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Editorial on the Research Topic

Sex Hormones and Gender Differences in Immune Responses

In general, females have stronger innate and adaptive (humoral and cellular) immune responses in
comparison to males. The factors responsible for the stronger immune response in females than
males may be due to biologic factors (i.e., sex differences, such as genetic and epigenetic factors,
sex hormones) and to psychosocial factors (i.e., gender differences). Our aim in assembling this
Research Topic was to highlight the current understanding of the role played by sex hormones (i.e.,
androgens, progesterone, prolactin, and estrogens) and their receptors in modulating the immune
response. In addition, we wanted to highlight the possibility that sex differences could alter the
susceptibility and/or the severity of autoimmune and infectious diseases. A better comprehension
of sex hormone-immune response interactions could lead to innovative and readily available
therapeutic interventions, such as hormone antagonists or agonists, as new approaches to manage
immune-mediated diseases.

The collection is comprised of a series of reviews and original research papers underlining
the role of sex hormones in immune response modulation as well as hormone influence on
autoimmune diseases, infections and allergy. Borba et al., discuss the role of prolactin in immune
system modulation and the involvement of prolactin in the pathogenesis and activity of several
autoimmune disorders. The Authors describe the evidence for dopamine as an effective inhibitor
of prolactin secretion and suggest that dopamine agonists could represent a promising novel
therapy for autoimmune patients. Moulton summarizes a large body of evidence for estrogenic
effects in the adaptive immune response in health and autoimmunity with an emphasis on
systemic lupus erythematosus (SLE). Gubbels Bupp and Jorgensen provide a comprehensive
review on the action of androgens, working through their receptors to dampen or alter immune
responses. Androgens affect the onset of autoimmune diseases as well as disease progression.
Gubbels Bupp et al. provide a timely and interesting review describing the age- and sex hormone-
related changes to innate and adaptive immunity. Their review highlights the importance of age-
and sex-associated changes in the immune system and the subsequent impact on the onset of
autoimmunity, cancers, and the efficacy of vaccination and cancer immunotherapy. In an opinion
article by Taneja, interactions among environmental factors (diet, infections, cigarette smoke)
and sex hormones are postulated to influence immune responses. Bereshchenko et al. point to
the importance of possible interactions between glucocorticoid and sex steroid receptors that
could underpin the sexual disparity of autoimmune diseases. Additional research is necessary
to investigate possible “cross talk” among steroid receptors to identify interacting signaling
pathways that may be crucial in fully understanding the onset of autoimmune diseases and
gender differences. Two reviews in the collection focus on sex hormones and viral infections.
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Kadel and Kovats discuss evidence that sex differences exist
in both respiratory homeostasis and viral infections owing to
differential regulation by sex hormones in innate immune cells
in the lungs. Additional complications of sex differences in the
respiratory system occur because of disparate influence of sex
hormones on the proinflammatory/effector phase and/or the
resolution/tissue repair phase in innate cells. These differences
ultimately contribute to the host’s ability to respond to respiratory
viral infections. Ruggieri et al. discuss the effects of sex hormones
on the immune system response to Hepatitis B and C virus
infections. Included in their review is evidence for direct
sex hormone influence on viral activity. Shah and Newcomb
discuss data supporting differences in allergic responses between
males and females. Fluctuations in sex hormones during
puberty, menstruation, pregnancy, andmenopause, may alter the
symptoms and severity of asthma.

The second part of the collection includes original research
articles that explore novel aspects of sex hormone action in
immune responses.

Two research articles focus on estrogen receptors in immune
modulation and their impact on autoimmune diseases. Rider
et al. investigated cell signaling changes in human SLE T cells
treated with estradiol and the estrogen receptor α antagonist,
Fulvestrant, comparing the effects of blockading the action of
estrogen receptor α in order to identify signaling pathways
that could contribute to improved disease activity in women
with SLE. The Authors identified alterations in several pathways
including T helper cell differentiation, steroid receptor signaling,
ubiquitination, and sumoylation. In their research article, Dupuis
et al. provide new insight regarding the anti-inflammatory effects
of the phytoestrogen silibinin. Silibin binds to estrogen receptor β

in T lymphocytes from both female andmale healthy subjects and
patients with rheumatoid arthritis. Silibinin induces apoptosis,
inhibits proliferation, and reduces expression of the pro-
inflammatory cytokines IL-17 and TNF-α, suggesting a potential
role for this phytoestrogen in rheumatoid arthritis management.

Adverse pregnancy outcome related to autoimmunity
represents a hot topic in translational research. In this regard,
Fredi et al. evaluated the risk factors for adverse pregnancy
outcomes in patients with antiphospholipid antibodies positivity.
The Authors observed maternal and fetal complications in
some antiphospholipid antibodies—positive patients and a
higher risk of adverse pregnancy outcome in patients with a
previous thrombosis. Research on a similar topic by Truglia
et al. focused at utilizing new and sensitive approaches to

identify antiphospholipid antibodies in patients with obstetrical
antiphospholipid syndrome who are negative when tested using
conventional laboratory markers.

Sex differences in infection was the topic of two original
research articles. Scalerandi et al., using a bacterial model
of prostate inflammation, showed an intriguing effect of
testosterone in promoting inefficient, anti-inflammatory
neutrophils that prolonged bacterial inflammation, generating
a pathogenic environment for several conditions. Celestino
et al. observed that female mice are less susceptible than
males to mouse-adapted influenza virus (A/PR8/H1N1). Their
analysis of the underlying mechanism that contributes to the sex
disparities suggested that the female mice generate higher total
antioxidant power in their sera and lungs when compared with
male mice.

Understanding how sex influences immunity is still in its
infancy. However, recent evidence (1), including the papers of
this collection, indicate that components of both innate and
adaptive immunity are differently regulated in females and
males. Sex differences contribute to differences in susceptibility
and severity of immune-mediated and infectious diseases, and
malignancies (1, 2). Sex hormones can affect different steps
in immune processes. Thus, the complexity of endocrine-
immune interaction represents a recurrent theme in the
papers comprising this collection. Age-specific responses may
also influence immune-hormone interactions. An integrated
approach focused at analyzing the relationships among sex
hormones, sex chromosomes and immune related genes is
needed to better understand gender differences in immune
response (3, 4).

We hope that this collection of primary research papers
and review articles will prove useful to investigators interested
in the current state-of-the-art research into sex hormones and
immune responses.
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Prolactin and Autoimmunity
Vânia Vieira Borba1,2,3, Gisele Zandman-Goddard3 and Yehuda Shoenfeld3,4*

1 Department “A” of Internal Medicine, Coimbra University Hospital Centre, Coimbra, Portugal, 2 Faculty of Medicine, 
University of Coimbra, Coimbra, Portugal, 3 Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 
Tel-Hashomer, Israel, 4 Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

The great asymmetry of autoimmune diseases between genders represents one of the 
most enigmatic observations among the mosaic of autoimmunity. Sex hormones are 
believed to play a crucial role on this dimorphism. The higher prevalence of autoim-
munity among women at childbearing ages, disease onset/relapses during pregnancy, 
and post-partum are some of the arguments that support this hypothesis. Certainly, 
motherhood represents one of the most remarkable challenges for the immune sys-
tem, which not only has to allow for the conceptus, but also has to deal with complex 
endocrine alterations. Hormonal homeostasis is known to exert a crucial influence in 
achieving a competent and healthy immune system. Prolactin (PRL) has a bioactive 
function acting as a hormone and a cytokine. It interferes with immune system modu-
lation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Likewise, 
hyperprolactinemia has been described in relation to the pathogenesis and activity of 
several autoimmune disorders. Dopamine is an effective inhibitor of PRL secretion due 
to either a direct influence on the hypophysis or stimulation of postsynaptic dopamine 
receptors in the hypothalamus, arousing the release of the PRL inhibitory factor. Hence, 
dopamine agonists have proven to offer clinical benefits among autoimmune patients 
and represent a promising therapy to be explored. In this review, we attempt to provide 
a critical overview of the link between PRL, autoimmune diseases, and motherhood.

Keywords: sex hormones, prolactin, autoimmunity, systemic lupus erythematosus, multiple sclerosis, systemic 
sclerosis

inTRODUCTiOn

Currently, more than 80 autoimmune disorders are recognized, in which aberrant immune responses 
against self-different organs and tissues play a crucial role (1). Gender dimorphism represents one of 
the most enigmatic observations among the mosaic of autoimmunity. Susceptibility genes, epigenetic 
modifications, gender-related composition of gut microbiota, and sex hormones are believed to be a 
mainstay of this asymmetry (2, 3). The greater prevalence of autoimmunity among childbearing age 
women, disease relapses during pregnancy, and post-partum are some of the arguments that support 
this hypothesis (4). Indeed, women have enhanced immune reactivity, larger antigen-presenting 
capability and mitogenic responses, increased antibody production, higher immunoglobulin (Ig) 
levels, and the ability to reject allografts more rapidly (5). The immune and neuroendocrine system 

Abbreviations: IFN, interferon; Ig, immunoglobulin; IL, interleukin; MAPK, mitogen-activated protein kinase; MHC, major 
histocompatibility complex; PRL, prolactin; PRLR, prolactin receptor; Th, T helper cells; TNF, Tumor necrosis factor; Treg, 
T regulatory cells; STAT1, Signal transducer and activator of transcription 1.
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are intimately connected, partaking of dynamic bidirectional 
communication. Prolactin (PRL) has a recognized immune-
stimulatory effect, specially inhibiting the negative selection 
of autoreactive B lymphocytes, promoting autoimmunity. In 
accordance, hyperprolactinemia has been associated with several 
autoimmune diseases, influencing its pathogenesis (6). Although 
the mechanisms involving this interaction are not completely 
understood, it has been documented that PRL can influence the 
communication and regulation of immune cells (7).

PRL, THe HORMOne, AnD THe 
CYTOKine

Prolactin is a 23-kD peptide hormone secreted in the pituitary 
gland, through the hypothalamic–pituitary–adrenal axis, under 
tonic inhibition of dopamine. Interestingly, this hormone can 
also be produced in extra-pituitary locations, such as decidua, 
ovary, prostate, mammary gland, adipose tissue, brain, and 
immune cells. When produced in extra-pituitary sites, PRL has 
different molecular weight and bioactivity. Hyperprolactinemia 
is usually defined as fasting levels of above 20 ng/ml in men and 
above 25 ng/ml in women (8). The expected rate among healthy 
population is up to 3%. Levels physiologically increase during 
lactation, but also as result of several diseases, including prolac-
tinoma, hypothyroidism, and adrenal insufficiency (9). Besides, 
PRL secretion is regulated by cytokines such as interleukin (IL)-1, 
IL-2, and IL-6, which are stimulators, while endothelin-3 and 
interferon (IFN)-γ play an inhibitory role. This hormone can 
be found adopting several isoforms due to variations in post-
translational modifications (10). The three main isoforms are the 
monomeric (free little PRL), big PRL, and macroprolactin (big 
big). The most biologically potent isoform is the monomeric free 
(little) PRL, which consists of 199 amino acids and has a molecu-
lar weight of 23 kDa (11). The PRL receptor is a member of the 
type 1 cytokine/hematopoietic receptor superfamily and is widely 
expressed through the immune system, including monocytes, 
lymphocytes, macrophages, natural killer cells, granulocytes, 
and thymic epithelial cells (12). Hence, the binding of PRL to 
its receptor activates downstream signaling pathways that will 
manipulate immune cells proliferation, differentiation, secretion, 
and survival (13, 14). This molecule is an integral member of 
the immune-neuroendocrinology network and has been largely 
associated with autoimmune diseases (15).

PRL and immune Modulation
Prolactin strongly persuades the innate and adaptive immune 
responses, managing the maturation of CD4− CD8− thymocytes 
to CD4+ CD8+ T  cells, through IL-2 receptor expression (16, 
17). A direct correlation between PRL levels and the number 
of B and CD4+ T lymphocytes has been reported (18). Indeed, 
hyperprolactinemia can impair B-cell clonal deletion, deregulate 
receptor editing and diminish the threshold for activation of 
B cells, promoting auto-reactivity (19–21). It is capable of chang-
ing Th1 and Th2 type cytokine production, promoting IL-6 and 
INF-γ secretion, and playing a regulatory role on IL-2 levels (22, 
23). Furthermore, PRL increases Ig production, stimulates the 

development of antigen-presenting cells expressing major histo-
compatibility complex class II, and upholds the co-stimulatory 
molecules CD86, CD80, and CD40 (24). Interestingly, assorted 
autoantibodies, including anti-cardiolipin, anti-PRL, anti-La, 
anti-Ro, among others, were detected in patients with hyperpro-
lactinemia (25–27). Finally, PRL has been shown to influence 
dendritic cells to skew antigen presentation to pro-inflammatory 
function phenotype, enhancing IFN-α production (28). During 
pregnancy, one of the most decisive immunologic adaptations is 
the shift from a Th1/Th17 pro-inflammatory response toward a 
Th2/T regulatory cell (Treg) response, which promotes tolerance 
and inhibits natural killer cells cytotoxicity (2, 29). In accordance, 
differences in the activity of assorted autoimmune diseases have 
been reported during pregnancy and post-partum. For a better 
comprehension, the effects of PRL on the immune system cells 
were summarized in Table 1.

PRL during Pregnancy and 
Breastfeeding
Sex hormones can influence different functions on the immune 
system network. Typically, PRL and estrogens act as immune 
stimulants, while progesterone and testosterone exert a suppres-
sive role (51, 52). Pregnancy inspires unique changes in endo-
crine and immune signaling, in order to tolerate and support the 
development and survival of the placenta and fetus in the hostile 
maternal immune system environment. PRL levels increase 
during pregnancy and reach peak values during delivery (53). 
Suckling stimulates the nerve endings in the nipple-areolar com-
plex and strongly promotes hormone production. A large study 
performed by Stuebe et al. (54) evaluated PRL levels in women 
who exclusively breastfed their infants. The authors successfully 
reported wide changing baseline values (from 9 ng/dl before to 
74 ng/dl 10 min after breastfeeding), depending on the frequency 
of feedings (54). In accordance, during the pregnancy and lacta-
tion period, several patients experience disease onset or relapse, 
suggesting an active influence of PRL. Indeed, a significant 
association between PRL levels and disease activity was found 
in systemic lupus erythematosus (55), rheumatoid arthritis (50, 
56), and peripartum cardiomyopathy patients (57, 58), therefore 
breastfeeding should not be encouraged among those patients.

PRL and the Role of Dopamine Agonists
Dopamine is an effective inhibitor of PRL secretion due either a 
direct influence on the hypophysis or stimulation of postsynaptic 
dopamine receptors in the hypothalamus, arousing the release of 
the PRL inhibitory factor. Bromocriptine is an ergot alkaloid that 
binds to the dopamine receptor and inhibits the central synthesis 
of PRL. In addition, this drug can also influence T and B lym-
phocytes through the dopamine receptor (59, 60). Bromocriptine 
has been shown to decrease autoantibodies production, influence 
lymphocyte function and modulate the expression of surface 
molecules. By contrast, it exerts no clear effect on extra-pituitary 
PRL production. In conclusion, the beneficial therapeutic effects 
in murine and human trials, and the low toxicity of the drug 
outline a solid rationale for its attempt in future therapeutic 
proposals (61).
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TABLe 1 | Effects of prolactin (PRL) on the immune system cells.

immune 
cells

PRL 
secretion

Prolactin 
receptor 
(PRLR) 
expression

immunological effects of PRL Reference

Thymocytes ✓ ✓ •	 Promote the differentiation of CD4− CD8− thymocytes into CD4+ CD8+ cells
•	 Regulate the maintenance of thymocyte viability during differentiation

(30, 31)

Dendritic cells ? ✓ •	 Enhance the production of cytokines (IL-12, TNF-α, IL-1β)
•	 Increase the responsiveness in allogeneic mixed leukocyte reactions (upregulation of MHC surface expression 

and the co-stimulatory molecule CD80)

(32, 33)

T cells ✓ ✓ •	 Exert an immunomodulatory role at early stages of T-cell activation
•	 Increase secretion of TNF-α, IFN-γ, and IL-2
•	 Trigger the IL-2-stimulated proliferation
•	 Promote dysfunction of regulatory T cells
•	 Enhance adhesion to endothelial cells

(34–37)

B cells ✓ ✓ •	 Influence B-cell maturation process, promoting the survival of self-reactive clones
•	 Increase the viability of immature B cells by rescuing them from apoptosis

(38, 39)

Natural killer 
cells

? ✓ •	 Induce natural killer cells differentiation to PRL-activated killer cells (PAK cells) in a dose-dependent way
•	 Interfere with proliferation and cytotoxic activity
•	 Promote the release of IFN-γ

(40–42)

Monocytes ✓ ✓ •	 Increase TNF expression (43–45)
Granulocytes ? ✓ •	 Activate the STAT1 and MAPK pathways

•	 Contribute for the transcription of IRF-1 and iNOS
(46, 47)

Macrophages ✓ ✓ •	 Cooperate with other pro-inflammatory stimuli to activate macrophages via engagement with the PRLR
•	 Promote the secretion of chemokines and cytokines (IL-1β, IL-12β, IFN-γ, and TNF)

(7, 48–50)

iNOS: inducible nitric oxide synthase; IFN, interferon; IL, interleukin; IRF-1, interferon regulatory factor 1; MAPK, mitogen-activated protein kinase; MHC, major histocompatibility 
complex; STAT1, signal transducer and activator of transcription 1; TNF, tumor necrosis factor.
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HYPeRPROLACTineMiA AnD 
AUTOiMMUne DiSeASeS

Hyperprolactinemia has been reported in patients with several 
autoimmune diseases, commonly manipulating disease develop-
ment and perpetuation (62). The link between PRL and autoim-
munity has been proposed to have a genetic background (63, 64). 
The PRL gene is located on the short arm of chromosome 6, near 
the HLA-DRB1 region, which is known for its association with 
assorted immune-mediated disorders (65).

PRL and Systemic Lupus erythematosus
Systemic lupus erythematosus is an autoimmune disease, 
typically affecting young women at reproductive age (66). 
Hyperprolactinemia has been reported in a wide range of lupus 
patients from both genders (15–33%). In accordance, PRL levels 
have shown direct correlation with clinical and serological dis-
ease activity (16, 67–69). Results from several trials report also an 
association with neurological, renal and hematological involve-
ment, serositis, enhanced anti-double-stranded DNA antibodies, 
and diminished complement (70, 71). Furthermore, PRL bolsters 
the development of lupus-like phenotype in non-prone mice and 
exacerbated the disease in a lupus murine experimental study 
(72). During pregnancy, hyperprolactinemia has been associated 
with lupus anticoagulant, disease activity, and poor outcomes for 
mother and fetus (73). In accordance, the presence of anti-PRL 
antibodies was correlated with lower disease activity and better 
outcomes in pregnant patients (74, 75). The treatment of pregnant 
women with bromocriptine was shown to prevent disease relapses, 
improve outcomes, and reduce the doses of concomitant steroidal 
therapy (76, 77). In conclusion, the evidence strongly supports 

the role of PRL in the pathogenesis and activity of systemic lupus 
erythematosus.

PRL and Anti-Phospholipid Syndrome
Anti-phospholipid syndrome is a systemic autoimmune condi-
tion, characterized by thrombotic events and/or pregnancy 
morbidity in the presence of anti-phospholipid antibodies. 
Hyperprolactinemia was detected in 12% of patients with anti-
phospholipid syndrome, with no differences among genders or 
disease subtypes. Likewise, hormone levels were shown to be 
correlated with the presence of lupus anticoagulants, intrauterine 
growth retardation, and miscarriages among pregnant patients 
(78). By contrast, no significant correlation was found with 
thrombotic events, although PRL was recently proposed as a novel 
risk factor for thrombotic disease, since it acts as a potent platelet 
aggregation co-activator (79–82). Previously, bromocriptine 
was tested in animal models with anti-phospholipid syndrome 
and lupus, showing a suppressive effect on both diseases, prob-
ably through induction of natural non-specific CD8 suppressor  
cells (59).

PRL and Rheumatoid Arthritis
Rheumatoid arthritis is a chronic autoimmune disease that if 
untreated leads to progressive and irreversible destruction of 
cartilage and bone. The relationship between PRL and rheu-
matoid arthritis emerged from the adjacent location of the 
human PRL gene and HLA region (16). Recent studies reported 
higher levels of PRL in serum and synovial fluid of patients 
with rheumatoid arthritis. This suggests increased production, 
either systemic or locally secreted by immune cells, in putative 
relation with disease activity (45, 56). Pregnant women with 
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rheumatoid arthritis, due to a transient period of hypercorti-
solism, experience disease improvement. After delivery, flares 
are frequently reported (83). Women who breastfeed after the 
first pregnancy have a higher risk of developing rheumatoid 
arthritis, suggesting an active influence from PRL (84, 85). In 
addition, nearly 90% of these women will relapse within the 
first 3 months of postpartum and almost all patients will flair 
within the next 9 months. Indeed, severe disease was associated 
with longer breastfeeding periods and higher number of breast 
fed children. In animal models, bromocriptine was able to sup-
press postpartum exacerbation of collagen-induced arthritis 
(86). In humans, the treatment with bromocriptine revealed 
controversial findings (87, 88), probably because bromocriptine 
does not influence lymphocyte-derived PRL production (89). 
Hence, systemic and locally produced PRL may offer distinct 
contributions to inflammatory arthritis.

PRL and Systemic Sclerosis
Systemic sclerosis is a connective tissue disease characterized 
by alterations of the microvasculature, disturbances of the 
immune system, and massive deposition of collagen and other 
matrix substances in the skin and internal organs (90). High 
levels of PRL have been reported in 13–59% of patients with 
systemic sclerosis (91). Likewise, a significant correlation 
between hormone levels and the severity of skin sclerosis, lung, 
and cardiovascular involvement was found (92–94). The sources 
of PRL in this disease are believed to reside on enhanced lym-
phocytic secretion, increased dopaminergic central tone, and 
drug-induction, mainly by antidepressants and prokinetics (95). 
Pregnancy per se does not exacerbate the disease, even though 
cases have been reported of women with organ insufficiency 
mainly pulmonary hypertension and severe skin fibrosis (96, 
97). Patients with disease duration of less than 4 years, with dif-
fuse cutaneous subtype, presence of anti-RNA polymerase III or 
anti-topoisomerase I antibodies are at higher risk for obstetric 
complications and should delay pregnancy until the disease is 
quiescent (98). In conclusion, PRL was found to be correlated 
with disease severity and activity.

PRL and Multiple Sclerosis
Multiple sclerosis is a chronic inflammatory disorder involving 
the central nervous system (99, 100). In animal models, it is 
represented by experimental autoimmune encephalomyelitis, 
believed to be an inflammatory response against oligodendro-
cytes that form myelin sheaths surrounding neuronal axon driven 
by myelin-reactive CD4+ Th1/Th17 cells (101). Several studies 
reported a positive correlation between hyperprolactinemia and 
disease onset, relapse, and number of anti-myelin oligodendro-
cyte glycoprotein antibody secreting cells (102, 103). Indeed, 
the source of high PRL levels among those patients is unclear, 
albeit observations suggest that it may be part of a non-specific 
hypothalamic–pituitary–adrenal axis dysregulation due to 
neurodegeneration and/or demyelination (104). Currently, PRL 
is believed to have a dual impact in the central nervous system. 
On the one hand, PRL might support system repair by providing 
regenerative signals for neurons, oligodendrocytes, and adult 
neural stem/progenitor cells. On the other hand, its stimulation 

of peripheral immune cells might promote aberrant immune 
responses and negatively impact the disease (105, 106). Typically, 
pregnancies were believed to have a negative impact in women 
with multiple sclerosis, provoking postpartum exacerbations and 
increasing permanent disability (107). Nowadays, it is known that 
the risk of relapse significantly declines during the third trimester 
of pregnancy and increases three-fold in the first 3–4  months 
after delivery, with no references about medication consumption 
or breastfeeding options (108). Recently, studies revealed that 
an earlier return of menses was associated with a higher risk of 
disease relapse in the first 6 months after delivery, which suggests 
a natural protection from exclusive breastfeeding (109). Likewise, 
prolonged lactational amenorrhea was correlated with a lower risk 
of postpartum relapses (110). In conclusion, evidence supports a 
plausible protection from exclusive breastfeeding, although no 
studies have examined the long-term effects of breastfeeding, 
particularly in exclusive patterns.

PRL and Celiac Disease
Celiac disease is a gluten-sensitive autoimmune enteropathy 
where both adaptive immunity and innate immunity are involved 
in its development (111). Serum PRL levels were positively cor-
related with disease activity, degree of mucosal atrophy, and with 
the serum concentration of anti-endomysial antibodies. Recently, 
a longitudinal study revealed diminished levels of PRL after 
6 months following a gluten-free diet. The evidence of decreasing 
PRL simultaneously with the decline of anti-transglutaminase 
antibodies suggests a direct connection with a gluten-free diet 
and hormone levels (112).

PRL and Autoimmune Thyroid Disease
Autoimmune thyroid diseases comprise mainly two dis-
orders, Grave’s disease and Hashimoto thyroiditis (113). 
Hyperprolactinemia was found in 20% of patients with autoim-
mune thyroid disease and had double the frequency among 
hypothyroidism patients. Around 90% of Hashimoto’s thyroiditis 
patients presented significantly higher PRL levels in association 
with decreased cortisol titers (114). The role of dopamine ago-
nists in the treatment of autoimmune thyroid disease is yet to be 
determined.

PRL and Peripartum Cardiomyopathy
Peripartum cardiomyopathy is a congestive heart failure occurring 
in the last month of pregnancy or 5 months after delivery, in the 
absence of preexisting heart disease (115). The etiology of this dis-
ease remains unclear, although plausible causes have been proposed, 
such as nutritional deficiency, viral infections, stress-activated 
cytokines, pathological response to hemodynamic stress, inflamma-
tion, and autoimmune reactions (116). Evidence supports an active 
role of PRL in the pathophysiology of this disease. Increased oxida-
tive stress leads to subsequent 16-kDa PRL production, impairing 
the cardiac vasculature and its metabolism, culminating in systolic 
heart failure (117, 118). Interestingly, the presence of autoantibod-
ies against sarcomeric myosin and troponin I were detected among 
women with peripartum myocardiopathy, suggesting the presence 
of an underlying autoimmune disorder. In addition, these antibod-
ies were associated with the severity of left ventricle dysfunction and 
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lower rate of full cardiac recovery on follow-up (119). Interestingly, 
patients demonstrated an abnormal cytokine profile (increased 
levels of TNF, IL-6 and soluble Fas receptors), decreased levels of 
CD4+ CD25lo Tregs, a heightened level of fetal microchimerism, 
and a significant reduction in the plasma levels of progesterone, 
estradiol, and relaxin, contributing to abnormal immune responses 
and inflammatory processes (120, 121). Recently, dopamine agonists 
have shown promising results in the treatment of this disease, dra-
matically improving outcomes (58, 122–124). The 2010 European 
position statement does not encourage breastfeeding based on 
concerns regarding the perpetuation of PRL pathways (125).

COnCLUSiOn

The dimorphism between genders in autoimmune diseases is believed 
to rely on sex hormones. PRL exerts a great influence in immune system 
modulation, mainly inhibiting the negative selection of autoreactive B 
lymphocytes and has been associated with the pathogenesis of several 
autoimmune disorders. During pregnancy and the lactation period, 
assorted autoimmune patients experience disease relapse, suggesting 
an active influence of PRL. Immunological studies of pregnant and 
postpartum women with autoimmune diseases offer a biologically rich 
opportunity to improve our understanding of the hormonal impact on 
disease relapse pathophysiology. Although the interest on the relation-
ship between PRL, immune modulation, and autoimmune diseases 

has emerged in the past few years, more studies are required to further 
delineate the influence of PRL in autoimmune disease. Eventually, gut 
microbiome, immune cells transcriptome, and proteome might be the 
answers to those questions being unsolved to date.

Highlights
•	 Susceptibility genes, epigenetic modifications, microbiome, 

and sex hormones are believed to be a mainstay of the gender 
asymmetry in autoimmune diseases.

•	 PRL influences the negative selection of autoreactive B cells, 
promoting their proliferation, survival, and antibody 
production.

•	 Hyperprolactinemia has been associated with several autoim-
mune diseases and is believed to play a crucial role in their 
pathogenesis.

•	 A significant association between PRL and disease flairs 
was found in systemic lupus erythematosus and rheumatoid 
arthritis.

•	 Dopamine agonists have been used in the treatment of many 
autoimmune diseases with great benefits.

AUTHOR COnTRiBUTiOnS

VB, ZG, and YS contributed equally to the construction of this 
review.

ReFeRenCeS

1. Perricone R, Perricone C, Shoenfeld Y. Autoimmunity: when the immune 
system becomes the self-ish giant. Autoimmun Rev (2011) 10(10):575–6. 
doi:10.1016/j.autrev.2011.05.003 

2. Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y. 
Sex-based differences in autoimmune diseases. Ann Ist Super Sanita (2016) 
52(2):205–12. doi:10.4415/ann_16_02_12 

3. Krasselt M, Baerwald C. Sex, symptom severity, and quality of life in 
rheumatology. Clin Rev Allergy Immunol (2017) 11:1–16. doi:10.1007/
s12016-017-8631-6 

4. Orbach H, Shoenfeld Y. Hyperprolactinemia and autoimmune diseases. 
Autoimmun Rev (2007) 6(8):537–42. doi:10.1016/j.autrev.2006.10.005 

5. Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender and autoimmunity. 
Autoimmun Rev (2007) 6(6):366–72. doi:10.1016/j.autrev.2006.10.001 

6. Buskila D, Sukenik S, Shoenfeld Y. The possible role of prolactin in 
autoimmunity. Am J Reprod Immunol (1991) 26(3):118–23. doi:10.111
1/j.1600-0897.1991.tb00708.x 

7. Tang MW, Garcia S, Gerlag DM, Tak PP, Reedquist KA. Insight into the 
endocrine system and the immune system: a review of the inflammatory role 
of prolactin in rheumatoid arthritis and psoriatic arthritis. Front Immunol 
(2017) 8:720. doi:10.3389/fimmu.2017.00720 

8. Majumdar A, Mangal NS. Hyperprolactinemia. J Hum Reprod Sci (2013) 
6(3):168–75. doi:10.4103/0974-1208.121400 

9. Savino W. Prolactin: an immunomodulator in health and disease. Front Horm 
Res (2017) 48:69–75. doi:10.1159/000452906 

10. Devi YS, Halperin J. Reproductive actions of prolactin mediated through 
short and long receptor isoforms. Mol Cell Endocrinol (2014) 382(1):400–10. 
doi:10.1016/j.mce.2013.09.016 

11. Marcotegui AR, Garcia-Calvo A. [Biochemical diagnosis of monomeric 
hyperprolactinemia]. An Sist Sanit Navar (2011) 34(2):145–52. doi:10.4321/
S1137-66272011000200002 

12. Orbach H, Zandman-Goddard G, Amital H, Barak V, Szekanecz Z, Szucs 
G, et  al. Novel biomarkers in autoimmune diseases: prolactin, ferritin, 
vitamin D, and TPA levels in autoimmune diseases. Ann N Y Acad Sci (2007) 
1109:385–400. doi:10.1196/annals.1398.044 

13. Thoreau E, Petridou B, Kelly PA, Djiane J, Mornon JP. Structural symmetry 
of the extracellular domain of the cytokine/growth hormone/prolactin 
receptor family and interferon receptors revealed by hydrophobic cluster 
analysis. FEBS Lett (1991) 282(1):26–31. doi:10.1016/0014-5793(91) 
80437-8 

14. Jeganathan V, Peeva E, Diamond B. Hormonal milieu at time of B  cell 
activation controls duration of autoantibody response. J Autoimmun (2014) 
53:46–54. doi:10.1016/j.jaut.2014.02.007 

15. Anaya JM, Shoenfeld Y. Multiple autoimmune disease in a patient with 
hyperprolactinemia. Isr Med Assoc J (2005) 7(11):740–1. 

16. Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun 
Rev (2002) 1(6):360–4. doi:10.1016/S1568-9972(02)00081-2 

17. Pereira Suarez AL, Lopez-Rincon G, Martinez Neri PA, Estrada-Chavez C. 
Prolactin in inflammatory response. Adv Exp Med Biol (2015) 846:243–64. 
doi:10.1007/978-3-319-12114-7_11 

18. Brand JM, Frohn C, Cziupka K, Brockmann C, Kirchner H, Luhm J. Prolactin 
triggers pro-inflammatory immune responses in peripheral immune cells. 
Eur Cytokine Netw (2004) 15(2):99–104. 

19. Buckley AR. Prolactin, a lymphocyte growth and survival factor. Lupus 
(2001) 10(10):684–90. doi:10.1191/096120301717164912 

20. Kochendoerfer SK, Krishnan N, Buckley DJ, Buckley AR. Prolactin regula-
tion of Bcl-2 family members: increased expression of bcl-xL but not mcl-1 
or bad in Nb2-T  cells. J Endocrinol (2003) 178(2):265–73. doi:10.1677/
joe.0.1780265 

21. Saha S, Gonzalez J, Rosenfeld G, Keiser H, Peeva E. Prolactin alters the mech-
anisms of B cell tolerance induction. Arthritis Rheum (2009) 60(6):1743–52. 
doi:10.1002/art.24500 

22. Tomio A, Schust DJ, Kawana K, Yasugi T, Kawana Y, Mahalingaiah S, et al. 
Prolactin can modulate CD4+ T-cell response through receptor-mediated 
alterations in the expression of T-bet. Immunol Cell Biol (2008) 86(7):616–21. 
doi:10.1038/icb.2008.29 

23. Mackern-Oberti JP, Jara EL, Riedel CA, Kalergis AM. Hormonal 
modulation of dendritic cells differentiation, maturation and function: 
implications for the initiation and progress of systemic autoimmunity. Arch 
Immunol Ther Exp (Warsz) (2017) 65(2):123–36. doi:10.1007/s00005-016- 
0418-6 

11

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.autrev.2011.05.003
https://doi.org/10.4415/ann_16_02_12
https://doi.org/10.1007/s12016-017-8631-6
https://doi.org/10.1007/s12016-017-8631-6
https://doi.org/10.1016/j.autrev.2006.10.005
https://doi.org/10.1016/j.autrev.2006.10.001
https://doi.org/10.1111/j.1600-0897.1991.tb00708.x
https://doi.org/10.1111/j.1600-0897.1991.tb00708.x
https://doi.org/10.3389/fimmu.2017.00720
https://doi.org/10.4103/0974-1208.121400
https://doi.org/10.1159/000452906
https://doi.org/10.1016/j.mce.2013.09.016
https://doi.org/10.4321/S1137-66272011000200002
https://doi.org/10.4321/S1137-66272011000200002
https://doi.org/10.1196/annals.1398.044
https://doi.org/10.1016/0014-5793(91)80437-8
https://doi.org/10.1016/0014-5793(91)80437-8
https://doi.org/10.1016/j.jaut.2014.02.007
https://doi.org/10.1016/S1568-9972(02)00081-2
https://doi.org/10.1007/978-3-319-12114-7_11
https://doi.org/10.1191/096120301717164912
https://doi.org/10.1677/joe.0.1780265
https://doi.org/10.1677/joe.0.1780265
https://doi.org/10.1002/art.24500
https://doi.org/10.1038/icb.2008.29
https://doi.org/10.1007/s00005-016-0418-6
https://doi.org/10.1007/s00005-016-0418-6


Borba et al. Influence of PRL in Autoimmune Diseases

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 73

24. Peeva E, Zouali M. Spotlight on the role of hormonal factors in the emer-
gence of autoreactive B-lymphocytes. Immunol Lett (2005) 101(2):123–43. 
doi:10.1016/j.imlet.2005.05.014 

25. Buskila D, Berezin M, Gur H, Lin HC, Alosachie I, Terryberry JW, et  al. 
Autoantibody profile in the sera of women with hyperprolactinemia. 
J Autoimmun (1995) 8(3):415–24. doi:10.1006/jaut.1995.0033 

26. Krause I, Blumenfeld Z, Malchinsky M, Cohen S, Blank M, Eldor A, et al. 
Anti-endothelial cell antibodies in the sera of hyperprolactinemic women. 
Lupus (1998) 7(6):377–82. doi:10.1191/096120398678920316 

27. De Bellis A, Colao A, Pivonello R, Savoia A, Battaglia M, Ruocco G, et al. 
Antipituitary antibodies in idiopathic hyperprolactinemic patients. Ann N Y 
Acad Sci (2007) 1107:129–35. doi:10.1196/annals.1381.014 

28. Matera L, Mori M, Galetto A. Effect of prolactin on the antigen presenting 
function of monocyte-derived dendritic cells. Lupus (2001) 10(10):728–34. 
doi:10.1191/096120301717164967 

29. Borchers AT, Naguwa SM, Keen CL, Gershwin ME. The implications of auto-
immunity and pregnancy. J Autoimmun (2010) 34(3):J287–99. doi:10.1016/j.
jaut.2009.11.015 

30. Gagnerault MC, Touraine P, Savino W, Kelly PA, Dardenne M. Expression 
of prolactin receptors in murine lymphoid cells in normal and autoimmune 
situations. J Immunol (1993) 150(12):5673–81. 

31. Lepletier A, de Carvalho VF, Rodrigues e Silva PM, Villar S, Perez AR, 
Savino W, et al. Trypanosoma cruzi disrupts thymic homeostasis by altering 
intrathymic and systemic stress-related endocrine circuitries. PLoS Negl Trop 
Dis (2013) 7(11):e2470. doi:10.1371/journal.pntd.0002470 

32. Carreno PC, Jimenez E, Sacedon R, Vicente A, Zapata AG. Prolactin stimu-
lates maturation and function of rat thymic dendritic cells. J Neuroimmunol 
(2004) 153(1–2):83–90. doi:10.1016/j.jneuroim.2004.04.020 

33. Jara LJ, Benitez G, Medina G. Prolactin, dendritic cells, and systemic 
lupus erythematosus. Autoimmun Rev (2008) 7(3):251–5. doi:10.1016/j.
autrev.2007.11.018 

34. Dimitrov S, Lange T, Fehm HL, Born J. A regulatory role of prolactin, growth 
hormone, and corticosteroids for human T-cell production of cytokines. 
Brain Behav Immun (2004) 18(4):368–74. doi:10.1016/j.bbi.2003.09.014 

35. Carreno PC, Sacedon R, Jimenez E, Vicente A, Zapata AG. Prolactin affects 
both survival and differentiation of T-cell progenitors. J Neuroimmunol 
(2005) 160(1–2):135–45. doi:10.1016/j.jneuroim.2004.11.008 

36. Xu D, Lin L, Lin X, Huang Z, Lei Z. Immunoregulation of autocrine pro-
lactin: suppressing the expression of costimulatory molecules and cytokines 
in T  lymphocytes by prolactin receptor knockdown. Cell Immunol (2010) 
263(1):71–8. doi:10.1016/j.cellimm.2010.02.018 

37. Wu W, Sun M, Zhang HP, Chen T, Wu R, Liu C, et al. Prolactin mediates 
psychological stress-induced dysfunction of regulatory T  cells to facil-
itate intestinal inflammation. Gut (2014) 63(12):1883–92. doi:10.1136/
gutjnl-2013-306083 

38. Legorreta-Haquet MV, Flores-Fernandez R, Blanco-Favela F, Fuentes-Panana 
EM, Chavez-Sanchez L, Hernandez-Gonzalez R, et al. Prolactin levels cor-
relate with abnormal B cell maturation in MRL and MRL/lpr mouse models 
of systemic lupus erythematosus-like disease. Clin Dev Immunol (2013) 
2013:287469. doi:10.1155/2013/287469 

39. Flores-Fernandez R, Blanco-Favela F, Fuentes-Panana EM, Chavez-Sanchez 
L, Gorocica-Rosete P, Pizana-Venegas A, et al. Prolactin rescues immature 
B-cells from apoptosis induced by B-cell receptor cross-linking. J Immunol 
Res (2016) 2016:3219017. doi:10.1155/2016/3219017 

40. Jara LJ, Lavalle C, Fraga A, Gomez-Sanchez C, Silveira LH, Martinez-
Osuna P, et  al. Prolactin, immunoregulation, and autoimmune diseases. 
Semin Arthritis Rheum (1991) 20(5):273–84. doi:10.1016/0049-0172(91) 
90028-X 

41. Matera L, Buttiglieri S, Moro F, Geuna M. Effect of prolactin on natural 
killer and MHC-restricted cytotoxic cells. In: Matera L, Rapaport R, editors. 
NeuroImmune Biology. (Vol. 2), London: Elsevier (2002). p. 205–18.

42. Mavoungou E, Bouyou-Akotet MK, Kremsner PG. Effects of prolactin 
and cortisol on natural killer (NK) cell surface expression and function of 
human natural cytotoxicity receptors (NKp46, NKp44 and NKp30). Clin Exp 
Immunol (2005) 139(2):287–96. doi:10.1111/j.1365-2249.2004.02686.x 

43. Matera L. Endocrine, paracrine and autocrine actions of prolactin on immune 
cells. Life Sci (1996) 59(8):599–614. doi:10.1016/0024-3205(96)00225-1 

44. Tang C, Li Y, Lin X, Ye J, Li W, He Z, et al. Prolactin increases tumor necrosis 
factor alpha expression in peripheral CD14 monocytes of patients with 

rheumatoid arthritis. Cell Immunol (2014) 290(1):164–8. doi:10.1016/j.
cellimm.2014.06.005 

45. Tang MW, Reedquist KA, Garcia S, Gerlag DM, Tak PP. 1.57 Prolactin is 
locally produced in the synovium of patients with inflammatory arthritic 
diseases and promotes macrophage activation. Ann Rheum Dis (2014) 
73(Suppl 1):A24. doi:10.1136/annrheumdis-2013-205124.56 

46. Matera L, Galetto A, Geuna M, Vekemans K, Ricotti E, Contarini M, et al. 
Individual and combined effect of granulocyte-macrophage colony-stim-
ulating factor and prolactin on maturation of dendritic cells from blood 
monocytes under serum-free conditions. Immunology (2000) 100(1):29–36. 
doi:10.1046/j.1365-2567.2000.00996.x 

47. Dogusan Z, Hooghe R, Verdood P, Hooghe-Peters EL. Cytokine-like effects 
of prolactin in human mononuclear and polymorphonuclear leukocytes. 
J Neuroimmunol (2001) 120(1):58–66. doi:10.1016/S0165-5728(01)00420-9 

48. Tripathi A, Sodhi A. Prolactin-induced production of cytokines in macro-
phages in vitro involves JAK/STAT and JNK MAPK pathways. Int Immunol 
(2008) 20(3):327–36. doi:10.1093/intimm/dxm145 

49. Carvalho-Freitas MI, Anselmo-Franci JA, Palermo-Neto J, Felicio LF. Prior 
reproductive experience alters prolactin-induced macrophage responses 
in pregnant rats. J Reprod Immunol (2013) 99(1–2):54–61. doi:10.1016/j.
jri.2013.03.005 

50. Tang MW, Garcia S, Malvar Fernandez B, Gerlag DM, Tak PP, Reedquist 
KA. Rheumatoid arthritis and psoriatic arthritis synovial fluids stimulate 
prolactin production by macrophages. J Leukoc Biol (2017) 102(3):897–904. 
doi:10.1189/jlb.2A0317-115RR 

51. Carp HJ, Selmi C, Shoenfeld Y. The autoimmune bases of infertility and 
pregnancy loss. J Autoimmun (2012) 38(2–3):J266–74. doi:10.1016/j.
jaut.2011.11.016 

52. Tan IJ, Peeva E, Zandman-Goddard G. Hormonal modulation of the immune 
system – a spotlight on the role of progestogens. Autoimmun Rev (2015) 
14(6):536–42. doi:10.1016/j.autrev.2015.02.004 

53. Zhang F, Xia H, Shen M, Li X, Qin L, Gu H, et  al. Are prolactin levels 
linked to suction pressure? Breastfeed Med (2016) 11:461–8. doi:10.1089/
bfm.2015.0083 

54. Stuebe AM, Meltzer-Brody S, Pearson B, Pedersen C, Grewen K. Maternal 
neuroendocrine serum levels in exclusively breastfeeding mothers. Breastfeed 
Med (2015) 10(4):197–202. doi:10.1089/bfm.2014.0164 

55. Song GG, Lee YH. Circulating prolactin level in systemic lupus erythema-
tosus and its correlation with disease activity: a meta-analysis. Lupus (2017) 
26(12):1260–8. doi:10.1177/0961203317693094 

56. Fojtikova M, Tomasova Studynkova J, Filkova M, Lacinova Z, Gatterova 
J, Pavelka K, et  al. Elevated prolactin levels in patients with rheumatoid 
arthritis: association with disease activity and structural damage. Clin Exp 
Rheumatol (2010) 28(6):849–54. 

57. Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa 
K, et  al. A cathepsin D-cleaved 16 kDa form of prolactin mediates post-
partum cardiomyopathy. Cell (2007) 128(3):589–600. doi:10.1016/j.cell. 
2006.12.036 

58. Hilfiker-Kleiner D, Haghikia A, Berliner D, Vogel-Claussen J, Schwab J, 
Franke A, et al. Bromocriptine for the treatment of peripartum cardiomy-
opathy: a multicentre randomized study. Eur Heart J (2017) 38(35):2671–9. 
doi:10.1093/eurheartj/ehx355 

59. Blank M, Krause I, Buskila D, Teitelbaum D, Kopolovic J, Afek A, et  al. 
Bromocriptine immunomodulation of experimental SLE and primary anti-
phospholipid syndrome via induction of nonspecific T suppressor cells. Cell 
Immunol (1995) 162(1):114–22. doi:10.1006/cimm.1995.1058 

60. McMurray RW. Bromocriptine in rheumatic and autoimmune diseases. 
Semin Arthritis Rheum (2001) 31(1):21–32. doi:10.1053/sarh.2001.25482 

61. Buskila D, Shoenfeld Y. Prolactin, bromocriptine and autoimmune diseases. 
Isr J Med Sci (1996) 32(1):23–7. 

62. Shelly S, Boaz M, Orbach H. Prolactin and autoimmunity. Autoimmun Rev 
(2012) 11(6–7):A465–70. doi:10.1016/j.autrev.2011.11.009 

63. Parada-Turska J, Targonska-Stepniak B, Majdan M. [Prolactin in connective 
tissue diseases]. Postepy Hig Med Dosw (Online) (2006) 60:278–85. 

64. Arango MT, Perricone C, Kivity S, Cipriano E, Ceccarelli F, Valesini G, et al. 
HLA-DRB1 the notorious gene in the mosaic of autoimmunity. Immunol Res 
(2017) 65(1):82–98. doi:10.1007/s12026-016-8817-7 

65. Viatte S, Massey J, Bowes J, Duffus K, Eyre S, Barton A, et al. Replication 
of associations of genetic loci outside the HLA region with susceptibility 

12

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.imlet.2005.05.014
https://doi.org/10.1006/jaut.1995.0033
https://doi.org/10.1191/096120398678920316
https://doi.org/10.1196/annals.1381.014
https://doi.org/10.1191/096120301717164967
https://doi.org/10.1016/j.jaut.2009.11.015
https://doi.org/10.1016/j.jaut.2009.11.015
https://doi.org/10.1371/journal.pntd.0002470
https://doi.org/10.1016/j.jneuroim.2004.04.020
https://doi.org/10.1016/j.autrev.2007.11.018
https://doi.org/10.1016/j.autrev.2007.11.018
https://doi.org/10.1016/j.bbi.2003.09.014
https://doi.org/10.1016/j.jneuroim.2004.11.008
https://doi.org/10.1016/j.cellimm.2010.02.018
https://doi.org/10.1136/gutjnl-2013-306083
https://doi.org/10.1136/gutjnl-2013-306083
https://doi.org/10.1155/2013/287469
https://doi.org/10.1155/2016/3219017
https://doi.org/10.1016/0049-0172(91)90028-X
https://doi.org/10.1016/0049-0172(91)90028-X
https://doi.org/10.1111/j.1365-2249.2004.02686.x
https://doi.org/10.1016/0024-3205(96)00225-1
https://doi.org/10.1016/j.cellimm.2014.06.005
https://doi.org/10.1016/j.cellimm.2014.06.005
https://doi.org/10.1136/annrheumdis-2013-205124.56
https://doi.org/10.1046/j.1365-2567.2000.00996.x
https://doi.org/10.1016/S0165-5728(01)00420-9
https://doi.org/10.1093/intimm/dxm145
https://doi.org/10.1016/j.jri.2013.03.005
https://doi.org/10.1016/j.jri.2013.03.005
https://doi.org/10.1189/jlb.2A0317-115RR
https://doi.org/10.1016/j.jaut.2011.11.016
https://doi.org/10.1016/j.jaut.2011.11.016
https://doi.org/10.1016/j.autrev.2015.02.004
https://doi.org/10.1089/bfm.2015.0083
https://doi.org/10.1089/bfm.2015.0083
https://doi.org/10.1089/bfm.2014.0164
https://doi.org/10.1177/0961203317693094
https://doi.org/10.1016/j.cell.
2006.12.036
https://doi.org/10.1016/j.cell.
2006.12.036
https://doi.org/10.1093/eurheartj/ehx355
https://doi.org/10.1006/cimm.1995.1058
https://doi.org/10.1053/sarh.2001.25482
https://doi.org/10.1016/j.autrev.2011.11.009
https://doi.org/10.1007/s12026-016-8817-7


Borba et al. Influence of PRL in Autoimmune Diseases

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 73

to anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis 
Rheumatol (2016) 68(7):1603–13. doi:10.1002/art.39619 

66. Anaya JM, Shoenfeld Y, Cervera R. Systemic lupus erythematosus 2014. 
Autoimmune Dis (2014) 2014:274323. doi:10.1155/2014/274323 

67. Jacobi AM, Rohde W, Ventz M, Riemekasten G, Burmester GR, Hiepe F. 
Enhanced serum prolactin (PRL) in patients with systemic lupus erythema-
tosus: PRL levels are related to the disease activity. Lupus (2001) 10(8):554–61. 
doi:10.1191/096120301701549688 

68. Pacilio M, Migliaresi S, Meli R, Ambrosone L, Bigliardo B, Di Carlo R. 
Elevated bioactive prolactin levels in systemic lupus erythematosus – associ-
ation with disease activity. J Rheumatol (2001) 28(10):2216–21. 

69. Cardenas-Mondragon G, Ulloa-Aguirre A, Isordia-Salas I, Goffin V, 
Leanos-Miranda A. Elevated serum bioactive prolactin concentrations 
in patients with systemic lupus erythematosus are associated with disease 
activity as disclosed by homologous receptor bioassays. J Rheumatol (2007) 
34(7):1514–21. 

70. Leanos-Miranda A, Cardenas-Mondragon G. Serum free prolactin concen-
trations in patients with systemic lupus erythematosus are associated with 
lupus activity. Rheumatology (Oxford) (2006) 45(1):97–101. doi:10.1093/
rheumatology/kei115 

71. Orbach H, Zandman-Goddard G, Boaz M, Agmon-Levin N, Amital H, 
Szekanecz Z, et  al. Prolactin and autoimmunity: hyperprolactinemia cor-
relates with serositis and anemia in SLE patients. Clin Rev Allergy Immunol 
(2012) 42(2):189–98. doi:10.1007/s12016-011-8256-0 

72. Saha S, Tieng A, Pepeljugoski KP, Zandamn-Goddard G, Peeva E. Prolactin, 
systemic lupus erythematosus, and autoreactive B cells: lessons learnt from 
murine models. Clin Rev Allergy Immunol (2011) 40(1):8–15. doi:10.1007/
s12016-009-8182-6 

73. Jara LJ, Pacheco-Reyes H, Medina G, Angeles U, Cruz-Cruz P, Saavedra 
MA. Prolactin levels are associated with lupus activity, lupus anticoagulant, 
and poor outcome in pregnancy. Ann N Y Acad Sci (2007) 1108:218–26. 
doi:10.1196/annals.1422.024 

74. Leanos A, Pascoe D, Fraga A, Blanco-Favela F. Anti-prolactin autoantibodies 
in systemic lupus erythematosus patients with associated hyperprolactin-
emia. Lupus (1998) 7(6):398–403. doi:10.1191/096120398678920280 

75. Leanos-Miranda A, Cardenas-Mondragon G, Ulloa-Aguirre A, Isordia-Salas 
I, Parra A, Ramirez-Peredo J. Anti-prolactin autoantibodies in pregnant 
women with systemic lupus erythematosus: maternal and fetal outcome. 
Lupus (2007) 16(5):342–9. doi:10.1177/0961203307078197 

76. Yang XY, Liang LQ, Xu HS, He M, Yao SZ, Zhan ZP, et al. [Efficacy of oral 
bromocriptine in protecting the postpartum systemic lupus erythematosus 
patients from disease relapse]. Zhonghua Nei Ke Za Zhi (2003) 42(9):621–4. 

77. Qian Q, Liuqin L, Hao L, Shiwen Y, Zhongping Z, Dongying C, et  al. 
The effects of bromocriptine on preventing postpartum flare in systemic 
lupus erythematosus patients from South China. J Immunol Res (2015) 
2015:316965. doi:10.1155/2015/316965 

78. Praprotnik S, Agmon-Levin N, Porat-Katz BS, Blank M, Meroni PL, Cervera 
R, et al. Prolactin’s role in the pathogenesis of the antiphospholipid syndrome. 
Lupus (2010) 19(13):1515–9. doi:10.1177/0961203310373781 

79. Wallaschofski H, Kobsar A, Sokolova O, Eigenthaler M, Lohmann T. 
Co-activation of platelets by prolactin or leptin – pathophysiological 
findings and clinical implications. Horm Metab Res (2004) 36(1):1–6. 
doi:10.1055/s-2004-814200 

80. Raaz D, Wallaschofski H, Stumpf C, Yilmaz A, Cicha I, Klinghammer L, 
et  al. Increased prolactin in acute coronary syndromes as putative co-ac-
tivator of ADP-stimulated P-selectin expression. Horm Metab Res (2006) 
38(11):767–72. doi:10.1055/s-2006-955090 

81. Wallaschofski H, Lohmann T, Hild E, Kobsar A, Siegemund A, Spilcke-Liss 
E, et al. Enhanced platelet activation by prolactin in patients with ischemic 
stroke. Thromb Haemost (2006) 96(1):38–44. doi:10.1160/th05-09-0634 

82. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et  al. 2012 
revised International Chapel Hill Consensus Conference Nomenclature of 
Vasculitides. Arthritis Rheum (2013) 65(1):1–11. doi:10.1002/art.37715 

83. Barrett JH, Brennan P, Fiddler M, Silman A. Breast-feeding and post-
partum relapse in women with rheumatoid and inflammatory arthritis. 
Arthritis Rheum (2000) 43(5):1010–5. doi:10.1002/1529-0131(200005)43: 
5<1010:aid-anr8>3.0.co;2-o 

84. Olsen NJ, Kovacs WJ. Hormones, pregnancy, and rheumatoid arthritis. 
J Gend Specif Med (2002) 5(4):28–37. 

85. Karlson EW, Mandl LA, Hankinson SE, Grodstein F. Do breast-feeding and 
other reproductive factors influence future risk of rheumatoid arthritis? 
Results from the Nurses’ Health Study. Arthritis Rheum (2004) 50(11):3458–
67. doi:10.1002/art.20621 

86. Whyte A, Williams RO. Bromocriptine suppresses postpartum exacerba-
tion of collagen-induced arthritis. Arthritis Rheum (1988) 31(7):927–8. 
doi:10.1002/art.1780310717 

87. Figueroa F, Carrion F, Martinez ME, Rivero S, Mamani I, Gonzalez G. [Effects 
of bromocriptine in patients with active rheumatoid arthritis]. Rev Med Chil 
(1998) 126(1):33–41. 

88. Salesi M, Sadeghihaddadzavareh S, Nasri P, Namdarigharaghani N, 
Farajzadegan Z, Hajalikhani M. The role of bromocriptine in the treatment of 
patients with active rheumatoid arthritis. Int J Rheum Dis (2013) 16(6):662–6. 
doi:10.1111/1756-185x.12015 

89. McMurray R, Keisler D, Kanuckel K, Izui S, Walker SE. Prolactin influences 
autoimmune disease activity in the female B/W mouse. J Immunol (1991) 
147(11):3780–7. 

90. Elhai M, Avouac J, Kahan A, Allanore Y. Systemic sclerosis: recent insights. 
Joint Bone Spine (2015) 82(3):148–53. doi:10.1016/j.jbspin.2014.10.010 

91. Jara LJ, Medina G, Saavedra MA, Vera-Lastra O, Navarro C. Prolactin and 
autoimmunity. Clin Rev Allergy Immunol (2011) 40(1):50–9. doi:10.1007/
s12016-009-8185-3 

92. Straub RH, Zeuner M, Lock G, Scholmerich J, Lang B. High prolactin and 
low dehydroepiandrosterone sulphate serum levels in patients with severe 
systemic sclerosis. Br J Rheumatol (1997) 36(4):426–32. doi:10.1093/
rheumatology/36.4.426 

93. La Montagna G, Baruffo A, Pasquali D, Bellastella A, Tirri G, Sinisi AA. 
Assessment of pituitary gonadotropin release to gonadotropin releasing 
hormone/thyroid-stimulating hormone stimulation in women with sys-
temic sclerosis. Rheumatology (Oxford) (2001) 40(3):310–4. doi:10.1093/
rheumatology/40.3.310 

94. Shahin AA, Abdoh S, Abdelrazik M. Prolactin and thyroid hormones in 
patients with systemic sclerosis: correlations with disease manifestations and 
activity. Z Rheumatol (2002) 61(6):703–9. doi:10.1007/s00393-002-0413-7 

95. Vera-Lastra O, Jara LJ, Medina G, Rojas JL, Velaquez F, Ariza R, et  al. 
Functional hyperprolactinemia and hypophyseal microadenoma in systemic 
sclerosis. J Rheumatol (2006) 33(6):1108–12. 

96. Rueda de Leon Aguirre A, Ramirez Calvo JA, Rodriguez Reyna TS. 
Comprehensive approach to systemic sclerosis patients during pregnancy. 
Reumatol Clin (2015) 11(2):99–107. doi:10.1016/j.reuma.2014.06.006 

97. Tincani A, Dall’Ara F, Lazzaroni MG, Reggia R, Andreoli L. Pregnancy in 
patients with autoimmune disease: a reality in 2016. Autoimmun Rev (2016) 
15(10):975–7. doi:10.1016/j.autrev.2016.07.017 

98. Taraborelli M, Ramoni V, Brucato A, Airo P, Bajocchi G, Bellisai F, et al. Brief 
report: successful pregnancies but a higher risk of preterm births in patients 
with systemic sclerosis: an Italian multicenter study. Arthritis Rheum (2012) 
64(6):1970–7. doi:10.1002/art.34350 

99. de Carvalho JF, Pereira RM, Shoenfeld Y. Pearls in autoimmunity. Auto 
Immun Highlights (2011) 2(1):1–4. doi:10.1007/s13317-011-0016-x 

100. Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I. Environmental 
risk factors and multiple sclerosis: an umbrella review of systematic reviews 
and meta-analyses. Lancet Neurol (2015) 14(3):263–73. doi:10.1016/
s1474-4422(14)70267-4 

101. Steinman L. Immunology of relapse and remission in multiple sclerosis. 
Annu Rev Immunol (2014) 32:257–81. doi:10.1146/annurev-immunol- 
032713-120227 

102. Azar ST, Yamout B. Prolactin secretion is increased in patients with multiple 
sclerosis. Endocr Res (1999) 25(2):207–14. doi:10.1080/07435809909066142 

103. Correale J, Farez MF, Ysrraelit MC. Role of prolactin in B  cell regulation 
in multiple sclerosis. J Neuroimmunol (2014) 269(1–2):76–86. doi:10.1016/j.
jneuroim.2014.02.007 

104. Zhornitsky S, Yong VW, Weiss S, Metz LM. Prolactin in multiple sclerosis. 
Mult Scler (2013) 19(1):15–23. doi:10.1177/1352458512458555 

105. Costanza M, Binart N, Steinman L, Pedotti R. Prolactin: a versatile regu-
lator of inflammation and autoimmune pathology. Autoimmun Rev (2015) 
14(3):223–30. doi:10.1016/j.autrev.2014.11.005 

106. Costanza M, Pedotti R. Prolactin: friend or foe in central nervous system 
autoimmune inflammation? Int J Mol Sci (2016) 17(12):2026. doi:10.3390/
ijms17122026 

13

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1002/art.39619
https://doi.org/10.1155/2014/274323
https://doi.org/10.1191/096120301701549688
https://doi.org/10.1093/rheumatology/kei115
https://doi.org/10.1093/rheumatology/kei115
https://doi.org/10.1007/s12016-011-8256-0
https://doi.org/10.1007/s12016-009-8182-6
https://doi.org/10.1007/s12016-009-8182-6
https://doi.org/10.1196/annals.1422.024
https://doi.org/10.1191/096120398678920280
https://doi.org/10.1177/0961203307078197
https://doi.org/10.1155/2015/316965
https://doi.org/10.1177/0961203310373781
https://doi.org/10.1055/s-2004-814200
https://doi.org/10.1055/s-2006-955090
https://doi.org/10.1160/th05-09-0634
https://doi.org/10.1002/art.37715
https://doi.org/10.1002/1529-0131(200005)43:5 < 1010:aid-anr8 > 3.0.co;2-o
https://doi.org/10.1002/1529-0131(200005)43:5 < 1010:aid-anr8 > 3.0.co;2-o
https://doi.org/10.1002/art.20621
https://doi.org/10.1002/art.1780310717
https://doi.org/10.1111/1756-185x.12015
https://doi.org/10.1016/j.jbspin.2014.10.010
https://doi.org/10.1007/s12016-009-8185-3
https://doi.org/10.1007/s12016-009-8185-3
https://doi.org/10.1093/rheumatology/36.4.426
https://doi.org/10.1093/rheumatology/36.4.426
https://doi.org/10.1093/rheumatology/40.3.310
https://doi.org/10.1093/rheumatology/40.3.310
https://doi.org/10.1007/s00393-002-0413-7
https://doi.org/10.1016/j.reuma.2014.06.006
https://doi.org/10.1016/j.autrev.2016.07.017
https://doi.org/10.1002/art.34350
https://doi.org/10.1007/s13317-011-0016-x
https://doi.org/10.1016/s1474-4422(14)70267-4
https://doi.org/10.1016/s1474-4422(14)70267-4
https://doi.org/10.1146/annurev-immunol-032713-120227
https://doi.org/10.1146/annurev-immunol-032713-120227
https://doi.org/10.1080/07435809909066142
https://doi.org/10.1016/j.jneuroim.2014.02.007
https://doi.org/10.1016/j.jneuroim.2014.02.007
https://doi.org/10.1177/1352458512458555
https://doi.org/10.1016/j.autrev.2014.11.005
https://doi.org/10.3390/ijms17122026
https://doi.org/10.3390/ijms17122026


Borba et al. Influence of PRL in Autoimmune Diseases

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 73

107. Hellwig K, Haghikia A, Rockhoff M, Gold R. Multiple sclerosis and preg-
nancy: experience from a nationwide database in Germany. Ther Adv Neurol 
Disord (2012) 5(5):247–53. doi:10.1177/1756285612453192 

108. Langer-Gould A, Huang SM, Gupta R, Leimpeter AD, Greenwood E, 
Albers KB, et al. Exclusive breastfeeding and the risk of postpartum relapses 
in women with multiple sclerosis. Arch Neurol (2009) 66(8):958–63. 
doi:10.1001/archneurol.2009.132 

109. Hellwig K, Rockhoff M, Herbstritt S, Borisow N, Haghikia A, Elias-Hamp 
B, et  al. Exclusive breastfeeding and the effect on postpartum multiple 
sclerosis relapses. JAMA Neurol (2015) 72(10):1132–8. doi:10.1001/
jamaneurol.2015.1806 

110. Langer-Gould A, Gupta R, Huang S, Hagan A, Atkuri K, Leimpeter AD, 
et  al. Interferon-gamma-producing T  cells, pregnancy, and postpartum 
relapses of multiple sclerosis. Arch Neurol (2010) 67(1):51–7. doi:10.1001/
archneurol.2009.304 

111. Parra-Medina R, Molano-Gonzalez N, Rojas-Villarraga A, Agmon-Levin N, 
Arango MT, Shoenfeld Y, et al. Prevalence of celiac disease in latin america: 
a systematic review and meta-regression. PLoS One (2015) 10(5):e0124040. 
doi:10.1371/journal.pone.0124040 

112. Delvecchio M, Faienza MF, Lonero A, Rutigliano V, Francavilla R, Cavallo 
L. Prolactin may be increased in newly diagnosed celiac children and ado-
lescents and decreases after 6 months of gluten-free diet. Horm Res Paediatr 
(2014) 81(5):309–13. doi:10.1159/000357064 

113. Dong YH, Fu DG. Autoimmune thyroid disease: mechanism, genetics and 
current knowledge. Eur Rev Med Pharmacol Sci (2014) 18(23):3611–8. 

114. Yamamoto M, Iguchi G, Takeno R, Okimura Y, Sano T, Takahashi M, 
et  al. Adult combined GH, prolactin, and TSH deficiency associated with 
circulating PIT-1 antibody in humans. J Clin Invest (2011) 121(1):113–9. 
doi:10.1172/jci44073 

115. Arany Z. Understanding peripartum cardiomyopathy. Annu Rev Med (2017) 
69:1.1–1.12. doi:10.1146/annurev-med-041316-090545 

116. Hilfiker-Kleiner D, Sliwa K. Pathophysiology and epidemiology of peripar-
tum cardiomyopathy. Nat Rev Cardiol (2014) 11(6):364–70. doi:10.1038/
nrcardio.2014.37 

117. Haghikia A, Podewski E, Libhaber E, Labidi S, Fischer D, Roentgen P, et al. 
Phenotyping and outcome on contemporary management in a German 
cohort of patients with peripartum cardiomyopathy. Basic Res Cardiol (2013) 
108(4):366. doi:10.1007/s00395-013-0366-9 

118. Karaye KM, Henein MY. Peripartum cardiomyopathy: a review article. Int 
J Cardiol (2013) 164(1):33–8. doi:10.1016/j.ijcard.2011.11.069 

119. Haghikia A, Kaya Z, Schwab J, Westenfeld R, Ehlermann P, Bachelier K, 
et al. Evidence of autoantibodies against cardiac troponin I and sarcomeric 
myosin in peripartum cardiomyopathy. Basic Res Cardiol (2015) 110(6):60. 
doi:10.1007/s00395-015-0517-2 

120. Ansari AA, Fett JD, Carraway RE, Mayne AE, Onlamoon N, Sundstrom JB. 
Autoimmune mechanisms as the basis for human peripartum cardiomy-
opathy. Clin Rev Allergy Immunol (2002) 23:301–24. doi:10.1385/CRIAI: 
23:3:301 

121. Sundstrom JB, Fett JD, Carraway RD, Ansari AA. Is peripartum cardio-
myopathy an organ-specific autoimmune disease? Autoimmun Rev (2002) 
1(1–2):73–7. doi:10.1016/S1568-9972(01)00009-X 

122. Melo MA, Carvalho JS, Feitosa FE, Araujo Junior E, Peixoto AB, Costa 
Carvalho FH, et al. Peripartum cardiomyopathy treatment with dopamine 
agonist and subsequent pregnancy with a satisfactory outcome. Rev Bras 
Ginecol Obstet (2016) 38(6):308–13. doi:10.1055/s-0036-1584567 

123. Arrigo M, Blet A, Mebazaa A. Bromocriptine for the treatment of peripartum 
cardiomyopathy: welcome on BOARD. Eur Heart J (2017) 38(35):2680–2. 
doi:10.1093/eurheartj/ehx428 

124. Horn P, Saeed D, Akhyari P, Hilfiker-Kleiner D, Kelm M, Westenfeld R. 
Complete recovery of fulminant peripartum cardiomyopathy on mechanical 
circulatory support combined with high-dose bromocriptine therapy. ESC 
Heart Fail (2017) 4:641–4. doi:10.1002/ehf2.12175 

125. Sliwa K, Hilfiker-Kleiner D, Petrie MC, Mebazaa A, Pieske B, Buchmann 
E, et  al. Current state of knowledge on aetiology, diagnosis, management, 
and therapy of peripartum cardiomyopathy: a position statement from the 
Heart Failure Association of the European Society of Cardiology Working 
Group on peripartum cardiomyopathy. Eur J Heart Fail (2010) 12(8):767–78. 
doi:10.1093/eurjhf/hfq120 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Borba, Zandman-Goddard and Shoenfeld. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner  are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

14

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1177/1756285612453192
https://doi.org/10.1001/archneurol.2009.132
https://doi.org/10.1001/jamaneurol.2015.1806
https://doi.org/10.1001/jamaneurol.2015.1806
https://doi.org/10.1001/archneurol.2009.304
https://doi.org/10.1001/archneurol.2009.304
https://doi.org/10.1371/journal.pone.0124040
https://doi.org/10.1159/000357064
https://doi.org/10.1172/jci44073
https://doi.org/10.1146/annurev-med-041316-090545
https://doi.org/10.1038/nrcardio.2014.37
https://doi.org/10.1038/nrcardio.2014.37
https://doi.org/10.1007/s00395-013-0366-9
https://doi.org/10.1016/j.ijcard.2011.11.069
https://doi.org/10.1007/s00395-015-0517-2
https://doi.org/10.1385/CRIAI:23:3:301
https://doi.org/10.1385/CRIAI:23:3:301
https://doi.org/10.1016/S1568-9972(01)00009-X
https://doi.org/10.1055/s-0036-1584567
https://doi.org/10.1093/eurheartj/ehx428
https://doi.org/10.1002/ehf2.12175
https://doi.org/10.1093/eurjhf/hfq120
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


REVIEW
published: 04 October 2018

doi: 10.3389/fimmu.2018.02279

Frontiers in Immunology | www.frontiersin.org October 2018 | Volume 9 | Article 2279

Edited by:

Virginia Rider,

Pittsburg State University,

United States

Reviewed by:

Antonio Martocchia,

Università degli Studi di Roma La

Sapienza, Italy

Antonio La Cava,

University of California, Los Angeles,

United States

*Correspondence:

Vaishali R. Moulton

vmoulton@bidmc.harvard.edu

Specialty section:

This article was submitted to

Cytokines and Soluble Mediators in

Immunity,

a section of the journal

Frontiers in Immunology

Received: 16 July 2018

Accepted: 13 September 2018

Published: 04 October 2018

Citation:

Moulton VR (2018) Sex Hormones in

Acquired Immunity and Autoimmune

Disease. Front. Immunol. 9:2279.

doi: 10.3389/fimmu.2018.02279

Sex Hormones in Acquired Immunity
and Autoimmune Disease
Vaishali R. Moulton*

Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,

MA, United States

Women have stronger immune responses to infections and vaccination than men.

Paradoxically, the stronger immune response comes at a steep price, which is the

high incidence of autoimmune diseases in women. The reasons why women have

stronger immunity and higher incidence of autoimmunity are not clear. Besides gender,

sex hormones contribute to the development and activity of the immune system,

accounting for differences in gender-related immune responses. Both innate and

adaptive immune systems bear receptors for sex hormones and respond to hormonal

cues. This review focuses on the role of sex hormones particularly estrogen, in the

adaptive immune response, in health, and autoimmune disease with an emphasis on

systemic lupus erythematosus.

Keywords: hormones, estrogen, immune response, autoimmune disease, SLE

INTRODUCTION

From an evolutionary point of view, the paramount goal of all living organisms is to survive,
reproduce and propagate the species. In humans and most vertebrates, the mother has the
responsibility to bear the most vulnerable of the species—the offspring, and protect it from
danger, to accomplish this supreme mission. Additionally there is non-genetic passive transfer of
immunity from mother to offspring called trans-generational immune priming. Therefore, having
the parental role may account for stronger immunity in females to defend and “prepare” for this
responsibility. Intriguingly, the same immune response shifts during pregnancy to “tolerate” the
foreign fetus and prevent rejection. Interestingly, in most fish species the father bears the parental
responsibility. The Syngnathidae group includes seadragons, pipefish and the iconic seahorse.
In these species, while it is the mother who produces the eggs, the father carries, nurtures the
eggs through gestation, and gives birth to the young thus fulfilling the parental and immune
priming role. There is evidence that there are differences in the immune response in the male
seahorse during the parental vs. mating phases with improved immunity during the parental
stage (1, 2). These observations suggest that the parental role comes with great immune power
and responsibility. A “side-effect” of the stronger immune response is the higher propensity for
developing autoimmune disease. This may be a plausible perspective to understand the gender bias
of autoimmune disease.

Sex hormones not only control the reproductive system, but also regulate the development,
and function of the immune response. Innate and adaptive, humoral and cell-mediated immune
responses are impacted by hormones, and dysregulation of these mechanisms contribute to
immune-mediated diseases including autoimmune disease (3–9). While the exact molecular
mechanisms of how female hormones regulate the immune system are yet incompletely elucidated,
studies show that they control development, homeostasis, gene expression, and signaling processes
in T and B lymphocytes to influence their function in health and disease. This review focuses on
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the role of sex hormones on the adaptive immune system and
in autoimmune diseases with a focus on the prototype systemic
autoimmune disease SLE (10–12).

ESTROGEN MECHANISMS OF ACTION

Estrogen acts via classical receptor-mediated, non-classical,
and non-ligand-mediated genomic (nuclear) and non-genomic
(extranuclear) pathways to control mechanisms of gene
expression, protein modifications and signaling to influence
cellular functions (Figure 1) (13–15).

