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Editorial on the Research Topic

Microbial Hydrogen Metabolism

Among the most ancient and widespread metabolic traits of microbial life is the ability to
interconvert molecular hydrogen (H2; Lane et al., 2010; Schwartz et al., 2013; Peters et al.,
2015). Two classes of metalloenzymes, [FeFe]-hydrogenase and [NiFe]-hydrogenase, catalyze the
reversible oxidation of H2 to electrons and protons (Volbeda et al., 1995; Peters et al., 1998); a third
class of hydrogenase, termed [Fe]-hydrogenase or Hmd, catalyzes the reduction of the substrate
methenyltetrahydromethanopterin with H2 (Shima et al., 2008). The three classes of enzyme differ
structurally and are phylogenetically unrelated. As such, they represent profound examples of
convergent evolution (Wu and Mandrand, 1993; Vignais and Billoud, 2007; Greening et al., 2016).

Approximately a third of sequenced microorganisms, spanning at least 70 microbial phyla,
encode hydrogenases and are thus predicted to be capable of interconverting H2 (Peters et al.,
2015; Greening et al., 2016). The earliest evolving hydrogenase enzymes harbor a [NiFe] co-
factor and these are thought to have functioned oxidatively (Boyd et al., 2014; Weiss et al.,
2016), with [FeFe]-hydrogenases thought to have emerged more recently (Mulder et al., 2010).
Both [NiFe] and [FeFe]-hydrogenases have since diversified to function in aerobic and anaerobic,
heterotrophic, and autotrophic, and chemotrophic and phototrophic metabolic backgrounds
(Kovács et al., 2005; Tamagnini et al., 2007; Thauer et al., 2010; Schwartz et al., 2013; Koch
et al., 2014; Schuchmann and Muller, 2014; Pinske and Sawers, 2016). Many bacteria and archaea
oxidize H2 as a low potential electron donor, an activity typically (albeit not exclusively) attributed
to various lineages of [NiFe]-hydrogenase enzymes. Various bacteria, archaea, and microbial
eukaryotes also evolve H2 as a diffusible end product during fermentative metabolism through the
activity of [FeFe]- or [NiFe]-hydrogenases (Horner et al., 2000; Kim and Kim, 2011; Marreiros
et al., 2013; Schwartz et al., 2013; Pinske and Sawers, 2016). In many organisms, the ability to
metabolize H2 is a facultative trait that is regulated through the expression and maturation of
hydrogenases (Schwartz et al., 2013; Greening and Cook, 2014). In such taxa, H2 represents a
substrate that organisms utilize to supplement their energy metabolism, thereby allowing for an
expansion of their niche space in ecosystems where other sources of reductant are low or variable
in supply (e.g., Amenabar et al., 2018).

The implications of H2 in ecosystem level processes is increasingly being realized in both
environmental and biomedical settings. Awide range of ecosystems have now been described where
H2 cycling supports the bulk of primary production and where it forms the basis by which species
interact, leading to ecologically structured communities. Much of the research on H2 metabolism
to date has focused on ecosystems where H2 is present at elevated concentrations due to biological
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activity (e.g., anoxic sediments, gastrointestinal tracts; Sørensen
et al., 1981; Wolf et al., 2016; Greening et al., 2019; Kessler et al.,
2019) or geological activity (e.g., hydrothermal vents, subsurface
systems; Petersen et al., 2011; Brazelton et al., 2012; Telling et al.,
2015; Dong et al., 2019; Lindsay et al., 2019). More recently, it
has been recognized that atmospheric H2 can serve as source
of reductant for aerobic soil microorganisms and that this can
influence the composition of the atmosphere (Conrad, 1996;
Constant et al., 2010; Ji et al., 2017; Cordero et al., 2019). In
parallel, medical microbiologists have shown that H2 metabolism
is critical for the virulence of numerous pathogens, including
Helicobacter, Clostridia, and Enterobacteriaceae (Kaji et al., 1999;
Olson and Maier, 2002; Maier et al., 2004, 2013).

This special issue, featuring 10 articles from 46 different
authors, explores microbial H2 metabolism from the molecular
to the ecosystem scale. In the area of anaerobic metabolism, there
are articles exploring themetabolism of H2-metabolizing bacteria
capable of sulfate reduction, acetogenesis, halorespiration, and
fermentation. Two articles investigate H2 oxidation in sulfate-
reducing bacteria using the model system Desulfovibrio vulgaris
(Fauque et al., 1988; Caffrey et al., 2007). Smith et al. present
a mathematical model of the growth and metabolism of
this bacterium, whereas Löffler et al. investigate the kinetic
isotope fractionation associated with its H2 oxidation activity.
A comprehensive review led by Schuchmann et al. covers
recent advances in understanding clostridial H2 metabolism;
it details the discovery and characterization of multimeric
electron-bifurcating [FeFe]-hydrogenases, including those
associated with formate dehydrogenases (Schut and Adams,
2009; Schuchmann and Müller, 2012, 2013; Buckel and Thauer,
2018). Another article led by Dragomirova et al. focuses
on heterologous expression of a [NiFe]-hydrogenase from
dehalogenating Chloroflexi (Kublik et al., 2016; Hartwig
et al., 2017), reporting another unexpected association with
formate dehydrogenase activity. Pinske explores a third type
of formate dehydrogenase-linked hydrogenase, namely the
classical formate hydrogenlyase complex of Enterobacteriaceae
(McDowall et al., 2014), and its association with two novel
iron-sulfur proteins.

Several articles also investigate aerobic H2 metabolism.
Islam et al. report two other novel iron-sulfur proteins in
mycobacteria, demonstrating that they are essential for the
activity of the two high-affinity hydrogenases described in this

lineage (Greening et al., 2014). Carere et al. meanwhile, build
on the recent discovery that verrucomicrobial methanotrophs
are facultative mixotrophs (Carere et al., 2017; Mohammadi
et al., 2017) by showing resource allocation ofMethylacidiphilum
varies depending on H2 availability. Three articles also explore
H2 metabolism at the ecosystem level. Adam and Perner
explore the diversity of aerobic and anaerobic H2 metabolism in
deep-sea hydrothermal vent systems, whereas Meyer-Dombard
et al. investigate the influence of H2 on biogeochemical
cycling in serpentinizing springs in the Philippines. Teng et al.
review the previously underexplored area of H2 metabolism in
bioremediation, including in the reduction of organohalides,
nitroaromatic compounds, and heavy metals (Chardin et al.,
2003; Hong et al., 2008; Schubert et al., 2018).

In summary, this special Research Topic sheds light on the
diverse role of H2 in microbial metabolism and uncovers novel
enzymes and pathways that mediate this process. This body of
work highlights the intricate linkages between H2 cycling and
the cycling of various other compounds, including methane,
formate, carbon dioxide, sulfate, and organohalides, among
others. In turn, these findings pave way for future studies on the
biochemistry, physiology, ecology, and industrial applications of
microbial H2 metabolism.
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Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the

catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex,

which disproportionates formate to H2 and CO2 during mixed acid fermentation in

enterobacteria. FHL comprises minimally seven proteins and little is understood about

how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN,

as being involved in FDH-H assembly into the FHL complex. In order to understand

how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach

to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL

complex stability and assembly were investigated. Deletion of the hycB gene reduced

redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent

H2-production, and reduced Hyd-3 activity. These data are consistent with HycB being

an essential electron transfer component of the FHL complex. The FDH-H activity of the

hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the

double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%.

Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was

without significant effect on FHL-dependent H2-production or total Hyd-3 activity; FDH-H

protein levels were also unaltered. This is the first description of a phenotype for the E. coli

ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked

FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN

and ysaA, but the hydN deletion strain could not be complemented. Introduction of these

plasmids did not affect H2 production. Bacterial two-hybrid interactions showed that

YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further

novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also

discovered and described. Together, these data indicate that FDH-H activity measured

with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with

three independent small subunits and suggest that FDH-H can associate with different

redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.

Keywords: [NiFe]-hydrogenase, formate hydrogenlyase, YsaA, HydN, formate dehydrogenase H, FDH-H,

ferredoxin, FeS-cluster proteins
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INTRODUCTION

Ferredoxins are small proteins containing non-heme iron as
iron-sulfur (FeS) clusters and they serve as electron carriers
within the cell (Bruschi and Guerlesquin, 1988; Beinert, 1990).
The group of ferredoxin proteins is ubiquitously distributed, very
diverse and different classes can be distinguished based on the FeS
cluster type (Bruschi and Guerlesquin, 1988; Beinert et al., 1997).
They have typical cysteine motifs in common that co-ordinate
the FeS clusters. In addition to the ferredoxin protein itself,
Fdx, which is involved in FeS cluster synthesis, ferredoxin-like
proteins often have functions as small or β-subunits of modular
respiratory complexes like the E. coli proteins NarH of the nitrate
reductase, HybA of the H2-oxidizing hydrogenase 2, FdoH and
FdnH of the formate dehydrogenases O and N, respectively,
NrfC of the periplasmic nitrite reductase, HycB and HycF of
the H2-producing formate hydrogenlyase (FHL) complex and
HyfA of the FHL-homologous complex, FHL-2. These proteins
are predicted to have a similar core-fold with alpha-antiparallel
beta sandwiches to hold the FeS-clusters (Pfam domain Fer4).
In addition to the above, a number of other ferredoxin-like
proteins are known in E. coli. Occasionally, these proteins are
required for full activity of a particular respiratory enzyme, but
are not essential components of the final enzyme. Among those
are the NapF, G and H proteins, which are required for the full
activity of the periplasmic nitrate reductase, and HydN, which
is required for full formate dehydrogenase H activity (FDH-
H) (Maier et al., 1996; Brondijk et al., 2002; Nilavongse et al.,
2006). Other ferredoxin-like proteins like AegA and YsaA are
not located within or close to an operon encoding an enzyme
with predicted oxidoreductase activity and no phenotype has yet
been described for mutants lacking these genes (Cavicchioli et al.,
1996).

The FHL complex in E. coli is the main route of H2 production
under fermentative growth conditions (Pinske and Sawers,
2016). The complex comprises a bis-molybdopterin guanine
dinucleotide (Mo-bis-PGD)-dependent FDH-H that oxidizes
formate to electrons and CO2. FDH-H is physically linked to
the [NiFe]-hydrogenase protein HycE by 3 iron-sulfur (FeS)
proteins. These are the FDH-H small subunit HycB, which has a
ferredoxin-like fold and carries 4 FeS clusters, the ferredoxin-type
protein HycF with 2 predicted FeS clusters, and the hydrogenase
small subunit, HycG with a single FeS cluster. These five subunits
are attached to the cytoplasmic side of the membrane by the
HycC and HycD proteins. Notably, the fdhF gene, which encodes
FDH-H, is located separately on the chromosome from the FHL-
encoding hyc-operon, but it belongs to the same regulon (Sawers,
2005; Pinske and Sawers, 2016). Furthermore, it was established
that FDH-H is the most loosely attached protein component of
the FHL complex (McDowall et al., 2015). In addition to the Mo-
bis-PGD cofactor, the FDH-H protein contains a selenocysteine
and a FeS cluster, the latter of which requires insertion prior to
attachment of FDH-H to the FHL complex (Boyington et al.,

Abbreviations: FHL, formate hydrogenlyase; Mo-bis-PGD, molybdopterin
guanine dinucleotide; BV, benzyl viologen; FDH-H, formate dehydrogenase H;
MU, Miller Units.

1997). A further function for FDH-H has been proposed as
part of an alternative FHL-2 complex, encoded by the hyf -
operon and expressed under different growth conditions in E. coli
(Andrews et al., 1997; Trchounian et al., 2012). While FDH-H
activity is associated with fermentative growth, the other formate
dehydrogenases in E. coli, FDH-N and FDH-O, are associated
with respiratory formate oxidation. FDH-N is active during
nitrate respiration while FDH-O is active in the presence of both
oxygen and nitrate (Sawers et al., 1991).

It has been suggested that HydN forms an additional pool
of small subunits for FDH-H when it is not incorporated into
the FHL complex (Sargent, 2016). Due to a high similarity with
YfrA from Proteus vulgaris, the probable FeS subunit of fumarate
reductase, it was further suggested that HydN could be involved
in the electron transfer from formate to fumarate. However, a
1hydN strain was investigated for its ability to transfer electrons
from formate to fumarate, and proved to be unimpaired (Maier,
1997). Notably, the hydN gene is in an operon with the hypF gene
(Maier et al., 1996) and HypF is one of the universal maturases
that assemble the [NiFe]-cofactor. Due to its co-expression with
hypF, the product of hydN was also suggested to be involved in
H2-metabolism of the cell. Nevertheless, the co-occurrence of
hydN and hypF is negligible in other organisms, while on the
other hand hydN scores highly in its co-occurrence with hycB
(0.778) and with fdhF (0.572) (Szklarczyk et al., 2015), suggesting
a tight functional linkage.

HydN is predicted to harbor four [4Fe-4S] clusters and
resembles a formate dehydrogenase small subunit similar to
HycB of the FHL complex with which it shares 39% amino acid
identity (52% similarity). Although both proteins share the same
ferredoxin-like fold, suggesting a function in electron transfer,
they cannot functionally replace one another (Maier, 1997).
Interestingly, the hydN gene forms a transcriptional unit with
the fdhF gene in the opportunistic pathogen Serratia liquefaciens.
This FDH-H is similar to the E. coli protein, but it harbors a
cysteine instead of the catalytic selenocysteine in its active site. A
respective E. coli Cys variant is 20-fold less active than the SeCys
protein (Pinske and Sawers, 2016). Nevertheless, fermentative
gas production from glucose has been observed in S. liquefaciens
(Brenner et al., 2006), but it was not yet identified whether this
gas is CO2 or H2.

Due to the weak phenotype of the hydN deletion strain
(Maier et al., 1996), a new homology search was conducted to
identify other possible homologs, and revealed the ferredoxin-
type protein YsaA (synonym YiaI) in E. coli, which shares 62%
amino acid identity (72% similarity) with HydN and is therefore
even more closely related to HydN than HycB. The ysaA gene
co-occurrence with fdhF is 0.545 and thus in the same range as
the hydN-fdhF co-occurrence (Szklarczyk et al., 2015). Therefore,
the presence of YsaA might exhibit functional redundancy with
HydN. Nothing is known about the ysaA gene and it is not
located near any hydrogenase-associated genes. However, an
interaction with NuoE, a protein of the closely to FHL related
respiratory Complex I, which is required for the association of
the diaphorase subunit, and with RclA (synonym YkgC) has been
reported (Arifuzzaman et al., 2006). Furthermore, expression of
the gene is 2.7 fold up-regulated under anoxic conditions (Kang
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et al., 2005). Therefore, we wanted to investigate the role of YsaA
in H2 metabolism and to establish the interaction network of
these ferredoxin-like proteins based on the hypothesis described
above.

MATERIALS AND METHODS

Growth Conditions and Strain Construction
Strains and plasmids used in this study are listed in Table 1.
Strains were routinely grown in liquid LB medium in a shaking
incubator or on LB agar plates. For determination of enzyme
activities and bacterial two hybrid interactions, the bacteria
were grown in buffered TGYEP medium supplemented with
glucose: 1% (w/v) trypton, 0.5% (w/v) yeast extract, 0.8% (w/v)
glucose, 0.1M potassium buffer, pH 6.5; according to Begg
et al. (1977). The medium was supplemented with 100 µg
ml−1 ampicillin to ensure plasmid maintenance. Furthermore,
when required, chloramphenicol was used at 12.5 µg ml−1

and kanamycin at 50 µg ml−1. The strain DHD-N was used as
1hydN mutant and was previously described (Maier et al., 1996).
The ysaA deletion was constructed in BW25113 transformed
with the lambda red recombinase plasmid pKD46 according
to Datsenko and Wanner (2000) by using the oligonucleotides
ysaA_5’KO 5′-CTCTGGCACTCTGCTGTTTTAGTGCAA
AGGAGTGATCATG CCATGGTCCATATGAATATCCTCC-3′

and ysaA_3′KO 5′-CGCACTGTTCCGGCGTTGAGAAAC
GCCGGAAAACGTTTCA GCGATTGTGTAGGCTGGA
GCT-3′ to amplify the cat gene from pKD3. The mutation was
subsequently moved to MC4100, DHD-N and JW2694 (1hycB)
by P1vir phage transduction (Miller, 1972). The resistance
cassette was eliminated using the pCP20 plasmid as described
(Cherepanov and Wackernagel, 1995). The deletion of aegA
was introduced by the method of Hamilton et al. (1989) by
cloning the upstream region as KpnI/BamHI fragment with
the oligonucleotides DaegA1_KpnI 5′-GCGGGTACCGCCTGA
TACCACGGCAAATC-3′ and DaegA2_BamHI 5′-GCGGGA
TCC CATAATAAAACGATTCATAAC-3′ and the downstream
region as BamHI/HindIII fragment with the oligonucleotides
DaegA3_BamHI 5′-GCGGGATCCCAGTCAAATCTCACT
GATAG-3′ and DaegA4_HindIII 5′-GCGAAGCTTCGCCGG
TTTTGATCATCTCC-3′ into pMAK705 and recombining
with the desired target strain as described. Introduction of
the 1hycB deletion in DHD-N backgrounds or vice versa
has been done according to Datsenko and Wanner (2000) by
introducing the lambda red recombinase on the pKD46 plasmid,
growing competent cells and inducing them with 10mM L-
arabinose before electroporation of a PCR fragment containing a
kanamycin resistance cassette and the upstream and downstream
regions of the gene. These PCR fragments were obtained after
amplification of the corresponding regions from strain JW2694
(1hycB) or JW2683 (1hydN). All clones were verified using
colony PCR.

Cloning of ysaA and hydN
Cloning of ysaA gene in the pJET1.2 cloning vector
(commercially available from Thermo Fisher Scientific)
was done by using the T18-ysaAFW_HindIII 5′-GCGAAG

TABLE 1 | Strains and plasmids.

Strain Genotype Reference/source

MC4100 F− araD139 1(argF-lac)U169 ptsF25

deoC1 relA1 flbB150− rspL150−
Casadaban, 1976

BW25113 F− 1 (araD-araB)567 1

lacZ4787(::rrnB-3) λ− rph-1 1

(rhaD-rhaB)568 hsdR514

Baba et al., 2006

DHD-N As MC4100, but 1hydN Maier et al., 1996

JW2683 As BW25113, but 1hydN::kan Baba et al., 2006

JW2694 As BW25113, but 1hycB::kan Baba et al., 2006

CPH090 As BW25113, but 1ysaA This work

CPH010 As MC4100, but 1ysaA This work

CPH011 As MC4100, but 1hydN 1ysaA This work

CPH012 As MC4100, but 1aegA This work

CPH013 As DHD-N (1hydN), but 1aegA This work

CPH014 As CPH010 (1ysaA), but 1aegA This work

CPH015 As JW2694 (1hycB), but 1ysaA This work

CPH016 As CPH015 (1hycB 1ysaA), but

1aegA

This work

CPH017 As JW2694 (1hycB), but 1aegA This work

CPH018 As DHD-N (1hydN), but 1hycB This work

CPH019 As CPH015 (1hycB 1ysaA), but

1hydN

This work

CPH020 As MC4100, but 1hyaB 1hybC

1hycAI 1fdhF

This work

RM102 As MC4100, but 1

(srl-recA)306::Tn10 fnr zci::Tn10

Birkmann et al., 1987

BTH101 F′, cya-99, araD139, galE15, galK16,

rpsL1(StrR), hsdR2, mcrA1, mcrB1

Karimova et al., 1998

PLASMIDSa

pCP20 FLP+, λcl857+, λpR Repts, AmpR,

CmR
Cherepanov and

Wackernagel, 1995

pKD46 Contains λ Red genes γ, β and exo;

AmpR
Datsenko and Wanner,

2000

pJET1.2 Commercially available cloning

vector; AmpR
Thermo Fisher

Scientific

phydN pBluescriptSK(+) containing hydN in

BamHI and EcoRI site; AmpR
This work

pysaA pJET1.2 containing ysaA in MCS;

AmpR
This work

pT25 Bacterial two hybrid plasmid

expressing the T25 fragment and a

MCS at the 3
′
end of T25; CmR

Karimova et al., 1998

pT25-zip pT25, Leucine zipper fused to T25

fragment (1–224 amino acids of

CyaA)

Karimova et al., 1998

pT18 Bacterial two hybrid plasmid

expressing the T18 fragment and a

MCS at the 5
′
end of T18; AmpR

Karimova et al., 1998

pT18-zip pT18, Leucine zipper fused to T18

fragment (225–399 amino acids of

CyaA)

Karimova et al., 1998

aFurther plasmids from the bacterial two hybrid system that were constructed here can

be found in Table S2.

CTTGATGAACCGGTTTATTATTGCG-3′ and T18C/T25-
ysaARW_KpnI 5′-GCGGGTACCTTATCAAACAGGCTG
CTGCCGTAGC-3′ oligonucleotides for amplification from

Frontiers in Microbiology | www.frontiersin.org 3 June 2018 | Volume 9 | Article 123810

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Pinske HydN and YsaA Enhance FDH-H Activity

chromosomal DNA of MC4100 by the Q5-DNA polymerase
(NEB) according to the manufacturer’s instructions. The
hydN gene was cloned into pBluescriptSK(+) by using the
oligonucleotides HydN_FW_BamHI 5′-CGCGGATCCATG
AACCGTTTCATCATTGC-3′ and HydN_RW_EcoRI 5′-CGC
GAATTCTTAGAACATCAGCGCCGT-3′, digestion of both
vector and PCR product with BamHI and EcoRI and subsequent
ligation. All cloning products were verified by sequencing.

Bacterial Two Hybrid Interactions
The bacterial two-hybrid system (Karimova et al., 1998) was
used to clone constructs by amplifying the respective gene
fragment from chromosomal DNA of MC4100 and digesting
both the pUT18 or the pT25 target vectors and the insert with
the same restriction enzymes before ligation. The bacterial two
hybrid vectors were constructed to yield functional in-frame
fusion proteins and all inserts were verified by sequencing. The
oligonucleotides used are listed in Table S1, where the restriction
sites are given as part of the oligonucleotide name. Generally,
the entire orf was amplified except for the start codons (T25
fusions) or stop codons (T18 fusions) and all newly generated
constructs are listed in Table S2. Plasmids of pT25 origin were
transformed together with a pUT18 plasmid into BTH101 and
grown as anaerobic culture in TGYEP, pH 6.5 at 30◦C for 16h
containing both ampicillin and chloramphenicol as antibiotics.
Determination and calculation of β-galactosidase activity was
done according toMiller (1972). Each experiment was performed
three times independently, and the activity for each sample was
determined in triplicate. Alternatively, a volume of 5 µl of the
culture was spotted on McConkey plates containing 0.5% (w/v)
maltose, the antibiotics ampicillin and chloramphenicol. The
plates were then aerobically incubated at 30◦C for 16 h.

Enzymatic Assays
For determination of protein activities, the cells were grown in
TGYEP medium, pH 6.5 as standing liquid cultures in 50ml
reaction tubes at 30◦C for 16 h. For induction of NAR and FDH-
N enzyme synthesis, sodium nitrate was added to the anaerobic
cultures to a final concentration of 1% (w/v). The cells were
harvested by centrifugation, sonicated (20W, 0.5 s pulses, 3min)
and the extracts used directly. Activities of the soluble formate
dehydrogenase and total hydrogenase were measured as formate-
dependent benzyl viologen (BV) reduction (FDH-H) and H2-
dependent BV reduction (hydrogenase), respectively at 600 nm as
described in Pinske et al. (2011a). Detection of NAR and FDH-N
activities by in-gel activity staining was done as described (Pinske
and Sawers, 2012). Immunoblotting against FDH-H (1:3000)
polypeptides was done after denaturing gel electrophoresis as
described (Pinske et al., 2011a).

GC Analysis of Gases in Culture
Headspace
For assessing the activity of the intact FHL complex, the H2

content of the gas headspace was quantified. The H2 content of
the 10ml gas phase of an overnight culture was measured by
sampling 200 µl in a GC-2010. The system was equipped with
a packed column (Shin Carbon Micropacked column ST80/100).

The carrier gas was N2 with a flow rate of 13.9ml min−1, the
injector was kept at 140◦C, the column at 110◦C and the TCD
detector at 150◦C and 40mA. Quantification was done with a
calibration curve of known amounts of H2.

Bioinformatics
The unrooted tree was created based on an alignment conducted
within Uniprot (Clustal Omega) and visualized with iTOL
(Sievers and Higgins, 2013; Letunic and Bork, 2016).

RESULTS AND DISCUSSION

HydN has Paralogues in E. coli
A phylogenetic tree shows that YsaA and HydN are most
closely related among all known ferredoxin-like proteins in
E. coli (Figure 1). Together with the two proteins HycB and
HyfA, the small subunits of the FHL and FHL-2 complexes,
respectively, and the AegA, YgfS, and YgfT proteins of unknown
function, they form a group of paralogous proteins (see Figure S1
for alignment). In contrast, the HycF proteins represents the
FeS-protein that provides an electron relay between the small
subunit HycB of FDH-H and Hyd-3; however, HycF is more
distantly related to HydN and YsaA. It is located in the tree
together with proteins that are known to be required for full
activity of respiratory complexes like NapF and NapG, but
also with the E. coli ferredoxin protein Fer and the pyruvate
formate-lyase activator PflA, which is required to introduce a
radical into pyruvate formate-lyase (Knappe et al., 1969). The
more classical β-subunits of multi-subunit respiratory enzymes
like hydrogenase 2 (HybA), formate dehydrogenases N and O
(subunits FdnH and FdoH, respectively), and nitrate reductases
(NarH and NarY) cluster separately. Proteins of unknown
function can be found clustered together both with the β-
subunits and with the HydN paralogues. Due to the characteristic
architecture of these proteins and the incorporation of one or
more FeS clusters, it seems probable that these proteins also have
a role in electron transfer within the cell.

The 1ysaAMutant has a Similar Phenotype
to the 1hydN Mutant
Previous research from the Böck group had identified a hydN
deletion strain, that resulted in reduced FDH-H activity to
38% compared to the parental, while total hydrogenase activity
remained at approximately 80% (Maier et al., 1996). These
findings could be reproduced in this study using both the same
strain (DHD-N) used previously (Maier et al., 1996), as well
as the 1hydN strain (JW2683) of the Keio collection (Table 2).
The FDH-H activity was reduced to 59 and 34%, while total
hydrogenase activity was reduced only to 74% in the 1hydN
strains DHD-N and JW2683, respectively. Having an influence
on the activity of an enzyme, but not completely abolishing it
suggested that HydN exhibits some redundancy with another
unknown protein. Therefore, the gene coding for themost similar
protein YsaA was deleted by the Datsenko and Wanner method
(Datsenko and Wanner, 2000) and the deletion moved into the
MC4100 and DHD-N backgrounds, resulting in strains CPH010
and CPH011 (see Table 1). The strain CPH010 phenocopied the
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FIGURE 1 | Phylogenetic tree classifying the ferredoxin-like proteins of E. coli.

The proteins were classified based on a Clustal Omega alignment. The

evolutionary distances were computed with a mBed algorithm (Sievers and

Higgins, 2013) and visualized with iTOL (Letunic and Bork, 2016). The green

background shows known β-subunits of respiratory complexes, in red are

proteins that have no known function, blue are the proteins that are known to

be required for the activity of a certain protein, but not part of the catalytically

active complex and yellow is the electron carrier protein ferredoxin.

1hydN strains and had reduced FDH-H activity to 57% of the
parental while total hydrogenase activity was comparable with
the MC4100 parental (Table 2). Remarkably, the double deletion
strain had a reduction in FDH-H activity to 28% demonstrating
that the effect of the hydN and ysaA deletion was additive.

Only 10% of FDH-H activity measured anaerobically
as formate-dependent BV reduction remained detectable
when hycB was deleted (Table 2). The formate-dependent
BV reduction was not detectable in an fdhF deletion strain and
therefore highly specific for FDH-H [data not shown and (Pecher
et al., 1983)]. This is in agreement with a previous finding that
the HycB, HycE, HycF, and HycG are equally required for full
FDH-H activity (Sauter et al., 1992). In contrast to the hydN
and ysaA deletion strains, the hycB deletion disrupted electron
flow from FDH-H to hydrogenase 3 and the strain retained
only residual hydrogenase activity due to hydrogenases 1 and
2 activities, and thus had a total hydrogenase activity that was
reduced by more than 90% (Pinske et al., 2011b). The strain
consequently failed to produce H2. The effect of the hycB
deletion on FDH-H activity was even more dramatic when
the hycB and ysaA deletions were combined, which resulted
in a residual 3% FDH-H activity (Table 2). The same could be
observed when the hycB and hydN deletions were combined in
strain CPH018, which showed 2% remaining FDH-H activity
and total hydrogenase activity as low as in the 1hycB strain
JW2694. Most strikingly, the combination of all three deletions

in strain CPH019 resulted still in a detectable FDH-H activity of
about 1% compared to the parental.

Electron transfer from formate to BV is thought to occur
via the FeS cluster in the FDH-H polypeptide, which is located
within 15 Å from the protein’s surface (Boyington et al., 1997).
The isolated enzyme without the small subunit was also shown
to be electrochemically active in both directions on an electrode
(Bassegoda et al., 2014) and in the BV assay (Axley et al., 1990).
The findings in the present study, however, strongly suggest
that in extracts FDH-H activity requires the presence of the
ferredoxin-like proteins and in the absence of these only 1% of
the FDH-H activity can be assayed directly from the enzyme.

FDH-H delivers the electrons from formate oxidation that are
required for H2 production by the FHL complex. Alternative
electron donors other than formate are not known for the
FHL complex, but synthetic protein-fusion experiments with
Thermotoga maritima ferredoxin have shown that HycB can
receive electrons from other sources like pyruvate:ferredoxin
oxidoreductase to some extent (Lamont et al., 2017). When
cultures are grown on glucose, the H2 from the FHL complex
accumulates in a closed growth vessel and can partially be
re-oxidized by hydrogenase 1 and 2 in E. coli. However, in
our experience the amount of accumulated H2 also roughly
corresponds to the activity of the FHL complex and therefore
is a good indicator of FHL activity (Lindenstrauß et al., 2017).
By sampling the gas headspace it became clear that the hydN
deletion reduced the FHL activity to 86% of the wild-type level,
while the ysaA hydN double deletion retained 91%H2 production
and the ysaA deletion alone had no influence on the amount
of H2 produced (Table 2). Thus, the reduced FDH-H activity
as measured by BV reduction in the hydN and ysaA deletion
strains does not correlate with FHL activity as quantified by H2

production, perhaps suggesting that this reduced activity might
be derived from FDH-H associated with another complex or
complexes.

To test whether the effect of deleting the ysaA or hydN
on FDH-H activity is specific, a further candidate AegA
from the HydN-YsaA family of proteins was targeted and its
corresponding gene aegAwas deleted. The aegA gene was deleted
alone and in combination with hydN, ysaA or hycB, but the effect
on FDH-H activity was not greater than in the respective strains
without aegA deletion (Table 2). Similarly, the aegA deletion
had no influence on H2 production and total hydrogenase
activity. This indicates that FDH-H cannot transfer electrons
from formate via AegA to the redox dye BV.

Previous experiments also showed that the complementation
of the hydN deletion did not restore full FDH-H activity (Maier
et al., 1996), which could be confirmed here regardless of whether
strain DHD-N or strain JW2683 was used. The 1hydN 1ysaA
double deletion strain showed the same behavior like the two
1hydN mutants after complementation with phydN. Somewhat
surprisingly, restoration of almost parental FDH-H activity could
be achieved when the 1ysaA deletion strain was transformed
with phydN (Table 2), which further substantiates at least partial
redundancy of function between these proteins. The 1ysaA
mutant could also be complemented with pysaA to parental levels
of FDH-H activity. Notably, however, introduction of the pysaA
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TABLE 2 | Influence of YsaA and HydN on formate dehydrogenase H, hydrogenase, and H2-production activities.

Strain (genotype) FDH-H (U * mg protein−1) % FDH-H activity of

MC4100

Total hydrogenase (U * mg

protein−1)

H2-headspace (µmol * ml

culture−1 * OD
600 nm−1 )

MC4100 2.81 ± 0.03 100 6.06 ± 0.05 9.7 ± 0.6

DHD-N (1hydN) 1.67 ± 0.24 59 5.87 ± 0.41 8.3 ± 0.2

JW2683 (1hydN) 0.95 ± 0.06 34 4.50 ± 0.70 9.4 ± 4.5

1ysaA 1.60 ± 0.06 57 5.93 ± 0.69 9.5 ± 0.8

1aegA 2.14 ± 0.40 76 4.18 ± 0.30 11.6 ± 2.0

1hycB 0.27 ± 0.09 10 0.25 ± 0.03 n.d.

1hydN 1ysaA 0.80 ± 0.22 28 5.00 ± 0.55 8.8 ± 0.5

1hydN 1aegA 0.76 ± 0.34 27 2.31 ± 0.89 10.1 ± 2.8

1hydN 1hycB 0.06 ± 0.03 2 0.21 ± 0.02 n.d.

1ysaA 1aegA 2.25 ± 0.15 80 4.34 ± 1.12 11.9 ± 1.9

1hycB 1ysaA 0.09 ± 0.03 3 0.21 ± 0.10 n.d.

1hycB 1aegA 0.11 ± 0.01 4 0.21 ± 0.05 n.d.

1hycB 1ysaA 1aegA 0.12 ± 0.05 4 0.19 ± 0.01 n.d.

1hycB 1ysaA 1hydN 0.03 ± 0.02 1 0.28 ± 0.01 n.d.

JW2683 + phydN 1.05 ± 0.18 37 2.79 ± 0.51 10.2 ± 1.9

JW2683 + pysaA 0.85 ± 0.15 30 3.52 ± 0.35 10.4 ± 1.6

DHD-N + phydN 0.97 ± 0.08 35 4.40 ± 0.39 10.1 ± 0.1

DHD-N + pysaA 0.86 ± 0.11 31 3.76 ± 0.23 8.4 ± 0.9

1ysaA + phydN 2.47 ± 0.85 88 5.71 ± 1.57 11.4 ± 0.5

1ysaA + pysaA 2.55 ± 0.60 91 5.06 ± 0.63 9.7 ± 0.4

1hydN 1ysaA + phydN 1.09 ± 0.33 39 3.79 ± 0.86 10.9 ± 0.6

1hydN 1ysaA + pysaA 0.77 ± 0.15 27 3.70 ± 0.14 8.3 ± 0.2

The strains indicated were grown in TGYEP, pH 6.5 and assayed as described in the Materials and Methods section. The values are given for three independent biological replicates

with standard deviations. n.d., not determined.

plasmid into the 1hydN strain caused a further reduction of
FDH-H activity. This shows that although the effect of the hydN
and ysaA deletions on FDH-H activity is additive, the functions of
the gene products are not identical. The use of two independent
1hydN strains indicates that the lack of complementation is
not strain-specific and therefore is unlikely due to additional
mutations. The hycB deletion cannot be complemented for H2

production by plasmid-encoded HydN (Maier, 1997).
Based on the observation that ysaA and hydN had little

influence on total hydrogenase activity and H2-production, the
addition in trans of these genes was not expected to cause
significant differences in these activities. The complementation
with either phydN or pysaA caused a slight reduction in total
hydrogenase activity in all strains tested. Another interesting
effect of the complementation was visible with the GC-headspace
H2-quantification. While the addition of pysaA had no influence
on the amount of H2 produced by the cells in comparison to the
respective plasmid-free strains, the addition of phydN increased
the H2 amount slightly in all strains.

Interaction Network of YsaA and HydN
In vivo protein interactions can be monitored by the bacterial
two-hybrid system (Karimova et al., 1998). Generally, a T18 and a
T25 domain of the adenylate cyclase is fused to the target proteins
C-terminally or N-terminally, respectively, and any interaction
can be quantified by measurement of β-galactosidase activity.

Growth of the cells under the conditions where proteins under
investigation are also normally synthesized ensures that a protein
interaction that requires a further unknown interaction partner
can be identified. Therefore, the reporter strain was grown under
anoxic conditions with glucose, where proteins of the mixed-
acid fermentation are synthesized. These conditions show that
empty pT25 and pUT18 plasmids yielded 217 ± 11 Miller units
(MU) of activity while the zip positive control resulted in 3,619
± 548 MU. An activity of more than 600 MU generally reflects
a real interaction (Karimova et al., 1998). As additional control
the empty pT25 and pT18 plasmids were co-transformed with
each of the pT18 or pT25 protein fusions constructed here,
respectively. They showed that the empty pT18 plasmid is not
able to activate β-galactosidase in combination with any pT25
fusions. However, the empty pT25 plasmid gave a signal of more
than 800 MU for the T18-HydN and T18-HyfA constructs while
the other constructs showed interactions with less than the 600
MU threshold established here. Semi-aerobic interactions were
additionally assessed qualitatively by spotting the colonies on
McConkey-Maltose plates and showed that not all interactions
identified anaerobically are detectable aerobically (Figure 2).

Initially, the interaction of FDH-H and its predicted small
subunit HycB was determined. Because the N-terminus of this
80 kDa FDH-H protein (encoded by fdhF) is located at a distance
of 20 Å from the FeS cluster (Boyington et al., 1997) it is
therefore likely to be able to interact with its cognate small
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FIGURE 2 | Qualitative aerobic assessment of bacterial two hybrid interactions. The respective combinations of pT18 and pT25 plasmids in strain BTH101 as given

on the edges were spotted with a volume of 5 µl from liquid culture on McConkey-Agar containing 0.5% (w/v) maltose, ampicillin, and chloramphenicol and grown

over night at 30◦C. The red color indicates an interaction, while pale yellowish colors show a lack of interaction.

subunit. Therefore, a T25-FdhF fusion, in which the entire FDH-
H protein was fused to the C-terminus of the T25 fragment,
was constructed. The interaction with the C-terminal fusion of
HycB (fused to T18) showed an activity of 800 MU, which was
also within the same order of magnitude as the interaction with
T18-HydN (728 MU) and T18-YsaA (694 MU) with T25-FdhF
(Table 3). No other positive interactions of the FdhF protein
were detectable here (Figure 3). The T18-HydN fusion, however,
showed also an interaction with the empty T25 plasmid in this
order of magnitude (892 MU) and the interaction will need
to be evaluated carefully by additional methods. Although, the
C-terminal fusion between FDH-H and HycB was previously
shown to be successful in transferring electrons into the FHL
complex (McDowall et al., 2015), the T18-FdhF showed neither
an interaction with HycB nor with the other tested protein
fusions. This could indicate that HydN and YsaA only transiently
interact with FdhF before it assembles into the FHL complex,
as we could show recently for the HycH protein interaction

with the hydrogenase 3 of the FHL complex on the pathway
of assembly into the complex (Lindenstrauß et al., 2017). But
instead of a temporal order of interactions, these results could
also be interpreted to indicate that FDH-H interacts with other
protein complexes.

The strong interaction between the N-terminal fusions of
HydN, YsaA and the HycB proteins and their corresponding
C-terminal fusions favors the latter hypothesis (Table 3). These
range between 2,413 MU for the HycB self-interaction and 4,608
MU for the T25-YsaA × T18-HydN interaction. Interestingly,
the AegA protein participates in this interaction network by
showing strong interactions with itself, HycB, HydN, and YsaA.
The close proximity of the second ferredoxin-like protein in
the FHL complex HycF to HycB is probably the reason this
protein interacts with the same partners as HycB, with the
exception of FDH-H. It is striking that no interaction between
the HycB homolog, HyfA, of the FHL-2 complex and the FDH-H
can be detected here. Although a missing bacterial two hybrid
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FIGURE 3 | Protein interaction network of the E. coli ferredoxin-like family.

Based on the results of the bacterial two hybrid interaction studies in Table 3,

the anaerobic interactions of FDH-H and the ferredoxin-like proteins AegA,

FdnH, HycB, HycF, HydN, HyfA, NuoE and YsaA are shown. Self-interactions

are not visualized and the colors indicate known β-subunits (green), proteins

that are required for full activity of a respiratory protein (blue) and those

proteins with unknown function (red).

interaction does not necessarily reflect the absence of a true
interaction, the similarity of the HycB and HyfA proteins and
the detectable interaction of the former, is a strong indication
and these initial findings do not support the proposed interaction
(Bagramyan and Trchounian, 2003) between FDH-H with the
HyfA subunit of the FHL-2 complex. It should be noted, however,
that AegA and YsaA interact in only one orientation with HycB
and HycF of the FHL complex. Thus, further fusion constructs
need to be tested.

It is noteworthy that YsaA also showed an interaction with
FdnH and NarH, the two β-subunits of nitrate-dependent
formate dehydrogenase (FDH-N) and nitrate reductase (NAR),
respectively. The genes encoding these enzymes are transcribed
at only a low level (Walker and DeMoss, 1991; Li and Stewart,
1992), therefore these subunits of FDH-N and NAR complexes
are likely to be present in the assay. The HydN and AegA proteins
do not interact with these nitrate-dependent proteins, supporting
the specificity for the YsaA interaction. The FdnH and NarH
proteins furthermore show a self-interaction as well as a cross-
interaction, which can be explained for FdnH because the enzyme
complex FdnGHI exists as a trimer of trimers (Jormakka et al.,
2003) and although primarily coupled by a Q-cycle the special co-
localisation of FDH-N and NAR activities was shown to be highly
organized and proximal to each other in the membrane (Alberge
et al., 2015).

The previously identified interaction between YsaA with
NuoE, a subunit of Complex I, using Tap-tag technology
could also be verified here (Arifuzzaman et al., 2006). Further
interactions of NuoE with itself and NarH, as well as of
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NuoE with the FHL subunits HycB and HycF were also
detected here. However, the Fdx protein did not show any
interaction with the protein fusions tested here, showing that
its interaction with the proteins of the FeS-insertion machinery
of the cell is highly specific (Tokumoto et al., 2002). This
further indicates that it is not the general fold of the protein
that is important for the interaction, but particular residues
on the surface of the respective protein. Moreover, there are
significant differences in length in a loop region between the
third and the fourth Cys-rich (Cx2Cx2−8Cx3C) motif and the
C-terminal region of the HycB, HydN, and YsaA proteins, the
former lies at the expected interface with the interaction partner
and this loop could also play a role in discrimination of the
correct target. All identified interactions are summarized in
Figure 3.

FDH-H Protein Pattern Remains Unaltered
Remarkably, although the activity of FDH-H varies among
the 1hydN and 1ysaA strains, western blot analysis
of the polypeptide showed that both the migration
pattern and the protein amount appear similar in the
ysaA, hydN, and ysaA hydN deletion mutants when
compared to the protein in the MC4100 parental strain;
the same is the case for strains carrying the plasmids
pysaA or phydN (Figure 4A). Therefore, the transcription
or translation of the fdhF gene is not altered in the
mutants.

A native PAGE showing the activities of hydrogenases 1 and 2
(Figure 4B) reveals that the migration pattern and in-gel enzyme
activities are similar regardless of the presence or absence of
either HydN or YsaA. These hydrogenases harbor the same
[NiFe]-cofactor as HycE, the hydrogenase of the FHL complex.

Thus the influence is strictly limited to FDH-H and not the
hydrogenases in general.

The hydN and ysaA Deletions Have no
Influence on Other
Mo-bis-PGD–Dependent Activities
In order to investigate whether the influence of the hydN and
ysaA mutations on FDH-H is generally related to Mo-bis-
PGD cofactor insertion, the cytoplasmic NAR and periplasmic
FDH-N activities, which are both Mo-bis-PGD-dependent, were
analyzed. Figures 4C,D show that the amount and migration
patterns of the nitrate reductase and formate dehydrogenase
N activities were comparable to those in the wild type strain,
regardless of whether HydN and YsaA are present or not. Both
activities are strictly dependent on Fnr for gene expression, hence
the 1fnr mutant RM102 served as a negative control.

CONCLUSIONS

Of the three formate dehydrogenases encoded in the E. coli
genome, FDH-H is the only cytoplasmic enzyme. An early
mutant study by Mandrand-Berthelot showed that differences
in the requirements for maturation of the cytoplasmic and
periplasmic formate dehydrogenases exist (Mandrand-Berthelot
et al., 1988). One of the isolated mutants had a mutation in fdhE
and was deficient in the respiratory formate dehydrogenases N
and O only; this mutation was without effect on transcription
(Stewart et al., 1991). The mutation in another mutant was
located in fdhD and had an effect on all three formate
dehydrogenases, because FdhD, as was shown recently (Thomé
et al., 2012; Arnoux et al., 2015), is involved in donating a sulfur

FIGURE 4 | Influence of HydN and YsaA on activities and polypeptides. (A) Shows a western blot of anaerobically grown cells as indicated by their genotype after

separation of 25 µg protein in a SDS-PAGE, transfer to nitrocellulose and challenge with antibodies against FDH-H. (B) Shows identical samples but non-denatured

and separated in a native-PAGE and stained for hydrogenase activity with H2/BV and TTC. (C,D) Show a native-PAGE of cells as indicated by their genotype on top

after anaerobic growth with 1% nitrate and staining for NAR (nitrate, BV, TTC, dithionite) and FDH-N (PMS, NBT, formate) activities, respectively.
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ligand to the Mo-bis-PGD. It is conceivable that HydN and
YsaA could contribute specifically to the cofactor activation of
the FDH-H protein, since NAR and FDH-N activities are not
impaired in the mutant; however, it would be expected that a
more pronounced phenotype of the individual mutants would be
observed, making this explanation unlikely.

Based on the observation of reduced, but not completely
abolished FDH-H activity in the ysaA, hydN, hycB and the
double and triple deletion mutants, it appears that full redox
dye-reducing activity of FDH-H can only be measured when
all three proteins are present simultaneously. Therefore, either
all three proteins are involved as components of the FHL
complex, although only HycB is essential (Sauter et al., 1992;
Table 2) or HydN and YsaA could represent alternative β-
subunits of the FDH-H enzyme, linking formate oxidation
to other protein complexes. Neither HydN nor YsaA could
be identified as components of the purified FHL complex
(McDowall et al., 2014). If HydN and YsaA were transient
components of FHL, then it would be anticipated that additional
copies of hydN in trans should compete for FDH-H protein
with HycB and reduce the H2-production by the FHL complex.
However, H2 production by the FHL complex remained
essentially unaffected by all these mutations, which renders this
hypothesis improbable. The data currently suggest, therefore,
that HydN/YsaA provide alternative electron transfer routes
for FDH-H to non-hydrogen producing electron acceptor
complexes.

The phylogenetic analysis shows that AegA and YgfST are
closely related to YsaA and HydN. Although AegA interacts
with the ferredoxin-like proteins, the lack of interaction with
FDH-H reflects an absence of influence on FDH-H activity.
The AegA protein is a fusion of two domains; an N-terminal
ferredoxin-like domain and a C-terminal glutamate synthase

domain (Cavicchioli et al., 1996). Identifying its role within
the network of ferredoxin-like proteins will require further
experiments.

Generally, these interaction data have to be carefully evaluated
because some proteins require interaction partners and if the
physiological partner is not present, they seem to interact
non-specifically with a number of other proteins. Therefore,
future protein-protein interaction experiments will have to be
performed in vitro. So far, HydN has proved recalcitrant to over-
production and alternative purification strategies will have to
be established to allow full biochemical characterization of this
protein family.
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The highly oxygen-sensitive hydrogen uptake (Hup) hydrogenase from Dehalococcoides
mccartyi forms part of a protein-based respiratory chain coupling hydrogen oxidation
with organohalide reduction on the outside of the cell. The HupXSL proteins were
previously shown to be synthesized and enzymatically active in Escherichia coli. Here
we examined the growth conditions that deliver active Hup enzyme that couples
H2 oxidation to benzyl viologen (BV) reduction, and identified host factors important
for this process. In a genetic background lacking the three main hydrogenases of
E. coli we could show that additional deletion of genes necessary for selenocysteine
biosynthesis resulted in inactive Hup enzyme, suggesting requirement of a formate
dehydrogenase for Hup activity. Hup activity proved to be dependent on the presence
of formate dehydrogenase (Fdh-H), which is typically associated with the H2-evolving
formate hydrogenlyase (FHL) complex in the cytoplasm. Further analyses revealed that
heterologous Hup activity could be recovered if the genes encoding the ferredoxin-like
electron-transfer protein HupX, as well as the related HycB small subunit of Fdh-H were
also deleted. These findings indicated that the catalytic HupL and electron-transferring
HupS subunits were sufficient for enzyme activity with BV. The presence of the HupX
or HycB proteins in the absence of Fdh-H therefore appears to cause inactivation of
the HupSL enzyme. This is possibly because HupX or HycB aided transfer of electrons
to the quinone pool or other oxidoreductase complexes, thus maintaining the HupSL
heterodimer in a continuously oxidized state causing its inactivation. This proposal was
supported by the observation that growth under either aerobic or anaerobic respiratory
conditions did not yield an active HupSL. These studies thus provide a system to
understand the redox sensitivity of this heterologously synthesized hydrogenase.

Keywords: hydrogen, formate, ferredoxin-like proteins, electron transfer, uptake hydrogenase, heterologous
expression
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INTRODUCTION

The bacterial genus Dehalococcoides belongs to the phylum
Chloroflexi and the type species D. mccartyi is completely
dependent on hydrogen for growth (Löffler et al., 2013;
Schubert et al., 2018). D. mccartyi synthesizes several types
of [NiFe]-hydrogenase (Hyd), and the hydrogen-uptake (Hup)
hydrogenase is thought to be the main enzyme involved
in H2-driven organohalide respiration. As D. mccartyi lacks
quinones (Kube et al., 2005; Schipp et al., 2013), a direct
transfer of the electrons derived from H2 oxidation by Hup
via protein–protein interaction has been implicated (Kublik
et al., 2016; Hartwig et al., 2017; Seidel et al., 2018). The Hup
enzyme is found in a respiratory supercomplex comprising
a two-subunit complex iron-sulfur molybdoprotein, OmeAB
(organohalide molybdoenzyme) and one of a number of
reductive dehalogenases (Rdh), which catalyze the reduction of
particular organohalides that function as electron acceptors for
the bacterium (Fincker and Spormann, 2017; Schubert et al.,
2018). In addition, the ferredoxin-like protein HupX, which
resembles electron-transferring subunits of oxidoreductases, is
associated with the complex.

Hup comprises two structural components: the catalytic
subunit HupL, containing the NiFe(CN)2CO cofactor and HupS,
the small electron-transferring subunit, which is predicted
to have three iron-sulfur clusters. The membrane-associated,
ferredoxin-like protein HupX is encoded within the operon
of the Hup hydrogenase, but seems to associate more tightly
with the core OmeAB-Rdh complex (Hartwig et al., 2017;
Seidel et al., 2018), suggesting that it is the main mediator
of electron transfer and acts as a “connector” protein between
HupSL and the rest of the complex. HupX is homologous to
HybA, a component of the Hyd-2 H2-oxidizing hydrogenase
of Escherichia coli (Sargent et al., 1998; Beaton et al., 2018)
and recent studies have provided strong evidence indicating
that HybA is responsible for coupling electron transfer to the
quinone pool, as Hyd-2 has no membrane subunit with a
recognized heme cofactor, necessary for electron transfer into the
membrane (Dubini et al., 2002; Pinske et al., 2015; Beaton et al.,
2018).

The ferredoxin-like family of electron–transfer proteins
harbors four [4Fe-4S] clusters and an interaction network of
several members of this family has been uncovered recently in
E. coli (Pinske, 2018). One member is HycB, the small subunit of
the formate dehydrogenase (Fdh-H) that forms one of the two
catalytic centers of the formate hydrogenlyase (FHL) complex,
and another is the related protein HydN, which is proposed to
be involved in FHL complex assembly (Pinske, 2018). Generally,
however, the physiological function of most members of this
emerging superfamily of iron-sulfur-containing electron transfer
proteins is not understood.

Due to the fact that D. mccartyi grows extremely slowly and
produces limited amounts of biomass, making biochemical
studies challenging, we have established a heterologous
expression system for the synthesis of a functional Hup
enzyme in E. coli (Hartwig et al., 2015b). It is hoped that this
system will facilitate a detailed biochemical characterization

of Hup. Despite the significant phylogenetic distance between
D. mccartyi and E. coli, the Hyp maturation system responsible
for [NiFe]-cofactor biosynthesis and insertion (Böck et al., 2006)
is capable of recognizing the HupL apoprotein and generating
an active enzyme when the complete operon encoding Hup is
expressed under anaerobic conditions (Hartwig et al., 2015b).

As well as the three structural genes, the hupXSL-
hoxM operon (Figure 1A) also encodes a HupL-specific
maturation endoprotease (HoxM). Initial characterization
of the heterologously synthesized Hup enzyme identified a
fast-migrating complex, mainly comprising HupS and HupL
after native-PAGE, which migrated at a similar position as
the complex present in crude extracts of D. mccartyi that
contained HupSL and minor amounts of HupX (Hartwig
et al., 2015b). This suggests that HupSL alone is capable of
catalyzing H2-dependent reduction of the redox dye BV.
The activity of the complex was oxygen-sensitive, even when
synthesized anaerobically in the heterologous host (Hartwig
et al., 2015b), suggesting that a cofactor in the enzyme is
redox-sensitive. Whether this redox-sensitive cofactor is in
HupL, HupS or HupX is unclear. Therefore, to address these
questions, in the current study we decided to determine the
conditions necessary for heterologous production of HupSL
activity and whether any other components of the host’s
metabolism, other than the Hyp proteins, are required for
activity to be visualized. Surprisingly, we found a strong
dependence for HupSL activity on the Fdh-H enzyme of the
FHL complex. This dependence on Fdh-H for activity proved
to be linked to an involvement of ferredoxin-like electron
transfer proteins and to the redox sensitivity of the HupSL
heterodimer.

MATERIALS AND METHODS

Strains and Growth Conditions
The strains listed in Table 1 were used in this study. For routine
molecular biology studies, growth was on LB-agar plates or in LB-
broth at 37◦C (Miller, 1972). Anaerobic growths were performed
at 37◦C as standing liquid cultures and cells were usually grown
in M9 minimal medium (47.6 mM Na2HPO4 × 2 H2O, 22 mM
KH2PO4, 8.4 mM NaCl, 20 mM NH4Cl, 2 mM MgSO4, 0.1 mM
CaCl2, 0.1 mM thiamin dichloride, 0.2% w/v casamino acids)
containing 0.8% (w/v) glucose, or 0.4% (v/v) glycerol plus 15
mM fumarate, or 0.8% (w/v) glucose plus 1% (w/v) nitrate,
where indicated, as described (Sambrook et al., 1989). When
growth in rich medium was performed, buffered TGYEP (1%
w/v tryptone, 0.5% w/v yeast extract, 0.8% w/v glucose, 100 mM
potassium phosphate, pH 6.5) was used (Begg et al., 1977). The
growth medium was supplemented with trace element solution
SLA (Hormann and Andreesen, 1989). When required, the
antibiotic kanamycin or chloramphenicol was added to a final
concentration of 50 or 25 µg ml−1, respectively. Cells were
harvested anaerobically by centrifugation at 5,000 g for 15 min
at 4◦C when cultures had reached an OD600 nm of between 0.8
and 1.2. Cell pellets were used immediately or stored at −20◦C
until use.
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FIGURE 1 | HupX is not required for heterologous HupSL activity. (A) Schematic representation of the plasmids used in this study is shown. The plasmid inserts are
not drawn to scale but the complete hupXSLhoxM region encompasses 4216 bp (Hartwig et al., 2015b). (B) An in-gel activity stain for hydrogen-oxidizing activity is
shown. Crude extracts (70 µg of protein; 30 µg in the case of wild type MC4100) derived from FTD147 (1hyaB 1hybC 1hycE) carrying the indicated plasmids were
applied to a native polyacrylamide gel (7.5% w/v polyacrylamide). The migration positions of HupSL and the E. coli hydrogenases are indicated. The formate
dehydrogenases Fdh-N and Fdh-O (Fdh-N/O) have a weak hydrogen-oxidizing activity (Soboh et al., 2011), which is also indicated and was used as an internal
loading control for the experiment.

Plasmid and Strain Construction
The hupX gene (cbdbA131) was amplified as a 1212 bp
DNA fragment from chromosomal DNA isolated
from D. mccartyi strain CBDB1 using Pfu DNA
polymerase and the oligonucleotides hupX_fw (5′-
GGGGCATATGCCTAATGGAATGCTGATTG-3′) and
hupX_re (5′-GGGGCTCGAGCTAGTGCTTGCCAGCCTTG-
3′) and cloned in plasmid pACYC-Duet-I. Plasmid phupSL
was constructed by using pSHH18 (referred to as phupXSL
throughout this study) as template in a PCR mutagenesis
employing the Q5 R© Site-Directed Mutagenesis Kit (New England
Biolabs, NEB). Care was taken when deleting the hupX gene
to ensure that the ribosome binding site for the downstream
hupS gene remained intact by using the oligonucleotides
hupSLhoxM_fw (5′-ATGGAGTAGGAAAAATGTTTAATAC-
3′) and hupSLhoxM_re (5′-TCCTGTTGCCCCCCTTGT-3′)
and by following the instructions given in the Q5 R© Site-Directed
Mutagenesis Kit.

