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Editorial on the Research Topic

Computational Probability and Mathematical Modeling - A Stochastic Approach in Applied

Sciences

INTRODUCTION

Probability and the stochastic processes theory, joint to the mathematical modeling and the
respective computational support are clearly important work tools to tackle complex systems,
which has been the fundament to develop the Research Topic of “Computational Probability and
Mathematical Modeling – A Stochastic Approach in Applied Sciences”.

In a brief analysis of the elements contained inside of the Research Topic, we find three
important scopes: computational probability, mathematical modeling, and stochastics processes:

Computational probability, it is defined as the development of data structures and algorithms to
automate the derivation of existing and new results in probability and statistics [1], Mathematical
modeling is the translation of a specific problem from the natural sciences (experimental physics,
chemistry, biology, geosciences) or the social sciences, or from technology, into a well-defined
mathematical problem [2] and a stochastic process is a probability model that describes the
evolution of a system evolving randomly in time [3]. In addition, advances in computer science
have been very determinant for growing of science and technology, and all fields of mathematics
included stochastic processes have not been bypassed by the digital revolution, because numerical
calculation and computer simulation play a decisive role in present-day [4].

Probability and mathematical modeling are usually very adaptable for different proposes, and in
definitive, they are the starting point to solve relevant problems [5].

Specifically probability and the stochastic processes theory can be applied in any field where
random plays a preponderant role and /or when an analytic treatment is too complicated to be
solved. In the other context, mathematical modeling as a descendent from applied mathematics
rejects the abstractionism to support the science for understanding of the nature laws; which
explains that mathematical models can attend disciplines as physics, biology, finances, economics,
any engineering and a variety of fields to solve real problems though its included skills. In this
perspective, both probability / stochastic processes theory as the mathematical modeling converge
on the same objective: attention of real problems in complex systems.
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RESEARCH TOPIC AND THE ARTICLES

CONTAINED

This Research Topic of “Computational Probability and
Mathematical Modeling – A Stochastic Approach in Applied
Sciences” presents a little but substantial view of studies related
to interesting scenarios from the applied science in fields of
genetics, biology, physics, finances, and investment options. In
addition, as a core and distinguished common value in these
studies, we have that even though all of them come from different
disciplines and topics, in a direct or indirect perspective, they
possess the essence of probability and mathematical modeling,
and they have an objective directed to solve a particular issue.
The works contained in this Research Topic combine all the
implicit elements of the general theme, and in the most of them
it is mentioned the use of simulation as a primary resource in the
handling of studied factors.

Individual works in alphabetical order are:

• A Stochastic Phylogenetic Algorithm for Mitochondrial DNA
Analysis

• On the Aerodynamic Forces on a Baseball, With Applications
• Output-Feedback Control of Virus Spreading in Complex

Networks With Quarantine
• Probabilistic Assessment of Investment Options in Honey

Value Chains in Lamu County, Kenya
• Synchronization, Oscillator Death, and Frequency

Modulation in a Class of Biologically Inspired Coupled
Oscillators

• The Amnesiac Lookback Option: Selectively Monitored
Lookback Options and Cryptocurrencies

A Stochastic Phylogenetic Algorithm for Mitochondrial DNA
Analysis (Corona-Ruiz et al.):

This research is an exploratory analysis of the mitochondrial
DNA and proposes new indices as functions of Shannon entropy,
the Chargaff ratio, and fractal dimensions using rescaled-range
analysis and DFA; the work suggests to utilize the triplet
of indices to construct phylogenetic trees using clustering
algorithms. Additionally, it is an initiative to identify the
tendencies and correlations in the mutations that produce new
species throughout evolutionary history.

On the Aerodynamic Forces on a Baseball, With Applications
(Santos et al.):

This article combines experimental results, phenomenological
and dimensional analysis; it is classifies as a review, and
summarize from recent literature some methods regarding
the reproduction and reconstruction of baseball trajectories
from aerodynamic forces, and finally discusses their potential
applications.

Output-Feedback Control of Virus Spreading in Complex
Networks with Quarantine (Alarcn-Ramos et al.):

The research proposes a simple output-feedback control,
which stabilizes the extinction state in a virus spreading
process over a complex network with quarantine. Additionally,
it is provided numerical simulation results to illustrate the
functioning of the proposed control scheme for a scale-free
network of N = (10)6 nodes.

Probabilistic Assessment of Investment Options in Honey
Value Chains in Lamu County (Wafula et al.):

This work, classified as method brings an analysis to
demonstrate a comprehensive approach to decision-making in a
project where decision outcomes are uncertain.

The structure of the decisionmodel includes several strategies,
of which the Stochastic Impact Evaluation approach (SIE) and
Monte Carlo simulation clearly stands out. SIE approach is
used as fundamental base for the decision analysis; particularly
SIE prioritizes the critical uncertainties considering the risk
factors that may compromise the success and the performance
of the project. By the other hand, through the use of Monte
Carlo simulation, it was possible to obtain the results of project
performance over 10 years, to get it possible the model was ran
a total of 10,000 times. This propose is substantially useful for
the process of decision-making and the probabilistic assessment
of investment options, the case of honey value chains in Lamu
County, Kenya is analyzed as study case.

Synchronization, Oscillator Death, and Frequency
Modulation in a Class of Biologically Inspired Coupled
Oscillators (Franci et al.):

This research is focused on the basic mathematical principles
that underlie the emergence of synchronous biological rhythms,
in particular, the circadian clock. The study analyzes the role
that the coupling strength, coupling type, and noise play
in the synchronization of a system of coupled, non-linear
oscillators. Authors report the following two phenomena
found, whose are described as new from a non-linear collective
phenomena perspective: In diffusively coupled cells, resting
node dynamics imply global asymptotic stability; oscillating
node dynamics imply global-synchronization for small
coupling, and multistability between oscillator death and
global synchronization for large coupling. In stochastic, linearly
coupled populations, it is described the dynamical mechanisms
through which coupling modulates the frequency of the
synchronous oscillation. Finally, the article and its presented
results, emphasizes the importance of simple mathematical
models in understanding situations where synchronization
of multiple oscillating populations appears. Additionally,
Authors believe that results obtained may help to shed light
on physiological and pathological phenomena involving
synchronization of oscillators in important tissues as Parkinson’s
disease [6, 7], and epilepsy [8, 9].

The Amnesiac Lookback Option: Selectively Monitored
Lookback Options and Cryptocurrencies (Chang and Li):

This research suggests the use of its properties to reduce
risk exposure in cryptocurrency markets through blockchain
enforced smart contracts and correct for informational
inefficiencies surrounding prices and volatility. In addition, this
work generalizes partial, discretely monitored lookback options
that dilute premiums by selecting a subset of specified periods to
determine payoff, which authors call amnesiac lookback options.
As part of the utilized method, authors price Amnesiac lookbacks
with Monte Carlo simulations of Gaussian random walks under
equidistant and random periods. The paper concludes that the
instrument provides an ideal space for investors to balance their
risk, and as a prime candidate to hedge extreme volatility.
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CONCLUDING REMARKS

This collection of articles included in this volume has provided an
interesting view of applications associated to fields of probability,
statistics, and mathematic modeling, all of them supported by
a computational context; additionally it has been determinant
the approach of stochasticity and simulation used in most
of them as a key element in the utilized methodology. Each
article contained, describes a particular object of study, bring
a state of art to support the nature of the research, presents a
methodology to solve the defined problem and finally provides
results and conclusions as the evidence of the efficiency of the
entire propose.

We hope the present collection of articles can be
attractive for readers from the academic community of
mathematics and the applied sciences in general; also,
it is our desire that these papers can provide a starting

point for future researches in solving of practical and
complex problems.
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Output-Feedback Control of Virus
Spreading in Complex Networks With
Quarantine
Luis A. Alarcón-Ramos 1, Roberto Bernal Jaquez 2* and Alexander Schaum 3
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In this paper the problem of designing an output-feedback control for the stabilization

of the extinction steady-state in a virus spreading process over a complex network with

quarantine is considered. Sufficient conditions are established for the choice of those

nodes for which sensor information is necessary and those which should be controlled

using notions from constructive control theory. A simple output-feedback control is

proposed which exponentially stabilizes the extinction state. Numerical simulation results

are provided to illustrate the functioning of the proposed control scheme for a scale-free

network of N = 106 nodes.

Keywords: complex networks, virus spreading, feedback control, quarantine, sensor location

1. INTRODUCTION

Studies on the propagation and control of viruses and infectious diseases in human and animal
populations [1–8] have gained a great importance in the last years. Understanding and controlling
spreading processes is a problem of interdisciplinary nature [9–12]. The use of mathematical and
physical inspiredmodels that give account of the dynamics of propagation of infections have gained
acceptance since the London cholera epidemics in September 1853 when John Snow divided a map
of London into sectors (in a way, nowadays, equiparable to a Voronoi diagram) to calculate who
was most likely to use each water pump in the city and in this way, discovered that the 40 Broad
Street pump was the main focus of the cholera infection.

Some decades later, McKendrick [13] and Kermack and McKendrick [14] proposed the SIR
model that divides the population in three different compartments or groups of individuals:
Susceptible, Infective, and Recovered (or Removed) that had the disease and become immune or
died. This pioneering work gave birth to the SIS (Susceptible-Infected-Susceptible) model mainly
because many diseases do not confer any immunity. Extensions such as the SIQ (Susceptible-
Infected-Quarantine) model (see e.g., [15–17]) appeared in order to account for the dynamics of the
spreading of infections when quarantine has been implemented as a means to control the massive
spreading of the infectious disease. Accordingly, a new class of quarantined individuals is included.
These individuals are removed, with some probability from the class of infected individuals.

Although these models were proposed for modeling spreading in populations with no structure,
nowadays the SIS and SIQ models have been extended to model the spreading process in a
population mapped on a complex network.

7
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In recent years, Markov-chain based models for a Susceptible-
Infected-Susceptible (SIS) dynamics over complex networks have
been used [4–8, 18] to describe spreading processes in networks.
Using these models, it is possible to determine the macroscopic
properties of the system as well as the description of the dynamics
of individual nodes. One interesting result is that the calculated
infection threshold depends on the value of the spectral radius
of the adjacency matrix, thus relating the network structure with
spreading behavior.

In the present work we will study the spreading of diseases
using a Markov-chain based model for a Susceptible-Infected-
Quarentine (SIQ) dynamics over a complex network that has
been used in a simplified version for the determination of stability
tresholds in recent studies by the authors [15, 17]. We will
show that, even when the built-in control strategy of quarantine
is not able to ensure virus extinction, it is always possible to
solve the problem of epidemic spreading extinction. In order
to accomplish this task, we determine sufficient conditions for
stabilizing the extinction state in a complex network of arbitrary
topology. One remarkable point is that, these conditions give a
clue to identify the nodes that do not need any control to reach
the extinction state and distinguish them from the nodes that
need to be controlled. Inspired on the ideas of control theory,
the set of nodes that do not need to be controlled (in order
to reach the extinction state) will be associated with the zero
dynamics of the system [19, 20] . At the same time, the set of
nodes to be monitored and controlled will be identified and a
decentralized feedback control will be applied in order to stabilize
the extinction state. Accordingly, it is proven that the extinction
state is an exponentially stable fixed point for the zero dynamics.

We have performed numerical simulations using a scale-
free complex network with 1 million nodes constructed as
proposed by Barabasi [21] and found a complete agreement of
the numerical results with our theoretical findings.

The paper is organized as follows: section Methods presents
the problem statement for the SIQ model mapped on a complex
network of arbitrary topology and the control problem we want
to solve together with some definitions. In section Results,
sufficient conditions for the stabilization of the extinction state
are derived. Using these conditions we establish a selection
criterion that allows to identify the set of nodes that need to be
controlled in order to reach the extinction state. Afterwards, we
design a simple stabilizing output-feedback control and present
our simulation results. In section Discussion and Conclusions
we summarize our main results and present our main
conclusions.

2. METHODS

As pointed out in the introduction, the SIQ model belongs
to a class of models that are used to capture possible human
interactions employed to impede the spreading of an infection
process and it is essentially an extension of the SIS model in
which the model and control strategies are co-developed to yield
a kind of closed-loop control model [22]. In order to reveal the
dynamics and essential mechanisms of this model, we proceed to

(i) formulate the SIQ model in a complex network (ii) introduce
the specific control problem.

2.1. The SIQ Model in a Complex Network
Consider a network ofN nodes described by an undirected graph
G(V ,E) of any topology. Let V = {v1, v2, . . . , vN} being the set of
nodes and E = {ei,j} the set of connecting edges. The adjacency
matrix associated to G(V ,E) is given by A = {aij}, where aij = 1
if ei,j ∈ E and zero otherwise. The set of neighbor nodes of a node
vi ∈ V is defined as

Vi = {vj ∈ V | aij = aji = 1} ⊂ V , (1)

and the number of neighbors or degree of a node vi is given by
Ni = |Vi|.

As formulated in Bernal Jaquez et al. [15], the underlying
process for every node is depicted in Figure 1, as a discrete time
Markov process. A node vi can be in state I (Infected) with
probability pi(t), in stateQ (Quarantine) with probability qi(t), or
in state S (Susceptible) with probability si(t) = 1 − pi(t) − qi(t).
At each time step, the probability functions pi(t), si(t) are updated
due to the fact that every node can transit from state S to state I
with probability 1− ζi or from state I to state Q with probability
τi and from state Q to state S with probability µi because nodes
are interacting.

According to the transition diagram shown in Figure 1, we
have the following dynamical system:

pi(t + 1) = (1− τi)pi(t)+ (1− ζi(P(t)))si(t),

qi(t + 1) = (1− µi)qi(t)+ τipi(t), (2)

si(t + 1) = ζi(P(t))si(t)+ µiqi(t).

pi(t)+ qi(t)+ si(t) = 1, vi ∈ V ,

where, for every node vi ∈ V , τi is the internment probability
associated to quarantine, µi is the recovery probability and

FIGURE 1 | State transition diagram for each node vi ∈ V. The states Infected,

Quarantine and Susceptible are represented by I, Q, and S, respectively.
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ζi(P(t)) is the probability of a node vi of not being infected by
any neighbor at time t, which is given by

ζi(P(t)) =

N
∏

j=1

(1− βirijaijpj(t)). (3)

In the above equation, we have defined the vector P(t) =

[p1(t), p2(t), ..., pN(t)]
T ∈ [0, 1]N and βi is the probability of

infection during a single contact, rij is the probability that the
node vi performs at least one contact intent with its neighbor
vj ∈ Vi. The probability rij is also known as the connection
probability and depends on the number of contact intents (or
interaction rate).

Note that in system (2)

0 ≤ µi, τi, rij,βi, ζi(P(t)), pi(t), qi(t), si(t) ≤ 1

From the model (2) we point out that

• Unlike the model proposed in Bernal Jaquez et al. [15] the
system (2) considers non-homogeneous properties given by
µi, τi,βi and rij.

• Quarantine is a control mechanism which is introduced in
order to prevent virus spreading, however it could probably
not be sufficient for achieving the extinction state, depending
on the stability conditions (to be determined below). We
can consider, instead, the objective of this work to design a
controller to stabilize the extinction state, e.g., by adapting
inherent propagation parameters like the propability of
infection βi of some nodes to be specified.

We consider that each node has a manipulable variable ui(t),
which is amenable for control. For the system 2, this manipulable
variable can be βi or rij, i.e., we consider that, for each node vi,
it is possible to improve its health or avoid to perform several
contact attempts with its neighbor nodes, the control will adapt
one of these parameters, that will be selected according to our
mathematical analysis.

FIGURE 2 | Number of nodes with a given degree (black) in a

non-homogenous scale-free network with N = 100 nodes and normally

distributed parameters and number of nodes of the given degree that need to

be controlled (blue).

2.2. Control Problem
Quarantine is an heuristic control mechanism or strategy that
intents to reduce a virus propagation in a population. As stated
in the last subsection, these kind of models probably are not
sufficient to ensure the system to reach the extinction state. This
is due to the fact that no adaptation of the network parameters
is implemented in dependence of the actual system state. Such
a mechanism is proposed in the sequel including decisions on
(i) the subset of nodes VM ⊂ V which should be monitored,
i.e., whose actual state must be known at each time instant,
(ii) the subset of nodes VC ⊂ V which have to be controlled,
i.e., whose interaction parameters (ui = βi or ui = rij)
should be subject to on-line adaptation, and (iii) the specific
control law ui(t) = ϕi(P(t)) which should be used for this
adaptation.

The chosen approach follows the constructive
(i.e., passivity-based) control idea, and consist in two
steps:

a) Assigning the necessary outputs so that the associated zero
dynamics is asymptotically stable.

b) Designing controllers ui(t) = ϕi(Yi(t)) so that for some 0 ≤

γ < 1 it holds that

pi(t) ≤ pioγ
t , pi(t = 0) = pio.

3. RESULTS

In this section the main results are presented. In particular
sufficient conditions for the stabilization of the extinction state
are derived including (i) a selection criterion for the nodes
to be monitored in terms of the connectivity parameters,
the infection probability and the graph topology and (ii) the
design of a simple stabilizing output-feedback control scheme.
Simulation results illustrate the functioning of the proposed
control scheme for a scale-free network with N = 106

nodes.

3.1. Selection of Monitored and Controlled
Nodes
Taking into account that pi(t) + qi(t) + si(t) = 1 for each
vi ∈ V and to be consistent with the control idea, we
consider that ζi(P) = ζi(P,U), where the vector U(t) =

[uc1(t), uc2(t), . . . , ucK(t)]
T , vci ∈ VC represent the manipulable

set of parameters associated with βi or rij. So, we can rewrite
system (2) as follows

pi(t + 1) = (1− τi)pi(t)+ (1− ζi(P(t),U(t)))(1− pi(t)− qi(t)),

qi(t + 1) = (1− µi)qi(t)+ τipi(t), (4)

ζi(P,U) =

N
∏

j=1

(1− βirijaijpj(t)).

The fixed points associated with the dynamics (4) for some
constant U∗ (i.e., βi and rij are set to some constant value)
can be determined by substituting the relations pi(t + 1) =
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pi(t) = p∗i and qi(t + 1) = qi(t) = q∗i . After some algebra it
follows that

p∗i =
1− ζi(P

∗,U∗)

τi +
(

1+ τi
µi

)(

1− ζi(P∗,U∗)
) ,

q∗i =
τi

µi

1− ζi(P
∗,U∗)

τi +
(

1+ τi
µi

)(

1− ζi(P∗,U∗)
) , (5)

s∗i =
τi

τi +
(

1+ τi
µi

)(

1− ζi(P∗,U∗)
) .

Note that the extinction state (p∗i = 0, q∗i = 0, s∗i = 1) in (2),
for vi ∈ V is a fixed point when ζi(0,U

∗) = 1. However, up to
this point, it is not clear if the extinction state or any other fixed
point given by (5) are stable. The extinction state means that no
viruses are propagated over the network and, as we will see in the
following Lemma, knowledge of the conditions under which this
state is reached, will give us a clue of how viruses are propagated.

The approach followed subsequently exploits ideas from
Wang et al. [4], and Bernal Jaquez et al. [15] by establishing a
linear bounding dynamics for (4) that has the origin (P,Q) =

(0, 0) as exponentially stable fixed point.

Lemma 1. Consider the dynamics (4) on a complex network with
graph G(V ,E) and adjacency matrix A. The extinction state
(P,Q) = (0, 0) is globally exponentially stable if the constant vector
U∗ (i.e., for some constant values of βi and rij) is such that

σ (H) < 1, U∗ = [u∗1 , . . . , u
∗
N], (6)

where σ (·) is the spectral radius of the matrixH defined as

H =

[

I− T+ BR 0

T I−M

]

, (7)

where

T = diag(τi), B = diag(βi), R = [rijaij], M = diag(µi).
(8)

and I being the identity matrix.

Proof: As it is proved in Wang et al. [4], and Bernal Jaquez et al.
[15], ζi(P,U

∗) can be bounded as follows

1− ζi(P(t),U
∗) ≤

N
∑

j=1

βirijaijpj(t). (9)

Substituting this bound into the first equation in (4) and after
some algebra one obtains

pi(t + 1) ≤ (1− τi)pi(t)+ (1− pi(t)− qi(t))

N
∑

j=1

βirijaijpj(t),

≤ (1− τi)pi(t)+

N
∑

j=1

βirijaijpj(t).

This can be written in matrix form as

[

P(t + 1)
Q(t + 1)

]

≤

[

I− T+ BR 0

T I−M

] [

P(t)
Q(t)

]

,

where P(t) = [p1(t), . . . , pN(t)]
T and Q(t) = [q1(t), . . . , qN(t)]

T ,
and the inequality being interpreted as element-wise. Therefore,
the solutions of pi(t) are bounded by the linear dynamics

xi(t + 1) = (1− τi)xi(t)+

N
∑

j=1

βirijaijxj(t),

wi(t + 1) = τixi(t)+ (1− µi)wi(t), vi ∈ V

(10)

i,e., forall t ≥ 0 it holds that

0 ≤ pi(t) ≤ xi(t), qi(t) = wi(t) (11)

if p(0) = x(0), q(0) = w(0). The linear dynamics can be expressed
in matrix form as

[

X(t + 1)
W(t + 1)

]

=

[

I− T+ BR 0

T I−M

] [

X(t)
W(t)

]

= :H

[

X(t)
W(t)

]

,

(12)

where X(t) = [x1(t), . . . , xN(t)]
T and W(t) =

[w1(t), . . . ,wN(t)]
T . It holds that (XT ,WT)T = (0T , 0T)T

is exponentially stable if and only if the eigenvalues of the
associated matrix H are contained in the open unit circle
C1 = {λ ∈ C | |λ| < 1}. Taking into account (11) it follows that a
necessary and sufficient condition for global exponential stability
of (PT ,QT)T = 0 is given by (6).

The expontial stability condition (6) is very general and does
not provide any idea on how to select nodes to be controlled or
monitored in order to reach the extinction state. However, using
this result as a point of departure, we can get insight into the
condition that every node vi ∈ V has to fulfill in order to ensure
that P(t) converges to P∗ = 0 as shown in the following Lemma.

Lemma 2. For a constant U∗ (i.e., for some constant value for
βi and rij), the state vector (P

T(t),QT(t))T globally exponentially

converges to the extinction state (PT ,QT)T = 0 if for every node
vi ∈ V it holds that

βi <
τi

∑N
j=1 rijaij

. (13)

Proof: In virtue of Lemma 1 it is sufficient to show that if
the condition (13) holds, the matrix H defined in (6) has only
eigenvalues within the open unit circle C1 ⊂ C, or equivalently,
that its spectral radius σ (H) < 1. Note that due to the block-
diagonal structure of the matrix H its eigenvalues are given by
the eigenvalues of the two matrices on its diagonal, i.e., in terms
of the matrix spectra

S(H) = S(I− T+ BR) ∩ S(I−M),
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where S(A) denotes the spectrum of a matrix A, i.e., the union
of all its eigenvalues. The eigenvalues of the matrix I − M are
contained in C1, given that M is diagonal with entries 0 <

µi < 1. Thus ,it remains to show that S(I − T + BR) ⊂

C1. This can be analyzed by applying Gerschgorin’s Theorem
[23], which provides an upper-bound estimate for the spectral
radius of a given matrix. In the following, let λ represent an
arbitrary eigenvalue of the matrix I − T + BR. The application
of this theorem to the matrix I− T+ BR provides the following
inequality

|λ| ≤ |1− τi + βi

∑

rijaij| = 1− τi + βi

∑

rijaij (14a)

i = 1, . . . ,N. Thus, |λ| < 1 is satisfied if

N
∑

j=1

βirijaij < τi, ∀vi ∈ V

or equivalently if (13) holds true. This complete the proof.

Note that, as stated in the proof the convergence to zero of X
(and thus P) is independent of the behavior ofW (or accordingly
Q). This resides in the fact that the dynamics represent a
cascade structure. Accordingly, for the purpose of stabilizing
the extinction state it is sufficient to ensure that less nodes
get infected than pass into quarantine. This intuitively clear
condition is exactly what is formally stated in Lemma 2.

The condition (13) gives a criterion on how to choose the
nodes to be monitored. If condition (13) does not hold for some
set of nodes, then it is appropriate to consider this collection as
the set of nodes to be monitored VM . Additionally, according to
(13), the set of controlling nodes can be set as VC = VM . That
is, we can consider that all controlled nodes are monitored. In
this way, we can select βi (or rij) as the parameter amenable for
control purposes for those nodes that do not satisfy (13).

Further note that in case that the network parameters are
homogenous, i.e., all nodes have the same parameter values
µ,β , τ , rij = r, the selection criterion for a node to be controlled

is directly related to its degree Ni =
∑N

i=1 aij (i.e., here simply
the number of neighboring nodes) and can be expressed as

vi ∈ VC ∀ i : Ni >
τ

rβ
.

Nevertheless, when the parameter distribution is non-
homogenous, it is possible that nodes with high degree do
not have to be controlled and nodes with small degree have
to be, given the particular constellation between τi,βi and rij
according to condition (13). This is illustrated in Figure 2 for a
scale-free network with N = 100 nodes and normally distributed
parameters.

Note that in the notion of constructive control theory (see
e.g., [19, 24]), the dynamics of the nodes that are not controlled
establishes the zero dynamics (i.e., the dynamics resulting from
the restriction that pi = 0 for all i such that vi ∈ Vc)
and by construction this dynamics is asymptotically stable.
Therefore, the zero dynamics correspond to a spreading process
over a reduced network, from which the monitored (and thus
controlled) nodes have been withdrawn, given that for pi(t) ≡ 0
the node vi does no longer interact with its neighbors.

3.2. Feedback Control Design
The question addressed in this section is how to design the
feedback control for the nodes vj ∈ VC so that limt→∞ |pj(t) −
p∗j | = 0. Up to this point, we have not considered the dependency

of ζ (P,U) on U, given that U was considered as a set of constant
parameters. This dependency will permit to explicitly determine
a control law ui(t) = βi(t) that steers the nodes vj ∈ VC to their
desired values p∗j = 0. With this idea, the following theorem is

established

Theorem 1. Consider the dynamics given by (4) and consider the
nodes that do not satisfy (13) as the set VC of nodes to be controlled.
Let VM = VC, that is, all controlled nodes are monitored. If the
controls ui(t) satisfy

0 ≤ ui(t) < β̄i =
τi

∑N
j=1 rijaij

, (15)

then (PT ,QT)T = 0 is exponentially stable.

Proof: The Theorem can be easily proven as follows. Let β̄i be
given as in (15). It follows that

0 ≤ ui(t) < β̄i,

⇔ 0 ≤ ui(t)rijaij < β̄irijaij,

FIGURE 3 | Behavior of ρ(t) for several initial conditions without control.
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⇔ 0 ≤

N
∑

j=1

ui(t)rijaij <

N
∑

j=1

β̄irijaij.