Genomic Pathways of Action
In the classical genomic pathway, Estrogen, or its most potent
form 17-β-estradiol (E2) binds to its cognate intracellular steroid
hormone receptor–estrogen receptor (ER). Two types of classical
ER have been identified–ERα and ERβ encoded by the Esr1 and
Esr2 genes respectively. The ER is a ligand-activated transcription
factor, which bears ligand- and DNA-binding domains. Estrogen
diffuses through the cell membrane, binds to cytoplasmic ER,
which undergoes conformational change in the ER, and homo-
or hetero-dimerizes. ER dimers then translocate into the nucleus
and bind to promoters of target genes to regulate gene expression.
In the non-classical genomic pathways, ER bound to DNA can
interact with other transcription factors, or the ER may act in
tether-mediated manner as co-factor with transcription factors
including Specificity protein 1 (Sp1), activating protein 1 (AP-1),
NF-κB and p300 proteins. ER/Sp1 and ER/AP-1 interactions
activate a large number of genes and pathways and the ligand
structure and specific ER-subtype dependent activation of either
(16, 17). Activating functions (AF) 1 and 2 domains of the
ERα bind to coregulators to regulate transcription and are both
important in E2-mediated effects (18).When bound to the ligand,
there is differential activation of the two ERs. Specifically ERα

transactivates while ERβ inhibits transcription.
The ER binds specific motifs known as estrogen response

elements (ERE) within the target DNA. The consensus ERE
site is 5′-GGTCAnnnTGACC-3′ (19). While ERE sites within
gene promoters are important in transcription, a chromatin
Immunoprecipitation (ChIP)-paired end diTag cloning and
sequencing whole genome cartography strategy identified ER
binding sites in MCF-7 breast cancer cells and noted several
interesting findings (20). Only 5% of mapped sites are in the
proximal promoter regions of genes while a vast majority is in
intronic or distal locations indicating transcriptional regulatory
mechanisms over physical distances. Majority of the mapped
sites were full ERE sites while 25% were half-sites and a small
proportion (4%) had no recognizable ERE sequence (20). ERα

and ERβ display dynamic interplay in their chromatin binding
capacities and function. ERα and ERβ exhibit substantial overlap
in the sites they can recognize, in cells that express either one of
these receptors, whereas in cells that express both, fewer sites are
shared. Cognate sites for both ERs are ERE-rich, however in cells
that express both receptors ERα can competitively displace ERβ

shifting it to new sites less enriched in ERE elements (21).
Besides being richly expressed in reproductive tissues, ERs are

widely expressed in most cells in the immune system therefore

influencing both innate and adaptive immune responses. There
is age- and stage-dependent expression of ERs by lymphocyte
precursors. Activated T cells express estrogen receptors (22)
and both mRNA and protein levels of ER have been described
for T cells, B cells, monocytes and dendritic cells. Differential
expression of ER genes has been demonstrated in human
peripheral blood mononuclear cells (PBMC) (23) and peripheral
blood lymphocytes (PBL) (24). PBL CD4, CD8T cells, B
cells, and natural killer (NK) cells contain intracellular ER
of which the ERα46 isoform is the most-expressed isoform.
A cell surface ERα46 was detected in PBLs, and existence
of a functional membrane (m) ERα was confirmed when
a membrane-impermeant E2 mediated intracellular signaling
activation and proliferation of T cells (24). CD4T cells express
high levels of ERα over ERβ while B cells express more ERβ than
ERα mRNA. CD8T cells and monocytes express low levels of
both receptors (23).

ERα undergoes various posttranslational modifications
including phosphorylation, acetylation, and ubiquitination,
which modulate its stability and/or transcriptional activity.
An interesting aspect of ER signaling and ER-mediated gene
regulation is the continuous proteasome-mediated turnover
of ERα. Estrogen can activate the Ubiquitin-Proteasome
Pathway (UPP) to influence post-translational modifications and
degradation of proteins. Ubiquitin is a small ∼8 kDa protein
which binds a series of three enzymes E1 (Ub-activating), E2
(Ub-carrier or conjugating), and E3 (Ub-ligase), which ultimately
link it to the substrate protein. Ubiquitin-tagged proteins are
targeted to the proteasome for degradation. This pathway is
an important mechanism for tight control of the expression of
short-lived inflammatory molecules and transcription factors
including nuclear factor kappa B (NFκB), signal transducer and
activator of transcription (STAT) 1 and cfos/jun to appropriately
control their activity. Steroid hormone receptors including
the ERs bind to protein components of the UPP including
Ubc9, an E2 conjugating enzyme and E6-associated protein
(E6-AP) which is an E3 ligase (25). Kruppel-like factor 5
(KLF5) is an important transcription factor, which inhibits
cell proliferation, differentiation and carcinogenesis, and its
levels are decreased in cancers including breast cancer. Estrogen
induces the expression of estrogen responsive finger protein
(EFP), an E3 ubiquitin ligase which leads to degradation of
KLF5 in breast cancer cells (26). Similarly estrogen induces
EFP-mediated degradation of another transcription factor tumor
suppressor AT motif-binding factor 1 (ATBF1) which has an
auto regulatory feedback with ERα signaling (27). Estrogen
itself mediates downregulation of the ERα through the UPP
(25, 28), and subsequently, the ERα mediated transcriptional
activity and proteasomal degradation are inter-dependent.
ERα was also shown to be a target for small ubiquitin-like
modifier (SUMO)-1 modification (29). SUMOylation of the
ERα hinge region is hormone-dependent and controls its
transcriptional activity thus linking the estrogen and SUMO
pathways. E3 ligases protein inhibitor of STAT1 (PIAS)1 and
PIAS3 were shown to be E3 ligases for ERα (29), and addition of
either Ubc9 or PIAS1 increased ERE-luciferase activity in COS
cells (30).
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FIGURE 1 | Schematic of mechanisms of estrogen action on cellular responses. Genomic and non-genomic, ligand dependent and ligand-independent, classic and

non-classic receptor mediated estrogen-estrogen receptor signaling pathways are shown.

Estrogen-independent functions of the ER include extensive
phosphorylation, which control its transcriptional activity
independently of its ligand. Environmental cues which activate
the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt
pathway and other kinases can phosphorylate the ER to regulate
gene expression. ER independent functions of E2 were suggested
in studies using ERα deficient wild-type (WT) or lupus-prone
New Zealand Black × New Zealand White (NZB × NZW)
founder 1 (F1) mice. A link between the ER and Toll-like receptor
(TLR) signaling was shown as ERα deficiency led to reduced
TLR9 signaling, reduced numbers of plasmacytoid dendritic
cells (DC)s and impaired interferon (IFN)-α, interleukin (IL)-6,
macrophage/monocyte chemoattractant protein (MCP)-1, IL-1β
and IL-23 inflammatory cytokines (13).

Non-genomic Pathways of Action
Besides the genomic pathway of gene regulation, estrogen
can mediate effects through non-genomic mechanisms,
through cross-talk with signaling cascades. Besides the classical
intracellular ERs, Estrogen can bind to membrane estrogen
receptors (mER) and membrane-associated G-protein coupled
receptors (GPCRs) and trigger signaling downstream in certain
cell types. Estrogen binds the G protein-coupled estrogen
receptor 1 (GPER1) originally identified as G protein-coupled
receptor 30 (GPR30) (31). These are also called rapid effects
of estrogen mediated through membrane receptors, receptor
tyrosine kinases, and signaling pathways downstream (31, 32).

There is also transcriptional activation of genes by the GPER-
induced response which include a first tier of transcription
factors serum response factor (SRF), cyclic AMP repressor
element binding protein (CREB), Ets family, then followed
by a second tier including Fos, Jun, connective tissue growth
factor (CTGF), early growth response protein (EGR)1, cyclic
AMP dependent transcription factor (ATF)3, CCAAT/enhancer
binding protein delta (C/EBPγ), and nuclear receptor related
(NR)4A2 (33). Ligand induced activation of the mER and
GPER can also integrate into intracellular signaling of the
immune cell receptor such as the B cell receptor (BCR) signaling
and activation pathways. Thus, non-nuclear non-genomic
cytoplasmic effects of estrogen are attributed to increased
calcium, through phospholipase C beta (PLCβ) activation, Gα

and Gβγ protein activation, and kinase pathway activation
including the mitogen activated protein kinase (MAPK), (PI3K)
and mammalian target of rapamycin (mTOR) pathways (34, 35).

Estrogen and MicroRNA in
Post-transcriptional Gene Regulation
In the last decade, the role of microRNA (miR) in post-
transcriptional gene regulation has been uncovered as a powerful
mechanism of gene regulation in health and disease as evidenced
by the dramatic rise in the number of studies and publications
in this field (36). miRs are short 22-nucleotide non-coding
RNA molecules which are transcribed from genomic DNA
and bind complementary sequences within the 3′untranslated
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region (UTR) of target genes to block translation or lead
to degradation of the mRNA. miRs control genes involved
in the immune response and aberrations in miR levels and
activity can contribute to pathogenesis of autoimmune diseases.
Therefore miRs are considered attractive biomarkers and targets
for therapy. A large number (113) of miRs are encoded on the
human X chromosome, second only to those on chromosome
1, which encodes 134 miRs, while the Y chromosome only
encodes 2 miRs (37). Thus X-linked miRs likely contribute to
the sex bias in autoimmunity. While the detailed functional
characterization of all X-linked miRs in autoimmunity remains
to be elucidated, a number of immune-suppressive genes
are targeted by X-linked miRs including Forkhead box P3
(FoxP3), cytotoxic T lymphocyte associated protein 4 (CTLA4),
Casitas B-lineage Lymphoma (CBL), CBL-B, suppressors of
cytokine signaling (SOCS) genes, and programmed cell death
1 (PDCD1) as evidenced by putative predicted miR target sites
within their 3′UTR (37). Besides the X-linked miR-mediated
regulation, estrogen regulates microRNA expression to control
genes of both innate and adaptive immune responses and
therefore has implications for autoimmune disease (8, 36, 38,
39).

Estrogen upregulates miR-18a, miR-148a, miR-223, miR-451,
miR-486, and miR-708, and downregulates SLE-linked miR-
125, miR-145, and miR-146a. Microarray analysis showed that
estrogen differentially regulates miRs in murine splenocytes
in vivo. Treatment of mice with E decreases miR-146a and
increases miR-223 which suppresses lipopolysaccharide (LPS)-
induced IFN-γ and nitric oxide (NO) in splenic lymphocytes
(40). miRs can also influence ER expression and modulate ER
activity in disease (41). Estrogen activates STAT1-dependent
transcriptional activation of TLR8 expression to promote
inflammatory signaling via miR-21 in extracellular vesicles
(42). A major role of estrogen is in bone remodeling and a
protective role of estrogen is to suppress osteoclast mediated
bone resorption. A novelmechanism bywhich estrogen preserves
bone mass in bone marrow mesenchymal stem cells (BMMSC)s
is to induce apoptosis of osteoclasts to protect from bone
loss. Estrogen inhibits miR-181, which blocks FasL. Therefore
estrogen promotes FasL protein expression by miR mediated
posttranscriptional regulation in BMMSCs to maintain bone
remodeling balance. Inmenopause, low estrogen levels, increased
miR-181 and reduced FasL can promote survival of osteoclasts
and increase bone loss (43).

ESTROGEN AND T LYMPHOCYTES

T Cell Development
It is well known that estrogen suppresses T and B cell
lymphopoiesis and activates B cell function. ERs are present
on thymocytes as well as thymic epithelial cells (44). Estrogen
influences T cell development and lymphopoiesis, and its effects
on the thymus are complex. High doses of exogenous estrogen
reduce thymic cellularity and cause thymic atrophy. This
reduction is attributed to reduced proliferation of thymocytes
precursors, both in the thymus and in the bone marrow (45).
Accordingly, ovariectomy to remove the endogenous source of

estrogen increases thymic cellularity with a shift to increased
double positive (DP) thymocytes with reduced double negative
(DN) and single positive (SP) cells (46). Conversely, estrogen
treatment leads to reduced thymic cellularity with decreased
proportions of DP cells (45, 47, 48), increased proportions of
single positive (SP) CD4 and CD8 expressing variable beta chain
(Vβ) T cell receptor (TCR), and alters distribution and TCRVβ

expression of DN thymocytes (49). Pregnancy or treatment
with estrogen induces a dramatic involution of the thymus
(50–53). Estrogen mediates the loss of cortical thymocytes as
evidenced by the reduced size of the thymic cortex in histological
studies in mice (54, 55). Estrogen activates extrathymic T cell
differentiation in the liver while inactivating intrathymic T cell
development (48). However endogenous E2/ERα signaling is
necessary for normal thymic size and function, because male and
female ERα knockout (ko) mice still had reduced thymi and it
was shown that ERα in non-hematopoietic tissues is essential for
a normal full-sized thymus. Other receptor pathways are likely
involved in estrogen-mediated thymic atrophy (56, 57), possibly
due to increased E2 mediated effects through the ERβ or through
effects on thymic stromal cells.

Besides thymocytes, sex-hormones also have varied effects on
thymic epithelial cells (TEC) as evidenced by transcriptomics
studies of cortical (c) and medullary (m) TECs in male, female,
and castrated male mice. Male mice accumulated more cTECs
but exhibited lower proliferation rates and expressed lower levels
of genes involved in thymocyte expansion (58). The autoimmune
regulator (Aire) gene is a transcriptional regulator important for
expression of tissue specific antigens in mTECs for the positive
and negative selection of T lymphocytes in the thymus. Thus Aire
is a key molecule in central tolerance. In both mice and humans,
reduced levels of Aire were found in females compared to males
after puberty (59, 60). Estrogen downregulated Aire in cultured
TECs, in human thyme grafted into mice, and in murine fetal
thymic organ cultures by epigenetic modifications within theAire
promoter (60). Therefore estrogen-mediated regulation of T cell
development and repertoire selection are important for central
tolerance and contribute to autoimmunity.

T Cell Homeostasis
The role of estrogen on cellular homeostasis is complex,
depends on the cell/tissue type, concentrations of estrogen, and
physiologic or pathological contexts (61). While physiologic
concentrations of 17-β-estradiol stimulate survival and
proliferation of cancer cells, and suppress apoptosis via Ras
signaling in an ER dependent manner (62), pharmacological
doses inhibit proliferation and induce apoptosis by ER
independent pathways (63). Pharmacologic doses of 17-α-
estradiol but not 17-β-estradiol induced G2/M cell cycle arrest
in Jurkat cells which is exerted by ER independent mechanisms
(64).

Estrogen stimulates growth and inhibits apoptosis a variety of
cells but there is also evidence that estrogen induces apoptosis
in breast cancer and other cells. Estrogen regulates apoptosis
by both extrinsic Fas/FasL and intrinsic mitochondrial pathways
(61). Culture of human PBMCs from healthy donors with 2-
methoxyestradiol followed by pharmacologic phorbol myristic
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acid (PMA)/Ionomycin or physiologic CD3/CD28 stimulation
led to decreased apoptosis and decreased Caspase-9 activity and
reduced T cell proliferation with modest decreases in tumor
necrosis factor (TNF) and IFN-γ production (65).

Ovariectomy in female albino oxford (AO) inbred rats led
to an increase in the CD8T cell compartment in peripheral
blood and spleen, reflected in increased thymic double positive
and CD8 cells and recent thymic emigrants (RTE) in peripheral
blood. It also increased CD4+FoxP3+ CD4T cells generation in
the peripheral lymphoid tissues (66).

T Cell Activation
Estrogen influences not only development but also various
functions of T cells, in particular CD4T cells including activation,
cytokine production differentiation and regulatory functions
with impact on physiology and autoimmune diseases (67, 68).

Estrogen and ERα are important in the activation,
proliferation and pathogenic potential of T cells. T cell
specific deletion of the ERα in mice led to transcriptomics
changes with reduced expression of genes involved in T cell
activation and reduced pathogenic potential in a T cell transfer
model of colitis model (69). Estrogen downregulates DNA
methyl transferase (DNMT) 1 expression and enhances global
DNA hypomethylation in CD4T cells from female SLE patients.
While plasma β-estradiol levels were similar between patients
and healthy controls, the mRNA expression of ERα but not ERβ

was increased in SLE CD4T cells (70). Aberrant extracellular
regulated kinase (ERK)/MAPK signaling and resultant decrease
in DNMT levels leading to DNA hypomethylation of a number
of genes has been described and associated with autoimmune
disease pathogenesis (71).

Estrogen controls immune cell activity through regulation
of cellular metabolism via its receptors ERα, ERβ, membrane
receptor mERα, mERβ, and GPER by direct and indirect
mechanisms. The E2-ER-mediated control of transcription and
signaling pathways stimulate mitochondrial function (72). The
orphan nuclear receptor Estrogen related receptor (ERR) α

controls transcription of a wide range of metabolic genes (73).
ERRα was shown to control metabolic activity in T cells to
influence T cell activation and is critical for Teffector (Teff) cell
differentiation in vivo in ERRα-deficient mice. ERRα protein
levels are low in resting T cells but increase upon activation. Glut1
upregulation, glucose uptake and mitochondrial processes were
diminished in the absence of ERRα in vivo (74).

T Cell Differentiation and Cytokine
Production
Estrogen regulates a number of cytokines that modulate the
immune response. Pharmacologic doses of the synthetic estrogen
diethylstilbestrol in mice led to reduced proliferation of splenic
T cells, reduced IL-2 production and increased susceptibility to
Listeria monocytogenes infection (75). Estrogen increases NFκB
signaling activity and its ensuing cytokines including IL-1, IL-
10, and IFN-γ in C57Bl/6 mouse splenocytes (76). To assess
the role of estrogen on T cell immune responses, concentration
dependent effects of 17-β-estradiol in vitro cultures of T cells
and splenocytes from rats were studied to assess the effects

on proliferation, cytokines (IL-2 and IFN-γ), and signaling
molecules ERK1/2, CREB, and Akt (77). Lower concentrations of
estrogen enhanced proliferation and IFN-γ production in an ER
dependent manner. The ERα agonist propyl pyrazole triol (PPT)
suppressed IL-2, but the ERβ agonist diarylpropionitrile (DPN)
increased IL-2. These effects were associated with increased levels
of phosphorylated (p)-ERK, p-Akt and p-CREB and increased
activity of antioxidant enzymes and NO production (77).

The luteal phase of the menstrual cycle in healthy young
women associates with reduced IL-2 levels as evidenced
by bioassay activity of serum IL-2 measurements as well
as intracellular IL-2 within peripheral blood lymphocytes
stimulated ex vivo (78). This decreased IL-2 may account for the
observed increase in pre-menstrual infections ormay presumably
be a facet of the immune suppression necessary for a potential
pregnancy. In human studies, E2 suppressed IL-2 production in
T cells from healthy women and increased the expression of Sp1
transcription factor and the cAMP response element modulator
(CREM) transcriptional repressor (79, 80). These studies showed
that estrogen has specific concentration- and receptor-subtype
dependent effects on immune responses.

Estrogen increases T helper cell (Th) 1 differentiation, IFN-
γ and the inflammatory effects mediated by IFN-γ including
production of inflammatory mediators inducible nitric oxide
synthetase (iNOS), NO, and (cyclooxygenase) Cox2. Estrogen
increases IFN-γmRNA levels inmurine splenocytes by activating
the IFN-γ promoter, which contains consensus ERE sites
as shown by promoter reporter assays in Jurkat cells (81).
Administration of estrogen to ovariectomized Bagg Albino
(BALB)/c mice followed by immunization with exogenous
antigens increased antigen-specific clonal expansion of CD4T
cells and selectively increased Th1 cells and IFN-γ production.
ERα on hematopoietic cells was necessary for the Th1
responsiveness (82). Further, estrogen was shown to upregulate
the Th1 driving transcription factor T-box protein expressed in T
cells (T-bet) in murine splenocytes by IL-27 and partly by IFN-γ
but not by IL-12 (83). IL-12 signaling activates two isoforms of
signal transducer and activator of transcription (STAT) 4, a full
length STAT4α and a short STAT4β isoform. Estrogen selectively
activates the short isoform (84).

Estrogen increased levels of IL-17 and its driving transcription
factor retinoic acid receptor (ROR)γt in activated splenocytes
from male and female C57Bl/6 wild-type mice and in lupus-
prone male NZB/W mice. IL-27 and IFN-γ suppressed the IL-17
induction (85).

Other studies have shown the opposite effect of estrogen and
ER on Th1 and Th17 cytokines and disease. In the experimental
autoimmune encephalomyelitis (EAE) murine model of the CNS
autoimmune disease multiple sclerosis (MS), estrogen mediates a
neuroprotective effect (86), and suppresses Th1, Th17 responses.
The estrogen-mediated inhibition of Th17 responses in this
system is specifically via ERα expression on T cells (87). Estrogen
suppresses IL-17 and Th17 differentiation in mouse CD4T cells
by downregulating the RORγt transcription factor mRNA and
protein expression. This effect was mediated by an E2-activated
complex of ERα and repressor of ER activity (REA) binding to
three ERE half sites within the RORγt promoter (88). These
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studies indicate differential tissue-specific effects of estrogen on
the immune response.

Estrogen is crucially important for its beneficial effects
on bone metabolism, and postmenopausal estrogen decline
is a critical factor in chronic inflammatory events including
osteoporosis. IL-17 is implicated in the pathogenesis of
inflammatory arthritis including RA and promotes bone loss
in collagen-induced arthritis. In studies to assess the role of
estrogen in IL-17 mediated regulation osteoclast and osteoblast
differentiation, estrogen reversed the bone-destructing effects
of IL-17. Therefore estrogen deficiency resulting in the de-
repression of IL-17 may contribute to osteoporosis (89).
Correspondingly, an evaluation of serum IL-17 levels in pre-
and post-menopausal women showed a high prevalence of IL-
17A levels in postmenopausal women, and inversely correlated
with total lumbar T-scores, measures of bone loss (90). Estrogen
also protects from bone loss through a transforming growth
factor beta (TGF-β) signaling mediated pathway in T cells.
TGF-β is an immunosuppressive cytokine and represses T
cell activation, proliferation, and secretion of inflammatory
cytokines. Accordingly, T cell specific TGF-β-signaling deficient
mice had bone loss due to a de-repression of T cell activation and
increased levels of osteoclastogenic cytokines TNF and receptor
activator of NFκB ligand (RANKL) (91).

Peroxisome proliferator-activated receptor gamma (PPARγ)
a nuclear receptor has recently been recognized as a critical
regulator of adaptive immunity by negative regulation of T
cell activation proliferation and differentiation. PPARγ mediated
inhibition of Th1, Th2, and Th17 differentiation of naïve
CD4T cells from female C57Bl/6 mice whereas male cells only
showed Th17 inhibition. Estradiol co-treatment of male cells
inhibited Th1, Th2, and Th17 differentiation indicating that
estrogen increases the sensitivity of male cells to the effects
of PPARγ activation (92). Administration of the neurosteroid
dehydroepiandrosterone (DHEA) inhibited Th17 responses and
induced IL-10 producing regulatory cells in EAE and importantly
reversed established paralysis and central nervous system (CNS)
inflammation in mice. Further, DHEA-treated PBMCs from
patients with relapsing remitting multiple sclerosis (RR-MS)
exhibited decreased IFN-γ, IL-17, IL-4, and IL-2 responses but
preserved IL-10. Thus such compounds, which suppress pro-
inflammatory cells and expand regulatory subsets, could be useful
as therapeutic agents (93).

Regulatory T Cells (Tregs)
Tregs are vitally important in the maintenance of self-tolerance
and prevention of autoimmunity, and the X-linked master
regulator transcription factor FoxP3 drives their generation,
maintenance, and function (94, 95). Female gender and
hormonal influences regulate FoxP3 expression and therefore
are critical in the physiology of regulatory CD4T cells and the
gender bias of autoimmune disease (96). An imbalance between
Teffs and Tregs is thought to contribute to dysregulated immune
homeostasis and autoimmune disease.

In line with the observations that there is a maternal
shift in the immune response to promote fetal tolerance,
estrogen induced increased expression of CD25+ cells and

increased FoxP3+ expression in naïvemice treated with Estrogen
(97). Estrogen enhances Treg numbers and function, and
induces FoxP3 expression both in vitro and in vivo (96). This
effect is partially mediated through the checkpoint inhibitor
programmed cell-death protein 1 (PD1). PD1 is a negative
regulator of immune responses, is upregulated on activated T
cells, considered a marker of dysfunctional T cells, is important
for immune tolerance, and is an attractive target for autoimmune
disease and cancer (98). Estrogen administration increased
intracellular PD1 expression in CD4+FoxP3+ T cells, and PD1
expression was reduced in ER knockout mice (98).

Estrogen promoted the ex vivo proliferation of Tregs isolated
from healthy human donors and also enhanced suppressive
function in co-cultures with responder CD4+CD25- effector
T cells (Teffs) (99). Increase in CD4+CD25+FoxP3+ T cells
were observed in peripheral blood of fertile non-pregnant
women in the late follicular phase of the menstrual cycle which
correlated with β-estradiol levels, while there was a significant
decline in Treg numbers in the luteal phase. Lower numbers
of Tregs were found in follicular and luteal phases in women
with recurrent spontaneous abortions (RSA) as well as from
postmenopausal women. In addition Tregs from women with
RSA also had reduced suppressive capacity compared to fertile
women (100). Estrogen mediates its protective effect on bone
metabolism through modulating Treg function on osteoclasts
and bone resorption in vitro (101). E2 enhanced the suppressive
capacity of Tregs on osteoclast differentiation from human
embryonic bone marrow cells (BMC). Increased levels of both
TGF-β1 and IL-10 suppressive cytokines were required for this
effect because neutralizing both cytokines together but not
individually, abolished the suppressive effect (101).

In Tregs derived from human cervical cancer tumor
tissues, ERα blockade abolished FoxP3 expression and impaired
suppressive function. ERE sites were found within the FoxP3
promoter ERα bound to the FoxP3 promoter in male blood-
derived Tregs. Co-IP of E2 revealed E2-ERα complexes with
FoxP3. Blocking with the anti-estrogen ICI 172 180 led to
increase in IFN-γ & IL-4 production from Teffs derived from
cervical-cancer suggesting that ER blockade could potentially
restore certain Teff functions in tumors. These results showed
that E2 and ERα are required for the FoxP3 expression and
tumor-derived Treg and Teff function (102).

T Cell Trafficking
Estrogen contributes to immune cell trafficking and
inflammation by regulating chemokines and chemokine
receptors. T cells from female mice displayed increased mRNA
and protein expression of CC chemokine receptor (CCR)
1-CCR5 and increased transmigration response to chemokines
macrophage inflammatory protein (MIP)-1β and stromal
cell-derived factor (SDF)-1β. Similar increases in CCR gene
expression were found in T cells from mice treated with estrogen
in vivo (103). Estrogen increased the secretion of MCP-1,
MCP-5, eotaxin, and SDF from mitogen activated splenocytes
from estrogen treated mice (104). Further, in vivo trafficking of T
cells was shown to be gender and estrogen-dependent.
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Ovariectomized DBA/1 mice treated with estrogen and
subjected to collagen-induced arthritis had fewer Th17 cells in
the joints and less severe arthritis. However increased numbers
of Th17 cells were found in the lymph nodes in early phase of
disease, followed by a decrease in Th17 cells in the joints during
established arthritis. Increased expression of CCR6 on the Th17
cells and corresponding increase in the chemokine CCL20 was
though to contribute to interference with the egress of Th17
cells from lymph nodes to the joints indicating that estrogen
modulates Th17 migratory pathways in inflammatory arthritis
(105).

T Follicular Helper (Tfh) Cell Function
Tfh cells provide cognate help to B cells to promote class
switching and antibody production, and are implicated in
autoantibody production in autoimmune diseases (106).
Estrogen mediates gender-specific differences in regulation of
Tfh cells responses via PPARγ. 4-hydroxy-3-nitrophenylacetyl
hapten conjugated with ovalbumin (NP-Ova) immunization of
female CD4/PPARγ deficient mice induced increased Tfh cells
and germinal center (GC) B cells. Correspondingly treatment
with a PPARγ agonist reduced responses in female and with E2
co-treatment in males (107). Estrogen increased Calcineurin
and CD40 ligand (L) mRNA and protein expression in T cells
from female SLE patients in an ER-dependent manner, therefore
contributing to cognate B-cell help (108).

ESTROGEN AND B CELLS

Sex hormones play an important role in B cell development
and function in physiology (109, 110) and contribute to their
dysfunction in autoimmune disease (111). It has been known for
a long time that estrogen enhances humoral responses, enhances
B cell differentiation and immunoglobulin (Ig) production (112,
113).

B Cell Development
Similar to its effects on thymic T cell development, estrogen
suppresses B cell lymphopoiesis. Estrogen controls lymphoid-
restricted progenitors in the bonemarrow. Early B cell precursors
are estrogen-sensitive and are decreased in the bone marrow
during pregnancy and following estrogen administration in mice
and humans. Specifically estrogen blocks B cell development at
the differentiation step from pro-B cell to the pre B-cell stage
(114–118). The E2-mediated inhibition of B lymphopoiesis is
both due to a direct effect on B cells as well as on the stromal cells
partially due to reduced production of the homeostatic cytokine
IL-7 and increased expression of soluble frizzled related protein 1
(sFRP1) (119, 120).

B Cell Homeostasis and Activation
Besides lymphopoiesis and differentiation, estrogen regulates
peripheral B cell populations, and tolerance induction by
promoting survival and activation of autoreactive B cells (121,
122). In splenic populations estrogen treatment leads to increased
marginal zone (MZ) B cells, reduced transitional B cells and
slightly increased follicular B cells (111, 123–125). In BALB/c

R4a mice transgenic for an anti-DNA antibody, E2 treatment
led to increased serum anti-dsDNA antibodies, peripheral
lymphoid expansion of high-affinity antibody-positive B cells,
and increased expression of anti-apoptotic protein Bcl-2 in the
germinal center B cells (126). Estrogen increased expression of
activation genes including CD22 and SHP-1 and overexpression
of these genes led to reduced B cell receptor (BCR) signaling
(124). These DNA-reactive B cells escape deletion and E2
mediates rescue of autoreactive cells at the immature and
transitional B cell stages. Specifically it was the high-affinity
DNA-reactive B cells competitively survived in E2 treated mice
compared with the low-affinity B cells in control mice (125).
While both ERα and ERβ mediated B cell maturation, and CD22
expression, ERα was involved in the E-mediated decrease in
BCR signaling, indicating differential roles of ERα and ERβ in
B cell maturation vs. selection (127). Thus autoreactive B cell
differentiation depends on the hormonal milieu wherein estrogen
promotes marginal zone B cells (123), their long-term persistence
and autoantibody secretion (128).

B Cell Function
B lymphocyte stimulator (Blys) also called B cell activating factor
(BAFF) is a vital cytokine for survival and maturation of B
cells, and elevated serum levels have been found in SLE patients
(129). Steady state mRNA and protein levels of BAFF were
higher in immune cells from C57Bl/6 female mice and estrogen
treatment increased BAFF expression which was mitigated in
ERα, STAT1, or IRF5 deficient mice (130). Administration of
β-estradiol by subcutaneous implants in NZB/W lupus-prone
mice increased serum Blys levels, autoantibodies, and accelerated
proteinuria and glomerulonephritis (131). In human studies,
estrogen treatment led to increased BAFF mRNA levels in
peripheral blood leukocytes from healthy men and women.
Progesterone treatment increased BAFF mRNA in cells from
women in a dose dependent manner, while lower concentrations
increased but higher concentration decreased expression cells
from men (132).

Besides the E2-mediated effect on B cell activation, which
leads to increased immunoglobulin (Ig) antibody production
from both bone marrow and splenic B cells, there is evidence of a
direct effect of estrogen receptors on the Ig heavy chain locus.
Specifically ERE were identified within the heavy chain switch
(S) regions and an ERα antibody-mediated ChIP-sequencing
(seq) analysis on genomic DNA from LPS-activated B cells
revealed numerous ERα binding to key regulatory elements.
These data support the idea that nuclear hormones and receptors
can directly regulate class switch recombination and antibody
expression (133).

In summary, estrogenmediates key effects on B cell physiology
and function, which are vital in the pathogenesis of autoimmune
diseases like SLE.

ESTROGEN AND AUTOIMMUNE DISEASES

The female predilection of autoimmune diseases ranging
from 3:1 for MS to 15:1 for autoimmune thyroiditis
clearly implicates the female gender and sex hormones in
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autoimmunity (6, 8). While progesterone and androgens are
considered immunosuppressive, therefore protective, estrogens
in general are considered immune-stimulatory therefore
pathogenic in autoimmune diseases. However, the role of
estrogen is complicated and in some diseases, estrogens are
immunostimulatory while in others they are inhibitory. There
is an interesting dichotomy in the estrogen-mediated effects on
different autoimmune diseases. While diseases like SLE worsen
during pregnancy, others including MS, rheumatoid arthritis
(RA), uveitis and thyroiditis improve, likely due to the maternal
shift from a Th1 to Th2 immune response presumably as an
attempt to avoid fetal rejection, and to enhance antibodies for
passive transfer of immunity to the fetus. The diseases that
are critically dependent on the T cell-dependent Th1 response,
benefit from this diversion, while in SLE a shift to the Th2
propagates the autoantibody response to worsen disease.

SLE

SLE is a prototypical chronic systemic autoimmune disease
afflicting women in the childbearing years and can affect any
organ in the body (10, 11). Joints and skin are frequently
involved, while complications in vital organs such as kidneys
can lead to lupus nephritis and renal failure. Complex
interaction of genetics, environmental factors, and hormones
lead to the deregulation and aberrant activation of the
innate and adaptive immune systems leading to circulating
autoantibodies and inflammatory immune cells which eventually
lead to destruction of target organs (134, 135). Historically,
studies with gonadectomy/hormone deprivation and hormone
supplementation in male and female lupus prone mice have
shown a clear association of sex hormones with lupus,
where estrogen accelerates or worsens disease and estrogen
removal ameliorates disease in females. Male gonad removal
increases susceptibility to disease in male mice and androgen
supplementation improves disease in female mice (6).

The role of ERs has been studied in various murine models
of lupus. Ovariectomized NZB/W mice treated with the potent
ERα agonist PPT developed increased levels of autoantibodies
and proteinuria earlier and succumbed to disease sooner than
control counterparts. However, the ERβ agonist DPN reduced
some anti-dsDNA autoantibodies but not total IgG, proteinuria
or mortality. These studies indicate that ERα has a pro-
inflammatory role while ERβ has mild immunosuppressive
effects in this system (136). Correspondingly, ERα deficiency
attenuated autoantibodies and glomerulonephritis and improved
survival in female andmale (NZBxNZW) F1mice (137). Another
study found amelioration of disease in ERα-deficient female but
not male NZM2410 and MRL/lpr strains of lupus-prone mice
(138). Monthly injections of estradiol into ERα deficient mice
induced a serum Th2 cytokine profile, increased kidney damage
and death while minimal changes were observed in similar
experiments conducted in ERα deficient mice (139).

Estrogen and ER signaling contribute to the activation
or repression of a number of immunomodulatory cytokines,
which contribute to disease pathogenesis and organ pathology

in lupus (68). The murine lupus susceptibility locus Sle1c2
is a sublocus of the NZM2410-derived Sle1 major lupus
susceptibility locus and contributes to CD4T cell activation,
increased IFNγ-expressing T cells, and increased susceptibility
to chronic graft vs. host disease (cGVHD), When crossed
into the NZB lupus-prone mice, Sle1c2 enhanced B cell
activation, autoantibodies, and renal pathology. This locus
contains the estrogen related receptor γ (Esrγ ), expressed in
T cells, which encodes for an orphan nuclear receptor that
controls mitochondrial function and oxidative metabolism.
B6Sle1c2 CD4T cells expressed reduced levels of Esrγ, which
correlated inversely with CD4 activation compared to B6 CD4T
cells. Increased levels of mediators of glycolysis, with reduced
mitochondrial mass and membrane potential, but increased
reactive oxygen intermediates (ROI) indicating mitochondrial
dysfunction (140, 141). While global deficiency of ERα in
lupus-prone B6.Sle1 mice ameliorates disease (142), conditional
deletion utilizing the Cre-lox technology has shown the effect
of ERα in specific immune cells. B cell specific deletion of
ERα by crossing ERα flox mice with CD19-Cre mice delayed
autoantibody production and lupus nephritis in (NZBxNZW) F1
lupus-prone mice (143).

SLE T cells display numerous defects in homeostasis,
phenotype, signaling, metabolism, and function (12, 135, 144)
and estrogen influences T cell signaling and activation in T
cells from SLE patients. While serum estrogen levels per se
have not been found to be significantly different in women
with SLE, increased estrogen metabolism is observed. Higher
levels of more feminizing estrone metabolites are observed
in SLE patients and their first degree relatives implying that
more potent metabolites may induce more potently epigenetic
changes via the ERs (6, 145). ERα and ERα transcripts are
expressed in PBMCs (146), and T cells from SLE patients and
exhibit biologically active ER proteins binding to ERE sites
(22). Differential expression of the ER subtypes and antibodies
against ERs impact disease activity. Some studies have found
alterations in ER expression with increased ERα mRNA levels
but decreased ERαβ transcripts in PBMC from SLE patients
(147). Others examined of intracellular ERα and ERβ in T cells
showed much greater variability of expression of the ERs in
SLE patients compared to healthy controls. ERα is implicated in
a pro-inflammatory pathogenic role while ERβ has some anti-
inflammatory roles in SLE. Polymorphisms in the ERα (Esr)
gene have been linked with SLE and found to be significantly
associated with the development of disease or age at disease
onset, with a higher frequency in childhood-onset vs. adult
onset patients or with disease features and severity (148–
152).

ERK pathway downregulation and DNA hypomethylation
are well-known underlying epigenetic aberrations in SLE (71,
153, 154). Estrogen suppressed ERK phosphorylation in ex vivo
stimulated SLE T cells from patients with inactive or mild disease
(155). In (C57Bl/6xSJL) F1 mice transgenic for a dominant
negative MEK (dnMEK) selectively in T cells, estrogen led
to ERK inactivation, DNA hypomethylation of the X-linked
gene CD40L, and increased autoantibodies in female but not
male mice. Estrogen-induces miR148a (39) which targets and
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suppresses DNMT1 expression in T cells leading to increased
DNA hypomethylation (156). These results showed an effect of
estrogen on epigenetic regulation of genes involved in disease
pathophysiology (157).

The calcium-dependent phosphatase Calcineurin
dephosphorylates nuclear factor of activated T cells (NFAT)
to activate NFAT-mediated transcriptional activation of genes
including the B-cell help molecule CD40L/CD154. Estrogen
increases Calcineurin and CD154 expression levels in an ER
dependent manner in T cells from women with SLE but not
healthy controls (158, 159). Estradiol also increased the calcium-
buffering protein Calreticulin in activated T cells from healthy
donors but variably modulated it in activated T cells from SLE
patients, suggesting a deregulated control in SLE T cells (160).
Zinc finger acidic domain structure 3 (ZAS3) is a signaling and
transcription factor, which regulates inflammatory responses.
Increased ZAS3 mRNA and protein levels were found in PBMCs
from SLE patients, and estradiol treatment increased ZAS3
expression levels in PBMCs and in mice injected with estradiol.
ERα bound to ERE sites within the ZAS3 locus and was required
for E2-mediated induction of ZAS3 (161).

Estrogen decreased activation induced cell death (AICD)-
mediated apoptosis and downregulated FasL mRNA and protein
expression in an ER-dependent manner in PMA-activated T
cells ex vivo from SLE patients (162). Another study found
that in vitro estradiol treatment of T cells from SLE patients
led to increased expression of FasL and Caspase-8 but no
change in Fas, Bcl-2, and Caspase-9 mRNA level (163). Thus
the estrogen-mediated persistence of autoreactive cells may
contribute to autoimmunity in SLE. Autoantibodies to ERα but
not ERβ were identified in sera of about half of SLE patients
tested, and ERα abs induced activation and apoptosis both in
resting T cells and after CD3 activation. ERα autoantibody
levels correlated with SLE disease activity index (SLEDAI)
and arthritis clinical parameters (164) indicating that ERα

autoantibodies disrupt T cell homeostasis in autoimmune
disease.

Microarray gene profiles from activated T cells from female
SLE patients and healthy controls showed alterations in a
number of signaling pathways including Type I interferon,
which has been clearly associated with disease initiation and
progression. A Type I IFN gene altered was the vitamin D
receptor interacting protein (DRIP150) suggesting that aberrant
regulation of a cofactor may contribute to estradiol sensitivity
in SLE T cells (165). Microarray analysis in PBMCs from SLE
patients and healthy controls treated with estradiol revealed
estrogen-mediated gene signatures. Many more genes were
differentially regulated by estradiol in SLE T cells compared to
healthy controls. Of note were pathways with genes involved
in post-translational modification (161). A recent study utilized
in vitro culture of T cells from female SLE patients or
controls with the ER antagonist Fulvestrant/Faslodex (ICI 182,
780) to assess the global effects on estrogen-mediated genes
signaling pathways by microarray gene profiling. Pathways
of Th cell differentiation, steroid receptor (GR/ER) signaling,
ubiquitination and sumoylation pathways were significantly
altered.While the mRNA levels of both ERα and ERβ and protein

levels of ERβ were similar, the protein expression of ERα in
SLE T cells ex vivo was significantly lower in SLE compared to
healthy controls suggesting an increased turnover (166). These
studies suggest that increased turnover of ERα in SLE T cells
may sensitize T cells to estradiol and contribute to their altered
function.

In SLE, an imbalance between Th17 and Tregs is thought
to contribute to and correlate with disease pathogenesis (167,
168). IL-6 is a crucial cytokine in this balance because IL-6
(with low dose TGFβ) drives naïve CD4 differentiation to Th17
cells, rather than Tregs (169), and inhibits TGFβ-induced Treg
differentiation. High doses of TGFβ drive Treg differentiation.
In addition, IL-6 in combination with IL-1β leads to degradation
of FoxP3 (170). High serum and urine levels of IL-6 are found
in SLE patients and correlate with disease activity (171–174). E2
stimulates IL-6 expression by biliary epithelial cells in mice and
humans (175). IL-6 production is controlled genetically in an age-
and gender dependent manner. In a human study (n.62, n.31
men and 31 women, aged 29 to 93 years), plasma IL-6 levels,
IL-6 production by stimulated PBMC ex vivo, and a C to G
transition at nucleotide−174 of the IL-6 gene promoter (−174
C/G locus) were assessed. Results showed that IL-6 production
increases with age and is dominant in women (176). Accordingly,
IL-6 knockout female C57BL/6 mice were resistant to syngeneic-
activated lymphocyte-derived DNA (ALD-DNA)-induced SLE
and IL-6 blockade increased FoxP3 expression, therefore showing
that IL-6 suppresses Tregs to promote lupus (177). Thus IL-6 is
a critical inflammatory cytokine, which shifts the balance from
Tregs to Th17.

Type I as well as type II IFN cytokines are important
in autoimmunity and inflammation (178, 179). Treatment of
splenocytes from C57Bl/6 or lupus-prone NZB/W mice and
murine cell lines with either IFN-α or IFN-γ led to increased
expression of ERα mRNA and protein levels, via transcriptional
activation of the Esr1 promoter through STAT1. E2 and
IFN signaling co-operatively activated ERα and IFN-responsive
genes. These data bring to light a mutual positive regulatory
feedback in which interferons activate ERα which activates IFN-
γ and IFN-γ-mediated interferon regulatory factor (IRF) 9 to
further amplify the inflammatory loop (180).

TNF-like weak inducer of apoptosis (TWEAK) is a TNF
superfamily proinflammatory multifunctional cytokine, which
can lead to increased inflammatory mediators including IL-
6, MCP1 associated with renal damage in SLE (181). Higher
urinary levels of soluble TWEAK were found in patients with
renal damage compared to those without. Estrogen through ERα

promotes expression of to accelerate the progression of lupus
nephritis. E2 treatment of PBMCs from lupus nephritis (LN)
patients led to increased mRNA levels of TWEAK, which were
abolished in the presence of ERα inhibitor methyl-piperidino-
pyrazole (MPP) and ER antagonist Fulvestrant (ICI 182 780).
Similar results were obtained after ovariectomized MRL/lpr
lupus-prone mice were treated with estrogen or antagonists.
Severe renal pathology and high serum IL-6 levels in these
mice were reversed by co-treatment in vivo with shRNA to
inhibit TWEAK. (182). In C57BL/6 ERα knockout mice the
nephrotoxic serum nephritis (NTN) model of immune-mediated

Frontiers in Immunology | www.frontiersin.org October 2018 | Volume 9 | Article 227923

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Moulton Sex Hormones in Immunity and Autoimmunity

nephropathy was used to assess the role of ERα in lupus nephritis.
Time-course microarrays on murine glomeruli from wt and
ERα-ko NTN-induced mice showed increased PPAR-γ mediated
lipid metabolism and decreased retinol metabolic pathways. In
parallel, RNA-seq analysis of whole blood from SLE patients
revealed similar expression profiles of these pathways (183).
Thus ERα signaling impacts metabolic activity in the kidneys to
promote immune-mediated nephropathy and has implications
for lupus nephritis.

These studies indicate that female hormones particularly
estrogen plays important roles in immune cell generation,
homeostasis, and function which impact control of immune
responses. Caution must be exercised while interpreting data
due the differences in systems studied, heterogeneity in
patient populations, numbers and disease state of patients
examined, and most importantly, concentrations and durations
of estrogen exposure. Importantly, depletion of ERα and estrogen
supplementation studies must be very carefully interpreted
because most studies have been carried out with ERα knockout
mice which have a functional rather than genetic ERα deficiency
because they carry an N-terminal truncated form which lacks
the critical AF-1 domain required for most classic estrogen
actions. However ovariectomized true ERα–/– mice with genetic
deletion of ERα in the NZM2410 strain, were not protected
from lupus-like disease suggesting that other hormones perhaps
testosterone mediate protection rather than the loss of full-length
ERα (184).

OTHER AUTOIMMUNE DISEASES

While estrogen and ERs contribute to SLE pathogenesis and
worsen disease activity in mice and humans, immune-protective
effects are observed in other autoimmune diseases such as
Multiple Sclerosis (MS) and rheumatoid arthritis (RA) (185).

Multiple Sclerosis
In MS, autoreactive T cells attack myelin tissue in the central
nervous system leading to axonal demyelination and CNS
dysfunction. Disease follows a relapse-remitting or progressive
type of course. In this disease, both in humans and in the
EAE mouse model, estrogen is neuroprotective by shifting
the immune response and suppressing immune activation
(186–189). Serial brain magnetic resonance imaging (MRI)
during follicular and luteal phases of the menstrual cycles in
eight women with relapsing-remitting MS showed significant
correlation between Progesterone/β-estradiol ratios with both
the numbers and volumes of lesions (190). A major clinical
observation was that during pregnancy, the relapse rate of
MS declines in the third trimester, but increases in the 3
months post-partum period (186). A pilot trial treatment of non-
pregnant women with the pregnancy hormone estriol showed
improvement in disease lesions (187). These effects are presumed
to be due to the shift from a proinflammatory Th1 to anti-
inflammatory Th2 immune response environment. Estrogen
ameliorates EAE, and E2-ERα leads to reduced pro-inflammatory
Th1, Th17 cells, and cytokines IFN-γ, IL-17, TNF, and other
molecules iNOS and MCP-1. In addition Estrogen induces

anti-inflammatory cytokines IL-10 and TGF-β and promotes
expansion of Tregs. Estrogen suppresses CD4T cell expansion,
increases T cell apoptosis. E was shown to protect from atrophy of
gray matter in EAE. ERα is shown to be pathogenic while ERβ is
protective in MS. Accordingly ERβ ligand estriol administration
was neuroprotective in EAE in mice (191). A new ERβ ligand
AC186 improved reduced neuropathology in chronic EAE (192).
A placebo-controlled multi-center Phase2b trial with oral ERβ

ligand estriol improved disease activity (193), and another
clinical trial is currently ongoing (www.clinicaltrials.gov).

E2 is protective in the EAE model of autoimmune disease
in both male and ovariectomized female mice and this effect
is partially mediated by modulation of Tregs (194). Estrogen
upregulated PD1 expression in CD4+FoxP3+ Tregs, and PD1
levels rather than the frequency of Tregs, correlated with the
degree of E2-mediated EAE protection. E2 also dramatically
reduced IL-17 production, and this effect and protection from
EAE were partially abrogated in the PD1ko mice (195). While
PD1ko mice had normal FoxP3 expression levels, Tregs were
functionally defective in their suppressive capacity which was
partially restored by pre-treatment of the mice with Estrogen
without much increase in FoxP3 levels. These results imply that
estrogen influences Treg function via both PD1-dependent and
independent pathways (196). EAE was suppressed in pregnant
mice and in ovariectomized mice that received pregnancy levels
of estrogen. Estrogen suppressed proliferation of T cells and
decreased proinflammatory Th1 (IFN-γ, TNF-α) and Th17 (IL-
17, IL-6) cytokine protein and mRNA levels while elevated
Th2 (IL-4) and Treg suppressive (IL-10, TGF-β) cytokines in
MOG-restimulated splenocytes and lymph node cells ex vivo
from immunized mice. Accordingly, the respective transcription
factors T-bet and RORγt were decreased while GATA3 binding
protein (GATA3) and FoxP3 expression were increased (197).

Rheumatoid Arthritis
RA is the most common systemic rheumatic autoimmune
disease and has a female to male incidence of 4:1 before
the age of 50 and about 2:1 after the age of 60 years with
the peak incidence around the fifth decade. Therefore female
hormones clearly play a role in disease (198–200). However the
contribution and effects of hormones in RA disease development
are complicated and still not fully understood. Serum hormone
levels fluctuate throughout the lifespan in women and interact
differentially with genetic and environmental factors to regulate
immune responses and autoimmunity. A number of factors
are associated with the risk vs. protective effects of hormones
in RA. Different hormonal states including pregnancy, post-
partum, breastfeeding, and exogenous hormones including oral
contraceptives (OC), postmenopausal hormone replacement
therapy (HRT), and hormone administration for infertility
treatment alter the hormonal milieu and are associated
differentially with RA. Low estrogen levels such as earlier
age at menopause, multi-parity, longer breastfeeding (>17
months) are associated with increased risk for RA. Pregnancy is
protective for RA development and disease activity and so have
HRT and OCs. Synovial tissues from RA patients have higher
expression of the ERβ over ERα, and inflammation induces its
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expression to further induce proinflammatory cytokines TNF, IL-
1β, and IL-6 by PBMCs (201). Diminished ovarian function and
decreased circulating estrogen levels at menopause induces these
cytokines and E2 inhibits them in PBMCs from postmenopausal
women. However the E2-mediated effects on PBMC from pre-
menopausal women are not consistent.

Therefore reduced estrogen bioavailability and decline in
ovarian function contribute to development of RA. Hormones
induce differential effects on immune system in pre-menopausal
and post-menopausal women and therefore influence disease
development differentially. The role of female hormones in the
preclinical stages is still not fully understood (198).

HORMONES, RECEPTOR MODULATORS,
AND RELATED THERAPIES

Because hormones play a critical role in physiology of
reproductive tissue, bone, cardiovascular, lipid, and immune
system, therefore contributing to disease pathogenesis,
modulation of hormones or hormone receptors are considered
therapies for cancer, bone diseases and autoimmune disease
including SLE (202–204).

Effects of estrogen can be blocked by anti-estrogens
or selective estrogen receptor modulators (SERM). Anti-
estrogens include the pure ER antagonist Clomiphene citrate
used for infertility treatment in anovulatory women and
Fulvestrant (Faslodex) treatment of breast cancer. SERMs are
synthetic estrogen-like ER-ligands, which have ER-agonistic or
antagonistic effects depending on the target tissue without the
adverse effects of steroid hormones. They have ER-agonistic
effect on bone tissue, but minimal effects on reproductive
tissues and are mainly used for their beneficial effects
in postmenopausal vasomotor symptoms and osteoporosis.
Tamoxifen is a first-generation SERM with competitive ER-
antagonist effects on breast and agonist effects on bone, uterus
and liver tissue. However, its uteroproliferative effects increase
risk for endometrial cancer, negating its use for osteoporosis.
Raloxifene, a second generation SERM is similar to Tamoxifen,
but has anti-estrogen effects on breast and uterus but partial
agonist in bone, lipids and cardiovascular system, and is
approved for osteoporosis. Lasfoxifene and Bazedoxifene are
third generation SERMs evaluated for their usefulness in
osteoporosis (205).

A number of studies have assessed the effect of SERMs in
bone loss in conjunction with effects on the immune system to
assess their utility in postmenopausal osteoporosis. The effects
of SERMs on the immune system are still being elucidated
and some SERMs are shown to have immunoprotective effects.
Continuous treatment with the selective estrogen receptor
modulator (SERM) LY139478 ameliorated glomerulonephritis
and improved survival in female MRL/lpr mice (206). MRL/lpr
mice treated with the potent estrogen receptor antagonist
Tamoxifen had reduced disease severity and decrease in numbers
of double negative T cells and reduced IL-2 mediated DN
cell proliferation in vitro (207). Oophorectomized normal mice
treated with subcutaneous Raloxifene analog LY117018 had

minimal changes on the thymus, T cell activity, and inflammation
in DTHmodel indicating that Raloxifene does not exhibit similar
effects as estrogen on T cell responsiveness and inflammation
(208). Lasofoxifene and bazedoxifene are third generation
SERMs with minimal estrogenic adverse effects used for
treatment of postmenopausal osteoporosis. Similar to Raloxifene,
Lasofoxifene, and Bazedoxifene did not increase peripheral B
cell activity and only blocked B cell maturation at later stages of
development therefore affecting fewer subpopulations, compared
to estrogen treatment of ovariectomized female C57BL/6N mice
indicating the safety of these drugs (209). A similar study assessed
the effects of Raloxifene, Lasofoxifene, and Bazedoxifene on T cell
development and T cell dependent inflammation (50). Raloxifene
and Lasofoxifene but not Bazedoxifene reduced thymic weight
but neither of these SERMS affected thymic T cell populations
or delayed-type hypersensitivity (DTH) inflammation. Therefore
Lasofoxifene and Bazedoxifene are safe to use because they do not
impact T lymphopoiesis or T cell dependent inflammation (50).

Arctigenin is a plant-derived phytoestrogen SERM,
considered a natural alternative to estrogen, and acts as a
selective agonist of the immunosuppressive ERβ receptor.
Arctigenin bound to and activated ERβ phosphorylation and
nuclear translocation in the mouse EL4T cell line, and inhibited
mTORC1 activation and subsequent Th17 differentiation
of naïve CD4T cells from female C57BL/6 mice. This was
associated with amelioration of dextran-sodium sulfate (DSS)-
induced colitis in ovariectomized female C57BL/6 mice (210). A
recent study showed that two novel SERMS (designated SERM2
and SERM7) and Raloxifene promoted anti-inflammatory
signaling of CD14+ M2 type macrophages, diminished NFκB
activity, induced the anti-inflammatory cytokine IL-10 and the
IL-1R antagonist, and suppressed T cell proliferation (211).

Dehydroepiandrosterone (DHEA) is the natural steroid
precursor of both androgens and estrogen in peripheral tissues.
Increased metabolism of estrogen and reduced DHEA levels have
been observed in SLE patients. Therefore treatment with DHEA
is considered a therapeutic option for SLE (202). In a multicenter
randomized double-blind placebo controlled clinical trial of adult
women with SLE, Prasterone (generic DHEA) administration
for 12 months was well-tolerated and improved or stabilized
disease activity (212). Fulvestrant (Faslodex) a selective estrogen
receptor downregulator and competitive inhibitor of estrogen
was shown to improve SLE disease activity index (SLEDAI) scores
and reduce T cell activation molecules CD154 and Calcineurin
in a double-blind placebo-controlled trial in postmenopausal
women with moderately active SLE (213).

Although female sex hormones are a culprit in the
pathogenesis of autoimmune diseases such as SLE these
hormones have vitally important beneficial effects on the
reproductive system and bone metabolism. Therefore there
are concerns about exogenous estrogen including the effects
of hormone replacement therapy in post-menopausal women,
oral contraceptives in pre-menopausal women, and hormone
treatment for infertility, on disease activity in SLE (233, 234). A
randomized, double-blind, placebo controlled trial evaluated the
effect of combined estrogen-progesterone hormone replacement
therapy in menopausal women inactive or stable-active SLE.
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TABLE 1 | Effects of sex hormones on cells of the adaptive immune system.

Hormone Cells Process Effects References

Estrogen T cells Development Suppresses thymopoiesis and thymic cellularity (48–55)

Activates extrathymic development in liver (48)

Downregulates Aire to impair negative selection of autoreactive T cells (59, 60)

Homeostasis (Physiologic conc) Stimulates survival and proliferation and suppress apoptosis (cancer

cells)

(61, 62)

Homeostasis (Pharmacologic

conc)

Reduces proliferation (63–65)

Activation Increases T cell activation (69)

Increases NF-κB signaling (76)

Increases p-ERK, p-Akt, p-CREB signaling (77)

Stimulates mitochondrial function (72, 74)

Increases expression of Sp1 and CREM (79)

Impairs ERK/MAPK signaling, Decreases DNMT1, DNA

hypomethylation

(71)

Cytokine production Reduces IL-2 (ERα), Increases IL-2 (ERβ) (77–80)

Increases IL-1, IL-10 IFN-γ (81, 83, 84)

Th Differentiation Increases Th1 and Th17 differentiation Decreases Th2 differentiation (82–85)

Represses Th1, Th17, IFN-γ, IL-17 (Bone metabolism, CNS) (87–90)

Promotes TGF-β signaling (Bone metabolism) (91)

Tregs Increases Treg numbers and FoxP3 expression (96–99)

Enhances Treg suppressive function (99–102)

T cell migration Increases chemokine receptors CCR1-5 (103)

Increases chemokines MCP1, MCP5, eotaxin and SDF1β (104)

Increases CCR6 on Th17 cells & chemokine CCL20; increases Th17

cell migration

(105)

B cell help function (Tfh) Increases Tfh cells (107)

Increases Calcineurin and CD40L expression (108)

B cells Development Suppresses B cell lymphopoiesis (109, 110)

Suppresses B cell differentiation from pro-B to pre-B cell stage (114–120)

Reduces threshold for negative selection; allows escape of

autoreactive B cells

(126)

Homeostasis/survival Promotes survival of autoreactive B cells (124, 125)

Activation Increases MZ and follicular B cells (111, 123–125)

Increases class switch and Ig antibody production (128, 133)

Cytokine production Increases Blys (BAFF) levels (129–131)

Progesterone T cells Homeostasis Reduces T cell proliferation, Induces apoptosis (214–216)

Cytokine production Increases IL-4, Decreases IFN-β, IL-17

Differentiation Reduces Th1 Th17 differentiation

Function Reduces T cell dependent antibody production

Inhibits cytotoxicity

Tregs Increases Treg differentiation

B cells Cytokine production Promotes IL-10 production

Antibody production Reduces class switch and T cell dependent antibody production

Androgens T cells Development Increase thymopoiesis (217, 218)

Increase Aire expression to promote deletion of autoreactive T cells

Differentiation Inhibit Th1 and promotes Th2 and IL-10

Tregs Increase FoxP3 and promotes Treg expansion

B cells Development Suppress B lymphopoiesis

Function Reduce B cells and antibody responses

(Continued)

Frontiers in Immunology | www.frontiersin.org October 2018 | Volume 9 | Article 227926

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Moulton Sex Hormones in Immunity and Autoimmunity

TABLE 1 | Continued

Hormone Cells Process Effects References

Leptin T cells Activation and Differentiation Promotes Th1 differentiation Increases RORγt, Promotes Th17 (219–225)

Increases mTOR activation and proliferation of Teffs (226, 227)

Promotes Glycolysis to drive Teff differentiation

Increases availability of apoptotic cell-derived self-antigens, promotes

autoimmunity

(228, 229)

Tregs Suppresses Treg proliferation and activity (230)

B cells Homeostasis Promotes survival by induction of Bcl-2 and Cyclin D1 (231)

Activation Increases JAK2/STAT3 and p38MAPK/ERK1/2 (232)

Cytokine production Increases TNF, IL-6, and IL-10

Results from this trial showed increase in only mild to moderate
but not severe flares compared to placebo and concluded that
the benefits of HRT outweigh the small risk of flares in SLE
(235). Similarly, combined oral contraceptives did not increase
the risk of flares in women with stable disease activity in a double
blind randomized noninferiority trial (236). A randomized
placebo-controlled trial of another hormone replacement option
Tibolone, a progestogen whose metabolites have affinity for the
estrogen, progesterone and androgen receptors was conducted
in postmenopausal women with inactive or controlled SLE.
Tibolone was well tolerated and short-term use did not affect
the frequency of flares (237). A pilot case-control prospective
study investigated the immune-modulating effects of short-term
controlled ovarian stimulation (COS) in infertile women to
assess the effects of acute increase in E2 on serum BAFF levels,
Immunoglobulins, anti-nuclear antibodies (ANA) and peripheral
B cell phenotype and found no significant increases in these
measures of immune activation suggesting the safety of COS in
infertility treatment.

A modern HRT option is tissue-selective estrogen complex
(TSEC) in which estrogen is combined with a SERM. In
this therapy, the SERM competes for ER-binding in a tissue-
specific manner to mediate protective effects on the tissue. An
estrogen-Bazedoxifene combination was the first approved TSEC
for prevention of postmenopausal vasomotor symptoms and
osteoporosis and had better safety profiles and efficacy than
conventional HRT, (238–241) and showed benefits by preventing
bone loss in a collagen-induced arthritis (242). A study with
E2 and Raloxifene showed suppressed E2-mediated autoreactive
effects on B cells in NZB/NZW) F1 mice (243) However,
the E2-Baze combination TSEC blocked uteroproliferation but
did not affect the E2-mediated effects on thymus weight, or
B lymphopoiesis or bone marrow B cell Ig secretion (244).
Therefore, more studies of the role of TSECs in the immune
system are needed to determine their usefulness.

ERβ is protective for bone loss and estrogen was shown to
regulate bone marrow stromal cells senescence and stemness
to prevent osteoporosis via ERβ and special AT-rich sequence
binding protein 2 (SATB2) transcription factor. Estrogen
induced ERβ-ERE binding to activate the promoter and
upregulate SATB2. SATB2 ameliorated senescence, increased
stemness and improved osteogenic differentiation of BMSCs

from ovariectomized female SD rats (245). Therefore blocking
estrogen or ERα are potential options, and targeting ERβ may be
another potential avenue.

PROGESTERONE AND ANDROGENS

While estrogen in general has immunostimulatory roles,
Progesterone, and androgens are immunosuppressive and
counteract the pathways affected by estrogen (214, 217).
Progesterone receptors are present in lymphoid organs and cells
of the innate and adaptive immune systems and are intracellular
(iPR) or membrane bound (mPR) (215). Progesterone is shown
to impact CD4 Th differentiation and cytokine production with
increased IL-4, and increased Treg differentiation, and reduced
IFN-γ, Th17 responses, reduced T cell proliferation and T cell-
dependent antibody responses, in human peripheral blood and
cell line or mouse studies. In CD8T cells, Progesterone reduced
IFN-γ and cytotoxicity. Effects on B cells included reduced class
switch recombination and reduced T cell dependent antibody
production (216).

Androgens also have immunosuppressive effects on the
immune response (217). Low testosterone levels are correlated
with higher B cells and antibody responses. Studies of
gonadectomy or androgen receptor (AR) deficiency in male
mice showed increased B lymphopoiesis, which was reversed
by administration of testosterone. Overall, androgens promote
B lymphopoiesis through B cell intrinsic mechanisms or effects
on bone marrow stromal cells. Gonadectomized or AR deficient
male mice have thymic atrophy, which returns to normal size
after testosterone supplementation. Testosterone reduces the
numbers of DP and CD4 SP cell and promotes CD8+ thymocytes
presumably by inhibiting proliferation and increasing apoptosis.
Testosterone increases the negative selection of autoreactive
thymocytes by upregulating Aire expression in MTECs, and
increases thymic TGFβ production therefore promoting central
self-tolerance. Androgens also limit the peripheral lymphoid
compartments and androgen deficiency or gonadectomy leads
to increased peripheral lymphoid populations. Testosterone can
non-selectively cause death of peripheral T cells. Effects of T cell
responses are also observed in response to androgens. Removal
of androgens leads to increased T cell responses, and treating
female mice with testosterone reduces antigen-specific responses.
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Cytokine responses include a skewing toward the Th2 response
with IL-4 and IL-10, and inhibiting Th1 differentiation, IL-12
and IFN-γ production. Testosterone promotes the expansion
of Tregs and when ligand-bound, enhances FoxP3 expression
in Tregs from rats or women in the ovulatory phase. Overall,
androgens suppress the inflammatory responses of peripheral
lymphoid cells through effects on T cells and indirect effects on
B cells because peripheral B cells lack ARs (217). Although the
incidence of SLE is far lower in men, disease is associated with
poorer clinical outcomes in men. Indeed, testicular hypofunction
was positively associated with SLE in a retrospective cohort
study indicating that this requires consideration in patient
management (218).

PROLACTIN AND LEPTIN

Prolactin and Leptin influence the immune system and
contribute to autoimmune diseases and inflammation.
Prolactin is a luteotrophic hormone, which in general has
immunostimulatory roles in the immune system. The reader is
directed to an excellent review on Prolactin and autoimmunity
within this topic collection (246).

Leptin, an adipocytokine is produced by adipose tissue and has
dual roles as a hormone and a cytokine (219–223). As a hormone
it impacts energy homeostasis, endocrine functions, and bone
metabolism. As a cytokine, Leptin has multiple roles in the innate
and adaptive immune responses, and promotes autoimmune
and non-autoimmune inflammation. Leptin is in general, a
proinflammatory molecule, which affects survival, activation,
differentiation, and function of both T and B lymphocytes.
Leptin promotes T cell survival and activation. It promotes IL-2
and IFN-γ production, and drives Th1 over Th2 differentiation
(224). Leptin promotes expression of RORγt to drive Th17
differentiation in human and mouse CD4T cells in vitro and
in vivo (225). In contrast, Leptin suppresses Treg proliferation
and expansion (230). Leptin is shown to activate the mTOR
pathway and promote T cell glycolytic metabolism to regulate
both Teffs proliferation and Tregs responsiveness (226, 227). In
B cells, Leptin promotes expression of anti-apoptotic proteins
Bcl-2 and Cyclin D1 to promote survival (231). Leptin activates
JAK2/STAT3 and p38/MAPK/ERK1/2 signaling pathways in
human B cells, and activates TNF, IL-6, IL-10 production (232).

Leptin is elevated in a number of autoimmune diseases
including SLE (247), in humans and in murine models of
lupus, and exerts pathogenic effects through increased Th17
proinflammatory responses, increased autoantibody production,
impaired Treg responses, and increased availability of apoptotic
cell-derived self-antigens (228, 229). Accordingly genetic deletion
of leptin in mice, and the neutralization of leptin are shown
to benefit autoimmune disease by restoring immune cell

functions (228). Based on these findings, Leptin blockade may
be considered a useful therapeutic approach for inflammatory
diseases. However, downregulating effector immune responses
would be detrimental during infections. Therefore, caution must
be exercised in this direction, and appropriate selective targeting
of molecules in the Leptin pathway may be considered better
options.

Better understanding of the role of these hormones in immune
responses and autoimmunity will pave the path for development
for clinically relevant therapeutics to treat autoimmune diseases.

CONCLUSIONS

The female gender-dependent bias in autoimmunity depends
not only on the X chromosome but also the vast range of
effects of sex hormones on the immune system and target
organs. Sex hormones regulate molecular mechanisms in the
innate and adaptive immune systems, and control immune
responses in health. Complex interactions of hormones and
environmental factors in genetically susceptible individuals
lead to deregulation of the immune response, leading to
immune-mediated diseases including autoimmune disease.
While a large body of evidence exists for the role of estrogen
in the immune response (Table 1), much remains to be
learned. Complex roles of estrogen in different autoimmune
diseases, with some protective roles in MS and RA, but
pathogenic effects on others like SLE make it imperative to
better understand the underlying basis for these dichotomies.
Blocking estrogen receptors cautiously and in a targeted manner
may yield better therapeutic outcomes than global treatment.
Leptin is immunostimulatory, implicated in autoimmune
disease, and targeting this hormone may be beneficial.
Progesterone and androgens mediate immune-protective
effects and therefore may be considered as potential therapeutic
avenues.
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In addition to determining biological sex, sex hormones are known to influence health 
and disease via regulation of immune cell activities and modulation of target-organ 
susceptibility to immune-mediated damage. Systemic autoimmune disorders, such as 
systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis are more 
prevalent in females, while cancer shows the opposite pattern. Sex hormones have 
been repeatedly suggested to play a part in these biases. In this review, we will discuss 
how androgens and the expression of functional androgen receptor affect immune cells 
and how this may dampen or alter immune response(s) and affect autoimmune disease 
incidences and progression.

Keywords: androgen, testosterone, systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, 
cancer, autoimmunity, sex hormones

iNTRODUCTiON

Sex hormones exert their effects on many cellular targets, including cells of the immune system. 
Indeed, sex hormones directly influence immune cell function and development as well as the sus-
ceptibility of cells and tissues to damage from aberrant (autoimmune) processes. In this review, we 
will discuss how androgens and the androgen receptor (AR) affect immune cells and how this may 
dampen or alter immune response(s) to affect disease incidence and progression.

ANDROGeN AND ARs

Androgens
The four androgen hormones, dihydrotestosterone (DHT), testosterone, androstenedione, and dehy-
droepiandrosterone (DHEA), are all synthesized from cholesterol in the gonads and adrenal glands 
(1). DHT is more potent than testosterone, while androstenedione and DHEA exhibit only 10 and 
5% of the potency of testosterone, respectively (1). However, testosterone is the most concentrated 
androgen in adult male serum, with DHT present at one-tenth the concentration of testosterone. 
Testosterone can be converted to androstenedione (and vice versa) and both can be aromatized to 
estrogens by aromatase (2). Aromatase is widely expressed and thus studies in which testosterone 
and androstenedione have been used for in vivo treatment can be difficult to interpret. DHEA binds 
several steroid hormone receptors, including AR and estrogen receptors α and β, albeit with lower 
affinity than their cognate ligands (3). Moreover, DHEA can be reversibly modified to form DHEA-S, 
which can be peripherally metabolized to testosterone (especially in premenopausal women) and 
estrogens (especially in postmenopausal women) (3), further complicating our understanding of 
DHEA-mediated effects. Of the four androgens, only DHT cannot be converted to estrogens and 
thus, studies utilizing DHT are most easily interpreted.
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TAble 1 | Expression of androgen receptor (AR) in hematopoietic  
cells.

Cell type AR expression (method) Reference

Stem cells and progenitor cells
Hematopoietic stem cell Yes (RT-PCR, IF) (33, 34)
Common myeloid progenitor Yes (RT-PCR) (33)
Common lymphoid progenitor Yes (RT-PCR) (33)
Granulocyte-macrophage progenitor ND
Common dendritic cell (DC) 
progenitor

ND

Megakaryocyte-erythroid progenitor ND
Erythroblast Yes (binding assay) (32)
Early T cell progenitor ND

Myeloid-derived cells
Megakaryocyte Yes (IHC, RT-PCR, IF) (37, 38)
Platelet Yes (IF) (38)
Erythroid cell (nucleated and 
enucleated)

Not expressed (IHC) (37)

Monocyte Yes (RT-PCR) (37)
Macrophage Yes (C+NC) (flow, IF, IHC, 

RT-PCR)
(16, 36, 37, 

39)
Myeloid-derived DC Not expressed (WB) (40)
Myelocyte Yes (IHC) (37)
Metamyelocyte Yes (IHC) (37)
Neutrophil (band cell) Yes (IHC) (37)
Neutrophil (segmented) Yes (IHC) (37)
Mature eosinophil Not expressed (IHC) (37)
Basophil ND
Mature mast cell Yes (ImmGold) (35, 41)

lymphoid-derived cells
DN T cell Yes (binding assay) (42)
DP T cell Yes (binding assay) (42)
CD4+ T cell Yes (C+NC) (flow, IF, 

binding assay)
(17, 28, 42)

CD8+ T cell Yes (C+NC) (binding assay) (17, 42)
Plasmacytoid DC ND
Pro-B cell Yes (WB) (43)
Pre-B cell Yes (WB) (43)
Immature B cell ND
Mature B cell Not expressed 

(IHC, WB)
(37, 43)

Other
Thymic epithelial cells Yes (IF) (44)
Bone marrow stromal cells Yes (IHC, WB) (37, 43)

ND, not determined; C, classical; NC, non-classical. ImmGold, ImmunoGold 
staining; RT-PCR, reverse-transcriptase-polymerase chain reaction; WB, western 
blotting; IF, immunofluorescence; IHC, immunohistochemical staining; flow, flow 
cytometry.
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Androgen Receptors
Beyond its required role in the development and expression 
of male phenotypes, the AR regulates immune function via 
modulating the transcription of a number of genes by DNA-
binding-dependent and -independent mechanisms (4). Encoded 
on the X chromosome, the AR is a signal transduction protein 
and transcription factor required for the development and expr-
ession of male phenotypes (4). The AR is bound by heat shock 
proteins and chaperones in the cytoplasm until bound by its 
ligands (5–10). Signal transduction through the classical AR is 
a multi-step process dependent upon receptor dimerization, the 
binding of ligand, interaction with cofactors, and DNA bind-
ing. Upon binding ligand, heat-shock proteins and chaperones 
are exchanged for cofactors, and the receptor:ligand complex 
translocates into the nucleus to bind specific DNA regulatory 
sequences [androgen response elements (AREs)] and regulate 
transcription (4). Due to the differences in binding affinities and 
dissociation constants, AR:DHT complexes remains bound to 
AREs longer than AR:testosterone complexes, further adding to 
the increased potency of DHT (11–13).

In addition to its well-characterized ability to function as a tran- 
scription factor as outlined above, the AR also signals through 
DNA-binding-independent mechanisms and can even signal in 
a ligand-independent fashion (14). Activation of non-classical 
(NC) AR rapidly affects the regulation of other nuclear receptors, 
transcription factors, and cytoplasmic signaling events including 
the release of intracellular calcium and the formation of inositol 
1,4,5-triphosphate (15). NC receptors may be located in the 
plasma membrane, where they are associated with G-protein 
coupled receptors and subject to internalization, or in the cyto-
plasm (16, 17) [reviewed in Ref. (18, 19)]. NC ARs include 
receptors that bind androgen either directly or indirectly via the 
steroid hormone binding globulin (SHBG) (20, 21). Finally, in 
the context of cancer, AR may be activated by a variety of growth 
factors independently of androgens (14).

Polymorphisms in the AR gene, NR3C5, are known to influence 
androgen signaling strength. The most widely studied polymor-
phism affects the number of CAG repeat sequences in exon one 
of the AR gene. Specifically, AR’s transactivational activity dec- 
reases with the presence of longer CAG repeats and vice  versa  
(22, 23). Interestingly, women with shorter CAG repeats (i.e., those  
with more potent AR signaling) exhibit higher androgen levels, 
while men with shorter CAG repeats experience more dramatic 
reductions in testosterone as they age (24, 25), suggesting that 
CAG repeats differentially affect AR signaling in men and women.

The expression of AR in various immune organs and multiple 
immune cells provides some indication of the level at which 
androgens influence immunity (Table  1). For example, T  cells 
are sensitive to androgens throughout development and beyond, 
while B cells are primarily sensitive during development. Indeed, 
thymocytes and thymic epithelial cells express intracellular 
AR (26–28) as do peripheral T  cells, which also express NC, 
membrane associated receptors (17, 28). Bone marrow stromal 
cells and B cell precursors, but not peripheral B cells, express AR 
(29–31). Gene expression studies show that the AR is expressed 
by all myeloid progenitor cells as well as some terminally differen-
tiated cells of myeloid lineage, including neutrophils, monocytes, 

and macrophages (16, 32–36). Thus, there is great potential for 
androgen modulation of the development and function of both 
the lymphoid and myeloid branches of the immune system.

ANDROGeNS AND iMMUNe  
Cell SUbSeTS

There is ample evidence that androgens alter immune cell devel-
opment and immune activation. In the following section, we 
review the effect of androgens on specific immune cell subsets 
and the potential effect this may have on immune responses and 
immune homeostasis in general.
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Myeloid Cells
The innate immune system consists of a number of different cell 
subsets, predominantly of myeloid origin. Most myeloid cells ini-
tiate their track of differentiation from hematopoietic stem cells 
in the bone marrow only to undergo final differentiation at sites 
of infection or inflammation. As mentioned above, all myeloid 
progenitor cells express the classical AR (34, 35) and testosterone 
has been shown to affect early myelopoiesis (45–47). Myeloid 
cell-specific effects of androgens are further discussed below.