E. coli strains were constructed using P1kc-mediated phage
transduction (Miller, 1972) to introduce the respective defined
deletion mutation from the appropriate donor strain obtained
from the Keio collection (Baba et al., 2006) to generate the series

of FTD147 mutants lacking the structural genes encoding the
three formate dehydrogenases of E. coli. When multiple gene
knock-outs were constructed, the plasmid pCP20 was used to
remove the kanamycin antibiotic resistance cassette as described
(Cherepanov and Wackernagel, 1995).

Preparation of Crude Cell Extracts and
Cell Fractionation
Unless otherwise stated, all experiments were performed in
an anaerobic CoyTM chamber under an atmosphere of 95%
nitrogen/5% hydrogen. For standard hydrogenase enzyme
activity determination, E. coli cell paste was re-suspended at a
ratio of 1 g cell wet weight to 3 ml 50 mM MOPS buffer, pH 7.
Cells were disrupted by sonication (30 W power for 5 min with
0.5 s pulses). Unbroken cells and cell debris were removed by
centrifugation for 30 min at 50,000 g and 4◦C. The resulting crude
extract, unless otherwise stated, was used for all studies reported
herein.

In order to perform sub-cellular fractionation, periplasmic,
soluble and membrane fractions were isolated as described
(Sawers et al., 1985).
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TABLE 1 | Strains and plasmids used in this study.

Strain or plasmid Relevant genotype or characteristic(s) Reference or source

STRAIN

MC4100 F− araD139 (argF-lac)U169 ptsF25 deoC1 relA1 flbB5301 rspL150 Casadaban, 1976

RM220 As MC4100, but 1pflAB Kaiser and Sawers, 1994

FTD147 As MC4100, but 1hyaB1hybC1hycE Redwood et al., 2008

FTD1471fdnG As aFTD147, but 1fdnG This work

FTD1471fdoG As aFTD147, but 1fdoG This work

FTD1471fdhF As aFTD147, but 1fdhF This work

FTD1471fdnG1fdoG As aFTD147, but 1fdnG 1fdoG This work

FTD1471fdnG1fdhF As aFTD147, but 1fdnG 1fdhF This work

FTD1471fdoG1fdhF As aFTD147, but 1fdoG 1fdhF This work

FTD1471fdnG1fdoG1fdhF As aFTD147, but 1fdnG 1fdoG 1fdhF This work

FTD147 1selC As FTD147, but 1selC KanR This work

FTD150 As MC4100, but 1hyaB1hybC1hycE 1hyfG Redwood et al., 2008

FTD1501selB As FTD150, but 1selB KanR This work

CP1170 As MC4100, but 1hyaB1hybC1hycA-I This work

CPH008 As MC4100, but 1hycA-I 1fdhF This work

CPH020 As MC4100, but 1hyaB1hybC1hycA-I1fdhF Pinske, 2018

CPH021 As MC4100, but 1hyaB1hybC1hycA-I1fdhE This work

RT2 As MC4100, but 1hyaB1hybC1hycA-I1fdhE1pflA Pinske and Sargent, 2016

PLASMIDS

pCP20 FLP+, λcI857+, λpR Repts, AmpR, CmR Cherepanov and Wackernagel, 1995
bpSHH18 pACYC-Duet-I, hupXSLhoxM+ CmR = phupXSL Hartwig et al., 2015b

phupSL pACYC-Duet-I, hupSLhoxM+, CmR This work

phupX pACYC-Duet-I, hupX+, CmR This work

aThe series of FTD147 mutants with different combinations of Fdh gene mutations was constructed by transduction of mutations from the corresponding Keio collection
of mutants (see Materials and Methods). bNote that for reasons of clarity, this plasmid was referred to as phupXSL throughout this study.

Determination of protein concentration was done as described
(Lowry et al., 1951).

Non-denaturing Polyacrylamide Gel
Electrophoresis and Activity-Staining
Unless otherwise specified, non-denaturing polyacrylamide gel
electrophoresis (PAGE) was performed anaerobically. Separating
gels included 0.1% (w/v) Triton X-100 as described (Ballantine
and Boxer, 1985). The crude extracts, or sub-cellular fractions,
were incubated with a final concentration of 4% (w/v) Triton
X-100 prior to application (usually 50 µg of protein) to the gel,
which included 6% (w/v) polyacrylamide. Hydrogenase activity-
staining was done in 50 mM MOPS buffer pH 7.0, as described
(Sawers et al., 1985; Pinske et al., 2012), and included 0.5 mM BV
and 1 mM 2,3,5-triphenyltetrazolium chloride (TTC). Gels were
incubated under an atmosphere of 100% hydrogen gas.

Hydrogenase Activity Assay
Measurement of hydrogenase enzyme activity using BV as
electron acceptor was performed as described (Ballantine and
Boxer, 1985; Pinske et al., 2011). Briefly, anaerobically prepared
cuvettes (1.6 ml) were filled with 0.8 ml of H2-saturated,
anaerobic 50 mM MOPS buffer, pH 7.0, including 4 mM BV
and placed under a H2 atmosphere. After baseline determination,
the assay was initiated by adding enzyme sample (approximately
150 µg of protein). All assays were performed at 25◦C. The

wavelength used was 600 nm and an εM value of 7400 M−1 cm−1

was assumed for reduced BV. One million unit of enzyme activity
corresponded to the reduction of 1 nmol of substrate min−1.
Enzyme assays were performed in triplicate using three biological
replicates.

Denaturing Polyacrylamide Gel
Electrophoresis (PAGE) and Western
Blotting
Polypeptides in crude extracts were separated by 12.5% (w/v)
sodium dodecyl sulfate (SDS)-PAGE (Laemmli, 1970) and gels
were either stained with Coomassie Brilliant Blue R or transferred
to nitrocellulose membranes for western blotting, which was
performed as described (Towbin et al., 1979). The antibodies
used were either anti-Strep-tag (IBA Life Sciences), anti-Hyd-2
(Sargent et al., 1998), anti-HupL or anti-HupX peptide antibodies
(Hartwig et al., 2017).

RESULTS

HupL and HupS Are Sufficient for BV
Reduction Activity
The hupXSLhoxM operon has been shown to be functional
in anaerobically grown E. coli (Hartwig et al., 2015b). In
order to determine whether all three structural components
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(HupSL and HupX) are essential for the manifestation of
the H2:BV oxidoreductase activity observed in that study, we
constructed two additional plasmid derivatives, one of which
carried only the hupX gene, while the other included hupSLhoxM
but lacked hupX (Figure 1A). These plasmids, along with
pSHH18 (hupXSLhoxM+; Hartwig et al., 2015b; here referred
to as phupXSL in the aid of clarity), were introduced into
FTD147, which lacks the genes encoding the catalytic subunits
of Hyd-1, Hyd-2, and Hyd-3 (Redwood et al., 2008). After
fermentative growth, crude extracts were separated in native-
PAGE and stained for hydrogenase enzyme activity (Figure 1B).
As anticipated, the plasmid encoding only HupX showed no
hydrogenase enzyme activity in extracts of strain FTD147
(1hyaB1hybC1hycE), while both of the other plasmids resulted
in a fast-migrating activity band corresponding to the HupSL
heterodimer (Figure 1B). Notably, although the activity resulting
from introduction of the plasmid lacking the hupX gene (phupSL
in Figure 1B) was apparently weaker than that resulting from
introduction of phupXSL, both enzyme activities showed very
similar migration characteristics, indicating that HupX is neither
necessary for the ability of the enzyme to reduce BV nor seems
to co-migrate with HupSL in this particular activity band. This
result correlates well with earlier mass spectrometric analyses of
heterologously expressed enzyme, which identified mainly the
HupL protein (Hartwig et al., 2015b).

Manifestation of Heterologous HupSL
Enzyme Activity Requires Fermentative
Growth Conditions
In order to optimize conditions for the analysis of heterologously
produced HupSL activity, we tested different anaerobic growth
conditions using FTD147 (1hyaB1hybC1hycE) transformed
with either phupXSL or phupSL (Figure 2A). The activity band
was slightly more intense when cells were grown with 0.8% w/v

glucose compared with half that glucose concentration (0.4%
w/v). Suprisingly, however, no HupSL activity could be detected
when cells were grown under anaerobic respiratory conditions,
with either glycerol and fumarate or glucose and nitrate. Western
blot analysis of the extracts derived from anaerobically grown
strains after separation by SDS-PAGE using peptide antibodies
raised against HupL revealed that the HupL polypeptide could
be detected in each extract (Figure 2B). This indicates that
a lack of transcription of the hup genes under respiratory
conditions was not the reason for absence of HupSL enzyme
activity. Surprisingly, it was not possible to restore in vitro
HupSL enzyme activity to these extracts, even by incubating
the extracts under reducing conditions. This suggests that the
HupSL enzyme was irreversibly inhibited under the oxidizing
conditions that prevailed within the cells grown under these
conditions.

Quantitative assessment of H2-dependent BV reduction
activity in anaerobically prepared, concentrated crude
extracts of FTD147 (1hyaB, 1hybC, 1hycE) transformed
with phupXSL measured a low but detectable hydrogenase
activity of approximately 60 mU/mg (Table 2), which is in
good agreement with previously determined HupSL activity
in E. coli extracts (Hartwig et al., 2015b). The phenotypically
identical strain CP1170 (1hyaB, 1hybC, 1hycE) had a
background activity of 10 mU/mg. Brief incubation of
the extract from FTD147 + phupXSL in the presence of
oxygen resulted in a reduction of the HupSL activity by 50%
(Table 2).

HupSL Activity in E. coli Requires a
Functional Selenocysteine-Insertion
Machinery
The lack of HupSL enzyme activity after respiratory growth
is reminiscent of the effects of these growth conditions on

FIGURE 2 | Heterologous HupSL enzyme activity is only detectable in fermentatively growing E. coli cells. (A) Crude extracts derived from FTD147
(1hyaB1hybC1hycE) transformed with plasmid phupXSL (1) or phupSL (2) after growth in M9 minimal medium with the indicated carbon sources were separated in
native-PAGE and stained for hydrogenase enzyme activity, as described in the legend to Figure 1. (B) A western blot using peptide antibodies raised against HupL
(Hartwig et al., 2017) is shown in which the same extracts used in part A were separated in 10% (w/v) SDS-PAGE. The molecular mass marker proteins are
presented in kDa. MC4100 was the wild type strain.
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TABLE 2 | H2:BV oxidoreductase activities of E. coli strains carrying phupXSL.

Strain Anaerobic hydrogenase activity (mU mg protein−1) Activity after O2 exposure (mU mg protein−1)a

CP1170 (1hyaB,1hybC,1hycA-I) 10 ± 3b n.dc

FTD147 (1hyaB,1hybC,1hycE) + phupXSL 58 ± 18 29 ± 9

FTD1471fdnG,1fdoG 26 ± 13 n.d.

FTD1471fdnG,1fdoG + phupXSL 59 ± 1 22 ± 1

FTD1471fdhF 4 ± 2 n.d.

FTD1471fdhF + phupXSL 11 ± 1 n.d

aCrude extracts were exposed to air for 15 min prior to determination of hydrogenase activity. bAssays were performed in triplicate from 3 independent growth experiments.
The activity is shown together with the standard deviation. cn.d, not determined.

appearance of E. coli Hyd-3 and Fdh-H enzyme activities (Sawers
et al., 1985), with the exception that the effect on synthesis
of the E. coli enzymes is at the transcriptional level due to
depletion of the regulatory metabolite formate (Rossmann et al.,
1991). Due to the fact that HupSL is naturally associated
with a formate dehydrogenase-like enzyme, OmeAB (Kublik
et al., 2016; Hartwig et al., 2017), we wished to examine
the influence of the Fdh-O and Fdh-N enzymes, which are
phylogenetically related to OmeAB, on HupSL enzyme activity.
Initially, we introduced into strain FTD147 a mutation in the
selC gene, which encodes the selenocysteinyl-tRNASec necessary
for translation of special UGA codons as selenocyteine, and
which, when deleted, renders all Fdhs inactive (Leinfelder
et al., 1988). This would provide information on whether
HupSL enzyme activity was influenced by defects in formate
metabolism. The left panel shown in Figure 3 shows a control
for HupSL activity revealing that is was readily detectable in
strain FTD150 (1hyaB1hybC1hycE1hyfG), which is identical
to strain FTD147 with the exception that the gene encoding
the catalytic subunit of Hyd-4 (Andrews et al., 1997) is also
deleted (Redwood et al., 2008). Thus, both FTD150 and FTD147

FIGURE 3 | Appearance of HupSL enzyme activity is dependent on a
functional selenocysteine biosynthetic apparatus. Crude extracts (100 µg of
protein, except M4100 where 30 µg of protein were applied) of the indicated
strains were separated in native-PAGE and stained for hydrogenase enzyme
activity as described in the legend to Figure 1. Strains used include: MC4100
(wild type); FTD150 (1hyaB1hybC1hycE 1hyfG); FTD1471selC
(1hyaB1hybC1hycE 1selC).

yield an identical phenotype with regard to the heterologous
HupSL activity (see also below). Analysis of an extract of
the FTD147 1selC mutant revealed that no HupSL activity
was detectable (Figure 3 right panel). The lack of selC was
confirmed by the absence of the H2:BV oxidoreductase activity
associated with Fdh-N/O in the strain (Soboh et al., 2011).
This result confirms that HupSL enzyme activity is linked to
formate metabolism, most likely through one of the formate
dehydrogenases (Fdh) the bacterium synthesizes under anaerobic
conditions. Introduction of a mutation in selB, which encodes
the special translation factor required to decode the UGA codon
as selenocysteine (Forchhammer et al., 1989), into FTD150 also
revealed a similar lack of HupSL activity (data not shown),
confirming that the phenotype was due to a lack of selenocysteine
incorporation.

In-Gel HupSL Activity Depends on the
Fdh-H Enzyme
Dependence on the selenocysteine biosynthetic machinery for
appearance of HupSL enzyme activity suggests an involvement
of one or more of the three Fdhs present in E. coli. To
determine which of the three Fdhs is required for the
appearance of heterologous HupSL activity, we constructed
a series of strains (see Table 1) lacking one or more of
the genes encoding the catalytic subunit of FdnG (of Fdh-
N), FdoG (of Fdh-O), or FdhF (of Fdh-H) (Pinske and
Sawers, 2016; Figure 4). Strain FTD150, which lacked all four
hydrogenases and the quadruple and quintuple mutants of
FTD147, which lacked Hyd-1, Hyd-2, Hyd-3 as well as either or
both respiratory Fdhs (Fdh-N and Fdh-O), retained fully active
HupSL (Figure 4). Hydrogenase activity in extracts derived from
FTD1471fdnG1fdoG with plasmid phupXSL was approximately
60 mU, while the strain without plasmid had approximately
half this activity (Table 2). Exposure of the crude extract from
FTD1471fdnG1fdoG transformed with phupXSL to air resulted
in a similar 50–60% reduction in hydrogenase activity as was
observed with FTD147 containing phupXSL (Table 2). This
result confirms that HupSL is oxygen-labile (Hartwig et al.,
2015b).

The only strains that lacked a detectable HupSL enzyme
activity band were those that lacked the fdhF gene, which encodes
the Fdh-H component of the FHL complex (Figure 4). Assay of
hydrogenase activity in extracts derived from FTD1471fdhF +
phupXSL failed to show HupSL-dependent hydrogenase activity
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FIGURE 4 | Only strains lacking Fdh-H, the product of the fdhF gene, failed to show HupSL enzyme activity. Crude extracts (90 µg of protein) of the indicated strains
were separated in native-PAGE and stained for hydrogenase enzyme activity as described in the legend to Figure 1. The asterisk denotes a fast-migrating form of
the Fdh-O enzyme (Hartwig et al., 2015a). Strains used include: FTD147 (1hyaB1hybC1hycE), plus its deletion derivatives; FTD150 (1hyaB1hybC1hycE 1hyfG);
CP1170 (1hyaB1hybC1hycA-I); CPH020 (1hyaB1hybC1hycA-I1fdhF ).

(Table 2). These findings indicate that for full HupSL activity to
be manifested, an active Fdh-H enzyme is required.

In order to determine what the link between the appearance of
HupSL enzyme activity and Fdh-H might be, we first performed a
western blot using anti-HupX antibodies and with crude extracts

derived from some of the strains shown in Figure 4. Surprisingly,
HupX was only detectable in extracts of strains lacking fdhF,
which encodes the Fdh-H enzyme, and, as expected, only in those
strains carrying the phupXSL plasmid (Figure 5). This suggests
that when Fdh-H was absent, HupX was stably synthesized and

FIGURE 5 | HupX is only detectable in extracts of strains lacking the fdhF gene. Western blots using peptide antibodies raised against HupX or HupL are shown in
which 50 µg of crude extracts (A) or subcellular fractions (B) were separated in 10% (w/v) SDS-PAGE. The migration positions of molecular mass marker proteins
are shown in kDa. The strong signal migrating around 70 kDa represents GroEL, which cross-reacted with the HupX antibodies, and acted as a protein loading
control. The asterisks denote the HupX polypeptide. In (B), the letters E, S, and M represent crude extract, soluble cytoplasmic fraction and membrane fraction,
respectively. Strain used include: deletion derivatives of FTD147 (1hyaB1hybC1hycE); and deletion derivatives of FTD150 (1hyaB1hybC1hycE 1hyfG).
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when Fdh-H was present in the cells, HupX became unstable and
was presumably degraded.

The Influence of Fdh-H on HupSL
Activity Is Indirect via the
Ferredoxin-Like Proteins HupX and HycB
To examine whether HupX might influence HupSL activity,
plasmids phupSL and phupXSL, both encoding HupL, HupS
and the endoprotease HoxM, but only the latter also encoding
HupX (Figure 1A), were introduced into strains FTD147
and FTD1471fdhF and enzyme activity was compared after
anaerobic growth with glucose (Figure 6A). The products of
both plasmids in strain FTD1471fdhF showed a strongly reduced
activity of HupSL compared with the fdhF+ strain FTD147. This
result indicates that the dependence on Fdh-H for HupSL activity
was retained in the absence of HupX.

A recent study in E. coli identified a flexible interaction
network of ferredoxin-like proteins with Fdh-H, including its
small, electron-transferring subunit, HycB (Pinske, 2018). HycB
and HupX belong to this family but share only 24% amino
acid identity (38% similarity) in a MuscleWS alignment. The
HupX protein, however, cannot functionally replace HycB in
formate-dependent BV reduction (data not shown). Due to
the link between HupSL activity and Fdh-H demonstrated
above, we therefore examined whether the presence of HycB
influenced HupSL’s ability to reduce BV. To do this, we analyzed
HupSL activity in strain CP1170 (1hyaB, 1hybC, 1hycA-I),
which is similar to FTD147 (1hyaB, 1hybC, 1hycE) with
the exception that the complete hyc operon is deleted in

CP1170, rather than only the hycE gene (Table 1). Introduction
of plasmid phupXSL into CP1170 and its 1fdhF derivative
CPH020 (1hyaB1hybC1hycA-I1fdhF) (Table 1), revealed that
the dependence on Fdh-H for HupSL activity was retained
(Figure 4, right side of right panel). However, introduction of
plasmid phupSL (lacking hupX) into CPH020 (CP1170 1fdhF)
revealed that HupSL activity in native PAGE was no longer
reduced in the absence of Fdh-H (Figure 6B, lane 1, right
panel). Introduction of phupSL into strain CPH008 (1hycA-
I, 1fdhF) in which Hyd-1 and Hyd-2 are still active, but
all structural components of the FHL complex are missing,
demonstrated that HupSL activity was retained, and even slightly
more intense (Figure 6B, lane 2 left panel). As a final control,
we analyzed HupSL activity after introduction of phupSL into
strain RT2 (1hyaB1hybC1hycA-I1fdhE1pflA), which lacks
Hyd-1, Hyd-2 and Hyd-3, as well as Fdh-N/O (through the
fdhE mutation; Mandrand-Berthelot et al., 1988; Lüke et al.,
2008) and the formate-inducible Fdh-H, due to the lack of
active PflB (due to the pflA mutation), which is required
for formate production (Sawers and Böck, 1988; Rossmann
et al., 1991). This strain was chosen because it uses a different
combination of mutations to generate the same phenotype, i.e.,
no hydrogenase or formate dehydrogenase enzymes, and no
HycB protein. HupSL activity was also retained in this genetic
background confirming that strains devoid of HupX and HycB
exhibit HupSL- and H2-dependent reduction of BV (Figure 6B,
lane 1).

Surprisingly, however, when phupSL was introduced into
strain RM220 (1pflAB), which generates considerably reduced
levels of formate under respiratory conditions (Suppmann and

FIGURE 6 | Deletion of the hycA-I operon restores HupSL activity in a fdhF mutant. (A) Crude extracts derived (approximately 60 µg of protein) from the indicated
strains after growth in M9 minimal medium with 0.8% (w/v) glucose were separated in native-PAGE and stained for hydrogenase enzyme activity, as described in the
legend to Figure 1. In (B), strains were transformed with plasmid phupSL. The migration positions of the respective hydrogen-oxidizing enzymes are indicated.
Strain used include: MC4100 represents wild type; FTD147 (1hyaB1hybC1hycE); FTD147 1fdhF; RT2 (1hyaB1hybC1hycA-I1fdhE1pflA); CPH008 (1hycA-I
1fdhF ); CPH020 (1hyaB1hybC1hycA-I1fdhF ); RM220 (1pflA1pflB).
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Sawers, 1994), and thus expresses only low levels of the formate-
inducible hyc operon (Rossmann et al., 1991), the anticipated
high activity of HupSL was not observed (Figure 6B, lane 4).
This result indicates that even the low levels of HycB produced in
this strain (Rossmann et al., 1991) are likely sufficient to inhibit
HupSL activity.

DISCUSSION

In this study, we analyzed how the fermentative metabolism
of the E. coli host influenced the redox dye-reducing activity
of a heterologously synthesized hydrogen-uptake [NiFe]-
hydrogenase from the Chloroflexi phylum. We had previously
demonstrated that the host’s Hyp-maturation machinery was
capable of recognizing the large subunit precursor pre-HupL
and of successfully introducing the bimetallic [NiFe]-cofactor,
generating active enzyme (Hartwig et al., 2015b). We also
showed in that particular study that the HupSL hydrogenase
had H2:BV oxidoreductase activity, which could be identified
after anaerobic native-PAGE. Here we made the surprising
discovery that the appearance of this HupSL enzyme activity
was apparently dependent on whether the host’s Fdh-H enzyme
was synthesized or not. Under conditions favoring synthesis of
Fdh-H, HupSL activity was observed, while in strains unable to
synthesize Fdh-H, due to a deletion of the fdhF structural gene
or the selenocysteine insertion machinery, no, or substantially
reduced, activity was detected. Notably, however, this lack of
enzyme activity did not result from a lack of synthesis of the
HupSL enzyme, but rather appears to be due to an inactivation
of the enzyme.

A recent study revealed that Fdh-H interacts with at least three
electron-transferring small subunits, all of which belong to the
ferredoxin-like family of electron-transfer proteins and possibly
facilitate the coupling of Fdh-H with different enzyme complexes
(Pinske, 2018). We currently interpret our data to indicate that
the apparent dependence on Fdh-H for HupSL activity is, in
fact, indirect and likely due to Fdh-H sequestering these small
subunits, in particular HycB of the FHL complex. Notably, the
HupX protein, which is presumed to mediate electron transfer
within the Hup-Ome-Rdh supercomplex in the natural host
D. mccartyi (Schubert et al., 2018), also belongs to the ferredoxin-
like superfamily and this protein’s ability to interact with the
HupSL heterodimer also appears to be influenced by the presence
of Fdh-H. If Fdh-H is either genotypically or phenotypically (e.g.,
through strongly reduced formate synthesis; Rossmann et al.,
1991) absent, the ferredoxin-like proteins HupX or HycB remain
consequently unbound within the cell. We suggest that if HupX
is also absent, HycB can transiently interact with or modulate the
HupSL enzyme within the cell prior to separation in the native-
PAGE, rendering the enzyme inactive. This inactivity could result
from a loss of the ability of the heterodimer to reduce or interact
with BV in the presence of H2. Alternatively, these ferredoxin-
like proteins might act by sequestering the HupSL complex
resulting in an inactive complex in the native-PAGE; or indeed
a combination of both effects might be the cause (Figure 7). The
consequence would be that HupSL activity becomes visible in the

FIGURE 7 | A schematic depiction of the current interpretation of our data is
shown. The hypothesis states that the HupSL heterodimer is capable of
interacting with and reducing BV and if HupX or HycB are free and not
sequestered by Fdh-H they prevent HupSL transferring electrons to BV and
instead deliver them to currently unknown acceptor complexes, or possibly to
the quinone pool (?). HupX has been shown to interact with HupSL (Hartwig
et al., 2017; Seidel et al., 2018), while this has not been so far shown for
HycB.

absence of HycB despite simultaneous absence of Fdh-H. The
redox-potentials of the ferredoxin-like proteins have not yet been
determined.

The model shown in Figure 7 presents a working hypothesis
for how we currently interpret our data. Under fermentative
growth conditions Fdh-H is present and is available to interact
with HycB. The presence of Fdh-H also prevents HupX
interacting with HupSL, possibly forming an interaction with
HupX, allowing the HupSL heterodimer to interact with and
reduce BV.

How does an ability to interact with HupX, and possibly HycB,
interfere with electron transfer to BV by HupSL? The redox dye
BV can accept electrons directly from the electron-transferring
subunit HupS, as evidenced by the fact that deletion of the hupX
gene does not significantly affect H2-dependent reduction of BV
by HupSL. Moreover, previous mass spectrometric analysis of
the Hup activity band isolated after native-PAGE revealed mainly
HupL and HupS to be present, suggesting that HupX’s interaction
with the heterodimer is weak or transient (Hartwig et al., 2015b).
Moreover, in the natural host D. mccartyi, HupX preferentially
associates with OmeAB, the formate dehydrogenase homolog,
and reductive dehydrogenases rather than with HupSL (Hartwig
et al., 2015b; Seidel et al., 2018; Dragomirova and Sawers,
unpublished observations), which supports the suggestion that
the affinity of HupX for HupSL is low. We also observed using
antibodies raised against HupX that it is only readily detectable
in the membrane fraction of cells that lack Fdh-H, suggesting
that when Fdh-H is present it is more readily degraded. How this
apparent degradation is controlled is currently unclear.

The HupS subunit encodes a functional Tat-signal peptide
allowing its transport across the cytoplasmic membrane (Hartwig
et al., 2015b). Together with HupX, the HupSL complex could be
sufficiently anchored in the membrane to transfer the electrons
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derived from oxidation of H2 to the quinone pool, which is also
the function of another HupX homolog, the HybA protein of
E. coli Hyd-2 (Pinske et al., 2015; Beaton et al., 2018).

Support for the oxidative inactivation of HupSL was
provided by the demonstration of inactivation of the enzyme
complex after growth of the E. coli host under respiratory
conditions, with either O2 (Eo′ = +830 mV), NO3

−

(Eo′ = +420 mV), or fumarate (Eo′ = 0 mV) as electron
acceptor. We have only been able to detect HupSL activity
after fermentative growth (Eo′ = -415 mV), strongly suggesting
that the enzyme retains activity only under strongly reducing
conditions, which are also likely to be those prevailing in the
environmental conditions where D. mccartyi is found (Löffler
et al., 2013).

These studies thus provide a platform to study how
heterologously synthesized hydrogenases can be integrated into
the host’s anaerobic metabolism. Clearly, this work is at an
early stage but one of the next steps will be to examine
whether electrons derived from H2 oxidation can be coupled
to reduction of E. coli-typical electron acceptors, e.g., fumarate.
Initial studies examining hydrogen-driven fumarate reduction by
HupXLS yielded first indications that a weak, but unfortunately
so far irreproducible, activity was detectable (Schwoch et al.,
unpublished data). Optimization of Hup enzyme synthesis and
membrane integration will likely be required for this approach to
be fruitful.

Because D. mccartyi species are not amenable to large-scale
biochemical analysis, and are currently genetically intractable,
using the E. coli Hyd- and Fdh-negative host strains developed

here will provide a means of studying the biochemical
mechanism(s) underlying the loss of HupSL activity in response
to oxidizing redox conditions and whether this effect is linked to
a particular iron-sulfur cluster, or clusters, in HupS, or whether
the bimetallic cofactor in HupL is the target of irreversible
inactivation. A recent study by Hartmann et al. (2018) indicates
that, at least for certain [NiFe]-hydrogenases, the NiFe(CN)2CO
cofactor is not sensitive to oxidative conditions, suggesting that it
might indeed be the electron-transfer pathway that is disrupted
by non-reducing redox potentials.
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Deep-sea hydrothermal vents may provide one of the largest reservoirs on Earth
for hydrogen-oxidizing microorganisms. Depending on the type of geological setting,
hydrothermal environments can be considerably enriched in hydrogen (up to millimolar
concentrations). As hot, reduced hydrothermal fluids ascend to the seafloor they mix
with entrained cold, oxygenated seawater, forming thermal and chemical gradients
along their fluid pathways. Consequently, in these thermally and chemically dynamic
habitats biochemically distinct hydrogenases (adapted to various temperature regimes,
oxygen and hydrogen concentrations) from physiologically and phylogenetically diverse
Bacteria and Archaea can be expected. Hydrogen oxidation is one of the important
inorganic energy sources in these habitats, capable of providing relatively large amounts
of energy (237 kJ/mol H2) for driving ATP synthesis and autotrophic CO2 fixation.
Therefore, hydrogen-oxidizing organisms play a key role in deep-sea hydrothermal vent
ecosystems as they can be considerably involved in light-independent primary biomass
production. So far, the specific role of hydrogen-utilizing microorganisms in deep-sea
hydrothermal ecosystems has been investigated by isolating hydrogen-oxidizers,
measuring hydrogen consumption (ex situ), studying hydrogenase gene distribution
and more recently by analyzing metatranscriptomic and metaproteomic data. Here we
summarize this available knowledge and discuss the advent of new techniques for the
identification of novel hydrogen-uptake and -evolving enzymes from hydrothermal vent
microorganisms.

Keywords: hydrogen cycling, hydrogen consumption, hydrogenases, hydrogen oxidizers, hydrothermal vent

INTRODUCTION

Hydrogen conversion, the reversible reaction of molecular hydrogen (H2) to protons and electrons,
plays a major role for metabolic processes in microbial cells: generally, energy conservation and the
recycling of reducing equivalents (in microbial fermentation or light-dependent photosynthesis) is
accomplished by enzymatic hydrogen evolution (Vignais and Billoud, 2007; Hallenbeck, 2009).
Enzymatically catalyzed hydrogen oxidation is widely distributed among prokaryotes, and can
power the synthesis of energy-rich ATP, which is needed for autotrophic carbon fixation (Dilling
and Cypionka, 1990; Bothe et al., 2010; Greening et al., 2016).

The thermal (4◦C to several 100s ◦C) and chemical (e.g., oxidized to reduced) gradients
hallmarking deep-sea hydrothermal vent habitats have the potential to host one of the largest
reservoirs of physiologically and phylogenetically diverse hydrogen-converting microorganisms
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(Figure 1, Kelley et al., 2002; Perner et al., 2013b). As
the fluids pass through the subsurface, they get enriched in
various inorganic compounds, such as reduced minerals, sulfide
and hydrogen (Figure 1). The actual hydrogen and sulfide
concentrations of the emanating fluids strongly depend on the
type of host rock underlying the respective vent system and
the mixing ratio of seawater and fluids. Hydrothermal end-
member fluids of basalt-hosted systems are usually characterized
by greater sulfide than hydrogen concentrations, resulting
from magma degassing and high-temperature-leaching from
enclosing host rocks. In contrast, due to serpentinization
processes, end-member fluids of ultramafic-hosted vent systems
usually exhibit greater hydrogen (up to 1–10 M) and methane
(on mM levels) concentrations than sulfide concentrations
(Charlou et al., 2002; Kelley et al., 2005; Haase et al.,
2007; Perner et al., 2013b). Correspondingly, sulfide oxidation
in the sulfide-rich basalt-hosted and hydrogen oxidation
and methanotrophy in the hydrogen-rich ultramafic-hosted
systems are estimated to be the predominant sources of
metabolic energy available in venting habitats (McCollom,
2007).

Since the discovery of hydrothermal vents in the late 70s
(Corliss et al., 1979), numerous hydrogen-oxidizers have been
isolated from thermally and chemically distinct deep-sea vent
habitats (e.g., Campbell et al., 2006; Miroshnichenko and
Bonch-Osmolovskaya, 2006; Nakagawa and Takai, 2008; Hansen
and Perner, 2015; Nagata et al., 2017). Although considerable
efforts have been undertaken to promote our understanding
of the distribution and role of hydrogen-oxidizing organisms
in these environments (Nealson et al., 2005; Campbell et al.,
2006; Perner et al., 2010, 2013b; Petersen et al., 2011; Adam
and Perner, 2018), our knowledge of the overall hydrogen
utilization potential and microbial hydrogen pathways still
remains limited. This review summarizes the work that has been
done on hydrogen-metabolizing microorganisms colonizing
hydrothermally influenced environments with respect to their
diversity, hydrogen consumption rates in incubation experiments
and protein biochemistry. Recent findings in the context
of culture-independent metagenomic and metatranscriptomic
approaches for the identification of novel hydrogen-converting
enzymes are included. Finally, an outlook is given which
techniques (e.g., in situ experiments) and work are needed to

FIGURE 1 | Overview of possible (microbially mediated) hydrogen cycling in hydrothermal vent systems. Hydrothermal emissions emanate from the subsurface either
as high-temperature focused fluids causing the typical black or white smoker structures or low- to mid-temperature diffuse fluids (for example from mussel beds).
Abiogenic hydrogen sources are displayed in red and orange (hydrothermal fluids) and biogenic hydrogen sources in the shape of green arrows.
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advance our understanding of the role that hydrogen-cycling
microorganisms play in hydrothermal vents.

HYDROGEN-PRODUCING AND
-OXIDIZING MICROORGANISMS

It is well known that hydrogen-producing and -oxidizing
microorganisms can coexist or even interact in a variety of
anoxic habitats like sediments or intestinal tracts (Chassard
and Bernalier-Donadille, 2006). At low hydrogen partial
pressures (e.g., <100 Pa), hydrogen can be produced in the
course of microbial fermentation processes (Kraemer, 2007;
Hallenbeck, 2009) which is then oxidized by hydrogenotrophic
microorganisms, especially methanogens. This interspecies
hydrogen transfer thereby forms so-called syntrophic
communities (hydrogen-producers and –consumers thrive
in close proximity) and most likely represents an important
hydrogen source in hydrogen-poor habitats (Bryant et al., 1977;
Chassard and Bernalier-Donadille, 2006). Since fermentative
hydrogen production can already be inhibited at relatively low
hydrogen concentrations (i.e., on a nM level) (Wolin, 1976;
Hoehler et al., 1998; Hallenbeck, 2009), the role, that microbially
produced hydrogen plays in hydrothermal vent systems,
remains enigmatic. Even the hydrogen levels of hydrogen-poor
hydrothermal vent systems easily exceed those of habitats
known to harbor fermentative bacteria like sediments (which
are typically below 60 nM) (Novelli et al., 1987; Hoehler et al.,
1998; Charlou et al., 2002; Perner et al., 2013b) and thus are likely
above the inhibitory limit for biological hydrogen production.
This may explain why studies on microbial hydrogen production
in deep-sea hydrothermal vent systems have been largely
neglected so far. However, hydrogen-evolving heterotrophic
Archaea and Bacteria have been identified in hydrothermal fluid
incubation experiments (Topcuoglu et al., 2016). The authors
posited that in some of the micro niches represented by the
culturing conditions, hyperthermophilic Euryarchaeota and
thermophilic Firmicutes produced hydrogen as a waste product
during fermentation which was consumed by hydrogenotrophic
sulfate-reducing Bacteria or methanogenic Archaea (under

distinct temperature regimes) (Topcuoglu et al., 2016).
Hydrogenotrophic methanogens can use hydrogen to reduce
CO2 via the reductive acetyl-CoA pathway (Wood-Ljungdahl
pathway), thereby forming methane (Ladapo and Whitman,
1990; Thauer, 1998). Acetogenic Bacteria (producing acetate
from CO2) can compete with hydrogenotrophic methanogens
in anoxic, hydrogen-rich habitats using the same electron
donor (hydrogen) and carbon fixation pathway (Wood
Ljungdahl pathway) (Chassard and Bernalier-Donadille,
2006). Due to a lower hydrogen threshold (minimum hydrogen
concentration required for hydrogenotrophic growth) and a
greater overall energy yield from the conversion of CO2 to
methane, methanogenic Archaea are usually the dominating
group in this competition (Ragsdale and Pierce, 2008 and
references therein). Moreover, acetogens (and methanogens)
can be outcompeted by Bacteria with an even lower hydrogen
threshold than methanogens, such as Campylobacterota,
which are highly abundant at hydrothermal vent sites and
take advantage of their versatile metabolisms (for details see
below). Therefore, active acetogenic Bacteria are presumably
less abundant in venting biotopes and have so far not been the
focus of research related to hydrogen utilization in deep-sea
hydrothermal vent environments.

Overall, sulfide and thiosulfate oxidation as well as hydrogen
oxidation are among the chemosynthetic reactions which provide
the greatest energy yields in hydrothermal vent biotopes (Amend
and Shock, 2001; Fuchs et al., 2007). Although considerably
more energy is yielded through oxidation of sulfide or thiosulfate
than through hydrogen oxidation (free standard enthalpies
are −797 kJ/mol H2S vs. −237 kJ/mol H2 with O2 as
electron acceptor) (Table 1, Fuchs et al., 2007), the latter
reaction is favorable for autotrophic carbon fixation. Since the
redox-potential of hydrogen is more negative than that of the
reducing equivalent NAD(P)/H, in contrast to sulfide, a reverse
electron transport is not required in conjunction with hydrogen
oxidation. Thus, only a third of the energy is required for
fixing 1 mol of carbon when oxidizing hydrogen compared to
sulfide (1060 kJ for hydrogen vs. 3500 kJ for sulfide) (Heijnen
and Van Dijken, 1992). The individual fluid compositions of
different hydrothermal systems may even increase this effect:

TABLE 1 | Overall reactions and standard free reaction enthalpies of hydrogen oxidation coupled to different electron acceptors.

Reaction 1G′0 Reference

2 H2 + O2→ 2 H2O −297 kJ/mol H2 Fuchs et al., 2007

5 H2 + 2 NO3
−
+ 2 H+ → N2 + 6 H2O −224.2 kJ/mol H2

H2 + MnO2 → Mn2+
+ 2 OH− −166 kJ/mol H2 Konhauser, 2006

0.5 H2 + Fe(OH)3 → Fe2+
+ 2 OH− + H2O −110 kJ/mol H2

H2 + (2/3)CrO4
2−
+ (4/3)H+ → (2/3)Cr(OH)3 + (2/3) H2O −98.35 kJ/mol H2 Liu et al., 2002

H2 + UO2
2+
→ 2H+ + UO2 −92 kJ/mol H2 Konhauser, 2006

H2 + 2 Co(III)EDTA− → 2 Co(II)EDTA2−
+ 2 H+ −68.5 kJ/mol H2 Liu et al., 2002

H2 + (2/3)TcO4− → (2/3)TcO2 + (4/3)H2O −66.99 kJ/mol H2

4 H2 + SO42−
→ H2S + 2 OH− +2 H2O −38 kJ/mol H2 Konhauser, 2006

4 H2 + CO2 → CH4 + H2O −32.75 kJ/mol H2 Fuchs et al., 2007

H2 + S0
→ H2S −28 kJ/mol H2 Konhauser, 2006

Electron acceptors are indicated by bold letters.

Frontiers in Microbiology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 287332

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02873 November 21, 2018 Time: 19:51 # 4

Adam and Perner Microbial H2-Cycling in Hydrothermal Vents

depending on hydrogen and sulfide concentrations as well
as other abiotic factors, such as temperature and pressure,
thermodynamic models for fluids of ultramafic vent fields
predict that between 10 to 18 times more energy per kg
of fluid can be yielded by hydrogen oxidation compared to
sulfide oxidation (McCollom and Shock, 1997; McCollom, 2007;
Petersen et al., 2011). The actual energy yields of the respective
oxidation reactions strongly depend on the type of terminal
electron acceptor used in the metabolism, where coupled to
oxygen reduction the greatest energy amount is gained (Table 1,
Conrad, 1996). Alternative electron acceptors commonly used
by hydrogen-oxidizing microorganisms are sulfate, Fe (III) and
nitrate (Vignais and Billoud, 2007), but also elemental sulfur and
CO2 as well as different metals, e.g., Mn (III/IV), U (VI), Cr (VI),
Co (III) and Tc (VII), can be reduced by hydrogen-consumers
(Table 1, Liu et al., 2002; Nakagawa and Takai, 2008). Due to
mixing processes with oxygenated, ambient seawater, deep-sea
hydrothermal fluids may contain numerous possible electron
acceptors (primarily oxygen, nitrate, sulfate, elemental sulfur
and iron). Their individual concentrations may vary strongly,
depending on the geological setting of the vent system and the
seawater mixing ratio.

Since covering all aspects of microbial hydrogen conversion
at hydrothermal vents in detail would go beyond the scope
of this review, we will here primarily focus on autotrophic
hydrogen-oxidizers. Genes encoding hydrogen-oxidizing (or
producing) enzymes have been identified via (meta-)genomic
approaches in Alpha-, Beta-, Gamma-, and Deltaproteobacteria,
Epsilonproteobacteria (in the following referred to as
Campylobacterota as recently proposed by Waite, 2018),
Firmicutes, Actinobacteria, Bacteroidetes, Aquificales and other,
(less abundant) bacterial and also archaeal phyla in diverse
habitats (cf. Figure 2 and Greening et al., 2016). Consistent
with the generally great abundance of Campylobacterota at
hydrothermal vents (often constituting more than 90% of the
microbial vent communities in incubation experiments or
metagenomic studies) (e.g., Dahle et al., 2013; Perner et al.,
2013a; McNichol et al., 2018), a large part of the hydrothermal
vent-derived hydrogen oxidizing, autotrophic isolates are related
to this class. They are characterized by versatile metabolisms and
only a few isolates are strict hydrogen oxidizers (i.e., they are not
capable of using any other tested organic or inorganic electron
donor), such as the mesophilic Sulfurovum aggregans (Mino et al.,
2014) or the thermophilic Caminibacter hydrogeniphilus (Alain
et al., 2002). Overall, there is a trend in the use of alternative
electron donors with respect to the thermal preferences: while
thermophilic members of the order Nautiliales tend to use
formate (e.g., Nagata et al., 2017), mesophilic Campylobacterota
like Sulfurimonas paralvinellae have the ability to use different
reduced sulfur species such as thiosulfate or elemental sulfur as
energy sources (Takai et al., 2006). Based on their metabolic and
physiological versatility, Campylobacterota occupy diverse niches
and can dominate microbial communities in hydrothermal
vent environments. The frequent isolation of H2-oxidizing
Campylobacterota from deep-sea vents further emphasizes
that this class may play a major role in hydrogen conversion
and hydrogen-based primary production within hydrothermal

habitats (Corre et al., 2001; Nakagawa et al., 2005; Campbell
et al., 2006).

Hydrogen-oxidizing Deltaproteobacteria isolated from
deep-sea vents – like Desulfonauticus submarinus – are
commonly heterotrophic (Audiffrin et al., 2003), albeit
representatives of this class were isolated from deep-sea
vents that can couple hydrogen oxidation to autotrophic growth.
Up to now, the vent-derived autotrophic, hydrogen-oxidizing
Deltaproteobacteria are nearly all characterized as thermophiles
with temperature optima between 50 and 61◦C, with the so far
only exception being a Desulfobulbus species with a mesophilic
temperature optimum (Sievert and Kuever, 2000; Slobodkin et al.,
2013; Slobodkina et al., 2016; Han et al., unpublished). Notably,
among them the thermophilic Desulfacinum hydrothermale
belongs to the group of Sulfate Reducing Bacteria (SRB). Most
members of the SRB (which are ubiquitously found in anoxic
habitats) belong to the Deltaproteobacteria and the group
of SRB is known for comprising autotrophs that couple the
oxidation of hydrogen to the reduction of sulfate or other
electron acceptors as thiosulfate or elemental sulfur (Sievert
and Kuever, 2000; Muyzer and Stams, 2008). As the substrates
for hydrogenotrophic growth of SRB are readily available in
hydrothermal vent systems, deltaproteobacterial SRB may
contribute to hydrogen consumption in anoxic hydrothermal
vent habitats to a greater extent than previously thought. Still, this
hypothesis needs to be proven by the continuing identification of
such microorganisms. So far, further evidence for the presence of
hydrogen-converting Deltaproteobacteria in hydrothermal fluids
stems from metatranscriptomic data, where deltaproteobacterial
genes encoding hydrogen-converting enzymes were identified
(Fortunato and Huber, 2016). Gammaproteobacteria
are also demonstrated to be relevant for microbially
mediated hydrogen cycling. The gammaproteobacterial
Thiomicrospira/Hydrogenovibrio/Thiomicrorhabdus genera
(recently reclassified by Boden et al., 2017) can be significantly
enriched in bacterial vent communities with relative abundances
of up to 37% based on 16S rRNA sequencing (Brazelton and
Baross, 2010; Brazelton et al., 2010; Perner et al., 2011a). For
many years isolates of the Thiomicrospira group (some of which
are regrouped into the Hydrogenovibrio genus) were described as
conventional sulfur oxidizers (Brinkhoff et al., 1999; Takai et al.,
2004a; Knittel et al., 2005), until the first sequenced genome
of this group indicated genes encoding hydrogen-converting
enzymes (Scott et al., 2006) and strains of this group were shown
to use hydrogen (Hansen and Perner, 2015, 2016). Although
other hydrogen-oxidizing, autotrophic, gammaproteobacterial
isolates have not been recovered yet, there is evidence for the
hydrogen-converting ability among this group, based on classical
sulfur-oxidizing symbionts (Petersen et al., 2011) and widespread
deep-sea bacteria of the SUP 05 clade (Anantharaman et al.,
2016).

Besides members of the Proteobacteria, other Bacteria and
also Archaea contribute to the hydrogen-oxidizing communities
in deep-sea vents. Particularly (among the Bacteria) the
deeply branching order of Aquificales hosts a wide range of
hydrogen-oxidizing organisms of different families and genera
(e.g., Desulfurobacteriaceae) that have been isolated from
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FIGURE 2 | Phylogenetic relationship of “uptake” [NiFe]-hydrogenase large subunit structural genes. The phylogenetic tree was calculated for nucleotide sequences
of the large subunit [NiFe]-hydrogenase genes of (primarily vent-derived) phylogenetically diverse Bacteria and Archaea. The scale bar denotes the number of
substitutions per nucleotide position and bootstrap values are only indicated if greater than 80%. ClustalW alignments were performed prior to tree calculation using
BioEdit (Hall, 1999) with the standard settings. The tree was calculated using seaview (Gouy et al., 2010) with maximum likelihood analysis (four rate classes) and
bootstrap values were calculated with 100 replicates. The classification of the [NiFe]-hydrogenase genes was determined using the HydDB web tool (Sondergaard
et al., 2016).
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hydrothermal fields around the globe (L’Haridon et al., 2006;
Ferrera et al., 2014). Although they differ in their specific growth
requirements (e.g., temperature, pH, electron acceptors), they are
all described as strict chemolithoautotrophs and thermophiles
(Nakagawa et al., 2003; L’Haridon et al., 2006). The strictly
anaerobic, vent-derived Desulfurobacterium thermolithotrophum
from the family of the Desulfobacteraceae was the first known
thermophilic bacterial isolate with the ability to act as a primary
producer in the temperature range of 45–70◦C (L’Haridon
et al., 1998). Notably, most members of the Aquificales, such
as Thermovibrio ammonificans or Balnearium lithotrophicum,
use hydrogen as the only energy source for autotrophic
growth (Takai et al., 2003; Vetriani et al., 2004). Another
thermophile-comprising phylum, Thermodesulfobacteria,
usually is not considered as an important contributor of
hydrogen-oxidizing vent-derived bacteria. Nonetheless, two
of its five genera comprise thermophilic SRB isolated from
hydrothermal vents, which share the ability to use hydrogen as
the sole energy source for autotrophic growth (Jeanthon et al.,
2002; Moussard et al., 2004; Alain et al., 2010).

Among the Archaea, thermophilic and hyperthermophilic
methanogens are supposed to be the numerically largest
and (in terms of the hydrogen consumption ability) most
important group of hydrogen-oxidizers in hotter temperature
regimes (Huber et al., 2002; Topcuoglu et al., 2016; Fortunato
et al., 2018). Starting from the 1980’s, shortly after the first
discovery of hydrothermal vent systems, methanogenic isolates
were repeatedly drawn from hydrothermal vents (e.g., Huber
et al., 1982, 1989; Jones et al., 1989), some of them using
hydrogen as the sole energy source for autotrophic CO2 fixation
and methane production (e.g., Huber et al., 1982; Jeanthon
et al., 1998; L’Haridon et al., 2003; Takai et al., 2004b). As
mentioned above, the hydrogen can stem from an abiogenic
source (e.g., resulting from serpentinization processes) or be
produced by hydrogen-evolving microorganisms (Figure 1,
Ver Eecke et al., 2012; Toki et al., 2016; Topcuoglu et al.,
2016). Methanogenic communities require greater hydrogen
concentrations (e.g., ≥17 µM according to experiments with
hyperthermophilic Methanocaldococcus species) to support
chemolithoautotrophic growth than organisms coupling
hydrogen oxidation to alternative electron acceptors, e.g.,
oxygen, nitrate, ferric iron and sulfate (Lovley and Goodwin,
1988; Hoehler et al., 1998; Ver Eecke et al., 2012). Besides
methanogens, other hydrogen-oxidizing, autotrophs also exist
among the Archaea: Fe(III)-reducing, hydrogen-oxidizing
hyperthermophiles are encountered among the Euryarchaeota
and Crenarchaeota (Slobodkina et al., 2009; Lin et al., 2016).
These hydrogenotrophic Archaea thrive at lesser hydrogen
concentrations than methanogens (Ver Eecke et al., 2009). Thus,
they may be important contributors to microbial hydrogen
consumption in venting environments that are characterized by
elevated temperatures but lesser hydrogen levels. Nonetheless,
the biogeochemical and ecological impact of these two groups
still needs to be resolved.

Despite the large difficulties typically associated with
taking samples from deep-sea hydrothermal vents and the
culturing of vent-derived microorganisms, a large number

of hydrogen-oxidizers has been isolated so far. However, a
decreasing trend can be observed regarding the number of novel
isolates from hydrothermal vent environments, which may be
caused by insuperable obstacles in defining the appropriate
culture conditions. More likely though, the laborious efforts
in isolating (extremophilic) slow-growing microorganisms
from hydrothermal vents have lessened due to the advent of
cost-effective culture-independent techniques. For now, we
have only gained a small-scale insight into the great diversity of
microbial hydrogen uptake taking place at hydrothermal vents
(see further discussions below).

HYDROGENASE GENES

The interconversion of molecular hydrogen to protons and
electrons (H2 ↔ 2H+ + 2e−) is catalyzed by hydrogenase
enzymes, which are widely distributed among Bacteria
and Archaea. Hydrogenases are classified according to
their catalytic center and to date three different types are
known: (i) [NiFe]-hydrogenases, (ii) [FeFe]-hydrogenases
and (iii) [Fe]-hydrogenases (Vignais and Billoud, 2007).
[NiFe]-hydrogenases are usually involved in hydrogen
sensing and consumption, [FeFe]-hydrogenases are the
so-called “hydrogen-evolving” (producing) hydrogenases
and [Fe]-hydrogenases play a key role in methanogenesis
(Thauer, 1998; Vignais and Billoud, 2007). Among the
[NiFe]-hydrogenases four groups are distinguished, that
each can be further divided into several subgroups based on
different parameters concerning the catalytic subunit like
amino acid sequence phylogeny and reported biochemical
properties. Group 1 and group 4 [NiFe]-hydrogenases are
termed membrane-bound “H2-uptake” (consuming) and
”hydrogen-evolving” hydrogenases, respectively, which are
involved in energy metabolism. The group 2 encompasses mainly
cytosolic hydrogen-sensing hydrogenases and some with so far
unknown function and localization, while the cytosolic group 3
includes the F420-reducing hydrogenases from methanogens, the
bifunctional NADP-coupled hydrogenases and the bifurcating,
heterodisulphide-linked hydrogenases (Greening et al., 2016;
Sondergaard et al., 2016).

The [FeFe]-hydrogenases can also be further distinguished in
three groups (A-C), of which groups A and C are additionally
subdivided into four and three subgroups, respectively. Notably,
only group A1 hosts the prototypical “hydrogen-evolving”
[FeFe]-hydrogenases (other group A hydrogenases are
involved in electron bifurcation or have unknown functions).
[FeFe]-hydrogenases of groups B and C are currently only
assigned to putative functions involved in hydrogen sensing and
hydrogen production (Sondergaard et al., 2016).

While [NiFe]- and [FeFe]-hydrogenases are present in
diverse prokaryotes, [Fe]-hydrogenases are only found in
methanogenic Archaea and cannot be subdivided into distinct
groups (Greening et al., 2016; Sondergaard et al., 2016). In
contrast to [NiFe]- and [FeFe]-hydrogensaes, they do not
contain FeS-clusters and couple the oxidation of hydrogen
to the reduction of methenyltetrahydromethanopterin.
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This intermediary step is only required in the reduction
of CO2 to methane under nickel limiting conditions when
[NiFe]-hydrogenases cannot be synthesized (Vignais and
Billoud, 2007). Due to the habitat-specific conditions,
“uptake” [NiFe]-hydrogenases (and primarily those of the
prototypical group 1b, see Figure 2) likely are the most common
and (concerning primary biomass production) important
hydrogenase type in deep-sea hydrothermal vent systems.
As hydrothermal fluids usually contain various minerals and
metals, nickel (central component of the active center in
[NiFe]-hydrogenases) limitation should not occur in these
habitats. Moreover, given the elevated hydrogen concentrations
(>µM levels), fermentative hydrogen production is likely
limited or inhibited in hydrothermal vent systems, leading to
the assumption that microbial hydrogen oxidation (catalyzed by
[NiFe]-hydrogenases) may be the dominating process in these
environments.

Hydrogenase genes (and those of [NiFe]-hydrogenases in
particular) are usually arranged in gene clusters that differ in
their size and gene patterns (Figure 3). Due to the highly
specific and complex maturation processes involved in the
biosynthesis of hydrogenases, the clusters (in addition to the
catalytic subunits) commonly also comprise genes encoding
proteins for electron transfer, regulation factors and maturation
factors, but also hypothetical proteins and partner enzymes
(Casalot and Rousset, 2001; Bock et al., 2006; Greening et al.,
2016). Commonly, the heterologous expression of (hydrogenase)
enzymes (i.e., the expression in a foreign host) is limited by
promoter recognition, diverging codon-usage, translation and
the incompatibility or a lack of the respective maturation
and assembly apparatus (cf. Perner et al., 2011b). In E. coli
for example, the exchange of a carboxy-terminal extension of
the large subunit of a [NiFe]-hydrogenase with that from an
isoenzyme resulted in the abortion of the protein maturation.
This indicates the great specificity of the proteolytic cleavage by
the endopeptidase HybD, which is a necessity to form an active
hydrogenase (Theodoratou et al., 2000; Casalot and Rousset,
2001). Furthermore, nickel incorporation proteins (HypA) or
the carbamoyltransferase HypF (involved in the formation of
the active site) are of vital importance for the formation of
a functional protein (Figure 3, Casalot and Rousset, 2001).
Nevertheless, heterologous expression of [NiFe]-hydrogenases
has successfully been demonstrated in the past: not only with
genes of (phylogenetically) closely related organisms (Rousset
et al., 1998) but also in a setup where the insert hydrogenase and
the host stem from different bacterial classes (Adam and Perner,
2018).

Hydrogenase genes from hydrothermal vents have been
targeted by PCR amplification (group 1 and F420-reducing
[NiFe]-hydrogenases) (Takai et al., 2005; Perner et al., 2010;
Petersen et al., 2011) or by direct sequencing of metagenomes
(Perner et al., 2014; Pjevac et al., 2018) and metatranscriptomes
(Dahle et al., 2013; Fortunato and Huber, 2016) (consisting
of the whole genetic information) of vent-derived samples.
However, compared to some enzymes like esterases, which are
considered as one of the most important industrial biocatalysts
(cf. Perner et al., 2011b), hydrogenases have only rarely been

in the focus of metagenomic studies. Moreover, in most cases
the metagenomic datasets were merely screened for the presence
of [NiFe]-hydrogenase genes (e.g., Brazelton et al., 2012; Dahle
et al., 2013; Perner et al., 2014; Fortunato and Huber, 2016).
The majority of the identifiable [NiFe]-hydrogenase genes
of these studies can be phylogenetically related to members
of the Campylobacterota (see phylogenetic tree, Figure 2),
other proteobacterial and also archaeal phyla. The frequent
identification of Campylobacterota may be a consequence of the
specific primer sets and the database entries that are available to
identify hydrogenase genes. As only those genes can be identified
that share sequence homologies to known hydrogenase sequences
(or specific groups), it cannot be excluded that by applying
PCR- and other sequence-based techniques an unintentional
selection occurred. Still, the large number of campylobacterotal
isolates also emphasizes the importance for primary biomass
production and large abundance of this group in hydrothermal
vent systems.