Given that for βi ≤ β̄i inequality (13) is satisfied, one obtains

0 ≤

N
∑

j=1

ui(t)rijaij <

N
∑

j=1

β̄irijaij < τi,

or equivalently

N
∑

j=1

ui(t)rijaij < τi

implying that inequality (13) is satisfied. In consequence, the
exponential stability of (PT ,QT)T = 0 follows.

Note that following a similar reasoning, a control law can
be established for the case that ui(t) = rij(t). Nevertheless, this
approach will not be explicitely elaborated at this place.

From Theorem 1, we have that in order to stabilize the
extinction state for the dynamics (4) it is sufficient to design
feedback controls ui(t) for all nodes vi ∈ VC, which take values
below the upper-bound β̄i defined in (15). For example, a simple
linear feedback control given by

ui(t) = βi(t) = γ β̄i(1− pi(t)), γ ∈ (0, 1) (16)

does satisfy this condition. Note that the advantage of using a
time varying control law βi(t) consists in actively adapting the
infection probability on the actual needs, i.e., the actual network
state. In comparison with imposing a constant value for βi this
possibly enables to optimize the control effort over time, because
according to (16) βi → γ β̄i with pi → 0. The performance
using this simple output-feedback control is illustrated in the
subsequent section.

3.3. Simulations
In order to verify our results, we perform several simulations of
the dynamical system (4), for different initial conditions, with the
following considerations

• We used a scale-free network of N = 106 described
by G(V ,E), that incorporates preferential attachment
according to Barabási and Albert [21]. We started with
a small number mo = 9 of vertices, linked randomly,
and at every step we add a new node or vertex with
m = 3 edges until we reach N = 106. We emphasize
that our results are independent of the network’s
topology.

• To facilitate our simulations, we consider that rij = rji.
• The constant values for the recovery probability µi, the

probability of infection βi, the internment probability
τi, and the contact probability ri were distributed
uniformly over the nodes with values in the interval
[0.2, 0.7].

FIGURE 4 | Behavior of the zero dynamics.

FIGURE 5 | Closed-loop network behavior with the linear feedback control given by (18).
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• To show and corroborate our results, we calculated the average
probability ρ(t) given by

ρ(t) =
1

N

N
∑

i=1

pi(t). (17)

• The sets VC and VM are chosen according to Lemma 2 as the
sets of nodes that do not satisfy (13). For the case considered
here 424569 nodes out of N = 106 (i.e., about 42.5%) have to
monitored and controlled.

Simulation studies have been performed considering the
following scenarios:

I. Absence of control: All parameters of the system (4) have
constant values which not necessarily satisfy condition (13).

II. Zero dynamics: The output was constrained to Y(t) = 0 by
setting βj = 0 and pj(0) = 0 for all vj ∈ VM = VC.

III. Linear feedback control: The linear feedback control given
by (16) has been implemented for all vi ∈ VM = VC.

I. Absence of Control
In the absence of control the network reaches an endemic
attractor state where about a 20% of the nodes are probably
infected after about 20 time units as can be seen in Figure 3.

II. Zero Dynamics
To corroborate that the zero dynamics are exponentially stable,
we set Y(t) = 0 for those nodes that do not satisfy (13). This is
achieved by setting βi = 0 for vi ∈ VM .

Figure 4 shows the behavior of the nodes associated with the
zero dynamics. Note that the extinction state is reached after 18
time steps.

III. Linear Feedback Control
To show the performance of the proposed simple output-
feedback control scheme (16), it has been implemented for all
monitored and controlled nodes with the gain γ = 0.9 and
the upper bound β̄i calculated according to (15). This yields the
output-feedback controller.

βi(t) =
γ τi(1− pi(t))

∑N
j=1 rjaij

, for γ = 0.9 and ∀vi ∈ VC = VM .

(18)

Note that the control (18), depends on the state of the node

i given by pi(t), and the properties of its neighbors given
by β̄i. Figure 5 shows the result of the simulation with the
applied control (18). As predicted in Theorem 1 the extinction
state is a close-loop attractor, and is reached in about 40 time
steps.

4. DISCUSSIONS AND CONCLUSIONS

The problem of deciding which nodes in a complex network
with quarantine should be controlled and how to control
them in order to achieve that in the closed-loop system the
extinction state becomes a (global) attractor has been studied.
Sufficient conditions for virus extinction have been derived using
a constructive control approach by suitably identifying the zero
dynamics according to a threshold condition for the stability
of the extinction state. The associated node selection criterion
does depend on the transmission probability between the nodes
and their neighbors, the degree of each node and its probability
to pass into quarantine. It has been shown that in spite of
the strongly nonlinear dynamics of the spreading process the
extinction state can be efficiently stabilized using a simple linear
bounded output-feedback control if the nodes to be controlled
are selected according to the proposed scheme. The performance
and behavior of the spreading process without and with control
has been illustrated for a scale-free network with N = 106

nodes.
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The general purpose of this paper is to build up on our understanding of the basic

mathematical principles that underlie the emergence of synchronous biological rhythms,

in particular, the circadian clock. To do so, we study the role that the coupling

strength, coupling type, and noise play in the synchronization of a system of coupled,

non-linear oscillators. First, we study a deterministic model based on Van der Pol

coupled oscillators, modeling a population of diffusively coupled cells, to find regions

in the parameter space for which synchronous oscillations emerge and to provide

conditions under which diffusive coupling kills the synchronous oscillation. Second, we

study how noise and coupling interact and lead to synchronous oscillations in linearly

coupled oscillators, modeling the interaction between various pacemaker populations,

each having an endogenous circadian clock. To do so, we use the Fokker-Planck

equation associated to the system. We show how coupling can tune the frequency of

the emergent synchronous oscillation, which provides a general mechanism to make

fast (ultradian) pacemakers slow (circadian) and synchronous via coupling. The basic

mechanisms behind the generation of oscillations and the emergence of synchrony

that we describe here can be used to guide further studies of coupled oscillations in

biophysical non-linear models.

Keywords: synchronization, oscillator death, circadian rhythm, coupled non-linear oscillators, Fokker-Planck

1. INTRODUCTION

The study of circadian rhythms has been a subject of great interest for a long time. The majority
of the first studies were mainly based on observations in plants [1–4]. The study of circadian
rhythms from a mathematical perspective reached a milestone with the work of Kalmus and
Wigglesworth, a biologist and a mathematician, respectively, who associated of circadian rhythms
to the existence of a limit cycle, using a hydraulic system as analogy. Kalmus and Wigglesworth
presented their work entitled "Shock excited system as models for biological rhythms" along
with several mathematical models of circadian rhythms at a Symposium on Biological Rhythms
carried out at Cold Spring Harbor in the United States of America in 1960 [5–7]. Lots of
other important works on circadian rhythms were presented in this symposium, but the work
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of Kalmus and Wigglesworth was key in establishing a better
mathematical formalism for the study of circadian rhythms.
Although many researchers followed the theoretical path
proposed by Kalmus and Wigglesworth, the mathematical study
of circadian rhythms was finally established by Arthur Winfree
(biologist and mathematician), who introduced topology for
the description of several aspects of circadian rhythms. An
excellent summary of many of the earlier works can be found
in Arthur Winfree’s master book entitled “The Geometry of
Biological Time” [8]. The number of studies about biological
rhythms at large has increased greatly in the last two decades, in
part due to new technological advances. Particularly related to
circadian rhythms, there is now evidence that there is rhythmic
patterns of activity at the molecular [9, 10], cellular [11, 12],
tissue [13, 14], and systems levels [15–17], and that circadian
regulation is involved in jointly regulating activity in all those
different levels of biological organization [18–20], and also,
taking into account interactions with the environment [21] and
perturbations induced by behavior [22, 23].

Mathematical modeling and experimental characterizations of
different properties of circadian rhythms have been combined
to produce explanations and hypotheses about the rhythmicity
in biological phenomena [24–28]. Of particular interest, the
ontogeny of circadian rhythm in the crayfish has been studied by
Lara-Aparicio et al. [29] combining theoretical and experimental
perspectives, building phenomenological mathematical models
that capture a series of experimental results involving the
synchronization of electro-retinogram activity in crayfish [30–
32]. These models couple two van der Pol oscillators [33]
represented by state vectors, and include parameters representing
the frequency of the oscillators, the radii of the limit cycles, and
the first coordinate of the center of the limit cycle. The system is
setup such that one oscillator is driving the behavior of the other
oscillator, but not vice-versa. One of the main findings with this
model is that the driving oscillator induces an Andronov-Hopf
bifurcation in the driven oscillator and regulates its frequency.

The model by Aparicio et al. simulates, explains, and has
suggested new biological experiments, it is simple enough to
allow analytical approaches, and it has provided useful insights
about questions referring to the ontogeny of the circadian rhythm
in crayfish from the childhood to adult stages. For instance,
a hypothesis about the existence of a hormone, which was
experimentally detected, was generated from the model. The
model also allowed Lara-Aparicio et al. to study synchronization
of circadian rhythms with external signals like day and night
light cycle [34]. By studying basic principles underlying the
generation of oscillations in coupled non-linear systems, these
researchers were able to conjecture that circadian rhythms can
result from coupling systems of cells, each one oscillating with
an ultradian oscillation [35–37]. Synchronization among cells
emerges naturally as a motivating theme that has been studied
through systems of non-linear Equations [38] representing n
oscillators with the classical van der Pol non-linear damping for
the terms responsible for the oscillatory dynamics.

In the present paper, we extend the work in Lara-Aparicio
et al. [29] and Barriga-Montoya et al. [38] by analyzing two
qualitative mathematical models, each capturing a different

level of organization in the ontogeny of circadian rhythms.
Inspired by gap junction coupling between neurons, or similarly,
by chemical coupling in self oscillating networks, we study
the bifurcation structure in a deterministic model assuming
that the coupling between the oscillators is diffusive. The
resulting dynamics resemble neuronal activity at the cellular
level. Then, using graph theoretical methods and center manifold
theory, we show that synchronous oscillations appear via a
Hopf bifurcation in a population of pacemaker oscillators.
In this case, the bifurcation parameter is thought of as a
representative of the developmental stage of the neurons. We
further explore the phenomenon of oscillator death: although the
single neurons are endogenously oscillating for sufficiently large
values of the bifurcation parameter, the population oscillation
dies for sufficiently large coupling, which suggests that the weak
coupling hypothesis must be satisfied for robust synchronous
oscillations to occur. In the case of all-to-all coupling, we
provide necessary conditions for oscillator death to occur
and leave the derivation of sufficient conditions to a future
report.

Frequency modulation is also an important phenomenon
that can be studied with these models. In consideration of
the results from the first analysis, we shift our focus to
the frequency modulations that emerge as a result of the
interconnection of various circadian pacemaker populations.
In doing so, we estimate the synchronization frequency as a
function of the intrinsic frequencies of the oscillators, their
coupling strength, and the topology of the network. To do
so, we construct a second model that can be thought of as a
stochastic, larger-scale extension of the first model we present.
In this case, each population is assumed to be an endogenous
oscillator and the coupling is assumed to be linear. Using
linear stochastic analysis and under the assumption that the
population oscillations are synchronized, we derive a scalar
Fokker-Plank equation. Themodel captures an important feature
of circadian rhythm ontogeny: the emergence of low frequency
(circadian) oscillations from coupled high frequency (ultradian)
oscillators [35–38]. Future work will aim at deriving conditions
on the intrinsic frequencies, the coupling strength, and the
network topology, that ensure synchronization of the population
oscillations.

It is worth noticing that, although the motivation for the
present paper is centered around circadian rhythms, the model
captures more general phenomena. Our findings include that
in diffusively coupled cells resting node dynamics imply global
asymptotic stability, oscillating node dynamics imply global
synchronization for small coupling, and multistability between
oscillator death and global synchronization for large coupling.
In stochastic, linearly coupled populations, we describe the
dynamical mechanisms through which coupling modulates
the frequency of the synchronous oscillation. To the author’s
knowledge, both phenomena are new from a non-linear
collective phenomena perspective. Among other reasons, it is
surprising that passive coupling like diffusive coupling could
kill an oscillation and create multistability. Similarly, we are not
aware of any work providing mechanistic explanations on how
coupling can tune a global oscillation frequency.
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The paper is organized as follows. In section 2, we present
and analyze the model of diffusively coupled oscillators. Two
theorems are proved about global asymptotic stability for resting
cells and global synchronization for oscillating cells and weak
coupling. We then derive sufficient conditions for diffusive
coupling-induced oscillator death. In section 3 we present and
analyze the model of linearly coupled oscillators. In particular,
we derive an explicit formula for the emergent synchronization
frequency as a function of the coupling topology and oscillator
natural frequencies. Finally we discuss the presented results in
section 4.

2. GLOBAL SYNCHRONIZATION AND
OSCILLATOR DEATH IN DIFFUSIVELY
COUPLED OSCILLATORS

We regard a network of N coupled oscillators as a directed graph
G with N vertices, with a network topology codified by a matrix
A = [aij]

N
i,j=1, where aij ≥ 0 represent connection weights. If

oscillator i receives signals from oscillator j, then the graphical
representation of G has an arrow from j to i, and aij > 0. If
aij > 0, the signal received by oscillator i from oscillator j is
aij(xj − xi). Assume that the dynamics for each oscillator satisfies
the following coupled oscillator dynamics

ẋi = yi + µ

N
∑

j=1

aij(xj − xi) (1a)

ẏi =

(

λ − x2i −
y2i
ω2

)

yi − ω2
i xi (1b)

where µ is the global coupling strength, which uniformly scales
the coupling weights aij.

In the absence of coupling the oscillator dynamics reduces to
the modified van der Pol equation

ẍi =

(

λ − x2i −
y2i
ω2

)

ẋi − ω2
i x.

These equations define a simple dynamical system that can
transition between global asymptotic stability and almost global
convergence to a hyperbolic limit cycle through variations of
the control parameter λ ∈ R, providing a simple model for
various biological systems that exhibit the same transition, in
particular neurons and molecular oscillators. For λ < 0 the non-

linear dissipation coefficient −
(

λ − x2 −
y2

ω2
i

)

is always positive,

which leads to damped oscillations. For λ > 0 the dissipation
coefficient becomes negative close to the origin, which leads
to sustained oscillations through a Hopf bifurcation. A generic
trajectory belonging to the family of periodic orbits born at the
Hopf bifurcation has the form

√
λ(cos(ωit + θ0), sin(ωit + θ0)), (2)

where the θ0 is the initial phase.
In the presence of coupling, Equations (1) represent a

generic network of diffusively coupled non-linear oscillators. As

mentioned earlier, the diffusive form of the coupling can be
thought of as gap junction coupling in a neuronal population,
or diffusive coupling between non-linear molecular oscillators.
In both interpretations, the graph topology is necessarily
undirected, that is, aij = aji. However, the mathematical results
presented in this section hold under more general assumptions
and we present them in the general form.

2.1. Global Synchronization
We start by recalling some basic graph-theoretical definitions and
facts. The graph G is said to be strongly connected if for each pair
of nodes in G, there exists a directed path between them. G is
balanced if

∑N
j=1 aij =

∑N
j=1 aji for all i.

The Laplacian matrix L =
[

Lij : i, j = 1, ..., n
]

for the graph G

is such that Lij = −aij if i 6= j, and Lii =
∑N

j=1 aij. Note that the

vector of ones is always a right null eigenvector of L and zero is
always an eigenvalue of L (L1N = 0). It can be shown that a graph
is strongly connected if and only if zero is a simple eigenvalue
of the Laplacian matrix [39]. Obviously, symmetric graphs (i.e.,
satisfying aij = aji) are balanced, but the converse is not true.
Consider, for instance, a directed ring.

The global behavior of the system (1) for λ < 0 and µ ≥ 0, for
a network with connectivity represented by a generic balanced
graph is characterized by the next theorem (Figure 1).

Theorem 2.1. Assume that the graph G is balanced and that ωi =

ωj = ω for all i, j = 1, . . . ,N. If λ < 0, then the origin is globally
asymptotically stable and locally exponentially stable for allµ ≥ 0.

Proof.We consider the quadratic Lyapunov function

V(x, y) =

N
∑

i=1

(x2i + y2i /ω
2).

The derivative of V along the trajectories of the system (1) gives

V̇ =

N
∑

i=1

(

2xiẋi + 2yiẏi/ω
2
)

(3)

which after substitution of the derivatives ẋi and ẏi, can be
bounded from above as follows

=

N
∑

i=1



2xiyi − 2yi
ω2xi

ω2
+ 2

yi

ω2

(

λ − x2i −
y2i
ω2

)

yi

−2µxi

N
∑

j=1

aij(xi − xj)





≤ 2
λ

ω2

N
∑

i=1

y2i − 2µ

N
∑

i,j=1

xiaij(xi − xj)

= 2
λ

ω2

N
∑

i=1

y2i − 2µ

N
∑

i,j=1

aij(x
2
i − xjxi)

= 2
λ

ω2

N
∑

i=1

y2i − 2µ

N
∑

i,j=1

aij(x
2
i /2− xjxi + x2i /2)
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FIGURE 1 | Transition between global asymptotic stability and synchronous oscillation via Hopf bifurcation in system (1) for µ = 0.05, N = 20, natural frequencies

uniformly distributed in the interval [0.9, 1.1] and varying λ. The interconnection topology is all-to-all.

To show that the last term is negative definite, we use the
balanced interconnection hypothesis. Let dj =

∑N
i=1 aij =

∑N
i=1 aji. Then,

N
∑

i,j=1

aijxj =

N
∑

j=1

djxj =

N
∑

i=1

dixi =

N
∑

i,j=1

aijxi.

As a consequence,

V̇ ≤
λ

ω2

N
∑

i=1

y2i − µ

N
∑

i,j=1

aij(xi − xj)
2 ≤

λ

ω2

N
∑

i=1

y2i .

Then the global part of statement follows by LaSalle invariance
principle [40]. The local part follows by observing that for λ <

0 the linearization of model (1) at the origin is non-singular
and therefore asymptotic stability of the origin implies that all
eigenvalues have negative real part. �

Remark. Because exponentially stability implies robustness
to small perturbations, Theorem 2.1 remains true for small
heterogeneity in the natural frequencies.

Note that, for λ < 0, the system in Equation (1) exhibits
exponentially damped oscillations toward the origin (Figure 1,
top panels).

Next we show that, at λ = 0 and identical natural frequencies
model (1) undergoes a supercritical Hopf bifurcation inside the
consensus space

C = {(x, y) ∈ R
2N

: xi = xj, yi = yj, ∀i, j = 1, . . . ,N},

provided the graph is strongly connected. The linearization of the
system (1) is given by

J =

[

−µL IN
−ω2IN λIN

]

, (4)

where IN is the N-dimensional identity matrix and L is the
network Laplacian defined in section 2.1. Let 1N be the N-
dimensional vector of ones. Given a (complex) vector ν = (v,w)
in the consensus space C, that is, v = a1N and w = b1N for
some a, b ∈ C, the eigenvalue problem for the Jacobian matrix
Equation (4), restricted to the consensus space, takes the form

Jν = J

[

a1N
b1N

]

=

[

−µLa1N + b1N
−ω2a+ λb1N

]

=

[

b1N
(−ω2a+ λb)1N

]

= ξ

[

a1N
b1N

]

where ξ is a (complex) eigenvalue. In the third equality we used
the fact that 1N is a right null eigenvector of L. The last equality
shows that ν ∈ C is an eigenvector of J with eigenvalue ξ if and
only if its components a and b satisfy

[

0 1
−ω2 λ

] [

a
b

]

= ξ

[

a
b

]

. (5)
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We can now easily solve Equation (5) to obtain the
eigenvalues/eigenvectors pairs

ξ±(λ) =
λ

2
±

1

2

√

λ2 − 4ω2,

[

a±
b±

]

=

[

1
ω2 (λ − ξ±)

1

]

(6)

For λ = 0 we got two purely imaginary eigenvalues which
correspond to a supercritical Hopf bifurcation of model (1) inside
the consensus space, as summarized in the following theorem and
illustrated in (Figure 1, bottom panels).

Theorem 2.2. For almost all balanced, strongly connected
interconnection topologies the following holds. For all µ > 0, the
system (1) undergoes a supercritical Hopf bifurcation at λ = 0
with center manifold given by the consensus space C. Moreover,
the family of periodic solutions born at the Hopf bifurcation are
exponentially asymptotically stable and correspond to synchronous
oscillations of the oscillator network.

Proof. By Theorem 2.1 the origin is locally exponentially stable
for λ < 0. We further observe that, if the interconnection
topology is strongly connected, then zero is a simple eigenvalue
of L and therefore no either eigenvalue of J satisfies the same
eigenvalue problem defined by Equation (5). It then follows by
the center manifold theorem [41] and Equation (6), that the
system (1) possesses a two-dimensional center manifoldWc that
is tangent to the consensus space C, for λ = 0. Moreover,
this center manifold is exponentially attractive. By the Hopf
bifurcation theorem [42], Equation (6) also implies that the
system Equation (1) undergoes a supercritical Hopf bifurcation
inside Wc when λ crosses zero from negative to positive. By
direct substitution inside the model equations, we see that along
a generic member of the family of periodic orbits born at the
Hopf bifurcation, oscillators are synchronously oscillating with
each oscillator orbit given by (2). �

Remark 2.3. Because Hopf bifurcation is codimension-zero (in the
sense of [43]), it is persistent under small perturbations, which
ensures that Theorem 2.2 remains true for small heterogeneity in
the natural frequencies.

2.2. Oscillator Death and Multi-Stability for
Stronger Coupling
We now explore the phenomenon of “oscillator death,” induced
by strong coupling in model (1). We restrict our attention to the
all-to-all coupling case, i.e., aij = 1 for all i 6= j. For λ > 0 and
µ sufficiently small the synchronous oscillations born at Hopf
bifurcation (Theorem 2.2) attract all trajectories. However, the
system ismultistable, as can be noted from the fact that increasing
µ leads to the appearance of a family of steady states that attract
some of the trajectories, but the synchronous periodic orbits
remain locally exponentially stable (Figure 2). Indeed, depending
on the initial conditions, only some trajectories converge to
the synchronous oscillations. In the following we will provide
geometric insights, without formal proof, about the mechanisms
underlying oscillator death and multi-stability in model (1).

We start by observing that the oscillator death state is
characterized by the presence of two dead oscillator clusters.

Inside each cluster, oscillators converge to the same steady state.
To analyze the appearance of oscillator death steady-states, we
can simplify the model by assuming that (xi, yi) = (x1, y1) for all
i = 1, . . . ,N1 and (xi, yi) = (x2, y2) for all i = 1, . . . ,N2, where
N1,N2 < N,N1+N2 = N, are the cluster sizes. The pairs (x1, y1)
and (x2, y2) define the cluster states.

The cluster state dynamics can be easily derived and read

ẋ1 = y1 + µN2(x2 − x1), (7a)

ẏ1 = −ω2x1 +

(

λ − x21 −
y21
ω2

)

y1, (7b)

ẋ2 = y2 + µN1(x1 − x2), (7c)

ẏ2 = −ω2x2 +

(

λ − x22 −
y22
ω2

)

y2. (7d)

Each cluster state dynamics has the form

ẋ = y+ µNj(xj − x), (8a)

ẏ = −ω2x+

(

λ − x2 −
y2

ω2

)

y, (8b)

where Nj is the other cluster size and xj the other cluster state. A
sufficient condition for the appearance of multiple steady states
is that there must exist values of xj for which the model(8) has
multiple steady-states. This condition can easily be verified by
analyzing the dependence of the intersection of the nullclines
of model (8) as a function of xj and the parameters µ and λ

(Figure 3).
If the coupling strength is too small the origin is the only

steady state (Figure 3). This steady state is unstable and all
trajectories are attracted toward the synchronous periodic orbit.
However, new steady states appear for larger values of µ. The
critical value of µ for which the new steady-states appear can
be found by computing the slope of the nullclines at the origin.
The slope of the x-nullcline is evidently µNj. The slope of the x-
nullcline can be computed by implicit differentiation and is given

by ω2

λ
. Multiple steady-states appear if µ > ω2

Njλ
(Figure 2).

3. SYNCHRONIZATION AND FREQUENCY
MODULATION IN LINEARLY COUPLED
OSCILLATORS

In this section we present an alternative approach to study
synchronization under the influence of noise using the Fokker-
Planck equation (FPE). The modeling in this section can be
thought of in the context of interacting populations of oscillators.
Related work in the context of populations of synchronized
neurons can be found in the work by Jiao et al. [44]. Introducing
noise in the equation is natural from the biological perspective.
However, even in the absence of noise, the introduction of
random perturbations allows the extraction of information about
the deterministic system. This is done by letting the perturbation
amplitudes go to zero. To investigate the dependence of the
synchronization frequency on the frequencies of the coupled
oscillators, and the different coupling parameters, we assume
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FIGURE 2 | Emergence of oscillator death in model (1) for λ = 0.5, N = 20, natural frequencies uniformly distributed in the interval [0.9, 1.1] and varying µ. The

interconnection topology is all-to-all. Note that for the same value of µ = 0.25 both oscillatory and oscillator death states are possible.

FIGURE 3 | Nullclines of the cluster state dynamics for incresing values of µ for xj = 0, ω = 1.0, N = 20 and N1 = N2 = N/2, λ = 0.5.

synchronization, which reduces the FPE equation to an equation
in two variables.

We divide this section in two parts. First, we consider a
simple deterministic system in which the effect of coupling
can be understood. In the second part, we randomly perturb a
more general version of the previous model to show that the
FP equation provides an approximation for the syncrhonization
frequency, and obtain some insights on the effect of noise.

Let us then consider a system similar to the one already
studied

ẍi = −ω2xi + ν

[

1−

(

x2i +
ẋ2i
ω2

)]

ẋi

+µ

N
∑

j= 1

aijxj, i = 1, . . . ,N, (9)
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Notice that x(t) = sin(ωt) is still a solution for the uncoupled
system (µ = 0), independently of the value of ν. This system
has the advantage of allowing direct calculations around the limit
cycle, which can be written explicitly.

If we linearize the equation and take ν << 1, we can neglect
the contribution of the disipative term. The resulting linear
system is

ẍi = −(ω2 − µAi)xi,

where Ai =
∑N

j=1 aijxj, for i = 1, . . . ,N. If all the aij = 1,
corresponding to a fully connected network of oscillators, the
previous system can be reduced to the equation

ẍ = −
(

ω2 − µ(N − 1)
)

x,

assuming that a synchronized regime is established. This
assumption may not always be biologically realistic, but it allows
us to obtain the common synchronization frequency in a simple
way. Later on we consider the general case and recover this
formula as a particular case. This provides an estimate for the
synchronization frequency of

�sync =
√

ω2 − µ(N − 1).

