Roemmich et al., 2016; Statton et al., 2016;
Maeda et al., 2017). Interestingly, we found that preventing
foot adjustments during split-belt walking significantly reduced
post-adaptation effects compared to the control group. This
was also observed when using explicit corrections to reduce the
adjustment of foot placement in response to a 2:1 speed belt ratio
(Malone et al., 2012) but not in response to a larger 3:1 speed
belt ratio (Long et al., 2016). Notably, after-effects following
the 3:1 perturbation were equally large with or without explicit
corrections during the split condition (Long et al., 2016). One
interpretation for these results is that the implicit sensorimotor
adaptation in walking is scaled with perturbation magnitude.
Thus, explicit corrections preventing foot adjustments in the
split condition will have a lesser impact on after-effects induced
by large perturbations. This interpretation is consistent with
the proportional relation between perturbation size and after-
effects upon experiencing unexpected constant forces (Green
et al., 2010; Torres-Oviedo and Bastian, 2012; Yokoyama et al.,
2018), contrasting the fixed amount of implicit sensorimotor
recalibration upon visuomotor perturbations (Kim et al., 2018).

4.6. Study Implications
We provide a novel approach for manipulating stance time,
which is a major deficit in stroke survivors (Patterson et al.,
2008). It would be interesting to determine if this type of
feedback overground or on a regular treadmill could lead to gait
improvements post-stroke as those induced by split-belt walking
(Reisman et al., 2013; Lewek et al., 2018). Our results also indicate
that manipulating the adaptation of movements in the temporal
domain alters movements in the spatial domain, suggesting
that spatial and temporal deficits in individuals with cortical
lesions (Malone and Bastian, 2014; Finley et al., 2015) cannot
be treated in complete isolation. Only the correction of timing
asymmetries through error-based sensorimotor adaptation could
occur while preventing the adaptation of spatial ones, as we
did in the spatial feedback group. However, the opposite is

not possible, at least with the temporal feedback task that
we used.
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When interacting with the environment, the sensorimotor system faces temporal and
spatial discrepancies between sensory inputs, such as delay in sensory information
transmission, and asymmetrical visual inputs across space. These discrepancies can
affect motor control and the representation of space. We recently showed that
adaptation to a laterally asymmetric delay in the visual feedback induces neglect-like
effects in blind drawing movements, expressed by asymmetrical elongation of circles
that are drawn in different workspaces and directions; this establishes a possible
connection between delayed feedback and asymmetrical spatial processing in the
control of action. In the current study, we investigate whether such adaptation also
influences visual perception. In addition, we examined transfer to another motor task – a
line bisection task that is commonly used to detect spatial disorders, and extend these
results to examine the mapping of these neglect-like effects. We performed two sets
of experiments in which participants executed lateral reaching movements, and were
exposed to visual feedback delay only in the left workspace. We examined transfer of
adaptation to a perceptual line bisection task – answers about the perceived midline
of lines that were presented in different directions and workspaces, and to a blind
motor line bisection task – reaching movements toward the centers of similar lines.
We found that the adaptation to the asymmetrical delay transferred to the control of
lateral movements, but did not affect the perceived location of the midlines. Our results
clarify the effect of asymmetrical delayed visual feedback on perception and action,
and provide potential insights on the link between visuomotor delay and neurological
disorders such as the hemispatial neglect syndrome.

Keywords: visuomotor delay, reaching, line bisection, adaptation, transfer, visual perception, hemispatial neglect

INTRODUCTION

To perform accurate hand movements, the sensorimotor system gathers and integrates external
information with internal predictions about the outcomes of action. During these processes,
perception and action are modified to compensate for possible changes in the environment.
Specifically, the sensorimotor system holds asymmetrical representation of spatial information in
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the hemispheres (Heilman and Valenstein, 1979; Ziemann and
Hallett, 2001; Koch et al., 2011). Additionally, it also has to deal
with time delays in sensory information transmission and delays
between modalities (Miall et al., 1985; Miall and Jackson, 2006;
Pressman et al., 2007; Di Luca et al., 2011; Nisky et al., 2011;
Honda et al., 2012; Rohde et al., 2014; Avraham et al., 2017a;
Farshchian et al., 2018). In this study, by investigating adaptation
to laterally asymmetrical delay in the visual feedback, we set out
to understand the processes of compensation for laterality and
delay in perception and in the control of action.

To cope with time delays in the sensory feedback, our
sensorimotor system relies on internal models. The internal
models are representations of the motor apparatus and the
environment that are used to predict the sensory consequences of
motor commands, and thereby are allowing to cope with inherent
feedback and processing time delays (Jordan and Rumelhart,
1992; Miall and Wolpert, 1996; Wolpert, 1997; Kawato, 1999).
These models are updated when there are changes in our
motor apparatus or in the environment. To evaluate updates
in internal models, adaptation studies examined participants’
movements and space representation following exposure to
visuomotor or force perturbations (Shadmehr and Mussa-Ivaldi,
1994; Cohn et al., 2000; Krakauer et al., 2000; Simani et al.,
2007). During adaptation, the participants adjust to the new
environment by modifying their movement kinematics and
dynamics according to changes in the internal model. These
modifications are demonstrated by the observation of aftereffects
when the perturbation is removed (Shadmehr and Mussa-Ivaldi,
1994; Krakauer et al., 2000), and sometimes are also accompanied
by perceptual biases (Colent et al., 2000; Goedert et al., 2010;
Michel et al., 2018).

The nature of the changes in the internal model is investigated
by examining generalization to movements performed in
different spatial positions or limb postures (Krakauer et al.,
2000; Donchin et al., 2003; Wang and Sainburg, 2005; Poh
and Taylor, 2018), and transfer of adaptation to a different
workspace (Shadmehr and Mussa-Ivaldi, 1994; Rotella et al.,
2015) or to a different task (Shadmehr and Mussa-Ivaldi,
1994; Botzer and Karniel, 2013; Avraham et al., 2017a). When
presented with a delay in visual feedback, participants initially
overshoot the targets of reaching movements, but restore
their original movement extent with adaptation, and exhibit
aftereffects of undershooting the target (Botzer and Karniel,
2013; Avraham et al., 2018). Interestingly, the transfer of
adaptation to delayed visual feedback causes elongation of blind
reaching movements (Botzer and Karniel, 2013; Avraham et al.,
2017a; Sulimani et al., 2017; Farshchian et al., 2018), and
hence, visuomotor delays were proposed to be represented as a
minifying visuomotor gain (Botzer and Karniel, 2013; Avraham
et al., 2017a; Sulimani et al., 2017).

In our recent study (Avraham et al., 2018), we made the
first steps toward linking between asymmetrical representation of
spatial information in the hemispheres and adaptation to delayed
visual feedback. We defined left and right workspaces as the
left and right halves of the space in front of participants (with
respect to the midline of their body), and studied adaptation to
delayed visual feedback that was presented in either left, right, or

both workspaces. We demonstrated a unique pattern of elongated
transfer movements after adaptation to these asymmetrical delay
conditions. However, because in that study all the movements
were initiated in the center, movements in the left workspace
were performed in leftward direction, and movements in the right
workspace were performed in rightward direction. Therefore, we
could not disassociate whether the representation depended on
workspace or movement direction.

Previous studies also reported that motor adaptation affects
perception. These studies showed evidence for the effect of
kinematic (visuomotor rotation) and dynamic (force-field)
perturbations on the perceived movement direction and location
of the hand (Ostry et al., 2010; Mattar et al., 2012; Marius‘t Hart
and Henriques, 2016). The effects were shown to be much smaller
than the motor effects, but nevertheless robust and long-lasting
(Cressman and Henriques, 2010; Ostry et al., 2010; Ruttle et al.,
2016). In addition, perceptual training was also shown to improve
motor learning (Darainy et al., 2013). However, in the case
of adaptation to visuomotor delay perturbation, a recent study
showed that after exposure to delayed visual feedback, the
proprioceptive representation remains unaltered, as opposed to
the control of action (Sulimani et al., 2017). In light of these
contrasting results, an interesting open question is whether the
unique visuomotor perturbation combining visuomotor delays
and spatial laterality will result in perceptual effects.

One pathology that demonstrates a deficit in spatial and
temporal processing of information for perception and action
is Hemi-spatial neglect – a neurobehavioral deficit caused by
brain damage. Neglect patients fail to perceive and respond to
stimuli originating from their contralesional side, mostly their left
side, consistently with right-brain damage. Neglect can involve a
variety of impairments in spatial information processing for both
perception and action, demonstrated in perceptual–attentional
and motor-intentional spatial deficits (Bartolomeo et al., 1998;
Adair and Barrett, 2008). In addition to the spatial deficits,
some studies also reported temporal impairments, suggesting
that neglect might be a spatial–temporal deficit (Robertson
et al., 1998; Becchio and Bertone, 2006). Several clinical tests
are used to diagnose spatial neglect (Adair and Barrett, 2008).
Two prominent tests are the perceptual line bisection task and
the motor line bisection task (Schenkenberg et al., 1980). The
perceptual line bisection test uses a forced choice paradigm.
A transected line is presented to participants who need to judge
whether the transection mark is on the right side with respect to
the midline. In the motor line bisection test, the participants are
required to mark the center of a presented line. This means that
the participants actually perform reaching movements toward the
center of the lines that are presented to them.

In the current study, we adapted the perceptual and motor
line bisection tests to investigate transfer of adaptation to
asymmetrical delay in visual feedback that may cause transient
neglect-like effects on perception and action. We aimed to
extend our previous study by answering two questions. First,
whether the asymmetrical elongation of movements following
adaptation to laterally asymmetrical visuomotor delay will affect
both perception and action. Second, whether the asymmetrical
elongation is a result of representation of the laterally asymmetric
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perturbation with respect to the workspace in which the transfer
movement was executed, or the direction to which it was
oriented. We asked participants to perform lateral center-out
reaching movements to both left and right targets, and presented
them with visual feedback delay only in movements to the left
targets. We tested transfer of adaption to both a blind motor
line bisection task (Action group) and a perceptual line bisection
task (Perception group). The blind line bisection movements
were performed toward leftward or rightward directions in left
or right workspaces. We found that adaptation to asymmetrical
delay has an asymmetrical transfer to the motor task, but we
found no evidence of transfer to the perceptual task. These results
demonstrate a dissociation between the effects of adaptation on
action and on perception. Overall, our results further establish the
effect of lateral and temporal misalignment between modalities,
and provide support for independent processing of sensory
information in the motor and the perceptual systems.

MATERIALS AND METHODS

Participants and Experimental Setup
Eighty-five right-handed healthy volunteers (ages 18–29 years,
40 females) participated in the study that was approved by the
Human Subjects Research Committee of Ben-Gurion University
of the Negev, Beersheba, Israel, after signing an informed consent
form. The participants were all naive to the purpose of the
experiment and were paid to participate. The experiment was
administered in a virtual reality environment in which the subject
held a PHANTOM R© DESKTOPTM (Geomagic R©) haptic device
that was controlled by a custom-written C++ code. During
the experiment, participants held the haptic device with their
right hand, controlling a cursor that was displayed on a screen
(Figures 1, 2). The cursor movement was synchronized with
the hand movement, with a delay of 10 ms resulting from the
control loop. The experiment was displayed on a screen located
horizontally above the hand of the participants, and their upper
body was covered by a sheet such that they could not see their
hand. Hand movements were limited to the horizontal plane by
an air sled wrist-supporter that reduced friction with the surface.
The update rate of the control loop was 1000 Hz.

Protocol
We conducted two experiments. In each experiment, we had two
different protocols and two groups for each protocol (overall
seven groups with N = 10 in each group, and one group with
N = 15). In all the experiments, the participants were asked
to perform reaching movements to left or right targets relative
to a central start position (Figures 1, 2). To assess the effect
of asymmetrical temporal perturbation, we applied a delay of
0.15 s only in the left workspace. We probe for the effect of
the delay on action and perception with a transfer task that
was applied in designated blocks throughout the experiment
(protocol A – blocked design, Figures 1A, 2A) or in random
trials throughout the experiment (protocol B – interleaved design,
Figures 1B, 2B). The transfer task was either a motor line
bisection task without visual feedback (Action group, Figure 1),

or a perceptual line bisection (Perception group, Figure 2). In
Experiment 1, the lines that were presented during the task
were aligned with the start position along the lateral dimension
(Figures 3A,B). In Experiment 2, the lines were 5 cm away from
the start position in the frontal axis (Figures 3C,D). The trials
were presented in a random and predetermined order.

Experiment 1
In the protocol of the reaching task, there was no difference
between the blocked and interleaved protocols. A trial was
initiated when participants placed a circular white cursor,
1 cm diameter, inside a starting point, a blue hollow 2 cm
diameter circle, which was placed in the middle of the screen.
The participant performed a smooth point-to-point reaching
movement by moving the cursor from the starting point to a
circular yellow target, 1 cm diameter, which appeared in the left
or the right side of the workspace, at 10 cm away from the starting
position. In each reaching block, the trials order was random
and predetermined between left and right targets. Movement
started from rest at the start position for 1 s, with a color-cue
of the cursor, and ended when the velocity of the haptic device
was <0.01 m/s. At the end of the trial, the visual cursor was
omitted and the hand of the participant was returned passively
to the start position by a spring-like force that was applied by
the haptic device. Following the movement, during the passive
return to the start position, we presented a feedback based on the
accuracy and the velocity of the movement. We defined accurate
movements as those that ended within the target, with a velocity
that ranged between 0.3 and 0.5 m/s. When the maximum
velocity was <0.3 m/s, the word “Faster” appeared on the screen,
and when the velocity was >0.5 m/s, the word “Slower” was
displayed. Moreover, the position of the cursor at the end of the
movement was displayed for 1.5 s, with a color cue that indicated
the accuracy of the movement (green for accurate movement
and red for inaccurate movement). We also presented a success
rate corresponding to the percentage of successful trials from all
reaching trials in the experiment until that time.

In the blocked design, the participants performed a transfer
task in several blocks throughout the experiment (two blocks
in each of the baseline, adaptation, and washout sessions).
The Action group (N = 10) performed a blind motor line
bisection task. In the blind motor line bisection task, participants
performed reaching movements from the same starting hollow
blue circle toward the middle of a 10-cm line without visual
feedback of their cursor. There were three possible locations for
the lines and three start points (left, right, and middle), which
were all laterally aligned (Figure 3A). Accordingly, we had four
movement types of leftward and rightward lateral movements
in each (left and right) workspace. To initiate a movement,
the participant placed the cursor into the starting point, after
which the cursor disappeared. Similarly to the lateral reaching
movements, movement ended when the velocity was <0.01 m/s,
and the haptic device applied a spring-like force that returned the
hand to the next start position.

The Perception group (N = 10) performed a perceptual line
bisection task. In this task, the participants were presented with a
10-cm line located in the same positions as in the action task, with
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FIGURE 1 | Experiment 1: protocol and setup for the Action group. (A) Experimental protocol for the blocked design. The experiment was divided to blocks of
reaching movement and an action task. (B) Experimental protocol for the interleaved design. The reaching movements and task trials were randomly displayed
throughout the experiment in a predetermined order. In the reaching trials, participants were required to move a cursor (magenta circle) between a start point (blue
circle) and an end target (light yellow dot) to the left (blue frame) or the right (red frame) side of the task space. To motivate the participants, we presented a success
rate representing the percentage of accurate trials (in which the participants hit the target) out of all reaching trials in the experiment until that time. In the action task
(gray frame), the participants had to move their hand from the start position (blue circle) to the center of a white line without visual feedback. The dashed magenta
line indicates the actual midline and was not presented to the participant. The line and start position were located at three different positions and were all aligned in
the lateral axis. The experiment was divided into three sessions: Baseline, Adaptation, and Washout. During the Baseline and Washout sessions, the cursor
movement in the reaching task was concurrent with the movement of the hand. During the Adaptation session, the visual feedback was delayed by 0.15 s in
movements toward the left side. The stripes representing the different tasks are only for illustration, and the figure does not include the entire trials in the experiment.
(C) Experimental setup. Participants held a haptic device, controlling a cursor displayed on a screen. The experiment was displayed on a screen that was located
horizontally above participants’ hand (see the section “Materials and Methods” for more details).
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FIGURE 2 | Experiment 1: protocol and setup for the Perception group. (A) Experimental protocol for the blocked design. The experiment was divided to blocks of
reaching movement and a perceptual task. Reaching movements are the same as in Figure 1. In the perceptual task (gray frame), a white lateral line and probe
(white frontal line) were presented. The participant was required to answer whether the probe is on the right side of the line. The dashed magenta line indicates the
actual midline and was not presented to the participant. The lines were presented in the same locations as for the Action group. (B) Experimental protocol for the
interleaved design. Reaching movements and task trials were randomly displayed in a predetermined order. Here, in the perceptual task, we displayed a white lateral
line and a probe (white frontal line). The probe was located in the right or left edge of the line. Participants were required to move the probe to the midline by using
the left and right arrows in the keyboard. The dashed magenta line indicates the actual midline and was not presented to the participant. The stripes representing the
different tasks are only for illustration, and the figure does not include the entire trials in the experiment. (C) Experimental setup. The setup was similar to the Action
group. Experiment 2 was similar to Experiment 1, except that here the lines were presented with a displacement of 5 cm along the frontal axis in both the action and
the perception task.
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FIGURE 3 | Task blocks of motor and perceptual line bisection task for the blocked design in both experiments. (A) Motor line bisection task for Experiment 1. On
every trial, a start point (blue circle) and a straight line (white) were displayed, and participant were instructed to perform smooth movement toward the center of the
line. The dashed magenta lines indicate the actual midline and were not presented to the participant. Every task block consisted of four different movement types:
left to middle, middle to left, middle to right, and right to middle. For every movement, we had five repetitions, such that in each block the participants performed 20
movements. (B) Perceptual line bisection for the blocked design in Experiment 1. In this task, we presented a straight lateral line (white) in three different locations of:
left, middle, and right. The line was bisected with a frontal line (white small line), and the participant was required to answer whether the frontal line is on the right side
with respect to midline. The start point omitted in the perceptual task. We had eight frontal lines on different locations on the lateral line and each frontal line was
displayed four times, such that we had 96 trials in every block. (C) Same as (A), for Experiment 2. Here the lines were 5 cm displaced along the frontal axis.
Furthermore, we had additional movement of middle to middle (gray), such that every block contained 25 movements. (D) Perceptual line bisection for Experiment 2.
Same as (B), except here the lines were also 5 cm displaced along the frontal axis. Action task trials of the interleaved design were identical to the blocked design.
Perceptual task trials of the interleaved design were similar to the ones presented here, except the frontal line was located only on the left or right edge of the
presented line.
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a probe (frontal small line) of 1 cm length that was positioned
in one of eight different locations on the line (Figure 3B). The
probes were 1 mm apart, while the most distant were located
3.5 mm from the center of the line, symmetrically. This small
increment of 1 mm was chosen empirically to observe whether a
perceptual bias existed even at baseline. In each trial there were
only one line and one probe. The participants were asked to
answer whether the probe was located rightward relatively to the
center of the line; that is, a yes or no response. In this task, we
did not present the start point, and participants were instructed
to remain on the start position.

In the interleaved design, the task trials were randomly
intertwined throughout the experiment (Figures 1B, 2B). The
Action group (N = 15) performed the same task as in the blocked
design (Figure 3A). However, the Perception group (N = 10)
performed a modified perceptual line bisection task. In this task,
we presented a 10-cm line in the same locations as in the blocked
design, and a 1-cm probe that was located in the right or the
left edge of the presented line (similar to Figure 3B, except from
the location of the probe that was in the right or left edge). The
participants were required to move the probe to the perceived
midline by pressing the right and left arrows in the keyboard
without any restrictions on the amount of arrow pressing. When
participants decided that the probe is indeed in the midline, they
were required to press the up or down arrows, in order to move
to the next trial.

We chose to implement two different protocols to probe the
effect of laterally asymmetrical delay on perception and action.
The blocked design was used to allow fitting the psychometric
functions for the perceptual task’s results on data from the same
phase in the experiment. The interleaved design allowed a more
sensitive examination for transfer of adaptation, likely because
it was more resistant to a possible accumulation of decay effects
than the blocked design.

The experiment was divided into three sessions: Baseline,
Adaptation, and Washout (Figures 1, 2). In the blocked design,
each session consisted of two blocks of reaching movements
and two task blocks. In the Baseline and Washout sessions, the
reaching block contained 60 movements, and in the Adaptation
session the first reaching block contained 360 movements and
the second contained 60 movements. For the Action group, the
task blocks consisted of 20 trials, such that we had five repeats
for each movement type. For the Perception group, each task
block consisted of 96 trials (four repeats for each line in every
block – overall eight repeats for each line in every session). The
purpose of having two blocks of reaching in every session was
to reinforce the learning before the task block, such that during
the task trials the adaptation process will not completely vanish.
In the interleaved design, we had 160 reaching movements in the
Baseline and Washout sessions, and 416 reaching movements in
the Adaptation session. For the Action (Perception) group, we
presented 40 (36) task trials in the Baseline and Washout sessions,
and 104 (102) task trials in the Adaptation session.

During the Adaptation session of both protocols, the visual
feedback in the reaching task was delayed by 0.15 s for leftward
movements. The leftward movements were also performed in the
left workspace. At the task trials, no perturbation was applied and

there was no visual feedback of the movement of the hand. The
entire experiment lasted approximately 90 min with four breaks
of 2 min every 120 or 160 reaching trials for the blocked and
interleaved design, respectively.

Experiment 2
To test the width of the generalization of the adapted
representation, we chose to test the transfer of adaptation to
movements that have a forward component, and performed a
second experiment. The experimental setup was identical to
Experiment 1. However, here the lines in the transfer trials were
located 5 cm away from the starting point in the frontal axis, such
that we had five types of movement in the action task: leftward
and rightward diagonal movements in each workspace (angle
of 26.57◦ and 116.57◦ for the left and right lines, respectively.
The angle is calculated with respect to the positive lateral axis)
and one frontal movement. Therefore, in the blocked design
every task block consisted of 25 trials, and in the interleaved
design the Adaptation session consisted of 105 task trials. The
number of trials and order of the perceptual task was similar in
both experiments.