Neutrophils
Several lines of evidence suggest that androgens directly promote 
the differentiation of neutrophils from myeloid progenitors. For  
example, both genetically manipulated AR-deficient mice and 
androgen insensitive mice carrying the naturally occurring tes-
ticular feminization mutation (tfm) exhibit neutropenia (45, 46).  
Similarly, androgen-deficient prostate cancer patients and gona- 
dectomized male mice also display neutropenia, prior to androgen- 
replacement therapy/DHT treatment (48, 49). Further support for 
androgen-induced granulopoiesis and neutrophil differentiation 
comes from studies of stanozolol, a testosterone analog, showing 
an increased prevalence of myelocytes and metamyelocytes as 
well as accelerated neutrophil maturation in treated female mice 
(50). Neutrophilia can also be observed in young women with 
hyperandrogenism due to polycystic ovarian syndrome (47). 
Interestingly, treatment with the anti-androgen, flutamide, and 
metformin (known to reduce circulating levels of androgens) 
decreases numbers of neutrophils in these patients (47). Together, 
these studies suggest that androgens drive neutrophil differen-
tiation and/or survival in mice and humans.

Although, less well understood, there is growing evidence that 
androgens might also affect neutrophil function. For example, 
testosterone suppresses both the anti-microbial activity and the 
production of pro-inflammatory cytokines by human neutro-
phils, while promoting the production of the anti-inflammatory 
cytokine IL-10 (51, 52). It is interesting that there are no reports 
of elevated numbers of myeloid cells in athletes taking anabolic 
androgenic steroids (AAS) as performance enhancing drugs, 
although increased production of pro-inflammatory cytokines 
(IL-1β and TNFα) and greater oxidative stress responses in 
PBMCs from AAS users [reviewed in Ref. (53, 54)] do suggest an 
effect on myeloid cell activity. In summary, androgens appear to 
promote neutrophil differentiation in mice and humans and may 
also dampen the inflammatory potential of mature neutrophils.

Monocytes/Macrophages
Both monocytes and macrophages have been found to express 
classical as well as NC AR (16, 37, 39, 41). Testosterone treatment 
was shown to elevate levels of circulating monocytes in a popu- 
lation of type II diabetic men with partial androgen deficiency 
(55), however, whether this effect was due to augmented diffe-
rentiation of monocytes in the BM or altered trafficking pat-
terns remains unknown. Studies evaluating the importance of 
androgens and/or AR in macrophages during wound healing 
have shown that AR deficiency accelerates wound healing, while 
DHT treatment improves the quality of the wound by increasing 

collagen fibers (56, 57). It remains to be determined at which 
stages of wound healing testosterone/DHT binding to the AR 
is required, which may explain these seemingly contradictory 
results. Finally, gonadectomy has been found to drive increased 
TLR4 expression by male murine macrophages leading to eleva-
ted pro-inflammatory responses during infection (58), suggesting 
that one mechanism by which androgens are immunosuppres-
sive is by limiting myeloid cell responsiveness to pathogens. This 
observation is further supported by data showing higher TLR4 
expression, increased phagocytosis, and enhanced oxidative burst 
in female macrophages (59) and a specific downregulation of 
TLR4 expression by testosterone in vitro (58). Interestingly, male 
mice subjected to sepsis fare worse than females (60), although 
whether the outcome is dependent on testosterone-mediated sup- 
pression of myeloid cell activity remains unknown.

At the molecular level, studies have identified the presence 
of plasma membrane-located G-protein receptor coupled NC 
ARs on macrophages. These receptors are capable of binding 
testosterone either directly or bound to SHBG and elicit non-
transcriptional stimulatory effects, such as rapid intracellular 
calcium mobilization and ERK phosphorylation (16, 20, 21). 
More research is needed to fully understand the impact of NC 
AR activation on macrophage function in males and females.

Other Myeloid-Derived Cell Subsets
Mast Cells
Skin residing mast cells have been found to express the AR, how-
ever, neither numbers nor distribution of these cells are affected  
by altering levels of androgens (35, 41). Instead, mast cell function, 
as determined by histamine release, may be regulated by andro-
gens, as histamine levels at some peripheral sites are reduced after 
castration (61). More recently, it was shown that at least under 
some circumstances testosterone directly induces Il33 expression 
by mast cells (62). Interestingly, IL-33 drives the generation of 
both innate lymphoid cells and basophils, known to produce 
Th2-associated cytokines and promote antibody class switch-
ing to IgE; an immunoglobulin found to be increased in young 
males over females in individuals suffering from allergic rhinitis  
(63, 64). Future studies will determine if androgens drive acti-
vation of other mast cell-specific proteins and processes.

Eosinophils
In contrast to neutrophils, numbers of eosinophils increased in 
the periphery and in the bone marrow of gonadectomized male 
mice (65). Castration did not, however, affect eosinophil numbers 
within sites of exposure, as eosinophil counts in nasal mucosa of 
unmanipulated and castrated male mice challenged with phos-
pholipase A2 and Schistosoma mansoni egg antigen were com-
parable (66). Interestingly, testosterone directly reduced human 
eosinophil viability and adhesion properties in  vitro (67), and 
DHEA suppressed eosinophil trafficking to the lung during infec-
tion (68), suggesting that androgens affect eosinophil numbers 
via control of tissue infiltration rather than de novo differentiation 
in the bone marrow. Additional studies evaluating the effect of the 
non-aromatizable DHT are needed to firmly address the role of 
AR and androgens on eosinophil maturation and function.
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Basophils
Basophils are largely unaffected by testosterone treatment (69) 
and expression of AR by these cells has not been determined.

Dendritic Cells (DCs)
At the border of the innate and the acquired immune systems, 
reside DCs. These can originate from either myeloid or lymp-
hoid progenitors. Only few studies have investigated the effect 
of androgens on DC differentiation and function but overall, 
testosterone has been assigned an immunoinhibitory function. 
It remains controversial, however, whether this effect is direct or 
indirect, as at least one study demonstrated a lack of AR expre-
ssion in myeloid-derived DCs (40). Nevertheless, exogenous DHT  
treatment has been found to either downregulate surface levels 
of MHC/HLA and costimulatory molecules or inhibit cytokine 
production in animal models resulting in reduced T cell activa-
tion, proliferation, and differentiation. For example, after LCMV 
infection, infiltrating DCs isolated from the brains of male mice 
were less activated (reduced MHC-II and CD86 expression) than 
cells isolated from females and gonadectomized male mice (70). 
This observation was due to testosterone, as DHT treatment of 
gonadectomized male mice reversed the DC phenotype back to 
that of intact males (70). Similarly, gonadectomy studies have 
shown that removal of testicular testosterone production in male 
mice results in increased expression of MHC and costimulatory 
molecules on DC (71). A similar pattern is found in hypogonadal 
men, in whom DC activation markers are significantly elevated, 
but reversed in response to exogenous testosterone treatment 
(72). The in vivo nature of these experiments and observations, 
however, do not necessarily support a direct effect of androgens  
on DCs, as both MHC and costimulatory molecules are also regu-
lated by cytokines secreted by other cells subject to androgenic 
regulation. Specifically addressing this concern, bone marrow-
derived DCs, exposed briefly to DHT during antigen uptake, 
have been found to be less efficient T cell activators in vitro than 
BMDCs not exposed to DHT (73).

lymphoid Cells
B Cells
It has been known for decades that the average female pro-
duces higher levels of antibodies in response to infections and 
vaccina tions [reviewed in Ref. (74)]. A number of studies have 
found strong correlations between low testosterone and elevated 
numbers of B cells (75–79), and high testosterone levels in men 
correlates with poorer antibody responses to vaccination (80), 
suggesting that androgens inhibit B lymphopoiesis. Recent stud-
ies of B cell subsets in 3- to 8-year-old children identified differ-
ent distributions in males and females (81, 82). Specifically, boys 
demonstrate elevated levels of immature CD5+ B  cells, while 
girls exhibit more memory-type B  cells. Lundell et  al. further 
evaluated levels of DHT in these children and found a positive 
correlation between DHT levels at birth and the frequency of 
immature B  cells. Given the minimal exposure to exogenous 
agents, these data suggest that males and females are subject to 
differential genetic- and/or hormonal-driven gestational regula-
tion of B cell lymphopoiesis.

In mouse studies, gonadectomy of male mice has been found 
repeatedly to drive B  cell lymphopoiesis in the bone marrow,  
with both testosterone and DHT treatment capable of reversing 
this effect (43, 83, 84). Similarly, global AR-deficient mice present 
with elevated B cell precursors in the bone marrow (pro-B stage 
and beyond) and studies of the B cell repertoire in B cell-specific 
AR knockout animals suggest that the lymphopoietic effect of 
testosterone is AR-dependent and intrinsic to the B cell—at least 
at the later stages of B cell development (pre-B cells and beyond) 
(85). However, other studies have suggested that the inhibitory  
effect of testosterone on B lymphopoiesis is dependent on bone 
marrow stromal cells (29, 30). Recently, AR expression by bone 
marrow osteoblasts was found to specifically inhibit early B 
lymphopoiesis resulting in an accumulation of pro-B cells (86). 
Thus, it is likely that the differentiation of pro-B cells from com-
mon lymphoid progenitors is inhibited by AR expression by 
osteoblasts, while further differentiation along the B cell lineage 
is negatively affected by AR expression by the B cell progenitors 
themselves. A possible mechanism of action has been suggested 
based on studies showing that testosterone upregulates TGFβ 
production by bone marrow stromal cells leading to inhibition 
of IL-7 production and suppression of B lymphopoiesis (29, 87). 
In summary, B lymphopoiesis is inhibited by androgens both 
directly and indirectly via effects on bone marrow stromal cells.

T Cells
Thymic size and the selection of developing thymocytes is signi- 
ficantly affected by androgens. Testosterone deficient or insensi-
tive males, due to gonadectomy or AR deficiency, experience 
thymic enlargement (27, 88–93). Thymic size returns to normal 
when gonadectomized males are treated with DHT (91). Studies 
involving AR-deficient bone marrow chimeric mice demon-
strated that androgen signaling through AR in thymic epithelial 
cells mediates androgen’s effects in the thymus (27). A similar 
observation was made in thymic epithelial cell-specific AR−/− 
mice (94). In addition, androgens limit the numbers of CD4+ 
CD8+ and CD4+ CD8− in favor of CD4− CD8+ thymocytes, 
perhaps by suppressing proliferation and accelerating the apop-
tosis of immature thymocytes (88, 90, 95, 96). Finally, androgens 
enhance the negative selection of self-reactive T  cells by upre-
gulating the expression of autoimmune regulator (Aire) in medul-
lary thymic epithelial cells (97). Androgens may also influence 
T cell development in tolerance-promoting ways by enhancing 
TGF-β production in the thymus (98).

Similar to its effect on thymic size, androgens also limit the 
total number of T cells residing in the periphery. Postpubescent 
gonadectomized male mice exhibit larger peripheral lymphoid 
organs housing a greater number of lymphocytes, including both 
CD4+ and CD8+ T cells (92, 99). The expansion of peripheral 
lymphoid organs after the removal of androgens may be related 
to increases in thymic output and/or lessened peripheral T cell 
death, as an in vitro study recently demonstrated that DHT can 
non-selectively induce cell death in peripheral T cells (100).

Androgens are likely responsible for some portion of the effect 
of sex on peripheral T cell responses. Thymocytes and lympho-
cytes isolated from non-autoimmune female mice respond more 
vigorously to exogenous and allogeneic antigens in vitro than cells 
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isolated from male mice (101, 102). Treating female mice with 
testosterone reduces the proliferative T cell response to OVA and 
KLH (101). Similarly, gonadectomized male mice, compared to 
intact male mice, proliferate more vigorously in response to TCR 
stimulation and OVA in vitro and in vivo (92, 99).

Cytokine production evoked by specific antigens are also  
often affected by sex, with male cells favoring Th2 type responses 
and female cells favoring Th1 type responses (92). For example, 
anti-CD3 stimulation provokes the secretion of Th2 cytokines, 
IL-10 and IL-4, from CD4+ T  cells isolated from male expe-
rimental autoimmune encephalomyelitis (EAE)-prone SJL mice, 
but IL-12 from cells isolated from females (26). Interestingly, 
the addition of DHT to T cell cultures is sufficient to upregulate  
IL-10 expression (26). Beyond its ability to enhance the produc-
tion of Th2 cytokines, androgens actively inhibit Th1 differen-
tiation (103, 104), by inhibiting IL-12 and IFN-γ production 
downstream of antigen stimulation (105–109).

Androgens may influence the differentiation and function of  
regulatory T  cells differently in males versus females. In vivo 
androgen supplementation of women with adrenal insufficiency 
and female rats with experimental autoimmune orchitis expands 
the number of regulatory T  cells (104, 110). More specifically, 
when bound to ligand, the AR directly enhances the expression 
of Foxp3 in T cells (regulatory or otherwise) isolated from rats 
or women during the ovulatory phase, but not men (111). Thus, 
androgens are capable of directly converting peripheral T cells 
into regulatory T  cells in women. By contrast, androgens may 
interfere with regulatory T cell function in men, as occurs in a 
mouse model of Sjögren’s syndrome that predominantly affects 
male mice (112).

Overall, androgens directly influence the development of 
lymphoid cells; and at least in mice, lymphoid cells that develop  
in the presence of androgens may retain differential character-
istics even when later placed in an androgen-deficient environ-
ment. Moreover, androgens appear to suppress the inflammatory 
potential of peripheral lymphoid cells. In some cases, such effects 
may be direct, but the absence of AR in peripheral B cells, for 
example, suggests that differences are more likely due to prior 
exposure to androgens during development, or regulation by 
other androgen-sensitive peripheral cells.

ANDROGeNS iN AUTOiMMUNiTY

Many autoimmune disorders are more prevalent in females, 
including autoimmune thyroiditis, systemic lupus erythematosus  
(SLE), Sjögren’s syndrome, multiple sclerosis (MS), and rheu-
matoid arthritis (RA) (113). Both sex hormones and genes ex- 
pressed on the X or Y chromosomes have been proposed to drive 
this bias, as exemplified by the fact that Klinefelter’s patients 
(XXY karyotype) express not only two X chromosomes but also 
reduced levels of androgens, and present with an increased risk 
for most of these disorders (114). Many patients of either sex 
with autoimmune disorders that predominantly affect women 
also demonstrated lower serum concentrations of androgens  
(76, 115, 116). Here, we will discuss the influence of androgens  
on the development and severity of RA, MS, and SLE.

Rheumatoid Arthritis
Rheumatoid arthritis is characterized by synovial inflammation 
and swelling, as well as cartilage and bone destruction. Some 
patients may develop one or more additional systemic sequelae, 
including cardiovascular disease, pulmonary disorders, lym-
phoma, lung cancer, psychological disorders, and osteoporosis 
(117). Like many other autoimmune diseases, RA is 2–4 times 
more frequent in women than in men (113). Most studies have 
concluded that in addition to increased susceptibility, female RA 
patients suffer from a more severe version of the disease, with 
higher disease activity scores, faster progression, more pain, and 
lower remission rates (118–122).

While estrogens likely contribute to the increased female risk 
of RA (123), it has been hypothesized that androgens may also 
offer some protection from the disease. Indeed, serum androgen 
levels tend to be lower in men with RA as compared to healthy 
controls. For example, the incidence of RA increases as andro-
gen production declines in aging men and several groups have 
reported lower serum testosterone concentrations in male RA 
patients as compared to controls (76, 124–130). Furthermore, 
men who experience a dramatic loss of serum androgens with 
age may develop a more aggressive form of RA with earlier onset 
(131–133). In some cases, low serum androgens also correlate 
with increased risk of developing RA. Men with genetic hypo-
gonadism (Klinefelter’s syndrome) and prostate cancer patients 
treated with androgen-ablating therapy are at increased risk of 
developing RA (114, 134).

Interestingly, serum androgen levels are not lower prior to the 
onset of RA in all patients, suggesting that low androgens are not 
universally predisposing to the development of RA (127, 133). 
Instead, as a recent large study reported, men with lower serum 
testosterone levels prior to the onset of RA may be more likely to 
develop a specific subset of RA, characterized as rheumatoid fac-
tor negative (135). It is possible that the correlation of low serum 
androgen levels and RA in men can be explained by inflam-
matory cytokines, such as IL-6, which become elevated during 
the disease process and are known to suppress the secretion of 
adrenal androgens (136). The notion that low serum androgens 
are a consequence of RA, as opposed to a cause in some cases, is 
supported by an inverse correlation between low free testosterone 
and inflammatory markers and disease activity (129, 137), as well 
as the finding that successful treatment of RA correlates with the 
restoration of normal levels of free testosterone (130). To sum-
marize, androgens may protect against the development of RA 
in men in some circumstances; and in others, the inhibition of 
androgen secretion by the RA-inflammatory response is second-
ary to RA, but may still influence the severity of disease in men.

The effect of androgens on RA susceptibility and severity in 
women is less well understood. Androgens may protect against 
RA in some women, but other studies suggest that androgens 
may actually worsen disease severity. As in men, low serum con-
centrations of androgens, particularly DHEA and/or DHEA-S, 
are linked with RA in women (136, 138–140). However, as was 
found in men, serum androgen levels are within the normal range 
10 years prior to the onset of RA and levels of DHEA-S inversely 
correlate with disease duration and severity in women (127, 140). 
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Thus, for most female patients, the inhibitory effect of inflamma-
tion on the secretion of androgens may explain this correlation. 
Two notable exceptions to this include women who inherited 
particular polymorphisms resulting in higher or lower androgen 
levels correlating with protection from disease or exacerbation, 
respectively. First, women predisposed to produce androgens in 
greater concentrations due to inheritance of a polymorphism in 
the CYB5A gene are protected from developing RA characterized 
by RF and antibodies to citrullinated proteins (141); and, second, 
women with lower serum androgens are more likely to develop 
a type of RA that is not responsive to combination therapy 
consisting of nonsteroidal anti-inflammatory drugs, low-dose 
prednisolone, methotrexate, and more than one of several other 
disease modifying anti-rheumatic drugs (142).

In contrast to the above findings, high androgen concentra- 
tions or more potent AR signaling have been reported in some 
women with more severe RA. For example, one small study 
reported normal androgen concentrations in premenopausal RA 
patients, and higher testosterone and DHEA-S in postmenopa-
usal women with RA (143). More strikingly, women with higher 
concentrations of serum androgens due to a low number of 
CAG repeats in the AR developed a more aggressive RA with 
earlier onset, though overall susceptibility to RA was not affected 
(131–133, 144).

Because of the correlation between low serum androgens and 
RA and the known immunosuppressive properties of androgens, 
androgens have been utilized to some extent as a treatment for 
RA. Overall, the administration of androgens to male and female 
patients had a positive effect for both sexes (145–148). However, 
it should be noted that such studies are few in number, with small 
patient populations, short-term treatments, modest improve-
ments, and in some cases, no effect at all.

Animal Models of RA
Several animal models of RA also show increased susceptibility or 
more severe disease in females as compared to males (149–152). 
For example, the incidence of RA is greater or more severe for 
females in collagen-induced arthritis (CIA) in rats, SKG mice 
injected with zymosan, LEW/N rats injected with polysaccharide 
fragments from group A streptococcal bacteria, and BALB/c 
mice with cotton-pellet induced inflammation (149–152). More-
over, androgens have been shown to exert protective effects in 
RA, even in animal models with equal or more severe disease in 
males (150, 153). Gonadectomy of male animals worsens RA in 
CIA-rats and SKG mice; and, the addition of DHT to gonadecto-
mized CIA-rats inhibits disease (149, 152). Male and female rats 
injected with complete Freund’s adjuvant (adjuvant arthritis) do 
not demonstrate a sex bias; however, similar to human studies, 
arthritic males demonstrate lower testosterone levels after dis-
ease induction (153). Finally, the expression of the AR on B cell 
progenitors has been shown to have protective effects in male 
mice with CIA (150).

Cellular and Molecular Targets of Androgens in RA
Regardless of whether serum androgen levels or receptor activity 
is involved in systemic RA etiology, a separate case has been made 
for its involvement in disease pathogenesis within affected joints. 

The synovial fluid of RA patients exhibits elevated levels of free 
estrogens and reduced concentrations of free androgens, possibly 
due to increased local aromatization of androgens to estrogens 
(154). The conversion of androgens to estrogens heightens the 
local inflammatory response, since androgens have been shown 
to inhibit the synthesis and secretion of IL-1 and IL-6, two impor-
tant inflammatory cytokines in RA (155–158). The relationship 
between androgens, inflammatory cytokines, and aromatase 
activity is reciprocal; IL1 and IL6 stimulate aromatase activity, 
while androgens inhibit it (157).

In summary, with some notable exceptions, the correlation bet- 
ween low androgen and RA likely exists because RA-associated 
inflammation dampens serum androgen levels. Improvements in 
our ability to group RA into less heterogenous disease subgroups 
may reveal particular subgroups that are more affected by and-
rogen levels than others.

MS and Androgens
Multiple sclerosis is an autoimmune disorder in which neuronal 
axons are actively demyelinated leading to neuronal damage 
and eventual paralysis. The disease precipitates in patterns of 
relapsing-remitting or progressive-onset. Only the former of 
these shows a sex-bias; relapsing-remitting MS (RRMS) devel-
ops 3–4 times more frequently in females than in males and 
predominantly in individuals of childbearing age, suggesting a 
role for sex hormones [reviewed in Ref. (159)]. In addition to 
higher incidence rates among female RRMS patients, many stud-
ies have also shown that women exhibit higher relapse rates than 
men (160–165), further supporting a gender-bias in this disease. 
Several studies have evaluated levels of sex hormones in MS 
patients, and testosterone, DHEA, or DHEA-S levels have been 
found to be lower in both men and women with MS as compared 
to healthy age-matched controls (115, 165–168). Although it is 
generally thought that testosterone’s protective effect is mediated 
via immune modulation, treatment with testosterone improved 
cognitive performance and slowed brain atrophy (169) and has 
been suggested to increase gray matter in a small cohort of men 
with RRMS, suggesting a direct neuroprotective function of 
testosterone (170).

Multiple sclerosis patients display a chronic inflammatory 
profile characterized by T  cell-derived cytokines (IFNγ and 
IL-17) and circulating antibodies reactive to brain autoantigens 
(171–176). Both T  cell and B  cell differentiation and effector 
functions have been shown to be affected by androgens (as 
mentioned above), however, clinical trials with drugs specifically 
targeting IL-17A (secukinumab) or B cells (rituximab) were only 
somewhat effective (177, 178), and targeting IFNγ via blockade 
of IL-12 (ustekinumab) was not effective (179).

Animal Models of MS
Studies of EAE (animal model of MS) have largely confirmed a pro-
tective role for androgens (180–183). For example, gonadectomy 
of male SJL mice resulted in increased disease susceptibility, while 
treatment with exogenous testosterone or DHT reduced disease 
incidence in both females and males (180, 181). Although C57Bl/6 
male and female mice develop EAE at a similar rate, C57Bl/6 
male mice were also protected by treatment with DHT (181),  
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and similar results have been obtained in EAE-susceptible Dark 
Agouti rats (183). By contrast, Ziehn et al. showed that only tes-
tosterone, not DHT, exerted a direct neuo protective effect (182), 
suggesting that testosterone and DHT may have independent 
effects on cells of the hippocampus and infiltrating immune cells. 
Further studies are needed to thoroughly investigate if AR bind-
ing is required for the protective effect of androgenic treatment.

Cellular and Molecular Targets of Androgens  
in MS/EAE
While most studies support an overall protective effect of tes-
tosterone in MS and EAE, specific immunological targets are  
less well explored. Androgens may affect T cells in at least two 
specific ways. As mentioned above, androgens stimulate the Aire  
promoter, driving increased Aire expression by medullary thy-
mic epithelial cells and increased negative selection (97). As a 
result hereof, male mice or mice treated with DHT are relatively 
protected from EAE (97). Second, EAE is typically driven by T 
helper cells (Th1 and Th17) and is characterized by the presence 
of key signature cytokines such as IFNγ and IL-17 within the 
brain, secondary lymphoid organs, and circulation. A general Th1  
propensity has been observed in female patients with MS and 
EAE animal models (184–187) and it has been suggested that low 
levels of testosterone drive this phenotype. In support hereof, 
ex vivo exposure of encephalomyelitic T cells to testosterone has 
been shown to significantly change the secreted cytokine profile 
(from IFNγ to IL-10) and the pathogenic potential of these T cells 
(180, 188). Furthermore, myelin-basic protein-primed female 
T  cells and T  cells from gonadectimized males express signifi-
cantly higher levels of the VLA-4 integrin β1 subunit and secrete 
higher levels of pro-inflammatory cytokines, such as IL-1β, than 
male-derived cells (189), thereby promoting T  cell infiltration 
into the brain and brain pathogenesis. Although the mechanism 
driving differential T cell activation in males and females is largely 
unknown, Dunn et al. recently described that PPARα was highly 
expressed in male T  cells in a testosterone-dependent manner 
and that deficiency of PPARα specifically worsened EAE in male 
mice (109). Further studies are needed to establish the interre-
lationship between PPARα, Aire, and other DHT-dependent 
immune regulators.

In conclusion, low levels of androgens are observed in patients 
with MS and gonadectomy of male mice increases their suscep- 
tibility to induced EAE. T cells have been found to respond to 
androgens throughout development and recent studies have started 
to unravel molecular mechanisms associated with androgen-
induced T cell suppression.

Androgens in Sle
Systemic lupus erythematosus, a chronic and potentially fatal 
disease with the potential to cause damage in multiple organ 
systems, is nine times more prevalent in women than men 
(190). Physicians commonly see patients with a wide range of 
clinical manifestations, which may spontaneously flare and 
remit. For example, patients with mild lupus may present with 
intermittent skin rash and joint pain and require little medica-
tion, while patients with severe glomerulonephritis may show 
progressive renal deterioration despite treatment with high doses 

of corticosteroids and cytotoxic drugs. Other significant health 
consequences can include central nervous system involvement, 
vasculitis, thrombosis, thrombocytopenia, anemia, fevers, fatigue,  
and heart and lung involvement (190, 191).

Antinuclear autoantibodies (ANAs) are generally considered 
to be a hallmark of lupus (190, 191). A portion of the tissue 
damage in SLE is related to autoantibodies that target cell surface 
antigens. In other cases, such as in the kidney, the deposition, or 
in  situ formation of ANA immune complexes with subsequent 
complement activation and inflammatory cell recruitment are 
responsible for the damage. The damage generated by immune 
complexes is not trivial; SLE is a leading cause of kidney disease, 
stroke, and premature cardiovascular disease in young women 
(192, 193).

A number of reports have suggested that androgens are pro- 
tective in SLE. Although many male lupus patients have normal  
levels of androgens (194), men with hypogonadism are at incre-
ased risk of developing SLE (114, 116, 195) and testosterone sup-
plementation of male lupus patients with genetic hypogonadism 
(Klinefelter’s syndrome) has, in two cases, been beneficial in treat- 
ing lupus (196, 197). However, no large-scale studies involving 
testosterone supplementation in male lupus patients have been 
reported (198). Women with lupus generally have lower andro-
gen levels, including testosterone, DHT, DHEA, and DHEA-S 
(199–201), and demonstrate an accelerated inactivation of tes-
tosterone via oxidation than healthy age-matched controls (202). 
In addition, it has been suggested that inflammatory cytokines  
in affected tissues modulate aromatase activity to locally dampen 
the effects of androgens in favor of estrogens in lupus patients 
(203). Finally, male lupus patients with reduced AR signaling 
produce higher quantities of IgG autoantibodies (204), while 
female lupus patients with the same polymorphism exhibited 
reduced disease (78). It is not clear why reduced androgen sig-
naling is associated with opposite effects on lupus in male and 
female patients. However, recent studies in the BWF1 animal 
model (discussed below) have also identified instances whereby 
androgen-mediated mechanisms of disease suppression are not 
effective in females (48). Together these observations suggest 
that androgens affect lupus pathogenesis differently in males 
and females and that the mechanisms by which androgens limit 
disease may not be immediately applicable as therapies for female 
patients.

Although survival rates of male lupus patients are compara-
ble to survival rates in female lupus patients (205–210), it has 
been reported that the severity of SLE is worse in males than 
in females, suggesting that genetic susceptibility must be more 
potent in men to overcome the protection afforded by androgens 
(211–215). This is supported by reports that male lupus patients 
have an increased frequency of renal involvement (208, 210, 
216–218) and that women with an affected male relative are 3.5 
times more likely to develop renal disease than women without 
an affected male relative (219).

Some effort has been made to treat lupus with androgenic 
compounds. The small numbers of patients included in many of 
the following clinical trials make definitive conclusions difficult. 
However, in general, these studies support an ameliorating role for 
androgens. Danazol, a weakly androgenic synthetic compound, 
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reduced total serum IgG as well as anti-dsDNA autoantibody 
levels in women (220, 221). However, all patients did not benefit 
from therapy and some experienced disease flares (220, 221). Like- 
wise, treatment with a testosterone-like anabolic steroid, nand-
rolone, afforded some patients clinical improvement, but other 
patients saw no improvement and masculinizing side effects 
made this drug a somewhat untenable treatment option for most 
women (202, 222, 223).

Larger clinical trials have been conducted with DHEA, an 
adrenal steroid with mild androgenic activity, in the hopes of 
separating the disease-ameliorating properties of androgens 
from its masculinizing ones. However, as for other androgenic 
drugs, some patients treated with DHEA (also known as pras-
terone) experienced reduced disease activity, improved cognitive 
function, enhanced mental well-being, and a reduced need for 
corticosteroid treatment (224–228), while others experienced 
no improvement (229, 230). Overall, treatment with this agent 
did not meet primary objectives of these studies and it has not 
been approved by the Federal Drug Agency for treatment of 
lupus patients. It should be mentioned that in a recent study, 
female lupus patients with a particular polymorphism in the 
extra-pituitary prolactin gene associated with low serum DHEA 
levels experienced the most dramatic improvements after DHEA 
treatment (201). Thus, genetic differences of particular study 
populations may explain the varied results from different clinical 
trials with DHEA in lupus patients.

Androgens in Mouse Models of Lupus
Inbred mice that spontaneously develop a lupus-like disease 
have been extremely helpful toward elucidating the etiology and 
pathogenesis of lupus. Several spontaneous models of lupus exist 
[reviewed in Ref. (231)]. Here, we focus exclusively on studies 
conducted with the F1 offspring of New Zealand black (NZB) and 
New Zealand white (NZW) mice. The female F1 offspring of NZB 
and NZW mice (BWF1) develop a lupus-like disease character-
ized by high levels of IgG ANAs accompanied by a severe and 
progressive glomerulonephritis in the first year of life (232, 233). 
By contrast, less than half of BWF1 male mice develop severe pro-
teinuria within the same time period (232, 233). As in humans, 
several studies have determined that androgens suppress lupus 
pathogenicity BWF1 mice. For example, prepubescent gonadec-
tomy of BWF1 male mice increases the incidence of proteinuria 
and mortality and accelerates the appearance of ANAs as com-
pared to intact males (233–235). In addition, administration of 
DHT to gonadectomized male mice is sufficient to reduce disease 
development comparable to that observed in intact male mice 
(233–235).

Chemical manipulation of androgens in lupus-prone BWF1 mice 
also generally supports the hypothesis that androgens are protective 
in lupus. For example, treatment of BWF1 females with nandrolone 
decanoate (236–238) and ethylestrenol (239), which are both tes-
tosterone-like anabolic steroids, ameliorated disease. Nandrolone 
decanoate also reduced IgG anti-dsDNA antibody, reduced the inci-
dence of proteinuria, and improved survival (236, 238). Similarly, 
DHEA treatment significantly delayed disease onset, reduced 
IgG anti-dsDNA autoantibodies, and reduced mortality (240). By 
contrast, danazol did not protect BWF1 females from accelerated  

development of disease (241), and treatment of BWF1 females 
with the anti-androgenic drug, flutamide, resulted only in a slight 
decrease in survival, with no noticeable effect on autoantibody 
levels (242). Overall, BWF1 male and female mice recapitulate 
much of the sex bias observed in lupus patients and are a useful 
model for advancing our understanding of the role of androgens 
in lupus-like disease.

Cellular and Molecular Targets of Androgens  
in Lupus
Many autoimmune diseases that are more prevalent in females, 
including SLE, are characterized by increased numbers of B cells 
and circulating autoantibody levels [reviewed in Ref. (243)]. 
Some evidence suggests that androgens may indirectly regulate 
isotype switching from IgM to more pathogenic IgG autoantibod-
ies in BWF1 mice. Serum testosterone levels dramatically drop 
in intact BWF1 males at 9 months of age (234), paralleling the 
time at which autoantibodies in intact males class switch to IgG 
(233, 244). Furthermore, treating 9-month-old BWF1 males 
with physiological levels of DHT greatly decreases mortality, 
prevents IgM anti-polyA antibodies from class switching to 
IgG, and reduces the levels of IgG anti-dsDNA antibodies (234). 
By contrast, DHT treatment in intact BWF1 female mice after 
autoantibody production (6 months) does not affect levels of IgG 
anti-dsDNA autoantibodies, although mortality is reduced (245). 
Though the mechanism by which androgens suppress disease in 
older mice remains unclear, some studies suggest that androgens 
enhance (and estrogens delay) immune complex clearance (246); 
a process frequently associated with the development of SLE 
and lupus in mouse models. For example, androgens have been 
shown to enhance serum levels of complement components C4, 
Slp, C5, C6, and Ss binding protein, which could underlie more 
efficient IC clearance (247–249). More current studies evaluating 
a relationship between androgens and complement has to our 
knowledge not been performed.

As indicated above, androgens have been shown to have dis-
creet effects on B cell function and downstream kidney damage 
in males and females. Androgens also appear to modulate the 
development and function of neutrophils differently in lupus-
prone males and female. We have previously shown that Gr1+ 
CD11b+ cells accumulate in male mice, inhibiting the function 
of T follicular helper cells, germinal center formation, and plasma 
cell differentiation (48, 49, 250). Interestingly, these myeloid cells 
suppress disease in male, but not female, mice. It is intriguing 
to speculate that perhaps the increased frequency of suppressive 
Gr1+ CD11b+ cells in males is a related to CD11b+ cell over-
expression of the DHT-regulated gene, colony-stimulating factor 
3-receptor (Csf3-r) (233). Together with its ligand, G-CSF, CSF3-R 
is involved in maintaining neutrophil homeostasis and also regu-
lates several aspects of neutrophil function (251). Interestingly, 
high doses of G-CSF suppress lupus-like disease in at least one 
animal model (252) and polymorphisms, the Csf3-r gene influ-
ence the development of lupus and RA (253, 254). Thus, it is 
not unreasonable to hypothesize that sex-specific alterations in 
expression of CSF3-R could influence neutrophil phenotype and 
function and thereby differentially influence lupus pathogenesis 
in males and females. Overall, at least in mice, it seems as though 
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lupus pathogenesis may proceed in fundamentally different ways 
in male and female mice.

CANCeR AND ANDROGeNS

Immune cells must be capable of distinguishing modified-self from 
self, and yet, must not become unduly activated against unmodified 
self-antigens. Immune activity outside of these boundaries likely 
risks the development of cancer or autoimmunity and it follows 
that immune systems especially good at protecting against cancer 
may run the risk of triggering autoimmunity (and vice  versa). 
Given that women are more susceptible to many autoimmune 
diseases, one might expect men to be more susceptible to cancer. 
Indeed, a number of epidemiologic studies and meta-analyses have 
recently confirmed that cancer develops more frequently in males 
than in females (255–257). In a meta-study examining mortality 
rates from 1977 to 2006, the male-to-female mortality-rate ratios 
were also found to be increased all malignant cancers, although 
predominantly for cancers affecting the upper gastro-intestinal 
tract and respiratory systems (lip, tongue, hypopharynx, esopha-
gus, larynx, lung, etc.) as well as liver and bladder (255). Many 
factors have been proposed to explain this discrepancy including 
environmental exposures (smoking, obesity, infections) and sex 
hormone levels and signaling (255, 258).

As mentioned above, chronic inflammation can lead to sup-
pression of testosterone. Cancer is known to induce a stage of 
chronic inflammation, and thus in order to study a potential causal 
relationship between testosterone and cancer development, retro-
spective cohort analyses investigating levels of testosterone prior 
to the diagnosis of cancer are necessary. Not many studies of that 
kind have been done. In one study, testosterone levels were found 
to positively correlate with the risk for a subset of epithelial ovarian 
cancers (259). Similarly, higher levels of testosterone correlated 
with an increased risk of breast cancer in women (260). It will be 
interesting to see if this pattern holds for other types of cancer.

Animal Models of Cancer
More direct evidence supporting a tumorigenic role for andro-
gen in cancer development comes from animal studies, where 

susceptibility to cancer in response to chemicals and genetic 
manipulation often depend on sex hormone levels (261). For 
example, gonadectomy of male rats reduced both chemical-
induced pancreatic tumor burden (262) and renal cell carcinoma 
(263), while re-administration of testosterone at least partly 
reversed this effect. Furthermore, injection of prostate cancer 
cells into unmanipulated and gonadectomized nude male mice 
showed reduced tumor growth in gonadectomized mice and 
increased tumor growth upon subsequent testosterone treatment 
(94). It should be noted that whether these effects of testosterone 
were due to inhibition of immune activation or via direct effects 
on tumor cells remains to be tested. In a separate study of induced 
thyroid cancer in male mice, gonadectomy led to an upregula-
tion of tumor-suppressor genes (264). With tumor-suppressor 
proteins present, CCL5 chemokine expression by tumor cells 
increased driving infiltration by inflammatory macrophages and 
CD8+ cytotoxic T cells and subsequently reduced tumor growth. 
Thus, testosterone may be predictive of increased cancer risk, 
warranting further research into the immunosuppressive and 
potential cancer-promoting effects of testosterone during early 
establishment of cancer.

CONClUDiNG ReMARKS

To conclude, sex-specific biases in autoimmunity and cancer 
incidence are associated with many differences in immune cell 
development and function. A significant portion of these differ-
ences are the result of exposure to androgens. Androgen-mediated 
suppression of immune reactivity and inflammation increases 
the threshold for autoimmunity to develop, but likely lowers the 
threshold for cancer. Studies further uncovering immune-specific 
effects of androgens are needed and may lead to the identifi - 
cation of pathways that could be targeted therapeutically to inhibit 
the incidence and progression of autoimmunity and cancer.
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The immune systems of post-pubescent males and females differ significantly with 
profound consequences to health and disease. In many cases, sex-specific differences 
in the immune responses of young adults are also apparent in aged men and women. 
Moreover, as in young adults, aged women develop several late-adult onset autoimmune 
conditions more frequently than do men, while aged men continue to develop many 
cancers to a greater extent than aged women. However, sex differences in the immune 
systems of aged individuals have not been extensively investigated and data addressing 
the effectiveness of vaccinations and immunotherapies in aged men and women are 
scarce. In this review, we evaluate age- and sex hormone-related changes to innate and 
adaptive immunity, with consideration about how this impacts age- and sex-associated 
changes in the incidence and pathogenesis of autoimmunity and cancer as well as the 
efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical 
and clinical studies should consider age and sex to better understand the ways in which 
these characteristics intersect with immune function and the resulting consequences for 
autoimmunity, cancer, and therapeutic interventions.

Keywords: sex, sex hormones, immunity, autoimmunity, cancer, vaccines, immunotherapy, checkpoint blockade

iNTRODUCTiON

In developed countries, the population is aging, with the number of people over the age of 65 dou-
bling in size from 2012 to 2050 (1). In developed and even developing countries, lifespan is longer 
for women than men (2, 3). Both sex (i.e., biological differences between males and females) and 
gender (i.e., social or cultural norms that define masculine and feminine) contribute to male–female 
differences in mortality rates among individuals 65 years and older. Why and how the sexes differ in 
the incidence and progression of immune-related diseases that are either specific to advanced age or 
that worsen with age, such as particular infections, autoimmune disease, and cancer, has not been 
well studied.

Aging is associated with the development of chronic inflammation and a general reduction in 
immune function. The effect of sex on immune function during the aging process has not been 
well studied. But, some studies indicate that the innate immune system of aged females may be 
more inflammation-prone when compared with aged males. However, aging of the adaptive immune 
system may occur at a faster rate in men, when compared with women. Several diseases that are 
associated with age are also sensitive to changes in the immune system. Therefore, herein, we will 
discuss the effects of age and sex on the innate and adaptive immune systems and the contribution 
of sex hormones to these effects. We will also examine the functional consequences of age- and 
sex-related changes to immunity in the contexts of vaccination, autoimmunity, cancer, and cancer 
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FigURe 1 | Summary of aging-related changes to the immune systems of mice (A) and humans (B). Increases or decreases in cell numbers or particular functions 
are indicated by upward- or downward-pointing arrows, respectively. Abbreviations: Fxn, function; GC, germinal center; Mem, memory; ABC, age-associated B cell; 
NC, no change.
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immunotherapy. We conclude that sex and age should be con-
sidered in future clinical and preclinical studies to improve our 
understanding and treatment of age-associated diseases.

Age-ReLATeD CHANgeS iN iMMUNe 
FUNCTiON

With age, there is a decline in the functioning of the immune 
system (4) that has, until recently, been assumed to occur equally 
in males and females. “Inflammaging,” as defined by aberrant 
chronic low-grade inflammatory responses, is one of the most 
well-characterized attributes of an aging immune system (5). 
The activity of dendritic cell (DC) subsets, macrophages, and 
neutrophils, each of which are associated with inflammation, 
also become altered with age (6–9). Inflammatory responses 
are necessary to clear pathogens and repair tissues; chronicity 
of inflammatory responses, however, can contribute to tissue 
damage and disease, especially among aged individuals. Similarly, 
adaptive immunity becomes less functional with age (10, 11). 
Reductions in lymphopoeisis along with exposure to pathogens 
throughout the lifespan contribute to reduced numbers of 
naïve lymphocytes with increased proportions of memory and 
memory-like lymphocytes that are associated with less robust 
functional outcomes (12, 13). Overall, age-associated changes to 
the functions of innate and adaptive immune cells (summarized 
in Figure 1) likely contribute to increased risk of specific autoim-
mune diseases and cancer, as well as altered vaccine and cancer 
immunotherapy efficacy.

Age-Related Changes in innate immunity
Aging is associated with the secretion of pro-inflammatory 
cytokines, such as TNF, IL-6, and IL-1β, the cellular source of 
which has not yet been clearly identified (14). Innate immune 
cells, including DCs, neutrophils, and macrophages, become less 

functional and, paradoxically, more inflammatory with age. It has 
been difficult to determine whether systemic inflammation causes 
innate cell dysfunction or vice versa. Recent evidence discussed 
below suggests that inflammaging may alter the development and 
signaling potential of innate cells, contributing to inflammation 
in the absence of infection and, at the same time, a reduced ability 
to clear infections (15–17). Together, the elevated levels of inflam-
matory cytokines and diminished ability to resolve infections or 
local inflammation likely contribute to less functional innate 
responses to vaccination and increased risk of certain autoim-
mune diseases.

The number and proportion of plasmacytoid DCs declines 
during healthy aging, while frailty appears to be associated with 
reduced numbers of conventional DCs (8). Regardless of their 
number, conventional DCs from aged mice and humans migrate, 
phagocytose, express costimulatory molecules, secrete cytokines, 
and prime T cells poorly in response to exogenous antigens when 
compared with DCs from young conspecifics (6, 18–32). At least 
some of these defects appear to be cell intrinsic and related to the 
altered expression of toll-like receptors (TLRs) and dysregulated 
downstream signaling [reviewed in Ref. (33)].

Neutrophils from aged individuals have defects in accurately 
migrating to inflamed tissues, phagocytosing microbes, produc-
ing reactive oxygen species (ROS), and capturing microbes using 
neutrophil extracellular traps (9, 34–38). Like neutrophils, many 
functions of macrophages are negatively affected by aging includ-
ing migration, phagocytosis, production of ROS and cytokines, 
and expression of major histocompatibility complex class II and 
costimulatory molecules (15, 39–43). Studies examining the 
cytokine response of monocytes isolated from older patients have 
yielded mixed results, likely due to differences in health status, 
isolation techniques, assay conditions, and stimuli between 
studies [reviewed in Ref. (33)]. Some studies have revealed 
a diminished ability of aged monocytes and macrophages to 
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secrete pro-inflammatory cytokines robustly after exposure to 
pathogens, LPS, or other TLR ligands (44–50). Chronic exposure 
to inflammatory cytokines such as IL-6 and TNF-α and dysregu-
lated expression and/or function of TLRs have been discussed as 
possible causes (44, 45, 48).

Several recent reports have suggested that at least in mice, 
inflammaging may precede and perhaps even cause dysregulation 
of innate immune cells, which may further contribute to inflam-
mation. For example, aging is also associated with increased 
proportions of pro-inflammatory monocytes of non-classical 
and intermediate phenotypes (i.e., CD14+CD16+ or CD16++ in 
humans and Ly6Chi in mice) that are less mature, poorer phago-
cytes, and may be more prone to secreting pro-inflammatory 
cytokines at baseline and in response to stimuli (15–17, 47, 51). 
In mice, aged Ly6Chi monocytes both contribute to age-associated 
inflammation and are impaired by the inflammation with nega-
tive consequences for bacterial clearance (16). Circumstantial 
evidence indicates that in humans, premature migration of 
intermediate phenotype monocytes (CD14++CD16+) is driven 
by TNF-α-mediated upregulation of CCR2, as also occurs in 
mice (16), and may contribute to worsened disease outcomes in 
rheumatoid arthritis patients (52, 53).

Additional age-related changes to monocyte function may 
contribute to increased susceptibility to infection concomitant 
with a reduced ability to resolve inflammation. For example, the 
production of specialized pro-resolving mediators, including lipid 
signaling molecules produced by macrophages and monocytes, 
is reduced in aged mice and is associated with delayed resolu-
tion of acute inflammation (54). In addition, aged macrophages 
isolated from mice and humans phagocytose infectious agents 
and apoptotic cells less efficiently than young macrophages  
(15, 40, 55–59). The phagocytosis of infectious agents and apoptotic 
cells by macrophages is important for resolution of inflammation 
and restoration of tissue integrity, which is reduced with aging.

Age-Related Changes in Adaptive 
immunity
Aging is accompanied by a decline in the production of new lym-
phocytes as well as increased expansion and survival of antigen-
specific memory lymphocytes in mice and humans (60–72). Despite 
reduced lymphopoeisis (73–76), the overall number of peripheral 
lymphocytes is maintained in aged mice (11) and humans [reviewed 
in Ref. (77)], with the exception of peripheral B cell numbers being 
reduced in older humans (78, 79). The diminished functionality 
of older adaptive cells may be related to age-associated changes in 
lymphocyte development.

The ability of aged T cells to proliferate robustly, differentiate 
appropriately, and generate memory is generally diminished  
(10, 12, 13, 80–85). However, all T cell functions are not impaired 
by aging. T regulatory (Treg) and, in some cases, T helper 17, cells 
increase in number and/or function with age (81, 85–93). It was 
recently proposed that naïve T cells produced in neonates form a 
long-lived, self-renewing population of “incumbent” naïve T cells 
that are resistant to replacement by T  cells produced after the 
neonatal period (94). It is conceivable that accumulated damage 
in these long-lived incumbents may contribute to reduced naïve 
T  cell function with age. In addition, accelerated homeostatic 

proliferation, as may be more likely to occur in aged individuals 
(95, 96), is associated with the selection of autoreactive T cells, 
at least in mice (97–99) and may also affect overall T  cell 
functionality.

Changes in aged naïve T cell function likely contribute to defec-
tive memory generation and also partially explain the observa-
tion that antibodies elicited from older mice and humans are 
less protective compared with those from the young individuals 
(100–106), even though serum IgG levels increase with age in 
both mice and humans (107, 108). In addition, aged B  cells 
demonstrate intrinsic defects in germinal center formation, class 
switch recombination, and somatic hypermutation (109–112). 
Aged B cells from mice and humans do not sufficiently upregulate 
expression of activation-induced cytidine deaminase (AID, the 
enzyme required for class switch recombination and somatic 
hypermutation) due to diminished levels of the necessary tran-
scription factor (107, 110, 113, 114). With age, there are also more 
long-lived antigen-experienced B cells, including age-associated 
B cells (ABCs) (60, 115–120). ABCs are responsive to TLR7 and 
9 ligands but less so to T cell-dependent signals and have been 
hypothesized to be generated by nucleic acid-containing antigens 
during inflammation (118, 121).

SeX DiFFeReNCeS iN Age-ReLATeD 
CHANgeS iN iMMUNe FUNCTiON

Both innate and adaptive immune responses differ between 
males and females at young and advanced ages (summarized 
in Table  1). Most published studies of immune system differ-
ences between the sexes utilize young adults and do not address 
whether sex differences in immune function change with aging. 
Overall, the available data indicate that young adult females dem-
onstrate a more reactive, inflammatory profile when compared 
with young adult males. A clear consensus has not emerged 
regarding whether these sex differences are maintained during 
advanced age, but the immune systems of aged women on hor-
mone replacement therapy (HRT) and monocytes isolated from 
aged women, regardless of HRT status, appear to remain skewed 
toward an inflammatory phenotype (16, 122–124). The currently 
available data also indicate that the adaptive immune response of 
aged women may be preserved to a greater extent than in aged 
men. These studies are discussed in more detail below.

Sex Differences in Age-Related Changes 
to innate immunity
As mentioned above, at least among young adults, innate immune 
responses differ between the sexes. Using murine model sys-
tems, it has been shown that the activity of pattern-recognition 
receptors, production of inflammatory proteins (e.g., IFN-α, 
IFN-γ, and TNF-α), activity of macrophages, including antigen 
presentation and phagocytosis is higher in females than males 
(132–138). Studies evaluating innate immune system differ-
ences between the sexes are scarce. But, at least one small study 
demonstrated that aged females display elevated concentrations 
of inflammatory proteins compared with males, as also occurs in 
young men and women (139). Several cytokines show differential 
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TABLe 1 | Sex differences in innate and adaptive immune responses in young and aged individuals.

Dendritic cells Monocytes and  
macrophages

granulocytes innate lymphoid cells Natural killer cells B cells T cells

Young adults ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂
TLR7 activity (H) Activation (M) Phagocytic capacity (M) Type 2 cytokine levels 

upon stimulation (M)
B cell numbers (H, M) CD4+ T cell count (H, M)

Type 1 IFN activity (H) Phagocytic capacity (M) Neutrophil count (M) Antibody production (H, M) CD4+/CD8+ T cell ratio (H)
IL-10 production (M) Nitric Oxide production  

post stimulation (H, R, M)
% switched memory B  
cells (H)

Activated T cell count (M)

M2 polarization (M) T cell proliferative capacity (M)
Cytotoxic T cell activity (H)

♂ > ♀ ♂ > ♀ ♂ > ♀ ♂ > ♀ ♂ > ♀ ♂ > ♀
IL-10 production (R, H) TLR4 expression (M) NK cell activity (R)

Pro-inflammatory cytokine  
production (M)

Neutrophil attractant 
chemokines (R)

Type 2 ILC count (H) ♀ = ♂ CD8+ T cell count (M)

M1 polarization (M) TLR9 expression (M) IL-13 production upon 
stimulation (M)

NK cell count (H) Treg count (M)

Aged adults ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂
Nitric oxide synthesis (H) CD62L, CD115 (H)  

expression
NK cytotoxicity (H) Antibody production (H) CD3+ T cell count (H)

Mammalian family of mitogen-
activated protein kinases  
(MAPK) signaling (H, M)

Immunosurveillance (H) Age-associated B cell  
count (H, M)

CD4+ T cell count (P)

CD4+/CD8+ T cell ratio (P) TH1 
response (M)

IL-15 production (H) TH1 response (M)
ND ND Naïve CD8+ T effector memory 

cells (p)
T cell proliferative capacity (H, P)

♂ > ♀ ♂ > ♀
CD38 expression (H) CD8+ T cell count (P)
Non-classical monocyte  
count (H)

Data are from studies of mice (M), rats (R), non-human primates (P), and humans (H) (125–131).
ND, not determined.
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levels in circulation between the sexes. For example, IL-15 is an 
important homeostatic cytokine in T cells, NK cell, and memory 
responses and is significantly upregulated in aged females when 
compared with age-matched males (122, 123). However, upon 
exclusion of individuals on HRT, such differences between sexes 
were no longer significant (122). After menopause, there is a 
significant increase in IL-1, IL-6, and TNFα, and reduction in 
IFNγ in women (140, 141). Testosterone has an immunosuppres-
sive effect on inflammatory cytokine production and its decline 
with aging is associated with an increase in serum soluble IL-6 
receptor (142). Monocyte and leukocyte subpopulations in aged 
males and females express different levels of receptors; males 
show higher CD38 expression, whereas females show higher 
CD62L and CD115 expression, indicating differences in their 
activation profiles and memory phenotypes (124). Sex differences 
among monocyte subsets have also been reported in aged indi-
viduals. Aged females have a higher proportion of intermediate 
(CD14hiCD16low) monocytes than similarly aged males, which 
have been shown to exhibit pro-inflammatory tendencies, as 
mentioned above (16, 124). Finally, NK cells in older women are 
superior at cancer immunosurveillance when compared with 
cells in older men. CD56dim NK cells are more cytotoxic and more 
responsive to leukemic cells in aged females compared with aged 
males, which may explain the higher incidences of cancer in aged 
men compared with women in populations (143).

Sex Differences in Age-Related Changes 
to Adaptive immunity
Both humoral and cell-mediated immune responses to antigenic 
stimulation, vaccination, and infection are typically higher 
among females than males (135). Females also typically demon-
strate higher basal levels of immunoglobulin (144) and higher 
antibody responses to viruses and vaccine antigens than males at 
any age (145–147). Among humans, absolute CD3+ T cell counts, 
frequencies of CD4+ T cells, helper T cell type 1 responses, and the 
ratio of CD4+:CD8+ T cells are all lower in men when compared 
with women (148–151).

As already mentioned, sex or gender has not traditionally been 
considered when evaluating age-related changes to the adaptive 
immune system [reviewed in Ref. (14)]. However, several groups 
have reported that in some ways, aging occurs at an accelerated 
rate in males when compared with females. For example, aged 
males experience a more dramatic decrease in total numbers of 
T and B cells and a larger increase in senescent CD8+ T effector 
memory cells that re-express the naïve marker CD45 RA (TEMRA) 
when compared with females (14, 150, 152–154). In addition, a 
greater proportion of aged males than females demonstrate an 
inverted CD4:CD8 T  cell ratio, an age-related phenotype that 
is also associated with decreased levels of CD19+ B  cells and 
CD8+CD28− senescent T cells (152). Also, the capacity of T cells 
to proliferate is preserved to a greater extent in women than men 
throughout the aging process (154), which may be an important 
consideration for infectious diseases and related interventions. 
On the other hand, transcriptional analyses of peripheral blood 
mononuclear cells from aged males and females revealed several 
pro-inflammatory pathways, including NF-κB signaling, NO 

synthesis, and p38 MAPK signaling, that are reduced to a greater 
extent in aged females than aged males (123). Moreover, aged 
females have greater numbers of ABCs than young females and 
males of all ages (118, 119).

THe iMPACT OF SeX HORMONeS ON 
Age-ReLATeD CHANgeS iN iMMUNe 
ReSPONSeS

Immunological differences between males and females can arise 
from diverse mechanistic causes, including genetic, hormonal, 
and even microbiome differences between the sexes. Partly because 
of the ease of measuring and manipulating, sex steroids, particu-
larly testosterone, estradiol, and progesterone, have been most 
well characterized as mediators of sex differences in immune 
responses and are the focus of this review. Sex steroids affect 
immune function by binding to specific hormone receptors 
expressed in diverse immune cells (155). With age, the hormonal 
milieu of females and even males changes, with an overall decline 
in concentrations of estrogens and progesterone in females and tes-
tosterone in males (156–158). We hypothesize that the changes in 
sex steroid concentrations and sex steroid receptor signaling with 
age may contribute to age-associated dysregulation of immune 
function (159). Although this has been considered in females 
through the comparison of pre- and post-menopausal women, 
few studies have considered hormonal changes in men as playing 
a role in age-associated changes in immune responses. Among 
women, with menopause, numbers of B and T cells are reduced 
and concentrations of IL-1β, IL-6, and TNF-α are significantly 
increased (141, 160, 161). Treatment of post-menopausal females 
with hormone replacement therapies that contain formulations 
of estrogen affects immune function by increasing circulating 
numbers of B cells and reducing baseline concentrations of pro-
inflammatory cytokines when compared with post-menopausal 
females not on HRT (140, 161). Whether testosterone replace-
ment therapy affects immune responses in aged human males 
has not been reported. In non-human primates, aged male rhesus 
macaques have lower frequencies of naïve CD4+ and CD8+ T cells 
than young males, with supplementation of androgens in aged 
male resulting in increased numbers of naïve T cells presumably 
by increasing thymic output (162). Whether treatment of aged 
individuals with hormone replacement therapies affects the out-
come of vaccines or immunotherapies in either females or males 
has not been reported.

Studies in mice and humans have shown that the diversity 
and richness of intestinal microbiota differs between males and 
females after puberty, presumably due testosterone, but not estro-
gen (163–168). Moreover, in mice, exposure to specific micro-
biota at early ages also results in elevated levels of testosterone 
(164). Thus, testosterone appears to influence the composition 
of the gut microbiome and, in a positive feedback loop, specific 
microbes elevate testosterone levels (164). Sex-specific enrich-
ment for particular microbes is likely to have significant influence 
on sex-specific immune function since particular commensals 
and their metabolites can dramatically modify host innate and 
adaptive immune function [reviewed in Ref. (169)] with serious 
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TABLe 2 | The female-to-male patient ratio for select mid-adult and late-adult onset autoimmune diseases.

Autoimmune disease Autoimmune target Mean age of onset (range) years Female:male ratio Reference

Mid-adult onset
Multiple sclerosis Myelin sheath 37 (25–45) 1.8:1 (205)
Myasthenia gravis Neuromuscular junction 40 2.7:1 (205)
Systemic lupus erythematosus Nuclear contents (systemic) 40 (30–50) 9:1 (205, 206)
Neuromyelitis optica Optic nerve/spinal cord 32.6–45.7 2.4:1

ratio highest after age 65
(207, 208)

Graves’ disease Thyroid 48 7.3:1 (205)
Systemic sclerosis Connective tissue (systemic) 50 (35–65) 11.5:1 (209)

Late-adult onset
Granulomatosis with polyangiitis (GPA)  
(formerly Wegener’s granulomatosis)

Cytoplasmic contents of neutrophils  
(systemic, vascular)

55 (40–70) 1:1
M > F after age 70

(205)

Rheumatoid arthritis Joints 58 (42–74) 3:1 (210)
Polymyalgia rheumatica Selected muscle groups 70–80 2.3:1 (211)
Giant cell arteritis Vascular system 70–80 2.3:1 (211)
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consequences for autoimmunity, vaccine efficacy, cancer, and 
cancer immunotherapy [reviewed in Ref. (170, 171)]. The com-
position and richness of commensal microbiota is sensitive to 
many environmental factors as well, including diet. Importantly, 
dietary effects on the relative abundance of specific microbial taxa 
also differ by sex in humans and, to a lesser extent, in mice (172). 
Sex-specific differences in microbial composition and richness 
have also been reported in humans over the age of 60 and aged 
mice (163, 165, 166, 173).

FUNCTiONAL SigNiFiCANCe OF SeX 
DiFFeReNCeS iN iMMUNe ReSPONSeS 
AMONg AgeD iNDiviDUALS

vaccine Responses
In aged individuals, sex differences in antibody responses to 
vaccines are less consistent and depend on the vaccine antigen. 
The influence of sex and age has been most well studied for 
inactivated influenza virus vaccines as they are administered 
annually. For example, among individuals 65+ years of age, 
hemagglutinin inhibition antibody titers to both the standard 
and high dose seasonal trivalent inactivated influenza (TIV) 
vaccine are significantly higher in aged females when compared 
with males (174). Because influenza virus vaccines are available 
on an annual basis, a greater number of exposures (i.e., the  
behavioral act of seeking out vaccination) combined with 
the slower decline in immunity that occurs in aged females 
(see above) may contribute to sex differences in the antibody 
response to the TIV vaccine. By contrast, aged males have higher 
antibody responses to the tetanus diphtheria and pertussis (Td/
Tdap) vaccines as well as the 7-valent and 23-valent pneumococ-
cal vaccines (175–179). There is an insufficient number of studies 
from which to draw conclusions to understand why sex differ-
ences in vaccine-induced antibody responses are higher in aged 
females than males for a viral vaccine (i.e., the TIV vaccine), 
but lower in females than males for bacterial vaccines (i.e., the 
Td/Tdap and pneumococcal vaccines). If more vaccine studies 
were designed with a priori hypotheses about sex differences in 
vaccine-induced immunity, then we could begin to understand 

discrepancies in the findings following exposure to differential 
vaccine antigens.

Adverse reactions to vaccines, which are typically mild to 
moderate, can include both local (i.e., at the site of vaccination) 
and systemic reactions. Adverse reactions are reported by aged 
women more than their male counterparts in response to the 
seasonal and pandemic influenza vaccines (180–188), the pneu-
mococcal vaccines (189, 190), the herpes zoster vaccine (191), 
or the tetanus and pertussis vaccines (192–194). While the types 
of adverse reactions experienced by aged males and females are 
typically similar, the proportion of females reporting redness, 
swelling, and injection site pain locally as well as headache, 
fever, chills, joint or muscle pain, headache, back and abdominal 
pain, or hypersensitivity reactions systemically is often greater 
than males. The prevailing hypothesis for differences in adverse 
reactions among aged males and females is that this reflects a 
gender-based reporting bias.

The efficacy of a vaccine is measured by the percent reduction 
in disease incidence in a vaccinated population (195). Sex-
specific differences in vaccine efficacy are rarely considered, with 
most data coming from studies of influenza vaccines. Vaccine 
efficacy, which is defined by hospitalization and mortality rates 
post-vaccination, is lower in aged females than males, at least 
for the influenza vaccine (196–200). For other vaccines that are 
not administered annually, including the pneumococcal and 
herpes zoster vaccines, there are considerably less data. Overall, 
the efficacy both the herpes zoster and pneumococcal vaccines 
tends to be higher in aged females than their male counterparts 
(191, 201, 202).

Autoimmunity
Most autoimmune patients are diagnosed between the ages of 20 
and 60 years (203). For those whose autoimmune disease devel-
ops later, the disease tends to be milder and more easily controlled 
(203). Women are disproportionately affected by autoimmune 
disease, and this holds true for several autoimmune diseases with 
late-adult onset as well, including rheumatoid arthritis, polymy-
algia rheumatica, and giant cell arteritis (Table 2). Regardless of 
the age of onset, the cellular and molecular basis of autoimmunity 
is complicated and distinct for each specific disease [reviewed 
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in Ref. (204)]. Here, we focus on the impact of age and sex on 
autoimmune conditions with late onset.

Although several theories have been proposed to explain sex 
differences in the cellular and molecular basis of aging [reviewed 
in Ref. (212)], perhaps most relevant to the sex-specific develop-
ment of autoimmunity in the aged is that estrogen upregulates the 
activity of several antioxidant systems (213, 214). Dramatic loss of 
estrogen (such as during menopause) could be expected to result 
in increased cell death due to unchecked ROS-induced DNA 
damage. Indeed, fewer lymphocytes are detected in the blood 
of post-menopausal women compared with younger women 
(160, 215) and T cell apoptosis increases after natural or surgical 
menopause (216). This could especially explain increased female 
incidence of autoimmune diseases that may occur as a result of 
lymphopenia-induced homeostatic proliferation in the aged, 
although more studies are needed to test this hypothesis.

In mice, lymphopenia and the subsequent homeostatic pro-
liferation of lymphocytes has been shown to contribute to the 
development of autoimmunity in many contexts [reviewed in Ref. 
(217)]. Certainly, there is an association between autoimmunity 
and lymphopenia in humans, but a strong case has not been 
made that lymphopenia is causative, or even occurs prior to, the 
onset of autoimmunity (218–224). However, evidence gathered 
by the laboratories of Goronzy et al. support a model whereby 
accelerated T  cell loss in the aged, either due to telomerase 
deficiency, disruption to DNA repair responses, or menopause, 
may be sufficient to enable autoreactive T cells already present in 
the pool to respond to low-affinity self-antigens in rheumatoid 
arthritis patients [reviewed in Ref. (225)]. First, there is evidence 
of accelerated aging, or increased homeostatic proliferation in 
RA patients. The telomeres of naïve and memory T cells isolated 
from RA patients are shorter than age-matched controls (226) 
and T cell receptor diversity is reduced as well (227). Moreover, 
T  cells from RA patients are more prone to apoptosis and are 
less capable of repairing dsDNA breaks (228). Finally, end-
differentiated effector T  cells that may be the consequence of 
homeostatic proliferation appear to be major participants in late 
onset autoimmune pathogenesis (229–232).

Cancer
Sex and age influence cancer incidence and mortality, but the 
specific effects vary by cancer type. It is widely accepted that 
the probability of developing cancer increases with age (233). 
Although few studies have examined cancer incidence in those 
with very advanced age, it seems that cancer prevalence actually 
declines for those over the age of 85 (234, 235). There is some evi-
dence to indicate that tumors may also be generally less aggressive 
in the extremely aged (236). Indeed, breast and prostate cancer 
patients over the age of 55 are more likely to develop tumors 
with characteristics associated with favorable treatment and/or 
survival outcomes (237, 238). However, it is not clear that tumors 
associated with other types of cancer, including bladder cancer, 
lung cancer, and acute myeloid leukemia, are indolent in older 
patients (239–242).

Overall, young men generally experience higher rates of can-
cer incidence and mortality than women (243–245). At advanced 
ages, men continue to experience higher incidences of most types 

of cancers, especially colorectal cancer, when compared with 
women (245, 246), but relative cancer mortality rates between 
older men and women differ by the particular cancer. Mortality 
differences between men and women diminish with age (espe-
cially after the age of 70) for colorectal cancer, stomach cancer, 
and leukemia (247). However, the male-to-female mortality ratio 
for brain cancer and myeloma decreases after middle age, but 
then increases again after the age of 70 (247).

The loss of sex hormones (especially due to menopause in 
women), age-associated immunosuppression, and chronic inflam-
mation may contribute to sex- and age-specific patterns of cancer 
incidence and mortality. Indeed, the male preponderance of 
cancer incidence and mortality before menopause has been at 
least partially attributed to the protective effect of estrogen (248), 
presumably due to its ability to enhance immunosurveillance, 
as well as tissue-specific effects (249, 250). Purim et al. suggests 
that it takes 20–25  years for some cancers (such as colorectal) 
to develop and since changes in sex-specific incidence ratios for 
those cancers occur approximately 25 years after menopause, the 
loss of estrogens at approximately age 55 contributes to increased 
female cancer incidence after the age of 80 (246). On the other 
hand, age- and sex-related diminishment of the effectiveness of 
the immune system may not contribute a great deal to increased 
cancer incidence in the aged, since the types of cancers observed 
in the aged are not the same of those observed in immunocom-
promised patients. HIV-induced immunodeficiency is associated 
with lymphoma and Kaposi’s sarcoma, while most age-related 
malignancies in the aged are carcinomas (251). Finally, older 
persons with chronic inflammation may demonstrate increased 
risk of cancer, as it is clear that inflammation induced by viruses, 
bacteria, tobacco smoke, and obesity increases cancer risk 
(252–255). Overall, more studies are certainly warranted to better 
understand the factors that contribute to cancer incidence and 
mortality in older men and women.

Cancer Immunotherapy
Cancer immunotherapy trials typically involve younger patients 
with no co-morbidities, even though these characteristics are not 
representative of most cancer patients (256). This is particularly 
important because the effectiveness and dose of any particular 
immunotherapy is likely to be affected by age-associated changes 
in immunity and metabolism (256). In addition, few clinical 
trials are designed to compare the efficacy and safety of cancer 
immunotherapies between women and men of any age (257). 
The currently available data regarding the sex- and age-specific 
effectiveness of several immunotherapies are discussed below.

Checkpoint blockade therapies in young or middle-aged 
men and women appear to be beneficial, but the benefits may 
be stronger in men (258–261). Blockade of PD1/PDL1 with 
nivolumab was more effective in male melanoma and renal cell 
carcinoma patients than in female patients (258, 260). However, 
these studies were not designed to compare efficacy in male versus 
female patients, and the sample size for female patients was small. 
Preclinical studies of anti-PDL1 treatment revealed that mela-
noma tumor growth was more robustly reduced in female mice 
when compared with males (262). Estrogen upregulates PD-1 on 
Tregs and Teffs. The authors speculated that anti-PDL1 treatment 
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TABLe 3 | Variables to consider when designing clinical studies related to 
immunity in the aged.

Clinical study considerations

Age Clearly defined age categories
Young: 20 to ≤45 years
Old: >45 to ≤85 years
Very old/elderly: >85 years

Health status Frailty: three of the five following characteristics: 
weight loss, weakened handgrip, exhaustion, 
reduced gait speed, and reduced activity
Concentrations of serum inflammatory proteins: 
IL-6, TNF-α, IL-1β, and C-reactive protein

Sex hormone status Time of menopause
Serum concentrations of sex hormones
Hormone replacement therapy
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was more effective in females because of the greater contribution 
of PD-1 to Treg suppression of antitumor responses in females 
(262). In addition, as mentioned above, the microbiome varies 
with age and sex and has recently been shown to significantly 
influence cancer immunotherapy success. Indeed, recent antibi-
otic use and the absence of specific microbial taxa correlates with 
reduced efficacy of PD1/PDL1 blockade and certain immune-
reliant chemotherapies in both humans and mice [reviewed in 
Ref. (170, 263)]. Therefore, it is critical to more formally evaluate 
the effect of cancer immunotherapies in men and women and to 
assess the suitability of various cancer models for predicting the 
success of particular immunotherapies in the sexes.

As already mentioned, few clinical immunotherapy trials enroll 
patients of advanced age and studies that did include older 
patients reach different conclusions about the efficacy of check-
point blockade in the aged. Meta-analyses of heterogeneous 
groups of cancer patients over the age of 65 or 70 treated with 
immune checkpoint inhibitors (biologicals targeting PD1, PDL1, 
or CTLA4) compared with similarly aged patients enrolled in the 
control arm of the studies revealed that checkpoint inhibitors 
reduced the risk of death by 34–37% in patients with advanced 
age (264, 265). Moreover, in at least one meta-analysis, the overall 
survival rate of patients over the age of 65 or 70 and younger 
patients treated with immune checkpoint inhibitors did not differ 
(264). However, other studies have reported significantly worse 
overall survival rates in patients over the age of 75 treated with 

checkpoint inhibitors (266). Finally, there is concern that treat-
ment of older cancer patients with checkpoint inhibitors could 
actually enhance tumor growth, as occurred in one subset of 
cancer patients (267) or prompt immune-related adverse events, 
as occurs in mouse models (268).

CONCLUSiON

For most, the aging process is accompanied by alterations in 
the function of the immune system. Many experience chronic 
inflammation and a general impairment of immune cell function. 
The immune systems of young men and women are quite differ-
ent, and it appears that aging affects the cellular composition and 
function of the immune system in sex-specific ways as well. This 
is likely because of pre-existing differences in immunity between 
men and women as well as differences in how menopause and 
andropause unfold. Age- and sex-specific changes to immunity 
may have consequences for late-adult onset autoimmunity and 
cancer, as well as for the efficacy of vaccinations and cancer immu-
notherapies. However, our understanding of the ways in which 
sex and age intersect with immune function and the consequences 
of this for autoimmunity, cancer, and therapeutic interventions 
is severely limited by the lack of inclusion of these variables in 
clinical and preclinical studies. Therefore, preclinical and clinical 
studies related to vaccination, autoimmunity, and cancer thera-
pies must be powered to detect sex effects, in accordance with the 
sex and gender equity in research (SAGER) guidelines (269). Age, 
sex hormone concentrations, hormone replacement therapies, 
and health status must be considered as well, given the known 
impact of these variables on immune-related conditions common 
in the aged (Table 3).
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Females and males differ in the energy consumption and nutritional requirements which are
based on the interactions between environmental factors and sex hormones (1). The studies in
early 1940s ascertained that females have enhanced capability of producing antibodies (2, 3).
This enhanced immune reactivity in females helps mount an effective resistance to infection and
therefore females are less susceptible to viral infections, but can develop immune-pathogenic effects
and predisposition to autoimmunity due to hyper immune responses (4, 5). Sex hormones can
also control the immune response via circadian rhythm. Many hormones like cortisol, known
to regulate T cell mediated inflammation, have a circadian rhythm with a maximum peak at
8:00 a.m. and progressively lower levels as the day progresses (6). Interaction between sex hormones
and environmental factors like cigarette smoke and infections lead to variable responses in both
genders (5, 7, 8). There is emerging evidence that sex hormones impact microbial composition
and the resulting immune response via secondary metabolites binding with receptors like estrogen
receptors (ERs), peroxisome proliferator-activated receptors (PPARs) etc. (9). These differences in
immune response can lead to variability in disease phenotypes with autoimmunity occurring more
often in females and cancers occurring more in males (Figure 1).

SEX HORMONES AND IMMUNITY

Conserved pathogen-associated molecular patterns (PAMPs) of microbes can bind various
pathogen recognition receptors like toll like receptors (TLRs). Since TLR expression differs between
sexes, TLR3, 7, and 9 are expressed higher in females and TLR2 and TLR4 in males, it can influence
strength of TLR-dependent responses. Macrophages from male mice generate a higher TLR4- and
TLR2-dependent Th1 response to clear infections, while estrogen regulates immune response
via modulation of endosomal TLRs and TLR8 expression thus hormonal balance determines the
overall response in females (10–13). TLR3, 7, and TLR9 recognize viral RNA or DNA while TLR2
and TLR4 are known to bind bacterial cell wall proteins. In humans, mononuclear cells from men
produce lower levels of type I IFNs in response to TLR7 ligands and higher IL-10 in response
to TLR9 ligands as compared to females (14, 15). The differential immune response may also be
associated with the differences in immune cell populations between sexes. CD4 and CD8 cells
decline during aging in both sexes, though aged women showed lower NK cells and memory
Tregs as compared to aged men (16, 17), which may partially explain the sex-biased immune
response and cytokine production. Immune responses to environmental factors like infections
and vaccinations are also sex-biased (18). Women maintain a high immune reactivity post-viral
infections (2). Since females generate higher antibody responses, vaccinations also result in higher
antibody levels in women than men and provide efficient protection (19); however this can lead to
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FIGURE 1 | Sex hormones interact with genetic and environmental factors and determine immunity in an individual. (A) Environmental factors like smoking and gut

microbiome generate sex-hormones dependent immunity leading to differences in circadian rhythm, innate and adaptive immune response and epigenetic changes

between males and females. Sexual dimorphism between miRNA expression contributes to sex-specific regulation of function in various tissues. (B) Sex determines

expression of cell markers involved in innate and adaptive immunity. Females have higher expression of genes on X chromosome which include immune markers like

regulatory marker FoxP3, CD40L. Females produce higher Th2 response and antibodies and better protection from infections but the hyperimmune response makes

them susceptible to autoimmune diseases. Males generate more of Th17 response and are less likely to develop autoimmunity but have higher percent of

non-reproductive cancers. miRNA, microRNA; TLR, Toll like receptor; ER, estrogen receptor; PPAR, peroxisome proliferator-activated receptor; IKBKG, inhibitor of

nuclear factor kappa B kinase; IL2RG, interleukin receptor subunit gamma.

worse side effects than men due to enhanced immune reactivity.
This augmented immune response can perpetuate and precipitate
inflammation in many ways including bystander effect,
production of pro-inflammatory cytokines and if antigen shares
mimicry with a self-protein, an autoimmune response.

