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Editorial on the Research Topic

Individual Differences in Arithmetical Development

Individual differences in arithmetical performance have been known for a long time to be very
marked in both children and adults (Dowker, 2005). For example (Cockcroft, 1982), reported
that an average British class of 11-year-olds is likely to contain the equivalent of a 7-year range
in arithmetical ability; and similar results were obtained 20 years and several educational changes
later by Brown et al. (2002). Individual differences in arithmetic among children of the same age are
also very great in most other countries. Such individual differences often appear to persist through
life. At one end of the scale, about 22% of adults in the UK experience severe difficulties with basic
numeracy, to an extent that leads to significant problems with employment and other everyday life
activities. At the other end of the scale, some adults have an extreme fascination with numbers,
can reason extremely well about numbers, and/or are exceptionally rapid and efficient calculators
(Lubinski and Benbow, 2006).

There is increasing evidence that not only are there significant individual differences in
children’s arithmetic, but also that arithmetical ability is not unitary, but is made up of many
different subcomponents (Jordan et al., 2009; Cowan et al., 2011; Desoete, 2015; Dowker, 2015;
Pieters et al., 2015) and that individuals can showmarked discrepancies, in both directions between
different components: e.g., oral and written arithmetic; factual and procedural knowledge; exact
calculation and estimation.

Individual differences in arithmetic are also increasingly studied from the point of view of their
relation tomore domain-general cognitive abilities, especially workingmemory and other executive
functions. There is much evidence for significant relationships between executive functions and
arithmetic (Bull and Scerif, 2001; De Smedt et al., 2009; De Weerdt et al., 2013; Bull and Lee, 2014;
Peng et al., 2016; Bellon et al., 2019). Most studies have looked at executive functions as predictors
of arithmetic; but there is some evidence for bidirectional relationships between the two (Welsh
et al., 2010; Clements et al., 2016).

Individual differences in arithmetic include not only strictly cognitive factors but emotional
ones as well. (Dehaene, 1997 p. 225) pointed out that, even when studying the neural aspects
of mathematics, it is important to take emotional factors into account: “...cerebral function is
not confined to the cold transformation of information according to logical rules. If we are
to understand how mathematics can become the subject of so much passion or hatred, we
have to grant as much attention to the computations of emotion as to the syntax of reason.”
In particular, mathematics anxiety, sometimes amounting to real fear of mathematics is a very
common phenomenon and is significantly negatively correlated with mathematical performance
(Hembree, 1990; Ma and Kishor, 1997; Carey et al., 2016; Dowker et al., 2016; Foley et al., 2017;
Sorvo et al., 2017; Zhang and Kong, 2019).
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The study of individual differences in arithmetic, from all
these perspectives has important implications for mathematics
education and in particular for interventions with children with
mathematical difficulties (Butterworth et al., 2011; Clements and
Sarama, 2011; Chodura et al., 2015; Dowker, 2017).

The articles in this special issue are extremely diverse,
reflecting a very varied area; but may be divided into
the following broad categories: (1) the extent, nature and
persistence of individual differences in mathematics, including
methods of assessing these; (2) the componential nature
of arithmetical ability, and discrepancies between different
aspects of arithmetical cognition and performance; (3) the
relationship between arithmetic and cognitive characteristics;
(4) the relationships between mathematical performance and
mathematics anxiety; and (5) implications of findings about
individual differences for interventions for children with
arithmetical difficulties.

(1) The nature and assessment of individual differences
in arithmetic.

Mejias et al. studied the assessment of early mathematical
abilities in school beginners. They developed a Mathematical
School Readiness test assessing early mathematical abilities.
In their study, 346 children, with a mean age of 6; 3 years,
were given this test entering first grade, and it was found
to correlate with classical curriculum mathematics test at the
time, and also to predict later performance on such tests in
second grade, thus suggesting that it may be a useful test for
assessing school beginners’ readiness for studying mathematics,
and in particular for identifying children at risk for experiencing
mathematical difficulties.

Greisen et al. investigated ways of assessing mathematics that
do not depend on language. This is important for children
who have language difficulties, or who are receiving their
instruction in a language other than their native language; and
also in comparing children from countries that speak different
languages. The researchers developed video and animation-based
task instructions on touchscreen devices that require no verbal
explanation. These tasks were administered to two groups of
children in the first grade of primary school in Luxembourg.
One group (n = 96) received verbal instructions and the other
group (n= 141) got video instructions. One group completed the
tasks with verbal instructions while another group received video
instructions. Overall, the groups performed similarly, indicating
that explicit verbal instructions were usually not necessary.
However, there were occasions where verbal instructions were
less effective than non-verbal instructions, and others where non-
verbal instructions were less effective than verbal instructions.

Individual differences of course interact with age differences
Caviola et al. studied children’s strategy choices in solving
complex subtraction problems, and investigated the effects of
grade and of variations in problem complexity. Third-grade
children (mean age 105.9months) and fifth-grade children (mean
age 129.8 months) solved multi-digit subtraction problems and
described their solution strategies. In one experiment (n = 155;
n = 76 in third grade; and n = 79 in fifth grade), they chose

their strategies spontaneously, and in another experiment (n
= 175; n = 88 in third grade; and n = 87 in fifth grade),
they were asked to choose between specified strategies. Fifth-
grade children tended to use more efficient strategies, such as
retrieval and decomposition, while third-grade children were
more likely to use less efficient strategies such as counting and
to rely more on the written right-to-left solution algorithm.
However, all strategies were used by children in both age groups,
and strategy choice was influenced by problem characteristics
including problem complexity and presentation format.

Deng et al. carried out one of the few studies in this Research
Topic that focussed on individual differences in adults. They
investigated the Spatial Numerical Association of Response
Codes (SNARC) effect in 240 adults using a parity judgment
task (odd vs. even?) and a magnitude classification task (greater
or smaller than 5?) for the eight numbers from 1 to 9 except
for 5, which were randomly presented one at a time. Each task
was carried out over 16 phases, divided into two blocks with a
short interval between them, in each of which all eight items
were administered. The order of the blocks was counterbalanced
across participants, Detailed analyses were carried out of the
changes in response times and the SNARC effect across the
range of numbers and over the time course across the 16 phases.
The SNARC effect emerged earlier and stayed more stable in
magnitude classification task than in the parity task during
the time course. It also increased over the time course in the
magnitude classification task, whereas it fluctuated up and down
over the time course in the parity task.

(2) The componential nature of arithmetic: how different
aspects of arithmetic may diverge from one another, and how
they may be influenced by different factors.

Baten and Desoete examined individual differences in primary
school children’s mathematics learning by combining antecedent
(A), opportunity (O), and propensity (P) indicators within
the Opportunity-Propensity Model (Byrnes and Miller, 2016).
They studied the mathematical abilities of 114 primary school
children (in grades 3–6, age range 8–12) with (n = 61)
and without (n = 53) mathematical learning disabilities
in relation to questionnaires given to them and to their
parents and teachers. Results indicated that children with and
without mathematical difficulties showed significant differences
in personality, motivation, temperament, subjective well-being,
self-esteem and self-perceived competence, and that there
were also significant differences in parental aspirations for
them. As regards antecedent (A) factors, parental aspirations
explained about half of the variance in fact retrieval speed
in children without mathematical learning disabilities, and
socio-economic status was a strong predictor of procedural
accuracy in both groups. Teachers’ experience (number of
years that they had taught mathematics) was considered
as an Opportunity (O) factor and explained about 6%
of the variance in mathematical abilities. Propensity (P)
indicators explained between 52 and 69% of the variance, with
intelligence as the most significant predictor overall. Indirect
effects suggested that the predictors were interrelated and
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highlighted the value of including A, O, and P indicators
in a comprehensive model. Moreover, different A, O, and P
indicators seemed to be important for fact retrieval speed
compared to procedural accuracy, supporting componential
theories of arithmetic.

Salminen et al. studied the early number skill profiles of
440 pre-primary Finnish children (with a mean age of 75
months), longitudinally over three points in an 8-month period.
They modeled latent performance-level profile groups for three
early number skill components that had been previously found
to predict arithmetic (symbolic number comparison, mapping,
and verbal counting skills). Four profile groups were found:
lowest-performing (6%), low-performing (16%), near-average-
performing (33%), and high- performing (45%). The groups
differed significantly in all three number skill components and
in basic arithmetic, with the lowest-performing children showing
particular difficulties in the number comparison and mapping
tasks, perhaps indicating problems with accessing the semantic
meaning of symbolic numbers. The profiles appeared to be
mostly stable over the 8-month period.

Ganor-Stern focussed in particular on the nature of exact
calculation vs. computational estimation. She investigated 4th
(n = 33), 5th (n = 33), and 6th grade pupils (n =

33) and college students (n = 25) performance on exact
calculation and computational estimation tasks involving two-
digit multiplication problems. The estimation tasks involved
stating whether the result of each problem was larger or smaller
than a given reference number. Older children were more
accurate than younger children on the calculation task, but there
were no age differences among the children for accuracy on
the estimation task. There were no age differences among the
children for reaction times on either task, but adults were faster
than children on both. At all ages, within group variability in
accuracy was greater for the exact calculation task than in the
computation estimation task. Accuracy on the two tasks did
not correlate strongly. The findings suggest exact calculation
and computational estimation may at least in part involve
different skills.

One important distinction between components of numeracy
is that between symbolic and non-symbolic representations of
number (Lyons et al., 2012; Schneider et al., 2017). Li et al.
investigated the development of children’s symbolic and non-
symbolic representations of number. Participants were 253 four-
to-eight-year-old children from the first and second grades of
two primary schools. The researchers studied their symbolic
and non-symbolic representations, their ability to map between
the two types of representation, and their mathematical ability.
Non-symbolic representation emerged earlier than symbolic
representation, but by the age of 6, children performed equally
well at both types. Children of 6 or older were able to map
between symbolic and non-symbolic quantities. Path analyses
showed a direct effect of children’s symbolic numerical skills
on mathematical performance, but non-symbolic numerical
skills only affected mathematical performance indirectly via
symbolic skills. The influences of symbolic and non-symbolic
numerical skills on mathematical performance both decreased
with age.

(3) The relationship between arithmetic and
cognitive characteristics.

Wei et al. investigated the predictive role of three core
executive functions (inhibition, shifting, and working memory)
on the growth of mathematical skills. They carried out a
3-year longitudinal study with 179 Chinese children from
second to fifth grade. In second grade with a mean age

of 97.89 months, they were assessed on the above executive
functions, as well as non-verbal IQ, speed of processing
and number sense. Each year from second through fifth
grade, they were tested on arithmetic accuracy and fluency.
Structural equation modeling showed that non-verbal IQ,
speed of processing, and number sense all predicted the
intercept in arithmetic accuracy, while working memory

was the only executive function to predict the rate of
growth in arithmetic accuracy. Number sense, speed of
processing, inhibition, and shifting were all significant predictors
of the intercept in arithmetic fluency; but none of the
executive functions predicted rate of growth in arithmetic
fluency. Thus, the study suggests both that executive functions
predict mathematical learning and performance, and that
different executive functions may predict different aspects
of mathematics.

Ding et al. studied the roles of working memory and two
domain-specific factors—single-step mental addition skills, and
strategy use—in multi-step mental addition in two groups of

Chinese elementary students. In Study 1 (n = 40), they studied
the effect on strategy types of task manipulations involving
schema automaticity (whether intermediate sums added up to

decades, e.g., convert 16 + 27 to 16 + 24 = 40 + 3 = 43)
and working memory load (two steps vs. four steps). In Study
2 (n = 43), they studied the effect on strategy types of task

manipulations involving schema automaticity (one-time vs. two-
time regrouping) and working memory load (partial vs. complete
decomposition). Results of both studies suggested that shorter

response time on single-step mental addition, choice of easier
strategies, and phonological working memory performance
were all associated with shorter response time on multi-step
mental addition. The findings in both studies highlighted the
important role of the phonological loop in mental addition in
Chinese children.

Siemann and Petermann discussed explanations for
developmental dyscalculia, and in particular, the question

of whether mathematical ability depends purely on domain-
general cognitive abilities, or requires an innate number sense.
They suggest that the controversy arises from ambiguity about
what number sense is. They argue that it is common for

early number competence to be used as a proxy for innate
magnitude processing, even though it requires some knowledge
of the number system (i.e., the sequence of symbols, counting
words or Arabic numerals, to represent number). Thus, most

studies that refer to “non-symbolic” number processing are
in fact referring to tasks requiring some symbolic knowledge
as well. The authors suggest that developmental dyscalculia

is in fact due to a conglomerate of deficits rather than a
single deficit.
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Reeve et al. studied the extent to which the variability in
the time children took to solve single digit addition (SDA)
problems predicted their later ability to solve more complex
mental addition problems; and whether children with deficits
could thus be distinguished from those with typical or delayed
mathematical acquisition. One hundred sixty-four children were
tested on four occasions over a 6-year period starting from
the age of five. They were tested on digit span, visuospatial
working memory and non-verbal IQ; speed in naming single
numbers and letters; speed in subitizing one to three dots; and
on four occasions, speed and accuracy on a 12-item single digit
addition test. At the end of the study, the children, by then
aged 11, were given a double-digit mental addition test. The
researchers conducted a latent profile analysis to determine if
there were different variability patterns over time with regard
to single digit addition. There were three distinct variability
patterns. In a typical acquisition pathway, mean reaction times
were relatively low and reaction time variability decreased over
time. In a delayed pathway, bothmean reaction time and reaction
time variability started out as high, but decreased over time. In a
deficit pathway, mean reaction time and reaction time variability
remained high throughout the study. The deficit pathway differed
significantly from the other pathways in subitizing, but not in
domain-general cognitive abilities or in double-digit addition.
The researchers concluded that it is important to study individual
differences in reaction time variability longitudinally, and that
the results highlight the importance of subitizing ability as a
diagnostic index for mathematical difficulties.

Van Luit and Toll studied 84 Dutch pupils between the ages
of 8 and 18, with a diagnosis of developmental dyscalculia. They
looked at the prevalence in this group of deficits in four cognitive
characteristics: planning skills, naming speed, short-term and/or
workingmemory, and attention. They found that the commonest
deficit was in naming speed (in particular, naming numbers),
followed by deficits in short-term/workingmemory and planning
skills. Deficits in attention were the least common.

Wang et al. investigated whether children with mathematical
difficulties also experience deficits in executive functions, and
whether these could be explained by lower-level deficits in
processing speed. They assessed 84 children of approximately
10 years: 23 children with mathematical difficulties alone; 30
children with combined mathematical and reading difficulties;
and 31 typically developing children. The children were
given tests of reading, mathematics, inhibition, attentional
shifting, working memory and processing speed. The
children with mathematical difficulties performed worse
than typically developing children on all executive function
tasks. Children with only mathematical difficulties performed
similarly to the children with combined mathematical and
reading difficulties, except in attentional shifting, where
the former performed better. However, group differences
in executive functions disappeared after controlling for
processing speed. Thus, it appears that most deficits in executive
function, shown by Chinese children with mathematical
difficulties can be accounted for by lower-level deficits in
processing speed.

Mathematical ability is also considered to be influenced by
language factors including both linguistic ability (Pimperton
and Nation, 2010; Bjorn et al., 2016) and language background
(Miura et al., 1993; Krinzinger et al., 2011; Klein et al.,
2013; Dowker and Nuerk, 2016; Dowker and Li, 2019).
In particular, speakers of languages with more transparent
counting systems such as Chinese seem to find some aspects
of mathematics easier than speakers of languages with less
transparent counting systems such as English. McClung and
Arya studied individual differences in 23,220 Chinese and
English fourth-grade pupils mathematics achievement. They
used a subset of the 2011 Progress in International Reading
and Literacy Study (PIRLS) and Trends in International
Mathematics and Science Study (TIMSS) data from students
who were tested in Chinese or English in nine countries.
Their overall scores for mathematics and reading were assessed;
and their scores specifically on the Number content of
the test were used to assess whether they did or did not
have mathematical difficulties. Hierarchical linear modeling
analyses suggested that the main effect of language on
mathematical performance remained significant once their
categorization as having vs. not having mathematical difficulties
was added to the model. However, the effect of language on
mathematical performance appeared to be especially salient
in the presence of mathematical difficulties; suggesting that
linguistic factors such as counting system transparency may
be particularly important for children who are struggling
with numeracy.

(4) The relationships between mathematical performance and
mathematics anxiety.

Kucian et al. examined the relationship between negative
emotion toward mathematics and arithmetical performance in
children with and without developmental dyscalculia. They
studied 172 primary school children (76 with developmental
dyscalculia and 96 controls). They used an affective priming task,
which consisted of a simple addition or subtraction true/false
decision task preceded by a prime, which consisted of words
with either positive, negative, neutral affect, and words related
to mathematic. It was expected that performance children with
developmental dyscalculia would be slower and less accurate
if preceded by a mathematics prime. In fact, neither group
showed a negative mathematics priming effect, though children
with dyscalculia showed lower mathematics performance than
controls, and also showed more mathematics anxiety in an
explicit questionnaire. Explicit mathematics anxiety correlated
negatively with performance in both groups. This suggests that
in primary school children, mathematics anxiety and its relation
to performance may be more reliably measured by an explicit
questionnaire than by a priming task. This is also suggested for
university students in an unpublished study by (Dowker and
Parker, 2013).

Some of the studies have looked at how the relationship
between mathematical performance and mathematics anxiety
may be mediated by other cognitive factors. Zhang et al.
studied mathematical word-problem solving and its relation
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to several cognitive and affective factors in 116 third-grade
Chinese children with a mean age of 9.6 years. They found
that after controlling for age and non-verbal intelligence,
mathematical word problem solving correlated positively with
working memory, reading comprehension and mathematical
fact fluency, and negatively with mathematics anxiety. It also
correlated negatively with reading anxiety, but this relationship
turned out to be fully mediated by mathematics anxiety.

Soltanlou et al. studied the relationships betweenmathematics
anxiety, visuospatial memory and mathematical learning.
Twenty-five 5th graders with a mean age of 11.13 years

underwent seven training sessions of multiplication over the
course of 2 weeks. After the sessions, children were faster and
more accurate in solving trained problems than untrained

problems. Children who were both high in mathematics anxiety
and low in visuospatial working memory showed worse learning
than other children. This was shown specifically for accuracy,
but not for reaction time. It is interesting that children with

poor visuospatial working memory as well as high mathematics
anxiety showed this effect. This may be because mathematics
anxiety increases the load on working memory, but this only

has a negative impact if working resources are already limited.
We would also suggest that, as some studies have indicated
(e.g., DeCaro et al., 2010), mathematics anxiety may exert its
strongest effect on verbal working memory, so that visuospatial
working memory may compensate for this in individuals with
good visuospatial working memory, but not in those with poor
visuospatial working memory.

Júlio-Costa et al. studied mathematics anxiety from a
different perspective. They investigated aspects of the molecular-
genetic contribution to mathematics anxiety. They looked in
particular at the COMT Val158Met polymorphism, which affects
dopamine levels in the prefrontal cortex, and has been found

to be associated with anxiety (Hosák, 2007). Two copies of
the valine allele (Val/Val) is associated with lower dopamine

availability, and two copies of the methionine allele (Met/Met)
with higher dopamine availability. The researchers assessed 389
school children aged 7–12 years for intelligence, numerical
estimation, arithmetic achievement andmathematics anxiety and

genotyped them for the COMT Val158Met polymorphism. No
significant main effects were found on any of the genotype
related measures. However, there were significant interactions

between gender and genotype for IQ and mathematics anxiety.
IQ scores were higher in Met/Met girls than in girls with
at least one valine allele, though the genotype effects were
not significant for boys. In the case of mathematics anxiety,
heterozygous individuals tended to score close to the average,
regardless of gender. Homozygous boys for either val/val or
met/met showed significantly less mathematics anxiety than
heterozygous boys and homozygous girls for either val/val or
met/met showed significantly more mathematics anxiety than
heterozygous girls.

(5) Applications of the study of individual differences in
arithmetic to the development or improvement of
educational practices for arithmetic teaching as a whole
and/or interventions for children with difficulties.

Cerda et al. compared two teaching approaches to formal and
informal mathematical reasoning with two groups of young
Spanish schoolchildren (n = 229), aged four and five. The ABN
method (Open Algorithm Based on Numbers; n = 147) was
associated with better results than the CBC method (Closed
Algorithms Based on Ciphers; n = 82), which is the usual
approach in Spanish schools. Moreover, the effect was greater in
children who received more instruction on skills considered as
domain-specific predictors of later arithmetic, such as magnitude
comparison and knowledge of cardinality.

Auer et al. pointed out that children have often been found to
make suboptimal choices between mental and written strategies
to solve division problems. In particular, lower-attaining pupils
often use mental strategies where the use of written algorithms
would be more efficient. They divided 147 sixth-grade pupils
with low mathematics attainment into two training groups: one
with explicit training to promote writing down calculations, and
one which devoted a similar amount of time to practice, but
without explicit targeting of strategy use. Both groups improved
considerably from pretest to post-test with regard both to general
performance and to selection of written strategies. However, the
two training groups did not differ from one another.

Koponen et al. carried out an intervention study with
elementary school children in grades 2 to 5 with poor
calculation fluency (mean age: 114 months). The aim was to
investigate the effects of strategy training focusing on derived
fact strategies integrating factual, conceptual, and procedural
arithmetic knowledge. Thus, 69 Finnish children were selected on
the basis of scoring below the 20th percentile on a standardized
mathematics test, and using counting-based strategies in an
individual assessment. The children participated in a group
based strategy training twice a week for 45min over a 12-week
period. In addition, they underwent two short weekly practice
sessions for basic addition skills. Their addition fluency was
assessed before and immediately after intervention, and at a
5-month post-intervention follow-up, and their progress was
compared with that of two control groups: one that received
a reading intervention and a business-as-usual group. The
mathematics intervention group improved significantly more
in addition during the intervention than either of the control
groups. There was an increase in fact retrieval and derived
fact strategies and a decrease in counting-based strategies in
the mathematics intervention group, compared to the control
groups. The effects did not, however, transfer to subtraction
fluency. At 5-month follow-up the mathematics intervention
group maintained their gains, but did not show further progress.
They were still performing better on addition fluency than the
reading intervention group, but were similar to the business-as-
usual group.

