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Gene-based tests to study the combined effect of rare variants on a particular phenotype

have been widely developed for case-control studies, but their evolution and adaptation

for family-based studies, especially studies of complex incomplete families, has been

slower. In this study, we have performed a practical examination of all the latest

gene-based methods available for family-based study designs using both simulated and

real datasets. We examined the performance of several collapsing, variance-component,

and transmission disequilibrium tests across eight different software packages and

22 models utilizing a cohort of 285 families (N = 1,235) with late-onset Alzheimer

disease (LOAD). After a thorough examination of each of these tests, we propose a

methodological approach to identify, with high confidence, genes associated with the

tested phenotype and we provide recommendations to select the best software and

model for family-based gene-based analyses. Additionally, in our dataset, we identified

PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD,

CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L) as candidate genes for familial LOAD.

Keywords: gene-based, family-based, clustering, variance-component, transmission disequilibrium, rare variants,

whole exome sequencing, Alzheimer’s disease

INTRODUCTION

Alzheimer disease (AD) is a complex condition for which almost 50% of its phenotypic variability
is due to genetic causes; yet only 30% of the genetic variability is explained by known markers
(Ridge et al., 2016). GWAS studies have identified more than 20 risk loci (Lambert et al., 2013) and
sequencing studies have identified additional genes harboring low frequency variants with large
effect size (TREM2, PDL3, UNC5C, SORL1, and ABCA7; Sims et al., 2017). Recent studies also
indicate that Late-Onset AD (LOAD) families are enriched for genetic risk factors (Cruchaga et al.,
2017). Therefore, studying those families may lead to the identification of novel variants and genes
(Guerreiro et al., 2013; Cruchaga et al., 2014).
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Current consensus is that the missing heritability for complex
traits like AD may be hidden within rare variants that have low
to moderate effect on disease risk (Frazer et al., 2009; Manolio
et al., 2009; Cirulli and Goldstein, 2010). The rarity of these
markers requires specific study designs and statistical analyses
for their detection. The simplest approach to detect rare variants
for association is to test each variant individually using standard
contingency table and regression methods. But due to the limited
number of observations of the rare minor allele for a specific
variant, the statistical power to detect association with any rare
variant is limited; hence, extremely large samples are required
and a more stringent multiple-test correction is necessary (Li
and Leal, 2008; Bansal et al., 2010). It has been acknowledged
that the best alternative to single-variant analysis is to collapse
sets of pre-defined candidate rare variants within significant
units, usually genes (gene-based sets) (Neale and Sham, 2004;
Lee et al., 2014). For collapsing tests each variant is given a
certain weight and the weights of all variants within the region
are summed; depending on the weights and how summation is
performed there are three major types of gene-based methods:
collapsing tests, variance-component tests, and combined tests
(Lee et al., 2014). Collapsing tests analyze whether the overall
burden of rare variants is significantly different between cases
and controls by regressing disease status on minor allele counts
(MAC). The Cohort Allelic Sum Test (CAST) is a dominant
geneticmodel which assumes that the presence of any rare variant
increases disease risk (Morgenthaler and Thilly, 2007); whereas
the Combined Multivariate and Collapsing (CMC) method
collapses rare variants in different MAF categories and evaluates
the joint effect of common and rare variants through Hoteling’s
test (Li and Leal, 2008). However, neither CAST nor CMC tests
account for directional effect. The Variable Threshold (VT) test
does allow for both trait-increasing and trait-decreasing variants;
it selects optimal frequency thresholds for burden tests of rare
variants and estimates p-values analytically or by permutation
(Price et al., 2010). Variance-componence methods test for
association by evaluating the distribution of genetic effects for a
group of variants while appropriately weighting the contribution
of each variant. The sequence kernel association test (SKAT)
casts the problem to mixed models (Lee et al., 2014) and, in
the absence of covariates, SKAT reduces to a C-alpha test (Neale
et al., 2011). Finally, collapsing and variance component tests can
be combined into one statistical method, the SKAT-O approach
(Lee et al., 2012), which is statistically efficient regardless of the
direction and effect of the variants tested.

All these methods were initially designed for unrelated case-
control studies; but considering the rarity of these variants,
large datasets are required to achieve statistical power (Laird
and Lange, 2006). Alternatively, family-based studies in which
several family members share the same phenotype may provide
more statistical power than regular case-controls studies (Li
et al., 2006; Cirulli and Goldstein, 2010; Kazma and Bailey,
2011; Ott et al., 2011). Pioneering methods for gene-based
analyses in familial datasets are based on the transmission
disequilibrium test (TDT–Spielman et al., 1993) which uses
the marker genotype of an affected child and genotypes of
the parents to test for association (Laird et al., 2000; Horvath

et al., 2001; Ott et al., 2011; De et al., 2013; Ionita-Laza et al.,
2013). TDT works under the paradigm of Mendel’s laws to
determine which marker in the affected offspring is responsible
for the phenotype (Zöllner et al., 2004). TDT methods have been
extended to test rare-variants by grouping information across
multiple variants within a genomic region (He et al., 2014).
However, these methods were still not valid for incomplete or
nuclear families that have several affected offspring. Considering
the late-onset nature of Alzheimer disease it is often difficult
to obtain genetic information from parents (to conform trios)
or nuclear family units. The typical pedigree in familial LOAD
represents incomplete, large familial units (Figure 1). Most of
the early software for gene-based family-based studies were not
suitable for complex pedigrees like those observed in Alzheimer
studies. In recent years gene-based methods, whether referring to
collapsing, variance-component, or transmission disequilibrium
tests, have been adapted to account for complex family structure
in its gene-based calculations. Among the software that can
manage large pedigrees we find SKAT (Wu et al., 2011), FSKAT
(Yan et al., 2015), GSKAT (Wang et al., 2013), RV-GDT (He et al.,
2017), EPACTS (http://genome.sph.umich.edu/wiki/EPACTS),
FarVAT (Choi et al., 2014), PedGene (Schaid et al., 2013), and
RareIBD (Sul et al., 2016).

In this study, we wanted to evaluate the performance of the
eight most common gene-based family-based methods available
by using a real dataset, over 250 multiplex families affected with
Alzheimer disease, under different conditions and models. We
simulated multiple scenarios in which candidate variants in the
same gene perfectly segregates with disease status to rank the
different programs and models. We also tested the performance
of these tests for identifying known causal genes for AD in our
cohort. Finally, we performed genome-wide analyses to evaluate
the power of each of these tests. Altogether, we discuss the pros
and cons of each method that can be informative for other
investigators performing similar analyses: complex diseases in
complex, incomplete, large families. We want to emphasize that
although this work focused on AD, the information extracted
from this work can be applied to other complex traits as well.
Finally, based on the results from the methods analyzed, we
present some candidate genes for AD.

MATERIALS AND METHODS

Cohort
The LOAD families included in this study originated from two
cohorts: Washington University School of Medicine (WUSM;
n = 1,144) and Alzheimer Disease Sequencing Project (ADSP;
n= 91) (Table 1).

WUSM Cohort
Samples from the Washington University School of Medicine
(WUSM) cohort were recruited by either the Charles F. and
Joanne Knight Alzheimer’s Disease Research Center (Knight
ADRC) at the WUSM in Saint Louis or the National Institute
on Aging Genetics Initiative for Late-Onset Alzheimer’s Disease
(NIA-LOAD). This study was approved by each recruiting
center’s Institutional Review Board and research was carried out
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FIGURE 1 | Structure of families used in this study. Black diamonds represent cases and white diamonds represent controls. Y: genetic data available. N: no genetic

data available.

TABLE 1 | Demographic data for the familial dataset employed in this study.

N *Age ± SD *Age range % Fe % APOE4

Cases 824 73 ±7 48–99 63 73

Controls 411 83 ± 9 39–104 59 51

Total 1235 77 ± 10 39–104 61 65

*Age At Onset (AAO) for cases and Age at Last Assessment (ALA) for controls.

in accordance with the approved protocol. Written informed
consent was obtained from participants and their family
members by the Clinical and Genetics Core of the Knight ADRC.
The approval number for the Knight ADRCGenetics Core family
studies is 201104178. The NIA-LOAD Family Study has recruited
multiplex families with two or more siblings diagnosed with
LOAD across the United States. A description of these samples
has been reported previously (Wijsman et al., 2011; Cruchaga
et al., 2012; Fernández et al., 2017). We selected individuals for
sequencing from families in which APOEε4 did not segregate
with disease status, and in which the proband of the family did
not carry any known mutation in APP, PSEN1, PSEN2, MAPT,
GRN, or C9orf72 (described previously; Cruchaga et al., 2012).

ADSP Cohort
The Alzheimer’s Disease Sequencing Project (ADSP) is a
collaborative work of five independent groups across the
USA that aims to identify new genomic variants contributing

to increased risk for LOAD (https://www.niagads.org/adsp/
content/home). During the discovery phase, ADSP generated
whole genome sequence (WGS) data frommembers of multiplex
LOAD families, and whole exome sequence (WES) data
from a large case-control cohort. These data are available to
qualified researchers through the database of Genotypes and
Phenotypes (https://www.ncbi.nlm.nih.gov/gap Study Accession:
phs000572.v7.p4).

The familial cohort of the ADSP consists of 582 individuals
from 111 multiplex AD families from European-American,
Caribbean Hispanic, and Dutch ancestry (details about the
samples are available at NIAGADS). We downloaded raw data
(.sra format) from dbGAP for 143 IDs (113 cases and 23 controls)
from 37 multiplex families of European-American ancestry that
were incorporated with the WUSM cohort.

Sequencing
Samples were sequenced using either whole-genome sequencing
(WGS, 12%) or whole-exome sequencing (WES, 88%). Exome
libraries were prepared using Agilent’s SureSelect Human All
Exon kits V3 and V5 or Roche VCRome (Table 2). Both
WES and WGS samples were sequenced on a HiSeq2000 with
paired end reads, with a mean depth of coverage of 50× to
150× for WES and 30× for WGS. Alignment was conducted
against GRCh37.p13 genome reference. Variant calling was
performed separately for WES and WGS following GATK’s
3.6 Best Practices (https://software.broadinstitute.org/gatk/best-
practices/) and restricted to Agilent’s V5 kit plus a 100 bp of
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TABLE 2 | Number of samples for which whole genome sequencing (WGS) or

whole exome sequencing (WES) was performed, with detail of the exon library kits

employed in this study.

Exon library kit WGS WES

WGS 153

Agilent’s SureSelect Human All Exon kits V3 0 28

Agilent’s SureSelect Human All Exon kits V5 0 665

Roche VCRome 0 389

Total 153 1,082

padding added to each capture target end. We used BCFTOOLS
(https://samtools.github.io/bcftools/bcftools.html) to decompose
multiallelic variants into biallelic prior to variant quality control.
Variant Quality Score Recalibration (VQSR) was performed
separately for WES and WGS, and for SNPs and INDELs.
Only those SNPs and indels that fell above the 99.9 confidence
threshold, as indicated by WQSR, were considered for analysis;
variants within low complexity regions were removed from both
WES and WGS and variants with a depth (DP) larger than
the average DP + 5 SD in the WGS dataset were removed.
At this point SNPs and indels from WES and WGS datasets
were merged into one file. Non-polymorphic variants and those
outside the expected ratio of allele balance for heterozygosity
calls (ABHet = 0.3–0.7) were removed. Additional hard filters
implemented included quality depth (QD ≥ 7 for indels and
QD ≥ 2 for SNPs), mapping quality (MQ ≥ 40), fisher strand
balance (FS≥ 200 for indels and FS≥ 60 for SNPs), Strand Odds
Ratio (SOR ≥ 10 for Indels and SOR ≥ 3 for SNPs), Inbreeding
Coefficient (IC ≥ −0.8 for indels) and Rank Sum Test for
relative positioning of reference vs. alternative alleles within reads
(RPRS ≥ −20 for Indels and RPRS ≥ −8 for SNPs) (Figure S1).
We used PLINK1.9 (https://www.cog-genomics.org/plink2/ibd)
to remove variants that were out of Hardy Weinberg equilibrium
(p < 1 × 10−6), with a genotype calling rate below 95%, with
differential missingness between cases vs. controls, WES vs.
WGS, or among different sequencing platforms (p < 1× 10−6).

Samples with more than 10% of missing variants (four
samples) and whose genotype data indicated a sex discordant
from the clinical database (three samples) were removed from
the dataset. Individual and familial relatedness was confirmed
using identity-by-descent (IBD) calculations, an existing GWAS
dataset for these individuals, and the pedigree information.
Because many of the ADSP families were also recruited from the
NIA-LOAD repository there is a certain overlap (48 individuals)
between the WUSM and the ADSP familial cohorts; we kept
the duplicate that had better genotyping rate after QC. Principal
Component Analysis (PCA) was calculated to corroborate
ancestry and restrict our analysis to only samples from European
American origin. Functional impact and population frequencies
of variants were annotated with SnpEff (Cingolani et al., 2012).
For this analysis, only SNVs with a minor allele frequency (MAF)
below 1%, as registered in ExAC (Lek et al., 2016), were tested.

We excluded families carrying a known pathogenic
mutation in any of the Mendelian genes for Alzheimer disease,

Frontotemporal Dementia, or Parkinson disease (Fernández
et al., 2017). We restricted the selection of families to those with
at least one case and one control in the family, and we excluded
any participants that were initially clinically diagnosed with AD
but had a different diagnosis after pathological examination.
Finally, our dataset consisted of 1,235 non-hispanic whites
(NHW), 824 cases and 411 controls, from 285 different families
(Table 1, Table S1). Of these 1,235 individuals, 1144 originated
fromWUSM and 91 were from ADSP.

Study Design and Analysis
The goal of this study was to test the performance and power
of different gene-based family-based methods currently available,
using a real dataset consisting of 1,235 non-hispanic white
individuals from 285 families densely affected with AD. We
created three different scenarios to test (Figure 2). First, using the
real phenotype and pedigree structure from 25 of the 285 families,
we generated a synthetic dataset with multiple variants and
families with perfect segregation. Second, we evaluated different
variant-combinations for the APOE gene. Third, we performed
genome-wide gene-based analysis of only nonsynonymous SNPs
with a MAF <1%. For each one of these scenarios we evaluated
the performance of the different gene-based methods (collapsing,
variance-component, and transmission disequilibrium) from
the following family-based packages: SKAT (Wu et al., 2011),
FSKAT (Yan et al., 2015), GSKAT (Wang et al., 2013), RVGDT
(He et al., 2017), EPACTS (http://genome.sph.umich.edu/wiki/
EPACTS), FarVAT (Choi et al., 2014), PedGene (Schaid et al.,
2013), RareIBD (Sul et al., 2016). Some of these software offer
the option to run different gene-based algorithms; e.g., GSKAT,
EPACTS, FarVAT or PedGene can run collapsing and variance-
component tests; therefore, we ran a total of 25 models (Table 3).
The details of each one of these scenarios are described next.

Simulated Data
We selected 25 representative families from our entire dataset
for which there were genotypic data for three to seven members
(Table S2). We used the existing family structure and phenotypes
of these families, and a simulated gene called “GENE-A”
containing five variants. We generated several scenarios in which
different numbers of families presented perfect segregation with
disease status for a variant in GENE-A (Table 4, Table S2). First,
we considered a scenario in which only the first five families
of the dataset were included in the analyses and each family
presented a different perfectly segregating variant of GENE-
A [scenario 5 family carriers (FC) and 0 non-carriers (FNC):
5FC×0FNC]. Second, we generated additional scenarios in which
we kept the same five families as carriers of segregating variants
in GENE-A, and added five (scenario 5FC×5FNC), ten (scenario
5FC×10FNC), 15 (scenario 5FC×15FNC), and 20 (scenario
5FC×20FNC) families that were not carriers of any variant in
GENE-A. Then, we considered four scenarios of 25 families in
which each new scenario added families who were carriers of
a segregating variant in GENE-A. We started with the scenario
5FC×20FNC, then we simulated 10 families who had carriers
and 15 families who were non-carriers (scenario 10FC×15FNC),
15 families with carriers and 10 families who were non-carriers
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FIGURE 2 | Schematic design of the analysis performed in this study.

TABLE 3 | Relationship of programs and models tested according to their main features and kinship matrix that they use.

Collapsing Variance-component Combined Transmission-disequilibrium Kinship

Burden CMC VT C-ALPHA SKAT SKATO BN IBS Ped

EPACTS X X X X

RVGDT X

SKAT-v2 X X X X

GSKAT X X X

FSKAT X X

FarVat-Adj X X X X

FarVat-BLUP X X X X

Pedgne X X

RareIbd X

(scenario 15FC×10FNC), 20 families with carriers and five
families who were non-carriers (scenario 20FC×5FNC) and
concluded with a scenario in which all 25 families were carriers
of one out of the possible five segregating variants in GENE-A
(scenario 25FC×0FNC). We tested each of these scenarios with
all previously mentioned gene-based methods and software to

evaluate their power to associate perfect segregating variants with
disease.

Candidate Genes
APOE is the largest genetic risk factor for Alzheimer’s disease.
The allelic combination of two SNPs, rs429358 (APOE 4;
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TABLE 4 | Representation of the segregation pattern of the simulated gene.

GENE-A

SNP1 SNP2 SNP3 SNP4 SNP5

Fam1 1 0 0 0 0

Fam2 0 1 0 0 0

Fam3 0 0 1 0 0

Fam4 0 0 0 1 0

Fam5 0 0 0 0 1

Fam6 1 0 0 0 0

Fam7 0 1 0 0 0

Fam8 0 0 1 0 0

Fam9 0 0 0 1 0

Fam10 0 0 0 0 1

Fam11 1 0 0 0 0

Fam12 0 1 0 0 0

Fam13 0 0 1 0 0

Fam14 0 0 0 1 0

Fam15 0 0 0 0 1

Fam16 1 0 0 0 0

Fam17 0 1 0 0 0

Fam18 0 0 1 0 0

Fam19 0 0 0 1 0

Fam20 0 0 0 0 1

Fam21 1 0 0 0 0

Fam22 0 1 0 0 0

Fam23 0 0 1 0 0

Fam24 0 0 0 1 0

Fam25 0 0 0 0 1

One (1) means that all cases within the family are carriers of the variant. Zero (0) means

that the variant is not present in that family.

19:45411941:T:C), and rs7412 (APOE 2: 19:45412079:C:T),
determines one of the three major isoforms of APOE protein,
ε2, ε3, or ε4. The dosage of these isoforms determines a person’s
risk for AD, from having a protective effect in the cases of APOE
ε2/ε2 (OR 0.6) or ε2/ε3 (OR 0.6) to different degrees of increased
risk according to the number of copies of the ε4 allele (ε2/ε4,
OR 2.6; ε3/ε4, OR 3.2; ε4/ε4, OR 14.9) (Farrer et al., 1997). We
tested the power of all previously mentioned gene-basedmethods
and software to detect the association of APOE gene with disease
in our entire dataset (N = 1,235) under different conditions.
We first tested all polymorphic variants (nonsynonymous with
MAF< 1%) in the APOE gene, next we tested only those variants
considered to have a high or moderate effect on the protein
including rs429358 and rs7412, then we tested high andmoderate
effect variants alone, and finally tested rs429358 and rs7412 alone.

Genome-Wide Analyses
We performed gene-based burden analyses on a genome-wide
level in our entire dataset (families n = 285; samples N =

1,235) to evaluate the power of each of the previously described
methods to detect novel genes significantly associated with
disease; only single nucleotide variants (SNVs) with a minor

allele frequency equal to or below 1% (MAF ≤ 1%), based on
the EXAC dataset (Lek et al., 2016), and with a predicted high
or moderate effect, according to SnpEff (Cingolani et al., 2012),
were included in the analysis. Quantile-Quantile (QQ) plots from
gene-based p-values were generated with the R package “ggplot2”
(Wickham, 2009). We also evaluated the correlations between
these methods using Pearson correlation (Pc) and Spearman
correlation (Sc) tests of the log of the p-values using R v3.4.0 (R
Core Team, 2017). Pc evaluates the linear relationship between
two continuous variables whereas Sc evaluates the monotonic
relationship between two continuous or ordinal variables.

Software Tested
An accompanying supporting file (Supplementary Material)
provides a summary of the code employed to run each of the
programs described below.

GSKAT
GSKAT (Wang et al., 2013) is among the first R packages
developed with the goal of extending burden and kernel-based
gene set association tests for population data to related samples
with binary phenotypes. To handle the correlated or clustered
structure in the family data, GSKAT fits a marginal model with
generalized estimated equations (GEE). The basic idea of GEE is
to replace the covariancematrix in a generalized linearmixmodel
(GLMM) with a working covariance matrix that reflects the
cluster dependencies. Accordingly, GSKAT blends the strengths
of kernel machine methods and generalized estimating equations
(GEE) to test for the associations between a phenotype and
multiple variants in a SNP set. We ran GSKAT correcting for sex
and first two PCs.

SKAT
The sequence kernel association test SKAT (Wu et al., 2011)
is an R package initially designed for case-control analyses.
Later they incorporated the Efficient Mixed-Model Association
eXpedited (EMMAX) algorithm (Kang et al., 2010; Zhou and
Stephens, 2012) which allows for performing family-based
analyses. EMMAX simultaneously corrects for both population
stratification and relatedness in an association study by using
a linear mixed model with an empirically estimated relatedness
matrix to model the correlation between phenotypes of sample
subjects. The efficient application of the EMMAX algorithm
depends on appropriate estimates of the variance parameters.
Relatedness matrices can be calculated based on pedigree
structure or estimated from genotype data. For the latter
different methods have been proposed. Relatedness can be
estimated using those alleles that have descended from a single
ancestral allele, i.e., those that are Identical by Descent (IBD), or
using the Balding-Nichols (BN) method (Balding and Nichols,
1995) which explicitly models current day populations via their
divergence from an ancestral population specified by Wright’s
Fst statistic. We ran SKAT v1.2.1, in R v3.3.3, using the option
SKAT_Null_EMMAX correcting for sex and first two PCs and
we tested four different kinship matrices: pedigree, IBS, BN and
a BN-based kinship matrix (HR) that the EPACTS software
constructs (Table S3).
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FSKAT
FSKAT (Yan et al., 2015), also an R package, is based on a
kernel machine regression and can be considered an extension
of the sequence kernel association tests (SKAT and famSKAT)
for application to family data with dichotomous traits. FSKAT
is based on a GLMM framework. Moreover, because it uses
all family samples, FSKAT claims to be more powerful than
SKAT which uses only unrelated individuals (founders) in
the family data. FSKAT constructs a kinship matrix based on
pedigree relationships using the R kinship library.We ran FSKAT
correcting for sex and first two PCs.

EPACTS
Efficient and Parallelizable Association Container Toolbox
(EPACTS) is a stand-alone software that integrates several gene-
based statistical tests (CMC, VT, and SKAT) and adapts them to
work with complex families by using EMMAX (https://genome.
sph.umich.edu/wiki/EPACTS). EPACTS generates a kinship
matrix based on the BN algorithm and also annotates the
genotypic input file and offers filtering tools (frequency and
predicted effect of variants) for easier user-selection of variants
that go into gene-based analyses. Nonetheless, we used the same
set of variants as in the other tests to run our analysis with
EPACTS, correcting for sex and first two PCs.

FarVAT
The Family-based Rare Variant Association Test (FarVAT) (Choi
et al., 2014) provides a burden and a variance component
test (VT) for extended families and extends these approaches
to the SKAT-O statistic. FarVAT assumes that families are
ascertained based on the disease status if family members
and compares minor allele frequencies between affected and
unaffected individuals. FarVAT is implemented with C++ and
is computationally efficient. Additionally, if genotype frequencies
of affected and unaffected samples are compared to detect genetic
associations, it has been shown that the statistical efficiency can
be improved by modifying the phenotype; and so FarVAT uses
prevalence (Lange and Laird, 2002) or Best Linear Unbalanced
Predictor (BLUP) (Thornton and McPeek, 2007) as covariate to
modify the genotype.

PedGene
PedGene (Schaid et al., 2013) is an R package that extends burden
and kernel statistics to analyze binary traits in family data using
large-scale genomic data to calculate pedigree relationships. To
derive the kernel association statistic and the burden statistic for
data that includes related subjects, they take a retrospective view
of sampling with the genotypes considered random.

RVGDT
The Rare Variant Generalized DisequilibriumTest (RVGDT) (He
et al., 2017), implemented with Python, differs from the previous
methods presented. Instead of using a kernel method to evaluate
variants, it uses the generalized disequilibrium test (GDT) which
tests genotype differences in all discordant relative pairs to assess
associations within a family (Chen et al., 2009). The rare-variant
extension of GDT (RVGDT) aggregates a single-variant GDT

statistic over a genomic region of interest, which is usually a gene
(He et al., 2017). We ran RVGDT correcting for sex and first two
PCs.

RareIBD
The developers claim RareIBD (Sul et al., 2016) to be a program
without restrictions on family size, type of trait, whether founders
are genotyped, or whether unaffected individuals are genotyped.
The method is inspired by non-parametric linkage analysis and
looks for rare variants with segregation patterns among affected
and unaffected individuals that are different from the predicted
distributions based on Mendelian inheritance and computes a
statistic measuring the difference.

RESULTS

Simulated Dataset
Results from the simulated dataset indicate that RVGDT,
rareIBD, and collapsing-based methods (Burden, CMC, and
CLP) provided more statistical power than the variance-
component methods to detect associations of perfectly
segregating variants with disease status (Table 5).

In a hypothetical scenario of five families in which each family
presented perfect segregation with disease status for a different
variant within the same gene (5FC×0NFC), transmission-
disequilibrium based methods evaluated this association as
significant (even after multiple test correction; e.g., RVGDT p
= 0.004; p-value after multiple test correction 0.004 × 9 =

0.036). RVGDT reached a ceiling p-value of 1 × 10−4; at 10
families with carriers (FC) plus 15 families of non-carriers (FNC).
RVGDT was unable to produce a p < 9 × 10−4, therefore it
is not possible to rank or determine the significance of genes
that reach this limit. Similarly, RareIBD reports the same p-
value for all simulated scenarios, which may be an artifact or a
flaw of the program. Collapsing-based methods (Burden, CMC
and CLP) started with significant p-values for the 5FC×0NFC
scenario, but as we added FNC in the analyses, the associations
became less significant. Then as we increased the number
of FC of segregating variants, the associations became more
significant. In our analyses, most of the variance-component
tests could not work with the scenarios containing only five
families carrying the segregating variant; most of the tests only
provided p-values once 25 families were included in the analyses
(5FC×20FNC). After that, as we increased the number of FC of
segregating variants, the p-values became smaller. SKAT required
15FC×10FNC to report nominally significant p-values, GSKAT
required 20FC×5FNC to report statistically significant p-values,
FarVAT-CALPHA did not generate significant p-values unless
we used the BLUP correction; FarVAT SKATO reported p-values
that were significant at 15FC×10FNC, and at 5FC×20FNC if we
used the BLUP correction. P-values from EPACTS-SKAT were
not statistically significant after multiple test correction. FSKAT
did not deal well with perfectly segregating scenarios; it did not
provide p-values for a scenario of only five families all carriers
of the segregating variant (5FC×0FNC–FSKAT p-value = NA),
and after five families carrying a segregating variant, the program
saturated giving no p-value.
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Overall, Transmission-disequilibrium tests and collapsing
tests were the models that identified the simulated segregating
variants as associated with the phenotype; the CMC model
provided by FarVAT-BLUP was the one providing most genome-
wide significant p-values, even in the 5FC×0FNC scenario.

Candidate Genes-APOE
We examined the performance of four gene-sets generated for
the APOE gene with the 22 family-based gene-based methods in
our entire familial cohort. Neither the entire set of polymorphic
variants (set “gene” in Table 6) nor the set including only rare
nonsynonymous variants (set “HM” in Table 6) confer risk for
these families. The association seems to be driven by the common
APOE ε2 and ε4 variants, since only when these were included,
either alone (set “ε2ε4” in Table 6) or in conjunction with the
rest of the rare nonsynonymous variants (set “HM-ε2ε4” in
Table 6) did most of the tests yield a significant p-value (after
multiple test correction). Only EPACTS-SKAT did not report
the APOE ε2 and ε4 variants as significantly associated, after
multiple test correction, within our dataset (Table 6). The most
significant association for APOE ε2 and ε4 variants was reported
by FarVAT-CMC test.

Genome-Wide Analyses
Overall, we examined eight software and over 22 algorithms
for genome-wide association analyses in our extended family
dataset of 285 families and 1,235 non-hispanic white individuals.
We only included in the analyses nonsynonymous SNPs with
a MAF ≤ 1% and we corrected for sex and first two PCs. All
22 algorithms were run using the same input data. The results
for these 22 algorithms are described, grouped per category,
in the following sections. First, we compare the correction
effect provided by four kinship matrices (Figure 3A). Second,
we compare the performance of nine variance-component
software and algorithms (Figure 3B). Third is the comparison
of eight collapsing software and algorithms. Fourth, we compare
two transmission-disequilibrium tests. We conclude the results
section by providing a summary of the pros and cons
encountered while running these methods. Overall, most of
the results from the gene-based methods tested seemed quite
deflated. Only PedGene, FarVAT and Rare-IBD seemed to
provide values closer to or above the expected under the null
hypothesis. The most efficient in terms of power and p-value
inflation appears to be FarVAT with BLUP correction.

Kinship Matrices
We tested the correction provided by four kinship matrices using
the SKAT method with EMMAX correction implemented in
the R package SKATv2. The four kinship matrices tested were
pedigree calculation (PED), Identity By State (IBS) estimation,
Balding-Nichols (BN) estimation, and the kinship generated
by EPACTS (HR) which is also based on the BN algorithm
(Figure 3A). Table S3 offers a comparison of these kinships for
FAM#1 and FAM#2 of our simulated dataset. For these analyses,
we ran the SKAT-EMMAX method in our entire dataset, gene-
wide, and calculated a QQ plot and inflation factor (λ) to obtain a
general ideal of the behavior of eachmatrix.Matrices based on the

BN algorithm seemed to have a similar performance (SKAT-BN λ

= 0.038, SKAT-HR λ= 0.039,Table 7) though their concordance
was lower than expected considering they are based on the
same algorithm [Pearson correlation (Pc) = 0.85; Spearman
correlation (Sc)= 1]. Although the PEDmatrix generates a more
restrictive correction than the IBS matrix (SKAT-PED λ = 0.36,
SKAT-IBS λ = 0.67, Table 7), these two tests have a similar
overall performance as the p-values for the different genes were
highly correlated (Pc = 0.97; Sc = 0.98), making the PED matrix
a good surrogate for the IBS matrix. Finally, there were clear
performance differences between the BN-type matrices (BN and
HR) and the IBS-type matrices (IBS and PED), exemplified by the
different top candidate genes (NR1D1 for BN-type matrices and
CHRD for IBS-type matrices) and by the correlation algorithms
(SAKT-IBS vs. SKAT-BN Pc = 0.8; Sc = 0.89). Overall, we
found that the IBS matrix provided the best balance between
covariance-correction and overcorrection in our dataset.

Collapsing Tests
The collapsing methods tested from four different software
(PedGene, FarVAT, EPACTS and GSKAT) were Burden, CMC,
and VT (Figure 3C). To compare the different tests we followed
a similar approach as above, ran the different software with the
same imputed file, and compared the λ.

In our analyses, the burden test by GSKAT presented the
most deflated values; though the lambda does not illustrate this
(GSKAT-Burdenλ= 1.71,Table 7) because of the initial inflation
among the low or non-significant genes. EPACTS-CMC (λ =

0.85) and EPACTS-VT (λ = 0.95) provided values closer to the
expected, and although their QQ-plots appear to follow a similar
trend, their correlation is low (Pc = 0.54; Sc = 0.68) and they
reported different top genes. The Burden and CMC methods
by FarVAT and FarVAT-BLUP provided p-values closest to the
expected (FarVAT-Burden λ = 0.98; FarVAT-CMC λ = 0.99,
FarVAT-BLUP-Burden λ = 1.03; FarVAT-BLUP-CMC λ = 1.07).
The correlation for the gene p-values was higher between results
generated by the samemethod (FarVAT-BLUP-CMC vs. FarVAT-
BLUP-Burden Pc = 0.99; Sc = 0.96; FarVAT-CMC vs. FarVAT-
Burden Pc = 0.98; Sc = 0.97) than between results generated
using the same algorithm (FarVAT-BLUP-CMCvs. FarVAT-CMC
Pc = 0.88; Sc = 0.8; FarVAT-BLUP-Burden vs. FarVAT-Burden
Pc = 0.85; Sc = 0.77). PedGene in the burden model was the
software that provided the most significant p-values; however,
these were clearly inflated compared to the predicted p-values
(Pedgene-Burden λ = 2.99, Table 7) and the results were not
correlated with any other Collapsing test (Pc and Sc values< 0.1).

Variance Component Tests
This subset included all the Variance component-based
methods available, CLP, CALPHA and SKAT, from six different
software: PedGene, FarVAT, FSKAT, EPACTS, SKAT, and
GSKAT (Figure 3C). GSKAT was the software that reported
more deflated values, though the lambda does not illustrate
this (GSKAT-SKAT λ = 1.681, Table 7) because of the initial
inflation among the low or non-significant genes. GSKAT
was followed by SKAT and EPACTS which showed similar
λ and performance-values for each gene (Pc = 0.8, Sc =
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FIGURE 3 | Quantile-quantile (QQ) plots from different family-based gene-based methods for all nonsynonymous variants with a MAF <1% in our family-based

dataset. (A) Comparison of SKAT test using different kinship matrices: pedigree calculation (PED), Identity By Similarity (IBS) estimation, Balding-Nichols (BN)

estimation, and the kinship generated by EPACTS (HR). (C) Comparison of different collapsing tests: GSKAT, EPACTS, FarVAT, and PedGene. (B) Comparison of

different variance-component gene-based methods: GSKAT, FSKAT, SKAT, EPACTS, FarVAT, and PedGene. (D) Comparison of transmission disequilibrium tests:

RVGDT and RareIBD.

0.8, Figure 4). The CLP, CALPHA, and SKATO methods by
FarVAT and FarVAT-BLUP provided p-values closest to the
expected (FarVAT-CLP λ = 1.00; FarVAT-CALPHA λ = 1.15;
FarVAT-SKATO λ= 1.02, FarVAT-BLUP-CLP λ= 1.11; FarVAT-
BLUP-CALPHA λ = 1.26; FarVAT-BLUP-SKATO λ = 1.10).
FarVAT-CALPHA, FarVAT-SKATO, FarVAT-BLUP-CALPHA
and FarVAT-BLUP-SKATO reported the same top candidate
gene (CHRD) (Table 7), though the overall p-value correlation
was lower than expected considering they are based on the same
algorithm (FarVAT-SKATO vs. FarVAT-BLUP-SKATO Pc = 0.6,
Sc = 0.7; FarVAT-CALPHA vs. FarVAT-BLUP-CALPHA Pc =

0.82 Sc= 0.82, Figure 4). On the other hand, despite the fact that
FarVAT-CLP and FarVAT-BLUP-CLP had higher correlation (Pc

= 0.85, Sc = 0.77), these two tests reported different top genes
(FarVAT-CLP top gene is MAS1L, and FarVAT-BLIP-CLP top
gene is NLRP9). PedGene in the SKAT model was the software
that provided the most significant p-values, but these were clearly
inflated (Pedgene-SKAT λ = 3.53, Table 7) and its correlation
with other variance component tests was low to null (Pc and Sc
values < 0.2).

Transmission Disequilibrium Tests
We tested two transmission disequilibrium tests, RVGDT and
Rare-IBD, which were designed to account for large extended
families of arbitrary structure (Figure 3D). Of these two, RVGDT
was the test that more closely approached the expected under the

Frontiers in Neuroscience | www.frontiersin.org 10 April 2018 | Volume 12 | Article 20913

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fernández et al. Gene-Based Family-Based Methods in Alzheimer Disease

T
A
B
L
E
6
|
G
e
n
e
-b
a
se
d
p
-v
a
lu
e
s
fo
r
th
e
A
P
O
E
g
e
n
e
u
n
d
e
r
d
iff
e
re
n
t
g
e
n
e
-s
e
t
sc
e
n
a
rio

s
fo
r
th
e
g
e
n
e
-b
a
se
d
m
e
th
o
d
s
te
st
e
d
in

th
e
e
n
tir
e
d
a
ta
se
t
(N

=
1
2
3
5
,
2
8
5
fa
m
ili
e
s)
.

A
P
O
E

N
G
S
K
A
T

F
S
K
A
T

S
K
A
T

R
V
G
D
T

P
e
d
G
e
n
e

R
a
re

IB
D

E
P
A
C
T
S
*

F
a
rV
A
T

F
a
rV
A
T-
B
L
U
P

S
K
A
T

B
u
rd
e
n

S
K
A
T

C
M
C

C
L
P

C
A
L
P
H
A

B
u
rd
e
n

S
K
A
T
O

C
M
C

C
L
P

C
A
L
P
H
A

B
u
rd
e
n

S
K
A
T
O

g
e
n
e

1
9

0
.0
3
5

0
.0
3
7

0
.0
6
1

0
.1
6
4

0
.0
0
8

0
.5
1
5

0
.7
1
2

0
.2
0
5

0
.0
5
3

0
.3
7
9

0
.0
0
3

0
.3
7
9

0
.0
0
5

0
.0
3
6

0
.3
1
1

0
.0
1
7

0
.3
1
1

0
.0
3
4

H
M
-ε
2
ε
4

4
0
.0
0
3

0
.0
0
2

0
.0
0
1

0
.0
0
5

0
.4
1
2

0
.4
1
4

0
.3
5
9

0
.0
2
0

7
.8
7
×

1
0
−
1
5

0
.4
2
0

4
.9
9
×

1
0
−
4

0
.4
2
0

0
.0
0
1

3
.7
3
×

1
0
−
1
4

0
.2
7
5

3
.9
9
×

1
0
−
4

0
.2
7
5

6
.9
9
×

1
0
−
4

H
M

2
0
.0
6
7

0
.0
8
9

0
.0
4
8

0
.2
3
7

0
.1
7
7

0
.1
7
7

0
.7
4
1

0
.0
2
2

0
.0
2
8

0
.0
5
2

0
.0
1
4

0
.0
5
2

0
.0
1
8

0
.0
5
3

0
.0
9
0

0
.0
2
4

0
.0
9
0

0
.0
3
1

ε
2
ε
4

2
0
.0
0
5

0
.0
0
2

0
.0
0
3

0
.0
0
4

0
.8
4
9

0
.8
5
5

0
.0
0
2

0
.0
2
4

7
.8
7
×

1
0
−
1
5

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
3

3
.7
3
×

1
0
−
1
4

0
.0
0
2

0
.0
0
1

0
.0
0
1

0
.0
0
1

In
th
e
a
n
a
ly
s
is
,
o
n
ly
n
o
n
s
yn
o
n
ym

o
u
s
va
ri
a
n
ts
(o
n
ly
S
N
V
s
)
w
it
h
a
M
A
F
<
0
.0
1
,
a
n
d
th
e
A
P
O
E

ε
2
a
n
d

ε
4
,
w
e
re
c
o
n
s
id
e
re
d
a
n
d
w
e
a
d
ju
s
te
d
b
y
s
e
x
a
n
d
P
C
A
s
.
H
ig
h
lig
h
te
d
in
b
o
ld
,
s
ig
n
ifi
c
a
n
t
p
-v
a
lu
e
s
a
ft
e
r
m
u
lt
ip
le
te
s
t
c
o
rr
e
c
ti
o
n
.

g
e
n
e
,
s
e
t
o
f
1
9
p
o
ly
m
o
rp
h
ic
va
ri
a
n
ts
w
it
h
in
A
P
O
E
g
e
n
e
,
in
c
lu
d
in
g
A
P
O
E

ε
2
a
n
d

ε
4
va
ri
a
n
ts
;
H
M
-ε
2
ε
4
,
s
e
t
o
f
va
ri
a
n
ts
c
o
n
s
id
e
re
d
H
IG
H
o
r
M
O
D
E
R
A
T
E
in
c
lu
d
in
g
A
P
O
E

ε
2
a
n
d

ε
4
va
ri
a
n
ts
;
H
M
,
s
e
t
o
f
va
ri
a
n
ts
c
o
n
s
id
e
re
d
H
IG
H
o
r

M
O
D
E
R
A
T
E
w
it
h
o
u
t
A
P
O
E

ε
2
a
n
d

ε
4
va
ri
a
n
ts
;
ε
2
ε
4
,
A
P
O
E

ε
2
a
n
d

ε
4
va
ri
a
n
ts
a
lo
n
e
.
N
,
n
u
m
b
e
r
o
f
va
ri
a
n
ts
th
a
t
w
e
n
t
in
to
a
n
a
ly
s
is
.

*W
e
te
s
te
d
S
K
A
T,
C
M
C
,
a
n
d
V
T
o
n
E
P
A
C
T
S
,
b
u
t
C
M
C
a
n
d
V
T
re
p
o
rt
e
d
a
ll
N
A
va
lu
e
s
s
o
d
a
ta
is
n
o
t
s
h
o
w
n
.

null (λ = 0.99), whereas Rare-IBD provided slightly inflated p-
values (λ = 1.450, Table 7). The correlation between these two
methods was very low (Pearson correlation = 0.23, Spearman
correlation= 0.17). A common issue with both methods was that
we observed some stratification toward more significant p-values
which made it difficult to determine a top significant gene.

Pros and Cons of the Different Gene-Based Methods
Among all the methods tested, EPACTS and FarVAT are the most
user-friendly, time-efficient and versatile software. EPACTS is an
all-in-one package that annotates the input file, generates the
kinship matrix and performs gene-based analysis under different
conditions (minor allele frequency and predicted functionality of
the variant) with only tag specification. In addition, the program
can be run on a genome-wide basis or at a smaller scale given
genes or regions specified by the user. FarVAT can generate the
kinship matrix by either using the pedigree relationships or using
the genetic relationship among individuals. It does not annotate
the input file and requires that the user provide their own set of
genes and variants per gene to analyze; it allows the user to choose
between BLUP or prevalence to estimate and incorporate random
effects on the phenotype. FarVAT has initial conditioning that
only takes founder-based MAF, so when a genetic variant only
has minor alleles in non-founders (offspring) these numbers will
not be counted. This is a big limitation with respect to the other
programs that take into account all variants regardless of their
presence in founders or not. Since we only had genetic data for
siblings for many of our families, so no genetic data for founders,
we ran FarVAT with the “–freq all” option so that all variants
would be included regardless if they were present in founders or
not.