Sexual dimorphism in immunity has been described in
both arms of immunity, innate and adaptive (20). Generally
testosterone has an immunosuppressive effect while estrogen has
an immunoenhancing effect on the immune system. Estrogen has
been shown to regulate immune response by impairing negative
selection of high affinity auto-reactive B cells, modulating B
cell function and leading to Th2 response (21, 22). Estrogen
influences physiological functions via ERs which are expressed
in brain, gut epithelial cells, lymphoid tissue cells as well as
immune cells (23, 24). Estrogen also induces T cell homing
by enhancing the expression of CCR5, a homing marker (25).
Based on the relative numbers of various immune cells in males
and females, overall immune response is sexually dimorphic
and determines pathogenicity (Figure 1). On the other hand,
immune regulation by androgens such as testosterone impacts
the immune system by augmenting Th1 response and activation
of CD8 cells while down-regulating natural killer (NK) cells
response, tumor necrosis factor-alpha (TNFα) and increasing the
production of anti-inflammatory IL-10 (26, 27). This is supported
by studies showing that in vitro presence of testosterone leads
to a higher production of Th1 by peripheral blood cells with a

higher Th1:Th2 ratio in men (28, 29). The dichotomy of sex-
specific response was shown in a humanized mouse model of
inflammation where exogenous supply of estradiol and castration
in male mice led to an increase in autoimmunity (30) by
augmenting Major Histocompatibility Complex II (MHCII)
expression and modulating B cells function (31). B cells are
targets for treatment in many diseases including rheumatoid
arthritis (RA), lupus and multiple Sclerosis (MS). Depletion of
B cells in ongoing arthritis in female mice showed higher efficacy
as compared to males (32). Similar observations were reported
in patients treated with Rituximab where women achieved
remission more frequently than men (33). A predominant role
of sex hormones has been suggested as the main cause of sex-
biased autoimmune diseases like RA and MS (5). Remission of
RA and lupus during pregnancy further support a role of female
sex hormones in immune response. Although consideration of
patient’s sex for treatment is not a practice, sex differences in
immune response suggest that sex-based treatments would be
optimal.

Recently, evidence has emerged on the critical role played by
environmental factors like smoking and the gut microbiota in
controlling immune responses locally as well as systemically. Gut
microbial composition is influenced by many factors including
genetic, diet and sex hormones (34–36). Sex-dependent effects
of diet were shown on the gut microbial composition in
two fish populations (37). In humans, diet-based effects on
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the microbiome were much more prominent in men than
women (38, 39); suggesting diet can further influence sex-bias
immune responses by impacting colonic ecosystem. In a study
in 1998, women treated with hormonal contraceptives for 3
weeks showed an increase in Prevotella species suggesting a
direct role of hormones on the gut microbiota (40). The lower
abundance of Prevotella and Bacteroides in females compared to
males further supports sex-dependent differences in microbial
composition (41), which impact intestinal and systemic immune
responses. Metabolites generated by the gut commensals can
bind epithelial cells and other immune cells via ERs and PPARs
that are expressed differentially in both sexes (42). There is
compelling evidence that sex hormones regulate the hippocampal
serotonergic system of the gut-brain axis in a sexually dimorphic
manner (43). The gut microbiota can impact systemic levels of
testosterone via 17β reduction of androgen (44–46) consequently
changing the intestinal metabolic landscape. Evidence for this
was demonstrated in an experimental model of diabetes where
females were protected from diabetes when microbiota from
male mice was transferred, which was dependent on an increase
in the testosterone levels (47). There is limited information
on the mechanism by which microbiome-derived sex steroids
impact host immunity. One can speculate that the interaction of
sex hormones with environmental factors as well as epigenetic
changes caused by the microbiota determine the immune
response by cells of innate and adaptive immune cells and
the overall sex-biased difference in immune-mediated cytokine
responses.

GENETIC FACTORS IN SEXUAL

DIMORPHIC IMMUNITY

Gene diversity or dosage may be one of the factors that
can explain the sex-bias in immune responses and female
predominance of autoimmune diseases.Women carry two copies
of X chromosome, one of which is randomly transcriptionally
inactivated while men have only one X. Many genes on
X chromosome are associated with regulation of immune
functions; IL-2R γ chain, IL-3R α chain, IL-13 α chain, IL-
1R associated kinase 1 (IRAK1) TLR7, GATA1, FOXP3, and
CD40L. It is surmised that skewed inactivation, mutations
or under certain physiological conditions, approximately 10–
15% of these genes may be activated (48, 49). In females,
maternal or paternal X chromosome inactivation in different
cell types combined with the fact that X chromosomes have
genes associated with immune functions, it is reasonable to
assume that some of these genes may be involved in sex-
biased abnormalities in immune responses. X chromosome
involvement in sex-bias immunity is supported by the inherited
disorders such as Klinefelter with XXY in males and Turner
syndrome with XO in females, both with hormonal and immune
abnormalities (50). The X chromosome also contains 10% of
the microRNA (miRNA) in the human genome as compared
to 2 miRNA on the Y chromosome (51, 52). The X-linked
miRNAs have also been shown to contribute to sex differences

in immune responses, leading to much higher responses in
females.

Sex steroid levels change rapidly for women when they
are menopausal while in males the change is gradual. While
aging is associated with changes in immune cells in both
sexes (53), in women heightened immune response and
accumulation of antibodies over a period can cause a low
grade inflammation which can predispose to sex-bias in
inflammatory diseases. MHC molecules present antigens from
pathogens and generate immune response. While testosterone
has been suggested to decrease the MHC II expression on
DCs, estrogen increases the expression (54). As DCs are
important for generation of immune responses and T cell
differentiation, it may determine the quantitative as well-specific
TH cytokines in a sex-specific manner. Thus, even in the
presence of similar MHC II, women pay the price of higher
incidence of sex-biased diseases but generate a superior response
to infections. Interestingly, sex-specific immune response by
MHCII molecules in humanized mice showed that males
generated higher response to antigens presented by HLA-
DQ alleles while females showed higher immune response
to HLA-DR-presented antigens (30, 32). HLA-DR and DQ
molecules select T cells with different cytokine producing
abilities which may dictate the sexually-dimorphic immune
response (4). Differential upregulation of MHC expression and
antigen presentation leading to differential cytokines milieu
in both sexes will determine the outcome of infections and
diseases.

Besides the known inherited genes, there is some evidence that
non-inherited maternal antigens (NIMA) that are not encoded
by the offspring but passed along from the mother may have a
role in sex-biased immune response. However, the role of NIMA
in various diseases has not been consistent (55). The strongest
association for NIMA was observed in RA patients negative for
RA-susceptible HLA alleles (56). Besides NIMA, the presence
of allogeneic male fetal cells (Fetal microchimerism) in women
may also be involved in generating immune response. Although
the data is not consistent in most diseases, studies in MS and
systemic sclerosis provide some evidence that it is a possibility
(57, 58).

The reason why sex-bias immunity exists may lie in the
evolution and preservation of mankind. Evolutionarily, during
reproductive years, an enhanced response to infections should
help maintain health for reproduction. In aged women,
reproductive function is not required, enhanced immune
reactivity along with changes in immune cells during aging
causes sex-specific differences in immunity. The sex-specific
expression of genes may explain why women with a similar
genetic background show higher immune reactivity or develop
autoimmunity at a higher rate than men. Also, the circadian
rhythm of sex-hormone-dependent immune system and
microbiome could control metabolic profile of an individual.
Microbial-metabolites are involved in various signaling pathways
as well as immune pathways like differentiation of T cells via
binding to receptors of gut immune cells and epithelium. Similar
functions also occur in other tissues. Thus, combined with
variable X inactivation in cells and pleiotropic nature of many

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 193169

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Taneja Sex Hormones Determine Immune Response

genes, it is likely that sex-hormones impact immune system and
its ability to break tolerance to pathogens, environmental or
endogenous. Although there is a plethora of evidence suggesting
a sex-bias in innate and adaptive immunity that can impact
response to infections, vaccinations and onset of various diseases,
there is no consensus on treating diseases based on the sex of a
patient. The challenge is to be able to define the role of a single
receptor or hormone in humans. Animal models have provided
some information though more research is required to define the
pathways that determine sex-specific immune response during
inflammation.
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Glucocorticoid hormones regulate essential body functions in mammals, control cell 
metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppres-
sors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte 
apoptosis, differentiation, and cytokine production have been described. Due to their 
potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids 
(GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory 
diseases. It is long been noted that males and females exhibit differences in the prevalence 
in several autoimmune diseases (AD). This can be due to the role of sexual hormones in 
regulation of the immune responses, acting through their endogenous nuclear receptors 
to mediate gene expression and generate unique gender-specific cellular environments. 
Given the fact that GCs are the primary physiological anti-inflammatory hormones, and 
that sex hormones may also exert immune-modulatory functions, the link between GCs 
and sex hormones may exist. Understanding the nature of this possible crosstalk is 
important to unravel the reason of sexual disparity in AD and to carefully prescribe these 
drugs for the treatment of inflammatory diseases. In this review, we discuss similarities 
and differences between the effects of sex hormones and GCs on the immune system, 
to highlight possible axes of functional interaction.

Keywords: glucocorticoids, sex hormones, innate immunity, adaptive immunity, glucocorticoid receptor, estrogen 
receptor alpha

inTRODUCTiOn

The interaction between endocrine and immune systems ensures the correct function of immune 
system. Women mount stronger immune responses against foreign but also against self-antigens, 
and the prevalence of most autoimmune diseases (AD) is greatly increased in women compared 
to men (1–4). An important role underlying the difference in activity of immune cells in men and 
women is attributed to sex hormones (4, 5).

Steroid hormones, such as estrogens, prolactin, progesterone, and glucocorticoids (GCs) modulate 
the development and activity of both innate and adaptive immunity differently in men and women 
(2, 5–8). Therefore, characterization of the mechanisms of hormonal regulation of different immune 
cell types is important for understanding the regulatory circuits critical for keeping a competent and 
a healthy immune system and to improve therapy of AD.

The degree and the duration of the immune response is influenced by the number and the type 
of circulating immune cells; therefore, the effect of steroid hormones on survival and differentiation 
of T and B lymphocytes and cells of innate immune system will define the numeric leukocyte output 
in the periphery. Hormonal regulation of cytokine production impacts on differentiation of naïve 
T cells into the particular effector subtypes, thus defining the type of the mounted immune responses. 
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Interestingly, since sex hormones and GCs are acting on the same 
cellular pathways that regulate leukocytes growth, differentiation, 
and survival, their simultaneous action would likely enhance 
or abrogate the effects elicited by individual factors. Therefore, 
biologic differences in endogenous GCs levels, as well as exposure 
of an individual to specific environmental stimuli, including pres-
ence of chronic inflammatory disease, prolonged stress, metabolic 
challenges or injuries, as well as pharmacologic administration of 
exogenous GCs, will alter the expected gender-related effects on 
immunity and ADs. The converging and diverging effects of GCs 
and sex hormones on different cells types of the immune system 
are discussed in this minireview.

STeROiD HORMOneS: MeCHAniSMS  
OF ACTiOn

Corticosteroids and sex hormones are derived from cholesterol 
through the same sterodoigenic pathway, with common meta-
bolic intermediate, progesterone, and are under the control of 
the hypothalamus–pituitary–adrenal gland (HPA) axis (9). The 
main natural GCs (i.e., cortisol) are produced in the cortical part 
of the adrenal gland (9). Biosynthesis of androgens, including 
testosterone, occurs mainly in Leydig cells in male gonads, and 
small amounts are produced by the ovary and adrenal cortex in 
females (9). The androgens dehydroepiandrosterone (DHEA), 
androstenedione, and testosterone are the precursors of estro-
gens, produced in females primarily in ovaries (9).

Glucocorticoids
Glucocorticoids are essential endocrine regulators of body func-
tions in homeostasis and adaptation to environmental changes. 
One important feature of GCs regulation is the circadian control 
of GCs secretion by the HPA axis. The rhythmically released GCs 
may have an impact on immunity regulation (10). Endogenous 
GCs act on a variety of cell types to regulate the expression of 
genes controlling cellular metabolism, growth, differentiation, 
and apoptosis (11, 12). Thus, proper production and activity of 
the endogenous GCs is critical for the regulation of inflammatory 
events during tissue repair and pathogens elimination. Due to 
their potent immune-suppressive and anti-inflammatory func-
tion, synthetic GCs are extensively used in clinic to treat acute 
and chronic inflammation (13, 14).

The GCs act via genomic (transcriptional) and non-genomic 
(transcription-independent) mechanisms. Most cellular actions 
of GCs are mediated by binding to its cognate intracellular recep-
tor (GR), transcription factor of the nuclear receptors (NR) 
superfamily (15). GR shares functional domains with other NR 
that include an N-terminal transactivation domain, a highly 
conserved central DNA binding domain, and a C-terminal 
ligand-binding domain (11). After ligand-induced conforma-
tional changes, GR translocates into the nucleus where it  
regu lates transcription of hundreds of genes. It may bind directly 
to DNA via glucocorticoid recognition elements, or regulate 
gene expression via indirect mechanisms (16, 17). GR may 
directly interact with NF-κB (17, 18), a key transcription factor  
that activates many pro-inflammatory genes (19), as well as 
with other transcription factors (TFs), such as STAT-3 and -5  

(20, 21), AP-1 (22), and CREB (23). GR does not interfere with 
the DNA binding activity of NF-κB, but inhibits its transcrip-
tional activation function via preventing its nuclear translocation  
(17, 18), or interfering with transcriptional machinery by com-
petition with co-factors such as p300/CBP (24), thus repressing 
the expression of pro-inflammatory genes, such as TNF-α, IL-1, 
and ICAM-1 (13, 25). Mechanisms of GCs actions also include 
induction of proteins with anti-inflammatory activities, such as 
glucocorticoid-induced leucine zipper (GILZ) (26, 27), which 
mediates many of the GCs’ activities (28–31), including inhibition 
of RAS/RAF/MAPK pathways (32, 33), and of NF-κB and AP-1 
activities (34–37). “Non-genomic” effects of GCs include direct 
interaction of liganded GR with diverse intracellular mediators 
and modulating several signaling pathways, including protein 
kinase C, phosphatidylinositol-specific phospholipase C, and src 
kinase pathways (38–42).

Sex Hormones
Sex hormones regulate reproductive and metabolic body func-
tions throughout the life of the subjects. Sex hormones influence 
immune cell function and inflammation: androgens are mainly 
anti-inflammatory (7), whereas estrogens have both pro- and 
anti-inflammatory roles, depending on several factors, such as 
type of immune response or variability of expression of different 
estrogen receptor (ER) isoforms (8).

Estrogens exert their effects through binding to ERα or ERβ, 
TFs of NR superfamily that regulate expression of genes involved 
in cell survival, proliferation, differentiation, and reproductive 
functions (6, 43). Similar to GR, nuclear ERs bind DNA either 
directly through estrogen response elements, or indirectly, 
via ERE-independent TFs, such as NF-κB, SP1, AP-1, C/EBPβ 
(43–45), to induce or repress gene expression. Estrogens also 
elicit rapid (“non-genomic”) signal transduction effects, via 
modulation of intracellular calcium, cAMP, potassium currents, 
phospholipase C activation, and stimulation of PI3K/AKT and 
ERK pathways (44).

Estrogen receptors are expressed in various types of immune 
cells, including lymphocytes, macrophages, and dendritic cells 
(DC) (5, 8). Estrogens were shown to exert both, anti- and pro-
inflammatory effects, depending on the context and combination 
of factors that include: the type of the immune cell target, the 
concentration of the hormone, the type of immune stimulus (for-
eign or auto- antigens), the target organ microenvironment, and 
the relative expression of ERα and ERβ. Estrogens may promote 
inflammation via regulation of the expression of inflammatory 
mediators via Akt/mTOR pathway (46, 47). However, pregnancy 
or higher doses of ectopic estrogens typically suppress immune 
responses (4), by repressing the expression of multiple NF-κB- and 
c-Jun-driven cytokine genes (45, 48–50), similar to GCs. ERα may 
displace p65 and CREB and their associated co-regulators from 
NF-κB binding site (51). Progesterone (P4) is produced at high 
levels during the menstrual cycle and during pregnancy. P4 signals 
through the progesterone receptor (PR) and to a lesser extent, 
through GR and mineralocorticoid receptors. P4 is expressed 
in different immune cells types, including NK, macrophages, 
DCs, and T cells (52), and have broad anti-inflammatory effects 
of the immune system by decreasing leukocytes activation and 
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TAble 1 | Effect of steroid hormones on innate and adaptive immunity.

immune 
target

Glucocorticoids estrogens Androgens

Macrophages High dose, activity ↓ 
(67, 76)
Apoptosis ↓↑ (66, 67)
Inflamm cytokines ↓ (76)

Inflamm cytokines↓ 
(94, 95)

Inflamm 
cytokines ↓ (5)

DC Apoptosis ↑ (76)
Maturation ↓ (100)
Inflamm cytokines↓ 
(101–103)
IL-10, TGF-β ↑ 
(101–103)

Maturation ↑ (107)
Inflamm cytokines↑↓ 
(104–107)
IL-10, TGF-β ↑ 
(109–112)

ND

Neutrophils Number ↓ (72, 73)
Trafficking ↓ (80–82)
Apoptosis ↑ (72, 73)

Number ↑ (74, 75)
Trafficking ↓ (83–88)
Activation ↓ (92, 93)
Inflamm cytokines↑↓ 
(96–99)

Number ↑ (62)
Trafficking ↑ 
(62)
Inflamm 
cytokines↑

Thymocytes Apoptosis ↑ (38, 39, 
113–116)
Proliferation ↓ (13)

Proliferation ↓ 
(123–126)

Proliferation ↓ 
(127, 128)

Th1 cells Apoptosis ↑ (130)
Th1 cytokines ↓ 
(131–133)

Activation ↓
Th1 cytokines ↑ 
(149–153)
High levels ↓ 
(155–157)

Activation ↓
Th1 cytokines 
↓ (60)

Th2 cells Apoptosis ↑↓
Th2 cytokines ↑

Th2 cytokines↑ 
(155–158)

Activation ↓
Th2 cytokines 
↓↑ (5, 60)

Th17 cells Apoptosis ↑↓ (135)
Th17 cytokines ↓ (134)

Number ↓ (161)
Th17 cytokines ↑↓ 
(159–161)

Number ↓
Th17 
cytokines ↑ (5)

Treg cells Number ↑ (136–140)
Function ↑ (101, 
141–143)

Number ↑ (162–166) Number ↑ (5)

B cells Apoptosis ↑ (167, 168)
Number ↓
Ig ↓↑ (171–173)

Apoptosis↓ 
(175–177)
Ig ↑ (5)

Number ↓ 
(5, 62)
Ig ↓ (5)

ILCs ILC2 ↓ (180) Uterine ILC2 ↑ (179) Lung ILC2 ↓ 
(181)

DC, dendritic cells; Th, T helper cells; Treg, regulatory T cells; ILC, innate lymphoid 
cells; ND, not determined; Ig, immunoglobulins.
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production of pro-inflammatory mediators (5). NF-κB inhibition 
is also suggested to play a role in these effects of P4 (53).

Similar to GCs, male steroid hormones demonstrate mostly 
the suppressive role in immune function (2, 54–57), via binding 
to androgen receptor (AR), also a member of NR superfamily, and 
regulation of target gene expression (58). AR recognizes directly 
the androgen response elements in the regulatory regions of AR 
target genes (59). Androgens, including dihydrotestosterone and 
testosterone, generally suppress immune cell activity, by reducing 
the inflammatory and promoting anti-inflammatory mediators’ 
expression by macrophages and T  cells (5, 60–62). The levels 
of androgen DHEA are reduced in patients with RA (63) and 
inflammatory bowel disease (64) suggesting that DHEA may 
cover many aspects of immune regulatory effects of sex hormones.

Moreover, an indirect immunomodulatory effect of androgens 
may be related to the anti-inflammatory activity of endogenous 
GCs due to their effect on the HPA axis (65).

MODUlATiOn OF iMMUne ReSPOnSeS 
bY STeROiD HORMOneS

effect of Steroid Hormones on innate 
immunity
Both GCs and sex steroid modulate the development and func-
tion of various cells of innate immunity, including neutrophils, 
macrophages, natural killer cells, and DC (Table 1). GCs actions 
include regulation of apoptosis in many cell types: they exert a 
protective effect in macrophages, by inhibiting activation of cas-
pases and contributing to inflammation resolution (66); however, 
prolonged usage of GCs promotes apoptosis in macrophages 
(67), natural killer cells (68), DC (69–71), neutrophils (72, 73), 
and eosinophils (72). To the contrary, estrogens and androgens 
increase the number of neutrophils (74, 75).

Glucocorticoids have mainly suppressive effects on the cells of 
innate immunity (Table 1). High doses of GCs inhibit most of the 
functions of tissue macrophages, such as chemotaxis, phagocyto-
sis, proliferation, and antigen presentation (67, 76). GCs suppress 
the expression of various pro-inflammatory cytokines released by 
macrophages, such as IFN-γ, IL-1α, and IL-1β (76). In addition, 
the synthesis of anti-inflammatory molecules annexin A1 and 
GILZ in macrophages contributes to the anti-inflammatory and 
immunosuppressive action of GCs (28, 29, 77). GCs also inhibit 
monocytes’ chemotaxis by reducing expression of chemokines, 
such as CXCL-1, IL-8 and CXCL-2, and CCL2 (78, 79), control 
granulocyte trafficking by reducing expression of adhesion mol-
ecules, such as Mac-1 and L-selectin on neutrophils (80–82), thus 
limiting the inflammatory response. In addition, GCs prevent 
neutrophils migration into inflamed tissues via the upregulation 
of GILZ and annexin A1 (82). Similar to GCs, treatment with 
estrogens inhibits neutrophils’ activity by restricting their recruit-
ment (83–88) and inhibiting the NFκB-dependent production of 
major neutrophil chemoattractants CXCL-1, CXCL2, CXCL3, and 
CXCL8 in experimental models of tissue injury (86–91). Estradiol 
inhibits neutrophil activation through a reduction in oxidative 
metabolism (92), adhesion to endothelial cells via upregulation 
of the anti-inflammatory protein annexin A1 (93), and attenuates 

the release of pro-inflammatory cytokines, such as TNF-α, IL-1β, 
and IL-6 in human peripheral blood mononuclear cells (94, 95) 
and in neutrophils and macrophages (96–99). Interestingly, the 
inhibition of NFκB activity is a central mechanism underlying 
these actions (83).

Glucocorticoids and estrogens have both convergent and 
divergent actions in DCs. GCs inhibit DC function in several 
ways: by promoting apoptosis (76), disturbing maturation of 
immature DCs (100), and inducing a tolerogenic phenotype, 
via downregulating the expression of major histocompatibility 
complex (MHC)-II and co-stimulatory molecules and cytokines, 
such as IL-1, IL-6, and IL-12 (101, 102). Such changes are associ-
ated with reduced proliferative and T helper 1 (Th1) responses 
by T cells (103), and increase in immunosuppressive regulatory 
T (Treg) cells (101). Instead, estrogens promote DC cell dif-
ferentiation and MHCII expression, and induce the expression 
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of IL-6, IL-23, IL-12, and IL-1β (104–107), thus increasing the 
type-1 responses (108). On the other hand, similar to GCs, 
estrogens induce a tolerogenic phenotype in DC, by decreasing 
the expression of pro-inflammatory cytokines and chemokines, 
such as IL-6, IFN-γ, IL-12, CXCL8, and CCL2 (109–111), and 
upregulating inhibitory molecules PD-L1 and PD-L2, and regula-
tory cytokines IL-10 and TGF-β, thus also leading to a decrease in 
the Th1 cells activation and a shift toward production of Th2-type 
cytokines (109, 112).

effect of Steroid Hormones on Adaptive 
immunity
Controlled elimination of T  cells during thymocyte develop-
ment and T  cell-mediated immune responses is essential to 
prevent immunopathologies, such as autoimmunity and cancer. 
GCs induce apoptosis in developing thymocytes (113–116) and 
regulate both “death by neglect” and positive selection (117). 
The GC-induced apoptosis in thymocytes is also attributed to 
non-genomic effects of GR (38, 39, 118, 119). Their role in posi-
tive selection is inferred from the antagonism between GCs and 
T cell repertoire (TCR)-activated signals, which allows cells with 
intermediate TCR affinity to be positively selected (120–122).

The growth suppressive effect of GCs on thymocytes is com-
mon to the action of female and male sex hormones. Similar to 
GCs, estrogens inhibit thymocyte proliferation (123) and induce 
thymic atrophy (124). Pregnancy is associated with accelerated 
thymic involution (125, 126). Androgens also restrain active 
cell cycling and the number of immature thymocytes (127). The 
number of CD4+ and CD8+ T  cells is lower in males around 
50–75 of age compared to females, and the diversity of the TCR 
in females is larger than in males of the same age (128).

Upon TCR activation and stimulation with particular 
cytokines, naïve mature CD4+ T  cells differentiate in the 
periphery into one of several lineages of T helper (Th) cells that 
include Th1, Th2, Th17, and Treg cells (129). GCs promote the 
shift from Th1 to Th2 type immune responses by differentially 
regulating apoptosis of Th1 and Th2 cells (130), and by interfering 
with the activity of their master regulators T-bet and GATA-3, 
respectively (131–133). GCs can also suppress the production 
of TNF-α, IL-12, and IFN-γ and induce the production of IL-4, 
IL-10, and IL-13 (13, 130). GCs inhibit the production of Th17-
type cytokines in AD (134), although the sensitivity of Th17 cells 
to GC-induced apoptosis varies dependent on disease-specific 
microenvironment (135). Treg cells play a critical role in regulat-
ing immune responses and peripheral tolerance. GCs upregulate 
expression of FoxP3, the master regulator of Treg cells, expand 
Treg cell population (136–140), and increase Treg function in AD 
(141–143). Expression of GCs’ target gene GILZ also contributes 
to the GC-mediated regulation of Th1/Th2 balance (144, 145), 
and the induction of Treg cells by promoting TGF-β-dependent 
FoxP3 expression (136).

Sex steroids also modulate the differentiation and function of 
all subsets of T cells (75, 146–148). Contrary to GCs, estrogens 
promote INF-γ production by Th1 cells in both human and mice 
(149–151), via potentially direct interaction of ER with the Ifng 
promoter (150, 152), upregulation of Th-1 transcription factor 
T-bet (151, 153), or via microRNA-dependent suppression of 

IFN-γ expression (154). However, high levels of estrogen skew 
the immune response from Th1 to Th2-type (155–157), similar 
to GCs. Estradiol also regulates anti-inflammatory Th2 shift by 
activating SGK1 kinase (158). The effects of estrogens on Th17 
subset are different depending on experimental model, leading 
to enhancement (159, 160) or decrease (161) of Th17-dependent 
inflammation. Like GCs, estrogens promote the expansion of 
Treg cells (162, 163) by upregulating the expression of FoxP3, 
PD-1, and CTLA-4 (162–166), therefore, GCs and estrogens may 
co-operate in promoting the Treg development and activity.

Glucocorticoids and estrogens elicit opposite effects on B cells. 
GCs have a pro-apoptotic effect on developing B lymphocytes in 
the bone marrow (167, 168). On the other hand, B-lymphoblastic 
leukemia cells are resistant to GC-induced apoptosis, due to 
enhanced expression of B-cell lymphoma-2 protein (167, 169). 
GILZ mediates GC-induced apoptosis in B cells as shown by the 
accumulation of B cells in the bone marrow and in the periphery 
in GILZ-deficient mice, due to reduced B  cell apoptosis (170). 
GCs affect directly humoral response by reducing circulating 
immunoglobulins (Igs) although some studies have shown an 
increase of IgE production in conjunction with IL-4 (171–173). 
Instead, enhanced antibody production is observed in women, 
suggesting that female sex hormones stimulate B cell-mediated 
responses. Estrogen treatment also interferes with normal toler-
ance of naive DNA-reactive B cells, thus contributing to the devel-
opment of AD. Elevated estrogen alters the negative selection of 
DNA-reactive B cells in the periphery (174, 175), interfering with 
proper B cell receptor signaling and regulation of B cells activa-
tion and apoptosis (176, 177). Thus, pharmacologic treatment 
with synthetic GCs may be useful in suppression of the enhanced 
B cell activities in AD.

effect of Steroid Hormones on innate 
lymphoid Cells (ilC)
Innate lymphoid cell is a most recently identified immune cell type, 
which contributes to inflammation, immunity, and the mainte-
nance of tissue integrity and homeostasis (178). Recent evidence 
demonstrated that group 2 ILC2s are present in the uterus under 
control of estrogens and are increased upon estrogen administra-
tion (179). It is, therefore, possible that estrogens modulate toler-
ance via ILC2-mediated modulation of the protective Th2 shift 
in pregnancy. Instead, ILC2 promote lung inflammation during 
asthma (180). Interestingly, male mice have reduced numbers of 
ILC2s in peripheral tissues compared to females, and the number 
of ILC2s in the lungs is negatively regulated by androgens (181), 
consistent with the overall suppressive role of male steroids in 
immunity. GCs were shown to modulate the cytokine production 
by the ILC2s, thus these finding suggests a modulatory role of 
steroid hormones in ILCs and homeostasis of specific tissues.

inTeRACTiOn beTween GR AnD SeX 
HORMOne ReCePTORS

GR, ER, and AR are ligand-activated TFs belonging to the NR 
superfamily (182). Experimental evidence shows that GR and 
sex hormone receptors share some common mechanisms of gene 
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regulation, but they also exploit different mechanisms to repress 
pro-inflammatory genes depending on the target gene, cell type, 
and interactions with other TFs.

Estrogen receptor, AR, and GR induce expression of genes 
that control proliferation, differentiation, and cell death by 
directly binding to specific hormone response elements or by 
indirectly tethering through TFs, such as AP1 (22, 183–185), Sp1  
(186, 187), Stat1 (188), and NFκB (189, 190). The potential 
crosstalk in the regulation of gene expression by GR and ER was 
studied mostly in non-immune cell types, which may, however, 
provide mechanistic evidence of the mechanisms potentially 
operating in cells of the immune system.

The functional interaction between GR and ER signaling has 
been observed in several cancer cell lines, and requires additional 
factors, such as MED14, SRC-2, and SRC-3 in the same complex, 
resulting in either cooperative or mutually inhibiting effects 
(191). GR may inhibit the action of ER via distinct mechanisms. 
GCs may inhibit the estrogen signaling indirectly, by inducing 
the estrogen-metabolizing enzyme in breast cancer cells (192). 
Synthetic GC dexamethasone (Dex) antagonizes ERα-regulated 
target gene expression in breast cancer cells treated with estrogen 
and Dex simultaneously via the direct protein–protein interac-
tion and the recruitment of GR to ERα binding sites (193). This 
recruitment is facilitated by AP-1 and leads to a displacement of 
ERα from DNA and repression of its target genes transcription 
(193, 194).

Reciprocally, the ER-mediated inhibition of the GR function 
was also described. Treatment of the breast cancer cell line 
with estrogen agonists downregulates GR protein levels via 
proteosome-mediated degradation (195). On the other hand, in 
an experimental lung inflammation rat model, the ER antagonist 
(ICI 182780) blocked the anti-inflammatory effects of GCs, 
suggesting that GR and ER co-operate in this setting in their 
anti-inflammatory activity (196). A subset of pro-inflammatory 
genes was repressed by both ER and GR (CD69, MCP-1, IL-6, 
IL-8), and the ER antagonist blocked Dex-mediated repression 
of these genes (197), by preventing the recruitment of nuclear 
coactivator 2 by the GR necessary for trans-repression. These 
data suggest that GR and ER functionally cooperate on selected 
promoters.

The functional effect of the interaction of GR with PR and ER  
is less characterized. PR and GR were shown to interact in vitro, and 
in vivo. Progesterone acts via GR to repress IL-1β-driven COX-2 
activation (198, 199). The AR and the GR form heterodimers at a 
common DNA site both in vitro and in vivo, and this interaction 
leads to mutual inhibition of transcriptional activity (200).

COnClUSiOnS

Most of the mechanistic insights into synergistic and antagoniz-
ing effects of GR and sex steroid receptors in gene expression 
were obtained in non-immune cells, and, to our knowledge, the 
interactions between GCs and sex hormones in immune cells 
have not been studied in vitro. However, receptors for both classes 
of hormones are present in variety of immune cells, where, as 
reviewed above, they have been separately shown to influence 
various aspect of immune cell activity, ranging from cell survival 
to differentiation and expression of pro- and anti-inflammatory 
molecules (Table 1). Thus, the investigation of possible mutual 
influence of GCs and sex hormones in immune cells and its 
mechanisms is warranted.

The effects of female sex hormones on cells of adaptive immune 
system such as Th cell differentiation and B cells may underlie 
the higher predisposition of women to AD (4). The GC-mediated 
suppression of Th1 and promotion of Treg cell activity, as well 
as apoptotic effects on B  cells may explain in part the cellular 
basis of GCs’ efficacy in dampening the symptoms of many AD 
(13). Development of novel therapies for immune cell type- and 
gender-specific modulation of immune system may represent 
future direction for treatment of AD.
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Sex differences in the incidence and severity of respiratory virus infection are widely  
documented in humans and murine models and correlate with sex biases in numbers 
and/or functional responses of innate immune cells in homeostasis and lung infection. 
Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/
aging are associated with qualitative and quantitative differences in innate immunity. 
Immune cells express receptors for estrogens (ERα and ERβ), androgens (AR), and pro-
gesterone (PR), and experimental manipulation of sex hormone levels or receptors has 
revealed that sex hormone receptor activity often underlies sex differences in immune 
cell numbers and/or functional responses in the respiratory tract. While elegant studies 
have defined mechanistic roles for sex hormones and receptors in innate immune cells, 
much remains to be learned about the cellular and molecular mechanisms of action 
of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation 
and resolution of antiviral immunity in the lung. Here, we review the literature on sex 
differences and sex hormone regulation in innate immune cells in the lung in homeostasis 
and upon respiratory virus infection.

Keywords: sex hormones, respiratory virus, lung, estrogen, androgen, innate immunity

iNTRODUCTiON

Respiratory virus infections lead to significant health problems worldwide (1). Humans show 
marked sex differences in the severity, prevalence, and outcome of inflammatory lung diseases 
including viral infection (2, 3). Innate immune responses have crucial roles in early defense against 
viruses but also shape antigen-specific adaptive immune responses and promote tissue repair.  
A number of recent reviews highlight sex differences in innate immune pathways during infectious 
disease (4–6). Here, we review literature reports on the sex differences in numbers and functional 
responses of innate immune cells in the lung and their regulation by sex hormones in homeostasis 
and during viral lung infection. Specifically, we highlight ways in which sex differences in innate 
cells may influence both the proinflammatory/effector phase and the resolution/tissue repair phase 
important in the host response to respiratory virus infection (Figure 1).

SeX HORMONeS AND ReCePTOR SiGNALiNG

Sex Hormone Levels
Endogenous estrogens include estrone (E1), 17-β-estradiol (E2), and estriol (E3), with E2 being the 
major form present in adult females and males while E3 is present at high levels in pregnancy (7).  
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FiGURe 1 | Sex differences in innate immune responses during the effector and repair phases of respiratory virus infection. Here, we summarize reports of sex 
differences or sex hormone receptor regulation of innate immune cells. The pink shaded area indicates cells and pathways reported to be elevated in females  
and/or upon estrogen/ER activity. The blue shaded area indicates cells and pathways reported to be increased in males and/or upon androgen/AR activity.  
A balanced type 1 immune response involving different innate immune cells is required early post-infection in the lung for viral clearance. At later stages of infection, 
regulatory immune responses mediated by alveolar macrophages and innate lymphoid cells are important for the repair of damaged tissues and renewal of barrier 
integrity. Sex differences in numbers, functional responses, plasticity, and survival of innate immune cells regulate the proinflammatory/effector and regulatory/repair 
phases of infection.
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Testosterone is synthesized in both females and males and is 
converted by 5α-reductase to the physiologically active metabo-
lite dihydrotestosterone (DHT) or by aromatase to estradiol (8). 
Progesterone (P4) is present in both sexes and, in females, varies 
during the menstrual cycle and is produced by the placenta at 
high levels during pregnancy (9). The levels of circulating sex 
hormones vary in both sexes throughout the lifespan, with the 
highest levels of estrogens and progesterone in females and 
testosterone in males during the reproductive years (10, 11). 
In pregnancy, estrogens and progesterone reach significantly 
higher levels (8, 12). Sex hormone levels in humans in phases of 
the menstrual cycle and pregnancy are nicely summarized in a 
recent review (13). The dramatic changes in sex hormone levels 
at puberty are correlated with changes in immune function and 
susceptibility to immune-mediated disease. Sex hormones also 

are present in  utero and immediately post-birth, and this may 
influence immune cell differentiation and neonatal immunity. 
The developing testes in male fetuses produce testosterone, 
and both sexes are exposed to high levels of maternal estrogens 
in utero (14, 15). In the first weeks after birth, both human and 
rodent males have a “mini-puberty,” in which testosterone levels 
approach those of adults (15–17).

Sex steroids are synthesized in the gonads and adrenal cortex, 
and in peripheral tissues such as liver, fat, and kidney (8, 18). 
Little information is available about local synthesis in the lung 
(8). Activated macrophages may increase local estrogen levels 
since cytokine receptor signaling induces their synthesis of 
aromatase, the enzyme that converts testosterone to estradiol  
(19). Few studies of immune cells in tissues have correlated tissue 
levels of sex hormones with immune function.
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TAbLe 1 | Expression of sex steroid receptors in human and murine innate immune cells.

Cell type eRα eRβ Other eRs PRs AR eRα eRβ PRs AR

Human Murine

Type II innate lymphoid 
cells

Yes (27)/No (28) Yes (27)/No (28) −/+ Yes (28–30)

Natural killer cells (NK) Yes (31, 32) Yes (31, 32) ERα46 (31) Yes (33) − Yes (34) Yes (34) − −/+

Gamma delta T cells 
(γδ T)

Yes (35) −/+ or + −/+ − + or −

Natural killer T cells − −/+ − − Yes (36) −/+ − − or −/+

Neutrophils Yes (37) Yes (37) GPER (38) No (39) Yes (40) −/+ − − Yes (41)

Eosinophils −/+ −/+ GPER (42) No (39) No (40) −/+ − − −

Plasmacytoid dendritic 
cells (pDC)

Yes (32) Yes (32) − − Yes (43) − −/+ −

Monocytes Yes (23, 32, 44, 45) Yes (23, 32, 44, 45) ERα46 (23) − − + −/+ − −

Dendritic cell (tissue-
resident, monocyte-
derived, BM-derived)

Yes (32, 45) Yes (32, 45) − − Yes (46, 47) Yes (46, 47)/No (48) −/+ −

Macrophage (alveolar,  
BM-derived, peritoneal)

Yes (23, 49, 50) Yes (23, 49, 51) ERα46 (23) Yes (49) Yes (40, 52) Yes (48, 53) Yes (50)/No (48, 53) Yes (54) Yes (55)

Hematopoietic stem 
cell

Yes (26) Yes (26) − Yes (26) Yes (56) No (56) No (56) No (56)

The presence of sex steroid receptors in each cell type (located in any tissue and regardless of activation state) is indicated by “Yes” or “No” and the literature reference. Some  
cell types differ in receptor expression in different tissues, and this is indicated by “Yes/No.” If a literature report was not found, we consulted the Immunological Genome Project, 
and the presence or absence of receptor RNA is indicated in blue if available.
−, <50 counts; −/+, 50–100 counts; +, 100–300 counts; + or − represents positive or negative value depending upon the tissue location.
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Sex Hormone Receptors
Sex hormones mediate their effects through estrogen recep tors 
(ERα and ERβ), androgen receptor (AR), and progesterone 
receptors (PR-A and PR-B) (20–22). Splice variants of ER 
leading to truncated but functional proteins such as ERα46 
have been identified in myeloid cells (23). Sex steroid receptors 
are ligand-dependent transcription factors that recruit tran-
scriptional coregulators such as SRC1 and histone-modifying 
enzymes such as p300/CBP into multi-protein complexes that 
bind DNA [reviewed in Ref. (20, 24)]. ERs, PRs, and AR bind 
to their respective response elements at specific DNA sites 
leading to epigene tic modifications of chromatin and changes 
in transcription of target genes. Nuclear sex hormone receptors 
also may be tethered indirectly to DNA via their ability to bind 
transcription factors such as SP1. Ligand-free receptors also  
can recruit corepressors such as NCOR and histone deacety-
lases to repress transcription. Rapid “nongenomic” sex steroid 
sig naling occurs via inner plasma membrane-localized ER or  
AR, and possibly via the G protein-coupled receptor GPR30 (also 
termed GPER) (20, 25).

Innate immune cells express ERs (Esr1, Esr2), AR (Ar), and 
PRs (Pgr) to varying degrees. Esr1 and Ar RNAs also are expressed 
at high levels in hematopoietic progenitors in bone marrow 
(BM), consistent with documented effects of sex hormones on 
immune cell differentiation and numbers in homeostasis (26). 
Based on our literature review and data from the Immunological 
Genome Project (www.immgen.org), Table  1 summarizes the 
relative expression of sex steroid receptor RNA or protein in 
hematopoietic progenitors and innate cells of the lymphoid and 

myeloid lineages. Since limited information is available about 
sex steroid receptor expression in lung-resident immune cells, 
Table 1 includes information for the cell type regardless of tis-
sue location or activation state. Patterns of receptor expression 
may underlie the effects of the sex hormones on numbers and 
functional responses of innate immune cells. Some mature 
innate cells do not apparently express significant levels of the sex 
hormone receptors, but they may still function differently in the 
sexes due to epigenetic imprinting of developmental precursors 
or because their responses are influenced indirectly via other  
cell types responding to sex hormones.

Sex differences in lung development, structure, and function 
have been identified (57). The lungs of human females are smaller 
than males of the same height; however, airway size and capacity 
do not always correlate with lung size, and the extent and type 
of sex differences in lung function vary throughout the lifespan 
(58). Smooth muscle, fibroblasts, and epithelial cells express sex 
steroid receptors (8), and their functional responses in different 
sex hormone environments may alter the immune response or 
modulate infection severity.

Methods to Study effects of Sex 
Hormones and Receptors  
on immunity In Vivo
Investigators have taken multiple approaches to understand the 
impact of sex differences and sex hormone receptor signa ling on 
immunity. Diverse approaches in different experimental models 
have often led to conflicting results. Age should be carefully 
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considered when studying sex differences in immune cell num-
bers or functional responses in humans and rodents since sex 
hormone levels vary over the lifespan (2). Littermate or colony 
matching will reduce variables such as diet and microbiome 
and help to identify sex differences. Studies of sex differences in 
human immunity would be improved by direct measurements 
of hormone levels in each individual (particularly in women) 
because age alone does not predict hormone levels modulated by 
oral contraceptives or hormone replacement therapy. A common 
approach is to gonadectomize young mice and replace estrogens 
or androgens by implantation of time release pellets. While this 
strategy has led to many answers, the absence of sex hormones in 
young gonadectomized mice may alter immune cell deve lopment 
and numbers prior to infection. In addition, replacement of 
hormones to a constant level does not mimic the cyclic variation 
that occurs particularly in females. Similarly, it is difficult to reca-
pitulate accurate in vivo exposures of sex hormones in cell culture 
models. Another approach is to impose male levels of DHT in a 
female mouse (or female levels of estradiol in a male mouse) to 
help elucidate sex hormone interactions and their effects inde-
pendent of chromosomal sex and developmental programming.

Mice lacking sex hormone receptors also have informed 
our understanding of sex differences in immunity. However, 
global deletion of sex hormone receptors can lead to abnormal 
levels of estrogens and androgens; for example, global Esr1 
deficiency leads to high levels of circulating testosterone (59–61). 
Furthermore, global loss of receptor signaling may alter the 
function of non-immune cell types in ways that impact immune 
responses. To circumvent this issue, investigators are beginning 
to study mice bearing conditional deletion of Esr1 or Ar along 
with lineage-restricted Cre drivers to understand the effects 
of sex hormone receptor deficiency on numbers and function 
of specific cell types. This approach will help to identify direct 
effects of sex hormone receptor signaling in immune cells. Use of 
emerging technologies such as single cell RNA-sequencing, assay 
of transposase-accessible chromatin-sequencing, multiplex mass 
cytometry, or chip cytometry (62–64) to monitor the transcrip-
tome, epigenome, or proteome at the single cell level will help 
us to understand sex differences in immune function and how 
sex hormone receptors regulate immune cells in homeostasis and 
during viral infection. These approaches will be especially valu-
able to dissect the diversity of responses of rare immune cell types 
in peripheral tissues such as the lung. More precise methods and 
attention to age and hormonal cycles and levels will help to clarify 
the roles of sex hormones and receptors in immune responses.

SeX DiFFeReNCeS iN iNNATe iMMUNe 
ReSPONSeS iN ReSPiRATORY viRUS 
iNFeCTiON

Despite the lung’s structural and chemical barriers to pathogen 
entry, many viruses subvert these barriers and efficiently infect 
and replicate within lung epithelial cells [reviewed in Ref. (65)]. 
Damage to host lungs may be directly induced by the virus or be 
secondary to a strong immune response. Upon respiratory virus 
infection, immune cells typically participate in three phases: (i) 

innate immune cells sense presence of the virus and initiate early 
antiviral responses and prime the adaptive response; (ii) effec-
tor or adaptive immune cells clear virus by killing infected cells 
and producing antiviral antibodies, followed by conversion of a 
subset to memory lymphocytes; and (iii) innate immune cells act 
in concert with epithelial regene ration pathways to repair injured 
tissue and produce mediators that return the immune system 
to homeostasis (65). Herein, we focus on responses of innate 
immune cells in the initiation and repair phases of respiratory 
virus infection.

Epidemiological studies of humans and experimental models 
with rodents show that it is difficult to arrive at a universal 
paradigm regarding effects of sex or sex hormones on immune 
responses to respiratory viruses. vom Steeg and Klein hypothesize 
that sex differences in infection outcome are a function of the 
strength of the immune response and resulting host tissue damage 
(66). In this model, a male bias in risk occurs when weak immune 
responses underlie significant host damage, while a female bias 
in risk occurs when strong immune responses promote host 
damage. Experimental manipulation of sex hormones and their 
receptors in rodents has shown that sex differences in systemic 
estrogen and androgen levels often underlie differential immune 
function and infection outcome. Depending on the role of the  
sex hormone to promote or inhibit inflammation or immunity, 
sex differences may arise due to either the predominance of,  
or the absence of, estrogen or androgen in one sex.

In the initiation phase, lung-resident dendritic cells (DCs) 
and macrophages (alveolar and interstitial) respond to viral 
molecules (nucleic acids and glycoproteins) via cell surface 
or intracellular receptors that are linked to signaling pathways 
resulting in production of interferons (IFN), cytokines, and 
chemokines (65, 67). Coupled with these viral “pathogen-
associated molecular patterns,” damage to host cells results in 
the release of host molecules such as ATP, heat shock proteins, 
or HMGB1, termed “danger-associated molecular patterns,” 
which also trigger innate immune receptors and inflammasomes. 
Innate lymphocytes respond to cytokines produced by activated 
myeloid cells or alarmins released by damaged tissue and in turn 
produce type 1 (IFNs, IL-12, IL-1β, TNFα) or type 2 or regulatory 
(IL-5, IL-10) cytokines that direct subsequent innate or adaptive 
responses. Type I and III IFNs elicit expression of molecules that 
are directly antiviral. DCs acquire and present viral antigens, 
migrate to draining lymph nodes and prime adaptive responses 
through interactions with naïve T. Activated T cells then return 
to the lung where they interact again with resident or recruited 
myeloid cells, produce pro- or anti-inflammatory cytokines, and 
lyse infected cells.

Respiratory viruses typically elicit strong type 1 immune 
responses involving myeloid cell production of type I and III IFN 
and proinflammatory mediators such as IL-12, TNFα, and CCL2 
and lymphocyte production of IFNγ (67). As described in detail 
in later sections, there is some evidence for sex differences in (or 
sex hormone regulation of) the function of myeloid cells and 
innate lymphocytes during respiratory virus infection. However, 
more often, reports of sex differences or sex hormone regulation 
involve studies of immune cells at other tissue sites, in autoim-
mune or other pathogen models or performed in vitro. In brief, 
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type I IFN synthesis is promoted by estrogen and ERα signaling, 
and multiple reports show that female plasmacytoid DCs (pDCs) 
produce more type I IFN than male pDCs (32, 43, 68, 69). Sex 
hormone regulation of proinflammatory cytokines (IL-12, IL-6, 
IL-1β) seems more complex, but a number of studies show that 
lower physiological levels of estrogens enhance their production 
while higher physiological levels dampen their production and 
instead promote regulatory cytokines such as IL-10 [reviewed in 
Ref. (24)]. In contrast, reports show that testosterone decreases 
cytokines such as IFNγ and TNFα and increases IL-10 (21).

Regulatory and type 2 immune responses are important in 
later stages of respiratory viral infection. It is now recognized 
that while type 1 responses are important for viral clearance, type 
2 responses also are elicited and promote repair of injured tissue 
and resolution of the immune response upon influenza virus and 
respiratory syncytial virus (RSV) infection (70–72). In murine 
models of allergic asthma, estrogen and ERα signaling promote 
type 2 responses of alveolar macrophages (AM) (73), while 
androgens and AR signaling attenuate type 2 responses promoted 
by innate lymphoid cells (ILC2s) and myeloid cells (74). These ER 
and AR regulated pathways also may be important in respiratory 
virus infection. Indeed, the chronic elevation of type 2 responses 
in asthmatic individuals can lead to a milder course of influenza 
virus infection and reduced lung injury (75), while ILC2 activity 
in influenza virus infection can exacerbate asthma (76).

influenza virus A (iAv) infection
Sex differences in the incidence and severity of IAV infection 
in the human population have been well documented (13, 77). 
However, given the strong impact of age on morbidity and mor-
tality, it is often difficult to separate effects of sex and age since sex 
hormone levels change dramatically with age (78). Furthermore, 
social and cultural differences in gender norms also may influ-
ence ascertainment or self-reporting of infection symptoms or 
access to medical care. While the incidence of infection is often 
higher in males, females often show greater morbidity. Increased 
infection severity in females may result from stronger innate and 
adaptive responses in females that lead to more extensive immu-
nopathology. Epidemiological studies from the 1957 H2N2, 2005 
H1N1, and 2009 H1N1 pandemic IAV infections showed that the 
mortality and hospitalization of patients following viral infection 
was higher for females than males during their reproductive 
years (77, 79–81). This suggests that adult levels of sex hormones 
modulate immunity to IAV infection; however, these studies did 
not measure immune responses at the molecular or cellular level. 
Females in their reproductive years also have increased asthma 
incidence (58), which may alter immune responses and increase 
IAV-induced pathology. In contrast, infection of young males 
(<age 20) and elderly adults (>age 80) led to greater hospitaliza-
tion or morta lity (80). While this might suggest that lower levels of 
androgens in young boys and elderly men correlate with increased 
infection severity, information about comorbidities and measure-
ment of androgen levels coupled with more precise information 
regarding susceptibility of males pre- and post-puberty would be 
needed to make this correlation.

We also lack information regarding differential susceptibi lity 
to IAV infection in distinct phases of the menstrual cycle and 

in women taking oral contraceptives. These hormonal variables 
may modulate susceptibility or severity of IAV infection, as 
epidemiological data from asthmatic women and girls show 
premenstrual aggravation of asthma symptoms and alleviation of 
this cyclical effect while taking the oral combined contraceptive 
pill (58). Pregnancy was highly associated with increased mortal-
ity and morbidity following IAV infection, and one factor may 
be immune suppression by elevated estrogens and progesterone 
(82–84).

Studies of mice infected with mouse adapted and pandemic 
H1N1, and avian H3N1 and H7N9, viruses have provided valuable 
insights into sex differences in susceptibility and immunity to IAV. 
Morbidity, mortality, and the associated inflammatory response 
is greater in female than male mice at moderate IAV loads, but 
mortality of both sexes is similar at higher loads (85–87). At 
sublethal doses, females showed higher levels of TNFα, IFNγ, and 
CCL2 (85, 88) and neutralizing anti-influenza antibodies, which 
correlated with greater protection upon heterosubtypic virus 
challenge (86). At viral doses lethal in females, but not males, 
estrogen protected from mortality, as shown by comparing ova-
riectomized mice supplemented with estradiol or placebo (85). 
Estrogen replacement correlated with reduced TNFα and CCL2 
production, yet increased numbers of neutrophils and CD8+ viral 
antigen-specific T cells producing IFNγ (89). Overall, gonadally 
intact and gonadectomized females produced greater inflamma-
tory responses and showed increased morbidity following infec-
tion, suggesting that low levels of estrogens promote excessive 
inflammatory responses. In contrast, replacement of higher levels 
of estradiol to gonadectomized mice ameliorated inflammation 
and promoted adaptive immunity. This is consistent with anti-
inflammatory effects of replaced estrogen in autoimmune disease 
models (90) and the ability of ERα to negatively regulate NF-κB 
signaling [reviewed in Ref. (20)].

Ovariectomy of females followed by progesterone replace-
ment to luteal phase levels also reduced morbidity upon IAV 
infection (91). Progesterone led to increased tissue repair due to 
upregulation of the epidermal growth factor amphiregulin (Areg) 
in the lung (91). These studies suggest that progesterone-based 
contraceptives may promote recovery from respiratory virus 
infection (9).

Gonadectomy of young males increased morbidity and patho-
logy upon IAV infection, and replacement of testosterone or  
DHT, which cannot be metabolized to estradiol, reduced mor-
bidity, mortality, and inflammation (85, 92). In contrast, tes-
tos terone treatment of old male mice, which have decreased 
testosterone levels as in humans, increased survival but did not 
alter patho logy (92). These data are consistent with the ability of 
testosterone to suppress inflammation (21, 93).

In murine models of sublethal IAV infection, morbidity 
typically is most related to immune-mediated pathology rather 
than failure to clear virus (67). Thus, data from the above studies 
suggest that the increased morbidity and mortality of females is 
secondary to a strong proinflammatory response that leads to 
extensive tissue damage, while the lesser morbidity in males is 
the result of a more balanced immune response that clears virus 
with less tissue damage. Sex hormones that suppress inflamma-
tion (testosterone, progesterone, or high levels of estrogens) may 

86

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


Kadel and Kovats Sex Hormones Regulate Innate Immunity

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1653

attenuate antiviral immune responses to an optimal level, while 
lower levels of estrogens and androgens may permit excessive 
inflammation in some cases. The evolutionary benefit of this 
disparate effect of female and male sex hormones on immunity 
remains unclear.

Other Respiratory viruses
Infection by two other respiratory viruses leads to increased mor-
bidity in males. RSV is a common respiratory tract infection that 
most often progresses to the lower respiratory tract with severe 
consequences in infants and the elderly. The overall incidence 
of RSV is higher in young boys than girls (94, 95); however, the 
possible immunological basis of this sex difference and the role 
of sex hormones remains unknown. In outbreaks of pathogenic 
coronaviruses including the severe acute respiratory syndrome 
(SARS-CoV) and the Middle East respiratory syndrome (MERS-
CoV), males showed increased infection incidence and severity 
(96, 97). Male mice showed enhanced susceptibility to SARS-
CoV including elevated viral titers and increased accumulation 
of inflammatory monocytes and neutrophils in the lungs (98). ER 
signaling in females may be protective in this infection since ova-
riectomy or treatment with an ER antagonist increased mortality, 
while male gonadectomy did not alter disease outcome.

SeX DiFFeReNCeS iN iNNATe iMMUNe 
CeLLS DURiNG ReSPiRATORY viRUS 
iNFeCTiON

During respiratory viral infection, responses of lymphoid and 
myeloid innate cells play a crucial role in early antiviral protec-
tion and promote the generation of adaptive immune responses 
including effector and memory T and B cells. Here, we highlight 
studies demonstrating sex differences and effects of sex hormones 
in the number, function, and development of innate cells in 
the respiratory tract (Figure  1). We also review reports of sex 
differences and sex hormone regulation in innate cells in other 
tissues, which may inform our understanding of sex-dependent 
regulatory mechanisms in the respiratory tract. This topic is the 
subject of excellent recent reviews (74, 93, 99, 100).

iNNATe LYMPHOCYTeS

Type ii iLC2s
Innate lymphoid cells are tissue-resident cells that develop from 
lymphoid progenitors but lack antigen specific receptors. Like 
T cells, ILCs are divided into the ILC1, ILC2, ILC3, and natural 
killer cell (NK) subsets based on expression of fate-determining 
transcription factors and cytokine production (101). In homeo-
stasis, ILC2s are the predominant ILC subset in the murine lung 
(102), and both ILC2s and ILC3s are predominant in human 
lung (103). NKs (see below), ILC1s, and ILC2s generate innate 
responses during IAV infection while the role of ILC3s has not 
been investigated. Notably, ILC2s in murine lung, BM, and small 
intestine express high levels of Ar but little Esr1 or Esr2 (27–30).

Respiratory viral infections cause death of lung epithelium 
mediated by viral toxicity and immune cell activation, and 

appropriate remodeling of lung tissue to maintain barrier integ-
rity is crucial (70). ILC2s are important for tissue repair following 
IAV infection as they expand and secrete Areg, IL-13, and IL-5 
(76, 104, 105). Areg promotes regeneration of the bronchial 
epithelium, and IL-13 promotes barrier integrity by inducing 
epithelial cell proliferation and survival (91, 106). IL-5 recruits 
eosinophils that promote antiviral immunity and lung tissue 
regeneration in the resolution phase (105, 107, 108). Via these 
pathways, ILC2s facilitate tissue repair in IAV and RSV infection 
(104, 109).

We and others reported sex differences in murine lung ILC2 
numbers, with female mice harboring more lung ILC2s compared 
to males in homeostasis (28, 30, 110). A functional subset of 
lung ILC2s that lack the inhibitory E-cadherin-binding receptor 
KLRG1 is uniquely present in females (28, 110). Experiments 
involving hormone replacement in gonadectomized mice and 
mice bearing global or conditional deficiency in Esr1 or Ar 
showed that the sex difference in ILC2s is regulated by androgens 
and AR but not estrogens or progesterone (28, 30, 110). Males 
have increased numbers of ILC precursors in BM, suggesting 
that androgens attenuate the progression from ILC precursor to 
mature ILC2 (110). In humans, sex differences in lung ILC2s have 
not yet been investigated; however, increased numbers of ILC2s 
are present in the blood of asthmatic females compared to males 
(30). Interestingly, sex hormones may regulate ILC2s differently 
in each tissue. Estrogen and ERα signaling sustain uterine ILC2s, 
which express high levels of Esr1 compared to lung ILC2s (27). 
Fewer ILC2s accumulate in the central nervous system of female 
mice in the EAE model of multiple sclerosis (111). A lower 
proportion of ILC2s are present in cord blood of human female 
neonates compared to males (112).

Innate lymphoid cells in gonadectomized males produce 
more IL-5 and IL-13 after stimulation (28). Similarly, DHT 
treatment in vivo decreases IL-5 and IL-13 production by ILC2s 
(30), although a direct role for AR was not tested in these stud-
ies. Together with the finding that progesterone increases Areg 
expression (91), these data suggest that IAV-infected females may 
show superior tissue repair due to increased numbers of ILC2s 
capable of producing IL-13, IL-5, and Areg.

Alternately, the higher number of ILC2s in females may 
induce more pathology due to their functional plasticity. ILC2s 
convert to ILC1-like cells producing IFNγ in response to IL-12 
and IL-18 produced during IAV infection and lung inflammation 
triggered by smoking or chronic obstructive pulmonary disease 
(113–115). Although sex differences in ILC2 plasticity during 
IAV infection have not been reported, higher numbers of ILC2s 
that are capable of converting to ILC1s at the peak of infection 
may contribute to more severe immunopathology in females.

Natural Killer (NK) Cells
Natural killers are cytotoxic innate lymphocytes that control 
viral burden via their early production of IFNγ (116). NKs 
enhance DC migration and T cell recruitment upon infection 
with a sublethal IAV dose, but depletion of NKs was protective 
after infection with a lethal dose (116). Human and murine 
NKs express ERs and PR but not AR (Table 1). Human stud-
ies revealed higher numbers and cytotoxic activity of blood 
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NK  cells in males compared to females (117–119). This sex 
difference was reversed in old age (120). Studies show that 
NK numbers in blood correlate with stages of the menstrual 
cycle, suggesting regulation by sex hormones (121–123). 
In pregnancy, the recruitment of NKs from the blood to the 
uterine mucosa coincides with the dramatic rise in estriol and 
progesterone (124, 125). However, the effect of estrogen or 
progesterone on NK cell activity is unclear since some studies 
showed that in vitro (human) or in vivo exposure to estrogen or 
progesterone decreases NK cell activity while others found no 
effect (33, 126–129). Sex differences in NK numbers or function 
during IAV infection have not been reported.

Gamma Delta (γδ) T Cells
Innate γδ T  cells bear TCRs with limited junctional diversity 
that recognize intact protein antigens and small phosphate or 
amine containing molecules (130). γδ T  cells are divided into 
different tissue-specific subsets based on predominant pairings 
of particular Vγ or Vδ genes (131). γδ T cells show important 
functional responses during infection by RSV and IAV. In murine 
RSV infection, γδ T cells are recruited to the lungs and produce 
IFNγ, IL-17A, IL-10, and IL-4 resulting in the activation of 
other innate cells (132). Vγ4+ T cells also secrete IL-17A during 
IAV H1N1 infection to aggravate acute lung immunopathology 
(133). Levels of circulating Vγ9/Vδ2 T cells in adult women were 
significantly higher than in men (134); however, another study 
showed the opposite trend (135). Sex differences in γδ T cells in 
mice have not been reported.

Natural Killer T Cells (NKT)
Natural killer T cells facilitate cross-talk between the innate and 
adaptive immune system during viral infection. NKT  cells are 
a subset of T  lymphocytes expressing a restricted αβ TCR that 
recognizes CD1d-bound lipids. NKT cells play a protective role 
in IAV infection through their secretion of IL-22 and IFNγ to 
activate NK cells and CD8+ T cells (67). The absence of NKTs in 
a murine model of RSV infection led to a delay in viral clearance, 
suggesting a protective role in infection (136). In mice, estrogen 
acting via ERα regulates a sexual dimorphism in NKT function. 
Administration of estradiol to ovariectomized mice increased 
NKT IFNγ production upon in vivo stimulation by IL-12 + IL-18 
and a CD1d ligand, and NKTs in ERα−/− mice produced less 
IFNγ (36). Reports of sex differences in human NKTs are incon-
sistent, and data from the Immunological Genome Project show 
only low levels of sex hormone receptor RNA in human NKTs 
(Table 1). Increased blood NKT cell numbers in women relative 
to men was reported in some studies (137–139). Sex differences in 
NKT cells in respiratory virus infection have not been reported, 
but in view of the above studies, analyses of possible sex disparate 
responses in NKT function in murine models of IAV or RSV may 
yield important insights.

innate Lymphocyte Summary
Innate lymphocytes express sex hormone receptor RNAs at 
varying levels depending on the subset and tissue location 
(Table  1). While NK and NKT  cells primarily express ERs, 
lung ILC2s predominantly express AR, suggesting regulation 

of the classes of innate lymphocytes by distinct sex hormone-
mediated mechanisms. However, we lack information about sex 
differences in numbers and function of these diverse subsets 
in the murine lung during respiratory virus infection. Recent 
studies have shown a profound sex difference in numbers and 
functional responses of murine lung-resident ILC2s, and AR 
signaling decreases numbers of ILC2s in males. Future work 
will determine if this numerical disparity in ILC2s leads to 
sex differences in the resolution of respiratory virus infection. 
Reports of sex differences in numbers or function of innate 
lymphocytes in human blood are often conflicting, and more 
studies that carefully correlate gender, age, and sex hormone 
status with lymphocyte numbers and function in blood or tis-
sues are needed to clarify the field.

MYeLOiD CeLLS

Neutrophils
Neutrophils are the predominant infiltrating innate cell type 
during respiratory viral infection in both humans and mice. 
Neutrophils mediate antiviral defense via their production of 
proinflammatory cytokines and reactive oxygen species (140). 
Their role in respiratory viral infection remains unclear, as they 
cause pathology and susceptibility to secondary infections in 
mice. Neutrophil numbers and neutrophil extracellular trap 
(NET) formation directly correlate with the severity of RSV 
infection (141, 142).

Neutrophils express ER and AR (Table  1), and sex differ-
ences in the number and function of neutrophils in humans 
have been reported. Neutrophil numbers in blood are increased 
during pregnancy and the luteal phase of the menstrual cycle, 
suggesting that higher levels of progesterone or estrogens pro-
mote neutrophil numbers (143–145). Neutrophils from healthy 
women of reproductive age show improved survival in  vitro 
compared to those of healthy men. Estradiol and progesterone 
contribute to the delay in neutrophil apoptosis by decreasing 
expression of the pro-apoptotic protein caspase 3 (146). Other 
studies showed that sex hormones modulate neutrophil function 
in vitro, including chemotaxis and nitric oxide and superoxide 
production (147–149).

Sex hormones also regulate neutrophil numbers in homeo-
stasis and infection in murine models. AR-deficient mice show 
reduced numbers of neutrophils and neutrophil precursors in 
BM (41). Consistent with regulation of neutrophil numbers by 
AR signaling, the enhanced susceptibility of male mice to SARS-
CoV infection was associated with increased accumulation of 
neutrophils in the lung (98). In contrast, estradiol treatment of 
ovariectomized females elevated neutrophil chemoattractants 
and recruitment of neutrophils into the lungs, thereby increasing 
protection in IAV infection (89).

eosinophils
Eosinophils enhance antiviral immunity during RSV infection by 
sensing viral RNA via TLR7 and producing nitric oxide (150). 
In IAV infection, eosinophil degranulation and activation of 
viral antigen specific CD8+ T  cells increases protection against 
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infection (151). Estrogen increases eosinophil migration adhe-
sion, survival, and degranulation both in  vitro (42, 152) and 
in vivo (153). Furthermore, the number of eosinophils in female 
rats peaks with higher levels of estrogen during estrus, and 
ovariectomy significantly reduces uterine eosinophils (154, 155).  
These studies suggest that female sex hormones regulate eosino-
phil numbers, but sex differences in the numbers or function 
of eosinophil during respiratory viral infection have not been 
reported. Since eosinophils were reported to express very little 
Esr1 and no Ar or Pgr RNA (Table 1), sex differences in eosino-
phil numbers may be secondary to the sex differences in numbers 
of IL-5-producing ILC2s.

Alveolar Macrophages
Alveolar macrophages are lung-resident phagocytic cells that 
induce protective antiviral immune responses via production 
of soluble mediators (156). In viral infection, AMs produce 
high levels of type I IFN important for viral clearance and 
chemokines that recruit inflammatory monocyte into the lung 
(156). Sex differences or the effect of sex hormones in AM func-
tion during respiratory virus infection have not been described, 
although murine AMs express both ERα and AR (73). Studies 
of peritoneal macrophages, which also express ERβ, offer some 
insight into how AMs may be regulated by sex hormones 
during virus-induced inflammation. Increased numbers of 
macrophages were present in the pleural and peritoneal cavi-
ties of female mice, and they showed higher levels of TLRs and 
phagocytic capacity, which was associated with stronger acute 
inflammatory responses (157). Consistent with this, inflam-
matory TLR-mediated responses of human monocyte-derived 
macrophages and murine peritoneal macrophages were 
enhanced by estrogen and reduced by testosterone exposure 
(158–161).

The roles of sex hormones in AM function during allergic 
asthma may provide insight into sex differences in AM func-
tional responses in viral infection. AMs are polarized to an 
M1 phenotype in a type 1 environment involving IFN or to an 
M2 phenotype in a type 2 environment involving IL-4/IL-13.  
In allergy models, female mice show an increased type 2 polar-
ized AM response, and estrogen signaling via ERα in AMs was 
an important driver of the allergic response in vivo (73, 99, 162).  
This is consistent with other reports that female sex and/or 
ERα signaling promotes M2 macrophage function in cutane-
ous wound healing (163), Coxsackievirus-induced myocarditis 
(164), and atherosclerosis (53). In contrast, AR activity in mac-
rophages suppresses wound healing by enhancing local TNFα 
expression (165). These data suggest that estrogens and ERα 
may promote, while AR may attenuate, the type 2 responses 
that promote tissue repair in the resolution phase of a viral 
infection.

Monocytes and Monocyte-Derived Cells
Monocytes respond to viral infection by secreting cytokines 
and chemokines. They also are precursors to “inflammatory”  
macrophages or DCs in tissues. Following virus infection, 
CCR2+ monocytes are recruited via the chemokine CCL2 
from blood to the lung, where they differentiate into DC- or  

macrophage-like cells often producing proinflammatory cyto-
kines such as TNFα and IL-12 (166). Physiological levels of 
estradiol decrease expression of CCR2 and CXCR3 on murine 
monocytes in vivo, suggesting that ER signaling might reduce 
monocyte recruitment to tissues (167). Indeed, systemic estra-
diol treatment of ovariectomized mice reduced CCL2 induction 
and numbers of infiltrating monocytes during IAV infection,  
although no differences in numbers of inflammatory mono-
cyte-derived DCs (Mo-DCs) were noted (89). Consistent with 
this, SARS-CoV infection of more susceptible male mice led 
to increased accumulation of monocyte-derived cells (Ly6C+ 
CD11b+) producing proinflammatory cytokines relative to 
female mice, and depletion of the monocyte-derived cells par-
tially protected mice from a lethal infection (98). In this model,  
ovarian hormones and ER signaling in female mice were protec-
tive while orchidectomy of male mice had no effect, suggesting 
estrogens rather than androgens regulate pathogenic monocyte 
responses.

Reports of sex differences in human monocyte numbers and 
cytokine production are inconsistent and may reflect the diver-
sity of the human population. Postmenopausal women showed 
increased numbers of monocytes compared to premenopausal 
women (168). Other work showed that monocyte counts were 
higher in the luteal phase associated with higher progesterone 
levels than in the follicular phase (143). Pregnancy also was asso-
ciated with higher monocyte numbers, yet reduced capacity for 
IL-12 and TNFα production (169). Peripheral monocytes from 
healthy females produced more IL-6 upon LPS stimulation as 
compared to males (170). However, studies to determine if estro-
gens regulate pro-inflammatory cytokine production by female 
monocytes and monocyte-derived macrophages showed either 
negative (167, 171) or positive regulation (172). Macrophages 
and monocytes exposed to testosterone decreased their produc-
tion of proinflammatory cytokines and increased synthesis of 
IL-10 (173–175).

Dendritic Cells
Dendritic cells are professional antigen-presenting cells 
classified by phenotype and functional capacity into distinct 
subsets including (pDCs), conventional DCs (cDCs), and 
Mo-DCs. While the lung harbors at least three subsets of 
tissue-resident cDCs (176), pDCs and Mo-DCs enter the lung 
in significant numbers upon infection. Murine lung-resident 
DCs express Esr1 but little Ar (Table  1). The direct effect of 
sex hormone receptor signaling in these DC subsets in the 
lung during respiratory virus infection has not been reported. 
However, studies of sex differences and sex hormone effects on 
DCs in other tissues may provide some clues about lung DC  
subsets (100, 177).

Upon infection, lung-resident cDCs migrate to the draining 
mediastinal lymph nodes and prime naïve T cells. While sex dif-
ferences in the numbers or function of these DCs during virus 
infection have not been reported, no differences in lung cDC 
numbers were found in ovariectomized mice treated with placebo 
or estradiol and infected with IAV (89). Functional studies with 
murine BM-derived DCs showed that estradiol and ERα signa-
ling promote the TLR dependent production of proinflammatory 
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cytokines of cDCs in the Flt3L-driven model and inflammatory 
DCs in the GM-CSF model (178–181). Estradiol also increased 
the production of IL-8 and CCL2 from human Mo-DCs (182). 
Other studies have shown that estradiol promotes GM-CSF-
driven DC differentiation in  vitro [reviewed in Ref. (177)]. 
Estradiol acts via ERα in murine myeloid progenitors to promote 
DC differentiation by upregulating the transcription factor IRF4 
(183). In contrast, progesterone decreased TNFα and IL-1β but 
not IL-10 production by rat BM-derived DCs (184) and reversed 
estradiol-mediated changes in differentiation and function of 
BM-derived murine DCs (185). Progesterone modulated TLR-
induced activation and cytokine production by murine BM- 
derived DCs (186).

Plasmacytoid DCs rapidly respond to viral particles via 
endosomal and cytosolic sensors of viral nucleic acids and 
produce type I IFN and IFN-induced proteins that are directly 
antiviral. Female pDCs produce significantly more IFNα in 
response to viral nucleic acids or synthetic TLR7 ligands than 
male pDCs (68, 69), and this correlates with higher levels of 
ERα-regulated IRF5 in female cells (187). Estrogen signaling 
and XX chromosome dosage promoted sex differences in 
TLR7-mediated IFNα production by human pDC (32), and 
estradiol treatment of postmenopausal women enhanced their 
production of IFNα (43). Models of conditional Esr1 deficiency 
in DCs showed that ERα signaling drives sex differences in pDC 
functions (43, 188). Consistent with greater production of type 
I IFN by pDCs or other innate cells, female rats infected with 
respiratory Hantavirus showed greater expression of genes 
encoding viral nucleic acid sensors and type I IFN compared 
to males (189).

Testosterone and progesterone may suppress pDC responses, 
although pDCs do not apparently express significant levels of 
Ar or Pgr RNA in homeostasis (Table 1). Progesterone inhibits 
IFNα production by pDCs (190). Upon stimulation with a 
TLR7/8 agonist, human infant male infant pDC responses were 
significantly lower than those of females (191), which may be 
due to increased testosterone (or lower estrogen) levels in infants 
post-birth. Male PBMCs produced similar amounts of IFNα, yet 
greater amounts of IL-10 than female PBMCs upon IAV stimula-
tion, and the IL-10 may dampen type 1 inflammation in males 
(192, 193). Taken together, these studies show that female pDCs 
produce higher levels of type I IFNs, consistent with stronger 
antiviral immune responses, yet more immunopathology in 
females.