However, examples exist where no campylobacterotal
genes could be identified: the [NiFe]-hydrogenase genes
identified in the metagenome of a chimney sample from
the hydrogen-rich, ultramafic Lost City hydrothermal field
were primarily affiliated with betaproteobacterial [NiFe]-
hydrogenase genes, showing the greatest resemblance to the
Ralstonia eutropha hydrogenase (Brazelton et al., 2012). Since
R. eutropha and other Betaproteobacteria closely related to
the hydrogenases found in the Lost City metagenome are
aerobic or facultatively anaerobic, the authors assume that
the respective hydrogen oxidizers thrive in the oxic-anoxic
transition zone of the chimney. Surprisingly, in addition to these
[NiFe]-hydrogenases, “hydrogen-evolving” [FeFe]-hydrogenases
related to Clostridiales were identified, which are most likely
associated with fermentation of organic compounds. Given
that fermentative hydrogen production can be inhibited even
at nM hydrogen concentrations (discussed earlier), microbial
hydrogen production technically does not seem feasible in a
hydrogen-rich vent environment like the Lost City hydrothermal
field. Furthermore, the origin of the organic fermentation
substrates has not been resolved yet. Still, there are indications
that in the course of serpentinization processes abiogenic organic
carbon might evolve that can be used in microbial fermentation.
As most fermentation processes require anoxic conditions, it is
proposed that anaerobic Clostridia colonize the anoxic, deep-
subsurface of the Lost City vent system (eventually entrained to
the surface as the fluids pass by). It may also be possible that
the hydrogen produced by Clostridia is later consumed by the
hydrogen oxidizing Betaproteobacteria (Brazelton et al., 2012
and references therein). Despite the metagenomic indications,
clear evidence for hydrogen pathways (including the oxidation
of microbially produced hydrogen) in this habitat is still missing
(cf. Figure 1). So far, it remains unclear if the respective genes
actually belong to living organisms and are transcribed and
expressed as functioning enzymes. Recently, Pjevac et al. (2018)
stated a large discrepancy in the hydrogenase frequency of
metagenomes and metaproteomes of two distinct chimneys
of the Roman Ruins vent field: From 160 phylogenetically
diverse hydrogenase genes identified in the metagenomes only
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FIGURE 3 | Hydrogenase gene clusters of bacterial and archaeal representatives. Only the gene clusters containing the structural genes for the large and small
subunit of the [NiFe]-hydrogenases and the corresponding maturation proteins are shown. According to the classification of Sondergaard et al. (2016) the
[NiFe]-hydrogenases of N. profundicola, H. crunogenus, and D. vulgaris belong to group 1b, that of A. aeolicus to group 1d and that of G. acetivorans to group 1k
(cf. Figure 2). Genes are pictured as arrows in the direction of transcription. Arrows of the same color indicate the same function of the encoded protein as explained
by the key legend. Gene (and protein) abbreviations follow the respective annotations in the publicly available databases.

five proteins were found in the respective metaproteomes, all
belonging to campylobacterotal representatives. Accordingly,
the great phylogenetic diversity (in general but also of the
hydrogenase genes) does not coincide with the actual metabolic
diversity of the microbial communities. This phenomenon may
in part be explained by the fact that due to the great microbial
diversity, protein quantities of hydrogenases probably lay below

the detection threshold of the experimental setup. Additionally,
many of the “uptake” hydrogenases are membrane-associated
and a bias of the isolation method against such membrane-bound
proteins has to be considered. Still, it cannot be excluded that
a significant part of the hydrogenase genes present in the
metagenome are not expressed and are therefore missing in the
metaproteome (Pjevac et al., 2018).
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A deepened insight into putatively active metabolic
processes – and microbial hydrogen utilization – as well as
possible regulating factors can also be gained by metaproteomic
approaches (Anantharaman et al., 2013; Fortunato et al., 2018).
A comparison of the metatranscriptomes of a plume and
a background sample of the Guaymas basin demonstrated
site-specific (up-regulated) transcript abundances of distinct
[NiFe]-hydrogenase genes of plume-derived and epipelagic
members of the sulfur-oxidizing SUP05 group of the
Gammaproteobacteria. Combined with transcript abundances
of other genes related to chemoautotrophy like a form II
ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO)
and other genes of the Calvin-Benson-Bassham (CBB) cycle,
the hydrogenase expression levels indicate that hydrogen
oxidation strongly contributes to the energy budget of the
SUP05 group thriving in deep-ocean habitats (Anantharaman
et al., 2013). Gammaproteobacterial [NiFe]-hydrogenase
genes and transcripts were – in addition to those of
Deltaproteobacteria and Campylobacterota as well as the
methanogenic F420-reducing hydrogenase - also detected in
metagenomes and metatranscriptomes of low-temperature
diffuse fluid samples derived from the Axial Seamount
hydrothermal field (Fortunato and Huber, 2016). In this study
meta-omics were coupled to additional, hydrogen-enriched,
RNA stable isotope probing incubation experiments at
different temperatures, integrating the influence of a thermal
gradient on the chemoautotrophic microbial community. This
thermal gradient was reflected by the hydrogen-oxidizing
communities of the incubation experiments: while at 30◦C
exclusively (mesophilic) Campylobacterota were found, at
55◦C thermophilic Campylobacterota and (to a lesser extent)
methanogens dominated. The 80◦C incubations, however, were
dominated by hyperthermophilic methanogens, indicating that
methanogenesis was the main metabolism at this temperature
and may play a significant role for primary production in
subsurface habitats, characterized by greater temperatures
and greater hydrogen concentrations (Fortunato and Huber,
2016). In a more recent metaproteomic study, Fortunato
and co-workers compared the fluid communities of three
hydrothermal vents of the Axial Seamount field, sampled
on an annual basis over a period of 3 years. Fluids from
Marker 33 and Marker 113 exhibited 10 to 30 times lesser
hydrogen concentrations than that of the Anemone vent.
However, the hydrogen-poor fluids exhibited greater abundances
and expression levels of hydrogenase genes and a greater
percentage of hydrogen-utilizing Campylobacterota, Aquificae
and methanogens. Notably, methanogenic transcripts at Marker
113 ranged from 30 to 56% of all annotated transcripts, with
a large portion of hydrogenase genes. Therefore, the lesser
hydrogen concentrations are likely caused by a draw-down of
hydrogen through microbial hydrogen oxidation. Overall, more
than 90% of the intra- and inter-vent changes in the community
compositions observed within this study could be explained
with the geochemical variables determined for the different
fluid, plume and background samples (e.g., temperature, pH,
hydrogen, sulfide and nitrate concentrations) (Fortunato et al.,
2018).

Yet, such clear-cut, proportional relations between abiotic
environmental parameters and the corresponding microbial
(metabolic) diversity are often difficult to draw. In particular,
differing hydrogen-concentrations are often not directly reflected
by the microbial community: varying hydrogen concentrations,
for example, do not necessarily lead to differences in the
diversity and abundance of hydrogenase genes. The hydrogenase
distribution across differing hydrogen concentrations indicates
that other environmental parameters also play a central role in the
distribution of hydrogen oxidizing microorganisms (Perner et al.,
2010, 2014). Other factors putatively influencing the diversity
and abundance of hydrogenase genes observed in hydrothermal
vent environments might be the kinetics and affinities of the
respective enzymes. The Km values of [NiFe]-hydrogenases
reported in the past show a great diversity ranging from 0.06
to 140 µM (Léger et al., 2004; van Haaster et al., 2005 and
references therein). It may be assumed that organisms harboring
high-affinity hydrogenases exhibiting low Km values can suppress
hydrogen oxidizers that harbor hydrogenases with greater Km
values, leading to a reduced diversity. However, the high-affinity,
oxygen-tolerant [NiFe]-hydrogenases of group 1 h/5, which are
widely distributed in soils (Constant et al., 2011), have not been
identified in hydrothermal vent environments yet.

Furthermore, a metatranscriptomic study showed that
increased hydrogenase gene expression is not limited to
hydrothermal emission zones with elevated hydrogen
concentrations but can also be observed at similar levels
in intra-field water samples. The latter are not directly
hydrothermally influenced but located in the vicinity of diffuse
venting sites (Olins et al., 2017). Compared to background water
samples, in most diffuse fluids and intra-field water samples
the hydrogenase transcript levels were significantly enriched
(Olins et al., 2017). The frequent identification of hydrogenase
genes and elevated hydrogenase transcript abundances in
hydrothermal vents and intra-field waters give evidence that
hydrogen oxidation is of particular importance for primary
biomass production in the different habitats surrounding
hydrothermal vent orifices.

HYDROGEN CONSUMPTION
MEASUREMENTS

Despite influences of individual fluid composition and
seawater mixing ratios, compared to hydrogen-poor basalt-
hosted systems, microbial hydrogen consumption rates of
hydrogen-rich, ultramafic-hosted vent systems generally are
expected to be greater. In fact, ex situ incubation experiments
with symbiont-hosting mussel tissue from distinct vent systems
revealed a 20- to 30-fold greater hydrogen consumption
potential of symbionts from the hydrogen-rich ultramafic vent
system relative to the hydrogen-poor basalt-hosted system
(Table 2, Petersen et al., 2011). The respective CO2-fixation
rates confirmed that hydrogen oxidation fueled autotrophy
(Table 2, Petersen et al., 2011). Ex situ incubations with
diverse hydrothermal fluids (and free-living microorganisms),
however, could not confirm the thermodynamic estimates.
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In most incubations, hydrogen consumption rates and biomass
production were greater in the tested fluids from basaltic
than from ultramafic systems. These observations may result
from the specific conditions provided with the experimental
setup, i.e., oxic and anoxic conditions, addition of 12–14 µM
hydrogen (in solution) and incubation at 18◦C (Perner et al.,
2010, 2011a, 2013b). Accordingly, altered incubation conditions
may exhibit quite different hydrogen consumption rates. Similar
incubation experiments, performed with only basalt-hosted
hydrothermal emissions, were advanced by mimicking in situ
pressure and temperature in gas-tight samplers (McNichol
et al., 2016). Nitrate availability had a stimulating effect on
the respective hydrogen consumption rates, ranging from 3.66
to 63.97 fmol H2 cell−1 h−1 (Table 2, McNichol et al., 2016),
comparable to those of previous ex situ measurements ranging
from 0.2 to 92.0 fmol H2 cell−1 h−1 (Perner et al., 2013b).
Despite the efforts made to reproduce in situ conditions in
ex situ incubations, it is impossible to simulate the dynamic
nature of the (micro) habitats present in the hydrothermal vent
systems. These are hallmarked by vast thermal and chemical
gradients in venting habitats, ranging from several 100 s to
4◦C water temperature and from highly reduced to fully oxic,
respectively. Therefore, incubations with more conditions than
manageable would have to be set up to cover all the micro niches
present in a hydrothermal venting biotope (Perner et al., 2010).
Other methods to determine the microbial hydrogen oxidation
potential, e.g., the tritium-based hydrogenase assay applied to
subsurface sediments also show a great potential for hydrogen
oxidation (Adhikari et al., 2016). Yet, they suffer from similar
limitations as the hydrogen consumption measurements of
hydrothermal vent samples: the incubation experiments are
not conducted under in situ conditions and freezing of the
samples prior to the assay cause additional deviation (Adhikari
et al., 2016). Against this background, the development of
in situ techniques for the determination of microbial hydrogen
consumption rates is inevitable.

In situ measurements of hydrogen concentrations are already
being done by employing in situ mass spectrometry (Wankel
et al., 2011; Perner et al., 2013a) and has been used to draw
conclusions on the impact of subsurface microbial activity
on hydrogen concentrations of diffuse hydrothermal fluids.
A discrepancy between the calculated and actually measured
hydrogen concentrations of hydrothermal fluids, ranging from
50 to 80%, was attributed to microbial activity taking place
below the seafloor (Wankel et al., 2011). Yet, a link to
the microorganisms responsible for the presumable hydrogen
consumption is missing. To provide this link, the existing
measurement techniques could be amended by the recently
established in situ fixation of fluids for later nucleotide
extraction and metatranscriptomic and/or metagenomic analysis
(Fortunato and Huber, 2016; Olins et al., 2017). Therefore, future
in situ hydrogen measurements and consumption experiments
would ideally combine monitoring of hydrogen and CO2
concentrations, cell counting and fixation of (fluid) samples for
metagenomic and metatranscriptomic analysis to cover the full
hydrogen consumption potential of vent-associated microbial
communities.

So far, ex situ hydrogen consumption measurements have been
linked to unspecified Campylobacterota (McNichol et al., 2016),
mesophilic Alpha-, Beta- and Gammaproteobacteria, mesophilic
Campylobacterota, methanogens (Perner et al., 2010, 2011a)
as well as a typically sulfur-oxidizing gammaproteobacterial
symbiont (Petersen et al., 2011). First hints that another
vent-inhabiting, sulfur-oxidizing Gammaproteobacterium might
be able to oxidize hydrogen were gained from sequencing the
hydrogenase gene cluster containing genome of Thiomicrospira
crunogena (Scott et al., 2006) (now Hydrogenovibrio crunogenus)
(Boden et al., 2017). Additionally, in some oxic, H2-amended
incubation experiments, genes related to the sulfur-oxidizing
gammaproteobacterial Hydrogenovibrio crunogenus were
highly (8 to 23-fold) enriched compared to sulfide-spiked
incubations of the same vent sample (Perner et al., 2011a). Still,
it remained unclear whether Thiomicrospira strains actually
express functional hydrogenases until Thiomicrospira SP-41’s
hydrogen consumption ability was discovered (Hansen and
Perner, 2015). Further hydrogen consuming (previously
classified as) Thiomicrospira strains were detected after
offering diverse growth conditions and supplements (Hansen
and Perner, 2016), demonstrating an unexpected potential
for hydrogen consumption among these sulfur-oxidizing
Gammaproteobacteria. The flexibility to use hydrogen as an
alternative electron donor might also be a key to the success and
dominance of (other) sulfur-oxidizing Gammaproteobacteria as
observed in a variety of hydrothermal fluids (Perner et al., 2010;
Olins et al., 2017).

A similar hydrogen consumption potential can also be
expected for sulfur-oxidizing representatives of the order
Campylobacterales: for example, the growth of a sulfur-oxidizing
Sulfurimonas denitrificans isolate was significantly improved by
the addition of hydrogen in growth experiments and hydrogen
consumption measurements confirmed the utilization as electron
donor (Han and Perner, 2014). Although S. denitrificans was
originally isolated from Wadden Sea sediments (Timmer-Ten
Hoor, 1975), numerous strains have also been identified in
hydrothermally influenced habitats (cf e.g., Perner et al., 2013a).
Furthermore, hydrogenase genes of a S. denitrificans strains
were found in vent-derived metatranscriptomes (Fortunato and
Huber, 2016). Given the great abundances of Sulfurimonas and
other Campylobacterales genera like Arcobacter in hydrothermal
fluids or plumes (Perner et al., 2010, 2013a; Fortunato and
Huber, 2016), members of the Campylobacterales may contribute
significantly to overall hydrogen consumption in deep-sea vent
systems.

Although diverse archaeal hydrogen-consuming
representatives have been isolated, much of the archaeal
hydrogen consumption in hydrothermal vents can likely be
assigned to methanogens, evidenced by incubation experiments
and sequencing (Perner et al., 2010; Ver Eecke et al., 2012;
Fortunato and Huber, 2016). The full potential of methanogenic
hydrogen-based primary production, however, may be even
greater than current incubation experiments suggest, occurring
over a wider temperature and pressure range. By applying
elevated (in situ) hydrostatic pressure of 20 MPa, the growth
range of the hyperthermophilic vent-derived Methanopyrus

Frontiers in Microbiology | www.frontiersin.org 12 November 2018 | Volume 9 | Article 287341

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02873 November 21, 2018 Time: 19:51 # 13

Adam and Perner Microbial H2-Cycling in Hydrothermal Vents

kandleri was expanded from 116◦C up to 122◦C and the
temperature optimum was increased by 5◦C to 105◦C (compared
to the standard 0.4 MPa incubations), while the carbon isotope
fractionation of generated methane decreased (Takai et al., 2008).
The small carbon isotope fractionation of biogenic methane
could lead to a misinterpretation of data from hydrothermal
vent environments: it could be identified as isotopically “heavy”
methane from a magmatic source, thus diminishing the estimated
methanogenic contribution (Takai et al., 2008 and references
therein).

So far, incubation experiments with hydrothermal fluid
samples have been performed with temperatures up to 80◦C
(Fortunato and Huber, 2016), thus the conditions might not have
been ideal for hyperthermophiles in the existing incubations and
their abundances were underestimated.

Before genomic analyses and incubation experiments could
link hydrogen consumption to the putatively responsible
organisms, for many species such as Thiomicrospira sp. no hints
for a potential hydrogen utilization were obvious. Matched with
the still existing difficulties in the cultivation of vent inhabitants, a
need for the implementation of culture-independent approaches
becomes evident in order to identify novel hydrogen-oxidizing or
-producing microorganisms and respective enzymes.

ACCESSING THE UNCULTURED
MAJORITY AND THEIR
HYDROGEN-CONVERTING POTENTIAL

Hydrogenase genes have been frequently identified in
metagenomic deep-sea hydrothermal vent data sets. The
[NiFe]-hydrogenase hit rate (i.e., the number of identified
hydrogenase genes relative to all other genes in the data
set) from a hydrothermal vent metagenome can be up to
40-fold higher than in metagenomes from other habitat
types (Brazelton et al., 2012; Perner et al., 2014), revealing
the importance of hydrogen-uptake in venting biotopes.
However, these sequence-based approaches only indicate
potential hydrogenase encoding genes. The functionality of the
putative hydrogen-converting enzymes remains unclear, until
hydrogen-uptake or –evolution is experimentally confirmed.
Furthermore, hydrogen-converting enzymes lacking sequence
homologies to known hydrogenases cannot be identified by
sequence-based metagenomic approaches. Up to now, truly
novel enzymes can only be found by screening metagenomes
with activity-based approaches (Handelsman, 2004).

Until recently no activity-based screen existed, that could seek
hydrogen-converting enzymes from the environment. However,
a newly developed screen enables the search for environmental
hydrogenases: It is based on the recombinant expression of
metagenome-derived genes in a [NiFe]-hydrogenase deletion
mutant of Shewanella oneidensis MR-1 (Adam and Perner,
2017). By applying this screen to metagenomic libraries of
hydrothermal vent environments, hydrogen-converting clones
were identified, whose metagenomic inserts largely do not
share any sequence homology with known hydrogenases.
Hydrogen-uptake activities of the clones exhibited up to

258 ± 19 nmol H2
∗min−1∗mg−1 of partially purified proteins at

55◦C, exceeding those of some cultured organisms (Adam and
Perner, 2018). Given the difficulties and drawbacks associated
with heterologous (hydrogenase) enzyme expression, a limitation
in the hydrogenase detection ability of this screen is not
surprising. For example, hydrogenases of Escherichia coli,
Hydrogenovibrio sp., Thiobacillus denitrificans, Desulfovibrio
vulgaris, and Aquifex aeolicus (and thus likely those of uncultured
relatives from the environment) could not be identified with this
host-vector system. Nevertheless, the [NiFe]-hydrogenases from
Photobacterium leiognathi, Rhodobacter capsulatus, Sulfurimonas
denitrificans and Wolinella succinogenes were successfully
expressed and exhibited measurable activities that were up to
2.6-fold higher than that of the host’s own hydrogenase (Adam
and Perner, 2018). Still, it can be assumed that by establishing
other hosts with varying growth optima for the activity-based
screen, the detection range may be significantly improved. Given
specific hydrogen-uptake activities of up to 48,700 ± 4,000 nmol
H2
∗min−1∗mg−1 for the vent isolate Thioreductor micantisoli

(Takai et al., 2005), the large potential for the discovery of
(highly) active hydrogenases present in the enzymatic pool of
vent environments is apparent.

The possibility of successfully expressing vent-derived
hydrogen-converting enzymes in an “easily” culturable host
may also open the door to biotechnological applications of
these enzymes. Hydrogen-converting enzymes are of particular
interest for the use in hydrogen production as a clean energy
carrier and energy generation in biofuel cells (Armstrong et al.,
2009; Chenevier et al., 2013). As shown for Escherichia coli’s
hydrogenases for example, these enzymes can be used for
enhanced hydrogen production on surface-enlarged nanofiber
electrodes (Schlicht et al., 2016). Due to the steep thermal and
chemical gradients prevailing in vent environments, enzymes of
exceptional stability under various conditions (e.g., temperature
or oxygen contents) can be expected to be found. These would be
the ideal candidates for biotechnological applications in the field
of hydrogen production or energy generation in biofuel cells.

CONCLUSION

Hydrogen oxidation, catalyzed by phylogenetically diverse
Bacteria and Archaea with versatile metabolic pathways, plays a
major role for primary biomass production in chemically distinct
deep-sea hydrothermal vent systems. However, the metabolic
processes and biogeochemical interactions involved in hydrogen
conversion are still not fully understood. Assessing the full
hydrogen consumption potential of microbial vent communities
has often proved to be difficult as incubation experiments but
also metagenomic and metatranscriptomic approaches have their
particular limitations: i.e., either in the reproducibility of optimal
growth and hydrogen consumption conditions or in the lack of
functional proof for the putative hydrogen conversion ability.
The development of in situ hydrogen consumption measurement
techniques that include sampling for subsequent molecular
analyses would therefore considerably improve the exploration
of hydrogen-converting communities in deep-sea vents.
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Since the culture-dependent and –independent approaches all
exhibit individual limitations in identifying novel mechanisms of
hydrogen-based metabolisms, the currently available techniques
should ideally be combined to elucidate the full hydrogen
utilization potential among the yet uncultured majority.
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Hydrogenases are key enzymes of the energy metabolism of many microorganisms.
Especially in anoxic habitats where molecular hydrogen (H2) is an important
intermediate, these enzymes are used to expel excess reducing power by reducing
protons or they are used for the oxidation of H2 as energy and electron source.
Despite the fact that hydrogenases catalyze the simplest chemical reaction of reducing
two protons with two electrons it turned out that they are often parts of multimeric
enzyme complexes catalyzing complex chemical reactions with a multitude of functions
in the metabolism. Recent findings revealed multimeric hydrogenases with so far
unknown functions particularly in bacteria from the class Clostridia. The discovery of
[FeFe] hydrogenases coupled to electron bifurcating subunits solved the enigma of
how the otherwise highly endergonic reduction of the electron carrier ferredoxin can
be carried out and how H2 production from NADH is possible. Complexes of [FeFe]
hydrogenases with formate dehydrogenases revealed a novel enzymatic coupling of
the two electron carriers H2 and formate. These novel hydrogenase enzyme complex
could also contribute to biotechnological H2 production and H2 storage, both processes
essential for an envisaged economy based on H2 as energy carrier.

Keywords: hydrogenase, formate dehydrogenase, CO2 reduction, electron bifurcation, hydrogen production,
acetogenesis, clostridia, hydrogen storage

INTRODUCTION

Molecular hydrogen (H2) is only present in trace concentrations (550 parts per billion) in the Earth’s
lower atmosphere (Novelli et al., 1999). Nevertheless, it plays an essential part in the biogeochemical
cycles of other elements such as carbon and is a major constituent of the microbial metabolism.
For example, H2 is an important electron donor for methane formation in anoxic environments
(Schink, 1997; Thauer et al., 2008). Here, too, steady state concentrations are very low (pH2 < 10 Pa)
but the turnover of H2 is very high (150 million tons of H2 of biological origin are estimated to
be produced in anoxic ecosystem annually to fuel methanogenesis) (Thauer et al., 2008, 2010). In
anoxic ecosystems, the major role of H2 is electron transfer between the different participants of
the food chain, e.g., transfer of electrons generated by primary fermenters to methanogens (Stams
and Plugge, 2009; Schink et al., 2017). To produce or consume H2 nature has evolved complex
metalloenzymes, hydrogenases, which catalyze one of the simplest chemical reaction, reversible
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oxidation of H2 into two protons and two electrons:

H2 
 2H+ + 2e− (1)

Hydrogenases are widespread in nature and can be found in
all domains of life. Based on their phylogeny, they can be
classified into three distinct classes that are named by the metal
ions contained in their active sites as [NiFe]-, [FeFe]-, and
[Fe] hydrogenases (Vignais et al., 2001; Vignais and Colbeau,
2004). [NiFe] hydrogenases have been found in bacteria and
archaea, [FeFe] hydrogenases in bacteria and some eukaryotes,
and [Fe] hydrogenases only in archaea (Vignais and Billoud,
2007). Even though [NiFe]- and [FeFe] hydrogenases have
evolved independently, the complex metal centers responsible
for catalysis share many features. The metal ions are ligated by
inorganic CO and CN− ligands and are bridged by sulfur atoms.
H2 can reach the active sites that are buried within the enzymes
by a hydrophobic gas channel and the electrons that result from
H2 oxidation are in both enzyme classes transferred to an [4Fe–
4S] cluster adjacent to the metal center (Happe et al., 1997; Pierik
et al., 1998; Fontecilla-Camps and Ragsdale, 1999). The third class
of hydrogenases, the [Fe] hydrogenases which are only found in
methanogenic archaea differ not only by their architecture of the
active site, but also by the catalyzed reaction that does not result
in the release of electrons to an iron–sulfur cluster, but the direct
transfer to the cosubstrate methenyltetrahydromethanopterin
(Shima and Thauer, 2007; Shima et al., 2008). In this review, we
will mainly focus on hydrogenases of the [FeFe] class. Enzymes
from this class are widespread in anaerobic prokaryotes and
play important roles in the energy and carbon metabolism in
anoxic ecosystems. Crystal structures have been reported for
three enzymes, namely from Clostridium pasteurianum (Peters
et al., 1998), Desulfovibrio desulfuricans (Nicolet et al., 1999) and
the eukaryotic algae Chlamydomonas reinhardtii (Mulder et al.,
2010) and show high similarity in the overall structure and the
architecture of the active site. Details on the crystal structures
and the reaction mechanism have been described in excellent
and comprehensive reviews elsewhere and will therefore not been
repeated here except for the architecture of the cofactors in the
C. pasteurianum enzyme that we will discuss in the context of
electron bifurcation later (Vignais and Colbeau, 2004; Thauer
et al., 2010; Lubitz et al., 2014). Interestingly, despite the apparent
high similarity of the “core” hydrogenase subunit responsible
for H2 oxidation and production, [FeFe] hydrogenases show a
remarkable diversity with respect to the auxiliary subunits that
can be found in most enzymes and an even higher diversity can
be predicted from genome sequence data. The auxiliary subunits
follow a very modular structure and add multiple functions to
the core subunit. These functions can include electron transfer
to soluble electron carriers, coupling of H2 oxidation/production
to other chemical reactions, coupling to energy conservation
by coupling the electron transfer to the generation of a
transmembrane ion potential, or utilization of the novel energetic
coupling mechanism of flavin-based electron bifurcation (FBEB)
to overcome energetic limitations of the electron transfer (Buckel
and Thauer, 2018a,b; Müller et al., 2018). A notable diversity
of multimeric [FeFe] hydrogenases can be found especially

in the strictly anaerobic Gram-positive bacteria of the class
Clostridia within the phylum Firmicutes (Calusinska et al., 2010;
Schmidt et al., 2010). Recent discoveries have revealed multimeric
hydrogenases with remarkable and so far undescribed functions
and catalytic properties, solving important questions of the
metabolism and ecosystem functioning in anoxic environment.
In addition, recently described multimeric hydrogenases provide
interesting opportunities for biotechnological applications. H2
is a candidate energy carrier that could replace fossil fuels for
storage and transportation of energy generated from renewable
sources such as wind or solar power (Dunn, 2002; Brandon and
Kurban, 2017). However, for an economically viable H2 economy
many obstacles need to be overcome such as efficient methods for
H2 production and technologies for storage and transportation
of the volatile and explosive gas (Service, 2004; Preuster et al.,
2017a).

Here, we review the recent findings of novel complex
multimeric hydrogenases and especially their function in the
microbial H2 metabolism. These include enzymes using the
novel energy coupling mechanism of FBEB enabling otherwise
endergonic H2 production from NADH or the otherwise
endergonic electron transfer from H2 to the iron–sulfur protein
ferredoxin. The second part will focus on the recently discovered
formate dehydrogenase coupled hydrogenases enabling direct
CO2 reduction with H2 or H2 evolution from formate. In
addition, both hydrogenase types will be discussed in the context
of their biotechnological potential for the H2 economy.

H2 FUNCTIONING AS ELECTRON
CARRIER IN ANOXIC ECOSYSTEMS

H2 can be utilized by many organisms as electron donor.
Recently, it has been reported that microorganisms are even
capable of utilizing the low atmospheric concentrations of H2
(Greening et al., 2014a,b). Nevertheless, the most prominent
functions of H2 are found in anoxic ecosystems where it is
rapidly produced and consumed by microorganisms resulting
in a large turnover. H2 connects different parts of the food
web to allow full remineralization of organic material. When
complex polymeric organic material (polysaccharides, proteins,
nucleic acids, lipids) enter anoxic ecosystems it is typically first
hydrolyzed by exoenzymes followed by the partial oxidation by
primary fermenting microorganisms into different fermentation
products such as lactate, alcohols, short chain fatty acids, acetate,
formate, CO2 and H2. In the absence of suitable external electron
acceptors, the latter compounds (acetate, formate, CO2 and
H2) can be directly converted by methanogenic archaea into
methane (Schink, 1997; Thauer et al., 2008). Further oxidation
of the other compounds leads to an energetic problem that
can only be solved by the concerted cooperation of secondary
fermenting organisms with methanogens in a process call
syntrophy (Schink, 2002; Sieber et al., 2012; Morris et al.,
2013). Secondary fermenters oxidize their substrates typically to
acetate as end product coupled to oxidation of protons to H2
to reoxidize their electron carriers. However, under standard
conditions these reactions are endergonic and do not provide
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energy for the cell. During substrate oxidation, electrons are
typically transferred to either ferredoxin, a small iron–sulfur
cluster containing protein with a very negative redox potential
(E◦’ = −400 to −500 mV), or NAD+ with a more positive redox
potential (E◦’[NAD+/NADH] =−320 mV) (Thauer et al., 1977).
Proton reduction can be used to recycle these electron carriers.
The redox potential of the H+/H2 couple is, under standard
conditions, −414 mV. Therefore, while H2 production from
reduced ferredoxin is an exergonic reaction, H2 formation from
NADH represents a strong energetic barrier for the cells since it is
a highly endergonic reaction (Thauer et al., 1977). Two possible
mechanisms have evolved to overcome this problem and allow
H2 formation from NADH. In the classical view, H2 oxidizing
methanogens lower the H2 partial pressure to very low values
(1–10 Pa H2) resulting in a more positive redox potential of the
H+/H2 couple (above −300 mV) thus rendering H2 formation
from NADH an exergonic reaction (Schink, 2002; Sieber et al.,
2012; Morris et al., 2013). Recently, another mechanism has been
discovered that solves the problem of NADH reoxidation with
protons as acceptor within one enzyme. Complex multimeric
hydrogenases are necessary to catalyze this reaction that solves
the energetic problem by energetically coupling the endergonic
electron transfer to a second exergonic redox reaction, a process
called FBEB. As we will see later, these enzymes not only
participate in the metabolism of secondary fermenting organisms
but can also be found in primary fermenters, thereby increasing
the energy yield that can be conserved from a given substrate, or,
in the reverse, be found in acetogenic bacteria to allow ferredoxin
reduction with H2 as electron donor.

THE CONCEPT OF FLAVIN-BASED
ELECTRON BIFURCATION

In 2008 a new energy coupling mechanism called FBEB
was first discovered in an enzyme complex of an electron-
transferring flavoprotein and a butyryl-CoA dehydrogenase
(Etf/Bcd) (Herrmann et al., 2008; Li et al., 2008). In FBEB, an
electron pair from an electron donor such as NADH is split
toward two different one-electron acceptors, one with a more
positive redox potential and another with a much lower redox
potential than that of the electron donor. It was proposed and
later proven that electron transfer to a positive redox potential
(exergonic reaction) sustains the movement of an electron to
a more negative redox potential (endergonic reaction). In case
of Etf/Bcd, the positive electron redox potential acceptor was
crotonyl-CoA (E0’ = −10 mV) and the negative redox potential
acceptor was ferredoxin (E0’ = −420 mV). NADH (E0’ = −320
mV) is the electron donor. The complete reaction catalyzed by
the protein complex is

Crotonyl− CoA + 2 NADH + Fdox

→ Butyryl− CoA + 2 NAD++ Fdred (2)

The enzyme complex contained FAD as the only cofactor that was
essential for the activity (Chowdhury et al., 2014; Demmer et al.,
2017). Hence, the name originated as FBEB. FBEB was drawn

in analogy to the quinone-based electron bifurcation (QBEB)
of the cytochrome bc1 complex of the respiratory chain, which
was discovered 43 years ago by Peter Mitchell, in which the
oxidation of reduced ubiquinone (UQH2) by the high potential
cytochrome c1 by one electron allows the reduction of low-
potential cytochrome bL and further UQ inside the membrane
(Mitchell, 1975). The process is repeated twice that allows four
protons to be released outside of the cell and doubling the amount
of energy conserved and electrons finally flow down to oxygen
(terminal electron acceptor) to reduce oxygen to water.

H2 PRODUCTION FROM NADH:
ELECTRON-BIFURCATING
HYDROGENASES FOR H2 EVOLUTION

Soon after the discovery of FBEB in Clostridia, the first
hydrogenase was reported that utilizes the mechanism of FBEB,
however, in the physiological context in the reverse direction
(named electron confurcation) (Schut and Adams, 2009). The
enzyme was discovered in the hyperthermophilic and anaerobic
bacterium Thermotoga maritima. The bacterium ferments one
mole of glucose by the classical Embden–Meyerhof–Parnas
pathway to two moles of CO2, two acetate and four moles of
H2 (Schroder et al., 1994). During its metabolism, both NADH
and reduced ferredoxin are generated, however, for decades the
link to the oxidation of these electron carriers to H2 production
remained obscure (Wrba et al., 1990; Blamey and Adams,
1993). The trimeric [FeFe] hydrogenase was isolated and could
be assayed by coupling reduction of viologen dyes with H2.
However, the enzyme did not use either reduced ferredoxin or
NADH as sole electron donor (Verhagen et al., 1999). Though
reduced clostridial ferredoxin (E0’ =−420 mV) alone can reduce
protons to H2 (E0’ = −414 mV), NADH cannot. It was an
enigma since the discovery of fermentative H2 production to
how H2 is produced from NADH. The solution was FBEB:
exergonic electron flow from reduced ferredoxin to H+ that
drives endergonic electron flow from NADH to H+, according to:

NADH + Fdred+ 3 H+ 
 NAD++ Fdox+ 2 H2 (3)

The hydrogenase of T. maritima is now the classic example
where reduced ferredoxin drives H2 evolution from NADH.
The enzyme oxidizes NADH and ferredoxin simultaneously in
a 1:1 ratio to produce H2. In this case both electrons from
NADH and reduced ferredoxin are converged to reduce protons
to H2. This mode of electron converging from different sources
of electron donor (NADH and Fdred) to a single electron acceptor
(protons) is now called electron confurcation. A similar lifestyle
and metabolic pathway is also observed in the rumen bacterium
Ruminococcus albus (Zheng et al., 2014). Similar to T. maritima,
when grown in continuous culture the bacterium produces the
same amounts of H2 and acetate from glucose (Figure 1A).
Also, the acetogenic model bacterium Acetobacterium woodii
is suggested to use a confurcating hydrogenase to evolve H2
from organic substrates (Schuchmann and Müller, 2012; Bertsch
et al., 2015; Kremp et al., 2018). This mode of H2 evolution
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FIGURE 1 | Role of multimeric hydrogenases in the energy metabolism of Ruminococcus albus (A) and Acetobacterium woodii (B). During glucose fermentation,
R. albus oxidizes glucose to two molecules acetate. All generated reducing equivalents are reoxidized by the electron confurcating hydrogenase HydABC. In
contrast, A. woodii can grow with H2 + CO2 as substrates and forms acetate as major end product. HDCR catalyzes the first step of the WLP from CO2 to formate.
All reducing equivalents are provided from H2 oxidation catalyzed by the electron bifurcating hydrogenase HydABCD. Fd2-, reduced ferredoxin; CoA, coenzyme-A;
THF, tetrahydrofolate; CoFeSP, corrinoid–iron–sulfur protein; GAP, glyceraldehyde 3-phosphate; 1,3-bPG, 1,3-bisphosphoglycerate.

by electron confurcating hydrogenases is important for energy
conservation in these fermenting bacteria. ATP is synthesized by
substrate level phosphorylation at the phosphoglycerate kinase
and pyruvate kinase reactions and NADH is formed by NAD-
specific glycerinaldehyde-3-phosphate-dehydrogenase. The redox
pool could for example be balanced by reducing pyruvate to
lactate, where 2 NADH will be consumed. However, this pathway
will produce 2 ATP less. Rather the bacteria maintain its redox
balance by producing two moles of acetyl-CoA via the pyruvate-
ferredoxin oxidoreductase and finally releases 2 ATP catalyzed
by the acetate kinase. This mode of metabolism leaves 2 NADH
and 2 reduced ferredoxin that are converted to H2 by FBEB
hydrogenase. Hence, the presence of FBEB hydrogenases allows
NADH and ferredoxin to be reoxidized with H+ as electron
acceptor and thus increasing the ATP yield (Müller et al., 2018).

ELECTRON-BIFURCATING UPTAKE
HYDROGENASES

In the autotrophic mode of life, organisms can synthesize most of
their carbon compounds from CO2 using H2 or another electron
donor as reductant. One such group are the acetogenic bacteria
that are capable of producing acetate from two molecules of CO2
with H2 as the reductant via the reductive acetyl-CoA pathway
(also known as Wood–Ljungdahl pathway, WLP) (Wood, 1991;

Wood and Ljungdahl, 1991). Three model organisms that have
been studied in detail are Moorella thermoacetica, A. woodii, and
Clostridium ljungdahlii. As these bacteria grow simply on CO2
and H2 without any external carbon source added, this mode of
metabolism must be coupled to net ATP formation.

A. woodii as a model organism has been studied in detail
to answer how energy is conserved during acetogenesis
(Schuchmann and Müller, 2014). This unearthed surprising
enzyme complexes that are unique in their diversity of the
reactions they catalyze as well as their working mechanisms.
Three such enzyme complexes are the Rnf complex, an
FBEB hydrogenase and a H2-dependent CO2 reductase.
A. woodii employs a sodium ion-dependent ferredoxin: NAD-
oxidoreductase (Rnf complex) that couples the exergonic
oxidation of reduced ferredoxin (E0’ ∼ −450 mV) with NAD+
(E0’ = −320 mV) to the generation of a transmembrane
electrochemical Na+ gradient (Figure 1B). The difference in
the redox potential of ferredoxin and NAD+/NADH allows the
pumping of Na+ over the cytoplasmic membrane resulting in
a Na+ gradient that then drives the synthesis of ATP via the
well-characterized Na+ F1FO-ATP synthase (Spruth et al., 1995).
Therefore, to drive energy conservation catalyzed by the Rnf
complex, ferredoxin needs to be reduced. A. woodii solves this
problem by using a FBEB uptake hydrogenase (Schuchmann and
Müller, 2012) which is quite similar to the electron confurcating
hydrogenases from T. maritima or R. albus (Zheng et al., 2014).
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FIGURE 2 | Diversity of the subunit architecture and cofactor content of electron bifurcating and confurcating hydrogenases. Enzymes of this class have been
isolated and characterized from A. woodii (A), T. maritima (B), M. thermoacetica (C) and R. albus (D). All enzymes contain the subunits HydA, harboring the active
site, the putative flavin-containing and NAD-binding subunit HydB, and the putative electron-transferring subunit HydC. A. woodii contains the additional subunit
HydD. The arrangement of the iron–sulfur clusters and the binding site for ferredoxin are chosen arbitrary. Fd, ferredoxin.

However, in case of chemolitotrophic growth, H2 is oxidized to
reduce both NAD+ and ferredoxin. The hydrogenase couples
the exergonic oxidation of H2 (E0’ = −414 mV) with NAD+
(E0’ = −320 mV) to the endergonic reduction of ferredoxin
(E0’ ∼ −450 mV). Reduced ferredoxin is used in two different
reactions, one to reduce CO2 to CO (E0’ = −520 mV) in the
WLP and secondly to transfer electrons via the Rnf to NAD+,
resulting in a Na+ gradient (Biegel and Müller, 2010, 2011;
Biegel et al., 2011). However, reaching the very low reduction
potential for CO2 to CO reduction is difficult even at very high
H2 partial pressure (105 Pa). FBEB provides an elegant solution
by providing reduced ferredoxin with a more negative redox
potential than the initial electron donor H2. The same is true
when A. woodii is grown on methanol, where FBEB hydrogenase
provides the extra reduced ferredoxin which is then used for CO2
reduction (Kremp et al., 2018).

The hydrogenase of A. woodii has been studied in the context
of the autotrophic metabolism where its function is H2 oxidation.
Besides, further insights into the non-autotrophic metabolism
of A. woodii have revealed that the enzyme may function as
a H2-evolving (electron bifurcating) hydrogenase as well. For
example, when A. woodii grows on ethanol, only NADH is

produced when ethanol is oxidized to acetyl-CoA. One part of
the NADH is oxidized at the Rnf complex reducing ferredoxin.
This reduced ferredoxin is then used with the other part of
NADH by the hydrogenase to produce H2 for the first step of
the WLP (Figure 1B) (Bertsch et al., 2015). So, the electron-
bifurcating/confurcating hydrogenase from A. woodii provides
a nice example how anaerobes have evolved their metabolic
enzymes which serves the purpose of both uptake and evolving
H2 when needed in two different modes of energy metabolism.

COFACTOR AND SUBUNIT
ARCHITECTURE OF FBEB
HYDROGENASES

The H2 forming hydrogenases from T. maritima, R. albus, and
M. thermoacetica (Wang et al., 2013b) and the H2 uptake/forming
hydrogenase from A. woodii possess quite similar subunit
compositions (Figure 2). All four enzymes are composed of the
three subunits Hyd A (∼64 kDa), Hyd B (∼65 kDa) and Hyd
C (∼14 kDa). HydA from T. maritima is larger compared to
its counterpart by having a size of 73 kDa putatively containing
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FIGURE 3 | Structure of the monomeric ferredoxin-dependent hydrogenase of C. pasteurianum. The 3D structure has been solved at 1.8 Å resolution (1FEH, RSCB
PDB database). The monomeric enzyme contains the H-cluster typical for [FeFe] hydrogenases including the auxiliary [4Fe–4S] cluster. In addition, one [2Fe–2S]-
and three [4Fe–4S] clusters are bound in the enzyme (A). The iron–sulfur centers are arranged in a forked architecture with cluster FS2 being too far away from FS4C
for direct electron transfer (B). FS2 and FS4C are both close enough to FS4B for electron transfer. HC, H-cluster. Modified from Peters et al. (1998).

an additional [2Fe–2S] cluster. Another exception is that the
A. woodii hydrogenase has an extra subunit HydD (∼15 kDa)
which is predicted to contain no cofactor (Schuchmann and
Müller, 2012, 2014). On amino acid sequence comparison, HydA
finds the closest similarity to the monomeric [FeFe] hydrogenase
from C. pasteurianum (Figure 3). The first crystal structure of
the [FeFe] hydrogenase from C. pasteurianum CpI was reported
by Peters et al. (1998). The overall structure of the core domain
consists of the H-cluster (the active site of [FeFe] hydrogenases
catalyzing H2 oxidation) including a diiron subcluster and one
[4Fe–4S] cluster connected via a cysteine residue as found
conserved in most of the [FeFe] hydrogenases. The diiron metals
are coordinated by CN− and CO, while the proximal Fe is
linked to a cubane [4Fe–4S] cluster via a cysteine. The [4Fe–
4S] is around 4 Å apart from the di-iron center. Apart from the
H2-activating domain the domain interacting with the active-
site domain contains two [4Fe–4S] clusters named as FS4A and
FS4B (Figure 3). FS4A is 9 Å apart from the H-cluster thus the
direct electron carrier to or from the H-cluster. FS4A is around
10 Å apart from FS4B cluster and thus in line to the putative
electron transfer pathway. There are two additional domains,
one containing a [2Fe–2S] cluster named FS2 (11 Å from FS4B),
the other contains a single [4Fe–4S] cluster called FS4C. FS4C
has an unusual three cysteine and one histidine ligation. The
two clusters FS4C and FS2 exhibit a forked architecture, where
FS2 is far away from the direct line of electron transfer from
FS4C. Most probably, FS4C directly gets electron from FS4B
and finally transfers electrons to ferredoxin. A recent study
using protein–protein docking modeling and NMR studies of
electron transfer complex formation between the photosynthetic
electron-transfer ferredoxin (PetF) containing a [2Fe–2S] cluster
and the hydrogenase HydA1 from the microalga C. reinhardtii
revealed PetF to interact with HydA1 near to FS4C (Chang et al.,

2007; Rumpel et al., 2015). The function of FS2 and the forked
orientation of the possible electron transfer chains is puzzling,
especially in the context of an electron bifurcating enzyme.

Assuming a similar structural organization and cofactor
content in the FBEB hydrogenases, HydA is predicted as the
catalytic subunit for H2 oxidation. It contains the H-cluster
which is the site for H2 activation, one [2Fe–2S] and three [4Fe–
4S] clusters. HydB has closest similarity to the NADH binding
subunit NuoF of NADH-quinone oxidoreductase from E. coli,
and is predicted to contain one FMN, one [2Fe–2S] and three
[4Fe–4S] clusters. HydC, which is related to NuoE, contains only
one [2Fe–2S] cluster.

A POSSIBLE ELECTRON PATHWAY IN
FBEB HYDROGENASES

How can the electron flow from H2 to NAD+ and H2 to
ferredoxin be energetically coupled within these multimeric
hydrogenases? Until now the basis of FBEB has been revealed
in other enzyme complexes like the Etf/Bcd complex from
Acidaminococcus fermentans (Chowdhury et al., 2014, 2016),
C. difficile (Demmer et al., 2017) and Megasphaera elsdenii
(Chowdhury et al., 2015), LctBCD and CarCDE of A. woodii
(Bertsch et al., 2013; Weghoff et al., 2015) and the Nfn
transhydrogenase from T. maritima (Demmer et al., 2015),
Pyrococcus furiosus (Lubner et al., 2017), FixABCX of Azotobacter
vinelandii (Ledbetter et al., 2017) and HdrABC-MvhAGD from
the thermophilic methanogenic archaeon Methanothermococcus
thermolithotrophicus (Wagner et al., 2017). However, FBEB
hydrogenases represent a very special case. FBEB enzymes so
far all are proposed to contain a flavin having special redox
properties. Flavins have three different redox potentials for the
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FIGURE 4 | Models for the electron flow in electron bifurcating hydrogenases. In the scenario that electron-bifurcation is facilitated by a flavin (A) according to the
standard model of FBEB, the enzymes would have to contain two additional flavins that cannot be predicted from the primary structure. Flavin α functions as switch
from one electron transferring iron–sulfur clusters to the actual bifurcating flavin β. Here, the two electrons are bifurcated to other iron–sulfur clusters and to the final
acceptors. Flavin γ functions as switch from the one electron transferring iron–sulfur clusters to NAD+. In the second scenario (B). The H-cluster is the site of
electron bifurcation. Here only one flavin is required for the switch from the one electron transferring iron–sulfur clusters to NAD+. Fd, ferredoxin.

three possible redox reactions:

FMN + 1 e− 
 FMN
◦
− (E1) (4)

FMN
◦
−
+ 1 e− + 2 H+ 
 FMNH2 (E2) (5)

FMN + 2 e− + 2 H+ 
 FMNH2 (E3) (6)

In “standard” flavins the midpoint potential of E1 is more positive
than E2. In FBEB enzymes the flavin is supposed to have a
“crossed” redox potential meaning that E1 is more negative than
E2 (Nitschke and Russell, 2012). The two-electron redox potential
(E3) is supposed to be between, meaning the average, of E1 and

E2. Therefore, the flavin can be reduced in a two-electron transfer
reaction by the electron donor (E3) followed by the first electron
being transferred to the more positive electron acceptor (e.g.,
NAD+) (E2) leaving behind a highly reactive FMN

◦
− that can

now transfer the second electron to the more negative electron
acceptor (e.g., ferredoxin) (E1) (Demmer et al., 2017; Baymann
et al., 2018; Buckel and Thauer, 2018a).

Based on the current knowledge, FBEB hydrogenases have
only one predicted flavin in HydB which is required for the
switch from a two-electron carrier (NADH) to a one electron
carrier (iron–sulfur cluster), a typical function of “standard”
flavins. Therefore, Buckel and Thauer (2013) proposed that
FBEB hydrogenases need to have an additional “special” flavin
to perform the electron bifurcation reaction. To function in
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accordance to the standard model of FBEB, the electron flow
would look like the following (Figure 4A): H2 is oxidized
at the H-cluster followed by the electron transfer to the
iron–sulfur clusters. H2 has a redox potential in between
NAD+ and ferredoxin, therefore, it must reduce the flavin
with a two-electron transfer reaction to reach the flavin redox
potential E3. However, since iron sulfur clusters can only
transfer one electron at a time we therefore speculate that
in this model a second flavin (flavin α) would be required
for the additional one electron/two electron switch. Then,
the “special” flavin (flavin β) can transfer the first electron
to the iron sulfur cluster leading to NAD+ leaving behind
a highly reactive flavin radical that transfers the second
electron to the iron–sulfur clusters leading to ferredoxin. The
third flavin (flavin γ) is then needed for the second one
electron/two electron switch from the iron sulfur clusters to
NAD+.

Of the characterized FBEB enzymes HdrABC-MvhAGD
from M. thermolithotrophicus, a complex of a multimeric
heterodisulfide reductase and a [NiFe] hydrogenase represents
a special case (Wagner et al., 2017). The flavin proposed to
be responsible for electron bifurcation is assumed to receive
both electrons from H2 in two single electron transfer steps in
contrast to a two electron transfer from a hydride donor. This
is in contrast to the current model of the energetic landscape
required for electron bifurcating flavins. However, if electron
bifurcation is possible by a flavin connected to three one electron
donors/acceptors in the form of iron–sulfur clusters, this could
also be the case in FBEB [FeFe] hydrogenases and would
render the presence of the hypothetically proposed flavin α

redundant.
The aforementioned model assumes the presence of additional

flavin binding sites that are not predicted by the amino acid
sequence. The flavin content of all isolated FBEB hydrogenases
could not be determined or not reported since the flavins
are only loosely attached and must be added to the buffers
for activity and got immediately lost when left out of the
buffers. Assuming that the additional flavins do not exist, a
completely new mechanism of FBEB must be present in FBEB
hydrogenases. First Nitschke and Russell (2012) raised the
possibility that also some metal centers could have crossed redox
potentials and could potentially catalyze the same reaction as
catalyzed by the flavin cofactor. Peters et al. (2018) took up
this exciting possibility and proposed for electron bifurcating
hydrogenases that since the FMN cannot be the site for electron
bifurcation, the H-cluster could be the possible site for the
electron bifurcation reaction. In their proposal, the electrons
flow from the H-cluster directly to two different accepting
iron–sulfur clusters with different redox potentials. The first
string of Fe–S clusters transfers the electrons from the H-cluster
to ferredoxin. The other string of iron–sulfur clusters plus
the single flavin transfers the electrons from the H-cluster
to NAD+ (Figure 4B). However, so far no metal center has
been shown to accommodate the special properties necessary
for electron bifurcation, therefore, this model would lead to a
completely new field of enzyme mechanism catalyzed by metal
centers.

FIGURE 5 | Subunit architecture and cofactor content of the
NADH-dependent hydrogenase of S. wolfei. This enzyme resembles in the
overall subunit architecture electron bifurcating/confurcating hydrogenases
that utilize NADH and reduced ferredoxin in an energetically coupled reaction
to produce H2 (or vice versa). The hydrogenase of S. wolfei putatively lacks
three iron–sulfur clusters in the subunit HydB and utilizes NADH alone for H2

production, thus not using FBEB.

THE CURIOUS CASE OF THE
NAD+-DEPENDENT HYDROGENASE
FROM Syntrophomonas wolfei

Recently, a hydrogenase has been purified from the syntrophic
bacterium S. wolfei that very much resembles all known
FBEB hydrogenases discussed so far, however, does not show
FBEB (Losey et al., 2017). Therefore, comparison of this
enzyme to the other ones might be helpful to unravel the
mechanism of FBEB hydrogenases. The purified recombinant
hydrogenase (Hyd1ABC) of S. wolfei showed H2 production
from NADH alone, uncoupled to ferredoxin. The recombinant
enzyme had a very high H2-dependent: methyl-viologen reducing
activity (3,340 U/mg), H2-dependent NAD+ reducing activity
(94.5 U/mg) and catalyzed H2 production from NADH with a
specific activity of 6.6 U/mg. The enzyme is a trimeric protein
complex composed of HydA1 (63 kDa), HydB1 (43 kDa), and
HydC1 (17.5 kDa) (Figure 5). It contains five [4Fe–4S], two
[2Fe–2S] clusters, and one H-cluster. The flavin content was
determined to be 0.7 mol of FMN per mole of enzyme. The
Hyd1ABC subunits share close similarity to those of the earlier
discussed FBEB hydrogenases. HydA1 is, again, similar to the
monomeric C. pasteurianum hydrogenase, putatively containing
the H-cluster, 3 [4Fe–4S] clusters and one [2Fe–2S] cluster and
is the site for H2 formation. HydC1 has been predicted to
contain one [2Fe–2S] cluster. Nevertheless, the question arose
why this enzyme Hyd1ABC of S. wolfei, though having the
same organization of subunits like FBEB hydrogenases, does not
oxidize/reduce ferredoxin. One reason that the authors discuss is
the lack of one [2Fe–2S] cluster putatively bound in a N-terminal
domain of HydB of FBEB hydrogenases as well as the lack of
one [4Fe–4S] cluster putatively bound in the C-terminal domain
of HydB of FBEB hydrogenases. In fact, S. wolfei HydB1 is
much smaller than HydB of other FBEB hydrogenases (43 kDa
compared to 63 kDa). Electrons are supposed to be transferred
from NADH via the FMN to the proximal [4Fe–4S] cluster,
and further transferred via the [Fe–S] clusters in HydA1 to the
H-cluster to reduce protons to H2. The S. wolfei hydrogenase
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might be a step in evolution away from FBEB hydrogenases to
“standard” hydrogenases or, possibly, the other way around. In
any case, solving the structure of this enzyme and comparing it to
a bifurcating hydrogenase might unravel factors essential for the
energetic coupling within the bifurcating enzymes.

FORMATE DEHYDROGENASE COUPLED
HYDROGENASES

Protons can be used by microorganisms as ubiquitously available
electron acceptor to get rid of excess reducing equivalents.
A similar function is played by CO2. In anoxic environments,
CO2 or HCO3

− is ubiquitously available (50–100 mM HCO3
− in

lake sediments, 200-400 mM HCO3
− in biogas reactors) and can

be used as electron acceptor yielding formic acid/formate (Crable
et al., 2011; Schink et al., 2017). Interestingly, the redox potential
of the CO2/formate couple of −432 mV is very close to the
H+/H2 couple rendering both electron acceptors energetically
very similar. Therefore, it is not surprising that both H2 and
formate have been observed as important electron carriers
in anoxic environments with often interchangeable functions
(Thiele and Zeikus, 1988; Stams and Plugge, 2009; Schink et al.,
2017; Montag and Schink, 2018). However, for a long time
little was known on how the two pools of high energy redox
mediators are connected with each other. In the past years these
two compounds gained increasing interest due to their potential
as electron donors for biofuel production, as energy carriers for
mobile applications or issues like H2 storage. This has led to
discoveries of novel enzymes but also so far unknown organisms
that connect and utilize these two redox mediators.