FSKAT, GSKAT, and SKAT require some R knowledge from
the user, and are less flexible. For FSKAT and GSKAT the user
has to provide a genotype, a phenotype, and a gene-set file. For
SKAT the user has to additionally provide the kinship matrix.
Because these programs were designed to run on a per gene basis,
these take longer computational time to be run on a genome-
wide level than EPACTS or FarVAT, even if the user parallelizes
computation. PedGene is also an R package that requires a
genotype, a phenotype file with complete pedigree information
(to generate the kinship matrix), and a gene-set file. PedGene
provides phenotype adjustment by logistic regression on the trait
of interest, but it does not allow for extra covariates, which
prohibits correction by multiple PCs or other variables. RVGDT
is a Python based program, quite user-friendly since it is operated
with simple command-line but is limited in its options. Similar
to FSKAT, GSKAT, and SKAT, it is designed to be run on a per-
gene basis for which loops and parallelization have to be set up
for genome-wide testing. The same applies to RareIBD which
requires a genotype, a phenotype, and a Kinship coefficient file for
each gene that the user wants to test. For each gene the program
first computes statistics for each founder within each family and
then calculates the gene-based p-value. The first step of this
process can easily take between 3 and 5min for families with
<100 individuals; hence, the overall time for one gene is directly
dependent on the number of families and the time required for
a genome-wide analysis is proportional to the number of genes
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FIGURE 4 | Correlation plots from different family-based gene-based methods for genes with a p ≤ 0.005. (A) Pearson correlation correlates genes according to their

p-values. (B) Spearman correlation correlates genes according to their rankings.

being tested. Although it is possible to parallelize the jobs using a
high-performance cluster (if available) this program is the slowest
of all tested.

One of the major drawbacks we found is that some of these
programs do not accept missing data (FSKAT or RareIBD) or
will not generate a p-value if the gene set contains only one
variant (GSKAT, PedGene or FarVAT). FSKAT does not accept
missing data, and although it calculated p-values for genes that
only have one informative SNP (one-SNP-gene), there were at
least 75 (3.26%) of 2,154 one-SNP-genes for which the returned
p-value was “2.” GSKAT did not provide p-values for more than
1,875 one-SNP-genes. PedGene also had trouble generating p-
values for 44 one-SNP-genes out of a total of 1,916 singletons.
FarVAT did not generate p-values for the one-SNP-genes using
the Burden and SKATOmodels but it did generate p-values using
the CMC and CLP models for the same 1,875 one-SNP-genes.

Candidate Genes for FASe Project
Our results indicate that transmission disequilibrium tests
identify genes that have aMendelian behavior, whereas collapsing
and variance-component tests identify genes that confer risk for
disease. Therefore, we decided to combine and compare results
from all approaches to identify the genes with most consistent
results (Table 8).

PedGene provided the most significant p-values for NTN5
(Pedgene-Burden p = 5.80 × 10−8; PedGene-SKAT p = 1.26
× 10−8) and ANKRD42 (PedGene-Burden p = 3.62 × 10−7;
PedGene-SKAT p= 1.16× 10−7). However, the inflated p-values
observed and low correlation with any of the other software

tested using the same algorithms makes us suspicious of the
validity of these results.

CHRD was the gene with the third most significant p-value.
CHRD had a p ≤ 5 × 10−7 in three different models (FarVAT-
CALPHA, FarVAT-SKATO, and FarVAT-BLUP-CALPHA).
Additionally, as we lowered the considered p-value threshold, we
found that more tests identified CHRD as a potential candidate
gene associated with AD. When we lowered the threshold to
suggestive genome-wide p-value (p ≤ 5 × 10−4) we found
that seven different models identified CHRD as significantly
associated with AD. Following the same method we found that
CLCN2, MAS1L, and PTK2B had p ≤ 5 × 10−05 in at least three
tests, and if we lowered the threshold to≤5× 10−4 p-value, these
genes were identified as significant by at least three additional
tests.

Among genes with a p ≤ 5 × 10−04; CPAMD8 was identified
by at least nine gene-based methods (FarVAT, FarVAT-BLUP, and
PedGene). The exact p-value forCPAMD8 could not be estimated
by RVGDT as it reported a p-value of 9 × 10−04, which is
the most significant p-value reported by this test. Therefore, we
cannot conclude that CPAMD8 presented a p-value ≤ 5 × 10−04

by RVGDT. CHRD, CLCN2, MAS1L, PTK2B, and CPAMD8,
NLRP9, and HDLBP were also potential novel candidate genes
for familial LOAD as they had p≤ 5× 10−04 using at least five or
more tests (Table 8).

Since these were identified by multiple gene-based methods,
we wanted to determine whether any of these seven candidate
genes are involved in known AD pathways. Common variants in
PTK2B have been associated with AD risk at a genome-wide level
(Lambert et al., 2013). Our results indicate there are additional
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TABLE 7 | Top results for all gene-based methods tested.

Software TEST Top gene Top p-value Lambda

PedGene SKAT KANSL1L 2.42 × 10−12 3.533

PedGene Burden TTN 1.04 × 10−8 2.997

GSKAT Burden PCSK6 3.04 × 10−3 1.704

GSKAT SKAT NR1D1 1.90 × 10−3 1.681

Rare-IBD TDT SNTB2 1.00 × 10−4 1.450

FarVAT-BLUP CALPHA CHRD 4.60 × 10−07 1.259

FarVAT CALPHA CHRD 2.09 × 10−07 1.152

FarVAT-BLUP CLP NLRP9 1.14 × 10−4 1.112

FarVAT-BLUP SKATO CHRD 7.37 × 10−7 1.101

FarVAT-BLUP CMC IGHV1-69 1.28 × 10−4 1.066

FarVAT-BLUP Burden NLRP9 1.14 × 10−4 1.031

FarVAT SKATO CHRD 3.54 × 10−7 1.016

FarVAT CLP MAS1L 1.25 × 10−5 1.000

RVGDT TDT RTN3 9.99 × 10−4 0.995

FarVAT CMC HSD3B1 4.40 × 10−5 0.993

FarVAT Burden MAS1L 1.25 × 10−5 0.985

EPACTS VT PPAN-P2RY11 1.20 × 10−4 0.954

FSKAT SKAT CHRD 2.00 × 10−5 0.938

EPACTS CMC BTN2A2 1.05 × 10−3 0.849

SKAT IBS CHRD 7.94 × 10−5 0.668

EPACTS SKAT CHRD 2.42 × 10−5 0.635

SKAT PED CHRD 2.47 × 10−4 0.360

SKAT HR NR1D1 2.06 × 10−2 0.039

SKAT BN NR1D1 2.21 × 10−2 0.038

Top gene, p-value and lambda for each test is given, ordered by lambda value.

low-frequency and rare nonsynonymous variants in PTK2B that
are associated with AD risk in late-onset families.

We used the GeneMANIA (http://pages.genemania.org/)
algorithm on the seven candidate genes (CHRD,MAS1L, PTK2B,
CPAMD8, NLRP9, CLCN2, and HDLBP) and known AD-
related genes (APP, PSEN1, PSEN2, APOE, TREM2, PLD3, and
ADAM10) which are involved in some pathways important in AD
(APP-metabolism and immune response). GeneMANIA looks
for relationships among a list of given genes by searching within
multiple publicly available biological datasets. These datasets
include protein-protein, protein-DNA and genetic interactions,
pathways, reactions, gene and protein expression data, protein
domains and phenotypic screening profiles. We found that our
candidate genes have genetic interactions and co-localization
with known AD genes. CHRD and PTK2B are involved in
“regulation of cell adhesion” like ADAM10; PTK2B is involved in
“regulation of neurogenesis” like APOE and “perinuclear region
of cytoplasm” like APP, PSEN1 and PSEN2. Finally, CLCN2
and PTK2B are connected through “regulation of ion transport”
(Figure 5).

DISCUSSION

The missing heritability in AD, and in many complex diseases,
may be found in very rare variants for which discovery will

require either large datasets (e.g., the ADSP Discovery Phase
which has over 10,000 sequenced individuals) or datasets
enriched for rare variants (such as families with history of AD).
In this study, we present the most comprehensive performance
analyses of multiple gene-based methods using 285 families with
AD. Some of the current methods available are underpowered
or too restrictive to detect genes significantly associated with
this disease (Figure 4). Results from our simulated data (Table 5)
show that only certain highly-restricted scenarios provide gene-
wide significant p-values in family-based analyses; whereas
similar scenarios in a case-control study would result in gene-
wide p-values. To circumvent this power issue, we relied
on the combination of multiple evidence toward the same
gene.

One key aspect to adapt gene-based analyses to a family-
based context is to account for population stratification and
hidden relatedness that may appear due to the inherent nature
of family datasets. To take into account this issue, gene-based
algorithms must incorporate kinship matrices to model the
relationships among samples. Therefore, an appropriate estimate
of the kinship matrix is of utmost importance. In this work
we show how different relationship matrices influence results.
We tested the three most common types of kinship matrix,
pedigree reconstruction (PED), identity by state (IBS), and
Balding-Nichols (BN). We show that for a situation of complex
incomplete families, correction using PED or BN matrices will
lead to an overcorrection of the relationships decreasing the
power of these tests (Table 7, Figure 4A).

In order to choose the best gene-based algorithm for analysis,
it is important to take into account the nature (impact and
directionality) of the variants that are being included in the
test. Collapsing tests are powerful when a large proportion of
variants are causal and the effects are in the same direction.
Variance-component tests are supposed to be more powerful
than collapsing tests because they allow for admixture of risk
and protective variants within the region being tested (Ionita-
Laza et al., 2013). It is not practical to account for the nature
of the variants included in each gene-set, and the true disease
model is unknown and variable; hence, omnibus or combined
tests such as SKAT-O would be desirable for genome-wide
studies (Lee et al., 2012). However, most family-based methods
do not incorporate the SKAT-O algorithm, except FarVAT.
Therefore, the best approach to perform genome-wide rare
variant discovery is to combine different algorithms and look for
common signatures across the tests performed. Nonetheless, we
are aware that running all available tests is a time-consuming task
that requires additional expertise and resources. In our analyses
FarVAT, with the BLUP adjustment, provide the best results in
terms of significant p-values and minor inflation, for genome-
wide gene-based analysis; it is a fast software that provides results
from multiple tests at the same time. The R version of SKAT
or EPACTS would be alternatively valid choices, taking into
account that these overcorrect and the p-value threshold should
be lowered.

In this study, we identified CHRD as a candidate gene
with a genome-wide significant p-value (5 × 10−07) reported
by three tests, and another six genes that had a suggestive
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FIGURE 5 | Gene network for the seven candidate genes (CHRD, CLCN2, CPAMD8, HDLBP, MAS1L, NLRP9, and PTK2B) with multiple evidence of a p ≤ 5 ×

10−04, anchored with known AD genes (APP, PSEN1, PSEN2, APOE, TREM2, ADAM10, and PLD3), as described by GeneMANIA.

genome-wide p < 5 × 10−04 in at least five, and up to nine, of
the different test performed: CLCN2, CPAMD8, HDLBP, MAS1L,
NLRP9, and PTK2B.Additionally, these genes seem to have direct
and indirect interactions (genetic interaction, co-localization or
shared function) with known AD genes (APP, PSEN1, PSEN2,
APOE, TREM2, PLD3, and ADAM10).

CHRD, chordin, is a highly-conserved developmental protein
which inhibits the ventralizing activity of bone morphogenetic
proteins, is active during gastrulation, expressed in fetal and adult
liver and cerebellum, and is associated with Cornelia de Lange
syndrome (Smith et al., 1999). CLCN2, chloride voltage-gated
channel 2, has several functions including the regulation of cell
volume: membrane potential stabilization, signal transduction
and transepithelial transport. It has been associated with different
epilepsy modes (Saint-Martin et al., 2009; Cukier et al., 2014)
and leukoencephalopathy (Gaitán-Peñas et al., 2017). CHRD and
CLCN2 show co-expression which could be due to their close
proximity, both belong to a gene cluster at 3q27. Interestingly,
CLCN2 shows co-expression with TREM2 which, other than
being an AD risk gene, is known to cause leukoencephalopathy
in PLOSL (polycystic lipomembranous osteodysplasia with
sclerosing leukoencephalopathy), also known as Nasu-Hakola
disease.

PTK2B, Protein Tyrosine Kinase 2 Beta, was described as an
AD risk locus in the largest GWAS meta-analysis conducted to
date (Lambert et al., 2013), and later corroborated by others
(Beecham et al., 2014; Wang et al., 2015). The protein encoded
by PTK2B is a member of the focal adhesion kinase (FAK)
family that can be activated by changes in intracellular calcium
levels, which are disrupted in AD brains. Its activation regulates
neuronal activity such as mitogen-activated protein kinase
(MAPK) signaling (Rosenthal and Kamboh, 2014). PTK2B could
also be involved in hippocampal synaptic function (Lambert
et al., 2013). Although there is no co-expression or genetic
interaction between CLCN2 and PTK2B, both are involved in
regulation of ion transport. Additionally, PTK2B is involved in
regulation of lipidicmetabolic processes likeAPOE, a cholesterol-
related gene. Although no association has yet been reported
between APOE and HDLBP, the High-Density Lipoprotein
Binding Protein, the latter plays a role in cell sterol metabolism,
protecting cells from over-accumulation of cholesterol, which has
been reported as risk factor for atherosclerotic vascular diseases.

CPAMD8, C3 and PZP Like, Alpha-2-Macroglobulin Domain
Containing 8, has been previously associated with neurological
conditions other than AD. Common variants in CPAMD8 were
found among top markers associated with multiple sclerosis
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(Baranzini et al., 2009). Missense and frameshift variants
in CPAMD8 were identified in three families affected with
Anterior Segment Dysgenesis (Cheong et al., 2016). According to
the UKBiobank PheWeb (http://pheweb.sph.umich.edu:5000/),
CPAMD8 has a 2.9 × 10−9 p-value for its association with AD.
We did not find any shared pathway between CPAMD8 and
known AD genes in the GeneMANIA network, even though
it seems to have a genetic interaction with APP (Lin et al.,
2010). In our study CPAMD8 was identified as a candidate
gene (with p < 1 × 10−4) for AD by at least nine gene-based
methods from different software, and we found that several
variants within this gene had varying degrees of segregation in
more than twenty families. Variant p.(Ser1103Ala) segregates
with disease status in two families with two and three carriers
respectively, and is present in another two families. Variant
p.(His465Arg) segregates with disease status in five families with
two or three carriers per family and is present in another 11
families. Variant p.(Arg1380Cys) is private to a family with three
carriers, p.(Ala1492Pro) is private to a family with five carriers,
and p.(Val521Met) is private to a family with three carriers.

MAS1L,MAS1 Proto-Oncogene Like, is a G Protein-Coupled
Receptor. Members of this family of membrane proteins are
activated by a wide spectrum of ligands and modulate the activity
of different signaling pathways in a ligand-specific manner. Aly
et al. (2008) described polymorphisms in the region of the
UBD/MAS1L genes that are associated with type-1 diabetes.

The immune system and the integrity of the blood-brain
barrier are key factors for Alzheimer disease.NLRP9, NLR Family
Pyrin Domain Containing 9, has been involved in inflammation
response. Nyúl-Tóth et al. (2017) found NLRP9 expressed in
cerebral endothelial cells and, at much lower levels, in brain
pericytes; and another member of the NLP family (NLRP1) has
been associated with AD (Pontillo et al., 2012).

We have reviewed more than 22 algorithms from eight
different software available for gene-based analyses in complex
families. After a thorough examination of the performance of
these tests under different scenarios, we present a methodology
to identify genes associated with the studied phenotype. We have
applied this methodology to 285 European-American families
affected with late onset Alzheimer disease (LOAD) and we
identified six candidate genes with suggestive or genome-wide
significant p-values across different software and algorithms.
Based on the consistency of our results, we are confident that
some of these genes may play a role in AD pathology and
therefore are of interest to follow up in replication and functional
studies.
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Figure S1 | Schematic representation of the bioinformatics pipeline used in this

study to filter and combine the information from whole exome sequencing (WES)

and whole genome sequencing (WGS).

Table S1 | Structure of the families used in this study with detail of the number of

individuals (IDs) sequenced per family, number of cases (CA), number of controls

(CO), number of females (Fe) and number of males (Ma).The first 25 families were

employed in the simulation analysis.

Table S2 | Design of simulated “GENE-A” across 25 families. Scenarios

5FCx0FNC, 5FCx5FNC, 5FCx10FNC, 5FCx15FNC, 5FCx20FNC.

Table S3 | Comparison of kinship matrices for Fam#1 and Fam#2.
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Background: The prevalence of dementia in Parkinson disease (PD) increases

dramatically with advancing age, approaching 80% in patients who survive 20 years

with the disease. Increasing evidence suggests clinical, pathological and genetic overlap

between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia

with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive

impairment and dementia in PD is not fully established.

Objective: To assess the contribution of coding variants in Mendelian dementia-causing

genes on the risk of developing PD and the effect on cognitive performance of PD

patients.

Methods: We analyzed the coding regions of the amyloid-beta precursor protein (APP),

Presenilin 1 and 2 (PSEN1, PSEN2), and Granulin (GRN) genes from 1,374 PD cases

and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-

exome sequencing (WES) data by single variant and gene base (SKAT-O and burden

tests) analyses. Global cognitive function was assessed using the Mini-Mental State

Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The effect of coding

variants in dementia-causing genes on cognitive performance was tested by multiple

regression analysis adjusting for gender, disease duration, age at dementia assessment,

study site and APOE carrier status.

Results: Known AD pathogenic mutations in the PSEN1 (p.A79V) and PSEN2 (p.V148I)

genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely

damaging variants in the GRN and PSEN1 genes in PD patients when compared with

frequencies in the European population from the ExAC database. Multiple regression

analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2,

and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients (p =

2.0 × 10−4), independent of age at PD diagnosis, age at evaluation, APOE status or

recruitment site.
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Conclusions: Pathogenic mutations in the Alzheimer disease-causing genes (PSEN1

and PSEN2) are found in sporadic PD patients. PD patients with cognitive decline

carry rare variants in dementia-causing genes. Variants in genes causing Mendelian

neurodegenerative diseases exhibit pleiotropic effects.

Keywords: Parkinson disease, dementia, cognitive impairment, rare variants, APP, PSEN1, PSEN2, GRN

INTRODUCTION

Recent genome-wide association studies (GWAS) have reported
an overlap between Parkinson disease (PD) and the most
common forms of dementia including Alzheimer disease (AD),
dementia with Lewy bodies (DLB) and Frontotemporal dementia
(FTD) (Guerreiro et al., 2015; Ferrari et al., 2017). Multiple
variants associated with PD risk have also been identified as
risk factors for AD, DLB, or FTD including variants in the
following genes: Triggering receptor expressed on myeloid cells 2
(TREM2), Microtubule-associated protein tau (MAPT), C9orf72,
Glucocerebrosidase (GBA), andApolipoprotein E (APOE) (Parsian
et al., 2002; Harms et al., 2013; Davis et al., 2015; Benitez et al.,
2016).

AD is the most common form of dementia and is
characterized pathologically by the accumulation of amyloid
plaques and neurofibrillary tangles. Amyloid protein precursor
(APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations
cause autosomal dominant forms of early-onset AD (Cruts et al.,
2012). Approximately 220 pathogenic mutations in the PSEN1
gene have been reported in AD patients worldwide, whereas 27
and 16 pathogenic mutations have been described in theAPP and
PSEN2 genes, respectively (Cruts et al., 2012). Rare functional
variants inAPP (Schulte et al., 2015) and pathogenicmutations in
PSEN1, and PSEN2 have been also reported in PD patients (Takao
et al., 2002; Jimenez-Escrig et al., 2004; Puschmann et al., 2009;
Niwa et al., 2013). We recently reported the presence of leucine-
rich repeat kinase 2 (LRRK2), p.G2019S mutation in members
of two multigenerational families with AD and a suggestive
association of variants in the PTEN-induced putative kinase 1
(PINK1) gene with AD (Fernández et al., 2017). These results
suggest a genetic overlap between familial AD and PD.

There is also an overlap of neuropathology in the brains of
AD and PD patients. Approximately 50–60% of the sporadic and
familial AD patients with pathogenic mutations in APP, PSEN1,
or PSEN2 genes exhibit widespread α-synuclein pathology
(Meeus et al., 2012a). Abnormal cortical amyloid-beta (Aβ)
deposition is present in 60% of PD patients with dementia
(Kotzbauer et al., 2012), the burden of Aβ plaques inversely
correlates with cognitive status in PD cases with dementia (Irwin
et al., 2013) and the progression of the dementia in PD correlates
with Lewy body (LB) and cortical AD-type pathology (Compta
et al., 2011). In addition, AD-like changes in cerebrospinal fluid
(CSF) biomarkers (Aβ levels) have been reported in PD patients
(Terrelonge et al., 2015). Taken together, these results suggest that
abnormal APP processing and Aβ accumulation occurs in PD.
Here, we evaluate the genetic variation ofAPP, PSEN1 and PSEN2
genes in PD patients.

FTD may cause up to 10% of all cases of dementia and
is the second most common cause of early-onset dementia
(<65 years of age) (Ratnavalli et al., 2002). The three most
common genetic causes of FTD are mutations in the genes
MAPT and granulin (GRN), and expansions of a hexanucleotide
repeat (GGGGCC) in the C9orf72 gene. C9orf72 expansions
cause 5–12% of all FTD and 10–35% of familial FTD. MAPT
or GRN mutations are found in 1–10% of all FTD and 5–
25% of familial FTD. MAPT variants associated with FTD
also increase the risk of developing PD (Pastor et al., 2000;
Benitez et al., 2016). C9orf72 expansions have been found in
PD patients in some (Baizabal-Carvallo and Jankovic, 2016)
but not all studies (Harms et al., 2013). Parkinsonism precedes
the cognitive and behavioral symptoms of FTD by several
years in patients with mutations in GRN (Baizabal-Carvallo
and Jankovic, 2016). Up to 41% of FTD patients with GRN
mutations exhibit parkinsonism (Josephs et al., 2007). In
addition, GRN pathogenic mutations have been reported in PD
patients (Brouwers et al., 2007; Rovelet-Lecrux et al., 2008).
Here, we explore the role of variants in the GRN gene in PD
patients.

PD is the most common neurodegenerative movement
disorder, affecting ∼1–2% of people over 60 years of age
(Wright Willis et al., 2010). Clinically, PD patients exhibit
bradykinesia, rest tremor, rigidity, and disturbances in balance.
PD is characterized neuropathologically by the presence of
α-synuclein-positive neuronal inclusions, commonly referred
to as LBs and Lewy neurites, as well as neuronal loss in
the substantia nigra. Genetically, familial autosomal dominant
PD is caused by highly penetrant mutations in the alpha-
synuclein (SNCA) and LRRK2 genes, whereas autosomal recessive
PD is caused by mutations in the PARK2/PARKIN, PINK-
1, and PARK7/DJ-1 genes (Petrucci et al., 2014). Recently,
a GWAS identified at least 41 loci associated at genome-
wide significant level with disease risk in individuals of
European ancestry (Chang et al., 2017). The most statistically
significant signals associated with PD are common variants
located close to SNCA, MAPT, and GBA genes (Chang et al.,
2017).

Dementia is one of the most common non-motor symptoms
in PD (Foltynie et al., 2004; Emre et al., 2007). The prevalence
of dementia in PD patients at any stage of disease ranges
from 22 to 48% (Foltynie et al., 2004; Emre et al., 2007).
Several risk factors for dementia in PD include severity of
parkinsonism, the presence of non-motor symptoms, older age,
male sex and presence of cognitive symptoms at PD diagnosis
(Aarsland and Kurz, 2010). Relatives of PD patients exhibit
a higher risk of dementia than relatives of control subjects,
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(Rocca et al., 2007) supporting a role of genetic factors in
the development of dementia in PD. However, the genetic
contributors to dementia in PD have yet to be fully established.
Longitudinal studies have shown that the APOE ε4 allele, the
H1 haplotype in MAPT and mutations in the GBA gene are
associated with a more rapid cognitive decline in PD (Morley
et al., 2012; Collins and Williams-Gray, 2016; Liu et al., 2016).
In contrast, a cross-sectional study showed that PD carriers of
the LRRK2,p.G2019S mutation exhibit lower rates of dementia
(Srivatsal et al., 2015). However, it is not clear how frequently
mutations in dementia-causing genes occur in PD patients
or whether variants in these genes relate to dementia in PD
patients.

Here, we performed a systematic screening of known
dementia-causing genes (APP, PSEN1, PSEN2, or GRN genes) in
821 PD cases and 423 controls from North America in addition
to 553 PD patients and 550 healthy controls from Spain.

MATERIALS AND METHODS

Subjects
Three cohorts were included in this study: the Washington
University in Saint Louis (WUSTL) Movement Disorder Center
(MO, USA), the Parkinson’s Progression Markers Initiative
(PPMI) consortium (www.ppmi-info.org) and the Movement
Disorders Unit at the University of Navarra (UN), School of
Medicine (Navarra, Spain). PD clinical diagnoses were based
on UK Brain Bank criteria (Hughes et al., 1992). Written
informed consent was obtained from all participants prior
to their enrollment. The Washington University in Saint
Louis Human Research Protection Office (approval number:
201107095) approved the study. Demographic characteristics
of these three populations have been published previously
(Weintraub et al., 2013; Davis et al., 2015; Benitez et al., 2016).
TheWUSTL cohort included 490 non-hispanic white (NHW) PD
cases [64% males, mean ± SD age at onset (AAO) 60 ± 11 years
and 10% had family history of PD] and age- and population-
matched 289 controls (64.8± 10.2 years; mean± SD). The PPMI
cohort was composed of 331 NHW PD cases (50% males, AAO
61 ± 11 years, 9% had family history of PD) and 134 age- and
population-matched controls (60.9 ± 11.4 years). Finally, the
UN cohort was composed of 553 Spanish PD cases (59% males,
AAO 60 ± 9 years, 20% had family history of PD) and 550
healthy Spanish age-matched controls (62 ± 7 years). Only one
member of each family with PD was included in the analyses. All
individuals carrying pathogenic mutations in LRRK2, p.G2019S
(8 PD cases WUSLT), PARK2, p.D53X (1 PD case WUSTL), or
PINK, R492X1(1 PD case WUSTL) genes, duplications in the
SNCA gene (1 PD case WUSTL) or risk-associated variants in
the TREM2, p.R47H (4 WUSTL), GBA, p.N370S (7 WUSTL), or
MAPT, p.A152T (4 WUSTL) genes (Benitez and Cruchaga, 2013;
Benitez et al., 2016) were excluded from this study. Principal
component analyses (PCA) was conducted to infer the genetic
structure of individuals using the EIGENSTRAT software (Price
et al., 2006). Only subjects that clustered with PCs of NHW
origin in the WUSTL or PPMI cohorts were included in this
study.

Sequencing Methods
WUSTL and UN samples: To screen for novel variants, pooled-
DNA sequencing was performed, as described previously (Jin
et al., 2012; Benitez et al., 2016). Briefly, 62 PCR reactions that
covered 46,319 bases of the four selected dementia genes were
performed in two equimolar pools of 114 and 98 samples. After
ligation, concatenated PCR products were randomly sheared
by sonication and prepared for sequencing on an Illumina
Genome Analyzer IIx (GAIIx) according to the manufacturer’s
specifications. The resulting reads were re-aligned to the human
genome reference assembly build 36.1 (hg18) using SPLINTER.
pCMV6-XL5 amplicon (1908 base pairs) was included in the
reaction as a negative control. As positive controls, 10 different
constructs (p53 gene) with synthetically engineered mutations at
a relative frequency of one mutated copy per 200 normal copies
was amplified and pooled with the PCR products. Six human
DNA samples heterozygous for previously known mutations
in GRN and PSEN1genes were also included (Jin et al., 2012;
Benitez et al., 2016). SPLINTER uses the positive control to
estimate sensitivity and specificity for variant calling. The wild-
type: mutant ratio in the positive control is similar to the
relative frequency expected for a single mutation in one pool
(1 chromosome mutated in 100 samples = 1/200). SPLINTER
uses the negative control (first 900 bp) to model the errors
across the 36-bp Illumina reads and to create an error model
from each sequencing run of the machine. Based on the error
model SPLINTER calculates a p-value for the probability that
a predicted variant is a true positive. A p-value at which all
mutants in the positive controls were identified was defined
as the cut-off value for the best sensitivity and specificity. All
mutants included as part of the amplified positive control vector
were found upon achieving ∼30-fold coverage at mutated sites
(sensitivity= 100%) and ∼80 sites in the 1908 bp negative
control vector were predicted to be polymorphic (specificity =

∼95%). The variants with a p-value below this cut-off value were
considered for follow-up confirmation. An average coverage of
30X-fold per haploid genome per pool is the minimum coverage
necessary to get an optimal positive predictive value for the SNP-
calling algorithm (Vallania et al., 2010). Supplementary Table 1
contains a summary of exon coverage per gene. On average, the
coverage was 59.5x per allele per individual, which translate to a
total coverage of ∼13,566x or ∼11,662x depending on the pool
size. All evaluated variants were validated by genotyping with
Sequenom iPLEX or KASPar techniques in all samples. Common
variants (>5%) or synonymous variants were not followed up.
APOE genotype was obtained by direct genotyping of rs7412
and rs429358 using Taqman technology (Cruchaga et al., 2012b).
Most of rare variants were also validated by genome-wide data
generated with the NeuroX custom chip in the WUSTL samples.
NeuroX chip includes both the standard Illumina exome content
(≈ 240,000 variants) and over 24,000 variants associated with
neurologic diseases (Nalls et al., 2015). PPMI Sample: The VCF
files containing the whole exome sequence for all PPMI samples
were downloaded from the PPMI website (www.ppmi-info.org).
The regions of interest for dementia-related genes were extracted
from those files for further analysis. APOE genotype (rs7412 and
rs429358) was obtained from the VCF files.
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Bioinformatics and Statistical Analyses
Annotation and Variant Selection
Variants were annotated using SeattleSeq Annotation (Ng
et al., 2009), the Exome Variant Server (EVS), (http://evs.gs.
washington.edu/EVS/ - Release ESP6500SI-V2), the ExAC data
(release 0.3.1) (Lek et al., 2016) and the Ensembl Genome
browser (Aken et al., 2016). Predictions of variant pathogenicity
were based on the Genomic Evolutionary Rate Profiling (GERP)
(Davydov et al., 2010) and the Combined Annotation Dependent
Depletion (CADD) algorithm (v1.3, http://cadd.gs.washington.
edu) (Kircher et al., 2014). All putative damaging variants (scores
GERP ≥ 2.95 and CADD ≥ 12.37) (Amendola et al., 2015) were
further cross-referenced with The AD&FTD mutation database
(Cruts et al., 2012) and ClinVar (Landrum et al., 2016) to
identify those previously established with pathogenicity for AD
or FTD. Only variants annotated or predicted to be coding
variants [missense, nonsense (stop/start gain/loss) and frameshift
variants] were included in the analyses. Synonymous variants
were not included in our analyses. This analysis was applied
independently to all three cohorts.

Single Variant Analysis
Association analysis between PD cases and in-house controls was
performed using logistic regression, assuming an additive model
for allelic effects. The analysis was adjusted for age, gender, and
PCs (using the first two principal components) to correct for
potential population stratification using Plink1.9 (Purcell et al.,
2007; Chang et al., 2015). The minor allele frequency (MAF)
of each variant in PD cases was also compared with the MAF
described in the Non-Finnish European subgroup (NFE) from
ExAC (Lek et al., 2016). Only coding regions with high-quality
(PASS filter) variants reported in ExAC were included in our
analyses.

Gene Based Analysis
The gene-based association in PD cases and in-house controls
was performed using SKAT-O, which utilizes the R package SKAT
(Wu et al., 2011). In addition, the burden of rare protein-altering
variants in PD cases from the WUSTL and PPMI cohorts were
compared with the burden observed in NFE samples from ExAc
by collapsing the counts of all missense, nonsense and frameshift
variants in each gene with a MAF < 0.01 and then, Fisher’s exact
test with Yates correction was applied. ExAC cannot be regarded
as a pure control dataset. However, several studies have used this
resource as a proxy for reassessing the effect of rare variants in
Mendelian genes in the general population in different complex
diseases (Roberts et al., 2015; Walsh et al., 2017).

Cognitive Impairment Assessment and Analysis
Cognitive impairment was assessed by the Folstein Mini-
Mental State Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA) in the WUSTL and PPMI datasets
respectively. For the combined analyses, z scores were derived
by converting the mean raw MoCA and MMSE scores and
standard deviation (SD) to the standard normal distribution
with mean 0 and SD 1. Multiple regression analyses were
performed in the residuals adjusting by age at diagnosis, age

at dementia assessment, gender, study site and APOE carrier
status as covariates (PROC GLM, SAS). All validated variants
were included in the model independently of their clinical
interpretation. Global cognitive impairment was defined by an
MMSE ≤ 25 according to the recommendation the International
Parkinson and Movement Disorder Society (MDS) Task Force
(Dubois et al., 2007). The recommended MoCA cut-off for PD of
<26 was applied (Dalrymple-Alford et al., 2010). Patients with a
diagnosis of dementia [PPMI (N = 5) andWUSTL (N = 9)] were
excluded from the analyses to avoid disproportionate leverage on
the statistical models (Thaler et al., 2012). Nominally significant
p-value threshold was set at 0.05. Multiple-test correction cutoff
for the single-variant analysis using Bonferroni correction for
4 tests is 1.3 × 10−2. All statistical tests are two-sided unless
otherwise stated, and were performed using Statistical Analysis
System (SAS Institute Inc) or GraphPad Prism 5.0.

APOE Analysis
The effect of APOE allele and genotype in PD risk was tested
comparing the frequency in PD cases and controls. Comparisons
were made using the X2 method. Multiple regression adjusting
by age at diagnosis, age at dementia assessment and gender was
performed to evaluate the effect of APOE ǫ4 allele on MoCA or
MMSE scores (PROC GLM, SAS).

RESULTS

Single Variant Analyses
WUSTL Cohort
Twenty-one coding variants were found among the screened
genes (Supplementary Table 2). 14.3% (3) variants were novel,
4.8% (1) were reported as known pathogenic variants, 19%
(4) were classified as pathogenic nature unclear and 33% (7)
were reported as non-pathogenic. The three novel variants were
PSEN1 (p.P303L), PSEN2 (p.C358R), and GRN (p.A29V). Both
the PSEN1 and PSEN2 variants were found in late-onset PD
individuals whereas the GRN variant was found in one control
(Supplementary Table 3A). The PSEN1 p.A79V mutation (a
known AD pathogenic mutation) was found in three PD cases:
An early-onset PD case (44 years old at onset) and two late-
onset PD cases (75 and 64 years old at onset, respectively).
None of the three carriers reported PD or AD family history.
Neurological evaluation of these three patients at an age of
46, 86, and 82 years revealed no evidence of dementia after 2,
11, and 18 years of disease onset, respectively. The carrier of
the “probable pathogenic” PSEN2, p.S130L variant exhibited an
AAO of 45 years and rapid progression of cognitive impairment
(Supplementary Table 3B).

PPMI Cohort
Eighteen coding variants were found in 5% of the cases and
8.9% of the controls (Supplementary Table 4). 22% (4) of the
variants were novel, 28% (5) were classified as pathogenic nature
unclear and 28% (5) were reported as non-pathogenic; 22%
(4) were reported in public databases but with an unknown
clinical significance. The four variants of unknown significance
included APP (p.R499C), APP (p.R397T), APP (p.Q138R),
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and GRN (p.C260R). Both APP p.R499C and p.R397T were
found in late-onset PD (LOPD; AAO >50 years) patients
whereas APP (p.Q138R) and GRN (p.C260R) were found in
controls (Supplementary Table 5). Five variants in the PSEN2
gene were considered of pathogenic nature unclear for AD:
p.R62H, p.R71W, p.S130L, p.K161R, and p.V393M. Two LOPD
patients carried PSEN2 p.S130L variant and were cognitively
normal at the last clinical assessment (Supplementary Table 5).
Interestingly, the PSEN2 p.R71W variant was present in five
controls and two PD patients achieving nominal significance (p
= 0.01; OR= 0.16; 95% CI = 0.02–0.98).

UN Cohort
Ten coding variants were found in 4.9% of cases from the Spanish
PD cohort. No novel variants were found (Supplementary Table
6). Nine variants were present in the AD/FTDmutation database.
50% (5) of them were considered non-pathogenic, 30% (3) of
them were of pathogenic nature unclear, and 10% (1) of them
(PSEN2 p.V148I) was considered to be pathogenic (Cruts et al.,
2012). The PSEN2 p.V148I carrier is an early onset PD case
(25 years at onset) with a tremor-dominant parkinsonism and
positive family history of PD but dementia-free at last assessment
after 12 years of PD. Seven (1.3%) carriers of the PSEN2 p.S130L
variant were found in Spanish PD patients. Three had positive
PD family history, three had EOPD, three had psychiatric co-
morbidities and two with dementia PD (Supplementary Table
7).

Gene-Based Analysis
The gene-based analysis is a powerful tool to uncover genetic
association. In previous studies, we used gene-based analysis of
the GBA gene in PD and TREM2 in AD to identify additional
variants associated with risk (Jin et al., 2015; Benitez et al., 2016).
SKAT-O analysis revealed that none of the dementia-related
genes achieved statistical significance in the WUSTL series [APP
(p = 0.89), GRN (p = 0.63), PSEN1 (p = 0.13), and PSEN2 (p
= 0.5)] or PPMI [APP (p = 0.15), GRN (p = 0.6), PSEN1 (p =

0.9) and PSEN2 (p = 0.09)] compared with in-house controls
(Supplementary Tables 2, 4). However, joint burden analysis
revealed a significant enrichment of rare variants in the GRN
(6.6 × 10−03; OR = 1.9; 95% CI = 1.2–3.0) and PSEN1 (p = 9.2
× 10−41; OR = 54.2; 95% CI = 18.8–156.1) genes in PD cases
compared with the ExAC NFE cohort (Table 1). The association
of PSEN1 and PD was maintained (p = 4.9 × 10−66) after
excluding the PSEN1 p.A79V mutation from the analysis.

APOE Association With Status and
Cognitive Test Performance
APOE has previously been associated with cognitive impairment
in PD patients (Parsian et al., 2002; Morley et al., 2012; Tsuang
et al., 2013) but APOE effect on PD risk is still controversial
(Federoff et al., 2012). Here, no association was found between
different APOE alleles (ε4 or ε2) and PD case-control status
(Supplementary Tables 8A,B). The APOE ε4 allele was not
associated with lower MoCA scores among PD patients in the
PPMI cohort (p = 0.56). However, consistent with a previous
report, the presence of the APOE ε4 allele was associated with

TABLE 1 | Enrichment of rare variants in the PSEN1 and GRN genes in PD

patients.

Gene cMAF* PD Cases cMAF ExACϕ p-value# OR (95% CI)#

APP 0.0004 0.0004 ns§ -

GRN 0.0010 0.0005 6.6 × 10−03 1.9 (1.2–3.0)

PSEN1 0.0010 0.00002 9.1 × 10−41 54.2 (18.8–156.1)

PSEN2 0.0010 0.0010 ns -

*cMAF= cumulative minor allele frequency of all non-synonymous variants in each gene.
ϕNon-Finnish European ExAC individuals.
#WUSTL and PPMI PD cases vs ExAC non-Finish Europeans controls.
§Not statistically significant.

a lower MMSE score (p = 9.0 × 10−3) in WUSTL PD patients
(Parsian et al., 2002).

Effect of Variants in Dementia-Causing
Genes on Cognitive Tests Performance
Several rare variants in the GBA gene have been associated
with lower MMSE scores in PD patients (Liu et al., 2016). We
hypothesized that variants in the dementia-causing genes would
affect performance on cognitive tests. Interestingly, 4.9% of all PD
patients in the PPMI cohort carrying rare variants in dementia-
causing genes exhibit significantly (p= 3.0× 10−2) lower MoCA
scores than non-carriers PD patients (Figure 1A). Similarly, PD
patients carrying rare variants in dementia-causing genes (7.9%
of all patients) exhibit significantly (p= 2.0× 10−3) lowerMMSE
scores than non-carriers in the WUSTL cohort (Figure 1B).
Cognitive impairment was assessed with a different cognitive test
in each cohort included in this study (MMSE for WUSTL and
MoCA for PPMI). Therefore, we perform a combined analysis
with age at PD diagnosis, age at which the dementia test was
performed, APOE status, and cohort included as covariates.
PD patients carrying rare variants in dementia-causing genes
exhibited lower scores on cognitive tests than non-carrier PD
patients (p = 2.0 × 10−4), independent of age at PD diagnosis,
age at evaluation, APOE status or cohort (Table 2).

DISCUSSION

The genetic architecture of dementia in PD has not yet been
fully established. Genetic variants in APOE and MAPT have
time-dependent effects on cognition, which vary with disease
stage: MAPT appears to have its greatest impact on cognitive
decline in early PD, whereas APOEmay have a more pronounced
effect late in the course of the disease (Collins and Williams-
Gray, 2016). A recent GWAS on an extensive neuropsychological
battery in PD patients failed to replicate prior associations with
APOE, MAPT, catechol-O-methyltransferase (COMT), or SNCA
(Mata et al., 2017). In cross-sectional studies, the prevalence of
dementia in GBA-PD cases is about 50%, compared to 24–31%
in idiopathic PD cases (Setó-Salvia et al., 2012). Longitudinal
studies have confirmed a faster progression to dementia in PD
cases carrying GBA mutations compared to idiopathic PD in a
population-representative cohort followed for ∼10 years from
diagnosis (Winder-Rhodes et al., 2013). However, GBA variants
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FIGURE 1 | Effect of variants in APP, GRN, PSEN1, and PSEN2 genes on cognitive test scores in PD patients. (A), Tukey’s boxplot of MoCA scores in PD

non-carriers vs. PD carriers of variants in the dementia-causing genes in the PPMI cohort. (B), Tukey’s boxplot of the MMSE scores in non-carriers and carriers of

variants in the dementia-causing genes in the PD cases of the WUSTL cohort. Student’s t-test was used and p-values reported are based on two-tailed comparisons.

TABLE 2 | Effect of rare variants in dementia-causing genes on cognitive test

scores in PD patients.

Outcome Independent

variable

Estimate Standard

error

t-value p-value

Cognitive test

scoreϕ

Age at PD Dx§ 0.006 0.009 0.64 0.5225

Age at

assessment

−0.015 0.009 −1.64 0.1018

APOE* −0.039 0.041 −0.96 0.3385

Carrier status# −0.684 0.180 −3.80 0.0002

Recruitment sitesϕ 0.223 0.142 1.58 0.1153

§Dx = diagnostic.
ϕCombined analysis MoCA and MMSE.

*APOE genotype 22 = 0, 23 = 1, 33 = 2, 24 = 3, 34 = 4, and 44 = 5.
#0 = non carrier, 1 = carrier.
ϕ0 = PPMI, 1 = WUSTL.

explained only up to 1.4% of PD patients with cognitive decline
(Liu et al., 2016). Our results show that 6.7% of PD patients carry
rare coding variants in dementia-causing genes and exhibit lower
scores on cognitive tests in two independent cohorts compared to
non-carriers. The risk of developing dementia varies according
to the duration of PD and age at onset (Rocca et al., 2007).
However, the results of a covariate-adjusted model confirm that
the association between rare variants in dementia-causing genes
and lower scores in cognitive tests appears to be independent of
age, cohort, disease duration, or APOE status.

The APOE ε4 allele has been associated with a higher
prevalence of dementia in PD (Morley et al., 2012; Tsuang
et al., 2013). The small number of PD cases with dementia in
each study, the significant heterogeneity of odds ratios between
studies, and evidence of publication bias limits the confidence
of the APOE and dementia in PD association (Huang et al.,
2006). In this study, the APOE ε4 allele was not associated with
risk of developing PD in none of the cohorts (Supplementary
Tables 8A,B). However, in the WUSTL cohort, APOE ε4 carriers
exhibited lower scores on cognitive tests, but the PPMI cohort did

not replicate these findings. Therefore, further studies are needed
to clarify the role of APOE in PD cognitive impairment (Parsian
et al., 2002).