Data Analysis
Throughout the experiment, we recorded position and velocity at
200 Hz (we down sampled the data from the experiment). The
results were analyzed off-line using custom-written MATLAB R©

code (The MathWorks, Inc., Natick, MA, United States). In
the reaching movements with visual feedback, we examined the
amplitude of the movements. The amplitude was calculated as the
maximum distance along the lateral axis. In the action task, we
examined the lateral deviation of participants’ end point position
from the center of the presented line.

In the perception task of the blocked design, we evaluated the
perceived midline location from the response to each presented
probe. First, we computed the probability for a positive response
that indicates the probability for the participant to perceive the
probe on the right side with respect to midline. Then, we fitted a
psychometric curve to the calculated probability using MATLAB
toolbox psiginfit(). Finally, we calculated the Point of Subjective
Equality (PSE) that corresponds to the location of the probe
where the probability for positive answer is 0.5, that is, the
perceived location of the midline.

In the perception task of the interleaved design, we evaluated
the changes in the perceived midline by examining the distance
between the final location of the probe to the actual midline.

Statistical Analysis
In the reaching task, the effect of the laterally asymmetric
delay was assessed by comparing the changes in the amplitude
of the movements in each group between the different stages
of the experiment: Late Baseline (LB), Early Adaptation
(EA), Late Adaptation (LA), and Early Washout (EW). The
movements that were taken into consideration were five
first movements in Adaptation and Washout (EA and EW,
respectively), and the five last movements in Baseline and
Adaptation (LB and LA, respectively). For both groups, we used
three-way repeated measures ANOVA with the amplitude of
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movements as the dependent variable, and with the following
independent factors: one between participants factor of Group
(Action/Perception), and two within-participants factors of
Direction (Leftward/Rightward) and Stage (LB/EA/LA/EW),
including interactions.

In the action task, we used one-way repeated measures
ANOVA for each movement type. We compared the two task
blocks in the Adaptation session (LA #1 and LA #2) and the first
task block in the Washout session (EW) in the blocked design,
and LA and EW in the interleaved design, all relatively to the end
of the Baseline.

Then, to answer the question whether the mapping following
adaptation to laterally asymmetric delay depends on the direction
or the workspace of movement, only for Experiment 1, we
analyzed the results according to direction and workspace
separately. We used two-way ANOVA with two within factors of
Stage (LB/LA1/LA2/EW for the blocked design and LB/LA/EW
for the interleaved design), Direction or Workspace (Left/Right)
and the interaction between them. In the perception task, we
used one-way repeated measures ANOVA model. In the blocked
design, the dependent variable was the PSE values for every
line, and the independent factor was the stage of the experiment
(Baseline/Adaptation/Washout). The PSE from both blocks in
the Adaptation and the Washout sessions was compared to the
PSE from the two blocks in the Baseline session. In the interleaved
design, we compared the deviation from midline in the end of
the Adaptation session (LA) and in the beginning of the washout
(EW), to the end of the Baseline, by using one-way repeated
measures ANOVA model.

Significant effects were defined as those at the p < 0.05
probability level. When significant main or interaction effects
were found, post hoc testing with Holm’s correction was
conducted to identify the source of the differences. To examine
whether the number of participants is sufficient for this analysis,
we calculated the power of the ANOVA test with a parametric
bootstrap test. We repeatedly generated random samples from a
normal distribution, and calculated the percentage of statistically
significant effects. The parameters of the normal distribution
were calculated from the data. Based on examination of the data,
the desired effect size (the mean of the normal distribution)
was set to 1.5 cm, and the variance was determined based
on the calculated variance of each group. The number of
participants was chosen as the one that resulted in power >0.75.
For the perceptual effects, we also calculated the power of the
ANOVA test with a parametric bootstrap test. Here, because
effects on perception are typically smaller than the effects on
action (Ostry et al., 2010) an acceptable size of an effect was
determined as 10% from the effect on action, and the variance
was calculated from the data.

RESULTS

Reaching Movements
To assess the adaptation, we examined the change in the
amplitude of the lateral reaching movements. This analysis was
done to assure that the participants of all groups in all the

experiments have adapted to the asymmetrical delay in the visual
feedback by selectively modifying their reaching movements
in the left workspace. Our results showed that for all groups,
participants adapted and modified their movements when they
were exposed to delay that was introduced exclusively in leftward
movements in the left workspace (in Figures 4A–D, the results
of the adaptation curves are displayed only for the Experiment
1, but the results of Experiment 2 are very similar). When
the perturbation was first applied, participants over-reached
the target only in movements toward the left target. After
further exposure to the perturbation, participants returned to
baseline performance. Initially, soon after the beginning of the
exposure and as participants started adapting their leftward
movements, there was also a small change in the rightward
movements. This result was also observed in our previous study
(Avraham et al., 2018) and it might stemmed from the fact that
initially the participants interpret the perturbation as spatial shift.
However, this change quickly disappeared as participants built
a representation of the laterally asymmetric perturbation, and
it was not statistically significant in the overall analysis. After
the delay was unexpectedly removed, the leftward movements
demonstrated an aftereffect of under-reaching, and as expected,
we saw no aftereffects on rightward movements.

These observations were supported by our statistical analysis
that is summarized in Table 1 and in Figures 4E–H. We
divided the experiment to four stages of LB (five last movement
before exposure to delay), EA (five first movements with the
presence of delay), LA (five last movements with the presence of
delay), and EW (five first movements after removing the delay).
For both groups, we performed a three-way repeated measures
ANOVA with the amplitude of movements as the dependent
variable, and with the following independent factors: one between
participants factor of Group (Action/Perception), and two within-
participants factors of Direction (Leftward/Rightward) and Stage
(LB/EA/LA/EW), including interactions. The statistical analysis
yielded a significant interaction between movement direction
and stage, and therefore, we conducted a post hoc paired t-test.
In both experiments, protocols and groups, we found a typical
pattern of adaptation in leftward movements: a significant
over-reach in the EA stage, no difference in LA stage, and
undershoot in EW stage. In contrast to leftward movements,
where the perturbation was applied, throughout the experiment
there was no change in rightward movements (Figures 4E–H).
These results indicate that participants were able to adapt to the
asymmetrical visuomotor delay by asymmetrically modifying their
motor commands.

Action Task – Line Bisection
Next, we aimed to answer two questions about the transfer
of adaptation: (1) whether the selective adaptation to an
asymmetrical delay in the visual feedback transferred to the
blind line bisection movements and (2) whether the transfer
depends on the workspace in which the movement is performed
or on the direction of the movement. To assess the transfer of
adaptation, we analyzed the distance from the end point location
of participants’ movement to the actual center of the line in
the lateral axis.
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FIGURE 4 | Reaching movements for Experiment 1 (A–D). The results of Experiment 2 are similar. (A) Amplitude (line) and 95% confidence intervals (shaded region)
of the leftward and rightward movements for the Action group of the blocked design. Results are presented after subtraction of the movement amplitude at the end
of the baseline session. Positive (negative) value indicates overshoot (undershoot) in the direction of movement. The leftward movements show typical pattern of
adaptation: overshoot when the perturbation is applied and undershoot when the perturbation is unexpectedly removed. The rightward movements are unaffected
from the asymmetrical delay. (B) Same as (A) for the Perception group. (C,D) Same as (A,B) for the interleaved design. Here, task trials (white lines) were interleaved
throughout the experiment. (E) Mean amplitude of the first and last five movements of the adaptation stage and the first five movements of the washout, compared
to the last five movements of the baseline, for both Action and Perception groups of the blocked design in Experiment 1. Colored circles represent the mean
amplitude of each subject, and error bars represent 95% confidence interval. ∗∗p < 0.01, ∗∗∗p < 0.001. No difference is observed between the two groups.
(F) Similar to (E) for the interleaved design in Experiment 1. (G,H) Similar to (E,F) for Experiment 2. The observed results of the reaching movements are similar
between the two groups and two experiments.
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TABLE 1 | Statistical analysis for the reaching movements in both experiments.

Experiment 1 Experiment 2

Blocked design Interleaved design Blocked design Interleaved design

Action
group

Perception
group

Action
group

Perception
group

Action
group

Perception
group

Action
group

Perception
group

Groups F F1,18 = 0.35 F1,23 = 2.09 F1,18 = 0.002 F1,18 = 0.31

p 0.56 0.16 0.96 0.58

η2 0.003 0.004 0.01 0.001

Movement direction F F1,18 = 0.46 F1,23 = 93.51 F1,18 = 1.24 F1,18 = 44.84

p 0.51 1.43e−9 0.28 2.79e−6

η2 0.001 0.06 0.002 0.04

Stage F F3,54 = 46.95 F3,63 = 55.33 F3,54 = 25.74 F3,54 = 43.43

p 4.5e−15 2.46e−18 1.78e−10 2.03e−14

η2 0.25 0.25 0.22 0.26

Direction and stage F F3,54 = 63.2 F3,63 = 114.63 F3,54 = 96.92 F3,54 = 63.8

p 1.14e−17 9.53e−27 9.99e−22 9.32e−18

η2 0.33 0.42 0.4 0.39

Post hoc t-test for leftward movements in the different stages compared to the end of Baseline

EA stage d 2.95 2.02 3.11 3.81 3.11 1.99 3.07 2.57

t t18 = 6.29 t18 = 5.84 t23 = 10.6 t23 = 6.29 t18 = 6.55 t18 = 5.36 t18 = 6.05 t18 = 1.72

p 0.0002 0.0004 6.2e−9 5.6e−5 0.0001 0.001 0.0002 3.82e−5

LA stage d −0.07 −0.16 0.4 −0.30 −0.45 −0.17 0.63 0.54

t t18 = 0.19 t18 = 0.53 t23 = 1.41 t23 = 0.71 t18 = 1.21 t18 = 0.31 t18 = 1.72 t18 = 1.13

p 1 1 1 1 1 1 1 1

EW stage d −1.48 −1.73 −1.63 −2.51 −2.68 −2.64 −2.42 −2.49

t t18 = 5.42 t18 = 7.41 t23 = 4.96 t23 = 6.04 t18 = 5.36 t18 = 5.36 t18 = 5.41 t18 = 5.40

p 0.001 1.9e−5 0.001 0.0001 1.9e−5 6.5e−5 0.002 0.001

The results show a significant difference (bold) between leftward movements performed in the different stages.
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In the interleaved design, we first qualitatively examined the
time course of the target overshoot in all task trials throughout
the experiments compared to the end of the baseline task trials
(Figure 5). In Experiment 1 (Figure 5A), we saw an increase
in the amplitude during the adaptation in all movement types
until roughly the middle of the adaptation phase (around task
trial 25). Interestingly, this effect persisted and continued to
increase until the LA and EW stages for all movement types
except for rightward movements in the right workspace (M2R,
pink line). This suggests that the asymmetrical delay transferred
to blind lateral leftward line bisection movements in the left
workspace and was generalized to leftward movements in the
right workspace and rightward movements in the left workspace.
In contrast, in Experiment 2 the variability was much larger, and

there was no consistent effect on the calculated distance between
the participants (Figure 5B).

To support these qualitative observations with statistical
analysis, we divided the data to different stages and examined the
effect of the applied perturbation on the change in the amplitude
between the different stages. This analysis was performed in both
the blocked and the interleaved design. In the blocked design, we
examined the changes in the calculated distance between the two
task blocks in Adaptation (all five movements from each task
block – LA #1 and LA #2) and during the Washout (all five
movements from the first task block in Washout – EW) relatively
to the end of the Baseline (all five movements from the last task
block in Baseline – LB) session. We looked at the two task blocks
of adaptation separately to examine how the effect on transfer

FIGURE 5 | Movement amplitude in the lateral axis for the interleaved action task in both experiments. (A) Experiment 1. Movement amplitude for the different
directions and locations. Results are presented for each line separately: leftward movement in the left workspace (M2L, blue), leftward movement in the right
workspace (R2M, green), rightward movement in the left workspace (L2M, orange), and rightward movement in the right workspace (M2R, pink). Shaded regions
represent the five last movements in the end of adaptation session (light orange) and five first movements at the beginning of the washout (light green). The results
show that for all movement types there is an increase in the amplitude at the beginning of the adaptation (until roughly task trial 25), but only for rightward
movements at the right workspace the amplitude decrease before the end of adaptation. (B) Same as (A) for Experiment 2. The results show no consistent increase
or decrease in the amplitude during the entire experiment.
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movements developed throughout adaptation. In the interleaved
design, we probe for the changes in movements’ amplitude during
the end of the Adaptation (five last task trials in Adaptation –
LA) and beginning of the Washout (five first task trials in
Washout –EW) sessions relatively to the end of the Baseline (five
last task trials in Baseline – LB) session. In our analysis of the
washout session, we found no difference between the beginning
and end of this session in both protocols. Therefore, to remain
consistent with our previous study (Avraham et al., 2018), and
to focus on our original research questions on short-term delay
effects on generalization across direction and workspace and on
perception, we decided to include in our analyses only the early
stage of Washout.

First, we examined the effect of the adaptation on each line
separately by performing one-way repeated measures ANOVA
for each movement type (the results of the entire analysis are
summarized in Table 2, statistically significant effects are marked
in Figure 6). In Experiment 1, we saw inconsistent results
between the two protocols. In the blocked design, only in the
Washout session, the deviation of leftward movements in the left
workspace increased (d = −0.89, t9 = 3.4, p = 0.02, Figure 6A).
The deviation of rightward movements in the left workspace also
increased during Washout, but it was not statistically significant
(d = 0.57, t9 = 2.46, p = 0.11). The results of the interleaved
design showed a more robust effect of the transfer of adaptation,
demonstrated in a deviation of leftward movements in the left
workspace observed not only in the beginning of the Washout
stage, but also in the end of the Adaptation session (LA:
d = −0.67, t14 = 2.42, p = 0.02, EW: d = −0.74, t14 = 3.05,
p = 0.017). Interestingly, with this more sensitive design, at the
washout stage we also found that the transfer effects of adaptation
generalized to leftward movements that were performed in the
right workspace (LA: d = −0.58, t14 = 1.89, p = 0.07, EW:
d = −0.84, t14 = 2.89, p = 0.02). In addition, we also found

a significant main effect of stage in the analysis of rightward
movements that were performed in the left workspace (η2 = 0.23,
F2,28 = 4.26, p = 0.02), but even though the sizes of the effects
were large (LA: d = 0.82, t14 = 2.22, p = 0.086, EW: d = 0.78,
t14 = 2.08, p = 0.112, Figure 6B), the post hoc t-test with
the multiple comparison correction did not yield statistically
significant effect. In contrast, the transfer effects to rightward
movements in the right workspace were much smaller and not
statistically significant (LA: d = 0.22, t14 = 0.68, p = 1, EW:
d = 0.35, t14 = 1.11, p = 0.57, Figure 6B). To conclude, the
only movements that were clearly not affected by the adaptation
to asymmetrical delay in the visual feedback in none of the stages
were rightward movements in the right workspace.

In contrast to these results, in both protocols of Experiment 2,
we found no transfer effects in the motor line bisection task; i.e.,
participants’ movement toward the center of the line showed no
deviation from the actual center (Figure 7, statistical analysis is
summarized in Table 2). These results suggest that the transferred
effect is specific to purely lateral movements and is not evident for
movements that include a sagittal component (either diagonal or
purely forward movements).

To answer the second question about the transfer of
adaptation, we grouped the movements according to the
direction or the workspace in which they were performed,
and calculated the mean amplitude of the movement. We
performed two-way repeated measures ANOVA with two within
factors of Stage (LB/LA1/LA2/EW for the blocked design
and LB/LA/EW for the interleaved design) and Direction or
Workspace (Left/Right) including the interaction between them.
The results of this analysis are shown in Figures 8A,B (left panel
for the grouping according to workspace – left and right, and
right panel for grouping according to movement direction –
leftward and rightward). Statistical results are summarized in
Table 3. In the blocked design, the results of workspace analysis

TABLE 2 | Statistical analysis for the motor line bisection task for each of the different movements in the two experiments.

Middle to left Left to middle Middle to middle Right to middle Middle to right

Experiment 1 Blocked design F3,27 7.37 2.24 1.78 1.41

p 9e−4 0.08 – 0.17 0.26

η2 0.45 0.22 0.16 0.14

Power = 0.9

Interleaved design F2,28 6.46 4.26 6.46 0.93

p 0.005 0.02 – 0.005 0.4

η2 0.32 0.23 0.32 0.06

Power = 0.82

Experiment 2 Blocked design F3,27 1.32 1.23 1.24 0.21 0.49

p 0.28 0.32 0.31 0.89 0.68

η2 0.13 0.12 0.12 0.02 0.05

Power = 0.83

Interleaved design F2,18 0.62 0.65 1.63 0.41 0.48

p 0.54 0.53 0.22 0.66 0.62

η2 0.06 0.06 0.15 0.04 0.05

Power = 0.75

We observed significant effects (bold) only for lateral leftward movements in the left workspace in the blocked design, and for lateral leftward movements performed in the
right workspace in the interleaved design. The blue, red, and grey colors indicate leftward, rightward, and forward movements.
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FIGURE 6 | Spatial deviation from the center of the presented line along the lateral axis in the action task of Experiment 1. (A) Blocked design. At the center,
examples of individual movements of a typical subject from the start point (blue circle) toward the center of the presented line (solid black line) in the left (blue) or right
(red) directions. Dashed black lines show the actual center of the line and were not presented during the experiment. Panels around the center present the mean
deviation in the stages of Late Adaptation 1 (light orange), Late Adaptation 2 (dark orange), and Early Washout (green) compared to the Late Baseline (LB). Colored
circles represent the spatial deviation of each subject, and error bars represent 95% confidence interval. ∗p < 0.05. The panels are located spatially to represent the
location and direction of the movement. The results suggest an elongation of leftwards movements performed in the left hemispace. (B) Similar to (A) for the
interleaved design. Here, we analyzed the five last movements in Adaptation (Late Adaptation, dark orange) and five first movements in Washout (Early Washout,
green) compared to the five last movements in the Baseline. The results suggest an elongation of leftward movements performed in both workspaces.
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FIGURE 7 | Results of action task in Experiment 2. (A) Blocked design. Results are presented in a similar manner as in Figure 6A, except here participants also did
forward (gray) and diagonal movements. (B) Similar to (A) for the interleaved design. The analysis was performed on the five last movements in Adaptation (Late
Adaptation, dark orange) and five first movements in Washout (Early Washout, green) compared to the five last movements in the Baseline. The results suggest no
spatial deviation of bisection movements.
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FIGURE 8 | Spatial deviation from the center of the presented line along the lateral axis in the action task according to workspace (A,C) and direction (B,D) for the
blocked design (A,B) and the interleaved design (C,D) in Experiment 1. (A) Deviation of movements according to the spatial location in which they were performed,
in the different stages of Late Adaptation 1 (light orange), Late Adaptation 2 (dark orange), and Early Washout (green). Colored circles represent the calculated spatial
deviation of each subject, and error bars represent 95% confidence interval. ∗p < 0.05, ∗∗p < 0.01. The results show a significant spatial elongation of movements
performed in the left workspace during EW stage. This deviation is also different from right-workspace deviation. (B) Deviation of movements according to the
direction toward which they were performed. Bars and colors are as in (A). Results show no direction-related effects. Panels (C,D) are as (A,B) for the interleaved
design. Here, we analyzed the different stages of Late Adaptation (dark orange) and Early Washout (green). The results suggest no significant effect of direction or
workspace.

showed statistically significant interaction between stage and
workspace (η2 = 0.03, F3,27 = 3.4, p = 0.03). We found that a
significant elongation of movements was exhibited only in the
left workspace, and only during the Washout stage (d = 0.75,
t9 = 4.99, p = 0.0045). In addition, we also found a significant
difference between the amplitude in the right and left workspace
observed in the EW stage (d = 0.76, t9 = 2.38, p = 0.04,

Figure 8A). No similar pattern was observed in the direction
analysis (Figure 8B).

In the interleaved design, the analysis showed significant
interaction between stage and direction (η2 = 0.03, F2,28 = 3.76,
p = 0.03) (Figures 8C,D). We found significant elongation of
leftward movements in both the end of Adaptation and at the
beginning of the Washout (LA: d = 0.66, t14 = 2.62, p = 0.04,
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TABLE 3 | Results of the workspace-and-direction analysis for the results of Experiment 1.

Workspace Direction

η2 F p η2 F p

Blocked design Stage 0.23 F3,27 = 3.92 0.01 0.22 F3,27 = 3.92 0.01

Side 0.02 F1,9 = 2.34 0.16 0.01 F1,9 = 0.74 0.41

Stage and side 0.03 F3,27 = 3.4 0.03 0.02 F3,27 = 1.88 0.15

Interleaved design Stage 0.23 F2,28 = 5.74 0.008 0.22 F2,28 = 5.74 0.008

Side 0.004 F1,14 = 0.92 0.35 0.04 F1,14 = 6.37 0.02

Stage and side 0.01 F2,28 = 1.3 0.28 0.03 F2,28 = 3.76 0.03

Significant interaction (bold) demonstrates a difference between the different stages that is dependent on the workspace-or-direction toward which the
movement is applied.

EW: d = 0.83, t14 = 3.05, p = 0.025). In addition, there was also a
significant difference between leftward and rightward movements
at the end of Adaptation (d = 0.65, t14 = 3.42, p = 0.004,
Figure 8D). From these results we conclude that the dependency
of the transfer effect of adaptation on workspace or direction is
different between the two protocols of blocked and interleaved.
The interleaved design is more sensitive in discovering transfer
of adaptation, but nonetheless, we remain cautious in our answer
to the second question about the dependency of the transfer of
adaptation on workspace or direction.

Overall, from Experiment 1, we conclude that: (1) the
adaptation to the asymmetrical delay in leftward movements
generalized to blind line bisection movements, but not if they
were rightward movements in the right workspace, and (2) we
cannot determine whether the adaptation was workspace or
direction dependent. From Experiment 2, we conclude that the
generalization of the adaptation to the delay was narrow and
limited only to the lateral movements.