Moreover, this reduction suggests that synchronized oscillatory
behavior takes place for sufficiently small µ. That is, when

ω2 − µ(N − 1) > 0,

Otherwise, exponentially large growth can be expected. Notice
that unless the aij are equal, the previous reasoning is not
consistent and no conclusion can be drawn. We claim that
introducing random perturbations and using the FP equation
allows us to circumvent this difficulty and analyze the general
case. This is the content of what follows. First of all, we write the
system in the form

ẋi = yi

ẏi = fi(xi, yi)+ µ

N
∑

j=1

aijxj, i = 1, . . . ,N.

Notice that in the linearized regime, anologous to the reasoning
for small ν in the previous example, we might naturally assume
that

fi(xi, yi) ≈ −ω2
i .

Perturbing the equation with Brownian noise we have

dxi = yi dt +
√
2ε dWi1

dyi =



−ω2
i xi + µ

N
∑

j=1

aijxj



 dt +
√
2ε dWi2, i = 1, . . . ,N,

where the Wij are uncorrelated Brownian motions for i, j ∈

{1, ...,N}. The probability density, u(x1, ..., xn, y1, ..., yn, t) of the

system being in the state x1, ..., xn, y1, ..., yn at time t satisfies the
FP Equation

∂u

∂t
= ε1u+∇(F(x, y)u), (10)

where F is the vector field determined by the right hand side
of the stochastic system. Looking for stationary solutions, i.e.,
ut = 0 and explicitly substituting F in terms of x and y, the
equation becomes

ε1u+
∑

i



yiuxi + (−ω2
i xi + µ

∑

j 6=i

aijxj)uyi



 = 0. (11)

If we use the synchronization condition x1 = ... = xn and
y1 = ... = yn, we obtain the equation

ε1 + nyux + (−
∑

i

ω2
i + µ

∑

i,j

aij)xuy = 0.

If we let

b =
∑

i

ω2
i − µ

∑

i,j

aij,

we can write the Equation (11) as

ε1 + nyux − bxuy = 0.

Assuming ε is small, it is reasonable to expect that the probability
u will concentrate around the characteristic curves of the first
order equation

nyux − bxuy = 0,

that are solutions to the system

ẋ = ny,

ẏi = bx.

By taking the scalar product with the vector (x/n, y/b) we obtain
the relation

ẋ
x

n
+ ẏ

y

b
= 0,

or equivalently,

x2

n
+

y2

b
= constant,

which defines the characteristic curves as ellipses. In turn,
interpreting these as curves in the phase portrait, the resulting
solutions would correspond to periodic trajectories with
frequency

�2
sync = −

b

n
=

(
∑

i ω
2
i − µ

∑

i,j aij)

n
, (12)

which provides an estimate for the synchronization frequency
in terms of the original frequencies and the coupling
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FIGURE 4 | Synchronization and modulation of the synchronization frequency via coupling strength in model (9), for N = 10, natural frequencies uniformly distributed

in the interval [0.95, 1.05], all-to-all coupling and varying µ.

parameters. Importantly, it shows that the synchronization
frequency decreases with the coupling strength. In particular,
formula Equation (12) can be used to study how coupled
ultradian oscillations can give rise to circadian oscillations
(Figure 4).

4. DISCUSSION AND SUMMARY

We have described, through basic geometrical analysis, the
relationship between the dissipation coefficient, an intrinsic
property of the oscillators we study, and the coupling strength
µ in a network of diffusively coupled non-linear oscillators.
Our analysis predicts the emergence of sustained oscillations for
increasing values of the parameter λ in the system, only for a
limited range of coupling strengths. It is reasonable to conjecture
from this result, that there is a functional limit in the coupling
strength for oscillating tissues in nature above which the tissue
oscillations dies. To the best of our knowledge, it is the first time
that diffusive coupling has been shown to be able to induce such
oscillator death.

We have also derived an estimation for the synchronization
frequency of a linearly coupled network of non-linear oscillators
in terms of the oscillator natural frequencies and the coupling
parameters [Equation (12)]. The presented results are indeed
local, that is, the synchronous oscillation is only locally
asymptotically stable. The oscillators are not synchronized at
the beginning of the simulations, but their spread in state
space is very small to ensure convergence to the synchronous
oscillation. For a larger spread, a more complex behavior is
observed.

We believe that these results constitute predictions that,
although possibly difficult to test experimentally, would be
worth verifying in light of the existing evidence about the joint
frequency modulation of activity between different tissues during
the day [23, 45].

The results we have presented thus far emphasize the
importance of simple mathematical models in understanding
situations where synchronization of multiple oscillating

populations appears. The results presented here may help to
shed light on both physiological and pathological phenomena
involving synchronization of oscillators in different tissues
(Parkinson’s disease [46, 47], epilepsy [48, 49]). The other
way around, it is also of potential importance to unravel
mechanisms underlying the disappearance of coordinated
oscillatory regimes. In a future publication, we plan to formally
justify our estimations, and further, integrate the analysis of
oscillations in the cellular and network levels of biological
organization, to build up on our understanding of coupling
oscillators at the tissue level. Two important extensions of the
current models that we are studying are, the full characterization
in higher codimension of the bifurcation structures of the
system (1), and also, replacements of the van der Pol dynamics
with biophysical models of excitable cells [50]. This last
extension may prove useful to explain possible compensatory
mechanisms that take place during the beginning of a pathology
[51].
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A Stochastic Phylogenetic Algorithm
for Mitochondrial DNA Analysis
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O. González-Amezcua 1 and Francisco Javier Almaguer 1*

1 Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico,
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This paper presents an exploratory analysis of the mitochondrial DNA (mtDNA) of

32 species in the subphylum Vertebrata, divided in 7 taxonomic classes. Multiple

stochastic parameters, such as the Hurst and detrended fluctuation analysis (DFA)

exponents, Shannon entropy, and Chargaff ratio are computed for each DNA sequence.

The biological interpretation of these parameters leads to defining a triplet of novel

indices. These new functions incorporate the long-range correlations, the probability of

occurrence of nucleic bases, and the ratio of pyrimidines-to-purines. Results suggest that

relevant regions in mtDNA can be located using the proposed indices. Furthermore, early

results from clustering algorithms indicate that the indices introduced might be useful in

phylogenetic studies.

Keywords: DNA, random-walk, Hurst exponent, detrended fluctuation analysis, Shannon entropy, coefficient of

disequilibrium

1. INTRODUCTION

Previous mathematical studies on DNA sequences have seen a variety of approaches and frequently
involve a numerical representation of the nucleotide chains. For instance, distance matrices have
been constructed using different metrics (Randi et al., 2003; Liao and Wang, 2004; Zhang and Tan,
2007; Kandiah and Shepelyansky, 2013). These matrices, in combination with clustering methods,
are used to evaluate phylogenetic relationships among species (Yu and Huang, 2013).

Other studies involve the representation of DNA sequences as random-walks, known as DNA-
walks (Peng et al., 1994). The main objectives of these studies focus on the long-range correlations
among nucleotides; i.e., “how the frequency of each nucleotide of a pairing nucleotide couple
changes locally” (Namazi and Kiminezhadmalaie, 2015). These DNA-walk studies find differences
in the long-range correlation between coding and non-coding DNA sequences (Peng et al., 1994).

Recently, DNA-walk analysis has been used in combination with the fractal dimension and
Hurst exponent to identify mosaic structures in DNA that allow distinguishing between healthy
and cancerous cells (Namazi and Kiminezhadmalaie, 2015).

Additionally, alternative statistical tools frequently used in DNA sequence analysis include
Shannon entropy, which is a measure of the amount of “information" stored within a system
(López-Ruiz et al., 1995). In a biological sense, Shannon entropy evaluates the probability of
independent occurrences of each nucleic base in a DNA sequence. In recent studies, fluctuations
in local Shannon entropy in DNA sequences have been analyzed to identify regions of repeating
patterns of one or more nucleotides, known as tandem repeats (Thanos et al., 2018). The capability
of Shannon entropy to highlight important segments in DNA sequences has led to the supported
notion that entropy studies might be used for biological classifications of species (Melnik and
Usatenko, 2014).
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Similarly, the concept of complexity has played a central role
in various DNA sequence analyses. For instance, López-Mancini-
Calbet (LMC) complexity, employed in this paper, has led to the
development of an effective gene-predicting technique (López-
Ruiz et al., 1995; Monge and Crespo, 2015). In a recent study,
the symbolic complexity of DNA sequences is used to identify
segments resulting from random duplication, as well as changes
in the speed of accumulation of point mutations (Salgado-Garcia
and Ugalde, 2016).

Our objective is to examine the parameters previously
mentioned to determine a small number of coefficients with
biological relevance that may be used to determine rates of
change in nucleotide bases, establish comparisons between
regions, and better understand the relation among species in a
phylogenetic sense.

This paper is structured as follows: section 2 introduces
the concepts and methodology; section 3 presents the results
obtained and the variables introduced; and section 4 is devoted
to a discussion of the results, comments on the methodology in
general, and final remarks. Tables and figures are incorporated
in sections 2 and 3, respectively. The Supplementary Material

includes a table with the identification codes for
the data.

2. METHODOLOGY

GenBank R© is the National Institutes of Health’s genetic
sequence database made possible by the collaboration of
several organizations. All datasets used within this work were
obtained through GenBank because of its availability of access,
encouragement of use, and the advantage that the information
stays up-to-date.

A total of 32 complete mtDNA sequences of different species
in the subphylum Vertebrata were selected. The lengths vary
from 16, 207 to 18, 254 base pairs (bp). The choice of this type
of DNA presents multiple advantages: it is relatively small in size
(in contrast, human chromosomal DNA contains hundreds of
millions bp); the sequences contain conserved regions, can be
compared in blocks among different species, and contain a small
percentage of non-coding regions; and the interpretation of the
mutations in mtDNA as an estimator of evolutionary change
(Barton and Jones, 1983). For these reasons, the exploratory
nature of this study does not require additional information on
the species themselves. Thus, the selection criteria focused on 32
different members from 7 groups intuitively related in taxonomic
classes. The 32 NCBI codes from the data files have been attached
in the Table S1.

A pre-processing of the data files consists of a realignment of
the sequences to set the control region of the heavy chain (H-
chain) in the direction of transcription as the new ending point.
This realignment is done once. The displacement loop, or D-
loop, is within the control region and the most varying region
in mtDNA, with substantial differences observed even among
individuals of the same species (Yamamoto, 2001). See Figure S1
(Supplementary Material). Additionally, the header information
was removed, which contains the identification key and the
name of the organism. The downloaded files (in .fasta format)

were processed using the programming language R version 3.4.4
(2018-03-15). The packages used are stringr and fractal.

2.1. DNA-Walk
DNA consists of sequences of nitrogenous bases: adenine (A),
guanine (G), thymine (T), and cytosine (C). The length and
distribution of the bases fluctuate from species to species. Several
mappings have been introduced based on properties intrinsic to
DNA. Moreover, adenine and guanine have a two-ring structure
and belong to the purine group, while cytosine and thymine
have a one-ring structure and belong to the pyrimidine group.
Furthermore, adenine bonds with thymine through a double
hydrogen bond, which is called a weak bond, while guanine and
cytosine bond through a triple hydrogen bond, which is called a
strong bond. Figure 1 illustrates these descriptions. In summary,
we have:

• Purine (R): {A,G} / Pyrimidine (Y): {C,T}
• Strong Hydrogen bond (S): {G,C} /Weak Hydrogen bond (W):

{A,T}
• Keto (K): {G,T} / Amino (M): {A,C}

Considering the properties described previously, it is possible to
read a DNA sequence and assign either a +1 or −1 depending
on whether the respective nucleotide is a purine or pyrimidine
(RY rule). This can be interpreted as random steps xi of a one-
dimensional walk. Then, the final position after n steps is given by

Xn = x0 +

n
∑

i=1

xi (1)

where x0 = 0 by definition.
Let S = {s1s2 . . . sM} be a nucleotide sequence of

length M, where sk ∈ {A,C,G,T} for k ∈ {1, 2, . . . ,M}.
Hence, a one-dimensional DNA-walk can be defined through
the following rules:

• RY rule:

xk =

{

1 if sk ∈ R = {A,G}

−1 if sk ∈ Y = {C,T}
(2)

• SW rule:

xk =

{

1 if sk ∈ S = {C,G}

−1 if sk ∈ W = {A,T}
(3)

• KM rule:

xk =

{

1 if sk ∈ M = {A,C}

−1 if sk ∈ K = {G,T}
(4)

where sk is the k−th nucleotide and xk is the value of the k−th
assigned step in a DNA sequence. The path of the DNA-walk after
n steps is then defined as the partial sums Xn = x0 +

∑n
k=1 xk,

where n ∈ {1, 2, . . . ,M} and x0 = 0.
In the context of DNA-walks, Equation (2) evaluates

the tendency of changes between purines and pyrimidines.
Transversions (substitutions of purines for pyrimidines, or vice
versa) are less likely to happen and have been used to evaluate
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FIGURE 1 | Chemical structure of DNA. Adenine, guanine, cytosine, and

thymine are shown in colors green, blue, red, and purple, respectively. Notice

the double-ring structure of the purines (A,G) and the single-ring structure of

the pyrimidines (C,T ). Similarly, the type of bond is readily observable: double-

and triple-Hydrogen bonds for A, T and G,C, respectively. This illustration, by

Madeleine Price Ball, has a Creative Commons Zero (CC0, i.e., “No Rights

Reserved") license and has been published in previous articles (Wikimedia

Commons Contributors, 2018).

molecular evolution (Stoltzfus and Norris, 2016). Thus, using
this rule within corresponding blocks of nucleotides in different
species, it is possible to observe changes in the DNA-walk that
could be interpreted as an evolutionary variation. Similarly,
Equation (4) is associated with the rate of recombination between
transversions and transitions (purine-purine or pyrimidine-
pyrimidine substitutions).

Moreover, Equation (3) refers to the difference in abundance
of the GC bond with respect to the AT bond. A higher GC
content suggests a significantly higher temperature for DNA
denaturing (melting temperature Tm). Previous studies have
shown that GC content is associated to an age-related natural
selection and environmental factors (Min and Hickey, 2008).
Finally, it is assumed that each DNA-walk is an ergodic stochastic
process. Specifically, the conceived notion adopted is that each
DNA sequence may be used to represent the ensemble of DNA
sequences of individuals within the same species.

In summary, the three assignment rules provide insight into
the evolutionary aspects of the organisms considered.

2.2. Hurst Exponent and DFA Exponent
Additional information of the long-range correlations of
DNA-walks can be obtained via stochastic methods such as
rescaled-range analysis and detrended fluctuation analysis. With
these methods, it is possible to obtain the Hurst exponent,

which represents a quantitative measure of the fractal nature
of DNA sequences.

The Hurst exponent, here denoted by α, satisfies 0 < α < 1.
In comparisons of mtDNA sequences, each Hurst exponent can
be interpreted as a measure of the tendency of changes between
nucleotides according to the rules mentioned in the previous
section. The calculations used to obtain the Hurst exponent
have been reported in previous studies (Peng et al., 1994;
Buldyrev et al., 1995).

The Hurst exponent is directly related to the fractal dimension
α′ by the relation:

α′ = 2− α. (5)

The fractal dimension evaluates changes in detail of the pattern
of a DNA-walk with respect to the scale used for measurement.

An alternative method to calculate the Hurst exponent of a
DNA-walk is DFA. In contrast to the rescaled-range analysis,
DFA analyzes the random fluctuations of the DNA-walk without
trend in the data (Peng et al., 1994; Buldyrev et al., 1995). The
DFA exponent is computed using the following algorithm:

• Given a numerical sequence X = {X1,X2, . . . ,XM}, calculate
the cumulative sum

yk =

k
∑

i=1

(Xi − X) (6)

where k = 1, 2, . . . ,M and X is the mean value of X.
• Divide yk intoM/L subintervals of length L. For each window,

calculate the polynomial linear fit (the local trend) yk,L via
least-squares minimization.

• Calculate the fluctuation, which is an average of the squares of
the detrended sequence given by

F2(L) =
1

M

M
∑

k=1

∣

∣yk − yk,L
∣

∣

2
. (7)

• The slope β of the linear regression analysis in the scale
log F(L)/ log L is an estimator of the Hurst exponent.

This method tests for self-similarity at different window sizes
L. No correlation (or short-range correlations) gives stochastic
properties such as those of a random-walk, so β = 0.5; in
contrast, long-range correlations give a value of β 6= 0.5.
Specifically, correlation yields β > 0.5, while anti-correlation
gives β < 0.5.

This paper adopts a minimum block size of 4 nucleotides,
while themaximum is B = M

2 , corresponding to half the length of
the sequence in question. ShouldM be odd, B is rounded down.

2.3. Chargaff Ratio
In a remarkable discovery, Erwin Chargaff determined that there
is a balance held in DNA by the nucleobases (Chargaff, 1950),
known as Chargaff’s Rule. These state: (1) that globally (i.e.,
considering both strands of DNA) adenine is equal to thymine
in quantity, and (2) that guanine is equal to cytosine in quantity.
This result was the basis for the Watson-Crick model, which

Frontiers in Genetics | www.frontiersin.org 3 March 2019 | Volume 10 | Article 6627

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Corona-Ruiz et al. Stochastic Phylogenetic Algorithm for mDNA

determined that adenine binds with thymine and that guanine
binds with cytosine (Watson and Crick, 1953).

On this basis, and in the context of this work, the Chargaff
ratio is defined as the ratio of pyrimidines to purines:

ξ =
NC + NT

NA + NG
(8)

where NC,NT ,NA,NG represent the amount of cytosine,
thymine, adenine, and guanine, respectively, within one strand of
DNA. Note that this value is always positive. If 0 ≤ ξ < 1, there
are more purines than pyrimidines (i.e., NC + NT < NA + NG);
similarly, ξ > 1 reflects an excess of pyrimidines over purines. A
Chargaff ratio with value 1 results from an equal number of either
type of nucleotide bases.

2.4. Shannon Entropy
In his seminal paper, Claude Shannon introduced the concept of
information entropy. It measures the “amount" of information or
uncertainty of a system (Shannon and Weaver, 1998). Let � =

{ω1,ω2, . . . ,ωN} be a set of events where each ωi has probability
of occurrence pi ∈ [0, 1], for i = 1, 2, . . . ,N. Thus, the Shannon
entropy of the system is defined as

H = −K

N
∑

i=1

pi log2(pi), (9)

where K is a positive constant chosen appropriately according
to the units desired for measurement (thus, for this work, K =

1). For the case when pi = 0, pi log2(pi) = 0 in the limit
definition. Also, note that the logarithm is in base 2; this is
because information in a computer is encoded in binary digits,
or bits, which are the basic units of measurement of information.

For N = 2, events ω1 and ω2 have probability p and 1 − p,
respectively, see Figure S2 (Supplementary Material). Thus, it
can be seen that a maximum is attained at p = 1 − p = 1

2 .
This result can be extended to the general case withN events. The
proof requires Jensen’s inequality for a concave function (in this
case, the logarithmic function), and is given below. Using some
algebra to rewrite Equation (9) with K = 1 yields

H = log2

(

N
∏

i=1

(

1

pi

)pi
)

By the weighted arithmetic-mean and geometric-mean inequality,
this implies that

2H =

N
∏

i=1

(

1

pi

)pi

≤

N
∑

i=1

pi

(

1

pi

)

= N

where equality (the maximum) is satisfied when p1 = p2 = · · · =

pN . That is, when

H = log2(N). (10)

To evaluate Shannon entropy in the context of DNA sequence
analysis, it seems rather reasonable to define the set of possible

events as � = {A,G,C,T}. However, it is expected that
the probability of occurrence of each nucleotide in a DNA
sequence will likely be different for different species; thus, these
associated probabilities will be calculated empirically for each
DNA sequence in a straightforward fashion. That is, by counting
the amount of each nucleotide within the sequence and taking
the corresponding proportion by dividing by the total amount of
nucleotidesM. Thus, the probabilities will be given by

pA =
NA

M
, pC =

NC

M
, pG =

NG

M
, pT =

NT

M
,

(11)
where NA,NC,NG,NT are the amount of adenine, cytosine,
guanine, and thymine, respectively.

In the context of DNA sequence analysis, maximum entropy
is attained whenever the nucleic bases within a DNA sequence
are found with equiprobability. It may thus be interpreted that
such a sequence is the result of a random combination of these
events. Any departure from the maximum value of the Shannon
entropy due to an underlying structure might contribute to
determining any tendencies present in a sequence, see Figure S3
(Supplementary Material).

In a more general sense, the entropy fluctuations could be
analyzed by means of the Local Shannon entropy. By studying
the local fluctuations of entropy at a given scale, and across
scales, an “entropic microscope" could highlight areas with a high
degree of variation or, equally interesting, low degree of variation,
as seen in previous studies (Melnik and Usatenko, 2014;
Thanos et al., 2018).

2.5. Coefficient of Disequilibrium
Additional information of DNA sequences can be derived
from the deviations from equiprobability of occurrence of each

FIGURE 2 | DNA-walk illustration for various species using the

purine-pyrimidine rule. Observe the vicinity of nucleotide 2, 700 and the

change in tendency from a purine-rich region (positive slope) to a

predominance of pyrimidines for the remaining DNA-walk (negative slope).
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nucleotide. This measure is known as disequilibrium (López-Ruiz
et al., 1995). The events in the set � have probability pi for
i = 1, 2, 3, 4. The coefficient of disequilibrium, D, is defined as:

D =

N=4
∑

i=1

(

pi −
1

4

)2

. (12)

FIGURE 3 | DNA-walk illustration for various species using the strong- and

weak-bond rule. Observe the immediate (and consistent) tendency. This

indicates that mtDNA is rich in adenine and thymine, whose type of bond is

weaker than that of cytosine and guanine.

FIGURE 4 | DNA-walk illustration for various species using the keto and amino

rule. The figure shows a higher amount of adenine and cytosine.

This sum of squared distances can be seen as a type of
variance. Note that D = 0 in the case of equilibrium. Any
deviation from this would result in D > 0. The maximum
disequilibrium value, Dmax = 3

4 can be obtained using
multivariate calculus.

The coefficient of disequilibrium may represent a
measure of relatedness between a DNA sequence and one
resulting from a random process if each (independent)
event has a probability pi of occurrence. That is, larger
deviations from an equiprobable space yield higher
coefficients of disequilibrium. It can be observed that
this behavior counters that of the Shannon entropy in
an intuitive manner.

2.6. Coefficient of Complexity
The coefficient of complexity C is then given by the product of the
Shannon entropy (9) and the coefficient of disequilibrium (12), as
in (13). It can be seen from (12) thatD resembles the definition of

TABLE 1 | Results of the Chargaff ratio and Shannon entropy for all groups.

Scientific name (common name) ξ H

Ambystoma tigrinum tigrinum (Eastern tiger salamander) 1.081 1.9059

Bufo gargarizans (Chusan Island toad) 1.2617 1.9598

Rana plancyi (Eastern golden frog) 1.3562 1.9591

Ara ararauna (Blue-and-yellow macaw) 1.2537 1.9421

Archilochus colubris (Ruby-throated hummingbird) 1.2296 1.9409

Columba livia (Rock pigeon) 1.2664 1.9381

Gallus gallus (Red junglefowl) 1.2851 1.9316

Ninox strenua (Powerful owl) 1.2421 1.926

Carcharodon carcharias (Great white shark) 1.249 1.9444

Cyprinus carpio (Common carp) 1.0981 1.9577

Dicentrarchus labrax (European seabass) 1.2372 1.9765

Poecilia reticulata (Guppy) 1.2228 1.9529

Didelphis virginiana (Virginia Opossum) 1.1117 1.8969

Macropus giganteus (Eastern gray kangaroo) 1.1762 1.9275

Vombatus ursinus (Common wombat) 1.164 1.9254

Bos taurus (Cattle) 1.1332 1.9339

Canis lupus familiaris (Dog) 1.1848 1.9441

Capra aegagrus (Wild goat) 1.1441 1.9292

Felis catus (Domestic cat) 1.1398 1.9429

Mus musculus musculus (House mouse) 1.1316 1.9154

Oryctolagus cuniculus (Common rabbit) 1.2169 1.9403

Rattus rattus (House rat) 1.1465 1.9219

Gorilla gorilla gorilla (Western lowland gorilla) 1.2706 1.9322

Homo sapiens (Human) 1.2716 1.9305

Lemur catta (Ring-tailed lemur) 1.1869 1.9246

Pan paniscus (Bonobo) 1.2711 1.9272

Pan troglodytes (Common chimpanzee) 1.2717 1.9293

Alligator mississippiensis (American alligator) 1.2338 1.9383

Chelydra serpentina (Common snapping turtle) 1.1259 1.9205

Crocodylus niloticus (Nile crocodile) 1.1347 1.9504

Crotalus horridus (Timber rattlesnake) 1.1898 1.9337

Naja naja (Indian cobra) 1.1597 1.9324
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TABLE 2 | Results of the Hurst exponent for all groups and each of the three

random-walk rules.

Scientific name (common

name)

αRY αSW αKM

Ambystoma tigrinum tigrinum

(Eastern tiger salamander)

0.91798 0.91328 0.90701

Bufo gargarizans (Chusan Island

toad)

0.91688 0.91187 0.91191

Rana plancyi (Eastern golden

frog)

0.91695 0.91259 0.91228

Ara ararauna (Blue-and-yellow

macaw)

0.91657 0.91337 0.9133

Archilochus colubris

(Ruby-throated hummingbird)

0.91621 0.91298 0.91332

Columba livia (Rock pigeon) 0.91696 0.91336 0.91383

Gallus gallus (Red junglefowl) 0.91564 0.91109 0.91368

Ninox strenua (Powerful owl) 0.91569 0.91662 0.91341

Carcharodon carcharias (Great

white shark)

0.91506 0.91385 0.91056

Cyprinus carpio (Common carp) 0.91759 0.91463 0.91045

Dicentrarchus labrax (European

seabass)

0.91881 0.90116 0.91412

Poecilia reticulata (Guppy) 0.91631 0.91447 0.90864

Didelphis virginiana (Virginia

Opossum)

0.91844 0.91408 0.90997

Macropus giganteus (Eastern

gray kangaroo)

0.91811 0.91388 0.91113

Vombatus ursinus (Common

wombat)

0.9179 0.91391 0.91207

Bos taurus (Cattle) 0.91704 0.9137 0.91125

Canis lupus familiaris (Dog) 0.91666 0.91426 0.91009

Capra aegagrus (Wild goat) 0.91783 0.9136 0.91174

Felis catus (Domestic cat) 0.91755 0.91438 0.91172

Mus musculus musculus (House

mouse)

0.91641 0.91368 0.91138

Oryctolagus cuniculus (Common

rabbit)

0.91665 0.91411 0.91117

Rattus rattus (House rat) 0.91655 0.91301 0.9119

Gorilla gorilla gorilla (Western

lowland gorilla)

0.91509 0.91436 0.91224

Homo sapiens (Human) 0.91549 0.91484 0.91255

Lemur catta (Ring-tailed lemur) 0.91821 0.91424 0.91033

Pan paniscus (Bonobo) 0.91545 0.91465 0.91235

Pan troglodytes (Common

chimpanzee)

0.91548 0.9146 0.91225

Alligator mississippiensis

(American alligator)

0.91704 0.91213 0.91343

Chelydra serpentina (Common

snapping turtle)

0.91732 0.9142 0.91211

Crocodylus niloticus (Nile

crocodile)

0.91653 0.91448 0.91326

Crotalus horridus (Timber

rattlesnake)

0.91366 0.91336 0.91345

Naja naja (Indian cobra) 0.91379 0.91192 0.913

variance; thus, the coefficient of complexity can be interpreted as
a measure of dispersion within the information stored in a system
(López-Ruiz et al., 1995).