Friso-van den Bos et al. divided 90 kindergarten children in
the Netherlands, with a mean age of 5 years 8 months, into
three groups: one trained on counting, one on number line
placement, and one a business-as-usual control group. They
were pre-tested and post-tested on arithmetic, counting, number
lines, and number comparisons. The group trained on counting
improved significantlymore in arithmetic, counting, and number
lines than the business-as-usual group. The group trained on
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number line use did not differ significantly on any measure from
the business-as-usual group.

Björn et al. investigated Response to Intervention (RTI)
methods in the USA and in Finland. The authors discuss
the frameworks in the two countries from the point of view
of assessment and instruction. They suggest that the Finnish
framework is an example of support in mathematics learning that
incorporates principles of RTI, such as systematized assessment
and instruction, cyclic support, and modifiable instruction.
Similarly, close monitoring of student progress is also at the
core of RTI in the US. Informed decision making at all
levels within the system (administrative, teacher, and parental;
see Fuchs and Fuchs, 2005) is provided. The basic idea of
RTI in the U.S. is that the school provides the child with
research-based instruction while the child is in the general
education environment, and the school adjusts the intensity or
nature of assessment and instruction according to the student’s
progress (Fuchs and Fuchs, 2005). One important difference
between the American and Finnish frameworks is that the
American version was primarily developed for learning difficulty
identification and the Finnish version was primarily intended to
re-structure the existing support services for pupils struggling
withmathematics. After analyzing the similarities and differences
between the American and Finnish systems, the authors conclude
by discussing possibilities for further refinements of the RTI
approach in both countries.

CONCLUSION

The studies in this volume support previous studies in indicating
that there are marked individual differences in arithmetic at
all ages from preschool to adulthood; that these appear to be
related to domain-specific factors, domain-general factors and
emotional factors, though there is still much controversy about
how these factors interact. The studies also demonstrate that
arithmetical cognition is composed of multiple components,
though there may be controversy about how these are related

to one another and which components are most important;
and that these findings can be put to good use in developing
interventions and methods of instruction. The studies also
show that findings from different countries (e.g., the UK, USA,
China, and Finland) often converge to give similar results
and conclusions.

Further research should expand the age groups studied, to
include more work with toddlers at one end and adults at
the other, and to incorporate more longitudinal studies. There
should also be more work on how different components of
arithmetical thinking interact with, and predict, one another and

how this may change with age and instruction. There should also
be further work on how domain-specific and domain-general
factors interact with each other at a given time and longitudinally
and the extent to which both numerical abilities and so-called

domain-general abilities may be influenced by context. On the
other hand, one might wonder whether the terms “domain-
specific” and “domain-general” are ideal as they may sometimes

be misleading. For example, it is not always what constitutes as
a “domain”; so-called domain-specific predictors of one ability,
such as phonological awareness being predictive for reading, are
also predictive of performance in another domain, i.e., arithmetic
(e.g., De Smedt et al., 2010); measures of executive function

always involve the processing of certain types of stimuli (e.g.,
numbers), and these more specific processing differences in
itself may underlie individual differences. Cultural influences
on both mathematical performance and mathematics anxiety
should also be explored. Finally, further progress needs to
be made in the development and evaluation of interventions,
and in systematically investigating whether different types of
intervention may be differentially effective for children with
different mathematical profiles.
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The clinical profile termed developmental dyscalculia (DD) is a fundamental disability
affecting children already prior to arithmetic schooling, but the formal diagnosis is
often only made during school years. The manifold associated deficits depend on
age, education, developmental stage, and task requirements. Despite a large body
of studies, the underlying mechanisms remain dubious. Conflicting findings have
stimulated opposing theories, each presenting enough empirical support to remain
a possible alternative. A so far unresolved question concerns the debate whether a
putative innate number sense is required for successful arithmetic achievement as
opposed to a pure reliance on domain-general cognitive factors. Here, we outline that
the controversy arises due to ambiguous conceptualizations of the number sense. It is
common practice to use early number competence as a proxy for innate magnitude
processing, even though it requires knowledge of the number system. Therefore,
such findings reflect the degree to which quantity is successfully transferred into
symbols rather than informing about quantity representation per se. To solve this
issue, we propose a three-factor account and incorporate it into the partly overlapping
suggestions in the literature regarding the etiology of different DD profiles. The proposed
view on DD is especially beneficial because it is applicable to more complex theories
identifying a conglomerate of deficits as underlying cause of DD.

Keywords: dyscalculia, domain specificity, innate number sense, subtypes, early number competence

SCOPE

In the present selective review, we discuss normal and abnormal arithmetic development. We
present current positions on the central questions of:

(a) precursors for successful mathematical education
(b) risk factors for low math performance
(c) relative contributions of domain-specific and domain-

general factors
(d) heterogeneity of dyscalculia symptoms.

As a starting point, we will outline the current knowledge on arithmetic acquisition separately
for domain-general and domain-specific contributing factors. Based on these findings, we will
then explain the key deviations from the regular developmental path present in children
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with dyscalculia according to the literature. For this purpose,
typical findings on healthy children with regard to contributions
of domain-general as well as domain-specific factors are outlined.
Afterward, these are delineated from maladaptive mathematical
development.

Next, we will turn to the central question of heterogeneity
in developmental dyscalculia (DD). At present, there are still
diverse suggested key abnormalities in the literature based on
contradictory study results. From this, we will turn to an
associated problem: despite the general agreement that there
are subtypes of math difficulties, there is an apparent gap
with respect to cognitive processes. Here, we wish to put
forward that a finer distinction between innate number sense
and early number competence helps in disentangling studies
contradicting each other. For that purpose, we introduce a
three-factor account that is based on past findings and extends
previous models. We complement the above by bringing forward
several potential reasons leading to different concepts of DD.
Finally, we reconcile these seemingly incompatible positions by
suggesting how future studies could benefit from our conception
of arithmetic development and DD.

HEALTHY MATH DEVELOPMENT:
INTERACTIONS BETWEEN
DOMAIN-SPECIFIC AND
DOMAIN-GENERAL FACTORS

Before turning to DD and its possible causes, we briefly describe
how healthy math development proceeds, because theories on
DD are necessarily grounded on this background knowledge.
The mammalian brain seems to be equipped with an innate and
preverbal ability to differentiate between quantities (e.g., Kucian
and von Aster, 2015), the so-called “number sense” (Dehaene
and Cohen, 1997). Humans (and other species) can learn to
associate this system with symbolic number representations.
The latter mechanism apparently evolves in parallel (Hyde,
2011) or hierarchically (von Aster and Shalev, 2007) into the
exact and automatic recognition of small amounts of up to
four or five items (“subitizing,” e.g., Henik et al., 2012; see
Piazza, 2010 postulating a precursor object tracking system)
and the approximate discrimination between larger quantities
[“approximate number system” (ANS), e.g., Feigenson et al.,
2004). Similar theories postulate a “one system view” of number
representation (Hyde, 2011). Subitizing and ANS thus refer to
complementary mechanisms to differentiate small (exact) or
large (approximate) numbers, i.e., distinct aspects of the number
sense. In concert, they enable the comprehension of cardinality
and ordinality (number concept and placement principles,
Rapin, 2016). These mathematical principles are crucial for
arithmetic and serve as early diagnostic markers (Gray and Reeve,
2014).

Innate basic abilities and acquired general skills both
contribute to math development. Geary (2007) discriminates
between so-called primary vs. secondary precursors to account
for abilities we are biologically endowed with (biologically

primary) from skills shaped by environmental influences
(biologically secondary). In the following, we will use the
more general terms of domain-specific vs. domain-general (e.g.,
Karmiloff-Smith, 2015). Notably, some studies treat acquired
numerical operations (e.g., calculation and arithmetic) as
domain-specific (see conceptualization of Gersten and Chard,
1999), and the National Mathematics Advisory Panel even defines
number sense as the understanding of the basic concept of
numbers (precise representation of small and approximation of
large numbers, counting skills, and simple numerical operations;
National Mathematics Advisory Panel, 2008) rather than of
magnitude per se. This example shows that skills related to
early number competencies are taken as proxies for innate
number abilities. To disambiguate these distinct concepts (early
number competence and magnitude processing), we conceive
of number sense as a pre-educational ability (following Berch,
2005) such as magnitude processing and estimation abilities.
This differentiation is crucial when interpreting contradictory
empirical findings and constitutes the starting point of our three-
factor account. For that reason, it is important to consider both
contributing factors (primary and secondary), as outlined below
for healthy arithmetic development.

Domain-Specific Abilities
There are several theoretical considerations on math
development. For example, von Aster and Shalev (2007)
suggest a four-step-model of numerical development from
discrete numerosity processing to abstract concepts of
magnitude. Therein, domain-specific subitizing is a precursor
of counting and subsequently for associating explicit symbolic
representations (number words and Arabic digits) with the
implicit number sense, culminating in the acquisition of a mental
representation of numbers that is spatially organized on a mental
number line. The model is based on the triple-code model of
number processing (Dehaene et al., 2003) and sketches key brain
structures for each developmental stage. Accordingly, there is
empirical evidence for brain maturation processes during math
learning with regard to structure (Zamarian et al., 2009), function
(Rapin, 2016), and connectivity (Moeller et al., 2015). Yet, being
explicitly formulated in the context of abnormal mathematical
development, the four-step model may not cover the entire
spectrum of developmental mechanisms in healthy children.
More comprehensive models such as LeFevre et al.’s (2010)
three-pathway model commonly schedule three precursors
for math development, consisting of domain-specific quantity
representation (including subitizing) and domain-general
linguistic skills as well as variable indices of spatial processing
(see Krajewski and Schneider, 2009; Cirino, 2011, for similar
approaches).

These models incorporate the domain-specific number sense
in distinct ways. Competing theories suggest either that ANS
and acquired mathematical skills depend on common domain-
general cognitive operations (Park and Brannon, 2014) or that
their neuronal representations directly overlap (Lindskog et al.,
2014), yet neither accounts for the diverse findings on the relation
between ANS and math so far (see Hyde et al., 2016). This
may result from the way that number sense and early number
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competence are defined and especially whether ANS is assigned
to one (e.g., Szücs and Myers, 2017) or the other (e.g., Jordan
et al., 2007).

While von Aster and Shalev (2007) define subitizing as an
innate ability that is required for counting (i.e., number sense as
we define it here), LeFevre et al.’s (2010) model treats magnitude
processing as being synonymous with early numeracy knowledge.
Moreover, in empirical studies, there is a tendency to collapse
over these competencies (e.g., Powell and Fuchs, 2012). We
believe that discrepant findings in the literature are contingent
upon these different conceptualizations. Correspondingly, when
operationalizing ANS as a proxy for number sense, only moderate
levels of correlation with mathematical skills were found in
adults (Chen and Li, 2014; Fazio et al., 2014) and in infants
(Bonny and Lourenco, 2013) when measured concordantly
(cross-sectional studies). Longitudinal studies further point to a
genuine causal involvement, as expertise in ANS predicts later
math growth (Libertus et al., 2013a). However, this relation
decreases with age (Bonny and Lourenco, 2013; Fazio et al.,
2014), hinting at a mediating role of the ANS. Thus, Libertus
et al. (2013a) found the ANS to work indirectly via early number
competencies, which then predict later math achievement.
Accordingly, ANS acuity impacts on early number competence
but not formal math skills (Libertus et al., 2013b), and the
predictive impact of symbolic quantity measures exceeds that
of non-symbolic scores (Sasanguie et al., 2012). This may also
apply to evidence in the literature that math growth and ANS are
apparently uncorrelated (Sasanguie et al., 2013; Szücs et al., 2014).
Accordingly, studies operationalizing domain-specific quantity
processing via early number competence report a stronger
correlation with later mathematical abilities (Jordan et al., 2007;
Chu and Geary, 2015). Indeed, Sasanguie et al. (2015) suggest a
binary magnitude system with separate modules for exact and
approximate quantities. Likewise, Kucian and Kaufmann’s (2009)
model of number representation for healthy math development
explicitly conceptualizes the increasing overlap between different
quantity representations with age. The model is in line with
the discussed findings as number becomes an abstract concept
detached from concrete number representations. Such novel
considerations are extensively discussed in a recent meta-
analysis taking into account developmental shifts as well as
different ANS operationalization measures (Schneider et al.,
2017).

In sum, domain-specific magnitude processing (i.e., number
sense) is at the heart of most contemporary models seeking to
explain developmental trajectories of mathematical processing.
Unfortunately, it remains a matter of debate whether magnitude
processing is indeed abstract with a dedicated domain-specific
module (see the discussion in Cohen Kadosh and Walsh,
2009). Novel conceptualizations of arithmetic development
are in need, and existing accounts lack a comprehensive
conceptualization that accounts for numerous discrepant
findings in the literature (LeFevre, 2016). The matter is further
complicated by the diverse influences of secondary precursors
that are not easily disambiguated from potential primary causes
(see Traeff et al., 2017 on this matter). Moreover, their relative
contributions seem to be accompanied by an age-dependent

shift. Evidence on domain-general skills will be addressed in the
following.

Domain-General Skills
While the previous paragraph stresses the importance of domain-
specific precursors for healthy math development, other studies
are devoted to the role of domain-general factors. Several early
general skills predict later school math longitudinally, including
visuospatial properties (Lauer and Lourenco, 2016; Verdine et al.,
2017), intelligence (Dumontheil and Klingberg, 2012; Hornung
et al., 2014), linguistic skills (Praet et al., 2013; Zhang et al.,
2014), executive control (Bull et al., 2008; Clark et al., 2013),
and working memory (LeFevre et al., 2013; Bailey et al., 2014;
but see Fuchs et al., 2006). While working memory span has
often been considered essential to math skill levels, this seems to
be content-specific. In fact, visuospatial rather than verbal WM
skills correlate with math achievement in healthy populations
(Clearman et al., 2017), whereas patients with DD show
stronger correlations with verbal WM (Mammarella et al., 2013).
Accordingly, Szücs (2016) identified type of WM impairment
(verbal and visuospatial) as contributing to the specific profile of
mathematic problems in DD patients. Moreover, the correlation
between WM and math may be stronger in children with
low number sense capabilities than healthy controls. Therefore,
differentiation between control groups and children with DD
is essential when examining domain-general factors. Thus,
Szücs et al. (2014) found no correlation between WM and
math performance in healthy children. A possible explanation
is given by the development of an arithmetic fact memory.
Healthy individuals may be able to use their number sense to
develop early number competencies (i.e., connections between
magnitude and numbers, basic arithmetic principles, etc.) as
a basis for an arithmetic fact memory. By contrast, children
with DD cannot profit from such automated processes, rather
relying on immature mental calculation strategies such as
counting. These in turn draw heavily on verbal WM capacities
(Alloway et al., 2006), probably leading to a stronger connection
between arithmetic and WM. Correspondingly, WM seems to
be especially important for more sophisticated math operations
such as subtraction (Caviola et al., 2014). Finger counting may
serve as a compensatory function to offload WM (Crollen et al.,
2011) and is frequently observed in DD (Attout and Majerus,
2015). Nonetheless, domain-specific abilities still contribute to
later math outcomes over and above general cognitive influences.
Thus, elementary and middle school addition both correlate
with early number comparison skills irrespective of working
memory, visuospatial skills, linguistic performance, and IQ
(Bailey et al., 2014). Moreover, early enumeration capacity
uniquely accounts for arithmetic achievement when controlling
for working memory and executive functions (Gray and Reeve,
2014). A recent meta-analysis further suggests that early number
competence but not WM predicts calculation performance in at-
risk children (Peng et al., 2016a). In addition, while math training
programs were found to have the largest effects on early number
competence, improving domain-general cognitive skills does not
seem to transfer to enhanced mathematical achievement (see
Raghubar and Barnes, 2017).
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Emphasizing the developmental nature of healthy
mathematical acquisition may help to reconcile these findings, as
both factors (domain-specific and domain-general) apparently
contribute to distinct aspects during math growth (Hornung
et al., 2014). As a synopsis of the presented considerations,
there are many influential factors on arithmetic acquisition:
age of participants may determine whether domain-specific or
domain-general performance predominantly correlates with
math achievement; test format (verbal and visual) may lead to
different results especially with respect to correlations with WM;
and sample type (healthy and DD) seems to lead to different
correlations due to distinct strategies. With this knowledge
in mind, the following paragraphs will point to domain-
specific and domain-general abnormalities during mathematical
development that may cause the disorder labeled DD.

DEVELOPMENTAL DYSCALCULIA

Nomenclature
So far, there is no unitary expression for DD, as it is
a complex disorder that may be associated with diverse
problems including low math performance, low counting skills,
weak arithmetic, struggles with calculation, or inabilities in
understanding mathematical procedures. Accordingly, synonyms
such as “persistent mathematical difficulties” (Morgan et al.,
2016), “mathematics learning disability” (Murphy et al., 2007),
or “mathematical difficulties” (Schwenk et al., 2017) may be
used to delineate profound (maybe innate) magnitude processing
from presumably acquired problem with arithmetic (see Morgan
et al., 2016). This diversity of expressions for the same basic
collection of symptom already indicates that there is neither
a unified concept of mathematical disorders nor a consistent
etiological explanation thereof. The term “mathematics learning
disability” stresses the role of domain-general operations in
learning mathematical proficiency and is predominantly applied
by opponents of an innate number sense problem (e.g., Rousselle
and Noël, 2007). By contrast, “mathematical difficulties” seem to
represent a severity-based expression, leaving open the possibility
for an innate as well as an acquired etiology.

The current version of the ICD-10 [International
Classification of Diseases; World Health Organization [WHO],
1992] classifies dyscalculia among the pervasive and specific
developmental disorders (chapter F8) as a specific developmental
disorder of scholastic skills (sub-chapter F81) as a mathematical
disorder (F81.2) with no further specification. The criteria
demand a discrepancy between a child’s intelligence level and a
standardized math test score as well as adequate mathematical
educational circumstances. By contrast, in the latest version of
the Diagnostic and Statistical Manual of Mental Disorders (5th
ed.; DSM–5; American Psychiatric Association, 2013), DD is
listed as specific learning disorder with impairment in mathematics
(315.1) and may be grounded on problems with the number
sense as well as with arithmetic fact retrieval, calculation, or
math reasoning. The release of the revised version ICD-11 is still
pending. It is to be expected that similar alterations with respect
to intelligence level and mathematical scores will be put forward.

In the following, we will summarize both well-established
and more recent positions on pathological math development
separately for potential domain-specific and domain-general
precursor abilities and integrate the gathered knowledge into a
more precise view on DD.

Presumable “Domain-Specific”
Symptoms Associated With DD
Developmental dyscalculia in children is characterized by
profound difficulties with various fields of mathematics,
including counting principles, transcoding between number
digits and number words, comprehension of number syntax,
numerical fact knowledge, and fact retrieval (Jordan et al.,
2003). A deficient number sense is most frequently related
to DD (according to Mazzocco and Thompson, 2005),
and correlations between ANS acuity and math proficiency
apparently exist prior to mathematical education (Mazzocco
et al., 2011; Libertus et al., 2013a) and ANS has a predictive
role for math performance in young children (Wong et al.,
2017). Analogous to evidence for healthy math development
(e.g., Bailey et al., 2014), numerical competence (commonly
considered to be domain-specific) of at-risk children uniquely
predicts math performance during elementary school even
when controlling for domain-general skills (Peng et al., 2016b).
By contrast, in adults, DD primarily reflects domain-general
fact retrieval deficits and weak phonological processing via
an impaired association between both (De Smedt and Boets,
2010).

Immature counting strategies in DD may be causally related
to deficient fact knowledge by hindering the build-up of
associations between arithmetic operations and solutions (Geary
et al., 2012). Similar findings highlight the importance of
progressing from procedure-based counting to memory-based
fact retrieval (De Visscher and Noël, 2016). Thus, patients with
DD are hypersensitive to interference from neighbor problems in
multiplication, posing an indirect negative effect by preventing
the successful storage of symbol-response associations in long-
term memory (De Visscher and Noël, 2016). Still, while children
with DD are particularly impaired in grasping the principle
of cardinality during counting (Rapin, 2016), which is also
predictive of counting in healthy arithmetic development (Moore
et al., 2016), the same skill seems to play only a minor role
in healthy children. They likewise fail to comprehend this
principle despite otherwise healthy mathematical development
(Kamawar et al., 2010). Kuhn et al. (2016) infer that DD
essentially reflects a deficit of specific precursor abilities that
healthy infants are endowed with even before learning arithmetic
or calculation (i.e., estimation, enumeration, and transcoding).
Longitudinal studies accordingly show that basic quantity-based
abilities including number naming, counting, and estimation are
stable predictors of arithmetic proficiency during the transition
from preschool to kindergarten (VanDerHeyden et al., 2006),
elementary school (Methe et al., 2008; Lembke and Foegen, 2009),
and high school (Siegler et al., 2012), independent of general
intelligence levels (Locuniak and Jordan, 2008). It is therefore
likely that quantity processing enables more sophisticated
mathematical manipulations. However, a recent meta-analysis
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found symbolic rather than non-symbolic quantity processing
measures to be related to low mathematical performance in
children with DD (Schwenk et al., 2017). This is in line with the
relative contributions of the number sense and of early number
competence for healthy arithmetic skills discussed above. The
shift from non-symbolic ANS to basic symbolic skills observed
in healthy children seems to be aberrant in DD. It is therefore
essential to consider supportive skills in contributing to abnormal
mathematical development as well. To meet this demand, the
following section is devoted to domain-general skills in the
context of low mathematical abilities.