FORMATE HYDROGEN LYASE OF E. coli

Already in 1932 Stephenson and Stickland discovered that whole
cells of E. coli grown in the presence of formate decompose
formate into H2 + CO2 (Stephenson and Stickland, 1931, 1932).
They named the supposed enzyme system formate hydrogen
lyase (FHL). When growing under anoxic conditions in the
absence of an alternative electron acceptor E. coli produces formic
acid during mixed acid fermentation from pyruvate catalyzed
by pyruvate-formate lyase which is then exported from the
cytoplasm by the channels FocA and/or FocB (Clark, 1989;
Sawers et al., 2004; Wang et al., 2009; Lu et al., 2011; Trchounian
and Trchounian, 2014; Hakobyan et al., 2018). Formic acid
(pKS = 3.7) dissociates to formate and leads to an acidification
of the environment. A drop in the pH together with the
accumulation of formate leads to subsequent import of formate
again and the induction of expression of the genes coding for the
FHL enzyme. FHL then oxidizes formate to H2 + CO2 followed
by reoxidation of H2 by other membrane bound hydrogenases of
E. coli that transfer the electrons to the quinone pool (Rossmann
et al., 1991; Sawers, 1994; Sawers, 2005; Pinske and Sawers, 2016).

Stephenson and Stickland assumed the enzymes to be a
combination of formate dehydrogenase and hydrogenase.
Genetic and physiological studies have confirmed this

assumption and shown that the FHL of E. coli consist of
a formate dehydrogenase bound to a membrane integral
multimeric hydrogenase located in the cytoplasmic membrane
(Zinoni et al., 1986; Böhm et al., 1990; Rossmann et al., 1991;
Sauter et al., 1992). However, isolation of the whole FHL complex
was achieved only recently by McDowall et al. (2014). The
enzyme complex consists of two membrane integral subunits
and five soluble subunits. The soluble subunits HycE and HycG
represent the large (65 kDa) and small (20 kDa) subunits of
the [NiFe]-hydrogenase termed E. coli hydrogenase-3 (Hyd-3)
(Figure 6A). Formate is oxidized by the subunit FdhF (also called
formate dehydrogenase H) (Axley et al., 1990; Gladyshev et al.,
1996; Boyington et al., 1997).

The FHL complex shows high similarity to a group of similar
membrane bound hydrogenases now called energy-converting
hydrogenases (Ech). These enzymes are found in many anaerobic
and facultative anaerobic bacteria and H2 formation is coupled
to different electron donors such as reduced ferredoxin or CO,
facilitated by auxiliary subunits (Fox et al., 1996; Künkel et al.,
1998; Meuer et al., 1999; Sapra et al., 2000; Soboh et al., 2002).
It has been assumed that Ech hydrogenases couple H2 formation
to the translocation of ions across the membrane. Experimental
proof for this concept was established using inverted membrane
vesicles of the methanogenic archaeon Methanosarcina mazei
(Welte et al., 2010a,b). However, whether the FHL complex
of E. coli is also coupled to energy conservation has been a
matter of debate for many years (Bagramyan and Martirosov,
1989; Trchounian et al., 1997, 2000, 2011; Hakobyan et al., 2005;
McDowall et al., 2014; Trchounian and Sawers, 2014; Pinske and
Sargent, 2016).

FHL couples the two half reactions

formate+H+ 
 CO2 + 2 e− + 2 H+ E0′
= −432 mV (7)

and
2 H+ + 2 e− 
 H2 E0′

= −414 mV (8)

resulting in the net reaction

formate+H+ 
 H2 + CO2 (9)

Under standard conditions, the free energy change of Eq. (9)
is only −3.5 kJ mol−1 (Thauer et al., 1977). Thus, based on
the 1G0’ value, the FHL reaction should be fully reversible
under physiological conditions, however, the enzyme shows
a strong bias toward formate oxidation. Values for in vitro
turnover frequency (TOF) for FHL activity was reported between
1,200 h−1 and 1,920 h−1 (McDowall et al., 2014; Pinske and
Sargent, 2016) whereas the reverse reaction, formate formation
from H2 + CO2 was only observed with an apparent TOFs of
only 202 h−1 (measured in a discontinuous one point assay and
reported as 3.25 µmol formate produced after 5 h with 370 µg
of enzyme) (Pinske and Sargent, 2016). This bias could not be
explained by the catalytic properties of FdhF and Hyd-3 that
have been analyzed separately and show high activities in both
reaction directions (Bassegoda et al., 2014; McDowall et al., 2014).
In addition to both active sites a factor determining the bias in
one or the other direction could be the thermodynamic landscape
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FIGURE 6 | Model of the structure of formate dehydrogenase coupled hydrogenases. FHL of E. coli (A) has the physiological function of formate oxidation coupled
to H2 formation. The FHL consist of a [NiFe] hydrogenase coupled to a formate dehydrogenase and membrane integral subunits. In contrast, the HDCR of A. woodii
(B) is composed of a [FeFe] hydrogenase coupled to a formate dehydrogenase and catalyzes reversible CO2 reduction with H2 as electron donor.

of the connecting iron–sulfur clusters. In addition, the membrane
attachment of this enzyme complex and the connection to the
enzyme activity is still puzzling (Bagramyan and Martirosov,
1989; Trchounian et al., 1997, 2000, 2011; Hakobyan et al., 2005;
McDowall et al., 2014; Trchounian and Sawers, 2014; Pinske and
Sargent, 2016). From a physiological point of view, the bias could
be a remnant of evolution since there is no physiological situation
where E. coli would use the reverse reaction to produce formate
from CO2 since this organism is not able to utilize formate further
in the metabolism.

HYDROGEN-DEPENDENT CO2
REDUCTASES

For many years, FHL was the only enzyme complex known
that connects the electron carriers H2 and formate but this
enzyme shows a strong bias toward formate oxidation. Did
evolution also bring up enzymes adapted for the reverse reaction?
Efficient catalysts for hydrogenation of CO2 are highly sought-
after (Appel et al., 2013; Beller and Bornscheuer, 2014; Wang
et al., 2015). These could be used for CO2 conversion technologies
for carbon capture, for CO2-based synthesis or for H2 storage
(Yishai et al., 2016; Preuster et al., 2017b; Bulushev and Ross,
2018). Many homogeneous and heterogenous chemical catalyst
have been developed, however, often requiring high temperatures
and pressures (Fujita et al., 2013; Wang et al., 2015). In biological
systems, of the six pathways known for CO2 fixation, only the
WLP proceeds via direct reduction of CO2 to formate catalyzed
by formate dehydrogenases (Fuchs, 2011). In 2013, a formate
dehydrogenase was isolated from the acetogenic bacterium
A. woodii that was in complex with a hydrogenase, on first glance
resembling the FHL of E. coli (Schuchmann and Müller, 2013).
However, in contrast to FHL, the enzyme was lacking membrane
integral subunits. When isolated, the enzyme contained only
four subunits, one formate dehydrogenase, one hydrogenase

and two iron–sulfur cluster rich subunits, identified as being
encoded by genes found in one gene cluster (Figure 6B). The
gene clusters contains in addition a gene coding for a second
formate dehydrogenase, a gene for a third iron–sulfur cluster rich
subunits and a gene designated as fdhD (Poehlein et al., 2012;
Schuchmann and Müller, 2013). The formate dehydrogenase
FdhF2 as found in the isolated enzyme is a 80.1 kDa protein
with 59% identity to FdhH of the E. coli FHL aligning over
the whole sequence of 713 amino acids. It has one predicted
[4Fe–4S] cluster and a bis-PGD cofactor. ICP-MS identified
0.6 mol molybdenum but no tungsten per mol of isolated enzyme
preparation agreeing with a mononuclear molybdenum bound
to the bis-PGD cofactor thus classifying this enzyme as member
of the dimethylsulfoxide reductase family within the Mo/W-bis
PGD super-family (Schuchmann and Müller, 2013). At amino
acid position 139, a selenocysteine is predicted which is in
agreement with the determined selenium in the preparation.
In contrast to E. coli FHL, the [NiFe] hydrogenase subunits of
FHL are substituted by the [FeFe] hydrogenase subunit HydA2
(50.2 kDa). The sequence of this subunit contains the conserved
regions typical for H-cluster binding and aligns to amino acid
region 201–572 of the monomeric ferredoxin-dependent [FeFe]
hydrogenase of C. pasteurianum (Figure 3). In contrast to the
C. pasteurianum enzyme, the N-terminus containing one [2Fe–
2S]- and one [4Fe–4S] cluster is missing. In addition to the
H-cluster including the adjacent [4Fe–4S] cluster, the enzyme is
predicted to contain two additional [4Fe–4S] clusters. HydA2 and
FdhF2 are supposed to be connected by the two small electron
transferring subunits HycB2 and HycB3 (18.9 and 20.1 kDa,
respectively) containing 4 [4Fe–4S] clusters each (Figure 6B).

Enzymatic assays utilizing methyl viologen demonstrated that
both FdhF2 as well as HydA2 were highly active in the isolated
enzyme. H2 oxidation was catalyzed with a TOF of 30,474 s−1

(Schuchmann and Müller, 2013). The formate dehydrogenase
subunit catalyzed formate oxidation with 1,693 s−1 and CO2
reduction with 372 s−1 also showing a bias for formate oxidation,
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FIGURE 7 | Distribution of HDCR-like gene clusters. Fully sequenced bacterial genomes have been searched for HDCR-like gene clusters (Schwarz et al., 2018).
Based on the gene cluster arrangement, the enzymes can be classified in HDCR-like enzyme complex without and with electron bifurcating modules. Predicted
cofactors based on the primary sequence of each subunit are shown in the right top corner. For clarity, single genes disrupting the gene cluster in some organisms
such as maturation genes (e.g., fdhD) or transposase are not shown.

however, not as severe as reported for FdhH of the FHL that
showed no measurable CO2 reduction activity with soluble
electron carriers. HydA2 has been analyzed by catalytic protein
film electrochemistry by adsorbing the whole enzyme complex to
an electrode (Ceccaldi et al., 2017). The hydrogenase is biased for
proton reduction oxidizing H2 10 times slower than it reduces
protons at pH 6 as is typical for [FeFe] hydrogenases. However,
this ratio defining the bias decreases with increasing pH.

KM for H2 was determined to 0.24 atm [Ki (H2) = 6.4 atm],
being three times lower than reported values for C. reinhardtii
and Clostridium acetobutylicum and thus showing the highest
affinity ever reported for a [FeFe] hydrogenase (Fourmond
et al., 2013; Ceccaldi et al., 2017). In addition, HydA2 showed

the surprising characteristic of being the first completely CO
tolerant [FeFe] hydrogenase. Even though the enzyme is strongly
inhibited by CO [Ki(CO) = 0.11 µM], it fully reactivates upon
removal of CO which is in contrast to other [FeFe] hydrogenases
where CO provokes irreversible damage to the H-cluster (Goldet
et al., 2009; Baffert et al., 2011; Foster et al., 2012). This feature
could be a result of the metabolism of A. woodii where CO is an
intermediate of the reductive acetyl-CoA pathway (Schuchmann
and Müller, 2014; Bertsch and Müller, 2015b).

Coupling of the formate dehydrogenase/hydrogenase complex
of A. woodii was analyzed by incubating the isolated enzyme in
the presence of formate. This lead to H2 production with a TOF
of 142,212 h−1 (Schuchmann and Müller, 2013). Interestingly,
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this enzyme is fully reversible also catalyzing hydrogenation
of CO2 at 30◦C and 0.8 bar of H2 and 0.2 bar of CO2
with a TOF of 101,600 h−1 being significantly faster than the
currently best known chemical catalysts (Hull et al., 2012; Jeletic
et al., 2013; Wang et al., 2015; Eppinger and Huang, 2017). To
distinguish the soluble enzyme complex from membrane bound
FHL complexes that are weak catalysts for CO2 hydrogenation
the enzyme was named hydrogen-dependent CO2 reductase
(HDCR). As mentioned before, CO is a strong inhibitor of
the hydrogenase activity (Goldet et al., 2009). Interestingly, the
HDCR has an alternative electron entry site and can use reduced
ferredoxin as electron donor to allow CO2 reduction even in
the presence of 1 atm CO. However, this activity is 17 times
slower than the hydrogen-dependent activity with a TOF of only
6,095 h−1 (Schuchmann and Müller, 2013). Noteworthy, further
characterization of the HDCR revealed another interesting
property of the enzyme. In vitro the HDCR of A. woodii reversibly
polymerized into ordered filamentous structures of more than
0.1 µM in length (Schuchmann et al., 2016). Divalent cations
could be identified to promote the polymerization process and it
was observed that the polymerized form of the enzyme was more
active. The in vivo significance of this observation is unresolved.

As described before, the HDCR gene cluster of A. woodii
contains a gene, fdhF1, for a second formate dehydrogenase
subunit with the corresponding electron transferring subunit
hycB1. The deduced amino acid sequence of FdhF1 is to 80%
identical to FdhF2 with the major exception being a cysteine
in FdhF1 at position 139 where a selenocysteine is encoded
in FdhF2. Metal-dependent formate dehydrogenases have been
described with either selenocysteine or cysteine in the active site
(Axley et al., 1990; Friedebold and Bowien, 1993; Raaijmakers
et al., 2002; de Bok et al., 2003; Laukel et al., 2003). The lower
pKa value of selenocysteine compared to cysteine is typically
connected to a higher reactivity (Stadtman, 1996; Böck et al.,
2005; Stock and Rother, 2009). Exchanging selenocysteine by
cysteine in FdhH of E. coli let to a decrease in turnover number
by over two orders of magnitude. However, the affinity for
the substrate was increased in the cysteine variant as reflected
by a lower KM value (Axley et al., 1991). There is no data
on the different properties of FdhF1 and FdhF2 of A. woodii,
however, the assumption is that in dependence on the presence
of selenium in the environment the two subunits are produced
differentially with the selenocysteine containing variant being the
more active one. In another acetogenic bacterium, a spirochete
from the termite gut, Treponema primitia, a gene cluster with
similarity to the HDCR gene cluster was identified (Matson et al.,
2010). It consists of the genes fdhFcys, two hycB genes, fdhD and
hydA. Separated by 14 genes, a second fdhF gene is encoded,
containing a putative selenocysteine codon and a SECIS element
(fdhFsec). Transcript analysis revealed a differential expression
of fdhFcys and fdhFsec in dependence of selenium availability
with up to 40-fold change in transcript levels. Half-maximum
decrease in transcript level of fdhFcys was observed with less
than 50 pM sodium selenite, whereas 1.5 nM sodium selenite
were required for half-maximum increase in fdhFsec transcript
levels. Interestingly, only transcript levels downstream of the
SECIS element were differentially expressed, whereas transcript

upstream of the SECIS element did not show differential
regulation (Matson et al., 2010).

PHYSIOLOGY AND DIVERSITY OF HDCR
COMPLEXES

The first HDCR complex has been identified in the acetogenic
bacterium A. woodii. Acetogenic bacteria utilize the WLP for
energy conservation and carbon fixation, the only carbon fixation
pathway that utilizes CO2 by direct reduction to formate.
Therefore, this first reduction step of CO2 is essential for the
metabolism of these bacteria. The redox potential of CO2/formate
of −432 mV limits the number of possible electron donors for
this reaction. The first formate dehydrogenase characterized in an
acetogenic bacterium was isolated from Moorella thermoacetica
(Yamamoto et al., 1983). This heterotetrameric enzyme was the
first enzyme described to contain tungsten and catalyzes CO2
reduction coupled to NADPH oxidation. The standard redox
potential of NADP+/NADPH of −340 mV is too positive for
CO2 reduction, however, in anaerobes the intracellular ratio
of NADP+/NADPH is 1/40 resulting in a redox potential of
−370 mV (Sauer et al., 2004; Bennett et al., 2009). Insights
into an increasing number of sequenced genomes of acetogenic
bacteria has revealed that the genes encoding enzymes for the first
reaction step of the WLP show a large diversity (Schuchmann and
Müller, 2014; Bertsch and Müller, 2015a; Bengelsdorf et al., 2016).
Therefore, the knowledge of the enzymes of M. thermoacetica
could not be transferred to other acetogens. Characterization
of A. woodii has revealed that it does not use NADPH but
H2 as electron donor for CO2 reduction catalyzed by the
HDCR. Energetically, the difference between NADPH and H2
is very small under physiological conditions. H2 is a stronger
reductant under standard conditions (E0’ =−414 mV), however,
at the minimum H2 pressures required by A. woodii to perform
acetogenesis (250 Pa) the redox potential is only −340 mV
(Poehlein et al., 2012). Under these conditions, the equilibrium
concentration of formate is 0.1 mM (CO2 at 0.2× 105 Pa, 30◦C),
in the range of the KM value of next enzyme of the pathway,
the formyl-THF synthetase (Poehlein et al., 2012). Coupling CO2
reduction directly to H2 oxidation also energetically couples
it directly to the external H2 partial pressure. A H2 pressure
of 250 Pa is very high compared to the values observed in
methanogenic environments of 1 to 10 Pa H2 (Conrad et al., 1986;
Seitz et al., 1990). Therefore, CO2 reduction by HDCR enzymes
seems to be not competitive in methanogenic environments.
However, the observation of reduced ferredoxin as alternative
electron carrier could be a mechanism to overcome this limitation
(in addition to the proposed bypass for CO inhibition of the
hydrogenase as discussed before). On the other hand, utilizing
reduced ferredoxin instead of H2 would result, in A. woodii,
in less ATP conserved (Schuchmann and Müller, 2013). The
physiological relevance of the ferredoxin entry site of the HDCR
has, however, not been studied yet.

The complete reversibility of the HDCR, as opposed to
membrane bound FHL complexes, is a direct reflection of its
physiological function. Besides H2 + CO2, A. woodii can grow
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for example with formate or methanol as sole carbon and energy
sources (Schuchmann and Müller, 2016; Kremp et al., 2018). To
convert these compounds, part of the substrate must be oxidized
to CO2 to provide reducing equivalents. In these scenarios, the
HDCR must operate in reverse to oxidize formate to H2 + CO2
since it is the only formate dehydrogenase found in A. woodii
(Poehlein et al., 2012).

H2 and formate are widely used electron carriers in
anoxic ecosystems and are product or substrate of many
microorganisms. The discovery of the HDCR enzyme as
soluble, not energetically coupled enzyme complex that connects
these two pools raised the question of the distribution of
similar enzymes in other organisms. When searching for gene
clusters containing homologs of fdhF1, hycB1/3 and hydA2
of A. woodii we found 18 organisms encoding gene clusters
encoding putative HDCRs (Figure 7), see also Schwarz et al.
(2018). Of these putative enzymes only one from the acetogen
Thermoanaerobacter kivui has been isolated and characterized
(Schwarz et al., 2018). Of the 18 organisms, three are
acetogenic bacteria that can grow with H2 + CO2 as substrates
[Clostridium difficile (Köpke et al., 2013), T. primitia (Graber
and Breznak, 2004), T. kivui (Leigh et al., 1981)] and 5 belong
to the sulfate reducers [Desulfotalea psychrophila (Knoblauch
et al., 1999), Desulfobacterium autotrophicum (Brysch et al.,
1987), Desulfovibrio alaskensis (Feio et al., 2004), Desulfovibrio
magneticus (Sakaguchi et al., 2002), Desulfovibrio salexigens
(Postgate and Campbell, 1966)]. In these organisms the HDCRs
could play a role in the WLP as in A. woodii to reduce CO2
to formate either for carbon fixation alone (sulfate reducers) or
for carbon fixation and energy conservation (acetogens). Many
organisms from the genus Paenibacillus have putative HDCR
gene clusters. Paenibacilli are found in many environments
from polar to tropic regions, often found in soil where they
have been reported to be associated with plant roots promoting
plant growth, some species are pathogenic to honeybees or
invertebrates and some are opportunistic pathogenic to humans
(Grady et al., 2016). Species such as Paenibacillus polymyxa
are facultative anaerobes and can ferment glucose under anoxic
conditions by mixed acid fermentation to a mixture of products
such as acetate, ethanol, lactate, formate, H2 and CO2 (Marwoto
et al., 2004). Cell free extracts of P. polymyxa have been
shown to contain hydrogenase activity and catalyze H2 evolution
from formate (Grau and Wilson, 1962). We conclude, that in
Paenibacilli the HDCR could take over the function of the FHL
complex as used by E. coli to detoxify formate produced during
fermentation by oxidizing it to H2 + CO2.

We identified two gene clusters that show notable differences
to the standard HDCR gene cluster. In this case, the
hydrogenase subunit resembles the hydrogenase subunit of
electron bifurcating hydrogenases by containing two additional
iron–sulfur clusters. The formate dehydrogenase subunit also
contains three putative additional iron–sulfur clusters whereas
genes for the Hyc proteins are missing (Figure 7). The additional
iron–sulfur clusters in the Hyd and Fdh subunit could take
over the function of electron transfer otherwise catalyzed by the
Hyc proteins. In contrast, in five other organisms we identified
putative HDCR gene cluster that are more complex than the

“standard” HDCR and that have, in the case of Clostridium
autoethanogenum, been shown to combine features of HDCR-
like enzyme complexes and electron bifurcating hydrogenases
(Wang et al., 2013a).

RAISING THE COMPLEXITY: FORMATE
DEHYDROGENASE COUPLED
ELECTRON BIFURCATING
HYDROGENASES

In the acetogenic bacterium C. autoethanogenum a very complex
enzyme has been isolated that indeed combines the features of
the HDCR enzyme complex and hydrogenases utilizing FBEB
(Wang et al., 2013a). This complex is encoded by seven genes
found in one cluster on the chromosome. It putatively contains
19 iron–sulfur clusters that could connect the active site of a
[FeFe] hydrogenase and a selenocysteine containing bis-PGD
containing formate dehydrogenase (Figure 8). In addition, a
flavin is predicted to be bound to the complex. Chemical
analysis of the isolated complex confirmed the presence of FMN,
selenium, tungsten and 60 mol iron of 76 predicted mol iron
per complex. Molybdenum and FAD were not detected. The
enzyme complex showed very interesting catalytic properties.
When incubated with H2 + CO2 it catalyzed formate formation
with 41 U mg−1 and the reverse reaction, H2 formation from
formate with 40 U mg−1 thus showing the typical reversible
reaction of HDCR enzymes. However, when incubated with H2,
NADP+, and oxidized ferredoxin the enzyme oxidized H2 and
reduced NADP+ and ferredoxin simultaneously (32 U mg−1).
NADP+, NAD+ or ferredoxin alone in the presence of H2 are not
reduced. H2 could also be formed only in the presence of NADPH
and reduced ferredoxin together (27 U mg−1). In addition,
NADP+ and oxidized ferredoxin could also be reduced with
formate, again only in the presence of both electron acceptors
(15 U mg−1). The same was true for the reverse reaction, CO2
reduction with NADPH and reduced ferredoxin (7 U mg−1).
It has been further demonstrated that the electron-bifurcating
reactions with two electron acceptors are strictly energetically
coupled (Wang et al., 2013a). Taking these results together, the
enzyme represents a combination of formate dehydrogenase
coupled hydrogenase as in the case of the HDCR and subunits
facilitating FBEB. Interestingly, electron bifurcation to NADP+
and oxidized ferredoxin is catalyzed with two alternative electron
donors, H2 or formate. Puzzling as well is the observation that
CO inhibits not only the hydrogenase activity but also reduction
of NADP+ and ferredoxin with formate, even though CO is
not known to inhibit formate dehydrogenases. The physiological
function is complex as well. The enzyme is highly produced in
cells grown with syngas as substrate (42% CO, 36% N2, 20%
CO2, and 2% H2) even though already CO concentrations of
around 0.1% inhibit most activities of the enzyme complex to
50%. Wang et al. (2013a) propose that during balanced growth on
CO the steady state concentration within the cell is much lower
than external CO concentrations thus not inhibiting the enzyme
completely. The authors propose the enzyme utilizes NADPH
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FIGURE 8 | The electron-bifurcating formate dehydrogenase/hydrogenase complex of C. autoethanogenum. The enzyme complex of the acetogenic bacterium
C. autoethanogenum consists of a [FeFe] hydrogenase, a formate dehydrogenase and subunits typical for electron bifurcating hydrogenases. It catalyzes electron
transfer from H2 or formate to NADP+ and ferredoxin (energetically coupled) and vice versa, or from H2 to CO2 forming formate and vice versa. Fd, ferredoxin.

FIGURE 9 | Formate storage and the H2 economy and envisioned H2 economy could use sustainably produced electricity, biohydrogen or gasified waste as
sources for H2 gas. Hydrogenation of CO2 leads to formic acid/formate which can be stored and transported easier, safer and in a more compact form compared to
gaseous H2. Formic acid can serve as fuel directly in a direct formic acid fuel cell or formate is dehydrogenated to release H2 again to be used in a H2 fuel cell in,
e.g., fuel cell powered cars.

and reduced ferredoxin for CO2 reduction when cells grown on
CO and the hydrogenase module has the function to protect the
cells from over-reduction when NADP+ and ferredoxin get too
reduced during growth of C. autoethanogenum on CO. For a
detailed discussion of this function we refer the reader to the
original work of Wang et al. (2013a) since it is beyond the scope
of this review.

In four other organisms, we identified gene clusters that
encode for putative enzyme complexes resembling the electron-
bifurcating formate dehydrogenase/hydrogenase complex of
C. autoethanogenum. These include the acetogen Clostridium
carboxidivorans that can, as C. autoethanogenum utilize CO
as carbon and energy source (Liou et al., 2005) and the
amino acid fermenting bacteria Cloacibacillus porcorum (Looft
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et al., 2013) and Peptoclostridium acidaminophilum (formerly
Eubacterium acidaminophilum) (Zindel et al., 1988) (Figure 7).
P. acidaminophilum uses formate as electron donor to reduce
glycine, sarcosine, or betaine to acetyl phosphate (Hormann and
Andreesen, 1989; Andreesen, 1994). In addition, it is able to
grow in syntrophic culture on, e.g., alanine, valine, leucine or
malate if a hydrogen- or formate-consuming bacterium is also
present (Zindel et al., 1988). The genome encodes for two putative
formate dehydrogenases of which one has been isolated and
characterized (Graentzdoerffer et al., 2003). The purified enzyme
contained the subunits FdhF (selenocysteine and tungsten bis-
PGD cofactor containing formate dehydrogenase), two iron–
sulfur cluster containing subunits and the flavin- and NAD(P)
binding subunit HydB. The corresponding gene cluster encodes
for a [FeFe] hydrogenase, however, hydrogenase activity was lost
during purification and a hydrogenase subunit or hydrogenase
activity could not be detected in the isolated enzyme. On the other
hand, formate dehydrogenase activity was present and showed
reversible catalysis of formate oxidation/CO2 reduction (43 U
mg−1/12 U mg−1, methyl viologen as electron donor/acceptor).

BIOTECHNOLOGICAL H2 PRODUCTION
AND STORAGE

H2 has been considered for a long time to replace fossil fuels
in the future to tackle the climate problem by decreasing
emission of CO2 (Ball and Wietschel, 2010). H2 is a very simple
molecule that can be produced by various methods including
splitting of water that, if the energy is provided by renewable
energy sources like solar or wind power does not lead to CO2
emission. Consumption of H2 for energy generation either by
thermal combustion or H2 fuel cells at the site of use does not
release CO2 as well. On the other hand, significant challenges
are connected with a switch to the H2 economy. Currently,
95% of world-wide H2 is produced from fossil fuels by coal
gasification or by steam reforming of natural gas followed by
further processing to increase the H2 yield (water-gas shift
reaction) (Brandon and Kurban, 2017). These processes emit
large quantities of CO2 and are not sustainable. Another major
drawback of H2 is its very low density. On a gravimetric basis,
the energy content of 33.3 kWh/kg H2 is three times higher
than that of gasoline. On a volumetric basis this situation is
dramatically reversed to 3 Wh/L for gaseous H2 versus 8,600
Wh/L to 9800 Wh/L for gasoline or diesel, respectively (Preuster
et al., 2017a). Therefore, methods need to be developed for on-
board storage of H2 in mobile applications such as cars and
large-scale storage of H2, e.g., for storing energy produced by
wind or solar power at off peak times. Another challenge of H2
concerns safety issues with respect to the high volatility and the
formation of highly explosive gas mixtures if getting in contact
with air.

A key technology to sustainably produce H2 without carbon
emission is electrolysis of water driven by electricity generated
from renewable sources (Ursua et al., 2012). Electrocatalytic
splitting of water releases only H2 and O2 thus generating H2
free of contaminations such as CO which is important for H2

fuel cell applications. This process has been used already in
large scale, however, the low price of fossil fuels has rendered it
uneconomic. In the near future, process efficiencies of 85–95%
are expected with the current price of H2 produced by electrolysis
being approximately at 3 € per kg (Tremel et al., 2015).

Biological catalysis provides another alternative method
for H2 production. These processes can currently not be
considered as the major technology to provide H2 for the H2
economy but could provide small but significant contributions
to exploit other H2 sources as well. H2 production by biological
systems can be classified into four general mechanisms, namely
direct and indirect biophotolysis, photofermentation, and dark
fermentation which have been extensively reviewed elsewhere
(Manish and Banerjee, 2008; van Niel, 2016; Kumar et al.,
2018). We want to focus here on dark fermentation which has
shown the highest H2 evolution rates so far (Rittmann and
Herwig, 2012), biological alternatives to store H2 and the new
opportunities provided by the recent discoveries of novel types
of hydrogenases.

Dark fermentation can be catalyzed by single organisms or
complex consortia to extract energy from multiple substrates
such as waste biomass. This process has been used successfully
for many years in biogas plants that convert waste biomass to
methane. Within this process, H2 is produced by fermenting
organisms but immediately consumed by methanogens. Selective
inhibition of methanogens can stop H2 consumption leading to
H2 accumulation (Schink, 1997; Catal et al., 2015). Alternatives
are single organisms capable of producing large quantities of H2
either naturally or by metabolic engineering. In nature, most
H2 is produced from the fermentation of carbohydrates (Thauer
et al., 2008). Complete oxidation of 1 mole of hexoses such as
glucose would yield a maximum of 12 moles of H2

C6H12O6 + 12 H2O 
 12 H2 + 12 HCO−3 (10)

This reaction is endergonic [1G0’ = 13.6 kJ mol−1 (Flamholz
et al., 2012)] and thus not feasible in vivo. The maximum H2 that
can be produced from glucose by microorganisms is limited to
4 mol H2 per mol of glucose known as the Thauer limit (Thauer
et al., 1977). In practice, most H2 yields of microorganisms are
far below this theoretical limit due to thermodynamic reasons.
Oxidation of glucose to 2 pyruvate by the Embden–Meyerhof–
Parnas pathway transfers all electrons to NAD+ producing
in total 2 NADH. In contrast, oxidative decarboxylation of
2 pyruvate to acetyl-CoA and CO2 can be used to reduce 2
ferredoxins as electron carrier. H2 production from ferredoxin
is exergonic whereas H2 production from NADH is endergonic
as described above. Thus, without a H2 consuming partner
organism, H2 can only be produced from reduced ferredoxin
resulting in a maximum of 2 H2 produced per mol of glucose. The
solution to this problem is provided by the new class of electron-
bifurcating hydrogenases that can produce H2 from NADH as
well, driven by the coupled production of H2 from reduced
ferredoxin (Buckel and Thauer, 2013). Organisms that harbor
such enzymes such as T. maritima (Selig et al., 1997; Frock et al.,
2012) or R. albus (Zheng et al., 2014) are able to reach the Thauer
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limit by fermenting glucose according to

Glucose+ 2 H2O 
 4 H2 + 2 Acetate− + 2 CO2 (11)

with a 1G0’ value of−250 kJ mol−1 at 90◦C (growth temperature
of T. maritima) and −215 kJ mol−1 at 25◦C. An alternative
strategy to reach these high H2 yields has been observed in
the hyperthermophilic archaeon Pyrococcus furiosus growing at
100◦C. In this organism the NAD+-dependent glyceraldehyde-3-
phosphate dehydrogenase is replaced by a ferredoxin-dependent
enzyme at the expense of this enzyme not being couple to ATP
formation (Mukund and Adams, 1995). Thus, glucose oxidation
results only in generation of reduced ferredoxin allowing full
reoxidation by formation of H2.

Because of the good understanding of the metabolism and
the well-established genetic tools, E. coli is the prime candidate
for biotechnological applications. However, E. coli does not
harbor an FBEB hydrogenase and is limited to producing
2 mol H2 per mol glucose. Recently, it has been demonstrated
for the first time that heterologous expression of an FBEB
hydrogenase in E. coli is possible (Kelly et al., 2015). Since
E. coli lacks pyruvate:ferredoxin oxidoreductase (PFO), this
enzyme from T. maritima as well as ferredoxin from T. maritima
had to be produced additionally in E. coli to achieve H2
production. The amounts and rates of H2 production were
very low therefore this study can be seen as mere proof of
principle that such a complex hydrogenase can be produced
in E. coli, however, future studies need to prove that this
approach indeed can significantly improve the H2 yields of
E. coli.

The recently discovered formate dehydrogenase coupled
hydrogenases could also contribute to the H2 economy in
the part of H2 storage and transportation. To overcome the
very low volumetric energy density of gaseous H2 many
technologies are tested to store H2 in a more compact form
(Schlapbach and Zuttel, 2001; Preuster et al., 2017a,b). Physical
options are compression and storage in high pressure tanks
above 200 bar or storage of H2 in its liquid form present
at −253◦C, both technologies requiring high energy input
reducing the efficiency of H2 as energy carrier. A chemical
alternative is reacting H2 with other compounds to produce
liquid organic H2 carriers (LOHCs). For example, hydrogenation
of CO2 leads to formic acid that contains 4.4 wt % of
H2. This is close to the 2017 H2 storage target of 5.5 wt
% in gravimetric energy density set by the United States
Department of Energy at temperatures from −40 to 60◦C
at a maximum pressure of 100 atm (Enthaler et al., 2010;
Laurenczy, 2011; Kawanami et al., 2017). The volumetric capacity
is 53 g H2/L formic acid thus one liter formic acid can
store roughly 600 liter of gaseous H2. Formic acid is non-
toxic and non-explosive, however, its corrosive nature requires
special consideration for tanks and equipment. Formic acid
can be decomposed to H2 + CO2 before H2 is then used
in a H2 fuel cell. Chemical catalysts have been developed
that catalyze this dehydrogenation with high activity and
stability at ambient temperatures below 100◦C (Boddien et al.,
2008, 2009). However, the initial hydrogenation of CO2 still

represents a challenge. Many homogenous and heterogenous
chemical catalyst have been developed but are depending on
either high temperatures and pressures, expensive bases or
special media for high efficiencies (Hull et al., 2012; Jeletic
et al., 2013; Wang et al., 2015; Eppinger and Huang, 2017).
Highest rates for CO2 hydrogenation (TOF 3,400 h−1) with
chemical catalyst at ambient conditions have been achieved
with cobalt based catalysts in the presence of a special and
expensive base (Verkade’s base) (Jeletic et al., 2013). The newly
discovered HDCR complexes could provide a biotechnological
alternative or could serve as model to design more efficient
catalysts. HDCR of A. woodii catalyzes CO2 hydrogenation
with a TOF of 101,600 h−1 at 30◦C and 1 bar of pressure
(Schuchmann and Müller, 2013). In contrast to other CO2
reductases the enzyme directly utilizes H2 thus not requiring
soluble electron carriers. In addition, with even higher TOFs
it catalyzes the reverse reaction as well, closing the cycle for a
H2 storage process. By coupling the HDCR with a ferredoxin
dependent CO dehydrogenase, conversion of syngas (H2, CO,
CO2) or CO alone to formate was achieved (Schuchmann
and Müller, 2013). This is advantageous since CO is very
toxic to H2 fuel cells and can be removed by intermittent
conversion of the gases to formate. Major drawbacks are the
high oxygen sensitivity and inherent stability issues typical for
biocatalysts such as narrow pH and temperature range. To
overcome the requirement of enzyme isolation, a whole cell
system has been established using A. woodii as catalyst for
reversible H2 storage (Schuchmann and Müller, 2013). Genetic
manipulations were not required since competing pathways
for product formation were inhibited by addition of a sodium
ionophore that makes the cytoplasmic membrane permeable
for sodium ions thus inhibiting energy conservation and ATP
synthesis. Using this system, formate could be specifically
produced from H2 + CO2 reaching final concentrations
(up to ∼0.25 M formate) that where only limited by the
thermodynamics of the reaction. Formate was produced with
a rate of 120 mmol formate h−1 g−1. Formate decomposition
was catalyzed by whole cells with activities up to 71 mmol
H2 h−1 g−1 (Kottenhahn et al., 2018). Yields of 1 mol H2
per mol of formate were demonstrated. Recently, the first
HDCR from a thermophile, namely the acetogen T. kivui,
was isolated (Schwarz et al., 2018). This enzyme showed
surprising activities with TOFs for CO2 hydrogenation of
9,556,000 h−1 at 60◦C and still 1,856,000 h−1 at 30◦C. Formate
dehydrogenation was catalyzed with a TOF of 9,892,000 h−1.
This enzyme contained in contrast to the HDCR of A. woodii
tungsten instead of molybdenum and no selenocysteine in
the formate dehydrogenase subunit. Future insights into the
structure and biochemistry of this enzyme will hopefully
unravel the factors determining this tremendous CO2 reductase
activities not observed for other apparently very similar formate
dehydrogenases.

One alternative for HDCR catalysis of CO2 hydrogenation
is the FHL enzyme complex as found in E. coli. For many
years thought to work efficiently only in direction of formate
oxidation, recent work has demonstrated the reversibility. Even
though CO2 reductase activity of the isolated enzyme are orders

Frontiers in Microbiology | www.frontiersin.org 16 December 2018 | Volume 9 | Article 291162

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02911 November 30, 2018 Time: 15:13 # 17

Schuchmann et al. Complex Multimeric Hydrogenases

of magnitude slower compared to HDCR enzymes, whole cell
catalysis under high pressure showed promising results (Roger
et al., 2018). Utilizing a genetically modified strain that is
deficient in competing formate dehydrogenases, hydrogenases
and pyruvate formate lyase that are otherwise present in E. coli
and using 10 bar of H2 + CO2 (H2:CO2 ratio 1:1) at 37◦C
approximately 500 mM formate could be produced over a time
course of 23 h. Yields reached 100% (produced formate per
consumed CO2) and initial rates of 36 mmol formate produced
h−1 g−1 were demonstrated. Even though the FHL enzyme has
less advantageous catalytic properties in the isolated form and has
the disadvantage of being a membrane integral enzyme complex,
the catalytic rates observed with whole cells of E. coli in the high-
pressure system are in the same order of magnitude as whole cell
catalysis with A. woodii, however, the latter being performed at
ambient pressures.

How could formic acid be integrated in the H2 economy? As
shown in Figure 9, energy production from renewable sources
such as solar or wind power will be more decentralized. Electricity
produced could be converted electrochemically by water splitting
into H2. Alternative H2 sources can be biohydrogen produced
for example from waste biomass and multiple sources of
synthesis gas such as industrial off-gas or gasification of
municipal waste or biomass. H2 production from syngas are well
established technologies utilized already as major pathway for
H2 production. In the next step, H2 could be bound to CO2
at decentralized facilities producing formic acid that could then
be stored in bulk amounts for energy storage or distributed
to the final customer. Formic acid could be used directly for
energy generation in direct formic acid fuel cells (DFAFCs) that
are potential power sources for portable devices (Aslama et al.,
2012). DFAFCs are less well developed compared to H2 fuel cells.
Therefore, for utilization in H2 fuel cells, H2 must be generated
first by dehydrogenation of formic acid again at the site of use.
Combustion of formic acid directly or H2 after formic acid
dehydrogenation results in release of water and CO2 only. CO2
can be used for the next H2 storage cycle; therefore, no net CO2
is generated.

CONCLUSION

Enzymes utilizing H2 are known for almost a century and
since the first crystal structure of a hydrogenase in 1995
(Volbeda et al., 1995) a very large number of studies revealed
many facets of the biochemistry, reaction mechanism and
evolution of hydrogenases. Most knowledge has been gained
about the core subunit of hydrogenases that harbors the
active site for H2 oxidation/H+ reduction, however, in recent

years more and more hydrogenases have been discovered
that are part of large and very complex multimeric enzymes
connecting H2 oxidation to multiple functions. One of the major
breakthroughs in (anaerobic) microbiology within the last decade
was the discovery of the novel enzyme mechanisms of FBEB.
This discovery solved many thermodynamic enigmas within
the physiology of anaerobic microorganisms. Concerning H2
production, unraveling of hydrogenases utilizing FBEB finally
solved the long-standing questions how H2 production from
NADH is possible and, the other way around, how H2 can
be used to reduce ferredoxin, both highly endergonic reactions
without energetic coupling to other redox reactions. These
enzymes follow a modular architecture with the large subunit
of [FeFe] hydrogenases HydA being coupled to other functional
subunits. The same is true for hydrogenases coupled to formate
dehydrogenases or the combination of hydrogenase, formate
dehydrogenase and electron bifurcation. All these enzymes
contain a large number of iron–sulfur clusters that are supposed
to accomplish the electrical connection of the different active
sites or the active sites and multiple electron acceptors. The
biochemical characterization of all these enzymes needs now to
be followed by detail insights into the structure and reaction
mechanisms. FBEB hydrogenases constitute a fascinating puzzle
on how the splitting and energetic coupling of the two electrons
is achieved since the flavin to take over this function in other
characterized FBEB enzymes is apparently missing. The idea that
indeed a metal center can take over this function is a compelling
thought. On the other hand, a detailed understanding of H2-
dependent CO2 reductases would not only be important from a
biochemical point of view but could also help to provide better
catalysts for economic problems such as H2 storage. After more
than two decades focusing on the major subunit of hydrogenases
the next decade might reveal the fascinating complexity of the
auxiliary subunits of this still highly important class of enzymes.
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Hydrogen (H2) metabolism has attracted considerable interest because the activities of
H2-producing and consuming microbes shape the global H2 cycle and may have vital
relationships with the global cycling of other elements. There are many pathways of
microbial H2 emission and consumption which may affect the structure and function
of microbial communities. A wide range of microbial groups employ H2 as an electron
donor to catalyze the reduction of pollutants such as organohalides, azo compounds,
and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and
H2-consuming microorganisms can transfer H2 and be accompanied by the removal
of toxic compounds. Moreover, hydrogenases have been gradually recognized to
have a key role in the progress of pollutant degradation. This paper reviews recent
advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases
in environmental bioremediation. Further investigations should focus on the application
of bioenergy in bioremediation to make microbiological H2 metabolism a promising
remediation strategy.

Keywords: bioremediation, hydrogenase, H2 consumption, H2 metabolism, H2 production

INTRODUCTION

It is well established that the main sources of molecular hydrogen (H2) are geochemical and
anthropogenic activities and the main sink is the biological consumption of H2 in soil ecosystems.
The H2 cycle can influence air quality and climate indirectly via effects on the oxidative capacity
of the atmosphere (Ehhalt and Rohrer, 2009). In addition, the H2 cycle plays an important role
in microbial metabolism due to numerous microbial processes that depend on H2 production
and consumption (Vignais and Billoud, 2007; Greening et al., 2015b). For example, most of the
tropospheric H2 is consumed by soils due to the capacity of the majority of H2-oxidizing bacteria
displaying high affinity for H2 in soils to recycle it (Constant et al., 2010). H2 is also a key
metabolic compound in many anoxic ecosystems and its oxidation may support deep subsurface
lithoautotrophic microbial ecosystems (Chivian et al., 2008; Nyyssonen et al., 2014; Wu et al., 2015;
Bagnoud et al., 2016). The activities of H2-producing and consuming microbes therefore shape the
global H2 cycle and may have vital relationships with the global cycling of other elements including
carbon, sulfur, and nitrogen.

The first H2-oxidizing microorganisms were discovered in the 1900s (Kaserer, 1905; Stephenson
and Stickland, 1931). The physical properties of H2 (e.g., its diffusion coefficient, 4 × 10−9

m2 s−1, and redox potential, E0’ = −0.42 V, make it relatively active in biological processes
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(Greening et al., 2016). H2 has dual physiological functions in
microorganisms. Firstly, microbial fermentation of H2 produced
by facultative or obligate fermenters can disperse excess reductant
from fermentative metabolism, for example in Escherichia
coli and Clostridium spp. (Trchounian et al., 2012, 2017a,b).
Secondly, prokaryotic microorganisms with different metabolic
processes such as hydrogen-oxidizing bacteria, methanogens and
anoxygenic phototrophic bacteria can exploit H2 as an energy
source and reductant (Schwartz et al., 2013). There are also a wide
range of microorganisms with the ability to metabolize H2 such as
aerobes and anaerobes and lithotrophs and phototrophs (Vignais
and Billoud, 2007; Schwartz et al., 2013; Peters et al., 2015;
Greening et al., 2016). Furthermore, recent studies show that
some aerobic soil acidobacteria and actinobacteria can exploit
low levels of H2 for survival in addition to growth, which
challenges the traditional belief that H2 metabolism is restricted
to high-H2 and low-O2 environments (Constant et al., 2010;
Osborne et al., 2010; Greening et al., 2014, 2015a,b; Liot and
Constant, 2016).

Hydrogenases catalyze microbial H2 production and
consumption and are reversible enzymes responsible for
reversible or partial catalytic reactions as follows (Equation 1).

H2 ⇔ H− +H+ ⇔ 2H++2e− (1)

On the basis of the metal cofactors of their H2-binding sites,
these hydrogenases can be divided into three categories, namely
the [NiFe]−, [FeFe]−, and [Fe]-hydrogenases (Vignais and
Billoud, 2007; Schilter et al., 2016). [NiFe]-hydrogenases are
closely related to both H2 production and consumption, while
[FeFe]-hydrogenases are responsible mainly for the production
of H2 owing to their higher turnover rate and activity compared
with [NiFe]-hydrogenases (Marshall et al., 2012). However, [Fe]-
hydrogenases have so far only been found in methanogenic
archaea without cytochromes (Thauer et al., 2010). A recent study
shows that the three different types of hydrogenase contain many
subgroups based on the properties of metalloenzymes (such as
metal-binding motifs, amino acid sequence phylogeny, reported
biochemical characteristics and predicted genetic organization),
and hydrogenase-encoding genes have also been identified in
many microorganisms indicating a broad ecological distribution
(Trchounian et al., 2011; Greening et al., 2016). Although the
contribution of H2 metabolism to the entire ecosystem function is
recognized in several environments such as hydrothermal vents,
anoxic sediments and animal guts (Vignais and Billoud, 2007;
Schwartz et al., 2013; Greening et al., 2016), the functions of
hydrogenases in ecosystems in general remain largely unknown.

H2 metabolism plays a vital role in stability and performance
in many microbial biotopes at ecosystem level (Marshall et al.,
2012). It has been gradually recognized that hydrogenases may be
used in bioremediation (Vignais and Billoud, 2007; Jugder et al.,
2013). Numerous studies have shown that H2 can be utilized
as an electron donor for reductive dehalogenation by many
microorganisms and the occurrence of hydrogenases involved
has been reported in dehalogenated bacteria (Seshadri et al.,
2005; Rahm et al., 2006; Vignais and Billoud, 2007). In addition,
microbial hydrogenases have been used in the remediation

of metal-containing industrial wastes for the reduction of
potentially toxic metals (Li et al., 2018). Under the impact of
hydrogenases, microbial metabolic activities can influence the
cycling of belowground minerals and organic matter and play a
positive role in the bioremediation of both organic and inorganic
pollutants (Lovley, 1993, 2008; Lovley and Coates, 2000; Vignais
and Billoud, 2007). Thus, the use of hydrogenases for the
remediation of polluted soils might be a promising strategy.
In this review we attempt to integrate our understanding of
the role of H2 metabolism in environment and environmental
bioremediation processes and summarize the knowledge of H2
metabolism and hydrogenases involved in bioremediation.

MICROBIAL H2-PRODUCING
PROCESSES AND THEIR IMPACT ON
THE ENVIRONMENT

Fermentative Hydrogen Production From
Organic Compounds
H2 is a key compound in the metabolism of many anaerobes,
as well as a few aerobes, which owed the capacity to use this
energy-rich molecule when it is available in the environment and
derive electrons from its oxidation to drive energy generation.
In the absence of external electron acceptors, many anaerobic
bacteria can exploit carbohydrate rich substrates to produce H2
by reducing protons continuously. As described previously (Das
and Veziroǧlu, 2001; Das and Veziroglu, 2008; Hallenbeck, 2009),
the fermentative process generating H2 comprises two major
pathways. In the first, butane 2,3 diol fermentation or mixed
acid fermentation produces H2 via formate decomposition where
glucose is transformed to pyruvate and then releases electrons
to produce H2 under hydrogenase through a series of oxidation
and reduction reactions (Figure 1A). The second is an NADH
pathway in which H2 is produced by the re-oxidation of NADH
(Figure 1B). In the various pyruvate metabolic pathways, H2
is usually produced by butyric acid fermentation, mixed acid
fermentation, and bacterial ethanol fermentation (Ren et al.,
2005). Fermentative microorganisms such as Clostridium spp.
(e.g., C. butyricum and C. acetobutylicum) (Fang et al., 2006;
Zhang et al., 2006), rumen flora (e.g., Butyrivibrio fibrisolvens,
Eubacterium limosum, Megasphaera elsdenii, Ruminococcus
flavefaciens, and Ruminococcus albus) (Miller and Wolin, 1973;
Joyner et al., 1977; Miller and Wolin, 1979; Chaucheyras-
Durand et al., 2010), Enterobacter spp. (e.g., E. cloacae and
E. aerogenes) (Kumar and Das, 2000; Fabiano and Perego, 2002),
Pyrococcus furiosus and Thermococcus litoralis (Malik et al.,
1989; Rákhely et al., 1999; Schwartz et al., 2013) have been
found to effectively produce H2 via different pyruvate metabolic
pathways. Hydrogenase enzymes also play an important role in
fermentative H2 production (Woodward et al., 2000; Trchounian
et al., 2012). In general, H2 production could be catalyzed by
a soluble [FeFe]-hydrogenase or a special class of membrane
bound [NiFe]-hydrogenase (Ech). For example, Escherichia coli
can transform intermediary fermentation products to the gaseous
products H2 and CO2 by formate hydrogenlyase reaction
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FIGURE 1 | Syntrophic interactions between hydrogen-producing and hydrogen-consuming microbes in pollutant degradation. FM, Fermentative microbe; AOM,
Anaerobic CO oxidation microbe; NFB, Nitrogen-fixing bacteria; OHRB, Organohalide-respiring bacteria; SRB, Sulfate-reducing bacteria; MRB, Metal-reducing
bacteria; ADDB, Azo dyes decolorization bacteria. (A) The progress of formate oxidation coupled to H2 formation in E. coli (derived from Sawers, 1994; Hallenbeck,
2009; Trchounian et al., 2012). The FHL complex consist of a Ech type membrane-bound H2-evolving [NiFe] hydrogenase coupled to a formate dehydrogenase
(Fdh) and membrane integral subunits. (B) The progress of re-oxidation of NADH coupled to H2 formation in T. roseopersicina (derived from Jenney and Adams,
2008; Maróti et al., 2010). The Hyd is a membrane-bound H2-evolving [FeFe] hydrogenase. Fd, ferredoxin. (C) The progress of anaerobic CO oxidation coupled to
H2 formation in C. hydrogenoformans (derived from Svetlichny et al., 1991; Soboh et al., 2002). The Ech is a membrane-bound H2-evolving [NiFe] hydrogenase. Fd,
ferredoxin. (D) The progress of producing H2 as a byproduct of N2 fixation. The nitrogenase complex consist of a Fe protein and MoFe protein. (E) The role of H2 in
reductive dechlorination in Dehalococcoides spp. (derived from Jugder et al., 2016). MBH, membrane-bound uptake hydrogenase. Cyt, cytochrome. MK,
menaquinone; MKH2, dihydromenaquinone. Rdh, reductive dehalogenase. R-Cl, organohalide. (F) The role of H2 in reductive PTEs in Desulfovibrio fructosovorans
(derived from Chardin et al., 2003; Cao et al., 2014). Hyb is a membrane-bound H2-uptake [NiFe] hydrogenase. Fd, ferredoxin. M, PTEs. MS, metal sulfides. (G) The
role of H2 in reductive azo compounds in Shewanella decolorationis (derived from Hong et al., 2007, 2008). Hya, membrane-bound uptake [NiFe]-hydrogenase. Cyt,
cytochrome. MK, menaquinone; MKH2, dihydromenaquinone. AZR, azo reductase.R-N = N-R’, azo compounds.

(Figure 1A) (Sawers, 1994). Soboh et al. (2004) report that
a ferredoxin-dependent [NiFe]-hydrogenase and a NADH-
dependent [Fe]-hydrogenase may catalyze H2 evolution from
NADH in Thermoanaerobacter tengcongensis. Production of H2
by fermentation in Thermotoga maritima is catalyzed by a
heterotrimeric [FeFe]-hydrogenase and two cytoplasmic [NiFe]-
hydrogenases have been identified in Thiocapsa roseopersicina
(Figure 1B) (Jenney and Adams, 2008; Maróti et al., 2010).

Anaerobic Carbonic Monoxide (CO)
Oxidation
There are several microbes owing different types of
hydrogenogens that grow anaerobically in the dark and

can unitize CO as the sole energy source to produce H2
(Figure 1C). Uffen (1976) and Fox et al. (1996a,b) showed that
Rhodospirillum rubrum can produce H2 by oxidation of CO with
the reduction of protons under the catalysis of a complex enzyme
consisting of a CO-insensitive [NiFe]-hydrogenase and carbon
monoxide dehydrogenase. A typical example of this group is the
strictly anaerobic Carboxydothermus hydrogenoformans which
contains a multienzyme membrane-bound [NiFe]-hydrogenase
(Ech) complex (Figure 1C) (Svetlichny et al., 1991; Soboh
et al., 2002). These enzymes together can oxidize CO and
subsequently reduce the protons derived from H2O to form
molecular H2. Carboxydocella thermautotrophica (Sokolova
et al., 2002), Thermosinus carboxydivorans (Sokolova et al.,
2004), Thermincola carboxydiphila (Sokolova et al., 2005), and
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Thermolithobacter carboxydivorans (Sokolova et al., 2007) are
also thermophilic hydrogenogens.

Production of H2 as a Byproduct of N2
Fixation
Nitrogen fixation is one of the main processes of biogenic
H2 production and is catalyzed by nitrogenase (Figure 1D).
Approximately 30–50% of the entire reduction power consumed
by nitrogenase is laterally tracked to H2 evolution (Brewin,
1984; Evans et al., 1987). However, H2 is not both a competitive
inhibitor of N2 fixation and also represents a net loss of
energy unless the H2 can be reprocessed by means of the
uptake hydrogenase (Kosourov et al., 2014). Many H2-utilizing
microorganisms such as the aerobic H2-oxidizing bacteria in
soils reduce the loss of energy (Stein et al., 2005; Maimaiti
et al., 2007; Constant et al., 2008; Osborne et al., 2010; Annan
et al., 2012; Greening et al., 2015b). Many rhizobia can
symbiotically fix dinitrogen in the root nodules of legumes
and produce H2 concomitantly. The most-studied symbiotic
nitrogen-fixing bacteria in legumes include Bradyrhizobium
japonicum, Mesorhizobium mediterraneum, Sinorhizobium
meliloti, and Rhizobium leguminosarum (Nour et al., 1995;
Spaink, 2000; Laranjo et al., 2014). In addition, strains of
Azotobacter (Cocking, 2003) and various cyanobacteria (e.g.,
Anabaena cylindrica, Nostoc muscorum, and Westiellopsis
prolica) (Bulen et al., 1965; Fay, 1992; Nandi and Sengupta,
1998; Das and Veziroǧlu, 2001; Das and Veziroglu, 2008) can
produce hydrogen through the nitrogen fixation process. Gest
and Kamen (1949) report that Rhodospirillum rubrum can
evolve significant amounts of H2 in the light and this is termed
the photoproduction of H2 caused by nitrogenase-catalyzed
reduction of protons (Bulen et al., 1965). Photoproduction of H2
was subsequently discovered in other phototrophic bacteria such
as Rhodobater capsulatus, Rhodobater sphaeroides, Rhodobater
palustris, Thiocapsa roseopersicina, and Halobacterium halobium
(Vincenzini et al., 1982; Gogotov et al., 1991; Khan and Bhatt,
1991; Krahn et al., 1996; Fascetti et al., 1998).

Effects of Microbial Hydrogen
Production on Environment
Atmospheric H2 is derived mainly from anthropogenic activities
and oxidation of atmospheric methane (CH4) and non-methane
hydrocarbons. An H2 mixing ratio of 0.53 ppmv is typically found
in the global atmosphere (Novelli et al., 1999) and participates
in atmospheric chemical cycles of H2O and greenhouse gasses
as well as various pollutants (Schlegel et al., 1976; Crutzen and
Fishman, 1977; Salvi and Subramanian, 2015; Talibi et al., 2017).
In addition, H2 is a potential future energy carrier that may
significantly affect the atmospheric H2 budget when used on a
large scale (Brenninkmeijer et al., 2003; Petersen et al., 2011).
It has been estimated that the total amount of H2 emissions
into the troposphere each year is approximately 107 Tg (Rhee
et al., 2006). Tromp et al. (2003) reported that the concentrations
of stratospheric H2O and ozone and stratospheric temperatures
would be affected by these H2 emissions. Moreover, the potential
impacts of an increase in anthropogenic H2 emissions on the

concentration of other trace gasses such as CH4 and CO) are also
proposed.