Perceptual Line Bisection Task
To examine the effect of asymmetrical delay on perception, in the
blocked design we fitted a psychometric curve for each participant
(examples are depicted in Figure 9A), and extracted the PSE value
to determine the perceptual bias of the lines’ middle location.
In the interleaved design, we extracted the difference between
the end location of the probe and the actual midline. In both
protocols, we used one-way repeated measures ANOVA model.
The results showed that in both experiments and both protocols,
the statistical analysis (as summarized in Tables 4, 5) yielded
no significant effects on the perceived location of the midline
between the different stages in the experiment (Figures 9B–E).
These results clearly show that the perception was unaffected by
adaptation to asymmetrical visuomotor delay.

DISCUSSION

To understand the effect of laterality and time delays on
action and perception, we investigated the effect of adaptation
to laterally asymmetrical delay on movements and on visual
perception. Following exposure to delay that was introduced
exclusively in the left workspace, participants modified the extent
of their reaching movements only in the left side, where the

delay was applied. When participants were initially exposed to the
delay, their leftward movements became hypermetric compared
to the end of the Baseline session, i.e., they over reached the
target. Throughout adaptation, they reduced the hypermetria,
resulting in movements similar to those observed in the end of the
Baseline. Additionally, aftereffects were observed when the delay
was unexpectedly removed in terms of target undershoot. These
results indicate that a workspace-specific internal representation
was constructed to compensate for the movement errors caused
by the perturbation.

In the transfer tasks, we observed that the adaptation to the
asymmetric delay only affected action, and not perception. More
specifically, we found that the effect of adaptation to a laterally
asymmetrical delay transferred to the lateral blind motor line
bisection task for left-workspace movements in one protocol,
and to all leftward movements in another protocol. This effect
was demonstrated in elongated movements compared to the
movements performed before the exposure to the perturbation.
Interestingly, only movements in the lateral direction were
elongated, both leftward and rightward movements (Experiment
1), and movements that had substantial frontal component were
not elongated (Experiment 2). In contrast, no effect was observed
in the perceived midpoint of the presented lines in the Perception
groups of both experiments in any of the protocols. Therefore,
we conclude that the transfer of adaptation is dependent on
the paradigm by which the participants were exposed to the
perturbation, with a more pronounced and broader effect when
the transfer trials were interleaved between the exposure trials.

Adaptation and Representation of
Visuomotor Delay
The effect of adaptation to a visuomotor delay on the execution
of movements has been extensively investigated (Miall et al.,
1985; Miall and Jackson, 2006; Honda et al., 2012; Rohde
et al., 2014; Avraham et al., 2017a; Sulimani et al., 2017).
Furthermore, the adaptation to delay that was presented only
in one workspace was also examined (Avraham et al., 2018;
Farshchian et al., 2018). In line with our results, Farshchian
et al. (2018) found evidence for generalization of adaptation
between left and right workspaces. However, our current results
from the interleaved design are not consistent with our previous
study with a similar adaptation to laterally asymmetric delay
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FIGURE 9 | Results of the perceptual test in the different stages for both experiments and both protocols. (A) An example of three psychometric curves from a
typical participant in the blocked design of Experiment 1. The dots represent the actual data from the different sessions of Baseline (purple), Adaptation (orange), and
Washout (green), and solid lines are the fitted curves. Error bars represent 95% confidence interval. (B) PSE results for the blocked design in Experiment 1. Values
are presented for the Adaptation (orange) and Washout (green) relative to Baseline. Colored circles represent the PSE value of each participant and error bars are
95% confidence interval. The bars are located spatially to represent the spatial direction of midline deviation. (C) Results of the perceptual test for the interleaved
design in Experiment 1. We present the deviation in the end location of the probe compared to actual midline for Late Adaptation (orange) and Early Washout (green)
relative to the end of Baseline. Circles and error bars are as in (B). Panels (D) and (E) are same as (B) and (C) for the blocked and interleaved design in Experiment
2, respectively. Overall, no perceptual bias is demonstrated in both experiments and both protocols.
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TABLE 4 | Results for the PSE value for each one of the presented lines in the two experiments.

Left Middle Right

η2 F2,18 p η2 F2,18 p η2 F2,18 p

Experiment 1 0.06 0.67 0.52 0.01 0.12 0.89 0.12 1.09 0.35

Power = 0.99

Experiment 2 0.13 1.44 0.26 0.26 3.18 0.06 0.002 0.02 0.97

Power = 0.99

No significant effects were observed.

TABLE 5 | Results for the spatial deviation observed in the perceptual task of the interleaved design.

Left Middle Right

η2 F2,18 p η2 F2,18 p η2 F2,18 p

Experiment 1 0.006 0.05 0.94 0.13 1.31 0.29 0.04 0.41 0.06

Power = 0.99

Experiment 2 0.14 1.51 0.24 0.003 0.02 0.97 0.16 1.74 0.2

Power = 0.99

No significant effects were observed.

paradigm (Avraham et al., 2018), where transfer of adaptation
was restricted to leftward movements in the left workspace. This
might be because of the difference in the transfer task that was
used in the two experiments. In our previous study we used
circular drawing movements with multiple movement directions,
whereas in the current study we used line bisection task with only
lateral movements.

We found that the effect of adaptation to a left
hemispace-specific delay during a reaching task transferred
to the lateral (leftward and rightward) line bisection movements,
but with a different manner according to the different protocols
we tested. In the blocked design protocol, only movements
that were performed in the left workspace were elongated, and
only in the washout stage, while the interleaved design protocol
yielded elongated leftward movements in both workspaces and
during both LA and washout. In our previous study, we found
that following adaptation to laterally asymmetric visuomotor
delay in the left workspace, all the circles that were initiated in
the left workspace were hypermetric (Avraham et al., 2018). By
assuming a workspace-dependent generalization, we were able
to explain the intriguing effect of adaptation to asymmetrical
delay on transfer circular movements and to model a concept
of perceptual-motor asymmetry in the hemispheres. However,
in that experiment, workspace and direction were coupled, as
all the movements started from the center. Here, our results
showed that laterally asymmetrical delay that was presented
during leftward reaching movements has a pronounced transfer
effect on blind leftward movements in the left-workspace and not
on blind rightward movements in the right workspace. There was
also influence on leftward movements in the right workspace.
In addition, even though we did not find a significant influence
on rightward movements in the left workspace, the size of the
mean change in hand amplitude was large. In light of the results
from both blocked and interleaved design we conclude that

the adaptation to asymmetrical delay transferred to leftward
movements performed in the left workspace, and that the
generalization to other directions or workspaces is dependent on
the way participants were exposed to the perturbation and the
exact protocol that was used for testing the transfer of adaptation.

Adaptation to asymmetrical delay transferred to the lateral
blind line bisection movements. These movements can be
considered as reaching movements toward the center of the
presented line. Therefore, this result is in agreement with
previous studies that showed hypermetric blind reaching
movements after adaptation to delay (Botzer and Karniel, 2013;
Avraham et al., 2018). These results are in agreement with
the results of the interleaved design. However, in our blocked
design protocol, the transferred effects were only observed in
the Washout session, after the participants already practiced
reaching movements without delay. This may indicate that the
process of building an internal representation was slower in the
blocked design than in the interleaved design. Consequently,
even though no new information is being learned during the
transfer blocks, they could have weakened the adaptation and
cause a forgetting in the learning process as they interrupted
the sequence of learning (Scheidt et al., 2000; Shmuelof et al.,
2012). On the other hand, the interleaved design allowed for
capturing the transfer of adaptation faster and highlighted that
it generalized more broadly.

The way the sensorimotor system represents delay is still
under dispute. On the one hand, studies have shown evidence
for time-based representation (Witney et al., 1999; Levy et al.,
2010; Rohde et al., 2014; Leib et al., 2015; Avraham et al.,
2017b; Leib et al., 2018). On the other hand, other behavioral
results demonstrated limited ability to represent time in the
motor system, which raise the possibility for a state-based
representation (Pressman et al., 2007; Sarlegna et al., 2010; Di
Luca et al., 2011; Nisky et al., 2011; Takamuku and Gomi, 2015;
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Avraham et al., 2017a). Our results are consistent with a state-
based representation, as the participants modified the extent of
the reaching movements and exhibited aftereffects when the delay
was removed. This implies that the participants did not represent
the delay as a time-lag between the hand and the cursor.

Visuomotor Adaptation and Perceptual
Space Representation
We found no effect of motor adaptation on participants’
perceived midline, which shows that the space representation was
unaffected by the adaptation process. This result is inconsistent
with previous studies that showed transfer effects from action
to perception (Ostry et al., 2010; Mattar et al., 2012; Marius‘t
Hart and Henriques, 2016). However, in these studies perception
was examined in terms of perceived direction and location of
the hand, unlike in the current study in which we examined
perception in terms of space representation. A similar result
was also recently reported in a study that compared force field
and prism adaptation by means of transferred effect to space
representation (Michel et al., 2018). The results of this study
showed no effect of force field adaptation on visual perception.
In contrast, in the case of prism adaptation, transferred effects
were observed in both control of action and space representation
(Colent et al., 2000; Goedert et al., 2010; Fortis et al., 2018).
Previous studies that compared delayed visual feedback and
prism adaptation revealed different underlying mechanisms of
adaptation between the two types of perturbations (Smith and
Bowen, 1980). In addition, the observed difference can be related
to the two learning processes theory (Smith et al., 2006); recent
studies of prism adaptation suggested that the slow process
is more dominant than the fast process (Michel et al., 2003),
and that a third learning process is required in order to fully
explain the decay of prism aftereffects after experiencing prism
adaptation for 500 trials (Inoue et al., 2014). These characteristics
of prism adaptation might be the cause for the different transfer
of perceptual effects in comparison with our results and the
results of force field adaptation. Another reason for potential
discrepancy may be the stronger realism of adaptation to prism
goggles compared to the virtual reality scenario in our setup.

There is an ongoing controversy about the existence of two
distinct pathways for action and perception in the visual system.
One view suggests that there are two separate pathways for
processing of visual information for perception and for control
of action (Goodale and Milner, 1992). This idea is supported by
behavioral evidence for independent processing of information
for perception and action in grasping (Aglioti et al., 1995; Ganel
and Goodale, 2003; Milstein et al., 2018), and lifting (Flanagan
and Beltzner, 2000). Alternatively, evidence suggested that action
and perception might be intertwined in some cases (Franz et al.,
2000; Smeets and Brenner, 2006; Reichenbach and Diedrichsen,
2015). According to this view, the observed dissociation between
action and perception could be a result of different types of
measures and environmental cues that are affecting each of
the processes differently (Smeets and Brenner, 2006). However,
this entire line of research did not examine motor adaptation
effects, except from very fast adaptation of grip force during

lifting (Flanagan and Beltzner, 2000). Here, we showed that when
breaking the simultaneity between the visual and proprioceptive
input, participants’ perceptual space representation remained
unaffected. Therefore, when participants were asked to report
the perceived location of a presented midline, no deviation was
observed. However, their lateral movements toward the midline
are modified when no visual feedback is provided. While our
results demonstrate a dissociation between processing of visual
information for action and perception following adaptation to
visuomotor delay, we interpret them in the context of motor
adaptation processes that affect differently transfer to action
and perception (Ostry et al., 2010; Mattar et al., 2012; Marius‘t
Hart and Henriques, 2016), rather than in the context of the
different pathways in processing of visual information (Goodale
and Milner, 1992; Milner and Goodale, 2006). Future studies are
needed to examine potential interconnections between these two
separate lines of research.

Our results showed transfer effects to the control of action but
not to perceptual space representation. In the blocked design, this
difference between action and perception could have stemmed
from the large amount of data that are required for generating
a psychometrical curve, which might have affected the learning
sequence. However, in the interleaved design, the perceptual
task did not require such large amount of data, and was very
similar to the action task, excluding the planning and execution
of a reaching movement. Therefore, we conclude that the results
of the perceptual task from the interleaved design are more
appropriate for comparison with the action task than the block
design. Nevertheless, the conclusions of both protocols were
consistent showing that there was no transfer of adaptation to a
bias in perception.

In our previous work, we found spatial deviations after
adaptation to laterally visuomotor delay. We explained these
results with a model for perceptual and motor asymmetry in the
hemispheres. However, it is noteworthy to distinguish between
the unbiased perception discussed in the current study and the
perceptual dominance component of the model in our previous
study (Avraham et al., 2018). In the present study, perception is
interpreted as the spatial representation that is reported by the
subject. In contrast, in our previous study, perception is referred
to the space representation in the hemispheres which forms
our motor behavior across space. Accordingly, the observed
dissociation between action and perception does not contradict
our proposed model for perceptual and motor asymmetry in the
hemispheres that explain the motor effects.

Hemi-Spatial Neglect and
Hyperschematia
Neglect patients fail to perceive and respond to stimuli
presented on the side contralateral to their lesion. Studies
on neglect patients showed that the foundation of neglect is
a deficit in both perceptual space representation and motor
behavior across space (Marotta et al., 2003; Adair and Barrett,
2008; Rossit et al., 2012). The motor impairments can be
demonstrated in temporal disorders of slowness in movement
initiation (directional hypokinesia) or in execution of movements
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(directional bradykinesia), and unilateral spatial disorders of
reduction in movement amplitude (directional hypometria)
(Mattingley et al., 1992, 1994). Moreover, the motor impairment
can also be observed in leftward movements performed in the
right workspace (Danckert and Ferber, 2006). In the current
study, our motor task yielded neglect-like elongated line bisection
movements. However, our perceptual line bisection test results
showed no midline perceptual biases. Therefore, we conclude
that temporal processes cannot be addressed as the main neural
basis of neglect, but they might be associated with the spatial
motor distortions in neglect, and can be used as a rehabilitation
technique in cases of severe motor impairment.

Another pathology is the “hyperschematia,” in which patients
exhibit leftward enlargement of drawings both when copying
an object or drawing from memory (Rode et al., 2014). This
disorder is more frequent after right-brain damage, and the
patients are unaware to their deficit (Rode et al., 2018). In the
current study, left-workspace lateral movements were elongated
after exposure to laterally asymmetrical delay, and no effect on
perception was observed. Therefore, we suggest that the disorder
in hyperschematia might be related to visuo-temporal processing.
However, further investigation is required.

Understanding the functional lateralization in the
hemispheres and related behaviors when presented with temporal
and spatial perturbations may help us to better understand
pathological cases involving injury in only one hemisphere
manifesting in misperception of the environment as well
as motoric impairments. By deepening our understanding,
we might be able to develop new and improved diagnostic
and rehabilitation methods to help patients with these
complex syndromes.
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Humans walk, run, and change their speed in accordance with circumstances. These

gaits are rhythmic motions generated by multi-articulated movements, which have

specific spatiotemporal patterns. The kinematic characteristics depend on the gait and

speed. In this study, we focused on the kinematic coordination of locomotor behavior

to clarify the underlying mechanism for the effect of speed on the spatiotemporal

kinematic patterns for each gait. In particular, we used seven elevation angles for the

whole-body motion and separated the measured data into different phases depending

on the foot-contact condition, that is, single-stance phase, double-stance phase, and

flight phase, which have different physical constraints during locomotion. We extracted

the spatiotemporal kinematic coordination patterns with singular value decomposition

and investigated the effect of speed on the coordination patterns. Our results showed

that most of the whole-body motion could be explained by only two sets of temporal

and spatial coordination patterns in each phase. Furthermore, the temporal coordination

patterns were invariant for different speeds, while the spatial coordination patterns varied.

These findings will improve our understanding of human adaptation mechanisms to tune

locomotor behavior for changing speed.

Keywords: walk, run, kinematic coordination, spatiotemporal pattern, speed effect, singular value decomposition

1. INTRODUCTION

Humans walk, run, and change their speed at will depending on their circumstances. These gaits
are rhythmic motions generated by multi-articulated movements that have specific spatiotemporal
patterns. The kinematic characteristics of locomotor behavior vary to produce different gaits and
speeds. For example, the stance leg during walking is almost straight, with slight knee flexion, and it
rotates around the foot-contact point like an inverted pendulum (Lee and Farley, 1998). In contrast,
the stance leg during running behaves like a spring, with knee bending (Cavagna et al., 1976).
Many kinematic parameters, such as stride length and gait cycle, also change at different gaits and
speeds (Nilsson et al., 1985). Such kinematic variations are locomotor outcomes of the complicated
musculoskeletal system controlled by the central nervous system.
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Despite large differences in locomotor behavior, there are
common kinematic characteristics, which were highlighted by
extracting low-dimensional structures frommeasured kinematics
data. For example, when three elevation angles of the thigh,
shank, and foot of one leg in the sagittal plane were plotted for
one gait cycle, the trajectory lay close to a plane, which has been
referred to as the planar law (Borghese et al., 1996; Ivanenko
et al., 2007). This low-dimensional structure explains the
intersegmental coordination during locomotion. In addition, the
orientation of the plane constraining the trajectory changes with
changes in gait and speed, suggesting that humans adapt to the
speed change by tuning the intersegmental coordination (Bianchi
et al., 1998; Ivanenko et al., 2007, 2008).

Human locomotion, including walking and running, is
generated by moving the whole body using the legs. The legs
have different roles depending on the foot-contact condition.
In particular, the stance leg supports the body weight and
produces propulsive and decelerative forces against the ground.
In contrast, the swing leg swings the foot forward in the air
and determines the stride length. Our previous work (Funato
et al., 2010) investigated how spatiotemporal patterns of walking
kinematics vary according to the speed by focusing on the
kinematic coordination depending on the foot-contact condition.
Specifically, we used seven elevation angles for the trunk and
thighs, shanks, and feet of both legs, and extracted the kinematic
coordination patterns using singular value decomposition
for the single-stance (SS) and double-stance (DS) phases
independently. As a result, a large portion of the seven angles
was reproduced by the average posture and only two sets of
spatial (intersegmental) and temporal coordination patterns for
both phases. Furthermore, the temporal coordination patterns
exhibited almost no change, while the average posture and spatial
coordination patterns changed with speed.

In this study, we extended the previous analysis to running.
While walking has a DS phase, running has a flight (FL) phase,
in which both feet are in the air. We investigated the seven
elevation angles for running for the SS and FL phases separately
and examined how the kinematic coordination patterns changed

FIGURE 1 | Definition of elevation angles (positive for anticlockwise direction; A). Time series of elevation angles for one gait cycle composed of double-stance

phases (DS1, DS2) and single-stance phases (SS1, SS2) for walking (B) and single-stance phases (SS1, SS2) and flight phases (FL1, FL2) for running (C). These data

are averages at 3 km/h for walking and 9 km/h for running by subject IG. FC-R, FC-L, FO-R, and FO-L indicate right foot contact, left foot contact, right foot off, and

left foot off, respectively.

with speed. We analyzed measured data for both walking and
running and compared the speed effect on the spatiotemporal
kinematic coordination patterns between the gaits.

2. METHODS

2.1. Experiments
The study subjects were eight healthy men [age: 22–24 years,
weight: 64.7 ± 6.6 kg (mean ± standard deviation), height:
1.75 ± 0.07 m]. They walked at 3, 4, and 5 km/h or ran at 9, 13,
and 17 km/h on a treadmill (ITR3017, Bertec Corp.). A motion
capture system (MAC3D Digital RealTime System, NAC Image
Technology, Inc.) was used to measure the motion. Reflective
markers were attached to the subjects’ skin over several body
landmarks on both the left and right sides: head, upper limit

of the acromion, greater trochanter, lateral condyle of the knee,

lateral malleolus, secondmetatarsal head, and heel. The sampling
frequency was 500 Hz. This study was approved by the Ethics

Committee of Doshisha University. Written informed consent
was obtained from all participants after the procedures had been

fully explained.

2.2. Analysis
We used the measured data for 40 walking steps and

75 running steps for each subject and each speed.
From the measured time-series data, we calculated the

angles for seven segments (trunk and right and left feet,

shanks, and thighs) defined on the sagittal plane: θ(t) =

[ θfootR(t) θshankR(t) θthighR(t) θtrunk(t) θthighL(t) θshankL(t) θfootL(t)]
T

∈

R
7. These angles were defined as elevation angles (Figure 1A)

based on the assumption that elevation angles behave more
stereotypically than relative angles (Borghese et al., 1996;
Ivanenko et al., 2007).

We separated the measured data into DS and SS phases for
walking and FL and SS phases for running. These phases appear
twice in each gait cycle, as shown in Figure 1: DS1 (starting with
right foot contact), SS1 (supported on right leg), DS2 (starting
with left foot contact), and SS2 (supported on left leg) for walking
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and SS1 (supported on right leg), FL1 (starting with right foot
off), SS2 (supported on left leg), and FL2 (starting with left foot
off) for running. Because SS1 and SS2, DS1 and DS2, and FL1
and FL2 are identical except for the difference in right or left, we
used only DS1 and SS1 for walking and SS1 and FL1 for running.
The number of data points in each phase was standardized at 100
(t = t1, . . . , t100).

We used 2 = [ θ(t1) . . . θ(t100) ] ∈ R
7×100 for each phase by

arranging the time-series data of the elevation angles θ(t) from t1
to t100. From singular value decomposition, we obtained

2 = 20 +

7
∑

i=1

zi(λivi)
T (1)

where 20 ∈ R
7×100 was constructed by repeating the temporal

average of θ(t), θ0 ∈ R
7, for 100 samplings; λi ∈ R, zi ∈

R
7, and vi ∈ R

100 (i = 1, . . . , 7) are the singular value and
the left and right singular vectors of 2 − 20, respectively; zi
and λivi explain the intersegmental and temporal coordination
patterns, respectively; θ0 is the average posture and can be
decomposed into the amplitude |θ0| and normalized vector θ̂0
(= θ0/|θ0|); and θ̂0 explains the intersegmental pattern of the
average posture.

To investigate the speed effect on the kinematic coordination,
we used statistical methods to determine similarity for the
extracted coordination patterns by singular value decomposition.
To find any significant differences, we applied a multivariate
analysis of variance (MANOVA) with factors speed and subject to
the temporal coordination pattern λivi, intersegmental patterns
zi and θ̂0, and normal vector of the constraint planes spanned

by z1 and z2, and applied a 2-way analysis of variance (ANOVA)
with factors speed and subject to themagnitude |θ0| of the average
posture, where λivi was converted to a vector with 25 elements.
Because zi and θ̂0 are significant, we applied a 2-way ANOVA
to each segment further, where the significance levels are based
on Bonferroni correction. In addition, to compare the speed
effect on the intersegmental pattern zi and average posture θ0
between the DS and SS phases for walking and between the SS
and FL phases for running, we used a paired t-test to the cosine
similarity of the normal vectors of the constraint planes, to the
cosine similarity of θ̂0, and to the difference in |θ0| between 3
and 5 km/h for walking and between 9 and 17 km/h for running.
Furthermore, to determine significant differences in the SS phase
between walking and running, we applied a MANOVA with
factors gait and subject to the temporal coordination patterns
λivi, intersegmental coordination patterns zi, and average posture
intersegmental pattern θ̂0 and applied a 2-way ANOVA with
factors gait and subject to the average posture amplitude |θ0|.
Because zi and θ̂0 are significant, we also applied a 2-way ANOVA
to each segment further, where the significance levels are based
on Bonferroni correction. In each MANOVA and ANOVA, we
confirmed that the interactions are not significant.