Domain-General Deficits in DD
Apart from poor numerical abilities, low math performance
may also be grounded on malfunctioning supportive cognitive
operations. Longitudinal and cross-sectional studies repeatedly
identified performance differences between children with DD
and healthy controls in attention (Ashkenazi et al., 2009;
Swanson, 2011), executive functions (especially inhibitory
control; Swanson, 2012; Szücs et al., 2013), linguistic skills (as
mediator, see Jordan et al., 2015), intelligence (Geary et al., 2008;
but see Alloway, 2009), general processing speed (Geary, 2010;
Namkung and Fuchs, 2016), and visuospatial processing (Hanich
et al., 2001), especially with respect to short-term (Andersson,
2010) or working memory (Ashkenazi et al., 2013; Bugden
and Ansari, 2015). Yet evidence on their individual relative
contributions is inconclusive, and only few studies systematically
explored single cognitive factors in the context of DD (Morgan
et al., 2016).

As described initially, diverse skills such as language
(Zhang et al., 2014), attention (Morgan et al., 2016), and
intelligence (Geary and Moore, 2016) contribute to sophisticated
(i.e., healthy) math knowledge. However, findings on healthy
mathematical development have limited values for the etiology
of DD. Especially with regard to procedural knowledge, evidence
on DD is still in need. To our knowledge, only three studies
have specifically addressed calculation development (reflecting
procedural knowledge) in DD in comparison with healthy
controls using longitudinal data so far (according to Peng et al.,
2016b). Of these, Alloway (2009) found a correlation between
working memory (but not intelligence) and calculation, but
without controlling for other variables such as verbal skills
or executive functions. In a broader approach, Namkung and
Fuchs (2016) found processing speed and attention to predict
later calculation expertise in DD, whereas language skills did
not explain additional variance. The only study we identified
(Peng et al., 2016b) that addressed this matter with data
from elementary school (i.e., early math development) suggests
that

(a) processing speed (domain-general) and early number
competence predict mathematical growth in DD

(b) early number competence mediates the degree to which DD
persists at the end of elementary school

(c) children with DD and comorbid reading disorder
compensate their deficits using early number competence
rather than domain-general skills.

Peng et al. (2016b) also report independence between
linguistic skills and whole number math in DD. In contrast to
this finding, others suggest that linguistic deficits may be linked
with DD in school-aged children (Fuchs et al., 2006), paralleling
the relation between language and healthy math development.
Consequently, assuming a direct link between reading disorder
and DD – potentially with a causal relationship – is tempting.
Yet evidence in this field is contradictory, as longitudinal positive
correlations between both clinical samples (Jordan et al., 2002)
stand against contrary findings (Andersson, 2010). Moreover, a
potentially underlying impact of linguistic deficits on arithmetic
fact retrieval in DD (according to Simmons and Singleton, 2008)
could not be substantiated unequivocally (e.g., Geary et al., 2012).

This list of deficits associated with DD is far from
complete and demonstrates how intricate it is to interpret
low math performance in the broader context of mathematical
development, especially when compared to healthy children and
adult mathematics. This discrepancy stresses the importance of
a multifactorial approach in the etiology of DD. In the next
sections, we will outline opposing viewpoints in the literature
with regard to the question whether abnormal mathematical
development is necessarily caused by an underdeveloped number
sense and will show how a finer distinction between different
precursors for distinct DD subtypes can reconcile ambiguous
study results.

Heterogeneity in DD
In light of the above findings, it appears that the precursors
for successful math development differ from those abilities
frequently impaired in DD. Healthy math skills are likely to
be continuously distributed, whereas DD constitutes profound
deficits distinct from the low end of this continuum (see
Desoete et al., 2012). Indeed, whereas healthy math performance
scores are highly variable from preschool to elementary school
(Geary et al., 2000) and persistent interindividual differences
only emerge at grade 2 (Jordan et al., 2003), possibly based
on changing strategies (Aunola et al., 2013), DD is stable
over time (Andersson, 2010). The most obvious demarcation
between healthy math development and DD is evident when
considering that low initial numerical competence in elementary
school is often not clinically significant in follow-up tests
anymore (Desoete et al., 2012). Obviously, manifold reasons
can account for weak performance in math tests and need
to be identified before erroneously diagnosing DD (see
Kaufmann et al., 2013 for a discussion). Nonetheless, growth of
mathematical proficiency depends decisively on an individual’s
initial numerical competence even before school (Jordan et al.,
2009), suggesting that mathematical cognition may be less
unitary than conceptualized in many studies (see Dowker, 2008
on individual differences).

Unfortunately, research so far lacks insight into early
developmental influences of deficient precursors specifically in
DD, because most studies either address later developmental
stages (elementary school) or apply cross-sectional study designs
impeding a proper analysis of causal influences (see Peng et al.,
2016b). However, children’s age represents a major contributing
factor to the causes of DD and correlations with other skills.
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Thus, certain precursors are only transiently related to DD
(Knievel et al., 2011), and despite the fundamental role of the so-
called number sense, domain-general influences must be taken
into account to differentiate between DD profiles (Szücs, 2016).
For example, domain-general visuospatial (Passolunghi et al.,
2008) and decoding skills (Peng et al., 2016b) contribute to
arithmetic acquisition but not later math proficiency. Likewise,
the predictive role of the ANS decreases with age (Szkudlarek
and Brannon, 2017), and while early number competency
emerge as an initial predictor, domain-general skills gain more
importance through arithmetic development (Geary et al., 2017).
Failing to control for such transitory effects may in turn result
in contradicting findings such that children with DD can
demonstrate age-adequate domain-specific number processing
competence. Accordingly, children diagnosed with DD in grade
2 showed comparable number processing profiles compared
with a control group in grade 4 (Landerl and Kölle, 2009).
Data from Fuchs et al. (2010) suggest that it is crucial to be
cautious about the manifest variables chosen to operationalize
DD. In that study, only mathematical word problem skills varied
with basic numerical abilities, whereas calculation performance
did not correlate with other domain-general or domain-specific
variables (Fuchs et al., 2010). Neuroimaging findings suggest
that the bilateral inferior parietal lobule executes domain-
specific magnitude processing (Dehaene et al., 2003) and
exhibits disparities in DD (Mórocz et al., 2012). However, the
same structure is also engaged in domain-general skills that
contribute to arithmetic, like working memory (Dumontheil
and Klingberg, 2012), attention (Vandenberghe et al., 2012),
and spatial processing (Yang et al., 2012). This emphasizes the
diversity of DD profiles and leads to an important question raised
in the literature about the etiology of distinct DD subtypes (see
Andersson and Östergren, 2012 for a review).

Etiology and Subtypes
In the last decades of DD research, four distinct classes of
theories have emerged (according to Castro-Canizares et al.,
2009). The first suggests that a domain-specific number sense
deficit underlies DD, either for approximate and analogous
quantities (number sense deficit, Wilson and Dehaene, 2007) or
for exact and discrete representations thereof (defective number
module, Butterworth, 2005a).

Alternatively, DD may stem from poor access to quantity
information, i.e., an aberrant communication between brain
regions devoted to magnitude and its symbolic representation
(access deficit, Rousselle and Noël, 2007).

The third class proposes a generalized magnitude system in
the brain (comprising both exact and abstract quantities and
extending to numbers, time, and space) that is malfunctioning
in persons with DD (a theory of magnitude, Cohen Kadosh et al.,
2008).

Finally, a forth class of theories identifies a causal relation
between mal-efficient domain-general factors and DD symptoms
(cognitive deficits, Geary et al., 2007).

At the interface of these accounts, double deficit
theories assume that deficits of multiple neuropsychological
abilities contribute to learning disabilities in general

(Wolf and Bowers, 1999). However, there are no consistent
findings in the literature. Accordingly, whereas rapid
automatized naming of digits and phonological awareness
did not predict DD in a previous study (Heikkilä et al., 2016),
another study found similar operations (processing speed and
verbal comprehension) to correlate with DD symptoms (Willcutt
et al., 2013). Moreover, low performance in number comparison
tasks is inconclusive with regard to the underlying deficit,
because while this problem may stem from a defective innate
number processing system (Butterworth, 2005b), an alternative
explanation is a deficit in accessing this module (Rousselle and
Noël, 2007). Instead, distance and problem size effects may be
more informative, as they typically alleviate with development
(Holloway and Ansari, 2008) and may be underdeveloped
in DD (Skagerlund and Traff, 2016). In addition, there are
hardly any physiological findings to support the domain-specific
theory on DD (Szücs, 2016). In fact, there is evidence that both
domain-general skills and domain-specific abilities represent
superordinate predictors of DD (Toll et al., 2016) that are
sensitive to training programs (Kuhn and Holling, 2014).
Possible reasons may be a potential dependency of number
sense performance on WM during early arithmetic development
(Vandervert, 2017) or the fact that tests of ANS (representing
the number sense) often cannot disentangle perceptual factors
drawing on WM from actual numerical skills (Bugden and
Ansari, 2015).

The multitude of DD profiles may actually be grounded on
separate (and potentially overlapping) etiologies (e.g., Kucian
and von Aster, 2015; Skagerlund and Traff, 2016) reflected
at first sight in common deficits in arithmetic performance.
Thus, the above classes of hypotheses potentially apply
to distinct DD phenotypes and consequently to different
underlying causes: whereas a “defective module” (Butterworth,
2005a) or deficient “number sense” (Wilson and Dehaene,
2007) implies that abnormal mathematical development
results from an immature magnitude representation; the
latter is intact according to the “access deficit” theory (Noël
and Rousselle, 2011), which centers on problems retrieving
numerosity from symbolic representations (Rousselle and
Noël, 2007). Therefore, distinct theories can co-exist and need
not be mutually exclusive when more closely investigating
the underlying deficits and their operationalization. In
the following, we will show that a finer separation of
domain-specific deficits dissolves several related issues in
DD research.

A Novel Concept of DD Typology
We suggest that properly characterizing arithmetic development
and DD require three factors – as opposed to two in the
literature (see Figure 1). Factors 1 and 2 have previously
been described. The domain-specific number sense (F1) likely
represents the foundation on which arithmetic development
rests. During formal math education, various domain-general
skills (F2) assist in linking abstract numerosity with symbolic
number representations, analogous to a scaffold. The resultant
early number competence (F3) comprises tools that are involved
in arithmetic operations.
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FIGURE 1 | Schematic illustration of the proposed three-factor model. Putative innate skills as well as supporting abilities both contribute to the acquisition of early
number competencies required for successful arithmetic.

DD may be caused by different underlying deficits: analogous
to a house construction, either the foundation itself is
underdeveloped (F1), making it necessary to resort to domain-
general skills as a scaffold (F2), which is less stable when lacking
a proper foundation. But in other cases of DD, there are low-
level domain-general skills such as working memory: despite
an even foundation, an instable scaffold leads to an unsteady
house. Third, if the link between non-symbolic and symbolic
representations of number (F3) cannot be established, this is
analogous to a craftsman using broken tools.

The empirical findings we outlined above are transferable to
our three-factor account. Some children with DD show deficits
hinting at a poor foundation (magnitude processing; F1), whereas
other DD profiles rather accord with low scaffolding support (e.g.,
working memory or processing speed; F2). While this distinction
is well established (Andersson and Östergren, 2012), our view on
arithmetic development provides a novel approach to different
DD patterns because it highlights the fact that math deficits
may be present despite healthy domain-general and domain-
specific skills. Crucially, early number competence (F3) is often
subsumed under what we consider to be domain-specific skills
(F1; as outlined above). By dissociating these two qualitatively
different forms of cognition, future studies may succeed
in disambiguating DD subtypes. In addition, contradictions
between past studies are likely the cause of misconceptions of
what a number sense is and what it is not, and distinct correlation
patterns between ANS and formal (fact knowledge) compared
with informal math (counting) yield empirical support showing
a high face validity of this proposed concept (Libertus et al.,
2013b). Thus, following Kolkman et al. (2013), domain-specific
number sense (F1) primarily assists in establishing a successful
mapping between magnitude and symbolic representations, i.e.,
prior to and during early arithmetic acquisition, for which there
is empirical support (Inglis et al., 2011). These considerations are

in line with the developmental model of number representation
(Kucian and Kaufmann, 2009) introduced previously: while this
descriptive model poses a solution for developmental changes
observed with increasing arithmetic education, our three-factor
account delivers a causal explanation for discrepant findings
not only longitudinally (i.e., between different age groups) but
also between conceptually different study designs within age
groups. That transition appears to rely on domain-general skills
(according to Namkung and Fuchs, 2016). Similarly, Hornung
et al. (2014) postulate that early number competence in infants
results from interacting basic quantity skills with domain-general
abilities. We suggest that DD theories centered on domain-
general deficits are primarily applicable to arithmetic acquisition
and may therefore be considered valid especially in accounting
for the high variability between age groups both in healthy
and in clinical samples (see the discussion in Kaufmann et al.,
2013).

Evidence for a third influencing factor (F3) comes from
studies hinting at maleficent white matter tracts associated with
poor math skills. Both interhemispheric fiber tracts between the
IPL (representing the number sense, Cantlon et al., 2011) and
intrahemispheric associations between IPL and angular gyrus
could be verified (Klein et al., 2013).

Furthermore, the three-factor idea helps reconciling extreme
positions of magnitude-based arithmetic vs. direct symbolic
activation. The latter is assumed in the “encoding-complex
model” (Campbell and Clark, 1988), which neglects domain-
specific magnitude representations due to direct activation of
numerosity based on parallel relative contributions of number
representations. Thus, the foundation of early numerosity
(F1) may seemingly become obsolete because studies often
test early number competence (number acuity) with symbolic
representations (F3). Indeed, recent findings hint at bidirectional
correlations between number acuity (F3) and math skills (Lyons
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et al., 2012). While at first sight, this seems to contradict the
assumed innateness of number sense processing (F1), it indeed
strengthens our stance of a third independent factor of number
acuity that was conceptualized as number sense in Lyons et al.
(2012).

In addition, our account is sensitive to developmental shifts
and therefore provides a high degree of flexibility. Future research
should more clearly distinguish between the different concepts
in order to differentiate between DD that is based on deficits
with early numerosity from innate magnitude problems. Thus,
Kaufmann et al. (2013) coined the expression secondary DD for
low mathematical skills determined or even caused by low non-
numerical cognitive skills. The matter is further complicated
by findings that ANS (as a proxy for magnitude) and school-
based math are reciprocally related (e.g., Nys et al., 2013; but
see Zebian and Ansari, 2012) and that mathematical education
impacts on ANS (Piazza et al., 2013; Lindskog et al., 2014).
While such results question the assumed innateness of magnitude
processing, they likewise provide implications for interventions.
If numerosity (in terms of early number competence) turns out to
be trainable, low-performing infants should be identified already
before formal schooling and participate in specific training
programs. Thus far, positive outcomes of such trainings on
number acuity (e.g., Nys et al., 2013; Park and Brannon, 2013)
could not be established beyond doubt (e.g., Zebian and Ansari,
2012; Obersteiner et al., 2013; see Szücs and Myers, 2017 for a
review).

LIMITATIONS

The articles on DD discussed in the present review are
heterogeneous with respect to many aspects impacting on
the study results. In the following, we will briefly outline
the associated approaches and identify potential strengths and
weaknesses:

Design Considerations
Group Contrasts (Children With/Without DD)
These studies contrast children with DD and healthy age-
matched controls with respect to various variables of interest
(e.g., mathematical precursors; working memory; and language)
and investigate the variance between both samples that each
explains. While most efficient in terms of temporal and
economic matters, such analyses provide little transferable
information (small samples) and no basis to characterize putative
causal relationships about developmental trajectories. For these
purposes, cross-sectional and longitudinal studies are the means
of choice.

Cross-Sectional vs. Longitudinal Studies
Both study types serve to reveal potential developmental
processes. Cross-sectional studies offer a time-economic way to
compare different developmental stages with each other but do
not enable predictions about causal relations between possible
precursor skills and later math achievements, in contrast to
longitudinal studies.

Methodological Considerations
Choice of Independent Variables
Another important issue concerns the choice of cognitive
functions representing putative precursors and supportive skills
for successful arithmetic development. Studies often either
investigate domain-specific abilities (Chen and Li, 2014; Fazio
et al., 2014) or domain-general skills (LeFevre et al., 2013; Bailey
et al., 2014), even though controlling for one factor in the
context of another or directly contrasting both (multidimensional
approach, see Szücs, 2016) may deliver a more comprehensive
insight (Aunola et al., 2004). In addition, studies concentrating
on one category (i.e., specific or general) often fail to take into
account a sufficient amount of associated factors.

Choice of Dependent Variables
There is no unitary operationalization of math proficiency
or achievement, nor are age and school-based development
adequately accounted for. As a result, heterogeneous constructs
such as number system knowledge (Sowinski et al., 2015), timed
math (Sasanguie et al., 2013), mental calculation(Reeve et al.,
2015), standardized math test scores (Chang et al., 2015), or
arithmetic fluency (LeFevre et al., 2013) exist for the same overall
latent variable termed math proficiency.

Considerations on Sample Criteria
Developmental Trajectories
Irrespective of study design, the classification and comparability
of participant sub-groups impact on the associated gain of
knowledge. In arithmetic research, longitudinal studies often
attend healthy children during the transition from kindergarten
to preschool or primary school, thus allowing predictions about
regular mathematical proficiency (e.g., VanDerHeyden et al.,
2006; Lembke and Foegen, 2009; Siegler et al., 2012). However,
the informational value in terms of developmental trajectories
of mathematical disorders is limited. Consequently, longitudinal
studies on children with low initial number processing abilities
(number sense) and potential struggles arising with symbolic
representations thereof (transcoding) are more suitable. For this,
screening instruments are required that test preschoolers on
non-symbolic number processing (e.g., mental number line or
non-symbolic quantity estimation tests).

DD Definitions and Diagnostic (Cut-Off) Criteria
As with math proficiency, the criteria required to sort children
into DD (sub)groups are equally inconsistent (see Murphy
et al., 2007 for a review). Some studies use the term “persistent
mathematical difficulties” to dissociate putative genuine DD from
mild and potentially transitional numerical difficulties (Morgan
et al., 2016), whereas others collapse over these categories (e.g.,
Murphy et al., 2007). Furthermore, studies seldom take into
account ICD-10 diagnostic criteria for DD, and the associated
cut-off criteria are commonly weakened, ranging from the
10th to the 35th percentile (Mazzocco and Thompson, 2005).
Thus, qualitative differences between persistent and transient
arithmetic weaknesses (Mazzocco and Myers, 2003) impede the
comparability between study samples that are based on moderate
(e.g., Jordan et al., 2003; Geary, 2004) or low math achievement
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scores (Mazzocco et al., 2011). Besides, reporting comorbid
deficits is no established practice, even though these pose
additional and fundamental developmental challenges (Szücs,
2016). In addition, concerns have been raised in the past due
to the conceptual overlap between mathematical tests with IQ
subtests. As a recent advance, the discrepancy criterion was
abolished in the United States in 2013 (Schulte-Körne, 2014).
DD research mainly relies on convenience samples (often school
samples) where standardized IQ indices are not reported at all,
or otherwise intelligence level was included as a domain-general
regressor. In this respect, weakening the diagnostic criteria as
frequently done in DD studies may be advantageous. However,
lowering the required discrepancy between participants’ math
test score and their age-based reference group may be more
problematic. Assuming that math skills are dimensionally
distributed, this approach may falsely sort healthy low performers
into the group of DD patients. This matter is further complicated
by the ambiguous definition of DD and potential subgroups.

Considerations on Selected Studies
The present article should not be misunderstood as a systematic
or exhaustive review nor does it make the claim to cover all
relevant open questions about DD. The choice of studies is
selective and we may not have covered all relevant viewpoints
or theories on the related issues. Rather, we wish to point to
one essential gap in the approach to research in this field. By
drawing attention to the ambiguous conceptualization of “the
number sense,” we hope to initiate a finer distinction between
the discussed abilities/skills in shaping arithmetic sophistication.
This may provide new ways of interpreting study results and help
reconciling discrepant findings.

In sum, the available studies on DD and math development
are confounded with many influential factors. This article
served to sensitize researchers in this matter by contrasting
evidence and standpoints in the literature from many angles.

We complemented these considerations by introducing a
novel approach that equally applies to the interpretation of
contradictory study results as to the classification of DD subtypes.
Thereby, we wished to close this gap and answer some of the
questions that follow when looking at individual study results.

OUTLOOK

In order to differentiate between genuine DD and low
math abilities, individual developmental trajectories should
be considered in the context of various contributing skills.
This idea is pressing given the broad field of domain-
general and domain-specific precursors that each demonstrates
interindividual differences. Disentangling low but healthy math
performance from clinically relevant and persistent DD is
essential and requires multilevel diagnostic instruments. These
in turn depend on the identification of unique precursors of DD
that should be screened early on in preschool. For that purpose,
future studies are needed that address math development prior
to formal mathematical education. As for now, the majority
of studies examined school-aged samples, i.e., after having
acquired the basic concepts of arithmetic. So far, findings on
early number competence (before kindergarten) are still lacking
(Morgan et al., 2016). Such studies would help to further
disentangle innate abilities (F1) from acquired numerical skills
(F3). Furthermore, contradictions between existing studies can
possibly be reconciled in a meta-analysis when introducing our
three-factor approach.
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Many children show negative emotions related to mathematics and some even develop

mathematics anxiety. The present study focused on the relation between negative

emotions and arithmetical performance in children with and without developmental

dyscalculia (DD) using an affective priming task. Previous findings suggested that

arithmetic performance is influenced if an affective prime precedes the presentation

of an arithmetic problem. In children with DD specifically, responses to arithmetic

operations are supposed to be facilitated by both negative and mathematics-related

primes (=negative math priming effect).We investigated mathematical performance,

math anxiety, and the domain-general abilities of 172 primary school children (76 with

DD and 96 controls). All participants also underwent an affective priming task which

consisted of the decision whether a simple arithmetic operation (addition or subtraction)

that was preceded by a prime (positive/negative/neutral or mathematics-related) was

true or false. Our findings did not reveal a negative math priming effect in children

with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the

negative math priming effect could not be replicated. However, children with DD showed

more math anxiety when explicitly assessed by a specific math anxiety interview and

showed lower mathematical performance compared to controls. Moreover, math anxiety

was equally present in boys and girls, even in the earliest stages of schooling, and

interfered negatively with performance. In conclusion, mathematics is often associated

with negative emotions that can be manifested in specific math anxiety, particularly in

children with DD. Importantly, present findings suggest that in the assessed age group,

it is more reliable to judge math anxiety and investigate its effects on mathematical

performance explicitly by adequate questionnaires than by an affective math priming

task.