TABLE 3 | Results of the DFA exponent for all groups and each of the three

random-walk rules.

Scientific name (common

name)

βRY βSW βKM

Ambystoma tigrinum tigrinum

(Eastern tiger salamander)

0.67836 0.90728 0.71664

Bufo gargarizans (Chusan Island

toad)

0.75691 0.76766 0.76934

Rana plancyi (Eastern golden

frog)

0.78803 0.74711 0.74653

Ara ararauna (Blue-and-yellow

macaw)

0.74963 0.65734 0.86363

Archilochus colubris

(Ruby-throated hummingbird)

0.74416 0.6971 0.86625

Columba livia (Rock pigeon) 0.76494 0.67966 0.86371

Gallus gallus (Red junglefowl) 0.7581 0.66958 0.87402

Ninox strenua (Powerful owl) 0.75282 0.6407 0.88804

Carcharodon carcharias (Great

white shark)

0.74703 0.80776 0.79693

Cyprinus carpio (Common carp) 0.67192 0.75648 0.8331

Dicentrarchus labrax (European

seabass)

0.75312 0.73671 0.72254

Poecilia reticulata (Guppy) 0.73809 0.78308 0.78935

Didelphis virginiana (Virginia

Opossum)

0.70386 0.90263 0.7744

Macropus giganteus (Eastern

gray kangaroo)

0.73178 0.8363 0.84188

Vombatus ursinus (Common

wombat)

0.72691 0.83327 0.85255

Bos taurus (Cattle) 0.69678 0.84215 0.82662

Canis lupus familiaris (Dog) 0.71743 0.84081 0.79415

Capra aegagrus (Wild goat) 0.69553 0.84634 0.83395

Felis catus (Domestic cat) 0.70012 0.82755 0.82021

Mus musculus musculus (House

mouse)

0.68457 0.87555 0.82526

Oryctolagus cuniculus (Common

rabbit)

0.7394 0.82727 0.80349

Rattus rattus (House rat) 0.70334 0.85943 0.82893

Gorilla gorilla gorilla (Western

lowland gorilla)

0.76455 0.7491 0.85718

Homo sapiens (Human) 0.76264 0.73476 0.8657

Lemur catta (Ring-tailed lemur) 0.72169 0.86066 0.81856

Pan paniscus (Bonobo) 0.76222 0.75973 0.86114

Pan troglodytes (Common

chimpanzee)

0.76283 0.75342 0.86122

Alligator mississippiensis

(American alligator)

0.74351 0.76308 0.84625

Chelydra serpentina (Common

snapping turtle)

0.68238 0.85194 0.83671

Crocodylus niloticus (Nile

crocodile)

0.69992 0.75112 0.83504

Crotalus horridus (Timber

rattlesnake)

0.70735 0.75833 0.86203

Naja naja (Indian cobra) 0.69597 0.79567 0.85368

C = HD =

(

−

N
∑

i=1

pi log2(pi)

)(

N
∑

i=1

(

pi −
1

N

)2
)

. (13)

The coefficient of complexity may thus be regarded as the
Shannon entropy weighted by the coefficient of disequilibrium,
which can be interpreted as the tendency of a random sequence.
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TABLE 4 | New variables.

Scientific name (common

name)

v1 v2 v3

Ambystoma tigrinum tigrinum

(Eastern tiger salamander)

−4.31380 −1.10950 −2.39820

Bufo gargarizans (Chusan Island

toad)

−4.23240 −1.35480 −2.26260

Rana plancyi (Eastern golden

frog)

−4.09750 −1.29530 −2.25390

Ara ararauna (Blue-and-yellow

macaw)

−4.23570 −1.83360 −2.19300

Archilochus colubris

(Ruby-throated hummingbird)

−4.27030 −1.84760 −2.21910

Columba livia (Rock pigeon) −4.21960 −1.84640 −2.20990

Gallus gallus (Red junglefowl) −4.17150 −1.91490 −2.17750

Ninox strenua (Powerful owl) −4.21900 −2.02220 −2.21770

Carcharodon carcharias (Great

white shark)

−4.18720 −1.46250 −2.31750

Cyprinus carpio (Common carp) −4.47010 −1.58480 −2.28400

Dicentrarchus labrax (European

seabass)

−4.35900 −1.18640 −2.12810

Poecilia reticulata (Guppy) −4.20920 −1.42200 −2.30390

Didelphis virginiana (Virginia

Opossum)

−4.29970 −1.33300 −2.40300

Macropus giganteus (Eastern

gray kangaroo)

−4.28390 −1.68110 −2.34200

Vombatus ursinus (Common

wombat)

−4.31840 −1.74230 −2.33970

Bos taurus (Cattle) −4.37060 −1.56840 −2.34500

Canis lupus familiaris (Dog) −4.28210 −1.42680 −2.35010

Capra aegagrus (Wild goat) −4.35320 −1.60750 −2.34750

Felis catus (Domestic cat) −4.39050 −1.53750 −2.34000

Mus musculus musculus (House

mouse)

−4.33330 −1.55190 −2.37410

Oryctolagus cuniculus (Common

rabbit)

−4.24440 −1.48650 −2.33690

Rattus rattus (House rat) −4.33380 −1.58590 −2.35240

Gorilla gorilla gorilla (Western

lowland gorilla)

−4.16280 −1.80220 −2.27510

Homo sapiens (Human) −4.16480 −1.85860 −2.26910

Lemur catta (Ring-tailed lemur) −4.24340 −1.54580 −2.36720

Pan paniscus (Bonobo) −4.15450 −1.82670 −2.28690

Pan troglodytes (Common

chimpanzee)

−4.15590 −1.82770 −2.28130

Alligator mississippiensis

(American alligator)

−4.26190 −1.71650 −2.26170

Chelydra serpentina (Common

snapping turtle)

−4.37120 −1.61300 −2.35910

Crocodylus niloticus (Nile

crocodile)

−4.44740 −1.61700 −2.27800

Crotalus horridus (Timber

rattlesnake)

−4.31660 −1.78940 −2.27140

Naja naja (Indian cobra) −4.35360 −1.72560 −2.28610

3. RESULTS

The three DNA-walks for the 7 groups are depicted in Figures 2–
4. Results for the Chargaff ratio ξ and Shannon entropy H are
shown in Table 1, while Tables 2, 3 contain the Hurst and DFA
exponents for each type of random-walk and for each sequence.

In Figure 2, there is an initial upward trend that is present
irrespective of the species. The RY rule (Equation 2) implies that
a (local) inclination toward the positive direction of the vertical
axis corresponds to a (local) majority of purines (adenine or
guanine). Similarly, the downward trend in Figure 3 reflects a
consistent predominance of the weakly-pairing bases, adenine or
thymine (considering rule SW). Thus, adenine dominates within
the range 0− ∼ 3, 000 bp.

The Hurst exponents for the rules RY, SW, and KM
(Equations 2–4, respectively) fall in the range of 0.900 −

0.912 and imply a long-term positive autocorrelation. To put
it into perspective, a Hurst exponent value of 0.9 indicates
that, on average, the tendency of changes between nucleotides
varies slightly as the sub-sequence size is changed. Moreover,
the proximity of the Hurst exponent toward unity suggests
that either purines or pyrimidines are predominant; it cannot
distinguish, however, which one prevails. Similarly, the DFA
exponents fall within 0.64 − 0.91 which implies the existence
of strong long-range correlations in the sequences even after
detrending. Interestingly, neither the Hurst nor DFA exponent
values are near zero in any of the species considered. A
possible explanation is that the tendency of changes between
nucleotides does not vary randomly; i.e., mtDNA has an
informational structure.

For all the DNA sequences, the Chargaff ratio is positive with
ξ > 1, implying a larger amount of pyrimidines than purines.
This implication is visually reflected in the overall downward
tendency of the curves in Figure 2.

The disequilibrium coefficient takes values D ∈ (0.01− 0.03).
From Equation (12), values near 0 imply that the probabilities
pi ≈ 1

4 for any of the four nucleic bases. In other words, the
disequilibrium values obtained suggest that the four nucleotide
bases appear with almost the same proportion within each of the
32 mtDNA sequences. This is further supported by the Shannon
entropy values. In this case, Equation (10) and N = 4 yield
a (theoretical) maximum entropy value H = log2(4) = 2.
Hence, the empirical entropy values H ∈ (1.89 − 1.97) suggest
near-equiprobability among the nucleic bases.

A graph of D vs. the Shannon entropy H suggests a
linear relation. On this account, the disequilibrium coefficient
is omitted for the remainder of the study. In addition, the
complexity coefficient is omitted due to its direct proportionality
to D. See Figure S4 (Supplementary Material).

This work proposes three new evolutionary indices as
functions of Shannon entropy, the Chargaff ratio, and the fractal
dimensions derived from the Hurst and DFA exponents:

v1 = H ∗ log
[

α′
RY ∗ ξ ∗ log

(

α′
KM

)]

(14)

v2 = log
[

β
′

RY ∗ log
(

β
′

KM

)]

(15)

v3 = log
[

β
′

SW ∗ log
(

α
′

SW

)]

. (16)

These indices reflect the long-range correlations found in DNA-
walks and the information given by Shannon entropy and the
Chargaff ratio.

The fractal dimensions α′ and β ′ are derived from the
Hurst and DFA exponents, respectively, using Equation (5).
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FIGURE 5 | Hierarchical clustering of the 32 species using the Hurst exponent metric with and without tendency, weighted by the Chargaff ratio and Shannon entropy.

The natural logarithm can be seen as a transformation that
maximizes the differences between the coefficients. Equations
(14), (15), and (16) are defined from an evolutionary perspective,
while Equation (16) provides information on the energy content
of sequences.

In Equation (14), the logarithm of the fractal dimension
derived from the Hurst exponent using the KM rule provides
information regarding the transversions and transitions of the
entire DNA sequence. On the other hand, the Chargaff ratio is
used as a weighting factor for the fractal dimension derived using
the RY rule. The logarithm of the product of these quantities
provides an evolutionary measure related to the long-range
correlations. The last term in the equation (the Shannon entropy)
evaluates the probability of independent nucleotide changes for a
given DNA sequence.

Equation (15) uses the fractal dimensions of the DFA
exponents, which are computed using the detrended DNA-
walks. Therefore, it is not accurate to include the Chargaff
ratio or Shannon entropy as normalization parameters. Finally,
Equation (16) represents a measure of the natural selection
factors in relation to the environment. Results for v1, v2, v3 are
shown in Table 4.

Clustering algorithms may benefit from the proposal.
Preliminary results, shown in Figure 5, suggest a possible
application in studies centering on the evolutionary relations
among species. The proposed indices are used in the group-
average agglomerative clustering algorithm with Euclidean metric
and the sum of distances as the clustroid. Furthermore,
an additional grouping was constructed using a traditional
program, ClustalW, which is frequently applied to the study of
phylogenetic trees, as seen in Figure 6.

The implementation of the algorithm using the R
programming language is not computationally demanding,
with running times of about 15–20 min. In comparison,
ClustalW requires about 2 and a half hours for the construction
of the phylogenetic tree of 32 mtDNA sequences.

The comparative analysis between the two methods shows
consistency among the group of primates and other mammals
sharing a common ancestry of similar lineage to the lemur.
On the other hand, the marsupials and rodents (including the
common rabbit) are more closely grouped with the stochastic
algorithm and present a common ancestor, just as calculated by
the traditional method. Other groups that share proximity with
both methods are the reptiles and the birds, as well as the fish
group and some amphibians.

The most pronounced differences are found in certain
taxa. The proposed method relates the rabbit more closely to
rodents, with characteristics similar to marsupials. Meanwhile,
the traditional method positions the rabbit closer to primates.
Another interesting point is that the proposed stochastic method
shows that small reptiles and birds are more closely related, while
the traditional method relates the birds closer to large reptiles.

4. CONCLUSIONS

As has been suggested by other studies, Shannon entropy and
Hurst and DFA exponents provide insight into the properties
of DNA sequences (Peng et al., 1994; Oiwa and Glazier, 2004;
Melnik and Usatenko, 2014; Monge and Crespo, 2015; Namazi
and Kiminezhadmalaie, 2015; Salgado-Garcia and Ugalde, 2016;
Thanos et al., 2018). This exploratory analysis combines various
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FIGURE 6 | Hierarchical clustering of the 32 species using ClustalW https://www.ebi.ac.uk/Tools/msa/clustalo/.

measures utilized in the literature to establish a biologically
meaningful measure of distinction among species.

Our proposal defines new indices as functions of
Shannon entropy, the Chargaff ratio, and fractal dimensions
using rescaled-range analysis and DFA. These indices
can be employed to construct phylogenetic trees using
clustering algorithms.

Long-range correlations attributed to DNA-walks can
be identified during our study. These can represent
data with persistence in its evolutionary memory; i.e.,
that mtDNA sequences contain highly conserved regions
among similar species.

The comparison between the traditional and the proposed
clustering method shows clear agreements; however, there
are differences that must be analyzed under an evolutionary
perspective. For example, we notice that the mtDNA sequences
of the common rabbit and the common snapping turtle
show different properties in both methods. According to
the established phylogeny, the placement of the rabbit is
closer to the rodents. Interestingly, results of the stochastic
hierarchical clustering suggest a potential application for
phylogenetic studies.

Evolutionary processes are associated to an adaptive selection
of the species throughout millions of years. However, the
fluctuations of the changes in nucleotide bases could be
random in order to find new sequence combinations. The
proposed method attempts to measure the stochastic fluctuations
to yield indices that allow the observation of tendencies
and correlations in the mutations that produce new species
throughout evolutionary history.
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Designing and implementing biodiversity-based value chains can be a complex

undertaking, especially in places where outcomes are uncertain and risks of project

failure and cost overruns are high. We used the Stochastic Impact Evaluation (SIE)

approach to guide the Intergovernmental Authority on Development (IGAD) on viable

investment options in honey value chains, which the agency considered implementing

as an economic incentive for communities along the Kenya-Somalia border to conserve

biodiversity. The SIE approach allows for holistic analysis of project cost, benefit, and

risk variables, including those with uncertain and missing information. It also identifies

areas that pose critical uncertainties in the project. We started by conducting a baseline

survey in Witu and Awer in Lamu County, Kenya. The aim of the survey was to establish

the current farm income from beekeeping as a baseline, against which the prospective

impacts of intervention options could be measured. We then developed an intervention

decision model that was populated with all cost, benefit and risk variables relevant to

beekeeping. After receiving training in making quantitative estimates, four subject-matter

experts expressed their uncertainty about the proposed variables in the model by

specifying probability distributions for them. We then used Monte Carlo simulation to

project decision outcomes. We also identified variables that projected decision outcomes

were most sensitive to, and we determined the value of information for each variable.

The variable with the highest information value to the decision-maker in Witu was the

honey price. In Awer, no additional information on any of the variables would change the

recommendation to invest in honey value chains in the region. The analysis demonstrates

a novel and comprehensive approach to decision-making for different stakeholders in a

project where decision outcomes are uncertain.

Keywords: value chains, probabilistic projection, decision outcomes, uncertainity, value of information

INTRODUCTION

How to approve and prioritize among projects that aim at biodiversity conservation has been
highlighted as one of the most critical decisions that conservation planners face [1]. This is not
surprising, because conservation outcomes are often achieved through complex mechanisms, and
the success of conservation actions is rarely guaranteed, withmany uncertainties preventing precise
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impact prediction. Success is even harder to predict, when
conservation agencies aim to strengthen biodiversity indirectly,
e.g., by supporting livelihoods and economies of local people
as an incentive for them to conserve biodiversity outcomes [2].
Investing in biodiversity based value chains does not necessarily
result in positive biodiversity outcomes. Negative impacts can
arise, when value chain development results in depletion of the
biodiversity that forms the resource base, on which the value
chain depends (e.g. fisheries or non-timber forest products).

The production of honey is an example of a biodiversity
based value chain that strengthens rather than erodes the
conservation of biodiversity [3]. This is because honey producers
have an interest to conserve the vegetation and plant species that
produce the nectar and pollen that supports the value chain. The
development of honey value chains typically revolves around a
combination of introducing improved bee keeping and honey
production techniques and improved access to markets for honey
[4]. Yet, while attractive at first sight, such improved techniques
are not always easily adopted [5]. An important reason for this is
uncertainty among farmers about the financial outcomes of their
investment in improved honey production techniques.

A detailed cost-benefit analysis on beekeeping projects can be
considered to reduce the perceived uncertainty. However, there
are rarely sufficient data on all relevant aspects of an investment
decision to allow precise, purely data-driven projections to
support decision-making [6]. Given such a lack of perfect
knowledge, decision-makers need appropriate tools for handling
uncertainties, and for identifying and prioritizing knowledge
gaps, whose narrowing would reduce their chance of selecting
a suboptimal decision option [7, 8]. Furthermore, decision-
makers need improved capabilities to quantify risks surrounding
proposed interventions, because failure to adequately account for
risk can lead to high chances of project failure [9].

The Stochastic Impact Evaluation (SIE) approach allows
for a structured decision analysis that incorporates all
relevant variables, even those with uncertain and missing
information [10]. It considers risk factors that may compromise
project success or affect project performance. The approach
incorporates Value of Information analysis that prioritizes critical
uncertainties in a project, where further research has the greatest
potential of enhancing clarity on the decisions. The present
study uses the SIE approach to assess investment decisions
in honey value chains for the Intergovernmental Authority
on Development (IGAD) in its program on Biodiversity
Management (BMP).

Study Background
IGAD-BMP partnered with the World Agroforestry Centre
(ICRAF) to implement the program’s biodiversity-based
interventions along the Kenya-Somalia border. During the
project inception phase, stakeholders were consulted, and they
proposed participatory honey value chain development as
one of the economic incentives for biodiversity conservation.
Communities from Witu and Awer were selected to pilot the
beekeeping project in Lamu County. One hundred farmers
from both communities were selected and trained in beekeeping

techniques to boost their honey production knowledge and
improve their access to formal markets.

The training was held inMay 2015 inMalindi, Kenya. Malindi
was selected for training due to its proximity to the Arabuko-
Sokoke Forest, where surrounding communities intensively
practice modern beekeeping. This provided an opportunity for
the trainees to learn from established beekeepers. The training
brought together different honey value chain actors, including
representatives from the Ministry of Livestock and Fisheries
in Kenya. During the workshop, stakeholders agreed that
honey value chains had potential for being a viable investment
option for Witu and Awer communities. A baseline survey
(Figure 1) was commissioned to establish the current net income
from beekeeping, the actual number of beekeepers among the
trained farmers, beekeeping practices and risks associated with
beekeeping.

In Awer, the average net income from beekeeping was
82 thousand Kenyan Shillings (Ksh) per year, approximately
Ksh 225 per day (Table 1). Traditional beekeeping was widely
practiced and characterized by high productivity and well-
established markets. In Witu, the average net income from
beekeeping per farmer was Ksh 39 thousand (approximately
Ksh 107 per day). Very few farmers were currently practicing
beekeeping. The region also had very low honey productivity and
low farm gate prices, although a higher percentage of interviewed
farmers were educated compared to Awer.

The baseline survey informed the project implementation
approach for both communities. In Awer, it seemed sensible
to support traditional beekeeping, since the region was
characterized by high honey productivity and favorable farm gate
prices. Establishment of a honey collection center and support
of value addition activities, such as packaging, branding and
processing of other bee products, were the most promising
investment options. In Witu, the favored approach was to
invest in modern beekeeping with emphasis on intensive farmer
training and engagement of all honey value chain actors to
boost productivity. Bridging existing gaps between beekeepers
and formal markets was also a priority for the implementer to
ensure favorable farm gate prices for the beekeepers.

While clear strategies for HVC development in the two
regions thus emerged from the initial consultations and baseline
survey, IGAD-BMPwas still lacking certainty that the investment
would raise farm incomes. To clarify the prospects for the
intervention, the analysis aimed at (i) projecting impacts
on beekeeping farms using a probabilistic impact evaluation
approach, (ii) identifying and mitigating critical uncertainties
in the project, and (iii) providing recommendations for project
monitoring to reduce the chance of negative outcomes.

MATERIALS AND METHODS

We used ICRAF’s Stochastic Impact Evaluation approach
(Figure 2), which is based on the principles of Applied
Information Economics (AIE) [9, 11], to project the impact
of the decision on different stakeholders in the project. The
method makes use of all available information, including expert
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FIGURE 1 | Geographical context of IGAD’s honey value chain intervention project.

TABLE 1 | Summary of the baseline survey results for net income from

beekeeping in Witu and Awer.

Awer Witu

Variable Category Number (%) Number (%)

Gender Men 37 (66) 37 (64)

Women 19 (34) 21 (36)

Level of education No education 32 (57) 13 (22)

Primary 22 (39) 21 (36)

Secondary 2 (4) 15 (26)

Higher education 0 (0) 9 (16)

Bee keeping methods None 2 (4) 43 (74)

Traditional 29 (52) 8 (14)

Modern 14 (25) 1 (2)

Both 11 (19) 6 (10)

Hives per household 2 to 4 1 to 3

Honey per harvest (liters) 5 to 12 2 to 6

Income per beekeeper

(thousand Ksh)

−19 to 299 −28 to 171

knowledge, in making impact projections. The SIE approach can
be applied even in the absence of perfect data. We quantified all
risks, costs and benefits based on the current state of knowledge
about them, considering the uncertainties about intervention
outcomes that result from this. We also embraced the concept of
Value of Information, which is useful for determining decision-
specific knowledge gaps that decision-supporting research should
address [12].

Modeling Process
The SIE process begins by thoroughly defining the decision to be
made. According toHubbard [9], a decisionmaymerit structured
decision analysis if it has two or more realistic alternatives,
invokes some form of uncertainty or dilemma, has potentially
negative consequences if it turns out that the wrong position
was taken, and involves a decision-maker. For this study, HVC
development was identified as a viable investment option during
the consultative workshop, but stakeholders were still unsure that
the decision to invest in HVCs would benefit them. This led to the
question: “Should IGAD-BMP invest in the proposed honey value
chain intervention as an economic incentive for Witu and Awer
communities to conserve biodiversity?”

To clearly define this question, a decision analysis team was
constituted with the aim of clarifying whether IGAD-BMP was
interested in return on investment, who exactly the agency was
targeting to raise incomes from beekeeping, and how the project
was going to be implemented. The team that was convened to
develop the HVC decisionmodel consisted of 8 members: IGAD-
BMP’s HVC intervention project manager, the biodiversity
management program coordinator, two decision analysis experts,
one participatory modeling scientist and four research assistants.
The initial conceptual model (Table 2), which aimed to reflect
the overall structure of the decision at hand, was then sent to a
principal bee health scientist from the International Centre of
Insect Physiology and Ecology (icipe) for review. The updated
model (Figure 3) was translated into a set of equations that
represented the team’s understanding of the decision’s impact
pathway [13].
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FIGURE 2 | Sequence of activities in the SIE decision modeling approach (modified from [8]).

Decision outcomes were projected using the decisionSupport
package [14] for the R programming environment [15]. For
this, the model equations were coded as a welfare function
in R programming language (Data Sheets 3, 4). The model
was parameterized using estimated probability distributions for
variable values (Data Sheets 1, 2) (often specified as 90%
confidence intervals), which were obtained from literature review
and five established beekeepers from Mwingi in Kitui County,
Kenya. The process required the team to undergo calibration
training—a process that improves the capacity to make range
estimates for which one is 90% confident that the actual value
lies within the provided range [9]. This was done for all
variables, including those for which no other information was
available. Using the estimated variables as inputs, the decision
model was run as a Monte Carlo simulation [16, 17]. This
approach produced a distribution of possible decision outcomes
by running the model a large number of times, each time fed with
a different set of random draws from the defined distributions
for the variables in the equations [18]). To identify variables
that were most uncertain in the analysis, we used Partial Least
Squares (PLS) regression [19], which was also implemented in
the decisionSupport package [14].

The most uncertain variables in a project, which outcome
projections are most sensitive to, are not necessarily most
important to the decision-maker, because new information on
them may not be able to change the recommendation emerging
from the decision model. The value of additional information
on a variable for decision-makers is determined by whether this
information has the potential to change the sign of the expected
value of the decision, which would change the preferred decision
option [9].

To identify high-value variables, the Expected Value of Perfect
Information (EVPI) was calculated by detecting correlations

TABLE 2 | List of variables used to populate the beekeeping model.

Benefits Costs Risks

Direct benefits

• Revenue from sale of

honey

• Revenue from sale of

wax

Indirect benefits

• Increased farm yields

(from improved

pollination)

Initial investment costs

• Cost of labor to establish apiary

• Transport of equipment cost

• Cost of beehives

• Cost of setting up collection

centers

• Cost of farmer packages

• Other initial costs

Recurring costs

• Harvesting cost

• Wax processing cost

• Honey/wax transportation cost

• Honey processing cost

• Hive maintenance materials cost

• Opportunity cost

• Staff salaries

• Farmer training cost

• Other recurring costs

• Insecurity

• Land conflicts

• Fire outbreaks

• Theft

between input and output variables and identifying those that
were of importance to a decision-maker, i.e., the variables,
whose measurement could help reduce the expected opportunity
loss of the decision. Since there was no basis for deciding
on the functional form of the relationship between test and
outcome variable, a non-parametric test was used to detect
these relationships. We used Spearman’s rank correlation, using
the usual statistical cutoff criterion of α < 0.05 to exclude
all variables that were not correlated with projected decision
outcomes. For those that were not correlated, the value of
information was zero, since the variable had no significant
relationship with the outcome. This criterion excluded most
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FIGURE 3 | Structure of the decision model.

variables, and discriminated well between informative and
obviously uninformative variables.