Myeloid Cell Summary
Sex differences in the numbers or functional responses of myeloid 
cells in murine models of IAV and coronavirus infection have 
been reported. Manipulation of sex hormone signaling through 
gonadectomy −/+ sex hormone replacement, or ER or AR defi-
ciency, has provided evidence for sex hormone-mediated regula-
tion of neutrophils, pDCs, monocytes, and monocyte-derived 
cells in the lung during infection. Sex differences in lung-resident 
cDCs during infection have not been reported, but these DCs do 
express Esr1 suggesting estrogens may regulate their important 
role in initiation of innate and adaptive responses to viruses. 
In asthma models in which females exhibit more disease, sex 

hormones regulate AM type 2 responses, suggesting that sex dif-
ferences in AM function during the resolution phase of respiratory 
virus infection also may occur. Overall, more research is needed 
to fully understand mechanisms of sex hormone regulation of 
myeloid cells during respiratory virus infection and how these 
may contribute to sex differences in antiviral defense.

CONCLUDiNG ReMARKS

Sex differences in immunity to respiratory viruses are evident  
in humans and experimental rodent models. Sex hormones 
may act directly in innate immune cells or their precursors to 
promote or attenuate their function, but it is also probable that 
innate cells are indirectly modulated by actions of other immune 
or non-immune cells responding to sex hormones. Differential 
regulation of innate cells by sex hormones during the proinflam-
matory/effector phase and resolution/repair phase is likely to 
shape the mechanisms of viral clearance and the host capacity to 
resolve inflammation and repair damaged tissue. For example, 
estrogens and ER signaling may promote IFN production by 
pDCs and NKT  cells early post-infection, but also type 2 or 
regulatory responses of AMs important for optimal resolution 
of the infection. Sex or sex hormones may not have universal 
effects during respiratory virus infection. Indeed, although 
endogenous estrogens in gonad-intact murine females promoted 
inflam mation during IAV, they were protective in coronavirus 
infection.

While elegant studies of sex differences and the role of sex 
hormones have informed the field of innate antiviral immunity, 
we still lack information on how sex hormone receptors act in 
individual cell types to regulate functional responses. Many 
reports of sex differences or sex hormone effects in immunity 
are conflicting, most likely because of experimental approaches 
that do not fully take into account sex hormone levels varying 
due to age or cycle, difficulty in reproducing natural sex hormone 
levels via manipulation in vitro or in vivo, or hormone imbalances 
in globally Ar or Esr1 deficient mice. Our understanding of sex 
biases in the antiviral responses of innate lymphoid and myeloid 
cells of the respiratory tract will be greatly facilitated by more 
precise approaches and measurements enabled by emerging tech-
nologies. When possible, careful studies of innate immune cells 
in the respiratory tract of infected humans would also contribute 
greatly to our understanding of sex-specific molecular and cel-
lular pathways that underlie population data on incidence and 
severity of viral infections.

Whether sex differences in immunity confer an advantage 
at the population level remains unclear. Ideally, the capacity 
for strong immune responses to infection or tumors would 
be balanced by a lesser propensity for autoimmunity. Studies 
suggest this continuum differs between the sexes, with females 
often capable of superior immunity to pathogens but more 
susceptible to autoimmunity (2), although not all reported 
data fit into this simple model. Sex differences in immune 
function may arise as a byproduct of the distinct levels of 
androgens and estrogens that specify biological sex and gonad 
development. Consistent with their ability to bind DNA and 
regulate chromatin conformation, sex hormone receptors may 
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act early in the pre- or postnatal period or during puberty to 
imprint sex-specific epigenetic patterns in the genome (5, 20). 
Epigenetically imprinted regions of open or closed chromatin in 
hematopoietic progenitors may differ between the sexes, and a 
sex divergent epigenome may be reinforced in mature immune 
cells in response to the sex hormone environment. The chal-
lenge of the field is to understand how sex hormones and their 
receptors regulate the epigenome and transcriptome in innate 
immune cells to mediate sex-divergent pathways that govern 
antiviral immune responses.
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Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that differ

in their genomic content, life cycle and molecular prognosis. HBV and HCV establish

chronic lifespan infections that can evolve to fibrosis, cirrhosis and hepatocellular

carcinoma (HCC). This malignant liver cancer affects more commonly male patients than

females, with amale-to-female incidence ratio of<Capword>2</Capword>:1 up to 7:1.

Sex significantly contributes to shape the immune responses, contributing to differences

in the pathogenesis of infectious diseases, in males and females patients. Females usually

develop more intense innate, humoral and cellular immune responses to viral infections

and to vaccination compared to male subjects. Sex hormones, in turn, differentially

affect the immune responses to viruses, by specific binding to the hormone receptors

expressed on the immune cells. In general, estrogens have immune-stimulating effect,

while androgens are immune-suppressing. However, sex hormones, such as androgen,

can also directly interact with HBV genome integrated into the cell nucleus and activate

transcription of HBV oncoproteins. On the other side, estradiol and estrogen receptors

protect liver cells from inflammatory damage, apoptosis and oxidative stress, which

contribute to fibrosis and malignant transformation preceding HCC. In HCV-associated

cirrhosis and HCC the decreased expression of estrogen receptor alfa (ERα) in male

patients may explain the worse outcome of HCV infection in men than in women. The

synergistic action of male and female sex hormones and of immune responses, together

with viral factors contribute to the mechanism of sex/gender disparity in the outcome

and progression of hepatitis viruses infection.

Keywords: sex, HBV, HCV, estrogens, androgens, progesterone, innate immune response, adaptive immune

response

INTRODUCTION

Men and women are extremely different in health and disease. Women usually live longer
than men but not healthier; in fact, women are often sicker than men. In addition,
sex-related differences in the frequency of side effects have been reported for several drugs,
with women experiencing more adverse events than men (1). The higher rate of side
effects in women than in men may be due, at least in part, to the fact that results
from clinical trials derive mainly from male subjects, being women inadequately represented

97

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02302
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02302&domain=pdf&date_stamp=2018-10-08
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anna.ruggieri@iss.it
https://doi.org/10.3389/fimmu.2018.02302
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02302/full
http://loop.frontiersin.org/people/549567/overview
http://loop.frontiersin.org/people/545157/overview
http://loop.frontiersin.org/people/545143/overview


Ruggieri et al. Sex-Related HBV and HCV Infections

in clinical trials (2). In the last 18 years gender-specific medicine
has been recognized as the study of how diseases differ
between sexes in terms of susceptibility, prevention, clinical
manifestations, therapy, prognosis and mechanisms of
pathogenesis (3). In this context, viral infections have been
recognized to differ between males and females for prevalence,
intensity, outcome and pathogenetic mechanisms (4). In this
minireview, we introduce some mechanisms that determine
sexual dimorphism in immune function in males and females.
We then discuss the impact of the synergy between sex
hormones and sexually dimorphic immune responses on
pathogenesis during Hepatitis B (HBV) and Hepatitis C (HCV)
viral infections.

SEX DISPARITY IN IMMUNE RESPONSES

TO VIRAL INFECTIONS

It is well-known that sexual dimorphism occurs in humans
and animals with regard to immune responses and viral
infections (4). Female individuals usually are less susceptible
to viral infections than males, since they mount a more
efficient, intense and prolonged immune response, either innate,
as well as humoral and cell-mediated (5, 6). The innate
immune response is the first line of defense against viruses
and it is mediated by Toll-like receptors (TLRs), retinoic
acid-inducible gene I-like receptors (RIG-I) and nucleotide
oligomerization domain-like receptors (NOD-like receptors).
These, named pattern recognition receptors (PRRs), recognize
viral components (such as DNA, dsRNA, ssRNA, and viral
proteins) and activate production of type 1 interferon (IFN)
and inflammatory cytokines (IL-1, TNFs). In rodents and in
humans expression of TLRs (such as TLR7) as well as number
of monocytes, macrophages and dendritic cells, that are innate
immune response players, have been reported to be significantly
higher in females than in males (7, 8), thus accomplishing the
more intense inflammatory responses in female subjects than in
males (9).

In general, once a viral infection is established, the activation,
by the Antigen Presenting Cells (APCs), of adaptive immune
responses and of B cells, with subsequent rise of the antibodies
specific for viral antigens, in most cases is greater in female
animals and humans compared to males (10). In addition,
females have higher number of CD4+T cells than males, that
induces a greater number of T cells activated by viral antigens
engagement of the T cell receptor (9–13); moreover, stronger
cytotoxic T cell activity along with overexpression of antiviral and
pro-inflammatory genes, many of which have estrogen response
elements in their promoters, have been reported in women (14).

In most viral infections, following viral clearance, when
the immune system returns to the homeostasis, basal immune
responses are higher in females than in males. This can result in a
higher risk of developing immunopathologies associated to viral
infections in female individuals. In contrast, the lower antiviral
immune responses at homeostasis in males can be responsible for
the increased risk to undergo to persistent viral infections (9).

Based on this, it is deductible that female are less prone than
males to be virus infected, due to their more effective antiviral
immune defenses, but more frequently they develop more severe
symptoms, due to the more intense inflammatory responses (9).

The immunological dimorphism between sexes, besides being
shaped by the individual genetic background (15, 16), is mostly
regulated by sex steroids hormones, particularly by estrogens,
progesterone and androgens, that affect function of the immune
cells. Due to the expression of the sex hormone receptors on
immune cells, including lymphocytes, monocytes and dendritic
cells, the interaction of sex hormones and immune cells
affects release of cytokines and chemokines, which determine
differentiation, maturation and proliferation of the immune cells
(17).

Presence of different sex hormones, which circulate at
different levels in males and females, makes sense of the
fact that the immune responses are differentially modulated
in individuals of different sexes (18). There are three classes
of sex hormones: androgens (testosterone), estrogens (17-beta-
estradiol) and progesterone. The level of estrogens in females
fluctuates during menstrual cycle and declines with menopause;
in males the testosterone level is stable up to almost 60 years of
age, before age declining. Consequently, sex disparity in immune
responses to viral infections may vary with aging.

Several studies have been published so far to clarify the
various roles of estrogens on immune system, whereas much
less is known about the roles of androgens (19–21). In general,
testosterone has been demonstrated to have suppressive effect on
the immune function, either in animal models and in human
trials (21); conversely the effect of estrogen varies depending on
their levels and on the immune measure used (20).

Androgens have been shown to suppress pro-inflammatory
responses in rodents, by increasing production of anti-
inflammatory cytokines (IL-10, TGF-β) (22–24). In humans,
androgens deficiency in men has been reported to induce
increased levels of inflammatory cytokines (IL-1β, IL-2, and
TNF), an increased CD4+/CD8+ T cell ratio and higher
antibodies titers, compared to male subjects with normal level
of testosterone (25, 26). Actually, several studies (21, 27) have
indicated that androgens exert an overall inhibitory effect
on differentiation of Th1 arm of the immune system, with
consequent reduced production of IFN-γ that may explain the
enhanced susceptibility to viral infections in males than in
females (28).

Estrogens (17β-estradiol) act by binding to the estrogen
receptors (ER) -alfa or -beta, which are expressed differentially
among the subsets of immune cells: ERα is highly expressed
on T cells and ERβ highly expressed on B cells (19). Estrogens
affect different activity of the innate and adaptive immune
responses, and they have opposite effects on the immune system
based on their concentration. In humans, low doses of estrogens
have been reported to induce monocytes differentiation into
inflammatory DCs with consequent high production of IL-4 and
IFN-α. Conversely, high doses of estrogen have inhibitory activity
on innate and pro-inflammatory immune responses (19, 29).

In addition, the low level of estrogens activates Th1-type and
cell-mediated immune responses, whereas high levels enhance
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Th2-type responses and humoral immune responses in diverse
species and in vitro. Treg cell populations are also positively
affected by estrogens either in mouse model and in women
(30). At physiological concentration estrogens also stimulate
humoral response to viral infections, by inducing higher levels
of antibodies and activating antibodies-producing cells. From the
above it is deductable that the fluctuation of the estrogen levels
during the menstrual cycle in female subjects can make women
differently immune-reactive before ovulation, when the antibody
levels are highest (31).

Progesterone’s effect on immune system is similar to
androgen’s immune suppression of both innate and cell mediated
immune responses. It is known that progesterone suppresses
Th1 response and favors the Th2 cytokines production, inhibits
cytotoxic T cells and modulate function of NK cells (5).

SEX DISPARITY IN HEPATITIS B VIRUS

(HBV) AND HEPATITIS C VIRUS (HCV)

INFECTIONS

HBV and HCV are two hepatotropic viruses belonging,
respectively, to Hepadnaviridae (HBV) and Flaviviridae (HCV)
families, that differ in their genomic content, life cycle and
molecular prognosis. HBV is the DNA virus that has the
ability to integrate into host cell DNA, establishing persistent
infection and whose replication cycle involves an RNA
intermediate. HCV is the RNA virus that replicates in host
cell cytoplasmic membranous webs (vescicle-like cytoplasmic
membranes). Escaping from innate and adaptive immune
responses is the main mechanism involved in establishment of
persistent HCV infection (32).

Both viruses are responsible for chronic infections and
represent a major risk factor for the development of
hepatocellular carcinoma (HCC). Male sex is a risk factor
for HBV and HCV prevalence and for HCC development
subsequent to HBV and/or HCV infection. HBV-associated
HCC develops more frequently in men than in women, with
a female/male ratio ranging from 1:4 to 1:7 (33). In addition,
female HBV carriers have lower viral loads than male carriers
(34, 35) and the prevalence of serum HBV surface antigen
(HBsAg) has been reported higher in men than in women (36).
Some studies suggested that high levels of serum testosterone
could associate with an increased risk of HCC development
in male carriers of HBV (37). This and similar observations
suggested that HBV infection and pathogenesis could be
regulated by sex hormones. As reported above, male and female
sex hormones affect the release of inflammatory cytokines in
opposite way, as estrogens induce pro-inflammatory cytokine
whereas androgens suppress pro-inflammatory responses, and if
this occurs in the HCC microenvironment it can contribute to
the epigenetic changes responsible for malignant transformation
in different or opposite ways between sexes.

As described in the previous paragraph, the innate immunity
response is the first line of defense against viral infections. The
impact of sex differences and, in particular, of sex hormones
on innate immune response to HBV are largely unknown,

due, at least in part, to the lack of adequate models. A
little more is known regarding gender-related differences in
adaptive immune response to HBV infection. After prophylactic
vaccination against HBV, women have higher anti-HBs antibody
titer than men (38). In addition, a more frequent seroconversion
to HBeAg (HBV e antigen) and HBsAg antibodies has been
reported in female HBV chronic carriers than in males (39).
According to a study conducted in mouse models of acute
and persistent HBV infection, sex-related discrepancies in the
adaptive response toHBV infectionmay be explained by different
CD8+-T cells activity. In both murine models higher CD8+-T
cells activity has been reported in females than in males and
correlated to lower number of intrahepatic Treg cells in female
mice than in male ones (40). However, the role of androgens
and estrogens in regulating T-cells response to HBV infection
is still unclear, and only some clues are available. For example,
susceptibility to chronic HBV infection has been associated to
a particular ERα polymorphism; one possible explanation is
that this polymorphism affects ESR1 (Estrogen Receptor 1) gene
transcription with the consequence of a defective response of
immune cells to estrogens (41). Given the reported effect of
sex hormones on immune system, it is reasonable to speculate
that this can also account for the sex different susceptibility to
HBV infection. Antiviral immune response modulation by sex
hormones may also contribute to explain HCC prevalence in
male gender, as in the case of chemically induced HCC that
is worse in male than in female mice, due to the increased
production of IL-6 by Kupffer cells in the males liver (42). Same
Authors showed that estrogens transcriptionally inhibited IL-6,
through reduction of Myd 88-dependent induction of NF-κB
(42, 43).

Besides the effect on immune responses sex hormones can also
directly influence virus activity, in some instances, being some
viruses directly responsive to male or female sex hormones. As
a consequence the viral load and the outcome of several viral
infections are different in male and female individuals (44–50).
In general HBV surface antigen (HBsAg) circulates at higher level
in serum of male adult mice than in female (34) and its level
decreases upon castration of the animals, thus indicating that
viral antigen expression and viral replication are regulated by
androgens (35). The androgens do their biological functions by
binding to their cognate receptor (androgen receptor, AR), that
dimerizes and translocates into the cell nucleus, where it binds
to the cellular DNA, to specific Androgen Responsive Elements
(ARE). This binding activates the transcriptional expression of
various target genes that are associated with male phenotype.
The HBV genome integrated into the host cell DNA contains
two ARE elements within the enhancer I region. When the AR-
Androgen complex is internalized into the hepatocytes it binds
either to the nuclear and viral ARE sequences, thus activating
HBV genome transcription and production of the HBV X
protein (Figure 1). This latter, in turn, facilitates dimerization
of the AR and enhances AR transactivation activity, through
activation of Src kinase activity, thus establishing a positive
feedback loop that can promote hepatocarcinogenesis. The
AR further acts in conjunction with other molecules, such
as cell cycle-related kinases (CCRK) that in turn activates
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FIGURE 1 | Schematic illustration of the mechanism of Androgen activation of

HBV replication. HBV genome integrated in the host cell DNA contains two

Androgen Responsive Elements (ARE) within the enhancer I region. The

AR-Androgen complex binds either to the nuclear and viral ARE sequences,

thus activating HBV genome transcription and production of the viral HBx

oncoprotein. HBx, in turn, enhances AR dimerization and androgen-stimulated

AR activity, through the c-Src kinase. This positive feedback loop is one of the

molecular explanations for the increased HBV titers in male patients compared

to females and for the different outcome of HBV infection in men and women.

oncogenic β-catenin in hepatocytes. This mechanism indicates
that Androgen/AR signaling may promote HBV-related HCC
development and explains the higher frequency of HCC as well
as the higher HBV titers in serum of male sex than in female (51).
Conversely, the estrogens signaling has been reported to probably
suppress hepatocarcinogenesis and to be protective against HBV
associated progression to HCC. The molecular mechanism for
estrogen is mediated through binding of estradiol to the nuclear
estrogen receptor-alfa, that inhibits the HBV enhancer I and
transcription of the integrated viral genomes (51, 52).

HCV infection causes, in 80% of cases, chronic infection
that usually is asymptomatic and lasts lifetime, but in a small
percentage of patients can evolve to fibrosis, cirrhosis and the
end stage HCC. The pathogenic mechanisms involved in the
establishment of HCV chronicity and in the disease outcome are
only partially described. Several factors, like age, gender, alcohol
consumption, body mass index and HIV or HBV co-infection
may be involved (32).

Epidemiological and clinical reports have indicated that
chronic HCV infections are more prevalent in men than in
women and HCV-associated disease progression to fibrosis,
cirrhosis to the end- stage HCC is more rapid and more common
in male patients than in female (53). Women, on the other side,
are more likely to clear the virus spontaneously, after initial
infection. Host factors, such as Il-28 genotype and virus genotype
1a, together with female sex have been reported to be predictor of
spontaneous viral clearance of acute HCV infection (54).

A strong and efficient innate inflammatory response is
considered necessary for spontaneous clearance of HCV. A

critical role in host innate immune response to HCV is played by
TRL7, whose activation leads to IFN-α induction and interferon-
stimulated genes (ISGs) expression, subsequent to janus kinase
(JAK)/signal transducer and activator of transcription (STAT)
pathway induction by IFN-α (55–57). Activation of TRL7 by a
synthetic ligand (SM360320) has been reported to induce HCV-
specific immune response and to decrease HCV RNA levels in
a replicon system in vitro (58); furthermore, treatment with
isatoribine, a selective TLR7 agonist, caused a significant drop in
plasma HCV levels in chronic HCV patients (59).

Little is known regarding the influence of sex on TRL7
expression and activation during HCV infection. A study
conducted on a Maroccan chronic hepatitis C patients has
reported a higher rate of spontaneous HCV clearance in women
than in men, due to a particular polymorphism in TLR7 gene
(60). Expression of MxA gene, one of the ISGs induced byTLR7,
has been found higher in premenopausal women compared to
both postmenopausal women and men (57). In addition, TLR7
activation by synthetic agonists induces a significantly higher
IFN-α production in healthy women than in men (61).

However, women in postmenopausal period, when estrogens
levels significantly decrease, have been reported to experience
more rapid progression of hepatic fibrosis andHCC development
(62) and lower response to antiviral therapy (63). Thus, pointing
out for an important role of the estrogen level in determining the
fate of HCV infection in female subjects and also pointing to the
age effect on HCV pathogenesis.

Normal liver express estrogen receptor of both type, alfa and
beta (ERα and ERβ), thus it is responsive to the estrogenic
stimulus, however normal male livers have higher expression
of ERα with respect to normal female livers. In contrast, in
HCV associated cirrhosis and HCC ERα level has been reported
to decrease only in male patients compared to normal male
livers. The Authors correlated the ERα changes associated
to HCV disease with the increase of inflammation markers
and proliferation that are involved in the pathogenesis of
liver cirrhosis and HCC, thus explaining the worse outcome
of chronic HCV infection in male patients than in female
(64).

The worse outcome of HCV infection in men may also be
explained by the direct influence of sex hormones on HCV itself.
17β-estradiol was found to inhibit production of mature HCV
virions, through ERα binding (65, 66) and to inhibit HCV entry,
through down-regulation of occludin (one of the receptors used
by HCV to access the hepatocytes), in infected cell cultures
(67).

Studies analyzing the effect of testosterone on HCV
replication are lacking so far. However, it was reported
an increased expression of scavenger receptors, which are
necessary for viral entry, in both HepG2 cell lines and human
macrophages treated with testosterone (68, 69). Interestingly,
estrogen decreased the expression of hepatic scavenger receptors
in rat livers (70). The different effect of estrogens and testosterone
on HCV replication may explain, at least in part, the lower
incidence of HCV infection and the less common progression
of liver disease to cirrhosis and HCC, in premenopausal women
than in postmenopausal women and in men.
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CONCLUSIONS AND FUTURE

DIRECTIONS

From the above, the direct and diverse effects of male and female
sex hormones on HBV virus genome replication and on HCV
disease progression, act jointly to the effect of sex hormones on
the anti-viral immune response, thus favoring the hypothesis of
an interplayed action among sex-hormones, virus and immune
system that determines the sex-dependent final outcome of
chronic infections of hepatitis viruses. The data available to
date, on the potential mechanisms determining the different
susceptibility and outcome of HBV and HCV infections, either
immunologic and hormonal, are fragmented and not exhaustive,
but it is encouraging the disclosure in order to identify sex-
specific molecular pathways involved. Molecular mechanisms of

sex bias in infectious diseases is in its infancy, identification of
the key players in sex-related outcome of hepatitis and of the
molecular factors involved, will provide disclosure of new targets
to personalized medicine and vaccinology.
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Sex-related differences in asthma prevalence are well established and change through

the reproductive phases of life. As children, boys have increased prevalence of asthma

compared to girls. However, as adults, women have increased prevalence of asthma

compared to men. Many factors, including genetics, environment, immunological

responses, and sex hormones, affect the sex disparity associated with the development

and control of asthma and other allergic diseases. Fluctuations of hormones during

puberty, menstruation, pregnancy, andmenopause, alter asthma symptoms and severity.

In this article, we review clinical and epidemiological studies that examined the sex

disparity in asthma and other allergic diseases as well as the role of sex hormones on

asthma pathogenesis.

Keywords: asthma, allergic disease, sex hormones, puberty, pregnancy, menopause

INTRODUCTION

There is a sexual dimorphism in asthma and allergic disease that changes through life. Among
children, boys have an increased prevalence of asthma and allergic disease compared to girls.
Interestingly, around puberty the frequency of asthma and allergic disease starts to change from
being higher in males to higher in females. By adulthood, the prevalence of asthma and allergic
disease is increased in women compared to men (1). This change in prevalence around puberty
suggests sex hormones and other factors alter pathways important in asthma pathogenesis and
allergic disease.

Asthma is a heterogeneous disease characterized by episodes of airway narrowing or hyper
responsiveness, obstruction, inflammation and mucous production. Asthma clinically presents as
wheezing, coughing, chest tightness and shortness of breath (2, 3), and different inflammatory
pathways drive the airway inflammation and hyperresponsiveness associated with asthma. Patients
with allergic asthma have increased eosinophils in the airway or bronchoalveolar lavage fluid
(BAL) caused by increased type 2 inflammation. Type 2 inflammation is characterized by increased
production of interleukin (IL)-4, IL-5, and IL-13, increased IgE antibody production, and mast cell
or basophil degranulation (4–6). However, some patients with more severe phenotypes of asthma
have increased neutrophils in the airway and BAL fluid that is driven by IFN-γ or IL-17A-mediated
pathways (4, 5). Patients with increased airway neutrophils may or may not have increased
airway eosinophils as well. Multi-variate cluster analyses on adults with asthma and healthy
controls determined a female predominance in two clusters: (1) less atopic, less corticosteroid
responsive patients and (2) late-onset, more severe phenotypes of asthma in obese patients (4, 7).
As summarized in Figure 1, studies also highlighted the many different factors, including genetics
and epigenetics, environment, respiratory mechanics, immunological responses, sex hormones and
obesity, regulated asthma pathophysiology and the various endotypes seen in asthma throughout
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FIGURE 1 | Multiple factors are associated with asthma and may contribute to the sex disparity seen in asthma throughout the life span. These factors may

independently or jointly be associated with asthma or regulate each other (e.g., genetics may impact immune response and/or obesity). Factors are color-coded

based on importance in asthma at various phases of life: orange, in utero and childhood; green, throughout life; blue, adolescence and adulthood.

the lifespan. Therefore, understanding how sex hormones and
other factors regulate asthma pathogenesis is important since
asthma affects approximately 235 million people with a global
annual health care burden in 2007 of approximately $56 billion
for medical costs, lost school and work days and early deaths (8).
In this review, we primarily focused on the sex differences and
sex hormone regulation in asthma pathogenesis in the clinical
and epidemiological literature organized by maternal factors,
childhood asthma, and asthma after puberty (Table 1). At the end
of the review, there will be a brief overview of the sex disparity in
other allergic diseases.

MATERNAL FACTORS, EPIGENETICS, THE

MICROBIOME, AND ASTHMA

Maternal factors, such as smoking, antibiotic or corticosteroid
use, and prenatal stress, are associated with increased
development of asthma or wheeze in children (33–36).
While boys have increased development of asthma and wheeze
as children, no sex specific association was determined with
maternal smoking or antibiotic use and the development of
wheeze in children (34, 35). Further, a prospective study showed
no sex differences in maternal asthma control during pregnancy
and asthma risk in offspring (37). However, previous studies
showed that female infants from mothers not taking inhaled
corticosteroids had reduced birth weights compared to female
infants from mothers administered inhaled corticosteroids, with
no change in birth weights in male infants from these groups
(38). A female fetus was also associated with increased circulating
monocytes compared to the male fetus in this study. A sex bias,
with more boys compared to girls, was also determined with
prenatal maternal stress and the development of asthma or
wheeze (39). However, not all maternal exposures are adverse, as

Abbreviations: ACQ, asthma control questionnaire; ADR, adverse drug

reactions; BAL, bronchoalveolar lavage fluid; BMI, body mass index; CAMP,

childhood asthma management program; CHILD, canadian healthy infant

longitudinal development; DHEA-S, dehydroepiandrosterone-sulfate; ECHRS,

european community respiratory healthy survey; FEV1, forced expiratory volume

in 1 s; GINA, global initiative for asthma; HRT, hormone replacement therapy;

IFN, interferon; IL, interleukin; ILC2, group 2 innate lymphoid cells; PBMCs,

Peripheral blood mononuclear cells; PIAMA, prevention and incidence of asthma

and mite allergy; PMA, pre or perimenstrual asthma symptoms; SAPALDIA, swiss

study on air pollution and lung diseases in adults; TRAILS, tracking adolescents’

individual lives survey.

maternal exposure to farming and farmmilk is protective against
the development of asthma (40). Women who farmed during
pregnancy and had exposure to multiple animal species and
consumed farm milk led to enhanced innate immune responses
through increased expression of pattern recognition receptors,
upregulated IFN-γ production, upregulated T regulatory cell
function and reduced Th2 cell dependent allergic inflammation
in early childhood (41–43). Further, breastfeeding is known to
decrease the risk of asthma in infants (44). However, sex was not
addressed as a variable in some breastfeeding studies (37, 38), or
was listed as a co-variate that did not impact the findings in other
studies (45–49). Combined, these studies suggest that prenatal
stress and potentially maternal asthma control may differentially
affect male and female offspring in childhood development of
asthma/wheeze.

Microbiome formation in early life is vital for educating
the immune system and many environmental factors, including
mode of delivery, formula feeding, antibiotic use, and exposure
to animals, are important in microbiome formation and
are associated with asthma. The Canadian Healthy Infant
Longitudinal Development (CHILD) study determined that the
microbiome composition, specifically reductions in bacterial
genres Faecalibacterium, Lachnospira, Veillonella, and Rothia, at
3 months of age (but not 1 year) increased the risk of developing
asthma or allergic diseases (50). No sex differences were observed
in the abundance of these bacterial genres and development
of asthma or allergic disease. However, additional analysis of
this cohort showed a decreased abundance of Lactobacillus in
Caucasian male infants at 3–4 months of age born to mothers’
with asthma compared to female infants (51). Lactobacillus
are associated with increased production of anti-inflammatory
cytokines in cord blood and Lactobacillus johnsonii reduced
ovalbumin or cockroach allergen-mediated airway inflammation
in mouse models of asthma (52, 53).

Gene transcription can be altered by epigenetic modifications
that are established in utero or developed due to environmental
exposures, disease states, antibiotic or medication use, and
lifestyle choices. Alterations in the epigenome in utero or during
childhood may also drive asthma development (54, 55). Maternal
smoking alters DNA methylation and maternal smoking is a
known risk factor for childhood asthma. Further, asthmatic
children have differences in DNA methylation levels at 19
different loci depending on in utero exposure to maternal
smoking (54, 56, 57). However, none of these studies showed
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TABLE 1 | Summary of clinical findings for gender disparities in asthma during various reproductive phases of life.

Authors Methods Demographics and number of

subjects

Conclusions

ASTHMA AND PUBERTY

Fu et al. (9) - Longitudinal study for asthma symptom diary

scores (CAMP data)

- Tanner stage scores

- 5 to 17 yr olds

- 418 subjects

- 564,518 records

- 5–6 yrs: asthma severity: M > F

- 7–9 yrs: no sex difference in severity

- 10–17 yrs: asthma severity: F > M

Wijga et al. (10) - Longitudinal study, questionnaire based data

collected during pregnancy, 3 months, 1 yr

and yearly thereafter (PIAMA data)

- 3,308 children followed birth-8 yrs - 0–3 yrs: incidence of asthmatic wheeze: M >F

- 4–7yrs: no significant difference

- 8 yrs: atopy prevalence: M > F

Vink et al. (11) - Longitudinal study, questionnaire based data - 2,230 dutch adolescents - At mean age 11.1: asthma prevalence: boys = girls

- At mean age 16.3: asthma prevalence: F > M

Chen et al. (1) - Retrospective study on canadian hospital

records over 3 yrs

- 288,977 asthma-related records

- 204,304 asthma patients

- 3 yrs cumulative incidence of asthma hospitalization:

boys> girls; reversed in adults

- 25–34 yrs of age, incidence ratio for asthma

hospitalization 2.8 F:M

Schatz el al. (12) - Retrospective study on computerized data

used to identify and analyze asthmatic

patients with regard to asthma related HCU

- 60,694 subjects (2–64 yrs) - Ages 2–13 yrs: asthma HCU and severity: M > F

- Ages 14–22: asthma HCU and severity: F > M

- Ages 23–64: asthma HCU and severity: F > M

Nicolai et al. (13) - Longitudinal study, asthmatic and control

patients recruited at age 10, re-evaluated at

age 14 and 20

- 274 asthmatics and 1,000 healthy

controls (ages 10–20)

- At 20 yrs, 24.5% still had symptoms (M > F) and 4.8%

had developed asthma (F > M)

ASTHMA AND THE MENSTRUAL CYCLE

Shames et al. (14) - Daily asthma symptoms, medication use,

PEFRs, spirometry and methacholine

challenges longitudinally over 6 menstrual

cycles

- 32 asthmatic women - 28.2% of subjects reported PMA.

- Women with PMA had increased perimenstrual use

inhaled SABA and decreased morning PEFRs.

Pauli et al. (15) - Daily asthma symptom diaries, PEFRs,

spirometry and methacholine challenges

longitudinally during 3–4 menstrual cycles

- 11 asthmatic women and 29

healthy controls

- AM PEFRs and asthma symptoms from follicular to

luteal phase: asthmatics > controls

- No significant changes in spirometry and airway

reactivity

Rao et al. (16) - Questionnaire based data (SARP),

- Inflammatory markers, spirometry

- 756 women; 483 self-reported PMA - Use of oral corticosteroid bursts and HCU: women

with self-reported PMA > women without PMA

Brenner et al. (17) - ED interview

- Medical record review

- Visits classified by menstrual phase

- 792 asthmatic women (18–54 yrs) - Acute asthma exacerbations do not markedly increase

during perimenstrual phase -Preovulatory +

perimenstrual phases may have adverse impact

Zimmerman

et al. (18)

- ED interview

- Medical record review

- Visits classified by menstrual phase

- 288 asthmatic women - Menstrual phase at time of ED visit: 33% preovulatory,

26% periovulatory, 20% postovulatory, and 21%

perimenstrual

Eliasson et al. (19) - Survey based data - 57 asthmatic women - 33% had increased pre or perimenstrual pulmonary

symptoms

Gibbs et al. (20) - Questionnaires and twice daily

PEFRs

- 126 asthmatic women (14–46 yrs) - 40% reported premenstrual increase in symptoms,

data confirmed by PEFRs.

Agarwal et al. (21) - Questionnaires based data PEFRs - 100 asthmatic women - 23% patients had increase in symptoms with

menstruation

- Decreased mean AM and PM PEFR values during pre

or perimenstrual phase

Juniper et al. (22) - Methacholine challenge performed

longitudinally during 2 consecutive menstrual

cycles

- 17 asthmatics (10 natural cycles, 7

OCP)

- No difference in FEV, medication use or methacholine

challenge -Symptoms worse during menstruation

ASTHMA and OCP USE

Macsali et al. (23) - Postal questionnaire based data - 5,791 nordic-baltic women

(25–54yrs)

- 961/5791 used OCP

- OCPs associated with increase risk of asthma

symptoms

- Associations present only among normal and

overweight women, not lean women.

Juniper et al. (22) - Methacholine challenge performed

longitudinally during 2 consecutive menstrual

cycles

- 17 controlled asthmatics (7 on

OCP)

- No difference in FEV, medication use or methacholine

challenge

- Symptoms worse during menstruation

Nwaru et al. (24) - Longitudinal, serial survey based data (serial

Scottish Health Surveys)

- 3,257 scottish women, 16–45 yrs - Use of hormonal contraceptive associated with

increased risk of current physician diagnosed asthma

(OR 0.68) and increased risk of asthma HCU (OR 0.45)

(Continued)
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TABLE 1 | Continued

Authors Methods Demographics and number of

subjects

Conclusions

ASTHMA AND PREGNANCY

Schatz et al. (25) - Women monitored for HCU, lung function

and med use before, during and after

pregnancy.

- 1,739 pregnant asthmatic women - Risk of asthma exacerbation during pregnancy: severe

asthmatic women > mild and moderate asthmatic

women

Schatz et al. (26) - Asthma symptom and medication diaries

- Spirometry during pregnancy and 3 months

postpartum

- 366 pregnancies in 330 women - During pregnancy, asthma symptoms increased in 33%

women

- 73% of these women reverted back to pre

- pregnancy control by 3 months postpartum.

Belanger et al. (27) - Interview based symptom and medication

data

−872 asthmatic women - Patients who continued to use their prescribed

medication had no change in asthma severity during

pregnancy

Juniper et al. (28) - Airway responsiveness, FEV1, FVC,

medication use

−20 asthmatic women - A majority of women had decreased asthma

symptoms and severity during pregnancy

ASTHMA AND MENOPAUSE

Gomez et al. (29) - Postal questionnaire based data - 2,206 nordic-baltic women 46–54

yrs

- 884 OCP users and 540 HRT users

- Women taking HRT: increased risk of asthma

- Women not taking HRTs: no difference in self-reported

asthma between pre-menopausal and

post-menopausal women

Real et al. (30) - Questionnaire data (ECRHS II)

- Lung function and hormonal serum markers

measured

- 4,529 women (45–56 yrs) - Decline in lung function and asthma symptoms:

women in the menopause transition (amenorrheic for 6

months) > pre-menopausal women had lower lung

function

Troisi et al. (31) - Questionnaire data (NHS data) - 41,202 premenopausal and 23,035

postmenopausal women

- Asthma incidence: pre-menopausal women>

postmenopausal

- Higher incidence among postmenopausal women who

had never used HRT compared to women who

reported current or previous use.

Triebner et al. (32) - Questionnaire data (RHINE) - 2,322 women aged 45–65 yrs - A new phenotype of asthma described with onset after

menopause.

AM, morning; CAMP, The childhood asthma management program; ECRHS, european community respiratory health survey; ED, emergency department; FEV, forced expiratory volume;

FVC, forced vital capacity; PIAMA, prevention and incidence of asthma and mite allergy; HCU, healthcare utilization; NHS, nurses’ health study; HRT, hormone replacement therapy;

RHINE, respiratory health in northern europe; PEFR, peak expiratory flow rate; PM, evening; PMA, perimenstrual asthma; pub, publication; OCP, oral contraceptive pill; SABA, short

acting beta agonist; SARP, severe asthma research program; yr, year.

a sex disparity in maternal smoking and the development of
asthma. Studies looking at maternal stress during pregnancy
and maternal obesity have also shown similar findings, with
differences in DNA methylation depending on the mother’s
status (54). A study investigating maternal immune status
during pregnancy found that while maternal production of
IL-13, IL-4, IL-5, IFN-γ, IL-10, and IL-17 during pregnancy
was unrelated to childhood asthma, the ratios of IFN-γ/IL-
13 and IFN-γ/IL-4 during pregnancy were associated with a
decreased risk of asthma (58). In utero and early exposures
to farm and animal barns is protective against asthma even
in genetically similar Amish and Hutterite populations (59).
However, no sex difference in the development of asthma was
seen the Amish or Hutterite children (n = 30 from each
population), although the sample size may not have provided
the power needed to detect sex differences within and between
the groups. Taken together, these studies show that maternal
factors are important in the development of asthma, but it is
not yet clear if there is a sex bias in the offspring developing
asthma for some of these risk factors and additional studies are
warranted.

SEX DISPARITY IN CHILDHOOD ASTHMA

Maternal environment and genetics are important in
development of asthma during childhood. However, it is
still unclear why boys have an increased prevalence of asthma
compared to girls. A potential explanation is that boys have
dysynaptic growth of their large airways, meaning the growth
of their airway lags behind the growth of the lung parenchyma,
leading to narrower airways in boys compared to girls (60).
Peripheral blood mononuclear cells (PBMCs) from boys have
also been shown to have increased IFN-γ in response to
phytohaemagglutin stimulation compared to PMBCs from
girls (61). Atopy, defined as the genetic tendency to develop
allergic disease, as evidenced by specific IgE and skin prick
testing to common allergens is increased in also boys compared
to girls (62–64). Some studies have also shown that boys have
an increased immunological response compared to girls. One
study analyzing 81 infants hospitalized with a diagnosis of RSV
bronchiolitis found that boys were more severely affected than
girls using a severity index based on heart rate, respiratory rate,
wheezing, and oxygen saturation (65). Multiple other studies
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found that in children, the male sex was a risk factor for acute and
chronic otitis media (66–68). These different factors contribute
to the sex disparity in childhood asthma and may explain the sex
differences in childhood asthma.

Longitudinal studies tracking children for asthma symptoms
and diagnoses of asthma through childhood, adolescence, and
adulthood determined that increasing sex hormones were
important for change in asthma prevalence observed in males
and females. The (Prevention and Incidence of Asthma and
Mite Allergy (PIAMA) cohort tracked sex differences in asthma
through the first 8 years of life from questionnaires. In the
PIAMA cohort, the prevalence of asthmatic wheeze, defined
as wheeze that resulted in diagnosis of asthma by age 8, was
increased in boys compared to girls from the first year of life.
This study also showed that atopy, defined as a specific IgE >

0.70 IU/mL for at least one standard inhalant allergen (house
dust mite, cat, dog, birch, grass, or mold), was more prevalent
in boys than girls at age 8 years (36.4% vs. 24.0%: OR, 1.8; 95%
CI, 1.3–2.5) (10). While a longitudinal study tracking early life
development of wheeze and asthma, this study stopped at age
8, prior to puberty. Additional longitudinal studies have tracked
asthma symptoms and prevalence from childhood through
adolescence. The Childhood Asthma Management Program
(CAMP) study longitudinally tracked asthma symptoms in
children ages 4–18 alongside the progression of puberty, recorded
by Tanner stage measurements. Prior to the start of puberty,
when the Tanner stage was at 1 (ages<7), boys had increased
reporting of asthma symptoms compared to girls. However,
when Tanner stages began increasing in girls, starting around
age 9–10, there were also increased asthma symptoms in girls.
Asthma symptoms in the boys did not increase as puberty
progressed and actually declined at the end of puberty (Tanner
stages 4–5) (9). Similar results were determined from the
Tracking Adolescents’ Individual Lives Survey (TRIALS) study.
In TRIALS, the prevalence of asthma was similar in boys and girls
at a mean age of 11.1. However, by age 16.3, the prevalence of
asthma was significantly higher in females compared to males.
This shift in the prevalence of asthma was thought to be due
to an increased incidence and decreased remission of asthma in
females compared to males (11). Further, in a longitudinal study,
a German cohort of 274 children with current asthma at age
10 were asked about asthma and symptoms via a questionnaire
at ages 14 and 20. In this cohort of children with asthma (age
10), males continued to have the higher percentage of asthma
at ages 14 and 20. However, in the control group, with no
asthma at age 10, females had a significant development of
asthma by age 20 (6.4% of females compared to 3.3% of males)
(13). Combined, these longitudinal studies suggest that during
puberty, the sex associated switch in asthma prevalence may be
driven by increased incidence in females.

Using large retrospective cohort data and hospitalization
records, investigators were able to look at asthma care
utilization during childhood and adolescence. Retrospective
Kaiser-Permanent care computerized data from a cohort of
60,694 patients determined asthma care utilization and severity
was higher in males compared to females from ages 2 to 13,
was similar between males and females from ages 14 to 22, and

was higher in females compared to males from ages 23 to 64
(12). Further, a review of 288,977 asthma related hospitalization
records among the Canadian population determined that the
3 year cumulative incidence of asthma hospitalization was
substantially higher for males compared to females less than 15
years of age and this pattern was reversed for adults (1). The
longitudinal and retrospective studies show there is a shift in
asthma prevalence and hospital utilization during puberty, but
the age at which female prevalence becomes higher than male
prevalence varies in the studies. This variation is likely from
different patient population demographics, variations in outcome
measures, and the time of sampling for each study. Nevertheless,
these studies strongly suggest that the prevalence of asthma in
females increases during puberty and adolescence.

The association of obesity and asthma is well-established in
both pediatric and adult populations and there is increasing
interest in obesity and the sex discrepancy in asthma. A study
evaluating 5,984 children in Israel determined obesity was
associated with increased incidence of asthma in both boys
and girls. However, chest symptoms, including wheezing and
shortness of breath, and asthma were reported more frequently
in obese boys compared to obese girls (69). As children age, the
sex and obesity associated pattern changes. A study tracking body
mass index (BMI) from birth to adolescence among children
with and without asthma found that BMI development differed
between girls with and without asthma, with the highest BMI
seen among females with persistent asthma (70). Amongmales in
this cohort, there were no clear associations between asthma and
BMI (70). Castro-Rodriguez et al. also looked at the relationship
between obesity and asthma. Their study showed that females
who became overweight or obese between ages 6 and 11 were
seven times more likely to develop new asthma symptoms at age
11 or 13 while this pattern was not seen in females who remained
lean. Conversely, males who became overweight or obese in this
time frame had a similar prevalence of asthma symptoms as those
who did not become overweight or obese (71). These studies
showed that in the pediatric populations obesity and asthma are
associated with boys, but that as adolescents the association of
obesity and asthma shifts to females.

Sex-related differences in the lung development, obesity,
nutrition, and responses to viral infection and environmental
exposures, including farm and second-hand smoke exposure,
should be considered when determining sex differences in
asthma pathophysiology. While sex hormones are important in
regulating the inflammatory response in asthma, other factors are
also important, particularly in children prior to puberty when sex
hormone levels are minimal.

ASTHMA AFTER PUBERTY

As discussed above, asthma incidence begins to increase in
females during late adolescence and as adults women have an
increased prevalence of asthma compared to men. This increased
prevalence of asthma is true in the Hutterite farming population
that has a similar lifestyle, except for farming practices, and
asthma risk factors as the Amish, but asthma prevalence rates
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similar to westernized populations (59). Over a 10–13 year study
period, 1,325 Hutterites between the ages of 6 and 91 (with
a mean age of 26) were assessed using asthma questionnaires,
pulmonary function tests, methacholine challenges andmeasures
of atopy (72). This study found that the overall prevalence of
asthma increased over the study period while prevalence of atopy
stayed the same. Even further, the rise in asthma was only found
among females while the prevalence amongmales did not change,
suggesting a sex-specific response (72). Sex hormone fluctuations
are frequent for women during the reproductive phase of life, and
asthma symptoms are known to vary during the menstrual cycle,
pregnancy, and menopause.

Asthma and the Menstrual Cycle
Approximately 30–40% of women with asthmatic report
worsening of asthma symptoms during the pre or perimenstrual
phase of their menstrual cycle (14). Women with pre or
perimenstrual asthma symptoms (PMA) self-reported increased
use of inhaled short acting beta agonist and decreased morning
peak expiratory flow rates during the perimenstrual interval
of their menstrual cycle compared to women with asthma
without PMA. However, there were no differences in FEV1
or methacholine-induced bronchoprovocation between the two
groups (14). A study by Pauli et al. collected daily records of
asthma symptoms and peak expiratory flow rates from both
women with asthma and healthy controls through the follicular,
mid-luteal and late luteal phases of the menstrual cycle. Within
the healthy control group as well as the group of asthmatic
women, there were no significant changes in spirometry and
airway reactivity at any point of the menstrual cycle. However,
in asthmatic women, morning peak flows and asthma symptoms
(shortness of breath, cough, wheeze, and chest tightness)
deteriorated significantly from the follicular to luteal phase (15).
A survey conducted among women with asthma described 33%
of the women had worsening pulmonary symptoms during the
premenstrual period, menstrual period or both with the most
significant symptom worsening noted in dyspnea, wheezing
and chest tightness in the premenstrual period. Of these
women whose asthma was affected by menses, 68% had noted
a history of previously being hospitalized for their asthma
(19). Multiple other studies have also shown premenstrual
deterioration of symptoms and decrease in premenstrual peak
expiratory flow rate values (20). Clinical asthma symptoms may
appear after ovarian hormones have impacted inflammatory
pathways, explaining why increased asthma symptoms are noted
during the pre-menstrual and menstrual phases of menses when
ovarian hormones levels are not at peak levels.

Data from the Severe Asthma Research Program also revealed
that women with self-reported pre-menstrual worsening of
asthma had increased use of oral corticosteroid bursts and
increased health care utilization compared to women without
PMA (16). However, studies determining emergency department
utilization for asthma exacerbations during various times of
the menstrual cycle are discordant. No difference in emergency
department visits for asthma during the perimenstrual phase
compared to other points in the menstrual cycle was determined
in 792 women with acute asthma exacerbations (17). Increased

emergency department visits during the preovulatory phase
were determined by interviews and medical record review
in 288 women with asthma (18). While the menstrual cycle
clearly impacts women with asthma, the mechanisms underlying
the cyclical changes and worsening of symptoms is poorly
understood (73).

With variations in asthma symptoms during the menstrual
cycle, investigators also evaluated changes in asthma symptoms
and pulmonary function in women taking hormonal oral
contraceptives. A cross sectional study using a postal survey
found that contraceptive pill use in premenopausal women was
associated with an increased reporting of asthma symptoms
and wheezing in normal and overweight women, but not lean
women (BMI < 25) (23). However, another study determined no
difference in FEV1, response to methacholine, or use of asthma
medications in women taking oral contraceptives compared to
those with a natural menstrual cycle (22). Both the Swiss Study
on Air Pollution and Lung Diseases in Adults (SAPALDIA) and
data from the national Scottish Health Surveys showed similar
data. The SAPALDIA study reported that women taking oral
contraceptives had a decrease in airway responsiveness compared
to women not on oral contraceptives and the Scottish data
reported that women taking oral contraceptives had a reduced
risk of physician diagnosed asthma and urgent care use (24, 74).
These discordant findings suggest that additional studies are
needed to determine the effects of birth control medications on
asthma.

Asthma Control Varies During Pregnancy
During pregnancy, studies have reported discordant findings in
pregnancy and changing of asthma symptoms. Increased asthma
symptoms, tracked by daily diaries and monthly spirometries,
were reported in approximately one third of women with asthma
(26). The increase in asthma symptoms was maintained until
3-month post-partum when 73% of the women had asthma
symptoms revert to the pre-pregnancy course. Importantly in
this study, the course of asthma was studied in successive
pregnancies in 34 of these women and a statistically significant
concordance in the course of asthma symptoms during the two
pregnancies was found in 58.8% of the women (26). A later study
showed that more severe asthma was linked to worsening of
asthma symptoms during pregnancy as 12.6% of patients initially
classified with mild asthma had exacerbations while pregnant,
while 25.7% of patients classified as moderate and 51.9% of
patients classified as severe suffered from exacberations (25).
No change in asthma symptoms and asthma medication use
during pregnancy was determined in symptom and medication
data collected by in-person and telephone interviews from 800
women with physician diagnosed asthma during any trimester
of pregnancy when patients continued to use their prescribed
medications (27). Further, viral infections and non-adherence
to medications were determined to be the primary triggers
for asthma exacerbations during pregnancy (75). However, in
a prospective study on 16 women during pregnancy showed
improved airway responsiveness and asthma severity during
pregnancy and a return to preconception levels 1 month after
delivery (28). The National Heart, Lung, and Blood Institute

Frontiers in Immunology | www.frontiersin.org December 2018 | Volume 9 | Article 2997109

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Shah and Newcomb Sex Hormones and Asthma

and the Global Initiative for Asthma (GINA)’s current guidelines
designate that during pregnancy, women should maintain
their current regimen of asthma medications (76). A better
understanding of how asthma symptoms will change will enable a
more personalized approach for managing asthma and educating
women on the importance of medication adherence during
pregnancy.

Asthma and Menopause
There are variable findings related to menopause and asthma.
The European Community Respiratory Healthy Survey I
(ECHRS I) analyzed questionnaire results from 2,206 women
aged 46–54 years of whom 884 were menopausal and 540 had
used hormone replacement therapy (HRT). This study found
an increased risk of asthma in lean women taking HRT, but
no differences in self-reported asthma between pre-menopausal
and postmenopausal women not taking HRT (29).The ECHRS
II trial then reported that women who were in the menopause
transition, those who had been amenorrheic for 6 months) had
lower lung function and increased asthma symptoms compared
to pre-menopausal women (30). The US Nurses’ Health Study
data revealed that postmenopausal had a decreased incidence of
asthma than pre-menopausal women (31). The magnitude of this
difference was noted to be higher among the postmenopausal
women who had never used HRT compared to women who
reported current or previous use (31). BMI was not addressed
in this study data. The etiology of the discrepancy of these
studies is unclear but may be related to other associated factors
including symptom reporting rates and health care seeking
behavior, concordant smoking and time course of HRT initiation
in relation to diagnosis of asthma. The RHINE study in addition
to others have also described a new phenotype of asthma in a
subset of women who have onset of the disease after menopause
(32, 77). These studies illustrate that fluctuations of hormones
during menopause, including the use of HRT, may contribute
to asthma symptoms. However, more studies are needed to
determine the extent of this effect.

Testosterone May Be Protective Against

Asthma
Given the sex disparity in asthma, male sex hormones have also
been a topic of interest when studying the disease process. Using
the SARP database of patients, one study looked at hormone
data which was collected by blood draws assessing estradiol,
progesterone, testosterone, and dehydroepiandrosterone-sulfate
(DHEA-S) levels in 187 children while simultaneously analyzing
Tanner stages, lung function and asthma symptom control using
an asthma control questionnaire (ACQ6) (78). In males, higher
DHEA-S levels were associated positively with pre and post
bronchodilator FEV1% and pre-bronchodilator FVC% as well as
improved ACQ6 scores while in females, higher estradiol levels
were associated negatively with pre-bronchodilator FEV1% and
FVC% (78). In another study evaluating 2,143 adult men, it
was found that higher early morning serum testosterone and
dihydrotestosterone levels were associated with a higher FEV1
and FVC (79). Our lab has shown that in humans, women with
asthma had higher numbers of lung ILC2 (type 2 innate lymphoid

cells) compared to men with asthma (80). Further, in adult
mice, testosterone negatively affected, or lowered, the number of
ILC2s showing that sex hormones do play a role in mediating
inflammation in asthma (80).More studies are needed to evaluate
a potential protective effect of testosterone as this would provide
a better understanding of the underlying mechanism for the sex
disparity that is seen in asthma.

Obesity and Adult Asthma
As adults, obesity and asthma are associated in women
but not men. The National Population Health Survey in
Canada determined data from 9,149 men and women tracked
longitudinally from ages 20 to 64, that a baseline BMI greater
than 30 had a 1.9 odds ratio of asthma incidence compared
to a baseline between BMI of 20-24.9 (normal BMI) (81).
No significant association between asthma and baseline BMI
was determined in men (81). Further, cross-sectional and
longitudinal data from 5,114 adults found the prevalence ratio
of asthma was 1.93 in obese women compared to normal weight
women with no difference in men that were obese or had a
normal BMI (82). A cluster analysis of adults in the Severe
Asthma Research Program showed that obese women with late
onset of asthma had a more severe asthma phenotype with
an average forced expiratory volume in 1 s (FEV1) of 75% (a
moderate reduction) and this cluster of women also required
frequent oral corticosteroid use to manage exacerbations (4, 7).
Similar findings, with a female predominance in clusters that
had obese patients with either controlled or uncontrolled asthma,
were found in a multi-variable cluster analysis with patients from
the Asthma Clinical Research Network (83). Further, increased
neutrophils in the sputum were also found in obese women
compared to non-obese women with asthma, and no differences
were determined in obese and non-obese men with asthma (84).
Therefore, a sex disparity in associations with obesity and asthma
was seen in cross-sectional and longitudinal studies as well as
with multi-variable cluster analyses. Overall, it is unclear why
obesity in women, but not men, is associated with asthma and
increased asthma severity. With obesity, there are increases in
adipose tissue, which is known to secrete estrogen, as well as
increased leptin, an energy-regulating hormone that promotes
inflammation. No differences in estrogen concentrations were
determined in the serum of obese and non-obese women, (84)
but increased leptin levels were detected in women compared to
men, at any given measure of BMI (85). Select studies in patients
with asthma undergoing bariatric surgery have also determined
that reducing BMI improved asthma symptoms and FEV1 (86).
However, these small studies were not powered to determine
if women had a more dramatic improvement compared to
men. Therefore, additional research is needed to determine the
mechanisms driving the sex differences in obese asthma.

A SEX DISPARITY IN OTHER ATOPIC

DISEASES

A sex disparity is also described in other atopic conditions such
as rhinitis, eczema, food allergy, vernal conjunctivitis, and drug
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hypersensitivity (87, 88). A systematic meta-analysis looking
at 67 cross-sectional population based studies internationally
found that as children (age less than 11), boys had a higher
reported rate of rhinitis compared to girls (89). In this same
review, in adolescents (ages between 11 and 18), significantly
more females than males were affected (89). Questionnaire data
amongst the Isle of Wight cohort in the UK showed that atopic
rhinitis prevalence was more common in boys at age 18 and was
associated with a greater positive transition in boys from age
10 to 18 (90). This study also showed that non-atopic rhinitis
was greater in girls at age 18 and was associated with a greater
positive transition in girls from age 10 to 18 (90). The meta-
analysis did not differentiate between allergic and non-allergic
rhinitis. A study in the United States and multiple studies in
Europe have indicated a higher prevalence of eczema in boys
vs. girls (91–93). In some studies of preschool aged children,
boys were more often atopic and girls suffered significantly more
from non-atopic or “intrinsic” eczema (94, 95). However, other
studies showed no sex difference in prevalence of eczema (96, 97).
In school aged children, there have been discordant findings
with one study in Taiwan showing no sex differences in the
prevalence of eczema and another from Germany showing more
girls than boys suffering from eczema (98, 99). In adulthood,
few studies have shown a higher female prevalence of the
disease (100, 101). Similar to eczema, with food allergy, the
data regarding sex is variable. A systematic literature review
revealed that among children with food allergies, 64.4% were
males and 35.6% were females but among adults, 34.8% were
males and 64.2% were females (102). Another disease of interest
in terms of sex differences is vernal conjunctivitis, a condition
caused by allergies. This condition typically occurs in the younger
population, between 4 and 12 years of age and more frequently
amongst boys with the male to female ration ranging from 3
to 5:1. Interestingly, after puberty, the disease spontaneously
disappears in majority of patients (87, 103). Sex differences have
also been described in drug hypersensitivity. Overall, females
have increased allergic and non-allergic drug reactions (104).A
common cause of adverse drug reactions (ADRs) is anaphylaxis
during anesthesia, and interestingly, there were some differences

with specificmedications; males weremore likely to have an ADR
to atracurium during surgery while females were more likely to
react to suxamethonium during surgery (104). Combined, these
study show a sex disparity in other atopic diseases, but a better
understanding of how sex hormones regulates these diseases is
warranted.

CONCLUSION

Clinical studies showed a sexual dimorphism in asthma
along different hormonal points of life. Prior to puberty,
asthma symptoms are increased in boys compared to girls.
However, after puberty, sex differences are variable during
menstruation, pregnancy, and menopause. Deciphering
how sex hormones regulate airway inflammation may also
personalize treatment strategies for asthma-based therapeutics
(including neutralizing biologics), repurpose androgens as
asthma therapeutics, and determine the percentage of women
and men with different asthma phenotypes are needed to test
new asthma therapeutics. Further, a greater understanding
of how sex hormones regulate different asthma phenotypes
would enable the use (or avoidance) of hormonal therapy,
help predict asthma symptoms during pregnancy, and help
determine ways to control peri-menstrual and menstrual asthma
(73, 105). Finally, understanding how sex hormones regulate
asthma pathogenesis is crucial for treating patients during
various phases of life (e.g., puberty or pregnancy), asthmatic
women on hormonal birth control medications or hormone
replacement therapy, or patients with comorbidities, like
obesity.
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Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease resulting 
from abnormal interactions between T and B cells. The acquisition of SLE is linked to 
genetic susceptibility, and diverse environmental agents can trigger disease onset in 
genetically susceptible individuals. However, the strongest risk factor for developing SLE 
is being female (9:1 female to male ratio). The female sex steroid, estradiol, working 
through its receptors, contributes to the gender bias in SLE although the mechanisms 
remain enigmatic. In a small clinical trial, monthly administration of the estrogen receptor 
(ERα) antagonist, ICI182,780 (fulvestrant), significantly reduced disease indicators in SLE 
patients. In order to identify changes that could account for improved disease status, the 
present study utilized fulvestrant (Faslodex) to block ERα action in cultured SLE T cells 
that were purified from blood samples collected from SLE patients (n = 18, median age 
42 years) and healthy control females (n = 25, median age 46 years). The effects of ERα 
antagonism on estradiol-dependent gene expression and canonical signaling pathways 
were analyzed. Pathways that were significantly altered by addition of Faslodex included 
T helper (Th) cell differentiation, steroid receptor signaling [glucocorticoid receptor (GR), 
ESR1 (ERα)], ubiquitination, and sumoylation pathways. ERα protein expression was 
significantly lower (p <  0.018) in freshly isolated, resting SLE T cells suggesting ERα 
turnover is inherently faster in SLE T cells. In contrast, ERα/ERβ mRNA and ERβ protein 
levels were not significantly different between SLE and normal control T cell samples. 
Plasma estradiol levels did not differ (p  >  0.05) between SLE patients and controls.  
A previously undetected interaction between GR and ERα signaling pathways suggests 
posttranslational modification of steroid receptors in SLE T  cells may alter ERα/GR 
actions and contribute to the strong gender bias of this autoimmune disorder.

Keywords: systemic lupus erythematosus, human T cells, estradiol, estrogen receptors, glucocorticoid receptors

inTrODUcTiOn

Systemic lupus erythematosus (SLE) is a strongly gender-biased autoimmune disease affecting 
women nine times more frequently than men (1, 2). Onset and progression of SLE involves abnormal 
T cell signaling, stimulation of autoantibody production, and abnormal cytokine synthesis (3–6). The 
acquisition of SLE is linked to genetic susceptibility and diverse environmental agents can serve as 
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triggers in genetically susceptible individuals to promote disease 
onset (4, 7, 8). However, the strongest risk factor for developing 
SLE is being female (1). The female sex steroid, estradiol, work-
ing through its receptors, contributes to the gender bias in SLE 
although the mechanisms are not well-understood (9–11).

Estradiol functions by binding to specific ERs, namely ERα 
and ERβ, which are members of a nuclear receptor ligand-
regulated transcription factor family (12). Two independent 
genes that share a high degree of similarity in the DNA binding 
domain encode these receptors (13). In the classical mechanism 
of steroid hormone action, estradiol diffuses into target cells and 
binds to ERs in the nucleus (14). The ligand-activated receptors 
interact at specific DNA sites, termed estrogen response elements, 
along target genes and alter the rate of transcription (15, 16). 
Data from mice lacking ERα or ERβ suggest that each subtype 
performs specialized as well as overlapping functions to promote 
estradiol action in  vivo (17). Male mice lacking functional 
ERα (ERα−/−) are resistant to developing a lupus phenotype in 
response to estradiol compared with their wild-type littermates 
suggesting ERα, rather than ERβ is responsible for inducing a 
lupus phenotype (18). This concept is supported by more recent 
data suggesting ERα promotes SLE in F1 females of a lupus mouse 
model (NZB × NZW) (19).

In female patients with SLE, T cell levels of ERα protein are 
lower after culture in estradiol, yet, T cells respond robustly to 
a ligand (ERα) selective agonist, 1, 3, 5-tris (4-hydroxyphenyl)-
4-propyl-1H-pyrazole by stimulating calcineurin and CD154 
mRNA expression (20). Genomic analysis of ER binding in breast 
cancer cell lines (21, 22) indicates a substantial overlap in the 
chromatin binding sites for ERα and ERβ when a single receptor 
form is expressed. However, less overlap occurs, and, a greater 
number of unique binding sites are occupied, when both recep-
tor subtypes are expressed in the same cells (21). Both receptor 
subtypes are expressed in human T cells (20), and the possibility 
exists that the receptors could form functional heterodimers 
when co-expressed (23, 24).

Steroid receptors are regulated by a large number of post-
translational modifications including phosphorylation, acetyla-
tion sumoylation, and methylation (25–28). Conjugation of the 
small ubiquitin-like modifier SUMO (sumoylation) to acceptor 
lysine residues on substrate proteins occurs in a manner analo-
gous to ubiquitination. Free SUMO is charged and transferred 
to an E2 ligase enzyme (UBC9), which acts in a catalytic manner 
to conjugate SUMO to an acceptor lysine. Once conjugated to 
SUMO, the substrate conformation changes with various func-
tional consequences including alterations in protein-protein 
interactions, transcription, genomic stability and intracellular 
trafficking (28). Sumoylation and ubiquitin pathways are mech-
anistically similar but involve distinct enzymes and produce 
different cellular effects (28–31).

The hallmark of SLE is overproduction of autoantibodies 
that leads to irreversible, immune complex-mediated end-organ 
failure. Antibody responses depend on help from CD4+ T cells 
that are required for the generation of germinal centers where 
selection of high-affinity B cells and B cell memory occurs (32). 
Studies in vitro indicated that Th2 cells are the major T cell subset 
engaged in helping B cells (33). Subsequently, T cells expressing the 

chemokine receptor, CXCR5, were identified as the major T cell 
subset that provides help to B cells (34). These follicular helper 
T (Tfh) cells are recognized as a distinct Th subset (35–37). Tfh 
cells secrete a unique combination of effector molecules that are 
critical for their development and function including high levels 
of ICOS, CD154, and IL-21 that promote growth, differentiation, 
and class-switching of B  cells (38, 39). Humans with impaired 
germinal-center formation through a deficiency of CD154 or 
ICOS have fewer CXCR5+ CD4+ T cells (40). Targeted deletion 
of CD154/CD40, ICOS or IL-21 and its receptor compromises 
the generation of robust germinal-center reactions and impairs 
humoral responses (39, 40). Involvement of Tfh cells in shaping 
the effector function of B cells, and in particular, the final dif-
ferentiation step in plasma cells, implicates Tfh cells as key players 
in immune disorders such as SLE.

In SLE T  cells, signal transduction pathways are altered by 
estradiol compared with normal T cells (41). Previous studies in 
our laboratory showed that estradiol could activate and repress 
genes within the same signal transduction pathway (41). Of par-
ticular interest was an increase in calcineurin and CD154 expres-
sion in SLE T cell samples but not in T cell samples from control 
females (9, 10). Upregulation of these genes in SLE T cells was 
expected to enhance calcium–calcineurin–NFAT signaling, ulti-
mately resulting in exaggerated help to B cells and hypersecretion 
of autoantibodies. Consistent with this postulate was improved 
disease activity, and, a reduction in the expression of these T cell 
activation markers (calcineurin and CD154) in female SLE 
patients treated with Faslodex, a selective ERα antagonist (42).

The present study investigates changes in signal transduction 
pathways that could underlie a significant reduction in disease 
activity in SLE patients treated with Faslodex that we reported 
previously (42). The results suggest that estradiol, working 
through ERα, affects the expression of genes involved in Th cell 
differentiation. An unexpected interaction between ERα and 
GR signaling points to an intrinsic mechanism(s) in SLE T cells 
that alters receptor ubiquitination and sumolyation pathways. 
Changes in these pathways are expected to modify steroid recep-
tor function, influence T cell development and may underlie the 
strong gender bias of this autoimmune disease.

MaTerials anD MeThODs

study Participants
This study was approved by the St. Luke’s Hospital Institutional 
Review Board and the Committee for the Protection of Human 
Research Subjects at Pittsburg State University. All subjects pro-
vided written informed consent prior to participation. Eighteen 
female patients who met the American College of Rheumatology 
criteria for classification of SLE (43) were enrolled in the study 
(Table  1). The patient’s systemic lupus erythematosus disease 
activity index (SLEDAI) ranged from mild to severe with a median 
SLEDAI value of 6 (range 2–18) at the time of blood draw. Ten of 
the patients were Caucasian, six were African American and two 
were of Asian descent. The age of the patients at the time of enroll-
ment ranged from 24 to 51 years with a median age of 42 years. 
The SLE patients were taking various medications including 
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TaBle 1 | Systemic lupus erythematous (SLE) patient data.

sample sleDai Medications Disease duration 
(years)

Plasma estradiol 
(pg/ml)

SLE-1 4 MMF, Pret, HCQ 3 168.3
SLE-2 9 Pred 9 98.7
SLE-3 7 HCQ 5 90.3
SLE-4 2 Pred, HCQ 10 86.4
SLE-5 2 MMF, HCQ 12 128.7
SLE-6 4 Pred 3 84.5
SLE-7 12 MMF 11 98.4
SLE-8 5 Pred 32 123.7
SLE-9 4 HCQ, Pred 3 111.6
SLE-10 16 Pred, CycIo 22 ND
SLE-11 6 Pred, HCQ 6 ND
SLE-12 10 Pred 7 ND
SLE-13 6 Pred, HCQ 19 188.8
SLE-14 4 Pred 11 98.6
SLE-15 11 Pred, HCQ 20 ND
SLE-16 18 Pred, HCQ 15 ND
SLE-17 4 Pred 9 ND
SLE-18 6 Pred, HCQ, Aza 20 95.6

Eighteen women with SLE volunteered for this study. The Systemic Lupus 
Erythematosus Disease Activity Index (SLEDAI) scores ranged between 2 and 18 at 
the time of enrollment. The patients were taking medications including mycophenolate 
mofetil (MMF), prednisone (Pred), hydroxychloroquin (HCQ), cyclophosamide (Cyclo), 
and azathioprine (Aza) as indicated. The duration of disease ranged from 3 to 32 years. 
Enrolled patients had regular menstrual cycles and were not taking exogenous 
hormones. Plasma estradiol was determined at the time of blood draw. ND, not 
determined.
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azathioprine, mycophenolate mofetil, hydroxychloroquine, and 
prednisone (Pred) (Table 1). Twenty-five healthy control females 
were enrolled in the study. The control volunteers were between 
the ages of 21 and 48 with a median age of 46 years. Seventeen of 
the controls were Caucasian, four were African American, and 
four were of Asian descent. Participants had regular menstrual 
cycles and none of the patients or control females were taking 
oral contraceptives or exogenous hormone therapy at the time of 
blood draw. The patients and control volunteers had no history of 
other collagen vascular diseases.

Measurement of Plasma estradiol
Plasma samples were isolated at the time of blood collection for 
T cells. Estradiol levels were measured by duplicate using a com-
mercial ELISA plate (Estradiol ELISA 11-ESTHU-E01, ALPCO 
Diagnostics, Salem, NH, USA). A standard curve was used to 
determine the amount of estradiol in circulation at a wavelength 
of 450 nm. The intra-assay coefficient of variation was 5.85%.

collection of T cell enriched Peripheral 
Blood Mononuclear cells
T cell enriched mononuclear cells were separated from blood 
samples (~90  ml) by density gradient (Histopaque, Sigma,  
St. Louis, MO, USA). Residual red blood cells were lysed 
(H-Lyse buffer, R&D Systems, Minneapolis, MN, USA). T cells 
were purified by negative selection through T  cell isolation 
columns (Human T Cell Enrichment Columns, R&D Systems). 
The T  cells were either used immediately (fresh T  cell sam-
ples) or cultured overnight (18  h) at 37°C under 5% CO2 in 

serum-free medium (Hybridoma, Sigma, St. Louis, MO, USA) 
supplemented with l-glutamine (200 mM). Some T cells were 
activated after 18 h of culture for 4 h with phorbol 12 myristate 
13-acetate (PMA, Sigma, 10  ng/ml) and ionomycin (Sigma, 
0.5 µg/ml). Estradiol-17β (10−7 M) was added (or not) to half 
of the replicate cultures for the entire culture period. We have 
previously shown that this dose, which is at the upper physi-
ological range of estradiol, effectively upregulates calcineurin 
and CD154 expression in SLE T  cells as described in detail 
elsewhere (9, 10).

T47D cell culture
T47D cells (ATCC, HTB-133, Manassas, VA, USA), a breast cancer 
cell line, which express ERα and ERβ were cultured at 37°C under 
5% CO2 to 80% confluence (75 mm flask) in T47D media [RPMI 
(Cellgro, Manassas, VA, USA)] with 200 mM l-glutamine, 10% 
fetal bovine serum (Harlan Bioproducts, Madison, WI, USA), 
and penicillin (100  U/ml)-streptomycin (100  µg/ml) (Hyclone, 
Logan, UT, USA). The cells were released from the flask with 
trypsin-EDTA (Fisher Scientific, Fair Lawn, NJ, USA).

rna isolation
RNA was isolated from T cells and T47D cells using the TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA) and Phase Lock Gels 
Heavy (Eppendorf, Fisher Scientific). Total RNA was purified 
from T cells and treated with DNase I according to the manufac-
turer’s protocol (DNA-free, Ambion, Austin, TX, USA).

Microarray analysis
Gene profiling was carried out at the Kansas University School 
of Medicine Microarray Facility as described in detail elsewhere 
(41). The concentration and purity of total RNA was assessed 
with an Agilent Bioanalyzer and samples with RIN scores above 
7.0 were used for complementary (cRNA) RNA synthesis. 
Biotinylated cRNA was hybridized to high density Affymetrix 
human GeneChips HG-U133_Plus_2, which contained 54,675 
probe sets. The chips were scanned and analyzed using MAS5 
type of data analysis with Affymetrix and Gene spring GX 7.3.1 
(Agilent Technologies) software. Signal intensities of genes 
present in estradiol-treated activated T cell samples without and 
with Faslodex were compared to the non-treated activated T cell 
samples in order to generate a fold-change value. Differences 
greater than 1.5-fold were arbitrarily chosen for further study.

Pathway analysis
Cell signaling pathways were identified using the Ingenuity 
Pathways Analysis (IPA, Ingenuity Systems, Redwood City, CA, 
USA) library of canonical pathways. The canonical pathways 
are manually curated algorithms that transform gene lists into 
relevant signal transduction networks. Gene lists comprising 
the data sets from SLE patient’s T cells treated with and without 
estradiol and plus or minus Faslodex were entered into the IPA 
program and differences in gene expression among the treat-
ments were matched to canonical pathways. Fischer’s exact test 
calculated a p-value that determined the probability that the 
association between the genes in the data set (treatment) and the 
canonical pathway (network) were explained by chance alone. 
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The top canonical pathways are those with the largest number of 
gene matches within a signaling network.

real-time Polymerase chain amplification
Selected target genes within differentially regulated pathways 
were independently investigated by examining expression levels 
using real-time PCR. Total T cell RNA was digested using DNase 
1 and cDNA was synthesized from 4 µg of the resulting RNA using 
a High Capacity cDNA kit (Applied Biosystems, Foster City, CA, 
USA). Real-time PCR (Step-one, Applied Biosystems) was car-
ried out according to the manufacturer’s protocol. ERα and ERβ 
receptors were quantified from the same T  cell template using 
a Taqman probe and ERα (Hs01046818, Applied Biosystems) 
and ERβ (Hs00230957, Applied Biosystems) primers. A Taqman 
probe and glyceraldehyde 3- phosphate dehydrogenase (Gapdh, 
Hs99999905, Applied Biosystems) specific gene primers were 
used for the internal control. The value of Ct was compared with 
a pooled T cell sample or T47D cell samples (ERα and ERβ) as 
positive controls. Samples without template were included in trip-
licate on each plate as a negative control. The relative expression 
levels were calculated by dividing the sample Ct values obtained 
from T cells cultured with and without estradiol from the same 
individual. The average Ct of Gapdh in untreated T  cells was 
21.8 ± SEM 1.8, whereas the average Ct of Gapdh in hormonally 
stimulated T cells was 22.3 ± SEM 1.5, indicating no change in 
response to treatment.

isolation of T cell Proteins
Total RNA and proteins were sequentially separated from the 
same freshly isolated T  cell samples by column purification 
(Norgen Biotek, ON, Canada). Briefly, RNA was bound to the 
column and the proteins were collected in the flow through. RNA 
was treated with DNase I and eluted from the column. The pH of 
the flow through was adjusted, the proteins were bound to the 
column, and the columns were washed. The proteins were eluted 
and stored at −80°C.