Keywords: developmental dyscalculia, mathematics, affective priming, calculation, arithmetic, anxiety, gender,

children
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INTRODUCTION

Mathematical skills are vital for everyday life and deficits
in mathematical performance have negative effects in many
domains like education, profession and daily routine. It is
commonly known thatmany children have negative attitudes and
emotions toward mathematics (Dowker et al., 2016). In some
children the negative emotions toward mathematics may evoke
severe anxiety, and as a consequence, these children often avoid
mathematical activities.

The literature has proposed different definitions of
mathematics anxiety, however, common to most is the
observation that dealing with mathematics may evoke a negative
emotional response in some people (Suárez-Pellicioni et al.,
2016). Mathematics anxiety involves feelings of tension and
interferes with mathematical performance (Dowker et al., 2016).
Mathematics anxiety is certainly a significant problem that
appears to increase with age during childhood. According to
the Organization for Economic Co-operation and Development
(OECD), 31% of 15-year-old students reported feeling nervous
when solving a math problem and as many as 59% indicated
that they were worried about math classes (OECD, 2013). Apart
from aspects like gender, age and culture affecting mathematics
anxiety, research has shown that emotional factors, such as
general anxiety or self-esteem play an important role too
(Orly Rubinsten and Tannock, 2010; Dowker et al., 2016).
Environmental and genetic factors have also been discussed.
As associations between mathematics anxiety and achievement
have been validated, it is assumed that children with learning
disabilities in mathematics show higher levels of mathematics
anxiety (Wu et al., 2014). Hence, children suffering from math
learning disorders, such as developmental dyscalculia (DD), are
of particular interest when investigating these relations. With
a prevalence rate of between 3 and 6%, children suffering from
DD are clearly not a rare exception (Shalev et al., 2000). DD
is a heterogeneous learning impairment affecting numerical
and/or arithmetic functioning on the behavioral, psychological
and neuronal levels (reviewed by Kucian and von Aster, 2015).
Hereditary and environmental factors are presumed to represent
possible causes, and children affected from DD report problems
with counting, magnitude processing, arithmetic but also more
general competences such as working memory or attentional
processes. Furthermore, children with DD often suffer from
additional psychiatric disorders like depression or anxieties.
Anxiety is especially present in the context of mathematics and
is associated with stress (reviewed by Dowker et al., 2016).

Despite their relatively high occurrence and significant
importance, comparatively little research has been conducted
on the interaction between low performance in mathematics
and negative emotions. The topic has received increasing
attention, yet much remains unexplained and contradictory
findings have been reported. Of particular interest is the relation
between cognitive abilities and emotional factors and attitudes in
mathematical performance (e.g., Dowker et al., 2012). However,
the direction of causation is undefined. On the one hand, it is
possible that having high mathematics anxiety leads to greater
avoidance tendencies in situations that involve mathematics,

resulting in less practice and hence lower achievement. On
the other hand, it is also plausible that poor mathematical
performance promotes mathematics anxiety. Moreover, working
memory capacity has been shown to be lower in highly math-
anxious subjects (e.g., Mammarella et al., 2015). Interestingly, the
authors reported that children with math anxiety are specifically
impaired in verbal working memory, whereas children with DD
showed specific deficits in visuospatial working memory. Hence,
children with math anxiety or with DD may fail in math due to
different underlying cognitive impairments in working memory.
Although it is unclear to what extent mathematics anxiety causes
mathematical difficulties or vice versa, there is conclusive proof
that math anxiety interferes with mathematical performance,
especially with tasks requiring working memory. The most
prominent theory explains this relationship by worrying intrusive
thoughts involved in math anxiety that consume attentional
working memory resources, such that fewer resources are
available for numerical cognition (reviewed by Suárez-Pellicioni
et al., 2016). Apart from the general lack of research, particularly
little is known about the relationship between mathematics
anxiety and performance in young children, as previous studies
mostly included older children, adolescents or adults. The
understanding of early development, however, is crucial in order
to prevent mathematics anxiety and negative emotions in the
context of mathematical performance (Wu et al., 2012).

One possible strategy for studying the link between
mathematical performance and emotions is by the use of
priming tasks. Priming tasks are implicit measures and assess
evaluations that are activated automatically after the presentation
of a stimulus (Krause et al., 2012). Hence, in priming paradigms,
resulting effects are mainly caused by response activation
processes (De Houwer et al., 2009). The type of priming
which is relevant in the context of mathematics anxiety is
affective priming, which, in accordance with standard priming
paradigms, consists of a stimulus (prime) and a response to
a target. Importantly, in affective priming tasks, the affective
relation between prime and target is manipulated since the
valence of the prime stimulus is either positive, negative or
neutral (Hermans et al., 1994). The idea in affective priming
tasks is that “participants are faster at evaluating a target stimulus
if a previously presented prime stimulus has the same valence
compared to a condition in which a prime stimulus of the
opposite valence is shown” (Werner and Rothermund, 2013,
p. 119). Hence, if the prime-target pair is of the same valence
(e.g., positive prime–positive target), processing is facilitated
and results in shorter reaction times, whereas if it is of different
valence (e.g., positive prime–negative target), processing is
inhibited and followed by longer reaction times (Hermans et al.,
1994).

Accordingly, to further elucidate the relationship between
arithmetic, emotions and low achievement, Rubinsten and
Tannock (2010) investigated the effects of mathematics anxiety
on numerical processing using a novel affective priming task.
Their task differed from that typically utilized in standard
affective priming procedures, in that not only positive, negative
and neutral primes but also mathematics-related ones were
included. The assumption was that this arithmetic-affective
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priming task acts as an indirect measure of mathematics anxiety.
The sample consisted of 23 participants (12 children with DD
and 11 control children) that were all above grade 4. Children
had to complete a priming task where a priming word was
followed by an arithmetic operation. They then had to indicate
whether the arithmetic operation was true or false. As mentioned
above, in priming tasks the priming word often cannot be
ignored by participants, which is why it interferes with arithmetic
performance. The priming words presented were either with
a positive, negative or neutral affect or with some relation to
mathematics. The arithmetic operations included were single-
digit additions, subtractions, multiplications or divisions. As
hypothesized, a direct link appeared between emotions (primes)
and the arithmetic operations, and this association was different
in children with DD and controls. Precisely, children with DD
responded faster when the preceding priming word was negative
or mathematics-related. This is in line with the assumption
of affective priming paradigms that if the prime-target pair is
of the same valence, processing is facilitated and hence faster.
This implies that for DD children, mathematics-related primes
are as negatively attributed as negative primes themselves. In
the control children a reversed pattern was observed since
mathematic related primes inhibited processing. Based on their
findings, Rubinsten and Tannock concluded that a negative math
priming effect exists in children with DD and that the arithmetic-
affective priming task could be used as an indirect measure of
mathematics anxiety in these children.

The current study aimed to reinvestigate the finding that
in children with DD mathematics-related and negative primes
have a similar effect on performance, particularly a facilitative
influence on arithmetical processing. This analogous influence of
negative affective and mathematics-related primes is henceforth
referred to as the negative math priming effect. To enable an in-
depth study of the relation between mathematics, emotions and
performance, a large number of children ranging in age from
7.3 to 11.3 years was examined by detailed neuropsychological
assessments and an adapted version of the priming task by
Rubinsten and Tannock (2010). Notably, in addition to the
indirect measure of mathematics anxiety, we also included
a direct measure, namely the Math-Anxiety-Interview (please
see section Cognitive assessments). Accordingly, the present
study addresses the above-mentioned general lack of research
in younger children and provides new insights into direct
and indirect measures of the relation between mathematical
performance and emotions.

MATERIALS AND METHODS

Subjects
A total of 183 children were recruited and their parents agreed
to participate. The aim was that approximately half of the
children had a diagnosis of DD and the other half with typical
development to achieve equally sized groups. Of the 183 children,
172 children (aged 7.3–11.3 years, mean 8.6 years, 69.8% female)
met the general inclusion criteria and hence comprised the final
study sample. 76 children (44.2%) further met the criteria for
DD, the other 96 children served as control children (CC) (see

also Table 1 for demographic and behavioral data). The children
were recruited in Germany (Berlin, Potsdam) and Switzerland
(Zurich).

General Inclusion/Exclusion Criteria
Of the originally 183 children, a total of 11 children (6%) were
excluded from the data analyses due to the following criteria:
Three children were excluded because their Intelligence Quotient
(IQ) was above 120. Seven children were excluded due to
psychiatric diagnoses. One child was excluded due to undefined
group membership (with mathematical performance T = 40.44,
see criteria for classification of DD).

Parents gave written consent and children received a voucher
for their participation. The study was approved by the local
ethics committee based on guidelines from the World Medical
Association’s Declaration of Helsinki (WMA, 2002).

Classification of DD
Classification of DD was based on the diagnostic criteria of
the DSM-V (APA, 2013): criterion (A) severe math problems
for more than 6 months; criterion (B) Low achievement
scores in one or more standardized mathematical tests (1–
2.5 SD below the population mean for age); criterion (C)
mathematical difficulties readily apparent in the early school
years; criterion (D) not attributable to intellectual disabilities
(IQ > 70), global developmental delay, hearing or vision
disorders, or neurological or motor disorders. In the present
study, mathematical performance was assessed in all children
by a careful selection of standardized neuropsychological tests
particularly designed for the clinical assessment of DD (for
detailed description see section Cognitive Assessments). To be
classified as having DD, the mean T-value of mathematical
performance had to be lower than 40 (<1 SD). In addition,
general intelligence had to be in the normal range (85 < IQ <

114, N = 173; or marginally above IQ 115–120, N = 7) with
no evidence of any psychiatric disease. According to DSM-V, the
discrepancy between mathematical performance and individual
IQ is not a requirement for diagnosis, nevertheless, 78% of
the DD children showed a discrepancy between mathematical
performance and IQ of more than one standard deviation (N =

59, mean discrepancy = 14.3 t-value), and 22% showed a lower
discrepancy between both measures (N = 17, mean discrepancy
= 7.1 t-value).

Cognitive Assessments
Intelligence
Estimated intelligence was measured by the mean of different IQ
subtests. Mean IQ of children recruited in Switzerland was based
on six subtests of the standardizedWechsler Intelligence Scale for
Children (WISC-IV) test battery (block design, similarities, digit
span, picture concepts, vocabulary, and arithmetic) (Petermann
and Petermann, 2007). The mean IQ of children recruited
in Germany was based on four subtests, including two of
the WISC-IV (block design, similarities) and two of the test
battery “Basisdiagnostik Umschriebener Entwicklungsstörungen
im Grundschulalter” (BUEGA) (Esser et al., 2008).
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TABLE 1 | Demographic and behavioral data of the sample.

Total DD CC Statistics

Subjects (N) 172 76 96

Age (years) M (SD) 8.59 (0.95) 9.04 (1.03) 8.23 (0.71) U = 1863.5, z = −5.51, p < 0.001

Gender (male/female) 52/120 22/54 30/66 χ
2(1,N = 172) = 0.11, n.s.

Intelligence (IQ)a M (SD) 101.06 (7.69) 96.53 (5.73) 104.65 (7.16) U = 1402.5, z = −6.92, p < 0.001

Mathematical performance (T )b M (SD) 43.83 (9.39) 34.99 (3.65) 50.83 (6.00) U < 0.001, z = −11.25, p < 0.001

Math anxiety (intensity)c M (SD) 3.24 (2.52) 4.37 (2.41) 2.35 (2.24) U = 1909, z = −5.37, p < 0.001

Arithmetic fluency (T)d M (SD) 41.60 (10.13) 33.35 (5.71) 48.13 (7.84) t(169) = 14.29, p < 0.001

Addition (% correct)e M (SD) 81.66 (20.72) 68.31 (23.65) 92.30 (8.53) U = 1058, z = −7.30, p < 0.001

Subtraction (% correct)e M (SD) 71.53 (23.57) 54.51 (22.76) 85.11 (13.08) U = 812.5, z = −8.09, p < 0.001

Number line (% deviation)e M (SD) 4.73 (2.64) 5.77 (3.03) 3.91 (1.92) U = 1977, z = −4.06, p < 0.001

Number line (T )f M (SD) 55.95 (14.65) 47.19 (12.71) 62.87 (12.2) U = 1226, z = −7.47, p < 0.001

Working memory (items)g M (SD) 4.05 (1.65) 3.77 (1.58) 4.28 (1.68) U = 3184.5, z = −1.12, n.s.

aMean IQ based on 4 subtests [verbal IQ and matrices test of BUEGA, block design and similarities subtest of WISC-IV (n = 153)], or based on 6 subtests of the WISC-IV [block design,

similarities, digit span, picture concepts, vocabulary, arithmetic (n = 19)].
bMean mathematical performance based on 4 subtests (addition and subtraction of HRT, Zahlenstrahl II of ZAREKI-R, Rechentest of BUEGA) (n = 153)], or based on addition and

subtraction of HRT and ZAREKI-R (n = 19) in T-values.
cMean intensity of math anxiety assessed by the math anxiety interview (MAI); 0 = no math anxiety, 10 = very high math anxiety.
dMean of addition and subtraction of the HRT in T-values.
eBased on number line task. The percentage of correctly solved addition or subtraction problems are listed. Moreover, the percentage of the deviation between the exact location on

the number line and the marked location of the child is indicated.
fBased on subtests number line I and II of ZAREKI-R in T-values.
gBased on maximum number of correctly recalled items of the Corsi-Suppression test.

Mathematical Performance
The main mathematical and numerical performance for children
recruited in Switzerland was assessed using the two subtests
of the Heidelberger Rechentest (HRT) (addition, subtraction)
(Haffner et al., 2005) and the standardized Neuropsychological
Test Battery for Number Processing and Calculation in Children
(ZAREKI-R) (von Aster et al., 2006). This neuropsychological
battery examines basic skills in calculation and arithmetic and
aims to identify and characterize the profile of mathematical
abilities in children with DD from the 1st to 4th grade level. It is
composed of 11 subtests, such as reverse counting, subtraction,
number reading, dictating, visual estimation of quantities, and
digit span forward and backward. Mean number processing for
children recruited in Germany was assessed using four subtests,
namely two of the Heidelberger Rechentest (HRT) (addition,
subtraction) (Haffner et al., 2005), the number line task II of
the ZAREKI-R and the calculation test of the BUEGA (Esser
et al., 2008). The calculation test of the BUEGA evaluates by
text problems, which are illustrated in pictures, the knowledge of
number comparisons, magnitudes, sizes, and the understanding
and use of the four basic arithmetical operations. Criteria for
DD for both Swiss and German children were met if a child’s
performance was below a mean T-value of 40.

Mathematics Anxiety
Mathematics anxiety was assessed by the Math-Anxiety-
Interview for German speaking primary school children (MAI),
which is a valid and reliable measure for the assessment of
math anxiety as demonstrated by a Cronbach’s alpha of 0.90
(Kohn et al., 2013). The MAI combines two different types of
questions while four math related situations are verbally and

pictorially presented (1st on the eve of a math test, 2nd math
homework, 3rd math class, and 4th everyday/shopping). The
child is initially asked to rate the intensity of his or her anxiety
concerning the presented situation by an anxiety thermometer
from 0 to 10. In a second step, the different components of
anxiety (affective, cognitive, behavioral and physiological) are
explored. The child is asked to estimate, to what extent specific
statements apply to the particular situation, e.g., “I cannot
get a word out.” For the present study we have chosen the
mean math anxiety intensity associated with all four situations
which provides a valid and reliable measure from 0 = no
anxiety to 10 = very strong math anxiety in primary school
children.

Arithmetic Fluency
Arithmetic fluency was evaluated using the addition and
subtraction subtests of the Heidelberger Rechentest (HRT). In
this test, a list of 40 addition or subtraction tasks is presented
to the child and he/she is asked to solve as many problems as
possible within 2min.

Number Line Performance
The spatial representation of numbers was measured by a paper-
and-pencil number line task (Kucian et al., 2011). Children had
to indicate with a pencil on a left-to-right oriented number line
from 0 to 100 the location of 20 Arabic digits, the results of 20
additions and 20 subtractions, and the estimated number of 10
different dot arrays. The accuracy was measured by calculating
the percentage distance from the marked to the correct position
of the given number (=%deviation).Only the correctly calculated
addition and subtraction problems were included, but the
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percentage of correctly solved addition or subtraction trials was
also calculated.

Working Memory
Spatial working memory was assessed by the Block Suppression
Test (Beblo et al., 2004). This test is based on the CORSI-
Block Tapping test (Schellig, 1997) and requires the subject to
reproduce every second block in a given sequence of touched
cubes on a wooden board as the examiner demonstrated. While
the sequences gradually increase in length, the number of cubes
last tapped in two consecutively correct sequences is defined as
the maximum spatial working memory span.

Priming Task
To assess the affective effects of primes on calculation an
adapted version of the task developed by Rubinsten and Tannock
(2010) was used. It included four different types of primes
(words with either positive, negative or neutral affect and words
related to mathematics) and single-digit arithmetic problems
(additions and subtractions) served as targets. As illustrated in
Figure 1, each trial consisted of a prime presented aurally via
headphones followed by an arithmetical problem. Reaction time
in milliseconds was measured by the computer from the target
onset to the participant’s response. Each participant underwent
in total 80 trials.

The primes were comprised of 40 words, including 10 per
affective dimension (e.g., sun as a positive affective word, wood
as a neutral affective word, prison as a negative affective word
and count as a mathematic related word). The words were
selected from the “The Berlin Affective Word List Reloaded”
(BAWL-R), which contains a large set of psycholinguistic indexes
known to influence word processing, and also features ratings
of the emotional arousal, emotional valence and imageability
of each word (Võ et al., 2009). Since the word ratings of the
BAWL-R were based on ratings from 200 adults, we selected 61

FIGURE 1 | Paradigm. The paradigm consisted of a priming task including a

prime and a target. Primes were either positive, negative, neutral or

mathematics-related and were presented aurally while children focused on a

fixation star for 2 s. Then a subtraction or addition problem followed as the

target and children had to inadequate whether it was true or false by pressing

either button p or q on the keyboard. This presentation of the target was

self-paced with a maximum of 4 s. The trial ended with the presentation of a

blank screen for 1 s.

words, which were balanced for the number of letters, number
of syllables, type of word (noun, verb, adjective), and emotional
valence (positive, negative, neutral) or with mathematics related
content and had them re-evaluated by a group of children. In
total 123 children from the 2nd (N = 29), 3rd (N = 30), 4th
(N = 32), and 5th (N = 32) grade rated these words. They were
asked to indicate how they felt when they heard the word by
marking a five-stepped smiley scale from happy to sad smileys,
and to indicate if the word was related to mathematics, yes or
no. Obtained ratings were analyzed for all children, as well as for
each grade and for girls or boys separately. Consideration of these
findings led to the final word list that was used in the present
priming task. Please see Table S7 for a detailed description of the
words.

The arithmetic problems were presented in the form
“a ∗ b= c,” where a and b represent single digits from 1 to 9,
∗ represents an arithmetic operation (+ or –) and c represents
the solution, which also consisted of only one digit (e.g., 2 + 1 =
3 as a correct addition target). The type of arithmetic operation
(each prime was once followed by an addition and once by
a subtraction problem) and whether the problem was true or
false were balanced between affective dimensions of primes and
presented in a randomized order.

The present task differed from the original one of Rubinsten
and Tannock (2010) in the following aspects: We have simplified
the task by reducing the total number of trials from 160 to 80
by excluding multiplication and division arithmetic problems.
Furthermore, the maximal response latency was extended from
3,000 to 4,000ms. Moreover, we only included single digit
solutions. Whereas Rubinsten and Tannock presented the primes
visually in English, we presented the primes aurally in German.
These changes in the priming task were conducted to adapt the
paradigm to our younger cohort, consisting mostly of children
in grades 2 or 3, whereas subjects in the study of Rubinsten and
Tannock were in grades 4 or above.

Data Analyses
Data were analyzed by IBM SPSS Statistics Version 24 (IBM
SPSS Statistics for Windows, 2016). Raw data of the priming
task were extracted from E-Prime (E-Prime, 2002) and converted
into SPSS. First, all behavioral data were tested for normality
by the Kolmogorov-Smirnov test. If the data followed a normal
distribution, groups were compared by parametric independent-
sample t-tests. If data were not normally distributed, the
nonparametric Mann-Whitney U-test for two independent
samples was used. Nominal data (gender) was compared between
control children and the DD group with a chi-squared test.
P-values lower than 0.05 were considered statistically significant.
To evaluate the effects of the priming task a general linear model
analysis was conducted with RT as dependent variable. The 4
(type of prime: positive/negative/neutral/mathematics-related)×
2 (arithmetic operation: addition/subtraction) repeated measures
ANCOVA defined type of prime and arithmetic operation as
within-subject factors and group (CC/DD) as the between-
subject factor. Since DD and CC groups differed in age, age
was included as a covariate to exclude the possibility that group
differences might be based on age differences. Regarding IQ,
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it was expected that children with DD show a lower mean IQ
compared to typically achieving peers as IQ measures are not
fully independent from measures of math ability (Lambert and
Spinath, 2018). In our analyses, we decided not to match groups
on IQ, because one would have artificially influence the pattern
of the normal population of DD or CC children. Moreover, IQ
not to include as covariate in statistical analyses, which is in line
with the suggestion of Dennis et al. (2009), who state that it is
misguided and unjustified to attempt to control for IQ differences
for cognitive outcome. However, we repeated the all tests with
IQ and age as covariates showing that the main results did not
change.

RESULTS

Demographic and Behavioral Data
Findings of demographic and behavioral data are summarized
in Table 1. Statistical group comparisons indicated that children
with DD were significantly older compared to control children,
but groups did not differ in gender distribution. As expected,
children with DD performed worse in all mathematical tests
(addition and subtraction subtests of HRT, subtests of ZAREKI-
R, Rechentest of BUEGA, and number line task). Even though
all children had an IQ in the normal range, the IQ of the control
group was significantly higher. In visuospatial working memory,
no group differences were evident.