3. RESULTS

3.1. Kinematic Coordination Patterns
During Walking and Running
The kinematic coordination at 3 km/h for walking and 9 km/h
for running for eight subjects was analyzed using singular value
decomposition. Table 1 shows the singular value λi and the

TABLE 1 | Singular value λi and cumulative proportion 3i for eight subjects for each phase at 3 km/h for walking and 9 km/h for running.

Subject Walk : Double-stance phase (DS) Walk : Single-stance phase (SS)

λ1 λ2 31 32 λ1 λ2 31 32

IG 2.38 (0.11) 0.35 (0.04) 0.98 1.00 6.79 (0.17) 1.19 (0.05) 0.97 1.00

MT 1.84 (0.10) 0.31 (0.06) 0.97 1.00 6.75 (0.26) 1.51 (0.11) 0.94 0.99

NG 1.95 (0.10) 0.30 (0.03) 0.98 1.00 6.69 (0.25) 1.53 (0.09) 0.94 0.99

NK 1.63 (0.20) 0.24 (0.03) 0.98 1.00 6.96 (0.47) 1.74 (0.19) 0.93 0.99

ST 2.04 (0.23) 0.29 (0.05) 0.98 1.00 7.08 (0.41) 2.28 (0.42) 0.90 0.99

SG 2.21 (0.23) 0.41 (0.07) 0.96 1.00 6.20 (0.41) 2.03 (0.17) 0.90 0.99

YM 1.87 (0.09) 0.41 (0.04) 0.95 1.00 6.72 (0.25) 1.71 (0.07) 0.94 1.00

YS 2.13 (0.17) 0.46 (0.05) 0.95 1.00 6.29 (0.25) 1.24 (0.09) 0.96 1.00

Subject Run : Single-stance phase (SS) Run : Flight phase (FL)

λ1 λ2 31 32 λ1 λ2 31 32

IG 6.59 (0.26) 2.50 (0.17) 0.86 0.99 3.29 (0.37) 0.70 (0.08) 0.95 1.00

MT 6.79 (0.24) 2.47 (0.11) 0.87 0.99 2.25 (0.25) 0.46 (0.08) 0.96 1.00

NG 5.94 (0.27) 2.06 (0.14) 0.89 0.99 3.94 (0.54) 1.03 (0.16) 0.93 0.99

NK 5.83 (0.34) 1.86 (0.11) 0.89 0.99 3.24 (0.40) 0.45 (0.09) 0.98 1.00

ST 7.34 (0.39) 2.19 (0.20) 0.90 0.99 1.70 (0.29) 0.34 (0.11) 0.96 1.00

SG 5.86 (0.41) 2.00 (0.12) 0.89 0.99 3.24 (0.40) 0.77 (0.14) 0.95 1.00

YM 6.42 (0.29) 1.84 (0.08) 0.91 0.98 2.42 (0.25) 0.63 (0.08) 0.93 1.00

YS 5.66 (0.56) 2.07 (0.14) 0.86 0.98 3.31 (0.61) 0.56 (0.10) 0.97 1.00

Listed values are averages and values in parentheses are standard deviations. Values are rounded off to two decimal places, and bold values denote that the cumulative proportion

exceeds 99%.
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cumulative proportion 3i (=
∑i

j=1 λ2j /
∑7

j=1 λ2j ). Although the

SS phase for running had a slightly smaller cumulative proportion
than the other phases, most of the cumulative proportion
exceeded 99% by the second coordination pattern. This indicates
that the whole-body movement in each phase can be represented
by only two sets of the intersegmental coordination patterns z1, z2
and temporal coordination patterns λ1v1, λ2v2 (Figure 2).

The extracted intersegmental coordination patterns z1, z2 are
a subspace of the seven-dimensional space of θ(t). The whole-
body movement lies close to the subspace in each phase and the
subspace was switched between the DS and SS phases for walking
and the SS and FL phases for running, depending on the foot-
contact condition. To clarify this structure, we applied singular
value decomposition to the data for one-half of a gait cycle by
combining the DS and SS phases (DS-SS) for walking and the SS
and FL phases (SS-FL) for running. Table 2 shows the singular
value λi and the cumulative proportion 3i. The cumulative
proportion for three elements exceeded 99% in both gaits for
every subject This indicates that the whole-body movement for
the half-gait cycle is included in the subspace spanned by three
intersegmental coordination patterns, which we call ẑ1, ẑ2, and
ẑ3. Figure 3 shows the whole-body movement and subspaces
for each phase in the three-dimensional subspaces spanned by
ẑ1, ẑ2, and ẑ3, illustrated in the same way as in Funato et al.
(2010). The coordination patterns z1, z2 span a plane for each
phase in the three-dimensional subspace. The start point of the
DS phase and the end point of the SS phase appear at different
positions (Figure 3A). However, when the left-right symmetry of
the leg movements is assumed, these two points can be regarded
as identical and the whole-body movement is represented by a
closed-loop trajectory on these planes. The same is true for the SS
and FL phases (Figure 3B).

3.2. Speed Effect on Kinematic
Coordination
To clarify how the kinematic coordination depends on speed,

we investigated the intersegmental coordination patterns z1, z2;
temporal coordination patterns λ1v1, λ2v2; and average posture

θ0 for different speeds in each phase.

Figure 4 shows the temporal coordination patterns λ1v1, λ2v2
averaged across subjects for each phase at 3, 4, and 5 km/h for

walking and 9, 13, and 17 km/h for running. These patterns had
high similarity in each phase. To find any differences, we applied

a MANOVA (Pillai’s trace) with the factors of subject and speed
to the discretized temporal coordination patterns, as shown in

Table 3. This result shows no significant effect of speed on the
temporal patterns in each phase.

Figure 5 shows the intersegmental coordination patterns

z1, z2 averaged across subjects for each phase at 3, 4, and 5 km/h

for walking and 9, 13, and 17 km/h for running. These patterns
also had high similarity in each phase. We applied a MANOVA

(Pillai’s trace) with the factors subject and speed, as shown
in Table 3. Despite high similarity in appearance, this result

shows that the intersegmental patterns exhibited a statistically
significant effect of speed at the 1% level in each phase. Because

the MANOVA was significant, we applied a 2-way ANOVA

with the factors subject and speed to each segment, as shown

in Table 3. The result shows that almost all speed effects are

significant at 1% level in each phase and each segment. These
suggest that the orientation of the constraint planes in Figure 3

changes for the speed, as obtained in our previous work for

walking (Funato et al., 2010). To clarify the speed effect on the

plane orientation, we calculated the normal vector of z1 and z2
in each phase in the three-dimensional subspaces spanned by

FIGURE 2 | Intersegmental coordination pattern zi and temporal coordination pattern λivi obtained by singular value decomposition for walking (A) and running (B).

These data show average and standard deviation (error bar for zi and gray region for λivi , too small to be visible) at 3 km/h for walking and 9 km/h for running by

subject IG. Tr, Th, Sh, and Fo indicate trunk, thigh, shank, and foot, respectively.
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ẑ1, ẑ2, and ẑ3 at 3 km/h for walking and 9 km/h for running in
the same way in Funato et al. (2010). We applied a MANOVA
(Pillai’s trace) with the factors subject and speed to the normal
vectors and the results showed p < 0.01 for all phases. In
addition, we further investigated the difference of the changes in
the plane orientation between the DS and SS phases for walking
and between the SS and FL phases for running. Specifically, we
applied a paired t-test to the cosine similarity of the normal

TABLE 2 | Singular value λi and cumulative proportion 3i of eight subjects for

half-gait cycle at 3 km/h for walking and 9 km/h for running.

Subject Walk : Double- and single-stance phases (DS-SS)

λ1 λ2 λ3 31 32 33

IG 6.19 (0.17) 2.96 (0.14) 0.68 (0.04) 0.80 0.99 1.00

MT 6.05 (0.30) 3.15 (0.17) 0.73 (0.05) 0.77 0.99 1.00

NG 6.01 (0.27) 3.22 (0.15) 0.72 (0.04) 0.77 0.99 1.00

NK 6.47 (0.45) 2.97 (0.29) 0.83 (0.09) 0.81 0.98 1.00

ST 6.51 (0.41) 3.71 (0.39) 0.83 (0.09) 0.74 0.99 1.00

SG 5.72 (0.40) 3.68 (0.22) 0.77 (0.07) 0.69 0.98 1.00

YM 5.97 (0.26) 3.32 (0.11) 0.69 (0.05) 0.75 0.99 1.00

YS 5.60 (0.25) 2.93 (0.25) 0.65 (0.06) 0.77 0.99 1.00

Subject Run : Single-stance and flight phases (SS-FL)

λ1 λ2 λ3 31 32 33

IG 11.01 (0.26) 2.61 (0.17) 1.31 (0.10) 0.93 0.99 1.00

MT 9.76 (0.22) 2.61 (0.09) 1.34 (0.07) 0.92 0.98 1.00

NG 10.98 (0.46) 2.40 (0.13) 1.39 (0.11) 0.94 0.98 1.00

NK 9.70 (0.24) 2.23 (0.11) 1.04 (0.08) 0.94 0.99 1.00

ST 9.75 (0.45) 2.21 (0.20) 1.33 (0.13) 0.93 0.98 1.00

SG 9.67 (0.25) 2.27 (0.10) 1.43 (0.12) 0.93 0.98 1.00

YM 9.89 (0.21) 1.91 (0.06) 1.32 (0.10) 0.95 0.98 1.00

YS 10.03 (0.22) 2.14 (0.11) 1.33 (0.10) 0.94 0.98 1.00

Listed values are averages and values in parentheses are standard deviations. Values are

rounded to two decimal places and bold values denote that the cumulative proportion

exceeds 99%.

vectors between 3 and 5 km/h for walking and between 9 and
17 km/h for running to determine whether the SS and DS phases
have different cosine similarities for walking and whether the SS
and FL phases have different cosine similarities for running, as
shown in Table 4. Statistically significant differences were found
at the 1% level for both walking and running. These results
indicate that the constraint plane orientation changes for the
speed change and that different phases have different changes in
the plane orientation.

To investigate the speed effect on the average posture, we
examined the amplitude |θ0| and intersegmental pattern θ̂0.
Figure 6 shows the amplitudes |θ0|, patterns θ̂0, and stick pictures
averaged across subjects for each phase at 3, 4, and 5 km/h
for walking and 9, 13, and 17 km/h for running. Although
the amplitudes clearly increased as the speed increased, these
also showed high similarity in each phase. We applied a 2-
way ANOVA with the factors subject and speed for |θ0| and a
MANOVA (Pillai’s trace) with the factors subject and speed for
θ̂0, as shown in Table 5. Despite high similarity in appearance,
statistically significant differences were found at the 1% level
in both |θ0| and θ̂0 for all phases. Because the MANOVA was
significant for θ̂0, we applied a 2-way ANOVA with the factors
subject and speed to each segment, as shown in Table 5. The
result shows that almost all speed effects are significant at 1%
level in each phase and each segment. To further clarify the
speed effect on the average posture, we compared the changes
in |θ0| and θ̂0 between the DS and SS phases for walking and
between the SS and FL phases for running. For |θ0|, we applied
a paired t-test to the difference in |θ0| between 3 and 5 km/h for
walking and between 9 and 17 km/h for running to determine
whether the DS and SS phases have different changes for walking
and whether the SS and FL phases have different changes for
running, as shown in Table 6. Statistically significant differences
were found at the 1% level for both walking and running. For
θ̂0, we applied a paired t-test to the cosine similarity of θ̂0 at
3 and 5 km/h for walking and 9 and 17 km/h for running to
determine whether the DS and SS phases have different cosine
similarities for walking and the SS and FL phases have different

FIGURE 3 | Whole-body movement and constraint planes of each phase in three-dimensional subspace for walking (A) and running (B). Axes are given by three

intersegmental coordination patterns ẑ1, ẑ2, and ẑ3 calculated from data of half-gait cycles DS-SS for walking and SS-FL for running. The planes are spanned by

intersegmental coordination patterns z1 and z2 of each phase. These data were obtained from average at 3 km/h for walking and 9 km/h for running by subject IG.

Edge points of the whole-body movement trajectory can be regarded as identical under left-right symmetry of leg movements, and the trajectory has a closed loop on

these planes.
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FIGURE 4 | Temporal coordination pattern λivi for each phase at 3, 4, and 5 km/h for walking (A) and 9, 13, and 17 km/h for running (B). These are averaged data

across subjects.

TABLE 3 | P-values of MANOVA for temporal coordination pattern λivi , MANOVA

for intersegmental coordination pattern zi , and 2-way ANOVA for elements of zi .

Walk : DS Walk : SS

1st 2nd 1st 2nd

λivi MANOVA 0.477 0.414 0.051 0.170

zi MANOVA <0.01 <0.01 <0.01 <0.01

ANOVA

Foot (R) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Shank (R) 0.008 <0.01/7 <0.01/7 <0.01/7

Thigh (R) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Trunk <0.01/7 <0.01/7 0.077 <0.01/7

Thigh (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Shank (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Foot (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Run : SS Run : FL

1st 2nd 1st 2nd

λivi MANOVA 0.366 0.147 0.589 0.589

zi MANOVA <0.01 <0.01 <0.01 <0.01

ANOVA

Foot (R) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Shank (R) <0.01/7 0.022 <0.01/7 <0.01/7

Thigh (R) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Trunk <0.01/7 <0.01/7 <0.01/7 0.035

Thigh (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Shank (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Foot (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

R and L indicate right and left, respectively. Bold values indicate significant at the 1% or

5% level.

cosine similarities for running, as shown in Table 6. Statistically
significant differences were found at the 1% level for both walking
and running. These results indicate that both the amplitude and
intersegmental pattern of the average posture change for the
speed changes and that different phases have different changes
in the average posture characteristics.

3.3. Comparison Between Walking and
Running
Because both walking and running have the SS phase, we
compared the kinematic coordination between 3 km/h for
walking and 9 km/h for running. We applied a MANOVA
(Pillai’s trace) for the temporal coordination patterns λ1v1, λ2v2;
intersegmental coordination patterns z1, z2; and average posture
intersegmental pattern θ̂0 and applied a paired t-test for the
average posture amplitude |θ0|, as shown in Table 7. Although
the temporal coordination patterns had no apparent difference
between the gaits, the others had statistically significant
differences at the 1% level. Because the MANOVAwas significant
for θ̂0, we applied a 2-way ANOVA with the factors subject and
gait to each segment, as shown in Table 7. The result shows that
almost all gait effects are significant at 1% level in each phase and
each segment.

4. DISCUSSION

In this study, we analyzed the whole-body movement using
measurements taken during walking and running. In particular,
the time series of seven elevation angles were decomposed by
singular value decomposition after being separated into the
DS and SS phases for walking and SS and FL phases for
running (Figure 1). The whole-body movement was revealed to
be composed of the average posture and only two sets of principal
intersegmental and temporal coordination patterns irrespective
of the phase and gait (Table 1). We investigated the relationship
between the coordination patterns and gait speed to clarify the
underlying mechanism for adapting the whole-body movement
to the speed change at each phase.

Previous works (Borghese et al., 1996; Ivanenko et al., 2008)
have shown that three elevation angles for one leg in one
gait cycle can be described by a closed loop on a plane. Such
planar covariation of the elevation angles held for various
gaits, such as running (Hicheur et al., 2006; Ivanenko et al.,
2007), curvedwalking (Courtine and Schieppati, 2004), backward
walking (Grasso et al., 1998; Hicheur et al., 2006), walking
on inclined surfaces (Noble and Prentice, 2008), walking with
bent or erect posture (Grasso et al., 2000), stepping over an
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FIGURE 5 | Intersegmental coordination pattern zi for each phase at 3, 4, and 5 km/h for walking (A) and 9, 13, and 17 km/h for running (B). These patterns were

obtained from average and standard deviation across subjects. Tr, Th, Sh, and Fo indicate trunk, thigh, shank, and foot, respectively.

TABLE 4 | Cosine similarity of normal vectors of constraint planes and p-values of

paired t-test.

Walk Run

DS SS p-value SS FL p-value

0.97 (0.05) 1.00 (0.00) <0.01 0.99 (0.02) 0.97 (0.03) <0.01

Listed values are averages and values in parentheses are standard deviations. Bold values

indicate significant at the 1% or 5% level.

obstacle (Ivanenko et al., 2005b; Maclellan and McFadyen,
2010), walking with body weight unloading (Ivanenko et al.,
2002), and walking on a slippery surface (Cappellini et al.,
2010), which suggests an invariant characteristic in locomotion.
In addition, this characteristic appeared in toddlers (Cheron
et al., 2001; Ivanenko et al., 2004, 2005a; Dominici et al.,
2007, 2010; Hallemans and Aerts, 2009; Cappellini et al.,
2016); neonates (Dominici et al., 2011); gait disorders (Grasso
et al., 2004; Laroche et al., 2007; Leurs et al., 2012; Martino
et al., 2014; Cappellini et al., 2016; Ishikawa et al., 2017;
Wallard et al., 2018); and also various animals (Catavitello
et al., 2018), including cats (Poppele and Bosco, 2003),
dogs (Catavitello et al., 2015), monkeys (Courtine et al.,
2005; Ogihara et al., 2012), and birds (Ogihara et al., 2014).
Investigating the coordination structures has provided useful
insights for adaptation mechanisms in locomotion. To reveal a
more detailed structure of kinematic coordination during human
walking and running, we used seven angles of the whole body,
including the trunk, and separated the measured data depending
on the foot-contact condition. Because relative joint angles are
not stereotypical across subjects and are more variable than
elevation angles, the planarity of the joint angles is weaker for
the analysis of three angles of one leg (Borghese et al., 1996;
Ivanenko et al., 2007). Extracting the low-dimensional structure
depends on the coordinate system (Yamasaki et al., 2013). We
used the elevation angles for the analysis and our results showed

that most of the cumulative proportion exceeded 99% by the
second coordination pattern (Table 1), which indicates that we
successfully extracted the low-dimensional structure from the
seven angles. Specifically, the seven angles can be described
by a closed-loop trajectory on two different constraint planes
under the condition of left-right symmetry (Figure 3). The spatial
nature was characterized by the location and orientation of the
planes, and the temporal nature by the trajectory on the planes.
The location and orientation were determined by the average
posture θ0 and intersegmental coordination patterns z1, z2, and
the trajectory by the temporal coordination patterns λ1v1, λ2v2.

The extracted temporal coordination patterns λ1v1, λ2v2
showed no apparent effect of the speed condition irrespective

of the phase and gait (Table 3). This implies that the shape

of the trajectory remained on the constraint planes. Such
temporal invariance has been observed in curved walking
when compared with straight-ahead walking (Courtine and
Schieppati, 2004). In contrast, the extracted intersegmental
coordination patterns z1, z2 showed apparent variance with the
gait speed in each phase (Table 3). Previous works (Bianchi
et al., 1998; Ivanenko et al., 2007, 2008) have shown that the
orientation of the constraint plane for three elevation angles
of one leg varies for the gait and speed. The orientation of
the constraint planes of the seven elevation angles for the
whole body also changes for the gait and speed. Furthermore,
the DS phase for walking and FL phase for running had
larger changes in the plane orientation for speed than
did the SS phase [0.97 ± 0.01 (95%CI) and 1.00 ± 0.00
(95%CI) for the DS and SS phases, respectively, of walking
and 0.97 ± 0.00 (95%CI) and 0.99 ± 0.00 (95%CI) for
the FL and SS phases, respectively, of running] (Table 4).
The average posture amplitude |θ0| and intersegmental pattern
θ̂0 also showed apparent speed effects in each phase (Table 5).
From a comparison of these characteristics between the DS and
SS phases for walking and SS and FL phases for running, the
DS phase has larger changes in |θ0| and θ̂0 than the SS phase
for walking [0.25 ± 0.01 (95%CI) and 0.05 ± 0.01 (95%CI)
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FIGURE 6 | Amplitude |θ0| of average posture for each phase at 3, 4, and 5 km/h for walking (A) and 9, 13, and 17 km/h for running (B). Intersegmental pattern θ̂0 of

average posture for each phase at 3, 4, and 5 km/h for walking (C) and 9, 13, and 17 km/h for running (D). Tr, Th, Sh, and Fo indicate trunk, thigh, shank, and foot,

respectively. Stick picture of average posture for each phase at 3, 4, and 5 km/h for walking (E) and 9, 13, and 17 km/h for running (F). These data were obtained

from average and standard deviation across subjects.

for the DS and SS phases, respectively, in |θ0| and 0.98 ± 0.00
(95%CI) and 0.99 ± 0.00 (95%CI) for the DS and SS phases,
respectively, in θ̂0], similar to the orientation of the constraint
planes (Table 6). In contrast, while the SS phase has a larger
change in |θ0| than the FL phase for running [0.77±0.03 (95%CI)
and 0.63 ± 0.01 (95%CI) for the SS and FL phases, respectively],
the FL phase has a larger change in θ̂0 than the SS phase
[0.988 ± 0.001 (95%CI) and 0.992 ± 0.001 (95%CI) for the FL
and SS phases, respectively]. These results suggest that, to change
speed, humans tune their locomotor kinematics largely in the
gait-specific phases.