We then sorted the dataset by values of each remaining input
variable. In the sorted dataset, it was not possible to identify a
clear threshold, where the expected decision outcomes transition
from positive to negative. This was because the data was still
too “noisy.” To more clearly expose the effect of uncertain
variables on the decision recommendation, we processed the
dataset using a second-order low-pass Butterworth filter, with a
critical frequency of one divided by one tenth of the number
of values in the Monte Carlo output. This resulted in a smooth
dataset, in which it was often possible to identify a threshold,
where the sign of projected decision outcomes was reversed, e.g.
for variable values above the threshold, positive outcomes would
be expected, while values below the threshold would likely lead to
negative outcomes (note that using a signal processing filter is a
pragmatic way to solve the computational challenge of calculating
the EVPI, but it introduces a small amount of inaccuracy into
the threshold identification). With this threshold identified, the
EVPI was computed as the sum of all outcomes with a sign that
did not correspond to that of the expected value (e.g., all negative
outcomes, when the analysis produced a positive expected value),
multiplied by their respective chance of occurrence. This EVPI
procedure was applied to all output variables.

RESULTS

Due to the economic and biophysical disparities between Awer
andWitu, the two regions were modeled separately. The outcome

of the analysis was expressed as the net present value (NPV) of the
intervention for a farmer and for the overall project. Emphasis
was placed on the farmer NPV and overall project NPV, since the
implementer’s direct objective was to raise farmer incomes from
beekeeping. Cash flows were also illustrated, and variables that
had information value for the decision maker were identified.

Witu Community
In Witu, the median of the modeled distribution of average
annual monetary income per farmer practicing beekeeping was
Ksh 65 thousand, with 90% confidence that the actual income
lay within the range of Ksh −36 thousand to 140 thousand for a
farmer who would continuously practice beekeeping (Figure 4).
The chance of a negative average monetary NPV for a farmer in
this region was 24%.

The honey price, the amount of honey produced per hive, the
number of hives per farmer, the number of harvesting seasons
per year and the honey processing cost were the most important
variables according to the PLS analysis. The distribution of total
farmer NPV, including indirect benefits from beekeeping, e.g.
through improved pollination of crops, had a median of Ksh
72 thousand, with a 90% confidence interval of Ksh-30–251
thousand.

Since both positive and negative farmer outcomes appeared
plausible according to the simulation results, the EVPI analysis
indicated that additional information about four variables could
potentially change the recommendation emerging from the SIE
process. These were the honey price, with a value of information
of about Ksh 2750, followed by honey production per hive (Ksh
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FIGURE 4 | Projected outcome distribution (top left), high-value variables (EVPI; top right), project cash flow (bottom left) and important variables (determined by PLS

regression; bottom right) for a farmer practicing beekeeping in Witu, Kenya. Results were produced through Monte Carlo simulation (with 10,000 model runs) of

project performance over 10 years. Red and green bars in the outcome distribution indicate positive and negative values, respectively. In the PLS plot, green bars

indicate positive correlations of uncertain variables with the outcome variable, while red bars indicate negative correlations.

1750), the number of hives per farmer (Ksh 1250) and the
number of harvesting seasons per year (Ksh 50).

The distribution of the projected NPV for the project in Witu
had a median of Ksh 36 million, with 90% confidence that the
actual NPV for the project lay within the range of Ksh-14–150
million. The model responded most sensitively to the amount
of honey produced per hive. Seven other variables also had
important impact on projected outcome values (Figure 5).

The distribution of projected decision outcomes included
both positive and negative outcomes, and additional information
on some individual uncertain variables had potential to change
the decision recommendation. EVPI analysis indicated that
information on the honey price in Witu was the most valuable to
the project implementers, with a value of about Ksh 1.1 million.
The amount of honey produced per hive (Ksh 0.6 million) and
the number of hives per farmer (Ksh 0.4 million) were also of
value to the project implementers.

Awer Community
In Awer, the distribution of projected average monetary income
per farmer practicing beekeeping had a median of Ksh 130
thousand per year, with 90% confidence that the actual value
lay within the range of Ksh 1.5–340 thousand per year. The
chance of loss for a farmer in this region was 4.6%. Total
farmer NPV including non-monetary benefits had a median
of Ksh 140 thousand with a 90% confidence interval of Ksh
7.2–340 thousand. The price of honey was identified as the
most uncertain variable by the PLS analysis, alongside five other
variables (Figure 6).

EVPI analysis indicated that none of the variables had any
information value for the farmer. This meant that, if the NPV
was the main criterion for evaluating the attractiveness of the
HVC intervention, then farmers would be well-advised to engage
in beekeeping, and no additional information on any of the
variables would change this recommendation.
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FIGURE 5 | Projected outcome distribution (top left), high-value variables (EVPI; top right), project cash flow (bottom left) and important variables (determined by PLS

regression; bottom right) for the overall project in Witu, Kenya. Results were produced through Monte Carlo simulation (with 10,000 model runs) of project

performance over 10 years. Red and green bars in the outcome distribution indicate positive and negative values, respectively. In the PLS plot, green bars indicate

positive correlations of uncertain variables with the outcome variable, while red bars indicate negative correlations.

The overall project NPV had a median of Ksh 38 million per
year, with 90% confidence that the actual value lay within the
range of Ksh-0.9–120 million. PLS analysis indicated that the
honey price was the most uncertain variable in the projection
of project NPV in Awer (Figure 7). Although PLS indicated that
projected project outcomes responded to variation in a number
of variables, no additional information on any of these variables
had the potential to change the recommendation that the project
implementer should invest in honey value chains in the region.

DISCUSSION

Beekeeping is a high-risk, high-return venture that requires
a well thought-out project design to maximize returns [20].
Introduction of the HVC intervention as an economic incentive
for rural communities along the Kenya-Somalia border to
conserve the environment may generate significant impact in
terms of raising income (average of Ksh 65 thousand per farmer

for Witu and Ksh 130 thousand per farmer for Awer). However,
the success of this intervention, especially for regions such as
Witu, requires close monitoring by the implementing agency to
minimize the chance of loss (24%).

In Witu, the most critical variable was the price of honey,
which individual beekeepers have relatively little influence on.
Current honey price, based on the baseline survey, is within
the range of 3–7 hundred Ksh per liter. At this price, returns
may be too low for a farmer who pursues beekeeping as the
only source of income. For a farmer who invests in beekeeping
as a supplementary source of income, the current honey price
looks promising. Analyzing the impact of different factors that
may affect the honey price in the future, e.g., packaging, honey
quality, access to formal markets and exploitation by middlemen,
will provide useful information to support farmers’ decisions
on investments in honey value chains. The amount of honey
produced per hive is also a critical variable to farmers in Witu
(Figure 4). Since productivity is a function that depends onmany
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FIGURE 6 | Projected outcome distribution (top left), high-value variables (EVPI; top right), project cash flow (bottom left) and important variables (determined by PLS

regression; bottom right) for a farmer practicing beekeeping in Awer, Kenya. Results were produced through Monte Carlo simulation (with 10,000 model runs) of

project performance over 10 years. Red and green bars in the outcome distribution indicate positive and negative values, respectively. In the PLS plot, green bars

indicate positive correlations of uncertain variables with the outcome variable, while red bars indicate negative correlations.

factors, such as good apiary management, access to extension
services, technology deployed and bee forage availability, studies
on these factors promise to reduce decision uncertainty for
farmers. Modifications to the original project design that address
the influence of these variables on the farmer NPV could reduce
the chance of losses for beekeepers.

Most model runs for project NPV in Witu indicate a positive
outcome, although there is still a chance (23%) of not achieving
the goal of raising incomes for farmers in the region. This is
because beekeeping is a relatively new venture for most farmers.
The value chain is not well developed and a lot of investment has
to go into farmer training to increase productivity. The honey
price, the amount of honey produced per hive and the number
of hives per farmer are the most critical variables for the project
implementer. It is therefore important for the implementer to
work with farmers to acquiremore information on these variables
and how they will influence their respective NPVs.

In Awer, the HVC intervention can increase monetary income
for beekeepers by about Ksh 48 thousand based on the baseline
survey. This is slightly higher than in Witu (Ksh 26 thousand),
but this is expected, since most farmers in the region were already
practicing beekeeping. The project plan to support existing
traditional beekeeping methods, establish a honey collection
center and support value addition activities such as packaging,
branding and processing of other bee products, was likely to
be more effective in raising incomes, since it would focus on
bridging gaps in the chain. In Witu, the focus is on introducing
the HVC to the region.

The EVPI analysis indicated that no additional information
on any of the variables could change the recommendation
that farmers should invest in beekeeping (Figure 6). This is
not surprising, since the region is characterized by high honey
productivity and well-defined markets. The overall project
NPV in Awer suggests that introducing HVC is economically
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FIGURE 7 | Projected outcome distribution (top left), high-value variables (EVPI; top right), project cash flow (bottom left) and important variables (determined by PLS

regression; bottom right) for the overall project in Awer, Kenya. Results were produced through Monte Carlo simulation (with 10,000 model runs) of project

performance over 10 years. Red and green bars in the outcome distribution indicate positive and negative values, respectively. In the PLS plot, green bars indicate

correlations of uncertain variables with the outcome variable, while red bars indicate negative correlations.

viable, even when fully considering the cost incurred by the
implementing agency (Figure 7). The effort to improve certainty
on the business case may not influence the decision to invest in
HVC, since no additional information on any of the variables had
value to the decision-maker.

Impact of the Intervention on Biodiversity
Conservation Efforts
Biodiversity conservation is linked to income from beekeeping,
because conserving the surrounding forests provides flowers
for bees to forage on, thus ensuring high honey productivity
throughout the year. However, raising incomes for communities
within conservation areas, which is the goal of the HVC
intervention, does not necessarily mean that these communities
will conserve biodiversity [21]. Therefore, for IGAD-BMP to
maximize its impact in terms of biodiversity conservation,
the program must ensure that rural communities not only

generate sustainable incomes from honey production, but also
perceive relationships between these incomes and biodiversity
conservation, i.e., that high honey production correlates with
success in preserving biodiversity. A study on how increased
incomes from honey value chain interventions would affect
biodiversity conservation outcomes could produce valuable
information on the prospective impacts of the intervention on
biodiversity conservation.

Recommendations for Project Monitoring
Although the intervention looks promising, a few areas need
to be monitored to reduce the chance of negative outcomes.
In Witu, the price of honey has to be monitored to ensure
farm gate prices can provide sufficient income to bee-keeping
farmers. To reduce the chance of negative outcomes as a result
of low farm gate prices, there is a need to link farmers to
formal markets, promote collective marketing and invest in value

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2018 | Volume 4 | Article 643

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Wafula et al. Probabilistic Assessment of Investment Decisions

addition. The amount of honey produced per hive should also
be monitored, since it is critical in determining whether farmers
investing inHVCs are likely to reap net benefits. Adequate farmer
training and mitigation of risks, such as theft, land conflicts
and fire outbreaks, will help reduce the chance of farmers
abandoning honey production. Further, there is a need to identify
the minimum number of hives per farmer that would provide
substantial increase in income. The implementing agency would
then focus on ensuring that most of the farmers have this
minimum number to motivate them to continue contributing to
HVCs.

In Awer, not much can be done in terms of project monitoring
to reduce negative outcomes, since the chance of such negative
outcomes was very low. However, the implementing agency
can focus on monitoring how these positive outcomes affect
biodiversity conservation efforts. There are no clear linkages
between increase in income and biodiversity conservation.
Clarifying and generating awareness on these linkages, e.g.,
through research and education on the need to conserve
biodiversity to increase honey production, will help the
implementing agency to better understand—as well as enhance
the impact of—the project on biodiversity conservation.

Future Application of the SIE Approach
The costs, benefits and risks of biodiversity-based value chains,
and agricultural interventions in general, typically have high
levels of uncertainty, especially when considering the long-
term and off-site effects of proposed interventions. In light
of these uncertainties, the single most important task facing
agricultural intervention planners is perhaps to determine the
best way to make decisions [22]. Uncertainties and risks
have to be quantified, policy preferences clarified and priority
measurements for supporting their decisions identified.

The SIE approach can provide plausible solutions to this. The
first critical step in the SIE process is to clearly define the decision
to be taken. This step often does not receive sufficient attention
[23], but it is instrumental in understanding what has to be
measured. In this analysis, we spent about 30% of the entire effort
on clarifying questions such as whether the implementing agency
would cater for the full project implementation cost or whether
these costs would be shared with farmers, who would be the
actual beneficiaries of the project and whether the implementer
was interested in return on investment. Clarifying these questions
early in the implementation planning process enabled IGAD-
BMP stakeholders to easily identify relevant benefits, costs, risks
and external factors that would affect project performance.

The SIE approach allowed identification and prioritization
of critical uncertainties in the project. Variables prioritized for
further measurement in one of the regions (Witu) appeared
easy to quantify with small efforts in data collection. In
the other region (Awer), no measurements on any of the
variables would change recommendations to farmers and the
implementing agency to invest in HVCs. This demonstrates that
the SIE approach has potential to substantially enhance the cost
effectiveness of decision-supporting measurement campaigns
for agricultural intervention planners. The approach presents a
clear business case for or against investment in a project where
outcomes are uncertain. This can provide critical information

to investors aiming to support agricultural interventions with
limited resources.

CONCLUSIONS

Investment in HVC as an economic incentive to conserve
biodiversity requires thorough analysis of investment options to
maximize returns to different stakeholders. This can be achieved
through probabilistic stakeholder-disaggregated outcome
projections for biodiversity-based value chain interventions.
Clarifying the decision question turned out to be critical
for the decision making process. This greatly facilitated the
development of a decision’s impact pathway, which could
then be easily converted into a quantitative decision outcome
projection model.

Tailoring interventions to meet economic, social and
environmental requirements of rural communities is very
important, so decision-makers need approaches that allow
holistic ex-ante analysis of investment options. The cost-benefit
and risk analyses for biodiversity-based value chains should
consider all factors that are relevant for the implementation of
the decision, even those that initially appear “intangible” or for
which no data are available. Incorporation of local and expert
knowledge into decision making using the SIE framework can
significantly improve the quality of decisions.

Value of Information analysis can provide indications of
what needs to be measured to support intervention decisions.
While many uncertainties usually exist in all decisions that affect
complex systems, only those uncertainties that are of value to the
decision maker should be prioritized for further measurement.
This can substantially reduce the cost of data collection aimed at
informing decisions.

STUDY ETHICAL APPROVAL AND
CONSENT

The analysis relied on information obtained from literature
review, key informants and subject matter experts. This did
not require ethical approval as per institutional and national
guidelines, but a written and informed consent was obtained
from key informants and subject matter experts. The baseline
survey outcome in the study background was generated from an
open access dataset, where the data was properly anonymized
[24]. Written and informed consent was also obtained from all
survey participants at the time of original data collection.
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The Amnesiac Lookback Option:
Selectively Monitored Lookback
Options and Cryptocurrencies
Ho-Chun Herbert Chang* and Kevin Li

Department of Mathematics, Dartmouth College, Hanover, NH, United States

This study proposes a strategy to make the lookback option cheaper and more practical,

and suggests the use of its properties to reduce risk exposure in cryptocurrency markets

through blockchain enforced smart contracts and correct for informational inefficiencies

surrounding prices and volatility. This paper generalizes partial, discretely-monitored

lookback options that dilute premiums by selecting a subset of specified periods

to determine payoff, which we call amnesiac lookback options. Prior literature on

discretely-monitored lookback options considers the number of periods and assumes

equidistant lookback periods in pricing partial lookback options. This study by contrast

considers random sampling of lookback periods and compares resulting payoff of the

call, put and spread options under floating and fixed strikes. Amnesiac lookbacks are

priced with Monte Carlo simulations of Gaussian random walks under equidistant and

random periods. Results are compared to analytic and binomial pricing models for the

same derivatives. Simulations show diminishing marginal increases to the fair price as

the number of selected periods is increased. The returns correspond to a Hill curve

whose parameters are set by interest rate and volatility. We demonstrate over-pricing

under equidistant monitoring assumptions with error increasing as the lookback periods

decrease. An example of a direct implication for event trading is when shock is forecasted

but its timing uncertain, equidistant sampling produces a lower error on the true

maximum than random choice. We conclude that the instrument provides an ideal space

for investors to balance their risk, and as a prime candidate to hedge extreme volatility.

We discuss the application of the amnesiac lookback option and path-dependent options

to cryptocurrencies and blockchain commodities in the context of smart contracts.

Keywords: options pricing, lookback options, path-dependent options, Monte-Carlo methods, cryptocurrency,

smart contracts

1. INTRODUCTION

Lookback options have been a prototypical example of exotic options within the financial
literature [1]. The option gives the holder the right to buy or sell an underlying asset at any price
attained within a specified “lookback” period. The payoff of a lookback call (put) is therefore the
difference between the underlying price at maturity and the maximum (minimum) price attained.
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The trader is thus able to capitalize on the underlying asset as if
he sold it at the optimal time. By utilizing only the highest value
of the underlying asset in determining payoff, lookback options
capture the best case scenarios that people would like to sell
at, but often miss due to uncertainty. By corresponding payoffs
to the extreme movements of underlying asset prices, lookback
options allow for investors to hedge against or invest in volatility.

Goldman et al. [2] [3] are one of the first who mentioned
the lookback option within the financial literature. Their paper
examines the properties of path-dependent European options
under Black-Scholes assumptions. They laid out three primary
motivations: to minimize regret, to live out the “fantasy” of
buying low and selling high, and lastly, to use knowledge of
the range to expand an investors opportunity set. This last
condition is only applicable within the realistic market setting
rather than a frictionless one. The nature of lookback options
also lets investors guard against the behavioral flaws in people.
The nature of lookback options also lets investors guard against
the behavioral flaws in people. Because the payoffs of lookbacks
are path dependent in a way to capture the effects of the best
prices, lookbacks can hedge not only quantitative variations in
the market, but irrational regret of the human mind.

Lookback options benefit the holder given greater volatility in
the market. Thus, it is an effective instrument for hedging against
large price movements and reducing the risk of destabilizing
events that may cause markets to either rise or fall. These
include political election outcomes or other unforeseen chance
occurrences such as market anomalies [4]. Also among its
potential uses is to hedge exposure in cryptocurrency markets,
where extreme volatility has increasingly become a menace as
investors look for ways to mitigate such risk.

However, the lookback option’s strong reduction to risk
exposure requires a sufficiently high premium, which reduces the
option’s demand. The proposition of this paper recognizes that
one may not have to look back upon the entire associated time
period; merely looking back upon a portion suffices to capture
most of the max potential payoff of a full-time lookback option,
most of the time. This conclusion allows for investors to adjust
their risk using lookbacks of differing lookback period lengths
by purchasing shorter time lookback options at a discount in
order to increase return on investment. This strategy suggests the
possibility of event-based trading whereby lookback periods may
be chosen to correspond to market shaping events in hopes of
extraordinary profits.

As the potential payoffs and insurance capabilities of an
option increase, so does its premium. Thus, there is a desire for
an instrument that limits risk exposure, but at a lower price.
Here is where the proposed “Amnesiac Lookback Option” may
find a tradeable niche, a variant of the conventional lookback
option whose lookback time periods are restricted to a chosen
subset of periods within a specified time interval at the time the
contract is created. If premiums for lookbacks may be reduced, it
could also open the door for their widespread use, particularly
in high volatility cryptocurrency markets. The purpose of this
study is therefore 2-fold: to propose a way to make the lookback
option cheaper and more practical, and suggest the use of its
properties to reduce risk exposure in cryptocurrency markets

and correct for informational inefficiencies surrounding prices
and volatility. Additionally, we are interested in the following
research questions. What periods of the amnesiac lookback
option should be selected to maximize its final payoff? What is
the probability that the amnesiac lookback option may produce
greater profit than the standard lookback option? Lastly, would
this option have practical applications in the cryptocurrency
market?

The rest of the paper is organized in the following way: The
rest of the introduction provides more context on the varieties of
lookback options and applications to cryptocurrencies. Section 1
continues to discuss types of lookbacks and its application to
the cryptocurrency market. Section 2 discusses existing literature
on partial lookback options, lookback options with diluted
premiums, and past efforts to price them. It then discusses our
methods of simulation. Section 3 presents the results of three
types of numerical simulations. First, a demonstration of the
general properties of floating amnesiac lookback options for calls,
puts and spread options are shown. Second, the payoff of fixed
strike amnesiac lookback options is shown and compared to the
fixed strike. Third, a study of equidistant monitoring vs. two
forms of random monitoring are presented. Section 4 prices
different cryptocurrency using the algorithm in conjunction with
smart contracts.

1.1. Fixed vs. Floating Lookback Options
Lookbacks exist in many different varieties but can be classified
into two broad categories: fixed and floating strikes. The strike
price of fixed strikes is indicated in the initial contract, while for
floating strike lookbacks the strike price is the minimum (call)
or maximum (put) of the underlying asset. Additionally, there
are spread lookback options with payoffs equal to the difference
between the maximum and minimum prices attained by the
underlying. The payoffs are summarized in Table 1 whereMT

0 =

max{Si}
T
i=0 andm

T
0 = min{Si}

T
i=0.T denotes the time ofmaturity.

Suppose an investor decides to take the long position for
the next 2 months. However, the price of the stock drops
unexpectedly within the last 4 days of closing by 10%. Not selling
the stock early becomes a reason of regret. Similarly, the stock
may drop in the span of 2 days before rising quickly, making the
investor regret not buying the stock a little later. Thus the floating
strike call lookback is useful for market exit and the fixed strike
call for market entry.

1.2. The Partial and the Amnesiac
Due to the high premiums of lookback options and perhaps
other factors, lookback options are not sold at particularly high
volumes within OTC trades [5]. It has been suggested that partial
lookback options may allow lookbacks to be more tradeable. One

TABLE 1 | Payoffs for floating and fixed strike lookback options.

Option name Floating Fixed (strike = K)

Call ST −mT
0 MT

0 − K

Put MT
0 − ST K −mT

0

Spread MT
0 −mT

0 MT
0 −mT

0 − K
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such way is to introduce a factor λ that decreases the effect or
payoff of the lookback, proposed by Conze and Viswanathan [6].
For instance, the payoff of such an instrument is:

λ(max{Si}
N
1 − ST) (1)

If λ equals 1 then payoff is identical to a standard lookback
option. Another form of the partial lookback, referred to as
the fractional lookback, restricts the lookback periods to a
continuous subset of days. Finally there is also the window
lookback option, where separated continuous periods are
monitored [7].

The amnesiac lookback option generalizes partial and discrete
lookback options that are not linearly reliant on the payoff of
the standard lookback option and is named such in response
to Heynen and Kat’s paper Selective Memory. The amnesiac
lookback option is a lookback option whose lookback periods
belong to a pre-specified subset of periods from a given time
interval, determined at the moment of contract creation.

The amnesiac lookback option is thus defined as follows.
Given a full, discrete lookback option with N total lookback
periods, an amnesiac option is defined by a subset of periods
of the full, discrete lookback option, denoted as A. The payoff
scheme is the same as the standard lookback, while the extreme
values of the option are restricted to A. This means, every full,
discrete lookback option is in fact an amnesiac option of a full
lookback with greater periods. This extends previous definitions
of partial lookbacks to beyond equidistant intervals.

1.3. Application to Cryptocurrencies
Lookback options are extremely suited to hedge against volatility
in general, whether the underlying asset surges in value, or
whether the underlying asset declines in value. Unpredictability
is therefore the prime feature of an asset that would drive
demand and usage for a lookback option based upon that
asset. In 1982, the Mocatta Metals Corporation issued one of
the first “lookbacks,” that allowed a trader to buy gold at the
lowest price attained within a period. In the context of modern
day financial markets, it would seem lookbacks could have
high potential in hedging investments involving the popular
digital gold cryptocurrencies. A pioneering innovation within
currency markets, instruments such as Bitcoin and Ethereum
may represent the future of monetary exchange. Given its
relative technology security, explosion in value, and increasing
acceptance of legitimacy, Carrick [8] has even suggested that
cryptocurrencies like Bitcoin could be used as a complement
to fiat currencies in emerging markets. At the same time, high
volatility has become the premier feature of cryptocurrency
markets, which has made investment risky. A Bitcoin was worth
$2 in 2011—and exploded to $4,000 in 2017 [9]. During that
time, volatility for daily returns would regularly exceed 10%, even
skyrocketing to 16% [10]. Bitcoin once lost 75% of its value over
2 years, and then rising 2,000% within the next two.

Past literature has found evidence of time series characteristics
and long memory behavior in Bitcoin markets, both in regards
to pricing and in return volatility. Bariviera et al. [11] explores
some of these inefficiencies by calculating Hurst exponents via

the Detrended Fluctuation Analysis method for certain time
windows of Bitcoin return and return volatility data. Bariviera
finds evidence that from 2011 to 2014, daily Bitcoin returns had
long-term positive autocorrelation with previous returns and that
return volatility had long memory throughout the entire time
period of 2011–2017 [11]. Bariviera et al. [11] utilize this same
methodology to further show that intraday returns before 2014
exhibit long range memory as well. Additionally, Urquhart [12]
finds that Bitcoin prices exhibit odd behaviors through the entire
time period May 2012 to April 2017, with over 10 percent of
prices ending with decimal digits of 00. One, two, three, five,
and ten days before a round number from rising prices, returns
are positive and statistically significant. Meanwhile, prices after
a round number show no such predictable behaviors. Given
that the lookback option utilizes the time series behavior of an
asset’s prices and volatility to determine its payoff, it is a suitable
candidate for rectifying such market inefficiencies. The amnesiac
lookback option is particularly appropriate because lookback
period selection allows for targeted correction of unusual events,
such as those found in Urquhart [12], and can more easily
eliminate arbitrage opportunities and bring markets into more
efficient states.

Ultimately, Bitcoin aims to be a type of fiat money; it has no
value backed with consumable goods and its value comes from
the minds of its investors and from the financial environment in
which it occupies. Increases have been driven by hopes of future
value, or in other terms, heavy speculation. Unexpected events
therefore have rippling effects on the cryptocurrency market and
create a volatility with few equal comparisons. China’s decision to
cease its bitcoin exchange in September of 2017 sent Bitcoin into
a downward spiral, and as governments and regulators venture
forth into the frontier that is the cryptocurrency market, events
that will shock the market are sure to take place [13]. Even
so, investors are increasingly accepting of cryptocurrencies as
attractive investment propositions outside of speculation. Bouri
et al. [14] find that Bitcoin can act as a hedge against market
uncertainty in situations, specifically in short time horizons
under extreme bear or bull market regimes, or when uncertainty
is either very low or very high. Bouri et al. [15] overall minimizes
the usefulness of Bitcoin as a general hedge, but still finds
evidence that investors putmoney into Bitcoin whenAsian stocks
experience extreme down movements.