General findings regarding accuracy and reaction
time between groups (CC/DD) or between conditions
(addition/subtraction) are displayed in Table 2. For accuracy,
the group comparison revealed significant differences between
control and DD children in total accuracy and the accuracy of
addition or subtraction problems separately, such that control
children made significantly fewer errors. Furthermore, all
children showed a higher accuracy for addition compared to
subtraction (all children N = 172, Z = −5.29, p < 0.001; DD, N
= 76, Z =−3.56, p < 0.001; CC, N = 96, Z =−3.96, p < 0.001).
Results indicated that all participants were faster for addition
problems compared to subtraction problems [all children N =

172, t(170) = −4.96, p < 0.001; DD, N = 76, t(75) = −2.26, p <

0.05; CC, N = 96, t(94) = −4.62, p < 0.001], but no significant
differences between control children or dyscalculic children were
found (please see Table 2).

Affective Priming
To analyze potential negative math priming effects, a
repeated measures ANCOVA was used. The type of prime
(positive/negative/neutral/mathematics-related) and arithmetic
operation (addition/subtraction) were defined as within-subject
factors, group (CC/DD) was defined as the between-subject
factor and age as a confounding variable. The analysis revealed
no significant main effects for the type of prime [F(3, 157) = 1.087,
n.s.] or arithmetic operation [F(1, 159) = 0.149, n.s.]. However,
the interaction between type of prime and group reached
significance [F(3, 157) = 3.762, p = 0.012, η

2 = 0.067]. This
interaction was further analyzed with post-hoc tests separated
by group. As displayed in Figure 2 and Table 3, in the control
children, response latencies were significantly shorter for positive,

negative and neutral primes compared to mathematics-related
primes. In the dyscalculic children, response latencies were
significantly shorter for neutral than for positive, negative or
mathematics-related primes. Hence, neither control children
nor children with DD revealed a negative math priming effect as
reported by Rubinsten and Tannock (2010).

Although we found no main effect of arithmetic operation
in the present study, we also analyzed the effects of primes
separately for addition and subtraction problems to allow direct
comparison to the results of Rubinsten and Tannock (2010);
please see Supplementary Material 1. Affective priming split
by arithmetic operations, including Table S1). Similar to our
main findings, no effects of prime were found. Regarding the
arithmetic operation, reaction times (= dependent variable) were
further contrasted for the groups depending on the type of
prime. While in the control group significantly shorter response
latencies were found for addition than for subtraction across
all type of primes, in the DD group no significant differences
were evident. Please see Supplementary Material 2. Differences
between arithmetic operations split by primes, including
Table S2).

The entire analysis was also performed after only including
children who performed above chance level (mean accuracy
≥50%). Results of the repeated measures ANCOVA indicated
no significant main effects or interactions. However, it is
noteworthy that the interaction between type of prime and group
missed significance only narrowly [F(3, 142) = 2.654, p = 0.051,
η
2 = 0.053]. For a detailed description of the demographic

and behavioral data for this subgroup of children, please see
Supplementary Material 3. Data analyses for accuracy levels
above chance, including Table S3.

Gender Differences
In general, boys and girls tend to have different attitudes to
mathematics such that girls express more concern about their
mathematical performance (reviewed by Johns et al., 2005).
Previous reports that girls show more mathematics anxiety
(reviewed by Dowker et al., 2016), and that this math anxiety
had an effect on mathematical performance lead us to the
analyses of possible gender differences. Moreover and especially
with regard to the affective priming task, it is important to
note that gender differences have been reported in emotion
processing too (reviewed by Hamann, 2004). Hence, for a more
detailed understanding of possible gender differences in priming
effects, analyses were performed after splitting the control and
DD children into male and female subgroups. All results are
presented first for the control and then for the DD children.
For demographic and behavioral data please see Supplementary
Material 4. Gender differences, including Tables S4, S5. In sum,
control boys performed significantly better in arithmetic fluency,
whereas this pattern was reversed in the DD children, and DD
girls additionally performed better in working memory.

Boys and girls were then analyzed for priming effects. A
repeated measures ANOVA was used in which type of prime
(positive/negative/neutral/mathematics-related) and arithmetic
operation (addition/subtraction) were defined as within-subject
factors and gender as between-subject factor.
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TABLE 2 | General findings on accuracy and reaction time.

Total DD CC Statistics between groups

Subjects (N) 172 76 96

Accuracy (%)a M (SD) 72.71 (18.10) 66.33 (18.19) 77.76 (16.43) U = 2236, z = −4.36, p < 0.001

Accuracy addition (%)a M (SD) 75.23 (19.06) 69.47 (19.62) 79.79 (17.40) U = 2446.5, z = −3.71, p < 0.001

Accuracy subtraction (%)a M (SD) 70.23 (19.00) 63.29 (18.95) 75.72 (17.24) U = 2180, z = −4.53, p < 0.001

Reaction timeb (ms) M (SD) 2278.34 (492.26),

N = 169

2239.94 (544.05),

N = 75

2308.97 (447.30),

N = 94

t (142) = 0.89, n.s.

Reaction time additionsb (ms) M (SD) 2200.77 (412.23),

N = 172

2225.68 (420.53),

N = 76

2181.05 (406.67),

N = 96

t (170) = −0.70, n.s.

Reaction time subtractionsb (ms) M (SD) 2287.24 (393.14),

N = 171

2282.29 (384.45),

N = 76

2291.19 (401.95),

N = 95

t (169) = 0.15, n.s.

aMean accuracy of all 80 trials in %, or respectively of 40 trials for addition or subtraction.
bMean reaction time including only correct trials within the range of ± 2.5 SD from the conditional mean latency in milliseconds (ms), for all, or only addition or subtraction problems.

FIGURE 2 | Affective priming results. The figure presents mean RT for positive, neutral, negative and mathematics-related primes for control children (left) and DD

(right).

TABLE 3 | Reaction times (RT) as a function of the prime valence in control children (CC) and in children with developmental dyscalculia (DD).

Prime valence CC DD

RT difference (ms) df t p RT difference (ms) df t p

N Mean SD N Mean SD

Pos—Neg 93 −29.06 248.82 92 −1.13 n.s. 74 9.70 331.84 73 0.25 n.s.

Pos—Neutr 93 12.73 223.59 92 0.55 n.s. 73 83.41 270.05 72 2.64 <0.05

Pos—Math 93 −88.65 228.52 92 −3.74 < 0.001 74 4.82 291.79 73 0.14 n.s.

Neg—Neutr 93 41.79 263.03 92 1.53 n.s. 72 71.51 298.82 71 2.03 <0.05

Neg—Math 93 −59.58 257.92 92 −2.23 <0.05 73 −2.61 290.75 72 −0.08 n.s.

Neutr—Math 94 −94.35 250.39 93 −3.65 <0.001 72 −78.72 287.65 71 −2.32 <0.05

In control children, significant main effects for type of prime
[F(3, 88) = 7.977, p <0.001, η2 = 0.214] and arithmetic operation
[F(1, 90) = 27.888, p < 0.001, η

2 = 0.237] were found, but no
gender effects were observed. For post-hoc t-tests regarding prime
or operation please see Tables 2, 3. In dyscalculic children, the
repeated measures ANOVA revealed significant main effects for
type of prime [F(3,66) = 6.225, p = 0.001, η

2 = 0.221] and
operation [F(1,68) = 5.192, p = 0.026, η2 = 0.071], but again no
gender effects. Results of post-hoc tests for the effect of prime and
operation are summarized in Tables 2, 3.

Taken together, no gender effects were evident in DD or
control children and hence no gender-dependent negative math
priming effects were found.

Mathematics Anxiety
The analyses were also repeated after taking into account the
children’s level of mathematics anxiety, quantified through the
direct, explicit measure of the Math-Anxiety-Interview (please
see section Cognitive Assessments). This complements the
implicit measure of mathematics anxiety through the priming
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task. The math anxiety interview was performed because it is
known that mathematics anxiety has an impact on mathematical
performance (reviewed by Wu et al., 2014). Hence, the
performance in the task may not solely be influenced by the
affective priming, but also by the extent of children’s mathematics
anxiety. Two different analyses with regard to mathematics
anxiety were performed: firstly, a bivariate correlation was
calculated between the level of mathematics anxiety (MAI) and
the difference in reaction times between mathematics-related
and negative affective primes. This was in order to test whether
there exists a relationship between math anxiety and a possible
negative math priming effect. As both variables were not normally
distributed, a Spearman Correlation was carried out, which,
however, was not significant (rs=−0.057, N = 172, n.s.).

Secondly, to further analyse potential effects of mathematics
anxiety, the sample was split according to different levels of
mathematics anxiety (low vs. high). Hence, two new groups
were formed by selecting the 25% of children with the lowest
or highest MAI values, respectively. The lowest 25% of children
had a MAI-value of 0-1 and the highest 25% of children had
a MAI-value of 5.9-9.75. In order to avoid having to select
between children with the same MAI-value, all children with
the respective threshold value were included. That is the reason
why samples are not perfectly equal in size, resulting in a total
number of N = 46 in the low math anxious group and N=54
in the high math anxious group. Demographic and behavioral
data is included in the Supplementary Material 5. Mathematics
anxiety, Table S6. In summary, both groups were matched for
age and gender, but the high anxious subgroup included more
DD children (72% vs. 26%). Accordingly, the high anxious group
performed worse in different mathematical and general cognitive
tasks.

The two groups were then further analyzed for priming
effects of reaction time as the dependent variable. A
repeated measures ANCOVA was used with type of prime
(positive/negative/neutral/mathematics-related) and arithmetic
operation (addition/subtraction) as within-subject factors and
low vs. high mathematics anxiety as between-subject factor.
Group (CC/DD) was included as covariate to control for
unequal distribution of DD and control children in low vs.
high mathematics anxiety subgroups. The main effect of prime
[F(3, 88) = 3.695, p =0.015, η

2 = 0.112] and the interaction
between prime and group (low vs. high anxious) reached
significance [F(3, 88) = 3.389, p = 0.022, η2 = 0.104]. Hence, the
interaction was further investigated separately for the low and
high mathematics anxiety group.

As illustrated in Table 4, post-hoc tests showed that in the
low anxious children, response latencies were significantly shorter
for positive than for mathematics-related affective primes.
Furthermore, response latencies were significantly shorter for
neutral than for negative or math affective primes. In high
anxious children, no differences in response latencies to the
different primes were observed. In sum, no negative math priming
effects were evident for low or high anxious children. These
findings are comparable with the results when groups were split
by DD and CC, where the results of the low anxious children
reflect findings of CC group.

In addition to possible effects of math anxiety on priming,
we further investigated general characteristics of math anxiety
which were explicitly evaluated by the MAI. First, as listed
in Table 1, children with DD suffer more often from math
anxiety. Second, no gender differences were evident in CC (see
Table S4) or in DD (see Table S5). Third, Pearson correlation
between math anxiety and age revealed no relation between
both measures when including all subjects (r = 0.055, N
= 172, n.s.), however, in DD children a decrease of math
anxiety over development was found (r = −0.274, N =

76, p < 0.05), but not in CC (r = 0.030, N = 96, n.s.).
Finally, the relation between math anxiety and behavioral
measures was further investigated by Pearson correlations
(please see Table 5). Including all children, results indicated a
significant relation between math anxiety and IQ, mathematical
performance, arithmetic fluency, addition, subtraction, number
line performance, as well as working memory. In DD
children, math anxiety was significantly related to mathematical
performance, arithmetic fluency, addition, and subtraction. In
CC, math anxiety correlated significantly with mathematical
performance, arithmetic fluency, addition, subtraction, and
number line performance. All these relations demonstrate that
higher levels of math anxiety were associated with worse
performance.

DISCUSSION

Mathematics is often associated with negative attitudes and
emotions in children and adolescents. However, little is known
about the interactions between mathematical performance and
negative emotions. Hence, this research gap was addressed by
the present study. The aim was to elucidate the link between
mathematics anxiety, negative emotions, low performance and
deficiencies in mathematics abilities such as in children with DD.

To approach this question, an arithmetic-affective priming
task was used in which the influence of a prime stimulus
(positive/negative/neutral or mathematics-related) on a simple
arithmetic operation (addition/subtraction) was tested in 172
children between 7.3 and 11.3 years of age. Approximately half
of the children were diagnosed with DD.

Findings revealed, in line with our expectations, that all
children were faster and made less errors for addition problems
compared to subtraction. This is because subtractions often
need more decomposing into smaller sub-parts and moreover,
compared to additions, they are not commutative (e.g., 2 + 3 6=
3 – 2) (reviewed by Peters and De Smedt, 2017).

DD children performed worse in all mathematical tests and
showed higher levels of mathematics anxiety, which remained
significant when controlling for age, since the CC were slightly
younger than the DD children. This is important to note, as
it has been often been claimed, but so far only few studies
examined and corroborated the increased levels of mathematics
anxiety in subjects with disabilities in mathematics (Wu et al.,
2014). Moreover, children with DD often suffer from additional
psychiatric disorders like general anxieties (reviewed by Dowker
et al., 2016).

Frontiers in Psychology | www.frontiersin.org 8 April 2018 | Volume 9 | Article 26332

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kucian et al. Mathematical Performance and Emotions

TABLE 4 | Post-hoc tests for type of prime (prime valence) in low vs. high mathematics anxiety (MAI) children.

Prime valence Low MAI group High MAI group

RT difference (ms) df t p RT difference (ms) df t p

N Mean SD N Mean SD

Pos—Neg 44 −66.38 223.49 43 −1.97 n.s. 51 −5.09 342.77 50 −0.11 n.s.

Pos—Neutr 44 10.94 206.48 43 0.35 n.s. 50 40.32 291.76 49 0.98 n.s.

Pos—Math 44 −104.90 251.27 43 −2.77 <0.05 52 −20.08 330.45 51 −0.44 n.s.

Neg—Neutr 44 77.32 222.41 43 2.31 <0.05 49 41.90 296.25 48 0.99 n.s.

Neg—Math 44 −38.52 303.73 43 −0.84 n.s. 51 −24.84 302.90 50 −0.59 n.s.

Neutr—Math 44 −115.84 233.90 43 −3.29 <0.05 51 −60.80 320.37 50 −1.36 n.s.

TABLE 5 | Pearson’s correlation between math anxiety and behavioral measures.

Math anxiety (intensity)a

Total DD CC

Intelligence (IQ)b r = −0.329

p < 0.001

N = 172

r = −0.158

n.s.

N = 76

r = −0.150

n.s.

N = 96

Mathematical

performance (T )c
r = −0.508

p < 0.001

N = 172

r = −0.340

p < 0.01

N = 76

r = −0.368

p < 0.001

N = 96

Arithmetic fluency (T )d r = −0.523

p < 0.001

N = 172

r = −0.344

p < 0.01

N = 76

r = −0.395

p < 0.001

N = 96

Addition (% correct)e r = −0.531

p < 0.001

N = 160

r = −0.531

p < 0.001

N = 71

r = −0.267

p < 0.05

N = 89

Subtraction (%

correct)e
r = −0.542

p < 0.001

N = 160

r = −0.456

p < 0.001

N = 71

r = −0.393

p < 0.001

N = 89

Number line (%

deviation)e
r = 0.313

p < 0.001

N = 160

r = 0.196

n.s.

N = 71

r = 0.230

p < 0.05

N = 89

Number line (T )f r = −0.284

p < 0.001

N = 172

r = −0.071

n.s.

N = 76

r = −0.110

n.s.

N = 96

Working memory

(items)g
r = −0.218

p < 0.01

N = 169

r = −0.187

n.s.

N = 75

r = −0.163

n.s.

N = 94

aMean intensity of math anxiety assessed by the math anxiety interview (MAI); 0 = no

math anxiety, 10 = very high math anxiety.
bMean IQ based on 4 subtests [verbal IQ and matrices test of BUEGA, block design and

similarities subtest of WISC-IV (n = 153)], or based on 6 subtests of the WISC-IV [block

design, similarities, digit span, picture concepts, vocabulary, arithmetic (n = 19)].
cMean mathematical performance based on 4 subtests (addition and subtraction of HRT,

Zahlenstrahl II of ZAREKI-R, Rechentest of BUEGA) (n = 153), or based on addition and

subtraction of HRT and ZAREKI-R (n = 19) in T-values.
dMean of addition and subtraction of the HRT in T-values.
eBased on number line task. The percentage of correctly solved addition or subtraction

problems, and the percentage of the deviation between the exact location on the number

line and the marked location of the child.
fBased on subtests number line I and II of ZAREKI-R in T-values.
gBased on maximum number of correctly recalled items of the Corsi-Suppression test.

Regarding gender differences, our results indicated that girls
and boys of the CC or DD group experienced math anxiety
equally often. This is a promising result regarding the widely

discussed stereotype that females are expected to be worse in
math related topics and that females experience more math
anxiety. Our findings are consistent with research indicating
that countries providing equal education for females and males
show little or no gender differences in mathematical performance
(Spelke, 2005; Kohn et al., 2013). The reason why no gender
differences in math anxiety were evident might be due to
increasing evidence that such gender differences only develop
at adolescence as consequence of societal exposure to gender
stereotypes (e.g., Johns et al., 2005), or female teachers who
experience math anxiety themselves (Beilock et al., 2010). In
contrast, several studies report that younger children in primary
school do not exhibit gender differences in math anxiety (e.g.,
Dowker et al., 2012; Harari et al., 2013). Our findings are
consistent with these reports since the children in our study were
in primary school.

In general, studies suggest that math anxiety increases with
age (reviewed by Dowker et al., 2016). The present study rather
suggests that math anxiety is already present in 8-year old

children, which is consistent with reports suggesting that math
anxiety can be detected in the earliest stages of formal math

learning in school (Wu et al., 2012; Sorvo et al., 2017). In
addition, math anxiety in children with DD even seemed to

decrease over development, which might be a positive effect of
increased care, but would need specific investigation.

A large body of evidence confirms that math anxiety severely
interferes with math learning and performance, both because
math anxious people are more likely to avoid mathematical

activities and because math anxiety usurps working memory
resources (reviewed by Dowker et al., 2016). Similarly, the

present findings also revealed that children with increased math
anxiety performed worse in math related topics (mathematical

performance, arithmetic fluency, addition, subtraction, number

line performance), as well as, working memory. Since the
majority of our children with math anxiety belonged to the
DD group, the present findings are in line with the notion
that DD children show specific deficits in visuospatial working

memory, but it is not possible to further differentiate between
effects of math anxiety or DD on different working memory
profiles (Mammarella et al., 2015). Moreover, a significant
relationship between math anxiety and IQ was found. In terms
of domain-general abilities, it has been suggested that poor
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intellectual conditions (e.g., poor abstract thinking or poor
visuospatial skills) may contribute to the development of math
anxiety (reviewed by Suárez-Pellicioni et al., 2016). However,
the relation between math anxiety and IQ might also be a
result of the group composition in the present study and can
be rather attributed to the relation between math anxiety and
math performance, since within groups (DD or CC) no relation
between math anxiety and IQ was found.

With regard to priming effects however, the present data
did not corroborate results reported by Rubinsten and Tannock
(2010). Since no differences were found in reaction times
to positive or negative affective primes, no standard affective
priming effects were evident in control or DD children.
Furthermore, no negative math priming effect was found in
DD children. Thus, mathematics-related primes did not act
affectively related to targets. In the study by Sarkar et al. (2014),
the priming paradigm from Rubinsten and Tannock (2010) was
adopted, however, no mathematics-related words were included
and hence no direct comparison is possible between their results
and our main finding regarding the negative math priming
effect. Nevertheless, no significant effects of valence (positive or
negative primes) were found, which is in line with our finding of
absent standard priming effects.

In our analysis, no main effects of group, type of prime
or arithmetic operation were evident. However, we found
a significant interaction between type of prime and group,
indicating that the reaction to positive, negative, neutral and
mathematics-related primes is significantly different between DD
and control children.

Overall, our major result is that we did not find the
negative math priming effect observed by Rubinsten and Tannock
(2010). In contrast, our analysis showed that control children’s
responses were significantly faster after the presentation of a
positive, neutral or negative affective prime compared to a
mathematics-related one. DD children were significantly faster
after a neutral affective prime compared to a positive, negative or
a mathematics-related one. This implies that control children’s
performance was inhibited by mathematics-related primes but
was not affected differently by positive, neutral or negative
primes. In contrast, DD children’s performance was facilitated if
the presented prime was neutral. Taken together, mathematics-
related primes significantly interfered with processing the target
in control children, but not in the DD group.

In conclusion, control children showed better performance if
the prime had either an affective valence (positive or negative)
or no valence (neutral), but not if there was a relation to
mathematics. Thus, control children’s processing seemed to
be inhibited by mathematics-related primes. This might be a
consequence of incongruent prime-target pairs. For example,
if the mathematics-related prime word was “minus” and the
subsequent target was an addition, this conflict might have
disturbed processing in control children. It is implied that even
if the prime word is instructed to be ignored, it automatically
interferes with processing. This argument is supported by the
Stroop effect, in which an interference is shown when processing
an incongruent condition of font color and word meaning which
results in slower reaction times (Stroop, 1935). Similar effects

have been reported in the context of mathematics, hence called
the numerical Stroop effect, in which the physical size of the
presented number interferes with the judgment of actual number
size (e.g., Kaufmann et al., 2005). Accordingly, it seems plausible
that mathematics-related prime words could interfere with
subsequent calculation processes but only in control children.
Similarly, these congruity effects have been reported in healthy
participants, whereas they were not evident or much smaller
in subjects with DD (Rubinsten and Henik, 2005). As found
in the present study, this lends further support to the notion
that dyscalculic subjects, unlike typically developing children, fail
to process the irrelevant dimension automatically. In contrast,
DD children performed faster if the prime had no valence
(neutral). This is in contrast to what is expected according to
the results of affective priming paradigms. As mentioned, faster
processing is hypothesized if the prime-target pair is of the same
valence (Hermans et al., 1994), which can already be observed in
children (Spence et al., 2006). Since we assume that mathematics
is negatively associated in children with DD, processing was
expected to be faster if the prime had a negative valence or was
mathematics-related.