The wide variation reported in the prevalence of cognitive
impairment (CI) in PD across studies may be due to the cognitive
tests employed (Goldman and Litvan, 2011; Burdick et al., 2014).
The MMSE and MoCA are the most commonly used tests
to assess CI in PD. However, controversy remains regarding
the sensitivity of MMSE in assessing cognition in PD patients
(Burdick et al., 2014). Even though the MoCA is more sensitive
for detecting cognitive changes in PD patients (Hoops et al.,
2009), the MMSE was the cognitive test that showed the effects
of GBA and LRRK2 mutations on CI in PD patients (Srivatsal
et al., 2015; Liu et al., 2016) and is the cognitive test recommended
by the International Parkinson and Movement Disorder Society
Task Force (Dubois et al., 2007). Nevertheless, here we show that
rare variants in dementia-related genes affect both MMSE and
MoCA scores in two heterogeneous PD populations (p = 2.0 ×

10−4; Table 2).
In addition, 0.3% of all PD patients screened in this study

carry known AD pathogenic variants in PSEN1 and PSEN2
genes (Supplementary Tables 2, 6). A frequency of 0.3% is
comparable to the percentage of PD patients carrying the most
common pathogenic mutation (LRRK2 p.G2019S) known for
sporadic PD (0.4–1%) (Healy et al., 2008; Correia Guedes et al.,
2010). None of the PD patients carrying pathogenic mutations
in PSEN1 and PSEN2 exhibited signs of dementia at their last
clinical assessment. Unfortunately, CSF biomarkers or Pittsburgh
compound B (PiB) imaging were not available from these carriers
to help determine their preclinical status. The PSEN1 p.A79V
mutation is associated with a broad range of AAO in AD and
DLB patients (Cruchaga et al., 2012a; Meeus et al., 2012b). PSEN1
p.A79V is found in non-demented carriers at an AAO as late
as 78 years (Kauwe et al., 2007) and, in some multigenerational
AD families, it does not segregate perfectly with disease status
(Cruchaga et al., 2012a). However, the PSEN1 p.A79V mutation
increases the Aβ42 level and Aβ42/Aβ40 ratio in vitro (Kumar-
Singh et al., 2006; Kauwe et al., 2007) but unlike other PSEN1
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mutations that cause massive Aβ42 deposition, the average
Aβ42 brain deposition in sporadic AD patients exceeded those
observed in the brains of p.A79V carriers (Kumar-Singh et al.,
2006). In addition, non-demented p.A79V carriers also exhibit
changes in CSF Aβ42 levels and the Aβ42/40 ratio with no
evidence of β-amyloid deposition using PiB imaging (Kauwe
et al., 2007). Thus, PSEN1 p.A79V may be acting through a
mechanism other than increasing Aβ deposition. Additional
mutations in the PSEN1 gene including p.G217D, p.V272A, and
p.L420R have been associated with dementia and parkinsonism
(Takao et al., 2002; Jimenez-Escrig et al., 2004; Puschmann et al.,
2009; Niwa et al., 2013). Recently, it was reported that a de novo
PSEN1 mutation is responsible for an early-onset parkinsonism
with cognitive impairment (Carecchio et al., 2017). In addition
to the clinical overlap between dementia and parkinsonism
in carriers of PSEN1 mutations, there is extensive Lewy body
pathology in early-onset AD carriers of the PSEN1 p.S170F
(Snider et al., 2005) and PSEN1 p.A431V mutations (Qiao et al.,
2017) suggesting an interaction between PSEN1 dysfunction and
α-synuclein aggregation.

We also found the PSEN2 p.V148I mutation in a Spanish PD
patient but not in 550 age-matched Spanish controls. The PSEN2
p.V148I mutation was originally reported in a Spanish patient
with late-onset AD (AAO = 71 years) (Lao et al., 1998) but,
its pathogenicity has been questioned based on the absence of
effect on either Aβ42 levels, Aβ40 levels, or the Aβ42/40 ratio
in vitro (Walker et al., 2005). However, some variants that show
no effect on Aβ42 levels or the Aβ42/Aβ40 ratio (Walker et al.,
2005) affect calcium signaling in cultured skin fibroblasts from
mutation carriers (Li et al., 2006). Increasing evidence suggests
a role of the PSEN2 p.S130L variant in PD and dementia. Here,
we found a total of nine PD patients and one control carrying
the “probably pathogenic” PSEN2 p.S130L variant. The PSEN2
p.S130L variant has been reported in patients with late-onset AD
and mild bradykinesia (Tomaino et al., 2007; Lohmann et al.,
2012). Two siblings of a PSEN2 p.S130L carrier AD patient were
diagnosed with PD (Tomaino et al., 2007). Recently, PSEN2
p.S130L was reported in an individual with idiopathic PD with
dementia (AAO = 73 years) (Schulte et al., 2015). Another
mutation in PSEN2 (p.V191E) also was found in one late-onset
PD patient (AAO= 75 years) with cognitive decline (Meeus et al.,
2012b). Interestingly, a Swedish PD family who carry a de novo
α-synuclein p.A53T mutation also carried the PSEN2 p.R163H
variant (Puschmann et al., 2009). Carriers of both mutations
develop early-onset dementia (Puschmann et al., 2009). All
these findings support our data that pathogenic variants in the
presenilin genes are present in a small proportion of sporadic PD
patients and contribute to α-synuclein aggregation.

We found an enrichment of rare variants in the GRN gene
in PD patients compared to the general population (ExAC
NFE). The frequencies of the p.R433W and p.R478H variants
were higher in the WUSTL cohort than in the NFE ExAC
cohort. Interestingly, the variant p.R433W was reported in
neuropathologically confirmed LBD cases (Meeus et al., 2012b).
Mutations in the GRN gene occur in LBD patients (Meeus
et al., 2012b). A heterozygous deletion removing exons 1 to 11
of the GRN gene was reported in an 83 year-old PD patient

(Rovelet-Lecrux et al., 2008) and, the IVS0 + 5G>C mutation
was reported in a 56 year-old PD patient (Brouwers et al.,
2007). In addition, parkinsonism occurs in some FTD patients
and is more common in those patients (up to 41%) with
GRN haploinsufficiency (Josephs et al., 2007). Interestingly, GRN
overexpression in the substantia nigra protected nigrostriatal
neurons in a mouse model of PD (Van Kampen et al., 2014).GRN
seems to play an important role in multiple neurodegenerative
diseases including PD, likely due to its function as a neurotrophic
factor and its recently uncovered lysosome function (Tanaka
et al., 2013).

Low frequency and rare mutations in the GBA gene,
which encodes the lysosomal enzyme β-glucocerebrosidase-1,
consistently relate to CI in PD and to Lewy body dementia
(Nalls et al., 2013). α-synuclein is mainly degraded by lysosomes
(Cuervo et al., 2004) and lysosomal dysfunction may contribute
to de novo aggregation of α-synuclein and impaired autophagic
degradation of cytosolic aggregates (Bourdenx et al., 2014).
LBs and Lewy neurites may seed around impaired lysosomes
and grow in size by continuous deposition of lysosomal-
derived un-degraded material as the disease progresses (Dehay
et al., 2013). Thus, considering that presenilin and granulin are
lysosomal proteins (Sannerud et al., 2016; Kao et al., 2017), it
is logical to suggest that variants in the presenilin or granulin
genes may exacerbate the cognitive impairments in PD by
affecting lysosomal function and facilitating cell-to-cell transfer
of proteopathic seeds in the progression of synucleinopathies.

The relatively small size of this study limits the statistical
power, which could be the reason we failed to find significant
associations between the PD cases and the in-house controls.
However, the inclusion of the large NFE ExAC cohort with
similar genetic background minimized this limitation. The data
used in this study were not generated using a single sequencing
method. However, none of the approaches used were expected
to have 100% sensitivity for variant detection. Although these
technical limitations could have marginal effects on estimates of
rare variant frequency and odds ratio values, we do not expect
them to alter the key conclusions of this study. Further studies
are needed to confirm the role of variants in dementia genes in
the cognitive impairment found in PD patients.

CONCLUSION

Our study shows that rare variants in several dementia-related
genes are enriched in PD patients compared with normal
controls. The PD patients with these variants exhibited lower
cognitive performance than PD patients without these variants.
Moreover, known dementia-causing mutations are found in PD
patients.
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Improved prediction of progression to Alzheimer’s Disease (AD) among older individuals

with mild cognitive impairment (MCI) is of high clinical and societal importance.

We recently developed a polygenic hazard score (PHS) that predicted age of AD

onset above and beyond APOE. Here, we used data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) to further explore the potential clinical utility of PHS

for predicting AD development in older adults with MCI. We examined the predictive

value of PHS alone and in combination with baseline structural magnetic resonance

imaging (MRI) data on performance on the Mini-Mental State Exam (MMSE). In survival

analyses, PHS significantly predicted time to progression from MCI to AD over 120

months (p = 1.07e-5), and PHS was significantly more predictive than APOE alone

(p = 0.015). Combining PHS with baseline brain atrophy score and/or MMSE score

significantly improved prediction compared to models without PHS (three-factor model

p = 4.28e-17). Prediction model accuracies, sensitivities and area under the curve were

also improved by including PHS in the model, compared to only using atrophy score

and MMSE. Further, using linear mixed-effect modeling, PHS improved the prediction of

change in the Clinical Dementia Rating—Sum of Boxes (CDR-SB) score and MMSE over

36 months in patients with MCI at baseline, beyond both APOE and baseline levels of

brain atrophy. These results illustrate the potential clinical utility of PHS for assessment of

risk for AD progression among individuals with MCI both alone, or in conjunction with

clinical measures of prodromal disease including measures of cognitive function and

regional brain atrophy.

Keywords: pHs, MCI, AD prediction, MRI, genetics

33

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00260
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00260&domain=pdf&date_stamp=2018-04-30
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:karolina.kauppi@umu.se
mailto:amdale@ucsd.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.3389/fnins.2018.00260
https://www.frontiersin.org/articles/10.3389/fnins.2018.00260/full
http://loop.frontiersin.org/people/143980/overview
http://loop.frontiersin.org/people/531968/overview
http://loop.frontiersin.org/people/211186/overview
http://loop.frontiersin.org/people/302974/overview
http://loop.frontiersin.org/people/139323/overview
http://loop.frontiersin.org/people/269145/overview
http://loop.frontiersin.org/people/552/overview
http://loop.frontiersin.org/people/63745/overview
http://loop.frontiersin.org/people/653/overview


Kauppi et al. Combining PHS and MRI for AD Prediction

INTRODUCTION

Late onset Alzheimer’s disease (AD) is the most common
form of dementia, affecting 24–35 million people world-wide
(Querfurth and LaFerla, 2010; Alzheimer’s Association, 2015).
Novel methods to enable early AD detection based on clinically
feasible, economical, and non-invasive measures is of high
clinical and societal value. Early identification of high-risk
individuals is also of utmost importance for pre-dementia clinical
trials (Holland et al., 2012; Ritchie et al., 2016).

A large effort has been made to improve the prediction of
progression to AD among older individuals with mild cognitive
impairment (MCI), which can be a transition stage from
normal age-related cognitive decline to dementia (Roberts and
Knopman, 2013). Next to older age, inheritance of the ε4 allele
of the Apolipoprotein E (APOE) gene is the strongest individual
risk factor for late onset AD (Yu et al., 2014). However, other
genetic risk variants of smaller effect also contribute to AD risk
(Lambert et al., 2013; Ridge et al., 2013). While most studies
examining genetic risk for sporadic AD focus onAPOE genotype,
some have assessed polygenic risk scores beyond APOE based
on case-control data from large-scale genome-wide association
studies (GWAS) (Lambert et al., 2013), and found that genetic
variants associated with elevated AD risk also influence brain
structure (Sabuncu et al., 2012) and cognitive function (Marioni
et al., 2017). Given that the incidence of AD increases sharply
with age, we recently develop a polygenic hazard score (PHS) for
prediction of age-specific AD risk, based on 31 AD-susceptibility
variants, includingAPOE (Desikan et al., 2017). The PHS showed
substantial improvement over APOE in predicting age of AD
onset and was associated with biomarkers of AD, including MRI-
based hippocampal volume loss (Desikan et al., 2017), amyloid,
and tau deposition (Tan et al., 2018).

Volumetric MRI-based measures of regional brain atrophy,
particularly medial temporal volume loss are important
biomarkers for assessing risk of progression to AD in patients
with MCI (Li et al., 2016). In previous work from our lab,
we derived a composite regional “brain atrophy score” from
linear discrimination analysis trained on data from healthy
controls and AD patients, which was better at predicting 1 year
cognitive decline than atrophy in medial temporal structures
alone (McEvoy et al., 2009). The atrophy score is based on
volume of the hippocampus, and thickness of entorhinal cortex,
middle temporal gyrus, bank of the superior temporal sulcus,
isthmus cingulate (retrosplenial cortex), superior temporal
gyrus, medial and lateral orbitofrontal gyri, with weightings for
each ROI determined through a linear discrimination analysis
that best distinguished AD patients from healthy controls. In
a subsequent study, this brain atrophy score predicted 1-year
risk of progression to AD in individual patients (McEvoy et al.,
2011). Prediction of 1-year clinical decline was further improved
by adding subjects’ baseline Mini-Mental State Exam (MMSE)
scores and number of APOE ε4 alleles to the model (McEvoy
et al., 2009).

In the current study, we investigated the clinical utility of
PHS for individual assessment of risk for clinical progression
to AD over time among older individuals with MCI, a critical

question for most patients admitted to memory clinics. Whereas
prior work from our group has shown the value of PHS for
predicting AD-associated clinical and cognitive decline among
non-demented elderly individuals (Tan et al., 2017), a critical next
step in assessing the potential clinical utility of PHS is to examine
the extent to which PHS provides independent information
beyond other commonly used predictors, such as brain atrophy
levels and baseline cognitive function, and to determine whether
combinations of these measures improve prediction of clinical
decline and progression to dementia. To this end, we used
survival analyses (Klein et al., 2013) to compare single-, two-,
and three-factor models of PHS, atrophy score, and MMSE for
prediction of time to progression from MCI to AD over 120
months of follow-up. As a complementary approach, we used
linear mixed-effect modeling to examine prediction of clinical
change inMMSE and the Clinical Dementia Rating, sum of boxes
(CDR-SB), over 36 months.

METHODS

Participants
We used participants from the ADNI database, available as
of November 2011. ADNI 1 is a 5-year multi-site program
launched in 2003 as a public-private partnership including the
National Institute on Aging, Food and Drug Administration,
pharmaceutical companies, and nonprofit organizations (led by
Principal Investigator Michael W. Weiner, MD.). The main goal
of ADNI is to examine if progression from MCI to AD can be
predicted based on neuroimaging, biological biomarkers as well
as clinical and neuropsychological assessments.

The baseline data was collected in 2005, including elderly
healthy controls (n = 200), Alzheimer’s disease patients
(n = 200), and individuals with MCI (n = 400), followed by
annual follow-ups for 36 months. We included 336 participant
with a MCI diagnosis at baseline in ADNI 1 and available
genetic, MRI, and cognitive data, including mini-mental state
examination (MMSE) (Folstein et al., 1975) and Clinical
dementia rating, sum of boxes (CDR-SB) (Hughes et al., 1982).
The age range was 55–89 at baseline. Longitudinal data on CDR-
SB and MMSE was included from ADNI 1, with 36-month
follow-up. Data on progression to AD was also included from
ADNI 2 and ADNI GO, providing data on progression to AD
for up to 120 months after baseline. The ADNI study was
approved by local institutional review boards, and all participants
or participant’s guardians provided written informed consent.
Additional information about ADNI is available at http://www.
adni-info.org.

MRI Acquisition and Analyses
Details of image acquisition and analysis have been described
in our previous publications (McEvoy et al., 2009). Briefly,
we downloaded the raw baseline DICOM MRI data from the
ADNI web site (http://adni.loni.usc.edu/data-samples/mri/) and
obtained volumetric assessments on neuroanatomic regions of
interest (ROIs) using a modified version of the FreeSurfer image-
analysis software (Brewer, 2009; Brewer et al., 2009). We used
a previously validated brain atrophy score based on volume of
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the hippocampus, and thickness of entorhinal cortex, middle
temporal gyrus, bank of the superior temporal sulcus, isthmus
cingulate (retrosplenial cortex), superior temporal gyrus, medial
and lateral orbitofrontal gyri, with weightings for each ROI
determined through a linear discrimination analysis that best
distinguished AD patients from healthy controls (for additional
details, see McEvoy et al., 2009, 2011). In the current paper, we
computed an atrophy score as the sum of weighted measures
from these brain regions, averaging left, and right hemispheres.

Polygenic Hazard Score (PHS)
For each participant included in the study, we calculated their
individual PHS based on our previous publication (Desikan et al.,
2017). In brief, PHS was derived by first identifying common
variants associated with AD in the International genetics of
Alzheimer’s Project (IGAP) GWAS on AD, with a p-value
threshold of <10−5 using summary statistics. These SNPs were
examined for association with AD in the Alzheimer’s Disease
Genetic consortia (ADGC) phase 1 genetic data. A stepwise
Cox proportional hazard model was applied in which the
SNPs that improved the model most were included sequentially
until the model was no longer improved by adding more
SNPs. This resulted in a list of 31 SNPs, including the
two SNPs that constitute the APOE ε genotype, which were
used to generate the PHS. Finally, the PHS estimates from
ADGC were integrated with established AD-incidence rates
from the US population to provide quantitative estimates of
the annualized (cumulative) incidence rate. The PHS is the
vector product of a person’s genotype for the 31 SNPs and the
corresponding parameter estimates from the Cox proportional
hazard model.

Statistical Analyses
We used Cox proportional Hazard models in Matlab [version
8.5.0.197613 (R2015a)] to model time to progression from MCI
to AD with a follow up period of 120 months. Time to event
was defined as time from baseline to AD onset (with end
of study time or drop out as censoring). We used Kaplan–
Meier survival analysis to determine the time to progression
for the 10th, 50th, and 90th risk percentile. We first fitted
a baseline model containing age, age2, sex, and age∗sex as
predictors. We then added PHS to the baseline model, and
used log likelihood ratio to assess whether PHS significantly
improved the prediction. Model comparisons between PHS
and number of APOE ε4 alleles were also made (Baseline and
APOE vs. Baseline, APOE and PHS). Thereafter, we examined
the combined model of PHS and atrophy score at baseline,
and performed model comparisons with each factor alone.
Finally, we added baseline measure of MMSE to a three-factor
model, and performed model comparisons among all two-
factor models. Cross-validated prediction accuracy, sensitivity,
specificity and area under the curve (AUC) were calculated via
the receiver operator characteristics (ROC) analyses using the
perfcurve function in Matlab (MathWorks). The assumption of
proportional hazards was not violated for any of the included
covariates (p’s > 0.05, as evaluated by scaled Schoenfeld residuals
using the cox.zph function in R).

To predict cognitive decline in patients with MCI, we used
linear mixed-effects models to estimate change in MMSE or
CDR-SB over 36 months. Mixed effects models were fitted via
maximum likelihood by using the lmer function in R (version
3.2.3). Sex, age, education, and five genetic principal components
to control for population stratification were included in all
analyses as baseline variables. We included PHS, atrophy score
and the combination of PHS and atrophy score in three different
models each for prediction of change in CDR-SB andMMSE. The
models allowed for random subject-specific intercept and slope.
Model comparisons of APOE and APOE+PHS were performed,
where APOE denotes the number of APOE ε4 alleles. Likelihood
ratio test via ANOVA were used for all model comparisons.

RESULTS

Of the 336 participants with MCI at baseline, 182 developed
AD within the follow-up period of 120 months. Baseline
demographics of stable MCI (MCI-s) and MCI patients that
subsequently progressed to AD (MCI-c) are presented in Table 1.
The groups did not differ in sex distribution, age, or education. As
expected, APOE ε4 alleles, MMSE, atrophy score, and PHS were
related to subsequent progression.

Estimated survival functions for the 10th, 50th, and
90th percentile based on one-, two-, and three-factors cox
proportional hazard models modeling time to progression from
MCI to AD are shown in Figure 1 (Figure 1A, PHS, Figure 1B,
PHS and atrophy score, Figure 1C, PHS, atrophy score, and
MMSE), and model summaries are shown in Table 2. The PHS
significantly predicted progression from MCI to AD over 120
months follow-up (p = 1.07e-5), and PHS was a significantly
stronger predictor of progression than APOE ε genotype
(p = 0.0152, for model comparison of APOE vs. APOE +PHS).
When including atrophy score (McEvoy et al., 2009) in the
model, PHS remained significant and the two-factor prediction
model was significantly more predictive than either single-
factor model (p’s = 5.61e-11, and 0.0015 for comparison with

TABLE 1 | Clinical demographics.

MCIs

(n = 154)

MCIc

(n = 182)

Statistics p

Males, n (%) 99 (64%) 117 (64%) χ
2
(1)

= 0 1

Age, y (SD) 75.84

(7.4)

74.92 (6.9) t(334) = −1.18 0.24

APOE4 +,

n (% E4+)

69 (45%) 117 (64%) χ
2
(1)

= 12, 5.2e−4

Education 15.68 15.82 t(334) = 0.41 0.68

MMSE 27.37 26.87 t(333) = −2.59 0.01

Atrophy

score

2382 2207 t(330) = −4.45 1.17e−5

PHS 0.356 0.661 t(334) = 3.54 4.42e−4

Clinical and demographics data at baseline for patients with stable MCI (MCIs) and those

who converted to ADwithin the study period (MCIc). MCI, mild cognitive impairment; PHS,

Polygenic hazard score; SD, standard deviation.
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FIGURE 1 | Time to MCI to AD progression. Kaplan-Meier survival curves for

10, 50, and 90th percentiles of (A) PHS, (B) PHS and atrophy score, and

(C) PHS, atrophy score and MMSE (at baseline). Model comparisons using log

likelihood of the two-factor model (B) vs. any one-factor model, and the

three-factor model (C) vs. any combination of two-factor models; all p <

0.005. PHS, Polygenic Hazard Score; AD, Alzheimer’s Disease.

single-factor models of PHS and atrophy score, respectively).
Finally, we included cognitive functioning at baseline (MMSE)
to a three-factor prediction model, which yielded a combined
model p-value of 4.28e-17. Model comparisons showed that the
three-factor model was significantly more predictive than the
two-factor model (p < 0.005).

ROC analyses were performed to assess performance
accuracies for one-, two- and three-factor models for prediction
of progression over a 36 months follow-up period based on
combinations of atrophy score, MMSE, and PHS (Table 3). In
brief, the atrophy score had an accuracy of 74.6, sensitivity of
77.8, and a specificity of 70.8. Adding PHS to the atrophy score
increased specificity, at the cost of sensitivity; with increased
overall accuracy and AUC (although confidence intervals
overlapped). Similar results were seen for comparisons of MMSE
alone and in combination with PHS. The full three-factor model
had the highest AUC (.84), accuracy (78.9), sensitivity (79.9), and
a specificity of 77.8.

Results from the linear mixed-effect models for prediction of
change in MMSE and CDR-SB over 36 months are presented
in Table 4. Model comparisons showed that PHS significantly
improved prediction of both MMSE (χ2 = 26.7, df = 1,
p = 2.34e-07) and CDR-SB (χ2 = 21.57, df = 1, p = 3.41e-06)
compared to the baseline variables. Further, the PHS performed
significantly better than APOE ε4 status in prediction of both
MMSE (χ2 = 8.61, df = 1, p = 0.0033) and CDR-SB (χ2 = 6.12,
df = 1, p = 0.013). Again, PHS remained significant after adding
atrophy score to the model (Table 4). Compared to atrophy
score alone, the combined model of PHS and atrophy score
was significantly more predictive of change in both MMSE
(χ2 = 19.04, df = 1, p = 1.281e-05, [controlling for APOE
ε4 alleles: χ

2 = 6.97, df = 1, p = 0.008]) as well as CDR_SB
(χ2 = 13.43, df= 1, p= 0.00025 [controlling for APOE ε4 alleles:
χ
2 = 4.57, df= 1, p= 0.033]).

DISCUSSION

Using the ADNI dataset, we assessed the potential clinical utility
of the recently established age-specific AD PHS (Desikan et al.,
2017) to more accurately predict the progression to AD among
patients diagnosed with MCI. Examining both time to AD
diagnosis and decline in clinical scores (CDR-SB and MMSE),
we found that PHS significantly predicted clinical progression
to AD beyond APOE genotype. Critically, PHS remained a
significant predictor even when regional brain atrophy levels and
cognitive functioning was known, and the prediction models
were significantly improved by adding PHS to models containing
atrophy score and/or MMSE. These results show that the
predictive value of PHS is, at least partly, independent of brain
atrophy and cognitive functioning at the MCI stage. In a typical
memory clinic setting, PHS may be used to assess AD risk before
other diagnostics have been performed, and may also be valuable
for further improvement of prediction after an individual has
underwent an MRI examination.

We used two complementary approaches to assess clinical
progression among MCI patients. First, we used survival
analyses to assess time to progression from MCI to AD
over a long period of 120 months, using combinations of
PHS, MRI, and cognitive functioning (Figure 1). The PHS
was a significant predictor both alone and when controlling
for atrophy level and cognitive function at study start, and
model comparisons showed significant model improvements
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TABLE 2 | Results from Cox model analyses.

Variables Log(HR) SE t p

BASELINE VARIABLES

Age −0.229 0.192 −1.190 0.234

Age∧2 0.001 0.001 0.907 0.364

Sex −2.788 1.706 −1.634 0.102

Sex*age 0.035 0.022 1.554 0.120

SINGLE-FACTOR MODELS

PHS 0.454 0.097 4.684 2.81E-06

Atrophy score −0.002 2.45E-04 −7.276 3.44E-13

MMSE −0.205 0.044 −4.629 3.68E-06

TWO-FACTOR MODEL

PHS 0.314 0.099 3.175 0.001

Atrophy score −0.002 2.54E-04 −6.463 1.03E-10

THREE-FACTOR MODEL

PHS 0.264 0.100 2.644 0.008

Atrophy score −0.002 2.58E-04 −5.962 2.49E-09

MMSE −0.142 0.047 −3.010 0.003

Baseline variables incorporated in all subsequent models. PHS, Polygenic hazard score;

MMSE, mini-mental state examination; HR, Hazard ratio.

TABLE 3 | Prediction accuracy.

Variables Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC (95% CI)

PREDICTORS

MMSE 68.4 62.8 75.1 0.73 (0.68–0.78)

Atrophy score 74.6 77.8 70.8 0.79 (0.74–0.83)

PHS and MMSE 70.0 57.2 85.1 0.79 (0.74–0.83)

PHS and

atrophy score

76.1 72.9 79.8 0.82 (0.77–0.86)

MMSE and

Atrophy score

77.2 77.08 77.3 0.82 (0.77–0.86)

Atrophy score,

PHS and MMSE

78.9 79.9 77.8 0.84 (0.79–0.88)

Prediction of progression from MCI to AD by 36 months follow up. PHS, polygenic

hazard score; MMSE, mini-mental state examination; MCI, mild cognitive impairment; AD,

Alzheimer’s Disease; AUC, area under the curve.

when adding PHS to models consisting of atrophy score and/or
MMSE. ROC analyses showed that adding PHS to atrophy
score or MMSE improved prediction accuracy, which was
primarily driven by increased specificity, but at the cost of
lower sensitivity (Table 3). These results suggest that different
combinations of biomarkers may be used in different clinical
situations where higher sensitivity or specificity is prioritized.
As expected, the best model performance was derived from
the full three- factor model with PHS, MRI, and cognitive
assessment.

Secondly, we used linear mixed-effect models to examine
the influence of PHS on change in CDR-SB and MMSE over
a shorter time period, 3 years, in the same individuals with
MCI at baseline. In line with the results from survival analyses,
PHS significantly predicted clinical decline of both CDR-SB and
MMSE among elderly diagnosed with MCI beyond APOE status,

TABLE 4 | Prediction of clinical decline.

Model Predictors Estimate SE t p

OUTCOME: MMSE

PHS PHS −0.87 0.17 −5.2(253.2) 4.06e−07

PHS+ Atrophy

score

PHS −0.72 0.17 −4.34 (251.5) 2.05e−05

Atrophy

score

2.51 0.67 3.73 (243.6) 0.000238

OUTCOME: CDR-SB

PHS PHS 0.46 0.10 4.65(259.3) 5.28e−06

PHS+ Atrophy

score

PHS 0.42 0.10 4.27 (256.1) 2.80e−05

Atrophy

score

−1.79 0.38 4.70 (249.3) 4.39e-06

Effect of predictors on change in outcome measure over 36 months. PHS, Polygenic

Hazard score; MMSE, mini mental state examination; CDR-SB, Clinical Dementia Rating

score, sub of Boxes.

both individually and when atrophy levels were included in the
model (Table 4). Taken together, these results show the utility of
the PHS to assess individual risk for clinical decline in patients
diagnosed with MCI also when their current levels of brain
atrophy and cognitive functioning is known.

Previous studies using both survival analyses and linear
mixed effect models showed improved prediction of AD
progression by combining MRI data with CSF biomarkers
(Vemuri et al., 2009; Westman et al., 2012), APOE genotype
(McEvoy et al., 2009; Dukart et al., 2015), and different cognitive
test batteries (Callahan et al., 2015; Eckerström et al., 2015;
Li et al., 2016). Investigators from our group have shown
that the combination of cognitive performance and medial
temporal atrophy substantially improves prediction of MCI to
AD progression in comparison to prediction based on individual
risk factors (Heister et al., 2011), and also that the combination
of APOE genotype and brain atrophy outperforms models
based on either variable alone (McEvoy et al., 2009). Here,
we extend previous models based on APOE to our recently
developed PHS based on whole-genome data. It is still not
fully known through which mechanisms APOE and other genes
with smaller effect impact AD risk, but brain atrophy level and
cognitive function are considered intermediate phenotypes that
maymediate genetic effects on AD risk. In our previous paper, we
found a correlation between PHS and larger volume loss in AD-
related brain areas (Desikan et al., 2017). The current findings
that PHS is predictive of AD progression when levels of brain
atrophy are included in the model, shows that MRI biomarkers
are not fully mediating the effect of PHS. Prediction based on
genetic testing has the advantages of being relatively cheap, non-
invasive, and not time-sensitive (since genetic assessment only
has to be carried out once, is valid for a whole life time and can be
used for multiple clinical purposes). In contrast to polygenic risk
scores developed in a case/control framework, PHS is focused
on predicting age of onset, which more accurately captures the
increase in population incidence with increased age, where older
age is the strongest risk factor for AD development.
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LIMITATIONS

ADNI is one of the largest longitudinal dataset for studying
progression from MCI to AD, but has limitations. First,
participants were recruited from memory clinics and
advertisements, and MCI inclusion criteria were highly
selective, thus the study group is not representative of the general
population. Further, AD diagnosis has not been confirmed
with histopathology. Also, study dropouts are biased toward
high-risk individuals, which might lead to a bias in the estimates
of progression rates. As high-risk individuals are more likely to
have a higher PHS, the predictive value of the PHS might be
underestimated in this study.

CONCLUSIONS

The present study shows that the prediction of clinical
progression to AD among MCI patients can be improved by
combining the age-sensitive PHS with structural neuroimaging
and baseline cognitive ability. Improved individual assessment
of AD risk among elderly patients presenting with subjective
memory complaints could be helpful in clinical practice to
determine treatment plans, and is also of high importance for
intervention studies where recruitment of high-risk individuals
at an early stage of the disease process is crucial for testing
effectiveness of new disease-altering interventions.
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Epidemiological studies have shown that both lipid metabolism disorder and
mitochondrial dysfunction are correlated with the pathogenesis of neurodegenerative
diseases (NDDs), including Parkinson’s disease (PD). Emerging evidence suggests that
deposition of intracellular lipid droplets (LDs) participates in lipotoxicity and precedes
neurodegeneration. Perilipin family members were recognized to facilitate LD movement
and cellular signaling interactions. However, the direct interaction between Perilipin-
regulated LD deposition and mitochondrial dysfunction in dopaminergic (DA) neurons
remains obscure. Here, we demonstrate a novel type of lipid dysregulation involved
in PD progression as evidenced by upregulated expression of Plin4 (a coating protein
and regulator of LDs), and increased intracellular LD deposition that correlated with the
loss of TH-ir (Tyrosine hydroxylase-immunoreactive) neurons in the MPTP/p-induced PD
model mouse mesencephalon. Further, in vitro experiments showed that inhibition of LD
storage by downregulating Plin4 promoted survival of SH-SY5Y cells. Mechanistically,
reduced LD storage restored autophagy, leading to alleviation of mitochondrial damage,
which in turn promoted cell survival. Moreover, the parkin-poly-Ub-p62 pathway was
involved in this Plin4/LD-induced inhibition of mitophagy. These findings were further
confirmed in primary cultures of DA-nergic neurons, in which autophagy inhibitor
treatment significantly countermanded the ameliorations conferred by Plin4 silencing.
Collectively, these experiments demonstrate that a dysfunctional Plin4/LD/mitophagy
axis is involved in PD pathology and suggest Plin4-LDs as a potential biomarker as well
as therapeutic strategy for PD.

Keywords: Plin4, lipid droplets, Parkinson’s disease, DA neurons, mitophagy

Abbreviations: 3-MA, 3-Methyladenine; CNS, central nervous system; ER, endoplasmic reticulum; FFAs, free fatty
acids; IHC, immunohistochemistry; LDH, lactate dehydrogenase; LDs, lipid droplets; MPTP, methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; NC, negative control; NDDs, neurodegenerative diseases; PD, Parkinson’s disease; poly-Ub, poly-
ubiquitin; SNpc, substantia nigra pars compacta; TEM, transmission electron microscopy; TH, tyrosine hydroxylase.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder characterized by the preferential loss of dopaminergic
neurons in the SNpc, affecting 2–3% of the population
over the age of 65 (Poewe et al., 2017). The exact etiology
and natural course of PD have yet to be fully clarified but
involve dysfunction of numerous system-level processes,
including mitochondrial function, calcium and dopamine
homeostasis, neuroinflammation, and autophagy (Athauda
and Foltynie, 2015; Ascherio and Schwarzschild, 2016;
Poewe et al., 2017), highlighting the predominant role of
mitochondrial dysfunction (Ryan et al., 2015; Onyango
et al., 2017). Genome-wide association studies (GWAS) have
identified many of the PD-associated genes such as PINK,
PARKIN and DJ-1, which have been shown to either directly or
indirectly play roles in mitochondrial homeostasis or mitophagy
(Dawson and Dawson, 2017; Onyango et al., 2017). Moreover,
recent studies have indicated that abolished mitophagy-
mediated clearance of mtDNA and mtROS rendered impaired
mitochondria as activators of the NLRP3 inflammasome to
trigger neuroinflammation and promote DA neuronal loss (Yan
et al., 2015; Zhong et al., 2016). Thus, excessive mitochondrial
stress in response to genetic or environmental toxins may result
in the death of neurons, and the capability to remove damaged
mitochondria through mitophagy must be well controlled. Thus,
the role that regulation of mitophagy plays in the pathogenesis of
PD needs further exploration.

Recent reports revealed that LD-related lipotoxicity might
participate in PD pathology (Wang et al., 2002; Outeiro
and Lindquist, 2003; Schaffer, 2016). LDs are highly dynamic
organelles that emerge from the ER membrane and serve as
the intracellular sites for neutral lipid storage (Hashemi and
Goodman, 2015). Accumulating evidence suggests that LDs
play a much broader role in biology than previously indicated,
including sequestering transcription factors, generating ligands
for nuclear receptors, and regulating immunity (Welte, 2015).
As to NDDs, α-synuclein, a pathogenic protein in PD, was
reported to bind to LDs in vitro (Thiam et al., 2013), and
subsequent in vivo studies confirmed that aggregated LDs in glia
accelerated neurodegeneration in Drosophila (Bailey et al., 2015;
Liu et al., 2015). Combined, these studies suggest that an LD
abnormality may contribute to NDDs. Mechanistically, emerging
evidence reveals an unexpected intimate association between LDs
and other intracellular organelles, especially the ER, autophagic
lysosomes and mitochondria, to affect their functions (Jaishy and
Abel, 2016). Notably, LDs were reported to affect mitochondrial
fusion dynamics, ensuring maximum oxidative metabolism and
homeostasis (Rambold et al., 2015). Thus, the precise modulation
of LDs is maintained to guarantee mitochondrial quality control.

Perilipin family members (Plin1-5), the surrounding proteins
of LDs, are regarded as the most important regulator of LDs,
facilitating LD movement and cellular signaling interactions
(Kimmel and Sztalryd, 2016). Among them, Plin2 has been
widely studied and proposed as a target for counteracting both
metabolic and age-related diseases (Conte et al., 2016). Plin4
(S3-12), a perilipin normally expressed in heart and skeletal

muscle, was reported to be involved in cardiac lipid accumulation
(Chen et al., 2013). These studies collectively support the idea
that perilipins may play a common role in pathological
degenerative conditions. Although a few reports have indicated
a relationship between LDs and α-synuclein or mitochondria,
the detailed involvement and underlying mechanism of perilipin-
regulated LDs in the pathogenesis of PD are not yet clarified.

In this study, using both cell and animal models and
a combination of RNA-seq and LD-specific indicators, we
illustrate that the Plin4/LD/mitophagy axis has a crucial role
in neurodegeneration resulting from MPTP/MPP++ insult and
indicate Plin4-LDs as a potential biomarker as well as therapeutic
strategy for PD.

MATERIALS AND METHODS

Mice
Male C57BL/6 mice (4 months old) weighing 24–30 g were
purchased from the Model Animal Research Center of Nanjing
Medical University (Nanjing, China). All mice were harbored in
the specific pathogen-free facility in Nanjing Medical University.
The animals were maintained with free access to pellet food
and water in plastic cages at 21 ± 2◦C and kept on a 12 h
light–dark cycle. To evaluate the lipid metabolic reaction and
related genetic changes in the MPTP/p PD models, mice were
randomly divided into two groups (n = 18/group) for subsequent
model induction. The chronic MPTP intoxication protocol was
similar to that described previously (Zhou et al., 2016), control
mice were treated with saline. All animals were sacrificed 1 week
after the final injection. At the endpoint, mice were anesthetized
by sodium pentobarbital (50 mg/kg, i.p.), then perfused and
sectioned, followed by western blotting (n = 6/group), IHC
staining (n = 6/group), TEM (n = 3/group) and RNA-seq
(n = 3/group) analyses as shown in the schedule (Figure 1A) with
details showed in respective method sections. For the culture of
primary midbrain neurons, pregnant mice with embryonic (E15-
17) fetuses were used. The study was approved by the Animal
Ethical and Welfare Committee of Nanjing Medical University.
All animal welfare and experimental procedures were performed
in accordance with the Guide for the Care and Use of Laboratory
Animals (National Institutes of Health, United States) and the
related ethical regulations of Nanjing Medical University. And all
efforts were made to reduce the number of animals used and to
minimize animal suffering.

Cell Culture
Authenticated SH-SY5Y cell lines were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, 8115192, 32016001) with 10%
FBS (Gibco, Cat 10100147) and 1% penicillin-streptomycin. Cells
were cultured to a confluency of 70–80% in six-well or 24-
well dishes and transfected with 1 µg of Plin4 siRNA or NC
siRNA (100 nM, Santa Cruz, CA, United States) in OptiMEM
using LipofectamineTM 3000 Transfection Reagent (Invitrogen,
Cat L3000-015) for 6 h. For the induction of neuronal damage,
cells were incubated with ultrapure MPP+ (Sigma, 200 µM)
for 24 h. For pharmacological measurements, the autophagy
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FIGURE 1 | Lipid droplets (LDs) accumulate in the mesencephalon of MPTP/p-treated mice. (A): Diagram of the experimental design. Four-month-old male
C57BL/6 mice were grouped and treated as indicated. Mice were transcardially perfused at the endpoint for bioassay. (B,C) A: TH and Nissl staining of the mouse
brain sections. In a saline-injected control, there is a dense TH+ and Nissl+ network of cell bodies in the SNpc. After MPTP injection, there is a dramatic reduction in
TH immunoreactivity and Nissl staining. Scale bar: 200 µm. B: Stereology of the loss of SNpc neurons in NC and MPTP-dosed mice. ∗P < 0.05 vs. saline group,
determined by one-way ANOVA (n = 6). (D) TEM of mesencephalon tissues comparing LD accumulation in neurons (with red stars indicating the nucleus) and
distribution relative to organelles, as indicated. Middle frames with red arrows show lipid containing vesicles, yellow shows the autolysosome and blue shows
mitochondria. Right frames displayed normal (up) and abnormal (down) mitochondria. (E,F) Tissues from (B) stained with BODIPY (E) and Oil Red O (F). BODIPY
showed more LD accumulation in SNpc (outlined in white) of PD model mice, in contrast to controls. (F) Whole-mount brain sections show LD accumulation in the
SNpc (outlined in black), and abnormal intensely stained cross-sections of TH+ axon morphology can be seen in the striatum (frame shows higher magnification) of
PD model mice, in contrast to the controls. Scale bar as indicated. Data shown in (D–F): quantitation of LD number and size. ∗P < 0.05, ∗∗P < 0.01 vs. saline group
as determined by Student’s t-test (n = 4).
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inhibitor 3-MA (Sigma, Cat M-9281, 5 mM) was added to the
cell culture medium 1 h before siRNA transfection. The cell or
mitochondrial extracts were analyzed by Western blotting.

Primary mesencephalic neurons were obtained and cultured
according to our previously described protocol (Xie et al., 2010).
After siRNA transfection and incubation with 50 µM MPP+ for
48 h, cells were rinsed carefully with PBS and fixed, followed
by immunocytochemistry. As to quantification, the number of
TH-ir neurons was counted in 10 randomly selected fields on a
Nikon Optical TE2000-S inverted microscope. The values were
normalized to that obtained from control cultures. The average
number of TH-ir cells in control cultures ranged from 20 to 30
per field, with TH-ir cells making up approximately 5% of all
cells in the primary culture. Each TH-ir cell process was traced
from the soma to the end of the process and quantified by the
measurement function of Image-Pro Plus 6.0.

Induction of the PD Model and Unbiased
Stereology
The protocols for generating the MPTP/p-induced chronic PD
mouse model and for unbiased stereology have been reported
previously (Lu et al., 2014). Briefly, 20 mg/kg MPTP (Sigma,
Cat M-0896) dissolved in saline was injected subcutaneously
followed by 250 mg/kg DMSO-dissolved probenecid, which
blocks the rapid clearance of the neurotoxin MPTP, injection
intraperitoneally at 1 h interval every 3.5 days over a period of
5 weeks. Control mice were treated with saline and probenecid.
At the endpoint, all animals were anesthetized and perfused, and
brains were sectioned for Western blotting and IHC staining.
For in vivo cell quantification studies, the number of TH+
neurons and Nissl+ neurons in the SNpc of the midbrain was
assessed using the optical fractionator (Stereo Investigator 7,
MBF Bioscience, Williston, VT, United States) as previously
reported (Lu et al., 2014). All stereological analyses were
performed under the 200× objective of an Olympus BX52
microscope (Olympus America Inc., Melville, NY, United States).
The stereology was blinded to all genotype and treatment groups
for each experiment.