About 7–11% of the global H2 pool is contributed by all
oceanic, lake, and soil organisms (Schwartz et al., 2013). ‘Hot
spots’ can be found in hypersaline cyanobacterial mats, with the
release of H2 concentrations between 16,000 and 90,000 ppmv
(Nielsen et al., 2015), which might be the main source of H2
emission from lake surface waters to the atmosphere. Numerous
studies show that both cell counts of cyanobacteria and their
N2 fixation rates are correlated with the H2 concentration
of lake water (Conrad et al., 1983; Schütz et al., 1988;
Schmidt and Conrad, 1993). Furthermore, the production of
fermentation H2 and organic acids is a key component in
the biogeochemistry of microbial mats, which promotes close
interactions between anoxygenic phototrophs, cyanobacteria and
heterotrophic bacteria (Otaki et al., 2012; Lee et al., 2014; Nielsen
et al., 2015). However, almost all of the H2 produced from
hypoxic sediments is also consumed by the sediments (Schwartz
et al., 2013). The effects of hydrogen consumption on microbial
communities in sediments therefore deserve further study.

The contribution of soils to the atmospheric H2 reservoir
is more complex because soils are the main sink of the global
H2 cycle, accounting for about 75 to 80% of atmospheric
absorption (Constant et al., 2009; Ehhalt and Rohrer, 2009).
However, nitrogen-fixing bacteria that form symbioses with
legumes or free-living N2 fixing bacteria can generate large
amounts of H2 as a by-product during N2 fixation (Orr
et al., 2011; Mus et al., 2016). It has been estimated that H2
concentrations inside N2-fixing legume nodules range from 9,000
to 27,000 ppmv (Hunt et al., 1988; Witty, 1991; Witty and
Minchin, 1998), so that diffusion losses during the growing
season might reach 240,000 L H2 (Dong et al., 2003). Thus,
the intensity of these H2 emissions to soils is determined by
the hydrogen-metabolic capabilities of rhizobacterial symbionts
(Hup+ or Hup− genotypes) in nodules through an uptake
[NiFe]-hydrogenase (Evans et al., 1988; Annan et al., 2012).
In the Hup+ legume rhizosphere the energy of H2 can be
recycled by the [NiFe]-hydrogenase, while H2 is released into
the surrounding soil in the Hup− legume rhizosphere. There
is thus increasing evidence that H2 released into surrounding
soils plays a key role in increasing plant biomass via the
enrichment of aerobic H2-oxidizing bacteria (HOB), or plant
growth-promoting rhizobacteria (PGPR) in both legumes and
non-legumes (Dong et al., 2003; Maimaiti et al., 2007). Different
H2 mixing ratios found in natural ecosystems may indeed lead to
changes in soil microbial community structure and coordinated
feedback of community functions. Constant et al. (2008) found
that soil actinomycetes (such as Streptomyces sp. PCB7) are
the main users of trace level of H2 in soils and might be key
contributors to the function of soils as a sink in the global
H2 cycle. Subsequently, Khdhiri et al. (2017) validated their
own hypothesis by showing that the taxonomic response of
the soil microbial community composition to H2 exposure is
inconsistent across land use types. Piché-Choquette et al. (2018)
revealed that H2 supports metabolic and energetic flexibility in
microorganisms supplying a variety of ecosystem services via
dose-response relationships between environmentally relevant
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H2 concentrations and the biological sinks of H2, CH4, and CO
in soils.

ROLE OF H2 IN ENVIRONMENTAL
BIOREMEDIATION

The H2 produced both biogenically and abiogenically can
be released and provided to support for the growth and
metabolism of hydrogenotrophic prokaryotes (Karyakin et al.,
2007). H2 metabolism fulfills a critical role in the ecosystems
of many microbial biotopes (Vignais and Billoud, 2007;
Schwartz et al., 2013; Greening et al., 2016). It is currently
considered that a wide range of microbial groups employ H2
as an electron donor to catalyze the reduction of pollutants
such as organohalides, azo compounds and potentially toxic
elements.

Organohalides
Organohalides are recalcitrant, toxic, highly persistent, globally
prevalent, and carcinogenic environmental contaminants.
Organohalide-respiring bacteria (OHRB) have been isolated
from polluted soils, sludges, sediments, aquifers, freshwaters,
and marine habitats, and they are of considerable importance
in bioremediation processes and natural halogen cycles
(Zanaroli et al., 2015). Most OHRB discovered to date
belong to Desulfomonile, Dehalococcoides, Dehalobacter,
Desulfitobacterium, Desulfuromonas, and Sulfurospirillum
(formerly Dehalospirillum) as reviewed by Jugder et al. (2015).
Reductive dechlorination is an anaerobic respiration process
that utilizes H2 as electron donor to dehalorespire these
halogenated organics (Figure 1E) (Zanaroli et al., 2015;
Agarwal et al., 2017). The process of electron via electron
transport phosphorylation from the oxidation of the H2
to reductive dechlorination of organohalides involving
membrane associated oxidoreductases (Figure 1E) (Jugder
et al., 2016). Membrane-bound hydrogenases (MBH) are
the initial oxidizers to take up the electrons released from
molecular H2, which play a vital role in organohalide
respiration (Jugder et al., 2013, 2015, 2016). The reductive
dehalogenation of organohalides is typically catalyzed by
dehalogenating enzyme systems coupled to ATP synthesis,
reductive dehalogenases (Rdases) replace the halogen
substituent with a hydrogen atom, reducing the toxicity
and recalcitrance to biodegradation (Figure 1E) (Adrian and
Loeffler, 2016; Gevorgyan et al., 2018). Sequencing data of
genomes reveal that OHRB possess as many as 36 putative
Rdases. After transformation to lower halogenated organics
under anaerobic conditions, these toxic compounds can
subsequently be mineralized by aerobic bacteria (Jugder
et al., 2015).Desulfomonile tiedjei strain DCB-1 is one of the
best-described dechlorinating anaerobes. The strain, first
discovered by Suflita et al. (1982), reductively dechlorinates
3-chlorobenzoate while replacing the chlorine atom with
hydrogen from H2, whereby providing energy for bacterial
growth (Shelton and Tiedje, 1984; Dolfing and Tiedje, 1986;
Dolfing and Tiedje, 1987). The strain was then noted to

consume H2 with 3-chloro-, 3-bromo-, 3-iodobenzoate,
tetrachloroethene (PCE), trichloroethene (TCE) (Cole et al.,
1995), and chlorophenols (Mohn and Kennedy, 1992) as
electron acceptors (DeWeerd et al., 1991). During the
dehalogenation of 3-chlorobenzoate, formate was the most
effective electron donor, followed by H2, pyruvate, and
acetate.

Dehalococcoides strains are also some of the best known
species capable of reductively dechlorinating a wide range of
haloorganics including chlorinated benzenes, biphenyls, dioxins,
ethenes, naphthalenes, and brominated diphenyl ethers. For
example, tetrachloroethene is a commonly used solvent that
possesses high toxicity and is a suspect carcinogen. The
complete reductive dechlorination of tetrachloroethylene (PCE)
and trichloroethylene (TCE) to non-toxic ethylene was first
observed under methanogenic conditions by mixed cultures
(Freedman and Gossett, 1989). Although H2 also served as the
electron donor, methanol was more effective in sustaining the
reductive dechlorination process. Holliger et al. (1993) isolated
an anaerobic bacterial culture, previously named as PER-K23,
from an anaerobic packed-bed column. By using H2 and formate
as the only electron donors, PCE or TCE was reductively
transformed to ethane via cis-1,2-dichloroethene (cis-1,2-DCE),
chloroethene, and ethene, which was coupled to bacterial growth.
The key role of hydrogenases in metabolizing these pollutants
is underscored by the fact that both uptake (Hup type) and
energy-conserving hydrogenases (Hyc or Ech type) were found in
the genome of Dehalobacter restrictus PER-K23 (Rupakula et al.,
2013). Maymó-Gatell et al. (1997) then isolated a dehalogenator,
strain 195, and characterized it as Dehalococcoides ethenogenes.
To date, Dehalococcoides species are the only bacteria known to
be capable of completely dechlorinating chloroethylene. Genomic
analysis of Dehalococcoides ethenogenes 195 showed that several
hydrogenase genes including the membrane-bound periplasmic
Hup, cytoplasmic Vhu, and membrane-bound Ech and Hyc
[NiFe]-hydrogenases (Groups 1, 3, 4, and 4, respectively),
and a membrane-bound Hym [Fe]-hydrogenases has potential
roles in electron transport, which are capable of completing
anaerobic dechlorination of the solvents PCE and TCE to vinyl
chloride (VC) and ethane (Vignais et al., 2001; Morris et al.,
2006).

Unlike other halorespiring bacteria, Dehalococcoides spp. use
only H2 as an obligate electron donor for the dechlorination
reaction, and no other electron acceptors support growth. For
example, D. ethenogenes strain 195 grew only on H2 as electron
donor for both bacterial growth and PCE reduction rather than
formate, lactate, methanol, ethanol, glucose, pyruvate, or yeast
extract (Maymó-Gatell et al., 1997). In addition, Dehalococcoides
sp. CBDB1 was the first purified isolate of a bacterium relying
on the energy obtained from stoichiometrical dehalorespiration
of chlorobenzenes (CB) such as 1,2,3-trichlorobenzene (TCB)
and 1,2,3,4-tetrachlorobenzene (TeCB) (Adrian et al., 2000).
Both Dehalococcoides sp. 195 and CBDB1 exhibit reductive
dehalogenation of chlorophenols (Adrian et al., 2007). Kube
et al. (2005) compared the genome sequence of Dehalococcoides
sp. CBDB1 with Dehalococcoides ethenogenes strain 195 and
revealed that the hydrogenases previously described for strain
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195 are also present in strain CBDB1. Chloroform (CF,
CHCl3) is a non-polar solvent that is ubiquitous and is
toxic to humans. The biodegradation of CF involves two
processes, (1) dehalorespiration in which CF is dechlorinated to
dichloromethane (DCM, CH2Cl2) by employing H2 as electron
donor under the action of uptake hydrogenase, and (2) a
fermentative process in which DCM is transformed to H2, acetate
and carbon dioxide. Lee et al. (2012) report the involvement of
Dehalobacter in dehalorespiration of CF [Equation (2)].

CHCl3+H2 → CH2Cl2+H++Cl− (2)

Despite these findings in respiration of organohalides, there is
no real consensus on the involvement of various membrane
associated components.

Potentially Toxic Elements (PTEs)
Potentially toxic elements display environmental durability,
biological accumulation, and potential biological toxicity. The
remediation of PTEs can be achieved by sulfate-reducing
bacteria (SRB) or metal-reducing bacteria that can utilize H2
or other organic compounds as terminal electron donors to
reduce the PTEs. Tebo and Obraztsova (1998) isolated the first
sulfate-reducing bacterium from PTE-polluted sediments named
Desulfotomaculum reducens sp. nov. strain MI-1, which can
utilize H2 as terminal electron donor and metals [such as Cr(VI),
Mn(IV), Fe(III), and U(VI)] as electron acceptors accompanied
by bacterial growth. Thus far, more than 40 SRB species
have been identified, including Desulfobacter, Desulfovibrio,
Desulfotomaculum and Desulfomicrobium, and others (Leloup
et al., 2009; Mizuno et al., 2012; Hussain et al., 2016; Li et al.,
2018). Subsequently, due to the advantages of SRB (no secondary
pollution and strong adaptability), they have been used in the
bioremediation of PTEs (Li et al., 2018). Generally speaking,
there are two steps involved in the mechanism of SRB removal
of PTEs from wastewaters: (i) SRB utilize sulfate as electron
acceptor to oxidize simple organic compounds to generate
bicarbonate ion and hydrogen sulfide under anaerobic conditions
[Equation (3)], and (ii) the hydrogen sulfide generated reacts
with dissolved PTE to form insoluble metal sulfide precipitates
[Equation (4)] (Kieu et al., 2011; Singh et al., 2011; Li et al., 2017).

2CH2O+ SO2−
4 → 2HCO−3 +H2S (3)

H2S+M2+
→ 2H++MS(S) (4)

Where CH2O represents simple organic compounds (such as
acetate and lactate), M represents PTEs, and MS represents
metal sulfides. Because of their special characteristics with
the corresponding metal sulfides readily forming precipitates,
SRBs have been used to treat PTE-polluted wastewaters
(e.g., uranium-containing, chromium-containing and antimony-
containing wastewaters, organochlorines, and other pollutants)
(Li et al., 2018). Lovley and Phillips (1994) showed that the
bioremediation effect of Desulfovibrio vulgaris which utilizes
H2 as the electron donor catalyzed by the c3 cytochrome
functions as a Cr(VI) reductase in Cr(VI)-contaminated waters

was superior to the previously described Cr(VI) reductive
microorganisms. Kieu et al. (2011) reported that the PTE
removal efficiencies of Cu2+, Ni2+, Zn2+

, and Cr6+ in
anaerobic semi-continuous stirred tank reactors containing a
consortium of SRB reached 94–100% after 4 weeks under
experimental conditions. In addition, several microbial genera
reduced uranium to form easily precipitated reduced U(IV)
species, and this has been used successfully in soil remediation
(Phillips et al., 1995; Fredrickson et al., 2000; Valls and De
Lorenzo, 2002).

Several uptake hydrogenases were considered to have potential
application in the bioremediation of PTEs. The [NiFe] uptake
hydrogenases in group 1 including membrane-bound respiratory
uptake hydrogenases that couple H2 oxidation to catalyze metal
reduction (Figure 1F). For example, [NiFe]-uptake hydrogenase
from SRB can reduce toxic chromate VI to form a less
toxic product (Chardin et al., 2003). In addition, technetium
VII is reduced by Desulfovibrio fructosovorans through this
mechanism (Tabak et al., 2005), and hydrogenases involving
in metal reduction have also been observed in other metals
including ferrum (Fe) (Coppi et al., 2004), platinum (Riddin
et al., 2009), and lead (Deplanche et al., 2010). A comprehensive
analysis of the genome sequence of the metal-reducing bacterium
(Shewanella oneidensis) has been conducted, and has predicted
that an [Fe]-hydrogenase and several cytochromes are involved
in the electron transport and metal reduction processes
(Heidelberg et al., 2002). However, the potential application
of microbes with different subgroup hydrogenases for PTE
respiration is not enough, requiring further study including
the biochemical investigations of these different subgroup
hydrogenases.

Other Pollutants
Azo compounds undergo dissimilatory azoreduction by
Shewanella decolorationis S12 under anaerobic conditions. This
strain utilized azo compounds as carbon source for growth
by azo reductase which is sustained by the H2 supply. The
strain also catalyzed H2-dependent reduction of Fe(III) and
humic substances (Coppi et al., 2004; Hong et al., 2008).
Brigé et al. (2008) show that Shewanella decolorationis MR-1
utilized azo dye amaranth as electron acceptor for microbial
energy conservation. Mutambanengwe et al. (2007) show the
decolorization of a wide range of azo dyes with sulfate-reducing
microbes (SRM) and hydrogenases might be involved in the
degradation process. A multicomponent electron transfer chain
has been proposed to be involved in the extracellular reduction
of azo compounds. The electron transfer components consist of
the cytoplasm/outer membrane, periplasm, c-type cytochromes,
and menaquinone (Hong et al., 2007; Brigé et al., 2008). Hya
type [NiFe]-hydrogenase or Hyd type [Fe]- hydrogenase act
as a critical hub mediating the oxidization of H2 to provide
electrons for azoreduction metabolism (Figure 1G) (Hong et al.,
2008).

H2-dependent reduction has been reported in nitroaromatic
compounds (Watrous et al., 2003). In a strict anaerobe,
Clostridium acetobotulinicum, an [Fe]-hydrogenase is responsible
for the reduction of nitro substituents of 2,4,6-trinitrotoluene
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(TNT) to the corresponding hydroxylamine in an acidogenic
environment.

Factors Affecting the Utilization of
Hydrogen by Degrading Bacteria in the
Environment
There are many factors affecting the utilization of H2 by
degrading bacteria in the environment such as H2 source,
H2 transfer process and other environmental factors
(including trophic hierarchies, external pH, osmotic coditions,
concentration of carbon sources and their mixtures and
microbial community and other physicochemical factors).

Methanogens were found to affect the interspecies H2
transfer of dehalorespiring bacteria, which might promote or
inhibit the dechlorination process (Smatlak et al., 1996; Fennell
et al., 1997; Yang and McCarty, 1998). Johnson et al. (2008)
demonstrated the dechlorination of stress-related net cell growth
by Dehalococcoides ethenogenes strain 195 (DE195) which was
isolated and then transited to a smooth phase. Although
Methanobacterium congolense (MC) can compete with DE195
for hydrogen, adverse effects of the dechlorination rate were
not observed (Men et al., 2012). This is mainly because the
H2 threshold required for dechlorination is very low, so that
even though methane production consumes a large amount
of H2, it does not compete for dechlorination (Yang and
McCarty, 1998; Men et al., 2012). In syntrophic communities, H2-
producing bacteria and H2-consuming methanogens perceive the
redox conditions and affect each other’s metabolism (Stams and
Plugge, 2009). Several studies have shown that the reduction
dechlorination can be promoted in some communities in the
presence of methanogens (Vogel and McCARTY, 1985; Heimann
et al., 2006; Kong et al., 2014). In addition, a recent study found
that Methylobacter seemed to be tolerant to TCE and may play a
vital role in TCE degradation (Kong et al., 2014). Although many
studies have assessed the association between methanogens and
dechlorination bacteria, the mechanism by which methanogens
affect dechlorinating communities remains unclear.

The process of forming compact aggregates involves both
physicochemical and biological interactions (Stams and Plugge,
2009). When the compact aggregates are formed in anaerobic
bacteria and methanogenic archaea, the rate of H2 transfer
between two species increases significantly (Lettinga et al., 1988;
Stams and Plugge, 2009). Several studies have also shown that the
inter-microbial distances affect both their specific growth rates
and biodegradation rates (Ishii et al., 2005; Stams et al., 2006;
Stams and Plugge, 2009). Thus, forming compact aggregates
might be an important factor influencing the biodegradation
rates of degrading bacteria.

It is well known that trophic hierarchies occur because
different functional members of the community provide each
other with a matrix and basic cofactors, and eliminate inhibitory
metabolites (Schink, 1997; Rittmann and McCarty, 2012).
DeWeerd et al. (1991) reported that acetylene, molybdate,
selenate, and metronidazole can inhibit dehalogenation, sulfite
reduction and H2 metabolism, indicating that the reduction
of sulfite and dehalogenation may share part of the same

electron transport chain. However, some environmental
factors might accelerate the degradation of pollutants by
promoting H2 utilization. For example, cobalamin has a positive
effect on the dechlorination process as a co-factor of the
reductive dehalogenases (Yan et al., 2012). Desulfovibrio vulgaris
Hildenborough (DVH) possesses the full set of genes required for
the biosynthesis of adenosylcobalamin, a derivative of vitamin
B12 which might result in an increased concentration of the
corrinoid co-factor (vitamin B12) in co-cultures, taken up and
utilized immediately by Dehalococcoides species (Rodionov et al.,
2004). In addition, the main factors influencing H2 utilization
such as external pH, osmotic conditions, concentration of
carbon sources and their mixtures, microbial community and
other physicochemical factors mainly affected growth and
the physiological activity including uptake hydrogenase and
pollutant degrading enzymes of the degrading bacteria (Richter
and Gescher, 2014; Trchounian and Trchounian, 2014, 2015;
Trchounian et al., 2017a).

INTERSPECIES HYDROGEN TRANSFER
DURING SYNTROPHIC GROWTH

Syntrophy coupling mutualistic interactions between hydrogen-
/formate-producing and hydrogen-/formate-consuming
microorganisms is essential for biofuel production, pollutant
degradation, and global carbon cycling (Kleinsteuber et al., 2012;
Sieber et al., 2012; Morris et al., 2013). When sulfate is limited or
unavailable, SRBs can also mediate the transfer of H2 between
species, which provides the bacterial species with a very versatile
metabolism adapted to complex ecological environments.
Odom and Peck (1981) first documented the transfer of the
redundant H2 evolved from substrate fermentation by SRBs
to other H2 consuming bacteria. Using a defined two-member
continuous culture, Drzyzga et al. (2001) demonstrated that
the sulfate reducer Desulfovibrio sp. strain SULF1 can use
the dehalorespiring Desulfitobacterium frappieri TCE1 as a
‘biological electron acceptor’ to sustain growth. They also noted
that dehalogenation of tetrachloroethene (PCE) was inhibited at
sulfate concentrations above 2.5 mM, while PCE was completely
dehalogenated to cis-dichloroethene (cis-DCE) with 1 mM sulfate
or without sulfate addition (Drzyzga and Gottschal, 2002). In
this community, Desulfovibrio vulgaris Hildenborough (DVH)
can grow syntrophically with Dehalococcoides ethenogenes
strain 195 (DE195), thus enhancing the robustness of bacterial
growth and the dechlorination activity of trichloroethene
(Men et al., 2012). The syntrophical interaction with sulfate
reducers has been shown to result in more effective transfer
of H2, thereby facilitating faster dechlorination and more
rubust growth of dehalogenating strains compared with gaseous
H2 (Men et al., 2012). The syntrophic relationship between
methanogens and archaea also involves interspecies H2 transfer
in the process of converting long-chain fatty acids (Stams and
Plugge, 2009). Subsequently, Ziels et al. (2017) found several
formate hydrogenases and dehydrogenases in the enriched
genome bins (GBs) of both their codigesters. In the process of
CF dechlorination, interspecies H2 transfer was observed in the
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form of acetogenesis and methanogenesis by Lee et al. (2012),
which required syntrophic partners to maintain low H2 partial
pressures.

The possible processes of syntrophic interactions between H2-
producing and H2-consuming microbes in pollutant degradation
are shown in Figure 1. Previous studies have shown that
H2-forming bacteria and H2-utilizing bacteria sense redox
conditions, influencing each other’s metabolism in syntrophic
communities (Stams and Plugge, 2009). Interspecies electron
transfer mechanisms underlie thermodynamically favorable
syntrophic processes (Gieg et al., 2014). In anoxic environments,
butyrate oxidations involving energy-dependent reactions were
possible to be applied in syntrophic degradation of organohalides.
For example, the standard free reaction enthalpies (1Go′) of
butyrate oxidations and organohalide degradations were as
follows [Equation (5) Müller et al., 2010; Equation (6) Jugder
et al., 2016]:

Butyrate− + 2H2O→ 2Acetate− + H++ 2H2(1Go′

= + 48.3KJ/mol) (5)

H2 + R− Cl→ R−H+HCl(1Go′
= − 131to− 192KJ/mol)

(6)

Based on energy balance toward H2 production and
consumption analysis, we propose that the energy-transforming
reactions between H2 production and organohalide degradations
might be involved in syntrophic H2 production and consumption
microorganisms. Dehalogenating microorganisms (such as
Dehalococcoides sp. strain BAV1 and Dehalococcoides ethenogenes
strain 195) can utilize acetate as carbon source and H2 as
electron donor when grown in isolation, exhibiting limited
dechlorination activity and low growth rates (He et al., 2003a,b).
Thus, a promising method might be to develop improved
bioremediation strategies by enhancing the strong growth and
dechlorination activity of dehalogenating microorganisms (Men
et al., 2012). However, many interspecies H2 transfer interactions
are syntrophic, and thus only present in complex microbial
communities but not in pure cultures. In complex microbial
consortia, H2 indirectly mediates electron shuttle between
electron donors and acceptors. Hydrogenotrophic bacteria can
profit from the H2 produced from their syntrophic partners,
thereby transforming pollutants. Thus, both H2-producing
and H2-consuming microorganisms are essential for their own
growth and might also promote the degradation of pollutants
(Stams and Plugge, 2009).

CONCLUSION AND PERSPECTIVES

Metabolism of H2 including H2 production and H2 consumption
have been recognized as a potential driving force affecting
the structure of microbial communities and may even change
community functions. Although the contribution of H2
metabolism to entire ecosystem processes is recognized
in hydrothermal vents, anoxic sediments and animal guts

(Vignais and Billoud, 2007; Schwartz et al., 2013), the role of
H2 metabolism and hydrogenases in ecosystems are not fully
elucidated. Further advances in exploiting the function of
biohydrogen metabolism and related microbial communities
in environmental bioremediation are expected to result from
(i) using metagenome sequencing, single-gene fluorescence
in situ hybridization, the functional gene arrays (GeoChip)
and in situ mass spectrometry to track the dynamics of
pollutant-degrading bacteria involving in H2 metabolism
and the interplay between pollutant-degrading bacteria and
H2-metabolism bacteria in degradation process; (ii) effects of
soil conditions on H2-consuming microorganisms degrading
pollutants; (iii) structural studies of hydrogenases or the
synergistic action of other enzymes (such as ATPase and Rdase)
involving in the process of environmental bioremediation and
enhancing these enzymes activity through protein engineering;
(iv) integrative analyses of genomic, transcriptomic, and
epigenomic data in these environmental bioremediation
process.

To date, environmentally friendly management techniques
named “3B” techniques (biological carbon sequestration,
bioenergy, and bioremediation) have been proposed to further
enhance biodiversity and mitigate environmental stressors
(Teng et al., 2012). Environmental H2 is an energy source
for aerobic H2 oxidizers, sulfate reducers, acetogens and
methanogens and is also a source of reducing power for
anaerobic bacteria and anoxygenic phototrophs (Schwartz
et al., 2013). Syntrophy coupling mutualistic interactions
between H2-producing and H2-consuming microorganisms
is not restricted to the transfer of reducing agents such as
H2 or formate, but can also involve the exchange of organic,
sulfurous and nitrogenous compounds or the removal of toxic
compounds. Nevertheless, there is still a considerable need
for appropriate research initiatives to apply those microbial
groups to the bioremediation of contaminated soils. However,
soil is a complex and dynamic biological system. From the soil
to the microorganism, bioavailability of pollutants involves
a full process of adsorption and desorption, transport, and
uptake by microorganisms which are also affected by the
soil conditions such as soil organic matter, soil minerals, soil
moisture, soil aggregates and so on (Ren et al., 2018; Teng and
Chen, 2019).

Proton ATPase or other membrane bound secondary
transporters affect hydrogenase activity and thus H2 metabolism
(Trchounian et al., 2011; Gevorgyan et al., 2018). So, structural
studies of hydrogenases or other synergistic enzymes (such as
ATPase and Rdase) involving in the process of environmental
bioremediation are vital important in directing protein
engineering, for example, in rendering these enzymes activity to
promote the degradation efficiency of pollutants via identification
of factors linked to the protein environment of the active site.
Studies of H2 metabolism and regulation will also be important
in engineering microorganisms at the cellular level to maximize
the degradation efficiency of pollutants. Since hydrogenases
and other synergistic enzymes have been shown to play an
important role in the degradation of pollutants, it is also
tempting to consider that analysis of genomic, transcriptomic,
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and epigenomic data of these enzymes in environmental
bioremediation process will likely provide vital insights into
the hydrogenase participates in degradation mechanism of
pollutants.

In conclusion, this review provides a comprehensive
framework for H2 production and H2 consumption in
environmental bioremediation processes. The syntrophy
coupling mutualistic interaction between H2-producing and H2-
consuming microorganisms could be applied to the removal
of toxic compounds. In addition, several uptake hydrogenases
are also considered to have potential application in the
bioremediation of those toxic compounds. The use of this
bioenergy may provide a low-input and ecologically friendly
bioremediation strategy for the future.
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Springs hosted in ophiolites are often affected by serpentinization processes. The
characteristically low DIC and high CH4 and H2 gas concentrations of serpentinizing
ecosystems have led to interest in hydrogen based metabolisms in these subsurface
biomes. However, a true subsurface signature can be difficult to identify in surface
expressions such as serpentinizing springs. Here, we explore carbon and nitrogen
resources in serpentinization impacted springs in the tropical climate of the Zambales
and Palawan ophiolites in the Philippines, with a focus on surface vs. subsurface
processes and exogenous vs. endogenous nutrient input. Isotopic signatures in spring
fluids, biomass, and carbonates were examined to identify sources and sinks of
carbon and nitrogen, carbonate geochemistry, and the effect of seasonal precipitation.
Seasonality affected biomass production in both low flow and high flow spring systems.
Changes in meteorological precipitation affected δ13CDIC and δ13CDOC values of the
spring fluids, which reflected seasonal gain/loss of atmospheric influence and changes
in exogenous DOC input. The primary carbon source in high flow systems was variable,
with DOC contributing to biomass in many springs, and a mix of DIC and carbonates
contributing to biomass in select locations. However, primary carbon resources in low
flow systems may depend more on endogenous than exogenous carbon, even in
high precipitation seasons. Isotopic evidence for nitrogen fixation was identified, with
seasonal influence only seen in low flow systems. Carbonate formation was found to
occur as a mixture of recrystallization/recycling of older carbonates and rapid mineral
precipitation (depending on the system), with highly δ13C and δ18O depleted carbonates
occurring in many locations. Subsurface signatures (e.g., low DOC influence on Cbiomass)
were most apparent in the driest seasons and lowest flow systems, indicating locations
where metabolic processes divorced from surface influences (including hydrogen based
metabolisms) are most likely to be occurring.
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INTRODUCTION

Recent interest in the terrestrial deep biosphere has been fueled
by estimates of biomass (Kallmeyer et al., 2012; Lomstein
et al., 2012; McMahon and Parnell, 2014) and reports of
unique microbial communities and ecosystem functions (Biddle
et al., 2012; Parkes et al., 2014; Solden et al., 2016). The
overall impact of the deep biosphere on global biogeochemical
cycling remains unknown (Menez et al., 2012), and direct
access remains expensive with non-trivial logistics. Surface
connected expressions of the terrestrial deep biosphere such
as caves, wells, and springs are convenient and less expensive
(compared to drilling based endeavors), but elicit questions about
authenticity of a subsurface signature. Evidence of subsurface
biosphere diversity and function may be overprinted or masked
by the oxygenated, photosynthesis-driven, surface biosphere to
an unknown degree.

Several studies have attempted to isolate a subsurface signature
from terrestrial locations. Arguably the most success has come
from studies with direct access to subsurface sampling. These
works have relied on comparative metagenomics (e.g., Lau
et al., 2014), geochemical modeling integrated with statistical
analyses (e.g., Osburn et al., 2014), and innovative culturing
techniques (e.g., Rowe et al., 2017) to distinguish subsurface
contributions to nutrients, energy, diversity, and biomass.
Isolating a subsurface signature when samples are obtained
within the surface biome (i.e., springs and seeps) poses additional
challenge. More frequently, only individual processes can be
linked to the subsurface. For example, the widespread ability to
fix nitrogen (Hamilton et al., 2011) or carbon (Osburn et al.,
2011; Urschel et al., 2015) using non-photosynthetic pathways
in terrestrial hydrothermal systems suggests these traits are
maintained due to a general lack of reliable nutrient input from
the surface biome.

Stable isotope chemistry of nutrient pools and resident
biomass is a useful tool for deep subsurface biosphere
applications. Kinetic isotope fractionation associated with
biosynthetic machinery discriminates broadly against heavy
isotopes, producing 13C and 15N- depleted biomass relative
to sources. Fractionation varies by process for both carbon
and nitrogen isotopes and much can be learned or inferred
by comparing isotopic ratios of sources and resulting biomass.
For example, it has been shown that different carbon fixation
pathways fractionate carbon to differing degrees (Berg et al., 2010;
Pearson et al., 2016), and the isotopic composition of nitrogen
in biomass is affected by how the organism participates in the
nitrogen cycle (Brunner et al., 2013; Mobius, 2013; Frey et al.,
2014; Zhang et al., 2014). While there is still much to learn
concerning the fractionation of carbon or nitrogen by specific
groups of organisms under varying environmental conditions, as
well as abiotic considerations (McCollom et al., 2010; Li et al.,
2012; Wunderlich et al., 2012; Schrenk and Brazelton, 2013;
Zhang et al., 2014) a holistic approach of comparing isotopic
ratios of bulk carbon, nitrogen, and biomass can reveal broad
ecosystem patterns.

This study focuses specifically on surface expressions (springs
and seeps) of the deep biosphere sourced in ultramafic rock

units in the Philippines. Springs and seeps emanating from
ophiolites represent subsurface fluids produced from the process
of “serpentinization” that are mixed with fluids of other
sources. Briefly, serpentinization is the aqueous alteration of
ultramafic rocks (part of the ophiolite body). In terrestrial
ophiolites, the process is often recharged by groundwaters,
and provides alteration products including mineralogically
altered solids, fluids of distinctive geochemistry, gasses such
as H2 (and possibly CH4), and chemical energy abundant
enough to fuel chemosynthetic metabolism. Other resources
have thoroughly described and reviewed this process and
the resulting potential subsurface habitats (McCollom and
Bach, 2009; Schrenk and Brazelton, 2013). Serpentinization
has been discussed as a possible process fueling life on
other planetary bodies (e.g., Mars and icy ocean worlds –
Ehlmann et al., 2010; Vance et al., 2016; Deamer and Damer,
2017), as well as a potential platform for the development
of life on Earth (Sleep et al., 2011; Russell et al., 2014). In
both of these extensions, it is assumed that serpentinization-
driven life support is divorced from potential carbon and
energy sources supplied from photosynthetic processes. Further,
serpentinizing springs and seeps are often noted to have
low dissolved organic or inorganic carbon (e.g., Morrill
et al., 2013; Szponar et al., 2013). The production of H2
gas from the serpentinization process has indicated the
potential for hydrogen driven metabolic processes in impacted
environments, with an overlying assumption that the presence
of hydrogen gas may indicate a more subsurface “signal.”
Therefore, separating a true subsurface signal from complicating
surface influence at modern, terrestrial, serpentinizing seeps
is essential for understanding their utility as a “portal”
into the deep subsurface biosphere of modern, ancient, and
astrobiological environments.

The isotopic ratios of carbon in total or dissolved inorganic
carbon (TIC/DIC) and dissolved organic carbon (DOC)
can be compared to that of biomass, allowing conclusions
concerning the source of the carbon fueling the biomass
production. This approach has been used many times in
other terrestrial environments (e.g., Lang et al., 2012; Schubotz
et al., 2013; Pearson et al., 2016). There have been several
reports from terrestrial serpentinizing seeps and springs that
highlight potential carbon and nutrient sources. Both DOC
and TIC have been reported in low concentrations in springs
located in the Tablelands (Newfoundland, Canada) and The
Cedars (CA, United States) areas, with δ13CDOC ranging
from −22 to −13h, and δ13CTIC ranging from −33 to
−2h (Brazelton et al., 2013; Morrill et al., 2013; Szponar
et al., 2013). Isotopic composition of carbon from both
DIC and DOC in the Yanartaş/Chimera site in Turkey are
comparable, although concentrations of both are higher than
other reported locations (50 and ∼5 ppmC, respectively,
Meyer-Dombard et al., 2015). Carbon isotopic compositions
of biomass are seldom reported in general for these locations
(however, see Meyer-Dombard et al., 2015), but that of the
carbonates found in these systems has been widely reported and
summarized. The comparison of δ13Ccarbonate and δ18Ocarbonate
is useful for determining the sources of carbon and oxygen
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that formed the carbonates as well as processes involved in
that mineral precipitation, and several reports give useful
comparisons of carbonates found in serpentinizing seeps from
Oman, Costa Rica, Italy, and the western United States
(e.g., Szponar et al., 2013; Mervine et al., 2014; Sanchez-
Murillo et al., 2014; Falk et al., 2016). The δ13Ccarbonate
and δ18Ocarbonate in carbonates from serpentinizing seeps
range from ∼ −33 to ∼ +3h δ13C and ∼ −20 to ∼
+5h δ18O. This wide range of isotopic compositions makes
it clear that the formation and history of carbonates in
serpentinizing systems can follow a varied path, which can
sometimes be clarified using “clumped isotope” techniques
(e.g., Eiler, 2007).

Among the studied examples of terrestrial serpentinizing
seeps, few data are from tropical biomes (Beccaluva et al., 1999;
Sanchez-Murillo et al., 2014; Cardace et al., 2015; Woycheese
et al., 2015). Tropical surface biomes that deliver significant

meteorological precipitation and cover field locations in dense
foliage may complicate the isolation of the deep subsurface
signal from surficial components. Frequent or heavy precipitation
may facilitate the incorporation of exogenous nutrients into
the surface exposed seeps and springs, and impact the nutrient
availability to the subsurface biosphere. Conversely, addition of
meteoric water to the serpentinizing fluids associated with the
seeps and springs may locally dilute endogenous nutrient or
energy resources, changing the fluid-rock interactions happening
in the subsurface. Either scenario could cause fluctuations
in sources of energy and carbon between seasons, ultimately
affecting the ability to identify true subsurface-driven processes
such as hydrogen based metabolisms. While this may incur
difficulty in separating a “true” subsurface signal in serpentinizing
systems hosted in ophiolites located in tropical biomes, it
also provides an opportunity to explore a largely unrecognized
exchange between the surface and subsurface biosphere.

TABLE 1 | Fluid geochemistry including DIC and DOC concentrations and carbon isotopic ratios from 2017 samples during the very dry season.

Sample Location Notes Fluid Season Temp. pH DIC, δ13C, DOC, δ13C,

(outflow depth ◦C ppmC DIC h ppmC DOC h

distance, m) sampled

ML1 Manleluag Cistern pool (0 m) 80 cm 2012, dry 34.36 10.89 0.6 −12.8 0.85 −26.8

2013, wet 34.35 10.86 0.9 −15.42 0.34 −29.63

January 26th 2017, v. dry 34.39 11.11 0.2 −14.74 0.1 −23.6

January 27th 2017, v. dry 34.37 10.69 0.2 −11.23 0.2 −23.9

ML2 Manleluag Source pool (0 m) 30 cm 2012, dry 34.45 10.85 0.5 −16.5 0.4 −26.0

2013, wet 34.44 10.83 0.4 −11.0 0.12 −26.0

2017, v. dry 34.45 10.08 0.4 −17.66 0.6 −28.2

Spill Pool (1.5 m) 20 cm 2012, dry 34.31 10.85 0.8 −15.0 0.81 −25.5

2017, v. dry 34.22 10.12 0.3 −14.81 bdl −20.8

Outflow (10 m) 10 cm 2012, dry 33.84 10.81 1.5 −18.7 0.5 −27.0

2017, v. dry 33.51 10.25 nd nd 0.1 −22.1

Outflow (18.3 m) 5 cm 2013, wet 32.55 10.23 4.4 −21.13 0.73 −29.14

2017, v. dry 31.29 10.58 1.7 −20.71 0.7 −27.4

PB1 Poon Bato Pool 1, main (0 m) 10 cm 2012, dry 31.46 11.27 1.3 −25.4 0.3 −23.0

2013, wet 30.38 11.25 3.0 −13.0 0.3 −27.0

PB2 Poon Bato Pool 2, “ice cube” 30 cm 2012, dry 26.76 10.43 6.0 −17.5 1.15 −24.4

Pool 2, “waterfall” 2 cm 2013, wet 29.68 8.74 22.5 −13.76 1.2 −25.8

PB3 Poon Bato Pool 3, minor 5 cm 2012, dry 28.58 11.31 nd nd 0.2 −21.0

PBR Poon Bato River∗ 50 cm 2012, dry 27.88 8.64 18.5 −12.1 0.28 −27.8

River∗ 50 cm 2013, wet 26.36 8.3 21.3 −8.15 0.61 −23.55

MF1 Mainit Falls Source (0 m) 5 cm 2012, dry 40.56 9.68 28.1 −15.3 0.29 −26.4

SS1 San Isidro Cistern pool (0 m) 147 cm 2017, v. dry 48.0 10.53 0.08 −7.48 bdl −20.9

GS Governor’s Sp. Source (0 m) 15 cm 2017, v. dry 38.83 11.08 0.2 −14.5 bdl −19.3

Outflow (5 m) 2 cm 2017, v. dry 38.14 11.13 0.4 −17.4 bdl −19.5

Outflow (10.3 m) 2 cm 2017, v. dry 37.8 11.13 0.6 −19.99 2.7 −50.8

NWD NW Dugout Main pool (0 m) 30 cm 2017, v. dry 29.27 9.91 2.2 −22.52 1.1 −25.7

DH-4 NWD, well∗ 200 cm 2017, v. dry 32.78 9.50 10.9 −14.78 7.8 −24.8

PF1 Pinaduguan Falls ‘”Pig” pool (0 m) 10 cm 2017, v. dry 35.66 10.95 0.2 −11.45 bdl −21.6

PF2 “Apron” pool (0 m) 25 cm 2017, v. dry 35.62 10.8 1.3 −20.83 0.2 −23.7

PFR River∗ 50 cm 2017, v. dry 30.0 8.4 81.3 −18.85 1.1 −28.8

Data for samples during the dry (2012) and wet (2013) seasons have been previously reported (Cardace et al., 2015; Table 2), and are repeated here for seasonal
comparison. Carbon isotope ratios expressed as compared to VPDB. nd, not determined; bdl, below detection limit. ∗Data for rivers and well are provided as points of
reference to the local water table. The rivers are immediately proximal to the sample locations, in both cases. The well “DH-4” was drilled ∼200 m from the NWD pool.
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Our interest lies in investigating the effect of seasonal
meteorological precipitation on the deep subsurface signature
from spring locations in the Zambales and Palawan ophiolites in
the Philippines. Geologic and geochemical descriptions of both
ophiolite exposures and springs have been reported previously
(Abrajano et al., 1989; Abrajano and Sturchio, 1990; Cardace
et al., 2015; Ilao et al., 2018). Here, we look at carbon isotopic
signatures in fluids and solid materials (sediments, biomass,
and carbonates), and nitrogen isotopic signatures of biomass,
over three precipitation-defined periods. Both the Zambales and
Palawan ophiolites are located in Monsoon climatic regimes,
with defined wet and dry seasons. In addition, we categorize
our sample locations based on the flow rate of subsurface fluids
emanating from the springs. The driving questions in this work
concern whether increased seasonal precipitation will increase
exogenous nutrient input to the surface expressions [springs],
or conversely, dilute the available metabolic resources derived
from subsurface processes. We hypothesized that seasonal
precipitation would differentially impact systems with low flow
vs. high flow of subsurface fluids, which is supported by the
results given here.

MATERIALS AND METHODS

Description of Field Locations
Both field locations are within the monsoon climate zone
of the Philippines. Locations were visited in October 2012
during the beginning of the dry season (193 mm/month
average precipitation), September 2013 at the end of the wet
season (346 mm/month average precipitation), and January
2017 when the least precipitation is received in our field areas
(<20 mm/month average precipitation). Several sites in the
Zambales and Palawan ophiolites were sampled, although not
all sites were sampled in all three seasons. Table 1 notes
the season each location was sampled, and Tables 1, 2 note
the depth below fluid surface and distance down the outflow
channel, where applicable. In general, both fluids and solids
were sampled when they were both accessible/removable. Solids
included loose sediments, obvious biofilms, or carbonate features
(not all were available at every sample location). Table 2 also
provides details on sample name and the type of sample collected.
For example, at 10m down the outflow at site ML2, three
different solid materials were collected in 2012; “gray sediment,”
“carbonate mound,” and “rimstone” (Table 2). Samples with
identical names and notations between multiple sample years
were taken from the same location, as exactly as possible,
based on photographic records of previous sampling efforts. We
were unable to sample precipitation during the time that we
were in the field.

Images of the sampling areas are provided in Figure 1 with
more detailed images and descriptions given in Supplementary
Figure S1 for reference. Discharge was estimated by catching
runoff into a 500 ml wide mouthed bottle over a 30 s interval,
repeated in triplicate and averaged. Where relevant, discharge
was measured at multiple points. Sample sites are regarded as
being high flow (>2 L/min), with discrete pools and runoff

channels, or low flow (<2 L/min) with individual pools or a
series of pools and associated carbonate terraces and similar
features, but run off channels limited or not present. All locations
featuring actively flowing run off channels were estimated to have
a discharge rate of >2 L/min. In addition, low flow areas are
also designated as “capped” or “uncapped,” where “capped” refers
to the presence of a carbonate film on the top of the pool. In
such cases, the bottom of the pool is not visible, although the
caps may be transient and potentially broken by meteorological
precipitation or animal (including human) interaction. Examples
of capped and uncapped pools are shown in Figure 1. High
flow systems are expected to have an abundance of input from
subsurface fluid and gas, and increasing interaction with surface
conditions and atmospheric exchange as the fluids progress
down the outflow channel. Low flow systems are expected
to have slower fluid and gas input from the subsurface, and
the degree of interaction with surface conditions depends on
the presence of absence of a carbonate cap. We expect that
pools with carbonate caps will have more limited atmospheric
exchange, as the cap functions as a physical barrier at the
surface of the pool.

Concentration and Isotopic Analysis of
Dissolved Inorganic Carbon (DIC) and
Dissolved Organic Carbon (DOC) in
Spring Fluids
Amber I-CHEM vials and septa were pre-washed and pre-
treated as previously described (Cardace et al., 2015). A glass
media bottle was used to collect sample from the springs, after
being triple rinsed with sample. Once collected, sample was
filtered through a Millipore Sterivex GV 0.22 µm filter unit
for sterilizing aqueous solutions (Cat. No. SVGVL10RC/Lot No.
1515/00631) into the sample bottle. Some samples required
pumping for efficient collection, and a Geotech Environmental
Geopump peristaltic pump was used to fill the glass collection
bottle. Viton Masterflex tubing (Cole Parmer, Vernon Hills,
IL, United States) was used for pumping when collecting DIC
samples, at a slow pumping rate of <100 ml/min and as
short a pumping distance as possible to minimize gas loss.
DOC bottles were filled only after the filter was conditioned
with several liters of sample. Both DIC and DOC bottles were
filled to the top with sample to exclude air bubbles, and were
stored at 4◦C.

Samples were analyzed by the University of California,
Davis, Stable Isotope Laboratory. Carbon isotopic ratios of
carbon in DOC was analyzed with a O.I. Analytical Model
1030 TOC analyzer (Xylem Analytics, College Station, TX,
United States), interfaced to a PDZ Europa 20–20 isotope ratio
mass spectrometer (Sercon Ltd., Cheshire, United Kingdom)
with a GD-100 Gas Trap Interface (Graden Instruments).
Several replicates of reference materials were interspersed
with samples, including IAEA-600, USGS-40, USGS-41, and
Elemental Microanalysis reference materials.

Dissolved inorganic carbon samples were analyzed on a
GasBench II system interfaced to a Delta V Plus IRMS (Thermo
Fisher Scientific, Bremen, Germany). The fluids were added to
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FIGURE 1 | General locations and images of select sample areas. Additional sample area images and site descriptions can be found in Supplementary Figure S1.
(a) Map of the Philippines with sample regions. Marine Geoscience Data System (MGDS; www.marine-geo.org). (b) Cistern pool ML1, Manleluag area. Images of
location ML2 and associated outflow sites can be found in Supplementary Figure S1. (c) Source pool of “Governor’s Spring.” Small white scale bar noted. White
arrow at top right indicates flow direction. (d) North West Dugout Pool. White arrow indicates location of spring in (c). (e) Pinaduguan Falls. Inset shows close up of
“Pig Pool” (PF1). (f) Poon Bato “PB2” location, with major features noted. Car battery for scale. (g) Poon Bato “PB1” location. Note calcite “cap” on top of the low
flow pool (arrow). (h) Close up image of “Star Pool” in (f). Note lack of calcite “cap” (bottom of pool is visible).

a sealed, He-purged exetainer, and acidified to liberate all of the
DIC as CO2. Reference materials for DIC analyses were lithium
carbonate (Acros-1, Acros-2 Li2CO3, lots measuring δ13C −13.4
and −3.85, respectively, Thermo Fisher Scientific, St. Louis,
MO, United States) dissolved in degassed deionized water and
a deep seawater (both calibrated against NIST 8545). Final δ13C
values are expressed relative to the international standard VPDB
(Vienna PeeDee Belemnite).

Determination of Endmember
Composition and Contributions
An estimation of subsurface endmember δ13CDIC was calculated
following the method of Miller and Tans (2003), where δ13CDIC

∗[DIC] is plotted as a function of [DIC], for each field area,
and the slope of the resulting linear regression indicates an
estimated δ13CDIC for the endmember fluid at that field site.
These endmember values of δ13CDIC were then used to estimate
the fraction of the subsurface endmember remaining following
select microbial metabolic processes on the measured δ13CDIC
pool. Here, a Rayleigh distillation model was used;

δ13Cobserved = δ13Csource + 103(α− 1)ln(f)

Where δ13Cobserved is the measured δ13CDIC in the samples,
and δ13Csource is either the estimated δ13CDIC−subsurface, or
δ13CDOC, as specified below. Fractionation factors, α, were
chosen for individual microbial processes. For chemoautotrophic
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pathways, namely the acetyl Co-A and rTCA cycles, a range
of α = 0.964–0.996 as reported in Hayes, 2001 was used. For
bacterial photoautotrophy, a range of α = 0.978–0.99 as reported
in Hayes, 2001 was used. For hydrogenotrophic methanogenesis,
α = 0.945 from carbonate to methane (Waldron et al., 1998)
and α = 0.942 from CO2 to methane (Krzycki et al., 1987) were
used. For each of the above processes utilizing the DIC pool as a
carbon source, the δ13Csource used was the estimated subsurface
endmember δ13CDIC as calculated for each location as in Miller
and Tans, 2003. Processes that produce CO2, such as acetoclastic
methanogenesis (α = 0.976, Waldron et al., 1998) and methanol
methanogenesis (α = 0.932, Rosenfeld and Silvermann, 1959;
Silverman and Oyama, 1968) were also considered. For these
latter processes, the δ13Csource used was the measured δ13CDOC.

Carbon and Nitrogen Isotopic Ratios in
Solid Materials
Solid samples, consisting of sediments, carbonate terrace
materials, and any resident microbiota or biofilms, were collected
using sterile technique into Whirlpac bags, and kept frozen
at −20◦C until analysis. Samples were freeze dried, and then
ground to a fine powder in glass or agate mortars. Mortars and
Pestles were baked at 550◦C overnight prior to use. Samples
were analyzed in the Osburn Isotope Geobiology Laboratory at
Northwestern University.

Carbonate content, assayed as mg CO2 and its respective
δ13C value (hereafter δ13CCO3) was determined simultaneously
via continuous flow on a Thermo Fisher Scientific GasBench
II, coupled to a Delta V Plus isotope ratio mass-spectrometer
(CF-IRMS) at the Northwestern Stable Isotope Facility.
Prior determination of the CO3

2− content from gravimetric
quantification guided the sample amount used for analysis,
aiming for ∼10 µmol CO2. Samples were weighed into
12 mL Exetainer R© vials, which were subsequently septum-
sealed and purged with UHP He for 7 min. Approximately
200 µL of 103% H3PO4 was injected into each vial, and
the samples placed into a thermos-stated block at 70◦C to
allow CO2 to evolve overnight. The isotopic composition,
δ13CCO3 is corrected using the periodic sampling of
CO2 from the H3PO4-acidified CaCO3 standards NBS18
(δ13CVPDB = −5.014h) and NBS19 (δ13CVPDB = 1.95h), and
samples reported on the VPDB scale. Estimated precision (1 s.d.)
on δ13CCO3 is± 0.06h.

For the determination of wt% organic C and organic N,
acidified and decarbonated samples were weighed into tin
capsules and combusted online in a Costech 4010 Elemental
Analyzer, coupled to a Thermo Fisher Scientific Delta V
Plus mass-spectrometer via a ConFloIV. Briefly, ∼10–
30 mg of powdered decarbonated samples were weighed,
then combusted online in a column containing chromium
(III) oxide and silvered cobaltous chloride, held at 980◦C.
Product gasses were carried over hot Cu reduction column
held at 705◦C to removed excess O2 and convert nitrogen
oxides to N2. Product CO2 and N2 were separated by a
molecular sieve 5A GC column. The gasses were analyzed
via CF-irms, and size corrected. Tank corrections were done
by regular calibration against organic standards supplied

by Indiana Biogeochemical laboratories (IU acetanilide
and IU urea), and placed on the δ13CVPDB and δ15NAIR
scales respectively.

Carbonate Mineralogy
An Olympus Terra X-ray diffractometer1, with the specifications
equivalent to the CheMin tool developed for Mars exploration as
described in Blake et al. (2012), was used for X-ray diffraction
(XRD) analysis. The Terra engages a Co X-ray source and
a cooled charge-coupled device (CCD) detector arranged in
transmission geometry with the sample, with angular range of 5◦
to 50◦ 2θ with <0.35◦ 2θ resolution (Blake et al., 2012). X-ray
tube voltage is typically 30 kV, with a power of 10 W, a step size of
0.05◦, and an exposure time of 10 s per step. A minimum of 250
exposures were recorded prior to diffractogram interpretation.

Dry samples were powdered using an agate mortar and pestle,
cleaned with isopropyl alcohol between samples. Powder was
passed through a standard 150 µm sieve (100-mesh) prior to
analysis. Powdered, sieved material was transferred with a spatula
to the input hopper of the vibration chamber sample cell, and
shaken into the space between two mylar window, to be agitated
during analysis, presenting all planes with the mineral sample to
the x-ray beam.

The resulting diffractogram was interpreted using XPowder
software2, which is a commercially available peak search-and-
match program that queries the PDF2 database for reference
mineral peak information (see text footnote 2). XPowder allows
for identification of major minerals; trace minerals can be
missed or masked by peaks of other minerals. Diffractograms
convey mineral fingerprint information customarily by plotting
of diffracted signal intensity on the y-axis against ◦2θ on
the x-axis. An intensity peak is the result of constructive
interference when Bragg’s law (nλ = 2d sin θ, where n is
the “order” of reflection, λ is the incident X-rays wavelength,
d is spacing between atomic planes in a crystal structure,
and θ is the incidence angle) is fulfilled by the incoming
x-rays. For reference, for data collected using a Co x-ray tube,
the three most prominent d-values for minerals of interest
are as follows: serpentine (var. lizardite) Mg3Si2O5(OH)4, D1:
7.12 Å, D2: 2.379 Å, D3: 3.56 Å; serpentine (var. antigorite)
(Mg,Fe++)3Si2O5(OH)4, D1: 7.29 Å, D2: 2.53 Å, D3: 3.61
Å; brucite Mg(OH)2, D1: 2.365 Å, D2: 4.77 Å, D3: 1.794 Å;
hydrotalcite Mg6Al2(CO3)(OH)16·4(H2O), D1: 7.69 Å, D2: 3.88
Å, D3: 2.58 Å; portlandite Ca(OH)2, D1: 2.628 Å, D2: 4.9 Å, D3:
1.927 Å; calcite CaCO3, D1: 3.035 Å, D2: 2.285 Å, D3: 2.095 Å;
magnesite MgCO3, D1: 2.742 Å, D2: 2.102 Å, D3: 1.700 Å; artinite
Mg2(CO3)(OH)2·3(H2O), D1: 2.736 Å, D2: 5.34 Å, D3: 3.69 Å;
chlorite (var clinochlore) (Mg,Fe++)5Al(Si3Al)O10(OH)8, D1:
7.16 Å, D2; 4.77 Å, D3: 3.58 Å; and smectite (var beidellite)
Na0.5Al2(Si3.5Al0.5)O10(OH)2·n(H2O), D1: 2.55 Å, D2: 2.61
Å, D3: 4.52 Å.

In order to interpret co-occurring minerals in association with
spring water, an Eh-pH diagram was constructed in Geochemist’s
Workbench Act 2. The system was modeled at a temperature

1https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/#!
2http://www.xpowder.com/
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of 25◦C, at a pressure of 1.013 bars, with log activity HCO3
−

set at −2.699, log activity Ca2+ set at 2, log activity Fe2+ set
at −3, and unit activity of Mg2+ and water. The log activity
HCO3

−is based on high CO2 in to water mixture as low DIC
spring water encounters high DIC surface water. The log activity
Ca2+ set at 2 represents generally observed molalities of [Ca2+]
near 100 m, which correspond to activities of ∼100, thus log
100 = 2. The log activity Fe2+ set at −3 represents generally
observed molalities of [Fe2+] near 1 mmolal, which correspond
to activities of∼0.001, thus log 0.001 =−3. Unit activity of Mg2+

conveys the Ca dominance of the aqueous system, about two
orders of magnitude greater than Mg, thus Mg activity taken as
one. Unit activity of water is appropriate for most lower salinity,
low temperature waters (activity coefficients not impacted by
high levels of solutes).