In July 2017, the U.S. Commodity Futures Trading
Commission granted federal approval to LedgerX LLC
for the ability to trade and exchange options based on
cryptocurrency [16]. This happening marked the birth of
the first federally regulated platforms of cryptocurrency options
trading, and moved items such as Bitcoin, Ethereum, and even
Dogecoin closer into the realm of financial legitimacy. Shortly
after on December 1, 2017, the U.S. Commodity Futures Trading
Commission announced the offering of self-certified derivatives
from three financial firms: bitcoin futures from the Chicago
Mercantile Exchange Inc. and the CBOE Futures Exchange and
binary options from the Cantor Exchange [17]. In contrast with
the effect of regulatory restrictions, this decision has driven
up bitcoin prices from $5,000 prior to the announcement to
above $11,000 by December 05, 2017 [18]. The issuance of new
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financial instruments can thus feedback into the price of its
underlying.

More importantly, the integration of smart contracts into
blockchain technology has vastly expanded the possibilities of
options trading, allowing traders great flexibility in designing
their own options [19–21]. Smart contracts are computer
protocol that allow for trade and exchange without the need
for an intermediary, and because writers code their own
contracts, blockchain technology can facilitate the trade of
highly customized contracts often seen on the OTC market.
Both Bitcoin and Ethereum, for instance, support programming
languages that allow for the creation of custom smart
contracts [22, 23]. Amnesiac lookback options could conceivably
exist within this structure, and be traded as a smart contract.

Recent events lent credence to the prospect of a prolific smart
contract exchange. In March 2018. The state of Tennessee signed
into law a bill that recognizes smart contracts as having legal
power [24], providing a pathway for other states to follow and
further securing the legitimacy of these digital arrangements.
Blockchain based smart contract firm Hedgy has also created
irrefutable and unalterable “Smart Futures” that can enforce
digital obligations and streamline settlements [25]. As more and
more investors begin creating and trading new smart contracts,
blockchain may 1 day even “democratize” the OTC market and
open a plethora of new smart instruments to be exchanged.

Lookback options therefore emerge as an attractive and
easily implementable product for currency speculators. As price
fluctuation is the determining factor of payoff, such lookback
instruments would be highly priced in the cryptocurrencymarket
and be a key counterweight to the speculative risk of investors.
Simple to understand and able to exist as smart contracts,
lookback options and other path-dependent options could serve
as a unique tool for traders with restricted access to dynamic
trading strategies, and in the process introduce greater flows of
capital from these sources to promising investments.

2. MATERIALS AND METHODS

2.1. Past Pricing Model for Lookbacks
Research with lookback options fall within pricing methods for
path dependent exotic options, such as the barrier option which
also rely on extreme value processes, and the Asian option
which relies on the average price of the underlying. Goldman
introduced the instrument into the financial literature in 1979 [2,
3]. Following Black, Scholes and Merton’s pricing of vanilla
options, Black-Scholes assumptions have been extended to price
exotic options. This is defined by at least one asset with price
S that moves under Geometric Brownian Motion with constant
drift and volatility. The underlying price follows:

dS = Sµdt + σSdX (2)

where the underlying has drift µ and volatility σ . In the risk-
neutral measure, the stock price at a given time t and final time T
is given below:

St+1 = Ste
(r−D− σ2

2 )1t+σǫ
√

1t (3)

ST = S0e
(r−D− σ2

2 )T+σǫ
√
T (4)

r denotes the risk free rate, σ the volatility, D denotes dividends
in the case of stocks, and ǫ ∼ N (0, 1), the normal distribution.

Like the Vanilla European Option, an analytic pricing formula
has been shown using martingale methods [26], with the price of
a call given as:

Ct = S8(a1(S,m))−me−rτ8(a2(S,m))−
Sσ 2

2r
(8(−a1(S,m))

−e−rτ (
m

S
)
2r
σ2 8(−a3(S,m))) (5)

Pt = −S8(−a1(S,M))+Me−rτ8(a2(S,M))+
Sσ 2

2r
(8(a1(S,M))

−e−rτ (
M

S
)
2r
σ2 8(a3(S,m))) (6)

whereM denotes the running maximum at time t,m denotes the
running minimum,τ = T− t with T the time of maturity, and 8

the standard normal cumulative distribution function given as

8(α) =
1

√
2π

∫ α

−∞

e−
x2

2 dx

With L being a dummy variable, the variables denote:

a1(S, L) =
ln S

L + (r + 1
2σ

2)τ

σ
√

τ

a2(S, L) = a1(S, L)− σ
√

τ

a3(S, L) = a1(S, L)−
2r
√

τ

σ
for L > 0, S > 0

For fixed strikes, Conze and Vishwanathan [6] used known
properties of maxima and minima distributions to price the
lookback call, under the continuous case of lookback periods.

Ct =



































S08(b(T)) −erTK(b(T)− σ
√
T + e−rT σ 2

2r S0
(

erT8(b(T))

−
( S0
K

)
−2r
σ2 8(b(T)− 2r

σ

√
T)

)

K ≥ M

erT(M0
T− K)+ S08(b′(T))− e−rTM0

T8(b′(T)− σ
√
T)

+e−rT σ 2

2r S0(e
rT8(d′T)−

( S0
M0

T

)
−2r
σ2 8

(

b′(T))

−( 2r
σ

√
T
)

K < M

where

b(T) =
ln S0

K + (r − D+ σ 2

2 )T

σ
√
T

b′(T) =

ln S0
MT

0

+ (r − D+ σ 2

2 )T

σ
√
T

(7)

The similar case for the put is derived in their paper, and
resembles the form of the float-strike option in Equation (5).
These analytic solutions assume continuous monitoring and
updates to the price of the underlying, while in reality most
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options are monitored at discrete intervals. Thus, the analytic
solutions are typically overpriced as compared to the prices of
discretely monitored lookbacks, and has spurred two areas of
study: how to either price discrete options more accurately, and
how to correct errors of continuous monitoring.

Historically, notable papers that have priced discrete lookback
options include those by Heynen and Kat using the Black-
Scholes model [27], Babbs using a binomial valuation [28], and
Cheuk and Vorst [29] using a binomial model. More recent
pricing paradigms utilize stochastic volatility [30] and the Lévy
Model [31] (more citations here). Cheuk and Vorst in particular
consider the effects of observation frequency on price using equal
lookback intervals.

The binomial options pricing model first described in Cox
et al. [32] offers a conceptual method with which the price
of an amnesiac lookback options may be determined. Under
the assumptions of the binomial tree model, the price of an
underlying stock St at discrete time t may strictly exhibit one
of two behaviors. It may either increase in value to Stu with
probability p, or decrease in value to Std with probability q where

u = eσ
√
t , d = 1/u, p+ q =1, and sigma is a measure of the stock’s

volatility. The risk-neutral probability p is determined to equal
e(r1t)−d
u−d

where r an exogenously determined risk free return. The
lookback option can then be priced recursively using a lattice.

This pricing model was then extended to be more efficient
by Conze and Vishwanathan [6], Babbs [28], and Cheuk and
Vorst [29]. The binomial pricing method lends itself more easily
to pricing at discrete intervals. With too few time intervals,
the approximation for the standard lookback option becomes
inaccurate. Yet as the number of periods in the binomial tree
increases, so does the amount of computations. Past work
involves increasing the efficiency of these computations using
combinatorial properties of the binomial tree. Babbs [28] uses a
change of numeraire approach, similar to Hull andWhite [33], to
price both new and existing lookback options. Cheuk and Vorst
formulate a modified tree, where the computation only relies on
time and the difference between u and d. Let this variable be
called j such that:

St =
(

min
t≤T

St
)

u
j
n St =

(

max
t≤T

St
)

u
−j
n (8)

for the call and the put respectively. Then the price for a floating

strike lookback can be given as C
fl
n = S0Vn(0, 0), where:

Vn(0, 0) =

n
∑

j=0

(1− u
−j
n )P(V∗

0,n = 0,V∗
n , n = j) (9)

The notation star such as in V∗
m,n denotes for n fixed and 0 <

m < n. The probabilities are given by:

P(V∗
0,n = 0,V∗

n , n = j) =

l
∑

k=j

3j, k,m(1− qn)
kqm−k

n

for 3j, k,m =

(

m

k− j

)

−

(

m

k− j− 1

)

(10)

if k > j and 3j, k,m = 1 is k = j.
While both the modified tree model and the analytic formula

give continuous valuation results, and it is well known the
binomial tree model converges to the continuous price. the
pricing formulae is still related to discrete lookback pricing.
Cheuk and Vorst extended the total number of lookback periods,
then selected an equal-distant subset to model the discrete
monitoring periods. Similarly, the amnesiac lookback option is
defined on a subset of monitoring periods.

Upon noting the discrepancy between continuous and
discrete monitoring pricing assumptions, researchers continued
to improve methods of pricing discrete options. Aitsahlia and
Le Lai [34] uses the random walk duality to simplify recursive
integration. Petrella and Kou [35] uses the Laplace transform
to make pricing more efficient, and Broadie et al. [36] uses
approximation adjustments to the continuous case to fairly price
the option’s discrete counterpart.

Contemporary researchers derive pricing under the
framework of Lévy Processes, and as a natural extension,
the Wiener-Hopf factorization is implemented as it gives the
distribution of functionals within a random walk. Fusai et
al. [37] combined this with Spitzer’s identity for a general
method of pricing discretely monitored exotic options, with
an explicit formula for the fixed strike option. However, the
method assumes equidistant monitoring windows. Boyarchenko
and Levendorskii [38] similarly implement the Wiener-Hopf
factorization but correct for the discrete monitoring dates using
a Laplace transformation. Hieber [39] presents the general
pricing of exotic options using the Fourier Transform and under
Black-Scholes assumptions and regime switching model. This is
not just useful for lookback options but for digital options and
barrier options. However, the pricing scheme is for continuously
monitored options. Feng and Linetsky [40] on the other hand,
implements Hilbert transformations sequentially and presents an
interesting method of computing maxima and minima, thereby
applying it to the valuation of path-dependent options.

2.2. Method of Simulation
The definition of a amnesiac option in section 1 can be formalized
as follows. Let N denote the total number of periods of a
full lookback option. Let A denote a selected subset. Given a
sequence of asset prices {Si}, defineM

T
0 themaximum andmT

0 the
minimum defined on the subsequence where i ∈ A. The payoff of
the amnesiac option is then the same as Table 1.

To price the amnesiac lookback option, we utilize a Monte
Carlo pricing simulation under the assumptions of the Black-
Scholes world, including but not limited to, its modeling
parameters, risk-free rate, dividends, and volatility. We assume
geometric Brownian Motion under a risk-neutral measure as
described in Equation (4):

ST = S0e
(r−D− σ2

2 )T+σǫ
√
T

We assume dividends D = 0. We simulate this process using
a Gaussian random walk. The algorithm is shown explicitly in
Algorithm 1:

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 May 2018 | Volume 4 | Article 1050

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Chang and Li The Amnesiac Lookback Option

Algorithm 1: Algorithm for Pricing Amnesiac Option

p = number of selected days
V = vector with size equal to number of simulations
for n in V do

A = generated list of indices of size p, using uniform
distribution
while timestep ≤ total timesteps do

update asset price using Equation 2
if timestep is in A then

update maximum and minimum
end

update timestep
end

amnesiac call price = final value - minimum value
amnesiac put price = maximum value - final value
amnesiac spread price = maximum value - minimum
value

end

Discount by e−rT

Fair Price = Arithmetic mean of V for each of the three
instruments
Standard Error (SE) = Standard Deviation /√
Number of Sims

Confidence Interval = Fair Price± (t)(SE)

where t is the corresponding t value for the confidence level. The
updating of the asset price follows a Gaussian Random walk in
Algorithm 2 where dT is the total time T divided by the number
of selected days p:

Algorithm 2: The price evolution based on the Gaussian
RandomWalk.
Si = current price

deterministic term: α = (r − d − σ 2

2 )dT

stochastic term :β = (σ )(
√
dT)(N (0, 1))

Si+1 = Sie
α+β

A denotes how the days are chosen. Our experiment features
three forms of period selection: uniform random with fixed
endpoints, completely random, and equal distant selection. For
the amnesiac option with fixed endpoints, the first and last
indices are first chosen, then indices 0 < i < N are chosen using
the uniform distribution. For true random, indices are randomly
selected under the uniform distribution with no guarantee of the
first one being selected. For equal distant period selection, indices
are chosen, and rounded down when not divisible. We make an
assumption that on average, the population’s selection of periods
will be uniform random.

The parameters are shown in Table 2.
For each time step, the maximum and minimum value is

updated. We analyze the pricing of floating and fixed amnesiac
lookback options, along with the variants discussed in Table 1

TABLE 2 | Simulation parameters.

Starting stock price S0 100

Volatility σ 0.2

Risk-free rate r 0.05

Total Periods N 100

(call, put, and spread). Then, the payoffs under equal interval
sampling and random sampling are considered.

A useful function that appears in analysis is the general Hill
Function. the Hill Function in the form:

V(X) =
VMaxX

h

Kh + Xh
(11)

The Hill Function has its roots in chemistry, where it is
commonly used to model the kinetics of substrate reaction rate,
where the x-axis is the substrate concentration and the y-axis the
rate of reaction. VMax is the maximal saturation rate, K denotes
the value of x required to attain half of VMax, x is the density
of a substance, and h is the hill coefficient, as an exponential of
K and h.

Analogously, increasing lookback periods yield diminishing
returns to payoff and the components of the Hill Function give
intuition to the process itself. Firstly, Vmax is theoretically the
maximum payoff, or the price of the standard discrete lookback
option. Secondly, as we increase the starting stock price, both
Vmax and C scale linearly. On the other hand, both K and h
remain constant and depend on interest rate r and volatility σ .
The Hill Curve can thus price amnesiac lookbacks independent
of the initial asset price, keeping interest and volatility constant.
If the price of the standard lookback option Vmax is known, and
interest rate and volatility incorporated intoK and h, then pricing
can be done very efficiently using the Hill Equation. Additionally,
the curve can be adopted to any starting stock price, since the
initial stock price only influences Vmax. The ratio between the

price evolution and initial price is simply
S0e

(r−d− σ2

2 )T+σ
√
T

S0
=

e(r−d− σ2

2 )T+σ
√
T , hence when pricing under the same interest and

volatility the payoff can simply be scaled.
The total number of simulations per parameter set is

2,000,000, the fair price being the arithmetic mean of the payoffs,
with a target maximal standard error of 0.001.

3. RESULTS

We denote Cn and Pn as the amnesiac option with n chosen
monitoring periods. When unspecified, the monitoring regime is
assumed to be random period monitoring with fixed endpoints.

3.1. Floating Strike Amnesiac Option
To reiterate the definition of an amnesiac lookback option, its
payoff scheme is as described in Table 1, where only the maxima
andminima of a subset of periods are recorded.We use T and t to
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FIGURE 1 | Monte-Carlo simulation for the Spread Option results converge to

the Hill-Function with K = 1.18, h = 0.62, and Vmax = 30.96.

FIGURE 2 | 3D Surface of the payoff varying days selected and volatility.

denote the continuous case and N and n be the discrete case. Let
N be the total number of periods andA the ordered set of indices:

A = {na, nb, , nN} ∀A ⊂ N

The amnesiac is defined on any k selected monitoring periods.
Figures 1, 2 show the payoff vs. the number of days selected.

As the number of periods look backed on increases, the payoff
approaches that of the standard lookback option. Yet it does
not require many selected periods to capture most of the
payoff of the full 100 selected days. This can be attributed to
the diminishing marginal effect of additional selected periods;
each period selected after the first contributes less additional
payoff than the previous. For each data point, we took the
mean of 2, 000, 000 simulations, and given a calculated Standard
Deviation of around 14.54, this gives an error of around 0.01 in
absolute terms.

The sample errors are summarized in Table 3.
Figure 1 fits the Hill function as previously described, and

Figure 2 extends this to include volatility. For this particular case,

TABLE 3 | Average of sample errors from 2,000,000 simulations.

Call Put Spread

Equal interval selection 0.01019 0.006877 0.007958

Uniform random with fixed endpoints 0.010181 0.006838 0.008000

Uniform random 0.009999 0.006756 0.007871

the formula is observed to be:

V(X) =
30.96X0.62

1.180.62 + X0.62

Kernel density estimators further tell the differences of portfolios
constructed from different amnesiac. Figure 3 shows the
distribution of the call payoffs. The peak clustered at zero denotes
the likely-hood of the option not being exercised, which yields a
payoff of zero. Comparisons between instruments vary case-by-
case, so it is useful in comparing expected returns in a pairwise
fashion.

Figure 4 shows the expected returns for the number of
monitoring periods n equal to 99, 7, and 2. We define returns by
the payoff minus the price of the option, which is the mean. Let
xi denote a single payoff from the simulation, then let the price of
the call be defined as the average X̄ then the returns are defined
by:

R = xi − X̄

The payoff distribution of n = 7 for R > 0 is approximately the
same as the distribution of n = 99. In fact, they converge in the
negative region, hence their probability ofR > 0 is approximately
equal. Next, note that the downside of n = 99 is greater than that
of n = 7. This means that the downside for C7 is more limited
than C99, even if their conditional expectation for the downside
is equal or even worse. This indicates that the amnesiac lookback,
and partial lookbacks with less monitoring periods in general, can
be used to limit the downside effects.

3.1.1. Three Types of Payoffs

Figure 5 shows the three payoff types as described in Table 1 for
floating strikes, denoted in the first column. The sum of the fair-
price of the call and put is equal to the spread option, which is
why it is often described as a “double lookback option.”

Figure 5 also shows that the average maximal and minimal
value is independent of the average final value. This observation
can be illustrated as follows, given the payoffs in Table 1 and E

the expectation operator.

E(call)+ E(put) = E(Smax − ST)+ E(ST − Smin)

= E(Smax − ST + ST − Smin)

= E(Smax − Smin) = E(spread)

(12)

These results show remarkable resemblance to the rate of
convergence for exotic prices described in Dai et al. [41]. Indeed
the prices produced by varying the number of total periods
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FIGURE 3 | Distribution of payoffs for the call with bandwidth = 1.

FIGURE 4 | Distribution of the Expected Returns. Right tails converge, while for greater n left tails shifts out.

N follows a similar curve, and produces an upper bound for
the pricing. Furthermore, since the distribution of stocks is
lognormal, if the interest rate r = 0, then the put will be of greater
value than the call because the maximumwill fluctuate absolutely
more than the minimum. To see this suppose the simple case in

the binomial model. Then for fixed n, Sen
√

σ − S is greater than

S − Se−n
√

σ . However, due to the positive risk-free rate the price
of the call is greater as shown in Figure 5.

For illustration, consider the kernel densities of each of the
three instruments shown in Figure 6. First, note the distribution
of the spread option is lognormal, shown in the blue curve.
In other words, the distribution of the range of a geometric
Brownian motion is lognormal, due to the range of brownian
motion being distributed normally.

Characteristic of the lognormal distribution is its fatter left tail.
This corresponds to the shape of the put option, minus the peak
created by the cluster of 0s. Additionally, the tail of the put is
platykurtic in comparison to the tail of the call. In sum, once the
0 payoffs are eliminated, the distribution of the put corresponds
to the left tail of the spread, and the distribution of the call
corresponds to the inverted right tail.

3.2. Fixed Strike Options
The analysis of fixed strike amnesiac options first requires
an analysis of how in-the-moneyness affects option payoff. In
Figure 7 the call price decreases as the strike price increases, as
themore out-of-the-money the option gets, themore unlikely the
maximum of the underlying will be greater than the strike. The
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FIGURE 5 | The payoffs of the put (blue), call (orange), and spread (gray). The payoff of the put and call sum to the spread. The put payoff is lower than the call as the

absolute difference of the maximal processes is greater than the minimal processes under Geometric Brownian Motion.

FIGURE 6 | Kernel Density Estimation of each Amnesiac type. The tail behavior of the spread option is captured by the distribution of the call and puts.

put option in Figure 8 demonstrates the opposite relationship,
as it relates to the minimum distribution. The payoff diagrams
for the call show a linear relationship while in-the-money, then
decaying exponentially afterwards. The put shows the inverse.
Since the maximum (minimum) distribution for given number
of periods is fixed, as the strike price decreases (increases) the
difference is linear. This linear relationship is preserved as the
number of selected periods in the amnesiac option are reduced,
as seen in the diagrams.

When the number of monitoring periods is equal to 0, then
the maximum is simply the last stock price at time N. Thus,
the payoff is the final stock price minus the strike.The shape of
this curve for selecting n periods is therefore a simple, vertical
translation. Through these observations, we have demonstrated
the bounds for the amnesiac option as shown in Figure 9. It is
bounded by the standard lookback from above, and the vanilla
European options from below.

3.3. Random vs. Equal Monitoring
One of the most important questions this paper addresses is if the
choice of period matters in the payoff. What we find is randomly
choosing lookback periods yields a worse payoff than equally
spacing the days to look back on, as shown in Figure 10. The
differences are shown in Figures 11, 12.

There are two ways to monitoring randomly. We defined N
equidistant points between time 0 and T, making it discrete.
Suppose we are monitoring k points from the Gaussian Random
walk. Under true random monitoring we would select k random
points from the set of periods {0, 1, 2, ...,N − 1}. In contrast, the
fixed-end random monitoring selects the first period n = 0 then
randomly chooses k − 1 periods from indices 1 through N − 1.
Since the price of an option increases with the duration of the
contract, fixing the first and last period ensures an equal time
length for comparison. For the true randommonitoring, the time
to maturity would be the minimum of index.
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FIGURE 7 | Amnesiac Call Payoff with fixed strike.

FIGURE 8 | Amnesiac Put Payoff with fixed strike.

For illustration, suppose k = 2. For fixed-end random
sampling the first period is chosen while the second can be
any point between 1 and N − 1. More simply, both endpoints
are fixed, and we are choosing a point between the beginning
and end. Numerical results in Figure 13 on average selection of
the midpoint as more optimal. True random sampling produces
weak payoffs due to shortened maturities. However, even when
endpoints are always chosen to lookback on, the payoff for
equidistant sampling is superior. Although this suggests the
optimal strategy is to equally space the selected periods, this does
not take into account sudden volatility swings from extreme,
singular events.

The intuition for this toy experiment can be explained as
follows. Since both endpoints are fixed, we are only interested in
choosing the point in-between. If the point chosen is less than
or equal to S0 or SN , then the payoff is the same as the case of
choosing one point, which is S0. For the third point Si to be of
value it must satisfy Si > S0 and Si > SN . Suppose n is very
close to the first index 0, then Sn = S0e

ǫ for ǫ that falls in the
upper half of the Gaussian distribution defined in Equation (2).
The difference between S0 and Sn is thus small, and the payoff will
be close to that of the case of just choosing the first point. On the

other hand, suppose n is close to N. Then SN = Sne
ǫ . Since the

payoff is just the difference between the max and final value, the
payoff is diminished.

Simply put, given that the chosen point Sn is greater than
S0 and SN , then choosing too close to the beginning means not
giving enough distance for the maximum to rise, and choosing
too close to the end means diminished payoff due to proximity
with SN . Intuitively, time value is then the explanatory factor that
determines how much marginal payoff a selected period gives,
where the value of a point is proportional to the time value
associated with the distance between it and the closest adjacent
lookback period.

We now demonstrate the above claim mathematically. For
simplicity we fix the first period and denote j = k − 1 as the
number of lookback periods. Then let N denote the total number
of equally spaced periods of the standard lookback with total time
T, and let A be the set of selected periods. Define function γ that
gives the minimum distance

γ (i) = min{d(i, k) ∀k ∈ A, k 6= i} (13)

Then the totals of time value is given as

Ŵ(A) =
∑

i∈A

γ (i) (14)

where the value of Ŵ for equidistant sampling is
j

j+1 . We show

this value is maximal.
Consider the base case of n = 1. If i0 =

N
2 the only element in

A0, then Ŵ(A0) =
N
2 . Compare to this to A1 whose only element

i1 = N
2 + ǫ for ǫ ∈ Z

+, ǫ < N
2 . Since d(0, i1) > N

2 , then

d(i1,N) = N
2 − ǫ < N

2 . Thus Ŵ(A1) = N
2 − ǫ < Ŵ(A0).

By symmetry, any i1 greater or less than N
2 is worth less. Cases

for larger j can be shown in a similar fashion by assuming the
first point greater than N

j . Thus our claim that lookback period

value is proportional to the time value of the next closest period
remains true.

What this conclusion implies in real situation trading is
that it would be inefficient to cluster lookback points around a
presumed volatile event in order to capture a price extrema, even
if volatility spikes seem certain, because the marginal value of
each period chosen beyond the first in the locality diminishes
rapidly due to the decreasing proximity of neighboring points.
Prices are less likely to change a significant amount between two
points in time the closer the two points in time are.

From the framework of analysis, suppose we sub-divide
Geometric Brownian Motion into N subintervals defined by
select indices. Then we are interested in the endpoints [i, i + 1]
as our monitoring dates. If these subintervals are of equal length,
then the probability of the truemaximumbeing captured is equal,
since within the subinterval, the maximum is equally likely to
fall on any point. Thus, the probability of the maximum being
captured by the neighborhood around the endpoints diminish
as subintervals get larger. The maximal neighborhoods are when
endpoints are equally spaced.

This has been explored in the risk theory and queuing theory
literature, which assumes expected maxima calculations on
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FIGURE 9 | The payoffs of the upper and lower bounds for the call and put respectively. The area between demonstrate the customizable area of the instrument

payoff.

FIGURE 10 | Equidistant Monitoring (red) yields higher payoffs than random monitoring with fixed endpoints (green) and true random monitoring (blue). Confidence

intervals at 95% with 10000 simulations are shown.

equidistant sampling. For further references consider papers by
Janssen and Van Leeuwaarden [42, 43] on equidistant sampling
of Brownian Motion and Gaussian Random Walks, and Alfi’s
work on exacting roughness in finite random walks [44]. Under
equidistant sampling, the expected maximum shown using the
Spitzer Identity which gives the joint distribution of partial sums
and their maximal sums for a collection of random variables:

E max
n=0,...,N

B
( n

N

)

=

N
∑

n=1

1

n
Emax{

n

N
} (15)

Now let the process Xn be defined as

Xn =

n
∑

i=1

δxi (16)

After computation [44], the expected maximum value can be
expressed as the following

E(Mk) = lim
s→1

E(sMk )− 1

ln(s)
=

k
∑

i=1

E(|Xi|)

2i
(17)

Adapting these results to Gaussian random walks with unequal
steps may produce approximations for the payoff of lookbacks
and other exotic options.