Tissue Staining, Imaging and
Quantification
For frozen samples, mice were perfused transcardially with 4%
paraformaldehyde. Brains were extracted, post-fixed, dehydrated,
embedded in OCT (Tissue-Tek), and cryosectioned at 30 µm
per slice. For immunofluorescence, slides were incubated with
the indicated primary antibodies at 4◦C overnight, then washed
and incubated in secondary fluorescent antibodies, followed
by mounting in Prolong Gold Antifade with DAPI (Life
Technologies, Cat P36931) before imaging. Images were observed
and photographs were captured under a confocal microscope
(Axiovert LSM510, Carl Zeiss Co., Germany). The integrated
optical densities (IODs) were calculated using ImageJ by
sampling of a 30 × 30 pixel area, and 36 images were captured
from six consecutive mesencephalon sections. The values were
reported as the average intensity above the background± SD.

For Oil Red O staining, a working Oil Red O solution was
generated by diluting a 3.5 mg/ml stock (in 100% isopropanol)
(Sigma, Cat 0625) 3:2 with distilled water. This solution was
incubated at room temperature for 30 min and filtered with
Whatman paper before use. Sections were incubated in 60%
isopropanol for 2 min, dried, and incubated in Oil Red O
staining solution for 1 h at room temperature. Slides were rinsed
in distilled water and counterstained with hematoxylin prior
to mounting on Prolong glass slides. For LD staining in CNS
sections, slides were submerged in PBS for 10 min and then
incubated for 10 min in BODIPY493/503 (Life Technologies, Cat
D3922). The slides were then washed in PBS and immediately
covered with Vectashield mounting medium with DAPI for
later imaging on the same day. The LD staining signals were
quantitatively analyzed using ImageJ as described above for the
immunostaining signals.

Cell Staining With BODIPY493/503 and
MitoTracker Deep Red
Live cells were washed twice in PBS and incubated with 2 µg/ml
BODIPY493/503 (Life Technologies, Cat D3922) in PBS for 15 min
at 37◦C. For MitoTracker Deep Red staining, live cells were
incubated with 0.5 µg/ml MitoTracker Deep Red (Invitrogen,
Cat M22426) in PBS for 30 min at 37◦C. After staining, the
cells were washed in PBS and fixed in 3.5% PFA for 10 min.
Then, the cells were washed and counterstained with Hoechst
33342 (Sigma, Cat B2261) for 10 min before being covered on
glass slides for imaging. Images were observed and photographs
were captured under an optical inverted fluorescence microscope
(Nikon, TE2000-S).

Flow Cytometry Analysis
Mitochondrial membrane potential was measured by
fluorescence levels upon staining with JC-1 (Invitrogen, Cat
M7514) and MitoTracker Deep Red (Invitrogen, Cat M22426)
at 0.5 µg/ml for 30 min at 37◦C according to the manufacturer’s
instructions. Apoptosis of cells was assessed by staining cells
with Annexin V/PI (Invitrogen, Cat V13242) at 37◦C for 30 min
according to the manufacturer’s instructions. The cells were then
washed with PBS and resuspended in cold PBS containing 1%
FBS for flow cytometric analyses with Guava easyCyte System 8
(Millipore 25801, Hayward, CA, United States).

RNA-seq Analysis
Transcriptional profiling via RNA-seq analysis was conducted
using the Illumina Hiseq kit according to the manufacturer’s
instructions. HTSeq v0.6.1 was used for quantification of gene
expression level. Differential expression analysis of the two
groups was performed using the DESeq R package (1.10.1).
In detail, DESeq provide statistical routines for determining
differential expression in digital gene expression data using a
model based on the negative binomial distribution. The resulting
P-values were adjusted using the Benjamini and Hochberg’s
approach for controlling the False Discovery Rate (FDR). Genes
with an adjusted P-value < 0.05 found by DESeq were assigned
as differentially expressed. As a result, a particular subset of 74
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genes was generated as differentially expressed, with the summary
statistical data shown in Supplementary Materials.

RNA Reverse-Transcription and
Quantitative RT-PCR Analysis
Total RNA was extracted with Trizol reagent (Invitrogen Life
Technologies, Carlsbad, CA, United States). Total RNA (1 µg)
of each sample was reverse-transcribed into cDNA and amplified
using a PrimeScriptTM RT Master Mix (Takara, RR036A,
Takara Biotechnology, China) according to the manufacturer’s
directions. RT-PCR was measured using a QuantiTect SYBR R©

Green PCR kit (Qiagen, Germany) with an ABI 7300 StepOneTM

Fast Real-Time PCR System (Applied Biosystems, Foster City,
CA, United States). The primer sequences used in this study are
listed in the Supplementary Data. After the addition of primers
and template DNA to the master, PCR thermal cycle parameters
were as follows: 95◦C for 3 min, 40 cycles of 60◦C for 30 s
and 95◦C for 15 s, and a melting curve from 60 to 95◦C to
ensure amplification of a single product. In each sample the
GAPDH gene was used as an endogenous control to normalize
for differences in the amount of total RNA.

Western Blot, Transmission Electron
Microscopy Analysis and Hoechst
Staining
The protocols for the Western blot and TEM assays have
been reported previously (Lu et al., 2014; Jia et al., 2017).
Midbrain and cell protein lysates were quantified by Bradford
assays (Bio-Rad, Hercules, CA, United States). Proteins were
electrophoresed through a 10–15% SDS–polyacrylamide gel and
transferred to PVDF membrane (Millipore, IPVH00010). The
membranes were probed with the indicated primary antibodies
followed by HRP-conjugated secondary antibodies. Signals were
detected by enhanced chemiluminescence (ECL) Western blot
detection reagents (Pierce, Rockford, IL, United States). The
membranes were scanned and analyzed using an Image Quant
LAS 4000 Imaging System (GE Healthcare, Stockholm, Sweden).
The average blot intensities were calculated using ImageJ, and the
values are reported as the average intensity above the background
with β-actin used for normalization.

Antibody Details
Primary Antibodies
Plin4 (Novus, Cat 13776,1:500 for IF &1:1000 for WB);
TH (Abcam, Cat ab6211,1:800 for IF); GFAP (Millipore, Cat
MAB360,1:500 for IF); poly-Ub (CST, Cat 3936,1:500 for IF
& 1:1000 for WB); Tom20 (CST, Cat 13929s,1:500 for IF &
1:1000 for WB);LC3B (CST, Cat 2775,1:500 for IF & 1:1000
for WB); p62 (CST, Cat 5114,1:500 for IF & 1:1000 for WB);
Parkin(Abcam, Cat ab15954,1:800 for WB), Cytochrome C
(CST, Cat 4272s,1:800 for WB), AIF(E-1) (Santa Cruz, Cat
sc-13116,1:800 for WB), caspase-3 (CST, Cat 9662s,1:500 for
WB), Beclin-1(CST, Cat 3738,1:1000 for WB), ATG7 (ABGENT,
Cat AP1813a,1:800 for WB), β-actin (Santa Cruz, Cat SC-
47778,1:1000 for WB). Secondary antibodies: Alexa F488 Donkey
anti-mouse (Invitrogen, Cat A21202, 1:1000), Alexa Fluor 488

Goat anti-Rabbit (Invitrogen, Cat A11008,1:1000), Alexa Fluor
594 Donkey anti-Goat (Invitrogen, Cat A11058, A11008, A
11059,1:1000), HRP-conjugated secondary antibodies (Thermo,
Cat 0031430, 31460, 31402, 1:1000).

Statistical Analysis
All data are presented as the means ± SEM and were collected
and analyzed in a blinded manner. Statistical analysis was
performed using Student’s t-test or one-way analysis of variance
(ANOVA) followed by the Holm–Sidak test (SigmaPlot 11.0).
Two-way ANOVA was used when the genotype and treatment
were considered as two independent variables. The tests used
are indicated in the figure legends. In all studies, n indicates the
number of samples per group, and cases in which P-values < 0.05
were considered statistically significant.

RESULTS

LDs Accumulate in the Mesencephalon
of MPTP/p-Treated Mice
Emerging studies have documented unexpected LD
accumulation accompanied by mitochondrial dysfunction that
promotes neurodegeneration in Drosophila (Liu et al., 2015).
To determine whether LD formation occurs in mammalian
models and participates in the pathogenesis of PD, we generated
the MPTP neurotoxin-induced PD mouse model for chronic
mitochondrial dysfunction-associated loss of DA neurons using a
previously described protocol (Lu et al., 2014). As shown by IHC
staining, PD model mice were well established, with both TH+
and Nissl+ neurons in the SNpc showing a dramatic reduction
in number (41.5 and 52.5%, respectively) in MPTP-treated
mice compared with those in the saline-injected control group
(Figures 1B,C).

Transmission electron microscopy indicated that MPTP
injection induced a significant accumulation of LDs in the cytosol
of neurons (indicated by red stars; morphologically seen with low
and homogeneous electron density, little heterochromatin, and
a large, round nucleolus for neuronal cell identification). LDs
are easily identifiable in Figure 1D, similar to results reported
previously (Singh et al., 2009), showing round, light-density
structures not limited by a lipid bilayer membrane (Middle
frame, red arrow), with homogenous amorphous content that
was increased in both size and amount in response to MPTP/p
stimuli. In contrast, LDs were rarely observed or were found
to have a much smaller size in controls. Moreover, MPTP/p-
induced LD accumulation was accompanied by mitochondrial
damage (Right frame) and nearby autolysosomes (middle frame,
yellow arrow). These findings suggest abnormal LD deposition
in SNpc neurons that may correlate with mitochondrial damage
in this PD model. For further confirmation, we performed LD-
specific staining in brain sections and observed LD deposition
(enhanced neutral lipid) in both the SNpc and striatum by
using BODIPY493/503 (Figure 1E) and Oil Red O (Figure 1F).
LD-specific staining was especially dense in both the SNpc
and striatum of injured animals, indicating much more LD
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accumulation in regions where the bodies and axons of TH-
ir neurons are located, whereas control animals showed diffuse
staining (Figures 1E,F). These results suggested MPTP/p toxicity
could induce mitochondrial damage with concomitant LD
accumulation in the midbrain neurons of PD model mice.

Increased Plin4 Expression Is Positively
Correlated With LD Accumulation in the
Midbrain of MPTP/p-Treated Mice
Lipid droplets functions are regulated predominantly by the
surrounding perilipin proteins of LDs (Kimmel and Sztalryd,
2016). To confirm whether and which perilipin may contribute
to LD accumulation in the PD model mouse brain, we conducted
the RNA-seq and subsequent quantitative PCR analysis of
mesencephalon samples from saline- and MPTP/p-challenged
mice. As quantitative PCR revealed, among all the increased
genes (P-value < 0.05, details in Supplemental Materials), Plin4
showed the highest overexpression in MPTP/p-treated mouse
brain (Figure 2A). In contrast, the mRNA level of other perilipins
was not elevated (Figure 2B). We also found a much higher Plin4
level in midbrain and striatum, compared to that in cortex and
hippocampus (Supplementary Figure S1), further supporting the
relationship between Plin4 and PD. Correspondingly, Western
blotting also revealed a significant upregulation of Plin4 protein
in the midbrain of PD model mice (Figure 2C). As shown
in Figure 2D, co-immunostaining of Plin4 and different cell
markers demonstrated that Plin4 mainly localized in TH+
neurons but not in GFAP+ glia. Indeed, MPTP/p challenge-
induced elevation of Plin4 expression was further confirmed by
IHF (Figure 2E), supporting the evidence that the LD-related
Plin4 change indeed occurred in DA neurons. To confirm
this result in vitro, SH-SY5Y cells, a representative cell line of
dopaminergic neurons, were cultured and then stimulated with
MPP+ to mimic MPTP/p-induced neurological damage in vivo.
Consistent with the in vivo findings, MPP+ treatment promoted
Plin4 expression and intracellular neutral lipid deposition as
determined by BODIPY493/503 staining (Figure 2F) in SH-SY5
cells. Together, these findings indicate increased Plin4 expression,
rather than that of other perilipins, may account for LD
accumulation and participate in PD pathogenesis.

Knockdown of Plin4 Decreases LD
Accumulation and Alleviates SH-SY5Y
Cell Damage
To directly examine the role of Plin4 in LD accumulation
due to MPP+ stimuli in vitro, we transfected multiple siRNAs
targeting Plin4 or a scrambled control (SCR) into SH-SY5Y
cell lines and observed that both Plin4 mRNA (Supplementary
Figure S2) and protein expression were decreased (Figure 3A).
LDH release assay and Hoechst 33342 staining both indicated
that the Plin4 knockdown alone had no effect on cell viability
(Figures 3D,E). By staining with the lipid-specific indicator
Oil Red O and BODIPY493/503, we further revealed that
Plin4 silencing indeed reversed MPP+-induced intracellular
LD accumulation (Figures 3B,C). Furthermore, to assess the
functional capacity of LDs, SH-SY5Y cells were transfected with

siPlin4 or SCR plus MPP+ treatment, and we found that Plin4
depleted cells were more tolerant to MPP+ induced toxicity,
evidenced by both Hoechst 33342 staining and LDH release
assay (Figures 3D,E), consistent with reduced lipid storage within
LDs. In addition to the Annexin V/PI staining indicated, the
percentage of apoptotic cells (Figure 3F) further confirmed that
cell damage was alleviated by Plin4 silencing. Collectively, these
results showed that Plin4 inhibition decreased MPP+-induced
LD deposition and enhanced cell viability. Thus, Plin4 is essential
for LD deposition and accounts for cell damage upon toxic
mitochondrial insult.

Knockdown of Plin4 Reverses
Mitochondrial Damage in the MPP+ Cell
Model
It has been reported that altered LDs could trigger dysfunction
of many intracellular organelles, especially the mitochondria
(Welte, 2015), and that this is mainly mediated by the surface
coated protein, perilipin. Thus, we proposed that Plin4-mediated
LD deposition could magnify mitochondrial stress, contributing
to subsequent death-signals being released and damage initiated.
To confirm this, we first examined whether Plin4 affects the
subcellular distribution of LDs and/or leads to mitochondrial
translocation by MPP+ stimuli. As showed in Figure 4A, LDs
displayed rare and diffuse cytoplasmic distribution in PBS-treated
controls. In contrast, MPP+ incubation caused LD deposition
and localization with or adjacent to, damaged mitochondria.
Moreover, Plin4 deficiency could prevent this MPP+-induced
LD shifting. Then, to assess the functional association between
Plin4 and mitochondrial damage, the mitochondrial membrane
potential was measured by JC-1 staining in SH-SY5Y cells.
As Figure 4B indicated, the decrease in membrane potential
induced by MPP+ was alleviated by Plin4 silencing. We also
examined the expression of apoptosis-inducing factor (AIF)
and Cytochrome C (cyto C), both of which translocate from
the mitochondria into the cytoplasm in the early phases of
mitochondrial damage to initiate the apoptotic proteolytic
cascade by activating caspase-3. Western blotting showed more
AIF and cyto C released into the cytoplasm upon MPP+
stimulation (Figures 4C,D), which was partly reversed by
Plin4 deletion. For direct mitochondrial integrity assessment,
we further observed the ultramicromorphological changes in
SH-SY5Y cells. MPP+ triggered accumulation of numerous
swollen mitochondria in the SCR control cells, containing many
highly damaged, electron-dense disrupted cristae mitochondria,
which was attenuated by Plin4 knockdown (Figures 4E,F). These
results indicate that genetic silencing of Plin4 alleviated MPP+-
induced mitochondrial damage in a dopaminergic cell line.

Downregulation of Plin4 Activates
Mitophagy in MPP+-Treated SH-SY5Y
Cells
Mitophagy, a quality control process, mediates the clearance
of damaged ubiquitinated mitochondria, and mutations
in genes related to mitophagic function, especially PINK1
and DJ-1, account for many autosomal recessive forms and
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FIGURE 2 | Increased Plin4 is positively correlated with LD accumulation in the midbrain of MPTP/p-treated mice. (A,B) A: Quantitative RT-PCR analysis of RNA-seq
indicated increased genes. B: RT-PCR analysis of Plin4 and other perilipins in mesencephalon samples from matched PD and NC mice. (C) Western blot analysis
was performed to assess Plin4 expression in vivo. (D,E) For cellular location, the expression of Plin4 and TH/GFAP were analyzed by immunofluorescence of frozen
brain sections. Arrows indicate neurons with coexpression of Plin4 and TH; the integrated optical density (IOD) of Plin4 and TH staining is presented on the right.
(F) SH-SY5Y cells were stimulated with MPP+ for 24 h followed by IF of Plin4 and BODIPY493/503 staining (arrows marked), quantitation showed in right. Scale bar
as indicated. Data are presented as the means ± SEM. Data in (A,E): ∗P < 0.05, ∗∗P < 0.01 vs. the control group as determined by one-way ANOVA (n = 4). Data in
(B,C,F): ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 vs. the control group as determined by Student’s t-test (n = 6 in B,C).

some sporadic cases of PD (Lazarou et al., 2015). As shown
in Figure 5A, MPP+ induced an increase in LC3-labeled
vacuoles (namely, foci of LC3-II, the autophagosomal

marker microtubule-associated protein 1 light chain 3) with a
localization adjacent to mitochondria (as indicated by Tom20,
a mitochondrial membrane protein) in SH-SY5Y cells. To
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FIGURE 3 | Knockdown of Plin4 decreases LD accumulation and alleviates SH-SY5Y cell damage. (A) SH-SY5Y cells were transduced with siRNA against Plin4 or
an SCR control. Western blot analysis was performed at 48 h post-transduction to assess for Plin4 suppression. ∗∗P < 0.01, ∗∗∗P < 0.001 vs. SRC as determined
by one-way ANOVA followed by the Holm–Sidak test. (B) Cells described in (A) followed by CTL (PBS alone) or 200 µM MPP+ stimulation for another 24 h. Live
cells were stained with BODIPY493/503 (2 µg/ml) then fixed and counterstaining with DAPI for fluorescence imaging. (C) Oil Red O staining of the cells described in
(B). Right: quantitation of LD number and integrated optical density (IOD). (D) Plin4 knockdown and MPP+ stimulation-induced cytotoxicity in SH-SY5Y cells were
determined by Hoechst 33342 staining. (E) The cells described in (B) were subjected to the LDH release assay after 24 h of treatment. (F) Annexin V/PI staining
indicated apoptosis of the cells described in (E). Data in (C,E,F) are shown as mean ± SEM. ∗P < 0.05, ∗∗P < 0.01 vs. SCR-CTL, &P < 0.05 vs. SCR-MPP+ as
determined by two-way ANOVA.
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FIGURE 4 | Knockdown of Plin4 reverses mitochondrial damage in MPP+ cell model. (A) Intracellular distribution of LDs (BODIPY493/503) and mitochondria
(MitoTracker Deep Red) in MPP+-stimulated SH-SY5Y cells were examined by fluorescence microscopy. Arrows indicate cells with colocalization of LDs and
mitochondria; the integrated optical density (IOD) of BODIPY493/503 and MitoTracker Deep Red immunofluorescence is presented on the right. (B) MPP+-induced
mitochondrial membrane potential changes in WT (SCR) or Plin4-deficient (siPlin4) SH-SY5Y cells were measured by JC-1 staining. Scale bar: 10 µm. (C) SH-SY5Y
cells described in (B) were harvested, and then, mitochondria and cytosol were separated using a commercial kit and assessed for AIF and Cyto C expression.
(D) Quantification of protein expression in (C). β-actin and Tom20 were utilized as endogenous control genes for cytosol and mitochondria, respectively, and relative
expression levels were determined by normalizing to those in the SCR-CTL samples. (E) Electron micrographs of mitochondria in WT (SCR) or Plin4-deficient
(siPlin4) SH-SY5Y cells incubated with MPP+ as described above. Shown are representative examples of normal (white arrow), partially damaged (blue arrow), and
heavily damaged mitochondria (red arrow). Scale bar: 500 nm. (F) Quantification of damaged mitochondria in (E). Data in (A,D,F) are shown as mean ± SEM.
∗P < 0.05, ∗∗P < 0.01 vs. SCR-CTL, &P < 0.05 vs. SCR-MPP+ as determined by two-way ANOVA.
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FIGURE 5 | Downregulation of Plin4 activates autophagy in MPP+-treated SH-SY5Y cells. (A) SH-SY5Y cells were treated with 200 µM MPP+ for 24 h. LC3-II dot
localization was detected by ICF with Tom20 as a mitochondrial marker. Scale bar: 10 µm. (B) SH-SY5Y cells were transfected with SCR or siPlin4 for 24 h, followed
by MPP+ incubation (200 µM, 24 h). Mitochondria and cytosol were then separated and assessed for LC3B expression. (C,D) C: Cells treated as in (B) were
harvested, and proteins were collected for detection of LC3B, ATG7, and Beclin1 expression, with quantification shown in (D). (E) Cells described in (B) were fixed,
followed by ICF staining of p62 and poly-Ub sequestration and intracellular localization. Scale bar: 20 µm. (F,G) Cells described in (C) were harvested for detection
of p62 and Parkin expression and relative quantification. Data in (D,G) are shown as the mean ± SEM. ∗P < 0.05, ∗∗P < 0.01 vs. SCR-CTL, &P < 0.05 vs.
SCR-MPP+ as determined by two-way ANOVA.

detect the participation of Plin4 in mitophagy inhibition, we
separated mitochondria from the cytoplasm and examined
the expression of MAP1LC3B/LC3B-II, which is a cleaved
MAP1LC3B-phosphatidylethanolamine conjugate and a general
autophagosomal marker. We showed that Plin4 knockdown
promoted mitophagy, as evidenced by more conversion of LC3-I
to LC3-II in the mitochondria, which was previously inhibited
by MPP+ stimulation (Figure 5B). To further characterize
the underlying autophagic mechanisms of Plin4 in mitophagy
inhibition, we further analyzed the expression of many
autophagy-related proteins in mitochondria. As well as LC3B-II

production, Plin4 silencing also restored MPP+-induced ATG7
and beclin1 inhibition (Figures 5C,D). These results indicated
that MPP+ blunted mitophagy could be rescued by Plin4
silencing in SH-SY5Y cells.

During the autophagic process, p62 acts as a receptor
protein that links LC3B with ubiquitinated substrates for
clearance (Komatsu et al., 2012). Consistently, we found that
MPP+-induced p62 and poly-Ub sequestration was reduced
by Plin4 deficiency, as evidenced by both immunofluorescence
(Figure 5E) and Western blotting (Figures 5F,G). Parkin, an
identified mitophagy-related E3 ligase (Lazarou et al., 2015;
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FIGURE 6 | 3-MA abolishes the protective effect of Plin4 deficiency on primary DA neurons. (A,B) A: SH-SY5Y cells were pretreated with PBS or 3-MA, followed by
siRNA transfection 24 h before MPP+ was given, and apoptosis was assessed by Annexin V/PI staining and flow cytometry. The data for flow cytometry analysis are
presented as a percentage of the cell population by normalizing to MOCK-SCR-CTL samples. (C,D) Cells described in (A) were harvested and proteins were
collected for the detection of caspase-3 activity by Western blot. (E,F) E: Primary cultured neurons of the mesencephalon suffered indicated treatments, followed by
TH IHC detection; amplifications shown in the right frames for details. F: Representative number of TH+ neurons and neurite length compared with SCR-NC. Scale
bar as indicated. Data in (B,D,F) are shown as the mean ± SEM (n = 4–6). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 vs. SCR-NC-CTL; &P < 0.05 vs.
SCR-NC-MPP+; and $P < 0.05,$$P < 0.01 vs. MOCK-NC-MPP+ as analyzed by one-way ANOVA followed by the Holm–Sidak test.
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Pickrell and Youle, 2015), is a key mediator of this p62-Ub
mediated clearance of damaged mitochondrial and was also
reversed by Plin4 deficiency (Figures 5F,G). Collectively, these
results imply that inhibition of Plin4 promoted mitochondrial
homeostasis by activating autophagic removal of damaged
substrates in the PD cell model.

3-MA Abolishes the Protective Effect of
Plin4 Deficiency on Primary DA Neurons
Damaged mitochondria activate multiple signals, such as
mitochondrial reactive oxygen species (mtROS), mtDNA and
cardiolipin, promoting the mitochondrial apoptosis pathway,
which represents the primary reason for the loss of TH-ir neurons
in PD (Suliman and Piantadosi, 2016; Dawson and Dawson,
2017). Because our data indicate that Plin4 hindered autophagy,
which accounted for MPP+-induced mitochondrial damage,
we speculated that promotion of the autophagic elimination
of these danger signals by controlling Plin4 might attenuate
injuries triggered by MPTP toxicity. Therefore, we treated NC
and Plin4-silenced SH-SY5Y cells with 3-MA, an autophagy
inhibitor that can block the maturation and degradation of
autophagy. Flow cytometry results using Annexin V/PI indicated
that 3-MA pretreatment abolished the cell death-reducing
effect of Plin4 knockdown in MPP+-stimulated SH-SY5Y cells
(Figures 6A,B). These results were confirmed by immunoblot
analysis of activation of caspase-3 (Figures 6C,D), an apoptosis-
related protein that is proteolytically activated upon exposure
to apoptotic stimuli. To provide more direct evidence linking
DA neuronal deterioration, mitophagy and Plin4, primary
mesencephalic neurons were cultured as described previously
(Qiao et al., 2016), followed by MPP+ stimulation to mimic
the toxicity of MPTP/p in vivo. As shown in Figures 6E,F,
MPP+ decreased the number of TH-ir neurons by 43.4% and
shortened neurite length by 65.7% compared with those in
controls. In agreement with the results obtained in SH-SY5Y
cells, MPP+-induced damage in primary TH-ir neurons was
also partially alleviated by siPlin4 transfection. Moreover, the
neuroprotection contributed by Plin4 silencing was suppressed
by 3-MA, supporting the idea that autophagy was involved in the
Plin4-mediated deterioration of DA neurons.

DISCUSSION

The accumulation of lipid metabolites in nonadipose tissues
causes lipotoxicity (Wymann and Schneiter, 2008) and is
correlated with insulin resistance, type II diabetes mellitus,
hepatic steatosis, and cardiovascular disease (Wymann and
Schneiter, 2008; Gan et al., 2014; Schaffer, 2016). Lipotoxicity
was found clinically relevant with NDDs, (Aviles-Olmos et al.,
2013; Zou et al., 2015; Ascherio and Schwarzschild, 2016),
although clear links have not been elucidated. Inside cells,
lipids are stored within micelles known as LDs. Emerging
evidence suggests the development of lipotoxicity is not solely
due to the presence of FFAs in nonadipose tissues but is
also due to the alteration of LD homeostasis (Krahmer et al.,
2013; Thiam and Beller, 2017). Defects in LD biogenesis or

turnover lead to perturbance of many metabolic pathways,
further causing inflammation and mitochondrial and ER
stress (Welte, 2015; Mukhopadhyay et al., 2017). Clinically, new
evidence has emphasized the importance of LDs in cancers and
aging-related diseases, as well as nervous system homeostasis
(Bailey et al., 2015; Liu et al., 2015; Qiu et al., 2015; Conte
et al., 2016). Recently, Liu et al. (2015) revealed that mutations in
mitochondrial-related genes exhibit a common phenotype of LD
accumulation, promoting the onset of neurodegeneration (ND)
in Drosophila (Liu et al., 2015). However, a direct link between
LD accumulation and NDD in mammals has not been established
thus far.

In this study, via TEM and lipid-specific staining, we showed
that MPTP/p-treated PD model mice exhibited LD accumulation
in exactly the same brain region where DA neuronal loss occurs.
Bailey et al. reported similar LD changes occurred in glial cells
to preserve neuroblast proliferation under hypoxic conditions
in Drosophila (Bailey et al., 2015). In our mouse model, both
TEM and IHF co-immunostaining of TH/GFAP with Plin4
consistently revealed that LDs mainly clustered in neurons, with
less accumulation in astrocytes. Whether LDs may perform some
glial-specific function requires further exploration. Thus, our
in vivo study suggests a strong correlation between LD deposition
and mitochondrial stress in a specific MPTP/p-induced mouse
model of PD.

Our results fit within an emerging theme in which primary
injuries coordinately induce both lipid synthesis processes and
a disturbance in mitochondrial homeostasis, which cooperate in
reducing cell viability, representing a common change in many
energy metabolism-related diseases, including NDDs (Qiu et al.,
2015; Thiam and Beller, 2017). Specifically, evidence indicates LD
accumulation resulting from mitochondrial dysfunction precedes
physical and histological changes in NDD (Liu et al., 2015) and
also protects neural stem cells from hypoxia damage during
development in Drosophila (Bailey et al., 2015). Thus, in the case
of energy barriers predominantly in CNS, LDs, the novel but
incompletely defined organelles, may represent the primary and
unique way for the organisms to solve the problem of balancing
energy supply and cellular homeostasis. However, once the
compensation cannot be satisfied or the stimuli sustained, LDs
may subsequently change to be harmful and aggravate the injuries
by inducing mitochondrial stress, ER stress or autolysosome
dysfunction (Welte, 2015), as happened in our study.

Lipid droplets are highly dynamic organelles surrounded by
a phospholipid monolayer and several proteins (Welte, 2015).
The most abundant and well-characterized LD coating proteins
belong to the so-called PAT family, comprising five members
(1–5) collectively known as Perilipins (Kimmel and Sztalryd,
2016), which have physiological roles in facilitating storage
of neutral lipids within LDs and regulating the intracellular
interactions with other organelles. Here, with the combined
use of RNA-seq and RT-PCR, we identified upregulated
expression of Plin4 accompanied by LD accumulation in the
MPTP/p-treated mouse midbrain. Plin4 is normally found
decorating nascent LDs in the cytosol, and its inactivation
has been reported to affect heart function (Chen et al.,
2013). Moreover, genetic silencing of Plin4 significantly
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ameliorated LD storage and promoted the survival of neurons
in vitro. Hence, the molecular mechanisms underlying
Plin4-controlled LD deposition are likely to be conserved in mice
and may contribute to the pathogenesis of PD. The clarification
of this question may help to provide novel explanations for the
theory of lipotoxicity in PD.

Mitochondrial disability is a common feature of both familial
and sporadic PD, as well as toxin-induced parkinsonism
(Newmeyer and Ferguson-Miller, 2003; Ryan et al., 2015; Suliman
and Piantadosi, 2016). Recent findings have further revealed
mitophagy dysfunction to be clinically relevant, with abnormal
lipid metabolism being suggested to relate to PD pathogenesis.
Here, we showed that Plin4 silencing conferred a reduction in
LD deposition and in turn resulted in prevention of MPP+-
induced mitochondrial damage as evidenced by mitochondrial
membrane potential collapse, mitochondrial fragmentation, and
mitophagy inhibition. Thus, our findings fit with the newly
identified mitochondria-related roles of LDs (Welte, 2015).

In addition to their interactions with mitochondria, LDs also
interact with autolysosomes, with several studies demonstrating
a bidirectional relationship between the two (Jaishy and Abel,
2016). By examining the linkage between LD disturbance and
autophagic signaling, we showed that Plin4 silencing-driven
autophagy and p62-ubiqutin mediate the autophagic clearance of
damaged mitochondria, which in turn ameliorated deterioration
in both SH-SY5Y cells and primary cultured DA neurons. We
present our conclusions based on the following observations:
Plin4 deficiency conferred apoptosis inhibition and caspase-3
inactivation, which were significantly blocked by the autophagy
inhibitor 3-MA.

CONCLUSION

In conclusion, by exploring the role of LDs in vitro and in a mouse
PD model in vivo, we demonstrated that Plin4-dependent LD
deposition in TH-ir neurons contributed to DA neuronal loss in
MPTP/p-treated mice. Mechanistically, excessive accumulation
of LDs may trigger mitochondria-impaired mitophagy, further

resulting in subsequent neurodegenerative damage. Thus, a
dysfunctional Plin4/LD/mitophagy axis is clarified to be involved
in PD pathophysiology, indicating that Plin4-LD changes in the
brain may be a promising biomarker as well as therapeutic target
for PD.

The main limitation of this work is the use of a chemical insult-
based model of PD, which cannot mimic the whole spectrum
of PD pathogenesis. Replicating these findings in different PD
models would help to verify the possibility of rendering Plin4-
LDs as therapeutic targets for PD.
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United States, 2 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco,
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There is increasing evidence that metabolic dysfunction plays an important role in
Alzheimer’s disease (AD). Brain insulin resistance and subsequent impairment of insulin
and insulin-like growth factor (IGF) signaling are associated with the neurodegenerative
and clinical features of AD. Nevertheless, how the brain insulin/IGF signaling system
is altered in AD and the effects of these changes on AD pathobiology are not well
understood. IGF binding protein 2 (IGFBP-2) is an abundant cerebral IGF signaling
protein and there is early evidence suggesting it associates with AD biomarkers. We
evaluated the relationship between protein levels of IGFBP-2 with cerebrospinal fluid
(CSF) biomarkers and neuroimaging markers of AD progression in 300 individuals
from across the AD spectrum. CSF IGFBP-2 levels were correlated with CSF tau
levels and brain atrophy in non-hippocampal regions. To further explore the role of
IGFBP2 in tau pathobiology, we evaluated the expression of IGFBP2 in different human
and mouse brain cell types and brain tissue from two transgenic mouse models: the
P301L-tau model of tauopathy and TASTPM model of AD. We observed significant
differential expression of IGFBP2 in both transgenic mouse models relative to wild-type
mice in cortex but not in hippocampus. In both humans and mice, IGFBP2 is most
highly expressed in astrocytes. Taken together, our findings suggest that IGFBP-2 may
be linked to tau pathology and provides further evidence for a relationship between
metabolic dysregulation and neurodegeneration. Our results also raise the possibility
that this relationship may extend beyond neurons.

Keywords: IGFBP-2, Alzheimer’s disease, CSF, neuroimaging, tau

‡Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
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implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete
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Acknowledgement_List.pdf.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia, affecting more than 37 million people worldwide
(Matthews, 2010). The pathological hallmarks of AD are
insoluble extracellular amyloid beta plaques and intracellular
neurofibrillary tangles (NFTs) containing aggregates of
hyperphosphorylated tau (p-tau) protein (Perl, 2010; Querfurth
and LaFerla, 2010). This pathology is associated with neuronal
cell loss and synaptic injury that leads to the characteristic
memory loss, cognitive impairment, and behavioral changes
observed in AD patients (Querfurth and LaFerla, 2010). An
increasing number of studies suggest that alterations in brain
metabolic processes play an important role in AD pathogenesis,
with brain insulin resistance recognized as an important feature
of AD in both patients and in post-mortem tissue (Salkovic-
Petrisic and Hoyer, 2007; Querfurth and LaFerla, 2010; Takeda
et al., 2010; Bomfim et al., 2012; Talbot et al., 2012; Stanley et al.,
2016).

Insulin and insulin-like growth factor (IGF) signaling in the
brain regulate neuronal growth, repair, and synaptic maintenance
(Stockhorst et al., 2004; van Dam and Aleman, 2004), and
play an important role in learning and memory (Zhao et al.,
2004). Reduced sensitivity to insulin and IGF signals in AD
are observed across multiple levels of cell signal response,
including reduced insulin receptor (IR) sensitivity, inhibition
of secondary messengers (i.e., IR substrate-1), and decreased
IR and IGF receptor (IGFR) expression (Watson and Craft,
2003; Rivera et al., 2005; Steen et al., 2005; Holscher and Li,
2010; de la Monte, 2012; Talbot et al., 2012; Freiherr et al.,
2013; Stanley et al., 2016). Markers of insulin resistance are
elevated in hippocampus, a region of the brain that has high
levels of IRs and is affected in AD (Frölich et al., 1998; Talbot
et al., 2012; Bedse et al., 2015). Furthermore, insulin sensitivity
restoration, insulin, and IGF therapy have been suggested to
improve cognitive performance and memory function in healthy
humans, individuals with mild cognitive impairment (MCI), and
AD patients (Reger et al., 2008; Bomfim et al., 2012; Bedse
et al., 2015), protect neurons from amyloid-induced toxicity in
primary cell culture studies (Mattson, 1997), and prevent tau
hyperphosphorylation in animal models (Deng et al., 2009; Chen
et al., 2013). Thus, in the context of insulin and IGF resistance,
neurons may be more vulnerable to damage and death resulting
from the pathological changes underlying AD.

IGF-I and IGF-II are growth factors secreted by tissues
throughout the body including the brain, and are effectively
stored outside of cells in complex with IGF binding proteins
(IGFBPs) (Holly and Perks, 2006). Interaction with IGFBPs slows
IGF clearance and regulates the activity of IGF on cells through
a variety of mechanisms (Russo et al., 2005). Importantly, several
studies have observed altered levels of IGFs and IGFBPs in the
plasma and cerebrospinal fluid (CSF) of AD patients, further
suggesting that the neuroprotective and synaptic maintenance
effects elicited by IGF signaling may be altered in AD (Tham
et al., 1993; Vardy et al., 2007; Salehi et al., 2008; Hertze et al.,
2014; Åberg et al., 2015). While the relationship between plasma
levels of IGFs and IGFBPs and pathological features of AD have

been explored to some extent (Toledo et al., 2013; Lane et al.,
2017; Mclimans et al., 2017), knowledge of how plasma and CSF
IGFs as well as IGFBPs contribute to AD pathogenesis remains in
its early stages with previous reports focusing on cross-sectional
analyses of neuroimaging data or longitudinal analyses of specific
candidate regions. Further, studies of CSF IGFBPs in AD conflict,
with some reporting significant differences in levels of IGFBPs
(Salehi et al., 2008; Hertze et al., 2014; Lane et al., 2017; Mclimans
et al., 2017) while others report no difference (Åberg et al., 2015).

In this study, we investigated the relationship between CSF
IGFBP-2 and multiple in vivo markers of AD pathology to expand
upon recent findings suggesting that IGFBP-2 plays a role in
AD progression and pathogenesis (Lane et al., 2017; Mclimans
et al., 2017). To better understand how IGFBP-2 may impact
AD pathogenesis, we further utilized gene expression data from
transgenic mouse models of tauopathy and AD along with cell
type specific expression from human and mouse to assess the
relevance of IGFBP-2 dysregulation to neurodegeneration.

MATERIALS AND METHODS

Participant Description
This study utilized samples from 300 individuals recruited for
participation in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study with CSF measurements of IGFBP-2 as well as
amyloid, tau, and p-tau available. At baseline, 89 were cognitively
normal older adults (CN), 145 individuals were diagnosed with
MCI, and 66 were clinically diagnosed with AD. Two-hundred
and seventy-six of these individuals had at least two T1-
weighted MR images available. The cohort is well-characterized
and has been used in previously published studies (Desikan
et al., 2013, 2014; Bonham et al., 2016). Clinical severity of
symptoms in the MCI and AD groupings was measured using
the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB)
Score (Morris, 1993) and Mini Mental State Exam (MMSE)
(Folstein et al., 1975). A clinician diagnosed each participant
using a structured protocol that utilized clinical judgment
and neuropsychological tests. Briefly, controls were required
to have normal memory function on the Logical Memory II
subscale of the Wechsler Memory Scale – Revised (Wechsler,
1987), an MMSE score greater than 24, CDR total score equal
to 0, and clinical determination that the individual was not
significantly impaired in cognitive function or activities of daily
living. Individuals with MCI were required to have abnormal
memory function on the Logical Memory II subscale of the
Wechsler Memory Scale – Revised, an MMSE greater than 24,
CDR total score equal to 0.5, and clinical determination that
the individual’s general cognition and functional performance
was not impaired enough to make a diagnosis of AD. Finally,
individuals with AD were required to have abnormal memory
function on the Logical Memory II subscale of the Wechsler
Memory Scale – Revised, an MMSE between 20 and 26, CDR
total score equal to 0.5 or 1.0, and judgment by a clinician
that the individual met NINCDS/ADRDA criteria for probable
AD (McKhann et al., 1984). Informed and written consent
was obtained from all study participants and the University of
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California, San Francisco institutional review board approved all
aspects of this study.

CSF Biomarker Measurements
The AlzBio3 Luminex xMAP immunoassay (Innogenetics,
Ghent, Belgium) was used to measure CSF amyloid β1-42
(amyloid), total tau (t-tau), p-tau181p (p-tau) as described
previously (Shaw et al., 2009; Kang et al., 2012). This method
uses monoclonal antibodies specific for amyloid, t-tau, and
p-tau. The monoclonal antibodies are chemically bonded
to color-coded beads along with analyte-specific detector
antibodies. Baseline CSF IGFBP-2 levels were measured
using the Human DiscoveryMAP panel developed by Rules
Based Medicine (Myriad RBM; Austin, TX, United States).
The Human DiscoveryMAP panel is commercially available
and measures a collection of metabolic, lipid, inflammatory,
and other AD-relevant indicators. At the time this panel
was used in the ADNI cohort, IGFBP-2 was the only IGF-
related analyte in the panel. A full list of the measured
metabolites is available through Myriad RBM. The CSF
measurements in the immunoassay panel were processed
and normalized according to previously described methods
(Craig-Schapiro et al., 2011; Siuciak, 2011). Briefly,
Myriad RBM used a Luminex 100 instrument for the
measurements and analyzed the resulting data using proprietary
software. The ADNI staff checked analyte distributions for
normality using Box-Cox analyses and, if needed, log10
transformed the data to achieve an approximately normal
distribution.

Genotyping and Gene Expression Data
APOE status in the ADNI cohort was determined using DNA
extracted by Cogenics (now Beckman Coulter Inc., Pasadena, CA,
United States) from a 3 mL aliquot of EDTA blood.

We evaluated IGFBP2 expression using AD and tau transgenic
mouse model data from mouseac (Matarin et al., 2015)1.
Briefly, microarray gene expression data was collected from
three brain regions (cortex, hippocampus, and cerebellum)
from wild-type, TASTPM (TAS10 × TPM AD mouse models;
APPswe × PS1.M1466V), and P301L-tau transgenic mice.
Brain tissue samples were at 2, 4, 8, and 18 months of
age and raw expression levels were normalized using a
log2 transformation; all samples were quantile normalized
together.

To better understand the cell type-specific expression of
IGFBP2, we utilized two publicly available RNA sequencing
expression datasets examining several cell-types commonly
found in the central nervous system (CNS). For additional
details on sample processing and cohort characteristics,
please see Zhang et al. (2014, 2016) and Bennett et al.
(2016).