Western Blot analysis
Purified protein samples were heated at 95°C for 5  min. Total 
T cell proteins were size fractionated by sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE, 10%). The T47D 
cell extract was used for a positive control for ERα and ERβ while 
the lysis solution served as a negative control. Proteins were 
transferred electrophoretically (18  h, 12  V) onto nitrocellulose 
membranes using Transblot buffer (25 mM Tris–HCL, pH 8.3, 
192 mM glycine, and 20% methanol). After the protein transfer, 
non-specific protein binding sites were blocked with Superblock 
buffer (# 37515, Thermo Scientific, Rockford, IL, USA) for 1 h 
with gentle shaking. The membranes were incubated with an ERɑ 
rabbit polyclonal antibody (sc-542, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) in a 1:1,000 dilution for 1 h, and washed 
four times (5  min each) with wash buffer (1× PBS containing 
0.05% Tween-20). The membrane was incubated with horserad-
ish peroxidase-conjugated goat anti-rabbit IgG (10 µg/ml, 32460, 
Thermo Scientific, Rockford, IL, USA) at 1:4,000 dilution for 
1 h. The blots were washed four times (5 min each) with wash 
buffer. The blot was incubated in a chemiluminescent reagent  

(Super Signal West Femto Maximum Sensitivity Substrate kit, 
34096, Thermo Scientific, Rockford, IL, USA) for 5  min and 
exposed to chemiluminescent film (Kodak, BioMax) for 4–5 min. 
Blots were stripped with Restore Western Blot Stripping Buffer 
(Pierce, Rockford, IL, USA) for 15 min at 37°C to remove antibody. 
The membrane was exposed to chemiluminescent film for 5 min 
to ensure removal of the primary antibody. The membrane was 
reacted with ERβ antibody (sc-8974, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA, 1:250 dilution) for 1  h. The membrane 
was incubated with horseradish peroxidase-conjugated goat 
anti-rabbit IgG (10 µg/ml, 32460, Thermo Scientific, Rockford, 
IL, USA, 1:4,000) for 1 h at 22°C with gentle shaking. The blot was 
incubated with Super Signal West Femto Maximum Sensitivity 
kit reagent for 5 min and the membrane was exposed to Biomax 
film for 4–5  min. The membrane was stripped and incubated 
with a β-actin antibody (2 mg/ml, A5441, Sigma, St. Louis, MO, 
USA, 1:6,000) for 1 h. The blots were washed and reacted with 
peroxidase-conjugated goat anti-mouse antibody (10  µg/ml,  
32430, Thermo Scientific, Rockford, IL, USA) at a 1:4,000 dilu-
tion for 1  h. The blot was incubated with chemiluminescent 
substrate and exposed to Biomax film for approximately 10 s. The 
amount of receptor was determined using scanning densitometry 
(Kodak Gel Logic). The optical density of ERα and ERβ protein 
was divided by the optical density of β-actin on the same blot. 
Scanning densitometry of β-actin across assays did not vary 
more than 10% verifying its lack of response to treatment.

statistical analysis
Samples from each subject enrolled in this study were not tested 
in all assays because the entire blood draw was required for each 
assay. Gene chips were normalized and a Student’s t-test was used 
to compare differences in T cell gene expression without estradiol 
and/or Faslodex and with estradiol and/or Faslodex. Comparison 
of differences in ERα/ERβ and CXCR5 expression were assessed 
using a nonparametric Mann–Whitney U test. A p-value < 0.05 
(two-sided) was considered statistically significant.

resUlTs

Global changes in gene expression were compared between 
peripheral blood T cells of SLE patients (n = 9) cultured with and 
without estradiol in order to identify differential effects of estradiol 
on signaling pathways. The top five canonical pathways altered by 
estradiol treatment included Th cell differentiation, GR signaling, 
immune cell signaling in rheumatoid arthritis, cytokine commu-
nication between immune cells, and phospholipase C signaling 
(Table 2). The top five downstream genes altered by estradiol and 
shared among these canonical pathways are shown in Table 2. 
TNF and TGF-β1 were shared among four of the top five signal-
ing pathways. IL-21 and NFATC3 were shared among two of the 
top five canonical pathways. Since the data were obtained from 
SLE T cells, we investigated if estradiol altered the canonical SLE 
signaling pathway. Estradiol changed gene expression in the SLE 
signaling pathway (p = 4.8 × 10−3), though this pathway was not 
among the top five significant pathways affected. Two candidate 
downstream genes, NFATC3 and TNF were shared between SLE 
and GR signaling pathways (Table 2).
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TaBle 3 | The top five canonical pathways affected by the estrogen receptor-
alpha (ERα) antagonist, Faslodex, in activated systemic lupus erythematosus 
(SLE) T cells.

Pathway sle-e + F vs 
sle-e

Tap upstream 
regulators

Glucocorticoid receptor signaling 2.8 × 10−6 HNF4A
Sumoylation pathway 2.2 × 10−5 MVC
Purine nucleotides biosynthesis II 8.6 × 10−5 ESR1
Estrogen receptor signaling 1.1 × 10−4 CSTS5
Cleavage and polyadenyladon of Pre-mRNA 1.8 × 10−4 MMP3
SLE signalinga 7.7 × 10−4

SLE T cell samples (n = 9) were cultured without and with Faslodex and activated as 
described in the text. Gene lists were generated from microarray data and analyzed for 
canonical signaling pathways altered by Faslodex. The p-value of overlap is shown for 
each pathway.
aAlthough the canonical SLE signal transduction pathway was affected by Faslodex, it 
was not within the top five. MMP3 was a unique top upstream regulator in the T cells 
treated with Faslodex without estradiol addition.

FigUre 1 | Estradiol effects on CXCR5 expression in activated systemic 
lupus erythematosus (SLE) T cells. Human T cells were isolated as described 
in the text and cultured in serum-free medium without and with estradiol. The 
relative amount of CXCR5 expression following activation was measured by 
real-time PCR. Data shown are the frequency of T cell samples from controls 
(n = 12) and SLE patients (n = 12) that exhibited relative CXCR5 expression 
values that were at or above the value on the x-axis.

TaBle 2 | The top five canonical signal transduction pathways affected by 
estradiol in activated systemic lupus erythematosus (SLE) T cells.

Pathway sle + e vs 
sle − e

shared downstream 
genes (pathway)

1- T helper cell differentiation 2.7 × 10−8 TGF-β1 (1, 2, 3, 4)
2- Glucocorticoid Receptor Signaling 1.1 × 10−7 TNF (1, 2, 3, 4, 6)
3- Role of macrophages, fibroblasts, and, 

endothelial cells in rheumatoid arthritis
1.5 × 10−7 IL-21 (1, 3, 4)

NFATC3 (2, 5, 6)
4- Role of cytokines in mediating 

commmnicalion between immune cells
1.9 × 10−6 RAF1 (2, 5)

5- Phospholipase C Signaling 3.2 × 10−6

6- SLE signalinga 4.8 × 10−3

SLE T cell samples (n = 9) were cultured without and with estradiol. The T cells were 
activated as described in the text. Changes in global gene expression was profiled 
using microarray analysis. Gene lists were generated from the microarray data 
and pathways that were altered by estradiol were identified by Ingenuity Pathway 
Analysis. The p-value of overlap is shown for each pathway. Major downstream genes 
affected by estradiol treatment were variably shared among the pathways (shown in 
parentheses).
aAlthough the canonical SLE signal transduction pathway was affected by estradiol it 
was not within the top five.

TaBle 4 | The top five canonical pathways affected by the estrogen receptor-
alpha (ERα) antagonist, Faslodex in activated systemic lupus erythematosus 
(SLE) T cells (n = 9) cultured with estradiol was determined.

Pathway sle + e + F vs  
sle + e

Top Upstream 
regulators

Glucocorticoid receptor signaling 1.1 × 10−16 MYC
EIF2 signaling 3.8 × 10−15 HNF4A
Hereditary breast cancer signaling 1.6 × 10−11 ESR1
Protein ubiquitination pathway 9.6 × 10−10 CSTS5
JAK/Stat Signaling 1.4 × 10−9 TP53
SLE signalinga 3.4 × 10−8

Gene lists were generated from microarray data and analyzed for canonical signaling 
pathways altered by Faslodex. The p-value of overlap is shown for each pathway.
aAlthough the canonical SLE signal transduction pathway was affected by Faslodex 
plus estradiol, it was not within the top five. TP53 was a unique top upstream regulator 
in the T cell samples treated with Faslodex with estradiol addition.
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The expression of the chemokine receptor, CXCR5 was differ-
ent between SLE T cells treated without and with estradiol only 
in the Th cell differentiation pathway. Owing to the importance 
of CXCR5 in T–B cell interactions, we further quantified CXCR5 
expression in SLE patient T cell samples (n = 12) cultured without 
and with estradiol using real-time PCR (Figure 1). In 3 of the 
12 SLE T cell samples investigated, CXCR5 expression increased 
robustly (samples 5, 9, 16) in response to estradiol. The SLEDAI 
scores for those patients 2 (mild), 4 (moderate), and 18 (active) 
ranged from mild to severe. There was no correlation between 
disease activity and CXCR5 expression in the patients. The 
relative median expression of CXCR5 in SLE T cells was 1.1. In 
the control T cell samples (n = 12), CXCR5 expression did not 
change in response to estradiol (Figure  1). CXCR5 expression 
in the T cells from control females was generally unaffected by 
estradiol with a median relative expression of 0.9, similar to that 
for T cell samples from the SLE patients (Figure 1). Interestingly, 
relative CXCR5 expression varied in the SLE T cell samples with 
both lower and higher expression values compared to those from 
the control T cell samples.

Administration of the ERα antagonist Faslodex to SLE patients 
in a small clinical trial significantly reduced their SLEDAI scores 
(42). It was of interest, therefore, to identify signaling pathways 
that could account for disease improvement when ERα action 
was blocked by Faslodex. We compared SLE T  cell samples 
(n = 9) cultured with Faslodex to the same T cell samples cultured 
without Faslodex (Table  3). In a separate set of experiments, 
we added estradiol to the SLE T  cell cultures (n  =  9) without 
and with Faslodex (Table 4). In the absence of added estradiol, 
the top canonical pathways affected by Faslodex are shown in 
Table  3. Addition of estradiol to the T  cells cultured without 
and with Faslodex changed some of the top pathways affected 
(Table  4). It is notable, that GR signaling was a top canonical 
pathway affected by estradiol without and with added Faslodex 
(compare Tables  2–4). A striking relationship emerged for the 
top upstream regulators in SLE T  cells treated with Faslodex, 

regardless of estradiol addition or not. The principal regulators 
shared among Faslodex treated T cells included MYC, HNF4A, 
ESR1, and CST5 (Tables 3 and 4). Downstream genes affected 
by ERα antagonism and shared among the Faslodex treatments, 
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TaBle 6 | Measurements of ER subtype mRNA and protein in freshly isolated 
systemic lupus erythematosus T cells.

samples erɑ erβ erɑ erβ estradiol
(pg/ml)

(mrna) (Protein)

CTRL 1 0.068 7.40 1.10 0.88 99.5
CTRL 2 0.020 0.63 1.00 0.92 156.5
CTRL 3 0.004 0.08 1.60 1.60 88.9
CTRL 4 0.030 2.70 0.90 1.20 133.3
CTRL 5 0.008 0.30 1.10 1.40 99.6
CTRL 6 0.009 3.70 0.67 0.08 124.8
CTRL 7 0.060 4.70 0.83 1.20 143.9
CTRL 8 0.147 1.80 0.81 0.97 125.7
CTRL 9 0.090 2.20 0.63 0.46 121.5
CTRL 10 0.270 7.50 1.10 1.00 93.3

Median 0.045 2.5 0.97 0.99 123.1

Blood samples were drawn from healthy volunteers (n = 10) and T cells were purified 
by negative selection. ER subtype mRNA was measured by real-time PCR and protein 
in the same T cell sample was quantified by western blotting. Plasma estradiol was 
measured at the time of blood draw. The levels of hormone in circulation were within 
the normal range for women with regular menstrual cycles.
SLEDAI, systemic lupus disease activity index.

TaBle 5 | Measurements of ER subtype mRNA and protein in freshly isolated 
systemic lupus erythematosus (SLE) T cells.

samples erɑ erβ erɑ erβ estradiol  
pg/ml

(mrna) (Protein)

SLE-1 0.036 0.811 0.62 0.61 166.3
SLE-2 0 026 0.170 0.35 0.85 98.7
SLE-3 0.018 0.443 0.93 0.80 90.3
SLE-4 0.027 0.442 0.29 0.67 86.4
SLE-5 0.083 1.365 0.40 0.87 128.7
SLE-6 0.071 0.370 1.00 0.90 84.5
SLE-7 0.015 0.660 0.31 0.65 98.4
SLE-8 0 024 0.600 0.80 0.98 123.7
SLE-9 0.238 18.15 0.76 0.98 111.6

Median 0.027 0.60 0.62 0.85 98.7

Blood samples were drawn from SLE patients (n = 9) and T cells were purified by 
negative selection. ER subtype mRNA was measured by real-time PCR and protein 
in the same T cell sample was quantified by Western blotting. Plasma estradiol was 
measured at the time of blood draw. The levels of hormone in circulation were within 
the normal range for women with regular menstrual cycles.
SLEDAI, systemic lupus disease activity index.
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regardless of added estradiol, included AKT3, CBL, cyclic AMP 
responsive element modulator (CREM), FOS, JUN, and NFAT5. 
In the absence of added estradiol, MMP3 was a unique upstream 
regulator (Table  3), while addition of estradiol to cultures 
revealed TP53 as a unique regulator (Table 4). The SLE canonical 
signaling pathway was significantly altered in SLE T cells cultured 
in Faslodex containing medium without (7.7  ×  10−4) and with 
(3.4 × 10−8) estradiol, though it was not one of the top five canoni-
cal pathways.

ER antagonism altered the ubiquitination (SLE T cells + estra-
diol + Faslodex vs SLE T cells + estradiol) pathway in SLE T cells. 
This pathway was of particular interest because ubiquitin enzymes 
are essential for regulation of T cell, B cell, and TNF signaling cas-
cades (44). Moreover, activated SLE T cells cultured in medium 
containing estradiol express less ERα protein than T cell samples 
from healthy women cultured under the same conditions (20). 
Investigation of the downstream genes that differed between 
SLE T cells cultured with estradiol and treated without and with 
Faslodex revealed changes in 57/255 genes in the ubiquitination 
pathway (data not shown). The affected genes included ubiquitin-
activating enzymes (E1), conjugating enzymes (E2), ligases (E3 
HECT), and deubiquitinases. Several factors within the immu-
noproteosome were altered and the transporter associated with 
antigen processing (TAP) differed in SLE T  cells treated with 
Faslodex compared with untreated SLE T cells.

ERα antagonism altered sumolyation (SLE T cells − estradiol +  
Faslodex vs SLE T  cells  −  estradiol) signaling in SLE T  cells. 
Within the sumoylation pathway, the expression of 27/96 genes 
were affected by Faslodex treatment. Investigation of the genes 
involved, revealed expression of SUMO-1, FAS, RANBP2 and 
GR as candidates modified by Faslodex treatment. Since Faslodex 
altered GR signaling in all SLE T  cells, we also compared the 
data sets to determine which key downstream genes were 
altered. Faslodex changed the expression of 62 genes (62/282) 
in the absence of added estradiol and 76 genes (76/287) when 
estradiol was added to the activated SLE T cell cultures (data not 
shown). Changes in key downstream genes revealed differences 
in SUMO-1 and UBE21 (UBC9) expression (data not shown). 
SUMO-1 and UBC9 target nuclear hormone receptors and their 
ability to modulate transcription.

To test if protein turnover of ERα was modified in SLE T cells, 
we compared mRNA and protein levels in freshly isolated T cells 
from SLE patients and control females. Receptor mRNA and 
protein were quantified in nine freshly isolated SLE T cell samples 
(Table 5) and 10 freshly isolated control T cell samples (Table 6). 
Comparison of the amount of ERα subtype mRNA revealed no 
significant differences (p = 0.97) between SLE patient and control 
T cell samples. The median relative value for ERα mRNA in SLE 
T cell samples was 0.027 (Table 5) while the median relative value 
in control T cell samples was 0.045 (Table 6). Comparison of the 
amount of ERβ subtype mRNA revealed no significant differences 
(p = 0.18) between SLE patient and control T cell samples. The 
median relative value for ERβ mRNA in the SLE T cell samples 
was 0.6 (Table 5) while the median value in the control T cell 
samples was 2.5 (Table 6). The difference in the ratio of ERα: ERβ 
mRNA between the control and SLE T cell samples approached 
significance (p  =  0.065), even though the ratio was less than 

unity for all samples in both groups. The median concentration 
of estradiol in plasma was similar (p =  0.28) between the SLE 
patients (97 pg/ml, Table 5) and the control females (123 pg/ml, 
Table 6). Those values are within the normal range for women 
with regular menstrual cycles.

We next analyzed ER subtype protein expression in the same 
T cell samples. Incubation of western blots with ERα antibody 
revealed a single reactive protein that migrated at approximately 
65 kDa, consistent with the size for ERα protein (Figure 2). After 
the membrane was stripped and reacted with ERβ antibody a 
single reactive protein was identified at approximately 56 kDa, 
consistent with the size of ERβ (Figure 2). The membrane was 
stripped and reacted with β-actin antibody and a single reactive 
protein was observed at a molecular size of approximately 42 kDa, 
consistent with the size for β-actin. In the absence of T cell extract, 
no reactive proteins were observed (data not shown).
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TaBle 7 | Comparison of the relative expression of estrogen receptor subtypes 
(ERα:ERβ) for protein:mRNA ratios indicates lower values in the systemic lupus 
erythematosus (SLE) T cell samples.

Parameter Medlar 
control

Values 
sle

p-Value 
(Mann–Whitney)

Ratio of protein:mRNA (ERα) 23 14 0.37
Ratio of protein:mRNA (ERβ) 0.3 1.5 0.14
Ratio of protein:mRNA (ERa:ERp) 34 21 0.018

These results suggest accelerated turnover of ERα in SLE T cells.

FigUre 2 | Western blots of freshly isolated T cell proteins indicate the 
amount of ERα but not ERβ is less in systemic lupus erythematosus (SLE) 
patients compared with female controls. Fresh T cell extracts were size 
fractionated by SDS-PAGE and transferred to nitrocellulose membranes. The 
blots were sequentially reacted with antibodies to ERα, ERβ, and β-actin. The 
relative amount of receptor subtype was measured by scanning densitometry 
and values were adjusted to β-actin in the same T cell sample.
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Comparison of the amount of ERα protein revealed a sig-
nificant difference (p = 0.010) between SLE patient and control 
T cell samples. The median relative value in SLE T cell samples 
was 0.62 (Table 5) while that for ERα protein in control T cell 
samples was 0.97 (Table 6). There was no significant difference 
in the median values for ERα between patients with mild disease 
(median value 0.56, SLEDAI ≤ 4) and those with greater disease 
activity (median value 0.61, SLEDAI  ≥  5). Comparison of the 
amount of ERβ subtype protein revealed no significant differ-
ences (p = 0.11) between SLE patient and control T cell samples. 
The median relative value in SLE T cell samples was 0.85 (Table 5) 
while the median relative value for ERβ protein in control T cell 
samples was 0.99 (Table 6). The ratio of ERα: ERβ protein was a 
median of 0.78 in the SLE T cell samples and 1.05 in the control 
T cell samples, respectively. The difference in the ratio of ERα: 
ERβ protein between the SLE and the control T cell samples was 
not significant (p = 0.079).

Comparison of the ratio of protein to mRNA (designated as 
the relative productivity) showed all ratios  >  1 for ERα while 
ratios for ERβ were < 1 in the majority (11/19) of samples. The 
relative productivity of ERα was always greater than for ERβ, but 
these did not differ between the two cohorts (Table 7). However, 
a comparison of the relative subtype expression (ERα:ERβ) for 

the protein:mRNA ratios between the SLE T cell samples and the 
normal T  cell samples revealed lower values in the SLE T  cell 
samples (p = 0.018, Table 7). The primary factor associated with 
ERα protein was ERβ protein (p = 0.006). The second factor associ-
ated with ERα protein was experimental group (cohort, i.e., SLE 
T cell samples vs control T cell samples).

DiscUssiOn

The present study investigated global cell signaling changes in 
human SLE T cells treated with estradiol and the ERα antagonist, 
Faslodex. We compared the effects of blockading the action of ERα 
in order to identify signaling pathways that could contribute to 
improved disease activity in women with SLE we reported previ-
ously (42). Estradiol altered gene expression in pathways involved 
in Th cell differentiation, ERα/GR signaling and immune cell 
interactions. Antagonism of ERα by Faslodex revealed changes 
in protein ubiquitination and protein sumoylation pathways. We 
found that ERα protein but not mRNA was lower in SLE T cells 
compared with T cells from healthy individuals, suggesting more 
rapid turnover of ERα in SLE T cells. The results are consistent 
with the concept that turnover of ERα is accelerated in SLE 
T cells and may occur through alterations in the ubiquitination 
signaling pathway. Antagonism of ERα affected the sumoylation 
pathway and SUMO-1 and UBC9 expression were changed in 
GR signaling. Modification in these signaling pathways could 
account for the significant improvement of disease activity in SLE 
patients receiving monthly Faslodex treatments (42). Additional 
experiments are required to determine how changes of steroid 
receptors could alter signal transduction pathways in SLE T cells 
as suggested by the current results.

ERα protein levels are lower in SLE T cells compared with nor-
mal T cells although ERα mRNA and ERβ mRNA and protein are 
similar between SLE T cell samples and control T cell samples. The 
molecular basis for the difference in ERα protein levels remains 
to be established but the current results suggest ERα turnover 
accelerates owing to changes in the ubiquitination pathway. The 
half-life of ERα protein is short (~4 h) in primary uterine cells 
and breast cancer cell lines in culture (45). Consistent with other 
short-lived regulatory proteins, ERα turnover occurs through the 
26S proteasome system (46–48). In spite of the shared structural 
similarities between the receptors, our results suggest that ERα 
and not ERβ is the target for accelerated turnover. A recent study 
in breast cancer cell lines revealed the S-phase kinase-associated 
protein 2 (Skp2), which is a substrate recognition component 
of the SC ubiquitin ligase complex, targets ERα but not ERβ 
for degradation (49). The basis of this difference resides in a 
serine residue (serine 294), which is phosphorylated in ERα by 
p38MAPK and is not present in ERβ. In SLE T cells treated with 
Faslodex, MAPK expression was altered in the ERα signaling 
pathway (data not shown). However, patterns of ERα phospho-
rylation, activation and turnover require additional analyses in 
T cells. Since appropriately timed destruction of ERα is essential 
for its function, it is now important to investigate potential post-
translational modifications of ERα that may accelerate receptor 
turnover in SLE T cells and change the transcriptional activity of 
the receptor.
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SUMO modification of ERα and GR alters protein–protein 
interactions and transcriptional profiles (25, 28, 50). The enzyme, 
UBC9, is the only known E2 SUMO-conjugating enzyme that is 
necessary for SUMO attachment to substrate proteins (28, 30, 31). 
Comparison of SLE T cells cultured with estradiol and Faslodex 
to the same T cell sample cultured with estradiol alone (Table 4), 
revealed changes in GR signaling. Downstream genes affected in 
the GR canonical signaling pathway included Sumo1 and Ubc9. 
Estradiol increased UBC9 expression in MCF-7 breast cancer cells 
while ICI182,780 abrogated the response (51, 52). Ubc9 deletion 
in T regulatory (Treg) cells results in early-onset lethal autoim-
mune disorders (53). Loss of Ubc9 downregulated a variety of 
cytokine, chemokine and IL-1 receptor activity suggesting that 
sumoylation is required for proper immune function of Treg cells. 
Mice deficient in Ubc9 show perturbations in early T cell matura-
tion in the thymus and a reduction in the nuclear localization of 
NFAT in response to PMA-ionomycin activation (54). The results 
from our study suggest ERα antagonism changes the expression 
of genes involved in GR signal transduction in SLE T cells. To 
our knowledge, interaction between ER and GR signaling has not 
been studied in SLE T cells. However, in murine mammary cells 
chromatin accessibility is enhanced by activation of the opposite 
receptor (55), GR activation can displace ER from AP-1 sites (56), 
and ER and GR may act cooperatively at DNA regulatory sites 
(57). Disruption of GR signaling results in inflammation charac-
terized by increased cytokines in the blood (58). The results from 
our study suggest that interaction between ERα and GR occurs in 
SLE T cells when ERα action is blocked. Increased understanding 
about the molecular basis of this interaction could explain the 
improvement in SLE patient’s disease activity when Faslodex was 
administered monthly to SLE patients.

Antibody responses depend on help from CD4+ T  cells 
that are required for the generation of germinal centers where 
selection of high-affinity B cells and B cell memory occurs (32). 
Expression of CXCR5, when coupled with loss of the T cell zone-
homing chemokine receptor CCR7, allows Tfh cells to relocate 
from the T cell zone to the B cell follicles, where they support 
B  cell expansion and differentiation (59). In the present study, 
estradiol increased CXCR5 expression in 25% of the T  cells 
from SLE patients. The difference in expression was primarily 
due to three T cell samples in which, expression levels robustly 
responded to estradiol. We did not find a correlation between 
CXCR5 expression and SLEDAI scores, but our study measured 
relative expression rather than the number of CRCR5+ cells. Tfh 
cells in circulation constitute a small subset of total immune cells 
in the blood. Thus, it is possible that the median change in CXCR5 
expression in circulating T  cells is due to an increase in the 
number of cells expressing CXCR5 but additional experiments 
are necessary to resolve this question. Dysregulation of Tfh cells 
that promotes B cell activation is associated with SLE-like disease 
in the roquin san/san mouse (60, 61). This mouse model arose 
from a mutation in the ubiquitin ligase roquin that disrupts a 
repressor of ICOS, an essential stimulator of Tfh cells. Analysis of 
CXCR5+ CD4+ cells expressing high levels of Tfh-associated mol-
ecules, revealed a subset of SLE patients who showed increased 
Tfh cells in circulation. The increased Tfh cells correlated with 
the diversity and titers of autoantibodies and with the severity of 

end-organ involvement (62). Analysis of global gene expression 
in this study, indicate Th cell differentiation is affected by ERα 
antagonism. Since CXCR5 is a defining marker for Tfh cells, we 
explored changes in CXCR5 expression in SLE T cells. The results 
are equivocal because only 3 out of 12 SLE T cell samples were 
estradiol responsive. Moreover, Th responses can be mediated 
by Th1/Th2 and Th17 subsets (35, 37, 63). In order to define 
the role of ERα in Th differentiation, analysis of Th subsets and 
downstream effector functions are necessary.

Systemic lupus erythematosus is a multifactorial autoimmune 
disorder with numerous cellular abnormalities and clinical pres-
entations. The unifying theme among SLE T cell dysfunction is a 
loss of the ability to sense antigenic signals and properly integrate 
these signals within the adaptive and innate immune systems. 
While progress has been made in understanding the molecular 
basis and genetic susceptibility for SLE, the strong gender bias 
in the disorder remains an enigma. The present study indicates a 
significant decline in the amount of ERα protein in resting SLE 
T cells relative to resting normal T cells. Alterations in the balance 
of ERα and ERβ will profoundly affect hormone-responsiveness 
of target cells as suggested from global analyses of ER subtype 
binding across the genome. Analysis of global changes in gene 
expression when we blocked ERα function with Faslodex in SLE 
T  cells indicates both protein ubiquitination and sumoylation 
pathways are affected. Faslodex identified an unsuspected inter-
action between ERα and GR signaling. Steroid receptor function 
requires appropriately time destruction and sumoylation of 
receptors. The present results suggest that posttranslational 
modification of steroid receptors (ERα/GR) in SLE T cells may be 
aberrant. These alterations are likely to affect numerous pathways 
and lead to signaling dysfunction of SLE T cells.

In this study, we have focused on female SLE patients with 
regular menstrual cycles who were not taking exogenous estra-
diol. Although the study design controlled for exogenous estra-
diol effects, SLE is a heterogeneous autoimmune disorder with 
numerous clinical presentations. Current therapeutic agents used 
to treat SLE are based on patterns of end-organ appearance rather 
than from understanding the molecular basis of the disease. Since 
the goal of this study was to assess the importance of estradiol in 
SLE T cells, we did not select a homogeneous group of patients 
to study based on end-organ involvement. However, none of the 
patients, at the time of study, had active renal or central nervous 
system disease. Patients presented with polyarticular non-erosive 
arthritis (n = 16), proteinuria with normal renal function (n = 7), 
pleuritis (4), and lupus malar rash or discoid lupus rash (n = 7). 
Because the study population was heterogeneous, we cannot 
conclude that the results are representative of all SLE patients. 
Moreover, it is important to consider that immunosuppressant 
drugs, such as Pred, may have affected the results. Additional 
studies including SLE patients not taking medications are neces-
sary to clarify this issue. Although SLE is a strongly gender-biased 
disorder, the disease occurs in males. The features of SLE in males 
is often more severe than in female patients (4). Future studies 
should include male SLE patients to determine if steroid receptor 
turnover is modified in male patients or accelerated turnover is 
gender specific. It will be interesting to investigate the interac-
tion of steroid receptors, including the androgen receptor, with 
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various cofactors that may alter gene expression and lead to the 
onset or progression of SLE. A recent study in a breast cancer cell 
line reported that GR represses ERα action (64). The repression of 
ERα-dependent transcription appeared to be contingent on GR 
sumoylation, which caused the recruitment of GR and a corepres-
sor complex to ERα occupied enhancers. Greater understanding 
of how posttranslational modifications of steroid receptors 
integrate immune-endocrine signaling will help in the molecular 
understanding of gender-biased autoimmunity. Ultimately, this 
knowledge will permit greater precision in diagnosis and treat-
ment of patients with SLE and lead to better patient outcomes.

Datasets are in a Publicly accessible 
repository
The datasets generated and analyzed in this study can be found on 
the KUMC public repository: (http://bioinformatics.kumc.edu/
mdms/shares/data/VRider_exp1_raw_leixmWnf1mGhM/).
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Estrogens, in particular 17β-estradiol (E2), have a strong influence on the immune system 
and also affect pathological conditions such as autoimmune diseases. The biological 
effects of E2 are mediated by two intracellular receptors, i.e., estrogen receptor (ER)α and 
ERβ, which function as ligand-activated nuclear transcription factors producing genomic 
effects. Immune cells express both ERα and ERβ that play a complex role in modulating 
inflammation. Phytoestrogens display estrogen-like effects. Among them, silibinin, the 
major active constituent of silymarin extracted by the milk thistle (Silybum marianum), 
has been suggested to have an ERβ selective binding. Silibinin is known to have anti-in-
flammatory, hepatoprotective, and anticarcinogenic effects; however, the role of silibinin 
in modulating human immune responses and its impact on autoimmunity remains 
unclear. Aim of this study was to dissect the ability of the ERβ natural ligand silibinin to 
modulate T cell immunity, taking into account possible differences between females and 
males, and to define its possible role as therapeutic tool in immune-mediated diseases. 
To this purpose, female and age-matched male healthy subjects and patients with active 
rheumatoid arthritis (RA) were recruited. We evaluated the ability of silibinin to modulate 
ERβ expression in T  lymphocytes and its effects on T  cell functions (i.e., apoptosis, 
proliferation, and cytokine production). We also analyzed whether silibinin was able to 
modulate the expression of microRNA-155 (miR-155), which strongly contributes to the 
pathogenesis of RA driving aberrant activation of the immune system. We demonstrated 
that silibinin upregulated ERβ expression, induced apoptosis, inhibited proliferation, and 
reduced expression of the pro-inflammatory cytokines IL-17 and TNF-α, through ERβ 
binding, in T  lymphocytes from female and male healthy donors. We obtained similar 
results in T lymphocytes from patients with active RA in term of apoptosis, proliferation, 
and cytokine production. In addition, we found that silibinin acted as an epigenetic mod-
ifier, down-modulating the expression of miR-155. In conclusion, our data demonstrated 
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inTrODUcTiOn

It is well known that estrogen (17β-estradiol—E2) influences 
different aspects of the immune system function and potentially 
affects the risk, activity, and progression of autoimmune diseases 
(1–4). In particular, E2 is able to modulate different aspects of 
immune responses, e.g., lymphocyte proliferation and apoptosis, 
cytokine, or antibody production (5–8). The immunomodulatory 
effects exerted by E2 are, at least partially, responsible for the 
existing differences between female and male immune systems, 
with females mounting stronger humoral and cellular immune 
responses than males (6). As a consequence, females are generally 
more resistant to infection but more susceptible to autoimmune 
diseases that are typically dominant in women in comparison to 
men (4, 9, 10). The most important factors responsible for this sex 
bias are sex hormones, genetic and epigenetic factors, as well as 
sociological differences between genders. Notably autoimmune 
diseases differ between males and females not only for their 
incidence but also for clinical outcome and response to therapy.

17β-estradiol effects are mediated by two intracellular estrogen 
receptors (ER), i.e., ERα and ERβ, which act as ligand-activated 
nuclear transcription factors generating genomic effects (8, 11). 
Our and other groups have demonstrated that immune cells 
express both ERα and ERβ (12–15) which have a complex role 
in modulating inflammation, thus representing potential thera-
peutic targets in autoimmune diseases (16–20). In particular, the 
low intracellular expression level of ERβ has been demonstrated 
to be associated with high disease activity in chronic inflam-
matory diseases such as systemic lupus erythematosus (21) and 
inflammatory bowel diseases (22). The downregulation of this 
receptor has been found to be dependent by a pro-inflammatory 
microenvironment (22). Accordingly, ERβ agonist ligands have 
been suggested to dampen inflammation in animal models of 
autoimmune diseases (17, 23).

Interestingly, some phytoestrogens, naturally occurring plant 
compounds, display ERβ selective binding with estrogen-like 
effects. Among them, silibinin (24), the major active constituent 
of silymarin extracted by the milk thistle (Silybum marianum), 
has been suggested by in silico studies to have an ERβ selective 
binding acting as agonist of this ER (25). Silibinin has been 
demonstrated to have anti-inflammatory, hepatoprotective, and 

anticarcinogenic properties interfering with multiple biochemi-
cal pathways (26); however, the role of silibinin in modulating 
human immune responses and its impact on autoimmunity 
remains unclear.

Hence, the aim of this study was to dissect the ability of the ERβ 
natural ligand silibinin to modulate T cell immunity, taking into 
account possible differences between females and males, and to 
define its possible role as a therapeutic tool in immune-mediated 
diseases. To this purpose, we first evaluated the ability of silibinin 
to modulate ERβ expression in T lymphocytes from female and 
age-matched male healthy subjects and its effects on T cell func-
tions (i.e., apoptosis, proliferation, and cytokine production). 
Then we analyzed the effects played by silibinin on T lymphocytes 
from patients affected by rheumatoid arthritis (RA), a chronic 
autoimmune inflammatory disease, characterized by synovial 
inflammation and by cartilage and bone destruction (27), in 
which T lymphocytes play a key pathogenetic role (27). We also 
evaluated whether silibinin could modulate the expression of 
microRNA-155 (miR-155) which is involved in the modulation 
of T lymphocyte immunity (28) and strongly contributes to the 
pathogenesis of RA driving aberrant activation of the immune 
system (29–31).

MaTerials anD MeThODs

study Population
Forty-four healthy subjects (23 postmenopausal females and 21 
age-matched males, age range 55–75 years) as well as 10 post-
menopausal female patients and 4 age-matched male patients 
with active RA, who had an inadequate response to drugs, fol-
lowed at the Rheumatology outpatient Clinic (Arthritis Center, 
Policlinico Umberto I, Sapienza University of Rome, Italy), were 
included in the study. All RA patients fulfilled the 2010 American 
College of Rheumatology/European League against Rheumatism 
(ACR/EULAR) classification criteria (32). Exclusion criteria were 
pregnancy, treatment with any kind of hormones. Clinical evalua-
tion included the count of swollen and tender joints, patient and 
physician global disease assessment by VAS (0–100 mm). Disease 
activity was measured by Disease Activity Score 28 (DAS28) and 
clinical response was evaluated according to EULAR response 
criteria (33). The following laboratory tests were performed: 
complete blood count, erythrocyte sedimentation rate, C-reactive 
protein, antinuclear antibodies, rheumatoid factor, and anti-
cyclic citrullinated peptide antibodies. Demographic and clinical 
features of RA patients are shown in Table 1.

This study was carried out in accordance with the recommen-
dations of the Declaration of Helsinki. Written informed consent 
was obtained from all subjects, and the ethics committee of the 
Policlinico Umberto I (Rome, Italy) approved the study.

Abbreviations: APC, allophycocyanin; AV, annexin V; DAS28, disease activity 
score 28; E2, 17β-estradiol; ER, estrogen receptor; FITC, fluorescein isothiocy-
anate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; mAb, monoclonal 
antibody; miR-155, microRNA-155; PBMC, peripheral blood mononuclear cell; 
PE, phycoerythrin; PHTPP, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]
pyrimidin-3-yl]phenol; PI, propidium iodide; PMA, phorbol myristate acetate; 
RA, rheumatoid arthritis; qRT-PCR, quantitative real-time PCR; siRNA, small 
interfering RNA; SSNC, silencer select negative control.

an immunosuppressive role of silibinin, supporting its application in the treatment of 
autoimmune diseases as drug, but also as dietary nutritional supplement, opening new 
perspective in the field of autoimmune disease management.

Keywords: estrogen receptor β, silibinin, T lymphocytes, immunity, sex, rheumatoid arthritis
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Table 1 | Demographic and clinical features of rheumatoid arthritis patients 
(females, N = 10; males, N = 4).

Patients features Females Males

Median age (years), IQR 60 (18.5) 61.5 (9.0)
Median disease duration (years), IQR 17 (15.5) 9.5 (5.5)
Median DAS28, IQR 5.5 (1.3) 5.9 (1)
PDN, N/% 1/88.8 1/25
sDMARDs treatment, N/% 5/62.5 4/100
bDMARDs drugs, N/% 4/44.4 0

IQR, InterQuartile range; PDN, prednisone; DAS28, Disease Activity Score 28; 
sDMARDs, synthetic disease-modifying antirheumatic drugs; bDMARDs, biologic 
disease-modifying antirheumatic drugs; N, number.
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isolation of Peripheral blood Mononuclear 
cells (PbMcs) and cell culture conditions
Peripheral blood mononuclear cells were isolated by Ficoll-
Hypaque density-gradient centrifugation and cultured in 
RPMI-1640 medium without phenol red (Gibco BRL, Grand 
Island, NY, USA) supplemented with 10% charcoal-stripped fetal 
bovine serum (Hyclone Laboratories, South Logan, UT, USA), 
2  mM glutamine (Sigma, St. Louis, MO, USA), and 50  µg/ml 
gentamycin (Sigma). Silibinin (Sigma) was dissolved in dimethyl 
sulfoxide and diluted in RPMI 1640. Preliminary dose response 
and time course experiments showed that silibinin should be 
used at a dose of 50 µM and at 24–72 h of culture (depending on 
the studied parameters) to obtain the highest detectable changes 
in the absence of toxic effects. For lymphocyte activation, PBMCs 
or sorted CD4+CD45RA−CCR6+CXCR3− (see below for sorting) 
were cultured in the presence of plate-bound anti-CD3 monoclo-
nal antibody (mAb, clone UCHT1, R&D Systems, Minneapolis, 
MN, USA) at 4 µg/ml for 72 h and treated with silibinin for the 
last 48 h of culture. In separate experiments, cells were pretreated 
with 100  nM 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-
a]pyrimidin-3-yl]phenol (PHTPP) ERβ antagonist (Tocris 
Cookson, Ellisville, MO, USA) for 1 h before adding silibinin.

For cytokine production, untreated or treated PBMCs were 
stimulated as follows: (i) for IFN-γ, TNF-α, IL-2, and IL-4 
analysis, 25 ng/ml phorbol myristate acetate (PMA, Sigma) and 
1 µg/ml ionomycin (Sigma) for the last 16 h of culture; (ii) for 
IL-17 analysis, 50 ng/ml PMA (Sigma) and 1 µg/ml ionomycin 
(Sigma) for the last 4 h of culture; and (iii) for IL-10, 2.5 µg/ml 
phytohemagglutinin (Sigma) for the last 16 h of culture. To inhibit 
cytokine secretion, 10 µg/ml brefeldin A (Sigma) was added to 
each condition at the beginning of stimulation.

Flow cytometry
Cell surface phenotyping was performed by flow cytometry as 
previously described (13). Allophycocyanin (APC)-conjugated 
anti-CD3, APC- or phycoerythrin (PE)-conjugated anti-CD4, 
peridinin chlorophyll protein-conjugated anti-CD8 mAbs (all 
from BD Biosciences, San Jose, CA, USA) were used. Equal 
amount of mouse IgG isotype control was run in parallel. Analysis 
of cytokine production at the single cell level was performed as 
previously described with minor changes (34). Briefly, treated 
cells (see above for details) were either fixed with 4% paraform-
aldehyde and permeabilized with FACS permeabilizing solution 

(BD Biosciences) for IFN-γ, TNF-α, IL-2, IL-4, and IL-10 detec-
tion or fixed and permeabilized with intracellular fixation and 
permeabilization buffer (eBioscience, San Diego, CA, USA) for 
IL-17 detection. The following cytokine-specific mAbs were 
used: fluorescein isothiocyanate (FITC)-labeled anti-IFN-γ, 
FITC-labeled anti-IL-2, PE-labeled anti-TNF-α, PE-labeled 
anti-IL-4, PE-labeled anti-IL-10 (all from BD Biosciences), and 
FITC-labeled anti-IL-17A (eBioscience). Appropriate isotypic 
negative controls were run in parallel. Apoptosis was quantified 
using FITC- or PE-conjugated annexin V (AV) and propidium 
iodide (PI) detection kit (Marine Biological Laboratory, Woods 
Hole, MA, USA) according to the manufacturer’s protocol. 
Proliferation was evaluated by measuring Ki-67 nuclear antigen 
expression using FITC-labeled anti-human Ki-67 mAb according 
to the manufacturer’s protocol (BD Biosciences). For ERβ intra-
cellular staining of sorted CD4+CD45RA−CCR6+CXCR3− Th17 
lymphocytes, cells were fixed and permeabilized as described 
above, and stained with the anti-ERβ mAb (clone CWK-F12 from 
DSHB, Iowa City, IA, USA). Equal amount of mouse IgG isotype 
control was run in parallel. The primary antibody was visual-
ized by FITC-conjugated F(ab′)2 fragment secondary antibody 
(Abcam, Cambridge, UK).

To determine the frequency of T cell subsets, total lymphocytes 
were first gated by forward and side scatter and then additionally 
gated for CD3 and CD4 or CD3 and CD8 molecule expression. 
Acquisition was performed on a FACSCalibur flow cytometer 
(BD Biosciences) and at least 50,000 events per sample were 
run. Data were analyzed using the Cell Quest Pro software (BD 
Biosciences).

Macs and Facs cell sorting
For Western blot and quantitative real-time PCR (qRT-PCR) 
analyses, untouched T cells were separated using the Pan T Cell 
isolation Kit II (Miltenyi Biotec, Bergisch-Gladbach, Germany). 
The purity of recovered cells, assessed by flow cytometer, was 
≥97%.

For apoptosis and ERβ analyses of Th17  cells (i.e., 
CD4+CD45RA−CCR6+CXCR3−), CD4+ T  cells were separated 
from PBMC by positive selection using CD4 MicroBeads (Miltenyi 
Biotec), with a purity ≥97%, as determined by flow cytometer. 
Then, CD4+CD45RA−CCR6+CXCR3− T cell subset was sorted by 
FACS (BD FACSAria; BD Biosciences) upon staining with the fol-
lowing mixture of mAb: CD4 PE/Cy7 (BD Biosciences), CD45RA 
FITC (BD Biosciences), CCR6 PE (Miltenyi Biotec), and CXCR3 
APC (BD Biosciences). Sorted T cell subset was on average >95% 
pure as determined by postsorting flow cytometry analysis.

sDs-Page and Western blot
SDS-PAGE and Western blot were performed as previously 
described (13). Briefly, cells were lysed in RIPA buffer [100 mM 
tris(hydroxymethyl)aminomethane (Tris)–HCl pH 8, 150  mM 
NaCl, 1% Triton X-100, 1 mM MgCl2] in the presence of a complete 
protease-inhibitor mixture. Protein content was determined by 
the Bradford assay (Bio-Rad Laboratories, Richmond, CA, USA). 
Cell lysates (30 µg/ml) were loaded onto SDS-PAGE and, after 
electrophoresis, proteins were transferred onto nitrocellulose 
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membrane (GE Healthcare, Pittsburgh, PA, USA) by means of a 
Trans-Blot transfer cell (Bio-Rad Laboratories). The membranes 
were then blocked in 5% nonfat milk and incubated with the 
appropriate antibodies in Tris-buffered saline containing 0.1% 
Tween 20 and 5% nonfat milk. Anti-ERβ mAb (clone CWK-F12 
from DSHB) was used as primary Ab. Peroxidase-conjugated goat 
anti-mouse IgG was used as secondary Ab (Bio-Rad Laboratories) 
and the reactions were developed using the SuperSignal West 
Pico Chemiluminescent Substrate (Pierce, Rockford, IL, USA). 
To ensure the presence of equal amounts of protein, the mem-
branes were reprobed with a rabbit anti-human glyceraldehyde 
3-phosphate dehydrogenase Ab (Sigma). Quantification of 
protein expression was performed by densitometry analysis of 
the autoradiograms (GS-700 Imaging Densitometer, Bio-Rad 
Laboratories).

qrT-Pcr analysis of mir-155 expression 
level
Total RNA, including short RNA, was isolated from T lympho-
cytes of female RA patients, treated and untreated with silibinin 
for 48  h, using the Total RNA Purification Plus Kit (Norgen 
Biotek Corp., Thorold, ON, Canada), according to the manu-
facturer’s instructions. RNA samples, after quantity evaluation 
using a NanoDrop ND-1000 spectrophotometer, were used 
for qRT-PCR analysis. miR-155 and RNU6B, as normalizator, 
expression levels were quantitated using specific inventoried 
TaqMan MicroRNA Assays (Thermo Fisher Scientific, Waltham, 
MA USA), according to the manufacturer’s instructions, and 
all samples were run in triplicate. Briefly, 15  ng of each RNA 
sample were reverse transcribed by the Taq-Man® MicroRNA 
Reverse Transcription (RT) Kit (Thermo Fisher Scientific) using 
individual miR-specific RT primers, and 1.3  µl of RT product 
were analyzed by qRT-PCR on the ABI7000 Real-Time PCR 
System (Applied Biosystem, Foster City, CA, USA). The relative 
expression level of miR-155 was determined by the 2−ΔΔCt 
method, after normalization to the RNU6B Ct. 1.5 miR fold 
changes between RA patients treated or untreated with silibinin 
were considered significant.

qrT-Pcr analysis of erβ mrna 
expression level
Total RNA was extracted from cells using the RNeasy Mini kit 
(Qiagen, Milan, Italy). RNA was DNase-I digested (Roche) and 
reverse transcribed as previously described (35). Quantitative 
PCR was performed in duplicate by the real-time fluorescence 
detection method with the fluorescent DNA binding dye 
SYBR green (Power SYBR Green PCR master kit; Applied 
Biosystems) by using an ABI PRISM 7900 (Applied Biosystems). 
The relative expression levels were calculated by the compara-
tive cycle threshold (ΔΔCt) method and were normalized by 
hypoxanthine-guanine phosphoribosyl transferase expression. 
Homo sapiens estrogen receptor 2 (ESR2, ERβ1) primers used 
for RT-PCR were designed by using the Primer3Plus software, 
crossing exon-intron junctions and checking for secondary 
structures; sequences are 5′-GCTCCTGTCCCACGTCAG-3′, 
5′-CACATAATCCCATCCCAAGC-3′.

erβ silencing by small interfering rna 
(sirna)
The silencing of ERβ was performed with the following Silencer 
Select siRNA for ESR2, sense, AGUGUACAAUCGAUAAAA 
ATT, antisense, UUUUUAUCGAUUGUACACUGA (Ambion, 
Milan, Italy). Silencer select negative control siRNA (SSNC, 
Ambion) was also used as negative control. For transfection of 
human T lymphocyte, the Amaxa Human T cell Nucleofector® 
kit was used (Lonza, Walkersville, MD, USA) according to the 
manufacturer’s protocol. In brief, 6  ×  106 cells per condition 
were resuspended in 100  µl of the Nucleofactor kit solution, 
combined with 300  nM of the indicated siRNA or pmaxGFP 
vector (2  µg), and electroporated using the U-014 program 
of the Nucleofector (Amaxa Biosystems, Köln, Germany). 
Transfection efficiency was monitored in all samples by FACS 
analysis of GFP fluorescence and was about 50%. Cell apoptosis, 
measured by AV/PI detection kit was <20% (data not shown). 
After 6 h, siRNA-transfected PBMCs were treated with silibinin 
(Sigma) for 48 h and analyzed for IL-17 and TNF-α expression 
after stimulation with PMA and ionomycin (both from Sigma) 
in the presence of brefeldin A (Sigma). See above for methodo-
logical details.

statistical analysis
Statistical analysis was performed by the Mann–Whitney U test 
using GraphPad Prism, version 7.0 software (GraphPad Software, 
San Diego, CA, USA). A P value <0.05 was considered statisti-
cally significant.

resUlTs

The natural erβ agonist silibinin 
Modulates erβ expression in Peripheral 
blood T lymphocytes From Female and 
Male healthy subjects
As stated above, we and other groups previously demonstrated 
that immune cells have detectable levels of intracellular ERβ 
(12–14). As literature data indicate for phytoestrogens the abil-
ity to upregulate ERβ in different cell types (36, 37), we first 
evaluated if this effect could be also evident in silibinin-treated 
T lymphocytes, taking into account possible differences between 
females and males. To this aim, both mRNA and protein expres-
sion level of ERβ was determined by qRT-PCR and Western 
blot analysis in peripheral T lymphocytes (Figures 1A–C) from 
healthy subjects after 16 h treatment with silibinin. A significant 
increase of ERβ mRNA expression level was detectable after 
treatment with silibinin in T cells (treated versus untreated cells, 
P  =  0.01 and P  =  0.0274, in females and males, respectively, 
Figure  1A). Hence, we analyzed by Western blot the protein 
expression level of ERβ in T  lymphocytes and we found sig-
nificantly higher levels of ERβ in silibinin-treated cells when 
compared with untreated cells (treated versus untreated cells, 
P < 0.0001 in both females and males, Figures 1B,C). T lym-
phocytes from female and male subjects showed comparable 
susceptibility to silibinin treatment.
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FigUre 1 | Silibinin increased the expression of estrogen receptor (ER) β in peripheral blood T lymphocytes from female and male healthy subjects. (a) ERβ1 mRNA 
levels were evaluated by quantitative real-time PCR after 24 h silibinin treatment. Data are expressed as ratios of the expression of ERβ1 and hypoxanthine-guanine 
phosphoribosyl transferase (HPRT) gene. Results are shown as mean ± SD from 10 randomly selected female and male healthy subjects. (b,c) ERβ protein levels 
were also evaluated by Western blot analysis of T-cell lysates after 24 h silibinin treatment. Blots shown are representative of experiments performed in T cells from 
10 randomly selected female and male healthy subjects (b). Densitometry analysis of ERβ levels relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is 
also shown. Values are expressed as mean ± SD (c). *P < 0.05, ***P < 0.001 versus untreated cells.
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silibinin-Dependent effects on cell 
apoptosis, cell Proliferation, and cytokine 
Production in Peripheral blood T 
lymphocytes From Female and Male 
healthy subjects
As a second step, we evaluated the ability of silibinin to 
impact T lymphocyte homeostasis in term of cell apoptosis, 
proliferation, and cytokine production. Silibinin was able to 
induce a significant increase in resting T lymphocyte apopto-
sis (treated versus untreated cells, P = 0.0002 and P = 0.0074, 
in females and males, respectively, Figures 2A,B). Similarly, 
activated T  cells treated with silibinin showed a significant 
increase of apoptotic levels (treated versus untreated cells, 
P = 0.0029 and P = 0.0013, in females and males, respectively, 
Figures 2C,D).

In parallel, a significant reduction of proliferation of activated 
T lymphocytes, measured by the analysis of nuclear antigen Ki-67 
expression, was observed after treatment with silibinin (treated 
versus untreated cells, P = 0.0024 and P = 0.0081, in females and 
males, respectively, Figures 2E,F).

A panel of pro-inflammatory (IFNγ, TNF-α, IL-2, and IL-17) 
and anti-inflammatory (IL-4 and IL-10) cytokines was also 
studied. Notably, silibinin significantly reduced the intracel-
lular expression level of the pro-inflammatory cytokines IL-17 
and TNF-α in CD4+ T  lymphocytes (for IL-17, treated versus 
untreated cells, P = 0.0078 and P = 0.0077, in females and males, 
respectively, Figures 3A,B; for TNF-α, treated versus untreated 
cells, P = 0.0028 and P = 0.0272, in females and males, respec-
tively, Figures 4A,B). No changes were induced by silibinin in 
the percentage of CD8+/TNF-α+, CD4+/and CD8+/IL-2+, IFNγ+, 
IL-4+, and IL-10+ T lymphocytes (Table 2). In order to clarify the 
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FigUre 2 | Silibinin-dependent effects on apoptosis and proliferation levels of peripheral blood T lymphocytes from female and male healthy subjects. All 
experiments were performed in 23 female and 21 male healthy subjects. (a–D) Apoptosis assay involving dual staining with annexin V (AV) and propidium iodide (PI) 
was carried out using flow cytometry in resting T cells treated or not with silibinin for 48 h (a,b) and in T cells activated by anti-CD3 monoclonal antibody (mAb) for 
72 h and treated or not with silibinin for the last 48 h of culture (c,D). Results from representative female (upper panels) and male (lower panels) healthy donors are 
shown (a,c). Numbers reported represent the percentages of AV positive/PI negative (early apoptotic, bottom right quadrant) and AV positive/PI positive (late 
apoptotic or necrotic cells, top right quadrant). Data referred to both AV positive/PI negative and AV positive/PI positive cells are also reported as mean ± SD (b,D). 
(e,F) Cell proliferation was evaluated by flow cytometry measuring Ki-67 nuclear antigen expression in T lymphocytes after activation with anti-CD3 mAb for 72 h 
and treatment with silibinin for the last 48 h of culture. Results from representative female (upper panels) and male (lower panels) healthy donors are shown (e). Data 
are also reported as mean ± SD (F). **P < 0.01, ***P < 0.001 versus untreated cells.
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FigUre 3 | Silibinin decreased IL-17 expression in peripheral blood T lymphocytes from female and male healthy subjects acting through estrogen receptor (ER) β 
binding. (a,b) Cytokine expression was analyzed in 23 female and 21 male healthy subjects by flow cytometry after 48 h of culture with silibinin and stimulation with 
phorbol myristate acetate (PMA) and ionomycin in the presence of brefeldin for the last 4 h of culture as detailed in Section “Materials and Methods.” Results from 
representative female (upper panels) and male (lower panels) healthy donors are shown (a). Data are also reported as mean ± SD (b). (c,D) IL-17 expression was 
analyzed in T lymphocytes from three randomly selected female healthy donors pretreated with the ERβ antagonist PHTTP for 1 h before adding silibinin. Results 
from a representative female healthy donor are shown (c). Data are also reported as mean ± SD (D). (e,F) IL-17 expression was analyzed in T lymphocytes from 
three randomly selected female healthy donors after silencing ERβ expression. Results from a representative female healthy donor are shown (e). Data are also 
reported as mean ± SD (F). *P < 0.05, **P < 0.01 versus untreated cells. Abbreviation: SSNC, silencer select negative control siRNA.
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FigUre 4 | Silibinin decreased TNF-α expression in peripheral blood CD4+ T lymphocytes from female and male healthy subjects acting through ERβ binding. (a,b) 
Cytokine expression were analyzed in 23 female and 21 male healthy subjects by flow cytometry after 48 h of culture with silibinin and stimulation with phorbol 
myristate acetate (PMA) and ionomycin in the presence of brefeldin for the last 16 h of culture as detailed in Section “Materials and Methods.” Results from 
representative female (upper panels) and male (lower panels) healthy donors are shown (a). Data are also reported as mean ± SD (b). (c,D) TNF-α expression was 
analyzed in T lymphocytes from three randomly selected female healthy donors pretreated with the ERβ antagonist PHTTP for 1 h before adding silibinin. Results 
from a representative female healthy donor are shown (c). Data are also reported as mean ± SD (D). (e,F) TNF-α expression was analyzed in T lymphocytes from 
three randomly selected female healthy donors after silencing ERβ expression. Results from a representative female healthy donor are shown (e). Data are also 
reported as mean ± SD (F). *P < 0.05, **P < 0.01 versus untreated cells. Abbreviation: SSNC, silencer select negative control siRNA.
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Table 2 | Cytokine expression at the single cell level by flow cytometry analysis of CD4+ and CD8+ T lymphocytes from female and male healthy donors.

cytokines Females Males

Untreated silibinin P Untreated silibinin P

% CD4+/IL-17+ 0.7 ± 0.3 0.4 ± 0.2 0.0078 0.7 ± 0.2 0.4 ± 0.1 0.0077
% CD4+/TNF-α+ 50 ± 8 37 ± 7 0.0028 45 ± 9 36 ± 5 0.0272
% CD8+/TNF-α+ 30 ± 12 23 ± 11 0.1022 44 ± 23 36 ± 26 0.0943
% CD4+/IL-2+ 43 ± 12 39 ± 12 0.1141 49 ± 10 38 ± 19 0.0622
% CD8+/IL-2+ 18 ± 6 16 ± 9 0.0562 23 ± 6 17 ± 10 0.0703
% CD4+/IFNγ+ 30 ± 11 26 ± 6 0.4936 33 ± 21 42 ± 22 0.1236
% CD8+/IFNγ+ 56 ± 14 48 ± 18 0.0937 65 ± 33 70 ± 28 0.7238
% CD4+/IL-4+ 0.3 ± 0.2 0.2 ± 0.1 0.0979 0.7 ± 0.7 1.4 ± 1.5 0.2364
% CD8+/IL-4+ 0.3 ± 0.2 0.1 ± 0.1 0.0655 0.1 ± 0.1 0.1 ± 0.1 0.9892
% CD4+/IL-10+ 1.1 ± 0.6 1.1 ± 0.7 0.9644 0.9 ± 0.7 1 ± 1 0.5081

For CD4+ and CD8+ T lymphocyte subsets, data were expressed as the percentage of each subset within the CD3+CD4+ or CD3+CD8+ population considered as 100%. Data are 
represented as mean ± SD from 23 female and 21 male healthy subjects. P values were calculated using the Mann–Whitney U test.

Dupuis et al. Immunosuppressive Effects of Silibinin

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1903

role of ERβ in the anti-inflammatory effects induced by silibinin, 
we used two different approaches: (i) the pretreatment of PBMC 
with the ERβ antagonist PHTTP and (ii) the silencing of ERβ 
with specific siRNA to knockdown ERβ gene. Notably, in both 
experimental conditions, silibinin lost the ability to inhibit IL-17 
(Figures 3C–F) and TNF-α expression (Figures 4C–F), confirm-
ing that the observed effects were mediated by ERβ binding.

Also in this set of experiments, no significant difference was 
observed between cells from male and female subjects after 
silibinin treatment (Figures 2–4).

To investigate whether the silibinin-mediated IL-17 inhibition 
could be due to elimination of memory Th17 cells or by a block of 
IL-17 production, we first evaluated intracellular ERβ expression 
in sorted Th17 cells (i.e., CD4+CD45RA−CCR6+CXCR3−, Figures 
S1A,B in Supplementary Material). As expected, the Th17  cell 
subset expressed intracellular ERβ. Then, we evaluated apoptosis 
level of this cell subset, treated or not with silibinin (Figure S1C 
in Supplementary Material). An increase of apoptotic level after 
silibinin treatment was detected, suggesting that the effect of sili-
binin on IL-17 production was, at least partially, due to apoptosis 
induction in this cell subset. Also in this case, the ERβ antagonist 
PHTTP was able to inhibit silibin-induced apoptosis.

silibinin effects on Peripheral blood T 
lymphocytes From Patients With active 
ra
Based on the results obtained in healthy donors, we decided to 
test the anti-inflammatory potential of silibinin on T lymphocytes 
from female and male patients with active RA, analyzing its abil-
ity to modulate apoptosis, proliferation, and cytokine expression. 
Similarly to that observed in healthy donors, silibinin induced 
a significant increase of apoptosis in T  lymphocytes from RA 
patients in both resting (P = 0.0161 for females and P = 0.0286 for 
males, Figures 5A,B) and activated state (P = 0.0403 for females 
and P = 0.0421 for males, Figures 5C,D). In addition, a significant 
reduction of proliferation level was detected after cell treatment 
with silibinin (P = 0.0160 for females and P = 0.0286 for males, 
Figures 5E,F). Notably, silibinin was able to significantly reduce 
IL-17 and TNF-α expression levels in CD4+ T  lymphocytes 
(IL-17: P = 0.0235 for females and P = 0.0294 for males; TNF-α: 

P = 0.0032 for females and P = 0.0421 for males, versus untreated 
cells, respectively, Figures 6A–D). Similarly to that observed in 
healthy subject, no significant difference was observed between 
cells from male and female subjects after silibinin treatment.

silibinin effect on mir-155 expression in 
Peripheral T lymphocytes From Patients 
With active ra
Finally, we asked whether silibinin could act as an epigenetic 
modifier modulating miRNA expression. We focused on miR-
155 that plays a crucial role in the pathogenesis of RA (29–31) 
and which expression has been demonstrated to be modulated 
by estrogen through ERβ (38). Thus, we quantitatively analyzed 
miR-155 expression in T  lymphocytes from RA patients, upon 
treatment with silibinin, by qRT-PCR assay. The results, shown in 
Figure 7, indicated an average 54 and 50% (for females and males 
respectively) decreased expression of miR-155 in T lymphocytes 
after silibinin treatment, thus suggesting that this phytoestrogen 
acted as a downregulator of miR-155.

DiscUssiOn

Our study provides new insights regarding the anti-inflammatory 
effects of the phytoestrogen silibinin in T cell immunity. First, we 
demonstrated that silibinin upregulates ERβ expression, induces 
apoptosis, inhibits proliferation, and reduces expression of the 
pro-inflammatory cytokines IL-17 and TNF-α, through ERβ 
binding, in T  lymphocytes from both female and male healthy 
subjects. Then, we confirmed these results in T lymphocytes from 
patients with RA in term of apoptosis, proliferation, and cytokine 
production. Finally, we found that silibinin acts as an epigenetic 
modifier, down-modulating the expression of miR-155 which 
plays a key role in the pathogenesis of RA.

Growing evidence suggests that ERα and ERβ subtypes medi-
ate distinct transcriptional activities when they are co-expressed 
in the same cells and that the quantity and distribution of these 
receptors are crucial for their biological effects (8). In particular, 
ERβ displays an anti-inflammatory effect and the upregulation 
of this receptor in immune cells may provide a useful tool in 
creating an anti-inflammatory milieu. Here, we observed for the 
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FigUre 5 | Silibinin-dependent effects on apoptosis and proliferation levels of peripheral blood T lymphocytes from patients with active rheumatoid arthritis (RA). All 
experiments were performed in 10 female and 4 male RA patients. (a–D) Apoptosis assay involving dual staining with annexin V (AV) and propidium iodide (PI) was 
carried out using flow cytometry in resting T cells treated or not with silibinin for 48 h (a,b) and in T cells activated by anti-CD3 monoclonal antibody (mAb) for 72 h 
and treated or not with silibinin for the last 48 h of culture (c,D). Results from representative female (upper panels) and male (lower panels) RA patients are shown 
(a,c). Numbers reported represent the percentages of AV positive/PI negative (early apoptotic, bottom right quadrant) and AV positive/PI positive (late apoptotic or 
necrotic cells, top right quadrant). Data referred to both AV positive/PI negative and AV positive/PI positive cells are also reported as mean ± SD (b,D). (e,F) Cell 
proliferation was evaluated by flow cytometry measuring Ki-67 nuclear antigen expression in T lymphocytes after activation with anti-CD3 mAb for 72 h and 
treatment with silibinin for the last 48 h of culture. Results from representative female (upper panels) and male (lower panels) RA patients are shown (e). Data are 
also reported as mean ± SD (F). *P < 0.05 versus untreated cells.
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FigUre 6 | Silibinin-dependent effects on IL-17 and TNF-α expression in peripheral blood T lymphocytes from rheumatoid arthritis (RA) patients. T lymphocytes 
from 10 female and 4 male RA patients were evaluated by flow cytometry for cytokine production after 48 h of culture with silibinin and stimulation with phorbol 
myristate acetate (PMA) and ionomycin in the presence of brefeldin as detailed in Section “Materials and Methods.” Results from representative female (upper 
panels) and male (lower panels) RA patients are shown (a,c). Data are also reported as mean ± SD (b,D). *P < 0.05, **P < 0.01 versus untreated cells.
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first time that silibinin was able to upregulate ERβ expression in 
T lymphocytes from both women and men.

Ligation of this receptor by silibinin induced an antiprolifera-
tive and a proapoptotic effect in T lymphocytes. These results are 
partially in accordance with those previously reported by other 
groups who observed that silymarin plays an antiproliferative 
activity (39–41) but, unlike what we have seen, it also has a proa-
poptotic effect (39, 40) in human T lymphocytes. The use by these 
authors of silymarin, which consists of a family of flavolignans 
including silybinin, isosilybinin, silychristin, isosilychristin, 
silydianin, and the flavonoid taxifoline, instead of the pure 
silibinin, might account for this discordant result. Interestingly, 
silibinin was able to strongly decrease the expression of the pro-
inflammatory cytokines IL-17 and TNF-α through a mechanism 
that foresees its binding to ERβ, as demonstrated by the lack of 

silibinin effect when this receptor was knocked down. To note, all 
these experiments revealed that T lymphocytes from both sexes 
had the same susceptibility to silibinin. This is in line with previ-
ous observations that T  lymphocytes from females and males 
subjects express similar basal levels of ERβ (12) and with our 
finding that silibinin upregulated ERβ in both sexes, assigning to 
silibinin a role for the treatment of inflammatory diseases both in 
women and in men. To note that the selective activation of ERβ 
could be of clinical value since it does not induce the classic side 
effects, mediated by ERα, observed after estrogen administration 
(e.g., cerebro- and cardiovascular events, higher occurrence of 
endometrial and breast cancer).

Both IL-17 and TNF-α are known to play a critical role in 
the pathogenesis of RA as demonstrated by the success of treat-
ments based on their inhibition by biological disease-modifying 
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FigUre 7 | Quantitative real-time PCR (qRT-PCR) analysis of microRNA-155 
(miR-155) expression level in peripheral blood T lymphocytes from 
rheumatoid arthritis (RA) patients. qRT-PCR analysis of miR-155-3p 
expression level in T lymphocytes isolated from five female (a) and two male 
(b) RA patients, treated or not with silibinin for 48 h. The values of fold 
change were calculated by the 2−ΔΔCt method relative to untreated RA 
patient. The mean ± SD values, referred to the fold of change between 
treated and untreated patients, were shown.
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antirheumatic drugs (42, 43). Interleukin-17 and TNF-α modu-
late the migration of inflammatory cells into the joints and display 
additive or synergistic effects on human synovial fibroblasts (44). 
Accordingly, alterations in peripheral T lymphocyte homeosta-
sis and unbalanced Th1 and Th17 cytokine profiles have been 
repeatedly demonstrated in RA patients (27). Thus, a drug able to 
block these two cytokines at the same time would be very useful 
for an effective therapeutic approach in inflammatory arthritis. 
Hence, with in mind the goal to propose silibinin as therapeutic 
tool in RA, we evaluated whether this phytoestrogen could exert 
its anti-inflammatory effects on T  lymphocytes from patients 
with active RA who had a poor response to disease-modifying 
antirheumatic drugs. In agreement with the results obtained in 
healthy donors, silibinin appeared to have immunosuppressive/
anti-inflammatory effects on T  lymphocytes from RA patients 
inducing apoptosis, inhibiting proliferation and both IL-17 and 
TNF-α expression, thus assigning to this molecule a potential 
value as therapeutic tool in this disease. In support of this 
assumption, a recent study by Tong et al. (45) showed that sili-
binin alleviated inflammation and induced apoptosis in human 

RA fibroblast-like synoviocytes and had a beneficial effect on 
arthritis in rats.

Interestingly, Th1 and Th17 polarization have been recently 
associated with an overexpression of miR-155 whose deregula-
tion plays a crucial role in the pathogenesis of RA contributing 
to the progress of inflammation (29, 30). miR-155 has been 
reported to be abnormally expressed in arthritis models and miR-
155-deficient mice do not develop collagen-induced arthritis and 
show significant reduced Th17 cells and autoantibody production 
(46). Furthermore, miR-155 expression in RA patients has been 
positively related to TNF-α, C-reactive protein, erythrocyte sedi-
mentation rate levels, and DAS28 (47). Noteworthy, in this study, 
we observed a downregulation of miR-155 expression in T lym-
phocytes from RA patients treated with silibinin. Accordingly, 
He et  al. (38) demonstrated that miR-155 is downregulated by 
estrogen through ERβ, further supporting the crucial role of this 
receptor as potential therapeutic target in RA.

In conclusion, our in vitro study provided new insights regard-
ing the anti-inflammatory activities of silibinin. However, in vivo 
assays (e.g., collagen-induced arthritis model) are needed to 
confirm the potential role of this compound as therapeutic tool in 
RA, paving the way for clinical trials in this disease. In particular, 
the use of silibinin in combination with synthetic drugs might 
reduce their standard dosage and their related side effects. To note, 
clinical trials on silibinin effectiveness in the treatment of patients 
with hepatitis, cirrhosis, or biliary disorders demonstrated its 
safety with adverse events comparable to placebo (24, 48).
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Objective: Antiphospholipid antibodies positivity (aPL) is considered as a risk factor 
for adverse pregnancy outcome (APO). The aim of this study was to determine the 
risk factors for APO in patients with confirmed aPL positivity, isolated (aPL carriers) or 
associated with a definite primary antiphospholipid syndrome (PAPS).

Methods: The clinical and laboratory features of 283 pregnancies occurring between 
2000 and 2014 in 200 women were collected in three institutions.

results: The rate of live birth was 87.9% and APO was observed in 50 cases (17.7%). 
Multivariate analysis showed that the independent variables related to APO were the con-
comitant diagnosis of an organ-specific autoimmune disease (p = 0.012, odds ratio (OR) 
3.29, confidence interval (CI) 95% 1.29–8.38) and the presence of low complement levels 
during the first trimester (p = 0.02, OR 2.3, CI 95% 1.17–9.15). No statistical differences 
were found in APO occurrence among patients treated with low-dose aspirin (LDA) versus 
those treated with LDA plus heparin (LMWH), but LDA + LMWH was more frequently admin-
istered in patients with triple aPL positivity (p = 0.001, OR 3.21, CI 95% 1.48–7.11) and with 
PAPS (p < 0.001, OR 8.08, CI 95% 4.3–15.4). Based on clinical history, the patients were 
divided into four groups: obstetric, thrombotic, non-criteria antiphospholipid syndrome 
(clinical non-criteria), and aPL carriers. APOs were more frequent in the thrombotic group 
(24%). Seven patients had a thrombotic event during pregnancy or puerperium (2.4%).

conclusion: Maternal and fetal complications were observed in some aPL-positive 
patients despite their efficient management according to the current recommendations.  
A higher risk of APO was observed in patients with a previous thrombosis and/or more 
complex autoimmune phenotype.

Keywords: pregnancy, adverse pregnancy outcome, antiphospholipid antibodies, autoimmune thyroiditis, risk 
factors, therapy
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inTrODUcTiOn

The antiphospholipid syndrome (APS) is an acquired syste mic 
autoimmune disease characterized by the presence of obstet-
rical morbidity and recurrent thrombotic vascular events 
associated with antiphospholipid antibodies (aPL). aPL is a 
hetero geneous group of autoantibodies reacting against phos-
pholipids, phospholipid–protein complexes, and phospholipid- 
binding proteins (1). The clinical classification “criteria” 
include arterial/venous thrombosis and obstetric morbid-
ity (more than three consecutive early pregnancy loss, fetal 
death (FD) at or beyond 10 week of gestation, and early severe 
preeclampsia or placental insufficiency necessitating delivery 
before 34 weeks of gestation). The laboratory criteria include 
the persistent positivity for at least one test among lupus 
anticoagulant (LA), anticardiolipin (aCL), and anti beta2gly-
coprotein I antibodies (anti-B2GPI). According to the criteria, 
both aCL IgG/IgM or/and anti-B2GPI IgG/IgM should be at 
medium or high titer.

Furthermore, aPL may also be associated with less specific 
clinical features, defined as “non-criteria”(1). These include 
heart valve disease, livedo reticularis, thrombocytopenia, aPL 
nephropathy, neurological manifestations such as epilepsy and 
cognitive dysfunction as well as previous pregnancy morbidity 
which do not fulfill the formal “criteria” for APS (two consecu-
tive early pregnancy losses, late-onset preeclampsia, etc.). The 
presence of aPL antibodies has also been detected in “aPL 
carriers,” subjects without any clinical features of APS (with 
or without systemic autoimmune diseases). Primary APS was 
defined as the absence of associated systemic connective tissue 
disease (CTD).

The clinical management of pregnant patients with aPL aims 
at preventing obstetric complications and maternal throm-
botic events. Combination therapy of low-dose aspirin (LDA) 
and heparin is regarded as conventional treatment for patients 
with an established diagnosis of obstetric APS (2, 3), gener-
ally resulting in over 70% successful pregnancies. However,  
a significant number of pregnancies are still complicated or 
unsuccessful in women with APS. In patients not fulfilling 
the criteria for definite APS, the management is still debated 
and different protocols are applied during pregnancy with 
contrasting results. In clinical practice, LDA is usually admin-
istered to patients with aPL (4). However, a recent systematic 
review, including three studies of aPL-positive patients not 
fulfilling the clinical criteria for APS (154 pregnancies), did 
not find clear evidence of LDA superiority in the prevention 
of pregnancy loss and complications (5). The discrepancy 
between the published literature and the “real life” empha-
sizes the need to better classify the patients according to the 
stratification of obstetric risk. In fact, the definition of the risk 
factors for pregnancy failure will provide an objective tool for 
tailoring the management of patients on their individual risk 
profile. Therefore, the aim of this collaborative work was to 
assess the risk factor of obstetric complications in patients 
with confirmed aPL positivity with or without a diagnosis of 
primary antiphospholipid syndrome.

PaTienTs anD MeThODs

study cohort
Medical records of pregnant women with confirmed positi vity  
for aPL antibodies attending three referral centers (Rheuma-
tology or Internal Medicine Departments with consolidate 
experience on APS) from January 2000 to December 2014 were 
retro spectively evaluated. Patients with a diagnosis of systemic 
CTD (according to the international classification criteria) at 
the beginning of the follow-up were excluded. The presence 
of other autoantibodies and/or low complement levels was not 
considered an exclusion criterion if not associated with clinical 
manifestations specific for CTDs.