A comparison of the kinematic coordination patterns in the

SS phase between walking and running revealed that while

the temporal coordination patterns λ1v1, λ2v2 were similar,

the intersegmental coordination patterns z1, z2 and the average
posture amplitude |θ0| and pattern θ̂0 differed (Table 7). In
particular, the amplitude |θ0| had a large difference and was
larger for running than for walking [e.g., 0.86 ± 0.01 (95%CI)
at 3 km/h for walking and 1.70 ± 0.03 (95%CI) at 9 km/h
for running], as shown in Figures 6A,B. This suggests that
while walking uses an erect posture, running uses a bent
posture. In addition to this difference, the foot of the stance
leg and the thigh and shank of the swing leg in z1 and the
thigh and shank of the stance leg in z2 had clearly different
contributions between the gaits (Figure 5). Specifically, the foot
had a larger contribution for running in the stance leg of z1. In
the swing leg of z1, while the shank had a larger contribution

TABLE 5 | P-values of 2-way ANOVA for average posture amplitude |θ0|,

MANOVA for average posture intersegmental pattern θ̂0, and 2-way ANOVA for

elements of θ̂0.

Walk Run

DS SS SS FL

|θ0| ANOVA <0.01 <0.01 <0.01 <0.01

θ̂0 MANOVA <0.01 <0.01 <0.01 <0.01

ANOVA

Foot (R) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Shank (R) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Thigh (R) <0.01/7 0.928 <0.01/7 <0.01/7

Trunk <0.01/7 <0.01/7 <0.01/7 <0.01/7

Thigh (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

Shank (L) <0.01/7 <0.05/7 <0.01/7 <0.01/7

Foot (L) <0.01/7 <0.01/7 <0.01/7 <0.01/7

R and L indicate right and left, respectively. Bold values indicate significant at the 1% or

5% level.

than the thigh for walking, the shank and thigh had similar
contributions for running. In the stance leg of z2, while the
thigh had a larger contribution for walking, the shank had a
larger contribution for running. While the first intersegmental
coordination pattern z1 mainly contributed to the limb axis
orientation, the second intersegmental coordination pattern z2
contributed to the limb axis length. The foot movement of

Frontiers in Computational Neuroscience | www.frontiersin.org 8 September 2019 | Volume 13 | Article 63169

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Oshima et al. Spatiotemporal Coordination Patterns in Walking and Running

TABLE 6 | Difference of average posture amplitude |θ0|, cosine similarity of

average posture intersegmental pattern θ̂0, and p-values of paired t-test.

Walk Run

DS SS p-value SS FL p-value

|θ0| 0.25 (0.06) 0.05 (0.08) <0.01 0.77 (0.23) 0.63 (0.10) <0.01

θ̂0 0.98 (0.01) 0.99 (0.01) <0.01 0.99 (0.01) 0.99 (0.01) <0.01

Listed values are averages and values in parentheses are standard deviations. Bold values

indicate significant at the 1% or 5% level.

TABLE 7 | P-values of MANOVA for temporal coordination pattern λivi ,

intersegmental coordination pattern zi , and average posture intersegmental

pattern θ̂0 and 2-way ANOVA for elements of zi , θ̂0, and average posture

amplitude |θ0| to determine significant differences in the SS phase between

walking and running.

|θ0|

ANOVA <0.01

λ1v1 λ2v2 z1 z2 θ̂0

MANOVA 0.166 0.114 <0.01 <0.01 <0.01

ANOVA

Foot (R) – – <0.01/7 <0.05/7 <0.01/7

Shank (R) – – <0.01/7 <0.01/7 0.163

Thigh (R) – – <0.01/7 <0.01/7 <0.01/7

Trunk – – <0.01/7 <0.01/7 <0.01/7

Thigh (L) – – <0.01/7 <0.01/7 <0.01/7

Shank (L) – – <0.01/7 <0.01/7 <0.01/7

Foot (L) – – <0.01/7 <0.01/7 <0.01/7

Bold values indicate significant at the 1% or 5% level.

the stance leg in running is larger than that in walking and
contributes to the limb axis rotation. For the swing leg, while the
thigh movement is larger than the shank movement for walking,
they are comparable for running. From z2(λ2v2)

T, this induced
knee extension and then flexion sequentially for walking, which
corresponds to the last half of the movement of the double-knee
action. In contrast, for running, this induced sequential knee
flexion and extension, which corresponds to the spring-like knee
bending. These differences reflect different movements between
the gaits.

The central pattern generator (CPG) in the spinal
cord is largely responsible for adaptive motor control in
locomotion (Orlovsky et al., 1999). It has been suggested
that the CPG consists of hierarchical networks that include
the rhythm generator (RG) and pattern formation (PF)
networks (Burke et al., 2001; Lafreniere-Roula and McCrea,
2005; Rybak et al., 2006a,b). The RG network generates the
locomotion rhythm in response to sensory feedback, while
the PF network shapes the rhythm into spatiotemporal motor
patterns through interneurons. The CPG separately controls
the spatial and temporal patterns in the RG and PF networks,
respectively. In this study, we investigated the adaptation
mechanism that produces different speeds in human walking

and running by extracting low-dimensional structures from
measured kinematics data with singular value decomposition
to study the kinematic spatiotemporal coordination patterns.
The singular value decomposition divides the data into spatial
and temporal patterns on an orthonormal basis, which is
useful for elucidating the underlying mechanism for such
spatiotemporal patterns. In particular, our results revealed
invariant features in the temporal coordination patterns and
variant features in the spatial coordination patterns, which
show different control strategies for the spatial and temporal
patterns in the CPG. In addition to the kinematics data,
the analysis of electromyographic data, which reflects motor
control strategies more directly than kinematics data, has
also shown low-dimensional structures for different walking
and running speeds (Cappellini et al., 2006; Hagio et al.,
2015; Yokoyama et al., 2016, 2017). These results suggest
coordinated motor control patterns and provided useful
insights for the adaptation mechanisms in locomotion. Because
human locomotion is generated through the control of a
redundant musculoskeletal system, the analysis of the low-
dimensional coordination structures is useful. In addition
to the analysis of measured data, modeling approaches also
provided useful insights for the mechanism that forms the
low-dimensional structures from a mathematical viewpoint (Jo
and Massaquoi, 2007; Barliya et al., 2009; Neptune et al., 2009;
Aoi et al., 2010, 2019; Aoi and Funato, 2016). We would like
to integrate the measured data analysis and modeling approach
to further clarify the adaptation mechanism for locomotion in
the future.
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When walking around a room or outside, we often need to negotiate external physical
objects, such as walking up stairs or stepping over an obstacle. In previous studies on
obstacle avoidance, lead and trail legs in humans have been considered to be controlled
independently on the basis of visual input regarding obstacle properties. However, this
perspective has not been sufficient because the influence of visuomotor transformation
in the lead leg on the trail leg has not been fully elucidated due to technical limitations in
the experimental tasks of stepping over physical obstacles. In this study, we investigated
how visuomotor transformation in the lead leg affected movement trajectories in the trail
leg using a visually guided task of crossing over a virtual obstacle. Trials for stepping over
a physical obstacle were established followed by visually guided tasks in which cursors
corresponding to the subject’s lead and trail limb toe positions were displayed on a
head-mounted display apparatus. Subjects were instructed to manipulate the cursors
so that they precisely crossover a virtual obstacle. In the middle of the trials, the vertical
displacement of the cursor only in the lead leg was reduced relative to the actual toe
movement during one or two consecutive trials. This visuomotor perturbation resulted
in higher elevation not only in the lead limb toe position but also in the trail limb toe
trajectories, and then the toe heights returned to the baseline in washout trials, indicating
that the visuomotor transformation for obstacle avoidance in the lead leg affects the
trail leg trajectory. Taken together, neural resources of limb-specific motor memories for
obstacle crossing movements in the lead and trail legs can be shared based on visual
input regarding obstacle properties.

Keywords: obstacle clearance, visuomotor correction, lower-limb movement, vision, working memory,
virtual reality

INTRODUCTION

Humans can perform locomotion while negotiating external physical objects, such as walking
up stairs and stepping over an obstacle. Negotiating obstacles requires an accurate neural
representation of the obstacle properties and adaptive spatiotemporal gait modification ability
(Drew and Marigold, 2015). Many previous findings provide evidence that visual information about
the characteristics and location of the obstacle with respect to the body plays an important role in
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the planning of gait trajectory modifications (Patla et al., 1996;
Mohagheghi et al., 2004; Wilkinson and Sherk, 2005). Individuals
fixate on the obstacle for at least two steps before crossing
it, which drives transformation of visual information regarding
obstacle properties into an appropriate motor command to step
over it (Patla and Vickers, 1997).

In obstacle avoidance with both legs, the visual information
directly contributes to planning limb elevation in the first leg,
or lead leg, whereas continual visual guidance is not needed
in the second leg, or trail leg (Patla and Rietdyk, 1993; Patla,
1998; Rhea and Rietdyk, 2007; Lajoie et al., 2012). Previous
studies on obstacle avoidance in humans have debated the
relationship of limb elevation control between the lead and
trail legs. Rhea and Rietdyk (2011) demonstrated that obstacle
contact with the trail leg results in changes in toe elevation
and clearance in that leg but not in the lead leg in subsequent
trials (Rhea and Rietdyk, 2011). The removal of all vision
during the last portion close to an obstacle and during obstacle
crossing increased the toe elevation height only in the lead leg
(Mohagheghi et al., 2004). These previous studies provided the
current perspective that sensorimotor transformation based on
proprioceptive information regarding the interaction between
the obstacle and one limb does not affect the crossing movements
in the other leg. Accordingly, lead and trail limb trajectories are
considered to be determined based on independent controllers.
This knowledge, however, should be revalidated, because the
visual information in the affected leg was not available to the
other leg movement in the previous studies (Mohagheghi et al.,
2004; Rhea and Rietdyk, 2011). The influence of the change of
visuomotor transformation in one leg on that in the other leg
has not been fully elucidated despite the importance of vision
in crossing an obstacle. In this study, we addressed how the
modification of sensorimotor transformation in the lead leg based
on visual input influences movements in the trail leg.

To date, methods to alter visuomotor transformation in
stepping over a physical obstacle have not been proposed.
Here, we constructed a new experimental paradigm of obstacle
avoidance with visuomotor perturbation using a clearance task
over a virtual visual obstacle (Kim et al., 2018). Visuomotor
perturbation tasks have been performed in many studies to
examine the motor response against the perturbation; for
example, a cursor representing the hand position was laterally
translated from the current hand position during visually guided
reaching movements (Saunders and Knill, 2003; Franklin and
Wolpert, 2008; Veyrat-Masson et al., 2010). In the present task,
subjects manipulated two cursors representing the lead and
trail limb toe positions displayed on the screen of a head-
mounted display so that they stepped over a virtual visual
obstacle. The virtual obstacle avoidance task makes it possible
to experimentally operate the behavior of visually guided toe
trajectories in the lead leg and then investigate the effect on
the trail limb toe trajectories. Altogether, we could clarify the
influence of novel visuomotor transformation in the lead leg on
that in the trail leg.

Therefore, the first objective of this study was to construct
an experimental paradigm of a virtual obstacle avoidance task
and then to verify whether the virtual task could be used to

understand motor control in crossing a physical obstacle. Using
this method, we then examined how the alteration of visuomotor
transformation in the lead leg affected movement trajectories in
the trail leg during obstacle crossing in humans. We hypothesized
that toe elevation height in the trail leg is corrected with the
change of visuomotor transformation in the lead leg without
visual information about the trail limb trajectories if visuomotor
transformation in the lead leg affected movement in the trail leg.
This study will make a significant contribution to understanding
the interaction between lead and trail limb motor control in
stepping over an obstacle.

MATERIALS AND METHODS

Participants
Thirteen healthy adults (8 males and 5 females,
age = 24.3 ± 4.3 years, height = 169.5 ± 8.8 cm,
weight = 63.9 ± 14.7 kg, mean ± SD) participated in this
study. All subjects had normal/corrected vision and no history of
musculoskeletal or neurological disorders. None of the subjects
had any knowledge of the purpose of the study, apart from being
told that it was aimed at understanding the movement strategies
during obstacle clearance. Informed consent was given prior to
the experiment. The experimental procedures were conducted in
accordance with the Declaration of Helsinki and were approved
by the Local Ethics Committee of the Graduate School of Human
and Environmental Studies, Kyoto University (19-H-2).

Task for Stepping Over a Physical
Obstacle
During the physical tasks, subjects were required to step over
an obstacle (Figure 1A). The obstacle was 89 cm wide with a
depth of 3.5 cm and a height of 22 cm. The size of obstacle was
within the range of that used in the previous studies (width: 57–
100 cm; depth: 0.3–10 cm; height: 1–30 cm; Patla and Vickers,
1997; Mohagheghi et al., 2004; Rhea and Rietdyk, 2011; Lajoie
et al., 2012; Kim et al., 2018). At the beginning of a trial, subjects
were instructed to stand rigidly with their toes precisely on a
start line drawn on the floor. The obstacle was placed 50 cm
in front of the start line. After stepping over the obstacle with
their right leg (i.e., lead leg), subjects paused while straddling the
obstacle between the both legs for 2 s. This delay period was set
particularly for a virtual task described below, which was shorter
than that used in previous studies on working memory regarding
obstacle height in humans (more than 5 s; Lajoie et al., 2012;
Shinya et al., 2012). Then, subjects cleared the obstacle with their
left leg (i.e., trail leg). After a trial, subjects returned to the start
line. All movement initiation timings were verbally instructed by
an experimenter.

Experimental Setup for Virtual Visual
Obstacle Avoidance Task
Realtime tracking and display of toe positions in MATLAB
(R2018a, The MathWorks Inc., Natick, MA, United States)
figure enabled us to construct a task for stepping over a
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FIGURE 1 | Continued
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FIGURE 1 | Experimental setup and protocol. (A) overhead view of the sequence of foot placements taken by subjects to step over the obstacle (denoted by a solid
black rectangle) in the right (lead; step 1) and left (trail; step 2) legs. Before crossing the obstacle, subjects were instructed to stand with their toes on a start line
(dashed black line) drawn on the floor. The initial foot position was shown as gray footprints. (B) monitor view of a head-mounted display (HMD) apparatus during
stepping over a virtual visual obstacle. Two-dimensional coordinates in Y and Z axes corresponds to the coordinates shown in (A). Subjects manipulated the two
cursors representing lead (white) and trail (red) limb toe positions. (C) Organization of an experimental session. In the Block 1, 18 physical-obstacle crossing trials
were performed followed by the Block 2 with 18 trials that required visually guided stepping over a virtual obstacle. In the Block 3, 8 cursor-blinded (CB) trials in
which the cursor representing only the trail limb toe position was blinded were randomly interleaved in every 3rd virtual obstacle crossing trial. The Block 4 contained
10 sets of 6 consecutive trials consisting of one or two visuomotor perturbation (VP) trials sandwiched between pairs of CB trials and followed by either two or three
null trials. The illustration labeled HMD indicates that subjects wore an HMD apparatus in the blocks. (D) The difference of cursor and toe trajectories in lead and trail
legs across each null, CB and VP trial. Both in CB and VP trials, the cursor (red) corresponding to trail limb toe position was invisible.

virtual visual obstacle. Toe trajectories on each leg were
sampled at 100 Hz by the three-dimensional optical motion
capture system (OptiTrack V100:R2, Natural Point Inc., Oregon,
United States) with 10 cameras spaced around subjects. Three
infrared reflective markers were attached on the toe in each
leg to create the rigid body. To extract motion capture
data from Motive 2.0.2 software (Natural Point Inc., Oregon,
United States), the MATLAB Wrapper Class from the NatNet
Software Development Kit provided by OptiTrack was used
(Maselli et al., 2017). This allowed for rigid body coordinates
to be streamed to MATLAB. Several functions were written in
MATLAB for finding mechanical quantities based on rigid body
coordinates. These functions were then called programmatically
by the Java script using the MATLAB Engine API for Java
provided by MathWorks.

Just before the tasks in the virtual visual condition, subjects
wore a head-mounted display apparatus (PlayStation VR, Sony
Interactive Entertainment, Tokyo, Japan), which occluded direct
vision of their own bodies and the landscape around them.
The headset display was synchronized with a computer screen
that captured the toe trajectories. The lead and trail limb toe
positions on a sagittal plane were displayed in the 2-dimensional
coordinates of a MATLAB figure at 100 Hz as white and red
cursors, respectively. The start position was drawn as a triangle
on the left side of the screen. The virtual visual obstacle that
corresponded to the physical obstacle with a depth of 3.5 cm, a
height of 22 cm and placed 50 cm in front of the start position
was also displayed. The drawing of the figure and the running
of tasks were implemented using custom-made MATLAB script.
One experimenter stood behind and slightly to the side of the
subjects to prevent a fall.

Visually Guided Stepping Task Over a
Visual Obstacle
Subjects manipulated the two cursors representing the lead and
trail limb toe positions displayed on the screen of a head-
mounted display apparatus (Figure 1B). At the beginning of each
trial, subjects were instructed to set two cursors precisely on a
start position. After a 2.5 s holding period, subjects moved the
white cursor corresponding to the toe position in their right leg
(i.e., lead leg) and cleared the virtual obstacle. The red cursor
representing the toe position in the left leg (i.e., trail leg) was
then maneuvered to step over the virtual obstacle in 2 s. This
delay period was set to encourage attention to the obstacle
and the cursor corresponding to the toe position in the trail

leg. After 1.5 s, subjects were instructed to move both cursors
and return backwards to the start position by sliding their feet.
All instructions about holding, movement initiation and going
back to the start line were shown in the center of the screen
as the messages, “wait,” “go” and “go back home,” respectively.
If subjects moved the cursor over 50 cm on the right or left
side, a warning message, “attention to the right or left,” was
displayed. Subjects were told by an experimenter that a physical
object corresponding to the configuration of the virtual object
was placed in front of them, although there was indeed no
physical object.

Experimental Procedure in Physical and
Virtual Obstacle Tasks
The experiment began with a block of 18 trials of clearing a
physical obstacle (Block 1 in Figure 1C). This was followed
by two consecutive blocks of 18 and 24 trials, respectively,
of stepping over a virtual visual obstacle (Blocks 2 and 3
in Figure 1C). Every 3rd trial in Block 3, a cursor-blinded
trial was randomly interleaved (Figure 1D). In the cursor-
blinded trial, the cursor representing only the trail limb toe
position was blinded throughout the trial. Note that subjects
were instructed to step over a virtual obstacle in front of them
without visual information about the trail limb toe trajectories.
In Block 4, one or two visuomotor perturbation trials were
sandwiched between pairs of cursor-blinded trials (Block 4
in Figure 1C). During the visuomotor perturbation trial, the
vertical migration length of the cursor corresponding to the
lead leg was altered 0.6-fold relative to the actual toe movement
(Figure 1D). Consequently, successful clearance of the virtual
visual obstacle required elevation of the lead limb toe at
least 37 cm. After each consecutive trial, i.e. [cursor-blinded–
perturbation (–perturbation)– cursor-blinded], either two or
three trials in which both cursors representing the lead and trail
limb toe positions were visible were presented so that each set,
referred to as “perturbation sets,” consisted of six consecutive
trials. Each perturbation set with either one or two perturbations
was assayed five times in pseudorandom order. Generally, in
the studies using visuomotor perturbation, the perturbation was
applied more consistently throughout a lot of trials (Imamizu
et al., 1995; Krakauer et al., 2000). In the number of consecutive
obstacle clearance trials, however, the toe height gradually
decreases potentially due to fatigue or the process to search the
optimal strategy (Rhea and Rietdyk, 2011). These factors will
make it complex to identify whether the change of toe height is
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owing to the corrective response against the perturbation or the
other factors. To avoid the confusion, we have selected the task
where one or two perturbation was applied between the cursor-
blinded trials to quantify the spontaneous corrective response to
the perturbation (Albert and Shadmehr, 2016).

Data Collection and Analysis
Three-dimensional lead and trail limb toe positions streamed
from Motive software were stored at 100 Hz via custom-written
MATLAB (R2018b, Mathworks, Natick, MA, United States)
software. The data were high-pass filtered at 5 Hz using a zero-
phase-lag 2nd-order Butterworth filter. Maximum toe elevation
for the lead and trail legs was defined as the maximum vertical
position of each leg’s toe marker during the stepping trajectory
over the obstacle. All data were processed using custom-written
MATLAB programs.

Statistics
We calculated Pearson correlation coefficient between the mean
vertical heights of toe elevation while stepping over the virtual
visual and physical obstacles across each subject. In addition, two-
way repeated measures ANOVA was used to test the difference
in the height of toe elevation between perturbation sets and
trial conditions in each set. Once a significant main effect of
condition was observed, post hoc tests using Tukey’s method were
used to compare the height of toe elevation in the baseline of
the perturbation sets with that after visuomotor perturbation.

For all the statistical tests, the data points exceeding 3 scaled
median absolute deviations away from the median were defined
as outliers and were removed. An α threshold of 0.05 was used
throughout to assess statistical significance.