RESULTS

Dissolved Carbon (DIC and DOC)
Results of the analysis of DIC and DOC can be found in Table 1.
Figures 2, 3 display the carbon isotopic ratios and concentrations
of DIC and DOC, separated by flow regime (high flow in Figure 1,
low flow in Figure 2) and season. Data are grouped in Figure 2 by
samples that are in or near the source pools, vs. those that are part
of the extended outflow channel. Calculated estimates of potential
subsurface endmember δ13CDIC are shown in Supplementary
Figure S3, and are ∼ −21.8h for ML, ∼ −22.7h for GS,
∼ −12.8h for NWD, ∼ −13.26h for PB, and ∼ −22.5h
for PF locations. The ratio of DOC:DIC at each major field
area is considered in Supplementary Figure S4. We are lacking
δ13CDIC from precipitation during the time periods that we
were in the field, so estimates of input from this source of DIC
were not considered.

DIC in High Flow Systems (ML, GS, MF)
General trends in DIC (Figure 2) in high flow systems
include low concentrations of DIC (e.g., <1 ppmC) in source
pools, continuing downstream to end with an often higher
concentration signal (1–10 ppmC). The δ13CDIC at the source
pools was more enriched relative to downstream locations at
all sites and varied between −11 to ∼ −18h at ML, but ∼
−14 to −22h in high flow Palawan ophiolite locations. At
the high flow system ML2, a sample was taken 1.5 m beyond
the mouth of the source pool in 2012 and 2017, and the
δ13CDIC became briefly more enriched than the source pool
across that distance. Discrete source pools associated within
a larger spring system [e.g., ML1-ML2 or GS-NWD] had
highly variable δ13CDIC, with as much as a 7–8h difference in
δ13C between them (Figure 2). Precipitation (meteorological)
did not influence DIC concentration, but may influence the
δ13CDIC in the high flow ML systems (the only high flow
systems where data from multiple seasons are available). The
δ13CDIC at ML1 was more 13C enriched in drier seasons relative
to the wet season, while the δ13CDIC at ML2 became more
13C depleted in drier seasons relative to the wet season. The
highest concentration of DIC in a high flow system was found

in MF (dry season). It was concluded previously that this
site is influenced in part by non-serpentinizing hydrothermal
fluids (Cardace et al., 2015).

Subsurface endmember δ13CDIC for sites at ML and GS are
depleted by ∼13h relative to atmospheric DIC. A Rayleigh
distillation model (Supplementary Table S3) predicts a wide
range of potential δ13CDIC from the subsurface endmember for
both areas (∼6–91%) after fractionation by microbial processes
that consume DIC, after DIC production and fractionation by
acetoclastic and methanol methanogenesis (54–93%). In contrast,
the predicted remaining subsurface endmember at NWD is
0% for DIC consuming microbial processes, but 28–86% for
acetoclastic and methanol methanogenesis.

DIC in Low Flow Systems (PB, PF)
Two DIC datapoints are available for each of the two low flow,
uncapped sites (Figure 3). The data range from <1 to ∼ 30
ppmC, and δ13CDIC ∼ −11 to −21h. This isotopic signature is
comparable to that of the high flow systems, although DIC was
more abundant in these lower flow, uncapped pools.

While limited data availability makes it difficult to identify
broad patterns, there was a notable difference in the δ13CDIC
between the wet (∼ −13h) and dry season (∼ −25h) in the
low flow, capped systems (Figure 3). This was the most negative
δ13CDIC found. Concentrations of DIC for both low flow, capped
samples was 1–10 ppmC.

The subsurface endmember sources of δ13CDIC were predicted
to be−13.26h to the PB area, and−22.5h to the PF area. These
calculated endmembers are considered with caution, as they are
based on very few data.

DOC in High Flow Systems (ML, GS, MF)
DOC concentrations in the high flow systems were highly
variable and range from 0 to 2.7 ppmC (Figure 2). Carbon
isotopic signatures were typically <−25h although several
samples taken in the very dry season had more positive values
(see ML and GS, Figure 2). Notable outliers to these general
trends included a groundwater well associated with site NWD
with 7.8 ppmC, and the highly 13C depleted DOC (−50.8h,
relative to the DOC at all other locations) found 10.3 m down the
outflow of GS. There was little apparent effect of meteorological
precipitation on the concentration of DOC in the high flow
systems, however, lack of rain may be linked to the most positive
δ13CDOC values found (−19 to −22h) which occurred in the
very dry season in both ML and GS systems.

DOC in Low Flow Systems (PB, PF)
The DOC in the fluids of the low flow, uncapped systems
(Figure 3) had a more narrow isotopic range than that in the
high flow systems. However, the DOC was 13C enriched relative
to that of many sites (−21 to −26h), resembling the range for
the very dry season samples at high flow ML and GS. No direct
seasonal comparison could be made for these sites, due to lack of
data from multiple seasons for identical locations. However, the
spring systems sampled in the very dry season (PF) had an order
of magnitude less DOC than the spring system sampled in the
dry season (PB).
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FIGURE 2 | Ranges of concentrations and δ13C isotopic composition of dissolved carbon (DIC, DOC), and solid carbon (C-org, C-carbonate) in the high flow
systems. Concentration ranges are given by the size of the circle for each value (key at right). Samples are grouped as pool sources plus sample locations within 2 m
in one vertical column, and samples farther down the outflow channel are given as a second vertical column. The pool source is distinguished from the other samples
by a bold outline around the circle. Refer to Table 1 for full sample names and distances along the outflow. Circles are offset along the horizontal for clarity only. Data
are also separated by seasonal sampling, and sample names correspond to the names in the sample location pictures (Figure 1 and Supplementary Figure S1)
and Table 1. Dashed lines separate discrete samples within a season. Data can also be found separated by discrete samples in Supplementary Figure S2.

Concentrations of DOC from the low flow, capped systems
were between 0.1 and 0.3 ppmC, and the δ13C was −23 to
−27h (Figure 3), more 13C depleted than the uncapped, low
flow counterparts. In the dry season, DOC was more 13C enriched
than in the wet season, possibly representing the “leftover” pool
in the reservoir, which was not refreshed by new material brought
in by meteorological precipitation.

Geochemistry of Solids/Mineralogy
Organic Carbon (Biomass) in High Flow Systems (ML,
GS, NWD, MF)
The carbon isotopic signature of organic carbon in solids
(biomass) from high flow systems was in the range of ∼
−21 to −28h, across all seasons and locations (Figure 2
and Table 2). The samples from high flow systems also had
the largest range in fractionation between biomass, DIC, and
DOC (Figure 4) of all the systems investigated. Biomass in

the high flow systems was slightly 13C depleted relative to
DOC (Table 2 and Figures 2, 4). There were exceptions,
usually from samples near the end of the runoff channel which
broaden the range of fractionation from DOC. The biomass
samples in these systems were the most 13C enriched relative
to DOC of all the systems considered (Figure 4). In general,
the abundance of biomass increased downstream. In addition,
biomass was far less abundant in the very dry season, and more
abundant in the wet season (Figure 2). The GS system outflow
channel presented an atypical case compared to other high flow
systems. While the relationship between the biomass and the
DOC in the source pool at GS was similar to the other high
flow systems, the biomass was as much as 10h 13C enriched
relative to other sites. In addition, the δ13Cbiomass and δ13CDOC
in the outflow channel of GS were dissimilar, casting doubt
that DOC was the source of the carbon for the biomass in
the outflow sites.
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FIGURE 3 | Ranges of concentrations and δ13C isotopic compositions of dissolved carbon (DIC, DOC), and solid carbon (C-org, C-carbonate) in the low flow
systems. Concentration ranges are given by the size of the circle for each value (key at right). In locations where samples included both a pool source and addition
samples in and around the same pool, the pool source is distinguished from the other samples by a bold outline around the circle. Refer to Table 1 for full sample
names. Circles are offset along the horizontal for clarity only. Data are also separated by seasonal sampling, and sample names correspond to the names in the
sample location pictures (Figure 1 and Supplementary Figure S1) and Table 1. Dashed lines separate discrete samples within a season. Data can also be found
separated by discrete samples in Supplementary Figure S2.

FIGURE 4 | Ranges of measured δ13Corganic in each of the three types of sample systems (vs. VPDB), and calculated 113C of organic carbon in solids relative to
DIC and DOC. Gray bars note the δ13Corganic range, and number of analyses per sample type. The sample types are also broken into seasons, key at right. The
brown arrow indicates a single outlier data point of ∼ + 24h.

Organic Carbon (Biomass) in Low Flow Systems
(PB, PF)
The δ13Cbiomass with the most negative values were found in
the low flow, uncapped systems. All samples were >4h 13C
depleted relative to the DOC, and there was very little seasonal
variability (Figures 3, 4). These samples also had the most
depleted δ13Cbiomass relative to DIC of all the systems sampled,
with samples from the very dry season as much as ∼ −18h
depleted relative to DIC (Figure 4). Biomass from the low flow,
capped systems had a similar δ13Cbiomass as that from the high
flow systems (between∼−24 to−29h), with the more negative
δ13Cbiomass in samples from the dry season.

Carbonates
In the pH range of the spring locations, speciation of DIC is
expected to vary as a function of pH; at pH ∼10.3 we can
expect about equal proportions of bicarbonate and carbonate
components of DIC, below pH = 10.3 bicarbonate will dominate
over carbonate, and above pH = 10.3 carbonate is the dominant
ion. Fractionation between the two species occurs, but is expected
to be small across the temperature and pH ranges studied here.
Fractionation as carbonate minerals precipitate will also vary with
precipitation rate. Fractionations due to pH and temperature
differences between samples/seasons are expected to be minimal,
on the order of <2h when considering fractionation between
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FIGURE 5 | δ13C (vs. VPDB), and δ18O (vs. VPDB) of carbonates, given in h.
Black symbols = dry 2012 season, gray symbols = wet 2013 season, and red
symbols = very dry 2017 season. Data are found in Table 2. Fields indicate
formation and fractionation processes discussed in Clark et al. (1992) and Falk
et al. (2016). Dashed boxes indicate the position of fields outlining formation
and fractionation processes as discussed in Clark et al. (1992) and Falk et al.
(2016) for Oman serpentinization-associated carbonates. Shaded boxes show
adjusted positions accounting for the up to ∼5h difference in δ18O of
seasonal and annual rainfall for our study areas. Isotopic data for precipitation
were obtained from the Online Isotopes in Precipitation Calculator and are
found in Supplementary Table S2 (Bowen and Revenaugh, 2003; Bowen
et al., 2005; Bowen, 2019). (a,b) These fields represent the expected isotopic
ranges for carbonates formed in equilibrium with soil CO2, and atmospheric
CO2, respectively (purposefully no data in the “b” fields). (c) This field is
interpreted by Falk et al. (2016) as containing carbonates that result from
mixing of endmember fluids, or recrystallization and/or isotopic exchange in
older carbonates. (d) Fossil travertine crusts from Oman (Clark et al., 1992),
interpreted as shifting toward equilibrium values during secondary
recrystallization of more depleted travertine. (e) Field containing modern
crusts from Oman (Clark et al., 1992), blue triangles, provided for reference.
(f) Carbonates potentially formed by the CO2 hydroxylation process.

H2O and CO2 due to pH (Halas et al., 1997, Table 4), and <1
to ∼2h between bicarbonate and carbonate in our temperature
range (Emrich et al., 1970; Table 1). The fractionation due to
precipitation rates is also expected to be <1h (Turner, 1982).
There are no reports that consider all three of these variables
on fractionation of DIC or carbonate minerals in the range of
conditions of our study sites.

The δ13C of solid inorganic carbon (carbonates) were typically
only slightly fractionated relative to DIC, showing the most
similarity in the wet season and the most fractionation from
DIC in the dry and very dry seasons (Table 2 and Figures 2, 3).
Again, there were exceptions to this pattern. For example, the
carbonates in wet season samples from the PB location (2013),
which was low flow and capped, were nearly 15h 13C depleted
relative to the DIC (Figure 3). In these samples, δ13Ccarbonate
was more isotopically similar to the δ13Cbiomass and δ13CDOC.
A similar landscape of carbonates 13C depleted relative to DIC
was found at the GS site, both near the source and farther down
the outflow (Figure 2).

FIGURE 6 | Eh-pH diagram illustrating likely carbonate mineralogy of GS area
spring waters, which are Ca-dominated waters with near surface DIC values
due to interaction with atmosphere, and bear low concentrations of dissolved
Mg and very low concentrations of dissolved Fe. The system was modeled at
a temperature of 25◦C, at a pressure of 1.013 bars, with log activity HCO3

−

set at –2.699, log activity Ca2+ set at 2, log activity Fe2+ set at –3, and unit
activity of Mg2+ and water. Note that artinite is a hydrated magnesium
carbonate mineral [Mg2(CO3)(OH)2·3H2O], and calcite is taken to be pure
CaCO3. For relevant high pH, low Eh environmental conditions (lower right
plotted area), one expects mineral precipitation of artinite, grading to calcite as
pH drops (possibly due to organic acid production by microbiology or influx of
atmospheric CO2).

Carbonates from the Philippines had some of the most
depleted δ13C and δ18O values reported from terrestrial
serpentinizing environments (Table 2 and Figure 5). Values of
δ13C in our carbonates range from −28.1 to −9.3h VPDB,
and values of δ18O range from −24.6 to −4.8h VPDB (5.5–
23.4h VSMOW). Equilibrium considerations in the formation
of carbonates were calculated and are available in Table 2,
including a starting δ13CCO2 and δ18OCO2. The difference
between the measured δ18Ocarbonate and the expected (calculated)
δ18Ocarbonate is shown in Figure 7, for samples for which a
δ18Owater was available. In all samples except one (from PB2),
the measured δ18Ocarbonate was depleted in 18O relative to the
calculated, expected value for δ18Ocarbonate, with up to −17.39h
difference. Carbonates depleted in 18O relative to equilibrium
with water indicate rapid mineral precipitation or precipitation
far out of equilibrium.

Because the most negative δ13C carbonates were primarily
from the GS area, the mineralogy of solid samples from
those locations was further explored. The expected carbonate
mineralogy is shown in the Eh/pH diagram in Figure 6; measured
carbonate mineralogy is given in Figure 8. The model for
carbonate stability for a Ca-dominated water with low Mg, low
Fe, and near surface DIC values suggests that at the pH and
Eh of GS locations, the expected stable magnesium and calcium
carbonate minerals are artinite and calcite.
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FIGURE 7 | Differences in the values measured for δ18O in carbonates and values expected for δ18O in carbonates (calculated) in samples from 2012 (dry season)
and 2017 (very dry season). Data (see Table 2) are compared for the Poon Bato (PB), Manleluag (ML), Mainit Falls (MF), and San Isidro area springs (PF, NWD, and
GS). Positive values are enriched in 18O relative to equilibrium, and negative values are depleted relative to equilibrium with water.

XRD analysis of GS location carbonates (Figure 8) showed
that the outflow sites between 4.5 and 10.3 m are dominated
by calcite, serpentinite, clay minerals such as smectite and
chlorite, and other smaller proportions of carbonates such as
aragonite, magnesite, and artinite, with possible portlandite
[Ca(OH)2], suggested by variable right-side shoulder near the
serpentine peak at ∼42.5 ◦2-theta. At the source pool alone,
brucite [Mg(OH)2] and hydrotalcite [Mg6Al2CO3(OH)16·4H2O]
are indicated in XRD results, giving evidence for mineral
precipitation of hydroxide phases from this OH− dominated
spring water where it emerges from the subsurface.

Nitrogen
The δ15N in solid samples (presumably from biomass) compared
to the ratio of total carbon to total nitrogen (both as wt.%)
are given in Figure 9, broken down by flow system type
and season. A relationship between the abundance of nitrogen
in biomass and a depleted 15N isotopic signature relative to

atmospheric may indicate diazotrophic activity, supplying freshly
fixed nitrogen to the biomass (e.g., Loiacono et al., 2012 and
sources within). In contrast, nitrogen limitation or an 15N
enriched nitrogen isotopic signature relative to atmospheric
may indicate nutrient recycling, exogenous nitrogen addition
from eukaryotic surface systems, or microbial nitrogen cycling
functions such as nitrification or denitrification. A poorly fit
relationship was present between the C:N and δ15N in the
high flow systems during the seasons with more meteorological
precipitation (Figure 9A), but not in the very dry season
(Figure 9B). While there were fewer data points available for
the lower flow systems (Figure 9C), data cluster according
to the season the samples were obtained in. Very dry season
samples had the most positive δ15N, with high nitrogen biomass
(Figure 9C, blue field), dry season samples had the lowest wt%
nitrogen in biomass, and δ15N data fall between ± 2.3h (yellow
field), while wet season samples were primarily δ15N < 0h and
low C:N (red field).
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FIGURE 8 | X-ray diffractograms convey mineralogical differences between representative samples of Governor’s Spring solids, collected at spring source (green),
two locations along the outflow path (red, purple), and at the base of the main flow channel (blue). Data were collected using an Olympus Terra XRD unit outfitted
with Co tube (https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/#!), and peaks were identified using Xpowder (http://www.xpowder.com/).
Peaks (intensity on the y-axis) indicate strongly diffracted x-rays. Peaks correspond to specific angles (◦2-theta, on x-axis) at which x-rays are diffracted by specific
planes of atoms present in the mineral sample. At spring source (green diffractogram), serpentine peaks co-occur with strong brucite peaks, and associated
hydrotalcite. Along outflow path (red and purple diffractograms), carbonate and serpentine minerals dominate, with possible minor brucite, portlandite, and
magnesite. The lowest elevation site (blue diffractogram) shows carbonate minerals with a smectite group clay (broad peak, far left).

FIGURE 9 | Ranges of measured δ15N within organic fraction of solid samples, as a function of the C/N ratio in the samples, divided by 10. Data are found in
Table 2. Three sampling seasons are shown; 2013 wet (gray), 2012 dry (black), and 2017 very dry (red) seasons. Circles indicate high flow systems, Triangles
indicate low flow systems. The dashed line indicates the expected δ15N of atmospheric N2. Values below this line are interpreted as produced by fractionation during
nitrogen fixation processes, and values above are likely influenced by other nitrogen cycling reactions and nitrogen recycling. (A) High flow systems, during the wet
and dry seasons. (B) High flow systems during the very dry season. (C) Low flow systems, all seasons.

DISCUSSION

Surface derived carbon, such as DOC picked up from plant,
animal, or soil sources during overland flow, is characteristically
depleted in δ13C relative to atmospheric CO2. Examples of
surface derived carbon can be found in Table 2 – samples
from PB1 (“Muddy pot, 2013”) and PB2 (leaf litter and soil
reference material, 2012), which range from δ13C = −14.7
to −24.6h. When such biomass is carried into the sample
locations after being dissolved or transported as solids, it
provides organic carbon with δ13C depleted with respect to
atmospheric CO2. Microbial heterotrophy of organic carbon
for biomass production results in very little fractionation

of carbon (e.g., Hayes, 1993). In these systems, when the
δ13Cbiomass is only barely fractionated with respect to δ13CDOC
the assumption can be made that DOC was utilized to
produce the biomass. Further, it is logical that the source
of the DOC is likely primarily from surface environments,
rather than produced within the pools, especially during
periods of high precipitation. Care needs to be taken when
interpreting DOC-biomass relationships in the low precipitation
seasons. Measured δ13CDOC or δ13Cbiomass values with a large
enrichment relative to source DOC are likely products of
microbial carbon fixation, a result of recycling of carbon in a
closed or semi-closed system, or a mix of heterotrophic and
autotrophic growth.
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The measured δ13CDIC can be the product of multiple
processes, including fluid mixing, fractionation following
biological activity, and kinetic effects to name a few. Removal
of DIC from the source (whether subsurface or surface) by
microbial carbon fixation or methanogenesis will change both
the concentration of DIC and the δ13CDIC in the remaining
DIC pool. Some autotrophic organisms are known to fractionate
DIC by as much as 36h with specific carbon fixation pathways
at 25–40◦C (Hayes, 2001; House et al., 2003). Likewise, the
production of DIC by heterotrophic processes, or acetoclastic
methanogenesis will supply DIC to the available pool that is
fractionated relative to the source DOC.

Nitrogen fixation fractionates N2 only slightly from
atmospheric values, and δ15Nbiomass close to 0h can be
inferred to be a product of nitrogen fixation (Delwiche and
Steyn, 1970). Other nitrogen cycle processes produce more
negative δ15Nbiomass, and values of δ15Nbiomas that are enriched
relative to atmospheric N2 can result from recycling fixed N2 in
a closed or partially closed system (e.g., Havig et al., 2011).

The climate of the Philippines affects the primary carbon
sources for biomass in serpentinizing spring fluids in the
Zambales and Palawan ophiolites. Our goal was to determine
the primary carbon source for biomass in both the source pools
(where a greater “subsurface” fingerprint might be presumed)
and runoff channel locations. Our data indicate that factors that
impact the primary carbon source include flow rate of the fluids,
and degree of exogenous carbon input from meteorological
precipitation-derived DIC and DOC.

Seasonal low meteorological precipitation affects the quantity
of biomass present in the sediments at all field locations where
multiple seasons were sampled (ML, PB1) – measured biomass
was less abundant in the dry and very dry seasons (Figures 2, 3).
This decrease in biomass production can not be directly linked
to a decrease in DOC concentrations within our sample set.
With few exceptions (ML1, and some outflow channel sites of
ML2), there is not an apparent decrease of DOC with decreased
meteorological precipitation and the highest DOC:DIC ratios are
found in very dry season samples (Supplementary Figure S4).
However, as discussed below, in a few cases (such as ML during
the very dry season) there is evidence of DOC recycling during
the drier seasons relative to the wet season. A possible explanation
is that biomass does increase in response to an increase in
delivery of DOC via overland flow, and the DOC measured
during the wet season is “leftover” DOC that has not been
consumed. The dynamics of population and metabolic shifts
that might be tied to DOC have not been studied previously
in these systems.

High Flow Systems (ML, GS, NWD, MF)
Our results indicate that the primary source of carbon for
microbial communities in high flow systems was variable with
location and affected by season. Evidence for carbon limitation
was found during the very dry season, and the best indication of
mixotrophic communities (i.e., indication of both heterotrophic
and autotrophic processes) was found at distance down outflow
channels where δ13Cbiomass relative to DOC was the most positive

(Figure 4). Both DIC and DOC were <1 ppmC in the source
pools of most high flow systems (with the exception of MF and
NWD). The DOC:DIC of high flow sites was<1 (with only three
exceptions), and these represent the highest DOC:DIC ratios
found in each sampling season (Supplementary Figure S4).

The carbon isotopic ratio data indicate the primary carbon
source incorporated into biomass in the ML1 and ML2 systems
was likely DOC. The δ13Cbiomass (Figure 2) in these two springs
was only slightly depleted or slightly enriched with respect to
DOC (Figure 4); in cases of δ13Cbiomass enrichment relative
to DOC, a secondary carbon source of DIC from atmospheric
influence or from microbial metabolic byproducts may be
invoked. Sampling during the very dry season in the Manleluag
area revealed a δ13CDOC more enriched than that in other
seasons, suggesting carbon recycling in the outflow channel
due to lower flow rates and less exogenous carbon delivered
by meteorological precipitation, resulting in the residual DOC
pool harboring more 13C. Modeling of the degree of input from
the subsurface δ13CDIC was inconclusive with a broad range
of incorporation of subsurface source δ13CDIC possible (6–93%
incorporation). Given that the measured δ13CDIC in the ML
system is influenced by a wide range of processes we feel the
approach used was insufficient to model these dynamics. Our
available evidence indicates that carbonate production in the ML
systems required a mix of carbon from DIC and atmospheric
CO2. Carbonates analyzed from the source pools of ML1 and
ML2 had enriched δ18O and δ13C compared to other samples
(field “c,” Figure 5). Carbonates in this range of δ18O and
δ13C have been interpreted by others as carbonates formed
by remineralization or resulting from mixing of endmember
fluids. Farther down the outflow at ML2, carbonates are
a mix of “fossil” carbonates and freshly formed carbonates
with more depleted δ13C and δ18O than at the source pools
(Figure 5, field “d”).

The other major high flow system, the GS area and associated
NWD, was only sampled in the very dry season and the
source of carbon for biomass was variable by location. In
the source pool of GS, both δ13CDOC and δ13Cbiomass were
enriched compared to all other sample locations (Figure 2),
and the DOC:DIC was the lowest observed (Supplementary
Figure S4). The microbial community in the source pool of
GS may build biomass from carbon fixation processes, thus
producing organic acid byproducts that are 13C enriched relative
to the DOC or subsurface DIC endmember (Supplementary
Figure S3), contributing to the measured δ13CDOC. Alternatively,
the measured δ13CDOC may also be a consequence of the
very dry season sample time, similar to that observed in the
ML systems described above – a comparison with wet season
δ13CDOC is not available for the GS system. As the fluid
at GS flowed downstream, DIC and DOC did not become
more abundant (in contrast to the outflow of ML2), and
the δ13Cbiomass became more depleted relative to the source
pool biomass. Rayleigh modeling of the potential input from
a subsurface source of DIC was largely inconclusive for the
GS system. DIC at NWD is only slightly enriched relative
to DOC. Carbonates produced in and near the source pool
at GS occur with brucite [Mg(OH)2], and are more 13C
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enriched than other samples (and ∼10h 13C enriched relative
to the next site downstream), possibly representing mixing
with endmember fluids or recrystallization of carbonates rather
than freshly precipitated carbonates (Figure 5, fields “c, d”).
However, Figure 7 shows that the carbonates found in the
GS system have the largest difference between the expected
δ18O and the measured δ18O, indicating that rapid carbonate
deposition is occurring at this location, even in the source
pool. Biomass carbon at the bottom of the outflow channel
of GS either incorporated carbon from the carbonates, or
influenced the δ13Ccarbonates. These carbonates had the most
negative 13C found in our high flow systems, and there was
only <1–4h difference between δ13Cbiomass and δ13Ccarbonate.
This could indicate that carbonate formed quickly in the outflow
and microbial waste product DIC was a key source of carbon
used to form the carbonate. Another possibility is that the
microbial community utilized carbon from the carbonate to build
biomass. There is precedent for this latter concept. In high pH
serpentinizing systems found at The Cedars (United States),
it has been shown that Serpentimonas isolates use CaCO3 in
carbon fixation (Suzuki et al., 2014). Future work will be needed
to determine if this is a phenomenon is restricted to the
low meteorological precipitation season at GS. Regardless, by
4.5 m down the outflow channel, rapid carbonate deposition
has resulted in carbonates with some of the most depleted δ13C
and δ18O relative to other carbonates reported from terrestrial
serpentinizing systems.

Evidence for nitrogen fixation in the high flow systems
(Figures 9A,B) was limited to the MF site (only sampled
in the dry season), the source pool of ML1 in the very
dry season, and the distant outflow points of ML2 (but
excluding the 2012 dry season samples). These results indicate
that the ML system communities have potential for nitrogen
fixation under some environmental conditions, and more
investigation is needed to determine which members of
the community are capable of nitrogen fixation and what
conditions enable the process. The MF location is slightly higher
temperature than ML, with a likely hydrothermal mixing member
(Cardace et al., 2015) and nitrogen fixation processes could be
attributed to thermophilic members of the community (e.g.,
Hamilton et al., 2011; Loiacono et al., 2012).

Low Flow, Uncapped Systems
(PB2, PB3, PF)
While few data are available for low flow systems in general,
those data presented in Figure 3 indicate that there may be a
relationship between more seasonal meteorological precipitation
and an increase in concentrations and volume of DIC, DOC, and
biomass in the uncapped systems.

Low flow systems have some of the lowest DOC:DIC
ratios of all the samples examined (Supplementary Figure S4),
with little variability between seasons. While few data are
available for low flow systems, the uncapped pools featured
the most depleted δ13Cbiomass, relative to DOC, with the
largest fractionation from DOC (up to 7h), regardless of
season of sampling. To produce biomass depleted in 13C

relative to both DOC and DIC, microorganisms either have
to use an unidentified, very δ13C negative source of carbon,
or a large fractionation from DIC needs to occur. These
results indicate that even when carbon from surface processes
was available in the drier seasons, it is possible that the
lower flow, uncapped systems received enough fluid and gas
from the subsurface to support a microbial community that
engaged in metabolic activities independent from exogenous
carbon. During the dry season, these systems may depend on
methane or other carbon-bearing gasses sourced from depth.
Estimation of the subsurface endmember δ13CDIC does not
produce results that support this hypothesis. However, it is
possible that the estimation of the subsurface source δ13CDIC
is inaccurate (Supplementary Figure S3) – only a few samples
were available for each pool and the Miller-Tans analysis was
performed with the PB area samples (capped and uncapped
combined) considered as one “site,” rather than separate locations
that may have differing endmembers in reality. Alternatively,
when exogenous carbon was less abundant in the very dry
season, the low flow, uncapped systems may recycle carbon
similarly as described above for the high flow systems –
metagenomic/metatranscriptomic data could help to clarify the
carbon flow for the very dry season.

Regardless of the season of sampling, the nitrogen cycle was
dependent on surface-sourced nitrogen as no direct evidence
from geochemistry points to active subsurface nitrogen fixation
(Figure 9). The low flow, uncapped systems form carbonates
slowly and are enriched in δ13C and δ18O relative to other
carbonates sampled, suggesting that they have opportunity to
undergo recrystallization as they shift toward equilibrium values
(fields “c, d,” Figure 5).

Low Flow, Capped Systems (PB1)
Seasonality affected the carbon isotopic ratio of DIC and DOC
in the “capped” low flow pools, the abundance of biomass
present, and possibly the source of carbon for the biomass. In
the dry season, the pool fluid is separated from atmospheric
and most surface influence by the physical barrier of the
carbonate skin on the pool surface (Figure 1g). The low flow,
capped systems appear to be forming carbonates at a rapid
rate, both on the bottom of the pools and across the surface
of the pool. Some of these data fall outside of identified
fields in Figure 5, or near field “f,” identified as potentially
forming via a CO2 hydroxylation process (Falk et al., 2016).
Along with the high flow GS locations, these low flow capped
carbonates are the most depleted in δ13C and δ18O of the
samples, indicating fresh, fast formation. Under these conditions,
new carbon and nutrients can only be obtained from slowly
flowing gas and fluid from depth, or from solids already
present in the pool. Figure 3 shows how this impacted the
DIC, which was more δ13C depleted than DOC. The DIC pool
was likely influenced by metabolic byproducts from microbial
metabolism depleted in 13C relative to DIC from surface sources,
which were trapped in the fluids under the carbonate cap.
The residual DOC pool was also more 13C enriched than
in the wet season, indicating that heavier δ13CDOC was left
behind in the DOC pool, non-replenished by surface DOC.
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The carbon isotopic signature of the biomass was more 13C
depleted than both DIC and DOC, and could be influenced
by incorporation of carbon-bearing gasses from depth, such as
in the low flow, uncapped pools. We interpret the wet season
δ13CDIC as incorporating atmospheric sources, indicating that
the cap was at least periodically washed away by precipitation.
Biomass in both the wet and dry season carried a nitrogen
isotopic signature indicative of nitrogen fixation (Figure 9C
and Table 2), in contrast to the uncapped low flow systems.
It is unclear why the capacity for nitrogen fixation would be
more prevalent in these low flow capped systems than the
uncapped systems.

CONCLUSION

Our results allow us to broadly characterize the effect of
climate and fluid flow on the carbon and nutrient sources
of several serpentinization-driven ecosystems in the Zambales
and Palawan ophiolites. Increased meteorological precipitation
during wetter seasons neither significantly diluted nor added
to the DOC and DIC concentrations in the source pools
of high flow systems ML1 and ML2, or capped, low flow
pool PB1 (the only sample locations where such a direct
comparison is possible). Samples farther down outflow channels
at ML did have higher concentrations of DOC in the wet
season, suggesting that climate may have a larger impact
on downstream systems than source pools of high flow
systems. However, changes in meteorological precipitation did
impact the carbon isotopic ratio of both DIC and DOC
in ML and PB1 fluids, which reflected seasonal gain/loss of
atmospheric influence on the δ13C of DIC, and changes in
exogenous DOC input.

The primary carbon source in high flow systems was variable,
with DOC contributing more to biomass in the ML system, and
a mix of DIC and carbonates contributing to biomass in the GS
system. Primary carbon resources in the low flow systems may
depend more on endogenous than exogenous carbon. Partially,
this may be due to smaller “footprints” of the lower flow systems,
affecting the surface area available to receive exogenous materials
either washed or dropped into the systems. Carbonate “caps” on
the very lowest flow systems seasonally isolate the pools from
both organic and inorganic exogenous carbon.

The search for a true “subsurface” signature in the Zambales
and Palawan serpentinizing systems has concluded that the
highest degree of subsurface influence is found in the low flow
systems, and in select source pools of the high flow systems
(namely GS). Rapid mineral precipitation of carbonate, and
δ13Cbiomass that was depleted relative to δ13CDOC highlights
potential true subsurface signals. Biomass can not be produced
from surface derived δ13CDOC with a resulting depleted δ13C
relative to that source – therefore a subsurface process can
be assumed. The drier the climate, the more the subsurface
carbon signature is apparent, making it more likely that processes
such as hydrogen based metabolisms (methanogenesis or sulfate
reduction, for example) are key in ecosystem functioning. In the
very dry season, evidence for 13CDOC pool enrichment relative

to source DOC, without subsequent 13Cbiomass enrichment
indicates that more autotrophy and/or methane-driven (and
hydrogen dependent) metabolic schemes were in action while
DOC was limited.

Future sampling will focus on obtaining multi-season samples
from all these locations, with endmember sampling, to further
explore the validity of this conclusion. Higher flow systems
at ML should be considered very carefully with respect to
subsurface signatures, and the degree of surface impact on
the geochemistry and microbiology. Previous work identified
relict subsurface genetic capacity in the ML systems, and
future work will focus on separating surface vs. subsurface
function in microbial systems, with an eye to identifying
populations that are actively using hydrogen-driven vs. Corganic-
driven metabolic processes. High flow GS and lower flowing
capped systems, including PB1 should be the focus of future
subsurface biosphere investigations. Further consideration of
carbon and nitrogen cycling potential will include insight from
metagenomic datasets. These will clarify the presence/absence of
the genetic capacity for the microbial communities found in these
locations to participate in carbon and nitrogen cycling, identify
metabolisms that use the abundant hydrogen present in these
systems, and allow deeper interpretation of these geochemical
data presented here.
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H2 Kinetic Isotope Fractionation
Superimposed by Equilibrium
Isotope Fractionation During
Hydrogenase Activity of D. vulgaris
Strain Miyazaki
Michaela Löffler, Steffen Kümmel, Carsten Vogt* and Hans-Hermann Richnow

Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

We determined 2H stable isotope fractionation at natural abundances associated with
hydrogenase activity by whole cells of Desulfovibrio vulgaris strain Miyazaki F expressing
a NiFe(Se) hydrogenase. Inhibition of sulfate reduction by molybdate inhibited the overall
oxidation of hydrogen but still facilitated an equilibrium isotope exchange reaction
with water. The theoretical equilibrium isotope exchange δ2H-values of the chemical
exchange reaction were identical to the hydrogenase reaction, as confirmed using
three isotopically different waters with δ2H-values of – 62, +461, and + 1533h.
Expected kinetic isotope fractionation of hydrogen oxidation by non-inhibited cells
was also superimposed by an equilibrium isotope exchange. The isotope effects were
solely catalyzed biotically as hydrogen isotope signatures did not change in control
experiments without cells of D. vulgaris Miyazaki.

Keywords: hydrogenase, D. vulgaris strain Miyazaki, monitoring, GC-IRMS, equilibrium isotope fractionation,
kinetic isotope fractionation, hydrogen isotopes

INTRODUCTION

Many microorganisms use hydrogen (H2) or protons (H+) as electron donors or acceptors, coupled
to the oxidation or production of H2. The enzyme catalyzing H2 oxidation or production is a
metalloenzyme termed hydrogenase, for which several differently structured isoenzymes are known
(Vignais and Billoud, 2007; Greening et al., 2016). The most abundant and commonly studied
type of hydrogenase contains a NiFe(Se)-active center (Vignais and Billoud, 2007). The reaction
catalyzed by hydrogenases can be formulated as follows (Eq. 1).

H2 ⇔ 2H+ + 2e− (1)

Such a reaction usually leads to a kinetic isotope fractionation, which is defined as the ratio of the
rate constants for light and heavy isotopes within the unidirectional reaction of H2 to two protons
releasing two electrons. The isotope fractionation is a result of the slightly lower activation energy
needed to cleave and form bonds of lighter isotopes compared to heavy isotopes in this (bio-)
chemical reaction. The kinetic isotope fractionation leads to the predominant reaction of light
isotopomers, which implies that the remaining fraction would get heavier during the reaction. For
the oxidation of molecular hydrogen at natural abundances, this would result in accumulation of
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2H (deuterium) in the remaining fraction. However, during the
oxidation of H2 (Eq. 1), an isotopic exchange with water (Eq. 2)
was observed simultaneously to the kinetic isotope effect (Arp
and Burris, 1982; Vignais et al., 1997, 2002; Yang et al., 2012).

H2H + H2O ⇔ H2 + H2HO (2)

During the isotope exchange of gaseous hydrogen with water, the
heavy isotopes of molecular hydrogen (2H) exchange with the
light hydrogen isotopes (1H) of the water, until an equilibrium
isotope value for molecular hydrogen is reached. This is an
inverse isotope effect compared to kinetic isotope fractionation,
where the H2 will become enriched in deuterium over time
and thus, the δ2H-value will become more positive. If kinetic
and equilibrium isotope fractionation take place in parallel, the
oxidation and the isotope exchange reaction cannot be separated
from each other. In order to understand overall isotope effects
during H2-consumption, the equilibrium isotope fractionation
of the isotopic exchange reaction must be studied separately.
Therefore we designed experiments to study both H2-oxidation
and isotope exchange with cell suspensions of Desulfovibrio
vulgaris strain Miyazaki F, which expresses one of the best studied
NiFe hydrogenases, as well as a NiFe(Se) suited for H2 oxidation
(Yagi et al., 1976; Deckers et al., 1990; Ogata et al., 2002; Foerster
et al., 2003; Fichtner et al., 2006; Pandelia et al., 2010; Nonaka
et al., 2013; Riethausen et al., 2013). We hypothesized that
the addition of molybdate will inhibit electron flow to sulfate
(Peck, 1959; Wolin and Miller, 1980) and thus, only the isotopic
exchange reaction would be observable.

The aim of our study was to analyze the equilibrium
isotope effect of the isotope exchange reaction and the kinetic
isotope effect of the unidirectional oxidation reaction of
hydrogen, in order to eventually monitor hydrogenase activity
in environmental samples and settings, e.g., during hydrogen
underground storage. This method, based on natural abundant
stable hydrogen isotopes of gaseous samples, would allow
in situ assessment of hydrogenase activity without further
treatment of samples.

MATERIALS AND METHODS

Chemicals
All chemicals until otherwise stated were purchased from Merck
Chemicals GmbH (Darmstadt, Germany). Deuterium-enriched
waters were prepared by mixing 1 l sterilized tap water water
(Merck Millipore, Germany) with either 250 µl or 100 µl 2H2O
(99.9%; Merck Chemicals, Germany).

Culture and Cultivation Conditions
Desulfovibrio vulgaris strain Miyazaki F (DSM 19637)
was obtained from the DSMZ (Deutsche Sammlung von
Mikroorganismen und Zellkulturen, Braunschweig, Germany).
The strain was grown in a mineral medium for sulfate-reducers,
which consisted of NH4Cl (0.3 g/l), KH2PO4 (0.4 g/l), CaCl2
(0.075 g/l), Na2SO4 (2 g/l), MgSO4

∗ 7 H2O (1 g/l), 1 ml trace
element solution SL-10, 0.1 ml selenite-tungstate solution, 4 ml

50 % Na-DL-lactate, 2 ml vitamin solution, 10 ml 1 M NaHCO3
solution, 2 ml 1 M Na-acetate solution. 1 M L-cysteine solution
was used for reduction. 0.1 mg/l resazurin was used as redox
indicator. The selenite-tungstate solution contained per 100 ml:
0.5 g/l NaOH, 3 mg/l Na2SeO3

∗ 5 H2O and 4 mg/l Na2WO4
∗ 2

H2O. The vitamin solution contained per 100 ml: 1 mg biotin,
1 mg folic acid, 25 mg pyridoxine-HCl, 25 mg thiamine-HCl
∗ 2 H2O, 5 mg riboflavin, 25 mg nicotinic acid, 25 mg D-Ca-
pantothenate, 0.5 mg vitamin B12, 25 mg p-aminobenzoic acid
and 25 mg lipoic acid. All components, except the last four, were
mixed in sterilized tap water (Merck Millipore, Germany) and
purged with 75% N2 and 25% CO2 until they became virtually
oxygen-free and were autoclaved subsequently. The remaining
components were added within an anaerobic glovebox (Toepffer
Lab Systems, Germany).

Experiments with cell suspensions were performed with cells
pre-grown on 28 mM lactate and 22 mM sulfate at 30◦C and
120 rpm on a Multitron incubation shaker (Infors, Germany). At
optical densities above 0.2 absorbance with no further increase
in cell density, 50 ml each were transferred into 120 ml serum
bottles in the glovebox, which was filled with a mixture of N2
(97–98%) and H2 (2–3%) and crimped close with PTFE-coated
chlorobutyl-isoprene septa (Thermo Fisher Scientific, Germany)
before the start of the experiment.

Three sets of isotope fractionation experiments were designed
with these cells: one set in which cells were inhibited by
molybdate, one in which the headspace had been purged to
reduce sulfide load, and one without further treatment. For the
inhibited setups, six of the bottles each were treated with 20 mM
molybdate. Therefore, 2 ml of a 0.5 M sodium molybdate solution
was added to each bottle, yielding yellow-orange molybdo-
sulfide-complexes (Wolin and Miller, 1980; Biswas et al., 2009).
Both the purged and untreated setups consisted of five bottles
of cell suspension each. The headspace in the purged setups was
exchanged with N2 to eliminate H2S-burden in the headspace and
reduce potential inhibition by sulfides.

In all samples 12 ml H2 were hereafter exchanged with the
existing headspace with a syringe and an empty needle while
bottles were tilted to remove headspace only. Bottles were kept
at 30◦C and 120 rpm (Multitron incubation shaker, Infors,
Germany). For abiotic controls cell suspensions were inactivated
by incubation at 80◦C in a water bath for 20 min and subsequent
addition of 0.3 ml 10 M NaOH, yielding pH 12.

All experimental setups were performed in two replicates
using water at natural abundance (δ2H-H2O = −62h) and
water enriched in 2H by adding 100 µl 2H2O resulting in an
isotope composition of δ2H-H2O = +461h One experiment
with molybdate for inhibition of sulfate reduction was conducted
with enriched water (250 µl 2H2O) to yield a final isotope
composition of δ2H-H2O = + 1533h. Bottles were sacrificed
at different time points in a water bath at 80◦C for 20 min and
stored upside down after the addition of 10 M NaOH before
hydrogen isotopes of H2 in the headspace were analyzed. The
setup with enriched water (δ2H-H2O =+ 1533h) was sacrificed
in different periods of time than the other experiments, in
order to gain insight into the initial reaction. NaOH was added
to terminate microbial activity and to remove CO2 from the
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headspace by precipitation of sodium bicarbonate. CO2-removal
was necessary for subsequent isotope analysis, as the column
used for gas chromatography (GC) would retain it. 100 to 300 µl
sample volume were transferred via syringe into 1 ml 3% (w/v)
Zn-acetate and stored at −20◦C for downstream processing.
Sulfides in the headspace of the bottles were eliminated due to
precipitation as ZnS by the addition of 3 ml 3 (w/v) % Zn-acetate.

Analytical Methods
Sulfide Measurements
Sulfides were measured as previously described (Cline, 1969;
Kleinsteuber et al., 2008) against a blank control. Previously
frozen samples were thawed and mixed with 4 ml water and
0.4 ml of Cline’s solution. The mixtures were stored in the dark
for 20 min before photometric measurement on an UV-1800
(Shimadzu, Germany) at 670 nm. Due to the high concentrations
of sulfides, samples were diluted before measurement. Optical
densities of cell suspensions were determined on an UV-1800
(Shimadzu, Germany) at 600 nm. 1 ml culture solution was
transferred via syringe into a cuvette filled with a few mg of Na-
dithionite, closed with parafilm and shaken until dissolved and
then measured using water as control.

Isotope Measurement
Hydrogen isotope measurements were performed on a GC-
isotope ratio mass spectrometer (IRMS) system (Supplementary
Figure 1) (7890A, Agilent Technologies, Germany; GC-IsoLink
II Thermo Fisher Scientific, Germany; Conflo IV Thermo
Fisher Scientific, Germany; Finnigan MAT 253, Thermo Fisher
Scientific, Germany) equipped with a J&W CP-Molsieve 5Å
GC Column (50 m, 0.32 mm, 30 µm, Agilent Technologies,
Germany). An empty ceramic tube was kept isothermal at 500◦C
inside the GC-IsoLink and the GC column was kept at 40◦C
during measurements. An additional cold trap operated with
liquid nitrogen was installed after the GC to remove water to
keep the water background within the ion source of the IRMS
low. After 2 h of runtime, the column was heated to 250◦C and
held for at least 10 min remove residual water vapor and residual
CO2 from the GC column.

0.2 ml headspace injections were made manually at split-ratio
of 1:25 with a gas-tight syringe in an interval of roughly eight
minutes needed for elution of H2 and permanent gases. The
analytical system was evaluated for reproducibility and isotope
artifacts. It was found to be reproducible and deliver true values
within the uncertainty of 0.7± 0.4h.

Both the normal and the δ2H-enriched waters were measured
with an elemental analysis-chromium/high temperature
conversion (EA-Cr/HTC)-IRMS system (HEKAtech, Germany)
coupled via the Conflo IV (Thermo Fisher Scientific, Germany)
to the same IRMS instrument (Gehre et al., 2017). All results
are reported in the delta notation (Eq. 3) and according to the
guidelines for stable isotope measurements (Coplen, 2011).

δ
[
h

]
=

( Rsample

Rstandard
− 1

)
∗ 1000 (3)

The ratio of heavy to light isotopes (Rsample) in a compound is
reported in δ-notation; for hydrogen, samples will be compared

to Vienna Standard Mean Ocean Water (VSMOW) as standard
with an isotope ratio of 155.76± 0.1 ppm (Rstandard). A laboratory
standard, made of 10% H2 in N2, with a δ2H-value of−205h was
used for reference. The auto-protonation factor (H3

+ factor) was
determined daily and remained stable at 8.24± 0.05. Theoretical
equilibrium isotope values, mainly dependent on temperature
and the isotope signature of water, were calculated according to a
formula previously described (Horibe and Craig, 1995).

Assessment of H2 Concentrations
The concentration of H2 was measured with the GC-IRMS.
For concentration measurements a defined volume of 10% H2
was prepared using 120 ml serum bottles which were purged
with N2 before. Twelve ml H2 were exchanged with the gaseous
phase by a syringe and an empty needle while the bottle
was held upside down. This sample was prepared daily and
used for external calibration of the concentration measurement.
Therefore the sample was injected three times at the start of
each run, and all following samples were normalized to the
average area under the curve of all controls in this measurement
period. Intensities of external calibration were stable over 20 days,
leading to overall variations in H2-concentration of ± 1.5%.
Initial concentrations of H2 between setups and replicates varied
about 5% of the response, probably dependent on handling speed
and temperature in the laboratory during exchange of H2, as well
as gas-tightness of the syringe used for injections.

RESULTS

Measurement of Hydrogen Stable
Isotopes
The isotope signatures of the different waters were determined
to be δ2H-H2O = −62 ± 2h, +461 ± 1h, and +1533 ± 2h,
respectively. For the sterilized tap water in Leipzig (δ2H-
H2O = −62h), an equilibrium δ2H-value for H2 of – 744h
was calculated. The enriched water setups (δ2H-H2O = +
461h and δ2H-H2O = + 1533h) were calculated to equilibrate
with a theoretical value for H2 of δ2H = −606h and
δ2H =−317h, respectively.

Control experiments with H2 in the headspace and sterilized
tap water or culture medium showed no significant change in the
isotopic signature over the experimental timeframe of 18 days
(Figure 1), with stable δ2H-values of δ2H = −141.2h and
δ2H = −142.2h. These were identical to the isotope value of
the pure H2 used (δ2H = −139h), taking usual uncertainties
into account. The δ2H signature of the hydrogen gas used
in the anaerobic glove box was substantially lighter (approx.
δ2H = −645h) than the signature of the H2 gas used in
the whole cell experiments, leading to a shift of 12H = 65h
(Figure 1) when mixed.

H2-Oxidation by Non-inhibited Cells
Experiments With Reduced Sulfide Concentration
To reduce concentrations of sulfide which may affect the
metabolism of D. vulgaris, the headspace of culture bottles were

Frontiers in Microbiology | www.frontiersin.org 3 July 2019 | Volume 10 | Article 1545104

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01545 July 9, 2019 Time: 15:27 # 4

Löffler et al. Hydrogen Isotope Fractionation During H2-Oxidation

FIGURE 1 | Isotope signal over time in the abiotic controls. Filled symbols
correspond to pure H2 used for the experiment and empty symbols
correspond to H2 in the headspace of serum bottles filled with either water
(gray) or medium (black). Please note the depleted δ2H-values of H2 (empty
diamonds) for the medium prepared in the anaerobe glovebox due to mixing
of two isotopically different H2 sources (see text).

purged with N2. The sulfide concentrations after purging were
typically roughly 6 mM.

13.9 ± 0.7% and 12.2 ± 0.3% H2 were oxidized within
4 days (Table 1 and Figure 2D). Sulfide concentrations increased
from 6.0 ± 2.2 mM and 6.4 ± 0.1 mM to 17.9 mM and
16.7 ± 0.2 mM, respectively, in 3 days (Figure 2A). Hydrogen
isotope values changed slowly toward depletion in the beginning
from δ2H = −309.0 ± 0.7h and δ2H = −163.2 ± 0.9h,
before the reaction gained speed (Table 2 and Figure 3), yielding
δ2H =−678.6± 1.5h and δ2H =−475.3± 4.1h after 3 days.

Experiments With High Sulfide Concentration
In the experiments without further treatment to reduce the
amount of sulfides present, 20.4 ± 1.0% H2 and 19.5 ± 0.4%
H2, respectively were consumed within 2 days in normal
water (Table 1 and Figure 2E). 17.8 mM and 16.5 mM
sulfides were produced starting from 9.48 ± 1.7 mM and
11.2 ± 0.6 mM until day three (Figure 2B). The δ2H of
hydrogen in the bottles’ headspace was rapidly decreasing
from δ2H = −220.4 ± 0.7h and δ2H = −268.4 ± 0.5h
to δ2H = −702.1 ± 5.7h and δ2H = −408.1 ± 2.8h
after 1.5 to 2 days (Table 2 and Figure 3). Concentrations
at the last measureable time-points were 1.9 ± 0.1% and
1.8± 0.1% H2.

H2 Isotope Exchange by Cells Inhibited With
Molybdate
Molybdate was used to inhibit the electron flow to the
electron acceptor sulfate. In molydate-amended cultures, the
H2 concentrations were almost constant with 14.3 ± 1.3%,
13.9 ± 1.7% and 15.8 ± 3.3% H2. Thus, no consumption
of H2 in the molybdate setups was observed (Table 1 and
Figure 2F). Furthermore, the sulfide concentrations did not
increase and were stable between 2.5 to 3.5 mM (Figure 2C),
indicating that sulfate reduction to sulfide was completely
inhibited. In all experimental setups inhibited by molybdate,
hydrogen isotopes in the headspace were depleting in deuterium
starting from δ2H = −246.5 ± 0.7h, δ2H = −223.9 ± 0.5h,
and δ2H = −162.4 ± 1.7h (Table 2) and stabilized at
δ2H = −735.8 ± 0.4h, δ2H = −599.4 ± 0.1h, and
δ2H = −327.3 ± 0.3h for the differently enriched waters after
6 days (Figure 3).

DISCUSSION

No changes in the isotope signature of H2 for both culture
medium and water in the abiotic controls could be observed, even
though H2-concentrations decreased with continuous sampling
of the same bottles (Supplementary Figure 2). Most studies
on hydrogen isotope exchange with water used platinum or
palladium as a catalyst and subsequent equilibration times of
a few hours were reported at, e.g., 20◦C (Crist and Dalin,
1934; Farkas and Farkas, 1934; Horiuti and Polanyi, 1934;
Farkas, 1936; Suess, 1949; Rolston et al., 1976). It is therefore
reasonable to assume that isotope exchange without a catalyst
is too slow to be assessable in the experimental timeframe
used in this study. Subsequently, it is unlikely that the isotope
signal in environmental samples could be significantly affected
by minerals, as catalysts are needed for accelerating the exchange
reaction. But sampling itself might lead to bias, as it has been
shown that use of steel can lead to the generation of molecular H2
from water, with which it is equilibrated (Chapelle et al., 1997).

Addition of gaseous hydrogen to water or culture medium
leads to an immediate shift in the isotope signature from
δ2H = −139.0 ± 0.8h to δ2H = −141.2 ± 0.3h for water
and δ2H = −142.2 ± 0.7h for culture medium. This effect is
probably due to a relatively higher solubility of 2H in water, which
leads to an isotope fractionation (Muccitelli and Wen, 1978). The
observed shift in isotopic signature lies within usual standard
deviations for hydrogen isotope measurements, and no further
change in the isotope signal was observed after the initial shift
(Figure 1). Albeit negligible compared to biocatalysis, isotope
exchange takes place in abiotic controls within 18 days at 30◦C
in the absence of a catalyst.

The addition of a cell suspension leads to changes in
the isotope signature due to hydrogenase activity. An inverse
isotope effect was observed in all three experimental setups.
This is consistent with previously reported δ2H -values for H2-
production from water for Shewanella oneidensis MR-1, which
can express a NiFe- or a FeFe-hydrogenase (Kreuzer et al., 2014).
Upon inhibition of dissimilatory sulfate reduction by molybdate,
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TABLE 1 | Concentration of H2 in all experimental setups: molybdate-inhibited, headspace purged with N2 to reduce sulfides and without additional treatment.

time δ2H = −62h δ2H = +461h δ2H = +1533h

 Molybdate � Purged N Untreated  Molybdate � Purged N Untreated  Molybdate

C [%] Stdev [%] C [%] Stdev [%] C [%] Stdev [%] C [%] Stdev [%] C [%] Stdev [%] C [%] Stdev [%] C [%] Stdev [%]

1 min 13.4 0.9 13.9 0.7 20.4 1.0 15.0 0.3 12.2 0.3 19.5 0.4

29 min 18.2 1.0

55 min 19.1 0.3

88 min 20.0 0.2

3 h 40 min 14.5 0.2

1 day 15.4 1.3 10.9 0.6 4.1 0.2 15.1 0.7 11.7 1.5 2.8 0.1

1.5 day 1.9 0.1 1.8 0.1

2 days 13.5 0.7 5.4 0.1 n.d. n.d. 15.1 0.8 10.3 0.7 n.d. n.d.

3 days 1.7 0.1 n.d. n.d. 0.2 0.0 n.d. n.d. 13.5 1.0

4 days 15.9 0.1 n.d. n.d. 14.9 0.6 n.d. n.d.

6 days 13.6 0.3 13.4 2.1

9 days 11.8 0.2

10 days 13.9 0.6 11.6 0.1

11 days 11.6 0.3

Average 14.3 1.3 13.9 1.7 15.8 3.3
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FIGURE 2 | Concentration of H2 (empty symbols) and sulfides (filled symbols) for three experimental setups (A,D):� setups with reduced sulfide burden, (B,E):N
setups without further treatment, (C,F): inhibition by molybdate) in either water with δ2H2O = −62h (gray) or with δ2H2O = +461h (black). The uncertainty of 2σ

is shown.
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observable isotope effects should be limited to isotope exchange,
since H2 was not consumed. Hydrogenases were previously
described to facilitate isotope exchange of 2H2 and H2O or H2
and 2H2O (Hoberman and Rittenberg, 1943; Jouanneau et al.,
1980; Arp and Burris, 1982; Vignais et al., 2000, 2002). We
therefore assume that the hydrogenase in our experiments is
solely responsible for the isotope exchange.

After four to 6 days the isotope exchange reaction
approximately reached equilibrium with differences of
12H = 9h and 12H = 6h and 12H = 10h compared
to the theoretical values (Figure 4) in cultures inhibited by
molybdate addition. Deviations from the theoretical values
could be due to the higher measurement error and standard
deviations of the water measurements used for calculation, as
well as the high sensitivity of the equilibrium equation toward
fluctuations in temperature.