Neuroimaging Data
One thousand one-hundred and sixteen T1-weighted MRI scans
were processed using a quantitative volume and surface-based

1www.mouseac.org

analysis technique which automatically segments scans into
regions-of-interest (ROI) (Fischl et al., 2002; Desikan et al.,
2006). The MRI scans were checked for quality and corrected
for spatial distortion. All MRI scans were processed using
Quarc (Quantitative Anatomical Regional Change), a modified
version of the FreeSurfer pipeline designed to accurately
estimate longitudinal changes in brain structure (Fennema-
Notestine et al., 2007; Mcevoy et al., 2009; Holland and
Dale, 2011; Holland et al., 2012). Cortical and subcortical
ROIs were delineated using previously described automated
parcellation and segmentation methods (Fischl et al., 2002;
Desikan et al., 2006). The techniques used to estimate
longitudinal sub-regional change for serial MRI scans are
previously described (Holland and Dale, 2011). Briefly, Quarc
utilizes non-linear registration of serial MR images to generate
a deformation field that aligns both large and small structures
with high fidelity. Volumetric changes are estimated as a
percent change from the deformation field within a specified
ROI. Quarc has been shown to be more a more sensitive
measure of change over time compared to other measures of
longitudinal brain atrophy such as the longitudinal FreeSurfer
pipeline, TBM, and BSI (Holland et al., 2012). Quarc has
been utilized extensively and has been shown to correlate
closely with biomarkers of clinical progression (Desikan et al.,
2011, 2013, 2014). We examined all 34 cortical regions of
interest in the Desikan Killiany Atlas (Desikan et al., 2006)
along with hippocampus and amygdala. For each region of
interest, the change rate in the right and left structures was
averaged.

Statistical Analysis
Demographic Comparisons
Discrete and continuous demographic variables were compared
across diagnostic groups using chi-squared and ANOVA
analyses, respectively.

Cross-Sectional CSF t-tau and p-tau Analyses
Linear models were used to test for an association between
IGFBP-2 and t-tau and IGFBP-2 with p-tau. We controlled
for age, sex, education, CDR-SB score, and APOE ε4 carrier
status.

Neuroimaging Analyses
Linear mixed effects models were used to assess the relationship
between IGFBP-2 levels and longitudinal gray matter atrophy
controlling for baseline and time interactions of age, sex,
education, baseline CDR-SB score, and APOE ε4 carrier
status.

We used the following linear mixed effect model:

1ROI Volume = β0 + β11t + β2IGFBP-2∗1t + β3Age∗
1t + β4 Sex∗1t + β5 Education∗1t + β6 CDR-SB∗1t+
β7APOEε4∗1t + e

For neuroanatomical regions that showed volume change
significantly predicted by IGFBP-2 levels only, we also
assessed whether IGFBP-2 levels were associated with atrophy
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TABLE 1 | Demographic information for participants included in the analysis.

CN MCI AD p-Value

N 89 145 66 NA

APOE ε4 Carrier (%) 23.5% 48.3% 56.1% <0.001

Sex (% female) 50.6% 33.1% 28.8% <0.01

Age (years) 75.7 ± 5.5 75.0 ± 7.2 74.9 ± 7.7 NS

Education (years) 15.6 ± 3.0 16.0 ± 3.0 15.0 ± 3.0 NS

CDR-SB 0.03 ± 0.1 1.56 ± 0.9 4.3 ± 1.6 <0.001

Aβ42 (pg/mL) 208.0 ± 52.9 160.7 ± 48.6 141.6 ± 35.6 <0.001

t-tau (pg/mL) 68.5 ± 26.8 104.2 ± 52.3 119.8 ± 54.6 <0.001

p-tau (pg/mL) 24.6 ± 12.9 36.0 ± 15.6 41.4 ± 20.5 <0.05

IGFBP-2 (ng/mL) 101.6 ± 18.0 104.8 ± 19.2 103.1 ± 18.8 NS

Summary statistics for participants. Demographic, genetic, and biomarker data
is summarized by diagnostic category. APOE ε4 carrier includes those with 1
or 2 APOE ε4 alleles. CDR-SB, Clinical Dementia Rating Sum of Boxes. Two-
tailed p-values were from ANOVA (continuous traits) or chi-square (categorical
values) tests by sex, gene carrier status. CN, normal control; MCI, mild cognitive
impairment; AD, Alzheimer’s disease.

independent of baseline t-tau levels by adding the relevant terms
to the original mixed effects model as follows:

1ROI Volume = β0 + β11t + β2IGFBP-2∗1t + β3 Age∗
1t + β4 Sex∗1t + β5,Education∗1t + β6CDR-SB∗1t+
β7APOE ε4∗1t + β8t-tau∗1t + e

The results of these analyses were used in statistical mediation
analyses. We used the coefficients to perform the Aroian test as
described by Preacher and Hayes (2004).

Gene Expression Analyses
ANOVA was used to determine whether IGFBP2 expression
varied between wild-type and tau transgenic mice in
hippocampus and cortex. We chose not to analyze cerebellar
expression because this region is generally spared in AD and the
tau transgenic mouse models we used do not display cerebellar
pathology.

RESULTS

Cohort Description
Data from 300 individuals identified as CN, MCI, or AD were
included in this study (Table 1). The cohort was balanced with
respect to age and education but differed by sex (p = 7.35× 10−3).
As expected, there were significant differences by diagnosis
for APOE ε4 distribution, CSF amyloid, CSF t-tau, and CSF
p-tau. CSF IGFBP-2 levels did not differ by diagnosis. For the
276 individuals with neuroimaging data, the demographic and
biomarker composition was similar to the full cohort. The average
number of scans per participant across the entire cohort was
about 4 (CN: 3.97 ± 0.9, MCI: 4.40 ± 1.1, AD: 3.4 ± 0.8)
with an average follow-up time per participant of 2.1 years (CN:
2.39 ± 0.8, MCI: 2.16 ± 0.7, AD: 1.73 ± 0.6). A histogram
depicting the timing of follow-up of scans relative to the baseline
visit is provided in Supplementary Figure 1.

CSF IGFBP-2 Is Associated With CSF
t-tau and p-tau Levels
Across the entire cohort, IGFBP-2 was significantly associated
with t-tau (β = 0.65 ± 0.15, p = 2.41×10−5) and p-tau
(β = 0.17 ± 0.05, p = 1.61×10−3) in CSF, with higher levels of
IGFBP-2 associated with higher levels of t-tau and p-tau (Figure 1
and Table 2). Within subgroups, the association between CSF
t-tau and IGFBP-2 was significant after correction for multiple
testing in CN only (β = 0.58 ± 0.16, p = 2.44×10−4), with
MCI (β = 0.54 ± 0.23, p = 0.02) and AD (β = 0.79 ± 0.40,
p = 0.05) having p-values above p = 0.017 (Supplementary
Table 1). For CSF p-tau, there were fewer observations available
and IGFBP-2 was significant in MCI only (β = 0.18 ± 0.07,
p = 7.56 × 10−3). However, the direction of the estimated effect
in both CN (β = 0.08 ± 0.08, p = 0.32) and AD (β = 0.15 ± 0.15,
p = 0.31) was consistent with the MCI grouping (Supplementary
Table 1). There were no significant associations between IGFBP-2
levels and measures of CSF amyloid.

FIGURE 1 | IGFBP-2 is associated with t-tau and p-tau in CSF. CSF t-tau (A) and p-tau (B) levels are plotted against CSF IGFBP-2 levels. IGFBP-2 levels are quality
controlled and transformed as previously described (Siuciak, 2011). Higher levels of IGFBP-2 are associated with higher levels of t-tau and p-tau. The plotted points
are partial residuals with 95% confidence bands provided in shading.
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TABLE 2 | Regression analysis results for predictors of cross sectional CSF p-tau
and t-tau values in full cohort and by disease and meta-analysis groups.

Outcome Variable Estimate ± SE p-Value

t-tau Age −0.63 ± 0.40 0.11

Sex 18.33 ± 5.75 1.60 × 10−3

CDR-SB 6.26 ± 1.50 3.89 × 10−5

APOEε4 status 23.22 ± 5.40 2.31 × 10−5

Education 0.28 ± 0.88 0.75

IGFBP-2 0.65 ± 0.15 2.41 × 10−5

p-tau Age −0.28 ± 0.14 0.04

Sex 2.40 ± 2.0 0.23

CDR-SB 1.82 ± 0.52 5.30 × 10−4

APOEε4 status 9.40 ± 1.87 8.59 × 10−7

Education 0.06 ± 0.31 0.84

IGFBP-2 0.17 ± 0.05 1.61 × 10−3

IGFBP-2 is associated with t-tau and p-tau levels in CSF. Regression models used
in cross-sectional CSF analyses of t-tau and p-tau are summarized. CSF IGFBP-2
was significantly associated with CSF t-tau and CSF p-tau. Higher levels of CSF
IGFBP-2 were associated with higher levels of CSF t-tau and p-tau. The beta
estimate (estimate) and accompanying standard error (SE) reflect the adjusted
effect of each independent variable as a predictor of t-tau or p-tau. For all disease
groups, the linear statistical model included as independent variables: age, sex,
clinical disease rating sum of boxes (CDR-SB) APOE ε4 carrier status, education,
and IGFBP-2. All tests were two-tailed.

CSF IGFBP-2 Is Associated With Brain
Atrophy in AD-Associated Regions
We next tested whether participants’ baseline CSF IGFBP-2
levels were associated with longitudinal volume change in all
34 Desikan Killiany cortical ROIs along with hippocampus and
amygdala. At a raw p < 0.05, there were significant associations
between CSF IGFBP-2 and atrophy in parahippocampal,
entorhinal, inferior temporal, temporal pole, superior
temporal, fusiform, isthmus cingulate, precuneus, rostral
anterior cingulate, middle temporal, corpus callosum, caudal
anterior cingulate, medial orbitofrontal, lateral occipital,
and lateral orbitofrontal regions (Figure 2A). Additional
details on the effect size and p-value for all regions are
presented in Supplementary Table 2. After correction for
multiple testing, CSF IGFBP-2 was significantly associated
with atrophy in parahippocampal (β = −0.30 ± 0.06,
p = 9.76× 10−5), entorhinal (β =−0.31± 0.06, p = 1.15× 10−3),
inferior temporal (β = −0.26 ± 0.05, p = 3.85 × 10−3),
and temporal pole (β = −0.32 ± 0.12, p = 3.83 × 10−3)
regions (Figure 2B). All effects were consistent with
greater CSF IGFBP-2 levels predicting greater atrophy over
time.

Using mediation analysis, we found statistical evidence
to suggest that CSF t-tau levels could partially explain the
effects of IGFBP-2 on brain volume. We used the Aroian test
to statistically assess whether the relationship between CSF
IGFBP-2 and CSF t-tau mediated atrophy in parahippocampal,
entorhinal, temporal pole, and inferior temporal regions. CSF
t-tau statistically mediated the effect of CSF IGFBP-2 on atrophy
in parahippocampal (p = 0.007), entorhinal (p = 0.01), inferior
temporal (p = 0.003), and temporal pole (p = 0.02) regions.

Igfbp2/IGFBP2 Is Differentially
Expressed in Transgenic Mice and
Selectively Expressed in Astrocytes
Igfbp2 was differentially expressed in both TASTPM (AD) and
P301L tau-transgenic compared to wild-type (C57BL/6) mouse
neuropathological data. In cortex, homozygote TASTPM AD
mice displayed lower Igfbp2 expression during early life and
higher expression during late life compared to wild-type mice
(Figure 3A; F = 9.28, p = 0.004). By contrast, heterozygote
TASTPM AD mice showed consistently lower expression of
Igfbp2 across all ages compared to wild-type mice (Figure 3A;
F = 6.26, p = 0.016). Cortical expression of Igfbp2 in the
P301L tau mouse model showed an expression pattern similar
to TASTPM AD homozygotes, with greater expression at older
ages (Figure 3B; F = 5.03, p = 0.029). In hippocampus, Igfbp2
was not significantly different from wild-type expression in either
TASTPM heterozygotes (Figure 3C; F = 0.21, p = 0.21) or
homozygotes (Figure 3C; F = 0.88, p = 0.35). Similarly, Igfbp2was
not significantly different in P301L tau transgenic mice compared
to wild-type mice, with expression increasing over time in both
genotypes (Figure 3D; F = 0.19, p = 0.67).

Finally, we assessed cell specificity of IGFBP2 expression
in the CNS. In both humans and mice, astrocytes expressed
IGFBP2/Igfbp2 most robustly (Figure 4). In human samples,
fetal astrocytes expressed IGFBP2 more highly than mature
astrocytes (Figure 4A). In mice, oligodendrocyte progenitor cells
and neurons were the next highest expressers of Igfbp2 following
astrocytes (Figure 4B).

DISCUSSION

Our study highlights several findings supporting the role of
IGFBP-2 in tau-related AD pathobiology. Previous studies on
AD-associated changes in CSF IGFBP-2 are conflicting; some
studies demonstrate elevated levels of CSF IGFBP-2 in AD
relative to age-matched controls (Salehi et al., 2008; Hertze et al.,
2014), while others report similar findings to our study with no
significant difference in CSF IGFBP-2 levels by diagnosis (Åberg
et al., 2015; Lane et al., 2017). Furthermore, our finding that
IGFBP-2 levels correlate with t-tau and p-tau in the CSF across
the AD spectrum at baseline (Table 2) are in agreement with prior
studies (Hertze et al., 2014; Åberg et al., 2015). Taken together
with previous studies, our findings suggest that CSF IGFBP-2
levels associate with pathological burden across the spectrum
of AD. Further experimental studies are required to elucidate
a mechanistic connection between IGFBP-2 and tau pathology
in AD.

A previous study reported an association between plasma
IGFBP-2 levels and cross-sectional atrophy measured by SPARE-
AD score in a subset of healthy controls, MCI, and AD
participants from ADNI, but found no association between
plasma IGFBP-2 levels and atrophy in specific brain regions
(Toledo et al., 2013). More recent studies found that plasma
IGFBP-2 was associated with hippocampal volumes as well
as other volumetric and functional measures cross-sectionally,
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FIGURE 2 | IGFBP-2 is associated with longitudinal atrophy in entorhinal, inferior temporal, temporal pole, and parahippocampal regions. Annualized changes in
atrophy rate given a 1 z-score increase in CSF IGFBP-2 levels are shown for all 34 cortical regions included in the Desikan Killiany Atlas (Desikan et al., 2006). The
results of our analyses are shown (A) before correction for multiple testing (praw < 0.05) and (B) after correction for multiple testing (pFDR < 0.05) using the FDR
method (Benjamini and Hochberg, 1995). Hippocampus and amygdala are not shown, but the results of these analyses are provided in Supplementary Table 2.
IGFBP-2 levels are quality controlled and transformed as previously described (Siuciak, 2011). After correction for multiple testing, greater levels of CSF IGFBP-2 are
associated with higher annual rates of atrophy in entorhinal, inferior temporal, temporal pole, and parahippocampal regions.

but not longitudinally (Lane et al., 2017; Mclimans et al.,
2017). A recent report demonstrated a significant relationship
(p = 0.023) between CSF amyloid and CSF IGFBP-2, potentially
conflicting with our finding (Mclimans et al., 2017). The
discrepancy between these findings and ours could be explained
by differences in our covariate selection. For instance, we
covaried for clinical severity (CDR-SB) score rather than for
baseline diagnosis and included APOE ε4 carrier status rather
than APOE ε4 dosage in all analyses. We found an association
between baseline CSF IGFBP-2 levels and longitudinal changes
in multiple non-hippocampal brain structures (Supplementary
Table 2). Surprisingly, Igfbp2 expression in transgenic mice
was significantly different from wild type mice only in cortex
and not in hippocampus, which may be why we (and other
groups) failed to find a robust association between IGFBP-
2 and longitudinal hippocampal atrophy. Additionally, it
is possible that CSF IGFBP-2 represents a more proximal
measure of IGF dysregulation in the brain relative to plasma
levels, which may be more variable in a limited clinical
cohort.

Insulin and IGF resistance due to type 2 diabetes in human
patients significantly increases the risk of developing dementia,
and is associated with regional brain atrophy (Leibson et al.,
1997; Last et al., 2007; Stanley et al., 2016). Furthermore,
impaired brain insulin and IGF signaling induced in rats by
intracerebral injection of streptozotocin results in brain atrophy
and neurodegeneration (Lester-Coll et al., 2006). While the exact

role of IGFBP-2 in regulating IGF signaling in the brain is
unclear, evidence in mice suggests that IGFBP-2 may inhibit IGF
activity (Hoeflich et al., 1999). We provide statistical evidence
that the association between CSF IGFBP-2 and entorhinal,
parahippocampal, inferior temporal, and temporal pole atrophy
may be related to intracerebral tau (estimated using CSF tau
levels).

Tau dysregulation is a hallmark of AD pathology and
contributes to neuronal cell loss (Querfurth and LaFerla, 2010).
As impaired IGF signaling contributes to tau dysregulation
(Bedse et al., 2015), the effect of IGFBP-2 on IGF signaling
may explain how IGFBP-2 contributes to tau-related brain
atrophy. Similarly, previous studies in primary neurons
demonstrated that IGF-I prevents amyloid-induced increases in
tau phosphorylation and cell death, and IGFBP-3 was able to
inhibit these effects (Watanabe et al., 2015). Although IGFBP-2
may regulate IGF signaling in neurons differently than IGFBP-3,
one might speculate that IGFBP-2 binds to IGFs, blocking
IGF-mediated suppression of tau phosphorylation, leading to
increased levels of p-tau and promoting neuronal damage and
death.

A strength of our study is the use of a thoroughly characterized
cohort of healthy aging control, MCI, and AD patients, a subset
of which underwent multiple MRI scans and had baseline CSF
protein levels quantified. Our findings utilized multiple data types
and support a role for IGFBP-2 in AD pathobiology. However,
our study is limited by its observational nature, which prevents us
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FIGURE 3 | Igfbp2 expression levels in mouse models of neurodegeneration. Mouse Igfbp2 expression from Mouseac (www.mouseac.org) is plotted at ages 2, 4, 8,
and 18 months. (A) Cortex expression in the TASTPM (AD) mouse model. (B) Cortex expression in the P301L (TAU) transgenic mouse. (C) Hippocampus expression
in the TASTPM (AD) mouse model. (D) Hippocampus expression in the P301L (TAU) transgenic mouse. The plotted points are mean expression at each
age ± standard errors. Expression data was normalized using a log2 transformation and all samples were quantile normalized together. Please see Matarin et al.
(2015) for additional details on experimental models and data processing.

FIGURE 4 | IGFBP2 expression by cell type in human and mouse brain samples. Human IGFBP2 (A) and mouse Igfbp2 (B) expression is shown for selected CNS
cell types available from (http://web.stanford.edu/group/barres_lab/brainseq2/brainseq2.html). In both humans and mice, astrocytes express IGFBP2 most robustly
oligodendrocyte precursor cell (OPC).

from establishing causative relationships. Additionally, the data
from murine models of neurodegenerative disease only allowed
for examination of whole cerebral cortex. However, our analyses
using human data highlighted parahippocampal, entorhinal,

inferior temporal, and temporal pole cortex as the regions whose
atrophy is most associated with CSF IGFBP-2. Thus, we cannot
easily compare the neuroanatomical relationships seen in our
human data with the cross-sectional mouse data. As a correlative
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study, our findings suggest that CSF IGFBP-2 levels are related to
AD, but do not carry any mechanistic implications. For example,
although we have proposed an inhibitory role for IGFBP-2 on
IGF signaling in the brain based on previous studies, others
have indicated that IGFBP-2 may facilitate IGF signaling in
the brain (Russo et al., 2005), and therefore elevated levels of
IGFBP-2 in the brain may protect against AD pathogenesis. Thus,
our results require follow-up in larger independent cohorts and
experimental models to establish whether IGFBP-2 influences
progression from normal cognition to AD and its potential
biological role in AD pathogenesis.

In summary, we found that baseline IGFBP-2 levels correlate
with t-tau and p-tau levels in the CSF of healthy aging control,
MCI and AD patients. IGFBP-2 is associated with longitudinal
rates of atrophy in AD-associated human cortical regions and its
expression is dysregulated in transgenic mice with AD-relevant
pathology. In both humans and mice, IGFBP2/Igfbp2 is most
highly expressed in astrocytes. Given the increasingly appreciated
role of astrocytes in synaptic pruning during neurodegeneration
(Liddelow et al., 2017), further studies may help to elucidate why
this effect appears to be limited to non-hippocampal regions and
how astrocyte-related metabolic disarray leads to tau pathology
in AD.
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University School of Public Health, Boston, MA, United States

The genetic architecture of late-onset Alzheimer disease (AD) in African Americans
(AAs) differs from that in persons of European ancestry. In addition to APOE, genome-
wide association studies (GWASs) of AD in AA samples have implicated ABCA7,
COBL, and SLC10A2 as AA-AD risk genes. Previously, we identified by whole exome
sequencing a small number of AA AD cases and subsequent genotyping in a large AA
sample of AD cases and controls association of AD risk with a pair of rare missense
variants in AKAP9. In this study, we performed targeted deep sequencing (including
both introns and exons) of approximately 100 genes previously linked to AD or AD-
related traits in an AA cohort of 489 AD cases and 472 controls to find novel AD risk
variants. We observed association with an 11 base-pair frame-shift loss-of-function
(LOF) variant in ABCA7 (rs567222111) for which the evidence was bolstered when
combined with data from a replication AA cohort of 484 cases and 484 controls
(OR = 2.42, p = 0.022). We also found association of AD with a rare 9 bp deletion
(rs371245265) located very close to the AKAP9 transcription start site (rs371245265,
OR = 10.75, p = 0.0053). The most significant findings were obtained with a rare
protective variant in F5 (OR = 0.053, p = 6.40 × 10−5), a gene that was previously
associated with a brain MRI measure of hippocampal atrophy, and two common variants
in KIAA0196 (OR = 1.51, p<8.6 × 10−5). Gene-based tests of aggregated rare variants
yielded several nominally significant associations with KANSL1, CNN2, and TRIM35.
Although no associations passed multiple test correction, our study adds to a body
of literature demonstrating the utility of examining sequence data from multiple ethnic
populations for discovery of new and impactful risk variants. Larger sample sizes will be
needed to generate well-powered epidemiological investigations of rare variation, and
functional studies are essential for establishing the pathogenicity of variants identified by
sequencing.
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INTRODUCTION

Studies of common genetic variants have identified many
gene loci that influence risk of late-onset Alzheimer disease
(AD) in persons of European ancestry (EA), most notably the
APOE ε2 and ε4 alleles which confer strong protective and
deleterious effects, respectively (Saunders et al., 1993; Corder
et al., 1994), as well as more than 20 modest effect loci (odds
ratios between 1.1 and 1.3) including BIN1, CR1, ABCA7,
CLU, PICALM, and the MS4A gene region (Lambert et al.,
2013). Extensions of these findings and the contributions of
additional loci have emerged from investigations of non-EA
cohorts, African Americans (AAs) in particular (Reitz et al.,
2013a; Mez et al., 2017). The risk of AD is greater in AAs
than EAs, however, paradoxically, ε4 has a weaker effect in
AAs than EAs (Farrer et al., 1997; Reitz et al., 2013a). These
observations and greater genetic diversity among persons with
African ancestry suggest that the genetic architecture for AD
includes some variants and loci that differ from EAs. Several
genome-wide association studies (GWAS) in AAs (Logue et al.,
2011; Kamboh et al., 2012; Reitz et al., 2013a) confirmed the
role of several genes identified initially in EAs, most notably
APOE and ABCA7. The association peak in ABCA7 is ascribed
to different SNPs in EAs (rs4147929) and AAs (rs115550680;
Lambert et al., 2013; Reitz et al., 2013a). Gene resequencing
studies have revealed multiple rare ABCA7 deletions causing
missense loss-of-function (LOF) mutations in EAs (Cukier et al.,
2016; N’Songo et al., 2017). Cukier et al. (2016) identified a
44 base pair (bp) frameshift deletion in ABCA7 (rs142076058)
that is in linkage disequilibrium (LD) with rs115550680 and
thus may be the functional variant underlying the observed
association. A recent exome sequencing investigation in an AA
cohort of 198 AD cases and 304 controls examined 20 putative
AD risk genes implicated by GWAS in EAs, and found nominally
(uncorrected) significant associations with two ABCA7 variants
(rs3764647 and rs3752239) and with gene-based tests of coding
variants in MS4A6A, PTK2B, and ZCWPW1 (N’Songo et al.,
2017).

Novel AD loci have been identified in other studies of
AA samples. Mez et al. (2017) identified GWAS significant
associations with SNPs in COBL (rs112404845) and SLC10A2
(rs16961023) in a GWAS using an informed conditioning
approach. A WES study of seven AA cases followed by
genotyping using a staged design in AA cohorts containing
422 cases and 394 controls (stage 1) and 1,037 cases and
1,869 controls (stage 2) identified association with two rare
AA-specific highly correlated variants in AKAP9, rs144662445
(OR = 2.75) and rs149979685 (OR = 3.61) (Logue et al.,
2014).

These studies confirm the utility of examining African-descent
samples to identify new AD risk variants in known AD genes
as well as novel AD loci. In this study, we performed targeted
sequencing in a discovery cohort containing approximately 1,000
AAs to identify new potentially causal variants in risk genes
previously implicated in AD risk in AAs (ABCA7, AKAP9, COBL,
MS4A6A, PTK2B, SLC10A2, and ZCWPW1) or in AD and related
traits in other populations.

MATERIALS AND METHODS

Samples
The targeted gene sequencing sample included AA subjects
primarily from two cohorts: the Multi-Institutional Research
on Alzheimer Genetic Epidemiology (MIRAGE, 113 AD cases,
131 controls) Study (Green et al., 2002) and the Genetic and
Environmental Risk Factors for Alzheimer Disease Among
African Americans (GenerAAtions, 222 AD cases, 190 controls)
Study (Logue et al., 2011). MIRAGE is a family-based study
of clinic-based AD cases and their first-degree relatives. The
GenerAAtions study includes unrelated individuals ascertained
through the Henry Ford Health System. In addition, we obtained
DNA samples and phenotypic data from the National Cell
Repository for Alzheimer Disease (NCRAD) that were aggregated
from the Ibadan/Indianapolis (INDY) study (Hendrie et al.,
1995; Sahota et al., 1997; Gureje et al., 2006), the African
American Alzheimer’s Disease Genetics (AAG) study (Meier
et al., 2012), the National Institute on Aging Alzheimer’s Disease
Centers (ADC) (Jun et al., 2010), and the National Institute
on Aging Late-Onset Alzheimer’s Disease (NIA-LOAD) Family
Study (Lee et al., 2008). The Indianapolis/Ibadan study comprises
elderly AA residents from Indianapolis (community dwelling
and nursing home residents) and African-descent residents of
Ibadan, Nigeria. The AAG study and ADC cohort include
cases and controls ascertained at more than 30 sites across the
United States. The NIA-LOAD Study includes families with
multiple AD cases and unaffected members and an independent
set of cognitively screened controls.

The discovery cohort included 489 cases and 472 controls
from the MIRAGE and GenerAAtions studies supplemented with
154 cases and 151 controls from the AAG and Ibadan studies.
The replication cohort consisted of additional samples from the
AAG, ADC, Indy/Ibadan, and NIA-LOAD studies (484 AD cases,
484 controls). Characteristics of the discovery and replication
cohorts are presented in Table 1. Further details about subject
ascertainment and classification, including genetic screening
for ancestry mismatches, were reported elsewhere (Reitz et al.,
2013a). The diagnosis of AD in all cohorts was made according to
established criteria (McKhann et al., 2011) and all controls were
screened to be cognitively normal.

Sequencing Methods
The samples in the discovery cohort were sent to the McDonnell
Genome Institute at Washington University1 for targeted
sequencing. The targeted regions included genes previously
associated with AD in AAs (ABCA7, AKAP9, COBL, MS4A6A,
PTK2B, SLC10A2, and ZCWPW1) and approximately 100 other
provisional and confirmed genes and regions that were identified
by candidate gene and GWAS approaches in studies of AD and
AD-related traits (Saunders et al., 1993; Farrer et al., 2000; Meng
et al., 2006; Rogaeva et al., 2007; Vardarajan et al., 2012; Lambert
et al., 2013; Reitz et al., 2013b; Jun et al., 2014; Logue et al., 2014;
Wetzel-Smith et al., 2014; Jun et al., 2016; Chung et al., 2017;
Mez et al., 2017) (Supplementary Table S1). Nimblegen probes

1http://genome.wustl.edu
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TABLE 1 | Sample size and demographics for discovery and replication cohorts.

Discovery Data Site Sample size Cases Controls

N (%) N male (%) mean age at
onset (SD)

N (%) N male (%) mean age at
exam (SD)

MIRAGE 244 113 (46.31%) 27 (23.89) 71.14 (9.25) 131 (53.69%) 40 (30.53) 69.77 (10.16)

GenerAAtions 412 222 (46.12%) 97 (43.69) 77.27 (6.64) 190 (53.88%) 77 (40.53) 78.38 (6.51)

Ibadan 119 60 (50.42) 8 (13.33) 84.62 (7.37) 59 (49.58) 29 (49.15) 94.4∗ (3.2)

AAG 186 94 (50.54) 26 (27.66) 80.44 (5.04) 92 (49.46) 14 (15.22) 79.89 (3.34)

Total discovery 961 489 (50.83) 472 (49.17)

Replication Data Cohort Sample size Cases Controls

N (%) n male (%) mean age at
onset (SD)

N (%) N male (%) mean age at
exam (SD)

AAG 183 49 (26.7) 13 (26.53) 68.08 (3.81) 134 (73.22) 28 (20.9) 72.52 (2.35)

ADC 89 73 (82.02) 26 (35.62) 76.22 (6.92) 16 (17.98) 5 (31.25) 77.31 (7.46)

Ibadan 38 19 (50.00) 3 (15.79) 78.48 (6.30) 19 (50.00) 6 (31.58) 91.45∗ (4.23)

INDY 354 171 (48.31) 58 (33.92) 84.44 (6.53) 183 (51.69) 38 (20.77) 93.81∗ (2.9)

NIALOAD 304 172 (56.58) 61 (35.47) 77.11 (7.83) 132 (43.42) 45 (34.09) 72.6 (7.82)

Total replication 968 484 (50.00) 484 (50.00)

∗Controls selected to have a high mean age.

(Roche Nimblegen, Madison, WI, United States) were generated
to cover all non-repetitive exonic, intronic, and intergenic
sequence and 5,000 bp upstream and 1,000 bp downstream of
gene boundaries including all isoforms totaling approximately
nine Mb of genomic sequence. Only exons were targeted for
SLC10A2 and COBL because these associations (Mez et al., 2017)
were not known at the time the capture design was proposed and
the limited amount of genomic sequence that could be added
to the capture at this stage. The capture design included 10,906
capture targets and had 92.7% estimated coverage of 122 targeted
regions, with gaps due to repetitive sequence.

Samples were assessed for volume and concentration by the
Genome Center using either a Qubit or a VarioSkan assay prior
to sequencing. All but eight had >250 ng starting material. The
sequencing was done in two waves. The first wave included
667 samples from the MIRAGE and GenerAAtions cohorts.
Libraries were captured in sets of 66 and 67 samples per
pool and each pool was run in two lanes of an Illumina
Hiseq2500 1T platform. The remaining discovery cohort samples
were sequenced in the second wave using the same capture
probes in pools of 90 samples each, and each sample was
run on 2 lanes of an Illumina HiSeq4000 platform. Valid
sequence data were available for a discovery cohort including
489 cases and 472 controls. The median number of reads
per sample was 14,322,643 (range 6,175,120–25,567,585). The
median number of reads was greater for the samples run
on the HiSeq4000 platform (median reads/sample for batch
1 = 12,809,719, median reads/sample for batch 2 = 16,804,253).
In batch 1, the number of reads/sample for the MIRAGE Study
samples (median = 12,331,728) was significantly less than for the
GenerAAtions samples (median = 17,217,602, P = 3.51 × 10−5).
The number of reads per sample for the second batch of
sequencing did not vary by cohort (p = 0.17). Importantly, the

number of reads per sample was not associated with AD status in
either batch or in the combined discovery sample (all p > 0.3).
Across samples, the median percentage of bases with more than
10 reads was 94.60 and the mean coverage depth was 155.7.

Sanger Sequencing
Genotyping for the ABCA7 deletion polymorphism rs567222111
was performed in the replication sample by GENEWIZ
(GENEWIZ LLC, South Plainfield NJ, United States2) using
bi-directional Sanger sequencing. Sequencing was repeated for
samples that did not yield a reliable genotype call in the first
run. Validity of the Sanger sequencing assay was demonstrated by
verifying genotype calls for 10 samples which had been identified
as having the deletion by targeted-sequencing.

Data Processing and Quality Control
The 126 bp paired-end reads were aligned to the GRCh37
+Decoy reference with BWA MEM version 0.7.10-r789. Variant
genotypes were jointly called within the targeted regions using the
GATK 3.7 pipeline. The “best practices” pipeline included steps
for duplicate removal, local realignment near indels, base quality
score recalibration, and variant quality score recalibration. GATK
yielded calls for 230,595 variants. Annotation of the variants
was performed with SnpEff and SnpSift version 4.3i (Cingolani
et al., 2012). According to SnpEff, these variants mapped to
151 protein-coding genes. Variants that were not assigned a
“PASS” rating by GATK (n = 11,808) were excluded from
association analyses. We also excluded variants in the HLA region
(n = 24,297) due to difficulties in mapping the repetitive sequence
and variants in the APOE region (n = 197) due to difficulties
discerning associations in this region that are independent

2http://www.genewiz.com

Frontiers in Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 59266

http://www.genewiz.com
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00592 August 24, 2018 Time: 10:30 # 4

Logue et al. Gene Sequencing AD in AAs

of APOE (Jun et al., 2017). However, we did use sequence
calls to derive APOE isoform genotypes for QC purposes (see
description below). Another 5,147 variants occurring only in
subjects with missing phenotype information were excluded.
After these filtering steps, 189,145 variants remained. From this
point forward, the pipeline differed for single variant association
tests and the gene based tests. For the single variant test, variants
observed only once (n = 66,278) were excluded. Genotypes with
quality scores <30 were set to missing and variants with a missing
rate of >20% were excluded (n = 18,526). After these filtering
steps, there remained 104,341 variants for analyses. For the gene
based tests, we included singleton variants but excluded variants
with a mapping quality of less than 30 (n = 3,748 of 189,145).
We excluded variants with minor allele frequency (MAF) in
the discovery cohort >5% (32,935). One hundred seventy-three
of these variants labeled as “High Impact” according to SNPeff
(includes LOF variants and deletions) and 1,079 missense SNPs
predicted to be possibly or probably damaging according to
Polyphen2 (Adzhubei et al., 2010) were included in the gene-
based analyses.

As a quality control check, we compared genotypes for
APOE and two rare AKAP9 missense variants (rs144662445 and
rs149979685) in MIRAGE cohort subjects that were generated
previously by direct genotyping to those derived from targeted
sequencing. The two methods agreed for 236 of 237 APOE
genotype calls. Among 190 subjects with overlapping genotype
and sequencing data for the AKAP9 variants, rare variant calls in
three individuals (each with both variants) were concordant.

Statistical Analysis
We applied a hypothesis-driven four-stage design which
prioritized variants most likely to have high impact on transcript
structure or function in order to minimize the penalty associated
with performing more than 100,000 tests. Specifically, variants
were selected for analysis if they were (1) predicted to result
in loss of function according to the SNPeff annotation, which
includes nonsense (stop site) and splice site variants, out of
frame deletions/insertions, and large exon-removing deletions
(MacArthur et al., 2012), (2) predicted to be a missense
variant according to SNPeff, and (3) within 50 base pairs
(bp) of transcription start sites (position determined via the
Eukaryotic Promotor Database3). We then examined (4) all
variants (intronic and exonic) regardless of potential impact. To
avoid model instability that can occur with logistic or GEE or
mixed models when applied to rare variants, association of AD
with individual variants was evaluated using a X2 case:control
allele test without continuity correction as implemented in
PLINK v1.9 (Chang et al., 2015). For particular variants of
interest identified in the allele test, we additionally checked for
bias due to relatedness within the MIRAGE cohort as well as
potential effects due to population substructure by computing
a WALD test using a logistic mixed model in the R GMMAT
package (Chen et al., 2016) including as covariates the first
three principle components (PCs) for ancestry. The GMMAT
package incorporates information from the relationship matrix

3http://epd.vital-it.ch/index.php

which we computed from the genetic data in PLINK v1.9 based
on 4,569 common (MAF>5%) variants from the sequence data
remaining after trimming for LD (plink filter –indep-pairwise 5
20.04). PCs were also computed based on common LD-trimmed
SNPs using PLINK. Gene based tests were performed for the 151
protein coding genes (as identified by the SNPeff annotation)
using the variable threshold burden test (Price et al., 2010)
and the collapsing burden test methods (Li and Leal, 2008)
implemented in EPACTS4 which incorporates information about
related subjects in the sample. The correlation matrix for related
subjects for the gene based test was estimated from the sequence
data. LD estimates for 1000 genomes data were obtained using
LDlink5. LD estimates for the sequencing results from the AD
cohort were estimated using PLINK v1.9 with the –rsq dprime
option.

This study, involving use of repository data and biospecimens,
was approved by the Boston University Institutional Review
Board.

RESULTS

Genes Previously Associated With AD
in AAs
LOF Variants
In the seven genes previously associated with AD in AAs,
nominally significant associations were observed for a rare LOF
variant in MS4A6A observed only in controls (rs140130948,
p = 0.013) and an 11 bp ABCA7 deletion (rs567222111,
OR = 3.57, p = 0.038) which had an estimated allele frequency
(AF) of 1.1% in cases and 0.32% in controls (Table 2). This
association remained significant in the mixed model adjusting
for relatedness within the sample and including PCs for ancestry
(OR = 3.65, p = 0.049). This deletion had a stronger impact
on AD risk than the more common 44 bp ABCA7 deletion
(rs142076058) which was previously reported to be associated
with AD in an AA cohort (OR = 1.81) (Cukier et al., 2016)
but not in our sample (OR = 1.27, p = 0.16). The evidence
for association with rs567222111 in the replication sample was
not significant, but had the same effect direction (OR for
the deletion = 1.84, p = 0.22), and the significance in the
combined discovery and replication samples was greater than
in the discovery sample alone (OR = 2.42, p = 0.022). No LOF
variants were observed in AKAP9, COBL, PTK2B, SLC10A2, or
ZCWPW1.

Missense Variants
Association tests were nominally significant for 14 of 172
missense variants tested in the seven genes previously associated
with AD in AAs including a common SNP in ABCA7
(rs5985184, p = 0.0043) and the rare missense variants in
AKAP9, rs149979685 (OR = 10.73, p = 0.0046) and rs144662445
(OR = 6.35, p = 0.0054), previously identified in a sample
that overlaps substantially with the discovery cohort in this

4http://genome.sph.umich.edu/wiki/EPACTS
5https://analysistools.nci.nih.gov/LDlink/
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TABLE 2 | Association between AD and loss of function (LOF) variants observed in African American AD genes.

Gene Ch. BP rsID Effect Allele % AFR % Cases % Ctrls Alt. Allele OR P

MS4A6A 11 59,939,727 rs140130948 G 0.15 0.00 0.64 C 0.00 0.013

ABCA7 19 1,044,707 rs567222111 G 0.83 1.13 0.32 GGGGCACCTGGT 3.57 0.038

ABCA7 19 1,041,352 rs3752229 G 0.15 0.41 0.95 A 0.43 0.15

ABCA7 19 1,056,244 rs113809142 G 0.00 0.00 0.21 T 0.00 0.15

ABCA7 19 1,046,906 rs142076058 G 6.73 9.20 7.42 GCTGCGGGACAC
CATGCGCGCCAT
GGGGCTCAGCC
GCGCGGTGCT

1.27 0.16

ABCA7 19 1,058,727 rs556286113 T 0.15 0.20 0.00 C NA 0.16

ABCA7 19 1,043,395 rs77403558 T 0.30 0.31 0.11 A 2.90 0.33

MS4A6A 11 59,946,302 rs598862 C 30.18 25.87 26.69 T 0.96 0.68

MS4A6A 11 59,940,500 rs138650483 T 0.00 0.10 0.11 C 0.97 0.98

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls.

TABLE 3 | Nominally significant missense variants in the 7 AA-AD genes.

Gene Ch. BP rsID Effect Allele % AFR % Cases % Ctrls Alt. Allele OR P

ABCA7 19 1,047,336 rs59851484 A 11.88 14.83 10.49 G 1.49 0.0043

19 1,058,635 rs73505232 T 14.30 16.05 12.18 C 1.38 0.015

19 1,044,712 rs3764647 G 25.72 26.24 21.60 A 1.29 0.017

19 1,056,492 rs3752246 G 1.06 3.48 5.72 C 0.59 0.019

19 1,043,748 rs3752232 G 27.08 27.20 23.20 A 1.24 0.044

19 1,057,335 rs538930513 A 0.30 0.41 0.00 G NA 0.049

AKAP9 7 91,732,110 rs149979685 T 0.45 1.13 0.11 C 10.73 0.0046

7 91,709,085 rs144662445 G 0.53 1.33 0.21 A 6.35 0.0054

7 91,726,202 rs78351282 A 2.80 3.27 1.59 G 2.10 0.017

7 91,726,604 rs34956633 G 4.92 5.11 7.54 A 0.66 0.029

7 91,712,808 rs149946443 A 1.13 0.51 1.48 G 0.34 0.032

7 91,630,603 rs143894795 C 0.76 0.31 1.06 G 0.29 0.044

SLC10A2 13 103,718,308 rs55971546 T 0.30 0.31 1.06 C 0.29 0.044

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls.

study (Logue et al., 2014) (Table 3). Our analysis also
confirmed the previously reported association for one of the
common ABCA7 missense SNPs noted in N’Songo et al.,
2017 (rs3764647, OR = 1.29 for minor allele, p = 0.017),
but not the rare coding variant (rs3752239, OR = 0.39,
p = 0.24). Consistent with prior results (Logue et al., 2014),
the association with the rare AKAP9 variants was significant
in a mixed model which adjusted for relatedness within
the sample with ancestry PCs as covariates (for rs149979685
OR = 10.53, p = 0.025 and for rs144662445 OR = 6.25,
p = 0.016).

Regulatory Variants
We also examined potentially regulatory variants in the AD
genes implicated in AAs. Association was tested with variants
in regulatory regions for the two primary AKAP9 isoforms.
One variant identified near the TSS of the shorter isoform was
not associated with AD (p = 0.66). Significant association was
identified with a rare nine bp deletion (rs371245265) located near
the TSS for the longerAKAP9 isoform (OR for the deletion = 6.37,

p = 0.0053). Prompted by the similarity of allele frequencies
between this deletion and the previously identified coding AD
risk variants (rs144662445 and rs149979685), we checked the
1000 genomes phase 3 African population data and confirmed
high LD between rs371245265 and both rs144662445 (r2 = 0.86)
and rs149979685 (r2 = 1). Consistent with this information,
all 17 discovery sample subjects with the rs371245265 deletion
were also carriers of the rs144662445 minor allele, and 14 of
these subjects were also carriers of the rs149979685 minor allele.
As noted for rs149979685, the association with rs371245265
remained significant in a model adjusting for relatedness
and ancestry (OR = 6.30, p = 0.016). Nominally significant
associations were also observed with three common potentially
regulatory SNPs in ZCWPW1. The most significant of these three
was rs10693652, a 2 bp deletion which was more common in
controls than cases (OR for the deletion = 0.75, p = 0.0042).
The sole ABCA7 variant and 13 PTK2B variants located in TSSs
were not associated with AD. Regulatory variants in COBL and
SLC10A2 could not be evaluated because the custom capture
design for these loci included exons only.
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TABLE 4 | Top-ranked association results in previously established AA AD-risk genes.