If the events of the world are analogous to random
occurrences, then nonrandom selection of lookback periods is
akin to event-based trading strategies. Specifically in regards
to the amnesiac lookback option, such a strategy leads to
lower payoffs. This conclusion implies that given general market
efficiency, event-based period selection strategies of lookback
periods should be unprofitable.
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FIGURE 11 | Put option difference between equidistant monitoring and

random monitoring payoffs.

FIGURE 12 | Spread option difference between equidistant monitoring and

random monitoring payoffs.

4. DISCUSSION

These results can be immediately applied to pricing
cryptocurrency. Under the Black-Scholes model, the implied
volatility is usually calculated using the current market price
of the option. However, because this is a new option being
proposed, and since both futures and vanilla options are still new
derivatives on the market, it is not possible at this time to even
price them with rudimentary Monte-Carlo simulations.

Instead, we use the historical volatility as a proxy and use the
3-month treasury bond as the risk-free rate. Tables 4, 5 show
the prices of amnesiac calls and puts based on historical data in
a 3 and 2 month window, respectively. These are then shown

FIGURE 13 | Payoff for k = 2 with floating strike. The payoffs of always

choosing the midpoint is greater than random sampling.

as a ratio of the initial price in Figure 14. Data is taken from
Coinmarketcap.

The last row in Table 5 shows a Bitcoin amnesiac option
priced at the implied volatility of Bitcoin calls in December.
Interestingly, it is less than the minimum volatility of Bitcoin
itself. When the implied volatility is less than historic volatility,
this indicates that market sentiment benefits option buyers. In
other words, the market expects lower volatility in the future,
and as a result, using historical volatility as a proxy is prone to
overpricing.

To verify this is what we expect, we observe a linear correlation
between the price of the amnesiac lookback and its volatility,
yielding a correlation coefficient is r2 = 0.99. An interesting
point is the difference in shape between the call and the put
curves. As seen in Figure 14, the put curves slower than the
call, due to the right vs. left tail of the lognormal distribution,
especially when volatility is high in the case of ripple. This means
that the amnesiac put may be useful if a trader anticipates a down
market without needing to worry when to sell, while enjoying
a greater range of values to choose from due to the slower
convergence to the standard lookback option.

One can conceive of using Algorithm 1 to price an option,
particularly for Ethereum which was developed for Smart
Contracts via the Ethereum Virtual Machine (EVM). The
scripting language it uses is very expressive and Turing complete,
and the EVM acts as a distributed computer that executes
commands based on the resource gas. Smart contracts thus
become a good way to buy contracts that previously only
existed in the OTC market. In this case, a transaction function
transfers Ether to the writers account at the time of purchase.
At the time of maturity, if the option is exercised, the smart
contract executes the necessary transactions as determined by
the option automatically. The buyer sends in a selection of
monitoring periods A, then the input parameter could be the
number of periods which is used to generate a subset of
pseudorandom monitoring periods, or direct simulation of the
selected periods. The latter produces a more accurate price but
is also computationally more expensive and as a result, raises
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TABLE 4 | Amnesiac call and put prices using historical volatility August 31, 2017 to November 30, 2017.

Cryptocurrency S0 vol C1 C7 C92 P1 P7 P92

Bitcoin 10234 0.476 1980.4 2668.5 3193.8 1851.1 2995.1 4010.5

Ethereum 447 0.543 98.25 131.27 155.42 92.18 150.53 203.79

Iota 1.33 0.971 0.499 0.6309 0.7329 0.4851 0.8569 1.215

Litecoin 88.3 0.719 24.931 32.593 37.992 23.778 39.979 54.991

Monero 180.14 0.66 47.359 62.356 73.601 45.327 75.637 103.417

Neo 33 0.976 12.542 15.82 18.097 12.062 21.382 30.372

Ripple 0.251 0.529 0.0534 0.0716 0.0857 0.0505 0.0822 0.1108

TABLE 5 | Amnesiac call and put prices using historical volatility December 01, 2017 to February 01, 2018.

Cryptocurrency S0 vol C1 C7 C62 P1 P7 P62

Bitcoin 9170.54 0.65 2310.4 2971.4 3427.5 2262.9 3534.6 4606.8

Ethereum 1036.79 0.65 258.31 333.17 387.42 255.4 399.21 520.3

Iota 1.91 1.17 0.7452 0.9186 1.0435 0.7607 1.2645 1.7152

Litecoin 142.3 0.89 48.918 61.125 69.393 49.18 79.927 106.707

Monero 240.97 0.733 73.741 93.272 106.413 72.831 116.508 154.464

Neo 126 0.96 42.336 53.004 60.053 42.099 68.197 90.952

Ripple 0.963 1.24 0.4667 0.5577 0.6197 0.4826 0.8426 1.1787

Bitcoin (IV) 9170.54 0.65 1730.6 2272.2 2667.3 1657 2528.9 3244

the transaction fees of the smart contract. The choice becomes
a question of cost vs. profit, and once statistical distributions
on people’s preferences of monitoring periods are collected, the
pricing can be made even more accurate at lower computational
costs.

5. CONCLUSION

Lookback options are immensely useful instruments for the
use of hedging against risks associated with high volatility and
notably effective at canceling investor regret as well. Although
the literature has explored lookback options and many concepts
of the partial lookback, previous work has mainly involved
lookbacks with continuousmonitoring, and equidistant lookback
period selection. We suggest the use and exploration of a new
form of partial lookback, the amnesiac lookback option, that can
look back upon any discretely selected period prior to expiration.

We discuss the practical applications that amnesiac lookback
options may have in the trading of cryptocurrencies such as
Bitcoin and especially Ethereum. The cryptocurrency market
has been defined by its high volatility trading and plethora of
exogenous shocks that regularly disrupt the market. In such a
high risk and speculative market, it is imperative that investors
have some way of mitigating their risks and exposures. In
this realm, lookback options are a simple and effective way to
do so, while amnesiac lookback options allow an investor to
fully customize the amount of risk he is willing to take on
or forego by adjusting the number of lookback periods, and
potentially where to place them, as shown in Figure 1. This is
particularly true for put options under high volatility. Past studies
have also found long memory in Bitcoin returns and return

volatility, which path-dependent options such as the amnesiac
lookback are able to correct by closing arbitrage opportunities,
if traded on rationally. This opportunity is greatly enhanced
by Smart Contracts, which decentralizes and automates highly
customizable derivatives like path-dependent options.

Using Monte Carlo simulations under Black-Scholes
assumptions, we find the Hill Function to be a suitable model
for pricing the payoffs of the amnesiac lookback option. We also
determine the bounds of the amnesiac lookback consistent with
prior results on partial lookbacks, that is the standard lookback
from above, and the corresponding vanilla European option (call
or put) from below.

Our work additionally discusses the merits of equal spacing
vs. random sampling of lookback periods. In this regard, we find
that equally spaced lookback periods yield the greatest payoffs
under Black-Scholes assumptions. Since the formula for modified
trees and lattice methods produce analytic results for equidistant
sampling, and equidistant sampling is a strict upper bound for
random sampling, we can conclude that if days are not chosen
equally then the instrument will be prone to being overpriced.
More importantly, our results are more realistic and related to
the designated function of these options in actual markets than
some previous works.

The fact that how periods are selected affect the pricing suggest
multiple paths of further inquiry. Since this is phenomenon
under Black-Scholes assumptions, different models such as
introducing stochastic volatility and Lévy processes may produce
different results. Tying this to real commodities, statistical
analysis of Cryptocurrency data can benchmark the efficiency
of such an option. Simulating extreme, volatile events within
the context of the Gaussian random walk would bridge the
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FIGURE 14 | The prices of the calls and puts for a given Cryptocurrency priced with risk-free rate 0.0125. The pricing with Implied Volatility is lower than any coin

using historical volatility.

empirical and axiomatic formulations, and is ultimately the
purpose of having a choice inmonitoring periods. Understanding
period selection strategies will yield new perspectives of using
path-dependent options for hedging risk, and expand trading
strategies with the growth of novel and volatile blockchain
commodities.

AUTHOR CONTRIBUTIONS

H-CC wrote the code for the numerical simulation, data
processing, and the mathematical finance literature review.
KL contributed economic analyses, interpretation, literature
review and extension to cryptocurrencies. Both contributed to
the conception and design of the option’s amnesiac feature,
interpretation of results, and general authorship the paper.

FUNDING

Funding for this research was provided by the Jack
Byrne Scholar Fund at the Department of Mathematics,
Dartmouth College. Open access article fees were provided
by the Dartmouth Open-Access Publication Equity
Fund.

ACKNOWLEDGMENTS

We’d like to thank Seema Nanda for proof-reading and overall
suggestions, Feng Fu, Sergi Elizalde and Peter Winkler at
the Department of Mathematics, Dartmouth College for their
mathematical suggestions, Jennifer Kuo for statistical consulting
and Jonathan Meng for web scraping consultation.

REFERENCES

1. Shreve SE. Stochastic Calculus for Finance I: The Binomial AssetModel. Vol. 11.

New York, NY: Springer Science & Business Media (2004).

2. Goldman MB, Sosin HB, Gatto MA. Path dependent options:“Buy at the low,

sell at the high”. J Finan. (1979) 34:1111–27.

3. Goldman MB, Sosin HB, Shepp LA. On contingent claims that insure

ex-post optimal stock market timing. J Finan. (1979) 34:401–13.

doi: 10.1111/j.1540-6261.1979.tb02102.x

4. Schwert GW. Anomalies and market efficiency. Handb Econ Finan. (2003)

1:939–74. doi: 10.1016/S1574-0102(03)01024-0

5. Kat HM, Heynen RC. Selective memory. Risk (1994) 7:73–6.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 May 2018 | Volume 4 | Article 1059

https://doi.org/10.1111/j.1540-6261.1979.tb02102.x
https://doi.org/10.1016/S1574-0102(03)01024-0
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Chang and Li The Amnesiac Lookback Option

6. Conze A, Viswanathan. Path dependent options: the case of lookback

options. J Finan. (1991) 46:1893–907. doi: 10.1111/j.1540-6261.1991.

tb04648.x

7. Buchen P, Konstandatos O. A new method of pricing lookback options.Math

Finan. (2005) 15:245–59. doi: 10.1111/j.0960-1627.2005.00219.x

8. Carrick J. Bitcoin as a complement to emerging market

currencies. Emerg Markets Finan Trade (2016) 52:2321–34.

doi: 10.1080/1540496X.2016.1193002

9. The Guardian. Don’t Dismiss Bankers’ Predictions of a Bitcoin Bubble

– They Should Know. Guardian News and Media (2017). Available

online at: https://www.theguardian.com/business/2017/sep/17/jamie-dimon-

bitcoin-bubble-he-would-know-banking

10. Buy Bitcoin Worldwide. The Bitcoin Volatility Index. Available online at:

https://www.buybitcoinworldwide.com/volatility-index/

11. Bariviera AF, Basgall MJ, Hasperué W, Naiouf M. Some stylized facts of the

Bitcoin market. Phys A (2017) 484:82–90. doi: 10.1016/j.physa.2017.04.159

12. Urquhart A. Price clustering in Bitcoin. Econ Lett. (2017) 159:145–8.

doi: 10.1016/j.econlet.2017.07.035

13. Times TE. Bitcoins Lose Lustre in the Face of Flak (2017). Available online

at: http://economictimes.indiatimes.com/wealth/personal-finance-news/

bitcoins-lose-lustre-in-the-face-of-flak/articleshow/60709423.cms

14. Bouri E, Gupta R, Tiwari AK, Roubaud D. Does Bitcoin hedge

global uncertainty? Evidence from wavelet-based quantile-in-quantile

regressions. Finan Res Lett. (2017) 23:87–95. doi: 10.1016/j.frl.2017.

02.009

15. Bouri E, Molnár P, Azzi G, Roubaud D, Hagfors LI. On the hedge and safe

haven properties of Bitcoin: is it really more than a diversifier? Finan Res Lett.

(2017) 20:192–8. doi: 10.1016/j.frl.2016.09.025

16. Russo C. Bitcoin Options Will Be Available This Fall. Bloomberg (2017).

Available online at: https://www.bloomberg.com/news/articles/2017-07-24/

bitcoin-options-to-become-available-in-fall-after-cftc-approval

17. U S Commodity Futures Trading Commision. CFTC Statement on Self-

Certification of Bitcoin Products by CME, CFE and Cantor Exchange. CFTC

(2017). Available online at: https://www.cftc.gov/PressRoom/PressReleases/

pr7654-17

18. Roberts D. Why Nasdaq, CME, CBOE All Want in on Bitcoin Futures.

Yahoo! (2017). Available online at: https://finance.yahoo.com/news/nasdaq-

cme-cboe-want-bitcoin-futures-183256191.html

19. Szabo N. Smart contracts: building blocks for digital markets. In: EXTROPY:

The Journal of Transhumanist Thought. Marina Del Rey, CA (1996).

20. Szabo N. The idea of smart contracts. In: Nick Szabo’s Papers and Concise

Tutorials (1997). Available online at: http://www.fon.hum.uva.nl/rob/

Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/

szabo.best.vwh.net/idea.html

21. Buterin V. A next-generation smart contract and decentralized application

platform. In:White Paper (2014). Available online at: https://www.weusecoins.

com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_

contract_and_decentralized_application_platform-vitalik-buterin.pdf

22. Wright A, De Filippi P. Decentralized Blockchain Technology and

the Rise of Lex Cryptographia (March 10, 2015). doi: 10.2139/ssrn.

2580664

23. Omohundro S. Cryptocurrencies, smart contracts, and artificial intelligence.

AI Matt. (2014) 1:19–21. doi: 10.1145/2685328.2685334

24. De N. Smart Contracts Now Recognized Under Tennessee Law (2018).

Available online at: https://www.coindesk.com/blockchain-bill-becomes-

law-tennessee/

25. Peters G, Panayi E, Chapelle A. Trends in cryptocurrencies and blockchain

technologies: a monetary theory and regulation perspective. J. Financ.

Perspect. (2015) 3. Available online at: https://ssrn.com/abstract=3084011

26. Musiela M, Rutkowski M. Martingale Methods in Financial Modelling,

volume 36 of Applications of Mathematics: Stochastic Modelling and Applied

Probability. New York, NY: Springer (1997).

27. Kat HM, Heynen RC. Lookback options with discrete and partial monitoring

of the underlying price. Appl Math Finan. (1995) 2:273–84. Available online

at: http://www.tandfonline.com/doi/abs/10.1080/13504869500000014

28. Babbs S. Binomial valuation of lookback options. J Econ Dyn Cont. (2000)

24:1499–525. doi: 10.1016/S0165-1889(99)00085-8

29. Cheuk TH, Vorst TC. Currency lookback options and observation

frequency: a binomial approach. J Int Money Finan. (1997) 16:173–87.

doi: 10.1016/S0261-5606(96)00052-6

30. Leung KS. An analytic pricing formula for lookback options under stochastic

volatility. Appl Math Lett. (2013) 26:145–9. doi: 10.1016/j.aml.2012.07.008

31. Dia EHA, Lamberton D. Connecting discrete and continuous lookback or

hindsight options in exponential Lévy models. Adv Appl Probabil. (2011)

43:1136–65. doi: 10.1239/aap/1324045702

32. Cox JC, Ross SA, RubinsteinM. Option pricing: a simplified approach. J Finan

Econ. (1979) 7:229–63. doi: 10.1016/0304-405X(79)90015-1

33. Hull JC, White AD. Efficient procedures for valuing European

and American path-dependent options. J Derivat. (1993) 1:21–31.

doi: 10.3905/jod.1993.407869

34. Aitsahlia F, Le Lai T. Random walk duality and the valuation

of discrete lookback options. Appl Math Finan. (1998) 5:227–40.

doi: 10.1080/135048698334655

35. Petrella G, Kou S. Numerical pricing of discrete barrier and lookback

options via Laplace transforms. J Comput Finan. (2004) 8:1–38.

doi: 10.21314/JCF.2004.114

36. Broadie M, Glasserman P, Kou SG. Connecting discrete and

continuous path-dependent options. Finan Stochast. (1999) 3:55–82.

doi: 10.1007/s007800050052

37. Fusai G, Germano G, Marazzina D. Spitzer identity, Wiener-Hopf

factorization and pricing of discretely monitored exotic options. Eur J Operat

Res. (2016) 251:124–34. doi: 10.1016/j.ejor.2015.11.027

38. Boyarchenko S, Levendorski S. Efficient Laplace inversion, Wiener-Hopf

factorization and pricing lookbacks. Int J Theor Appl Finan. (2013)

16:1350011. doi: 10.1142/S0219024913500118

39. Hieber P. Pricing exotic options in a regime switching economy:

a Fourier transform method. Rev Derivat Res. (2017) 1–22.

doi: 10.1007/s11147-017-9139-1

40. Feng L, Linetsky V. Computing exponential moments of the discrete

maximum of a Lévy process and lookback options. Finan Stochast. (2009)

13:501–29. doi: 10.1007/s00780-009-0096-x

41. Dai TS, Liu LM, Lyuu YD. Linear-time option pricing algorithms

by combinatorics. Comput Math Appl. (2008) 55:2142–57.

doi: 10.1016/j.camwa.2007.08.046

42. Janssen AJEM, Van Leeuwaarden J. Cumulants of the maximum of the

Gaussian random walk. Stochast Process Their Appl. (2007) 117:1928–59.

doi: 10.1016/j.spa.2007.03.006

43. Janssen AJEM, Van Leeuwaarden JSH. On Lerch’s transcendent and

the Gaussian random walk. Ann Appl Probabil. (2007) 17:421–39.

doi: 10.1214/105051606000000781

44. Alfi V, Coccetti F, Marotta M, Petri A, Pietronero L. Exact results for

the roughness of a finite size random walk. Phys A (2006) 370:127–31.

doi: 10.1016/j.physa.2006.04.020

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Chang and Li. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and the

copyright owner are credited and that the original publication in this journal is cited,

in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 May 2018 | Volume 4 | Article 1060

https://doi.org/10.1111/j.1540-6261.1991.tb04648.x
https://doi.org/10.1111/j.0960-1627.2005.00219.x
https://doi.org/10.1080/1540496X.2016.1193002
https://www.theguardian.com/business/2017/sep/17/jamie-dimon-bitcoin-bubble-he-would-know-banking
https://www.theguardian.com/business/2017/sep/17/jamie-dimon-bitcoin-bubble-he-would-know-banking
https://www.buybitcoinworldwide.com/volatility-index/
https://doi.org/10.1016/j.physa.2017.04.159
https://doi.org/10.1016/j.econlet.2017.07.035
http://economictimes.indiatimes.com/wealth/personal-finance-news/bitcoins-lose-lustre-in-the-face-of-flak/articleshow/60709423.cms
http://economictimes.indiatimes.com/wealth/personal-finance-news/bitcoins-lose-lustre-in-the-face-of-flak/articleshow/60709423.cms
https://doi.org/10.1016/j.frl.2017.02.009
https://doi.org/10.1016/j.frl.2016.09.025
https://www.bloomberg.com/news/articles/2017-07-24/bitcoin-options-to-become-available-in-fall-after-cftc-approval
https://www.bloomberg.com/news/articles/2017-07-24/bitcoin-options-to-become-available-in-fall-after-cftc-approval
https://www.cftc.gov/PressRoom/PressReleases/pr7654-17
https://www.cftc.gov/PressRoom/PressReleases/pr7654-17
https://finance.yahoo.com/news/nasdaq-cme-cboe-want-bitcoin-futures-183256191.html
https://finance.yahoo.com/news/nasdaq-cme-cboe-want-bitcoin-futures-183256191.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://doi.org/10.2139/ssrn.2580664
https://doi.org/10.1145/2685328.2685334
https://www.coindesk.com/blockchain-bill-becomes-law-tennessee/
https://www.coindesk.com/blockchain-bill-becomes-law-tennessee/
https://ssrn.com/abstract=3084011
http://www.tandfonline.com/doi/abs/10.1080/13504869500000014
https://doi.org/10.1016/S0165-1889(99)00085-8
https://doi.org/10.1016/S0261-5606(96)00052-6
https://doi.org/10.1016/j.aml.2012.07.008
https://doi.org/10.1239/aap/1324045702
https://doi.org/10.1016/0304-405X(79)90015-1
https://doi.org/10.3905/jod.1993.407869
https://doi.org/10.1080/135048698334655
https://doi.org/10.21314/JCF.2004.114
https://doi.org/10.1007/s007800050052
https://doi.org/10.1016/j.ejor.2015.11.027
https://doi.org/10.1142/S0219024913500118
https://doi.org/10.1007/s11147-017-9139-1
https://doi.org/10.1007/s00780-009-0096-x
https://doi.org/10.1016/j.camwa.2007.08.046
https://doi.org/10.1016/j.spa.2007.03.006
https://doi.org/10.1214/105051606000000781
https://doi.org/10.1016/j.physa.2006.04.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


REVIEW
published: 28 January 2019

doi: 10.3389/fams.2018.00066

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 January 2019 | Volume 4 | Article 66

Edited by:

Jian-Ao Lian,

Texas A&M University System,

United States

Reviewed by:

Kazuharu Bamba,

Fukushima University, Japan

Yonghui Wang,

Prairie View A&M University,

United States

*Correspondence:

Gerardo J. Escalera Santos

gescalera.santos@gmail.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 28 March 2018

Accepted: 21 December 2018

Published: 28 January 2019

Citation:

Escalera Santos GJ,

Aguirre-López MA, Díaz-Hernández O,

Hueyotl-Zahuantitla F,

Morales-Castillo J and Almaguer F-J

(2019) On the Aerodynamic Forces on

a Baseball, With Applications.

Front. Appl. Math. Stat. 4:66.

doi: 10.3389/fams.2018.00066

On the Aerodynamic Forces on a
Baseball, With Applications
Gerardo J. Escalera Santos 1*, Mario A. Aguirre-López 2, Orlando Díaz-Hernández 1,

Filiberto Hueyotl-Zahuantitla 1,3, Javier Morales-Castillo 4 and F-Javier Almaguer 2

1 Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico, 2 Facultad de

Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 3Cátedra

CONACyT, Mexico City, Mexico, 4 Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León,

San Nicolás de los Garza, Mexico

The aerodynamic forces acting on a baseball are those produced by the contact between

the ball and the air, and are defined by the initial conditions of the pitch. It is well known

that such forces determine the changes from the typical parabolic ballistic trajectory,

either in the direction of the movement of the ball (drag force), or producing a lift or lateral

deflection (Magnus and seam forces). The drag and Magnus effects have been widely

studied and there are many references about their nature and the trajectory they produce,

which is predictable. This has led to most baseball research being related with spinning

pitches. On the other hand, there is the unpredictable motion of a knuckleball, whose

erratic trajectory accompanied by a poor understanding of the forces produced by the

asymmetry of the seams had markedly limited research about it until the beginning of

this century. However, nowadays interest in the knuckleball is resurfacing. Data collected

by wind tunnel experiments and real pitches have motivated researchers to analyze

the phenomenon and build models that try to predict the motion of the ball. In this

work we aim to provide the reader some basic ideas on aerodynamic forces through

a combination of experimental results, phenomenological and dimensional analysis,

with special focus on new advances on the seam effects of a knuckleball pitch. In

addition, we discuss possible ways to extend the existing models about the seam forces.

Finally, we summarize from the literature some methods regarding the reproduction

and reconstruction of baseball trajectories from aerodynamic forces and discuss their

application as well.

Keywords: baseball, knuckleball, seams, drag force, lift force, Magnus force, ball games

1. INTRODUCTION

Aerodynamics and the flight of baseballs are very interesting phenomena from the point of view of
sports, engineering and science. The different types of pitches are denoted by the different initial
configurations that the pitcher gives to the ball by means of his hand. Each initial combination
of velocity and spin produces a way of interaction between the air and the ball which results in
curveballs, fastballs, sliders, and knuckleballs, among others. Moreover, such interaction can be
affected by other factors, such as when the ball is dented or when it has liquid on its surface. This
can cause an erratic movement in the expected trajectory of the ball, and be the difference between
a strike or a home run.
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For engineering, the evolution of a baseball during its flight
means an open door to many possible applications. In turn, for
science it means the study of the process in which a subsonic
flow interacts with a solid rough sphere, having the characteristic
that for zero or lower spin values of the spin the trajectory
is very erratic and becomes unpredictable, whereas for higher
values the trajectories are smooth and predictable. In this way,
the trajectories of a baseball are commonly classified by spinning
pitches and non-spinning pitches.

The predictability of both types of trajectories seems
contradictory at first glance, since one would expect the spinning
balls to have a more complex movement because more forces act
on them. This is not the case, however, and the main cause of
this is the role of the seams of the baseball. When the interaction
between the seams and the air is insignificant, more predictable
and stable trajectories occur, and vice-versa. This last statement
can be better understood by looking at the Reynolds’ transport
theorem, which establishes [1–3]

∂

∂t

∫

V

ρVdV +

∫

S

ρV (V · n) dA =

∫

S

T · ndS +

∫

V

ρbdV (1)

for a fluid-containing volume of space with volume V and surface
S , where V and ρ denote the velocity and density of the fluid,
respectively, and n is a unit normal vector pointing outside S .
In turn, the right-hand side denotes the sum of all forces acting
on the volume of space, which can be classified according to
the intensive properties as body (first term) and surface (second
term) forces, with b and T being the body forces vector per
unit mass and the stress tensor, respectively. Among body force
gravity, Coriolis and centrifugal forces can be found, whereas
the forces generated at the ball-air boundary include pressure,
normal and shear stress, etc.

In spite of gravity, body forces are weak and are commonly
neglected in calculations of ball sports as reported in calculations
by Robinson and Robinson [4] and Aguirre-López et al. [5]. On
the other hand, the surface forces can be classified according
to the direction and nature of their origin: drag, Magnus, lift,
side and other forces [6–8]. Magnus force can be defined as
that caused by the spin of the ball, therefore it is present only
in spinning pitches. In turn, we define lift and side forces as
those caused only by the motion of the baseball through the air
without rotation (non-spinning pitches); then it depends on the
orientation of the ball because of the asymmetry of the seams.
A proposed curve of how lift and Magnus forces behave when
varying the magnitude of the spin is shown in Figure 1. The lift
and side forces produced by the seams decrease with the increase
of the angular velocity (which is expected according to Watts
and Sawyer [11], Mehta [12], and Cross [9]) while by definition,
the Magnus force approaches zero when the angular velocity
vanishes [8]. In this way, the non-spinning window is related to
erratic and unstable trajectories whereas the spinning window is
related to predictable and stable trajectories. Finally, there is a
window between both cases, in which the superposition of forces
is more significant and the ball can continue with the erratic
movements of non-spinning pitches or can draw a smooth, slow

FIGURE 1 | Scheme of the maximum value of lift, side and Magnus forces

when varying the angular velocity ω for a given speed V. The y−axis is

scaled according to the maximum drag force for the considered velocity. The

curves for lift, side and Magnus forces are drawn according to experimental

data [8–10]. The missing curve for lift and side forces between spinning and

non-spinning windows is because there are no data reported in such range.

and predictable trajectory. From our understanding, this is the
main reason why pitchers do not throw balls within this range.