RESULTS

Association of Motor Performance in
Stepping Over Physical and Virtual
Obstacles
We first verified whether the relationship of the lead leg
to the trail leg during clearance of a physical obstacle was
examined from the tasks with a virtual obstacle. To this
end, the association of motor performance between crossing
movements over physical and virtual obstacles was investigated.
The vertical toe elevation both in the lead and trail legs decreased
when subjects cleared the virtual visual obstacle despite the
requirement of the vertical toe elevation to be the same as
that of stepping over a physical obstacle (Figure 2A). Just after
switching from the physical to the virtual visual tasks, however,
the toe elevation for the lead leg was close to that at the end
of crossing the physical obstacle (Figures 2B,C), indicating the
possibility that a prior history of toe elevation for the physical
obstacle remained during crossing movements over the virtual
visual obstacle. Association with motor performance was also

FIGURE 2 | Motor performance in stepping over physical and virtual visual obstacles. (A) lead (top) and trail (bottom) limb toe trajectories while crossing physical
(black line) and virtual (gray line) obstacles. The toe trajectories are the average for all subjects from trials 11 to 18 in the Blocks 1 and 2, respectively, that required
stepping over the physical and virtual obstacles. The anteroposterior position and height of the obstacle was shown as a dark gray bar relative to the start position.
(B) The trial-by-trial changes of toe elevation height in 36 consecutive trials in the Blocks 1 (black line) and 2 (gray line). Error bars represent the standard error of the
mean. The obstacle height is shown as a black dotted line. (C) Toe elevation across each subject in 3 consecutive phases; trials 11–18 in Block 1; the trial at the
beginning of Block 2; trials 11–18 in Block 2. The obstacle height is shown as a black dotted line. (D) The relationship of toe elevation between physical and virtual
obstacles. The circles represent the mean values calculated in each subject, and + signs indicate outliers.
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FIGURE 3 | Change of toe elevation due to 2 consecutive visuomotor perturbations. (A) Lead (top) and trail (bottom) limb toe elevations during sets of 6 successive
trials with two visuomotor perturbation (VP) trials in Block 4 (Figure 1C). The data are the mean values for all repetitions and subjects. Error bars represent the
standard error of the mean. Dashed line represents the lowest value of the desired toe height during the perturbation. (B) Mean toe heights in Block 4 across each
subject. Dashed line represents the lowest value of the desired toe height during the perturbation. (C) Difference of the toe height between each trial and the initial
cursor-blinded trial on each perturbation set. The data are the mean values for all repetitions and subjects. Error bars represent the standard error of the mean.
Asterisk means statistically significant difference in the toe heights from the initial trial to each following trial; *p < 0.05 and **p < 0.001 using the post hoc Tukey test.

observed as the common strategy for how high each subject raised
his or her feet during obstacle clearance. Across each subject,
the vertical heights of lead toe elevation while stepping over the
virtual visual obstacle were strongly correlated with those while
clearing the physical obstacle (Figure 2D, lead leg; r = 0.77,
p = 0.0035). This interaction of motor performance between
the different environments indicates that the task with a virtual
visual obstacle can examine the control strategies in stepping
over the physical obstacle. In the case of the trail leg, however,
the relationship of the toe height between physical and virtual
environments was lower as compared with that in the lead leg
(Figure 2D, trail leg; r = 0.47, p = 0.12).

Adaptable Change of Lead Toe Elevation
During Obstacle Clearance With
Visuomotor Perturbation
The vision-based toe trajectory modification during obstacle
avoidance was examined with repeated perturbation sets
composed of six consecutive trials in Block 4 (Figure 1C).
The mean height of the lead limb toe elevation for all subjects

was shown in the six trials with two consecutive perturbations
(Figure 3A, lead leg). Once the visuomotor perturbation was
applied in the second trial, toe elevation increased compared
with the first trial. The difference in toe height between the
first and second trials reflected feedback correction for the
visuomotor perturbation during movement, whereas the change
in toe height that occurred from the first trial to each of the
other trials reflected both within-movement feedback correction
and predicted movement after offline correction. Modification of
lead limb toe elevation was consistently observed in individual
subjects (Figure 3B, lead leg). Two out of 13 subjects, however,
did not modify the toe elevation that reached into the required
height, i.e., 37 cm, after visuomotor perturbation. These subjects
needed to increase their toe elevation on the perturbation trial
compared to others because the toe height in the first baseline
trial was lower than the other subjects.

Lead limb toe height was quantified relative to the first trial
on each perturbation set across each subject (Figure 3C, lead
leg). It can be clearly seen that subjects effectively scaled lead leg
elevation in response to the perturbation trials (F5,59 = 11.81,
p = 5.7 × 10−8). Post hoc tests indicated that the toe heights in
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the lead leg were higher than those in the first trial during the two
consecutive visual perturbations (p = 0.059 and 0.0045). In the
following washout trials, i.e., from the fourth to sixth trials, the
lead toe height was returning to the baseline value (p = 0.0042,
3.22 × 10−4 and 0.049). These results indicate that the vision-
based motor plan for stepping over the obstacle with the lead leg
was modified using the virtual visual obstacle avoidance task.

Effect of Visual-Based Motor Planning in
the Lead Leg on the Trail Leg While
Stepping Over an Obstacle
As in the lead leg, the trail limb toe elevation was quantified
on each perturbation set with two consecutive visuomotor
perturbation trials (Figure 3A, trail leg). Note that the cursor
representing the trail limb toe position was invisible in both
cursor-blinded and perturbation trials (Figure 1D). Hence, the
alteration in toe height observed from the second to the fourth
trials depended on the movement in the lead leg. Before and
after the cursor in the lead leg was perturbed, significant effect
was observed in the trail limb toe elevation (F5,59 = 8.18,
p = 6.15 × 10−6). Post hoc tests indicated that the trail limb toe
trajectories in the second and third trials were elevated higher
relative to the baseline despite the lack of visual information
regarding the trail leg (Figure 3C, trail leg; p = 0.024 and 0.013),
indicating that the trail limb toe trajectories were modified based
on the vision-based errors in the lead leg. In several subjects, trail
limb toe elevation was not comparable to the required height after
the visuomotor perturbation (Figure 3B, trail leg). According to
the result, the effect of the visuomotor error in the lead leg on
the trail limb movement was smaller than that on the lead leg
itself. The trail limb toe height was then modified toward the
baseline value from the fourth to sixth washout trials where the
perturbations were removed (p = 0.059, 0.94, and 0.28).

The modification of trail limb toe trajectories on the basis
of the visual errors in the lead leg was also observed in
the perturbation sets with one visuomotor perturbation trial
(Figure 4). There was significant effect due to the perturbation
both in the lead and trail limb toe elevation (F5,59 = 13.13,
p = 1.22 × 10−8; F5,59 = 8.18, p = 6.15 × 10−6). The mean
trail limb toe height increased in the second trial without visual
input about that toe position (Figure 4B, trail leg; post hoc Tukey
test, p = 0.031) while the lead limb toe height was corrected to
be higher from the second to fourth trials (Figure 4B, lead leg;
post hoc Tukey test, p = 0.016, 2.28 × 10−6 and 0.013), and then
went back to the baseline in the following trials (post hoc Tukey
test, p = 0.15 and 0.28).

DISCUSSION

The main aim of the present study was to examine the effects
of visuomotor transformation in the lead leg on movement
trajectories in the trail leg during obstacle crossing in humans.
To this end, the experimental paradigm of a virtual obstacle
avoidance task was first constructed that makes it possible to alter
the visuomotor transformation involved in obstacle crossing. The
interactive motor performance between the physical and virtual

visual tasks indicated that the virtual visual obstacle task enabled
us to examine motor control in stepping over an external physical
obstacle. With this available method, we then demonstrated that
the trail limb toe trajectories were modified after visuomotor
perturbation in visually guided lead limb movement. Therefore,
the results suggest that visuomotor transformation in the lead leg
contribute to a motor plan for trail limb toe trajectories during
obstacle crossing.

According to previous studies on obstacle avoidance in
humans, lead and trail legs were considered to be controlled
independently on the basis of visual input regarding obstacle
properties (Patla and Rietdyk, 1993; Patla, 1998; Rhea and
Rietdyk, 2007), and lead leg non-visual sensorimotor signals,
proprioceptive information, or efferent copy signals play a
relatively minor role in guiding the trail leg trajectory (Lajoie
et al., 2012). In contrast, in the present study, the visuomotor
error that occurred in visually guided lead limb movement led
to correction of the toe elevation height not only in the perturbed
lead limb but also in the unperturbed trail limb; therefore, the
trail limb movement depended on the sensory error feedback
from the lead limb. The bilateral movement correction elicited
in response to unilateral perturbations occurred when the task
goal was shared between the right and left arms, indicating that
sensory feedback from one limb can modify the movement of
another limb in a task-dependent manner (Mutha and Sainburg,
2009; Omrani et al., 2013). Although the lead and trail limb toe
positions were independently controlled in the present study,
the underlying goals of the obstacle clearance task would be
shared in both legs. Furthermore, while this study measured
the corrective response of the lead and trail limb movements
after the one or two visuomotor perturbation trials, the response
remained in the following null trials (Figures 3, 4), indicating the
learning response against the transient perturbation (Albert and
Shadmehr, 2016). In this sense, the bilateral movement correction
might reflect interlimb transfer of the visuomotor learning.
A previous study on locomotor adaptation demonstrated the
interlimb transfer of learning effects on a new obstacle avoidance
task occurred when the lead leg became the trail leg, and vice
versa (van Hedel et al., 2002). The interlimb transfer was also
observed following adaptation to a novel visuomotor condition
in visually guided reaching movement (Imamizu and Shimojo,
1995; Sainburg and Wang, 2002). Thus, movement information
learned with one limb transfers to the same movements made
with the other limb in a task-dependent manner. Despite the
interlimb transfer of movements, each limb can also adapt
to visuomotor rotation oppositely directed for the two arms
(Wang and Sainburg, 2003). The adaptations to opposite
visuomotor rotations are known to interfere with each other
within the same arm (Krakauer et al., 2000; Tong et al., 2002).
The movement information obtained during the opposite arm
training is obligatorily competed with subsequent performance
with the other arm (Kumar et al., 2018), whereas the limb-
specific memories for both arms can be stored (Wang and
Sainburg, 2003). Together, these findings suggest that learning of
a visuomotor rotation is represented in shared neural resources
for the acquisition of motor memories across different limb’s
controller. In the case of an obstacle crossing movement, it has
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FIGURE 4 | Change of toe elevation due to one visuomotor perturbation. (A) Lead (black line) and trail (gray line) limb toe elevation during sets of 6 successive trials
with one visuomotor perturbation (VP) trial in Block 4 (Figure 1C). The data are the mean values for all repetitions and subjects. Error bars represent the standard
error of the mean. Dashed line represents the lowest value of the desired toe height during the perturbation. (B) Difference of the toe height between each trial and
the initial cursor-blinded trial on each perturbation set. The data are the mean values for all repetitions and subjects. Error bars represent the standard error of the
mean. Asterisk means statistically significant difference in the toe heights from the initial trial to each following trial; *p < 0.05 and **p < 0.001 using the post hoc
Tukey test.

been reported that the obstacle properties would be stored in the
working memory represented as spatiotemporal neural activity
in area 5 of the posterior parietal cortex (Lajoie et al., 2010; Wong
and Lomber, 2019). Limb-specific memories might be stored for
the lead and trail legs but can be affected by the sensorimotor
information in the other limb. Indeed, proprioceptive feedback
and an efferent copy signal provided when stepping over an
obstacle with the lead limb enhanced memory of the obstacle
height that was recalled in the trail limb movement compared
with the case in which only visual information was available
(McVea and Pearson, 2007; McVea et al., 2009; Shinya et al.,
2012). The present study suggested that neural resources of limb-
specific motor memories for obstacle crossing movements in lead
and trail legs were shared based on visual input regarding the
interaction between obstacle properties and limb movements. By
contrast, there is the possibility that different explicit strategies
were used for control of lead and trail legs (Taylor and Ivry,
2011). Future experiments are needed to examine whether the
corrective response in a trail leg after visuomotor correction in
a lead leg reflects implicit or limb-specific explicit control for
stepping over an obstacle.

Motor skill transfer between physical and virtual visual
environments was demonstrated in previous studies that tried
to enhance motor performance in the real world based on
virtual reality training for sports and rehabilitation (Todorov
et al., 1997; Sveistrup, 2004; Adamovich et al., 2009). The
virtual environments can present combinations of multimodal
stimuli that are not found in the natural world and produce
changes in the environment that would not be possible physically.
Clinical and rehabilitation therapists or trainers gain unique
benefits from being able to control stimuli in virtual reality
environments. The virtual reality environment is increasingly
used not only for application but also for neuroscience research
(Tarr and Warren, 2002; Bohil et al., 2011). Motor tasks guided
by visual cues corresponding to actual movements are virtual

reality tasks in the broad sense (Krakauer et al., 2000). The
present study expanded a visually guided motor task into an
obstacle crossing movement and then demonstrated the transfer
of motor performance; toe elevation early in the task of crossing
over a virtual obstacle was biased by the preceding physical
task. The result suggested that the visual perception and the
sensorimotor processes engaged in each of the physical and
virtual tasks are related to each other. Furthermore, there was a
correlation between toe elevation in the physical and virtual tasks,
indicating that the common strategies of movement planning to
implement successful obstacle crossing were used in these two
environments. Therefore, the visually guided task of crossing
over a virtual obstacle is an effective experimental paradigm
to investigate motor control of coordinated movements in the
lead and trail legs during obstacle avoidance, which can take
the place of physical tasks. This paradigm has the potential to
expand the present experimental setup into motor tasks in novel
visuomotor environments with various visual gains or combined
with multimodal sensory stimuli. However, the fact remains that
there was an apparent gap in the environment and resultant
motor performance between the virtual and the physical tasks
(Lin et al., 2015). For example, attributes of the obstacle as well
as the toe position are available to the trail leg during the null
trials of the virtual task whereas these were out of sight in the
physical task. The visual information about the obstacle and the
toe position only on the sagittal plane was also specific to the
virtual task. Whether and how the present results in the virtual
task were transferred to the physical environment should be
tested in future studies.

In summary, visuomotor perturbation applied only to the lead
leg movement in the middle of tasks of crossing over a virtual
visual obstacle resulted in trajectory modification not only in
the lead leg but also in the trail limb toe, indicating that the
visuomotor transformation for obstacle avoidance in the lead
leg affects trail leg trajectories. To date, lead and trail legs in
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humans have been considered to be controlled independently,
whereas these results suggest that neural resources of limb-
specific motor memories for obstacle crossing movements in lead
and trail legs were shared based on visual input regarding obstacle
properties and limb trajectories during crossing. The obstacle
clearance task in the virtual visual environment is a practical
experimental paradigm that makes it possible to flexibly alter
spatiotemporal coordination in the visuomotor system regarding
obstacle perception and lower-limb movements.
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Humans learn motor skills (MSs) through practice and experience and may then retain

them for recruitment, which is effective as a rapid response for novel contexts. For

an MS to be recruited for novel contexts, its recruitment range must be extended. In

addressing this issue, we hypothesized that an MS is dynamically modulated according

to the feedback context to expand its recruitment range into novel contexts, which do

not involve the learning of an MS. The following two sub-issues are considered. We

previously demonstrated that the learnedMS could be recruited in novel contexts through

its modulation, which is driven by dynamically regulating the synergistic redundancy

between muscles according to the feedback context. However, this modulation is trained

in the dynamics under the MS learning context. Learning an MS in a specific condition

naturally causes movement deviation from the desired state when the MS is executed in

a novel context. We hypothesized that this deviation can be reduced with the additional

modulation of an MS, which tunes the MS-produced muscle activities by using the

feedback gain signals driven by the deviation from the desired state. Based on this

hypothesis, we propose a feedback gain signal-driven tuning model of a learned MS for

its robust recruitment. This model is based on the neurophysiological architecture in the

cortico-basal ganglia circuit, in which an MS is plausibly retained as it was learned and is

then recruited by tuning its muscle control signals according to the feedback context. In

this study, through computational simulation, we show that the proposed model may be

used to neurophysiologically describe the recruitment of a learned MS in novel contexts.

Keywords: motor skill recruitment, muscle synergy, corticospinal tract, reinforcement learning, cortico-basal

ganglia circuit, muscle loading, feedback gain control

INTRODUCTION

Innate and learned motor skills (MSs) are recruited in the central nervous system (CNS) for
effective and fast motor control in response to novel external circumstances such as disturbances.
To recruit an MS in response to novel contexts, its contextual information must be afferently
transmitted to the CNS through feedback control processes. Therefore, the recruitment of an MS
should be considered in the feedback control process. However, this mechanism has not been
addressed in previous studies related to feedback control, such as proportional integral derivative
control (Petkos and Vijayakunar, 2007) and optimal feedback control (Todorov and Jordan, 2002;
Liu and Todorov, 2007), because these studies focused only on correcting motor control errors
through feedback gain control. In addressing this issue, we hypothesized that an MS is dynamically
modulated according to the feedback context to expand its recruitment range into novel contexts,
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which do not involve the learning of an MS. The following two
sub-issues are taken into account in this article.

Dynamic modulation of an MS in response to the feedback
context is a mechanism that allows rapid recruitment of an MS
in a novel context. In validating this hypothesis, the Synergy
strategy-based muscle Control (SC) proposed in our previous
study (Min et al., 2018) is a valuable concept because it
contributes to the dynamic modulation of an MS to regulate
the functional redundancy of individual muscle units for the
feedback context. To achieve this SC-driven MS (SC-MS), all
muscle units contributing to an MS need to be classified into
multiple group units according to their innervation by peripheral
nerves derived from the brachial plexus. Consequently, these
group units cause the contracting sets of muscles, termed motor
primitives (MPs) (Giszter et al., 1993), to effectively suppress
the control redundancy of muscle units in feedback control.
In our previous study (Min et al., 2018), this muscle control
policy was defined as the group control policy (GCP) that
outputs the same control signal to all muscle units constituting
a group unit. Although the GCP is an effective control policy
for suppressing the control redundancy of muscle units in
feedback control, it needs assistance to generate novel patterns
of muscle activities that cannot be produced by combining
group units. To assist GCP, the individual control policy (ICP)
was defined as the control policy for outputting identified
individual control signals to individual muscle units. These two
control policies synergistically combine to optimally control
muscle units according to the feedback context. This synergy
may neurophysiologically correspond to the combination of
corticospinal neurons (CSTs) in the primary motor cortex (M1)
and its second type of CSTs, termed cortico-motoneuronal cells
(CMs), through the corticospinal tract, which was addressed in
a previous study (Rathelot and Strick, 2009). In this previous
study, it was suggested that the MPs activated by the CSTs in
M1 through their connection with interneurons in the spinal
cord may be adjusted by the signals that are produced from CMs
through their monosynaptic connection with motor neurons
(MNs) in the spinal cord. This adjusting of MPs may sculpt novel
motor output patterns for highly skilled movements that cannot
be produced by combining MPs. Consequently, the combination
of two ways of controlling muscles in the corticospinal tract
is more plausible in neurophysiologically representing an MS
than CSTs driven one way, which is the route for controlling
MPs termed muscle synergies (Tresch et al., 1999; d’Avella
et al., 2003; Torres-Oviedo et al., 2006; Safavynia and Ting,
2012; Ting and Macpherson, 2012; Barroso et al., 2014; Suzuki
et al., 2017; Amundsen Huffmaster et al., 2018; De Marchis
et al., 2018; Kibushi et al., 2018; Toma and Santello, 2019),
whose individual MP units are composed of spatiotemporally
fixed muscle activities. These studies demonstrate that SC may
be neurophysiologically suitable for characterizing the dynamic
modulation of an MS.

Even if an MS is dynamically modulated for its recruitment
in novel feedback contexts, this modulation is trained in the
dynamics under theMS learning context. Therefore, this learning
condition of an MS naturally brings about movement control
deviation from the desired state in a novel context. To overcome

this handicap, a learned MS needs to be modified in response
to a novel context. In addressing this issue, we propose a
Tuned Synergy strategy-based muscle Control (T-SC) model, in
which the SC-MS is tuned in response to the feedback context.
Through this tuning, the aforementioned deviation is supposedly
reduced. In designing this model, we assumed that the tuning
signals of the SC-MS are cumulatively modified to tune SC-
MS-produced muscle activities according to the deviation from
the desired movement, which is recognized through feedback
control. This hypothesis is based on experimental evidence
demonstrating that the response through sensorimotor control
is coupled with ongoing decision processes, which are reflected
by the accumulated feedback information (Selen et al., 2012).
In a previous related study (d’Avella and Pai, 2010), this issue
was also addressed with regard to the limited recruitment range
of existing modules such as muscle synergies in novel contexts.
However, an alternative solution, apart from learning a new MS,
has not been suggested so far. The proposed T-SC may be an
alternativemotion control strategy for novel contexts because it is
more efficient for the rapid adaptation of motion control in novel
contexts than learning a new MS.

The neurophysiological architecture and mathematical
description of the T-SC model are presented in sections
Neurophysiological Architecture and Mathematical Model,
respectively. To validate this model, we simulated the
recruitment of the SC-MS in novel contexts that were not
present when the MS was learned (section Results).

MATERIALS AND METHODS

Neurophysiological Architecture
The neurophysiological architecture of T-SC is based on
experimental evidence (Spraker et al., 2007) showing that the
cortico-basal ganglia (cortico-BG) circuit is involved in scaling
the force generation according to the external environment.
Accordingly, this evidence is applicable to validating the
recruitment of a learned SC-MS through tuning its muscle
force control signals according to the feedback context. In this
architecture, the operation of T-SC in the CNS may be achieved
as follows.

Based on the experimental evidence (Pruszynski et al.,
2011) for involvement of the M1 region in modulating the
proprioceptive response related to the knowledge of limb
mechanics, we surmised that the sensory feedback signals,
sfb, including the contextual information for the dynamic
states of the skeletal joint, are transferred to M1 through
its somatosensory pathway (London and Miller, 2013). These
feedback signals, sfb, are inputted to the basal ganglia (BG)
through M1. In the cortico-BG loop (Barto, 1995; Doya, 2000,
2007, 2008; Ito and Doya, 2011), the BG selectively disinhibits
the activities of both M1 and the brainstem to select the
optimal tactic for motion control (Hikosaka et al., 2000). The
extent of this disinhibition is controlled via dopamine release
(Shinnamon, 1993) during reinforcement learning (Houk et al.,
1995). Therefore, the BG is assumed to dynamically produce
a trade-off between inhibition and disinhibition of the activity
in M1 during sequential motion control (Nambu et al., 2002).
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Further, section Recruiting a Learned MS via the Cortico-
Basal Ganglia Loop discusses the neurophysiological evidence
for the involvement of the BG in kinematic control through
the recruitment of a learned MS. Based on this experimental
evidence, in the BG, we assumed that an SC-MS is dynamically
modulated by inhibiting or disinhibiting the GCP and ICP, which
regulate the functional redundancy of individual muscle units
for sfb, as discussed in section Introduction. This modulation is
mathematically described in section Dynamic Modulation of an
SC-MS. Through this modulation, the SC-MS produces a muscle

control signal, uPt
SC
, that is efferently copied, as uSC, to the spinal

cord through the corticospinal neurons (CSTs) in M1. Through
this process, a learned SC-MS retained in the BG is dynamically
modulated to produce uSC according to the feedback context
sfb. A discussion of this modulation is introduced in sections
Recruiting a learned MS via the Cortico-Basal Ganglia Loop and
Muscle Control Scheme of the Corticospinal Tract in Recruiting
an SC-MS.