Gene Ch. BP rsID Eff. All. % AFR % Cases % Ctrls Alternate Allele OR P

ABCA7 19 1,050,007 . – NA 4.63 2.16 C 2.20 0.0042

19 1,047,336 rs59851484 A 11.88 14.83 10.49 G 1.49 0.0043

19 1,049,991 . – NA 5.03 2.54 CCTCCCTGT
GAGCCCCCC
ACCACTT

2.03 0.0065

19 1,043,260 rs58262414 G 11.72 14.62 10.59 T 1.45 0.0079

19 1,042,598 rs147599642 A 11.95 14.62 10.70 AAT 1.43 0.0098

AKAP9 7 91,570,040 rs557208555 C 0.53 1.13 0.11 A 10.73 0.0046

7 91,591,230 rs114789310 A 0.53 1.13 0.11 G 10.73 0.0046

7 91,663,031 rs183984025 T 0.53 1.13 0.11 C 10.73 0.0046

7 91,732,110 rs149979685 T 0.45 1.13 0.11 C 10.73 0.0046

7 91,590,199 rs564709734 G 0.53 1.13 0.11 A 10.70 0.0046

COBL 7 51,085,149 rs150183973 A 1.81 1.94 0.74 T 2.65 0.023

7 51,098,567 rs142060269 G NA 44.07 39.07 GTCT 1.23 0.026

7 51,098,849 rs62448278 A 53.03 48.98 44.17 G 1.21 0.035

7 51,138,814 rs1295400 T 6.28 7.67 5.30 C 1.49 0.035

MS4A6A 11 59,939,727 rs140130948 G 0.15 0.00 0.64 C 0.00 0.013

11 59,945,018 rs146080691 A 0.15 0.00 0.32 G 0.00 0.077

11 59,943,683 rs183204829 T 0.00 0.00 0.32 C 0.00 0.078

11 59,950,406 rs577683097 A 0.15 0.00 0.32 G 0.00 0.078

11 59,940,141 rs186332028 C 0.68 0.20 0.74 T 0.27 0.085

PTK2B 8 27,253,935 rs115828696 G 0.68 0.20 1.80 A 0.11 0.00041

8 27,268,750 rs3757908 T 1.06 3.89 1.91 C 2.08 0.0099

8 27,276,111 rs891392 C 1.06 3.89 1.91 T 2.08 0.0099

8 27,272,298 rs144318332 G 4.31 2.05 4.03 C 0.50 0.011

8 27,280,472 rs77318377 A 4.31 2.05 4.03 G 0.50 0.011

SLC10A2 13 103,718,308 rs55971546 T 0.30 0.31 1.06 C 0.29 0.044

13 103,718,824 rs16961281 A 13.16 10.84 8.16 G 1.37 0.045

13 103,719,056 rs7987433 C 23.22 23.21 19.81 T 1.22 0.070

13 103,697,359 rs199983061 T 0.15 0.20 0.64 C 0.32 0.14

13 103,697,329 rs41281676 A 4.23 5.11 3.81 G 1.36 0.17

ZCWPW1 7 100,002,772 rs76913697 G 11.57 13.19 18.54 A 0.67 0.0013

7 100,026,415 rs10693652 TCA 29.43 25.56 31.46 T 0.75 0.0042

7 100,028,484 rs6962151 C 29.43 25.56 31.46 T 0.75 0.0042

7 100,025,564 rs67196635 C 29.43 25.61 31.45 T 0.75 0.0047

7 100,014,313 rs6957928 A 12.93 15.24 19.85 G 0.73 0.0078

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls; “–“ indicates a deletion; “.” indicates a variant without an
annotated rsID; NA indicates the variant is not present in 1000 Genomes.

Other Variants
Examination of the full complement of variation in these
genes (n = 4,325) including 342 variants in ABCA7, 1,445 in
AKAP9, 167 in COBL, 204 in MS4A6A, 1,874 in PTK2B, 37
variants in SLC10A2, and 256 variants in ZCWPW1 revealed
many nominally significant associations (Table 4). The most
significant association was observed with a rare SNP in PTK2B
(rs115828696, MAF = 0.0020 in AD cases and 0.18 in controls)
which was protective (OR for the minor allele A = 0.11,
p = 0.00041). A strong protective effect was also identified with
a common SNP in ZCWPW1 (OR = 0.67, p = 0.0013). Genotypes
were not available for several of the previously implicated AA-
specific risk SNPs including ABCA7 rs115550680 (Reitz et al.,
2013a,b) which is located in a repetitive region and was not

captured by the design. The COBL rs112404845 and SLC10A2
rs16961023 variants (Mez et al., 2017) are outside of the coding
regions and, thus, were not assessed.

Genes Previously Associated With AD in
Other Ancestry Groups
Of the 104,341 variants observed in all targeted regions
that were tested for association with AD, 29 were annotated
as LOF variants. Only the previously noted MS4A6A and
ABCA7 variants (rs140130948 and rs567222111) were nominally
significant (Table 5). The most significant association findings
among 1,067 missense variants were obtained with five common
highly correlated variants in PILRB that showed a protective
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TABLE 5 | Top loss of function variants from all sequenced genes (out of 29 LOF variants examined).

Gene Ch. BP rsID Effect Allele % AFR % Cases % Ctrls Alt. Allele OR P

MS4A6A 11 59,939,727 rs140130948 G 0.15 0.00 0.64 C 0.00 0.013

ABCA7 19 1,044,707 rs567222111 G 0.83 1.13 0.32 GGGGCACCTGGT 3.57 0.038

CD33 19 51,738,933 rs273621 C 2.27 0.72 1.59 T 0.45 0.072

ACE 17 61,563,661 rs4330 C 41.30 40.11 43.61 A 0.87 0.124

ABCA7 19 1,041,352 rs3752229 G 0.15 0.41 0.95 A 0.43 0.146

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls.

TABLE 6 | Top missense variants from all sequenced genes (out of 1,067 missense variants examined).

Gene Ch. BP rsID Effect Allele % AFR % Cases % Ctrls Alt. Allele OR P

PILRB 7 99,956,444 rs11761306 G NA 11.86 17.13 A 0.65 0.0010

PILRB 7 99,956,436 rs11771799 C 7.03 11.89 17.09 T 0.65 0.0012

PILRB 7 99,956,439 rs35986051 C 7.03 11.89 17.09 T 0.65 0.0012

PILRB 7 99,955,866 rs61735533 A 10.14 12.07 17.27 G 0.66 0.0013

ABCA7 19 1,047,336 rs59851484 A 11.88 14.83 10.49 G 1.49 0.0043

AKAP9 7 91,732,110 rs149979685 T 0.45 1.13 0.11 C 10.73 0.0046

AKAP9 7 91,709,085 rs144662445 G 0.53 1.33 0.21 A 6.35 0.0054

KIAA0196 8 126,091,036 rs143719918 T 0.23 1.02 0.11 C 9.74 0.0077

ECHDC3 10 11,797,500 rs35986488 A 3.86 3.78 6.36 G 0.58 0.0100

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls; NA indicates the variant is not present in 1000 Genomes.

TABLE 7 | Top potentially regulatory variants from all sequenced genes (out of 223).

Gene Ch. BP rsID Effect Allele % AFR % Cases % Ctrls Alt. Allele OR P

ZCWPW1/MEPCE 7 100,026,415 rs10693652 TCA 29.43 25.56 31.46 T 0.75 0.0042

AKAP9 7 91,570,197 rs536714523 T 0.45 1.34 0.21 TGGCGGCGGC 6.37 0.0053

ZCWPW1 7 100,014,846 rs73161762 T 1.13 3.17 5.30 C 0.59 0.020

ZCWPW1/MEPCE 7 100,027,339 rs74460138 G 14.29 16.36 20.44 C 0.76 0.021

SNX6 14 35,099,305 rs562903264 A 0.00 0.51 0.00 G NA 0.028

KANSL1 17 44,302,765 rs187276691 A 0.15 0.72 0.11 G 6.80 0.038

NSMCE2/KIAA0196 8 126,104,130 rs76575464 A 19.74 18.51 14.97 C 1.29 0.038

CELF1 11 47,574,654 rs575641108 CGCCGCT 0.15 0.50 0.00 C NA 0.047

BZRAP1/BZRAP1-AS1/MIR142 17 56,406,133 rs374170329 G 0.23 0.41 0.00 C NA 0.049

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls.

effect (0.0010 < p < 0.0017; estimated OR for minor alleles
varied from 0.65 to 0.67; Table 6). Restricting the analysis
to potentially regulatory variants, a protective common indel
near the TSS of ZCWPW1 (rs10693652, OR for the minor
allele = 0.75, p = 0.0042) and the rare risk indel near the TSS
of AKAP9 (rs536714523) noted above were the most significant
of the 223 variants tested (Table 7). Finally, examination of
the entire set of 104,341 variants identified in the targeted
sequencing experiments yielded significant associations with
multiple loci (Table 8), most notably a rare protective variant in
F5 (rs2027885, OR for minor allele A = 0.053, p = 6.40 × 10−5),
a gene that was previously associated with a MRI measure of
hippocampal atrophy (Melville et al., 2012), and two common
variants in KIAA0196 (p < 8.6 × 10−5; Table 8). Out of
the 151 protein-coding genes, nominally significant gene-based

associations were found with six genes using the CMC test and
with three genes using the VT test (Table 9). The most significant
of these results was KANSL1 (p = 0.013). None of the seven
previously established AD risk genes in AAs were significant
(p > 0.05).

DISCUSSION

We performed targeted gene sequencing in an AA cohort
containing 489 AA AD cases and 472 cognitively normal controls
and found evidence of association with several novel variants
in genes that were previously implicated with AD risk in AAs
including a deletion causing LOF of ABCA7 (rs567222111). We
subsequently genotyped this deletion in an independent cohort
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TABLE 8 | Top variants from all genes (out of 104,341 variants examined).

Gene Ch. BP rsID Eff. All. % AFR % Cases % Ctrls Alt. Allele OR P

F5 1 169,535,038 rs2027885 A 0.61 0.10 1.91 G 0.053 6.40E-05

KIAA0196 8 126,097,380 rs79300936 A 29.73 30.06 22.14 G 1.51 7.83E-05

KIAA0196 8 126,097,473 rs7832481 G 29.80 29.96 22.08 A 1.51 8.50E-05

KIAA0196 8 126,066,723 rs7817741 A 2.19 6.44 11.12 C 0.55 0.00028

KIAA0196 8 126,073,786 rs2272729 A 2.12 6.44 11.12 G 0.55 0.00028

KIAA0196 8 126,093,882 rs7817303 A 18.31 20.25 14.09 G 1.55 0.00035

PTK2B 8 27,253,935 rs115828696 G 0.68 0.20 1.80 A 0.11 0.00041

PLXNC1 12 94,696,160 rs189295092 – 2.12 5.46 2.29 C 2.46 0.00043

SORL1 11 121,330,087 rs3862606 G 19.82 18.51 25.11 A 0.68 0.00046

PILRB 7 99,965,328 rs11284139 G 10.14 11.96 17.58 GA 0.64 0.00051

Effect allele represents the minor allele; % AFR represents the estimated effect allele frequency in the 1000 Genomes African cohort; % Cases represents the estimated
effect allele frequency in AD cases; % Controls represents the estimated effect allele frequency in controls; “–“ indicates a single bp deletion.

TABLE 9 | Nominally significant gene-based burden tests of association with AD.

Test Gene Start (bp) End (bp) Num. Variants Included P

CMC KANSL1 17 44,112,733 44,249,388 124 0.013

TRIM35 8 27,168,348 27,168,671 12 0.018

PLEKHM1 17 43,515,240 43,559,893 115 0.029

MS4A6E 11 60,102,408 60,105,226 9 0.038

PTK2B 8 27,168,348 27,315,954 163 0.047

PILRA 7 99,971,735 100,001,863 80 0.053

VT CNN2 19 1,036,201 1,043,455 139 0.017

PLEKHM1 17 43,515,240 43,559,893 115 0.045

TRIM35 8 27,168,348 27,168,671 12 0.049

containing 484 AD cases and 484 controls, and the association
with this large effect variant (OR = 2.42) became more significant
in the combined sample. Another notable novel association was
identified with a rare 9 bp. deletion (rs371245265) located near
the TSS of AKAP9. We also confirmed previously reported
associations with missense variants in ABCA7 (rs3764647)
and AKAP9 (rs149979685 and rs144662445). Gene-based tests
of aggregated rare variants yielded several associations, most
significantly with KANSL1, CNN2, and TRIM35.

The association with the AKAP9 regulatory region variant
rs371245265 calls into question whether the previously identified
AKAP9 missense variants (rs149979685 and rs144662445) are
causally related to AD because all of these variants are in high
LD. Previous analysis of the background haplotype harboring
rs149979685 and rs144662445 and spanning an 800 kb region
including five genes showed that no other coding variants could
explain the association with these AKAP9 missense variants
(Logue et al., 2014). However, it remains possible that the
rs371245265 variant has a regulatory effect on AKAP9 expression,
and this variant alone or in conjunction with the missense
variants, could underlie the observed association with AD risk.
Because these three rare variants most often co-occur, it is
unlikely that the potentially causal effects of these variants
will be disentangled by epidemiological studies. Recently, we
observed significantly higher phosphorylation and greater post-
translational modifications of Tau protein in lymphoblastoid cells
from subjects having at least one of the missense variants, a

finding that was independent of the disease status of the cell
donors (Ikezu et al., 2018). However, since these subjects also
have the potentially regulatory variant, experimental studies will
be necessary to determine whether this variant does indeed have
a regulatory effect and in particular which of the three variants
account for the observed effect on Tau phosphorylation.

Our observed novel association with a rare 11 bp loss of
function frameshift deletion (rs567222111, Leu396fs) in a gene
encoding one of the ATP-binding cassette transporter proteins
(ABCA7) adds to a growing list of AD-associated LOF mutations
in this gene (Farrer, 2015). The most remarkable of these is
a 7 bp deletion, causing a frameshift mutation (Glu709fs) that
was detected in 11 out of 772 unrelated patients but not in 757
controls from the Flanders region of northern Belgium (Cuyvers
et al., 2015). Association of this mutation with AD has also
been observed in several other European ancestry populations
(Steinberg et al., 2015). Cukier et al reported association of
AD and a relatively common 44 bp LOF deletion in ABCA7
(rs142076058, Ser587fs, OR = 2.13) in an AA cohort that is non-
overlapping with our study sample (Cukier et al., 2016). This
deletion was observed in the current study, but had a smaller
effect on AD risk (OR = 1.27, p = 0.16). Of note, the frameshift
mutation identified in our study occurs earlier in the amino acid
sequence (position 396) than the Belgian (position 709) or other
AA (position 587) frameshift mutations and thus may yield a
more seriously impaired protein than these other mutations, but
this will have to be confirmed experimentally.
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Surprisingly, expanding the analyses from the relatively small
set of genes that were implicated in previous studies of AAs
to the larger set of AD genes that were established in other
populations yielded relatively few significant results, the most
significant of which is a rare protective variant (rs2027885)
in the gene encoding the blood clotting protein Factor 5 (F5,
OR = 0.053, p = 6.40 × 10−5). A GWAS of a brain MRI measure
of hippocampal atrophy in a MIRAGE Study sample composed
primarily of AD and control subjects of European ancestry and a
smaller group of AAs (many of which are included in this study)
found genome-wide significant association with several common
SNPs spanning portions of F5 and its immediate neighbor, SELP,
that was supported by evidence in both populations (Melville
et al., 2012). Although there is scant genetic evidence linking F5 to
AD, it has been shown that factor V activating protein in Russell’s
viper venom destabilizes amyloid-β aggregates as revealed from a
thioflavin T assay (Bhattacharjee and Bhattacharyya, 2013).

Our findings contrast those of another recent exome
sequencing study of AD in a smaller sample of AAs (198 AD cases
and 304 controls) which focused exclusively on 20 loci reaching
genome-wide significance in a very large GWAS of European
ancestry cohorts (N’Songo et al., 2017). The previous study found
nominally significant associations with two variants in ABCA7
(rs3764647 and rs3752239) and in gene-based tests of coding
variants in MS4A6A, PTK2B, and ZCWPW1. We observed
association with rs3764647 (p = 0.017), but did not replicate
the association with rs3752239 or the gene-based associations.
On the other hand, gene-based tests of aggregated rare variants
in KANSL1, TRIM35, MS4A6E, and PILRA were nominally
significant in our study. Differences in findings may be due in part
to the use of exome sequencing by N’Songo et al. (2017) versus
sequencing of complete gene regions in our study which allowed
detection of association with potentially functional variants in
regulatory regions and introns that influence transcription and
splicing, as well as with structural variants that span non-coding
regions.

Our findings should be interpreted cautiously. None of our
findings remain significant after correcting for the total number
of tests performed in the study. Our sample size was not large
enough to detect associations with rare variants exerting modest
effects with experiment-wide significance. Also, our primary
analyses of individual variants did not account for the correlated
structure of our dataset which included many related individuals.
Our study highlights the difficulty of obtaining statistically
significant results with rare variants, especially those with
frequencies less than 1%. It is essential to replicate our findings
in independent AA samples, and sufficiently large samples
will become available eventually through the efforts of large
consortia including the Alzheimer’s Disease Genetics Consortium
and Alzheimer’s Disease Sequencing Project. In addition,

experimental studies are needed to establish functionally relevant
roles of these genes and variants in AD pathogenesis.

With these concerns in mind, the goal of this study was to
identify variants with supporting genetic evidence and predicted
functional impact for examination in relevant biological systems.
Given the previously identified relationship between loss of
function mutations in ABCA7 and AD (Cuyvers et al., 2015;
Farrer, 2015; Steinberg et al., 2015; Cukier et al., 2016) and genetic
and biological evidence for a role of rare AKAP9 variants in AD
(Logue et al., 2014; Ikezu et al., 2018), the novel ABCA7 coding
region deletion (rs567222111) and the potentially regulatory
AKAP9 deletion (rs371245265) are the most compelling findings
for future studies.
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Frontotemporal dementia (FTD) is a fatal neurodegenerative disease characterized by
behavioral and language disorders. The main genetic cause of FTD is an intronic
hexanucleotide repeat expansion (G4C2)n in the C9ORF72 gene. A loss of function of the
C9ORF72 protein associated with the allele-specific reduction of C9ORF72 expression
is postulated to contribute to the disease pathogenesis. To better understand the
contribution of the loss of function to the disease mechanism, we need to determine
precisely the level of reduction in C9ORF72 long and short isoforms in brain tissue from
patients with C9ORF72 mutations. In this study, we developed a sensitive and robust
mass spectrometry (MS) method for quantifying C9ORF72 isoform levels in human
brain tissue without requiring antibody or affinity reagent. An optimized workflow based
on surfactant-aided protein extraction and pellet digestion was established for optimal
recovery of the two isoforms in brain samples. Signature peptides, common or specific
to the isoforms, were targeted in brain extracts by multiplex MS through the parallel
reaction monitoring mode on a Quadrupole–Orbitrap high resolution mass spectrometer.
The assay was successfully validated and subsequently applied to frontal cortex brain
samples from a cohort of FTD patients with C9ORF72 mutations and neurologically
normal controls without mutations. We showed that the C9ORF72 short isoform in the
frontal cortices is below detection threshold in all tested individuals and the C9ORF72
long isoform is significantly decreased in C9ORF72 mutation carriers.

Keywords: frontotemporal dementia (FTD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral
sclerosis (ALS), C9ORF72, TDP-43, TDP43, mass spectrometry (MS), GRN
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INTRODUCTION

Frontotemporal dementia (FTD) is the second most prevalent
neurodegenerative disease before the age of 65, after
Alzheimer disease. FTD are caused by frontal and temporal
lobar degeneration leading to behavioral, socioemotional,
language disorders, and progressive loss of autonomy and death
approximately 10 years after disease onset (Rascovsky et al.,
2011). Amyotrophic lateral sclerosis (ALS) caused by motor
neuron degeneration is associated with FTD in 15% of patients
or families. Familial forms of FTD, accounting for about 20–50%
of cases (Rosso, 2003) are mainly caused by mutations in three
major genes: granulin (GRN), microtubule-associated protein
tau (MAPT) and C9 open reading frame 72 (C9ORF72).

C9ORF72, the most frequent genetic etiology, represents 25%
of familial FTD cases (DeJesus-Hernandez et al., 2011; Renton
et al., 2011), 80% of FTD-ALS familial cases and also explains
40% of pure familial ALS (without FTD) (Majounie et al., 2012).
An expansion of hundreds to thousands hexanucleotide (G4C2)
repeats is present in the first intron of the gene in patients, while
healthy individuals carry less than 24 (G4C2) repeats. While the
exact mechanisms of disease remain unknown, two main modes
of toxicity are proposed. The expansion may be deleterious
through formation of nuclear RNA foci by RNA containing
the hexanucleotide expansion (G4C2) with sequestration of
RNA-binding proteins (Lagier-Tourenne et al., 2013), and/or
translation of polydipeptides proteins that aggregate in the brain
(Mori et al., 2013). A loss of function of the C9ORF72 protein
associated with a decrease in C9ORF72 allele-specific expression
was also hypothesized to contribute to the pathogenesis based
on reduction of C9ORF72 mRNA transcript levels in patients
(Ciura et al., 2013). The three alternatively spliced C9ORF72
transcripts encode two C9ORF72 protein isoforms, a 222 amino
acids (AA) protein isoform called C9-short (C9-S) and a 481AA
protein isoform called C9-long (C9-L). The two protein isoforms
have been shown by immunofluorescence to have distinct cellular
localization with the C9-S lozalizing to the nuclear membrane
and C9-L to the cytoplasm (Xiao et al., 2016). This observation
suggests that the two isoforms have a different function, while the
precise function of the protein has not been clearly determined.
A potential role in endosomal transport and autophagy was
reported through interaction with Rab-GTPases (Zhang et al.,
2012; Levine et al., 2013).

A better understanding of the contributions of the loss
of function to the disease mechanism requires a precise
quantification of reduction in levels of C9ORF72 isoforms.
C9ORF72 protein has been so far only quantified in human
tissues by Western blot (Waite et al., 2014). Several studies
pointed out the poor affinity and selectivity of commercially
available antibodies (Waite et al., 2014; Davidson et al., 2018),
requiring laborious in-house generation of antibodies. Targeted
mass spectrometry (MS) is a powerful alternative to Western
blot and enzyme-linked immunosorbent assay (ELISA) for
quantification of proteins. It provides accurate quantification,
high level of specificity, avoiding interference due to cross-
reactivity of antibodies, and the ability to discriminate between
isoforms (Chen D. et al., 2015; Chen Y.-T. et al., 2015;

Jedrychowski et al., 2015; Lesur et al., 2015). Nevertheless, MS-
based detection of low-abundant proteins in complex fluids or
tissues remains challenging without efficient sample preparation
protocols. The gold standard relies on the combination with
immunoprecipitation to selectively enrich the analyte of interest
prior to MS (Chen Y.-T. et al., 2015), but is applicable only when
antibodies with sufficient specificity and affinity for the target
protein are available.

We have developed a sensitive and robust antibody-free MS
assay for quantification of C9ORF72 isoforms in brain samples.
The protocol consists in an optimized tissue lysis protocol
followed by pellet digestion of extracted brain proteins and
specific monitoring of common and isoform specific peptides by
targeted high-resolution MS in the parallel reaction monitoring
mode (PRM). Reproducibility and linearity were demonstrated,
as well as equivalent isoform recovery from brain tissue samples
and stability during sample preparation. This new assay allowed
for the first time the quantification of the C9ORF72 long isoform
in post mortem frontal cortex brain samples from a cohort of
FTD patients harboring a C9ORF72 mutation and highlighted a
significant decrease in concentrations in mutation carriers. The
short isoform was found to be below the sensitivity threshold of
the method.

MATERIALS AND METHODS

Patients Information, Tissue Collection,
and Consent
Frozen tissue from frontal cortex (Brodmann area 9/10) of
21 FTD (with or without secondarily developed ALS) patients
carrying C9ORF72 expansion, of 10 patients with non-genetic
FTD (with or without secondarily developed ALS) pathologically
characterized by TDP-43-positive neuronal inclusions, and of 12
neurologically healthy controls were studied. The brain samples
were collected through a brain donation program dedicated
to neurodegenerative dementias coordinated by the NeuroCEB
Brain Bank Network. The informed consent for post-mortem
examination and research studies was signed by the legal
representative of each patient in patient’s name, as allowed by
the French law and approved by the local ethics committee
and the brain bank has been officially authorized to provide
samples to scientists (agreement AC-2013-1887). All procedures
performed in this study involving human participants were in
accordance with the ethical standards of the institutional research
committees and with the 1964 Helsinki declaration. The brain
banks fulfill criteria from the French Law on biological resources
including informed consent, ethics review committee and data
protection (article L1243-4 du Code de la Santé publique, August
2007). The Neuro-CEB brain bank (BioResource Research
Impact Factor number BB-0033-00011) has been declared to
the Ministry of Research and Higher Education, as required by
French law.

Chemical and Materials
C9ORF72 short isoform was purchased from Proteintech (cat#
ag21080) (Proteintech Group, Chicago, IL, United States)
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and C9ORF72 long isoform from Abnova (cat#00203228-
P01) (Abnova Le Perray En Yvelines, France). Trypsin from
bovine pancreas TPCK Treated (reference T1426), ammonium
hydroxide, ammonium bicarbonate were purchased from Sigma-
Aldrich (Saint Quentin Fallavier, France). RapiGest SF Surfactant
and SPE Oasis Max 1CC/30 mg were purchased from
Waters Corporation (Milford, MA United States). Labeled
peptides for quantification were synthesized in Absolute
QUAntitation (AQUA) ultimate quality by Thermo Fisher
Scientific (Paisley, United Kingdom). Water (ChromaSolve
LC-MS), acetonitrile (HPLC-grade), and formic acid were
obtained from Honeywell/Riedel-de Haen (Seelze, Germany)
and VWR chemicals (Fontenay sous Bois, France), respectively.
All other chemicals were purchased from Sigma-Aldrich (Saint
Quentin Fallavier, France) or VWR Chemicals (Fontenay sous
Bois, France). Pierce BCA protein Assay kit was purchased from
Pierce (Rockford, IL, United States). For all reactions, LoBind
Eppendorf tubes (Dutscher, Brumath, France) were used.

Sample Preparation
Brain Protein Extraction Protocol
Lysis buffer containing, trizma-base 20 mM; NaCl 150 mM;
cOmplete Protease Inhibitor Cocktail 1X and 1% triton, was
added to single pieces of whole brain tissue (∼100 mg) at a ratio
of 5 µL per 1 mg of tissue. Brain samples were homogenized by
beads beating using a precellys soft tissue CK14 2 mL (3∗30S at
6,500 rpm). The lysate was then centrifuged at 4,000 rpm for
15 min at 4◦C. Fifty microliters from the supernatant was used for
analysis. A 5 µL aliquot was used for total protein concentration,
determined by the Pierce BCA Protein Assay kit with a sample
to working reagent ratio 1:20. Two percent SDS were added to
eliminate interference from lipids.

Pellet Digestion
The lysate was precipitated by adding 150 µL of methanol (ratio
3:1), followed by vortex-mixing and briefly centrifuged 5 s. The
supernatant was discarded. Twenty microliters of rapigest 0.05%
in ammonium bicarbonate 50 mM were added to the pellet. Aqua
peptides were added at this step, at 10 ng/mL final concentration.
After mixing for approximately 15 min, reduction was performed
with 10 µL DTT (20 mM) and incubation at 60◦C for 30 min.
Alkylation was performed with 10 µL iodoacetamide (45 mM)
and 45 min incubation at room temperature. Proteins were
digested overnight at 37◦C with 40 µg of trypsin.

Solid Phase Extraction (SPE)
Tryptic digests were diluted by addition of 300 µL of 5%
ammonium hydroxide before SPE extraction on oasis MAX 1
cc/30 mg, previously conditioned with 1 mL of Methanol and
equilibrated with 1 mL of water. Samples were loaded and washed
with 500 µL of 5% NH40H and 2∗250 µL of methanol. Peptides
were eluted with 3∗250 µL of methanol containing 10% formic
acid. Extracts were then evaporated to dryness with a Turbovap
instrument (Biotage, Uppsala, Sweden) (5–15 psi, 40◦C for 1 h).
The dry residue was re-dissolved in 95% water 5% acetonitrile
0.1% formic acid and centrifuged at 4◦C for 10 min at 15,000× g,
prior injection into the LC system.

LC-MS/MS Analysis
LC-MS/MS was performed on a Dionex Ultimate 3,000
chromatography system coupled to a Q-exactive Quadrupole-
Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany). Ten microliters of sample was loaded onto the
column. Chromatographic separation was performed on an Aeris
peptide XBC18 reverse phase column (150 mm × 2.1 mm;
1.7 µm; 100 Å; phenomenex, Le Pecq, France) and achieved in
a 30 min gradient at a flow rate of 500 µL/min. A gradient of
mobile phase consisting of LC-MS-grade water with 0.1% formic
acid (phase A) and acetonitrile with 0.1% formic acid (phase B)
was delivered. After an isocratic step of 0.5 min at 5% B, the
gradient was ramped to 25% over the next 19.5 min then to 50%
over the next 4min. Then acetonitrile was increased to 95% for
the next 2 min. Column re-equilibration at 5% B was realized for
4 min.

Instrument parameters of the electrospray ionization source
were set as follows: sheath gas flow rate at 70 a.u., spray voltage at
4 kV, capillary temperature at 320◦C. The Q-exactive instrument
was operated in positive ion mode under time-scheduled
sequential PRM acquisition. Endogenous peptides precursor ions
and AQUA peptides were selected in the quadrupole with an
isolation mass window of 1.5 m/z. Precursors were fragmented in
the HCD cell using nitrogen as collision gas and the optimized
normalized collision energy (Supplementary Table S2). All
fragment ions were transferred to the Orbitrap. Resolution
was set to 70,000 at m/z 200 (full width at half-maximum),
automatic gain control to 1e6, and maximum injection time to
240 ms. Xcalibur 2.2 software (Thermo Fisher Scientific, Bremen,
Germany) was used for instrument control and processing of the
data files.

PRM and Quantification
A time-scheduled sequential PRM method was established
targeting the following C9ORF72 peptides TEIALSGK, ILL-
EGTER, DSTGSFVLPFR, and SHSVPEEIADIADTVLNDDDI
GDSCHEGFLLK (Supplementary Table S2). To increase
the signal to noise ratio and assay sensitivity, the signal of
up to 6 major and non-interfered fragment ions identified
with high resolution (5 ppm) from a common peptide
precursor were summed up to provide one extracted ion
chromatogram (XIC) for each peptide. Isotope-labeled
synthetic peptides with labeled amino acids 13C6,15N2-
labeled lysine and 13C6,15N4-labeled arginine were used for
signal normalization and quantification of C9ORF72 peptides.
Raw MS data were exported to Skyline 3.7 (MacLean et al.,
2010) for verification of the transitions ratio of unlabeled
and labeled peptides. Xcalibur 2.2 software (Thermo Fisher
Scientific, Bremen, Germany) was used for quantitative data
analysis.

External calibration curve was made by digesting the
C9ORF72 long isoform recombinant protein in a surrogate
matrix (mice brain) and SIL peptides were spiked before
reduction and alkylation of the pellet. Linear regression
with 1/x weighting was applied to generate a standard
curve.
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HEK293 Cells Transfection
Plasmids expressing EGFPN-tagged C9ORF72 long or
short isoforms were assembled as follow. cDNAs coding for
NP_060795 (long) and NP_659442 (short) were ordered from
DNA2.0/ATUM in the pCS2 vector. Fifty nanograms of each
plasmid was PCR amplified with AccuPrime Pfx Supermix
(Invitrogen) according to the manufacturer’s protocol. Forward
primer was CACCTCGACTCTTTGCCCACC and reverse
primers were, respectively, for the long and short isoforms
CTAAAAAGTCATTAGAACATCTCGTTCTTGCACAC and
CTACTTGAGAAGAAAGCCTTCATGACAGC. Purified and
sequenced PCR products were cloned into pENTR/D Gateway
TOPO according to manufacter’s protocol (Thermo Fisher
Scientific). Purified and sequenced entry long and short
C9ORF72 clones were recombined with pgLAP1 destination
vector (Addgene Plasmid #19702) with LR Clonase Enzyme Mix
according to the protocol given by the manufacturer (Thermo
Fisher Scientific). After sequencing, the two plasmids, EGFP
long C9ORF72 and EGFP short C9ORF72, were transfected
with lipofectamine 2000 (Thermo Fisher Scientific) according
to manufacturer’s protocol. Briefly, T-75 flasks of HEK293
cells at 70% confluency were transfected with 15 µg EGFP
long C9ORF72 and 15 µg EGFP plasmids, or 15 µg EGFP
short C9ORF72 and 15 µg EGFP plasmids or 15 µg EGFP
long C9ORF72 and 15 µg EGFP short C9ORF72 plasmids, or
30 µg EGFP control plasmid. Cells were collected 48 h after
transfection. PBS washed pellets were stored at minus 80◦C until
protein extraction.

Statistical Analyses
All statistical analysis was performed using Graphpad Prism
software (version 5.01). Data were compared with a Mann–
Whitney test and medians were considered significantly different
if p < 0.05. Data were represented with median and interquartile
range.

RESULTS

Assay Design
First step of the assay (Figure 1) consists in an optimized brain
sample homogenization and extraction of C9ORF72 isoforms

using bead-beating tubes with the presence of a nonionic
surfactant Triton X-100 to further disrupt lipidic cell membranes.
Then, a pellet digestion protocol was adapted to protein digestion
in brain extracts. C9ORF72 isoforms are denaturated and
equivalently precipitated with methanol. After removal of the
supernatant containing the surfactant, resuspension and addition
of AQUA peptides, i.e., stable isotope peptide, the pellet was
digested with trypsin. Signature peptides were then extracted
using mixed-mode anion exchange cartridges. Finally, after
evaporation and resuspension in 5% acetonitrile with 0.1% formic
acid, samples were injected into the LC-MS/MS where three
peptides, common to both isoforms or unique to the long
isoform, were quantified with specificity in the PRM mode.
A specific peptide from the short isoform was also monitored for
detection purposes only.

Analytical Procedure
Proteotypic Peptides Selection and LC-MS/MS
Detection
Two isoforms of the C9ORF72 protein are reported (DeJesus-
Hernandez et al., 2011) (Uniprot sequence entries: Q96LT7-1 and
Q96LT7-2). Amino-acid sequences are illustrated in Figure 2.
Short isoform amino acid sequence is shared with the long
one with the exception of its last residue, i.e., residue 222
(N→K). For a comprehensive assay of C9ORF72, common and
isoform-specific peptides have to be identified. To this end,
data-dependent analysis (DDA) experiments on human frontal
cortices were performed (described in Supporting Information).
No signal was detected for the C9ORF72 isoforms, similarly, to
another recent study (Umoh et al., 2018), illustrating their low
abundance in brain and the need to develop a more sensitive
targeted method. A tryptic digest of recombinant C9ORF72 long
isoform was then used for selection of best responding peptides.
Three peptides were selected based on signal intensity after
digestion, size (i.e., between 6 and 20 amino acids), and lack
of cysteine, methionine and glutamine residues. Specificity of
the selected peptides was assessed using Basic Local Alignment
Search Tool (BLAST) against the UniprotKB/Swissprot human
database. Among the three peptides selected for quantification
(Figure 2), two are common to both the short and long
isoforms and one is unique to the long isoform. The assay based
on peptide 1 (TEIALSGK) and 2 (IILEGTER) quantify total

FIGURE 1 | C9ORF72 quantification workflow by pellet digestion and LC-MS/MS in brain samples. First step consists of tissue lysis followed by brain proteins
precipitation. Then, the pellet is digested by trypsin. Peptides are extracted and concentrated by SPE before LC-MS/MS injection.
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FIGURE 2 | C9ORF72 long (top) and short (bottom) isoform (respectively, Q96LT7-1 and Q96LT7-2). Proteotypic peptids selected are underlined. A red box displays
the single amino acid differentiating the common sequence.

FIGURE 3 | PRM signal of C9ORF72 proteotypic peptides with their corresponding co-eluting SIL peptide in human brain samples.

C9ORF72 whereas the assay based on peptide 3 (DSTGSFVLPFR)
differentiates the long isoform. Internal standards AQUA
peptides of the three selected peptides for quantification were
synthesized by incorporating stable isotopes at the C-terminal
amino acid residues (13C6,15N2-labeled lysine and 13C6,15N4-
labeled arginine). AQUA peptides were prepared with high purity
(>95%) and well-defined concentrations. The unique 30 amino
acids long peptide specific for the short isoform (peptide 4),
containing residue 222 (Figure 2), did not meet the stringent
selection criteria for inclusion in the quantitative method, and
was selected for detection only. A stable isotope-labeled (SIL)
analog of peptide 4 was nonetheless synthetized for unambiguous
identification of C9-S in the brain samples. In the absence of a
suitable quantitative peptide for C9-S, quantification is obtained
by difference as previously reported for progastrin-releasing
peptide (ProGRP) isoforms (Torsetnes et al., 2013).

Simplification of sample preparation oriented our choice
toward Parallel Reaction Monitoring (PRM) over Selected
Reaction Monitoring (SRM) for the increased specificity
regarding fragment ion detection in complex matrixes provided
by the high-resolution Orbitrap mass analyzer. A PRM method
was established targeting the three selected peptides for
quantification, and the unique C9-S peptide for detection only.
Ultra-high performance liquid chromatography was performed
on a C18 column for peptide separation with a total runtime
of 30 min. Shorter gradients resulted in interferences at the
retention time of peptide DSTGSFVLPFR (SIL version) and a
decrease of signal intensity up to a factor of 2 in brain samples
(Supplementary Figure S1 and Supplementary Table S1). Data

treatment increased sensitivity by summing the signals of up
to six major and non-interfered fragment ions to provide one
XIC for each targeted peptide (Dupré et al., 2015; Figure 3
and Supplementary Table S2). Each endogenous peptide and
their corresponding isotope-labeled form (AQUA peptides) must
strictly co-elute with similar transition ratio across the different
samples in comparison with a standard. If not, the transition was
excluded.

Ability of the targeted method to detect the isoforms
was demonstrated in HEK293 cells transfected with plasmids
expressing either C9-S or C9-L. All common (peptides 1 and 2)
and the two unique isoform-specific peptides of C9-L and C9-S
(peptides 3 and 4) were detected in corresponding HEK293 cells
(Supplementary Figure S3). Mock-transfected HEK293 cells
were also analyzed and displayed a lower level of C9ORF72.

Sample Preparation of Human Brain
Samples Prior to LC-PRM
The main steps of sample preparation consist of tissue
homogenization for optimal protein extraction followed by a
pellet digestion and peptide enrichment with SPE for lowering
ion suppression/matrix effects and increasing sensitivity. Protein
extraction protocols with tissue homogenization by mechanical
shear recently published for C9ORF72 (Xiao et al., 2015),
containing either low/high-salt content (i.e., 150 mM NaCl
or 750 mM NaCl), 8 M urea or Triton X-100, were
individually evaluated on tissues samples from frontal cortex
(Figure 4). These protocols were adapted to single use
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FIGURE 4 | (A) Mean C9ORF72 peptides signal in human brain samples and (B) brain protein extraction efficiency (measured by BCA assay) depending on tissue
lysis protocols. Protocols evaluated contained either 8 M urea, low salt (150 mM NaCl) triton X-100 or high salt (750 mM NaCl) triton X-100.

bead-beating Precellys tubes to parallelize protein extraction
and avoid contamination between samples. Protocols were
evaluated based on total protein extraction and signal from
C9ORF72 peptides. The low salt protocol without detergent
resulted in low protein extraction yield and no signal for
C9ORF72 peptides, although Western blot signal was previously
reported for the short isoform (Xiao et al., 2015). Signals
were observed for the three quantitative peptides selected
for quantification (peptides 1–3) when applying the Triton
containing mixtures, the latter showing higher intensity than
that containing urea (Figure 4A). We finally selected the
low-salt Triton protocol because it allowed the extraction
of more total proteins than the high-salt Triton protocol
(Figure 4B). However, no signal was detected for the C9-
S unique peptide (peptide 4) with any of the evaluated
protocols.

A recently published convenient pellet digestion protocol
for monoclonal antibody quantification in human plasma
(Becher et al., 2017) was evaluated for the detection and
quantification of C9ORF72 isoforms in brain proteins lysates.
Recombinant protein of C9-S like and C9-L spiked into
mice brain lysate, as a substitute to human brain, before
and after methanolic precipitation demonstrated high and
equivalent recovery for both recombinant protein isoforms
with equivalent precipitation yield above 70% and coefficients
of variation below 10% (n = 2) (Table 1). Brain lysate is
a highly complex matrix resulting in deleterious matrix
effects. To further reduce its complexity, SPE clean-up was
evaluated in human brain samples based on AQUA peptides
signal after SPE (Supplementary Figure S2). Among Oasis
Hydrophilic-Lipophilic Balance (HLB) operated at high
pH, Mixed-mode Cation-eXchange (MCX), and Mixed-
mode Anion-eXchange (MAX) cartridges, Oasis MAX has
proven to give the higher peptide signal intensity (data

TABLE 1 | Precipitation yield and variation of C9-S and C9-L isoforms in mice
brain extracts.

Short isoform Long isoform

Mean CV Mean CV

Precipitation yield (n = 2) 88% 8% 74% 9%

not shown), in line with the acidic isoelectric point of
the peptides ranging from 3.9 to 5.8. Signal enhancement
resulting from SPE was about two folds. SPE yield was then
determined in the final conditions in mice brain lysate.
Yield measured by aqua peptides spiked before and after the
SPE extraction were between 45 and 70% (Supplementary
Table S3), which is in line with previous works (Gong et al.,
2015). For method robustness, aqua peptides were spiked
early in the protocol, before trypsin digestion of the pellet,
and therefore extracted by SPE, similarly, to the C9ORF72
peptides.

Method Validation
The assay was then evaluated for C9ORF72 quantification in
human brain tissues, including the main items of linearity,
sensitivity, inter-, and intra-day assay precision, stability during
sample processing, i.e., over 90 min at room temperature and
matrix effect. Linearity and sensitivity were determined with
standard curves prepared in mice brain as a surrogate to
human brain samples. Indeed, the three proteotypics peptides
selected for quantification are not present in mice due to single
point mutations, despite 85% sequence identity with human
(Supplementary Figure S4). Other items were tested with
quality control samples prepared in human brain extract, spiked
with recombinant C9-L. Recombinant C9-L was selected for
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FIGURE 5 | Standard curves of the three selected peptides for quantification of human C9ORF72 in a mice brain lysate. C9ORF72 recombinant long isoform was
spiked in increasing concentrations, allowing the generation of a six points standard curves (weighing 1/x).

validation experiments because it contains all three quantitative
peptides.