This study was performed according to the principles of the 
Declaration of Helsinki with written informed consent from all 
subjects and was approved by the Ethic Committee of the Promo-
ting Centre (approval number 1088) and it has been approved by 
the other centers.

autoantibodies Detection
Lupus anticoagulant was detected by coagulation assay accord-
ing to the guidelines of the International Society on Thrombosis 
and Haemostasis (6), while aCL and anti-B2GPI IgG and IgM 
by ELISA according to the current recommendations (7). Anti-
nuclear antibodies (ANA), anti-double-stranded DNA (anti-
dsDNA) antibodies, antibodies to extractable nuclear antigens 
(anti-ENA), and complement C3 and C4 fractions were detected 
as for clinical practice. Antiphospholipid antibodies were consi-
dered positive if confirmed at least 12  weeks apart, according  
to the classification “criteria.” In each center, the tests were per-
formed in a referral laboratory certified for diagnosis. Data con-
cerning the prevalence of other antiphospholipid antibodies not 
included in the classification criteria were not collected because 
they were not routinely performed.

adverse Pregnancy Outcome  
(aPO) Definition
In this study, we considered the following events as aPL-related 
APO: spontaneous abortions (SAs) (<10  weeks of gestation), 
FD (≥10  weeks of gestation), neonatal death before hospital 
discharge due to complications of prematurity, preterm delivery 
before 34  weeks of gestation with or without preeclampsia, 
hemolysis, elevated liver enzymes, and low platelet (HELLP) 
syndrome (concomitant presence of thrombocytopenia, evi-
dence of hepatic dysfunction, and hemolysis), and small for 
gestational age babies (SGA) associated with abnormal Doppler 
flow velocimetry. Pregnancies with an identifiable other cause 
for APO (i.e., anatomical abnormalities, cervix dilatation) were 
excluded from statistical analysis.

statistical evaluation
Categorical variables were reported as proportion and/or percent-
age, continuous variables as mean (±SD) values. Fisher’s exact 
test or chi-squared test for categorical variables and Student’s 
t-test or Wilcoxon–Mann–Whitney test for continuous variables 
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Table 1 | Clinical criteria manifestations at study onset.a

clinical manifestation patients with primary antiphospholipid  
syndrome (aPs)

arterial/venous thrombotic  
manifestationa

number of 
patients 42 (%)

Deep venous thrombosis 32 (76.2)
Pulmonary embolism 8 (19.4)
Stroke 7 (16.6)
Myocardial infarction 3 (7.1)
Peripheral arterial thrombosis 2 (4.8)
Gastrointestinal venous tract thrombosis 1 (2.3)

Obstetrical manifestationa number of 
patients 99 (%)b

Fetal deaths (≥1 event) 57 (57.5)
Premature births before 34 weeks 20 (20.2)
Spontaneous abortion (SA) (≥3 consecutive events) 17 (17.2)
Preeclampsiac/Eclampsiad/Hemolysis, elevated liver enzymes, 
and low platelets (HELLP syndrome)e

16 (16.2)

clinical manifestation of “non-criteria aPs” patients 39 (%)

Obstetrical non-criteria (i.e., <3 consecutive  
or not consecutive SA)

28 (71.8)

Premature births >34 weeks but <37 weeks 20 (51.3)
Preeclampsia/Eclampsia/HELLP syndrome/IUGRf  
after 34 weeks 

5 (12.8)

Livedo reticularis 5 (12.8)
Thrombocytopenia 3 (7.7)
Chorea 2 (5.2)
Valvulopathy 2 (5.2)
Hemolytic anemia 1 (2.6)

aThe same patient can be included in more than one category. The obstetrical 
manifestations were previously described (see Patients and Methods).
bWe considered the patients included in the O-APS category (85 patients)  
and 14 patients in the T-APS who also pregnancy morbidity.
cPreeclampsia, increased blood pressure associated with proteinuria in  
pregnancy; proteinuria is defined as the excretion of 300 mg of protein  
or greater in a 24-h specimen.
dEclampsia, onset of seizures during preeclampsia.
eHELLP syndrome, concomitant presence of severe thrombocytopenia 
(platelets ≤50,000/μl), evidence of hepatic dysfunction (liver enzymes ≥70 IU/l), and 
evidence suggestive of hemolysis (total serum lactate dehydrogenase ≥600 IU/l).
fIUGR, intrauterine growth restriction (assessed by ultrasound as a fetal abdominal 
circumference in the <5th percentile).
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were applied as appropriate. For the multivariate analyses, we 
included the features associated to APO at the univariate analy-
sis. Multivariate analysis was conducted by logistical regression 
model (Statview). P-values of <0.05 were considered significant 
and Odds Ratio (OR) with 95% confidence interval (95% CI) was 
indicated.

resUlTs

Patients
The 200 patients included were Caucasian (n  =  177, 88.5%), 
African (n = 8, 4%), and others (n = 15, 7.5%). An organ-specific 
autoimmune disease was diagnosed in 28 women: autoimmune 
thyroiditis (n = 20, 10%), celiac disease (n = 2, 1%), cutaneous 
psoriasis (n = 2, 1%), autoimmune hepatitis (n = 2, 1%), autoim-
mune thyroiditis and celiac disease (n = 1, 0.5%), and primary 
biliary cirrhosis (n = 1, 0.5%).

Sixty patients (30%) had at least one modifiable cardiovascular 
risk factor (cigarette smoke, obesity, arterial hypertension) at 
pregnancy onset. Inherited thrombophilic factors (factor II and 
factor V mutation, protein C/protein S/antithrombin deficiency) 
were available for 168 pregnancies and abnormalities were found 
in 16 patients (9.5%).

According to the classification “criteria” for APS, the patients 
had obstetric morbidity only (O-APS; n =  85, 42.5%), throm-
botic events (with or without pregnancy morbidity) (T-APS; 
n  =  42, 21%), clinical “non-criteria” manifestations (NC-APS; 
n = 39, 19.5%) or aPL positivity without any clinical manifesta-
tions (aPL carriers; n = 34, 17%). The details about the clinical 
criteria manifestations at study onset are reported in Table  1. 
One hundred and fifty patients had 344 previous pregnancies 
not followed in one of the three centers, with a live birth in 98 
cases (28%).

Frequency of positive autoantibodies
The results of the three aPL assays were available for all the 
patients. LA was detectable in 80 patients (40%). aCL antibodies 
were positive in 131 patients (65.5%), 101 IgG and 60 IgM (50.5 
and 30%); anti-B2GPI in 124 (62%), 84 IgG and 71 IgM (42 and 
35.5%). A triple aPL positivity was observed in 46 women (23%) 
while double in 43 (21.5%) and single in 111 (55.5%). ANAs 
were persistently positive in 75 patients (37.5%), anti-dsDNA in 
9 (4.5%), and anti-ENA in 8 (4%) (anti-Ro/SSA in 6 cases, anti-
Sm/RNP in 2). Complement levels were tested at the beginning 
of the pregnancy in 134 patients and were found to be low in 16 
(12%).

Pregnancy Outcome
During the study period, data of 283 pregnancies were collected. 
The mean maternal age at conception was 32.4  ±  5.1  years. 
The outcome of the pregnancies was as follows: 248 live births 
(88%) with 251 babies (3 twin pregnancies) at a mean gesta-
tional age of 37.6 ± 3.4 weeks (range 25.6–41.5), SA before the 
10 weeks of gestation (n = 20), FD (n = 12), voluntary (n = 1), 
and medical terminations (n = 2: one Steinert’s syndrome and 
one trisomy 18).

At least one complication occurred in 110 pregnancies (38.9%) 
(see Table  2) including the neonatal death of a child born at 
27 weeks to a patient with HELLP syndrome.

Fifty out of 110 (45.4%) complicated pregnancies were defined 
as APO (17.7% of all pregnancies) (Table 3). Tables 4 and 5 report 
the univariate statistical comparison of clinical and laboratory 
features between APO and uneventful pregnancies. In multivari-
ate analysis, the independent features related to APO were either 
the concomitant diagnosis of an organ-specific autoimmune 
disease (p = 0.012, OR 3.29, CI 95% 1.29–8.38) or the presence of 
low complement levels at conception or during the first trimester 
(p  =  0.02, OR 2.3, CI 95% 1.17–9.15). The positivity of other 
autoantibodies (i.e., ANA medium titer, anti-ENA, anti-dsDNA) 
almost reached the significant threshold (p = 0.06, OR 2.34, CI 
95% 0.96–5.72).

The most prevalent autoimmune disease was thyroiditis (22 
patients with 31 pregnancies) which resulted in a significantly 
higher risk of SA (p = 0.014, OR 4.1; CI 95% 1.26–12.73). The 
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Table 4 | Univariate analysis of clinical features in successful and adverse pregnancy outcome (APO) pregnancies.

clinical/serological features aPO (n = 50) 
(17.7%)

successful pregnancies 
(n = 233) (82.3%)

p-Value Or (ci 95%)

Age at the onset ≥35 years (n = 107) 20/50 (40) 87/233 (37.3) NS _
Formal diagnosis of antiphospholipid syndrome (APS) (n = 190) 38/50 (76) 152/233 (65.2) NS –
Organ-specific autoimmune diseasea (n = 38) 12/50 (24) 26/233 (11.2) 0.016e 2.51 (1.09–5.75)
Previous thrombosis (n = 66) 16/50 (32) 50/233 (21.5) NS –
Previous pregnancy morbidity (n = 151) 27/50 (54) 124/233 (53.2) NS –
Previous premature birth (n = 32) 10/50 (20) 22/233 (9.4) 0.032f 2.39 (0.99–5.82)
Previous ≥3 spontaneous abortion (n = 29) 4/50 (8) 25/233 (10.7) NS –
Prior pregnancy morbidity and thrombosis (n = 27) 5/50 (10) 22/233 (9.4) NS –
Other APS-related manifestationsb (n = 48) 16/50 (32) 32/233 (13.7) 0.002f 2.95 (1.38–6.29)
Acquired risk factors for thrombosisc (n = 90) 21/50 (42) 69/233 (29.6) NS –
Inherited thrombophilia (data available for 237 pregnancies)d (n = 23) 5/40 (12.5) 18/197 (9.1) NS –

aAssociated autoimmune organ disease, thyroiditis, autoimmune hepatitis, primary biliary cirrhosis, psoriasis, celiac disease.
bOther APS-related manifestations, thrombocytopenia, epilepsy, headache, livedo reticularis, heart valve lesions, and hemolytic anemia.
cAcquired risk factors for thrombosis, hypertension, BMI >30 kg/m2, and smoke.
dInherited thrombophilia, factor II and factor V mutation, protein C and S and antithrombin III deficiency.
NS, not statistically significant.
eSignificant at multivariate analysis, p = 0.012 (OR 3.29, CI 95% 1.29–8.38).
fNot significant at multivariate analysis.

Table 3 | Lists of adverse pregnancy outcome (APO) related to aPL presence.

aPO related to aPl* Pregnancies (n = 50)

Spontaneous abortion 20 (40)
Fetal death 12 (24)
Neonatal death due to prematurity 1 (2)
Preterm deliveries <34 weeks 16 (23)
Small for gestational age (SGA) associated 
with abnormal Doppler flow velocimetry

4 (8)

Hemolysis, elevated liver enzymes, and low platelet 7 (14)

*The same patient can be included in more than one category.

Table 2 | Outcome of 283 pregnancies in 200 patients during the follow-up.

gestational outcome and obstetrical complications* 283 Pregnancies 
(%)

Spontaneous abortion 20 (7.1)
Fetal death 12 (4.2)
Voluntary/medically induced interruption of pregnancy 3 (1)

Deliveries 248 (87.6)
Live births 247 (87.3)
Neonatal deatha 1 (0.3)
Preterm deliveries <37 weeks 41 (14.4)
Preterm deliveries <34 weeks 16 (5.7)
Preeclampsia 22 (7.8)
Small for gestational age (SGA)b 17 (6)
Intrauterine growth restriction 11 (3.9)
Preterm premature rupture of membranesc 7 (2.4)
HELLP syndromed 7 (2.4)
Gestational diabetes 13 (4.6)
Gestational hypertensione 4 (1.4)

*The same patient can be included in more than one category.
aNeonatal death, death of a formed fetus alive at birth in the first 28 days of life.
bSGA, small for gestational age was defined as a birth weight in the <10th percentile 
for gestational age.
cPreterm premature rupture of membranes was defined as rupture  
of the membranes before 37 weeks of gestation.
dHELLP syndrome concomitant presence of severe thrombocytopenia (platelets 
≤50,000/μl), evidence of hepatic dysfunction (liver enzymes ≥70 IU/l), and evidence 
suggestive of hemolysis (total serum lactate dehydrogenase ≥600 IU/l).
eGestational hypertension, onset of hypertension after 20 weeks of gestation, without 
proteinuria.
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only other association was found to be with low levels of C3 and/
or C4 and fetal losses (p = 0.008, OR 9.56, CI 95% 1.66–56.4).

Pregnancy Outcome in Patients With or 
Without a Formal Diagnosis of aPs
During the follow-up, 137 patients classified as T-APS or O-APS 
had 190 pregnancies, whereas 73 I-APS or aPL carrier patients 
had 93. APO in these two groups was not significantly different 
(20 versus 13%; p  =  0.19). The frequency distribution of APO 
in four subgroups (T-APS, O-APS, NC-APS, and aPL carrier) 
was 24.2, 18.7, 9.2, and 17.9%, respectively. In Tables 6 and 7, we 
describe the serological profile, the different APO, and the risk 
factor associated with APO in the four subgroups.

Therapy
All patients were treated with LDA (n = 278; 98.2%) and/or low-
molecular-weight heparin (LMWH; n  =  216; 76.3%). In 85% 
of the cases, LDA was used before the eighth week of gestation. 
LMWH was introduced before the eighth week of gestation in 
164 pregnancies (76% of all pregnancies treated with heparin). 
Combination therapy was more frequent in patients with triple 
aPL positivity compared to single/double positivity (p = 0.001, 
OR 3.21, CI 95% 1.48–7.11). In addition, immunomodulatory 
or immunosuppressive therapy was recorded in 42 pregnancies 
with hydroxychloroquine and corticosteroids in 32 (11.3%) and 
16 (5.7%) cases, respectively. Moreover, combination therapy 
was used more frequently in patients satisfying the criteria for 
primary APS compared to the others (p < 0.001, OR 8.086, CI 
95% 4.3–15.4). Table 6 outlines the distribution of treatments in 
the four subgroups of patients. There were no significant differ-
ences in the rate of APO among the patients treated with LDA 
only or the combination therapy (9/47 in LDA versus 58/231 in 
LDA + LMWH) (Table 8). Moreover, the number of APO was 
neither related to the time of introduction of the combination 
therapy nor to the heparin dosage. Interestingly, three out of five 
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Table 5 | Univariate analysis of serological features in successful and adverse pregnancy outcome (APO) pregnancies.

clinical/serological features aPO (n = 50) 
(17.7%)

successful pregnancies 
(n = 233) (82.3%)

p-Value Or (ci 95%)

Lupus anticoagulant (LA) positivity (n = 125) 29/50 (58) 96/233 (41.2) 0.03c 1.97 (1.01–3.83)
LA single positivity (n = 20) 2/50 (4) 18/233 (7) NS –
IgG anticardiolipin (aCL) (n = 153) 36/50 (72) 117/233 (50.2) 0.005c 2.54 (1.25–5.26)
IgG aCL single positivity (n = 37) 8/50 (16) 29/233 (12.4) NS
IgM aCL (n = 53) 13/50 (26) 40/233 (17.2) NS –
IgM aCL single positivity (n = 6) 1/50 (2) 5/233 (2.1) NS –
IgG anti-B2GPI (n = 134) 22/50 (44) 112/233 (48.1) NS –
IgG anti-B2GPI single positivity (n = 36) 4/50 (8) 32/233 (13.7) NS
IgM anti-β2GPI positivity (n = 107) 17/50 (34) 90/233 (38.6) NS –
IgM anti-B2GPI single positivity (n = 24) 2/50 (4) 22/233 (9.4) NS –
Single aPL positivity (n = 144) 20/50 (40) 124/233 (53.2) NS –
Double aPL positivity (n = 55) 8/50 (16) 47/233 (21) NS –
Triple aPL positivity (n = 84) 22/50 (44) 62/233 (26.6) 0.015c 2.16 (1.10–4.25)
Other autoantibodiesa (n = 78) 21/50 (42) 57/233 (24.5) 0.012c 2.23 (1.12–4.42)
Low complement levelsb (data available for 195 pregnancies) (n = 27) 11/34 (32.3) 16/161 (9.9) 0.001d 4.33 (1.63–11.46)

aOther autoantibodies, antinuclear antibody ≥1:320, anti-double-stranded DNA, antibodies to extractable nuclear antigens.
bLow complement levels, decrease in C3 and/or C4 at conception or during first trimester.
NS, not statistically significant.
cNot significant at multivariate analysis.
dSignificant at multivariate analysis, p = 0.02 (OR 2.3, CI 95% 1.17–9.15).

Table 6 | Description of serological profile, treatment, and prevalence of adverse pregnancy outcome (APO) in the subgroups (all pregnancies included in the study).

serological profile

O-aPs, n = 124 (%) T-aPs, n = 66 (%) nc-aPs, n = 54 (%) aPl carrier, n = 39 (%)

Single aPL positivity 75 (60.4) 16 (24.2) 32 (59.2) 21(53.8)
Double aPL positivity 20 (16.1) 14 (21.2) 11(20.3) 10 (25.6)
Triple aPL positivity 29 (23.3) 36 (54.5) 11(20.3) 8 (20.6)

Treatment

LDA monotherapy 17 (13.7) 1 (1.5) 23 (42.6) 26 (66.6)
LMWH monotherapy 0 (0) 5 (7.5) 0 (0) 0 (0)
Combination treatment (LDA + LMWH) prophylactic dose 97 (78.2) 21 (31.2) 31 (57.4) 12 (30.8)
Combination treatment (LDA + LMWH) therapeutic dose 10 (8) 39 (59.1) 0 (0) 1 (2.6)
Hydroxychloroquine 8 (6.4) 19 (28.8) 3 (5.5) 2 (5.1)
Steroids 4 (3.2) 9 (13.6) 3 (5.5) 4 (10.2)

aPOa

O-aPs, n = 22  
(17.7%)

T-aPs, n = 16  
(24.2%)

nc-aPs, n = 5  
(9.2%)

aPl carrier, n = 7  
(17.9%)

Spontaneous abortion 9 (41) 8 (50) 2 (40) 1 (14.2)
Fetal death 4 (18.2) 4 (25) 1 (20) 3 (42.8)
Neonatal death due to prematurity 0 (0) 0 (0) 0 (0) 1 (14.2)
Preterm deliveries <34 weeks 7 (31.8) 4 (25) 2 (40) 3 (42.8)
Small for gestational age associated with  
abnormal Doppler flow velocimetry

2 (9) 0 (0) 1(20) 1 (14.2)

Hemolysis, elevated liver enzymes, and low platelets 2 (9) 3 (18.7) 0 (0) 2 (28.5)

LDA, low-dose aspirin; LMWH, low-molecular-weight heparin.
aThe same patient can be included in more than one category.
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pregnancies treated only with LMWH experienced an adverse 
outcome (p = 0.04, OR 7.37, CI 95% 0.96–65).

Maternal Outcome
Seven patients (2.5%) experienced a thrombotic event during 
pregnancies or puerperium: three during pregnancies (all dur-
ing the first trimester) and four during puerperium (in three 

cases within 1 week after delivery and in one case 1 month after 
birth). No patient received ovulation induction therapy. Of these 
thrombotic events, four were venous (three deep venous throm-
bosis and one pulmonary embolism) and three arterial [one 
myocardial infarction and two catastrophic antiphospholipid 
syndrome (CAPS)]. Five of these events occurred in the T-APS 
subgroup, one in O-APS, and one in aPL carrier. In addition, the 
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Table 8 | Comparison of treatment in successful and complicated pregnancy.

Treatment adverse pregnancy 
outcome (n = 50) (17.7%)

successful pregnancies 
(n = 233) (82.3%)

p-Value

LDA monotherapy (n = 67) 9/50 (18) 58/233 (24.9) NS
LMWH monotherapy (n = 5) 3/50 (6) 2/233 (0.8) 0.040*
LDA + LMWH (n = 211) 38/50 (76) 173/233 (74.2) NS
LDA + LMWH prophylactic dosage (n = 161) 28/50 (56) 133/233 (57.1) NS
LDA + LMWH therapeutic dosage (n = 50) 10/50 (20) 40/233 (17.2) NS
LDA + LMWH, start at positive pregnancy test (n = 143) 28/50 (56) 115/233 (49.3) NS
LDA + LMWH, start between 6 and 8 weeks of gestation (n = 16) 0/50 (0) 16/233 (6.8) NS
LDA + LMWH, Start between 9 and 12 weeks of gestation (n = 22) 6/50 (12) 16/233 (6.8) NS
LDA + LMWH, start after 12 weeks of gestation (n = 30) 4/50 (8) 26/233 (11.1) NS
Hydroxychloroquine (n = 32) 6/50 (12) 26/233 (11.2) NS
Steroids (n = 16) 4/50 (8) 12/233 (5.1) NS

LDA, low-dose aspirin; LMWH, low-molecular-weight heparin.
*OR 7.37; CI 95% 0.96–65.

Table 7 | Laboratory and clinical features associated with adverse pregnancy outcome (APO) in the four subgroups.

aPO n(%) Features associated with aPO p-Value Or (95% ci)

T-APS, 42 patients, 66 pregnancies 16 (24) Prior venous thrombotic event 0.028 >20 (0.09–150)

O-APS, 85 patients, 124 pregnancies 22 (18) Previous premature birth 0.037 2.85 (0.92–8.78)
Other autoantibodiesa 0.023 3.02 (1.01–9.02)
Low complement levelsb 0.04 3.63 (0.83–15.6)

NC-APS, 39 patients, 54 pregnancies 5 (9) LA positive (any combination) 0.03 1.97 (1.01–3.83)
Anti-B2GPI IgG positive (any combination) 0.017 6.91 (1.28–49)

aPL carrier, 34 patients, 39 pregnancies 7 (18) Triple aPL-positive 0.022 9.33 (1.13–90.3)

aOther autoantibodies, antinuclear antibody ≥1:320, anti-double-stranded DNA, antibodies to extractable nuclear antigens.
bLow complement levels, decrease in C3 and/or C4 at conception or during first trimester.
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serological profile of these patients showed that four (53%) were 
triple positive, one double positive (LA and aCL), and two single 
positive (aCL). Six out of these seven patients (85%) were already 
receiving antithrombotic prophylaxis at the time of the event. 
The two patients who experienced CAPS have been previously 
described (8).

DiscUssiOn

The aim of the present study was to analyze the gestational and 
maternal outcome in patients with confirmed positivity for anti-
phos pholipid antibodies (aPL) followed up during their pregnan-
cies. The most important exclusion criteria were the concomitant 
presence of another defined CTD, primarily SLE, a condition 
recognized as an independent risk factor for pregnancy failure 
in previous multicenter studies (9, 10).

The gestational outcome of these pregnancies significantly 
improved as compared to historic ones, with a live birth rate 
of 87.9%. In fact, a collaborative European study (EUROAPS) 
reported a live birth rate of 77.7% in patients with pure obstetric 
APS (11), while a recent retrospective Italian Study (PREGNANT) 
(12) reported 54.3% in patients with primary APS. Our results 
are difficult to compare with previously published cohorts as they 
mainly analyzed pregnancy outcome in patients with established 
APS but also with the incomplete form only.

Despite the high rate of live births in our study, maternal–fetal 
complications still occurred, and APOs related to aPL were 

identified in 17.7% of the pregnancies. Several studies have previ-
ously attempted to identify the clinical and laboratory variables 
predictive of APO (9, 10), and a concomitant SLE diagnosis and 
prior thrombotic events were found to be associated with poor 
pregnancy outcome. Moreover, previous works have identified 
the triple aPL positivity as an independent risk factor (9), while a 
prospective multicenter study (13, 14) supported the key role of 
LA as the main predictor of APO.

In this study, we show by means of multivariate analysis 
that the presence of a concomitant organ-specific autoimmune 
disease and/or low levels of C3 and/or C4 at conception are the 
only two independent factors associated with APO, although 
it seems to be associated with several clinical and serological 
factors from the univariate analysis. Autoimmune thyroiditis 
accounted for 71% of organ-specific autoimmune disease in 
our cohort and was associated with SA as previously reported 
(15). Particularly, we did not find any association between APO 
and any peculiar aPL positivity. This may be due to the small 
number of complicated pregnancies collected and/or to the fact 
that patients with LA or triple positivity were more frequently 
treated with the combination therapy. This observation could 
also account for the lack of difference in pregnancy outcome 
between women treated with combination therapy and those 
receiving LDA alone, which is generally considered as a less 
effective treatment (2).

Low complement levels at the beginning of pregnancy were 
also observed as an independent risk factor for APO. The role 
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of complement activation in the pathogenesis of APS pregnancy 
morbidity is an intriguing question. Previous studies have dem-
onstrated that the activation of complement components C3, C4, 
and C5 increases the risk of injury or death in animal models 
injected with aPL (16, 17). Our group has also investigated this 
relationship in a multicenter study (18). Utilizing pregnancy C3 
and C4 normality ranges (in each trimester), we did not show 
an association between hypocomplementemia and obstetric 
complications in primary APS. Conversely, a prospective cohort 
study (19) that included both primary and secondary APS has 
recognized hypocomplementemia as an independent predictor 
of low birth weight and premature delivery.

As expected, T-APS group had the highest rate of compli-
cated pregnancies (24.2%), confirming the previous reports (9).  
We did not find any statistical difference in the rate of APO 
among patients with or without a full blown picture of primary 
APS (O + T vs NC + carriers).

Till date, there are no generalized recommendations on how 
to treat women not fulfilling the APS criteria or if a prophylactic 
treatment is required during pregnancy and puerperium. A recent 
systematic review reported that LDA is comparable to the usual 
care or placebo in the prevention of pregnancy complications. 
However, the authors were able to include only a limited num-
ber of studies in their analysis (5). The majority of the patients 
included in that review belonged to a large retrospective obser-
vational Italian study on aPL patients that also included patients 
with organ or systemic autoimmune diseases (20). The authors 
concluded that, in their cohort, the most important factor related 
to pregnancy outcome was the antibody profile (medium–high 
titers of aPL) and not the treatment or the previous pregnancy 
morbidity. Hence, these results cannot be compared with those 
obtained in the present study in which all the patients received 
antithrombotic therapy. However, in the aPL carrier group, we 
observed a significant association between APO and triple aPL 
positivity, a feature included in the definition of the “high-risk” 
aPL profile (9).

Beside pregnancy morbidity, we reported the occurrence of 
a moderate number of thrombotic events during pregnancy or 
puerperium. The majority of the thrombotic events occurred 
during puerperium, despite the use of adequate antithrombotic 
treatments. This pattern is consistent to the well-known risk of 
postpartum thrombosis in the general obstetric population. The 
two cases of CAPS onset during the puerperium were already 
described in a retrospective series of 13 patients (8). In more than 
90% of their cases (as well as in our two women), the occurrence 
of a HELLP syndrome can be considered as a predictive factor 
for CAPS.

This study has several limitations: the retrospective design, 
even if data were prospectively collected during each pregnancy; 

the lack of a centralized laboratory, although all the laboratories 
were referral centers; the wide temporal range of the pregnan-
cies (15 years, 2000–2014); and the multicenter nature, possible 
source of heterogeneity. Nevertheless, APS is a rare disease, and 
a collaborative study including several pregnancy clinics was 
required in order to achieve a significant number of cases.

In conclusion, maternal and fetal complications were observed 
in nearly 18% of aPL-positive patients despite the conventional 
treatment according to the current recommendations. Additional 
immunomodulatory treatment might be required for these dif-
ficult patients (21, 22).

In the last two decades, a great improvement was certainly 
achieved in the outcome of APS pregnancies. This success is prob-
ably due to multi-specialistic teams devoted to the tight control 
of aPL-positive women. A preconception risk stratification is rec-
ognized as crucial. The results obtained in this study confirmed 
the role of some of the parameters lately included in the recently 
revised risk factors for APO in APS patients (23). In addition, we 
underline the influence of a nonsystemic autoimmune phenotype 
even in patients with aPL without a formal diagnosis of APS.

In the absence of controlled trials and with very limited 
prospective studies available, the present work, collecting a very 
large number of pregnancies from experienced centers, might 
contribute to a better definition of the clinical and laboratory 
features associated with a poor prognosis that deserve attention 
by the clinicians in the everyday practice.
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The present study was conducted to diagnose obstetric anti-phospholipid syndrome 
(OAPS) in patients with clinical signs suggestive of anti-phospholipid syndrome (APS), 
but persistently negative for conventional anti-phospholipid antibodies (aPL). Sera from 
61 obstetrical seronegative APS (SN-APS) patients were analyzed for anti-cardiolipin  
antibodies (aCL) using thin-layer chromatography (TLC)-immunostaining, for anti- 
cardiolipin/vimentin antibodies (aCL/Vim), anti-phosphatidylserine/prothrombin antibod-
ies, IgA anti-β2glycoprotein I antibodies (aβ2GPI), and IgA aCL antibodies by enzyme-
linked immunosorbent assay. Taken together, our findings show that in 50 out of 61 
SN-APS (81.9%) at least one aPL/cofactor antibody was detected using the assays 
under test. Results revealed that 76% of SN-APS patients resulted positive for aCL by 
TLC-immunostaining, 54% for aCL/Vim, 12% for aPS/PT, 4% for IgA aβ2GPI, and 2% 
for IgA aCL. Thirty-five out of 61 patients were followed up and the tests were repeated 
on two occasions, at least 12 weeks apart. Twenty-six out of 35 SN-APS (74.3%) were 
positive at least one non-conventional test; only 2 patients (5.7%) did not confirm the 
positivity to the second test. These findings suggest that non-conventional tests, mainly 
aCL/Vim and aCL detected by TLC-immunostaining, seem to be the most sensitive 
approaches for finding out aPL in patients with obstetric SN-APS. The use of these tests 
can be useful for accurate and timely diagnosis of patients with obstetrical APS who are 
negative for conventional laboratory criteria markers.

Keywords: anti-phospholipid syndrome, seronegative anti-phospholipid syndrome, anti-vimentin/cardiolipin, 
thin-layer chromatography, anti-phosphatidylserine/prothrombin

Abbreviations: APS, anti-phospholipid syndrome; aPL, anti-phospholipid antibodies; aCL, anti-cardiolipin; aPS/PT, anti-
phosphatidylserine/prothrombin; aCL/Vim, anti-vimentin/cardiolipin; aPTT, activated partial thromboplastin time; aβ2GPI, 
anti-β2glycoprotein I; BSA, bovine serum albumin; LA, lupus anticoagulant; dRVVT, dilute Russell’s viper venom time; HRP, 
horseradish peroxidase; ECL, enhanced chemiluminescence; ELISA, enzyme-linked immunosorbent assay; HPTLC, high-
performance thin-layer chromatography; TLC, thin-layer chromatography; OD, optical density; OAPS, obstetrical APS; OSN-
APS, obstetrical seronegative APS; PBS, phosphate buffered saline; SLE, systemic lupus erythematosus; SN-APS, “seronegative 
APS”; SP-APS, seropositive APS; FGR, fetal growth restriction; RSA, recurrent spontaneous abortion.
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inTrODUcTiOn

Anti-phospholipid syndrome (APS) is a systemic autoim-
mune disease characterized by arterial and venous thrombosis 
and pregnancy morbidity associated with circulating anti-
phospholipid antibodies (aPL) (1). Obstetrical APS (OAPS) is 
characterized by early recurrent miscarriage, unexplained fetal 
loss, and/or premature birth due to eclampsia, preeclampsia, 
or placental insufficiency as stated in the classification criteria 
for definite APS (2). APS is the most frequently acquired risk 
factor for a treatable cause of recurrent pregnancy loss (3) and 
it increases the risk for pregnancy complications associated with 
placental dysfunction, such as stillbirth, placental abruption, and 
fetal growth restriction (4). Classification of OAPS requires the 
combination of at least one clinical and one laboratory criterion 
(2), including anti-cardiolipin (aCL) and anti-β2glycoprotein I 
(aβ2GPI) antibodies detected by enzyme-linked immunosorb-
ent assay (ELISA) and the lupus anticoagulant (LA) detected by 
clotting assays (1). In clinical practice there are individuals with 
clinical signs highly suggestive of APS who are persistently nega-
tive for conventional aPL laboratory tests; therefore, physicians 
proposed for this population the term of “seronegative APS” 
(SN-APS) (5, 6). Since APS is the commonest treatable cause 
of recurrent miscarriage, for women with a history of recurrent 
early abortions or fetal loss, a diagnosis of APS significantly 
improves the rate of live births (7). New antigenic targets or 
methodological approaches to detect aPL in SN-APS have been 
investigated and several non-conventional anti-phospholipid 
antibodies have been described (8, 9). Recently, with a proteomic 
approach, we identified cardiolipin/vimentin (CL/Vim) as a 
“new” target for APS, also detectable in SN-APS patients (10). In 
addition, it has demonstrated the possibility of detecting aPL in 
SN-APS patients by immunostaining on thin-layer chromatog-
raphy (TLC) plates (11, 12).

The aim of the present study was to investigate the potential 
clinical usefulness of “new” antigenic targets and methodological 
approaches in detecting serum aPL in patients with obstetrical 
SN-APS (OSN-APS).

MaTerials anD MeThODs

Patients
The study includes all consecutive patients, presenting clinical 
features consistent with a diagnosis of obstetrical APS but tested 
persistently negative for conventional aCL, aβ2GPI, and LA tests 
referred to the Lupus Clinic, Rheumatology Unit of the Sapienza 
University of Rome from 2012 to 2017. Clinical manifestations 
consisted of pregnancy morbidity in women with and without 
history of thrombosis as stated in the classification criteria for 
definite APS (2).

Sera were collected at several times and stored at −20°C until 
use. Moreover, all patients were tested for common inherited 
thrombophilic defects, such as protein C and protein S deficiency, 
hyperhomocysteinemia, factor V Leiden, MTHFR, and pro-
thrombin mutations. This study was approved by the local ethic 
committees and participants gave written informed consent.

elisa for anti-cardiolipin and anti-
β2glycoprotein i antibodies
Antibodies specific for aCL and aβ2GPI (IgG, IgM, and IgA) 
were detected by ELISA, using QUANTA Lite™ detection kit 
(INOVA Diagnostic Inc., San Diego, CA, USA) assay. ELISA was 
performed for all the patients’ sera according to manufacturer’s 
instructions; a positive control and several normal human sera 
were run in the same assay to confirm the specificity of the results.

chemiluminescence assay
IgG, IgM, and IgA for aCL and aβ2GPI were also tested by 
chemiluminescence assay using Zenit RA Immunoanalyzer  
(A. Menarini Diagnostics, Florence, Italy).

la Test
Lupus anticoagulant was studied in two coagulation systems, 
a dilute sensitized activated partial thromboplastin time and a 
dilute Russell’s viper venom time, followed by confirm test, using 
reagents and instrumentation by Hemoliance Instrumentation 
Laboratory, Lexington, MA, USA.

Detection of acl by Tlc-immunostaining
Thin-layer chromatography-immunostaining was performed as 
previously described, with slight modification (11, 12). Briefly, 
2 µg (in chloroform/methanol, 2:1 v/v) of cardiolipin (CL, Sigma-
Aldrich) were run on aluminum-backed silica gel 60 (20 × 20) 
high-performance thin-layer chromatography plates (Merck Co., 
Darmastdt, Germany). Chromatography was performed in chl
oroform:methanol:CH3COOH:water (100:75:7:4) (v:v:v:v) as 
eluent system. The dried chromatograms were soaked for 90  s 
in a 0.5% (w:v) solution of poly(isobutyl methacrylate) beads 
(Polysciences, Eppelheim, Germany) dissolved in hexane. After 
air-drying for 5 min, the chromatograms were incubated at room 
temperature for 1  h with 1% bovine serum albumin (BSA) in 
phosphate buffered saline (PBS) (blocking buffer) to eliminate 
non-specific binding. After washing by gentle shaking 3 times for 
10 min in PBS containing 0.1% Tween 20 (PBS-T), the chroma-
tograms were incubated with sera diluted 1:100 in the blocking 
solution, for 1 h at room temperature. Sera were removed and 
chromatograms were washed as above. Bound antibodies were 
visualized with horseradish peroxidase (HRP)-conjugated goat 
anti-human IgG (Sigma-Aldrich) diluted 1:1,000 in blocking 
buffer and incubated at room temperature for 1 h. After washing, 
immunoreactivity was assessed by chemiluminescence reaction 
using the enhanced chemiluminescence Western blotting system 
(Amersham Pharmacia Biotech, Buckinghamshire, UK).

Detection of anti-cardiolipin/Vimentin 
complex (acl/Vim) antibodies by elisa
Anti-cardiolipin/vimentin complex antibodies were detected by 
ELISA with slight modification of previously reported method 
(13). Ninety-six-well polystyrene plate (Thermo Fisher Scientific, 
Waltham, MA, USA) were coated and incubated overnight at 
4°C with 100 μl/well of CL (from bovine heart, Sigma-Aldrich, 
Milan, Italy) (50 µg/ml in methanol), and then with 100 μl/well 
of human recombinant vimentin (5 µg/ml in 0.05 mM NaHCO3 
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Table 1 | Clinical characteristics of patients studied.

characteristics n (%) Obstetric seronegative 
anti-phospholipid 

syndrome (Osn-aPs) 
(total) (n = 61)

Osn-aPs 
(followed up) 

(n = 35)

Other autoimmune diseases
Systemic lupus erythematosus 7 (11.5) 5 (14.3)
Discoid lupus erythematosus 5 (8.2) 5 (14.3)
Autoimmune thyroiditis 11 (18.0) 10 (28.6)
Mixed connective tissue disease 3 (4.9) 1 (2.8)
Undifferentiated connective  
tissue disease

2 (3.3) 1 (28)

Pregnancy morbidity
Spontaneous abortionsa 41 (67.2) 25 (71.4)
Intrauterine death of a  
normal fetusb

27 (44.3) 15 (42.9)

Premature birthsc 4 (6.6) 2 (5.7)
Vascular thrombosisd 9 (14.6) 6 (17.1)

Arterial thrombosis 4 (6.6) 3 (8.6)
Venous thrombosis 6 (9.8) 4 (11.4)
Recurrent thrombosis 4 (6.6) 3 (8.6)

Non-criteria APS features
Livedo reticularis 11 (18.0) 8 (22.9)
Thrombocytopenia 4 (6.6) 4 (11.4)
Migraine 9 (14.6) 5 (14.3)
Seizures 1 (1.6) 1 (2.9)

Thrombotic risk factors
Hypercholesterolemia 3 (4.9) 3 (8.5)
Smoking 10 (16.4) 7 (20.0)
Hypertension 7 (11.5) 6 (17.1)
Oral contraceptive/hormone  
replacement therapy

1 (1.6) 0 (0)

a3 or + losses <10 weeks of gestation.
b1 or + losses ≥10 weeks of gestation.
cPreterm birth <34 weeks due to eclampsia, pre-eclampsia, or placental insufficiency.
dThrombosis (arterial, venous, or in small vessels) in any tissue, confirmed by imaging 
or histopathology (thrombosis without significant inflammation).
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buffer, pH 9.5) (R&D System, Minneapolis, MN, USA). Coated 
plates were incubated overnight at 4°C and then washed three 
times with PBS-T. Plates were blocked with 100  µl of 1% BSA 
in PBS (blocking buffer) for 2  h at room temperature. After 
three washes with PBS-T the wells were incubated with 100 µl 
of patients sera (diluted 1:100 in the blocking buffer) for 1  h 
at room temperature. Goat polyclonal anti-vimentin (R&D 
Systems) was used as positive control. After washing, as above, 
the plates were incubated for 1 h at room temperature with HRP-
conjugated antibodies, either goat anti-human IgG or rabbit 
anti-goat IgG (Sigma-Aldrich), diluted in blocking buffer. The 
plates were washed three times with PBS-T, the bound peroxidase 
was then revealed with O-phenylenediamine dihydrochloride 
development buffer (100  μl/well) and stopped with 50  μl/well 
of H2SO4 0.2 M for 5 min. Absorbance was measured at 492 nm 
in a microplate reader. ELISA assay was also performed without 
coated vimentin/cardiolipin complex. Virtually no reactivity was 
detected in all the samples (data not shown).

Data were analyzed as the mean optical density (OD) cor-
rected for background (wells without coated antigen). Thirty-
two normal human sera were also tested and a cutoff value was 
established as mean of OD ± 3 SDs of normal human sera. Each 
serum was analyzed in triplicate.

Detection of anti-Phosphatidylserine/
Prothrombin (aPs/PT) antibodies by elisa
Antibodies specific for aPS/PT were detected by ELISA using 
a QUANTA Lite™ detection kit (INOVA Diagnostic Inc.). 
All patient samples including those from healthy donors were 
tested and ELISA was performed according to manufacturer’s 
instructions.

statistical analysis
All the statistical analyses were performed by GraphPad Prism 
software Inc. (San Diego, CA, USA). Kolmogorov–Smirnov test 
was used to assess the normal distribution of the data. Differences 
between numerical variables were tested with the Wilcoxon test. 
Statistical coefficient Cohen’s kappa was used to analyze agree-
ment between first and second test. For comparison of categorical 
variables or percentages we used Fisher’s exact and X2 tests when 
appropriate. P-values less than 0.05 were considered as significant.

resUlTs

We enrolled 61 women with clinical features consistent with a 
diagnosis of obstetrical APS, but tested persistently negative 
for conventional aCL, aβ2GPI (detected by both ELISA and 
Chemiluminescence assay), and LA tests. All OSN-APS patients 
were Caucasian with a median age of 39  years (IQR 8). The 
clinical characteristics of patients are reported in Table 1. Mixed 
thrombotic and obstetrical features were present in 9 patients 
out of 61 (14.6%) and isolated obstetrical features in remaining 
patients (85.4%). All patients were tested for common inherited 
thrombophilic defects: 18/61 (29.5%) patients presented muta-
tion of MTHFR in heterozygosity, with normal levels of homo-
cysteine; 6/61 (9.8%) mutation of MTHFR in homozygosity, with 

normal levels of homocysteine; 1/61 (1.6%) mutation of V factor 
of Leiden in homozygosity; 1/61 (1.6%) protein S deficiency. 
Because of normal level of homocysteine, these patients cannot be 
considered at increased risk for inherited thrombophilia.

Taken together, our findings show that in 50 out of 61 OSN-
APS (81.9%) at least one aPL/cofactor antibody was detected 
using the assays under test; in particular, 50 out of 61 patients 
(82%) were positive for at least one of the tests used. Thirty-
eight out of 50 patients (76%) showed the presence of anti-car-
diolipin (aCL) antibodies detected by TLC-immunostaining, 
27/50 (54%) were positive for aCL/Vim antibodies, 6/50 (12%) 
for aPS/PT antibodies, 2/50 (4%) for IgA aCL, and 1/50 (2%) 
for IgA aβ2GPI (Figure  1). Figure  2 shows the percentage of 
patients displaying multiple positivity for different antibod-
ies. The combination of TLC-immunostaining and aCL/Vim 
approaches detected autoantibodies in the majority of the 
patients. No patients were contemporary positive for aCL (by 
TLC-immunostaining) and aβ2GPI IgA antibodies. Table  2 
shows autoantibody prevalence in OSN-APS patients accord-
ing to the clinical manifestations.

Thirty five out of 61 patients were followed up and the tests 
were repeated on two occasions, at least 12 weeks apart (Table 1). 
To concern inherited thrombophilic defects: 12/35 (34.3%) 
patients presented mutation of MTHFR in heterozygosity, with 
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Table 2 | Autoantibody prevalence according to the clinical manifestations.

autoantibodies (assay) n (%) arterial 
or venous 

thrombosis 
(n = 9)

Pregnancy 
morbidity 
(n = 61)

spontaneous 
abortions (n = 41)

intrauterine  
death of a normal 

fetus (n = 27)

Premature 
births (n = 4)

Anti-anti-CL [by thin-layer chromatography (TLC)-immunostaining] 7 (77.8) 38 (62.2) 25 (41.0) 18 (29.5) 3 (4.9)
Anti-CL/Vim 4 (44.4) 27 (44.3) 15 (24.6) 13 (21.3) 1 (1.6)
Anti-PS/PT 1 (11.1) 6 (9.8) 3 (4.9) 3 (4.9) 0
Anti-CL IgA 0 2 (3.3) 2 (3.3) 0 0
Anti-β2GPI IgA 0 1 (1.6) 1 (1.6) 0 0
Anti-CL (by TLC-immunostaining) + anti-CL/Vim 3 (33.3) 16 (26.2) 11 (18.0) 8 (13.1) 1 (1.6)
Anti-CL (by TLC-immunostaining) + anti-CL/Vim + anti-PS/PT 0 2 (3.3) 2 (3.3) 0 0
No autoantibodies 1 (11.1) 11 (18.0) 10 (16.4) 3 (4.9) 1 (1.6)

CL, cardiolipin; CL/Vim, cardiolipin/vimentin; PS/PT, phosphatidylserine/prothrombin; β2GPI, beta2Glycoprotein I.

FigUre 2 | The percentage of obstetrical seronegative anti-phospholipid syndrome patients positive for more than one test used to detect the presence  
of autoantibodies. The combination of thin-layer chromatography (TLC)-immunostaining and anti-cardiolipin/vimentin (aCL/Vim) approaches detected  
autoantibodies in the majority of the patients.

FigUre 1 | The prevalence of autoantibodies in obstetrical seronegative anti-phospholipid syndrome patients. Fifty out of 61 patients (82%) were positive for at 
least one of the tests used. Thirty-eight out of 50 patients (76%) showed the presence of anti-cardiolipin (aCL) antibodies detected by thin-layer chromatography-
immunostaining, 27/50 (54%) were positive for anti-cardiolipin/vimentin (aCL/Vim) antibodies, 6/50 (12%) for anti-phosphatidylserine/prothrombin antibodies, 2/50 
(4%) for IgA aCL, and 1/50 (2%) for IgA aβ2GPI.
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normal levels of homocysteine; 2/35 (0.6%) mutation of MTHFR 
in homozygosity, with normal levels of homocysteine; 1/35 (0.3%) 
protein S deficiency. In 26 out of 35 SN-APS (74.3%) at least one 

aPL/cofactor antibody was detected using the assays under test; 
only 2 patients (5.7%) did not confirm the positivity in the second 
test. Figure 3 shows the concordance of the antibodies positivity 
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FigUre 3 | The concordance of the autoantibodies positivity, between first and second test, in obstetrical seronegative anti-phospholipid syndrome followed up 
where the tests were repeated on two occasions. For thin-layer chromatography (TLC)-immunostaining and anti-cardiolipin/vimentin (aCL/Vim) a “substantial 
agreement” was found between first and second test, revealed by Cohen’s kappa test (K = 0.696 and K = 0.789).
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between first and second test. To concern TLC-immunostaining 
and aCL/Vim, Cohen’s kappa test resulted respectively of 
K = 0.696 and K = 0.789, an agreement that can be described as 
“substantial agreement” between first and second test.

In this group of patients, a statistically significant correlation 
was found between anti-PS/PT and anti-CL/Vim (p  =  0.01), 
between positivity for aCL (by TLC-immunostaining) and muta-
tion of MTHFR in heterozygosis (p =  0.026) and finally between 
arterial thrombosis and premature births (p = 0.039).

The combination of two of the used methodological 
approaches, TLC-immunostaining for aCL and ELISA for anti-
CL/Vim complex antibodies, was able to detect aPL/cofactors in 
about two-thirds of OSN-APS patients with a small additional 
gain when also performing ELISA for aPS/PT or aCL and 
aβ2GPI IgA.

DiscUssiOn

In this study new antigenic targets and methodological approaches 
were used to detect anti-phospholipid antibodies in a monocen-
tric cohort of patients with suspected “seronegative” obstetric 
APS. Using these approaches, it was possible to demonstrate the 
presence of aPL in about two-thirds of the enrolled patients.

Differences were not observed in the prevalence of obstetric 
events, including early spontaneous abortions, fetal deaths, 
prematurity, or pre-eclampsia, between women with SN-APS 
and seropositive APS (SP-APS) (14). Likewise, since APS is now 
recognized as the most common treatable cause of recurrent  

miscarriage, for women with a history of recurrent early abortions  
or fetal loss, a diagnosis of APS addresses them toward treatments, 
which significantly improve the rate of live births (15).

Furthermore, it is mandatory to identify among the so-called 
SN-APS patients who need long-term secondary thrombo-
prophylaxis (16).

In this regard, we judge not sufficiently satisfying the cur-
rent panel test to detect antibodies in patients for whom there 
is a clinical suspicion. This may depend on the limitations of 
traditional technical approaches or on the existence of antigenic 
targets other than those known. In order to overcome the limits 
imposed by conventional tests, we employed a different meth-
odological approach for detection of aCL, TLC-immunostaining, 
showing the presence of aCL in more than three-quarters (76%) 
of patients with obstetric SN-APS; these data confirmed the 
previous results obtained in patients with different records of 
SN-APS, but also in a case of catastrophic APS (15, 17). This 
test takes advantage from the different characteristics of binding 
of phospholipid to solid phase which involves both electrostatic 
and hydrophobic interactions. Thus, antigen exposure is quite 
different as compared to that on the surface of microtiter wells, 
where phospholipids are coated in a layer of immobilized lamel-
lar phospholipids. Our results suggest that this test may represent 
a very useful tool to detect aPL in the majority of obstetric 
SN-APS, according to previous papers (11, 18).

Moreover, aPL represents a very heterogeneous family of 
antibodies and more than 30 different antibodies have been 
reported in APS patients, the so-called autoantibody explosion 
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in APS (19). Several studies reported various non-conventional 
aPL in patients with thrombosis and pregnancy morbidity, but 
relatively few data are available yet. In a study of Zohoury et al., 
non-criteria tests were used in a cohort of SN-APS and SP-APS 
showing that anti-CL/Vim antibodies together with aPS/PT were 
the most sensitive of the non-criteria biomarker in the SN-APS 
group (20). The present study confirms and extends these data 
revealing that aCL/Vim antibodies are present in 54% of OSN-
APS patients, with a prevalence significantly higher as compared 
to aPS/PT (12%) in this specific group of SN-APS patients. 
However, this finding is not surprising, since Žigon et al., who 
studied the prevalence and clinical association of aPS/PT in 
patients with a history of pregnancy complications relevant to 
APS, showed positive of aPS/PT in about 13% of OAPS patients; 
aPS/PT were the only antibodies associated with early recurrent 
pregnancy loss, as well as with late pregnancy morbidity and 
prematurity (21). Indeed, aPS/PT IgG and IgM were shown more 
frequent in SP-APS than in SN-APS (63 and 37% versus 4 and 
5%, respectively) (22).

Taken together, these findings indicate that the execution 
of all these tests (TLC-immunostaining, aCL/Vim, and aPS/
PT) can be very useful for identification of autoantibodies in 
obstetric SN-APS. The analysis of multiple positivity for differ-
ent antibodies revealed that the combination of positivity by 
TLC-immunostaining and aCL/Vim IgG detects aPL in a large 
proportion of patients. As expected, the contribution of IgA 
aCL and/or aβ2GPI is virtually negligible. Although IgA aCL 
antibodies have been associated with poliabortivity and fetal 
deaths in women with primary APS, systemic lupus erythema-
tosus, and unexplained recurrent spontaneous abortion (23), in 
the present study we showed that the IgA isotypes of the aCL 
is detectable only in 4% of SN-APS patients. Moreover, in our 
cohort we found that only 2% of SN-APS patients resulted posi-
tive for IgA aβ2GPI antibodies. Only few studies showed that IgA 
aβ2GPI antibodies were significantly increased in women with 
pregnancy morbidity (24, 25).

Thus, the data of the present study suggest that TLC-
immunostaining and aCL/Vim seem to be the most sensitive 

tests able to reveal hidden positivity and, therefore, reducing 
the risk of a missed diagnosis. The use of new diagnostic tests 
and new biomarkers will be helpful for clinicians in the accurate 
and timely diagnosis of patients with obstetrical APS who are 
negative for conventional laboratory criteria markers. At the 
end, testing for these antibodies may contribute to the evaluation 
of the stratification of risk for thrombotic events and/or preg-
nancy morbidity. In particular, we suggest that in subjects with 
obstetric APS, the presence of these antibodies may represent an 
alarm signal. This is important because patients with obstetric 
SN-APS as well as obstetric SP-APS should be closely monitored 
by a multidisciplinary team to receive full treatment to have a 
successful pregnancy outcome.

However, a percentage of obstetric SN-APS remains seronegative 
to all these tests, indicating that other unidentified cofactors may be 
involved in sera reactivity. Further studies will shed light on possible 
“new” antigenic specificities in patients with obstetric SN-APS.
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Neutrophils are major effectors of acute inflammation against infection and tissue

damage, with ability to adapt their phenotype according to the microenvironment.

Although sex hormones regulate adaptive immune cells, which explains sex differences

in immunity and infection, little information is available about the effects of androgens

on neutrophils. We therefore aimed to examine neutrophil recruitment and plasticity in

androgen–dependent and –independent sites under androgen manipulation. By using

a bacterial model of prostate inflammation, we showed that neutrophil recruitment

was higher in testosterone-treated rats, with neutrophil accumulation being positively

correlated to serum levels of testosterone and associated to stronger inflammatory signs

and tissue damage. Testosterone also promoted LPS-induced neutrophil recruitment

to the prostate, peritoneum, and liver sinusoids, as revealed by histopathology, flow

cytometry, and intravital microscopy. Strikingly, neutrophils in presence of testosterone

exhibited an impaired bactericidal ability and a reduced myeloperoxidase activity. This

inefficient cellular profile was accompanied by high expression of the anti-inflammatory

cytokines IL10 and TGFβ1, which is compatible with the “N2-like” neutrophil phenotype

previously reported in the tumor microenvironment. These data reveal an intriguing role

for testosterone promoting inefficient, anti-inflammatory neutrophils that prolong bacterial

inflammation, generating a pathogenic environment for several conditions. However,

these immunomodulatory properties might be beneficially exploited in autoimmune and

other non-bacterial diseases.

Keywords: neutrophils, testosterone, androgens, bacterial prostatitis, infection

INTRODUCTION

Neutrophil granulocytes lead the initial leukocyte influx to sites of injury in order to eliminate
invading pathogens or damaged tissues. Their response is mediated by phagocytosis and NETosis,
as well as by releasing defensins, enzymes, and cytokines to active the immune response (1).
Subsequently, once the inflammatory stimuli has been eradicated, neutrophils die by apoptosis

154

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.01980
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01980&domain=pdf&date_stamp=2018-09-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aquintar@cmefcm.uncor.edu
https://doi.org/10.3389/fimmu.2018.01980
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01980/full
http://loop.frontiersin.org/people//558024/overview
http://loop.frontiersin.org/people/603343/overview
http://loop.frontiersin.org/people/229395/overview
http://loop.frontiersin.org/people/604014/overview
http://loop.frontiersin.org/people/603896/overview
http://loop.frontiersin.org/people/32352/overview
http://loop.frontiersin.org/people/529822/overview
http://loop.frontiersin.org/people/98920/overview


Scalerandi et al. Testosterone Modulates Neutrophil Activity

and the elimination of apoptotic bodies by macrophages ensures
the correct resolution of the inflammatory process and tissue
repair (2). However, if the inflammatory process is not controlled,
the products generated by neutrophils can induce multiple tissue
alterations and loss of cellular function (3, 4). This is particularly
important in endotoxemia- and burn-induced multiple organ
dysfunction and in unresolved infections of the reproductive
tract, where neutrophil activation could be harmful causing
degradation of the extracellular matrix and additional gamete
damage beyond that associated with the initial injury (5–7).

Although for decades it was thought that neutrophils
constitute a homogeneous cell population, reports of neutrophils
showing different behaviors in front of diverse steady state
and pathological conditions are shifting this notion (8–10).
For instance, neutrophils are able to shape and regulate
immune and inflammatory responses against tumor cells by
exerting either pro-tumor or anti-tumor effects on tumor
development (9, 11). Given these varied effects, the concept
of neutrophil plasticity and diversity has emerged, leading to
the paradigm of anti-tumoral “N1 neutrophils” vs. pro-tumoral
“N2 neutrophils” proposed by Fridlender and coworkers (9), in
neoplastic scenarios. However, little is known about different
neutrophil phenotypes promoted by non-tumoral environments
as metabolic or hormonal imbalance.

The prostate gland is the main target of infectious and
inflammatory diseases in the male reproductive tract, with
prostatic inflammation representing a worldwide health issue.
Moreover, a strong relationship between prostatitis and other
conditions with high impact on human health such as male
infertility (12), benign prostatic hyperplasia (13), and prostate
cancer (14) has been reported. Unlike many organs in the
body, the prostate is under the strict control of testicular male
hormones for its development and function. Hence, it is not
surprising that testosterone might influence the expression of
pro- and anti-inflammatory mechanisms, as well as the local
production of cytokines and chemokines, the recruitment and
activation of immune cells, and the outcome of infectious
diseases of the prostate gland. In this sense, we previously
reported that testosterone negatively modulates the Toll-like
receptor 4 (TLR4) pathway and downregulates antimicrobial
substances in prostatic cells, which correlates with a decreased
inhibition of bacterial growth in the presence of testosterone in
both in vivo and in vitromodels (15).

It has long been recognized that androgens dampen
host defenses through multiple mechanisms of the adaptive
immunity, explaining the sex-specific biases reported in
immunocompetence, autoimmunity, and cancer incidence (16).
Androgenic effects include apoptosis of T and B cells and the
induction of T regulatory cells and CD8+ suppressive cells
(16, 17). Additionally, in monocytes/macrophages, androgens
reduce proinflammatory signaling (TLR4, TNFα, IL1β, and IL6)
(18) but enhance anti-inflammatory (IL10) cytokine production
(19). Regarding innate immunity, a few published articles have
suggested that testosterone maintains a reduced expression
of key elements such as TLRs and modulates the activity of
different professional cells (18, 20). Nevertheless, the influence of
androgen levels on neutrophil activity and plasticity in the initial

inflammatory response remains to be investigated. Therefore, the
aim of this work was to determine whether testosterone is able
to modulate neutrophil recruitment and behavior in androgen
dependent- and independent-sites.

MATERIALS AND METHODS

Animals
Wistar strain male rats, 12 weeks old, and weighing 250–
350 g, were housed at the Animal Research Facility of the
Universidad Nacional de Cordoba, in air-conditioned quarters,
under a controlled photoperiod (14 h light/10 h darkness) with
free access to rodent food and tap water. C57BL/6mice were from
Centro de Bioterismo in Universidade Federal de Minas Gerais
(CEBIO, UFMG, Brazil). Animal care and experiments were
conducted following the recommendations of the International
Guiding Principles for Biomedical Research Involving Animals
and approved by the local CICUAL (FCM-UNC, Argentina)
Ethical Committee.

Androgen Manipulation and Prostatitis
Models
Rats were orchidectomized via the scrotal route under ketamine
(80 mg/kg)/ xylazine (8 mg/kg) and divided into three
groups, receiving immediately testosterone s.c. at physiological
(2 mg/kg/day; T group; Sustanon, Organon, Argentina) or
supraphysiological doses (10 mg/kg/day; TT group), or vehicle
alone (sunflower oil; OX group). To confirm the androgen
status, serum total testosterone levels of individual rats were
determined by electrochemiluminescence immunoassay using a
Roche Elecsys E170 immunoassay analyzer (Roche Diagnostics
GmbH, Mannheim, Germany).

An acute bacterial prostatitis model was performed according
to a protocol from our laboratory (21, 22). Briefly, two days after
castration, OX, T, and TT rats were anesthetized and subjected
to a laparotomy to expose the ventral prostate; infection was
induced by an intraprostatic injection of 200µL ofUropathogenic
E. coli (108 CFU/ml, isolated from a patient with complicated
urinary tract infection), with a 30-gauge needle. Animals were
killed at 1, 3, and 5 days after infection, with the ventral
prostate being processed for morphological, biochemical, and
microbiological analyses. As controls, rats subjected to the same
surgical procedures were used, replacing the bacterial suspension
with sterile PBS.

On the other hand, a lipopolysaccharide (LPS)-induced model
for prostatic inflammation was carried out by inoculating 50 µl
of a solution of LPS from E. coli 055:B5 (20 mg/ml, Sigma–
Aldrich, St. Louis, MO) in OX and T groups using the same
surgical procedure described for bacterial prostatitis. Control
animals received the vehicles. Ventral prostates were harvested
and processed at 24 h after inoculation.

Neutrophil Recruitment to the Peritoneum
and Microbial Killing Assay
Neutrophil recruitment was induced by a single i.p. injection of
thioglycollate (3ml of a 3% solution; Sigma–Aldrich, St. Louis,
MO) or LPS from E. coli 055:B5 (1 mg/kg) in rats of OX
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and T groups at day 3 post-castration. Sterile saline-injected
animals were used as controls. Animals were anesthetized 4 h
after thioglycollate or 12 h after LPS injection and the peritoneal
lavage was harvested for analysis by injection of 10mL of sterile
PBS containing 0.835 UI/mL sodium heparin. The abdomen
was gently massaged and the blood-free cell suspension was
carefully aspirated with a syringe. The cell suspension was
then spun for 6min, 300×g, at 20◦C. After removal of the
supernatant, residual red blood cells were removed by hypotonic
lysis and the cells were spun again for 6min, 300×g, at
20◦C. The cell pellet was washed and resuspended in 2ml
HBSS and total leukocyte counts were performed immediately
in peritoneal lavage samples using a Neubauer chamber. To
evaluate the neutrophil percentage, the differential leukocyte
population was analyzed in cytospins after May-Grünwald-
Giemsa staining (Biopur, Rosario, Argentina); a minimum of
500 leukocytes were counted, containing>85% pure populations
of neutrophils. Additionally, peritoneal cells were stained with
a FITC anti-rat granulocyte (Gr) antibody that recognizes rat
neutrophils (BD Biosciences, San Jose, CA) and analyzed by flow
cytometry using a FACSCanto II cytometer (Becton Dickinson,
San Jose, CA).

For assessing ex vivo neutrophil bactericidal activity,
thioglycollate-recruited neutrophils from OX and T groups
were counted manually using a standard hemocytometer.
Cytospins confirmed >90% neutrophils. Uropathogenic E. coli
(the same used for prostatitis model) were pre-opsonized in
10% mouse serum on ice for 15min. Neutrophils in RPMI 1640
(Sigma–Aldrich, St. Louis, MO) were plated onto 24 well plates
at 1 × 106 neutrophils/well and infected with equal volume of
E. coli in serum at a multiplicity of infection of 1 bacterium:1
neutrophil. Following 10 and 40min incubation times, 50 µl of
the suspension were taken for bacterial colony-forming units
(CFU) quantification by serial agar plating.

Intravital Liver Imaging
Mice were treated with testosterone (i.p. 10 mg/kg/day) or
flutamide (s.c 7 mg/kg/day; Sigma–Aldrich, St. Louis, MO) for
3 days. Then, neutrophil recruitment was induced by a single i.p.
injection of LPS from E. coliO111:B4 (0.5 mg/kg, Sigma–Aldrich,
St. Louis, MO). Six hours after, mice received a single i.v. dose
of a FITC anti-mouse Ly-6G antibody (4 µg/mouse; BioLegend,
San Diego, CA), diluted in sterile saline (in a total volume of 100
µl), and confocal intravital imaging was performed as described
(23, 24). In brief, mice were anesthetized (i.p.) with a mixture
of ketamine (60 mg/kg) and xylazine (15 mg/kg) and a midline
laparotomy was performed to expose the liver for imaging. Mice
were imaged using Nikon Eclipse Ti (Nikon, Tokyo, Japan) with a
C2 confocal head equipped with three different lasers (excitation
at three wavelengths: 405, 488, and 543 nm) and emission
bandpass filters at 450/50, 515/30, and 584/50 nm. The z-position
is controlled by an automated device and 10X objective was
used on the required resolution. Ten-minute movies were taken
from each mouse and Ly-6G (+) neutrophil quantification was
performed using Volocity 6.3 software (PerkinElmer, Waltham,
MA).

Histopathological Analysis and
Immunocytochemistry
Tissue samples of ventral prostates were formalin-fixed and
paraffin-embedded for routine hematoxylin–eosin (H&E)
staining (Biopur, Rosario, Argentina). An Axiostar Plus
microscope equipped with a digital camera (Zeiss, Oberkochen,
Germany) was used to acquire 60X photographs, which were
examined using Fiji software (NIH, Bethesda, MD). For prostate
neutrophil quantification, 20 fields of 2 different sections from
the same gland were analyzed, with at least three animals per
experimental group.

Immunocytochemistry was performed on slides from
paraffin-embedded prostates, which were cleared with xylene
and rehydrated in a descending concentration series of ethanol.
Samples were then incubated in EDTA pH 9.0 to perform antigen
retrieval using microwave pre-treatment (except for detection
of E. coli). To block the endogenous peroxidase activity, slides
were treated with H2O2 in methanol for 15min. Sections were
treated with PBS-BSA 5% to block non-specific binding for
30min, followed by an overnight incubation with the primary
antibody (diluted in 1% PBS-BSA) at 4◦C in a humidified
chamber. Afterwards, slides were incubated for 1 h with a
specific biotinylated secondary antibody (at 1:180; Amersham
Pharmacia, Buckinghamshire, UK) followed by 30min in
ABC complex (Vector, Burlingame, CA). Diaminobenzidine
(Sigma–Aldrich, St. Louis, MO) was used as a chromogen
substrate for 10min and Harris hematoxylin as a counterstaining
solution. Primary antibodies used for this study were: anti-PBP
(rabbit polyclonal at 1:2000, developed by Dr. Maccioni (22),
anti-ACTA2 (mouse monoclonal at 1:50; Novocastra, Newcastle,
UK), and anti-E. coli antigen (rabbit polyclonal at 1:250, Affinity
BioReagents, Golden, CO). For negative controls, antibodies
were pre-absorbed with specific blocking peptides or replaced by
rabbit or mouse normal serum.

Transmission Electron Microscopy
Tissue blocks (1 mm3) from ventral prostate and pellets
of peritoneal neutrophils were fixed in Karnovsky’s mixture
containing 2% (v/v) glutaraldehyde (EMS, Hatfield, PA) and 4%
(w/v) formaldehyde in 0.1M cacodylate buffer, pH 7.3, at 4◦C
for 24 h. Samples were post-fixed in 1% osmium tetroxide (EMS,
Hatfield, PA) for 2 h and washed in 0.1M cacodylate buffer,
before being dehydrated through a graded series of cold acetone
and embedded in Araldite epoxy resin (EMS, Hatfield, PA) as
previously published (21, 22, 25). Ultrathin sections were cut
in a JUM-7 ultramicrotome (Jeol, Tokyo, Japan) and examined
in a Zeiss LEO 906E electron microscope (Zeiss, Oberkochen,
Germany) with digital acquisition of images.

Sorting of Prostate Infiltrating Neutrophils
by Flow Cytometry
Ventral prostates from rats with LPS-induced prostatitis were
quickly excised, rinsed in fresh saline and weighted. Cell
dissociation and neutrophil purification were performed using
an adaptation of a published protocol (26). Briefly, tissues were
minced into small fragments and treated with a digestion solution
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containing 200 U/ml collagenase type IA (Sigma Aldrich, St.
Louis, MO) and 0.05% deoxyribonuclease type I (Sigma Aldrich,
St. Louis, MO) in HBSS without calcium, magnesium or phenol
red, pH 7.4 for 30min, at 37◦C, and rocking at 60 rpm. The
digested tissue was then passed through a 70-µm pore cell
strainer with fresh sterile PBS. The cell suspension was then spun
for 6min, 300×g at 20◦C. After removal of the supernatant,
residual red blood cells were removed by hypotonic lysis and
cells were spun again for 6min, 300×g, at 20◦C, washed, and
resuspended in 1ml of PBS. Cells were counted by collecting
events for a fixed time (90 s) on a FACSCanto II cytometer.
Neutrophil percentage was calculated by using a FITC anti-rat
Gr monoclonal antibody (1/500 for 1 h at 4◦C).

To purify prostate-infiltrating neutrophils, Gr (+) cells were
sorted in a FACSAria II cell sorter (BD Biosciences, San Jose, CA),
with a purity of >97% being achieved and confirmed by electron
microscopy.

Measurement of Myeloperoxidase (MPO)
Activity
Whole ventral prostate glands were removed, frozen in liquid
nitrogen, and stored at −80◦C. After thawing, tissue was
weighed and homogenized on ice in 50mMpotassium phosphate
buffer (1 g in 10ml, pH 6.0). Homogenates were centrifuged
(30.000×g, 15min, 4◦C) and pellets were resuspended in
hexadecyltrimethylammonium bromide (HTAB; Sigma Aldrich,
St. Louis, MO) buffer (0.5% HTAB in 50mM phosphate
buffer, pH 6.0). Lysates were sonicated twice for 10 s each
and freeze-thawed three times, after which sonication was
repeated. Suspensions were then centrifuged (20.000×g, 15min,
4◦C) and the resulting supernatants were assayed for MPO
activity. Supernatants (30 µl) were added to 970 µl of 50mM
phosphate buffer (pH 6.0) containing 0.167 mg/ml o-dianisidine
hydrochloride (Sigma Aldrich, St. Louis, MO) and 0.0005%
H2O2 and the change in absorbance at 460 nm (A460) was
measured. One unit (U) of MPO activity was defined as that
degrading 1 µmol of H2O2 per minute at 25◦C and results were
expressed as U MPO activity/g prostate and U MPO activity/mg
protein, determined by the Bio-Rad Protein Assay kit (Bio-Rad
Laboratories, Hercules, CA).

To assess MPO activity in peritoneal cells, cellular MPO was
extracted with 0.5% HTAB buffer from 4 × 106 cells obtained
after hypotonic lysis of residual red blood cells. Lysates were then
sonicated twice for 10 s each and spun for 15min, 40.000×g,
at 4◦C. Resulting supernatant was assayed for MPO activity as
described, with results being expressed as U MPO activity/mg
protein and µUMPO activity/cells.

Microbiological Studies
To evaluate in vivo the growth of E. coli, pieces of ventral prostate
from each rat were weighed, minced and gently homogenized
in tryptic soy broth (1 g of tissue in 20ml) in sterile conditions.
Then, serial dilutions, i.e., 1/5 to 1/50, were made and 100 µl
of these solutions were spread on Mueller Hinton agar, with
the plates being incubated overnight at 37◦C. Finally, bacterial
counting was expressed as CFU per mg of prostatic tissue.

Ex vivo Determination of IL10 Production
Wistar rats were treated with flutamide (s.c 7.5 mg/kg/day) or
its vehicle for 5 days. Peritoneal cells were harvested after 4 h of
thyoglycollate i.p injection, washed, and resuspended in HBSS
as described above. Total cells were then plated onto 24 well
plates (1 × 106 neutrophils/well in RPMI 1640) and pulsed
ex vivo with LPS O55:B5 1µg/ml for 24 h to elicit cytokine
secretion. In vitro assays maintained the same conditions
as in vivo (i.e., flutamide stimulation). Immunofluorescence
for IL10 in neutrophils was carried out on methanol-fixed,
permeabilized cells on coverslides using PE anti-rat IL10 (1/50;
BD Biosciences, San Jose, CA) and FITC anti-rat Gr (1/50)
antibodies.

For flow cytometry, cells were treated with cycloheximide
100µM (Sigma Aldrich, St. Louis, MO) 3 h before the analysis.
The cell concentration was adjusted to 5 × 105 cells/ml and
labeled for 30min with the following antibodies: PE anti-rat IL10
(1/60), APC anti-rat CD11b (1/100; BD Biosciences, San Jose,
CA), and FITC anti-rat Gr (1/150). Signals were acquired in a
FACSCanto II cytometer and analyzed using FlowJo X software
(Tree Star, Ashland, OR).

Immunoblotting
Prostate tissues were minced and homogenized on ice with a
teflon-glass tissue grinder in 2ml cold PBS containing 1.25%
Igepal CA-630, 1mM EDTA, 2mM PMSF, 10 ug/ml leupeptin,
and 10 ug/ml aprotinin. The lysate was centrifuged at 14,000×g
for 20min at 4◦C and the supernatant was withdrawn and stored
in aliquots frozen at −70◦C until required. Prostatic lysates
from triplicate experimental conditions were pooled before
loading into electrophoresis gels. Total protein concentration
was measured with a Bio-Rad Protein Assay kit. For western
blot, denatured protein samples (45 µg/lane) were separated
on 12% SDS polyacrylamide gel and blotted to a Hybond-
C membrane (Amersham Pharmacia, Freiburg, Germany).
Incubation steps were performed in 5% defatted dry milk in
PBS/0.1% Tween 20. Blots were incubated for the detection
of SP-D (rabbit polyclonal antibody at 1:1000; Chemicon,
Temecula, CA) during 3 h. After that, membranes were treated
with peroxidase-conjugated goat anti-rabbit antibodies (Jackson,
West Grove, PA) and visualized applying the chemiluminescence
technique. The expression of β-actin (mouse monoclonal
antibody at 1:5000, Sigma Aldrich, St. Louis, MO) was used
as an internal control to confirm the equivalent total protein
loading.

The peptide βdefensin-1 (HBD-1) was tested in homogenates
of ventral prostates by dot blot. For that purpose, prostatic lysates
were matched at a concentration of 100µg/ml, and 4 µl of
each sample was spotted onto a Hybond C Super membrane
(Amersham-Pharmacia, Freiburg, Germany). The membrane
was then treated as explained above for western blot using an
anti-HBD-1 (at 1:250, Santa Cruz Biotech, Santa Cruz, CA) as
primary antibody.

Semiquantitative signals were derived by densitometric
analysis from western and dot blots using Fiji software and data
were displayed as area units.
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ELISA
In order to quantify TNFα in prostate homogenates, tissues
were minced and homogenized on ice in cold PBS, as described
for immunoblotting, centrifuged at 4◦C, 1.400 rpm for 15min
and stored at −20◦C until the day of the assay. TNFα amount
was measured by a commercially available sandwich ELISA
kit (eBioscience, San Diego, CA), following the manufacturer’s
instructions.

Measurement of Gene Expression by
Quantitative Real-Time Polymerase Chain
Reaction (qPCR)
Total RNA samples were extracted from peritoneal neutrophils
and prostate Gr (+)- and Gr (–)-sorted cells using TRIzol
(Thermo Fisher, Carlsbad, CA). RNA was subsequently purified
using Direct-zol RNA miniprep kit (Zymo Res., Irvine, CA)
according to manufacturer’s instructions. Then, 0.5 µg of RNA
was used as a template for reverse transcription using EpiScriptTM

Reverse Transcriptase (Epicentre, Madison, WI) with random
hexamer primers (Fermentas, Thermo Fisher, Carlsbad, CA).
qPCR was performed with power SYBR green PCR master mix
(Applied Biosystems, Foster City, CA) in a ABI Prism 7500
detection system (Thermo Fisher, Carlsbad, CA). The expression
of ACTB was chosen as housekeeping gene. Data analysis was
based on the 2−11Ct method for normalization of raw data. All
primers used are described in the Supplementary Table 1.