The signals uSC are assumed to be tuned in M1 because
experimental evidence (Herter et al., 2009) has shown that
neural activity in M1 is broadly tuned to novel contexts, such
as mechanical perturbations applied to the shoulder and elbow,
and reflects knowledge of joint–limb dynamics (Pruszynski et al.,
2011). Based on this supposition, the uSC may be tuned with the
following dynamic modulation process for the feedback context.
Concurrent with the aforementioned input of sfb to M1, the
goal states so of sfb are also input to M1 from the association
cortex. Both sfb and so are inputs to the muscle loading tuner
and the difference between the two signals is transferred to the
tuning gain (TG), Gtuning, of uSC. The Gtuning consists of agonist
and antagonist loading signals, which disinhibit the activities of
loaded muscles and inhibit the activities of unloaded muscles by
properly scaling them (Nashed et al., 2015). This tuning process
generates the optimal muscle control signals u∗, which descend
to MNs in the spinal cord to control the muscles. This tuning is
mathematically described in section Tuning of a Learned SC-MS.

Mathematical Model
Dynamic Modulation of an SC-MS
Asmentioned in section Introduction, we have defined the group
units as muscle control units, which produce the contracting sets
of muscles, termed MPs. These group units and their belongings
are determined according to the peripheral nerves innervating
them (Table 1). Based on this neurophysiological definition, the
GCP is defined as the control policy considering individual
muscle units as a component of the group unit, in which all
components respond to the feedback context with one common
signal. In contrast to the GCP, the ICP is defined as the control
policy considering individual muscle units as independent units
of the group units, thereby controlling individual muscle units
with their identified signals. Therefore, by optimizing the synergy
between these two control policies for a feedback context, an
SC-MS is dynamically modulated for the feedback context. This
modulation is mathematically defined by the following model
based on our previous study (Min et al., 2018):

P SC
t = (νG, νI), νG = σ (st) = exp(−0.5V(st)), νI = 1− νG (1)

where Pt
SC is the synergy coordinate of the GCP weight vG and

ICP weight vI. This is determined by the critic value (CV) V(st),
which evaluates the potential of the feedback contextual vector st

at time t for reaching the goal state. As the st is produced through
the performance of the SC-MS, the V(st) presents an evaluation
of the performance of the SC-MS for the goal state. Therefore,
the Pt

SC is dynamically optimized according to the performance
of the SC-MS at time t for the goal state. The synergy between vG

and vI is simulated in Figures 4, 5A, 6A, 7A (see section Results).
By applying the Pt

SC to Equation (2b), the SC-MS, using the
actor model in Equation (2a), is dynamically modulated. This
achievement is rewarded by functionally improving the V(st)
(Min et al., 2018). Consequently, this improvement reinforces the
SC-MS to achieve its goal state. This CV-driven reinforcement
learning is based on the actor–critic model (Barto, 1995; Sutton
and Barto, 1998), which is designed to simulate reinforcement
learning (Houk et al., 1995) in the BG. The simulation condition
of this learning is precisely described in section Learning and
Recruitment Condition of an SC-MS.

Using Pt
SC optimized through the aforementioned learning,

the SC-MS is dynamically modulated to generate the muscle
control signals uSC as follows:

Ui
SC(st) ∼= ui(s

t
;W)

= ui
maxsig(

K
∑

k=1

Wk
ibk(s

t)+ σ (st)ni(t)− B),

ui
max

= 1.0, σ (st) = σ0 exp(−0.5V(st)),

bk(s
t) =

Ak(s
t)

K
∑

l=1

Al(s t)

, Ak(s
t) = exp



−

n
∑

i=1

(

si
t
− ci

k

σi
k

)2




(2a)

Wi
k = νIwi

k + νGw
g

k
(2b)

where the Ui
SC(st) functions as the actor generating the control

signal of the ith muscle of uSC and sig(x) is the sigmoid function.
The function ni(t) produces the white noise in determining
the activities of individual muscles. The magnitude of ni(t)
is determined according to σ(st) by considering V(st). σ0 is
a constant parameter. This noise is designed to enhance the
learning dynamic of an MS, thereby being suppressed by setting
σ0 to zero in simulating its recruitment. B is the parameter
controlling the baseline of sig(x), i.e., the value of sig(x = 0.0).
The base function bk(s

t) is the kth element of a normalized
Gaussian network (NGSN). K is the total number of base
functions. The node of b k(s

t) is defined as the parameter c k
i ,

which is the ith element of the center of bk(s
t) and σ k

i is its

range. This c k
i is determined before the learning takes place.

As the state vector st comprises the joint angle and its velocity,
the predetermined format of the NGSN is designed based on
the grid distribution of the two-dimensional state by setting the
total number of state elements n to 2. The symbol s ti is the ith
element of the contextual vector st . W i

k
is the network weight

of bk(s
t) in producing the ith muscle activity. As described in
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TABLE 1 | Elements of the neuromuscular system controlling the elbow joint.

Flexors

Group 1 (radial nerve) Brachioradialis

Group 2 (musculocutaneous

nerve)

Biceps brachii (long head), Biceps brachii (short

head), and brachialis

Group 3 (median nerve) Pronator teres

Extensors

Group 4 (radial nerve) Triceps brachii (lateral head), Triceps brachii (long

head), Triceps brachii (medial head), and

anconeus

Equation (2b), the W i
k
is the summation of w i

k
and wk

g, which

are, respectively, weighted by vI and vG of Pt
SC. The parameter

wk
g is the kth NGSN weight of the gth group unit, which is

governed by the GCP, whereas wk
i is the kth NGSN weight of

the ith muscle affiliated to the gth group unit, which is governed
by the ICP. The weights wk

i and wk
g are optimized through

the aforementioned SC-MS learning. For further information,
including the optimizing process of wk

i and wk
g regarding

Equation (2b), refer to our previous study (Min et al., 2018).

Tuning of a Learned SC-MS
As shown in Figure 1, the learned SC-MS-produced uSC is
additionally tuned to u∗ with the TG signal Gtuning from the
muscle loading tuner, which is cumulatively modified as the
feedback gain parameters of uSC according to the deviation
from the desired state recognized through feedback control. This
tuning is mathematically modeled as follows:

u∗ = GtuninguSC, Gtuning
= diag

(

G
tuning
0 , . . . ,G

tuning
n−1

)

,

uSC = [u0, . . . , un−1]
T, If ui is a flexor, G

tuning
i = GF.

If ui is an extensor, G
tuning
i = GE., i = 0, . . . , n− 1. (3)

where Gtuning functions as a feedback gain parameter that is the
diagonal matrix composed of Gi

tuning. The symbol n represents
the total number of muscles involved in the motion control.
The flexor gain GF or the extensor gain GE is determined by
Gi

tuning according to the function of the individual muscles ui in
controlling the joint.

The Gtuning is modified by its incremental signal 1Gtuning

as follows:

1Gtuning(t) =
[

1GF(t), 1GE(t)
]

T
= k(t) · 1s(t),

k(t) =

[

kF(t)
kE(t)

]

=

[

kp(t) kd(t) ka(t)
−kp(t) −kd(t) ka(t)

]

,

1s(t) = sG − s(t) =
[

12t
G, 12̇G

t , 12̈G
t

]

T,

12t
G

= 2G
− 2t ,12̇G

t = 2̇G
− 2̇t ,12̈G

t = 2̈G
− 2̈t

(4)

where 1Gtuning(t) is composed of the flexor and extensor
components, 1GF(t), 1GE(t). These two components are
estimated by1s(t) and its gain matrix k(t).1s(t) is the difference
between the feedback state s(t) = (2t , 2̇t , 2̈t) and its desired
state sG = (2G, 2̇G, 2̈G), in which both 2̇G and 2̈G are zero.

The matrix k(t) is composed of the following three
components: the angle term kp(t), the angular velocity term kd(t),
and the angular acceleration term ka(t). These terms contribute to
the flexor part kF(t) = (kp(t), kd(t), ka(t)) and the extensor part
kE(t) = (−kp(t),−kd(t), ka(t)). The components kp(t) and kd(t)
of kE are designed as minus terms of kF to simulate the activities
of extensors. However, the acceleration term ka(t) is set to the
same value for both the agonist and the antagonist because the
direction of the angular acceleration frequently changes, thus it
needs to be suppressed to maintain stable motion control during
the co-contraction of both the agonist and the antagonist. These
three k components are optimally modulated to make the joint
angular state approach the goal state by using Equation (5). To
achieve this modulation, the three k terms of 1Gtuning(t) are
modeled to be proportional to

∥

∥12t
G
∥

∥ using the function sig(x)
as follows:

kp(t) = Ckp · sig( 1.5 · (12̇G
t + (A · exp(−

∥

∥

∥
12̇G

t

∥

∥

∥
))·
∥

∥

∥
12t

G
∥

∥

∥

−B) )

kd(t) = Ckd · sig(D
∥

∥

∥
12t

G
∥

∥

∥
− B),

ka(t) = Cka · sig(D
∥

∥

∥
12t

G
∥

∥

∥
− B) (5)

where B (B = 0.4) is the parameter controlling the baseline of
sig(x), that is, the value for sig(x = 0.0), whereas the parameters
Ckp (Ckp

= 0.2), Ckd (Ckd
= 0.2), and Cka (Cka

= 0.002) are
the constant values of sig(x). The parameter A (A = 10.0) is the
constant gain of the Gaussian function for modulating kp(t), and
the parameter D (D = 20.0) is the constant value for modulating
kd(t) and ka(t). These k components are dynamically modulated
considering 1s(t), which was described in Equation (4). As
shown in Figure 2A, to model the gain term of 12̇G

t , kp(t) is

modeled to mainly function as Ckp · sig(1.5 · (A
∥

∥12t
G
∥

∥− B)),

which is the sigmoid function of 12̇ G
t in the first term of sig().

In low-speed undershooting or overshooting, kp(t) functions as

Ckp · sig(1.5 · (A
∥

∥12t
G
∥

∥ − B)), which is the sigmoid function

of
∥

∥12t
G
∥

∥ in the second term of sig(). Using the hybridization
of these two terms, kp(t) is modeled as shown in Figure 2A. Due

to this modeling, kp(t) responds to 12̇ G
t under consideration

of
∥

∥12t
G
∥

∥. To optimally modulate kd(t) and ka(t) as the

gain terms of 12̇ G
t and 12̈G

t , their corresponding
∥

∥12t
G
∥

∥

needs to be considered as the feedback context responding to
undershooting and overshooting, as shown in Figure 2B. Owing
to this consideration, the response of these k terms to the
feedback context is slower than kp(t) considering 12̇G

t in high-
speed undershooting.

The TG increments generated according to the
aforementioned calculations in Equations (4) and (5)
are accumulated to modify the corresponding TG signals
as follows:

Gtuning(t) = Gtuning(t − 1t)+ 1Gtuning(t),

Gtuning(t) =
(

GF(t), GE(t)
)

, Gtuning(0) =
(

1.0, 1.0
)

.

While GF(t) > 0.0, 1GF(t) is available.

While GE(t) > 0.0, 1GE(t) is available. (6)
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FIGURE 1 | The proposed architecture of the tuned synergy strategy-based muscle control (T-SC). The feedback state sfb is transferred to the primary cortex M1

through the transcortical pathway, and the goal state so is transferred to M1 from the association cortex. The basal ganglia estimate the SC signal P SC
t that regulates

the functional redundancy of individual muscles within the SC for the feedback context sfb and outputs P SC
t into the corticospinal neurons (CSTs) in M1. The CSTs

encode P SC
t to uSC, which are then tuned to u* by the tuning gain signal Gtuning from the muscle loading tuner. The tuned signals u* are transferred to the skeletal

muscles via the spinal cord and the motor neurons (MNs).

FIGURE 2 | The functions of three k-terms involving the tuning of a motor skill for its recruitment according to the feedback context (12G, 12̇G). (A) The function of

the angle term kp. (B) The functions of the angular velocity term kd and angular acceleration term ka.

where the initial TG, Gtuning(0), is set to 1.0 to simulate non-
interference by the TG. To achieve this modification, GF(t) and
GE(t), termed the flexor and extensor components of Gtuning(t),

respectively, must be above zero. Therefore, if GF(t) or GE(t) is
modified to be below zero, the corresponding signal is set to zero
by suppressing its increment.
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Simulation Architecture
The simulation architecture has been described in detail in
our previous study (Min et al., 2018). This architecture is
composed of the musculoskeletal finite-element (FE) model
(Figure 3), its motion control agent model, and the interface
model, which integrates both of the aforementioned models.
Precise descriptions are as follows.

Musculoskeletal Finite-Element Model
The musculoskeletal model proposed in our previous study
(Min et al., 2018) was used for simulating the motion
control of a musculoskeletal system. This model was designed
using LS-DYNA (Livermore Software Technology Corporation,
Livermore, CA, USA), which is an explicit FE code developed for
dynamic analyses through simulation. To consider the trade-offs
between analytical precision and calculation costs in simulating
the motion control of the musculoskeletal FE model, the muscles
are designed with FE modeling using multiple bar elements of
the muscles that formulate muscle paths between the origin and
the insertion points in LS-DYNA. The characteristic features
of the muscle forces, which change according to the length of
the muscle and its contraction velocity, were modeled using a
Hill-type model (Hill and Sec, 1938; Zajac et al., 1985; Thelen,
2003). Anatomical references (Neumann, 2002) were used to
align the origin and insertion points and the via points, and
to represent the appropriate muscle moment arms using the
wrapping contacts (Hada et al., 2007). The predicted muscle
moment arms were well-validated against data from several
experimental studies (Amis et al., 1979; Murray et al., 1995).
As shown in Figure 3A, the proposed FE model consists of two
rigid body parts: one representing the upper arm and shoulder,
and the other representing the lower arm and hand. The two
body parts are linked using a joint constraint that represents
the ulnar–humeral joint. The mass of the lower arm was 1.7 kg.
The principal moments of inertia of the lower arm body were
I11 = 7.66 × 10−3 kg m2, I22 = 7.36 × 10−3 kg m2, and
I33 = 0.34× 10−3 kg m2.

Integration of the Musculoskeletal Finite-Element

Model and Its Motion Control Agent Model
The entire architecture was implemented through software
programming, in which the agent model of the SC-MS
was programed with C++ code to perform the learning
and recruitment of the LS-DYNA-coded musculoskeletal
FE model. This performance was achieved through a
C++ code interface model, which was programmed to
allow the coding difference between the aforementioned
two models.

Learning and Recruitment Condition of an SC-MS
To validate the recruitment of the SC-MS under novel conditions
involving transient and sustained disturbances, the learning
condition of the SC-MS was not affected by any external
interference as follows.

In the simulation architecture, the agent model reinforced
an MS to be dynamically modulated by the SC, described in
Equation (1), for controlling the forearm to reach a goal without

any disturbances. Through this reinforcement learning, the agent
model learned an SC-MS. During this learning process, the
control range of the elbow joint was limited to 30–140◦. The aim
of this task was to move the hand to its goal position, where the
elbow joint angle was at 70◦, and to maintain this position. The
degree of freedom of the joint was 1. The nine muscles listed in
Table 1 were activated to control the elbow in the simulation,
as shown in Figure 3A. The time step t was 0.01 s. If the total
learning time in a trial exceeded 2.0 s or if the angle of the elbow
joint was out of the defined control range, a new trial was started
after randomly changing the initial position. This process was
repeated 780 times.

The SC-MS learned through the above process was recruited
in the same time steps as the aforementioned learning time steps.
Further information has been provided in detail in our previous
study (Min et al., 2018).

Experimental Setup
To evaluate the proposed simulation model by comparison with
the actions of four human subjects (four men, 40–44 years old)
under the same conditions as those used in the simulation, we
measured the loading responses of the study subjects, which
is the same task as that in the simulation. All subjects were
healthy and did not have any motor disorders. We assumed
that these subjects have learned the MS recruited to achieve the
aforementioned novel task throughout their whole life because
the goal task of the MS described in section Learning and
Recruitment Condition of an SC-MS can be achieved naturally
by healthy subjects.

As shown in Figure 3B, in this experiment, the elbow joint
angle was measured while the subject held a 1 kg load in his hand.
To measure the responses to the loading condition through pure
feedback control, the subjects were blindfolded with their eyes
closed and were not informed about the timing of the loading.
In addition, the distance between the initial falling point of the
weight and the initial position of the hand was set close to zero.
Furthermore, to approximate the novel condition as closely as
possible, only data that were recorded during the first trial for
each of the four subjects were used. The subject was instructed
to try to recover as soon as possible the preloading posture set
at 70◦. All subjects were instructed to recover and maintain their
preloading posture under this loading condition for 2.0 s. The
shoulder and wrist joints were fixed during the measurement of
the motion of the elbow joint. In this setting, we measured the
positions of the shoulder, elbow, and wrist using OPTOTRAK
3020 (Northern Digital, Waterloo, Ontario, Canada), which is a
three-dimensional position measurement device. We then used
the measured positions of these three joints to calculate the
angular movement of the elbow joint. The experimental setup
has been described in detail in our previous study (Min et al.,
2018).

All subjects provided written informed consent prior to
their participation. The protocol was approved by the Tokyo
Metropolitan Institute of Medical Science’s ethics committees
and was conducted in accordance with the ethical standards of
the Declaration of Helsinki.
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FIGURE 3 | (A) A musculoskeletal finite-element (FE) model of the human arm. Each muscle consists of multiple nodes that are used to precisely model its path along

with the wrapping. The wrapping is used to keep the path of the muscles within the precise moment arm. (B) Experimental setup of human subjects for evaluating the

simulation result.

RESULTS

As mentioned in section Introduction, because of the dynamic
modulation of an MS driven by the SC for novel feedback
contexts, an SC-MS may be recruited in the CNS as a valuable
learned MS. To validate this supposition, we tested the concept
of T-SC in a model that tunes the SC-MS by gaining its signals to
robustly recruit it in novel feedback contexts.

As shown in Figure 1, the T-SC is neurophysiologically
achieved by tuning the SC-MS according to sensory feedback
signals, which are generated in response to the context.
Therefore, the T-SC may contribute to recruiting the SC-MS
in the feedback control process. To validate this recruitment
process, the simulation results of the SC-MS recruitment
procedure in response to three novel sustained disturbances that
did not involve the learning process of the SC are discussed in
this section.

T-SC in a Novel Sustained Disturbance
Novel dynamic contexts in recruiting a learned MS are classified
into transient and sustained disturbances. In our previous work
(Min et al., 2018), we tested the motion control robustness of
the SC-MS in these two types of dynamic contexts that did not
involve SC-MS learning. In this test, the SC-MS demonstrated
good recruitment against a transient disturbance, such as an
impacting force, by recovering the pre-impacted context well.
However, the SC-MS revealed the limitations of its recruitment
in response to sustained disturbances; it only recovered to the
point below the pre-disturbed point, as shown in Figure 4. As this
difference in recruiting an SC-MS is attributed to the difference
between their loading durations for an SC-MS, we hypothesized
that the SC-MS needs to be tuned with accumulative gain signals

that consider the duration of the disturbance. To address this
issue, we validated the T-SC for novel sustained disturbances
as follows.

To validate the T-SC, we compared the performance of
the SC-MS and the tuned SC-MS (T-SC-MS) in recovering
the preloading posture against a sustained 1 kg loading. This
sustained loading did not involve SC-MS learning. The results
are shown in the top row of Figure 4. The left column in
the top row of Figure 4 demonstrates that the SC-MS found a
new posture at 60◦, which is below the preloading posture at
70◦. By contrast, the T-SC-MS could successfully recover the
preloading posture. This simulated recovering joint angular trace
was within the real motion trace corridor range derived from
the four experimental subjects using the same conditions as the
simulation. This achievement of T-SC-MSwas simulated through
the following T-SC process.

As shown in Figure 1, the joint angular context may be
afferently copied to the CNS as the contextual feedback signal
and transferred to the BG via M1. According to this feedback
signal, striosomal molecules functioning as adaptive critics in the
BG (Houk et al., 1995) may estimate the CV as the evaluation
of the recruitment of the SC-MS in recovering the preloading
state. This is shown in the second row of Figure 4. After sustained
1 kg loading, the CV of the SC-MS decreases accordingly,
and remained below, the CV of the preloading state according
to maintaining the new posture below the preloading posture
after 0.6 s. In comparison with SC-MS recruitment, the CV
of the T-SC-MS also decreased during the undershooting, but
it recovered to the level of the preloading state. Consequently,
the T-SC-MS was more highly valued than the SC-MS in
recruiting the learned MS to recover the preloading state
after 0.4 s.
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FIGURE 4 | Comparison of a synergy strategy-based muscle control motor skill (SC-MS) and a tuned SC-MS (T-SC-MS) in recruiting the retained motor skill after a

1 kg loading. Top row: Comparison of the SC-MS and T-SC-MS simulations in recruiting the same retained motor skill, and evaluation of the T-SC to reproduce the

joint traces experimentally determined in human subjects. Second row: Critic value (CV) according to the joint angular state. Third row: Two control policies according

to the CV. GCP, group control policy; ICP, individual control policy.

According to this CV-based evaluation of the SC-MS
recruitment, the BG may optimally regulate the synergistic role
redundancy between the GCP and ICP of individual muscles
by using the rule based on Equation (1). As mentioned above,
the CVs decreased from the preloading value because of their
corresponding undershooting, shown in the top row of Figure 4.
According to these CVs, as shown in both columns of the third
row of Figure 4, the GCP increased whereas the ICP decreased
because the GCP-driven group unit control is more effective than
the ICP-driven individual muscle unit control in recovering the
preloading context during undershooting. This synergy between
the GCP and the ICP is differently regulated by SC-MS and
T-SC-MS according to their CVs as follows.

After 0.4 s, SC-MS and T-SC-MS differently regulated the
synergistic redundancy between the GCP and the ICP compared
with before 0.4 s as follows. T-SC-MS started to recover the
pre-disturbed CV from its lowest value after 0.4 s. According
to this CV recovery, the GCP and ICP started to recover from

their highest and lowest values, respectively. After 0.9 s, the
two control policies successfully recovered to their pre-disturbed
values and were then kept stable at that state. In comparison with
the T-SC-MS, the SC-MS maintained the new CV below the pre-
disturbed CV after 0.7 s, thereby insufficiently recovering its two
pre-disturbed control policies. This comparison is demonstrated
in the third row of Figure 4. This superior achievement of T-
SC-MS compared with SC-MS for the same novel disturbance is
attributed to the following tuning process of an SC-MS.