Linearity and sensitivity of the method were evaluated with
a 6-point calibration curve of the recombinant C9-L. Mice
brain proteins were extracted with the same protocol as for
human brain. The method was shown to be linear from 50
to 5,000 ng/mL with a Lower Limit Of Quantification (LLOQ)
observed at 50 ng/mL (Figure 5). LLOQ was defined based
on accuracy between 80 and 120%. To determine a potential
matrix effect between mice and human brains, recombinant
C9ORF72 was spiked into human brain extract in triplicates at
500 ng/mL and confronted against the calibration curve in mice
(Table 2). The three peptides displayed good accuracy in the
range of 85–115%, which demonstrate the suitability of mice
brain extract as a surrogate matrix for C9ORF72 determination
in human brain. Intraday repeatability of the analytical method
was evaluated in human brain extract. Briefly, proteins from a
human brain sample were extracted and divided in five aliquots
for protein precipitation, digestion and LC-MS/MS analysis.
Precision was observed below 10% for each peptide (n = 5)
(Table 3). Interday precision was also evaluated by analyzing
three different brain extracts on three different days. Variability
was found to be acceptable, with CV% between 10 and 26%
(Table 4). Stability of the C9ORF72 protein in brain extract

during the sample preparation is an important parameter for
quantification. Brain extracts were either directly processed or left
on ice for 90 min, corresponding to the time to process around
100 samples from protein extraction to protein precipitation.
Both conditions showed similar area ratio for the three peptides
demonstrating stability of C9ORF72 in our conditions (Figure 6).

Taking all results together, the protocol was found efficient for
determination of C9ORF72 in human brain samples. The new
method demonstrated robustness with variability and accuracy
below 20%.

C9ORF72 Isoforms Determination in
Human Brain Tissue
Levels of C9ORF72 protein were investigated in frontal
cortices of FTD patients (with or without ALS) carrying
C9ORF72 expansions (n = 21), patients with non-genetic
FTD, pathologically characterized by TDP-43-positive neuronal
inclusions (n = 10), and neurologically normal controls (n = 12)
determined by pathologists within the network of the NeuroCeb
brain bank.

The three peptides selected for quantification were detected
above LLOQ in all samples (Figure 7). However, no signal
was detected for the unique C9-S peptide in any of the
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TABLE 2 | Matrix effect between mice and human brain, evaluated for each quantitative peptide.

QC in human
brain (n = 3)

TEIALSGK ILLEGTER DSTGSFVLPFR

Mean
measured
(µg/mL)

CV % Theoretical
value

(µg/mL)

Bias% Mean
Measured
(µg/mL)

CV% Theoretical
value

(µg/mL)

Bias % Mean
measured
(µg/mL)

CV % Theoretical
value

(µg/mL)

Bias %

Blank (endogenous) 0.285 6% 0.292 2% 0.348 5%

Spike (+0.5 µg/mL) 0.767 4% 0.785 2% 0.815 1% 0.792 3% 0.785 3% 0.848 7%

Human brain lysate was spiked with 0.5 µg/mL of C9ORF72 recombinant long isoform and back calculated against a calibration curve prepared in mice brain lysate.
Endogenous C9ORF72 concentration was added to the spiked amount for calculations of bias. Bias and CV% are reported.

TABLE 3 | Intraday variability of the measured C9ORF72 concentrations by
replicate analysis of a control human brain sample (n = 5).

Intraday
validation
(n = 5)

TEIALSGK ILLEGTER DSTGSFVLPFR

Mean
(µg/mL)

CV Mean
(µg/mL)

CV Mean
(µg/mL)

CV

Control-1 0.37 4% 0.43 7% 0.414 6%

TABLE 4 | Interday variation of the measured C9ORF72 concentrations in 2
C9ORF72 human brains and one human control brain samples; (n = 3).

Interday
variation
(n = 3)

TEIALSGK ILLEGTER DSTGSFVLPFR

Mean
(µg/mL)

CV Mean
(µg/mL)

CV Mean
(µg/mL)

CV

Control-2 0.514 18% 0.545 10% 0.563 14%

C9-1 0.344 26% 0.382 12% 0.390 22%

C9-2 0.153 11% 0.182 16% 0.197 10%

brain samples. Furthermore, similar amounts of total C9ORF72
and C9-L were measured, considering assay accuracy and
variability of 20%, revealing by difference, the low abundance
of C9-S (Supplementary Table S4). Differences in measured
concentrations between groups were assessed by a Mann–
Whitney nonparametetric test. Quantification based on any of
the three peptides demonstrated a significant decrease in total
C9ORF72 in FTD patient with C9ORF72 expansions (p< 0.0001)
compared to controls and non-genetic FTD (p< 0.05) (Figure 7).
The decrease in concentration of about 42%, which was observed
for the three peptides (i.e., the two peptides representing total
C9ORF72 and the one specific to the long isoform), corroborates
prior Western blot findings.

DISCUSSION

C9ORF72 isoforms have solely been investigated by Western
blot which relies on the availability of antibodies whose
specificity has to be characterized and validated (Liu et al., 2006;
Davidson et al., 2018). In this respect, we developed a MS assay
avoiding antibodies and the gold standard immunoprecipitation
for protein quantification in complex matrixes. An efficient
protocol, with optimized sample preparation steps, i.e., protein

extractions from tissue, pellet digestion and SPE, was successfully
implemented for the first time to quantitate C9ORF72 isoforms
level in a cohort of human brain samples from C9ORF72 or
non-genetic FTD patients and control individuals.

Preparation of tissue lysates and protein extraction is a key
issue for proteome coverage, especially the more challenging
membrane or nuclear proteins (Cox and Emili, 2006; Wiśniewski
et al., 2009). Taking into account the reported distinct subcellular
localizations of C9ORF72 isoforms with localization of C9-S
to the nuclear membrane and C9-L in the cytoplasm (Xiao
et al., 2015), lysis protocols were investigated. We found
that Triton X-100 facilitated the extraction of the C9ORF72
proteins, in agreement with higher extraction yield reported with
detergent based protocols in comparison to organic solvents or
chaotropic reagents such as urea, in fatty tissue such as the brain
(Shevchenko et al., 2012). In addition, the Triton X-100 protein
extraction protocol probably enhanced the subsequent trypsin
digestion as previously reported (An et al., 2015). A simple
pellet digestion protocol (Becher et al., 2017) was used here for
removal of potentially interfering matrix components such as
small molecules, phospholipids, peptides (Ouyang et al., 2012)
and the added Triton X-100 surfactant which could otherwise
have a dramatic impact on MS sensitivity (Cox and Emili,
2006). Considering the molecular weight difference between C9-S
and C9-L, i.e., 25 and 54 kDa, and the potential solubility of
smaller proteins in organic precipitation solvents (Lopes et al.,
2014), we ascertained the equivalent recovery for both isoforms,
ensuring accurate quantification. The signal observed for both
C9-S and C9-L unique peptides in transfected HEK293 cells
further confirmed the correct extraction and precipitation of
C9ORF72 isoforms.

The validation experiments demonstrated that the precision
provided by the method was satisfactory, with coefficients of
variation below 20% and its ability to determine C9ORF72
relative concentration in human brain samples with a LLOQ
at 50 ng/mL. Prior work with pellet digestion reported LLOQ
around 1 µg/mL for quantification of therapeutic antibodies
in plasma (Ouyang et al., 2012; Becher et al., 2017). In the
present work, the use of PRM mode for peptide detection offered
additional selectivity linked to the high resolution and mass
precision measurements in the Orbitrap and the opportunity to
accumulate fragment ions in the C-trap, eventually summed-
up for higher signal intensity. Regarding signature peptide
selection, chimeric or humanized therapeutic antibodies are
more and more alike and so only a few peptides are unique
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FIGURE 6 | Stability of C9ORF72 in human brain at room temperature.

to one therapeutic antibody. These unique peptides do not
necessarily have the best physicochemical properties to be
efficiently ionized by electrospray ionization whereas C9ORF72
peptides were selected based on signal intensity. Also, the

fivefold lower protein content in brain extract found by
BCA may have contributed to reduced deleterious matrix
effects compared to plasma. Most probably, a combination
of these factors explains the gain in sensibility obtained for
C9ORF72.

So far, C9ORF72 quantification was only accomplished by
Western blot using in-house generated antibodies. The new MS
assay allowed for the first time monitoring of C9ORF72 isoforms
in human brain samples, without potential interference due to
cross-reactivity of antibodies. First, we observed equivalent brain
levels for C9-total and C9-L, indicating a low abundance of C9-
S within the assay variability, i.e., a concentration below 20% of
C9-L. Here, a similar peptide release between the recombinant
and endogenous C9-S/C9-L was assumed since the protocol
denature proteins during tissus lysis and pellet digestion which
enhances digestion by protein unfolding (Pritchard et al., 2014).
The low abundance of C9-S is further strenghtened by the
undetected unique C9-S peptide regardless of the evaluated
brain protein extraction protocol, including those previously
published for C9ORF72 (Xiao et al., 2015), whereas the peptide
was well detectable in transfected HEK293 cells. Considering
the lower abundance of the short isoform, deeper fractionation
of the sample, for instance through enrichment of gray matter

FIGURE 7 | C9ORF72 concentration determination based on peptides 1, 2, and 3 in the human brain frontal cortex cohort. ∗P ≤ 0.05 and ∗∗∗P ≤ 0.001.
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or subcellular fractions, could be considered to increase assay
sensitivity. Also, post-translational modifications could impact
peptide detection by our targeted method, even though none was
reported for any of the selected peptides by now. In previous
Western blot reports, Waite et al. (Waite et al., 2014) found
that C9-S was in lower abundance than C9-L but questioned
the specificity of their antibody, two bands being present at 27
and 29 kDa. Although, Xiao et al. (2015) detected the C9-S
in frontal cortex using isoform specific antibodies, the relative
abundance between C9-L and C9-S was not determined, probably
in relation to the inherent limitation of protein quantification by
Western blotting which depends on the affinity and specificity
of the reagents (Aebersold et al., 2013). Next, we were able to
confirm in a collection of 43 frontal cortices the diminution of the
C9ORF72 long protein concentration in C9ORF72 FTD patients
corroborating previous observations by the two Westernblot
studies (Waite et al., 2014; Xiao et al., 2015) and at the mRNA
level. The age of onset of the disease is highly variable as well as
the number of expansion, the precise determination of C9ORF72
levels afforded by the new assay can be used to investigate
correlations between the length of expansion and the levels of
C9ORF72.

In summary, an efficient protocol was developed for
quantification of C9ORF72 isoforms in brain samples by MS.
Combination of optimal sample preparation and targeted high-
resolution MS demonstrated robust and efficient quantification
ability. This new assay has the advantage of being based on
MS, avoiding the potential cross-reactivity of antibodies and
simplifying implementation in various laboratories (Addona
et al., 2009). C9ORF72 long isoform was significantly decreased
in carriers of C9ORF72 expansion in comparison with
controls and non-genetic FTD patients with or without ALS,
corroborating prior observations made by Western blot and at
the mRNA level. Whereas some studies reported a short isoform,
here it represents less than 20% of the long one, suggesting
possible non-specificity or cross-reactivity of antibodies. To our
knowledge, this is the first report of a MS-based quantification
assay for C9ORF72 proteins. This method needs to be further
applied to other biological matrixes of a more relevant diagnostic
nature and potentially to follow treatment efficacy in the future.
This method could be easily implemented to mice models
of C9ORF72 FTD or other animal model owing to a highly
conserved sequence, in order to advance understanding of the
contribution of C9ORF72 to disease mechanisms.
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The remarkable co-localization of highly pro-inflammatory lipopolysaccharide (LPS) with
sporadic Alzheimer’s disease (AD)-affected neuronal nuclei suggests that there may be
some novel pathogenic contribution of this heat stable neurotoxin to neuronal activity
and neuron-specific gene expression. In this communication we show for the first time: (i)
the association and envelopment of sporadic AD neuronal nuclei with LPS in multiple AD
neocortical tissue samples; and (ii) a selective repression in the output of neuron-specific
neurofilament light (NF-L) chain messenger RNA (mRNA), perhaps as a consequence
of this association. The down-regulation of NF-L mRNA and protein is a characteristic
attribute of AD brain and accompanies neuronal atrophy and an associated loss of
neuronal architecture with synaptic deficits. To study this phenomenon further, human
neuronal-glial (HNG) cells in primary culture were incubated with LPS, and DNA arrays,
Northern, Western, and ELISA analyses were used to quantify transcription patterns
for the three member neuron-specific intermediate filament-gene family NF-H, NF-M,
and NF-L. As in sporadic AD limbic-regions, down-regulated transcription products
for the NF-L intermediate filament protein was significant. These results support our
novel hypothesis: (i) that internally sourced, microbiome-derived neurotoxins such as
LPS contribute to a progressive disruption in the read-out of neuron-specific genetic-
information; (ii) that the presence of LPS-enveloped neuronal nuclei is associated with a
down-regulation in NF-L expression, a key neuron-specific cytoskeletal component; and
(iii) this may have a bearing on progressive neuronal atrophy, loss of synaptic-contact
and disruption of neuronal architecture, all of which are characteristic pathological
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features of sporadic-AD brain. This is the first report that provides evidence for a neuron-
specific effect of a human GI-tract microbiome-derived neurotoxin on decreased NF-L
abundance in both sporadic AD temporal lobe neocortex in vivo and in LPS-stressed
HNG cells in vitro.

Keywords: Alzheimer’s disease (AD), DNA array, inflammatory degeneration, lipopolysaccharide (LPS),
microbiome, neurofilament light chain (NF-L), neurofilament triplet

INTRODUCTION

Recently there has been a resurgence of interest in the
human gastrointestinal (GI) tract microbiome and its
potential contribution to human health and disease. One
area receiving considerable research attention has been the
possible involvement of human GI-tract microbiome-derived
neurotoxins with progressive and terminal neurological diseases
associated with aging and inflammatory neurodegeneration.
These microbiome-derived neurotoxic exudates consist of a
remarkably complex and neurobiologically potent array of
pro-inflammatory endotoxins and exotoxins (such as fagilysin),
lipooligosaccharides (LOS), lipopolysaccharides (LPS; including
the extremely pro-inflammatory B. fragilis LPS, BF-LPS),
microRNA-like small non-coding RNAs (sncRNA), and an
extensive variety of bacterial-derived amyloids (Hofer, 2014;
Foster et al., 2016; Lukiw, 2016a,b; Zhan et al., 2016, 2018;
Mancuso and Santangelo, 2017; Yang and Chiu, 2017; Zhao et al.,
2017a,b,c; Zhao and Lukiw, 2018). Several recent papers have
addressed the emerging link between elements of the human
GI-tract microbiome and Alzheimer’s disease (AD), a common,
chronic, and progressive age-related neurodegenerative disease
whose incidence is reaching epidemic proportions and represents
a major, lethal, neuropsychiatric disorder that currently
constitutes a major healthcare concern worldwide (Zhan et al.,
2016; Jiang et al., 2017; Cox and Weiner, 2018; Szablewski, 2018;
Zhao and Lukiw, 2018).

Both the familial and the much more common sporadic
forms of AD are characterized by the appearance of extracellular
deposits including dense, insoluble amyloid-beta (Aβ) peptide
enriched senile plaques (SP) and tau- and neurofilament-protein
enriched neurofibrillary tangles (NFT), and neuropathologically
by the progressive atrophy of large neurons, ensuing loss of
synaptic contacts and altered neuronal cytoarchitecture (Clark
and Vissel, 2015; Zhao and Lukiw, 2015; Minter et al., 2016). We
adopted the strategy that because inter-synaptic connections, the
radial diameter of neurons and the overall neuronal architecture
and morphology are maintained in large part by this relatively
abundant three member neuron-specific neurofilament gene
family – encoding the neurofilament light (NF-L; NEFL; 68 kDa),
neurofilament medium (NF-M; ∼160 kDa), and neurofilament
heavy (NF-H; ∼205 kDa) chain proteins – we reasoned that NF-L,
NF-M, and NF-H relative abundance would be an experimentally
practical and suitable choice to look for changes in expression in
both sporadic AD brain and in LPS treated human neuronal-glial
(HNG) cells in primary culture.

Our findings indicate for the first time, that linked to a
progressive association of the amphiphilic glycolipid LPS with

sporadic AD neuronal nuclei there appears to be a parallel
and selective repression in the output of neuron-specific NF-
L mRNA in AD brain compared to age-and gender-matched
controls. This is noteworthy because down-regulation of NF-
L expression is a characteristic feature of the limbic system in
AD and accompanies the atrophy of neurons and progressive
loss of neuronal architecture and synaptic contact in the AD
brain (McLachlan et al., 1988; Lukiw et al., 1990; Julien and
Mushynski, 1998; Clement et al., 2016; Khalil et al., 2018).
These effects were further observed in HNG primary cultures
incubated with Gram-negative bacterial-derived LPS in which
was observed a significant LPS-mediated down-regulation of the
NF-L intermediate filament protein. Taken together these results
suggest: (i) that microbiome-derived LPS may contribute to a
progressive disruption in the read-out of the brain’s neuron-
specific genetic-information; (ii) that NF-L mRNA and the
expression of NF-L proteins are one important neuron-specific
transcript targeted by microbiome-derived LPS; and (iii) that
this may have a bearing on neuronal atrophy, disruption of
the neuronal architecture and loss of synaptic organization, all
of which are characteristic neuropathological features of AD-
affected brain.

MATERIALS AND METHODS

Human Brain Tissues, Antibodies and
Immunohistochemistry
Female control [N = 12; mean age ± one standard deviation
of 85.8 ± 2.1 years with a post-mortem interval (PMI) of
(mean ± one standard deviation) 3.6 ± 1.5 h] and age-matched
AD (N = 12; age 87.7 ± 2.5 years and PMI 3.8 ± 1.2 h) human
superior temporal lobe neocortical tissues (Brodmann A22)
were obtained from the University of Maryland, from archived
material at the University of Toronto and the Louisiana State
University Neuroscience Center, and the University of California
(UC)-Irvine Brain Bank. A total of 24 female, age-, gender-,
and PMI-matched control and AD brains were examined for
LPS content. For immunocytochemistry of LPS human brain
tissue samples were embedded in OCT and frozen at −80◦C;
10 µm brain sections were cut using a Shandon cryotome
(Waltham, MA, United States). After an initial fixation with 4%
paraformaldehyde for 20 min, sections were then incubated in
primary antibodies (1:1000; 1 × PBS with 2% BSA, 2% goat
or donkey serum and 0.1% TX-100) overnight at 4◦C, washed
with PBS, and then incubated with Alexa Fluor-conjugated
species-specific secondary antibodies (ThermoFisher Scientific,
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Waltham, MA, United States) for 3 h at RT (see further
details below). Sections were counter-stained with DAPI for
nuclei, followed by quenching with Autofluorescence Eliminator
Reagent (Millipore Cat No. 2160; Zhan et al., 2016; Zhao
et al., 2017a,b,c), mounted on glass slides, cover-slipped with
Fluoromount-G (ThermoFisher Scientific) and imaged using a
Zeiss LSM 700 Confocal Laser Scanning microscope system (Carl
Zeiss Microscopy, Thornwood, NY, United States; Bagyinszky
et al., 2017; Zhao et al., 2017a,b,c1).

Human Neuronal-Glial (HNG) Cells in Primary
Co-culture
Human neuronal-glial primary cells, cryopreserved at first
passage one, were obtained from commercial sources and
cultured according to the manufacturer’s instructions (Lonza
PT-2599, Lonza Cell Systems, Allendale, NJ, United States
or Cell Systems, ACBRI 376, Kirkland, WA, United States).
HNG cells tested negative for HIV-1, HBV, HCV, mycoplasma,
bacteria, yeast, and fungi at source, and have been extensively
used for studies on brain gene induction and gene expression,
neuronal development, neurotoxicology, neuropharmacology,
and in in vitro models of AD and other age-related neurological
disorders that exhibit a progressive age-related inflammatory
neurodegeneration (Li et al., 2011; Zhao et al., 2017a,b,c;
Zhao and Lukiw, 2018). HNG cells demonstrate particular
neuronal and astroglial cell markers including neuron-specific
β-tubulin III (βtubIII; red staining; λmax = 690 nm) and
glial fibrillary acidic protein (GFAP; glial-specific green stain;
λmax = 520 nm). Briefly, HNG cells were maintained as free-
floating aggregates (neurospheres) in 75 cm2 uncoated plastic
flask in neural progenitor maintenance media (NPMM; Lonza
CC-3209) supplemented with recombinant human fibroblast

1https://www.mikroskop.com.pl/pdf/LSM700_1.pdf

growth factor (rhFGF) and epidermal growth factor [rhEGF])
and neural survival factor-1 [NSF-1] (Lonza CC-4242) and
gentamicin/amphotericin-B (Lonza GA-1000). Differentiation
was induced by plating neurospheres onto eight-well glass
chamber-slides pre-coated with poly-L-ornithine (an amino acid
polymer used as substratum to improve neuronal adhesion);
cells were kept at 37◦C in a humidified 5% CO2 atmosphere
incubator at all times. The differentiation media (Lonza
CC-4242) was free of growth factors but contained NSF
and gentamicin/amphotericin-B, 25 ng/ml of brain-derived
neurotrophic factor (BDNF), and 1% of fetal bovine serum (FBS).
Upon deprivation of growth factors neurospheres began to attach
to the well bottoms and next migrated out to form a co-culture
of human neurons and glial cells (HNG). HNG cells were used
2 weeks after induction of differentiation; HNG cells initially
contained about 5 × 105 cells/ml volume and were cultured to
∼70% confluency in HNG cell medium as described in detail
(Cui et al., 2010; Bhattacharjee and Lukiw, 2013; Zhao et al.,
2014, 2017a,b,c; Lukiw, 2016a,b). HNG cells were subsequently
incubated with LPS; the concentration of LPS (Sigma L26302)
provided to 2-week-old HNG cells cultured in HNG cell medium
was 50 nM for 48 h (see Figure 4; for further specific details see
also Zhao et al., 2017a,b,c). Higher doses of LPS (up to 5 µM)
in HNG cell medium for shorter periods gave comparable results
(data not shown).

Immunofluorescence Protocol
Two week old cultures of HNG cells in eight-well chamber
slides (BD Biosciences, San Jose, CA, United States) were
fixed with 4% paraformaldehyde, then permeabilized and
blocked with 0.125% Triton X-100 and 2% normal goat serum
in PBS at RT for 1 h. Cells were incubated overnight at 4◦C

2https://www.sigmaaldrich.com

FIGURE 1 | Controls (A,B) shows staining of human control superior temporal lobe neocortex (CDR = 0) with LPS (red stain; λmax = 690 nm) and DAPI (blue stain;
λmax = 470 nm); Alzheimer’s disease (C–E) CDR = 2.0 and (F–H) CDR = 3.0 illustrates increasing presence of LPS and association of superior temporal lobe AD
neocortical nuclei with LPS; LPS staining was observed in controls but the staining was relatively rare and punctate compared to LPS in AD (C–H) with the
observation of the eventual encapsulation of nuclei by LPS (F); (see text); the bar graph in (I) quantifies LPS association with nuclei in the temporal lobe neocortex
(see text and Zhao et al., 2017a,b); to ascertain whether LPS-associated and LPS-encapsulated AD nuclei were of neuronal or astroglial origin we next
counterstained with the neuron-specific green stain NeuN (λmax = 520 nm; see Figure 2); magnification 63 × ; scale bar = 20 µm.
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with antibodies for β-tubulin III (for neurons; Sigma T8578,
Sigma-Aldrich St. Louis, MO, United States) and GFAP (for
astrocytes; Sigma G9629). Cells were subsequently washed
for three times with PBS and then incubated for 3 h at room
temperature with secondary antibodies conjugated with cy3
or FITC fluorescein (Thermofisher A21422 and A11008;
ThermoFisher Scientific, Waltham, MA, United States). After
washing and drying, slides were applied with mounting
medium containing DAPI (1:10,000; Vector Laboratories,
Burlingame, CA, United States) and observed under Zeiss
Axioplan Inverted Deconvolution Fluorescent Microscope (63×

oil immersion lens; Carl Zeiss, Oberkochen, Germany).
Positively stained cells were quantified manually using
the manual counter function of ImageJ software (NIH).
Negative control with quenching was performed as previously
reported in detail (Zhao et al., 2017a,b,c); quantification of
LPS was analyzed (i) as a percentage of neuronal area (see
below); and/or (ii) by counting multiple microscope fields
for the quantity of LPS signals (red stain; λmax = 690 nm)
associated with DAPI (blue nuclear stain; λmax = 470 nm) (see
Figures 1–3).

Antibodies – Specificity and Validation
We used mouse anti-E. coli LPS (Abcam Cat No. ab35654;
Cambridge, MA, United States); rabbit anti-NeuN (Cell
Signaling, Cat No. 24307), rabbit anti-GFAP (Sigma-Aldrich,
Cat No. G4564) (Cui et al., 2010; Zhao et al., 2014; Lukiw,
2016a, 2017; Zhan et al., 2016). LPS antibody specificity and
validation was confirmed (i) using Western immunoblot
analysis (see Figure 1 in Zhao et al., 2017a) which corresponded
to the manufacturer’s published specifications3; and (ii) an
antibody neutralization/LPS quenching control assay (Zhao
et al., 2017a,b,c). We used sandwich ELISA and Western
analysis for NF-L protein determination in LPS-treated HNG
cells using Abbexa (abx250460; Cambridge, United Kingdom)
and/or LifeSpan BioSciences (LSBio; LS-F6701; Seattle, WA,
United States) ELISA systems and NF-L (NEFL) monoclonal
antibody (DA2; ThermoFisher Scientific, Cat No. MA1-2010)
and a beta actin (β-actin) loading control monoclonal antibody
(BA3R; ThermoFisher Scientific, Cat No. MA5-15739) and
standard Western analysis as has been previously described
by our laboratory (Zhao et al., 2017a,c). To ascertain the
association of LPS with neuronal cells confocal images of
LPS and NeuN staining were imported into ImageJ4; RGB
images were first converted into images of separate channels
(red for LPS; green for NeuN; and blue for DAPI-stained
nuclei). A co-localization finder plugin was run to generate
images of co-localization of both channels; each co-localization
image was converted into an 8-bit image and inverted. Global
thresholding was utilized and the cutoff value was adjusted
to the point that only highlighted co-localized particles are
black on the image against a white background. Particle
analysis was next performed to calculate the area size of the
co-localization; this value was then divided by the area size

3http://www.abcam.com/e-coli-lps-antibody-ab211144.html
4https://imagej.net/Fiji/Downloads

of the NeuN or DAPI staining as the percentage of cell area
(Zhao et al., 2017a,b).

RNA Isolation and Purification, DNA
Array, Northern, ELISA, and Western
Analysis
Ultrapure chemicals and reagents of the highest grades
commercially available were used throughout these experiments.
Typically, 10 mM phenylmethylsulfonyl fluoride (PMSF; Sigma)
and 1 U human placenta ribonuclease inhibitor (RNasin;
Promega Corporation, Madison WI, United States) were
employed in the extraction medium to inhibit protease and
specific ribonuclease activities in homogenized human brain
tissues or HNG cells. Total cellular RNA was isolated using
TRIzol Reagent (Invitrogen-ThermoFisher Scientific; Cat No.
15596026) and quality controlled using analysis using and
Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara CA,
United States). For Northern blots ∼15 µg of total RNA was
separated at 4◦C on 1.5% agarose/2.2 M formaldehyde gels at
60 V for 15 h with recirculating 20 mM sodium phosphate buffer,
pH 7.0. Gels were stained for 10 min with acridine orange,
visualized at 340 nm on a UV trans-illuminator and total RNA
was blotted onto Biotrans 0.2 µm Biotrans nylon membrane
(Cat No. 01811300, MP Biomedicals). NF-H, NF-M, and NF-L
probes were prepared to specific activities of 108 dpm 32p-
labeled dCTP per/µg of DNA as previously described in detail
(Clement et al., 2016). Membranes were pre-hybridized for 12 h
at 42◦C in 50% formamide, 5× Denhardt’s solution (containing
0.1% each of Ficoll 400, polyvinylpyrrolidone, and bovine serum
albumin), 5× SSC (standard saline citrate, containing 150 mM
sodium chloride, 15 mM sodium citrate, pH 7.0), 50 mM sodium
phosphate buffer, pH 6.5, 0.1% sodium dodecyl sulfate (SDS),
and 350 µg/ml sonicated herring sperm. This was replaced
with fresh hybridization solution containing approximately
5 × 107 cpm of heat-denatured cDNA probes and hybridization
occurred at 42◦C for 30 h. Nylon membranes were washed
under conditions of high stringency (two 30-min washes at
2 × SSC/0.1% SDS at room temperature; two 60-min washes at
0.1× SSC/0.5% SDS at 60–65◦C and finally two 15-min washes
at 1 × SSC/0.1% SDS at room temperature). When used Fuji
RX film was exposed at −70◦C for 18–72 h using standard
autoradiographic imaging techniques; alternately hybridization
signals were quantified using a Typhoon FLA 9500 Biomolecular
Imager (GE Healthcare). DNA array analysis was performed
as extensively described by our group (Colangelo et al., 2002;
Clement et al., 2016; Jaber et al., 2017). Sandwich ELISA and/or
Western analysis was used for NF-L protein abundance analysis
according to the manufacturers’ instructions to quantify both
NF-L and β-actin control abundance levels (Figure 4).

Statistical Analysis, Integrated
Bioinformatics Analysis, and Data
Interpretation
For NF-H, NF-M, NF-L, β-actin, and GAPDH mRNA abundance
analysis all statistical procedures were analyzed using p, analysis
of variance (ANOVA) a two-way factorial analysis of variance
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FIGURE 2 | Progressive association and envelopment of AD-affected neocortical neuronal nuclei by LPS (red stain; λmax = 690 nm), DAPI (blue nuclear stain;
λmax = 470 nm) and NeuN (neuron-specific green stain; λmax = 520 nm); human superior temporal lobe AD neocortex (Brodmann A22) from CDR (clinical dementia
rating) 1.0, 2.0 and 3.0 AD brains; A,B = CDR 1.0; C,D = CDR 2.0; E,F = CDR 3.0 (see also https://knightadrc.wustl.edu/cdr/cdr.htm); LPS staining (red) was
subjected to co-localization analysis with the neuronal marker NeuN (green) and/or nuclear marker (blue); magnification 63×; scale bar = 20 µm.

using algorithms, and/or procedures in the SAS language
(Statistical Analysis Institute, Cary, NC, United States) and as
previously described (Cui et al., 2010; Zhao et al., 2011; Clement
et al., 2016; Dendooven and Luisi, 2017; Zhao and Lukiw,
2018). In the results p-values of less than 0.05 (ANOVA) were
considered to be statistically significant. All NF-H, NF-M, NF-
L, β-actin, and GAPDH mRNA abundance data were collected
and analyzed using Excel 2016 (Office 365) algorithms (Microsoft
Corporation, Redmond WA, United States); all figures were
generated using Adobe Illustrator CC 2015 and Photoshop CC
version14.0 (Adobe Corporation, San Jose, CA, United States).

RESULTS

Figure 1 (control A,B) shows staining of 10 µm brain sections
of human control superior temporal lobe neocortex (Brodmann
A22; CDR = 0) of Figure 1A an 86 year-old female, 3.6 h PMI
and Figure 1B an 85-year-old female, 4.3 h PMI) stained with LPS
(red stain; λmax = 690 nm) and DAPI (blue stain; λmax = 470 nm);
control samples (A) and (B) were from patients with no history of
neurodegenerative disease or cognitive impairment; LPS staining
was infrequently observed in controls and the staining was sparse;
Alzheimer’s disease (Figures 1C–H); (Figures 1C–E) CDR = 2.0;
and (Figures 1F–H) CDR = 3.0; all female; age-range 79–89;
PMI range 3.3–4.1 h; illustrates progressive association and
envelopment of AD neocortical nuclei with LPS–LPS (red stain;
λmax = 690 nm) and DAPI (blue stain; λmax = 470 nm) staining of
human superior temporal lobe AD neocortex (Brodmann A22);

note minor ‘punctate’ LPS signals in control (Figures 1A,B) not
associated with nuclei, compared to LPS in AD (Figures 1C–F)
and encapsulation of nuclei by LPS. In a previous study LPS was
reported to range from a ∼7- to ∼21-fold increase in abundance
in AD brain over age-matched controls from the same anatomical
region (Zhao et al., 2017a). The bar graph in Figure 1I quantifies
LPS association with nuclei in the temporal lobe neocortex (see
text); in AD over control; this ratio is about 16.3 for the samples
examined; to investigate whether LPS-encapsulated AD nuclei
were of neuronal or astroglial origin we next counterstained with
the neuron-specific green stain NeuN (Figure 2).

Figure 2 shows 10 µM sections of AD neocortical brain tissue
stained additionally with NeuN, a neuron-specific green stain
(λmax = 520 nm). Interestingly, (i) all LPS staining appears to be
confined to one specific nuclear region of AD neuronal nuclei;
and (ii) the entire neuronal perinuclear region was occupied by
LPS stain in about 5–15% of all neuronal nuclei associated with
LPS especially in the later stages of sporadic AD (CDR = 3.0).

Figure 3 shows detail of this LPS-AD neuronal nuclear
interaction; approximately 60–70% of all moderate-to-late-stage
(CDR 2.0 to 3.0) AD neocortical neuronal nuclei exhibited an
association with LPS and about 5–15% of all AD neuronal nuclei
in the temporal lobe neocortex showed a complete envelopment
by LPS in the 12 sporadic AD cases investigate in this study.
Immunocytochemistry further indicated that the “thickness”
of “perinuclear LPS envelopes” ranged between 2 and 20 µm
(Figures 2, 3).

Figure 4 describes experiments in human neuronal-glial
(HNG) cells in primary culture exposed to LPS; HNG cells
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FIGURE 3 | Details of the perinuclear association and envelopment of multiple
neuronal nuclei by LPS in sporadic Alzheimer’s disease (AD) brain (Brodmann
Area 22; superior temporal lobe neocortex); (A–C) details of LPS association
with neuronal nuclei in three AD independent brain samples; all three AD brain
samples were from moderate-to-advanced-AD (CDR 2.0-3.0); no such
extensive association between LPS and control brain nuclei was observed
(Figure 1); lipopolysaccharide (LPS; red stain; λmax = 690 nm); DAPI
(nuclear-specific blue stain; λmax = 470 nm); NeuN (neuron-specific green
stain; λmax = 520 nm); brain sections are 10 µm thick (see text); a large
number of neuronal nuclei in sporadic AD were found to be completely
enveloped by LPS especially in the later stages of sporadic AD (CDR 3.0);
scale bar for all photos here (lower right) = 20 µm.

(Figure 4A) cultured for 2 weeks, 60% confluent and containing
about 70% neurons and 30% astroglia, were exposed to 50 nM
LPS for 48 h, total RNA was isolated and analyzed on DNA arrays
as extensively described by our laboratories (Colangelo et al.,
2002; Clement et al., 2016; Jaber et al., 2017). Even at brief periods
of exposure to LPS (48 h), LPS appeared to have a strong affinity
for DAPI-stained neocortical nuclei (Figure 4B). DNA array
analysis (Figure 4C) indicated that in comparison to the DNA
array control transcripts β-actin and glyceraldehyde phosphate
dehydrogenase (GAPDH), NF-H mRNA, NF-M mRNA, and
NF-L mRNA were found to be reduced to 0.95- 0.72-, and 0.25-
fold of controls; in these experiments the NF-L mRNA reduced
to 0.25-fold of controls achieved the highest significance of
down-regulation (p < 0.01, ANOVA); Figure 4D represents the
quantification of these signals in bar-graph format. Figure 4E

shows the results of a Northern blot indicating decreased
abundance of NF-L mRNA in AD versus age- and gender-
matched controls and Figure 4F shows the quantified results
in bar graph format comparing both the 4.3 and 2.6 knt NF-
L mRNA abundance in control and AD. For additional details,
please refer to the legend to Figure 4.

Figure 5A shows the results of a sandwich ELISA analysis
confirming decreased abundance of NF-L protein in AD versus
age- and gender-matched controls to about 0.3-fold of control.
Figure 5B shows the results of a Western analysis of total NF-
L protein (MW ∼68 kDa) in control and AD neocortex (left
panel) and control and LPS-treated HNG cells (right panel)
using β-actin (MW ∼42 kDa) as an internal control and gel-
loading marker. Figure 5C shows the quantified results in bar
graph format comparing NF-L protein abundance in AD and in
age- and gender-matched control and in control and LPS-treated
HNG cells. Therefore, the independent techniques of ELISA and
Western analysis corroborated the observation that the normally
highly abundant NF-L protein is reduced in both LPS-enriched
AD-affected brain in vivo and in LPS-treated HNG cells in vitro.
For additional experimental details please refer to the legend of
Figure 5.

DISCUSSION

Gastrointestinal (GI) Tract
Microbiome-Derived Neurotoxins in
Neurological Disease
The human GI tract, containing about 95% of the entire human
microbiome, is the largest reservoir of microorganisms in the
human body (Bhattacharjee and Lukiw, 2013; Zhao and Lukiw,
2015; Zhan et al., 2016; Vogt et al., 2017; Zhao et al., 2017a; Zhao
and Lukiw, 2018). Comprised of a genetically diverse and densely
packed repository of about 100 trillion microorganisms, the GI-
tract microbiome is made up of mostly of anaerobic bacterial
species with archaebacteria, fungi, protozoa, viruses, and other
microbes making up the remainder (Bhattacharjee and Lukiw,
2013; Köhler et al., 2016; Vogt et al., 2017; Zhao et al., 2017a,b,c;
Zhao and Lukiw, 2018). Microbial abundance, complexity and
speciation, their biophysics, microbiology and neurobiology,
molecular genetics, epigenetics, the signaling mechanisms, and
pathways involved in microbiome-host communications and
interactions are becoming increasingly understood in context
of their dynamic contribution to human neurobiology in
health, aging, and disease (Bhattacharjee and Lukiw, 2013;
Foster et al., 2016; Köhler et al., 2016; Jiang et al., 2017;
Cox and Weiner, 2018).

GI-tract derived neurotoxins include an extraordinarily
complex mixture of potentially pathogenic amyloid, exotoxins
and endotoxins, lipooligosaccahrides (LOS), LPS, and small
miRNA-like non-coding RNA (sncRNA) exudates. Normally
confined within the healthy human GI-tract, accompanying
aging, and disease these secreted neurotoxins can transverse
normally protective biophysical and physiological barriers
resulting in a persistent systemic inflammatory condition
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FIGURE 4 | Studies of LPS-neuronal nuclear binding in HNG cells in primary culture. (A) human neuronal-glial (HNG) cells in primary co-culture at 2 weeks; neurons
(red stain; λmax = 690 nm), DAPI (blue nuclear stain; λmax = 470 nm) and GFAP (glial-specific green stain; λmax = 520 nm); human neurons do not culture well in the
absence of glia; neurons also show both extensive arborization and display electrical activity (unpublished; Lonza); scale bar = 20 µm; (B) details of association of
LPS (red stain; λmax = 690 nm) and nuclear DAPI (blue stain; λmax = 470 nm); note affinity of red-stained LPS with blue-stained nuclei after only 48 h of
co-incubation (arrows); see also Supplementary File 1 (Details of accumulation of LPS in HNG cells in primary culture); scale bar for all photos (lower
right) = 10 µm; (C) Neurofilament heavy, medium and light (NF-H, NF-M, and NF-L) chain abundance in control and LPS-treated HNG cells – cluster analysis of gene
expression (mRNA levels); in two controls (HNG-1 and HNG-2) and in two LPS-treated samples (LPS-1, LPS-2), LPS-treated HNG cells exhibit a marked reduction
in NF-L expression, a reduction that is not as apparent in NF-H or NF-M expression; NF-H, NF-M, and NF-L expression was quantified against the levels of β-actin
and GAPDH in the same sample; (D) samples are quantified in bar graph format showing the mean and one standard deviation of all three neurofilament protein
levels; there was no statistically significant change in NF-H, NF-M, β-actin, or GAPDH between control and LPS-treated HNG cells, however NF-L levels were
reduced to about 0.22-fold of controls in LPS-treated HNG cells; interestingly the NF-H, NF-M, and NF-L mRNAs encode intermediate filaments of ∼60, ∼100, and
∼110 kDa, respectively, but due to extensive post-translational modifications such as phosphorylation and glycosylation, NF-H, NF-M, and NF-L exhibit higher
molecular weights after SDS-PAGE (Western) analysis of ∼68, ∼160, and ∼205 kDa, respectively; a dashed horizontal line at 1.0 is included for ease of comparison;
N = 3 to 5 experiments for each treatment; ∗p < 0.01 (ANOVA); (E) Northern blot analysis – decreased NF-L in AD – Northern analysis of total NF-L mRNA in control
(lanes 1–3) and AD (lanes 4–6) temporal lobe neocortex (Brodmann A22); the position of the migration of 28S and 18S RNA (4.7 and 1.9 knt, respectively) are
marked on the right of the gel (upper panel); the size of the two prominent NF-L mRNA bands detected are respectively about 4.3 and 2.6 knt in length; an 18S RNA
was used as an internal control marker (lower panel); (F) Northern blots were quantified in bar graph format showing the mean and one standard deviation of
decreased NF-L mRNA signals in AD neocortex versus age-matched controls; in AD the 2 NF-L bands [between the 28S and 18S RNA markers of part (E)] together
are about 0.3- to 0.4-fold AD over control; ∗p < 0.01 (ANOVA).

(Jiang et al., 2017; Magalhães et al., 2017). Leakage of GI-tract
neurotoxins into the systemic circulation may be a biomarker and
an early indicator of progressive, age-related neuroinflammatory
disorders that include AD (Lukiw, 2017; Magalhães et al., 2017;
Montagne et al., 2017; Cox and Weiner, 2018; Ho et al., 2018;

Sweeney et al., 2018). Indeed progressive “leakage” of LPS
across the GI-tract and blood brain barrier (BBB) may be a
feature accompanying normal aging (Montagne et al., 2017;
Sweeney et al., 2018). Certain GI-tract microbiota may actively
assist the host in moderating inflammatory neurodegeneration
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FIGURE 5 | Decreased NF-L protein in LPS-treated HNG cells and in AD: ELISA and Western analysis. (A) results of sandwich ELISA analysis for NF-L protein in
LPS-treated HNG cells using Abbexa (abx250460; Cambridge, United Kingdom) and/or LifeSpan BioSciences (LSBio; LS-F6701; Seattle WA, United States); the
68 kDa NF-L species is a particularly abundant intermediate filament protein, however in the presence of LPS the abundance of NF-L protein was found to be
reduced to about 0.3-fold of control; a dashed horizontal line at 100 is included for ease of comparison; N = 3 to 5 experiments per determination; ∗p < 0.01
(ANOVA); (B) Western analysis of total NF-L protein (MW ∼68 kDa) in control (pool of five controls and five AD temporal lobe neocortex Brodman A22) and total NF-L
protein in control and LPS-treated HNG cells (at 2 weeks of culture; see Figure 4A); β-actin protein (MW ∼42 kDa) was used as an internal control marker in the
same sample for each determination; (C) Western blots were quantified in bar graph format of decreased NF-L protein abundance in AD neocortex versus
age-matched controls and in LPS-treated HNG cells versus age-matched controls; a dashed horizontal line at 1.0 is included for ease of comparison; the results of
decreased NF-L expression for AD over control or LPS-treated HNG cells over control are highly significant; N = 3 to 5 experiments; ∗p < 0.01 (ANOVA).

by supporting the generation of short chain fatty acids (SCFAs)
that can pass these barriers and subsequently interfere with
the generation and aggregation of neurotoxic amyloid beta
(Aβ) peptides (Cox and Weiner, 2018; Ho et al., 2018). The
interactions between LPS and amyloid peptides in the brain
parenchyma remain incompletely understood, especially their
dynamics and potential association as they accumulate in parallel
with aging both within the confines of the CNS and throughout
the systemic circulation (Zhao et al., 2017a,b,c).