Statistical Analysis
The characterization of data was accomplished by comparing
their mean values ± standard error of the mean (SEM) from at
least four independent protocols. Statistical differences between
means were analyzed by unpaired Student’s t-test. Data from
more than two groups were analyzed using analysis of variance
(ANOVA) with Tukey as the post-test to compare all pairs of
columns. Significant differences were considered at p < 0.05.
Statistical analyses and graphics were performed using SPSS,
version 23.0 (SPSS Inc., Chicago, IL) and GraphPad Prism 6 (La
Jolla, CA).

RESULTS

Androgen Withdrawal Modifies the
Progression of the Inflammatory Response
in the Prostate Gland
In order to study the effects of testosterone on prostatitis
progression, castrated animals treated with different doses of
testosterone were subjected to intraprostatic bacterial inoculation
and analyzed at days 1, 3, and 5 after infection. As shown in
Figure 1A, the prostate from rats supplemented with testosterone
exhibited a massive neutrophil infiltration and invasion into
the prostatic acini; this effect was more evident at day 5
post-infection. Moreover, serum androgen levels positively
correlated to the number of neutrophils infiltrating the gland
(Figure 1B). In contrast, rats with low testosterone levels
displayed reduced inflammatory signs, with few focal infiltrates
in the prostatic interstitium. Accordingly, the prostatic levels

of TNF-α, SP-D, and HBD-1 were higher in rats treated
with high doses of testosterone (Figure 1C), demonstrating a
stronger inflammatory reaction in these animals. Considering the
deleterious effects of neutrophils on tissue function, we assessed
the histoarchitecture as well as the expression of prostatic binding
protein (PBP) and α-smooth muscle actin (ACTA2, markers of
epithelial secretory function and stromal integrity respectively)
of the prostate gland. At day 5 post-infection, both the secretory
and the stromal compartments of the ventral prostate were
conserved in the castrated animals as judged by PBP and
ACTA2 expressions (Figure 1D). This was consistent with the
conservation of ultrastructural features, including a prominent
Golgi complex, developed endoplasmic reticulum, and secretory
vesicles (Figure 1E). Conversely, the epithelial layer of the
testosterone-treated rats exhibited atrophy, desquamation, and
invasion of neutrophils, suggesting that the exacerbated presence
of neutrophils is associated to more inflammatory signs and
tissue damage in the prostate gland of animals with high levels
of testosterone. Taking together, these results evidence adverse
effects of testosterone in a dose dependent manner during
bacterial acute prostatitis.

Testosterone Increases Neutrophil
Recruitment Independently of the Stimulus
Nature or the Site of Injury
The higher amount of neutrophils observed in testosterone-
treated animals could be attributed to an androgen-related
neutrophil malfunction which, unable to eradicate bacteria,
maintains a constant recruitment of inflammatory cells. In order
to further understand this, we used bacterial LPS instead of the
live bacterium as stimulus. In line with the bacterial-induced
prostatitis model, LPS promoted an intense inflammatory
infiltration in testosterone-treated animals, resulting in a
higher number of neutrophils within the prostate, assessed in
histological slides as well as by flow cytometry using a specific
antibody (anti-Gr) for rat neutrophils (Figures 2A,B).

Testosterone-treated rats also displayed a higher
thioglycollate-induced neutrophil recruitment to the peritoneum
(not shown), with this effect being even stronger when
neutrophil recruitment was elicited by LPS for 12 h (Figure 2C),
indicating that testosterone is associated to a higher recruitment
of neutrophils not only in androgen-dependent but also in
androgen-independent sites. Indeed, to corroborate this notion,
a widely validated intravital mouse model (23, 24, 27) for
visualization of LPS-induced neutrophil recruitment to the liver
was performed. In mice treated with testosterone, LPS injection
caused a massive neutrophil adhesion to hepatic sinusoids, which
was reduced by the testosterone inhibitor flutamide (Figure 2D
and Supplementary Movie 1).

Taking in mind that neutrophil recruitment from peripheral
blood is a consequence of local chemokine production, mainly
CXCL1 and CXCL2 (28), their mRNA expressions were
analyzed in cells from prostates and peritoneal cavity after
LPS challenge. As shown in Figure 3A, both chemokines
increased after testosterone restoration in resident prostatic
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FIGURE 1 | Androgens increase neutrophil infiltration and tissue damage in bacterial infection of the prostate gland. Rats were orchidectomized (OX) and treated with

testosterone 2 mg/kg/day (T) or 10 mg/kg/day (high testosterone-TT) before being inoculated with E. coli intraprostatically. (A) H&E staining at day 5 after infection

shows not only interstitial inflammatory infiltrates but also a massive neutrophil invasion to prostatic acini in testosterone-treated animals. Bar = 100µm. (B) Correlative

analysis showing serum testosterone levels and prostatic neutrophil counts (n = 16, Pearson’s correlation test). Neutrophils counts were calculated on H&E sections

at day 5 post-infection. (C) The inflammatory parameters TNFα, SP-D, and HBD-1 are strongly increased in the prostate from testosterone-treated animals, with the

TT group showing the highest levels (mean ± SEM; n = 4 per group; *p < 0.05; **p < 0.01; ***p < 0.001). (D) Representative images of immunocytochemistry for

PBP and ACTA2, at day 5 post-infection, displaying a loss in epithelial secretory function when testosterone levels remain high (top images). ACTA2, as a marker for

stromal organization, shows a weak expression and disruptions in the periacinar layer (arrows in bottom) of these animals. Bar = 100µm. (E) At ultrastructural level,

prostatic damage was related to the presence of numerous bacteria in the lumen (Lu) and invading epithelial cells (arrowheads, bottom). Orchidectomized rats show

conserved morphology, with the conservation of secretory organelles such as Golgi complexes (g). EC, epithelial cell; N, neutrophil. Bar = 2µm.

cells. Moreover, CXCL1 and CXCL2 were enhanced in Gr(+)-
sorted neutrophils infiltrating the gland in the LPS-induced
prostatitis model (Figure 3B) as well as in LPS-elicited peritoneal
cells from animals treated with testosterone (Figure 3C).

Interestingly, the expression levels of MCP-1 did not change
significantly between groups (Figure 3B). Altogether, these data
indicate that androgens promote neutrophil recruitment in both
androgen-dependent and –independent sites by increasing the
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FIGURE 2 | Testosterone signaling favors LPS-induced neutrophil recruitment in both androgen-dependent and –independent sites.(A)–(B) Rats were

orchidectomized (OX) and treated with testosterone 2 mg/kg/day (T) before being inoculated with 1mg of LPS intraprostatically for 24 h. (A) Representative H&E

staining showing an intense neutrophil infiltration in testosterone-treated animals. Bar = 100µm. (B) Quantification of neutrophil recruitment to the prostate in

H&E-stained slides (left) and by flow cytometry using a FITC anti-Gr antibody (right). (C) Peritoneal neutrophil recruitment was achieved by injecting LPS 1 mg/kg for

12 h, with the quantification of neutrophils being performed by hemocytometer (left) and flow cytometry (right). (D) Neutrophil recruitment in the liver observed by

intravital microscopy after an i.p. LPS 0.5 mg/kg injection. Mice were previously treated with testosterone (T; 10 mg/kg/day) or with the inhibitor of androgen signaling

flutamide (FLUT; 7 mg/kg/day). The presence of testosterone increases neutrophil recruitment to the liver sinosoids. Left: representative images (see

Supplementary Movie 1). Right: quantification of Ly6G (+) neutrophils per field of view. Data represent the mean ± SEM from at least three independent animals.

*p < 0.05; **p < 0.01; ***p < 0.001.

expression of specific chemokines in local cells as well as in
neutrophils.

Androgens Decrease the Bactericidal
Ability of Neutrophils
Ultrastructural analysis of the prostate revealed frequent
undigested bacteria within neutrophils and invading the
epithelial layer in animals treated with testosterone after 5
days of bacterial infection (Figure 4A). This was consistent
with an intense immunostaining for E. coli in prostates from
testosterone-treated rats compared to those from castrated
animals (Figure 4B); this was also confirmed by bacterial cultures

(data not shown), indicating an abnormal clearance of bacteria
in presence of androgens. In contrast, most of neutrophils
from castrated animals exhibited apoptotic features and absence
of phagocytosed bacteria (Figure 4A), along with a weak
E. coli immunostaining, all signs compatible with an accurate
resolution phase of inflammation. In addition, thioglycollate-
elicited peritoneal neutrophils from castrated or testosterone-
treated rats were challenged ex vivo to E. coli and bacterial
counting and electron microscopy was performed at 10 and
40min after coincubation. As shown in Figure 4C, neutrophils
from testosterone-treated rats decreased their bactericidal ability.
Moreover, the ultrastructural analysis of these cells revealed
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FIGURE 3 | Androgens augment LPS-induced, neutrophil-specific chemokine mRNA expression. (A–B) Rats were orchidectomized (OX) and treated with

testosterone 2 mg/kg/day (T) before being inoculated with 1mg of LPS intraprostatically for 24 h. Cell sorting was carried out to isolate Gr (+) neutrophils from

prostatic cells and mRNA expression was evaluated by qPCR. (A) Testosterone treatment promotes an increase in CXCL1 and CXCL2 in prostatic cells.

(B) Neutrophils exhibit a similar behavior, with no changes in Monocyte Chemoattractant Protein-1 (MCP1), the key chemokine regulating migration of

monocytes/macrophages. (C) LPS-induced peritoneal neutrophils from testosterone-treated animals (T) showing an increase in CXCL1 and CXCL2. In all cases, the

mRNA levels are relative to those of ACTB. Mean ± SEM, each dot represents one animal. *p < 0.05; **p < 0.01.

frequent undigested live bacteria in both the extracellular
and intracellular compartments (Figure 4D), confirming that
androgens regulate negatively neutrophil activity even in
androgen-independent sites.

MPO is packaged in the azurophilic granules of neutrophils
and released into phagosomes when they uptake and kill bacteria
(1). We wondered whether the decreased bactericidal effect of
neutrophils associated to testosterone could be related to an
alteration in the activity of MPO. Prostatic tissues from rats with
LPS-induced prostatitis and low level of testosterone showed a
higher MPO activity compared to those with normal androgen
status (Figure 5A). Consistently, a lower MPO activity per
neutrophil was observed in LPS-induced peritoneal neutrophils
of animals treated with testosterone (Figure 5B). Interestingly,
when the MPO mRNA expression was assessed in Gr (+)-
sorted prostate infiltrating neutrophils, no differences were found
between groups (Figure 5C), suggesting that androgens regulate
MPO at post-transcriptional level.

Testosterone Favors a “N2-Like”
Neutrophil Phenotype, With High
Expression of Anti-inflammatory Cytokines
Considering the existence of different neutrophil phenotypes,
particularly in the tumor microenvironment (9), we wondered
if testosterone manipulation could result in a shift of cytokine
expression by neutrophils in the context of acute inflammation.
By using the LPS-induced prostatitis model, performed in
castrated or testosterone-treated rats, the mRNA expression
for “N1-” and “N2-like” neutrophils was assessed by qPCR
in Gr (+)-sorted cells. Prostatic neutrophils from animals
supplemented with testosterone displayed a higher expression
of IL10 and TGFβ1 along with a lower IL12 expression
compared to those with low testosterone (Figure 5D). When
analyzing LPS-recruited peritoneal neutrophils, similar findings
were observed, with high testosterone levels being related
to high IL10 and TGFβ expressions and to a decrease
in the pro-inflammatory cytokines IL12, IL1β, and TNFα
(Figure 5E). On the other hand, the morphological evaluation
at ultrastructural level showed the existence of clear alterations

in LPS-recruited prostatic neutrophils from testosterone-treated
animals, including cellular swelling and the occurrence of
vacuoles (Figure 5F). These findings suggest that in acute
inflammatory scenarios, androgens promote “N2-like” anti-
inflammatory and dysfunctional neutrophils, which extend the
inflammatory process.

Together, these data reveal a stimulatory effect of testosterone
on neutrophil-produced anti-inflammatory cytokines. To further
corroborate these results, rats were treated with flutamide (an
antiandrogen widely used in therapy) for 5 days; peritoneal cells
were harvested after 4 h of thioglycollate and pulsed ex vivo
with LPS for 24 h to elicit cytokine secretion. As expected, flow
cytometry analysis demonstrated that flutamide decreased the
expression of IL10, not only in the granulocytic population but
also in mononuclear cells (whose frequency was increased by the
anti-androgen, as shown in Figure 6).

DISCUSSION

Sex differences in mortality and immunocompetence are well
documented in humans and other vertebrates (29). Males are
at higher risk of developing acute respiratory distress, sepsis,
and multiorgan failure after traumatic hemorrhagic shock and
thermal injury, in part due to abnormal activation of neutrophils
(5). Although morphological differences in granulocytes from
men and women have been known since 1954 (30), the need to
expose factors explaining functional differences has resurfaced
recently in order to adapt new treatments depending on
the characteristics of the pathophysiological process in each
sex. In this sense, various studies have uncovered important
immune regulatory functions for androgens, including effects
on neutrophil accumulation (31–33), maturation, activation (34),
and survival (35). In line with this evidence, we here report that
testosterone increases local chemokine expression, leading to a
higher recruitment of neutrophils to the site of infection, but
at the same time, these cells exhibit a “N2-like” phenotype with
a reduced efficiency in killing bacteria and high expression of
immunomodulatory molecules such as IL10 and TGFβ1.
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FIGURE 4 | Testosterone treatment impairs neutrophil ability to kill bacteria. (A-B) Rats were orchidectomized and treated with testosterone at 2 mg/kg/day or 10

mg/kg/day (high testosterone) before being inoculated with E. coli intraprostatically. (A) Representative electron microscopy images showing apoptotic neutrophils

(AN) free of bacteria (left), while prostate infiltrating neutrophils (N) in testosterone-treated rats display intact phagocytosed bacteria (right, arrowheads) after 5 days of

infection. EC: epithelial cell. Bar = 5µm. (B) This is consistent with the intense E. coli immunostaining, localized in intracinar neutrophils in testosterone- and high

testosterone-treated rats. Bar = 100µm. (C–D) Bacterial growth after being co-incubated ex vivo with peritoneal neutrophils from orchidectomized (OX) and

testosterone-treated (T) rats. The reduced bactericidal ability of neutrophils from T rats depicting in (C) is also seen at ultrastructural level (D) where abundant intact

free bacteria are observed in presence of testosterone. Data are representative from at least 3 independent experiments. **p < 0.01.

Neutrophil recruitment is an important early step in
inflammatory response against pathogenic invasion or sterile
tissue damage. The recruitment of neutrophils into the
tissue is initiated by neutrophil-active chemoattractants, mainly
CXCR2 ligands CXCL1 and CXCL2, released from danger
signal-activated professional tissue-resident sentinel cells or
stromal cells (28). Recruited neutrophils into injury site can
also deliver active chemokines directly contributing to their
own recruitment (36). In the present study, we observed
that the presence of testosterone leads to an increased
bacterial-induced mRNA expression of CXCL1 and CXCL2,

which was associated to a higher neutrophil recruitment.
In agreement, androgen supplementation has been shown to
augment neutrophil infiltration in penile urethroplasty (33)
and after myocardial infarction in both male and females
(31). Human studies demonstrated that decreasing testosterone
levels results in an attenuation of exercise-induced neutrophil
accumulation in muscles (37), indicating a strong positive
correlation between androgen levels and neutrophil infiltration.
Furthermore, hyperandrogenemia is associated to a higher
neutrophil count in steady state conditions in women with
polycystic ovary syndrome (38). The excessive or aberrant
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FIGURE 5 | Androgens modulate neutrophil phenotype. Rats were orchidectomized (OX) and treated with testosterone 2 mg/kg/day (T) before being inoculated with

1mg of LPS intraprostatically for 24 h (A, C, D, F). To elicit peritoneal neutrophils, a single i.p. injection of LPS 1 mg/kg was applied (B, E). (A) Myeloperoxidase (MPO)

activity in prostatic tissue is impaired in testosterone-treated animals, referred per mg of proteins (left) as well as per g of tissue (right). (B) Peritoneal neutrophils also

show a decrease in MPO activity in animals treated with T. Data are mean ± SEM, from n = 4 per group. *p < 0.05; **p < 0.01. (C) The mRNA expression for MPO

show no changes between groups. (D) Cytokine profiling of Gr (+)-sorted prostatic neutrophils by qPCR, depicting that cells from testosterone-treated animals

express high levels of anti-inflammatory TGFβ and IL10, while pro-inflammatory cytokines are reduced. (E) Peritoneal neutrophils from testosterone-treated rats also

have an anti-inflammatory/ immunomodulatory/“N2-like” phenotype, compatible to that reported by Fridlender et al. (9) and characterized by high expression of TGFβ

and IL10 along with low levels of IL1b, IL12p40, and TNFα. ACTB was used as reference mRNA. Mean ± SEM, each dot represents one animal. *p < 0.05;

**p < 0.01. (F) Representative images of prostatic neutrophils showing cellular edema and vacuolization in testosterone-treated animals. Bar = 5µm.
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FIGURE 6 | Antiandrogen therapy inhibits IL10 production. Rats were treated with flutamide (7.5 mg/kg/day) for 5 days and thioglycollate-elicited peritoneal cells were

pulsed ex vivo with LPS 1µg/ml for 24 h. (A) Immunofluorescence for IL10 in absence of antiandrogens, analyzed by confocal microscopy. Most of Gr (+) peritoneal

neutrophils express IL10. Bar = 50µm. (B) Flow cytometry showing a decrease in the granulocytic population (R1) along with an increase in the frequency of

mononuclear cells (R2) after flutamide treatment (representative dot plots; n = 3; top panels). The Gr (+) CD11b (+) R1 neutrophil population shows a decrease in

IL10 expression after flutamide treatment (center panels, left) while the monocytic R2 population also displays low expression of IL10 in the same group (bottom

panels). Data are representative of n = 3.
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neutrophil infiltration in the presence of high androgen levels
seems to favor tissue damage and organ dysfunction not only
after infection but also in non-infectious conditions (31, 33).
However, novel evidence suggests that neutrophil accumulation
could also play a positive role in organ homeostasis by resolving
inflammation (39–42), with a phenotypic characterization (i.e.,
pro-inflammatory vs. pro-resolving neutrophils) being necessary
in order to predict the final effect of these cells on damage
progression and tissue function.

Unlike other immune cells, existence of clearly defined
neutrophils subtypes remains unclear. Accumulating evidence
suggests that neutrophils may exhibit certain plasticity according
to the microenvironment (8, 9, 43, 44). For instance, different
subtypes of neutrophils were identified during infection
with methicillin-resistant S. aureus (MRSA), associated either to
resistance or to susceptibility to infection inmice (8). Neutrophils
fromMRSA-resistant hosts show a pro-inflammatory phenotype,
with IL12 and CCL3 production, whereas those from
MRSA- susceptible mice are anti-inflammatory in nature
(IL10+/CCL2+), inducing M2 macrophages (8). Neutrophil
polarization to an IL10-producing anti-inflammatory phenotype
has also been reported by different pathogens (43, 45) as
well as by serum amyloid A1 (46). Nevertheless, neutrophil
subsets have mainly been characterized in tumoral conditions,
where constitutively produced cytokines and growth factors
can promote polarization of cells recruited into the tumor
(9, 47). Of note, IFNβ and TGFβ1 induce neutrophils to acquire
anti-tumoral (N1) or pro-tumoral (N2) phenotypes respectively
(9, 47). N2 neutrophils are postulated to have a main role in
promoting tumoral growth by increasing extracellular matrix
deposition and by dampening a proper immune response (9).
In this context, TGFβ1 appears as a central player in the tumor
microenvironment orchestrating diverse pro-tumoral, anti-
inflammatory, and immunomodulatory actions, including the
induction and maintenance of an N2 phenotype. The induction
of “N2-like” neutrophils in the presence of testosterone in our
study can also be explained by overexpression of TGFβ1 since
its promoter activity is directly regulated by androgens through
the androgen receptor (AR) (48, 49). However, whether TGFβ1
acts directly or by other mechanisms to induce N2 neutrophil
maturation by androgens deserves further research.

The ability of androgens to promote anti-
inflammatory/immunomodulatory phenotypes has been
previously recognized for professional immune cells (16, 20).
In general, testosterone tends to inhibit pro-inflammatory
molecules such as TNFα, iNOS, and NO whereas induces
IL10 and TGFβ1 anti-inflammatory signaling (19, 50–52).
Accordingly, we found that androgens favor a higher IL10
and TGFβ1 expression along with a lower IL12 expression
on recruited neutrophils. Strikingly, this phenotype was
accompanied by a reduction in both MPO activity and
bactericidal ability in vivo as well as ex vivo, resulting in an
inadequate bacterial clearance. In accordance, it has been
reported that, in vitro, testosterone decreases the microbicidal
activity of human neutrophils by dampening the production
of reactive oxygen species (53, 54). In contrast, after trauma
or burn injury, androgens have been reported to enhance
neutrophil activation in blood, as judged by CD11b expression

and respiratory burst activity (32), which might explain why
males are more susceptible to acute shock aggressiveness than
females. These ambivalent results could be attributed to the
type of stimuli used and the pathological conditions, with scarce
data available on the bactericidal ability of neutrophils after
androgen manipulation. In any case, the promotion of “N2-like”
neutrophils by androgens may be deleterious as well as favorable,
depending on the particular context; albeit being inefficient in
killing bacteria, their ability to generate TGFβ1, as described
before (39, 40), could be beneficial in repairing tissues and
resolving inflammation (39, 40).

Our results indicate that testosterone modulates neutrophil
activity within the prostate and in androgen-independent sites
as well. In a bacterial milieu, testosterone promotes, in a dose
dependent manner, a recruitment of malfunctioning neutrophil
that amplifies and prolongs the inflammatory response, with
the persistence of their toxic products destroying cellular
components and generating a favorable environment for the
development of pathologies (14, 55). On the other hand,
the testosterone-induced anti-inflammatory profile displayed by
these neutrophils could be beneficial in some non-bacterial types
of inflammation.
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Supplementary Movie 1 | Testosterone increases LPS-induced neutrophil

accumulation in the liver. Intravital microscopy after an i.p. LPS 0.5 mg/kg injection

for the visualization of neutrophil recruitment to liver sinusoids. Mice were

previously treated with the antiandrogen flutamide (7 mg/kg/day) or with

testosterone (10 mg/kg/day) for 3 days. Quantification of Ly6G (+) neutrophils

(green) is shown in Figure 2D.

Supplementary Table 1 | List of primers (Rattus norvegicus) used for different

target mRNAs.
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Differential redox state contributes 
to sex Disparities in the response  
to influenza Virus infection in Male 
and Female Mice
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Influenza virus replicates intracellularly exploiting several pathways involved in the 
regulation of host responses. The outcome and the severity of the infection are thus 
strongly conditioned by multiple host factors, including age, sex, metabolic, and redox 
conditions of the target cells. Hormones are also important determinants of host immune 
responses to influenza and are recently proposed in the prophylaxis and treatment. This 
study shows that female mice are less susceptible than males to mouse-adapted influ-
enza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher 
survival rate (+36%), milder clinical disease, and less weight loss. They also have milder 
histopathological signs, especially free alveolar area is higher than that in males, even 
if pro-inflammatory cytokine production shows slight differences between sexes; hor-
mone levels, moreover, do not vary significantly with infection in our model. Importantly, 
viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 
50%) are lower in PR8-infected females. An analysis of the mechanisms contributing 
to sex disparities observed during infection reveals that the female animals have higher 
total antioxidant power in serum and their lungs are characterized by increase in (i) the 
content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant 
enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression 
of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by 
high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both 
enzymes promoting viral replication. All these factors are critical for cell homeostasis and 
susceptibility to infection. Reappraisal of the importance of the host cell redox state and 
sex-related effects may be useful in the attempt to develop more tailored therapeutic 
interventions in the fight against influenza.
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inTrODUcTiOn

Viruses replicate in the living cells of their hosts and use many 
intracellular pathways for their own advantage. Consequently, 
host factors like age, general health, metabolic, and redox condi-
tions of the cells can have important repercussions on different 
steps of the virus life cycle (1–4). Furthermore, general redox state 
may also affect host immune response to viral replication (5–8). 
Cells containing high levels of thiols, e.g., glutathione (GSH) and 
cysteine content, or characterized by higher antioxidant defenses, 
as well as abundant expression of Bcl-2 proteins family, are less 
permissive to viral replication, including influenza (2). Moreover, 
our and other groups previously demonstrated that cells infected 
with influenza virus were characterized by low levels of GSH 
(2, 9–12) and by an increase of reactive oxygen species (ROS) 
production (10, 11, 13). During influenza virus infection, there is 
also a depletion of key antioxidant enzymes, due to their secretion 
or because of virus-induced loss of lung cells (14, 15). The oxida-
tive stress is useful for the virus since many pathways involved 
in the regulation of viral replication and host responses to viral 
infection are highly responsive to even transient changes in the 
redox state of the cytoplasmic environment (16). In fact, some 
enzymes like protein disulfide isomerase (PDI) or NADPH oxi-
dase 4 (NOX4) regulate specific steps of virus life cycle, including 
the folding and maturation of viral glycoprotein hemagglutinin 
(10) and the nuclear-cytoplasmic export of viral nucleoprotein 
(NP) (11, 17, 18).

Sex and gender, that refer to biology and behavior, respectively 
(19), also impact viral infections. Analysis of several epidemio-
logical studies has highlighted that disease severity and fatality 
following exposure to influenza A viruses are generally higher 
in women than men (19, 20). The mechanisms underlying this 
sex/gender difference are several and tightly interconnected; 
behavioral, immunological, hormonal, and genetic factors are 
all included (20). Focusing on biological factors, it is known that 
females mount a higher immune response than males, which can 
accelerate virus clearance and reduce virus load, but can also make 
females more prone to immunopathology and to development of 
autoimmune disease (21). Klein et al. (20, 22, 23) reported that the 
exaggerated immunity and consequent immunopathology lead 
females to greater morbidity and mortality with respect to males. 
Such a response can be modulated by hormone concentrations, 
and so age may also affect the sex-related variability (24, 25).  
Epidemiological studies in which results were stratified by age 
in fact, report that hospitalization and morbidity rates due to 
influenza A viruses are higher in males than in females from birth 
to 15–19 years (26–31). Non-endocrine factors, as genetic ones, 
could prevail in the latter case. It has been shown that genetic 

variation in chromosome Y regulates susceptibility to influenza 
A virus, making specific variants in males mice more susceptible 
to infection (32).

Interesting parameters that also differently characterize cells 
isolated from male and female animals were the redox ones (33, 34).  
Malorni et al. (35) reported differences between vascular smooth 
muscle cells (VSMC) from male and female rats in terms of “basal” 
redox balance. Either H2O2 or O2

− levels were significantly lower 
in VSMC from females than those from male rats. Moreover, 
the intracellular GSH content was higher in female than in male 
rats. The same authors found that antioxidant enzyme activity 
was significantly higher in VSMC from female than in male, 
independently from the stimuli that induced stress (35, 36). Many 
redox-sensitive cell-signaling pathways are differently activated 
in both sexes (37).

On the basis of this evidence, in this study, we verified the 
hypothesis that host redox state plays a role in sex disparities 
in the outcome of influenza virus infection. To evaluate viral 
replication in male and female mice, we chose the Balb/c strain, 
which is considered a Th2-type strain (38), to better highlight 
the effect of the virus (as opposed to the immune response). 
Female and male mice were infected with a mouse-adapted 
strain of influenza A (H1N1) and the progression of disease 
was monitored by measuring some redox parameters usually 
altered during infection. We found that in terms of both survival 
and clinicopathological parameters of disease, the female mice 
displayed higher resistance to the infection, due to significant 
differences in the systemic and pulmonary “redox profiles” 
between female and male mice.

MaTerials anD MeThODs

In accordance with national law, the experiments described in 
this manuscript were approved by the Italian Ministry of Health, 
which verified the ethical and scientific appropriateness of the 
research. All animals received humane treatment, and every 
effort was made to minimize their suffering. Unless otherwise 
stated, all commercial products cited were used in accordance 
with the manufacturers’ instructions.

Mice and Virus infection
Balb/c 6-week-old mice [400 females, body weight (bw) 
range =  15–19 g; 400 males, bw =  19–23 g] were purchased 
from Harlan Laboratories (Milan, Italy). Animals were housed 
under specific pathogen-free conditions (5/cage, SmartFlow 
IVC Rack, Tecniplast, Varese, Italy) at 12:12 h light:dark cycle, 
and ad  libitum access to food and water. After 1  week, each 
mouse was individually weighed and randomly assigned to an 
experimental group.

A mouse-adapted strain of influenza A/Puerto Rico/8/34 
(H1N1; PR8) was used. In our experiments, 1 plaque-forming unit 
(PFU) of PR8 stock was equivalent to 2.9 × 103 genome copies, 
approximately 2.0 × 103 genome copies/tissue culture infectious 
dose 50% (TCID50) according to the relationship between TCID50 
and PFU provided by the American Type Culture Collection. 
The 50% mouse lethal dose (MLD50) was determined in female 
and male mice that had been lightly anesthetized by isofluorane 

Abbreviations: BALF, broncho-alveolar lavage fluid; CAT, catalase; Gapdh,  
glyceraldehyde-3-phosphate dehydrogenase; Gusb, glucuronidase beta; GCL, gluta-
mate cysteine ligase; GR, glutathione reductase; GSS, glutathione synthase; GSHPx, 
glutathione peroxidase; H&E, hematoxylin & eosin-stained; MLD50, 50% mouse 
lethal dose; NOX4, NADPH oxidase 4; NP, nucleoprotein; GSSG, oxidized glu-
tathione; PRDX, peroxiredoxin; PFU, plaque-forming unit; PDI, protein disulfide 
isomerase; ROS, reactive oxygen species; GSH, reduced glutathione; Rpl13a, ribo-
somal protein L13A; SOD, superoxide dismutase; TCID50, tissue culture infectious 
dose 50%; TAC, total antioxidant capacity; VSMC, vascular smooth muscle cells.
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(Esteve, Milan, Italy) inhalation and intranasally inoculated with 
PR8 at different doses (0.01–10 PFU/animal).

For assessment of morbidity and survival related to seasonal-
like influenza infections, the inoculum consisted of 50  µl of 
sterile phosphate-buffered saline (PBS), alone (mock-infected 
controls) or containing 0.5  PFU/mouse of PR8 (infected 
animals).

Infected and control animals were daily monitored up to 
21 days post-infection (p.i.). Each animal was weighed, its rectal 
temperature was measured (Temp Thermocouple Meter, Oakton, 
USA), and the clinical severity of disease was scored using the 
following scale (39, 40): 0 = no visible signs of disease; 1 = slight 
ruffling of fur; 2  =  ruffled fur, reduced mobility; 3  =  ruffled 
fur, reduced mobility, rapid breathing; 4 = ruffled fur, minimal 
mobility, huddled appearance, rapid and/or labored breathing 
indicative of pneumonia.

At the end of the experiments, the mice were euthanized 
with an overdose of tiletamine/zolazepam (Virbac, Milan, Italy) 
(800 mg/kg bw) and xylazine (Bayer, Milan, Italy) (100 mg/kg bw).  
Specimens for analysis [blood, broncho-alveolar lavage fluid 
(BALF), and lungs] were then collected as described below.

Blood
Serum Total Antioxidant Capacity (TAC) Assay
On p.i. days 3, 6, 9, and 21, blood was collected from the retro-
orbital venous sinuses of control and PR8-infected mice. The 
recovery was made with a Pasteur pipette after ocular instillation 
of oxybuprocaine (1 drop/eye) (Novartis, Siena, Italy). The sample 
was allowed to clot for 45 min (to facilitate removal of all platelets 
and precipitates) and then centrifuged at 10,000 × g for 15 min at 
+4°C. The serum was stored at −80°C prior to assay with the TAC 
Kit (JaICA, Florence, Italy), which measures the sample’s capacity 
to convert Cu+2 to Cu+1.

Sex Hormone Quantification
Testosterone and estradiol quantification was performed using 
a colorimetric competitive enzyme immunoassay kit purchased 
from Enzo Life Sciences (3V Chimica, Rome, Italy), according to 
the manufacturers’ instructions.

Broncho-alveolar lavage Fluid (BalF)
Mice were euthanized, and a sterile 23-G catheter was inserted into 
the exposed tracheal lumen. Two instillations of sterile PBS (0.8 ml) 
containing protease inhibitors (Sigma-Aldrich, Milan, Italy) were 
injected through the catheter and aspirated as previously described 
(41). The BALF samples were centrifuged at 1,000 × g for 15 min at 
+4°C and the supernatant stored at −80°C prior to analysis.

Total Protein Content
For assessment of lung damage, the total protein content of each 
BALF specimen was measured with a standard Micro BCA Kit 
(Pierce, Monza, Italy). BALF samples (150 µl) were pipetted into 
a microplate well, working reagent (150 µl) was added, and the 
plate was incubated at 37°C for 2 h and cooled to room tem-
perature. The optical density of each solution was measured at 
570 nm with a Multiskan Ex Reader (Thermo Fisher Scientific, 
Monza, Italy).

Cytokine Quantification
A multiplex assay was used to measure cytokine (IL-1, IL-6, TNF-α,  
IL-10, IFN-γ, CCL2-MCP1, and CCL3-MIP1) levels in each BALF 
sample. Plates were read on a Bio-Plex MAGPIX instrument, 
and data were analyzed with Bio-Prosoftware (Bio-Rad, Milan,  
Italy).

lungs
Assay of Viral Titers
Whole lungs isolated from infected female and male mice were 
removed, weighed, frozen, and stored at −80°C. For the quanti-
fication of viral M1 RNA copies, total RNA was extracted from 
thawed lungs that had been homogenized in TRI Reagent (Sigma-
Aldrich, Milan, Italy) (1  ml/75  mg of tissue) with a Polytron 
homogenizer. The RNA pellet was washed with 1  ml of 75% 
ethanol (7,500 × g for 5 min at +4°C) and air-dried for 30 min. 
Diethylpyrocarbonate water (100  µl) was added, and tube was 
heated to 55°C for 15 min to facilitate dissolution. The isolated 
RNA was treated with DNase I (Invitrogen, Life Technologies, 
Monza, Italy), and its quality and quantity were verified spec-
trophometrically (Pearl Nanophotometer, IMPLEN, Munich, 
Germany). The number of viral M1 RNA copies was determined 
by quantitative real time RT-PCR using the One Step Influenza 
A/B r-gene and Quanti FluA kits (BioMérieux, Florence, Italy). 
For the evaluation of TCID50, lungs were homogenized in RPMI 
1640 medium, and homogenates were subjected to TCID50 assay 
on MDCK cells. The number of wells showing positive cytopathic 
effects was scored, and the titer was calculated as previously 
described (42).

Histologic Examination
Lung histology was evaluated in female and male infected mice 
(n = 25/group). Mock-infected mice were used as controls. Mice 
were sacrificed at 3, 6, 9, and 21 days p.i. Each sacrifice was fol-
lowed by complete necroscopy with macroscopic and microscopic 
examinations of the lungs.

For the histopathological and morphological examination, 
each lung was fixed in buffered formalin at room temperature for 
48 h and embedded in paraffin with a melting point of 55–57°C. 
Sections (3-μm thick) were stained with hematoxylin and eosin 
and Masson’s trichrome.

The samples were evaluated independently and blindly by three 
investigators (Caterina Loredana Mammola, Antonio Franchitto, 
and Romina Mancinelli), and necroinflammatory changes were 
scored as follows (43, 44): 0 = no lesions; 1 = mild focal inflam-
mation; 2 = moderate–severe inflammation or necrosis affecting 
less than 25% of lung tissue examined; 3 = severe inflammation 
with necrosis or severe inflammation affecting 25–50% of lung 
tissue examined; 4 = severe inflammation with necrosis affecting 
more than 50% of the lung tissue examined. For each lung, at 
least five slides were analyzed. Briefly, serial paraffin sections were 
obtained per animal. For each sample, 10 fields were analyzed 
per  section. Alveoli were identified and bordered to calculate 
the corresponding areas. All ambiguous structures, airways, and 
vascular structures were excluded. The tissue and airspace areas 
were tabulated using the IAS Delta Sistemi software (Rome, Italy) 
(10, 45–47).
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Assays of Thiols Levels and Antioxidant  
Enzyme Activities
A sterile 23-G butterfly needle was inserted into the euthanized 
mouse’s right ventricle and connected to a peristaltic pump 
(Generalcontrol, Milan, Italy). The lungs were then perfused with 
PBS containing 50  U/ml heparin (Sigma-Aldrich, Milan, Italy) 
to remove erythrocytes and clots. Cuts were made in the liver to 
facilitate perfusate outflow. The lungs were then removed, weighed, 
frozen in liquid nitrogen, and stored at −80°C until assayed.

Intracellular glutathione (GSH) and oxidized forms [oxidized 
glutathione (GSSG)] were measured in lung homogenates with 
the Glutathione Assay Kit (Cayman Chemical, Florence, Italy) 
following the manufacturer’s instructions, after deproteinization 
with metaphosphoric acid of the samples. For GSSG quantifica-
tion, an aliquot of deproteinized samples was first incubated with 
2-vinylpyridine to derivatize GSH. Reduced GSH levels were 
obtained by differences between total GSH and GSSG.

The total amount of free thiols in deproteinized samples from 
lung homogenates and in serum were measured by a standard 
colorimetric assay using Ellman’s reagent (48).

Catalase (CAT), superoxide dismutase (SOD), and glutathione 
peroxidase (GSHPx) activities were also measured with specific 
kits (Cayman Chemical, Florence, Italy). Calculation of enzy-
matic activity was determined following the manufacturer’s 
instructions.

RT-PCR Analysis of Pulmonary mRNA Levels
Total RNA was isolated from the lungs as described above and 
used as a template for generating cDNA (iScript cDNA Synthesis 
Kit, Bio-Rad, Milan, Italy). An aliquot of the cDNA was subjected 
to 40 cycles of RT-PCR amplification (95°C, 10  s; 60°C, 30  s) 
using iQ SYBR Green Supermix and a LightCycler iQ 5 (Bio-Rad, 
Milan, Italy). To ensure that the primers produced a single and 
specific PCR amplification product, a melting curve analysis was 
carried out at the end of the PCR cycle. The housekeeping genes 
glucuronidase beta (Gusb), ribosomal protein L13A (Rpl13a), 
and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) were 
used for normalization. Relative quantitative evaluation was 
performed by the comparative ΔΔCt method.

The following forward and reverse primers were used: 
glutathione reductase (GR) (TTCAGTTGGCATGTCATC for-
ward; CCGTGGATAATTTCTATGTGA reverse), glutathione 
synthase (GSS) (GTGCTACTGATTGCTCAA forward; ACATG 
GATCTTCCTGTCT reverse), glutamate cysteine ligase (GCL) (AA 
GTCCCTCTTCTTTCCA forward; CCTTGAATATTGGCAC 
ATTG reverse), Bcl-2 (CCTACGGATTGACATTCTC forward; AT 
ACATAAGGCAACCACAC reverse), Rpl13a (ATGGGATGAAT 
CAGTTGAG forward; ATAGGGTACTTGGTCAGG reverse),  
Gapdh (TGCGACTTCAACAGCAACTC forward; ATGTAG 
GCCATGAGGTCCAC reverse), Gusb (GTACTCCTTGGAG 
GTGAA forward; TGAATCCTCGTGCTTATTG reverse). The 
results are presented as fold increases relative to levels observed 
in mock-infected control mice.

Western Blot Analysis
Whole lungs of female and male infected mice (n  =  9/group) 
were homogenized in RIPA lysis buffer [20  mM Tris–HCl pH 

7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGDA, 1% NP-40, 
1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM 
β-glycerophosphate, 1% Triton X-100, and 0.1% sodium dodecyl 
sulfate (SDS)] supplemented with phenylmethylsulfonyl fluoride, 
protease inhibitor mixture, and phosphatase inhibitor (Sigma-
Aldrich, Milan, Italy). Lung lysates were incubated for 30 min on 
ice and then centrifuged at 13,000 × g for 30 min. The protein 
concentration of the supernatants was determined with the Micro 
BCA Protein Assay Kit (Pierce, Monza, Italy). Samples were 
separated by SDS-PAGE, blotted onto nitrocellulose membranes, 
blocked with 10% non-fat dry milk, and stained with primary 
(see below) and secondary antibodies peroxidase-conjugated 
(Jackson ImmunoResearch, Milan, Italy). Blots were developed 
with the ECL-Plus Detection System (GE Healthcare, Milan, 
Italy) and subjected to densitometry with the Quantity One 
Program (Bio-Rad, Milan, Italy).

Primary antibodies included rabbit polyclonal anti-NOX4, 
anti-phospho-p38, anti-Bcl-2 (Santa Cruz Biotechnology, Dallas, 
TX, USA); rabbit polyclonal anti-PRDX1 (Abcam); and mouse 
monoclonal anti-actin (Sigma-Aldrich).

statistical analyses
The long-rank test was used to assess the difference in the overall 
Kaplan–Meier survival curves. Variations on bw and tempera-
ture were assigned by using a linear mixed model for repeated 
measures adjusted by baseline value followed by post hoc analysis 
(Bonferroni’s correction). The Wilcoxon test was performed to 
compare the values of Glutathione, viral M1 RNA copies, and 
protein concentrations in BALF in the two groups (all statistical 
analyses were performed using R version 3.3).

Unpaired two-tailed Student’s t-test or one-way ANOVA test 
were used for antioxidant enzyme activity; gene and protein 
expression; cytokine levels; alveolar area in both sexes (statistical 
analysis was performed using GraphPad Prism™ software ver-
sion 6.0).

p-Values of less than 0.05 (p ≤ 0.05) were considered statisti-
cally significant.

resUlTs

Female Mice are More resistant to 
influenza Virus infection Than Males
Female and male Balb/c mice were infected intranasally with 
0.5  PFU/mouse and clinical signs of infection, bw, body tem-
perature, and survival were monitored daily until 21 days after 
infection. The clinical responses and survival rates observed in 
female and male mice up to 21 days p.i are shown in Figure 1. The 
first symptoms of disease (piloerection, reduced food intake, and 
lethargy) appeared in both sexes 4 days p.i. and increased rapidly 
in intensity. The males exhibited more pronounced horripilation 
(as the first sign of pain) than the females and higher clinical 
scores at peak disease intensity (on p.i. days 6–12) (Figure 1A). 
In addition, the percentage of bw decreased rapidly in each male, 
whereas for some females the bw did not decrease considerably. 
The overall trend of bw loss at day 9 p.i. was higher in males than 
in females (26.6 and 23.2%, respectively), even if no statistically 
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FigUre 1 | Female mice are more resistant than males to PR8 infection. Female and male mice were monitored for 21 days after intranasal inoculation with 0.5 
plaque-forming unit of mouse-adapted influenza A virus (PR8). (a) Clinical scores: the graph represents the combined results of two separate experiments, each performed 
with 10 male and 10 female animals. Scores ranged from 0 (no disease) to 4 (signs and symptoms that are indicative of pneumonia). See Section “Materials and Methods” 
for details. (B) Spaghetti plot of the daily body weight (expressed as percentage respect to day 0); the bold lines represent the overall trend. (c) Kaplan–Meier overall 
survival curves. Results represent data pooled from four independent experiments, each performed with 10 males and 10 females (n = 40/sex), ***p-value = 0.001.
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substantial differences were detected (Figure 1B; Figure S1A in 
Supplementary Material). In terms of body temperature, no dif-
ferences were observed in the two groups as well (Figure S1B in 
Supplementary Material).

Nevertheless, the percentage of survival following infection was 
significantly lower among males in comparison to females (53.8 
and 90%, respectively, log rank ***p-value = 0.001) (Figure 1C). 
Furthermore, the average day of death occurred earlier in male 
than in female group (on p.i. day 7 vs. on p.i. day 10).

influenza Virus causes More severe  
lung Damage in Male Mice
To look at the damage caused by PR8 infection in the lungs 
of mice, the animals were euthanized and lungs fixed in 10% 

buffered formalin prior to sectioning at 3 µm and staining with 
hematoxylin & eosin-stained (H&E) and Masson’s trichrome as 
described in Section “Materials and Methods” (Figure 2).

The observation of lung tissues from uninfected control mice 
(n  =  5/sex) did not highlight lesions in any of the sacrificed 
animals. No changes were found in the normal architecture of 
pulmonary parenchyma, as well as in the normal morphology 
of airways, alveolus, and alveolar septa. The free alveolar area for 
these animals (Ctr) compared with that measured in infected 
mice (I) is reported in Figures 2 and 3A. Results are shown for 3, 
6, and 9 days p.i., since on day 21 p.i. both female and male mice 
that survived did not show significant differences. As reported on 
the table under the graph (Figure 3A), the percentage of reduc-
tion of free alveolar area in males was higher than in females.
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FigUre 2 | Influenza A virus produces more severe lung damage in male mice. Hematoxylin & eosin-stained section of the female (a) and male (B) pulmonary 
tissues from mock-infected (Ctr) or infected mice with influenza A virus and sacrificed at different times (3, 6, and 9 days). Early structural changes caused by 
influenza virus in the epithelium of the lower airway are variable, with cytonecrosis involving shrinkage, decreasing in alveolar surface, followed by desquamation of 
these cells into the luminal space. In addition, there is necrosis of the bronchiolar wall, with submucosal edema and vascular congestion. These structural changes 
are irregularly distributed among male and female mice. In fact, the female mice (a) sacrificed after 3 days still show an higher amount of alveolar surface (see the 
asterisks) with some initial alterations, such as thickening of the alveolar septa and inflammatory infiltration (see yellow arrows) compared to the control and the 
corresponding male samples (B). After 6 days, we found an increase in inflammation both in male and female mice, the epithelial layer is desquamating, and 
necrotic epithelial cells are present in the lumen (see green arrows). But, in male (B), massive pulmonary edema and hemorrhage with the alveolar air spaces fill of 
edema fluid and erythrocytes are also present. After 9 days, the male tissue presents a slight worsening of the previous features, whereas the female lungs start to 
display the same aspects, maintaining a greater alveolar area (original magnification 10×).
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In details, in PR8-infected male mice (n = 5) sacrificed after 
3 days p.i. (Figures 2B and 3A), we described initial alterations 
of lungs parenchyma; alveolar area resulted slightly reduced 
compared with control lungs with thickened alveolar septa. In 
addition, all samples showed peripheral edema and alteration of 
epithelium with inflammatory cells adhering to the surface of 
bronchioles. The mean ± SD of free alveolar area was 975 ± 235 
with a % reduction respect to Ctr of 32 ± 16. Female mice lungs 
(n =  5) at 3 days p.i. (Figures 2A and 3A) displayed a similar 
histopathological damage and the mean ± SD of alveolar area was 
1,204 ± 238 with a % reduction of 18 ± 16.

In infected male mice (n  =  5) sacrificed after 6  days p.i. 
(Figures 2B and 3A), we found widespread impairment of pul-
monary parenchyma; the pictures of interstitial pneumonia were 
characterized by the presence of higher inflammatory exudate 
(interstitial and alveolar) with inflammatory cells, fibrin, cellular 
debris, and obvious vascular congestion and areas of necrosis. 

The alveolar area is greatly decreased if compared with the control 
lungs and strikingly, the lungs of the male mice displayed signs 
of more severe damage than those of the females consisting of 
bronchiolitis, peri-bronchiolitis, interstitial edema, alveolar 
wall thickening, dense interstitial granulocyte, and lymphocyte 
infiltrates, and the alveolar area was 708 ± 212 with a % reduction 
of 51 ±  14.8. By p.i. day 6, these lesions already involved over 
25% of the considered parenchyma, and similar involvement 
was observed in survivors sacrificed 9  days p.i. Female mice 
lungs (n = 5) at 6 days p.i. (Figures 2A and 3A) showed similar 
histopathological alterations from a qualitative point of view, 
but larger preserved parenchymal areas; therefore, the alveolar 
area was significantly higher than male mice and this difference 
persisted for the duration of the experiment, indicating that 
the virally induced inflammation had a lower impact on lung’s 
female (alveolar area: mean ± SD 996 ± 286 with a % reduction 
of 32 ± 19.5).
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FigUre 3 | Male mice display reduced alveolar area compared with females. (a) Morphometric analysis at different days post-infection in female (F) and male (M) 
mice infected as described in Figure 2. The graph shows box-plots of alveolar area (μm2) of PR8-infected (I) and mock-infected mice (Ctr). **p-Value <0.01 
females vs. males (unpaired t-test); ***p-value <0.001 Infected vs. Ctr (One-way ANOVA Bonferroni multiple comparisons test). On table below the graph, the 
percentage of reduction of free to air exchange vs. mock-infected (considered 100%), and the score of inflammation and necrosis (NI score) are shown. #Relevant 
reduction of the alveolar area, thickening of the alveolar septa, vascular congestion. (B) Box-plots of protein concentrations in the BALF from mock-infected (Ctr) 
and PR8-infected female and male mice at the time points indicated. Results represent data pooled from three separate experiments. In details, mock-infected 
mice were 10 (5/sex), infected mice on p.i. day 3 were 19 (9 females and 10 males), on p.i. day 6 were 19 (10 females and 9 males), on p.i. day 9 were 18 (9/sex), 
**p-value = 0.006.
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In infected male mice lungs (n = 5) at 9 days p.i. (Figures 2B 
and 3A), diffuse impairment of pulmonary parenchyma was 
observed. The “alveolar area” was greatly reduced compared with 
the lung of the controls but lightly reduced compared with the 
animals after 6 days p.i. (free alveolar area 625 ± 213 with a % 
reduction of 56 ± 14.9). Mice female lungs (n = 5) at 9 days p.i. 
(Figures 2A and 3A) presented chronic flogistic infiltrate with 
prevalent interstitial localization activated by epithelial/endothe-
lial lesions: the picture is similar to that of male animals, but there 

are a lower incidence of collagen and exudative deposition and 
necrosis; moreover, reconstitution areas of the alveolar epithe-
lium is observed in female lungs (free alveolar area 837 ± 230 with 
a % reduction of 43 ± 15.7).

Finally, as an indirect measure of the diffuse alveolar damage, 
protein concentrations in BALF samples from PR8-infected mice 
and mock-infected controls (Ctr) were assessed. As shown in 
Figure 3B, increases were observed on p.i. day 6 in infected ani-
mals of both sexes. By p.i. day 9 (when maximal lung damage was 
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FigUre 4 | Inflammatory cytokine production in infected mice. BALF concentrations of IL-1, IL-6, TNF-α, IL-10, IFN-γ, CCL2-MCP1, and CCL3-MIP1 were 
measured in male (M) and female (F) mice from the mock-infected (Ctr) and PR8-infected groups. The data (mean ± SEM) are represented as the concentration of 
cytokines at days 3, 6, and 9 p.i. relative to Ctr. Results are obtained from five different experiments, each performed with seven male and seven female mice. 
*p-Value <0.05 (female vs. male group); ap-value <0.05 (differences within a sex across time-points p.i.).
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noted in lung sections), BALF protein levels were significantly 
higher in the male group (**p-value = 0.006).

From a molecular point of view, a panel of different inflam-
matory cytokines and chemokines (IL-1, IL-6, TNF-α, IL-10, 
IFN-γ, CCL2-MCP1, and CCL3-MIP1) was evaluated in 
BALF from males and females mice. As shown in Figure  4, 
both sexes produced all the cytokines and their levels were 
higher than those measured in mock-infected mice. In fact, 
the pro-inflammatory cytokines IL-6, TNF-α, and IL-1 were 
increased in both sexes, the latter particularly in males. Instead, 
IFN-γ cytokine levels resulted more pronounced in females. 

Regarding chemokines CCL2-MCP1 and CCL3-MIP1, an 
increase was observed in both sexes, with MIP-1 higher in 
males. The immunosuppressive cytokine (IL-10) was increased 
in males on day 6 p.i.

These results apparently contradicted most of the literature 
that report that adult female mice experienced a greater mor-
bidity and mortality after influenza virus infection than males, 
and this was correlated to immunopathology (24, 49); because 
hormones affect the immune response to viral infection, we 
wondered what are the hormonal levels in our model. We found 
plasma estradiol levels of 39.75 ± 18.6 pg/ml in control female 
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FigUre 5 | Viral M1 RNA copies are highly produced by infected males. (a) Box-plots of the viral M1 RNA copies measured by quantitative RT-PCR in 
homogenates of lungs collected on p.i. days 3, 6, and 9. Results represent data pooled from four independent experiments, each performed with five females  
and five males for each time-point (n = 20/sex), **p-value = 0.004. (B) Box-plots of the viral M1 RNA copies in BALF measured by RT-PCR on p.i. days 3, 6,  
and 9. Data shown are from one of the three experiments performed (each with five male and five female mice).
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mice and 30.3 ± 9.5 pg/ml in infected females (p.i. day 6); regard-
ing testosterone, we measured 18.74 ± 6.2 ng/ml in control males 
and 15.12 ± 1.6 ng/ml in infected males (p.i. day 6); therefore, no 
significant differences in hormone level between uninfected and 
infected mice were detectable.

As the lung damage appeared less severe in females and on 
the basis of the results from hormone quantification, which 
seemed not to change during infection, we finally looked at 
the viral replication. As displayed in Figure 5A, viral M1 RNA 
copies in lung homogenates were consistently higher in the male 
group, and this difference was statistically significant on p.i. day 
6 (**p-value = 0.004). Similarly, viral M1 RNA copies measured 
in BALF samples were also considerably higher in males than 
in females, during peak illness (Figure 5B). Accordingly, on p.i. 
day 6, the TCID50 measured on lung homogenates obtained from 

infected male mice was higher than in female mice (1,582 ± 457 
and 654 ± 32 U/ml, respectively).

Therefore, collectively these data suggest that the higher mor-
bidity and, consequently, the lower survival, as well as the more 
severe and extended lung damage exhibited by PR8-infected male 
mice, may be the result of a higher replication of influenza virus 
in the lungs of the male mice.

enhanced systemic antioxidant  
Power Protects Female Mice  
During Viral infection
Influenza virus infection is known to be strongly conditioned 
by host redox environment, including the intracellular GSH 
content, antioxidant defense, and expression of redox-regulated 
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FigUre 6 | Antioxidant defenses are higher in infected female mice.  
(a) Serum from mock-infected (Ctr) and PR8-infected mice was collected  
on p.i. days 3, 6, 9, and 21 and assayed with the potential antioxidant test, 
which measures the total antioxidant power in terms of the sample’s ability to 
reduce copper. (B) Lung homogenates from Ctr and PR8-infected mice were 
assayed for CAT activity at the same time points than in panel (a). Each  
value reported represents the mean ± SD of results from two separate 
experiments, each performed in duplicate (n = 4), *p-value <0.05 and 
**p-value <0.01. (c) Peroxiredoxin (PRDX)1 protein expression was analyzed 
by western blotting in the lungs of infected female and male mice. Actin was 
used as loading control. Blot shows three animals for each sex (*p-value 
≤0.05) and is representative of three independent experiments performed.
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cell pathways (2, 9–13, 17, 18). To determine whether these 
factors contributed to the sexual disparities in susceptibility to 
PR8 infection observed in our model, we first compared the 
TAC of female and male mice. The TAC reflects the abundance 
of antioxidant molecules and enzymes available in the blood to 
counteract the effects of ROS/reactive nitrogen species, such as 
those produced during viral infection. As shown in Figure 6A, 
mock-infected female mice displayed appreciably higher TAC 
than their male counterparts. More striking sex-related differ-
ences were seen in PR8-infected mice. The reduction potential 
of serum from female mice remained high (near baseline 
levels) throughout the viral infection, whereas that of the males 
dropped significantly. On p.i. days 3 and 6, the TAC recorded 
for the males was significantly lower than those of the females 
(unpaired t-test **p-value <0.01). By p.i. day 21, TAC of surviv-
ing animals had returned to their respective baseline levels, 
which were once again lower in males. Accordingly, the analysis 

of free thiols in serum and lung homogenates from infected 
and mock-infected mice showed a slight reduction in infected 
males compared with mock infected, while no differences were 
detectable between infected and non-infected females (data not 
shown).

Next, we assessed antioxidant enzyme activities in lung 
homogenates. As shown in Figure 6B in mock-infected controls, 
CAT activity did not significantly differ among males and females. 
After PR8 infection, however, CAT activity in the lungs of male 
mice dropped substantially, reaching levels on p.i. days 3 and 6 
that were significantly lower than those of the female group, which 
remained stable throughout the viral infection (unpaired t-test 
*p-value <0.05).

Activity of SOD increased appreciably in both sexes on 
p.i. day 3, but this change was not statistically significant. 
Essentially, PR8 infection was not associated with any sig-
nificant change in pulmonary SOD activity in either the female 
or male mice, and no significant sex-related differences were 
observed at any of the time points (Figure S2 in Supplementary 
Material). Furthermore, we measured GSHPx activity, find-
ing that it decreased significantly in both sexes but in greater 
extent in infected male mice than female. To note that female 
mock-infected mice showed significantly higher basal activity 
of this enzyme (Figure S3 in Supplementary Material). Finally, 
the expression of another antioxidant enzyme, peroxiredoxin 
(PRDX)1, was analyzed by western blot in lung of infected 
female and male mice at p.i. days 3 and 6 (time when the maxi-
mal difference in redox conditions was observed). As shown in 
Figure 6C, the expression of this enzyme was higher in females 
than in males. The densitometric analysis of ratio PRDX1/actin 
of three animals for each sex at 3 and 6 days p.i. was 1.5- and 
3-fold higher, respectively, unpaired t-test *p-value ≤0.05, sug-
gesting that females are more protected by influenza for the 
presence of reducing conditions.

The intracellular content and Biosynthesis 
of gsh are Preserved in infected  
Female Mice
Influenza virus infection is associated with reductions in the 
GSH content of infected cells, which facilitate viral replica-
tion (2, 9–12). As shown in Figure  7A, basal levels of GSH 
in lung homogenates from the mock-infected control group 
were slightly higher and less variable in females than in males.  
As expected, levels decreased in both sexes after infection, but 
on p.i. day 6, there was a sharp drop in the GSH content of 
male lungs, which resulted in significantly lower levels than 
those found in females (*p-value  =  0.034). Interestingly, this 
drop coincided with the time of viral loads peak in the lungs of 
the male mice.

Reduced glutathione depletion may be due to its buffering role 
against ROS that, during viral infection, essentially derive from 
NOX4 (11). Therefore, we evaluated the expression of this enzyme 
in the lung homogenate of females and males. Densitometric 
analysis of three animals for both sexes demonstrated that NOX4 
was less expressed in females than in males (3 and 6 days p.i., 
1.5-fold lower, unpaired t-test *p-value ≤0.05; Figure 7B).
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FigUre 7 | Pulmonary intracellular reduced glutathione (GSH) levels are higher in females than in males. (a) GSH content was measured in the lungs of mock-
infected (Ctr) or infected (I) female and male mice sacrificed at indicated time points. Results represent data pooled from four separate experiments. In details, 
mock-infected mice were 12 (6/sex), infected mice on p.i. day 3 were 12 (6/sex), on p.i. day 6 were 30 (15/sex), on p.i. day 9 were 25 (13 females and 12 males) 
*p-value = 0.034. (B) NADPH oxidase 4 (NOX4) expression was analyzed by western blotting in the lungs of infected female and male mice. Actin was used as 
loading control. Blots shown are one representative experiment of three performed (three animals for each sex, *p-value ≤0.05). (c) RT-PCR quantification of 
enzymes responsible for recycling and biosynthesis of GSH [glutathione reductase (GR), glutamate cysteine ligase (GCL), and glutathione synthase (GSS)]. Gene 
expression was measured in lung homogenates of animals sacrificed on p.i. days 3, 6, and 9. Box-plots represent the fold increases relative to levels observed in 
mock-infected controls (n = 8/sex). Unpaired t-test *p-value ≤0.05.
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Intracellular GSH is regenerated from the oxidized form 
(GSSG) by GR or synthesized ex novo by the consecutive actions 
of GCL and GSS (50). Our next step was thus aimed at determin-
ing whether the sex-related differences in pulmonary GSH levels 
were also associated with differences in transcriptional expres-
sion of these three enzymes. As shown in Figure 7C, compared 

with their male counterparts, female PR8-infected mice showed 
a greater upregulation of GCL and GSS expression, suggesting 
more efficiency in counteracting PR8-induced GSH depletion 
(unpaired t-test *p-value <0.05). Collectively, these results 
indicate that female mice have an intrinsically higher antioxidant 
capacity, and during PR8 infection they are also capable of more 
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FigUre 8 | Female mice respond to PR8 infection with marked upregulation 
of Bcl-2 expression. (a) p-p38MAPK expression was analyzed by western 
blotting in the lungs of infected female and male mice at 3 days p.i. (three 
animals for each sex, *p-value = 0.02). (B) RT-PCR quantification of bcl-2 
gene expression in the lung homogenates of infected mice euthanized on  
p.i. days 3 and 6. Box-plots represent the fold increases relative to levels 
observed in mock-infected controls (n = 8/sex), unpaired t-test  
**p-value = 0.0018; ***p-value = 0.0002. (c) Bcl-2 protein expression was 
analyzed by western blotting in the lungs of infected female and male mice. 
Actin was used as loading control. Blots shown are one representative 
experiment of three performed (three animals for each sex, *p-value ≤0.05).
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efficient restoration of the physiological redox milieu in terms of 
GSH content that could be due to the upregulation of its synthesis.

lung homogenates From Females 
contain higher levels of the  
anti-apoptotic Bcl-2 Protein
Several intracellular redox-regulated pathways are involved in 
regulation of influenza virus replication, particularly the kinase 
p38MAP that is activated by NOX4-derived ROS (11). In cells 
that are highly permissive to viral infection, activated p38MAPK 
is entirely addressed to the nucleus, in which it participates effi-
ciently in vRNP phosphorylation. In cells that are characterized by 
high levels of GSH and abundant expression of the anti-apoptotic 
protein Bcl-2, influenza virus replication is reduced (2). The 
inhibition is due to co-localization of activated p38MAPK with 
its cytosolic substrate (Bcl-2) and block of its translocation to the 
nucleus. As a consequence, NP is retained in the nucleus and viral 
replication is inhibited (18). Thus, we decided to evaluate whether 
the differences in viral load observed between the two sexes were 
also related to differences in p38MAPK activation and in Bcl-2 
expression in the lungs. We found that p38MAPK was early acti-
vated in both groups on p.i. day 3 (Figure 8A). However, densito-
metric analysis of three different animals revealed that the kinase 
was more activated (almost twofold) in males compared to three 
homogenates of females (unpaired t-test *p-value = 0.02), thereby 
indicating more efficiency of p38MAPK in males. Afterward, we 
evaluated the expression of Bcl-2 (both mRNA and protein) in 
the lungs of females and males on p.i. days 3 and 6. We found that 
during viral infection, female mice exhibited more substantial bcl-2 
gene upregulation compared with males (Figure  8B unpaired 
t-test: **p-value  =  0.0018; ***p-value  =  0.0002). Specifically, 
bcl-2 transcript levels in females were approximately two times 
as high as those found from mock-infected controls. On the 
contrary, there was no significant upregulation in the male mice. 
At the same time, densitometric analysis three different animals 
revealed that Bcl-2 protein levels found in the lung homogenates 
were also clearly higher in the female group (Figure 8C, 3 and 
6 days p.i., unpaired t-test *p-value ≤0.05).

All these results indicate that during PR8 viral infection, 
females activate transcriptional processes to maintain high levels 
of Bcl-2 protein. This event might contribute to keep p38MAPK 
in the cytosol and to inhibit NP traffic and viral replication.

DiscUssiOn

In this article, we focused on one of the in vivo mechanisms con-
tributing to sex-related disparities in influenza virus infection.  
In particular, we pointed at systemic and organ redox state as 
critical determinant for influenza virus replication. We found 
that female mice infected with PR8 displayed a higher survival 
rate, milder clinical disease, and lower pulmonary viral loads 
than their male counterparts. These sex-based disparities cor-
relate largely on differences between the redox conditions in the 
female and male animals. Mock-infected female mice have an 
intrinsically higher antioxidant capacity, measured as total serum 
antioxidant power and GSH content in lung homogenates. These 

better physiological conditions persist during viral infection 
when we observed: upregulation of enzymes responsible for GSH 
biosynthesis, higher level of PRDX1, maintenance of CAT activ-
ity, and a less decrease of GSHPx activity. Infected females display 
also higher expression (at the mRNA and protein levels) of the 
anti-apoptotic protein Bcl-2, which is involved in the regulation 
of specific steps of influenza virus replication (2, 18). On the other 
hand, infected male mice displayed high expression of NOX4 
enzyme, and increased levels of phosphorylated p38MAPK.

The impact of sex on susceptibility to viral infections has 
been hypothesized several years ago (51). Generally, females and 
males of various species respond differently to many DNA and 
RNA viruses. The mechanisms underpinning sex differences in 
response to viral infections are controversial, and roles for immu-
nological, hormonal, behavioral, epigenetic, and genetic factors 
have all been proposed (20, 52).
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It has been shown that females generate stronger innate and 
adaptive immune responses than males, with immune cells higher 
in number and activity, as well as with higher antibodies levels 
than males (21–23). This immunological advantage contributes 
to virus clearance, but on the other hand it makes females more 
prone to autoimmune diseases and to infectious disease-derived 
immunopathology (21–23). In fact, infectious diseases pathogen-
esis derives both from the pathogen and from the host immune 
response (22, 23). Influenza viruses can cause severe disease as 
interstitial pneumonia and bronchiolitis, characterized by typical 
inflammatory anatomical–pathological lesions and sometimes, 
massive hemorrhage, with interstitial, bronchiolar, and alveolar 
localization (53).

In addition to a massive cell infiltrates in the infected lungs, 
there is an overproduction of several pro-inflammatory cytokines 
and chemokines (54, 55). In fact, in this study, we observed his-
topathological alterations relative to interstitial pneumonia and 
in line with this observation, we found high levels of IL-1, IL-6, 
TNF-α, IL-10, IFN-γ, CCL2-MCP1, and CCL3-MIP1 in infected 
mice of both sexes.

However, the picture in female mice appeared different because 
of larger preserved parenchymal areas and a consequently total 
alveolar area significantly higher than in male mice. This differ-
ence persisted during the infection, suggesting that the virally 
induced inflammation had a lower impact on lung’s female. 
Hormones exert a complex role in inflammation, in particular, 
estradiol enhances inflammation at low doses, but reduces it at 
higher concentrations (56), while low concentration of testos-
terone has reported to have a negative impact on the outcome 
of influenza disease (57). In our model, we found basal levels of 
estradiol, which did not significantly change with the infection, 
similar to that reported by Robinson et al. (24). Although a slight 
decrease, testosterone as well did not significantly vary with the 
infection. Therefore, in the attempt to explain the less severe lung 
damage that we observed in females, especially between 6 and 
9 days p.i., we looked at the pathogen: we found lower viral titer 
in lung homogenates and BALF from female mice, with a lower 
infectivity, as shown by TCID50. So, these results lead us to argue 
that the lower impact observed in females is related to a less extent 
of virus replication and spread, more than a host immune effect.

With this hypothesis our attention focused on viral replica-
tion and the possible redox-related mechanisms underlying 
sex disparity. Female and male mice differed remarkably in 
terms of their basal redox state and their ability to counteract 
virus-associated oxidative imbalance. Prior to inoculation, more 
reducing conditions were found in the female animals in terms 
of GSH levels in the lungs and the TAC. These differences are 
in line with those reported in VSMC isolated from the aortas of 
male and female rats (35). In vitro data suggest that this sexual 
dimorphism can be maintained after the induction of oxidative 
stress, which results in females displaying greater resistance 
to oxidative injury and an increased capacity to counteract it 
(35). For example, some authors report different sex-dependent 
susceptibility to cytotoxic agents and treatments that is related 
to the incapacity of XY neurons to maintain GSH intracellular 
levels (58). Our in  vivo findings support this view: during the 
course of influenza virus infection, the intrinsic redox balance, 

i.e., reducing conditions, was more effectively maintained in the 
female mice. In these animals, inoculation was promptly followed 
by the activation of enzymes involved in biosynthesis of GSH 
aimed at counteracting the GSH depletion induced by the virus. 
The period of upregulated GSH synthesis and higher levels of 
GSH in the females coincided with the period characterized by 
peak viral loads in males.

Thiols are key players in conditions of oxidative stress. Most 
non-protein antioxidants as well as antioxidant enzymes are thiol 
based (59). GSH acts as radical scavenger by directly neutralizing 
a variety of reactive molecules, like superoxide anion and hydrox-
ylradicals (60), and indirectly through enzymatic reactions being 
a cofactor of GSHPx (61). Here, we found in male mice, higher 
levels of NOX4, one of the major enzymes producing ROS, thus 
suggesting that GSH depletion in males might be due to its 
consumption for its ROS buffering function. In fact, we have pre-
viously demonstrated that inhibition of NOX4 activity through 
chemical inhibitors or RNA silencing blocks the influenza virus-
induced ROS increase, restores the content of GSH, and inhibits 
viral replication (11). Interestingly, several studies demonstrate 
that estrogens inhibit ROS production (56) by modulating anti-
oxidant enzyme activities (62); estrogen levels have been shown 
also to be positively correlated to GSHPx activity in women, while 
no significant correlation was observed with SOD (63, 64) that 
in our model did not change between sexes. Moreover, estradiol 
has been shown to increase expression of GCL (65), that is the 
rate-limiting enzyme for the synthesis of GSH (60) and therefore, 
together with GSS and GSHPx, closely linked to the GSH levels. 
On the contrary, testosterone has been shown to have pro-oxidant 
effect (66, 67) and so we cannot exclude that it could contribute to 
viral replication in males by activating redox-sensitive pathways. 
We also found a drop in CAT activity in infected males, especially 
when the viral replication peaked at 6  days p.i. Accordingly, a 
time-dependent decrease in CAT activity has been observed in 
parallel to increase in influenza NS1-protein expression (13).

Several authors report that by restoring reducing conditions, 
viral replication and virus-induced host damage are inhibited, 
suggesting antioxidant therapy as a potential antiviral strategy 
(8, 9, 68–70). Indeed, various synthesized or natural compounds 
characterized by antioxidant activity have been proposed as 
anti-influenza agents (17, 71–76). For example, our group has 
shown that GSH treatment strongly inhibits viral replication by 
impairing glycoprotein folding (10); on the other hand, we have 
recently shown that GSH depletion increased influenza virus 
replication by preventing activation of innate antiviral response 
(7). Indeed, the role of GSH in modulating immune response is 
well known (8, 77–79). For example, in antigen-presenting cells, 
GSH depletion correlates with defective antigen processing and 
reduced secretion of T helper 1 (Th1) cytokines, thus favoring 
polarization from the typical Th1 profile toward a Th2 response 
(8). Furthermore, in T  lymphocytes, intracellular GSH content 
is critical for their proliferation as well as extracellular thiols for 
their activation and function. Angelini et al. (80) demonstrated 
that exogenous thiols, i.e., free cysteine and thioredoxin, were 
released by monocyte-derived human dendritic cells (DCs) in 
the extracellular space to provide a reducing microenvironment 
required for T  lymphocyte activation and an efficient immune 
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response. In our study, we found a slight decrease of free thiols 
in the lung homogenates and serum of infected males, while no 
changes were observed in infected females compared with con-
trol. It would be interesting to investigate whether the observed 
decrement in males is due to a dysfunction of DCs and to impair-
ment in T lymphocyte activation.

The imbalance in the redox state is fundamental for the 
activation of many cell factors, involved in the regulation of host 
response and in the control of influenza virus life cycle (16). 
Among them, MAPKs and Bcl-2 protein regulate the intracellular 
trafficking of the viral NP (18). In this study, we found that phos-
phorylation of p38MAPK is highly expressed in lung homogenate 
of males, suggesting that this phenomenon could explain in part 
the high viral load measured in males. Conversely, we found Bcl-2 
to be highly expressed in the lungs of infected female mice, at 
both transcriptional and translational level. Furthermore, over-
expression of Bcl-2 protein has been hypothesized to be associated 
with increased GSH levels (81, 82), and these characteristics have 
been found in lung homogenates of female infected mice. Based 
on this evidence, we can hypothesize that in females the more 
resistance to oxidative damage during PR8 infection may impair 
virus replication probably by blocking viral protein maturation 
and vRNP complex formation.

A final point to be considered in this scenario concerns the 
hypothesized role of autophagy, a cytoprotective host process that 
is subverted by the influenza virus to ensure its own replication 
(83). Metabolic stress appears to bolster a stronger, more sustained 
autophagic response in cells from females than in those collected 
from males (84). Therefore, we cannot exclude the possibility 
that more effective autophagic cytoprotection in lung cells from 
female mice led to a “weaker” cytopathological cascade.

In conclusion, our data suggest that the mechanisms under-
lying the sexual disparities observed in the host response to 
influenza can be ascribed in part to differences in their capacity 
to maintain redox homeostasis. In fact, in our model, we have 
found that females are more resistant to the influenza virus due 
to their ability to maintain reduced conditions during infec-
tion, thereby hindering completion of the virus life cycle and 
inhibiting viral replication. Therefore, although further studies 
are needed to fine characterize redox mechanisms underlying 
sex disparities in infections, i.e., the use of different antioxidants 
like N-acetylcysteine, GSH, or natural polyphenols, as well as the 
silencing of antioxidant enzymes that regulate viral replication, 
our findings may contribute to the identification of new targets 
for sex-based antiviral therapies. Indeed, generally, sex-related 
differences are not considered in current strategies for the preven-
tion, management, and treatment of many diseases (85). Instead, 
a more detailed knowledge of the metabolic conditions that 
characterize the two sexes could ultimately improve our ability to 

provide patients with individualized therapies and cost-effective 
solutions.
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FigUre s1 | Body weight (bw) and temperature in female and male infected 
mice. (a) Spaghetti plot of the daily bw (expressed in grams); the bold lines 
represent the overall trend. (B) Spaghetti plot of the daily body temperature,  
the bold lines represent the overall trend. Results represent data pooled from  
4 independent experiments, each performed with 10 males and 10 females 
(n = 40/sex).

FigUre s2 | No differences in superoxide dismutase (SOD) activity were 
observed in infected female and male mice. Lung homogenates from Ctr and 
PR8-infected mice were assayed for SOD activity on p.i. days 3, 6, 9, and 21. 
Each value reported represents the mean ± SD of results from two separate 
experiments, each performed in duplicate (n = 4).

FigUre s3 | Glutathione peroxidase (GSHPx) activity is less reduced in infected 
female mice. Lung homogenates from Ctr and PR8-infected mice were assayed 
for GSHPx activity on p.i. day 6. Each value reported represents the mean ± SD 
of results from 3 mice/sex, each performed in triplicate (n = 9). One-way ANOVA 
test **p-value <0.01; ***p-value <0.001.
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