In sum, since reaction times to positive or negative affective
primes did not differ, the present study could neither find
standard affective priming effects in control nor in DD children.
Importantly, reaction times to negative or mathematics-related
primes did not differ either, which clearly shows that no
negative math priming effect in DD children was evident. A
closer look at Rubinsten and Tannock’s study, which suggested
a negative math priming effect in DD, revealed that they did
not observe the negative math priming effect in subtraction
and division either. While they did observe it in addition and
multiplication, an opposite pattern was shown for subtraction
and for division the authors reported even a more facilitating
influence of mathematics-related primes compared to negative
primes. The fact that we did not observe the negative math
priming effect in the present study might therefore be due to
pooling addition and subtraction during the task. Therefore, we
further analyzed our data separately for addition and subtraction.
In line with Rubinsten and Tannock (2010), we did not observe
the negative math priming effect in subtraction trials. In contrast,
the negative math priming effect was absent in addition in the
present study too.

To further investigate the inconsistent findings in terms
of the negative math priming effect, several additional analysis
were conducted that considered accuracy levels, gender
and mathematics anxiety. As the amount of errors differed
substantially between Rubinsten and Tannock (2010) and the
present study, we decided to re-analyze the data and apart from
solely including correct responses, only children that performed
above chance level were considered. Consistent with our main
findings, even when considering accuracy levels, no negative
math priming effect was observable. Hence, the absence of the
negative math priming effect cannot be justified by overall lower
accuracy levels of children in the present study.

Furthermore, we carried out an analysis including
gender, as previous research assumed attitudes and levels
of mathematics anxiety to be different in boys and girls (reviewed
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by Dowker et al., 2016). Hence, these differences were considered
to affect priming effects. However, no priming effects were
evident in boys or in girls, which again strengthens our major
finding that we did not observe a negative math priming effect.
Thus, gender is not a driving force of effects detected by
Rubinsten and Tannock (2010). Regarding gender, it is also of
interest that in our sample boys and girls of both the control
and the DD group did not differ in mathematics anxiety. This
is noteworthy as the literature reported inconsistent gender
differences. Furthermore, math anxiety is supposed to increase
with age during childhood and adolescence (reviewed by Dowker
et al., 2016), which is a possible reason why no differences were
evident in the present sample represented by rather young
children. Similarly, empirical data including that from younger
children also reported no differences in the levels of mathematics
anxiety between boys and girls, since these differences only
develop in adolescence (Johns et al., 2005).

Lastly, different levels of mathematics anxiety were taken into
account as explanatory factors. The rationale underlying this
analysis is the assumed negative influence of mathematics anxiety
on mathematical performance (reviewed by Dowker et al.,
2016). Hence, we hypothesized that priming effects could appear
when groups were separated by extreme levels of mathematics
anxiety. Concretely, this examination included a direct measure
of mathematics anxiety (assessed by the MAI Kohn et al.,
2013). This explicit measure of mathematics anxiety is an
interesting add-on to our examination. Compared to Rubinsten
and Tannock’s implicit measure of mathematics anxiety through
the priming paradigm, we consider the MAI to provide a
more reliable assessment of mathematics anxiety. However, the
potential relation between mathematics anxiety and the negative
math priming effect was not significant. Furthermore, the analysis
split into low vs. high anxious children found no negative math
priming effect neither in the group of low, nor in the group of
highly math anxious individuals. Therefore, mathematics anxiety
is not causative for the priming effects observed by Rubinsten
and Tannock (2010), which further supports our main result that
no negative math priming effect was evident. Furthermore, these
findings additionally support the notion that there is no relation
between explicitly quantified math anxiety and the proposed
implicit measure of math anxiety by the priming task. This leads
to the conclusion that the priming task probably does not reliably
assess math anxiety.

Taken together, further analyses showed that the negative
math priming effect is independent of accuracy levels, gender,
and mathematics anxiety, as it could still not be replicated
when considering these variables. However, one might argue
that present findings point toward an affective priming effect
(comparing effects of positive and negative primes) since both
the low math anxious subgroup and the control group reacted
faster after a positive prime than after a negative prime. In
the high math anxious subgroup and the DD group, this was
not the case. This might hint to a possible positive valence of
calculation problems in low math anxious or control children
and a negative valence of arithmetical problems in high math
anxious or DD children. Similarly, results seem indicative of
a negative math priming effect (comparing effects of positive

and mathematical primes) as both low math anxious individuals
and control children are faster after positive than mathematical
primes, whereas this difference is not as big in highly math
anxious children and appears to be opposite in DD children.
However, since none of these differences reached significance,
we cannot confirm an affective priming or a negative affective
priming effect in the present study. Nonetheless, differences to
Rubinsten and Henik (2005) must also be taken into account.
For instance, in their study children were older than the ones
included in the present study. As it is assumed that mathematics
anxiety increases with age in childhood, the negative math
priming effectmight also be age dependent. Althoughwe included
age as a confounding variable in our analyses, age differences
are still relevant for consideration of the negative math priming
effect. In addition, the sample sizes differed as well. Rubinsten
and Tannock (2010) included 23 children, whereas we considered
data of 172 children. Our large sample size positively influences
statistical power and the reliability of our results.

Importantly, the presentation of primes was different between
both studies since Rubinsten and Tannock (2010) presented them
visually whereas in our study the presentation was aural. This
adjustment was made because our children were younger and
hence potential difficulties in reading could be excluded through
the aural presentation of primes. However, since the above
mentioned congruity effects and the Stroop effect were both
validated when visual primes were used, the aural presentation
in our study might have affected priming effects. With regard
to the literature, similar mechanisms have been shown to
operate in visual and aural priming, but several differences
in the priming effect have also been reported between the
two modalities (Holcomb and Neville, 1990). In Holcomb and
Neville’s study, priming effects were larger in the aural condition
but mean reaction times were slower in the aural than in the
visual modality. Regarding the different presentation modalities
between both studies, the interval between the onset of the prime
word and the onset of the target (SOA), as well as the interval
between the offset of the word and the onset of the target (ISI)
also differed. Whereas in the present study the mean SOA was
around 1 s and the ISI ranged from 0 to 567ms, Rubinsten &
Tannock used a shorter SOA of 250ms and ISI of 0ms. Klauer
(1997) reported in his review that some priming experiments
failed to obtain priming effects when using longer SOAs. This has
also to be considered in the interpretation of the present findings.
However, several studies presenting spoken prime words used
comparable timing as in the present study and reported priming
effects (Holcomb and Neville (1990) SOA = 1,420–1,850ms, ISI
= 1,150ms; Voyer and Myles (2017) SOA = 800–1,000ms, ISI
= 50–250ms; Kim and Sumner (2017) SOA = not indicated,
ISI = 100ms; Bacovcin et al. (2017) SOA = not indicated,
ISI = 400–600ms). Holcomb and Neville (1990) even reported
stronger priming effects for auditory (SOA 1,420–1,850ms) than
visual prime words (SOA 1,550ms), which had even longer SOA.
Therefore, the longer SOA in the present study are unlikely to
be the reason for absent priming effects, but should be further
investigated.

Due to the younger age of the participants, we also simplified
the task by excluding multiplications and divisions, which
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resulted in fewer trials (80 compared to 160). Nevertheless, this
should not be associated with insufficient power because in
contrast to the lesser number of trials per person, we included
many more participants in total.

A discrepancy that might have influenced the priming effects
is the choice of language for the primes since Rubinsten and
Tannock’s study (Rubinsten and Tannock, 2010) was conducted
in English and the present one in German (for a discussion of
this effect for English and Hebrew see also Rubinsten et al., 2012).
Certain characteristics of the languages, such as word length,
frequency or part of speech (e.g., verbs, nouns or adjectives), may
have influenced the priming effects. Moreover, priming words
also differed between the studies. In the present study, the words
for each category were carefully selected and evaluated in a pilot
study with children to confirm that the chosen German words
were affectively loaded either positive, negative, or neutral or
clearly related to mathematics for children in the age range of
the current study. Hence, language and words might influence
the priming effects but as priming words were validated and
pretested for valence, the language and selection of words should
not be the sole cause of the inconsistent findings between the
studies. Nevertheless, this issue needs further investigation.

To the best of our knowledge, apart from Rubinsten and
Tannock (2010), the only other study that used an affective
priming task and included mathematics-related words was
conducted by Rubinsten et al. (2012). In spite of standard
affective priming effects being observed by that study, no
significant effects were found for mathematics-related primes.
Thus, in line with the present finding, no negative math priming
effect was evident.

In summary, the present study observed no priming effects
and particularly not the negative math priming effect of concern
in children with or without DD. However, we found that control
children were significantly slower after the presentation of a
mathematics-related prime compared to the positive / negative /
neutral primes. In contrast, dyscalculic children were slower after
a positive, negative or mathematics-related prime compared to
a neutral prime. The present findings indicate that an affective
math priming task, which is supposed to test the relation
between emotions and mathematical performance in an implicit
manner, might not be an ideal way to assess mathematics anxiety
in the assessed age group. Rather, it might be more reliable
to assess mathematics anxiety with explicit measures such as
questionnaires.

A more detailed knowledge of the constructs is critical since
“an understanding of the effects of math anxiety is fundamental

to understand the human cognitive apparatus in numerical
abilities,” as pointed out by Rubinsten and Tannock (2010, p. 10).
Future research should also address the direction of causation
between mathematical performance, mathematics anxiety and
negative emotions. Because of the relatively high occurrence of
math anxiety, an improved understanding of how these aspects
relate to one another would enable interventions to be applied to
improve performance in mathematics by reducing math anxiety
and negative attitudes toward mathematics in school or math
related situations in daily life.
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Language has been widely acknowledged as a determining factor in mathematical

achievement. Less understood, however, is the relationship between students’ language

and their performance on tests of mathematics when taking into consideration the

presence of mathematical difficulties. We investigated the effects of two different

language systems, Chinese and English, on the mathematical performance of

fourth-grade (or age equivalent) students (N = 23,220) with varying levels of

demonstrated mathematical and reading ability. For this investigation, we used a

subset of the 2011 Progress in International Reading and Literacy Study (PIRLS) and

Trends in International Mathematics and Science Study (TIMSS) from students who

were tested in Chinese or English in nine countries. Findings from hierarchical linear

modeling (HLM) analyses revealed that the main effect of language on mathematical

performance remained significant once variables for mathematical ability were added

to the model. Further, significant language-by-mathematical ability interactions were

observed when controlling for country, gender, maternal education, and age. Thus,

the effect of language on mathematical performance may be especially salient in the

presence of mathematical difficulties. Implications of these findings include the need

for further investigations of language and its effects on mathematical performance for

Chinese- and English-speaking students in order to clarify how this relationship may vary

within specific language populations.

Keywords: mathematics education, cross-linguistic, english, chinese, multilevel models, elementary education,

individual differences

INTRODUCTION

Despite the assumed relative universality of mathematical knowledge and algorithmic processes,
the effectual relationship between math performance and numerical language has been well
established (Miller et al., 2005). Many investigations into the cross-national/linguistic differences in
math performance focus on Chinese and English speaking populations, and there is considerable
evidence that children in China, Taiwan, Singapore, and Hong Kong, historically and currently
outperform students in Australia, Ireland, Canada, England, Scotland, and the U.S.; these
consistent, and even dramatic, differences in math achievement (Peak, 1996, 1997; Mullis et al.,
2016) have been attributed to a number of child and contextual factors, including maturation,
caregiver values and beliefs, instructional method, and the degree of transparency of the number
naming system.
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Cross-linguistic researchers have hypothesized that less
transparent number naming systems (i.e., languages in which
there are a larger number of unique, irregular, or opaque words
for numbers andmathematical concepts) may bemore difficult to
learn than more obvious number naming systems (i.e., language
systems in which number names are more logically ordered to
include names of earlier numbers and mathematical concepts are
more readily understood from numerical language), and such
differences have been found to have an effect on themathematical
performance of children (e.g., Miller et al., 1995, 2004; Göbel
et al., 2014) and number processing of adults (Moeller et al.,
2015). However, what is less understood is whether the linguistic
influences on mathematical learning play out equally for all
speakers of a language, or if numerical language is particularly
influential on subsets of learners—such as students who have
difficulty in math.

Within the parallel field of reading development, it is well
understood that the processes required for reading are language
specific (e.g., Seymour et al., 2003; Frost, 2005). For example,
learning to read in transparent (more consistently spelled
according to distinct sounds represented; e.g., Spanish, Finnish,
Welsh) alphabetic writing systems develops more quickly than in
opaque (less transparent; English, French, Portuguese) alphabetic
orthographies. Furthermore, learning to read in a logographic
writing system, such as Chinese, may be uniquely demanding,
as the learner acquires symbol/sound relationships as well
as memorizes thousands of written characters that directly
correspond to meaning (Perfetti et al., 2005; Tan et al., 2005).

However, the effect of orthographic depth (which
characterizes alphabetic languages) on reading development has
also been found to have the most powerful effect on students
who have the most difficulty learning to read; specifically,
higher rates of reading impairment have been observed in
students who speak orthographically opaque languages such
as English compared to students who speak more transparent
languages such as Spanish (Caravolas, 2005). This unique effect
of language on lower-performing students’ reading development
is evidenced in a study by Hanley et al. (2004): 6- and 7-year-old
Welsh-speaking children, who were learning to read in the highly
predictable Welsh orthography, performed significantly better
on reading measures than Welsh English-speaking children
learning to read in English. However, after these students
had reached their sixth year of formal instruction, while the
majority of the English-speaking children had caught up to
their Welsh-speaking counterparts on word reading (and even
had significantly greater reading comprehension skills), the
lowest performing 25% of English readers continued to perform
significantly below the lowest performing 25% of Welsh readers
on all measures of reading achievement.

Similarly, researchers have investigated the cognitive
underpinning of reading difficulty in Chinese and compared
results to those in alphabetic languages (Bolger et al., 2005). For
example, Siok et al. (2004) found that reading impairment in
Chinese was specific to the logographic nature of the writing
system—pointing to the possibility that it is possible to have
reading difficulty in Chinese but not in English, or vice versa,

depending on the individual’s pattern of cognitive strengths and
weaknesses that manifest according to the linguistic context.

Thus, while the association between domain-specific
achievement and language has been observed for both math and
reading, little is known about whether the challenges associated
with learning math in the context of relatively opaque numerical
language such as English (compared to Chinese) may be unique
for the subset of students with the most difficulty learning
math. Research in reading (e.g., Hanley et al., 2004) draws
attention to the possibility that the linguistic influences on math
competencies might be the most profound and long lasting for
students with the lowest performance in math.

While we acknowledge the complex set of influences on
math achievement, our focus here is on language. Specifically,
we are interested in the possibility that Chinese and English
numerical language may differentially affect students with the
lowest demonstrated math ability. For this study, we aimed to
further clarify differences in math performance that have been
consistently observed across languages (e.g., Peak, 1996, 1997;
Miller et al., 2005; Göbel et al., 2014). Specifically, we asked the
following research questions:

(1) What is the relationship between math performance and
language for children who demonstrate high vs. low levels
of mathematical skill?

(2) What is the relationship between math performance and
language for students who are dominant Chinese and
English speakers?

We employed a subset of the 2011 Progress in International
Reading and Literacy Study (PIRLS) and Trends in International
Mathematics and Science Study (TIMSS) that included Chinese-
or English-speaking students (N = 23,220) in order to investigate
the relationships between language, math difficulty, and co-
occurring reading and math difficulty at the fourth grade level.
We posited that greater descriptive ambiguity in the relationship
among mathematical concepts and the English words used to
label them places additional demands on the learner and can
therefore compromise or slow down fourth grade mathematical
performance in English relative to Chinese. Furthermore,
mathematical weaknesses, whether cognitive (Imbo et al., 2014)
or due to environmental factors may be exacerbated when there
is relatively less obviousness between mathematical concepts and
the language used to represent them.

Learning to count base-10 Arabic numerals is a universal
early math skill (Miller et al., 1995). However, the way in which
labels or names map on to numerical items and the connotations
implied to such items differ across languages (Hurford, 1975,
1987). For example, the word/character for “triangle” in Chinese
is “三角,” which literally translates as “three cornered shape.” The
first portion of this word (三) is the number 3, which is highly
accessible to younger students due to the intuitive connections
with the three lines represented. The English word “triangle” has a
less transparent connection with the shape; one must understand
that the morpheme “tri” indicates the meaning of three. Such
linguistic differences may have a great impact on student learning
of mathematical content like geometry (Miller et al., 2005).
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Differences in Math Achievement in
Chinese and English
Variation in Chinese and English Number Naming

Systems
Although cross-linguistic differences in achievement have been
attributed to differences in culture (Stevenson et al., 1986),
curricula, and instruction (Stigler et al., 1982; Stevenson and
Stigler, 1992) and language ideology (Arya et al., 2015), there is
considerable evidence that variability in math performance in
young children is, at least in part, associated with the variation
in number naming systems. Such variation is thought to affect
the relative ease and effectiveness with which children develop,
access, store, and manipulate mathematical information (Miller
et al., 1995; Imbo et al., 2014).

A comparison of the Chinese and English number naming
systems highlights the characteristics of language that may
affect the acquisition of math skills. Counting to 10 in both
languages, for example, is similar in that the words used are
unique to each number (Miller et al., 1995). However, after
10, the two languages differ in terms of the degree to which
the names for larger numbers systematically include the same
names used for the earlier numbers. Overall, the Chinese system
is more morphographically obvious (as previously described)
and involves less modification of the unit value number
names (or fewer additional unique names) in larger numbers
than the English system. For example, the Chinese names
for numbers “11” and “12” are the equivalent to stating the
name for “10” plus the name for the additional amount (ten-
one; ten-two, etc.). This system is more obvious than the
English system, which involves unique names (eleven, twelve,
etc.). Thus, in Chinese, counting involves memorizing only
the number names for 1 through 10 and then applying the
base-10 rules to generate larger numbers (Okamoto, 2017).
Furthermore, because counting and number representation
are foundational to higher-level math skills, variability in the
characteristics of number naming systems that affects these
basic skills may have a long-term effect on achievement (Miller
et al., 2004). In this study, we hypothesize that students with
relatively weak or imprecise mathematical knowledge (compared
to their peers who speak the same language) will face an
additional challenge to mathematical learning when learning
in the context of ambiguous or irregular numerical language
(i.e., English compared to Chinese). Furthermore, we posit
that specific weaknesses in mathematical understanding may
be exacerbated by less obvious (i.e., less concretely descriptive)
number naming systems within a given language context. As
such, assessment items that feature words along with numbers
to probe mathematical knowledge (including written directions
and word problems) may present greater challenges when such
inscriptions are less transparent.

Language Influences on Math Performance
Dramatic differences in math achievement in Chinese and
English have been observed (e.g., Husen, 1967; Stevenson et al.,
1986; Travers et al., 1987). For example, children in China
have been shown to outperform U.S. children as early as

preschool, which has been attributed in part to the relative
transparency of the Chinese number naming system (Miller
et al., 1995). Indeed, students from Chinese-speaking countries
(e.g., China, Taiwan, Singapore, and Hong Kong) continue to
score consistently higher than students from English-speaking
countries (e.g., Australia, the U.S., Ireland, Scotland, and
England) on international measures of fourth-grademathematics
achievement (Peak, 1996; TIMSS, 2011); and such differences
have been found to increase as students advance throughout
schooling (Stevenson et al., 1998; OECD, 2010). However, it is
important to acknowledge the well-documented differences in
curricula, instructional approaches, parental support, language
ideologies, and educational systems between Asian and English-
speaking countries, which undoubtedly contribute to observed
differences in achievement (e.g., Stigler et al., 2000; Hiebert
et al., 2003, 2005; Arya et al., 2015). Language is certainly only
one of many contributors to cross-national and cross-linguistic
differences in math achievement.

Findings from several cross-linguistic studies suggest an
association between number names and math development
when comparing Chinese and English. For example, Miller and
Stigler (1987) found differences in math skill between the two
languages emerged prior to any formal schooling, thus potentially
ruling out the possibility that cross-national differences could be
attributed to variation in instructional method. Moreover, Miller
et al. (2004) found in their longitudinal study that differences in
skill acquisition between Chinese and English could be observed
precisely at the point in development when children are first
learning numbers between 10 and 20, the point from which the
consistency of the two number naming systems differ according
to naming obviousness.Miller and colleagues conductedmonthly
“counting task” sessions with preschool-aged children in China
and the United States. Beginning at age two, children from
both countries demonstrated equally slow and error prone
performance, and that there were no language differences in the
ability to count to 10 for three or four year olds. However, by
age three, the Chinese group made rapid progress in learning to
count accurately between 10 and 20 compared with the American
children. Furthermore, by age four, after the Chinese children
had learned to count past 40, they were more readily able
than the American children to generalize from the consistent
Chinese number naming rules to count to 100. These researchers
also concluded that the ability to accurately and rapidly name
numbers and count may support higher-level math skills.

Differences in arithmetical skills (Miura et al., 1988; Fuson
and Kwon, 1992), such as borrowing and carrying and math
processing (Moeller et al., 2015) have been observed in
Chinese/English comparisons as well as across other languages.
Furthermore, there is some indication that individual differences
demonstrated within a given linguistic context must be
considered when investigating students’ mathematical abilities.
For example, Imbo et al. (2014) compared French and Dutch
speaking children and found that both cognitive resources and
language to played a role in number processing. Similarly, Miura
(1987) andMiura andOkamoto (1989) showed that children who
spoke relatively regular (e.g., Chinese and Japanese) vs. irregular
(English and Swedish) number names developed different mental
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constructions of numbers, and argue that Chinese-based number
systems uniquely influence how children mentally represent
numbers.

However, while many researchers exploring cross-linguistic
influences on arithmetic performance have controlled for general
cognitive abilities (e.g., Helmreich et al., 2011), to our knowledge
little is known about whether students with particular cognitive
profiles are more or less sensitive to the relative ambiguity in
the math language environment. Thus, what continues to be less
clear from all the research presented thus far is whether this effect
of numerical language (specifically, in this case, Chinese versus
English) is the same for all students or whether the characteristics
of numerical language may be particularly advantageous
(Chinese) or detrimental (English) for students who already
have difficulties in the domain of mathematical learning. That
is, do students with weak, or imprecise representations of
number and/or mathematical concepts (for any reason—e.g.,
lack of exposure or practice, instructional method, cognitive
impairment) encounter an additional and/or ongoing obstacle to
math fluency when learning in less obvious numerical language?