It has been shown for the NiFe-hydrogenase from D. vulgaris
Miyazaki that hydrogen oxidation is a two-step process,
during which an enzyme-hydride-state forms (Lubitz et al.,
2014). First, H2 diffuses into the active center. Then, it is
heterolytically cleaved, forming a proton and an enzyme-hydride-
complex. Afterward, electrons and protons are shuffled out
of the protein structure (Lubitz et al., 2014). A study using
D. vulgaris Hildenborough suggested that H2 can be caged
by the protein structure surrounding the active site when
selenocysteine replaces cysteine in the active center of the
protein structure (Gutiérrez-Sanz et al., 2013). In this case,
substrate and products can accumulate within the protein
structure of the NiFeSe-hydrogenase near the catalytic center
and the two transfers of protons proceed faster than in NiFe-
hydrogenases. The authors suggested that the accumulation
and subsequent availability of substrate would correspond to
a fast isotope exchange reaction (Gutiérrez-Sanz et al., 2013).
This hypothesis connects protein structure and isotope effects.
D. vulgaris Miyazaki expresses a structurally similar NiFeSe-
hydrogenase best suited for hydrogen oxidation (Nonaka et al.,
2013; Riethausen et al., 2013), and the corresponding fast
isotope exchange reaction was measured in this study, where
the isotope equilibrium was reached within 6 days. It might be
possible to compare the equilibrium isotope effect of structurally
different types of hydrogenases, such as NiFe- and FeFe-
hydrogenases, in order to characterize the isotope exchange
rate in future studies in more detail. For this, a different
inhibition of electron flow might be needed, as molybdo-
sulfide-complexes might not work for all microorganisms, as it
specifically inhibits sulfate reduction. Even though it has been
shown to also inhibit H2 production from glucose (Wolin and
Miller, 1980), it has not been further or sufficiently studied.
Information on structurally different hydrogenases is crucial for
using stable hydrogen isotopes as a monitoring tool to track
in situ hydrogenase activity, e.g., during storage of hydrogen in
underground reservoirs.

Even though H2 was consumed in the experiment with
purged headspaces, only minimal changes in the δ2H-values were
observed in the beginning. During the substrate consumption,
the hydrogen bond is cleaved, which is expected to result in
a normal kinetic isotope effect. However, in our experiments,
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FIGURE 3 | Isotope signal over time for three experimental setups in either water with δ2 H2O = –62h (A) or with δ2 H2O = +461h (B). The isotope equilibrium is
reached after about 6 days and indicated by light gray bars. The uncertainty of 2σ is shown and often smaller than the symbol.

FIGURE 4 | Isotope signature over time for molybdate-inhibited setups with water of different isotope composition. Theoretical equilibrium values ± approx. 5h
standard deviation are indicated by light gray lines.

the isotope values approximate isotope equilibrium values with
increasing time. We therefore suggest that the kinetic isotope
effect of the hydrogen bond cleavage is superimposed by the
equilibrium isotope exchange reaction. Only in the beginning of

hydrogen oxidation, an effect of the kinetic isotope effect can
be observed. Here, the equilibrium isotope effect has not yet
completely superimposed the isotope signature, which results in
seemingly stable isotope values.
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The observed kinetic isotope fractionation effects could be due
to shuffling of protons into the cell. Hydrogenase and cytochrome
complexes are able to translocate protons (Ide et al., 1999; Dolla
et al., 2000; Chang et al., 2004). For example, the reduction of
sulfate needs two additional protons (Eq. 4).

4H2 + SO2−
4 + 2H+ → H2S+ 4H2O (4)

During this process a slight isotope fractionation is expected,
due to different diffusivity according to their molecular
mass and tunneling effects in the hydrogenase structure
(Cukier, 2004). Then, more 2H+ than 1H+ would be released
from the hydrogenase, which would equivalent the expected
kinetic isotope fractionation. This effect would counteract an
equilibrium isotope exchange reaction. Not only the rate of
equilibrium isotope exchange, but also the kinetic isotope
fractionation could be affected by the protein structure.
Therefore, further studies on both kinetic isotope effects and
equilibrium isotope effects and their superimposition using
structurally different hydrogenases are needed in order to use this
concept as a monitoring or diagnostic tool.

Interestingly, cultures containing the highest sulfide
concentrations tested in this study (10 mM) showed consumption
of H2, but lacked the “isotopic lag phase” of the purged
experiments with 6 mM starting concentration (Figure 3). This
might be an indication that the amount of sulfides could affect
the electron and proton flow, as H2 is still consumed but the
normal kinetic isotope fractionation of the H-H bond cleavage
is immediately superimposed by the equilibrium isotope effect
of the exchange reaction. During growth on lactate and sulfate,
up to 52% of electrons flow into the production of H2 and the
remaining 48 % of electrons are coupled to sulfate reduction
in D. vulgaris, yielding the potential to reduce approx. 8.9 mM
sulfate from lactate and H2 (Noguera et al., 1998) or 14 mM
sulfate from lactate alone before the start of the hydrogen
oxidation experiments. And with concentrations of 9.48 up to
11.2 mM sulfide in the setups without further treatment to
reduce sulfides at the start of the experiment, inhibition is a
consequential hypothesis.

CONCLUSION

The hydrogenase of Desulfovibrio vulgaris Miyazaki facilitates
an equilibrium isotope exchange when consumption of H2 is
inhibited. Resulting δ2H-values of H2 corresponds to theoretical
thermodynamic isotope equilibria. During H2, the kinetic isotope

fractionation, which should be observed due to bond-cleavage, is
superimposed by the equilibrium isotope exchange. These results
might differ for other microorganisms and structurally different
hydrogenases. Equilibrium isotope exchange in the experiments
with starting concentration of about 10 mM sulfides also indicates
a possibility that sulfides could inhibit electron flow. This research
is fundamental in nature and aims to build a better understanding
of the isotope effects and processes associated with hydrogenases.
The results of this study serve as a basis for future research on a
simple monitoring tool for environmental, gaseous samples based
on stable isotopes of hydrogen.
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Sulphate-reducing bacteria (SRB) are studied across a range of scientific fields due
to their characteristic ability to metabolise sulphate and produce hydrogen sulphide,
which can lead to significant consequences for human activities. Importantly, they
are members of the human gastrointestinal microbial population, contributing to the
metabolism of dietary and host secreted molecules found in this environment. The role
of the microbiota in host digestion is well studied, but the full role of SRB in this process
has not been established. Moreover, from a human health perspective, SRB have been
implicated in a number of functional gastrointestinal disorders such as Irritable Bowel
Syndrome and the development of colorectal cancer. To assist with the study of SRB,
we present a mathematical model for the growth and metabolism of the well-studied
SRB, Desulfovibrio vulgaris in a closed system. Previous attempts to model SRB have
resulted in complex or highly specific models that are not easily adapted to the study of
SRB in different environments, such as the gastrointestinal tract. We propose a simpler,
Monod-based model that allows for easy alteration of both key parameter values and the
governing equations to enable model adaptation. To prevent any incorrect assumptions
about the nature of SRB metabolic pathways, we structure the model to consider
only the concentrations of initial and final metabolites in a pathway, which circumvents
the current uncertainty around hydrogen cycling by SRB. We parameterise our model
using experiments with varied initial substrate conditions, obtaining parameter values
that compare well with experimental estimates in the literature. We then validate our
model against four independent experiments involving D. vulgaris with further variations
to substrate availability. Further use of the model will be possible in a number of settings,
notably as part of larger models studying the metabolic interactions between SRB and
other hydrogenotrophic microbes in the human gastrointestinal tract and how this relates
to functional disorders.
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INTRODUCTION

Sulphate-reducing bacteria (SRB) play an important role in a
variety of ecosystems, from marine sediments and oil fields
to the human gastrointestinal tract (Muyzer and Stams, 2008;
Carbonero et al., 2012a). The functional group of SRB has been
reported to comprise 60 genera (Barton and Fauque, 2009),
and is characterised by the ability to utilise sulphate as an
electron acceptor during metabolism. The presence of these
bacteria has both positive and negative implications on human
activities, depending on the context. Much research has been
performed on hydrogen sulphide (H2S) production in oil fields
by SRB, which can lead to reduced oil quality and machinery
corrosion (Magot et al., 2000), and in the treatment of industrial
wastewater, as the sulphides SRB produce facilitate the removal
of contaminating heavy metals (Kiran et al., 2017). Less clear
are the implications of SRB in the human gastrointestinal tract
(GIT). The SRB population size in the GIT has been measured
at approximately 107 cells per gram of faeces (Doré et al., 1995),
but varies between individuals (Nava et al., 2012) and between
studies (Smith et al., 2018). These bacteria are widely studied
due to their controversial role in a number of functional GIT
disorders. Increased levels of colonic SRB and increased H2S
concentrations have been linked to Irritable Bowel Syndrome,
Inflammatory Bowel Disease and colorectal cancer [for a review,
see Carbonero et al. (2012b)]. However, beneficial effects of H2S
have also been investigated, such as its capacity to stimulate
mucus production (Motta et al., 2015) and the potential influence
of this molecule on blood pressure regulation (Tomasova et al.,
2016). The important connexions between SRB, H2S and the host
justify further research into the metabolism of these bacteria.

Another key molecule in SRB metabolism is elemental
hydrogen. Alongside methanogens and reductive acetogens, SRB
can metabolise free hydrogen present in the GIT, utilising it
in the reduction of sulphate (Smith et al., 2018). The sulphate
metabolised by SRB can be dietary or host-derived; cross-feeding
by SRB on sulphate released during mucin metabolism by other
GIT microbes has been well studied (Willis et al., 1996; Rey
et al., 2013). High concentrations of hydrogen in the GIT are
known to inhibit the metabolism of saccharolytic members of
the microbiota (Wolin and Miller, 1983), therefore the presence
of hydrogen cross-feeders is thought to increase the rate of
carbohydrate breakdown by the wider microbial population. This
has been shown in rodent models and linked to increased energy
yield for the host (Samuel and Gordon, 2006; Rey et al., 2010).

Due to the importance of SRB in human health and
nutrition, a greater understanding of their metabolism and
growth dynamics is sought. To this end, we developed a
mathematical model for the metabolite flux and population
growth of the human SRB Desulfovibrio vulgaris, grown on
substrates found in the GIT (Scanlan et al., 2009). Ours is
not the first attempt to model SRB metabolism and growth
and we compare the predictions of our model with that of
the existing mathematical model of Noguera et al. (1998).
Many other mathematical models of SRB have been published,
but these are almost universally applied to address specific
characteristics of SRB or for the investigation of competitive

and syntrophic relationships between SRB and methanogens
[for example, Robinson and Tiedje (1984), Okabe et al. (1995),
Stolyar et al. (2007)]. The model of Noguera et al. (1998) is not
targeted to a specific characteristic or environment, therefore is
a good benchmark against which to compare our model. The
existing model is more complex than that proposed here: it
consists of ten ordinary differential equations for aqueous and
gaseous metabolite concentrations and microbial growth and is
dependent on 20 parameter values that are estimated either from
separate experimental work or from model fitting. While the
model considers many aspects of the metabolism of D. vulgaris,
it is computationally intensive and requires greater knowledge of
kinetic parameters than is often available in environments such
as the GIT. Therefore, its structure is less readily compared or
combined with other existing models for the GIT microbiota. We
also found that this model shows sensitivity to the initial values
for dissolved hydrogen and carbonate concentrations; values that
are difficult to determine experimentally and physiologically. As
we wish to study SRB in the GIT, we construct a simpler model
requiring less inputs to later integrate into a larger microbiota
model. Our SRB model considers solely the concentrations of
the initial and final metabolites in a metabolic pathway, treating
the intermediate metabolites and reactions as a “black box.” We
calibrate our model using existing experimental data for the
monoculture growth of a D. vulgaris strain and use it to predict
the dynamics of separate independent experiments with both the
same bacterium and a different D. vulgaris strain.

MATERIALS AND METHODS

Assumptions
For this model it was assumed that the only metabolites involved
in the metabolism of D. vulgaris are lactate, acetate, hydrogen,
sulphate and hydrogen sulphide (H2S), as these metabolites
represent important initial and final metabolites in the major
metabolic pathways of D. vulgaris (Keller and Wall, 2011).
Other metabolic pathways involving fermentation of alternative
organic molecules, such as monosaccharides and fatty acids,
and reduction of nitrogenous compounds have been studied
in Desulfovibrio and other SRB genera, but appear to be of
lesser importance and not widespread within the functional
group (Barton and Fauque, 2009). While formate has been
implicated in the metabolism of Desulfovibrio species elsewhere
(da Silva et al., 2013; Junicke et al., 2015; Martins et al.,
2015), here we have assumed that formate may be represented
as hydrogen equivalents. This is supported by the similar
reduction potentials of formate and hydrogen, allowing for
interconversion of the two molecules at low energetic cost
to the bacterium (Stams and Plugge, 2009; da Silva et al.,
2013; Rabus et al., 2013). Formate concentrations also remained
very low (<0.5 mM) in previous experiments with D. vulgaris
Hildenborough grown on either lactate and sulphate or lactate
and hydrogen (da Silva et al., 2013).

We assume that the medium in which D. vulgaris is
grown contains in abundance all other molecules necessary for
growth and that these are not significantly depleted during the
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experiment. We further assume that D. vulgaris is able to oxidise
lactate incompletely to acetate, with concurrent production of
hydrogen (Keller and Wall, 2011). This hydrogen may then be
utilised in the reduction of sulphate to H2S. We assume that all
metabolites remain in the aqueous phase, with the exception of
hydrogen, which may transfer between the aqueous and gaseous
phases. We assume that all metabolites in the aqueous phase
are available to the bacteria in a well-mixed solution. No spatial
component is considered in the model.

The assumed stoichiometries for the two reactions, expressing
all protons as hydrogen molecule equivalents, are as follows
(Thauer et al., 1977; Noguera et al., 1998; da Silva et al., 2013):

CH3CHOHCOO− (Lactate)+ 2 H2O

→ CH3COO− (Acetate)+ 2.5 H2 +HCO3
−

SO4
2− (Sulphate)+ 5H2 → H2S+ 4 H2O

Note that the bicarbonate molecule (HCO3
−) produced in

the oxidation of lactate and the water molecules produced in
the reduction of sulphate are not included in the model, as
they play no further role in the metabolism of D. vulgaris.
Moreover, we assume that the culture remains well buffered
throughout the experiment, therefore pH is not altered by
changing concentrations of bicarbonate or other metabolites.
There have been reports of bicarbonate as a growth-limiting
molecule for other bacterial strains (Dobay et al., 2018), but there
is currently no evidence of this for SRB. We explain this further
in the Discussion.

Mathematical Model
The model is based on Monod kinetics for bacterial growth in
a batch culture environment (Monod, 1949). Monod kinetics
was chosen due to the biological meaning associated with the
parameters, as well as the ability to determine these values
experimentally if required. The model considers the molar
concentration of lactate, acetate, sulphate and H2S, as well as
the molar concentration of hydrogen in the aqueous phase
and the partial pressure of hydrogen in the gaseous phase,
measured in atmospheres. It also considers the concentration
of the bacterial population in the aqueous phase (mg L−1).
These units were chosen to align with data sources for both
the calibration and validation of the model. Figure 1 shows the
general structure of the model.

Following Monod kinetics, we model the rate of change in
lactate concentration (L; mM) by

dL
dt
= −

µmax,LX
YL

(
L

KL + L

)
(1)

where µmax,L denotes the maximum growth rate (h−1) and YL
denotes the biomass yield (mg L−1 mM−1) of D. vulgaris when
grown on lactate. KL is the Monod constant (mM) for this
bacterium and substrate, also referred to as the half-saturation
constant. This value is the concentration of substrate required for
the bacterium to attain half of its maximum growth rate. X is the
concentration of bacterial cells in the medium (mg L−1).

FIGURE 1 | Structure of the mathematical model. Solid arrows denote
modelled dynamics. Dotted arrows denote dynamics that are not explicitly
modelled. H2S: hydrogen sulphide.

It is known that high concentrations of hydrogen in the
medium inhibit the metabolism of lactate by certain SRB,
including D. vulgaris, although the mechanism is not clear
(Pankhania et al., 1988; Junicke et al., 2015). As such, we add
an inhibition term to our model that reduces the rate of lactate
metabolism as the aqueous hydrogen concentration, Haq (mM),
increases. Equation 1 then becomes

dL
dt
= −

µmax,LX
YL

(
L

KL + L

) (
1−

Haq

Hmax

)
(2)

where Hmax (mM) is the aqueous hydrogen concentration
above which lactate degradation is completely inhibited. This
formulation also ensures that the rate of lactate degradation
reduces proportionally to the aqueous hydrogen concentration.
To ensure that the model is robust to hydrogen concentrations
above Hmax, we add the following condition:

dL
dt
= 0 when Haq > Hmax.

The sulphate concentration (S; mM) is given by

dS
dt
= −

µmax,SX
YS

(
S

KS + S

) (
Haq

KH +Haq

)
. (3)

Sulphate and hydrogen are both required for the formation of
H2S, hence the inclusion of the aqueous hydrogen concentration
in Eq. 3. The equation is adapted from the model equations of
Kettle et al. (2015) for multiple essential resources. µmax,S denotes
the maximum growth rate (h−1) and YS is the biomass yield
(mg L−1 mM−1) of D. vulgaris during sulphate reduction. KS
and KH denote the Monod constants (mM) for sulphate and
hydrogen, respectively.

We assume that the aqueous hydrogen concentration is
influenced by hydrogen production during the oxidation of
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lactate, hydrogen consumption in the reduction of sulphate,
and liquid-gas transfer of hydrogen. The rate of change in the
concentration of aqueous hydrogen is

dHaq

dt
= −bLH

dL
dt
+ bHP

dS
dt
−

1
ρH

dHg

dt
Vg

Vaq
(4)

where bLH is the stoichiometric constant for moles of hydrogen
produced per mole lactate metabolised and bHP is the
stoichiometric constant for moles of hydrogen required to reduce
one mole of sulphate. Hg is the gaseous hydrogen concentration,
measured in atmospheres, and mass transfer between the aqueous
and gaseous phases is assumed to be linear, with

dHg

dt
= kLa

(
ρHHaq −Hg

) Vaq

Vg
(5)

Equation 5 represents a simple mass transfer model as explained
in Kadic and Heindel (2014). Briefly, net transfer between the
two phases is determined by the concentration gradient, with
the rate of transfer determined by the mass transfer coefficient,
kL (calculated from the thickness of the film through which
molecules must travel and the diffusivity of the molecule in
question) and the surface area, a, across which mass transfer
may occur. Although other, more complex models do exist for
mass transfer between two phases, as only the gaseous hydrogen
concentration data is available here, we are limited in our ability
to parameterise a more complex model. Although the simplicity
of this representation may result in sub-optimal representation
of the hydrogen dynamics, we also seek to minimise the number
of fitted parameter values in our model, and thus the film
model described here is sufficient for our purposes. kLa has the
unit h−1 and Vg and Vaq (mL) are the fixed volumes of the
gaseous and aqueous phases, respectively. ρH (atm mM−1) is
the Henry conversion constant for hydrogen. Hg is measured
in atmospheres, whereas Haq is given in mM concentration,
therefore we adapt the gas transfer equation used in Muñoz-
Tamayo et al. (2016) for our model, giving a ρH value of 1.364
atm mM−1.

The rates of change in acetate (A) and H2S (P) concentrations
are proportional to the rates of change in the concentrations of
lactate and sulphate, respectively.

dA
dt
= −bLA

dL
dt

(6)

dP
dt
= −bSP

dS
dt

(7)

where bLA and bSP are constants determined by the
stoichiometries of each reaction stated in Section 2.1. Note
that we take these stoichiometries directly from the literature and
do not include in the model some fraction of substrate being used
in the production of cell biomass. This assumption is made as,
for the batch culture cases considered here, the experimentally
observed stoichiometries of the metabolites closely matched
those given in Section 2.1.

Finally, the concentration of bacterial cells in the medium, X
(mg L−1), is proportional to the change in lactate and sulphate
concentrations, with consideration of the biomass yield terms

(assuming the energy requirements for cell maintenance are
negligible relative to the growth requirements).

dX
dt
= −YL

dL
dt
− YS

dS
dt

(8)

The system consisting of Eq. 2–8 fully describes the metabolism
of D. vulgaris under our set of assumptions. A summary of model
notation is given in Table 5.

Data Capture
Time-course data was captured from the literature using image
capturing and graphical input software in MATLAB (The
MathWorks1). The mathematical model of Noguera et al.
(1998) was reconstructed using the information in the original
publication. This information was near complete, the only
exception being the absence of initial conditions for some of
the model variables. We have therefore made some assumptions
based on other information given in the paper, which has allowed
us to reproduce good representations of the published model fits.

Model Fitting
In order to determine the values of several of the parameters
used in the model, model fitting to existing experimental data
was performed. Time-course data from Noguera et al. (1998)
was collected and used to calibrate the model and estimate
parameter values.

The parameter values in Table 1 were generated by minimising
the normalised sum of squared errors between the model
prediction and the data. The optimisation was performed using
the fminsearch routine in MATLAB (The MathWorks; see
text footnote 1).

Statistical Analysis
All statistics were calculated in MATLAB using the captured
data and corresponding model prediction. A Markov Chain
Monte Carlo (MCMC) technique was implemented over 200,000
MCMC iterations. A non-parametric distribution was then fitted
to the MCMC sample for each of the nine parameters estimated.
The cumulative density function of this distribution was used to
obtain a 95% confidence interval.

To compare the proposed model with the existing model of
Noguera et al. (1998), we used the corrected Akaike Information
Criterion (AICc) (Akaike, 1974; Hurvich and Tsai, 1989):

AICc = 2K − 2(log(L(θ)))+
2K(K + 1)

n− K − 1

where n is the number of data points (63), K is the number
of parameters of the model and log(L(θ)) is the log likelihood
function for the model. Following Burnham and Anderson
(2002), we make the substitution

log(L(θ)) = −
1
2

n log
(

RSS
n

)2

where RSS is the normalised residual sum of squares of the model
fit to the data. Normalisation, i.e., division by the sample mean in

1www.mathworks.com
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TABLE 1 | Model parameter values.

Parameter Notation Value Source Existing estimates∗

(Best fit value with 95%
confidence interval)

Maximum growth rates Lactate oxidation µmax,L 0.116 h−1 (0.088–1.155) Model fitting td = 3.7 h (≈0.21 h−1) (Pankhania et al., 1986)

Sulphate reduction µmax,S 0.03 h−1 (0.023–0.212) Model fitting 0.057 h−1 (Robinson and Tiedje, 1984)
0.15 h−1 (strain Marburg) (Badziong and
Thauer, 1978)
0.15 h−1 (Reis et al., 1992)

Monod constants Lactate KL 4.5 mM (7.3–136.8) Model fitting 1.4 mM (Pankhania et al., 1988)
29 mM (Noguera et al., 1998)

Sulphate KS 0.05 mM (0.02–0.268) Model fitting 0.032 mM (Ingvorsen and Jørgensen, 1984)
0.21 mM (Noguera et al., 1998)

Hydrogen KH 1.69 × 10−5 mM
(2.5 × 10−4–3.96 × 10−3)

Model fitting 0.001 mM (Kristjansson et al., 1982)
0.0019 mM (Robinson and Tiedje, 1984)
0.0014 mM (Noguera et al., 1998)

Yield parameters Lactate YL 5.65 mg L−1 mM−1

(0.99–9.57)
Model fitting 5.3 mg L−1 mM−1 (Noguera et al., 1998)

5 mg L−1 mM−1 (Walker et al., 2009)

Sulphate YS 4.45 mg L−1 mM−1

(2.2–19.35)
Model fitting 2.8 mg L−1 mM−1 (Noguera et al., 1998)

8.3 g mol−1 (strain Marburg) (Badziong and
Thauer, 1978)
14.3 g cell mol−1 (Reis et al., 1992)

Mass transfer parameter kLa 0.302 h−1 (0.182–0.914) Model fitting 0.29 h−1 (Noguera et al., 1998)

Inhibitory hydrogen
concentration

Hmax 0.0216 mM
(0.0341–0.0821)

Model fitting 0.001 atm (≈0.0007 mM) (Junicke et al., 2015)

Stoichiometric constants Moles of hydrogen (H2)
produced per mole lactate
oxidised

bLH 2.5 Assumed
stoichiometries

2.5 (Thauer et al., 1977; Noguera et al., 1998)
3.5 (Keller and Wall, 2011)

Moles of hydrogen (H2)
consumed per mole H2S
produced

bHP 5 Assumed
stoichiometries

5 (Thauer et al., 1977; Noguera et al., 1998)
4.25 (Keller and Wall, 2011)

Moles of acetate produced
per mole lactate oxidised

bLA 1 Assumed
stoichiometries

1 (Thauer et al., 1977; Noguera et al., 1998;
Keller and Wall, 2011)

Moles of H2S produced per
mole sulphate reduced

bSP 1 Assumed
stoichiometries

1 (Thauer et al., 1977; Noguera et al., 1998;
Keller and Wall, 2011)

Henry constant ρH 1.364 Obtained from
literature
(Sander, 2015)

∗These estimates are obtained from different models and therefore a direct comparison cannot be made with the parameters estimated in the paper. They are listed
here for reference.

the calculation of the RSS for each data set, was included to ensure
the RSS value was not biassed by the scale on which each variable
was measured. Finally, we also calculate the Akaike weight, wi, for
each model as follows (Burnham and Anderson, 2002):

wi =
li

l1 + l2

where li = exp
(
−

1
2 (AICci − AICcmin)

)
. Here, i is the model

index (1 for the existing model of Noguera et al. (1998), 2 for
the model presented here) and AICcmin represents the minimum
AICc value of the two models.

RESULTS

Model Calibration
Data from two separate experiments were used simultaneously
to obtain parameter values for the model (Noguera et al., 1998).

The first experiment involved the growth of D. vulgaris in
medium supplemented with lactate and sulphate (Figure 2),
while the second experiment took place in the absence of sulphate
(Figure 3). Our mathematical model was able to describe the
trends in growth and metabolite flux dynamics for both these
experiments, giving comparable goodness of fit to the more
complex model of Noguera et al. (1998; Table 2). The parameter
values used are shown in Table 1.

The model of Noguera et al. (1998) uses seven model
fitted parameters and a total of 20 parameters either fitted or
estimated from previous experimentation, whereas our model
uses nine fitted parameters and one estimated from previous
experimentation, giving a total of 10. This discrepancy is due to
the increased complexity of the former model, which additionally
models the concentrations and gaseous partial pressures of CO2,
H2S and bicarbonate, as well as the mass transfer of these
molecules between the two phases, and the thermodynamics
of each reaction modelled. Table 3 details the values used for
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FIGURE 2 | Model fits to data from Noguera et al. (1998): continuous lines display the fit of the current model; dotted lines display the fit of the model described in
Noguera et al. (1998). Analysis of model fit is presented in Table 2.

the AICc calculation. The AICc value for our model was 263.2
compared to an AICc of 282.8 for the model of Noguera et al.
(1998). This indicates the aptness of our model to the data
considered, although more complex models may be better suited
for larger and more complex data sets.

Some of the parameters shown in Table 1 were fixed to
values taken from the literature. The stoichiometric constants

FIGURE 3 | Dynamics of gaseous hydrogen in medium supplemented with
17.3 mM lactate in the absence of sulphate (Noguera et al., 1998): continuous
lines display the fit of the current model; dotted lines display the fit of the
model described in Noguera et al. (1998). Analysis of model fit is presented in
Table 2.

were fixed to correspond with the assumed stoichiometries of the
reactions considered and the Henry constant for hydrogen was
also obtained from the literature.

It is notable that the best fit parameter values for KL,
KH and Hmax lie outside their respective MCMC generated
95% confidence interval. This is likely due to the difficulties
in estimating half-saturation constants and maximum growth
rates simultaneously, as we observed high correlation between
these values. This has been observed in Monod model fitting
elsewhere [for example, Muñoz-Tamayo et al. (2016)]. We
therefore performed a second MCMC run in which the half-
saturation constants were fixed at values obtained from the
experimental literature. A comparison of the newly generated
confidence intervals for the remaining fitted parameters with the
original values is shown in Table 4, but the intervals are similar.
We therefore analysed the sensitivity of the model prediction to
variations in each parameter value (Supplementary Table S1).
The model prediction for growth in medium with no sulphate,
shown in Figure 3, was not notably sensitive to small changes
in any fitted parameter value except for Hmax, which determines
the final partial pressure of gaseous hydrogen. Contrastingly,
the model fit to gaseous hydrogen shown in Figure 2 showed
sensitivity to a number of parameters. Small variations in the
maximum growth rates, half-saturation constant for lactate, yield
values and the stoichiometric constants bLH and bHP, all resulted
in relatively large changes in the quality of fit of the model to
the gaseous hydrogen data. The change in the goodness of fit
to the other data types was minimal. We also found that the
model fit was only slightly sensitive to small changes in the initial
conditions for lactate, sulphate and bacterial concentration and
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TABLE 2 | Analysis of model fits to the calibration data.

Variable Noguera
et al. (1998)

model

Current model

R2 R2 Pearson’s
correlation

coefficient (95%
confidence

interval)

CCC† Mean bias

Figure 2

Cell
concentration

0.83 0.80 0.93 (−0.28, 0.99) 0.84 −10.58 mg L−1

Lactate 0.95 0.96 0.98 (0.95–0.99) 0.96 −0.06 mM

Acetate 0.92 0.97 0.99 (0.94–0.99) 0.97 −0.23 mM

Sulphate 0.94 0.93 0.99 (0.94–0.99) 0.95 −0.26 mM

Gaseous
hydrogen

<0 <0 0.93 (0.77–0.98) 0.57 −4.95 ×
10−4 atm

Figure 3

Gaseous
hydrogen

0.83 0.96 0.98 (0.89–0.99) 0.96 −4.75 ×
10−4 atm

†CCC: Concordance correlation coefficient (Lin, 1989).

TABLE 3 | AIC calculation values.

Model n K RSS log(L(θ)) AICc Akaike
weight

Noguera et al. (1998) 63 20 9.6095 −111.4 282.8 0.0001

This model 63 10 8.9861 −119.5 263.2 0.9999

insensitive to such changes in the initial conditions for other
metabolites. This was in contrast to the model of Noguera et al.
(1998), which we found to be disproportionately sensitive to
small changes in the initial conditions for dissolved hydrogen and
carbonates: variables less likely to have a strong effect on culture
dynamics than lactate, sulphate and bacterial concentrations.

Model Validation
The model was validated against a number of different
experimental data sources (Noguera et al., 1998; da Silva et al.,
2013). Figure 4 shows the model simulation for gaseous hydrogen

FIGURE 4 | Dynamics of gaseous hydrogen in medium supplemented with
9.3 mM sulphate in the absence of lactate, with an initial hydrogen partial
pressure in the gaseous phase of approximately 0.025 atm. 12 mM acetate
was added as a carbon source (Noguera et al., 1998). The solid line shows
the prediction of the current model. R2 = 0.91, ρ = 0.96 (0.83, 0.99),
CCC = 0.92, mean bias = –0.0003 atm.

dynamics in medium lacking lactate, where D. vulgaris may
only perform sulphate reduction, until the available hydrogen is
depleted [data from Noguera et al. (1998)].

Figures 5, 6 show the comparison between the model
prediction and experimental data from further validation
experiments, with altered initial conditions [data from Noguera
et al. (1998)]. Unfortunately, for these and the experiments from
which Figures 3, 4 were generated, data for aqueous metabolite
concentrations and bacterial growth are unavailable, so we cannot
verify the model predictions for these variables. We also have
no information regarding the concentration of bacteria at the
beginning of the experiment, therefore 9.4 mg L−1, the initial
bacterial concentration in previous experiments, was assumed.

The model predicts the full utilisation of lactate and only
partial consumption of sulphate in Figure 5, but is not able to
capture the delay in hydrogen accumulation in the headspace
observed in the first few hours of the experiment. The same

TABLE 4 | Confidence interval comparisons.

Parameter Notation MCMC generated 95% confidence interval

Fitted half-saturation parameters Fixed half-saturation parameters

Maximum growth rates Lactate oxidation µmax,L 0.088–1.155 0.02–0.145

Sulphate reduction µmax,S 0.023–0.212 0.021–0.171

Monod constants Lactate KL 7.3–136.8 –

Sulphate KS 0.02–0.268 –

Hydrogen KH 2.5 × 10−4–3.96 × 10−3 –

Yield parameters Lactate YL 0.99–9.57 1.18–9.4

Sulphate YS 2.2–19.35 1.99–17.2

Mass transfer parameter kLa 0.182–0.914 0.313–3.724

Inhibitory hydrogen concentration Hmax 0.0341–0.0821 0.0335–0.0797
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FIGURE 5 | Dynamic changes in gaseous hydrogen with initial metabolite concentrations: 13 mM lactate; 9.3 mM sulphate (Noguera et al., 1998). Solid lines show
the prediction of the current model. R2 = 0.70, ρ = 0.93 (0.76, 0.98), CCC = 0.77, mean bias = 0.0004 atm.

is true of Figure 6. Here, the model accurately predicts the
final concentration of lactate remaining in the medium at the
end of the experiment as 2.98 mM, compared to the observed
value of 2.58 mM. However, the model overpredicts the gaseous
hydrogen accumulation. Under our model assumptions we
expect hydrogen to accumulate to the inhibitory level, whereas
in the experiment hydrogen production was far lower. Given that
the model accurately predicted the lactate degradation, this would
imply that less hydrogen is produced under the conditions shown
in Figure 6 than under the assumed stoichiometry. Hydrogen
accumulation was not measured after 48 h in the experiment,
therefore it is not possible to know whether and at what point
hydrogen accumulation peaks.

Figure 7 shows the validation of the both our model and that
of Noguera et al. (1998) against separate experimental data for
D. vulgaris Hildenborough, taken from da Silva et al. (2013). The
experimental starting concentration of bacteria was not stated
for this data set, so we fitted this value to the data with all
other parameters fixed at their previously determined values.
This gave an initial bacterial concentration of 6.75 mg L−1

for our model and 0.038 mg L−1 for the model of Noguera
et al. (1998). As shown in Figure 7, the models performed
similarly with their respective initial bacterial concentrations,
with the exception of the gaseous hydrogen prediction, and both
accurately captured the rate of lactate degradation and acetate

production with no alteration to the parameter values obtained
during model calibration. The large discrepancy between the
obtained initial bacterial concentrations for the two models
prompted further investigation. The initial optical density (OD)
recorded for this experiment was approximately 0.025 (da Silva
et al., 2013). No calibration to other units was performed by
these authors and few exist in the literature for Desulfovibrio
strains, but Bernardez and de Andrade Lima (2015) suggested a
conversion of: dry weight (mg) = exp (5.12 OD–4.987), which
gives an approximate initial bacterial concentration for this
experiment of 7.76 mg L−1. Although the conditions under
which this conversion was derived differ from the experiment
of da Silva et al. (2013), this estimate compares well to
that of our model.

The final acetate measurement in Figure 7 was not predicted
by either model, and it is not clear to where the remaining
carbon from lactate degradation was directed in this experiment.
D. vulgaris has the potential to use acetyl-CoA, an intermediate
on the lactate oxidation pathway, in the biosynthesis of certain
branched-chain amino acids and fatty acids, as well as in an
incomplete citric acid cycle (Heidelberg et al., 2004), but only
the metabolites shown in Figure 7 were measured. However,
separate experiments by these authors with concentrated cell
suspensions found the expected 1:1 ratio of lactate degraded to
acetate produced (da Silva et al., 2013).
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FIGURE 6 | Dynamic changes in gaseous hydrogen with initial metabolite concentrations: 13 mM lactate; 5 mM sulphate (Noguera et al., 1998). Solid lines show the
prediction of the current model. R2 = 0.22, ρ = 0.91 (0.72, 0.97), CCC = 0.22, mean bias = 0.0062 atm.

DISCUSSION

This model provides a simpler mathematical representation of
SRB metabolism than is currently available in the literature
(Noguera et al., 1998), with similar predictive capability. As
such, it can be more easily adapted to specific strains and
culture conditions, not limited to SRB of the human GIT.
The inclusion of further characteristics of specific SRB strains
could be realised with the addition of further terms to existing
equations, or the inclusion of further equations if additional
metabolites were considered. For example, complete growth
inhibition of a SRB strain due to sulphide concentrations
above 16.1 mM has been shown previously (Reis et al., 1992).
Acetate inhibition has also been investigated for SRB, with
approximately 54 mg L−1 undissociated acetic acid (≈45.9 mM
acetate) resulting in 50% growth inhibition (Reis et al., 1990).
Both these concentrations are greater than those measured in
the experiments used here, and the H2S concentration is greater
than that reported in faeces (Magee et al., 2000). However,
the model could be adjusted to include inhibition terms for
acetate and H2S for application of the model to more extreme
environments. These terms could take the form used here
for hydrogen inhibition, but alternative inhibition terms could
be more appropriate and should be assessed by model fitting

(see Han and Levenspiel (1988) for a list of inhibition terms and
a generalised form). At present, we are not aware of any time-
course data involving such concentrations of these metabolites
with which to parameterise the model.

It would also be useful to investigate experimentally the
influence of bicarbonate on the growth rate of SRB. Several
human-associated bacterial strains have shown reduced growth
rates when exposed to 100 mM of bicarbonate in monoculture
(Dobay et al., 2018). This molecule was also shown to disrupt
biofilm formation in selected strains. D. vulgaris is a biofilm
forming organism (Clark et al., 2007), but no SRB were studied in
the bicarbonate inhibition experiments, so we cannot make any
inference about the influence of this molecule on growth rates
in our model. However, following the expected stoichiometry
of the D. vulgaris metabolic pathways, we would anticipate
less than 20 mM of bicarbonate could be produced in the
experiments of Noguera et al. (1998), and up to 40 mM in
the experiments of da Silva et al. (2013), considerably lower
than those found to be growth limiting in Dobay et al.
(2018). Bicarbonate is secreted into the gastrointestinal lumen in
humans, reaching comparable concentrations to those expected
in these experiments: bicarbonate concentration at the start of
the colon is estimated at around 30 mM (Gennari and Weise,
2008). Further experimental investigation is needed to determine
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FIGURE 7 | Model prediction for the consumption of lactate and production of acetate in the experimental work of da Silva et al. (2013): continuous lines display the
fit of the current model; dotted lines display the fit of the model described in Noguera et al. (1998). See text for full explanation. Continuous line fit: Lactate:
R2 = 0.98, ρ = 0.99 (0.95, 0.99), CCC = 0.98, mean bias = 1.2 mM; Acetate: R2 = 0.82, ρ = 0.99 (0.93, 0.99), CCC = 0.88, mean bias = 4.12 mM. Dotted line fit:
Lactate: R2 = 0.98, ρ = 0.99 (0.96, 0.99), CCC = 0.98, mean bias = 1.32 mM; Acetate: R2 = 0.90, ρ = 0.99 (0.97, 0.99), CCC = 0.93, mean bias = 2.08 mM.

whether, and to what extent, bicarbonate may be growth limiting
to SRB before it can be included in a model.

Time-course data is also unavailable for the use of acetate as
a carbon source by SRB, which has been shown in the absence
of lactate [for example, Pankhania et al. (1986)]. We expect that
acetate uptake is occurring in the data shown in Figure 4, as it is
the sole available carbon source in the medium, but this was not
measured. Experiments measuring acetate concentrations over
time when this is the sole carbon source are required to determine
the parameter values of acetate utilisation via model fitting.

Modelling mass transfer in experiments such as those
described here is challenging. Due to limited available
experimental data, we chose to use a simple mass transfer
model to minimise the number of fitting parameters required.
Mass transfer is modelled under the assumption of linear
dynamics, but without knowledge of the concentration of
dissolved hydrogen it is unclear how much this assumption
biases the model. The model may be more limited in its ability
to accurately capture hydrogen transfer between phases than
other, more complex model structures (Kadic and Heindel,
2014). This simple structure may be partially responsible for the
sensitivity of the gaseous hydrogen model fit to small changes
in some of the parameter values of the model. However, we
believe that the model fit to the lactate, acetate and sulphate
data are of greater importance than those of gaseous hydrogen
and bacterial growth for several reasons. The apparent initial
lag phase in the gaseous hydrogen data from the experiments
considered here was not captured by our model, despite the good

fit to the data for other metabolites. While the inclusion of a lag
phase in the model could rectify this aspect, such an addition
would complicate a model that we wish to keep parsimonious
and we also do not have a probable physiological cause for such
a lag. The experimental data shows large variation in gaseous
hydrogen pressure between replicates in both the calibration and
validation datasets. The data for the concentration of bacterial
cells in the medium is similarly limited. Only two measurements
were taken during the exponential growth phase in Figure 2, and
the error on both of these measurements is greater than 25% of
the mean value. It is also unclear how reliable the initial value for
cell concentration is, since this was assumed from the inoculum
rather than measured. Although our model proved only slightly
sensitive to certain initial condition values, measuring the initial
concentrations of both cells and metabolites would be of great
value. The data for lactate, acetate and sulphate concentrations
are more complete and more repeatable, encouraging emphasis
on the model fit to these data.

Uncertainty remains in the field around the nature of
hydrogen production and use by SRB. Previously, there
have been arguments both for and against its status as a
mandatory intermediate in the simultaneous oxidation of organic
compounds and reduction of sulphate, as well as the role of
various hydrogenase enzymes (Keller and Wall, 2011; Rabus et al.,
2013). The importance of hydrogen in the reduction of sulphate
has also been shown differ between SRB species [see review by
Rabus et al. (2015)]. We believe that one of the strengths of
the model is its avoidance of any biassing assumption about
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TABLE 5 | Model notation.

Notation Description Unit

µmax,L Maximum growth rate for lactate h−1

µmax,S Maximum growth rate for sulphate h−1

KL Half-saturation constant for lactate mM

KS Half-saturation constant for sulphate mM

KH Half-saturation constant for hydrogen mM

YL Yield term for lactate oxidation mg L−1 mM−1

YS Yield term for sulphate reduction mg L−1 mM−1

Hmax Inhibitory aqueous hydrogen concentration mM

kLa Mass transfer coefficient h−1

bLH Moles of hydrogen produced per mole lactate
oxidised

–

bHP Moles of hydrogen utilised per mole H2S produced –

bLA Moles of acetate produced per mole lactate
oxidised

–

bSP Moles of H2S produced per mole sulphate reduced –

L Lactate concentration mM

S Sulphate concentration mM

Haq Aqueous hydrogen concentration mM

Hg Gaseous hydrogen concentration atm

A Acetate concentration mM

P H2S concentration mM

X Bacterial cell concentration mg L−1

t Time h

ρH Henry conversion constant for hydrogen atm mM−1

Vaq Volume of the aqueous phase [50 mL for the
experiments of Noguera et al. (1998), 250 mL for
the experiments of da Silva et al. (2013)]

mL

Vg Volume of the gaseous phase [110 mL for the
experiments of Noguera et al. (1998), 250 mL for
the experiments of da Silva et al. (2013)]

mL

the nature of these relationships by using our two hydrogen
compartments, aqueous and gaseous, as a method to represent
hydrogen equivalents that are immediately available for use in
sulphate reduction or not, respectively.

The mathematical model presented here is simpler in its
construction than previous attempts to capture SRB dynamics.
Our model uses nine fitted parameters (10 parameters in total),
compared to seven fitted and three experimentally estimated
parameters (20 parameters in total) in Noguera et al. (1998),
and seven differential equations compared with ten in Noguera
et al. (1998). Our model also shows good fits to experimental
data as assessed by common measures for model analysis for
two D. vulgaris strains from several independent experiments
under varied conditions. While the model of Noguera et al. (1998)
considers more factors, including the thermodynamics of the
conversions performed by the bacteria and the concentrations of
a greater number of metabolites, these inclusions can be limiting
when investigating the metabolism of SRB in environments
where knowledge of these factors is not available. For example,
application of the model of Noguera et al. (1998) to the human
GIT would be challenged by host influences on variables. The
applied model would need to consider appropriate representation
of bicarbonate and CO2 when including secretion and absorption

by the host, as well as the implications of host metabolite
absorption on the modelled thermodynamic inhibition of the
metabolic reactions. By contrast, the relative simplicity of our
model means it can more easily be adapted to the specific
environmental conditions of the GIT and has greater flexibility
for the inclusion of additional influences upon the metabolism
of these bacteria. In this way the model could be adapted
to provide a representative model for the SRB functional
group in the GIT.

Regarding dynamics in the GIT, current existing data from
rodent models support the increased efficiency of carbohydrate
breakdown by saccharolytic bacteria in the presence of either
a methanogen or acetogen due to hydrogen metabolism by
these microbes (Samuel and Gordon, 2006; Rey et al., 2010).
However, there is no such evidence for the SRB, although in
theory the same role could be filled by these bacteria (Smith
et al., 2018). This may be due to competition for other substrates,
which could be investigated using the model presented here in
combination with existing models for saccharolytic bacteria [such
as Kettle et al. (2015)].

It is our intention to use the SRB model presented here as
part of a larger model including other hydrogenotrophic and
hydrogenogenic microbes of the human GIT, to examine the role
of hydrogen in this environment. Mathematical models for the
GIT microbiota are available (Muñoz-Tamayo et al., 2010; Kettle
et al., 2015, 2017), but as yet do not consider the action of SRB.
The inclusion of this functional group may further enhance their
predictive capabilities and could eventually be used to address the
role of the SRB in human nutrition and health. Such community
modelling should not be limited to the GIT, as the combination
of models such as that presented here with similar structures for
methanogens and reductive acetogens may reveal information
about the cross-feeding and competitive relationships between
these hydrogenotrophs in other environments.
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Metabolic flexibility in aerobic methane oxidizing bacteria (methanotrophs) enhances
cell growth and survival in instances where resources are variable or limiting.
Examples include the production of intracellular compounds (such as glycogen or
polyhydroxyalkanoates) in response to unbalanced growth conditions and the use of
some energy substrates, besides methane, when available. Indeed, recent studies
show that verrucomicrobial methanotrophs can grow mixotrophically through oxidation
of hydrogen and methane gases via respiratory membrane-bound group 1d [NiFe]
hydrogenases and methane monooxygenases, respectively. Hydrogen metabolism is
particularly important for adaptation to methane and oxygen limitation, suggesting
this metabolic flexibility may confer growth and survival advantages. In this work, we
provide evidence that, in adopting a mixotrophic growth strategy, the thermoacidophilic
methanotroph, Methylacidiphilum sp. RTK17.1 changes its growth rate, biomass
yields and the production of intracellular glycogen reservoirs. Under nitrogen-fixing
conditions, removal of hydrogen from the feed-gas resulted in a 14% reduction in
observed growth rates and a 144% increase in cellular glycogen content. Concomitant
with increases in glycogen content, the total protein content of biomass decreased
following the removal of hydrogen. Transcriptome analysis of Methylacidiphilum sp.
RTK17.1 revealed a 3.5-fold upregulation of the Group 1d [NiFe] hydrogenase in
response to oxygen limitation and a 4-fold upregulation of nitrogenase encoding
genes (nifHDKENX ) in response to nitrogen limitation. Genes associated with glycogen
synthesis and degradation were expressed constitutively and did not display evidence
of transcriptional regulation. Collectively these data further challenge the belief that
hydrogen metabolism in methanotrophic bacteria is primarily associated with energy
conservation during nitrogen fixation and suggests its utilization provides a competitive
growth advantage within hypoxic habitats.
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INTRODUCTION

Aerobic methane oxidizing bacteria (methanotrophs) serve
as the primary biological sink for the potent greenhouse
gas methane (CH4) (Kirschke et al., 2013). Methanotrophs
grow by oxidizing CH4 to methanol with a particulate or
soluble methane monooxygenase enzyme (pMMO/sMMO) and
subsequently yield reducing equivalents (e.g., NADH) for cellular
respiration and biosynthesis through the oxidation of methanol
to carbon dioxide (CO2). The gammaproteobacterial (Type
I) and alphaproteobacterial (Type II) methanotrophs generate
biomass by assimilating the intermediates formaldehyde or
formate via the ribulose monophosphate (RuMp) or serine
pathways (Hanson and Hanson, 1996) respectively, whereas the
verrucomicrobial methanotrophs oxidize methanol directly to
formate (Keltjens et al., 2014) and generate biomass by fixing
inorganic carbon (CO2) via the Calvin–Benson–Bassham cycle
(Khadem et al., 2012b). Despite the apparent restriction of
most methanotrophs to grow on one carbon compounds (C1),
they thrive at the interface of various oxic/anoxic habitats (e.g.,
peat bogs, forest soils, wetlands, rice paddies and geothermal
environments) (Dunfield et al., 2007; Singh et al., 2010; Knief,
2015), where the availability of oxidant (O2), energy and carbon
resources for growth is likely to fluctuate. Given the methane
monooxygenase reaction (CH4 + O2 + [NAD(P)H + H+]/QH2
CH3OH + NAD(P)+/Q + H2O) and the aerobic respiratory
chain require a continual source of reductant and oxidant,
methanotrophic bacteria must regulate their carbon, energy and
resource allocation to fulfill metabolic demands for cellular
growth and persistence (Hanson and Hanson, 1996).

Many bacterial species, including methanotrophs, accumulate
biopolymers (e.g., glycogen, polyhydroxyalkanoates),
phospholipids, and intracellular osmolytes (e.g., ectoine,
sucrose) (Strong et al., 2016) in response to unbalanced
growth conditions. This allows resources to be strategically
conserved for assistance in times of starvation. The biosynthesis
of glycogen, a highly branched polysaccharide consisting of
α-1,4 bonded glucose residues with additional α-1,6 branched
sidechains, is a common metabolic strategy for carbon storage
that is shared among evolutionarily distant species (Wilson
et al., 2010). Glycogen production has been widely described
within Type I methanotroph species (Linton and Cripps,
1978; Eshinimaev et al., 2002) and the production of this
compound has recently been reported in the verrucomicrobial
methanotroph, Methylacidiphilum fumarolicum SolV (Khadem
et al., 2012a). The physiological role of glycogen production
in methanotrophs is not precisely understood, although it
is believed to serve a role in environmental survival during
periods of starvation and has been implicated to symbiotic
performance, colonization and virulence (Bonafonte et al.,
2000; McMeechan et al., 2005; Bourassa and Camilli, 2009;
Wilson et al., 2010). Although the accumulation of intracellular
glycogen may occur optimally during exponential growth
(Gibbons and Kapsimalis, 1963; Eidels and Preiss, 1970), its
synthesis is typically associated with entry into stationary phase
when growth is limited due to the limitation of some critical
nutrient (i.e., nitrogen, phosphate) or in the presence of excess

carbon (Wilson et al., 2010). In bacteria, the biosynthesis
of glycogen occurs by utilizing ADP-glucose as the glycosyl
donor for polymer extension (Preiss, 1984). The precise
mechanisms governing glycogen biosynthesis in bacteria,
however, remain obscure. It is likely energy availability and redox
status play a primary role in regulating glycogen biosynthesis,
as ATP acts as substrate for the ADP-glucose producing
reaction catalyzed by glucose-1-phosphate adenylyltransferase
(Preiss, 1984).

To remain competitive within dynamic environments (Knief
et al., 2003; Tavormina et al., 2010), some methanotrophs
supplement CH4 usage with other energy-yielding strategies
(Dedysh and Dunfield, 2010). Several recent studies have
revealed a few strains, notably Methylocella silvestris, utilize a
suite of carbon and energy substrates, including simple organic
acids, alcohols and short-chain alkane gases (Dedysh et al.,
2005; Crombie and Murrell, 2014). Aerobic H2 metabolism
has also been shown in a range of methanotrophs (Chen
and Yoch, 1987; Shah et al., 1995; Hanczar et al., 2002)
and a wide range of hydrogenases have been shown to be
distributed in methanotroph genomes (Greening et al., 2016).
While H2 oxidation was originally implicated in energy
conservation in response to N2 fixation (Takeda, 1988),
more recent findings indicate that H2 serves a multifaceted
role in the growth and survival of these bacteria. Of the
verrucomicrobial methanotrophs, the activity of respiratory-
linked group 1d hydrogenases can provide sufficient energy
to sustain chemolithoautotrophic growth on H2 alone
(Mohammadi et al., 2016; Carere et al., 2017). Further,
mixotrophic growth (H2 and CH4) in the thermoacidophile
Methylacidiphilum sp. RTK17.1 has been observed under O2-
limiting conditions and is proposed to provide a competitive
advantage over obligate methanotrophy at oxic/anoxic soil
boundaries within geothermal environments (Carere et al.,
2017). This suggests that the additional energetic input
of H2 may counter the effect of otherwise unbalanced
growth conditions.

The influence of H2 metabolism on the production of
intracellular energy reservoirs, commonly associated with
unbalanced growth, within methanotrophic bacteria has yet to
be elucidated. In this work, we investigate the effect of H2
metabolism on glycogen production within the methanotroph,
Methylacidiphilum sp. RTK17.1. Chemostat cultivation was
performed during O2-replete and O2-limited cultivation, in the
presence of NH4

+ or N2, with or without H2 in the headspace, to
determine the influence of H2 metabolism on observed growth
rates, biomass production characteristics and transcriptional
regulation. We show that cellular growth rates, molar growth
yields, and the allocation of resources between protein and
glycogen production vary depending on the supply of H2, O2,
and nitrogen (as NH4

+ or N2). Transcriptome data provided a
basis of findings, showing significant differential regulation of
operons encoding the group 1d [NiFe]-hydrogenase, methane
monooxygenases, and nitrogenase between the conditions. In
turn, these findings enhance understanding of the physiological
strategies that methanotrophs use to grow and survive in
different environments.
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MATERIALS AND METHODS

Chemostat Cultivation of
Methylacidiphilum sp. RTK17.1
Chemostat cultivation was performed to investigate the influence
of H2 metabolism on the growth and production of intracellular
glycogen reservoirs in Methylacidiphilum sp. RTK17.1 with
respect to unbalanced growth conditions (O2 and nitrogen
limitation). As previously described, a 1 l bioreactor (BioFlo
110; New Brunswick Scientific, Edison, NJ, United States)
equipped with an InPro 6810 Polarographic Oxygen Sensor
(Mettler-Toledo, Columbus, OH, United States) was used for
all cultivations (Carere et al., 2017). Cultures were continuously
incubated at pH 2.5, 50◦C with stirring (800 rpm). The reactor
was constantly maintained at a volume of 0.5 l with V4 mineral
medium (Carere et al., 2017), prepared with or without NH4Cl
(0.4 g l−1) addition (as necessary), and supplied at a constant
flow rate of 10 ml h−1 (D = 0.02 h−1). Custom gas mixtures were
supplied to the chemostat at a rate of 10 ml min−1 and contained
approximately (v/v) 3% CH4 and 26% CO2 for all experiments;
O2 at (v/v) 14.1% and 3.5%, respectively for O2-replete and -
limiting conditions, and H2 at 0.4% (v/v). The balance of all gas
mixtures was made up with N2.

Cell densities were monitored at 600 nm using a Ultrospec
10 cell density meter (Amersham Bioscience, United Kingdom)
with one unit of OD600 equivalent to 0.43 g l−1 cell dry weight
for Methylacidiphilum sp. RTK17.1. Influent and effluent gas
concentrations were monitored using a 490 micro GC equipped
with a thermal conductivity detector (Agilent Technologies,
United States). After achieving a steady-state condition as
determined by OD600, gas concentrations were monitored over
several days and used as a basis to calculate growth and specific
gas consumption rates. Biomass samples of Methylacidiphilum
sp. RTK17.1 were harvested during steady-state operation for
subsequent transcriptome sequencing, biomass cell dry weight
determinations, intracellular glycogen, total protein and amino
acid levels measurements.

Transcriptome Sequencing
Cell culture samples for transcriptome sequencing were
harvested (10 ml) from steady-state chemostat experiments,
pelleted by centrifugation at 5,000 x g (15 min, 4◦C), suspended in
1 ml RNAlater Stabilization solution (Thermo Fisher Scientific)
and then stored at −80◦C until required for further analysis, as
per the manufacturer’s recommended protocols. The extraction
and sequencing of RNA was performed by Macrogen Inc. (Seoul,
Korea). Briefly, isolation of mRNA was performed using the
RNeasy Mini kit (Qiagen) according to the manufacturer’s
protocol. Following total RNA extraction, ribosomal RNAs
were removed using the Ribo-Zero rRNA removal kit (bacteria)
and the quality of the remaining RNA was assessed using an
Agilent 2100 Bioanalyzer (Agilent). Library construction was
performed using the TruSeq Stranded Total RNA Sample
Prep (microbe) Kit (Illumina) and sequencing was performed
using an Illumina HiSeq2500 platform. From this, an average
of 7,988,451 raw untrimmed reads were obtained for each of

the five conditions sampled. These reads were then analyzed
using the Artificial Intelligence RNA-Seq pipeline (Sequentia
Biotech, Barcelona, Spain), as described elsewhere (Vara et al.,
2019), which were reduced to an average of 7,287,318 following
quality filtering and trimming. Retained paired-end reads
(100 bp) were then mapped to the genome of Methylacidiphilum
infernorum strain V4 (GCA_000019665.1) (Hou et al., 2008)
using the ‘different genotype’ setting. An average of 80.01%
reads were mapped to genes within the reference genome for
the five experimental conditions (condition 1: O2 limiting, N2,
no H2 addition; condition 2: O2 limiting, N2, H2 addition;
condition 3: O2 limiting, NH4

+, H2 addition; condition 4: O2
replete, NH4

+, H2 addition; condition 5: O2 replete, NH4
+,

no H2 addition). Following this, differential gene expression
profiles and accompanying statistical analysis was performed
to investigate regulation using the edgeR (Robinson et al.,
2010) tool available within the Artificial Intelligence RNA-Seq
pipeline. Synonymous conditions were grouped as replicates
for differential gene expression analysis during oxygen limiting
(conditions 1, 2, and 3) and oxygen excess (conditions 4 and
5) growth. Likewise, conditions were grouped as replicates for
differential gene expression analysis under nitrogen fixing (N2;
conditions 1 and 2) and nitrogen excess (NH4

+; conditions
3, 4, and 5) growth conditions, respectively. Where provided,
expression values are given as FPKM (Fragments per Kilobase
Million; Supplementary Table S1) (Mortazavi et al., 2008). Raw
and processed transcriptome sequence files (accession numbers
GSM3872525-GSM3872529) were subsequently deposited into
the Gene Expression Omnibus (GEO1) for archival storage.