The curves in Figure 1 also show the evolution of the study
of the types of pitches at this time. Until the beginning of
this century, spinning pitches covered most baseball research;
therefore, books and compilations of works related to the subject
avoided the phenomena present in non-spinning pitches [7].
Nowadays, the interest in non-spinning pitches is resurfacing
and there is more information available in books of the present
decade, like Cross [6]. However, the new developments and
methods for studying non-spinning and intermediate windows
are very disconnected, so a new compilation of work on the
matter is necessary.

The purpose of this work is to introduce the reader to the
diverse existing methodologies for studying the aerodynamic
forces in the flight of a baseball, and to discuss the possible ways
to complement such studies for future research and applications.
All this is based on a literature review of the subject. Each topic
begins with a brief derivation of the mathematical model of the
respective force; then the model is compared with the results
obtained from experimental measures, and a discussion of this
is achieved. We have special interest in discussing how the seams
affect the aerodynamics of the ball; therefore, the lift force and
non-spinning pitches will get more attention.

This review is structured according to the classification of
pitches mentioned above. In this way, we begin by presenting the
most common mathematical model to describe the movement
of a baseball with a concise review of the spinning pitches in
section 2. Next, section 3 deals fully with the advances on non-
spinning pitches and presents some comments on the boundary
layer and the wake of a baseball in motion. Finally, we present
a compilation of the existing uses regarding the aerodynamics
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of baseballs, and outline the research trends of the subject in
section 4.

2. SPINNING PITCHES

In accordance with Figure 1, we define a spinning pitch as any
throw, excepting knuckleballs, that has an initial velocity in the
range V = [(Vx,Vy,Vz)] ∈ [(−3, 30,−3), (3, 50, 3)] m/s and an
initial spin of |ω| = [100, 310] rad/s, which are the values at
which baseballs are thrown by professional pitchers when fixing
the y−axis in mound-home direction and z−axis perpendicular
to the floor, according to the right-hand rule [13]. In this way,
some examples of spinning pitches are the curveball, slider,
change-up, and the variants of the fastball. The hallmark of this
type of pitches is the Magnus force. We begin by describing the
drag force in section 2.1, which is present in all types of pitches,
with the aim of establishing some basic concepts to introduce the
Magnus force.

2.1. The Drag Force
Drag or friction is the force that resists the movement of an
arbitrary object. The classical way to derive drag force is by
considering that the study of a ball moving through a static
medium is equivalent to the one of a static ball with fluid in
motion; therefore, V corresponds to the velocity of the fluid,
and thus a mathematical formula for the drag of the ball can be
obtained from the momentum conservation equation [2, 14]

∂V

∂t
+ (V · ∇)V = −∇

(

p

ρ

)

+ g , p ≡ pressure, (2)

which, in turn, is computed by considering that the air is a
Newtonian and incompressible fluid in the Reynold’s transport
theorem (1); see Ferziger 1996 [2] for the computing of Equation
(2). The conservation of mass equation also reduces to

∇ · V = 0. (3)

Then, assuming a steady flow the Bernoulli’s equation results

1

2
V2 +

p

ρ
≡ constant, (4)

where we used 1
2∇V2 = V × (∇ × V) + (V · ∇)V avoiding the

gravitational term [14]. From Bernoulli’s Equation (4) the reader
can observe that the greatest pressure occurs at points where the
velocity equals zero. These points are commonly found on the
surface of solid bodies and are usually called stagnation points.
For the case of a sphere ball, one stagnation point is present on
the front side. The pressure at this point is

pmax = p0 +
1

2
ρV2 (5)

where p0 is the pressure of the fluid at infinity [14, 15]. In this
way, the second term is related to the force opposing the motion
of the ball, the drag force, and thus drag can be calculated by
the difference of pressure between the front and back sides of the

ball [2]. However, there are other phenomena affecting the drag.
At the corresponding Reynolds number (Re) of a typical throw
(104 − 105) the flow is not steady but turbulent [8, 10, 13, 16, 17];
then the point of separation of the boundary layer moves away
from the front of the ball when the ball’s velocity increases,
making the wake smaller and avoiding a momentum in the
reverse direction on the rear of the ball [18, 19].

The approximation of the drag force is done by introducing
the sectional transverse area A and a dimensionless coefficient Cd

into the second term of the right-hand side in the Equation (5),
such that

Fd = −
1

2
ρCdAVV. (6)

where Cd = Cd(V), and then Cd acts in (6) as a fraction of the
area A interacting with the air, or in other words, a measure of
how aerodynamic the ball is [18, 20, 21].

As a consequence, the study of the drag coefficient (Cd)
is so important that it becomes the most effective formula to
approximate the drag; therefore, the drag force (Fd) is commonly
expressed in terms of Cd. There are two ways to explain the
behavior of Cd. On the one hand, there is the drag crisis
phenomenon for smooth spheres mentioned in Landau and
Lifshitz [14], which indicates that a crisis in the value of Cd

can occur at Re∼ 105 (at velocities of 30–40 m/s for a typical
baseball). Data shown in Frohlich [22] and Cross [23] fit to such
model. On the other hand, from the famous curve of Adair [7] to
the recent data obtained by Naito [24], most of the experimental
measures suggest a model without drag crisis [6, 17, 25, 26]. This
predominance maintains for other sphere balls [23, 27–29] and
gives rise to most of the used models to compute the drag force
without including the drag crisis phenomenon. There are two
models of special interest: the model by Cross [6], from which
the drag coefficient can be obtained if the instantaneous ball’s
velocity at a fixed time is known, and the curve of Adair [7],
which approaches to

Cd(V) = 0.29+ 0.22
[

1+ e(V−32.37)/5.2
]−1

, (7)

according to Aguirre-López etal. [5]; see Figure 2.
Finally, it is important to mention that the drag has an

oscillating dependence on the orientation of the seams.
However, for spinning pitches such oscillations average to
zero and so they are not considered here. The dependence
of Cd on the seams’ orientation will be discussed in
section 3.1.

2.2. The Magnus Force
Magnus force is the essential characteristic of a spinning pitch, as
we mentioned before. The Magnus effect is observed as smooth
deflections in the trajectory of a ball. All of us have a clear
empirical knowledge of the Magnus effect: large deflections are
reached by increasing the spin frequency of the ball. Although
this statement is true, the direction of the deflection varies
for different configurations of linear velocity V, the angular
velocity ω and the ball properties. In fact, for any viewer, the
expected direction of the ball’s deflection goes on (ω × V),
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FIGURE 2 | Model of drag and Magnus coefficients. Adair’s drag model [7] and

the approximation of Aguirre-López et al. [5] showing the sigmoidal decreasing

of drag when increasing the velocity of the ball. In turn, the Magnus model (10)

presented in Robinson [8] shows that the Magnus coefficient increases when

the angular velocity increases. Modified from Aguirre-López et al. [5].

as illustrated in Figure 3. However, a reverse direction of the
Magnus force has been reported for smooth balls like those
used in soccer [27], and also in smooth spheres simulating
baseballs in experiments by Briggs [30], Cross and Lindsey [31].
This phenomenon is commonly called the “anti-Magnus effect”
and it is possible only for a range of Re and spin when one
side of the smooth ball remains in a laminar flow while the
opposite side becomes turbulent. Then, a low pressure region is
originated in the turbulent side because it is generally farther to
the ball surface than the laminar layer. Thus, the ball moves to
the region with lower pressure by conservation of momentum,
as illustrated in Figure 3. For a detailed explanation of the
causes of the reverse in the direction of Magnus force, the
reader is referred to Cross and Lindsey [31]. For a general
understanding of the phenomenon, the reverse-Magnus occurs
at Re∼ 105 combined with a low speed due to Magnus force
Rω (where R is the radius of the ball) compared with the ball’s
velocity V , such that the spin factor S = Rω/V is in the
range 0–0.6.

However, the baseball is not smooth and there are no reported
studies of an anti-Magnus effect in baseballs. This is because
the seams of the ball give to it some roughness that accelerates
the separation of the boundary layer in both the up and down
sides of the ball. Indeed, the Magnus effect in baseballs’ flight
arises because one side of the ball offers larger friction than its
opposite side, which means that the speed of the main flow of air
is larger on the former and as a consequence the lower-pressure
region locates at the opposite side, according to the anti-Magnus
phenomenon [6–8]; see the schemes in Figure 3. Therefore, the
nature of the Magnus force is similar to that of the drag force,
due to a difference of pressure. For this reason, Magnus force is

commonly written in a similar way as drag force (Equation 6),
namely,

FM =
1

2
ρACMV2, (8)

for an arbitrary direction of motion, with CM being the Magnus
coefficient. Moreover, in the same system of coordinates to drag
force, Equation (8) becomes

FM =
1

2
ρACM sinφV2n̂, (9)

where the unit vector n̂ = ω×V
|ω×V| gives the direction of the

resulting linear momentum, φ is the angle between ω and V

so that (V sinφ) is the component of V that contributes to
the force [6, 8, 10]. It is important to remark that equation
(9) has been widely used to reproduce Magnus force of sport
balls and other areas of aerodynamics [32–34], and it has been
proved experimentally (for sport balls) only for φ = 0, 90 and
180◦ [8, 10].

The Magnus coefficient CM is a function of ω and V for
arbitrary magnitudes of such variables because Equation
(9) depends on both the instantaneous and spin velocities
[6, 10, 31]. However, Nathan [17] has reported that CM

behaves independently of V for ω and V values in the
range at which spinning pitches are thrown. Moreover,
the value of CM in such range is similar to the Magnus
coefficient for other sport balls, and there are some models
to calculate its value [8, 30, 35]. Figure 3 shows the
model (10):

CM(ω) = 3.19× 10−1
[

1− e−2.48×10−3ω
]

, (10)

which has been used to compute the Magnus force in numerical
simulations [5, 8].

2.3. Discussion and Potential Research
Trends
In the following items, we summarize and discuss the highlights
of the spinning pitches, and also sketch out the potential research
trends of the subject:

• Both drag and Magnus forces are commonly expressed in
terms of their coefficients, which have information about the
object taken from experiments.

• The drag coefficient (7) decreases in a sigmoidal way when
the ball’s velocity increases. It maintains a value of around
Cd = 0.5 up to velocities of 20 m/s, then decreases to
Cd = 0.3 in the range of 20–50 m/s (which corresponds
to the range of spinning pitches), and maintains that value
for larger velocities. In this way, the drag coefficient must
be considered as a function of the velocity when computing
baseball trajectories.

• There are different ways to measure drag force or estimate
the drag coefficient that have not been reported, for instance,
by Computational Fluid Dynamics (CFD) or by analyzing
the von Karman vortex trails generated by the ball [2, 15].
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FIGURE 3 | Scheme of the possible ways of causing a Magnus force. (A) The common Magnus force. Modified from Aguirre-López et al. [5]. (B) The reverse Magnus

force.

Both of them could be promising areas of opportunity to
characterize the drag, and the aerodynamics of a baseball, in
a more comprehensive way.

• Model (9) is the most common formula to approximate the
Magnus force. It considers the angular velocity ω as a constant
in time (despite torquing forces). This is acceptable since such
forces are very small, as mentioned in Ward-Alaways [10].

• The exponential behavior of the Magnus coefficient (10)
denotes the effect of ω in the Magnus force. In addition, the
model does not depend on the velocity V inside the range
of initial conditions for spinning pitches, which simplify the
estimation of the Magnus effect.

• The effects of drag and Magnus forces on a spinning pitch
can be decoupled and studied separately according to Aguirre-
López et al. [5], which could have a lot of applications, such
prediction, reconstruction and clustering of trajectories; see
section 4.

• Other aspects exist that affect a thrown baseball, such as
wind, humidity, etc. However, the study of these effects
is more complex and there are few investigations about
them [6, 8].

3. NON-SPINNING PITCHES

Non-spinning pitches consist of a specific type of throw:
the knuckleball. It contains all combinations for the linear
and angular velocities in the ranges V ∈ [20, 40] m/s and
ω ∈ [0, 50] rad/s, respectively [36]. Knuckleball pitches are the
most interesting throws for aerodynamics because the ball can
no longer be considered a sphere since the effect of the seams
is significant. However, this is more complex to understand and,
therefore, knuckleball studies are fewer than those for spinning
pitches.

In this section we discuss the advances in drag force for
non-spinning pitches (section 3.1). Then, the description of the
models for lift and side forces is presented in section 3.2. An
introduction to the modeling of the seams and the boundary
layer observations is shown in section 3.3. A compilation of the
knuckleball’s research and trends is discussed in section 3.4.

3.1. The Drag Force in Non-spinning
Pitches
Drag force is different in knuckleballs than in spinning pitches.
The drag is approximately constant for a specific velocity in a
spinning ball, however, in a knuckleball it is not. As mentioned in
section 2.1, the Re of a baseball pitch corresponds to an unsteady
flow and then an experimental coefficient must be introduced
in the model for the drag force (6). However, when the ball
does not spin some vortices are shed from the ball and then
the drag oscillates in time. Ferziger and Perić [2] discusses such
an effect for a smooth cylinder simulated by CFD. The drag on
the cylinder oscillates periodically with a frequency according to
the appearance of the vortices such that it has one maximum
and one minimum during the formation and shedding of each
vortex. Such vortex shedding has also been reported for baseballs
in Texier et al. [37], whose effect in lift and side forces will be
discussed in section 3.2.

In addition to the variation in time, the drag changes when
varying the orientation of the ball. Investigations carried out in
the present decade show structured oscillations of drag coefficient
despite the turbulence present in the phenomenon. For example,
the experiment by Higuchi and Kiura [38] with different
configurations of the ball, namely, the four-seam (4S), the two-
seam (2S) and an arbitrary orientation of the ball1. They found
the largest variation in oscillations for the 4S orientation, which
is about twice as large as the case of the 2S orientation and around
four times that of the arbitrary orientation. The shape of the
oscillations in the 4S orientation is maintained for ball velocities
in the range of 16–30 m/s.

Similar average variations for Cd have been reported by
Alam et al. [25] in studies of the drag force for Major League
Baseball (MLB) and National Collegiate Athletic Association
(NCAA) baseballs and softballs. They reported lower variations
in Cd values for NCAA than for MLB baseballs at different ball
orientations, which suggests a dependence on the height of the
seams (1.5 mm for NCAA and 1mm for MLB balls). At first

1A detailed explanation of the typical baseball orientations can be found in Borg

and Morrisey [36].
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glance, the idea seems to be solid because a larger “extra-obstacle”
should cause a corresponding “extra-drag” in the fluid. Even
more, this is supported by the results of Kensrud et al. [39], who
analyzes hit balls with different heights of seams and found that
balls with smaller seams reach larger distances, which indicates a
lower drag.

Finally, it is important to remark that commonly Cd decreases
with increasingV for baseballs, softballs, cricket balls and smooth
spheres. In the case of baseballs, the value of Cd decreases from
∼ 0.6 to∼ 0.4 dimensionless units [25, 32].

3.2. The Lift and Side Forces
The main reason for which knuckleball pitches are much more
unpredictable than spinning pitches is because of lift and side
forces2. Similar to the drag and Magnus forces, lift force is
produced by an imbalance in pressure and then it is proportional
in magnitude to the square of the ball velocity [11, 40], so that

FL =
1

2
ρCLAV

2. (11)

However, the behavior of the lift coefficient (CL) is not like Cd or
CM but it varies with the angle of attack θ of the ball. Figure 4
shows how unpredictable a knuckleball can be, even for the most
symmetric ball orientations (4S and 2S). Results of Borg and
Morrisey [36] show four cycles in CL for the 4S orientation,
each one with a period of 90◦, with a semi-sinusoidal behavior
and ringlets at the end of a cycle. This means that a variation
of ∼ 22.5◦ in smooth-angle zones may or may not produce a
maximum/minimum lift; instead, a variation of only ∼ 10◦ in
the zone of ringlets can produce any type of motion. In addition
to such complexity for a strictly non-spinning ball, in practice it
is difficult for a ball to travel without rotating since a little spin
is induced by contact from the air with the seams [12, 37]. As a
consequence, the ball’s trajectory could have an apparent erratic
motion whereas the map of balls passing through the home plate
in a real pitch is seen as random when varying θ [40]. All of
this makes it difficult to compute a model that may accurately
reproduce the trajectory of a knuckleball with any orientation.

It is important to mention that there is controversy in the
causes that originate the lift force. It is evident that the asymmetry
of the seams plays a fundamental role in causing such force.
According to Watts and Sawyer [11] and Mehta [12], there are
two possible ways to produce a lift force on a baseball: for many
years, the classical hypothesis stated that the lift is produced not
only by the seams but by the shedding of vortices that occurs at
the rear side of the ball. All of these interact in a complex way,
as mentioned in Ferziger and Perić [2], Watts and Sawyer [11],
andMehta [12]. On the other hand, and according to Texier et al.
[37], there is the possibility that the lift force may be originated
only by the perturbations at the front side of the ball. This means
that the seams produce the total lift of the ball, especially those
located at the separation or critical points of the boundary layer
at 52, 140, 220, and 310◦ [12, 36]; this will be addressed in detail
in section 3.3. Texier calculated that the force produced by the

2From this point on we will use the term “lift force” for referring to both lift and

side forces because both are equivalent, excluding gravity.

vortices at Strohual numbers (St) of St∼ 0.2 is significantly lower
than the magnitude of the lift measured in experiments, so that it
practically does not contribute to lift. More information about lift
force in ball sports can be found in investigations by Mehta [12],
Hong et al. [42], and Murakami et al. [43].

3.3. The Seams and the Boundary Layer
The manner in which the seams affect the boundary layer is
very sensitive to small changes between seams. As commented by
Borg and Morrisey [36], when a seam is located near the natural
separation angle (the angle of separation of a smooth ball), it
can induce turbulence and consequently provoke a delay in the
separation of the boundary layer; in turn, the seam can force
the separation to occur and cause an advance in the separation
angle. Such effects are seen in the sudden changes in the values
of the lift coefficient for a 4S orientation. For a smooth ball, a
sinusoidal shape of CL would be expected, in a similar way to
the lift coefficient reported for a smooth cylinder by Ferziger and
Perić [2]. However, Figure 4 suggests a quasi-periodic behavior
for CL for 4S balls, with fast changes in magnitude and direction
at 52, 140, 220 and 310◦, as observed by Watts and Sawyer
[11]. This is because the separation point is located around such
degrees and then it advances or delays with a little variation in the
stitch position.

Experiments by Higuchi and Kiura [38] show that a variation
of only one degree (36 to 37◦) in the stitch position causes a
sudden separation. Moreover, they reported that the balls are
more susceptible to hysteresis (including induced rotation) at the
zones of separation. For 4S balls and Re above 1.5×105, the ball
is sensitive to the initial rotation, namely, spins of 5 rad/s become
10.5 rad/s, increasing linearly and having a spin limit of 18.9 rad/s
even for Re above 2×105. In turn, for 2S balls they found that the
oscillation frequency is constant over Re∈ [1.9× 105, 4.6× 105].
As a consequence of the induced rotation, the phenomenon
becomes more unpredictable because the separation point moves
forward or backward at every moment of time. This is the reason
why the throws inside the intermediate window in Figure 1 are
the most difficult to study. We invite the reader to consult the
research of Higuchi and Kiura [38] for detailed observations of
the boundary layer.

To end the collection of the advances on knuckleballs, it is
important to mention the phenomenological model proposed by
Aguirre-López et al. [41] for computing the lift coefficient. It
consists of computing a super-imposition of the forces produced
by the vortex shedding and each stitch, so that

CL(θ) = a0 sin(4θ − π)+ a1

n
∑

i=1

[

sin

(

||si − p||π

2d
+ π/2

)

·

sgn
(

p∗ − s∗i
)]

, (12)

where CL = CL(θ) is now a function of the angle of attack
of the ball, the first term in the right-hand side is the force
caused by the vortex shedding and the term

∑

(·) is the sum
of forces produced by the seams, p is the stagnation point, si is
the position of the i-th stitch, s∗i and p∗ are the z−components
of si and p, respectively, and a0 and a1 are weight coefficients.
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FIGURE 4 | Experimental data [36] and model [41] of CL as a function of the attack angle θ for 4S (A) 2S (B) balls. Modified from Aguirre-López et al. [41].

Therefore, each stitch in model (12) produces a force whose
magnitude decreases smoothly when the stitch moves away from
the stagnation point and takes into account the symmetry on the
z-axis by introducing the sign function sgn(·). Thus, despite the
fact that model (12) does not consider effects of hysteresis and
high sensitivity to perturbations at the separation point, it fits
the experimental data of Borg and Morrisey [36] for 4S and 2S
orientations, as shown in Figure 4. Model (12) opens the door to
future research on how the seams and the vortex shedding affect
the lift force.

3.4. Discussion and Potential Research
Trends
Here we summarize and discuss the highlights of the non-
spinning pitches and outline potential research trends of
knuckleballs pitches as follows:

• The structure of the oscillations of the drag coefficient depends
on the orientation of the ball, whereas the height of the seams
increases the magnitude of the drag.

• The value of CD decreases from 0.6 to 0.4 units when
increasing V .

• The lift coefficient oscillates every 90◦, with a quasi-periodic
behavior for 4S balls, which is related to the effect of the seams.
In fact, values of CL for 2S balls oscillate every 180◦, with an
inversion every cycle [36, 38].

• The origin of lift force is not well understood. On the one hand,
seams could cause the total lift, and on the other hand, a sum
of both the seams and the vortex shedding could be the source
of it [11, 36, 37].

• Observations on the boundary layer suggest that the lift force is
more susceptible to perturbations at some angles, including 52,
140, 220, and 310◦ for 4S balls. Hysteresis is partly responsible
for this [38].

• We consider that simulations using CFD techniques could
disentangle the causes that produce the lift force.

• In addition to the last point, CFD simulations could help
to improve the model (12) or propose a variation of it that
involves the susceptible zones of the separation point, and
extend the model to arbitrary orientations.

4. APPLICATIONS

As the reader may suppose, there are many ways to make useful
the information compiled in sections 2 and 3. And, indeed,
baseball studies have been the basis of numerous technologies
on the matter, specifically those ones about spinning pitches. We
finalize this work with a brief summary of the main applications
of the aerodynamic forces on baseballs. Section 4.1 is focused on
the studies related to baseball’s trajectories. In turn, section 4.2
talks about the complementary applications including the best
known of them: the PITCHf/x algorithm.

4.1. Prediction and Reconstruction of
Trajectories
4.1.1. The Simulation Problem

The most simple use of aerodynamic forces is the simulation
or prediction of trajectories. A simulation of a baseball pitch is
frequently carried out by using the Equations (6) and (9) along
with gravity to compute a model of forces as:

mV̇ = Fd + FM +mg, (13)

which can be solved numerically by Runge-Kutta-4 or other
integration methods, whereas drag and Magnus coefficients
can be computed by Equations (7) and (10) or similar
approximations [6, 44]. The simulations could become more
realistic by including eventual forces in the model (13). An
example of this is themodel of Robinson and Robinson [8], which
adds a constant in wind to the ball velocity so that V′ is redefined
as (V′ = V+W), whereW is the wind velocity.

In turn, simulations of baseball trajectories are commonly
applied to some sport and technology areas such as in
video games [45], baseball machines [10] as well as for
instruction for baseball players. The last one is the main
reason for which research on knuckleballs is a topic of special
interest.

4.1.2. The Reconstruction Problem

The counterpart of simulation is the reconstruction of
trajectories. In these works, there is no possibility to give
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the initial conditions of a pitch and obtain the trajectory but
the trajectory must be extracted, tracking or reconstructed
only by a set of 3D or 4D (space plus time) points belonging
to the trajectory. Such data points are commonly recorded
by baseball broadcast videos and/or images of real games;
therefore, the trajectory obtained is used for the replay in
television.

Various methodologies have been reported for extracting
or tracking the trajectory. Most of them use types of diverse
filters like color, position, size and shape [46–48], and others
[49, 50] select possible trajectories. Then the chosen trajectories
are compared with the model (13) so that, if the resulting
trajectory does not agree with the model, then it is discarded
and a new one is needed. Takahashi et al.’s investigation [47]
also deals with classifying the type of pitch by relating a
total of 36 features, including the shape and speed calculated
from the ball trajectory data and the ball speed from the
screen display. They report an accuracy of ∼ 89% with their
methodology.

The methodologies that deal with a “direct” reconstruction
are based on the use of the equations of motion. Shum and
Komura [51] and Miyata et al. [52] use color filtering for
detecting 2D candidate trajectories. Then, Shum and Komura
estimate the depth of the ball in the scene by introducing a
model (13). In turn, Miyata et al. [52] chose one candidate
by fitting a uniformly accelerated motion model [similar to
model (13)] and finally, they use multiple cameras calibrated
temporally and geometrically to obtain a 3D trajectory. On the
other hand, Aguirre-López et al. [5] developed an algorithm
that directly solves the model (13) in two interrelated parts by
decoupling the Magnus force from the equations of motion,
using the Newton-Raphson method when knowing three points
of the trajectory. They reported absolute error values of ∼ 0.1
mm between simulated and reconstructed trajectories. Finally,
Kagan and Nathan [53] have developed a software called the
trajectory calculator, which is similar in operation to that
of Aguirre-López et al. [5] but with simpler assumptions.
The results are less accurate but it is a good tool to start
in the subject. The trajectory calculator can be downloaded
directly at [54].

4.2. The PITCHf/x Algorithm and Clustering
The second part of the application deals with problems related
to the classification of trajectories, among which the PITCHf/x
algorithm is the most popular and accurate reported method in
research and in the world of baseball. The algorithm (including
new versions and software packages) has been consolidated as a
powerful tool in the area of pitch classifications [55, 56].

The PITCHf/x algorithm consists of two parts. The first
one involves reconstructing trajectories by estimating the
coefficients Cd, CM and the spin axis φ (the angle between
y−axis and ω) using non-linear least-squares fitting with the
Levenberg-Marquardt algorithm. Nathan [55] reports very good
adjustments; indeed, root-mean-square deviations of the fitted
trajectory of around 1 mm in each dimension. The second (and
the main) part of the work deals with the classification of pitches.
The classification is based on (V vs. φ) and (ω vs. φ) graphics. As a
result, the types of pitches are arranged in clusters in polar scatter
plots and scatter plots of the deflection of the ball at home. Pane
[57] carried out an interesting cluster analysis from the results
of Nathan [55] based on PITCHf/x. The research on the topic
continues.
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