Mathematics Difficulty
A considerable number of children have been found to have
difficulty with number representation (i.e., number symbols,
number names, and their corresponding magnitudes; Geary
et al., 1999, 2004; Passolunghi and Siegel, 2004; Rousselle
and Noël, 2007), the conceptual understanding of counting
(Geary et al., 1992), counting speed (Passolunghi and Siegel,
2004), counting strategies (Goldman et al., 1988), monitoring
the counting process (Jordan and Montani, 1997), and storing
and retrieving number problems and solutions during mental
arithmetic (Geary, 1993).

This research has typically compared the cognitive profiles
and mathematics performance of three groups: (1) children
with math difficulty alone (math only), (2) children with co-
occuring math and reading difficulty (math/reading), and (3)
control children. The goal in studying these subgroups has
been to identify and describe “pure” math impairment, and
to acknowledge and elucidate the challenges faced by those
children who have difficulty with both math and reading.
For example, in a longitudinal study, Jordan et al. (2003)
compared these three subsets of children. They found that
the math-only group demonstrated significantly slower and
less accurate calculation strategies with difficulty drawing on
numerical information from memory. While the math/reading
group was observed to have similar problems, their demonstrated
weaknesses were even more severe compared with the math-
only and control groups, suggesting that in addition to
arithmetical challenges, phonological weaknesses may also
contribute to mathematics performance; thus, linguistic ability
(i.e., phonological processing) may also play a significant role in
math ability, both of which in turn may play a role in learning
new and higher-level math skills.

Thus, it stands to reason that English-speaking children
who demonstrate math difficulty might encounter additional
detrimental effects (relative to Chinese-speaking children) of
learning math via language that less transparently corresponds to

number names and symbols and the magnitudes and concepts
they represent, which may lead to later weakness in engaging
more complex calculations and problem-solving strategies.

The Current Study
We aimed to explore the relationship between math and reading
ability and language by examining data at the fourth-grade
level. Guided by previous research on math impairment (e.g.,
Swanson and Jerman, 2006) and cross-national (Peak, 1996,
1997) and cross-linguistic (Miller et al., 2005) differences in math
performance, we selected variables from two large international
databases, 2011 Progress in International Reading and Literacy
Study (PIRLS) and Trends in International Mathematics and
Science Study (TIMSS), to investigate our research questions
about fourth-grade Chinese- and English-speaking children
living in nine countries (N = 23,220). Specifically, we investigated
the potential unique and lasting challenges of ambiguous
numerical language on math learning for the lower performing
students—by comparing Chinese and English results from the
TIMSS Geometric Shapes and Measures and Data Display
assessments.

METHODS

Sample and Data
Sample
The sample includes 23,220 fourth-grade (or age equivalent 9.5–
10.5) students from Australia, Taiwan, Hong Kong, Ireland,
Malta, Northern Ireland, Qatar, Saudi Arabia, and Singapore
who took part in 2011 PIRLS and TIMSS in Chinese or English.
Students were included in this study if they took both assessments
in either Chinese or English and spoke the language of the
test at home (as indicated on a home survey). Thus, bilingual
or multilingual students were dropped if they had a primary
language other than the test language at home (Australia 6%,
Taiwan 3%, Hong Kong 2%, Ireland 5%, Malta 5%, Northern
Ireland, 1%, Qatar 44%, Saudi Arabia 65%, and Singapore 8%).
Less than one percent of students who met our inclusion criteria
were excluded because of missing data. To clarify, PIRLS, and
TIMSS were not given in China, and students in the U.S. sat for
either PIRLS or TIMSS, but not both assessments. As such these
countries they were excluded from this study.

Data
The TIMSS and PIRLS assessments are conducted by the
International Association for the Evaluation of Educational
Achievement (IEA), and funded by the participating countries
with support from the World Bank and the U.S. Department
of Education’s National Center for Educational Statistics
(NCES; Martin and Mullis, 2012). Occurring every four
(TIMSS) and five (PIRLS) years at the fourth-grade level
(or its national equivalent), these assessment instruments are
intended to provide internationally comparable information
about mathematics, science, and reading literacy. In 2011, the
TIMSS and PIRLS implementation came into alignment for the
first time, and 34 countries took the opportunity to administer
both TIMSS and PIRLS to the same students.
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In using TIMSS and PIRLS datasets, our study involved only
passive observation of publically available data, which did not
contain identifying information, and thus ethics approval was not
required per our institutional guidelines or national regulations.

Sampling Methodologies
All countries used a uniform sampling approach that followed
international guidelines and specifications to ensure that
differences in national achievement outcomes could not be
attributed to the use of different sampling methodologies. Two-
stage stratified sample designs were used, and probability samples
were drawn from target populations (i.e., populations with the
language as either English or Chinese) in each country (Mullis
et al., 2009).

Participant Criteria
The TIMSS and PIRLS participants were representative samples
of students in approximately their fourth year of formal schooling
and who were between the ages of 9.5 and 10.5 who sat for
both tests during the fall of 2011. Candidate participants for
both studies are required to be able to follow basic instructions
on the tests, and be able to read or speak the language of the
test. Students with dyslexia and other learning disabilities were
encouraged to participate in both PIRLS and TIMSS. The number
of students excluded based on the above criteria did not exceed
5% in any country (Mullis et al., 2009).

Translation
In any cross-national study, it is critical that the measures are
reliable and contain comparable information across languages.
The development of TIMSS and PIRLS included exhaustive
procedures to verify that the translation of the assessments
corresponded to international standards, and to ensure equality
across languages. Translation was provided for the test directions,
passages, and items, student, home, and school questionnaires,
directions for preparing and administering the assessment at
schools, and scoring guides for students’ open response questions
(Mullis et al., 2009).

Math Achievement
In this study, math achievement was based on standardized
performance (M= 0, SD= 1) on two of the three TIMSS content
domains: Geometric Shapes and Measures (GSM) and Data
Display (DD). In the GSM subsection, performance included
the ability to measure and compare length, area, volume, and
angle by drawing on knowledge about which units to use in each
context. Students were required to approximate and estimate,
and they used mathematical formulas to calculate the perimeter
of rectangles and the volume of geometric figures. Data Display
involved organizing, interpreting, and representing data. For
example, students had to compare different types of data to make
inferences, answer questions, and draw conclusions.

The development and validity check of the TIMSS
achievement measures involved the use of item response
theory (IRT), which enables the ability to analyze the relative
level of difficulty of each individual item within a single measure
and to use this information to determine the internal consistency
of a given measure for the targeted domain of knowledge

(e.g., Geometric Shapes). TIMSS measures were developed in
workshops within the representative countries by respective
researchers and educators who reviewed the items and passages
extensively. The TIMSS assessment in this study was comprised
of two domains: Geometric Shapes and Measures (GSM) and
Data Display (DD). Each of these cognitive domains captured a
range of processes involved in math problem solving: Knowing,
Applying, and Reasoning. The format of the TIMSS items was
multiple-choice and constructed-response. Overall reliability of
all math items were estimated within the range of α = 0.80–0.89.
Reliability estimates for specific math subtests were not available.

Comparison Groups
Drawing on previous research (e.g., Swanson and Jerman, 2006),
we compared the math performance (i.e., GSM and DD) of three
groups of students: (1) students with math difficulty (MM) only,
(2) students with both math and reading difficulty (MD/RD), and
(3) students with average or above average math performance
(not MD or MD/RD) in Chinese and English. In each language,
we included approximately the same percentage of children in
these groups. The specific grouping criteria are described below.

Mathematics Difficulty (MD)
Having difficulty in math (only) was determined by student
performance on the Number content domain of the TIMSS
assessment. This subsection measured number representation,
knowledge of place value, and the relationship between numbers.
Students demonstrated an understanding of and computational
fluency in addition, subtraction, multiplication, and division.
This subsection of the TIMSS for fourth grade is considered to be
themost basic and foundational of all the subsections (cf., TIMSS,
2011) and is thus a useful (albeit limited) proxy for potential
math difficulty. Further, using the Number domain subsection
as an indicator of math difficulty aligns with previously
described studies that documented the long-term effects of basic
computational ability on the performance of more complex tasks
(cf., Miller et al., 2004). Math difficulty was operationalized as
being above the 10th percentile in reading (see below) but below
the 10th percentile on the Number subsection within his or her
language group. These criteria were within the range of scores
used to operationalizemathematics difficulty in previous research
(below the 48–8th percentile on various mathmeasures; Swanson
and Jerman, 2006). (The development of TIMSS is described in
the section above.).

Co-occurring Math and Reading Difficulty (MD/RD)
Students with co-occuring MD/RD performed below the 10th
percentile on the Number subsection of TIMSS and below
10th percentile within his or her language group on a
relatively simple measure of reading achievement: the PIRLS’
“Straightforward Processing” subsection. This scale measured
the reader’s ability to answer questions about information
explicitly stated in the text, a skill that largely relies on
efficient word recognition, which, in turn, is supported by
phonological processing (e.g., Vellutino, 1979). Specifically,
students had to read the text, access meaning on a basic
level, and retrieve information contained directly in the text
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(Mullis et al., 2009). The purpose of including this subgroup
was for consistency with previous research that has examined
the heterogeneous cognitive profiles associated with poor
performance in math (e.g., Jordan et al., 2003; Swanson and
Jerman, 2006).

The final version of the PIRLS reading assessment included
texts that spanned many genres, including literary texts (e.g.,
short stories or episodes with illustrations), informational texts
(e.g., biographies), and narratives and expositions (e.g., scientific,
geographical, and procedural texts that included text boxes,
photographs, maps, or diagrams; Mullis et al., 2009). Plausible
values (i.e., estimates of student ability) were used to address
issues of biased statistical inferencing and to allow the use of
standard statistical tools to estimate population characteristics
(Wu, 2005). Overall reliability of all reading comprehension
items were estimated within the range of α = 0.86–0.91.

No MD or MD/RD
A final group of students were above the 10th percentile on the
Number subsection of TIMSS—regardless of their reading ability.

Language
This variable denotes language of the test, the classroom
instruction, and the student’s home language, Chinese or English.

Student Background Characteristics
Drawing on previous research, we selected gender (e.g., Nosek
et al., 2009; Pieng et al., 2016) and maternal education (Bradley
and Corwyn, 2002) as control variables in this study. We also
controlled for country because education systems and associated
resources (e.g., sequence of, or approach to skills taught within
a country’s program or resources in school organizations within
cities, districts, etc., and required or adopted school curricula)
vary by country and age to ensure any cross-linguistic differences
could not be explained by differences in maturation between
language groups.

In the current study, students responded to the questions
“when were you born” and “are you a boy or a girl,” and
caregivers answered questions about maternal education. In
order to simplify the analysis, the nine categories of mother’s
education in the TIMSS/PIRLS home survey were collapsed into
low, middle, and high. The 7% of students with missing mother’s
education data were identified as their own category and were
included in the analysis.

Analysis Approach
We employed chi-square tests of independence to determine
if there were differences in the samples by language group
(Chinese vs. English). Then, to investigate the main effect
of language on math achievement (and corroborate previous
research) standardized values of GSM and DD were regressed
on control variables for country, age, sex, and maternal
education, and a dummy variable for English (i.e., 1 =

English, 0 = Chinese). An additional set of regression
models addressed the purpose of our study by considering
a set of dummy variables for math ability and language by
math ability interactions in the analysis. We also compared

ordinary regression models to hierarchical linear models (HLM)
with likelihood ratio tests because students were nested in
schools.

RESULTS

Results from initial chi-square tests showed that the Chinese-
and English-speaking samples we roughly comparable in terms of
student background characteristics. The only exception was that
considerably more English-speaking students (26%) came from
families in which the mother earned high degrees in education
compared to their Chinese counterparts (12%; p < 0.001). As
per the study design, the percentages of students with MD and
MD/RD in both samples were consistent. The results from the
descriptive statistics suggest that the language groups in each
country performed consistently the same on GSM and DD in
respect to whether or not they were above or below the grand
mean. However, there was considerably more variability in the
English scores across countries, than the Chinese scores, partly
because there were simply more countries that that took the
test in English (n = 8) compared to Chinese (n = 2). Table 1
provides descriptive statistics related to student demographics
and Table 2 provides the mean scores on the GSM and DD
subtests by subgroup.

Based on the multilevel structure of TIMSS data (i.e.,
students nested within specific schools), likelihood-ratio tests
were conducted, comparing ordinary regression to HLM models
in order to investigate whether a random intercept for school
was needed. Because all of the tests were significant, random
intercepts for schools were included in all models. As a result,
HLM models emerged as the best fitting to the data in all
analyses, which we then presumed was the most appropriate
analytic method to investigate cross-linguistic differences in
math performance as a function of mathematical ability (Rabe-
Hesketh and Skrondal, 2005). However, because the multilevel
data structure was not the focus of this investigation, we
do not discuss the multilevel aspects of our results further.
Instead, we focus on interpreting the variables of interest in this
study.

Table 3 provides the results from four models: Model (1) GSM
was regressed on “English” (i.e., a dummy variable: English = 1,
Chinese = 0) and the control variables, (2) GSM was regressed
on English and the MD and MD/RD by English interactions and
the control variables, (3) DD was regressed on “English” and
the control variables, and (4) DD was regressed on English and
the MD and MD/RD by English interactions and the control
variables.

Hierarchical linear modeling (HLM) analyses revealed a
significant main effect of language on DD (p < 0.01; β = −0.34)
and a borderline significant relationship between language and
GSM (p < 0.06; β = −0.21) such that students who learned
math in English were on average performing below students
who learned in Chinese, (e.g., Peak, 1996, 1997). While there
were no notable differences between Chinese- and English-
speaking students with MD/RD, there were significant language
by mathematics ability interaction effects, while controlling
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TABLE 1 | Participants by Language.

Chinese n Chinese % English n English %

Australia – 3,012 19

Taiwan 4,087 55 – –

Hong Kong 3,364 45 52 <1

Ireland – – 3,702 23

Malta – – 1,402 9

Northern Ireland – – 2,009 13

Qatar – – 637 4

Saudi Arabia – – 23 <1

Singapore – – 4,932 31

Male 3,929 53 7,753 49

Female 3,522 47 8,016 51

Low maternal education 1,932 26 2,396 15

Mid maternal education 4,073 55 8,115 51

High maternal education 926 12 4,112 26

Missing maternal education 520 7 1,146 7

MD/RD 330 4 734 5

MD 416 6 842 5

No MD or RD 6,705 90 14,193 90

Total 7,451 100 15,769 100

for country, gender, maternal education, and age. English-
speaking students with only MD performed considerably below
Chinese-speaking students with MD on DD (p < 0.001; β =

0.15) and GSM (p < 0.06; β = 0.09); while English-speaking
students as a whole were, on average, 0.34 of a standard deviation
below their Chinese-speaking counterparts on DD, there was an
additional negative effect (−0.15 of a standard deviation) for
English-speaking students with poor demonstrated math ability.
Or, in other words, as students approached the tail end of the
distribution, the gap between English and Chinese performance
widened. This result is notable given that Singapore, in South East
Asia, was the largest contributor to the English-speaking sample
(31%).

Finally, results related to the control variables echoed findings
from previous research in that students from families with
relatively high maternal education outperformed lower maternal
education students, and developmental maturity (age) was
related to achievement such that older students had higher
average scores than younger students. Gender was not related
to achievement. Finally, the four top performing countries
were Singapore and Saudi Arabia and Hong Kong and Taiwan.
The lowest five countries were all English speaking (Malta,
Qatar, Ireland, Northern Ireland, and Australia). Additionally,
consistent with the descriptive statistics, even when accounting
for the control variables, there were small differences in math
performance in Hong Kong compared to Singapore (when
students took the test in Chinese), and wide variability across
the English students by country. However, even when taking
into account the effects of country, age, and maternal education,
and language, the additional joint effect of language and
demonstrated math ability was consistently associated with math
achievement.

TABLE 2 | Mean scores on geometric shapes and data display by language.

Chinese

GSM

Chinese

DD

English

GSM

English

DD

Australia −0.2 −0.43

Taiwan 0.14 0.43

Hong Kong 0.49 0.39 0.62 0.34

Ireland – – −0.46 −0.45

Malta – – −0.72 −0.6

Northern Ireland – – 0.2 0.08

Qatar – – −1.21 −1.03

Saudi Arabia – – −2.37 −1.97

Singapore – – 0.3 0.26

Male 0.31 0.41 −0.13 −0.18

Female 0.28 0.41 −0.15 −0.21

Low maternal education 0.22 0.24 −0.6 −0.59

Mid maternal education 0.29 0.45 −0.13 −0.18

High maternal education 0.66 0.76 0.22 0.13

Missing maternal education 0.02 0.1 −0.56 −0.59

MD/RD −1.41 −1.18 −2.1 −2.09

MD −0.96 −0.77 −1.69 −1.73

No MD or RD 0.46 0.56 0.05 0

Grand mean 0.3 0.41 −0.14 −0.19

GSM range = −4.62–3.45 and DD range = −5.45–4.67.

DISCUSSION

We aimed to investigate the potential impact of Chinese
and English numerical language on fourth-grade mathematics
learning, especially for students who were underperforming in
math. Consistent with previous research, our findings suggested
that, on average, Chinese-speaking students have stronger math
performance compared with their English-speaking counterparts
(Peak, 1996, 1997; Mullis et al., 2016). However, we also found
preliminary evidence of an additional gap between Chinese
and English math performance for students who were relatively
proficient in reading but had the poorest math ability.

There are several limitations to this study. First, all findings are
bound to the respective conceptual definitions and development
of the PIRLS and TIMSS measures and procedures, which
naturally constrains our approach for investigating explanatory
variables (MD, MD/RD). Second, the TIMSS measures may
lack the sensitivity needed to detect subtle differences between
students with MD and those with co-occurring MD/RD. These
weaknesses are balanced by the fact that large-scale datasets such
as PIRLS and TIMSS provide the opportunity to investigate the
relationship between math ability and language at a scale that is
inaccessible to most individual researchers.

Third, as mentioned, it is not possible to account for the
differences in instructional approaches and curricular sequences
for math that may vary as a function of language and
culture. This limitation is somewhat mitigated by the inclusion
of control variables for country and random intercepts for
schools, which controls for unobserved classroom-level variables
(Rabe-Hesketh and Skrondal, 2005). Additionally, a significant
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TABLE 3 | Fixed effects estimates and variance-covariance estimates for models

of the predictors of fourth-grade mathematics achievement (standardized

geometric shapes and data display) on the TIMSS 2011 assessment.

Model 1 Model 2 Model 3 Model 4

GSM GSM DD DD

Taiwan 0.17 0.07 0.54*** 0.45***

Hong Kong 0.66*** 0.46*** 0.64*** 0.44***

Ireland −0.23*** −0.35*** −0.01 −0.12***

Malta −0.35*** −0.38*** −0.00 −0.03

Northern Ireland −0.95*** −0.72*** −0.55*** −0.33***

Qatar −2.12*** −1.28*** −1.47*** −0.63***

Saudi Arabia 0.52*** 0.28*** 0.70*** 0.46***

Singapore 0.42*** 0.21*** 0.54*** 0.32***

Female −0.01 −0.01 −0.01 −0.00

Age 0.09*** 0.08*** 0.10*** 0.10***

Mid maternal education 0.32*** 0.20*** 0.31*** 0.19***

High maternal education 0.71*** 0.51*** 0.66*** 0.46***

Missing maternal education −0.02 0.01 −0.05 −0.01

English −0.22+ −0.21++ −0.35** −0.34**

MD – −1.34*** – −1.27***

MD/RD – −1.71*** – −1.66***

MD × English – −0.09++ – −0.15***

MD/RD × English – −0.01 – −0.07

Intercept −1.27*** −0.84*** −1.47*** −1.05***

ψ −1.41*** −1.79*** −1.52*** −1.92***

2 −0.17*** −0.32*** −0.16*** −0.31***

Standard errors range: 0.01–0.19, ψ = between school variance and Θ = within school

variance. Each coefficient can be understood as the comparison between each named

group and its respective reference group (Australia, males, low maternal education, and

students with no MD or MD/RD), when controlling for the other variables in the model.

+p < 0.10, ++p < 0.06, *p < 0.05, **p < 0.01, ***p < 0.001.

weakness of our study is that only one country from the entire
database administered the tests in both languages; as such,
languagemay be confounded with country and/or culture for this
particular investigation. However, notably, Singapore, in South
East Asia, was the largest contributor to the English-speaking
sample (31%), which supports the possibility that cross-language
differences in our study are due to language differences rather
than cultural differences.

Fourth, although both TIMSS and PIRLS made considerable
efforts to make sure that the assessments were comparable
across languages, it is quite possible that there were significant
differences between the tests in the two languages (Flores, 2016),
which is an especially important consideration given that the
TIMSS math problems were given in a language context—most
items included written directions and/or word problems. The
fact that the tests were written in English and translated into
Chinese could have considerable advantages/disadvantages for
students, with the additional possibility that translation effects
could uniquely influence students in the MD and MD/RD
groups relative to the students without any MD. One additional
point to consider, however, is that the fact that items originally
constructed in English version would theoretically give students
who took the assessment in English an advantage, which was

not the case based on our findings. As such, we believe that the
likelihood of problematic differences in test versions to have a
minimal impact on performance.

Lastly, this study focused on cross-linguistic differences in
math performance; however, it is quite possible that because
the ability to solve a math problem is necessarily dependent
on reading—e.g., comprehension of the directions or words in
a word problem—there may be differences between Chinese
and English math performance that are due to differences in
orthographies (Perfetti et al., 1992) instead of, or in addition to,
how numbers are represented and therefore processed in each
language. However, the influence of orthographic differences on
math performance was beyond the scope of this study. Yet, since
we included an assessment of student reading skills, we were able
to distinguish between students who seemed to have difficulty
in math due to poor reading skills versus students who had
domain-specific difficulties in math.