Characterization of Biomass
Effluent biomass, produced during experimental steady-state
chemostat operation, was collected and stored at 4◦C over
a period of 7 days for all biomass characterization studies.
Following collection of approximately 2 l culture, cells were
pelleted (5,000 × g, 20 min, 4◦C) and stored at −20◦C until
required. Characterization of Methylacidiphilum sp. RTK17.1
biomass (crude protein, ash content, amino acid composition)
was performed at the Massey University Nutrition Laboratory
(accredited to ISO 17025; New Zealand) according to the official
methods of analysis of the Association of Official Analytical
Communities (AOAC, 2005) international. Briefly, total crude
protein and ash content (% w/w) were determined via the Dumas
method (AOAC method 968.06) (Ebeling, 1968) and furnace
methods, respectively (AOAC method 942.05) (Thiex et al.,
2012). Amino acid profile determination of acid-stable residues
was performed via reverse-phase high performance liquid
chromatography (HPLC) separation using AccQ derivatization
of biomass (60–140 mg) samples following oxidization with
performic acid and hydrolysis with hydrochloric acid as described
in AOAC method 994.12 (AOAC, 2005).

The concentration of glycogen within crude cell extracts of
Methylacidiphilum sp. RTK17.1 was determined using a Dionex
ICS 3000 HPLC equipped with a Biorad Aminex HPX-87H
column and a Shodex RI-101 refractive index detector. Triplicate

1https://www.ncbi.nlm.nih.gov/geo/
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cell pellets, dried to constant weight (5–15 mg), were suspended
in 1M NaOH (0.9 ml) and disrupted by boiling lysis for 1 h
within sealed screw top Micro Tubes (Thermo Fisher Scientific).
The efficacy (>99%) of cell lysis was confirmed microscopically.
Crude extracts were then incubated with amyloglucosidase (35
U/ml crude) from Aspergillus niger (Sigma-Aldrich), following
acidification with acetate buffer (0.1 ml) to pH 4.8, for 8 h at
45◦C to convert intracellular glycogen reservoirs into glucose.
Following this, the resulting glucose was quantified by HPLC
and normalized against a standard curve of known glycogen
content (Sigma) that had been contemporaneously treated with
amyloglucosidase. To account for non-glycogen derived glucose
in cell samples, extracts that did not undergo amyloglucosidase
treatment were similarly analyzed by HPLC in parallel. Total
intracellular glycogen content was then expressed as a function
of cell dry weight (% w/w). Observed differences in growth and
biomass characteristics were analyzed for statistical significance
using the Tukey’s honest significance test tool available in Prism
v7.0a (Graphpad Software, Inc.).

RESULTS

Hydrogen Availability Differentially
Affects Growth and Biomass Allocation
Depending on Oxygen and Nitrogen
Availability
The growth characteristics and biomass production of
Methylacidiphilum sp. RTK17.1 was compared in chemostats
in four different conditions that differed in O2, nitrogen
(NH4

+/N2), and H2 supply. Results from these experiments are
provided in Table 1.

Under nitrogen-replete conditions (i.e., NH4
+ present in the

medium), Methylacidiphilum sp. RTK17.1 displayed many of the
same growth characteristics in response to O2 availability as
found previously (Carere et al., 2017) and results were consistent
with similar studies on M. fumarolicum SolV (Khadem et al.,
2012a). The observed rate of steady-state biomass production
(mg l−1 h−1) of Methylacidiphilum sp. RTK17.1) decreased by
33.1% following the transition from O2-replete to O2-limiting
cultivation (p-value: <0.0001). This decrease in growth rate
was accompanied by a 30.4% reduction in the volumetric
rate (mmol l−1 h−1) of CH4 consumption and a 19-fold
increase in the observed rate of H2 oxidation (p-value: <0.0001).
With respect to specific gas consumption rates normalized
against biomass production (mmol gCDW−1 h−1), observed
rates of CH4 consumption did not change significantly (p-
value: 0.988), whereas H2 consumption increased 36-fold (p-
value: <0.0001). Intracellular glycogen content was observed to
increase dramatically from 11.26 (± 0.14)% during O2-replete
growth to 20.23 (± 0.77)% (w/w; p-value: < 0.0001) during
O2-limiting cultivation.

We observed significant changes in these parameters when
Methylacidiphilum sp. RTK17.1 was cultivated under O2-
limitation depending on H2 and nitrogen supply. In the presence
of H2, observed rates of Methylacidiphilum sp. RTK17.1 biomass

production decreased by 8.61% (p-value: 0.019) during N2-
fixation compared to growth on NH4

+ replete media. In
comparison, removal of H2 from the headspace resulted in an
18.67% reduction in the observed rate of biomass production
compared to cells cultured in NH4

+-replete media (from 5.57
to 4.33 mg l−1 h−1; Table 1; p-value: < 0.0001). These results
suggest the activity of respiratory-linked aerobic H2 oxidation
may, at least partially, serve to offset the energetic demand
imposed by N2 fixation. In support of this, onset of nitrogen
limitation in cultures actively respiring H2 did not significantly
increase the production of intracellular glycogen (p-value: 0.999).
Following the removal of H2 from the reactor feedgas, however,
internal glycogen content significantly increased from 20.00
(± 2.93)% to 48.86 (± 4.32)% (w/w; p-value: < 0.0001). This
corresponds to a 2.03 fold increase in the volumetric production
rate of glycogen (Table 1). In the absence of CH4, at 4◦C,
cellular glycogen reservoirs were depleted within 100 days
(Supplementary Figure S1).

The total protein and amino acid content of
Methylacidiphilum sp. RTK17.1 biomass produced during steady-
state growth was also determined (Figure 1). A maximum total
protein content of 53.9 (± 2.69)% (w/w) was achieved during
growth under O2-replete conditions with NH4

+ as a readily
available source of nitrogen. Compared to O2-replete growth,
a minor but insignificant decrease in total protein content of
biomass coincided with reduced O2 availability (51.2 ± 2.56%),
and in the transition from NH4

+ to N2 as a source of nitrogen
(51.9 ± 2.56%). Consistent with the observation that glycogen
production increased in the absence of H2 (under O2-limiting,
N2-fixing growth conditions), the least total protein content of
biomass (42.5± 8.94%) was observed in conditions where energy
availability is likely to constrain cell growth (i.e., O2-limiting,
N2-fixing, no H2; p-value: 0.018; Figure 1A). Observed changes
in the concentration of specific amino acid residues under all of
the growth conditions were generally consistent with the changes
associated with total protein determinations (Figure 1C). For
each of the experimental conditions, glutamic acid, leucine,
aspartic acid, lysine and alanine were the amino acids in greatest
abundance whereas methionine, histidine and cysteine were the
least abundant residues.

Transcriptome Analysis Reveals
Changes in Hydrogenase, Nitrogenase,
and Methane Monooxygenase
Expression Between the Conditions
Transcriptome analysis was performed on chemostat grown
cultures of Methylacidiphilum sp. RTK17.1 to determine whether
genes associated with energy metabolism (CH4 or H2), glycogen
synthesis, N2 or CO2 fixation were regulated in response to O2
or nitrogen availability (Figure 2). For these experiments, to
resolve the possible influence of H2 on transcriptional responses,
a fifth chemostat condition (condition 5: O2 replete, NH4

+, no
H2 addition) was added to the four growth conditions described
in Table 1. In response to O2 limitation, 36 genes were identified
as significantly upregulated (p-value: <0.001; False discovery rate
(FDR): < 0.05) and 36 genes were significantly downregulated
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TABLE 1 | Growth and productivity characteristics of Methylacidiphilum sp. RTK17.1 during chemostat cultivation.

Growth condition a,b,c O2-limited, N2 no H2 addition O2-limited, N2 H2 addition O2-limited, NH4
+ H2 addition O2-replete, NH4

+ H2 addition

Biomass productivity:

mg l−1 h−1 4.33 (± 0.10) 5.09 (± 0.19) 5.57 (± 0.50) 8.32 (± 0.10)

CH4 consumption rate:

mmol l−1 h−1 0.76 (± 0.05) 0.69 (± 0.06) 0.89 (± 0.05) 1.28 (± 0.10)

mmol gCDW−1 h−1 3.31 (± 0.21) 2.73 (± 0.27) 3.18 (± 0.13) 3.22 (± 0.05)

YCDW/CH4 (g mol−1) 5.73 (± 0.35) 7.39 (± 0.74) 6.29 (± 0.25) 6.52 (± 0.11)

H2 consumption rate:

mmol l−1 h−1
− 0.19 (± 0.01) 0.20 (± 0.01) 0.01 (± 0.01)

mmol gCDW−1 h−1 – 0.71 (± 0.10) 0.71 (± 0.08) 0.02 (± 0.01)

Glycogen content:

% CDW 48.86 (± 4.32) 20.00 (± 2.93) 20.23 (± 0.77) 11.26 (± 0.14)

mg glycogen l−1 h−1 2.12 (± 0.19) 1.04 (± 0.15) 1.13 (± 0.04) 0.94 (± 0.01)

aFeedgas was continuously supplied at a rate of 10 ml min−1 with the following compositions (where applicable;% v/v): O2-replete, 14.1%; O2-limiting, 3.5%, H2 0.4%. For
all experiments excess CH4 was supplied at 3.2%, CO2 at 26% with the balance made up with N2. O2 saturations in the medium were 57.5 and 0.17% for the O2-replete
and O2-limiting conditions, respectively. bA dilution rate of 0.02 h−1 (10 ml h−1) was maintained for all experiments, with NH4

+ supplied at an influent concentration of
0.4 g l−1 where applicable. cReplicate numbers for each growth condition correspond to n = 6, n = 6, n = 4 and n = 7 moving from the leftmost column to rightmost
column, respectively. The standard deviation from the average of these measurements is shown in brackets.

(p-value: < 0.001; FDR: < 0.05). Subunits of the particulate
methane monooxygenase operon (pmoCAB1), corresponding to
M. infernorum V4 loci Minf_1509–1511, displayed the greatest
degree of transcriptional upregulation (average: 9.8 Log2FC, p-
value: < 0.0001) in response to O2 limitation. In contrast,
the closely related and immediately proximal pmoCAB2 operon
(homologous to M. infernorum V4 loci Minf_1506–1508) that
was highly expressed during O2 replete growth, was strongly
downregulated during O2-limited growth (average:−4.0 Log2FC,
p-value: < 0.0001). Interestingly, transcripts for a third putative
and relatively divergent pmoCAB3 operon were not detected
under the experimental conditions tested.

Expression of the complete complement of genes necessary
for the oxidation of CH4 to CO2, carbon assimilation via the
Calvin-Benson-Bassham cycle, and ATP production via aerobic
respiration were detected in all conditions tested (Figure 2C
and Supplementary Table S1). However, with exception of a
1.78-fold (p-value: < 0.0001) downregulation of a moxY-like
gene (Minf_1448) that encodes a methanol utilization control
sensor protein, no significant differences in expression level in
these pathways were observed across conditions. With respect to
glycogen metabolism, all genes necessary for glycogen synthesis,
storage and degradation were expressed, but did not display
evidence of transcriptional regulation (Supplementary Table
S1). Consistent with the onset of H2 oxidation in chemostat
cultures, genes encoding for the large and small subunits of
the Group 1d respiratory [NiFe] hydrogenase, and its associated
cytochrome b subunit, were upregulated by 3.5-, 3.6-, and 2.9-
fold respectively (to a maximum of 3105 FPKM) in response
to O2 limitation (Figures 2A,C). Likewise, genes associated
with hydrogenase maturation, nickel incorporation and nickel
transport were also significantly upregulated (Supplementary
Table S1). In contrast, the cytosolic Group 3b [NiFe] hydrogenase
was constitutively transcribed at low levels (FPKM < 125).

We further analyzed RNA-seq data to investigate the influence
of nitrogen limitation on transcriptional regulation within

Methylacidiphilum sp. RTK17.1. During chemostat cultivation
in the absence of a supplied nitrogen source (NH4

+), 66 genes
were upregulated (p-value: < 0.001; FDR: < 0.02) and 13 genes
were downregulated (p-value: < 0.001; FDR: < 0.05) when
compared to nitrogen excess growth conditions. Consistent
with the onset of N2 fixation, a seven-gene operon encoding
nitrogenase structural subunits and cofactor biosynthesis
proteins (nifHDKENX, Minf_1870–1876) was upregulated
(average 6.4 Log2FC; Figures 2B,C). In addition, numerous
other genes involved in nitrogenase transcriptional regulation
(nifA, Minf_0464), cofactor biosynthesis (nifB, Minf_0453),
stabilization (nifW, Minf_0472), and nitrate (Minf_1096) and
NH4

+ transport (Minf_1075) were also significantly upregulated
(Supplementary Table S1). Hydrogenase expression was not
significantly different between the conditions, being high for
the Group 1d [NiFe]-hydrogenase and low for the Group 3b
[NiFe]-hydrogenase.

DISCUSSION

The accumulation and storage of carbon and energy as polymeric
reserves is a common strategy employed by microorganisms
during unbalanced growth to fortify them against periods
of environmental starvation (Wilson et al., 2010). Nitrogen
limitation is often cited as triggering the accumulation of
carbon-rich reserve polymers (Wanner and Egli, 1990), but
there is a lack of detailed understanding of the underlying
mechanisms responsible for their production. As with many
heterotrophic species, methanotrophs often produce carbon-rich
polymers; however despite the prevalence of glycogen production
within the Gammaproteobacteria methanotrophs (Pieja et al.,
2011a), research has primarily focused on the physiology
of polyhydroxybutyrate storage in the Alphaproteobacteria
methanotrophs (Pieja et al., 2011a,b; Sundstrom and Criddle,
2015). The requirement for organic carbon compounds to
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FIGURE 1 | The production of intracellular glycogen in chemostat grown cultures of Methylacidiphilum sp. RTK17.1 is influenced by O2 availability, and H2 and
nitrogen metabolism. (A) Total protein, ash and glycogen content of cells, (B) observed growth rates and biomass yields (CDW: cell dry weight), and (C) amino acid
content profiles are shown relative to total biomass. For all chemostat growth conditions, Methylacidiphilum sp. RTK17.1 excess CH4 was continuously supplied (3%
v/v, 10 ml min-1). Displayed values represent the average of minimum triplicate samples, with error bars illustrating the standard deviation. Significant differences in
cellular glycogen and protein content are shown next to squared brackets (∗∗∗∗p-value < 0.0001, ∗p-value < 0.05).

provide both the respiratory energy and carbon necessary for
anabolic processes for methanotrophs makes it difficult to
untangle the roles of nitrogen, carbon, and energy availability
(e.g., ATP) in the production of intracellular glycogen. However,
as verrucomicrobial methanotrophs fix CO2 for carbon and
supplement their energy requirements via the oxidation of H2
(Mohammadi et al., 2016; Carere et al., 2017), this affords an
opportunity (obfuscated by the Type I and II methanotrophs)
to investigate the influence of nitrogen, carbon, and energy
availability independently.

Our findings show that H2 oxidation influences the
production of intracellular glycogen reservoirs in the
thermoacidophilic methanotroph, Methylacidiphilum sp.
RTK17.1. During chemostat experiments, the maximum
glycogen content of Methylacidiphilum sp. RTK17.1 occurred
within cells grown in the absence of H2, under nitrogen- and
O2- limiting growth conditions [48.86 (± 4.32)%; Table 1 and
Figure 1A]. With respect to other studies reporting on the

production of carbon storage polymers in methanotroph species,
the glycogen content values observed for Methylacidiphilum
sp. RTK17.1 are generally congruent. In the closely related
thermoacidophile, Methylacidiphilum fumarolicum SolV, a
maximum glycogen content of 36% (w/w) was observed
(Khadem et al., 2012a) in nitrogen-limited, batch grown
cells and a similar value (33% w/w) has been reported in the
halotolerant methanotroph Methylotuvimicrobium alkaliphilum
20Z [formerly Methylomicrobium alkaliphilum 20Z (Khmelenina
et al., 1999; Orata et al., 2018)]. A maximum of 42.8 (± 17.5)%
(w/w) glycogen has been reported in the industrially promising
methanotroph, Methylotuvimicrobium buryatense 5GB1
[formerly Methylomicrobium buryatense 5GB1 (Orata et al.,
2018)], during batch-growth on methanol, with up to 13.1
(± 4.0)% (w/w) glycogen reported during O2-limited chemostat
growth on methane (Gilman et al., 2015).

The variability in reported glycogen content within
methanotrophs (intraspecies) and between experimental
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FIGURE 2 | Differential gene expression profiles of chemostat-grown cultures of Methylacidiphilum sp. RTK17.1 grown under O2-replete and O2-limiting conditions
in the presence of ammonium (NH4

+) or under N2-fixing conditions. (A) Volcano plot showing differential gene expression changes following the transition from
oxygen replete to O2-limited growth. (B) Volcano plot showing differential gene expression changes following the transition from nitrogen-replete (NH4

+) to N2-fixing
growth conditions. Both volcano plots compare data generated from the same five transcriptomes with fold-change values (log2FC) and false discovery rates (FDR)
calculated using O2-replete and nitrogen excess as reference conditions, respectively. Each gene is represented by a gray dot and genes of interest are highlighted
as per the legend. (C) Heat map of transcript abundance for key genes encoding the structural subunits of enzymes participating in methane oxidation (pmoBAC;
particulate methane monooxygenase), methanol oxidation (xoxFJ; methanol dehydrogenase, pqqABCDE; pyrroloquinoline biosynthesis), formate oxidation (fdsDAB;
formate dehydrogenase), carbon-dioxide fixation (cbbsSL; Rubisco), hydrogen metabolism (hyaBA and hyhSL; encoding group 1d and 3b [NiFe]-hydrogenases
respectively), nitrogen fixation (nifXNEKDH; nitrogenase), and glycogen biosynthesis (glgAABCPPP1). The fragment counts per kilobase million transcripts (FPKM) are
shown for steady-state cultures. O2-replete, O2-limiting, nitrogen-replete (NH4

+), N2-fixing and the supplementation of H2 into the feed gas during chemostat
operation is indicated.

trials (interspecies) is almost certainly a consequence of both
underlying physiological characteristics and the inherent
challenges associated with characterizing dynamic batch growth
environments. We therefore sought to perform a series of
carbon-excess (CO2 and CH4) steady-state experiments to gain
insight into the mechanisms governing glycogen production in
Methylacidiphilum sp. RTK17.1. With respect to O2 and nitrogen
limitation, rates of growth (inferred from observed biomass
productivity rates), and changes to glycogen, and to a lesser
extent total protein and amino acid contents, were consistent
with a cell’s expected response to unbalanced growth conditions.
While previous studies have reported significant changes to the
amino acid composition of Staphylococcus aureus cultures in

response to variable environmental conditions (Alreshidi et al.,
2015, 2016), we observed no change to the relative abundance of
specific amino acid residues in Methylacidiphilum sp. RTK17.1
cultures under the conditions tested. Nevertheless, a 144%
increase in glycogen content was observed during unbalanced
growth following the removal of H2 gas supply. Depriving
Methylacidiphilum sp. RTK17.1 cultures of the respiratory
energy gains afforded from H2 gas oxidation is demonstrative
of how this strain dynamically allocates carbon, nitrogen and
energy resources.

The observation that Methylacidiphilum sp. RTK17.1 cells
produce glycogen and grow more slowly in response to
oxygen limitation is consistent with the occurrence of glycogen

Frontiers in Microbiology | www.frontiersin.org 7 August 2019 | Volume 10 | Article 1873131

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01873 August 14, 2019 Time: 15:24 # 8

Carere et al. Hydrogen Metabolism Influences Glycogen Production

within the obligate chemolithoautotroph Hydrogenovibrio
marinus when grown on H2 and CO2 under O2-limiting
conditions (Nishihara et al., 1993). Similarly, production
of polyhydroxybutyrate (PHB) has been reported within
heterotrophically grown cultures of Azotobacter beijerinckii
in response to oxygen limitation (Senior et al., 1972). We
speculate that in the absence of sufficient oxygen, both glycogen
and PHB reserves likely serve to not only store carbon and
energy, but to maintain intracellular redox state. It is also
plausible that the anabolic activities required for cell division
(i.e., protein, DNA and RNA synthesis) were constrained by
ATP availability under O2-limiting conditions. Given protein
synthesis requires approximately 19 times more ATP (mmol
ATP (g macromolecule)−1) than for saccharide polymerization
(Stouthamer, 1979; Russell and Cook, 1995; Russell, 2007), even
considering the ATP requirements of CO2 fixation, glycogen
biosynthesis likely represents an energetic ‘cost’ savings for
Methylacidiphilum sp. RTK171 compared to the ATP-demands
of cell growth. These modest increases to intracellular glycogen
content in response to O2 limitation are unlikely to negatively
impact biomass yields (YATP; Russell and Cook, 1995) while
also benefiting cell survivability during periods of starvation.
The additional burden imposed by nitrogen limitation not
only created unbalanced growth conditions with respect
to carbon and nitrogen, but also increased the cell’s ATP
requirement via the nitrogenase reaction (N2 + 8H+ + 16ATP
→ 2NH3 + H2 + 16ADP). Under these growth conditions,
glycogen accounted for nearly half of Methylacidiphilum sp.
RTK17.1 cell mass. Supplementing CH4 oxidation with an
alternative source of respiratory energy (H2), however, was
sufficient to offset the ATP burden imposed by N2 fixation
and consequently the production of intracellular glycogen was
reduced and growth rates increased.

An alternative explanation for our chemostat observations
is that synthesis of glycogen during energy-limiting conditions
serves as a strategy for ‘metabolic anticipation’. The combined
conditions of low O2, nitrogen, and H2 availability are highly
limiting for a cell and further resource deprivation is likely
to trigger a transition from growth to persistence. Thus,
disproportionately allocating biomass into storage compounds
under this condition may serve as a ‘bet-hedging’ strategy to
enable longer-term survival when conditions worsen. Indeed,
the synthesis and storage of intracellular carbon polymers
is commonly associated with an increase in viability during
periods of environmental starvation. As with PHB, glycogen
catabolism supplies reduced electron carriers (e.g., NADH) into
the respiratory chain, thereby enabling the continuation of
metabolic processes in the absence of an exogenous energy
supply (e.g., CH4 or H2). A reduced lag phase following CH4
starvation has previously been linked to the catabolism of
glycogen reservoirs within the methanotroph M. fumarolicum
SolV (Khadem et al., 2012a). Likewise, in Methylacidiphilum sp.
RTK17.1 cultures, we interpret depletions in cellular glycogen
content throughout prolonged incubations at 4◦C (in the absence
of CH4) as evidence it was being consumed to promote survival
(Supplementary Figure S1). Within oxic/anoxic habitats, it
seems evident that Methylacidiphilum sp. RTK17.1 distributes

carbon, energy and nitrogen resources during methanotrophic or
mixotrophic growth to fulfill the metabolic demands imposed for
cell persistence and/or proliferation (Hanson and Hanson, 1996).
Similar phenomena of metabolic anticipation have been observed
in other species, for example mycobacteria, which accumulate
storage compounds such as triacylglycerols during the early
hypoxic response (Daniel et al., 2004; Eoh et al., 2017).

While hydrogenase, methane monooxygenase and
nitrogenase all displayed evidence of significant transcriptional
regulation in response to O2 and nitrogen limitation, the
genes associated with glycogen metabolism were constitutively
expressed. These results are consistent with previous findings
within the verrucomicrobial methanotrophs (Khadem et al.,
2010; Khadem et al., 2012a; Mohammadi et al., 2016;
Carere et al., 2017) and suggests the enzymes associated
with glycogen metabolism may be allosterically regulated
in response to high carbon (i.e., fructose 1,6-bisphosphate)
and/or energy contents (i.e., ATP/AMP), as described in other
bacterial species (Wilson et al., 2010). Consistent with other
verrucomicrobial methanotrophs (Dunfield et al., 2007; Pol
et al., 2007; Op den Camp et al., 2009), Methylacidiphilum sp.
RTK17.1 also possesses three phylogenetically distinct pmoCAB
operons. Based on observed ratios of non-synonymous versus
synonymous substitution rates in pmoA orthologs, it has been
proposed that the pMMOs encoded in Methylacidiphilum
spp. serve functionally distinct roles (Op den Camp et al.,
2009). The observation that Methylacidiphilum sp. RTK17.1
transcriptionally regulates pMMO expression in response to
oxygen availability therefore supports this hypothesis and is
congruent with reports of differential expression in response to
oxygen limitation (Khadem et al., 2012a) and during growth
on methanol (Erikstad et al., 2012). Finally, it is noteworthy
to include that the transcriptional upregulation of the Group
1d [NiFe] hydrogenase occurred in response to O2 limitation;
whereas nitrogenase upregulation was induced by nitrogen
availability. The transcriptional decoupling of these two enzymes
is further evidence that the physiological role of H2 oxidation
in methanotrophs (Mohammadi et al., 2016; Carere et al., 2017)
is distinct from recycling H2 produced during the nitrogen
fixation reaction (Bont, 1976; Dixon, 1976; Chen and Yoch,
1987). Collectively, these findings indicate while H2 oxidation
is sufficient to partially offset the energetic costs associated with
N2 fixation, the regulation of this enzyme is transcriptionally
uncoupled from nitrogen availability.
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Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the
atmosphere. This key process is the primary sink in the biogeochemical hydrogen
cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium
smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct
[NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently
unresolved how these enzymes transfer electrons derived from H2 oxidation into the
aerobic respiratory chain. In this work, we used genetic approaches to confirm that two
putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons,
HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis
show that these proteins, while homologous, fall into distinct phylogenetic clades and
have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding
these proteins were deleted individually and was eliminated when they were deleted
in combination. In turn, the growth yield and long-term survival of these deletion
strains was modestly but significantly reduced compared to the parent strain. In both
biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur
proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize
that these proteins mediate electron transfer between the catalytic subunits of the
hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain;
however, other roles (e.g., in maturation) are also plausible and further work is required
to resolve their role. The conserved nature of these proteins within most Hhy- or
Huc-encoding organisms suggests that these proteins are important determinants of
atmospheric H2 oxidation.

Keywords: hydrogenase, Mycobacterium, atmospheric H2, iron-sulfur protein, hydrogen cycle

INTRODUCTION

Over the last decade, various studies have revealed that aerobic bacteria conserve energy during
persistence through aerobic respiration of atmospheric hydrogen (H2) (Constant et al., 2010;
Greening et al., 2014b, 2015a; Meredith et al., 2014; Liot and Constant, 2016; Islam et al., 2019).
This process is now recognized to be important for biogeochemical and ecological reasons. Gas-
scavenging soil bacteria serve as the primary sink in the global hydrogen cycle and are responsible
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for the net consumption of approximately 70 million tonnes
of H2 each year (Constant et al., 2009; Ehhalt and Rohrer,
2009; Greening et al., 2014a; Piché-Choquette et al., 2018). More
recently, it has been inferred that this process supports the
productivity and biodiversity of various ecosystems, especially
low-carbon soils (Lynch et al., 2014; Kanno et al., 2015;
Khdhiri et al., 2015; Greening et al., 2016; Ji et al., 2017;
Bay et al., 2018; Kessler et al., 2019; Piché-Choquette and
Constant, 2019). Atmospheric H2 oxidation appears to be a
widespread trait among soil bacteria. To date, bacteria from three
phyla have been experimentally shown to oxidize atmospheric
H2, Actinobacteriota (Constant et al., 2008, 2010; Greening
et al., 2014a; Meredith et al., 2014), Acidobacteriota (Greening
et al., 2015a; Myers and King, 2016), and Chloroflexota (Islam
et al., 2019). However, genomic and metagenomic studies have
indicated at least 13 other phyla encode enzymes that can mediate
this process (Greening et al., 2016; Carere et al., 2017; Ji et al.,
2017; Piché-Choquette et al., 2017).

The genetic basis and physiological role of atmospheric H2
oxidation is now largely understood. This process has been
most comprehensively studied in the genetically tractable soil
actinobacterium Mycobacterium smegmatis (Greening and Cook,
2014). In this organism, atmospheric H2 oxidation is mediated
by two membrane-bound, oxygen-tolerant hydrogenases, Huc
(group 2a [NiFe]-hydrogenase, also known as Hyd1 or
cyanobacterial-type uptake hydrogenase) and Hhy (group 1h
[NiFe]-hydrogenase, also known as Hyd2 or actinobacterial-
type uptake hydrogenase) (Berney et al., 2014b). Additionally,
M. smegmatis encodes a third [NiFe]-hydrogenase, Hyh (Hyd3),
which mediates fermentative H2 production during hypoxia
(Berney et al., 2014a). Both H2-oxidizing hydrogenases contain
a large subunit containing the [NiFe] active site (HucL, HhyL)
and a small subunit containing three iron-sulfur clusters (HucS,
HhyS), as well as potential additional subunits (Berney et al.,
2014b; Cordero et al., 2019b). These two hydrogenases are
upregulated in stationary-phase cells, including in response to
organic carbon limitation (Berney and Cook, 2010; Berney et al.,
2014b). Consistently, when the structural subunits of these
hydrogenases are deleted, strains show reduced growth yield
and impaired long-term survival during starvation (Berney and
Cook, 2010; Berney et al., 2014a; Greening et al., 2014b). Similar
findings have been made in Streptomyces avermitilis; the sole
hydrogenase of this organism, Hhy, is exclusively expressed in
exospores and strains lacking this enzyme exhibit severe survival
defects (Constant et al., 2010; Liot and Constant, 2016). Given
these findings, it is proposed that bacteria shift from growing
on organic compounds to persisting on atmospheric trace gases.
Indeed, theoretical calculations indicate that the energy derived
from atmospheric H2 oxidation (0.53 ppmv) can sustain the
maintenance of 107 to 108 cells per gram of soil (Conrad, 1999).

Despite this progress, little is currently known about the
biochemical basis of atmospheric H2 oxidation. One outstanding
question is how electrons derived from H2 oxidation are
transferred to the respiratory chain. Most classes of respiratory
uptake hydrogenases are predicted to be co-transcribed with a
cytochrome b subunit (Greening et al., 2016; Søndergaard et al.,
2016). For example, such subunits interact with the prototypical

oxygen-tolerant hydrogenases (group 1d [NiFe]-hydrogenases)
of Escherichia coli and Ralstonia eutropha; they anchor the
hydrogenase to the membrane and transfer electrons from the
hydrogenase small subunit to the quinone pool (Frielingsdorf
et al., 2011; Volbeda et al., 2013). However, we did not detect
equivalent proteins in the operons encoding the structural
subunits of Huc (MSMEG_2261–2270) or Hhy (MSMEG_2722 –
2718) in M. smegmatis (Supplementary Figure S1) (Berney et al.,
2014b). Putative iron-sulfur proteins, tentatively annotated as
HucE (MSMEG_2268) and HhyE (MSMEG_2718), were encoded
downstream of the hydrogenase structural subunits and may
potentially fulfill this role instead (Berney et al., 2014b; Greening
et al., 2015b). In this work, we characterized the effects of deleting
these genes on hydrogenase activity, growth, and survival in
M. smegmatis. We also investigated their broader conservation
in hydrogenase-encoding bacteria.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
All bacterial strains and plasmids used in this study are listed in
Supplementary Table S1. Escherichia coli TOP10 was maintained
on lysogeny broth (LB) agar plates (10 g L−1 tryptone, 5 g L−1

NaCl, 5 g L−1 yeast extract, 15 g L−1 agar), while Mycobacterium
smegmatis mc2155 (Snapper et al., 1990) and derived mutants
were maintained on LB agar plates supplemented with 0.05%
(w/v) Tween 80 (LBT). For broth culture, E. coli was grown
in LB. M. smegmatis was grown in either LBT or in Hartmans
de Bont (HdB) minimal medium (Hartmans and De Bont,
1992) supplemented with 0.2% (w/v) glycerol. In all cases,
liquid cultures were grown in rotary incubators at 37◦C with
agitation (200 rpm).

Mutant Strain Construction
Allelic exchange mutagenesis was used to produce markerless
deletions of the genes encoding two putative iron-sulfur
proteins, hucE (MSMEG_2268) and hhyE (MSMEG_2718)
(Supplementary Figure S2). Briefly, a fragment containing
fused left and right flanks of the MSMEG_2268 (1800 bp)
and MSMEG_2718 (3098 bp) genes were synthesized by
GenScript. These fragments were cloned into the SpeI site of
the mycobacterial shuttle plasmid pX33 (Gebhard et al., 2006) to
yield the constructs pX33-hucE and pX33-hhyE (Supplementary
Table S1). These constructs were propagated in E. coli TOP10
and transformed into wild-type M. smegmatis mc2155 cells by
electroporation. Gentamycin (5 µg mL−1 for M. smegmatis or
20 µg mL−1 for E. coli) was used in selective solid and liquid
medium to propagate pX33. Creation of the double iron-sulfur
cluster mutant (1hucE1hhyE) was achieved by transformation
of 1hhyE electrocompetent M. smegmatis mc2155 with the pX33-
hucE construct. Briefly, to allow for permissive temperature-
sensitive vector replication, transformants were incubated on
LBT gentamicin plates at 28◦C until colonies were visible (5–
7 days). Resultant catechol-positive colonies were subcultured
onto fresh LBT gentamicin plates and incubated at 40◦C for
3–5 days to facilitate integration of the recombinant plasmid
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flanks into the chromosome. The second recombination event
was facilitated by subculturing catechol-reactive and gentamicin-
resistant colonies onto LBT agar plates supplemented with
10% sucrose (w/v) and incubating at 40◦C for 3–5 days.
Catechol-unreactive colonies were subsequently screened by
PCR to discern wild-type revertants from 1hucE, 1hhyE and
1hucE1hhyE mutants. Primers used for the generation of
mutants and for screening are listed in Supplementary Table S2.

Complementation Vector Construction
The genes for the putative iron-sulfur proteins were amplified
by PCR and the resulting fragments were cloned into the
constitutive expression plasmid pMV261 via PstI/HindIII site for
hucE and BamHI/HindIII site for hhyE (Stover et al., 1991) to
yield the constructs pMVhucE and pMVhhyE (Supplementary
Table S1). Sequence fidelity of the genes was verified through
Sanger sequencing and insertion of the genes into the
vector was confirmed through restriction-digestion analysis
(Supplementary Figure S3). The plasmid constructs were
propagated in E. coli DH5α and transformed into M. smegmatis
cells by electroporation. Vector pMVhucE was transformed into
M. smegmatis wild-type and 1hucE strains, while pMVhhyE was
transformed into wild type and 1hhyE mutant. In addition, an
empty pMV261 was transformed into wild-type, 1hucE, and
1hhyE strains. These seven M. smegmatis strains were used
for complementation experiments in respirometry and activity
staining. Kanamycin (20 µg mL−1 for M. smegmatis or 50 µg
mL−1 for E. coli) was used in selective solid and liquid medium
to propagate pMV261. Primers used for the generation of the
constructs are listed in Supplementary Table S2.

Respirometry Measurements
Cultures of wild-type, derived mutants, and complemented
mutant strains of M. smegmatis were grown in 125 mL aerated
conical flasks containing 30 mL HdB medium supplemented
with 0.2% glycerol. Respirometry measurements were performed
with mid-stationary phase cells, i.e., 72 h post ODmax (∼3.0).
A Unisense H2 microsensor electrode was polarized at + 800
mV for 1 h using a Unisense multimeter and calibrated against
standards of known H2 concentration. Gas-saturated PBS was
prepared by bubbling the solution with 100% (v/v) of either H2 or
O2 for 5 min. The 1.1 mL microrespiration assay chambers were
sequentially amended with stationary-phase cultures (0.9 mL,
OD600 = 3.0), H2-saturated PBS (0.1 mL), and O2-saturated
PBS (0.1 mL). Chambers were stirred at 250 rpm, 37◦C.
Changes in H2 concentration were recorded using Unisense
Logger Software, and upon observing a linear change in H2
concentration, rates of consumption were calculated over a
period of 20 s, which corresponds to the most linear uptake
of hydrogen by the cells. Oxidation rates were normalized
against total protein concentration, which was determined by the
bicinchoninic acid method (Smith et al., 1985) with bovine serum
albumin standards.

Activity Staining
Cultures of wild-type, derived mutants, and complemented
mutant strains of M. smegmatis were grown in 2.5 L aerated

conical flasks containing 500 mL HdB medium supplemented
with 0.2% glycerol. For Huc activity staining, cultures of
wild-type, 1hucS, 1hucE, 1hucS1hhyL, 1hucE1hhyE, and
complemented 1hucE and wild-type M. smegmatis (either with
empty pMV261 or complementation vector pMVhucE) were
harvested by centrifugation (10,000 × g, 10 min, 4◦C) at early-
stationary phase (24 h post ODmax, ∼3.0) (Cordero et al.,
2019b). For Hhy activity staining, cultures of wild-type, 1hhyL,
1hhyE, 1hucS1hhyL, 1hucE1hhyE, and complemented 1hhyE
and wild-type M. smegmatis (either with empty pMV261
or complementation vector pMVhhyE) were harvested by
centrifugation at mid-stationary phase (72 h post ODmax,
∼3.0) (Cordero et al., 2019b). Harvested cultures were washed
in phosphate-buffered saline solution (PBS; 137 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4),
and resuspended in 16 mL lysis buffer (50 mM Tris-Cl, pH
8.0, 1 mM PMSF, 2 mM MgCl2, 5 mg mL−1 lysozyme, 40 µg
mL−1 DNase, 10% glycerol). Resultant cell suspensions were
passed through a Constant Systems cell disruptor (40,000 psi,
four times), with unbroken cells removed by centrifugation
(10,000 × g, 20 min, 4◦C) to yield whole-cell lysates. Protein
concentration was determined using a bicinchoninic acid assay
with bovine serum albumin standards. Next, 20 µg of each
whole-cell lysate was loaded onto two native 7.5% (w/v) Bis-Tris
polyacrylamide gels prepared as described elsewhere (Walker,
2009) and run alongside a protein standard (NativeMark
Unstained Protein Standard, Thermo Fisher Scientific) for 1.5 h
at 25 mA. One gel was stained overnight at 4◦C with gentle
agitation using AcquaStain Protein Gel Stain (Bulldog Bio) for
total protein determination. The other gel was incubated for
hydrogenase activity staining in 50 mM potassium phosphate
buffer (pH 7.0) supplemented with 500 µM nitroblue tetrazolium
chloride (NBT) in an anaerobic jar amended with an anaerobic
gas mixture (5% H2, 10% CO2, 85% N2 v/v) overnight at
room temperature.

Growth and Survival Assays
Cultures of wild type and derived mutants of M. smegmatis were
inoculated into 125 mL conical flasks containing 30 mL LBT
medium (initial OD600 of 0.001), in six biological replicates.
Growth was monitored by measuring optical density at 600 nm
(1 cm cuvettes; Eppendorf BioSpectrometer Basic); when OD600
was above 0.5, cultures were diluted ten-fold in LBT before
measurement. Specific growth rate during mid-exponential
growth was calculated for each replicate using GraphPad
Prism (non-linear regression, exponential growth equation,
least squares fit). The long-term survival of the cultures was
determined by counting colony forming units (CFU mL−1) of
cultures 21 days post-ODmax. Cultures were serially diluted in
HdB containing no carbon source and spotted on to agar plates
in technical quadruplicates. After incubation at 37◦C for 3 days,
the resultant colonies were counted.

Sequence and Phylogenetic Analysis
Sequences homologous to M. smegmatis HucE (MSMEG_2268)
and HhyE (MSMEG_2718) were retrieved by protein
BLAST (Altschul et al., 1990) using the National Center
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for Biotechnology Information (NCBI) Reference Sequence
(RefSeq) database (Pruitt et al., 2007). The retrieved hits were
cross-referenced with the hydrogenase database (HydDB)
(Søndergaard et al., 2016) in order to determine which organisms
co-encode HucE with HucL and HhyE with HhyL. For
downstream phylogenetic and motif analysis, sequences were
filtered to remove truncated HucE/HhyE proteins and retain one
protein sequence per genus. This resulted in a representative
subset of 52 full-length HucE and 26 full-length HhyE sequences.
The retrieved sequences were aligned using ClustalW in MEGA7
(Kumar et al., 2016). The phylogenetic relationships of these
sequences were visualized on a maximum-likelihood tree based
on the Poisson correction method and bootstrapped with 100
replicates. In addition, WebLogo (Crooks et al., 2004) was
used to analyze the conserved motifs containing cysteine and
histidine residues predicted to bind iron-sulfur clusters. The
web-based software Properon (M. Milton1) was used to generate
to-scale genetic organization diagrams of the group 1h and group
2a [NiFe]-hydrogenases, with genes labeled according to the
nomenclature in HydDB (Søndergaard et al., 2016).

RESULTS

HucE and HhyE Are Predicted to Be
Iron-Sulfur Proteins Associated With
Group 2a and Group 1h
[NiFe]-Hydrogenases
We investigated the diversity of putative iron-sulfur cluster
proteins associated with [NiFe]-hydrogenases by conducting a
homology-based search using the amino acid sequences of HucE
(MSMEG_2268) and HhyE (MSMEG_2718) from M. smegmatis
(Supplementary Figure S1). Homologous sequences
were retrieved from 14 phyla and 104 genera of bacteria
(Supplementary Figure S4 and Supplementary Table S3).

The evolutionary relationships of these proteins were
visualized on a maximum-likelihood phylogenetic tree
(Figure 1). All retrieved sequences fall into two robustly
supported clades, the HucE proteins associated with group
2a [NiFe]-hydrogenases (Huc) and the HhyE proteins
associated with group 1h [NiFe]-hydrogenases (Hhy), that
share approximately 27% amino acid identity. HhyE proteins
were encoded by various atmospheric H2 oxidizers, including
Streptomyces (Berney and Cook, 2010), Rhodococcus (Meredith
et al., 2014), Pyrinomonas (Greening et al., 2015a), and
Thermogemmatispora (Islam et al., 2019). HucE proteins
were encoded by various Cyanobacteria, which are known
to recycle H2 produced during the nitrogenase reaction
via group 2a [NiFe]-hydrogenases (Houchins and Burris,
1981; Tamagnini et al., 2002), as well as genera capable of
aerobic hydrogenotrophic growth such as Nitrospira (Koch
et al., 2014), Pseudonocardia (Grostern and Alvarez-Cohen,
2013), and Acidithiobacillus (Schröder et al., 2007). Of the
hydrogenase-positive species surveyed, 9.5% lacked HucE and

1https://zenodo.org/record/3519494#.Xb4CnJozZPY

HhyE, including Thermomicrobium (Islam et al., 2019) and
Methylacidiphilum (Mohammadi et al., 2017) species known
to synthesize mid-affinity group 1h [NiFe]-hydrogenases. In
contrast, no HucE or HhyE sequences were retrieved from
organisms that lack hydrogenases.

Multiple sequence alignments show that HucE and HhyE
proteins contain highly conserved motifs potentially involved
in binding iron-sulfur clusters (Supplementary Figures S5,
S6). Both HucE and HhyE contain a CxxC motif within a
domain homologous to NifU proteins (Yuvaniyama et al., 2000).
The C-terminus of HhyE proteins contains two CxxC motifs
typical of iron-sulfur proteins (e.g., rubredoxins). In contrast, the
HucE proteins contain an C-terminal motif CxH(x15−18)CxxC
that matches the signature motif of Rieske iron-sulfur clusters
(Schmidt and Shaw, 2001) (Supplementary Figure S6). A subset
of the species surveyed contain truncated HucE and HhyE
proteins that contain the NifU-like domain, but lack the
C-terminal domains (Supplementary Figures S4, S5).

HucE and HhyE Are Essential for H2
Oxidation in Mycobacterium smegmatis
We used allelic exchange mutagenesis to generate markerless
single and double mutants of the hucE and hhyE genes
in M. smegmatis, i.e., 1hucE, 1hhyE, and 1hucE1hhyE.
Gene deletion was confirmed by PCR targeting chromosomal
sequences adjacent to the flanking regions used for homologous
recombination (Supplementary Figure S2). Assays were used
to compare H2 oxidation of these strains with the wild-type
strain and strains containing previously generated deletions of
the hydrogenase structural subunits, i.e., 1hucS, 1hhyL, and
1hucS1hhyL, that lack hydrogenase activity (Berney and Cook,
2010; Berney et al., 2014b; Greening et al., 2014a).

We first used a H2 electrode to measure rates of aerobic
H2 respiration mediated by whole cells of each strain. There
were significant differences in the rate of H2 oxidation for
all deletion strains compared to the wild type (Figure 2A).
Loss of hucE and hhyE resulted in reductions of 1.8-fold
and 8.4-fold, respectively; such reductions were statistically
indistinguishable from those observed in the mutants of the
hydrogenase structural subunits hucS and hhyL. Deletion of
both iron-sulfur proteins (1hucE1hhyE) or both hydrogenase
structural subunits (1hucS1hhyL) caused complete cessation of
H2 oxidation, highlighting that these two hydrogenases are solely
responsible for H2 oxidation and that the putative iron-sulfur
proteins are indispensable for this process. The low-level negative
rates in 1hucE1hhyE and 1hucS1hhyL strains most likely
reflect drift of the electrode rather than actual H2 production by
Hyh (Hyd3), since this hydrogenase is only upregulated during
hypoxia (Berney et al., 2014a). We successfully complemented
the 1hucE and 1hhyE strains by reintroducing the hucE and
hhyE genes on the episomal plasmid pMV261 (Stover et al., 1991)
(Figure 2B); in contrast, introducing the empty vector caused
no effect and neither did introducing the complementation
vectors in a wild-type background. This restoration of Huc
and Hhy activities in complemented iron-sulfur protein deletion
mutants strongly indicate that HucE and HhyE are essential for
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FIGURE 1 | Phylogenetic tree of HucE and HhyE proteins associated with group 2a and 1h [NiFe]-hydrogenases. The tree visualizes the evolutionary relationships
between a representative subset of 52 full-length HucE and 26 full-length HhyE sequences. The proteins encoded by Mycobacterium smegmatis are emphasized.
The tree was constructed using the maximum-likelihood method (gaps treated with partial deletion), bootstrapped with 100 replicates, and rooted at the mid-point.
The sequences used to create this tree are provided in Supplementary Table S3.

H2 oxidation. Moreover, the similarity in H2 oxidation rates
between the strains containing deletions of the catalytic subunits,
compared to the putative iron-sulfur proteins, is consistent with
HucE and HhyE being functionally linked with the Huc and Hhy
hydrogenases, respectively.

In an interrelated assay, we performed activity staining of
the Huc and Hhy hydrogenases using whole-cell lysates of
wild-type and deletion mutant strains, with and without the
complementation vectors, in the presence of the artificial electron

acceptor nitroblue tetrazolium chloride. In the Huc activity
staining gel (Figure 3A), three bands were observed in the whole-
cell lysates of wild-type strains, with or without complementation
vectors: the top high-MW band, middle mid-MW band, and
bottom low-MW band. Both the high-MW and low-MW bands
correspond to Huc activity (Cordero et al., 2019b) and these
bands were not observed in strains lacking either hucS or hucE.
However, Huc activity was restored when the 1hucE strain was
complemented by episomal expression of hucE. For Hhy activity
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FIGURE 2 | Hydrogen oxidation by wild-type, derived mutants, and complemented mutant strains of M. smegmatis. H2 uptake by whole cells in mid-stationary
phase (72 h post ODmax ∼3.0) was measured amperometrically using a Unisense H2 electrode. (A) Comparison of the rates of H2 oxidation between wild-type,
single and double mutants of the iron-sulfur proteins (1hucE, 1hhyE, 1hucE1hhyE), and single and double mutants of hydrogenase structural subunits (1hucS,
1hhyL, 1hucS1hhyL). (B) Rates of H2 oxidation in 1hucE and 1hhyE strains complemented with expression of hucE and hhyE, respectively. Controls include
wild-type, 1hucE, and 1hhyE strains transformed with empty vector pMV261 and wild-type strain transformed with complementation vectors pMVhucE and
pMVhhyE. Error bars show standard deviations of three biological replicates and values labeled with different letters are significantly different (p < 0.05) based on a
one-way ANOVA.

FIGURE 3 | Hydrogenase activity staining in wild-type, derived mutants, and complemented mutant strains of M. smegmatis. Whole-cell lysates were used for
zymographic staining of H2 uptake in a H2-rich atmosphere with nitroblue tetrazolium as artificial electron acceptor. (A) Huc activity staining of cultures of wild-type,
1hucS, 1hucE, 1hucS1hhyL, 1hucE1hhyE, and complemented 1hucE and wild-type M. smegmatis (either with empty pMV261 or complementation vector
pMVhucE) harvested at early-stationary phase (24 h post ODmax ∼3.0). (B) Hhy activity staining of cultures of wild-type, 1hhyL, 1hhyE, 1hucS1hhyL,
1hucE1hhyE, and complemented 1hhyE and wild-type M. smegmatis (either with empty pMV261 or complementation vector pMVhhyE) harvested at
mid-stationary phase (72 h post ODmax ∼3.0). The original gels and Coomassie stain are shown in Supplementary Figure S7.

staining (Figure 3B), a mid-sized MW band was be observed in
all wild-type strains. This band, which is the same middle band
observed in the Huc activity stain (Figure 3A), corresponds to
Hhy activity (Greening et al., 2014a; Cordero et al., 2019b). No

Hhy staining was detected with the loss of either hhyL or hhyE,
but complementation of the 1hhyE strain with hhyE restored
Hhy activity. The similarity in the staining bands observed
between 1hucS and 1hucE strains or between 1hhyL and 1hhyE
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indicate that the putative iron-sulfur proteins HucE and HhyE,
like their respective hydrogenase core subunits HucS and HhyL,
are important for hydrogenase activity. The artificial electron
acceptor cannot compensate for the loss of HucE/HhyE and
neither can HucE for HhyE nor HhyE for HucE. This further
supports the model that HucE and HhyE form a functional
association with Huc and Hhy, respectively.

HucE and HhyE Mutant Strains Have
Significant Growth and Survival Defects
Previous genetic studies have shown that the hydrogenases
modestly increase growth yield and long-term survival of
M. smegmatis (Berney and Cook, 2010; Greening et al., 2014b).
We therefore tested whether these findings extended to the
putative iron-sulfur proteins by analyzing the growth rate, growth
yield, and long-term survival of the seven aforementioned strains
when cultured aerobically on rich media (LBT). In line with
previous findings (Berney et al., 2014a; Greening et al., 2014b),
no significant differences in specific growth rate were observed
between the strains (Figure 4A). However, there was a 10%
reduction in the specific growth yield of the HhyE mutant
compared to the wild-type strain (ODmaxwt = 4.19± 0.21; ODmax
1hhyE = 3.81 ± 0.09; p = 0.008) (Figure 4B). This phenotype
extended to the double mutant strain (1hucE1hhyE) and again
phenocopied single and double mutants lacking the hhyL gene.

We also tested whether the strains were defective in long-
term survival by counting colonies of aerobic cultures 21 days
following ODmax. There were significant reductions in the
survival of most strains compared to the wild-type (Figure 4C).
Cell counts were approximately two-fold lower for the 1hhyE
and 1hhyL strains (p < 0.02), and four-fold lower for the
double mutant strains (p < 0.002), relative to the wild-type.
These findings agree with previous reports that atmospheric H2
oxidation by the hydrogenases enables M. smegmatis to survive
energy starvation (Greening et al., 2014b) and further supports
that the putative iron-sulfur proteins contribute to this function.
For reasons currently unclear, no phenotypes were observed for
the 1hucE strain.

DISCUSSION

In summary, this study shows that HucE and HhyE are
required for the enzymatic activity and physiological function
of the mycobacterial uptake hydrogenases. Strains lacking
these proteins showed no hydrogenase activity in either
amperometric or zymographic assays. Furthermore, they
exhibited growth and survival phenotypes similar to those of
knockouts of hydrogenase structural subunits (Berney and
Cook, 2010; Greening et al., 2014b); as with the structural
subunit mutants, these phenotypes are relatively minor,
likely reflecting the numerous survival mechanisms present
in M. smegmatis such as the ability to persist on carbon
monoxide (Cordero et al., 2019a). Despite some sequence
similarity between the two proteins, they are non-redundant,
as there was no compensation in hydrogenase activity in

FIGURE 4 | Comparison of growth and survival between wild-type and
mutant strains of M. smegmatis. Seven strains were grown on lysogeny broth
supplemented with Tween80 (LBT): wild-type, single and double mutants of
the iron-sulfur proteins (1hucE, 1hhyE, 1hucE1hhyE), and single and double
mutants of hydrogenase structural subunits (1hucS, 1hhyL, 1hucS1hhyL).
(A) Specific growth rate (µ) during exponential phase. (B) Final growth yield
(ODmax ) at 24 h post-stationary phase. (C) Long-term survival (CFU mL-1) at
21 days post-stationary phase. Error bars show standard deviations of six
biological replicates. Values labeled with different letters are significantly
different (p < 0.05) based on a one-way ANOVA.
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the single mutant strains. The genomic survey and phylogenetic
analysis indicate that hucE and hhyE genes co-evolved with the
genes encoding the structural subunits of the group 2a and
group 1h [NiFe]-hydrogenases. Their detection in the genomes of
most but not all characterized high-affinity H2 oxidizers indicate
they are important but overlooked mediators of atmospheric H2
oxidation. They are also associated with the group 2a [NiFe]-
hydrogenases of H2-recycling Cyanobacteria and various aerobic
hydrogenotrophic bacteria that are not currently known to
oxidize atmospheric H2.

This study lends some support to the hypothesis that these
proteins serve as the immediate electron acceptors for the group
2a and group 1h [NiFe]-hydrogenases. There are broadly five
lines of evidence that support this hypothesis: (i) the presence
of highly conserved motifs for binding iron-sulfur clusters,
(ii) the essentiality of these proteins for the function of these
hydrogenases, (iii) their association with the structural rather
than maturation operons of the hydrogenases (Berney et al.,
2014b), (iv) co-localization of HhyL, HhyS, and HhyE subunits
on native polyacrylamide gels (Cordero et al., 2019b), and (v)
their genomic association with hydrogenases that lack known
electron transfer subunits (e.g., cytochrome b subunits). With the
respect to the latter point, it is interesting that these proteins
are conserved in Cyanobacteria, given the immediate electron
acceptors of their uptake hydrogenases have long remained
enigmatic (Tamagnini et al., 2002). It is also notable that HucE
proteins encode the signature motifs of a Rieske iron-sulfur
cluster. Given their unusual ligands, these clusters have a higher
standard redox potential (Eo’ > −150 mV) than most iron-
sulfur clusters (e.g., ferredoxins) (Brown et al., 2008). They would
therefore be well-poised to accept the relatively high-potential
electrons derived from atmospheric H2 and transfer them to
menaquinone. Consistently, zymographic studies suggest that
the high-affinity hydrogenases operate at higher redox potential
than prototypical hydrogenases, given they are reactive with
the nitroblue tetrazolium (Eo’ = −80 mV) but not viologen
compounds (Eo’ =−360 mV) (Pinske et al., 2012; Greening et al.,
2014a).

While this study demonstrates HucE and HhyE are important
for mycobacterial hydrogenase activity, further work is ultimately
needed to resolve their respective function. While a role in
electron transfer is most plausible, we have not demonstrated that
these proteins interact with the hydrogenases and it is notable
that the artificial electron acceptor nitroblue tetrazolium chloride
cannot compensate for their absence. In this regard, other roles
are also possible and compatible with the available evidence, for
example as specific assembly factors and/or structural scaffolds
for the hydrogenases. For example, it has been demonstrated that

a rubredoxin-related protein is important for aerobic maturation
of the group 1d [NiFe]-hydrogenase in R. eutropha (Fritsch
et al., 2014). Furthermore, it is possible that other hypothetical
proteins downstream of HucE and HhyE may also serve as
electron acceptor candidates, in particular MSMEG_2717 that
shares homology to PHG067, the proposed electron acceptor
of R. eutropha (Schäfer et al., 2013). Biochemical studies,
including studying the redox chemistry of these proteins and
their interactions with the as-yet-unpurified hydrogenases, are
now required to distinguish these possibilities and develop a
sophisticated understanding of their function.
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