As shown in Figure 5A, the SC-MS-produced signals were
loaded with GF and GE, the agonistic and antagonistic signals of
the TG, respectively, according to the recruitment process of a
learned MS in Figure 1. These two TG signals were dynamically
generated through the following feedback gain process of a
learned MS in Figure 5B.

Under the rule based on Equation (5), the three k-term
components of the TG in the third graph in the top row of
Figure 5B were determined according to the joint angle and
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FIGURE 5 | Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a 1 kg loading. (A) Loading the SC-MS-produced signals

with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT),

brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps

brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).
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velocity deviations from the desired states, 12t
Gand 12̇ G

t ,
respectively, in the second graph in the top row of Figure 5B.
As described in Figure 2A, the component kp is designed to

be sensitive to the increase in 12̇ G
t , which is attributed to

the high undershooting. Therefore its increase was faster and
higher than both kd and ka that are designed to respond to the
increase of

∥

∥12t
G
∥

∥, which was attributed to the undershooting
or overshooting angle deviation (Figure 2B).

According to Equation (4), these three k-term components
combined with their corresponding deviations from the desired
states to produce three incremental components of GF and
GE, as shown in the second and third graphs in the top row
of Figure 5B. This combination produced the 1GF and 1GE,
as shown in the first graph in the bottom row of Figure 5B.
According to the rule of Equation (6), GF and GE must be above
zero. Therefore, if either GF(t) or GE(t) is modified to be below
zero, the corresponding signal is set to zero by suppressing its
increment. Under this rule, 1GF and 1GE were regulated to
modify GF and GE, respectively, as shown in the second graph
in the bottom row of Figure 5B. The bottom part of this graph
shows1GF and1GE, which actually contribute to modifying the
GF and GE, respectively. The tracks of GF or GE were as follows.

After a sustained 1 kg loading, GF increased from 1.0 to its
peak value of 3.3 in response to the drop in the joint position,
followed by a decrease in responding to the recovery of the
preloading context, and finally remained at a stable value of 2.7
to maintain the preloading context. By contrast, GE decreased
under the same conditions from 1.0 to the lower value 0.0 in
response to the decrease in the joint position before increasing,
reflecting the preloading context recovery, and finally reached a
stable value of 0.25 to retain the preloading posture. Hence, GF

increased and GE decreased from 1.0 during the recovery of the
preloading posture in response to a sustained disturbance. These
TG signals, as shown in Figure 5A, contributed to additionally
modulating the SC-MS through tuning its signals as follows.

The parameter GF is reflected in the increased activities
of agonists that were kept at higher values in the recovered
preloading context compared with their preloading activities.
Conversely, the parameter GE decreased the antagonist activities
and then maintained them at lower values in the recovered
preloading context in comparisonwith their preloading activities.

The aforementioned results demonstrate that the SC-MS can
be robustly recruited for a novel feedback context with additional
modulation, which was achieved through tuning its signals.

T-SC in Further Novel Contexts
As shown in section T-SC in a Novel Sustained Disturbance, we
verified that an SC-MS can be robustly recruited by tuning it for
a novel sustained 1 kg loading, which did not involve learning of
the SC-MS. In this section, we demonstrate the versatility of this
recruitment process in further novel contexts.

Recruitment in Undershooting Attributed to a Novel

Sustained 2 kg Loading
To examine the recruitment of a learned SC-MS by tuning it
in an additional severe undershooting context, we simulated the
recruitment of a T-SC-MS for sustained 2 kg loading, which is

two times the weight of the 1 kg loading used in section T-SC in a
Novel Sustained Disturbance. The simulation of this recruitment
process is shown in Figures 6A,B. The top graph of the first
column in Figure 6A shows the joint angular trace during the
recruitment process of the SC-MS for this disturbance as follows.

After loading with 2 kg, the joint angular trace dropped below
the preloading position to about 62◦ and then increased to be
maintained at about 65◦ for a short time. However, the joint
angle declined again to about 55◦, but finally recovered to about
75◦ near the goal state and then was kept stable at that state.
Two decreases in angle value and some overshoot during the
recruitment of the SC-MS showed an incomplete recovery for
2 kg loading in comparison with the process for 1 kg. This
difference is attributed to further severe disturbances over a 1 kg
loading. This movement could be achieved through the following
recruitment processes of the T-SC-MS.

As mentioned in section T-SC in a Novel Sustained
Disturbance, the parameter CV evaluates the recruitment of
an SC-MS to achieve the goal state. The second graph of the
first column in Figure 6A shows the CV as the evaluation of
the recruitment of T-SC-MS for a 2 kg loading. Owing to the
aforementioned severe decrease, the CV for a 2 kg loading
decreased further than the CV for a 1 kg loading during
undershooting. As shown in the third graph of the first column
of Figure 6A, this decrease in the CV increased the GCP more
than the decrease in the CV under the 1 kg loading. Accordingly,
the ICP was suppressed further than that under the 1 kg loading.
This CV-driven synergy between two control policies regulates
the control redundancy of individual muscle units. Through this
regulation, the muscle activities are produced, as shown in the
second column of Figure 6A. These signals were loaded with GF

and GE according to the recruitment process of a learned MS
in Figure 1. These two TG signals were dynamically produced
through the following feedback gain process of a learned MS in
Figure 6B.

Under the rule based on Equation (5), the three k-term
components of the TG shown in the third graph in the
top row of Figure 6B were determined by the joint angle
and velocity deviations from the desired states, 12t

G and
12̇G

t , respectively, in the second graph in the top row of
Figure 6B. After loading with 2 kg, as mentioned above, the
joint movement developed in two downward steps. In the first
step, the component kp drastically increased to respond to

the increase of 12̇ G
t , which was attributed to the high-speed

downward motion. Concurrently, both kd and ka increased by
less than kp because they responded to ‖12t

G
‖, the increase

in which was less than the increase in 12̇ G
t . During this step,

the response traces of the three k-term components were similar
to those observed with a 1 kg loading. In the second step, all
three k-term components increased substantially in response
to the large increases in both ‖12t

G
‖ and 12̇ G

t . This is
attributed to the feedback context, in which the joint angle
state was far from its preloading state with a high downward
speed. After this second drop, the joint angular state mostly
recovered by 0.8 s to its preloading goal state before slowly
reaching the preloading state. In response to this recovery, the
kp drastically decreased in response to the decrease in 12̇G

t in
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FIGURE 6 | Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a 2 kg loading. (A) Loading the SC-MS-produced signals

with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT),

brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps

brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).

Frontiers in Computational Neuroscience | www.frontiersin.org 11 December 2020 | Volume 14 | Article 457682193

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Min et al. Recruitment of Learned Motor Skill

downward speed, and both kd and ka concurrently decreased
in response to the decrease in

∥

∥12t
G
∥

∥. After 0.8 s, kd and
ka increased slightly by about 1.0 s in response to the slight
overshooting of

∥

∥12t
G
∥

∥ and then decreased quite slowly in

response to the quite slow decrease of
∥

∥12t
G
∥

∥ to zero. Under the
rule of Equation (4), these three k-term components combined
with the corresponding deviations from the desired state, which
are shown in the second graph in the top row of Figure 6B. These
combinations produced the 1GF and 1GE, as shown in the first
graph in the bottom row of Figure 6B. According to the rule of
Equation (6), 1GF and 1GE were regulated to modify GF and
GE, respectively, as shown in the second graph in the bottom
row of Figure 6B. The bottom part of this graph shows 1GF

and 1GE, which actually contribute to modifying the GF and
GE, respectively. The tracks of the TGs and their contribution to
tuning the SC-MS were as follows.

GF increased in response to the two drops in joint angle value
and then slowly decreased to a stable level. To assist GF, the
parameter GE was suppressed during the first drop, but increased
substantially during the second drop before slowly dropping to a
stable level. These two agonist and antagonist TG signals were
loaded onto the SC-MS-produced muscle activities, as shown
in the second and third columns of Figure 6A. Through this
loading, they were tuned to the optimal muscle activities for
recruiting the SC-MS under a 2 kg loading.

Recruitment in Overshooting Attributed to a Novel

Sustained−1 kg Loading
The overshooting during the SC-MS learning process is
transiently driven by incorrectly controlling the joint and is
eventually suppressed by gravity. Therefore, the SC-MS learned
to control the overshooting with very little extensor activation,
which functions as the agonist for overshooting. Because of
this learning condition of the SC-MS, the overshooting driven
by the sustained negative disturbance on the hand is further
severe novel disturbance in recruiting the SC-MS than the
undershooting driven by the sustained positive disturbances such
as 1 kg or 2 kg loading. Therefore, to recruit the SC-MS during the
sustained negative disturbance-driven overshooting, the SC-MS
needs to be tuned more than the sustained positive disturbance-
driven undershooting. By simulating the recruitment of the T-
SC-MS during the overshooting driven by a sustained negative
disturbance, we tested the tuning process to robustly recruit the
SC-MS in an entirely novel context as follows.

After loading a −1 kg weight on the simulated hand, the
joint angular trace was raised to about 98◦ and then decreased
to about 66◦ (top graph, first column of Figure 7A). Finally,
the joint angular trace overshot by about 76◦ and then stably
recovered to the preloading state. According to this contextual
joint angular trace, the CV was determined as shown in
the second graph of the first column of Figure 7A. Further,
gravity, which reflects the movement, needs to be considered
in determining the CV. As mentioned in the first paragraph of
this section, it is comparatively easy for an SC-MS to suppress
the incorrect control-driven transient overshooting because of
gravity during its learning process. Therefore, even if the
overshooting attributed to the sustained negative disturbance
on the hand is a further severe context for the SC-MS, the CV

for recruiting the SC-MS during the overshooting is less than
that during the undershooting [second graph, second column of
Figure 4 (first column of 5A), and first column of 6A]. Because
of this evaluation of the CV, as shown in the third graph in
the first column of Figure 7A, the change in the GCP and ICP
weights in response to this negative sustained disturbance was
suppressed to a small range in comparison with its response to
positive sustained disturbances such as a 1 or 2 kg loading. This
process was regulated using Equation (1). As mentioned above,
this response is attributed to the learning condition of SC-MS, in
which the transient overshooting driven by incorrect control is
controlled by a small amount of activity of the extensors because
gravity contributes to the recovery of the preloading state from
its overshooting state. Because of this learning condition of SC-
MS, the extensors functioning as agonists for negative sustained
disturbance need to be loaded more than the flexors functioning
as agonists for positive sustained disturbance. To process this
additional modulation, the SC-MS-produced muscle activities
shown in the second column of Figure 7A were loaded with the
antagonistic and agonistic TGs, GF and GE, respectively. These
TGs were produced by the following process.

As shown in the first graph in the bottom row of Figure 7B,
the three incremental components of GF and GE were produced
by combining the three k-term components of the TG (third
graph, top row of Figure 7B) and their corresponding deviations
from the desired state (second graph, top row of Figure 7B).
These three components of GF and GE were summed to produce
1GF and 1GE, respectively, which were accumulated to produce
GF and GE as shown in the second graph in the bottom row of
Figure 7B. The precise process was achieved as follows.

In agreement with the rules shown in Figures 2A,B, during
the initial overshooting shown in the first graph in the top
row of Figure 7B, the kp component was almost suppressed in
response to the high overshooting but the kd and ka components
drastically increased in response to the large increase in ‖12t

G
‖.

After the joint movement started to recover to its preloading
state at about 0.57 s, kp drastically increased in response to the

large increase in 12̇G
t ; this increase was attributed to the high-

speed downward motion, and both the kd and ka components
decreased in response to the decrease in ‖12t

G
‖. Thereafter,

the joint angle finally recovered to its preloading state via the
slight undershooting and the second overshooting, which was less
pronounced. In response to this recovery, kp decreased to almost
zero, whereas kd and ka stably decreased to their preloading
values via their transient increase, as shown in the third graph
in the top row of Figure 7B. According to Equation (4), these
three k-term components combined with their corresponding
deviations of desired states to produce the 1GF and 1GE, as
shown in the first graph in the bottom row of Figure 7B. Under
the rule of Equation (6), the 1GF and 1GE were regulated to
modify theGF andGE, respectively, as shown in the second graph
in the bottom row of Figure 7B. The bottom part of this graph
shows the1GF and1GE, which actually contribute to modifying
the GF and GE, respectively. The tracks of the TGs and their
contribution to tuning the SC-MS were as follows.

GE substantially increased during the overshooting and then
stabilized at a lower level owing to the recovery of the preloading
state. To assist GE, GF was completely suppressed during the
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FIGURE 7 | Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a −1 kg loading. (A) Loading the SC-MS-produced

signals with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT),

brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps

brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).
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overshoot and then increased for a very short time before
decreasing slowly to a stable level.

Because of this modulation of GF, as shown in the top
of the second and third columns of Figure 7A, the SC-MS-
produced signals of flexors were dynamically unloaded in
response to the overshooting attributed to a negative sustained
disturbance because they were antagonists for the negative
disturbance. In comparison with the flexors, the extensors
were highly loaded with GE to function as agonists against
the overshooting (the bottom part of the second and third
columns, Figure 7A). Through this tuning process, the handicap
in recruiting an SC-MS under overshooting conditions attributed
to sustained negative disturbances, which was mentioned in the
first paragraph of this section, could be overcome.

DISCUSSION

A learned MS can potentially be used for effective motor control
in a novel context. In addressing this issue, we hypothesized
that an MS can be retained through learning it in the CNS and
then recruiting it. Through the simulation using the proposed
neurophysiological computational model, we have shown that
the MS might be retained through learning the muscle synergy
to achieve its task and recruited through dynamically tuning
it according to novel feedback contexts. In this tuning, the
learned muscle synergy, termed SC-MS, produces the muscle
control signals through its dynamic modulation according to
the feedback context and these signals are additionally loaded
with tuning signals, termed TG signals, which are dynamically
modulated according to the feedback context. Through this
dynamic modulation, a skilled MS might be recruited in a variety
of conditions besides those experienced during motor learning.
Furthermore, this involvement of the muscles’ synergy with a
skilled MS demonstrates that it might subserve the learning and
retaining of an MS in the CNS.

Dynamic Modulation of an MS According
to the Feedback Context
To recruit a learned MS for novel contexts, we assumed that a
learnedMS is dynamicallymodulated for the feedback context. In
addressing this issue, we used the concept of SC (Min et al., 2018),
which dynamically regulates the redundant functional roles of
individual muscles according to consecutive feedback contexts.
As described in Equations (1) and (2), this SC-driven regulation
contributes to the dynamic modulation of anMS for the feedback
context. Consequently, this modulation contributes to robust
recruitment of an MS in various novel feedback contexts that did
not involve the learning of an MS, as shown in Figures 4, 5A, 6A,
7A. These results show that the SC may be an optimal strategy to
learn an MS and to recruit it.

Robust Recruitment of a Learned MS
Through Tuning It According to the
Feedback Context and Its Implications
Even if an SC-MS is modulated according to the feedback context
as mentioned in the above subsection, this modulation is learned

in the dynamics under the learning context of SC-MS. Because of
this learning condition, to robustly recruit an SC-MS in a novel
context, it needs to be additionally tuned. To validate this tuning,
we hypothesized that a muscle loading tuner may operate in the
CNS to tune the SC-MS through dynamically loading its muscle
control signals according to the feedback context. This hypothesis
was validated with the simulation results shown in Figures 5A,
6A, 7A, in which the SC-MS could be successively recruited
through dynamically loading its muscle control signals according
to the feedback context under three different novel sustained
disturbances. This recruitment may involve the rapid adaptation
of motion control to novel contexts without learning a new MS
for them. If this rapid adaptation is impaired, the normal motion
control in novel dynamic contexts may be seriously disturbed.
To test the potential clinical implications, this hypothesis needs
to be further studied in neurophysiology. Through this study,
the proposed model may provide a new clinical view of
motion control disorders attributed to cortico-BG loop-related
CNS diseases in pathophysiology and therapeutics/rehabilitation.
Furthermore, through the transcortical circuit, the recruitment-
produced muscle control signals may be transferred to the
cerebellum as a correction signal to train a neural network,
on which a feedforward motor command is generated in the
cerebellum (Kawato et al., 1987; Kawato, 1990; Kambara et al.,
2009). Therefore, the T-SC may involve robust feedforward
motion control in novel contexts.

Previous studies, such as proportional integral derivative
control (Petkos and Vijayakunar, 2007) and optimal feedback
control (Todorov and Jordan, 2002; Liu and Todorov, 2007)
in modeling the feedback control process, focused only on the
correction of the motor control error but did not address the
contribution of a learned MS to feedback control. Our new
approach to recruitment of a learned MS in novel contexts may
offer a new viewpoint for this previously unaddressed feedback
control issue.

Recruiting a Learned MS via the
Cortico-Basal Ganglia Loop
The BG contributes to “stabilization augmentation” by
facilitating an optimal activity that fits the desired situation
and context while suppressing other ongoing CNS activities
that would interfere with the desired behavior (Mink, 1996).
Furthermore, Turner and Anderson (1997) showed that
movement-related changes in pallidal discharge to specific
parameters of movement are discharge of neurons in the
skeletomotor portions of both pallidal segmentations. This
BG response is demonstrated by encoding the combination of
the sensory and contextual state through the sensory feedback
process, which may involve online motion control with the
selective facilitation and suppression of different frontal
thalamocortical circuits (Turner and Anderson, 1997). As the
BG reinforces a new MS through reinforcement learning and
retains it subsequently (Lehéricy et al., 2005), this online motion
control role of the BG may involve the recruitment of a learned
MS retained in the BG, which is dynamically modulated by
the selective facilitation and suppression of different frontal
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thalamocortical circuits. Based on the aforementioned previous
studies, this cortico-BG scheme may be a common framework
for the learning and recruitment of an MS in the CNS. Therefore,
the T-SC-driven recruitment of a learned MS though the cortico-
BG loop may involve different kinds of motion control, which
need to respond to various sensory feedback contexts via the
M1 from different sensory areas, including the somatosensory
cortex and the visual cortex. This hypothesis may be reasonable,
even if it has recently been demonstrated that the roles of neural
structures differ between different tasks (Paparella et al., 2020).

Muscle Control Scheme of the
Corticospinal Tract in Recruiting an SC-MS
The experimental evidence introduced in section Recruiting a
Learned MS via the Cortico-Basal Ganglia Loop shows that
the BG may retain a learned MS and involve the recruitment
of it to control movement according to the feedback context.
Based on this concept, to recruit an SC-MS according to the
feedback context, we assumed that the BG may dynamically
modulate an SC-MS with the synergistic combination of two
control policies of the SC, GCP, and ICP, which is driven by a
combination of their inhibition and disinhibition. As shown in
Figure 1, this synergistic combination of GCP and ICP in the
BG produces muscle control signals through the corticospinal
tract. As outlined in section Introduction, GCP-driven signals
may function as group unit control signals that are decoded
into synergistic combinations of MPs (Bizzi et al., 1991; d’Avella
et al., 2003) retained in the spinal cord because the group
units produce the contraction sets of muscles termed MPs in
processing the SC. Furthermore, as the ICP-driven signals serve
as the control signals for individual muscle units, they may
be directly copied from the corticomotor neurons among the
CSTs to MNs. Therefore, the ICP-driven signals sculpt GCP-
driven signals through their synergistic combination to optimally
modulate an SC-MS according to the feedback context. This
recruitment of an SC-MS may support the concept introduced
in section Introduction that muscle activities are produced by
combining two pathways of MNs (Rathelot and Strick, 2009).

Evaluating the Proposed Model in
Comparison With Human Subjects
Evaluating the proposed computational model in comparison
with human subjects, the two disadvantages of the computational
model were as follows.

In this study, an SC-MSwas learned only through one learning
experience of a particular task, which was to move the hand
to its goal within a limited joint angular range as described
in section Learning and Recruitment Condition of an SC-MS.
While learning the SC-MS, no disturbances were involved (Min
et al., 2018), as described in section Learning and Recruitment
Condition of an SC-MS. Therefore, the recruitment of an SC-
MS under sustained disturbance was simulated as a pure novel
recruitment, as described in section Results. To evaluate this
simulation in comparison with human subjects, as shown in the
top row of Figure 4, we approximated a pure novel recruitment
as closely as possible using only those data that were recorded

during the first trial for each of the four subjects. However, the
subjects have experienced and learned various tasks during their
whole life and thereby have experienced various tasks under
various sustained disturbances. Therefore, the sustained 1 kg
loading on the hand is not a pure novel context for these subjects.
Consequently, this should be taken into account when evaluating
the simulation results through a comparison with the subjects’
movements. Because of the disadvantage attributed to pure novel
recruitment, an SC-MS is even more difficult to recruit under
novel sustained disturbances, such as a sustained 1 kg loading,
than the subjects. Considering this disadvantage, wemay evaluate
that an SC-MS can be robustly recruited through the proposed
recruitment model termed T-SC.

As mentioned in section Introduction, innate and learned
MSs are recruited in the CNS for effective and fast motion
control in response to novel external disturbances. To validate
this, the recruitment of a learned MS in a pure feedback
control process is the most optimal task because the pure
feedback control, which is not involved in the prediction of any
disturbance, may need the most effective and fast response to
the feedback context. Therefore, as described in section Results,
novel recruitment with T-SC was simulated in pure feedback
control. To evaluate this simulation by comparison with human
subjects’ movements, as shown in the top row of Figure 4, we
approximated this pure feedback control process as closely as
possible, as described in section Experimental Setup, through
an experimental setting in which the subjects were blindfolded
and not informed regarding the timing of the loading. To avoid
the weight being misloaded on the subjects’ hands, as shown
in Figure 3B, the distance between the initial falling point of
the weight and the initial position of the hand was set close to
zero. Further, we instructed the subjects not to predict the timing
of the loading weight. However, even though this instruction
was given to the subjects, they might instinctively have some
preliminary joint stiffness by co-contraction of both agonists and
antagonists in preparation for the incoming disturbance before
loading. Because of this, as shown in the top row of the right
column of Figure 4, the mean joint angular trace of the subjects
after loading undershot was slower than the simulating joint
angular trace. In evaluating the simulation results in the top
row of Figure 4, we considered that the simulation model was
disadvantaged in responding to a disturbance in comparison with
human subjects.
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