LPS Transit Across Biophysical and
Physiological Barriers Into the CNS
Recent data regarding the contribution of neurotoxic exudates
of the human GI tract microbiome to the potential initiation,
development, and/or progression of AD appears to be age-
related, complicated, and significant. Major bacterial species
of the human GI-tract microbiome such as the Gram-
negative bacillus Bacteroides fragilis (B. fragilis) secrete a
unusually complex array of highly pathogenic pro-inflammatory
neurotoxins which, when released from the confines of a healthy
GI tract, are highly toxic to neurons of the CNS and PNS.
While an environmental cause for sporadic AD has often been
suggested, a strong source of powerful neurotoxins already reside
within our GI tract microbiome. LPS for example represents
an internally generated GI tract microbiome-derived neurotoxin
capable of driving AD-type change and has enormous potential to
initiate and/or propagate inflammatory neurodegeneration along
the gut-brain axis. Some incompletely understood aspects of
the bioavailability to the CNS of GI-tract generated neurotoxins
are (i) their translocation through the GI tract and BBB that

involves dynamic structures which are known to become more
“leaky” with aging and disease; (ii) the direct influence of
endotoxins, such as fragilysin, which targets zonula adherens
protein E-cadherin and cell–cell adhesion; and (iii) the molecular
exchanges between the GI tract, the systemic circulation and the
BBB to access the brain parenchyma (Seong et al., 2015; Zhan
et al., 2016; Montagne et al., 2017; Tsou et al., 2017; Sweeney
et al., 2018). To cite recent examples from the literature: (i)
BF-LPS represents an internally generated GI tract microbiome-
derived neurotoxin capable of driving and emulating AD-type
change in vitro (Zhao and Lukiw, 2018); (ii) BF-LPS has
enormous potential to initiate and/or propagate inflammatory
neurodegeneration along the GI tract-CNS axis (Zhao et al.,
2017a); and (iii) LPS has an unusually high and remarkable
affinity for the periphery of neuronal nuclei of the human
neocortex (Figures 1–4) (Zhao et al., 2017b).

LPS and Perinuclear Association in
Sporadic AD Brain
In middle-to-late-stage AD brain the perinuclear association of
LPS in AD appears to be configured into “net-like” or “clathrin-
like” lattice within the neuronal cell cytoplasm (Figures 1–4). The
pyramidal neuronal nuclei of the human neocortex are among
the largest known nuclei in the human CNS, often achieving
diameters of 10–20 µm and occupy a large proportion of the
neuronal soma, conducive to their “euchromatic” nature and
extremely high rates of transcription (Colangelo et al., 2002;
Clement et al., 2016). The current experimental evidence further
suggests that neuronal nuclear “encasement” by LPS appears
to have a deleterious effect on the free exit and/or expression
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of mRNAs through the nuclear pores into the cytoplasm –
previous work has shown a decreased rate of abundance of
neuronal-specific DNA transcripts in sporadic AD brain (Zhao
et al., 2017b). Why the NF-L mRNA exhibits the greatest down-
regulated of the neurofilament triad is not known; the NF-L
light chain polypeptide is the most abundant member of the
neuron-specific intermediate filament family triplet, is the major
component of the highly dynamic and plastic neurites, synaptic
structures, and constitutes the core of the neuronal cytoskeleton.
NF-L expression is also the major regulator of the caliber of
the neuronal axoskeleton and essential in neuronal development,
regeneration, the plasticity of the neuronal cytoskeleton, and in
the creation and the maintenance of neuronal cytoarchitecture
(Julien and Mushynski, 1998; Braissant, 2007; Lam et al.,
2017; Goldmann, 2018; Abu-Rumeileh et al., 2018). NF-L also
serves in a critical “organizer” role in axons and dendrites
and contains multiple phosphorylation sites for a surprisingly
large number of neuronal-enriched protein kinases, including
protein kinase A, protein kinase C, cyclin-dependent kinase 5,
extracellular signal regulated kinase, glycogen synthase kinase-
3, and stress-activated protein kinase gamma (de Leeuw et al.,
2018; Goldmann, 2018). Perturbations in NF-L phosphorylation,
structure and/or function are often observed in age-related
human neurodegenerative diseases including amyotrophic lateral
sclerosis, Parkinson’s disease and AD, and a down-regulation
of NF-L mRNA and the presence of atypical insoluble twisted
neurofilament deposits have long been known to be a common
feature of an abnormal neurofilament network as seen in diseased
brain tissues undergoing pro-inflammatory neurodegeneration
(McLachlan et al., 1988; Lukiw et al., 1990; Julien and Mushynski,
1998; Abu-Rumeileh et al., 2018; Goldmann, 2018; Zhao and
Lukiw, 2018). Importantly, neuron loss in AD appears not to
be the reason for the observed loss in NF-L; a classic study of
22 control, non-AD dementia and AD brains indicated that the
significant decrease of NF-L mRNA in AD neocortex could not
be adequately accounted for by a non-specific effect of brain
damage, by neuron cell loss or by neurons with neurofibrillary
degeneration (McLachlan et al., 1988; Julien and Mushynski,
1998; Ginsberg et al., 2000; Zhao et al., 2017a,b).

Interestingly, there are reports that plasma levels of NF-
L protein appear to be increased in AD and may be used
as a reliable diagnostic marker for AD incidence and severity
(Lista et al., 2017; Abu-Rumeileh et al., 2018; Hampel et al.,
2018). However, the universality of this elevation and usefulness
of plasma NF-L as a biomarker for AD has been recently
brought into question (Lam et al., 2017; Zhou et al., 2017;
Abu-Rumeileh et al., 2018). Very recently NF-L has been found
to be significantly increased in the CSF of early-onset AD
patients compared to younger controls; however, this change was
not found in older AD groups (Lauridsen et al., 2017). These
discrepancies and differential localization of neuronal- and AD-
relevant molecules are reminiscent of the variation in abundance
of Aβ42 peptides within AD tissues and the extracellular fluids
such as the CSF that surrounds them; for example Aβ42 peptides
show an inverse abundance between brain tissues and the CSF
(Fagan et al., 2006; Grimmer et al., 2009). Another example is
potentially pathogenic microRNAs including a pro-inflammatory

miRNA-146a and several let-7 species which are differentially
abundant in AD tissues versus the AD CSF (Alexandrov et al.,
2012; Derkow et al., 2018). It is tempting to speculate that a
differential “compartmentalization” of neuronal-associated AD-
relevant molecular species may be one significant consequence of
the neuropathology of the AD process.

Important Unanswered Questions
Several fundamental questions remain concerning GI-tract
microbiome exudates, their compartmentalization in the GI-tract
and their potential effects on the neurobiology, neuropathology,
and pathogenetics of neurodegenerative and neuropsychiatric
disease. For example: does the presence of LPS and envelopment
of neuronal nuclei in AD significantly affect the transcription
of any other brain genes or neuron-enriched transcripts besides
NF-L? Why are NF-L mRNA abundances selectively affected?
Perhaps because NF-L expression is from an extremely high

FIGURE 6 | Microbiome-derived LPS-mediated impairment of NF-L
expression may contribute to atrophy of neurons and cytoskeletal
disorganization that is characteristic of sporadic AD – the human GI-tract
microbiome secretes a remarkably heterogeneous and complex mixture of
neurotoxins including different varieties of lipooligosaccahrides (LOS),
lipopolysaccharide (LPS), amyloids, small non-coding RNAs (sncRNAs) and
exotoxins; recently several laboratories have provided evidence that these
neurotoxins may transit GI-tract and blood-brain barriers and are present in
the CNS and within aged or AD brain tissues; whether these
microbiome-derived neurotoxins originate from the gastrointestinal (GI) tract
microbiome, a possible brain microbiome or some dormant pathological
microbiome is currently not well understood. Recent studies further suggest
that the co-localization of pro-inflammatory LPS with AD-affected neuronal
nuclei provides evidence that there may be a contribution of LPS to genotoxic
events that support deficits in homeostatic gene expression that drive
progressive AD-type change and provide support for pro-inflammatory
neurodegeneration. This communication provides evidence that in both
LPS-enveloped neuronal nuclei in AD neocortex and LPS-treated HNG cells in
primary co-culture that there is a significant deficit in the expression of the
neurofilament light-chain (NF-L), a neuron-specific cytoskeletal element known
to be important in maintaining the shape and synaptic integrity of the neuron;
see text and Figures 1–5 for additional details.
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output gene? Are the translocation of transcripts exiting the
neuronal nuclei impaired by the envelopment of nuclei by LPS
as they appear to be? Does a life-long exposure to certain
infectious agents and their secreted neurotoxins predispose
an individual to develop AD at a later age? How do the
secreted neurotoxins from the human GI-tract microbiome
progressively leak across biophysical and physiological barriers
to access the systemic circulation and CNS compartments?
Do these secreted neurotoxins interact with amyloid-beta (Aβ)
peptides that increase in parallel in the aging brain? What GI-
tract bacterial-derived mixtures of neurotoxins are the most
pathogenic in promoting inflammatory neuro-degeneration?
Can the incidence of systemic inflammation be used as a
biomarker or be of prognostic value to AD and other progressive
neurodegenerative diseases? Does anaerobic Gram-negative
bacilli-derived LPS interact pathologically with other toxins
originating from archaebacteria, fungi, protozoa, viruses, and
other GI-tract resident microbes? Is there a potential synergism
in their combined neurotoxic actions toward neuronal nuclei
of the human CNS? Perhaps most importantly, is it possible
to devise a dietary strategy that promotes the lowering of LPS
secretion and optimize life-long GI-tract microbiome and CNS
health to minimize the risk of developing AD as we age?
Furthering our molecular and mechanistic understanding of how
individual secreted components of the GI tract microbiome –
affect the PNS and CNS may uncover potential and novel
strategies for GI tract-based modulation of neural function and
the more efficacious clinical management of terminal, age-related
neurological disease.

CONCLUSION

Microbiologists, neurologists and bioinformatics researchers
are still in a relatively early stage of understanding the
molecular-genetic pathological signaling mechanisms that
operate between the human GI-tract microbiome and the CNS of
the host. Emerging evidence suggests: (i) that non-homeostatic
communication along the gut-brain axis may contribute to
progressive inflammatory neurodegeneration and AD-type
change in the CNS; and (ii) that the GI-tract microbiome
appears to have potential to contribute to neurodegenerative
disease through the release, and export into the systemic
circulation, of multiple, highly pro-inflammatory neurotoxic
exudates predominantly from abundant species of Gram-
negative anaerobic bacteria such as Bacteroides fragilis and
other GI-tract microbes (Bhattacharjee and Lukiw, 2013; Foster
et al., 2016; Zhao et al., 2017b,c; Cox and Weiner, 2018; Zhan
et al., 2018; Zhao and Lukiw, 2018). The co-localization and
eventual envelopment of sporadic AD-affected neuronal nuclei
with a “clathrin-like” cage of GI-tract microbiome-derived LPS
suggests that there exists a novel pathogenic contribution of LPS
to neuron-specific gene expression and transcriptional output
from AD-affected neurons (Zhao et al., 2017b). In agreement
with previous reports a remarkably high proportion of the LPS
signal in AD neocortex and hippocampus and in LPS-treated
HNG cells are associated with neuronal nuclei (Figures 1–5 and

Supplementary File 1; Zhao et al., 2017a,b,c; Zhao and Lukiw,
2018). Recent data further indicates that patients with moderate-
to-advanced sporadic AD appear to have a significantly higher
population of LPS-enveloped nuclei, and a correspondingly
lower amount of NF-L associated with that region of the AD
brain (Zhao et al., 2017b; Zhao and Lukiw, 2018) (Figures 5, 6).

In conclusion, the current work provides five novel
observations: (i) that in AD neocortex LPS has a remarkable
biophysical affinity for neuronal nuclei; (ii) that this action
appears to selectively impair the transcriptional abundance of
neuron-specific elements such as NF-L, known to be normally
required for the maintenance of neuronal cytoarchitecture,
synaptic connections, and the homeostatic signaling operations
of neurons; (iii) that GI tract microbiome-derived neurotoxins
may contribute to AD-type pathological and neuronal
architectural change; (iv) that LPS-treated HNG brain cells
in primary culture can recapitulate this phenomenon both at
the biophysical and transcriptional level; and (v) perhaps most
significantly, that LPS-treated HNG cells in primary culture
can provide a highly useful experimental platform for further
study on LPS effects on AD-like processes and their pathogenic
consequences. These results also support the hypothesis that
GI-tract derived, microbial neurotoxins such as LPS affect
the efficient readout of AD-relevant neuronal-specific genetic
information, such as that from the NF-L gene, and progressively
contribute to cytoarchitectural aberrations, neuronal atrophy,
and synaptic disorganization all of which are characteristic
features of the sporadic AD brain (Figure 6).
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Background: Alzheimer’s disease (AD) and bipolar disorder (BIP) are complex traits
influenced by numerous common genetic variants, most of which remain to be detected.
Clinical and epidemiological evidence suggest that AD and BIP are related. However, it
is not established if this relation is of genetic origin. Here, we applied statistical methods
based on the conditional false discovery rate (FDR) framework to detect genetic overlap
between AD and BIP and utilized this overlap to increase the power to identify common
genetic variants associated with either or both traits.

Methods: We obtained genome wide association studies data from the International
Genomics of Alzheimer’s Project part 1 (17,008 AD cases and 37,154 controls) and
the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases
and 31,358 controls). We used conditional QQ-plots to assess overlap in common
genetic variants between AD and BIP. We exploited the genetic overlap to re-rank
test-statistics for AD and BIP and improve detection of genetic variants using the
conditional FDR framework.

Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP.
Using conditional FDR, we identified one novel genomic locus associated with AD, and
nine novel loci associated with BIP. Further, we identified two novel loci jointly associated
with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional
FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476,
conjunctional FDR = 0.022, opposite direction of effect).
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Conclusion: We found polygenic overlap between AD and BIP and identified novel
loci for each trait and two jointly associated loci. Further studies should examine if the
shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared
and distinct features of AD and BIP.

Keywords: Alzheimer’s disease, bipolar disorder, GWAS, pleiotropy, cognitive symptoms, affective symptoms,
MARK2, VAC14

INTRODUCTION

About a century ago, Alois Alzheimer and Emil Kraepelin
described the historical equivalents of AD and BIP (Alzheimer,
1907; Kraepelin, 1921). Still their etiologies are incompletely
understood and no curative treatments exist (Grande et al., 2016;
Scheltens et al., 2016). The Global Burden of Disease study ranks
AD and BIP among the top thirty causes of years lived with
disability worldwide (Vos et al., 2016).

Alzheimer’s disease is a neurodegenerative disorder (Jack et al.,
2013) usually presenting in late adult life (Koedam et al., 2010),
while BIP is considered a neurodevelopmental disorder (Sanches
et al., 2008; O’Shea and McInnis, 2016) with average age at onset
in early adult life (Baldessarini et al., 2010). Yet, epidemiological,
pathophysiological, and clinical data suggest that AD and BIP
could be related. A recent meta-analysis reports an odds ratio of
2.4 (95% CI 1.4–4.1) for dementia of all causes among patients
with BIP (Diniz et al., 2017). The risk of dementia is higher
among patients with BIP compared to patients with arthritis,
diabetes, and schizophrenia (Kessing et al., 1999; Kessing and
Nilsson, 2003). Among patients with BIP, treatment with lithium
is associated with a reduced risk of dementia (Kessing et al.,
2010; Gerhard et al., 2015) and AD (Nunes et al., 2007) in
most, but not all (Cheng et al., 2017), observational studies.
Among patients with AD or mild cognitive impairment, a meta-
analysis of randomized controlled studies found that lithium
decreased cognitive decline (Matsunaga et al., 2015). Shared
pathophysiological processes between AD and BIP are reported
in the kynurenine pathway (Miller et al., 2006; Myint et al., 2007;
Rahman et al., 2009; Gulaj et al., 2010; Maddison and Giorgini,
2015; Savitz et al., 2015). There is also evidence of inflammatory
processes in both conditions (Goldstein et al., 2009; Antonio
et al., 2015; Heneka et al., 2015). Further, euthymic patients with
BIP have impairments of episodic memory (Torres et al., 2007)
and executive dysfunction (Torres et al., 2007; Martino et al.,
2015), which are also core symptoms of AD (Gold and Budson,
2008; Godefroy et al., 2016).

Despite several lines of evidence suggesting a relation between
AD and BIP, it is not established if the conditions have a shared
genetic basis. AD and BIP are in most cases complex traits,
i.e., they are influenced by several genetic and environmental
factors. Twin studies estimate the heritability of AD and BIP to

Abbreviations: AD, Alzheimer’s disease; BIP, bipolar disorder; FDR, false
discovery rate; GWAS, genome wide association study; IGAP, International
Genomics of Alzheimer’s Project; LD, linkage disequilibrium; LDSR, Linkage
disequilibrium score regression; PGC2-BIP, Psychiatric Genetic Consortium 2
Bipolar Disorder Working Group; SNP single nucleotide polymorphism; QQ,
quantile-quantile.

60% or higher (McGuffin et al., 2003; Kieseppä and Partonen,
2004; Gatz et al., 2006; Lichtenstein et al., 2009). Genome
wide association studies (GWASs) are the gold standard for
hypothesis-free assessment of associations between complex
traits and common genetic variants (Corvin et al., 2010). The
common variants refer to single nucleotide polymorphisms
(SNPs) with minor allele frequencies > 1–5%. The power of
a GWAS is a function of study sample size and the genetic
architecture of the trait (i.e., the narrow-sense heritability, the
number of causal variants, their effect sizes, and population
frequencies) (Schork et al., 2016; Frei et al., 2018). AD and BIP
are considered highly polygenic (Purcell et al., 2009; Escott-Price
et al., 2015), and ∼1/3 of their heritability can be explained by
SNPs with tiny effect sizes that are not individually detectable
given the power of current GWASs (Lee et al., 2011, 2013;
Ridge et al., 2013, 2016).

With the current sample sizes, however, the power of GWASs
can be boosted by leveraging polygenic overlap between complex
traits (Andreassen et al., 2013a,b, 2015). Shared genetic influences
are common among complex traits (Visscher et al., 2017).
Statistical methods based on the conditional FDR framework
can detect polygenic overlap between complex traits and utilize
this polygenic overlap to increase the power to identify common
genetic variants associated with each trait and jointly with
two or more traits (Andreassen et al., 2013a,b, 2015). We
aimed to use these methods to identify the shared genetic basis
between AD and BIP.

MATERIALS AND METHODS

Data Sources
We obtained summary statistics (i.e., effect sizes and
corresponding p-values for all SNPs) from the IGAP (Lambert
et al., 2013) and the PGC2-BIP (Stahl et al., 2019).

International Genomics of Alzheimer’s Project
The IGAP is a two-stage study. We used data from stage 1
of the study, which is based upon four previously published
GWASs [The European Alzheimer’s Disease Initiative (Dreses-
Werringloer et al., 2008; Heath et al., 2008), the Alzheimer
Disease Genetics Consortium (Jun et al., 2010), The Cohorts for
Heart and Aging Research in Genomic Epidemiology consortium
(Psaty et al., 2009), The Genetic and Environmental Risk in
AD consortium (Harold et al., 2009)] on 17,008 AD cases and
37,154 controls of European ancestry. The IMPUTE2 (Howie
et al., 2009) or MaCH/Minimac (Li et al., 2010) software were
used to impute SNPs from the European ancestry haplotypes
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in the 1000 Genome Project (Altshuler et al., 2010). In stage
2 of the study, SNPs with p-values < 1 × 10−3 from stage 1
were selected for genotyping in independent samples. We did
not use data from stage 2 of the study since the conditional
FDR method require genome-wide summary statistics which
are not inflated.

Diagnoses of AD in the sub-studies of IGAP were in most
cases made clinically according to the National Institute of
Neurological and Communicative Disorders and Stroke and the
Alzheimer’s disease and Related Disorders Association criteria
(McKhann et al., 1984) or the Diagnostic and Statistical Manual
of Mental Disorders (American Psychiatric Association, 1994)
criteria, or post mortem according to the National Institute of
Ageing-Regan criteria (Newell et al., 1999).

Informed consents were provided from all participants, or,
in the case of substantial cognitive impairment, from caregivers,
legal guardians, or other proxies. The sub-studies were approved
by local ethic committees.

For further details, we refer to the original publication
(Lambert et al., 2013).

Psychiatric Genetic Consortium 2 Bipolar Disorder
Working Group
The PGC2-BIP is a GWAS based upon 32 sub-studies on
20,352 BIP cases and 31,358 controls of European ancestry.
Arrays for genotyping were chosen by each sub-study. The
Ricopoli pipeline1 was used to standardize quality control,
imputation, and analyses of genotypic data from all samples
except one. SNPs were excluded by the following criteria:
missingness in > 5 (before sample removal) or 2% (after sample
removal), p-value for Hardy–Weinberg equilibrium < 1× 10−10

in cases or <1 × 10−6 in controls, missingness difference
between cases and controls > 2%, or autosomal heterozygosity
deviation (| Fhet| > 0.2). Individuals with > 2% missing
genotypes were also excluded. The IMPUTE2 (Howie et al.,
2009) and SHAPEIT2 (Delaneau et al., 2012) software were
used for imputation.

Diagnoses of BIP were established by clinical interviews or
obtained from hospital record data according to the Diagnostic
and Statistical Manual of Mental Disorders 4th edition (American
Psychiatric Association, 1994), the International Classification
of Diseases 9th revision (World Health Organization, 1977),
or the International Classification of Diseases 10th revision
(World Health Organization, 1992).

Informed consents were provided from all participants. The
sub-studies were approved by local ethical committees.

For further details, we refer to the original publication
(Stahl et al., 2019).

Data Availability
Data from the IGAP2 and PGC2-BIP3 studies are publicly
available for download.

1https://github.com/Nealelab/ricopili/wiki
2http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
3https://www.med.unc.edu/pgc/results-and-downloads

Statistical Analyses
Conditional Quantile–Quantile (QQ)-Plots
We used conditional QQ-plots to visually assess pleiotropic
enrichment. A conditional QQ-plot displays the distribution of
p-values for the first trait, e.g., AD, conditioned on association
levels for the second trait, e.g., BIP. Pleiotropic enrichment
is present if the degree of leftward shift from the expected
null line for the first trait is dependent on the degree of
association with the second trait. For further details, we refer
to previous studies (Andreassen et al., 2013a,b, 2015) and
Supplementary Methods 1.1.

Conditional False Discovery Rate (condFDR)
The enrichment observed in conditional QQ-plots can be
translated to FDR for each SNP. We used the conditional false
discovery rate (condFDR) to improve power to detect SNPs
associated with AD given associations with BIP and vice versa.
condFDR is defined as “the posterior probability that a given SNP
is null for the first trait given that the p-values for both traits are
as small or smaller than the observed p-values” (Andreassen et al.,
2015). We denoted condFDR for AD given associations with BIP
as condFDR(AD|BIP) and for BIP given association with AD as
condFDR(BIP| AD) and considered values < 0.01 significant. For
further details, we refer to previous studies (Andreassen et al.,
2013a,b, 2015) and Supplementary Methods 1.2.

Conjunctional False Discovery Rate (conjFDR)
We used conjunctional FDR (conjFDR) to identify SNPs jointly
associated with AD and BIP. conjFDR is defined as “the
posterior probability that a SNP is null for either phenotype
or both simultaneously, given the p-values for both traits are
as small or smaller than the observed p-values” (Andreassen
et al., 2015). After repeating the condFDR procedure for both
traits, we identified shared loci at conjFDR < 0.05, which
is given by the maximum between the condFDRs for both
traits. Hence, the conjFDR analysis is a conservative approach
requiring that loci exceed a condFDR significance threshold
for two traits simultaneously. For further details, we refer
to previous studies (Andreassen et al., 2013a,b, 2015) and
Supplementary Methods 1.3.

Conditional and Conjunctional Manhattan Plots
We constructed conditional Manhattan plots to visualize
the chromosomal location of SNPs with condFDR(AD|BIP)

(Supplementary Figure 1) and condFDR(BIP|AD) < 0.01
(Supplementary Figure 2). We constructed a similar
plot for SNPs jointly associated with AD and BIP at a
conjFDR < 0.05 (Figure 2).

Assessment of Novelty
To determine if a locus was novel, we first checked that
the p-value(s) for the implicating variant was > 5 × 10−8

in the original GWAS(s). Further, we used LDlink (Machiela
and Chanock, 2015) to exclude variants which are in LD
(r2 > 0.1) with any of the genome-wide significant hits in the
original GWAS(s). Finally, we conducted a search on PubMed
using the term (“SNP id” OR “gene name”) AND (“Bipolar
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FIGURE 1 | Conditional QQ-plots of nominal p-values at y-axis and 1 - empirical cumulative distribution function on x-axis for (A) Alzheimer’s disease (AD) with lines
representing strata of SNPs according to their degree of association with bipolar disorder (BIP) and (B) BIP with lines representing strata of SNPs according to their
degree of association with AD.

Disorder”[Mesh] OR “Alzheimer Disease”[Mesh]) to exclude that
the variants or implicated genes have been associated with AD or
BIP at genome-wide significance in previous GWASs.

Cerebral Gene Expression Across Lifespan of the
Implicated Loci
The Human Brain Transcriptome (HBT) project4 used
postmortem brain tissue from over 1,340 samples to provide
genome-wide exon-level transcriptome data in 16 cerebral
regions (Kang et al., 2011). We obtained figures from the
HBT project on gene expression in different cerebral areas
as a function of age (i.e., from embryonic life through late
adulthood) for the nearest genes to the loci jointly associated
with AD and BIP.

Control of Spurious Enrichment
We randomly chose one SNP in each LD block (r2 > 0.1), and
calculated the average empirical cumulative distribution function
(ecdf) by using the p-values obtained through 200 iterations.
SNPs within the major histocompatibility complex region
(defined as chr6:25652429–33368333) and the apolipoprotein
E (APOE) gene (chr19:44909039–45912650), and SNPs in
LD (r2 > 0.1) with these SNPs, were excluded from the
analyses due to their complex LD structure (de Bakker and
Raychaudhuri, 2012) and known association to AD (Lambert
et al., 2010; Scheltens et al., 2016), which could bias the estimates
of enrichment. Further, we used LD-independent (r2 < 0.1)
intergenic SNPs, which are depleted of true associations,
to calculate an inflation factor value (Wang et al., 2016a).

4http://hbatlas.org

We divided all test statistics on this value to control for
genomic inflation.

Cross-Trait Linkage Disequilibrium Score Regression
(LDSR)
We calculated the degree of genetic correlation between AD and
BIP using cross-trait LD score regression (LDSR) (Bulik-Sullivan
et al., 2015). For details, we refer to Supplementary Materials 1.4.

Ethics Statement
All GWASs performed and investigated in the present study were
approved by the local ethics committees, and informed consent
was obtained from all participants. Furthermore, the Norwegian
Institutional Review Board for the South-East Norway Region
has evaluated the methods used in the current study and found
that no additional institutional review board approval was needed
because no individual data were used (ref. 2011/1980).

RESULTS

Pleiotropic Enrichment
In the conditional QQ-plots, we observed enrichment of
associations with AD given increasing SNP associations with
BIP, and vice versa (Figure 1). These findings indicate polygenic
overlap between AD and BIP across common genetic variants.

Improving Genetic Discovery Using
Conditional FDR
We then leveraged the pleiotropic enrichment observed
in conditional QQ-plots to boost SNP discovery in both
traits using condFDR.
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FIGURE 2 | Conjunctional Manhatton plot of loci jointly associated with Alzheimer’s disease (AD) and bipolar disorder (BIP) at a conjuntional false discovery
rate < 0.05.

We identified 22 SNPs clumped into 19 independent loci
at condFDR(AD|BIP) < 0.01 (Supplementary Table 1). The
chromosomal locations of the nearest genes are visualized in
a conditional Manhattan plot (Supplementary Figure 1). Red
annotations represent the four loci with a lower conditional than
unconditional FDR. Of these four loci, two loci have uncorrected
p-values > 5 × 10−8 in the original GWAS and are thus not
identified by traditional methods; NDUFS3 (rs71475924, intron
variant) and MTSS1L (rs12597717, intron variant). The signal in
NDUFS3 was driven by one single SNP and is thus probably a
spurious association.

Further, we identified 24 SNPs within 24 loci at a
condFDR(BIP|AD) < 0.01 (Supplementary Table 2). As visualized
in the conditional Manhatton plot (Supplementary Figure 2),
17 loci had a lower conditional than unconditional FDR. Of
these 17 loci, 10 variants have uncorrected p-values > 5 × 10−8

in the original GWAS and are thus not identified by
traditional methods; LOC105378763 (rs1889778, intron variant),
CNTNAP5 (rs13011184, intron variant), KIAA1109 (rs45605540,
intron variant), SSBP2 (rs7707981, intron variant), AK091365
(rs2388334, no genic locational annotation), RCOR2 (rs4980532,
intron variant), STARD9 (rs4447398, intron variant), GRIN2A
(rs11647445, intron variant), THRA (rs61554907, intron variant),
and PRKCA (rs7406066, intron variant). However; the CNTNAP5
gene has previously been associated with the posterior cortical
atrophy variant of AD at genome-wide significance (Schott et al.,
2016) and with BIP (Djurovic et al., 2010).

Identification of Shared Loci
Finally, we applied conjFDR to assess for SNPs jointly associated
with AD and BIP. We used effect sizes from the original data
sources to determine the allelic direction of effects in both traits.

We identified two SNPs at two loci at a
conjFDR(AD&BIP) < 0.05 (Table 1 and Figure 2). A 2 kb
upstream variant at MARK2 (rs10792421) was associated
with AD and BIP with the same direction of effect on AD
and BIP [conjFDR(AD&BIP) = 0.030, z-score(AD) = 3.99,
z-score(BIP) = 4.74]. MARK2 is widely expressed in the
developing and adult human brain (Supplementary Figure 3).
An intronic variant within VAC14 (rs11649476) was associated
with AD and BIP with opposite directions of effect in AD
and BIP [conjFDR(AD&BIP) = 0.022, z-score(AD) = −4.35,
z-score(BIP) = 4.18]. VAC14 is also widely expressed in the
developing and adult human brain (Supplementary Figure 4).
Both SNPs have p-values > 5× 10−8 for both traits in the original
GWASs and are thus not identified by traditional methods.

Genetic Correlation
We estimated that there is no overall genetic correlation
between AD and BIP according to LDSR (rg = −0.0222,
SE = 0.0519, p = 0.669).

DISCUSSION

We used statistical methods based on the condFDR framework
and showed that AD and BIP have a shared genetic basis. Our
study adds new insights into the relation between AD and BIP
by finding polygenic overlap, one novel locus associated with
AD and nine novel loci associated with BIP when conditioned
on associations with the other trait, and two novel loci jointly
associated with both traits.

A polygenic overlap between AD and BIP could implicate
shared genetic influences as a part of the explanation to
the epidemiological (Diniz et al., 2017), pathophysiological
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TABLE 1 | SNPs with related genes jointly associated with Alzheimer’s disease (AD) and bipolar disorder (BIP) at a conjunctional false discovery rate
(conjFDR(AD&BIP)) < 0.05.

SNP Chr. region Position Closest gene Location relative
to the closest

gene

P-value(AD) P-value(BIP) conjFDR(AD&BIP) Effective/
other allele

Direction of
effect in
AD/BIP

rs10792421 11q13.1 63605177 MARK2 Upstream 6.68E-05 2.16E-05 3.02E-02 G/A +/+

rs11649476 16q22.2 70736752 VAC14 Intronic 1.35E-05 2.98E-05 2.18E-02 T/C −/+

(Goldstein et al., 2009; Heneka et al., 2015), and clinical (Gold
and Budson, 2008; Martino et al., 2015; Godefroy et al., 2016)
links between the diseases. However, we do not find an overall
genetic correlation as assessed with cross-trait LDSR (Bulik-
Sullivan et al., 2015). Also, one of the two jointly associated SNPs
demonstrates effects in opposite directions. These findings are
compatible with a scenario where the polygenic overlap between
AD and BIP involves a mixed direction of effects of the implicated
SNPs yielding no genome-wide correlation (Frei et al., 2018).
Thus, absence of an overall genetic correlation between brain
disorders, as evident for several traits (including AD and BIP)
in the study of Anttila et al. (2018), does not imply lack of
genetic overlap.

The loci implicating the MARK2 and VAC14 genes were jointly
associated with AD and BIP (Table 1). Both genes are widely
expressed in the human brain throughout life (Supplementary
Figures 3, 4), which implies a spatial and temporal relation
to both neurodevelopmental and neurodegenerative processes.
The locus implicating the MARK2 gene (rs10792421) had
a concordant direction of effect in both traits (Table 1).
The MARK2 gene encodes the microtubule affinity regulating
kinase 2 (MARK2). The kinase is involved in a diversity of
neuronal cellular processes, including neuronal migration, and
tau phosphorylation (Matenia and Mandelkow, 2009). Migration
of immature neurons is necessary for corticogenesis (Kon
et al., 2017). BIP is considered a neurodevelopmental disorder
partly because of previous findings of cortical cell migration
abnormalities (Sanches et al., 2008; O’Shea and McInnis, 2016).
Abnormal neuronal migration might also be involved in later
stages of life among patients with AD (Reiner et al., 2009).
Tauopathy is one of the pathophysiological hallmarks of AD
(Jack et al., 2013). Gu G.J. et al. (2013) demonstrated that
MARK2 increases the phosphorylation of tau in situ and found
interactions between MARK2 and tau in postmortem human AD
brain tissue. The role of tauopathy has also been explored in BIP.
A study of cerebrospinal fluid among younger patients with BIP
(Jakobsson et al., 2013) and a similar study of elderly patients with
BIP and mild cognitive impairment (Forlenza et al., 2016) did
not find any evidence of tauopathy. However, in another study,
the total to phosphorylated tau ratio was reduced among patients
with BIP carrying the risk allele of a common variant related to
the previously discovered BIP risk gene CACNA1C (Jakobsson
et al., 2016). A similar reduction was not found among healthy
controls carrying the same risk allele. These findings suggest an
alteration in the regulation of tau phosphorylation in carriers
of the risk allele that is restricted to patients with BIP. Further
studies should explore whether interactions with other genes

involved in regulation of tau phosphorylation, like the MARK2
gene, could explain the specificity of the finding to patients with
BIP. Lithium has several molecular targets including inhibition
of glycogen synthase kinase 3β (Freland and Beaulieu, 2012).
Evidence is conflicting on whether glycogen synthase kinase 3β

in turn inhibits or activates MARK2 (Kosuga et al., 2005; Timm
et al., 2008). Consequently, it is unknown whether treatment with
lithium could result in reduced or increased phosphorylation
of tau among carriers of the common variant related to the
MARK2 gene.

The intronic variant within VAC14 (rs11649476) was
related to AD and BIP with opposite directions of effects.
The same variant was shared between BIP and intelligence
with concordant direction of effects in a recent study
using conjunctional FDR (Smeland et al., 2019). VAC14
encodes a part of the PIKfyve protein kinase complex, which
phosphorylates phosphatidylinositol 3-phosphate [PI(3)P] to
phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] (McCartney
et al., 2014). PI(3,5)P2 is involved in endosomal homeostasis
(Di Paolo and De Camilli, 2006). A null mutation of VAC14
in a mouse model resulted in perinatal death and massive
neurodegeneration with vacuolated neurons (Zhang et al.,
2007). Amyloid precursor protein (APP) is a transmembrane
protein involved in the pathophysiology of AD (O’Brien and
Wong, 2011). Balklava et al. (2015) found that APP interacts
with the PIKfyve complex to maintain endosomal homeostasis
in C. elegans. They postulated that aberrant processing of
APP contributes to the pathophysiology of AD through a
cascade of reduced activation of PIKfyve, reduced levels of
PI(3,5)P2, endosomal dysfunction, and reduced clearance of
beta amyloid. Another example of the relationship between
the processing of phosphoinositides and APP comes from a
study of Miranda et al. (2018). They found that inhibition of
Vps34, a kinase phosphorylating phosphatidylinositol (PI) to
PI(3)P, causes endolysosomal dysfunction with secretion of
exosomes containing APP C-terminal fragments. Knowles et al.
(2017) recently reported that serum levels of PI, the precursor
of phosphoinositides like PI(3)P and PI(3,5)P2, is negatively
associated with a proxy of genetic susceptibility to BIP.

Some of the genes implicated by the novel loci identified
by conditional FDR analyses (Supplementary Tables 1, 2
and Supplementary Figures 1, 2) also relate to known
pathophysiological and clinical features of AD and BIP. The
PRKCA gene encodes the protein kinase C alpha (PKCa). PKCa
is described in amyloid plaque of patients with AD (Clark
et al., 1991) where it could contribute to reduced synaptic
activity (Alfonso et al., 2016). The PRKCA gene is higher
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expressed in bipolar mania compared to unipolar depression
(Wang et al., 1999), and is lower expressed in fibroblasts of
patients with BIP treated with lithium compared to those
treated with other medications (Kittel-Schneider et al., 2016).
Common genetic variants implicating the PRKCA gene are
in healthy individuals associated to impairment of episodic
memory (MacLeod and Donaldson, 2014). Variants within the
KIAA1109 gene are in family studies associated with multi-
system syndromes characterized by impaired neurodevelopment
(Alazami et al., 2015; Gueneau et al., 2018), while the MTSS1L
gene is associated with neurodegeneration in a consanguineous
family study (Alazami et al., 2015). The STARD9 gene is
necessary for spindle assembly during cell division in human
development, and a mutation in the gene might cause a syndrome
with intellectual disability (Okamoto et al., 2017). The locus
implicating the AK091365 gene was previously associated with
general cognitive function when conditioned on association with
schizophrenia (Smeland et al., 2017), which in turn has a high
genetic correlation with BIP (Bulik-Sullivan et al., 2015). The
SSBP2 gene encodes the single strand DNA binding protein 2,
which protects telomeres in a mouse model (Gu p. et al., 2013).
In a Mendelian randomization study, Zhan et al. (2015) found
that telomere length is causally related to AD. Telomere length
is probably not reduced in most patients with BIP (Colpo et al.,
2015; Darrow et al., 2016), however; one study found that patients
with BIP treated with lithium had longer telomeres compared
to patients not receiving lithium (Powell et al., 2017). The
RCOR2 gene product is related to cortical development (Wang
et al., 2016b) and inflammation (Alvarez-López et al., 2014) in
mice. The GRIN2A gene encodes the GluN2A subunit of the
N-methyl-D-aspartate (NMDA) receptor. The NMDA receptor
is central for synaptic plasticity and learning (Li and Tsien,
2009). Memantine, an NMDA receptor antagonist, probably
reduces cognitive decline (Reisberg et al., 2003; Howard et al.,
2012) and neuropsychiatric symptoms (Maidment et al., 2008)
in AD. Ketamine, another NMDA receptor antagonist, can give
short term remission of depression in BIP when used as an
add-on to mood stabilizers (Diazgranados et al., 2010; Zarate
et al., 2012). Mutations in GRIN2A are previously associated
with a range of neuropsychiatric phenotypes including mental
retardation, epilepsy, schizophrenia, and BIP (Itokawa et al.,
2003; Yuan et al., 2015).

Some of the genes implicated both at genome-wide
significance in previously GWASs and by conditional FDR
in the present study also have pathophysiological and clinical
plausibility. The expression of TRANK1 is decreased in induced
pluripotent stem cells derived neurons carrying the common
variant found in our study (rs9834970). Decreased expression
of TRANK1 alters the expression of other genes related to
neuronal development and differentiation (Jiang et al., 2018).
Chronic treatment with sodium valproate, a mood stabilizer
used in BIP (Macritchie et al., 2001), normalizes the expression
of TRANK1 (Jiang et al., 2018). The CNTNAP5 gene encodes
a transmembrane protein of the neurexin family, which is
related to cellular adhesion and intercellular communication
(Traut et al., 2006). Common variants implicating CNTNAP5
have previously been associated with the posterior cortical

atrophy variant of AD (Schott et al., 2016), BIP (Djurovic
et al., 2010), and response to antipsychotic treatment in
schizophrenia (Yu et al., 2018), while rare variants within
CNTNAP5 have previously been associated with autism
spectrum disorders (Pagnamenta et al., 2010). The NCAN gene
is involved in neuronal adhesion and migration (Raum et al.,
2015). Common variants implicating NCAN are associated
with cognitive performance (Raum et al., 2015) and limbic
gray matter volumes (Dannlowski et al., 2015) in healthy
individuals, while a rare variant is associated with dyslexia
(Einarsdottir et al., 2017).

Further experimental studies should examine the implications
of our findings. It is unknown if the loci implicated by
condFDR and conjFDR relate to altered levels of gene expression,
pathophysiological processes (e.g., impaired neuronal migration,
tauopathy, and disturbed endosomal homeostasis), clinical
features (e.g., cognitive and affective symptoms), and treatment
response to lithium among patients with AD and BIP. Further,
it is unknown if the loci interact with environmental risk factors
and other genes implicated in AD and BIP.

Our results should be interpreted in light of the following
limitations. We can neither exclude that some of the patients
with AD have had BIP, nor that some of the patients
with BIP will develop AD, which could have confounded
our results. However; this could not explain the finding
in the conjunctional FDR analyses of one locus implicated
in AD and BIP with opposite directions of effect. Due to
linkage disequilibrium among SNPs, our findings do not
necessarily reflect causal variants, or that the same causal
variants are involved in both traits. Although we found
indications of modest polygenic overlap using conditional QQ-
plots (Figure 1), we only detected two genetic loci jointly
associated with both AD and BIP (Figure 2). However, the
observed enrichment suggests that more shared SNPs will
be identified when GWAS sample sizes increase (Schork
et al., 2016). Further, we have only assessed the shared
common genetic variants between AD and BIP. Other genetic
variations, like rare structural variants, are also shown to
increase the risk of AD and BIP (Lord et al., 2014; Cruceanu
et al., 2017). Lastly, most participants in the data used in
our study are of European ancestry. The generalizability of
our findings to samples dominated by participants of other
ancestries is unknown.

CONCLUSION

We find polygenic overlap between AD and BIP and identify
novel loci associated with each trait and jointly with both
traits, providing new insights into their genetic architecture.
The genes MARK2 and VAC14 jointly implicated in AD
and BIP are previously described to be involved in neuronal
migration, tau phosphorylation, and endosomal homeostasis.
Further experimental studies should examine if our findings
translate to altered levels of transcription, pathophysiological
processes, clinical features, and treatment response to lithium
among patients with AD and BIP.
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