Despite all described limitations, several tentative conclusions
can be drawn from this study. Our results corroborate previous
research showing notable cross-linguistic differences in fourth-
grade mathematics achievement between Chinese- and English-
speaking students (e.g., Peak, 1996), The significant MD by
language interaction (coupled with the non-significant MD/RD
by language interaction) seen consistently across both the
Geometric Shapes and Data Display domains does raise the
possibility of a continuing negative effect of learning math in the
English for students with the poorest demonstrated levels of math
ability. Surprisingly, the interaction between ability and language
was unique to the MD group (and not the MD/RD group).
One explanation is that students with MD/RD struggle with
math mainly because of their poor reading skills (e.g., they have
trouble reading directions or understanding word problems).
Thus, they are not slowed down or confused by the relative
irregularity of the English number system, but are limited by their
weaknesses that are relatively specific to reading. In contrast,
students with MD alone, who demonstrate that they are more
proficient in reading, presumably struggle with basic math skills
such as retrieving, holding, and acquiring number information
during simple arithmetic (Geary, 1993). One logical conclusion,
therefore, is that students who demonstrate weaknesses specific
to math would be negatively (English) or positively (Chinese)
affected by the degree of obviousness of their numerical language,
which places differential demands on the learner. However,
reading difficulties, which presumably influence math difficulties
in the context of reading word problems in both languages, might
not interact with the numerical characteristics of language in the
same way as domain specific difficulties in math.

However, our finding that the MD/RD group did not
demonstrate equal or even lower math performance than the
MD group may be a contrast to previous research that has
honed in on math impairment (e.g., Jordan et al., 2003; Swanson
and Jerman, 2006) and suggests demonstrated weaknesses in
math and reading are tied to the same underlying cognitive
mechanisms (e.g., phonological processing, working memory)
and students with both MD and RD tend to have even more
difficulty in math (due to more significant impairment) than
students with MD alone. However, in our study, in which we
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focused on the tail end of distribution of math performance
in Chinese and English (and not specific math impairment),
the effect of relatively ambiguous numerical language on math
performance seemed to be the most (negatively) pronounced
for the English-speaking students whose learning differences are
specific to domain of math (not reading).

The MD by language interaction may shed even more light
on findings from other comparative studies on English- and
Chinese-speaking students. For example, according to responses
from the international assessment, Test for Schools, which is
a part of the Program for International Student Assessment
(PISA, OECD, 2013), even the most disadvantaged 15-year-
old Chinese students in Shanghai are outperforming middle
and higher socioeconomic students in the U.S. This disparity
in academic performance had been generally described as the
result of country-specific differences in the areas of teacher
content knowledge, dedication, and support (Friedman, 2013;
OECD, 2013). However, variation in language (i.e., the degree of
transparency of number naming systems) may explain variation
in math performance (Miller et al., 1995), and, according to
findings from this present investigation, this effect of language
on math performance may be conditional on math ability.

MD-Specific Interactions
In this study, we investigated the role of language on math
performance for students of varying math abilities. This study
contributes to these findings by examining the role of math
ability in differing linguistic environments. Difficulty in the area
of math is not entirely uncommon and has been associated
with the difficulty to master number skills (e.g., representing the
meaning of numbers; Geary et al., 1999; Landerl et al., 2004).
Logically speaking, weaknesses in number representation may be
exacerbated by number naming systems that less transparently
correspond to numerical magnitudes. The results from this study
provide cautious support for the hypothesis that cross-national
differences (in both geometry and data analysis) in performance
may be due in part to the obviousness (or lack thereof) of number
naming systems that continues to be an obstacle for students
with the poorest ability. This MD -specific interactions suggests
that the students with the poorest ability, who might be on the
tail end of the distribution in terms of their ability to represent
numbers, counts, and manipulate mathematical information,
may be uniquely challenged by languages that less transparently
correspond to mathematical concepts (i.e., English). Thus, it may
be informative for researchers and educators to look at particular
subgroups of learners when considering cross-national and cross-
linguistic differences in achievement, and that countries that lag
behind Asian countries may consider specific changes in practice
that target underperforming learners. For example, it may be
particularly useful for students who are struggling in math in
English to engage in on-going learning activities that strengthen
knowledge of how (irregular) two-digit number names map on
to numerical magnitudes according to the base-10 system (Zhang
and Okamoto, 2017); and, teachers can be mindful of how early
ease or difficulty with the acquisition of number names and
their corresponding magnitudes in English, may continue to
play a role in learning more advanced mathematical concepts
in, such as in geometry or data analysis. For example, a solid

understanding of the underlying base-10 structure of decimals
such as (0.90) may be the necessary foundation for learning
probability and statistical inference. Likewise, awareness of the
underlying morphological structure of English words, such as
“bi,” “tri,” and “quad,” may be a prerequisite that dispels confusion
around basic concepts and supports understanding of more
complex concepts in geometry.

The Obviousness of Number Naming
Systems
Less transparent number naming systems have been shown to
inhibit math skills in for broad populations of children. The
findings from this study show that that such opaque number
systems may be specifically more cognitively demanding for
student with poor math ability compared to systems that are
more straightforward. Such variability in number words appears
to be related to number representation, counting, and the ability
to manipulate numerical information—which support higher-
level math skills (such as geometry and data analysis). The word
“rectangle,” for example, is the proper English representation of a
long square shape, while in Chinese, the word for this shape is also
a clear description; its Chinese counterpart, 長方形 is literally
translated as “long square shape.”

Previous research that has suggested that cross-national
disparities in achievement outcomes cannot be completely
attributed to differences in educational systems (e.g., U.S. versus
China); and, and that instruction to address student weaknesses
could focus on making the base-10 structure of number names
more readily accessible to students (Miller et al., 1995). This
study augments these findings by further specifying that efforts
to support students should also target students with the poorest
math ability. Future investigations on the effect of language
on math performance should include the varying levels of
math ability. Further explorations, perhaps more qualitative in
nature, might be helpful in unpacking the observed differences
in mathematical performance for Chinese speaking students in
Taiwan andHong Kong; country-level differencesmay havemore
to do with differences in educational standards and practices.

As educators, researchers and other scholars continue to
investigate the differences in math performance across the
world, the catalytic factors for varying levels of performance
will undoubtedly be revealed. Demonstrating or using one’s
math knowledge is impossible without language and, as revealed
in this study, specific difficulties in the domain of math may
play a determining role in how much one’s language becomes
a hurdle (e.g., English) or springboard (e.g., Chinese) for
demonstrating such knowledge. Understanding the potential
roadblocks and supports for students as they continue to develop
math knowledge and skills will ultimately benefit learning and
instructional practice, regardless of how one counts out loud.
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This study examined individual differences in mathematics learning by combining
antecedent (A), opportunity (O), and propensity (P) indicators within the Opportunity-
Propensity Model. Although there is already some evidence for this model based on
secondary datasets, there currently is no primary data available that simultaneously
takes into account A, O, and P factors in children with and without Mathematical
Learning Disabilities (MLD). Therefore, the mathematical abilities of 114 school-aged
children (grade 3 till 6) with and without MLD were analyzed and combined with
information retrieved from standardized tests and questionnaires. Results indicated
significant differences in personality, motivation, temperament, subjective well-being,
self-esteem, self-perceived competence, and parental aspirations when comparing
children with and without MLD. In addition, A, O, and P factors were found to
underlie mathematical abilities and disabilities. For the A factors, parental aspirations
explained about half of the variance in fact retrieval speed in children without MLD,
and SES was especially involved in the prediction of procedural accuracy in general.
Teachers’ experience contributed as O factor and explained about 6% of the variance in
mathematical abilities. P indicators explained between 52 and 69% of the variance, with
especially intelligence as overall significant predictor. Indirect effects pointed towards
the interrelatedness of the predictors and the value of including A, O, and P indicators
in a comprehensive model. The role parental aspirations played in fact retrieval speed
was partially mediated through the self-perceived competence of the children, whereas
the effect of SES on procedural accuracy was partially mediated through intelligence in
children of both groups and through working memory capacity in children with MLD.
Moreover, in line with the componential structure of mathematics, our findings were
dependent on the math task used. Different A, O, and P indicators seemed to be
important for fact retrieval speed compared to procedural accuracy. Also, mathematical
development type (MLD or typical development) mattered since some A, O, and P
factors were predictive for MLD only and the other way around. Practical implications
of these findings and recommendations for future research on MLD and on individual
differences in mathematical abilities are provided.

Keywords: Opportunity-Propensity Model, Mathematical Learning Disabilities, temperament, personality,
motivation, subjective well-being, self-esteem, self-perceived competence
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INTRODUCTION

Mathematical competence relies on several interrelated
mechanisms and skills (Siemann and Petermann, 2018).
Procedural skills are required to understand principles and
solve calculations in a number problem (e.g., 48 + 6 = . . .)
or in a word problem (e.g., 6 more than 48 is . . .) format.
Additionally, mathematical competence relies on the capacity to
remember and retrieve arithmetic facts (e.g., 16 : 4 = . . .) with
ease. Therefore, mathematics is considered to be componential
in nature (Dowker, 2015). Research shows a lot of individual
variation in school-taught mathematical abilities from the first
year of primary school onwards (Mooij and Driessen, 2008;
Clements and Sarama, 2011; Schuchart et al., 2015). To provide
insight into the nature of these differences, some studies focused
on predictors for mathematical outcomes, whereas others have
compared children with and without Mathematical Learning
Disabilities (MLD). MLD is a neurodevelopmental disorder
characterized by mathematic skills substantially lower than
expected with regard to the individual’s chronological age and by
persisting math problems despite interventions that target those
difficulties (Bryant et al., 2015; Pieters et al., 2015; Baten et al.,
2017). Worldwide, the prevalence of MLD is estimated between
5 and 7% (Shalev, 2007; Shin and Bryant, 2015). In addition,
some authors propose that MLD is a heterogeneous disability
with a procedural and a semantic memory subtype (Henik et al.,
2015). The procedural subtype is characterized by a delay in the
acquisition of procedural calculation procedures. In contrast, the
semantic memory subtype is marked by a lack of fact retrieval
fluency (Pieters et al., 2015).

Previous research focused on domain-specific cognitive
predictors of mathematics, such as symbolic numerical
processing (Vanbinst et al., 2015) and seriation and classification
(Stock et al., 2010) in pre-school. In addition, studies
demonstrated the relationship between domain-general cognitive
abilities such as intelligence (Desoete, 2008; Dix and van der
Meer, 2015) and working memory (De Weerdt et al., 2013) on
the one hand, and mathematical abilities on the other hand.
Moreover, socioeconomic status (SES; Jordan and Levine, 2009;
Aunio and Niemivirta, 2010) and parental academic aspirations
(Murayama et al., 2016) were studied as contextual predictors.
Finally, some researchers focused on non-cognitive predictors
such as personality (e.g., Poropat, 2009) and motivation (Ryan
and Deci, 2000; Froiland and Worrell, 2016).

However, by focusing on single predictors, the importance
and unique explained variance of these predictors could be
overestimated. Surprisingly few studies have been conducted to
explore the combined effect of predictors. This study addresses
this gap by investigating multiple predictors at the same time,
within a comprehensive model to get a more holistic insight on
math development. In what follows, we describe the model that
will be used.

Byrnes and Miller (2007) developed the Opportunity-
Propensity (O-P) framework, aiming to differentiate between
opportunity (O) and propensity (P) factors in an effort to explain
variance and individual differences in development. P factors
are variables that make people able (e.g., intelligence) and/or

willing (e.g., motivation) to learn. O factors include contexts and
variables that expose children to learning content (e.g., home
environment, classroom instruction). Antecedent (A) or distal
variables, for example SES, are present early in a child’s life and
explain why some people are exposed to richer O contexts and
have stronger P’s for learning than others (Byrnes and Miller,
2007, 2016; Wang and Byrnes, 2013; Ceulemans et al., 2017).
A visual representation of the model can be found in Figure 1.

The O-P Model has been tested by using secondary datasets.
However, these studies are still scarce, since there are only three
studies about this. In the first longitudinal study, researchers
explained about 80% of variance through A, O, and P factors in
secondary school children in the United States who were followed
from 8th up until 10th grade. Path analysis confirmed the
causality between A factors on the one hand and O and P factors
on the other hand, as well as causality between the latter two and
math achievement. Although the effect of A factors was mediated
through O and P factors, A factors had a direct but small effect
on math results (Byrnes and Miller, 2007). A second longitudinal
study with data from kindergarten up until primary school
revealed additional evidence for the O-P Model with P factors
as the strongest predictors (Byrnes and Wasik, 2009). Finally,
Wang et al. (2013) found evidence for this model in lower-income
pre-kindergarten children. Using Structural Equation Modeling
(SEM), it was confirmed that the latent A factors predicted both
the latent O and P factors and the latent O factor predicted early
math skills. The predictive value of the latent P factor was not
confirmed. However, significant predictions for early math skills
could be made based on intelligence and self-regulation as P
factors.

Because the current study intends to combine variables in an
O-P Model and because there are to the best of our knowledge
only three studies combining different predictors (see previous
paragraph), the results of research examining these variables
separately will be summarized here. Furthermore, all variables
will be categorized as A, O, or P variables.

Studies including A indicators, revealed the role of SES in
math development, especially in low-income families (Wang
et al., 2013). Moreover, parental stimulation has also been
related to mathematical achievement, although it remains unclear
whether this relation was direct or mediated through intelligence
or the availability of certain resources such as books, computers,
etc. (Blevins-Knabe et al., 2007; Kleemans et al., 2012; Niklas et al.,
2016). In addition, lower birth weight was related to lower levels
of math performance at school-age level, with especially strong
effects for extremely low birth weight (<1500 g; De Rodrigues
et al., 2006; Chatterji et al., 2014). Finally, children who are born
first seem to perform better in academic contexts. This has been
explained by the dilution hypothesis in which the first born child
takes advantage of more parental resources (at least for the time
the child is an only child), compared to later born children who
have to share these resources (Hotz and Pantano, 2015).

Studies including P indicators demonstrated that motivation,
personality, temperament, intelligence, and working-memory
capacity as well as well-being variables, predicted mathematics.
In a meta-analysis on 18 studies, Taylor et al. (2014) highlighted
a positive relationship between autonomous motivation (where
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FIGURE 1 | The Opportunity-Propensity Model. Adapted from Byrnes and Miller (2007, p. 602).

the force to fulfill a task is internal, e.g., passion) and general
school achievement, in addition to a negative relationship
between controlled motivation (where the force to fulfill a task
is external, e.g., rewards-related) and academic achievement.
According to research on the Big Five Personality Theory
(Costa and McCrae, 1992), conscientiousness and openness
are the personality traits most strongly associated with better
academic performances, even when controlling for intelligence
(Poropat, 2009; Zhang and Ziegler, 2016). Furthermore, math
performance correlated positively with emotional stability
(Zhang and Ziegler, 2016). Temperament, which is considered
as the biological base of personality and described by the
Reward Sensitivity Theory (Gray, 1981) as mechanisms guiding
human behavior in terms of reactivity and self-regulation,
can be seen as a P factor. More specifically, the unique
constellation of one’s temperament could make people willing
and able to learn (Van Beek et al., 2013). Research on 565
Dutch University students revealed that pursuing rewards or
positive consequences (higher Behavioral Activation System –
BAS) was associated with higher study engagement and
better academic performances. A temperament characterized
by trying to avoid punishment or negative consequences
(higher Behavioral Inhibition System – BIS) was related
to more overcommitment and lower academic performances
through exhaustion (Van Beek et al., 2013). Studies on
intelligence and working-memory showed positive correlations
with mathematical abilities (Roth et al., 2015; Peng and Fuchs,
2016). Moreover, well-being can be considered a P factor,
since it makes people willing and able to learn. Positive and
bidirectional relations between subjective well-being (SWB)
and academic performance were found. For instance, Quinn
and Duckworth (2007) revealed in 257 fifth grade students
that higher levels of SWB (indicated by high levels of
life satisfaction as cognitive component; and more positive
emotions than negative emotions as affective component)
were related to better academic performance and vice versa.
This relationship was significant even when controlling for
intelligence. Furthermore, higher perceptions of own academic
competence were predictive of better academic achievement

and the other way around (Arefi et al., 2014) which confirmed
the reciprocal-effects model between academic self-concept
and academic achievement (Guay et al., 2003; Seaton et al.,
2015).

As to the O factors, teaching methods (Savelsbergh et al.,
2016), instructional time (Cattaneo et al., 2016), teacher
education level, and teachers’ years of experience (Zhang, 2008)
were found to be responsible for more O’s to learn. The impact
of the O factors depended on the specific support factors (Byrnes
and Wasik, 2009; Cowan, 2015).

The Current Study
This study aimed to add some nuance to the literature on
individual differences in mathematics learning by combining
A, O, and P indicators within the O-P Model. Although
there is already some evidence for this model (Byrnes and
Miller, 2016, 2007; Byrnes and Wasik, 2009; Wang and Byrnes,
2013) from secondary datasets, there is little research from
primary data simultaneously tapping the A’s, O’s, and P’s
empirically in children with and without MLD. Therefore,
this study had the objective to extend the literature on
the O-P Model in several ways. First, a variety of non-
cognitive variables that had not yet been investigated in
the context of this theory (e.g., temperament, personality,
and self-perceived competence) were included. Second, the
current study investigated specificity and examined differences
between children with and without MLD on A’s and P’s and
explored if there were different relationships with outcome
depending on group (MLD or control). As such, this study
contributes to theory-building about mathematical learning since
it investigates whether the same learning models can be applied
for children with and without clinical diagnosis. Finally, this
study expands previous findings by taking the componential
nature of mathematics into account by separately examining
the prediction for procedural calculation and fact retrieval skills
among children (Cohen Kadosh and Dowker, 2015; Pieters et al.,
2015).

The operationalization of the O-P Model in the current study
is described in Figure 2. Four major hypotheses were examined:
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FIGURE 2 | Operationalization of the O-P Model in this study. Adapted from Byrnes and Miller (2007, p. 602).

(1) There will be differences in A and P indicators between
children with and without MLD. We expect children with
and without MLD to differ on these specific variables in a
way that the negative predictors (Hypotheses 2 and 3) for
math performance will be higher in children with MLD and
vice versa.

(2) A selection of A, O, and P indicators will predict fact
retrieval speed.

(3) A selection of A, O, and P indicators will predict procedural
accuracy.

(4) The predictive value of some A variables will be mediated
through some O and P variables.

For Hypotheses 2 and 3, based on the literature described
above, it is expected that children will have better mathematical
abilities when they are raised with more O’s (Zhang, 2008;
Byrnes and Wasik, 2009), higher levels of SES (Wang et al.,
2013), higher parental aspirations (Blevins-Knabe et al., 2007;
Kleemans et al., 2012; Niklas et al., 2016), were born with higher
birth weight (De Rodrigues et al., 2006; Chatterji et al., 2014)
and have a higher place in the birth order (Hotz and Pantano,
2015). Furthermore, higher levels of autonomous motivation
(Taylor et al., 2014), conscientiousness and openness (personality;
Poropat, 2009; Zhang and Ziegler, 2016), BAS (temperament;
Van Beek et al., 2013), positive affect and self-esteem (SWB;
Quinn and Duckworth, 2007), self-perceived competence (Arefi
et al., 2014), and intelligence and working memory (Roth et al.,
2015; Peng and Fuchs, 2016) are expected to positively predict
mathematical abilities. On the contrary, variables such as less
O’s, lower levels of SES, lower parental aspirations, lower birth
weight, a lower place in the birth order, and lower levels of
emotional stability are expected to be associated with lower levels
of mathematical performance. Also higher levels of controlled

motivation, BIS (temperament) and negative affect (SWB) are
supposed to result in lower math performances. Since this has
never been explicitly investigated, no specific hypotheses are
made for the different components (procedural calculation and
fact retrieval) of mathematics.

MATERIALS AND METHODS

Sample
This study was conducted on 114 children (79 females) from 3rd
up until 6th grade in Flanders. There were 61 children in the MLD
group and 53 children were recruited from the same classrooms
to be a part of the control group. This was done to maximize
the possibility that the O factors at school level (school learning
environment) were the same in both groups. When recruiting
someone from the same class was not possible (in 22.9% of the
sample), a matched participant was selected based on age, grade,
and gender.

All children in the MLD group met the criteria for MLD,
and performed below average (substantially and quantifiably,
below the 16th percentile), while performance was resistant
to instruction (Ghesquière, 2014). Comorbidity with reading
disabilities, Attention Deficit Hyperactivity Disorder (ADHD)
and Developmental Coordination Disorder (DCD) was allowed,
because of the high comorbidity rates with MLD (Scheiris
and Desoete, 2008; Pieters et al., 2009, 2015; Kucian and von
Aster, 2015). The mean intelligence (see section “Material”) was
significantly lower in the MLD group (M = 91.119; SD = 1.508)
compared to the control group (M = 103.359; SD = 1.614),
F(1,115) = 30.725, p < 0.001. For SES, as measured by
the Hollingshead Index (see section “Material”), there were
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no significant differences between groups, F(1,115) = 0.320,
p = 0.573. Mean SES in the MLD group was 42.913
(SD = 10.512), and for the control group, the mean SES was
44.021 (SD = 10.577).

Children were recruited by spreading flyers, through social
media, schools, psychologists, and language and speech therapists
in Flanders. Children’s parents agreed for the research by signing
an informed consent. This research was approved by the Ethical
Committee of the Faculty of Psychology and Educational Sciences
of Ghent University.

Procedure
After parents agreed to the participation of their children,
two appointments for the actual research were made. Each
session lasted about 90 min while tests and questionnaires
were administered individually for each child. For some
participants, recent test data (max. 1.5 years) for intelligence
and mathematics was already available from, for example, their
psychologist. In that case, the available data (measured with
the same tests as in this study) was used to prevent test–
retest effects. Testing happened in a location chosen by the
parents. Most often, this was the school or at home. The
researcher gave standardized instructions and was available
to answer questions. The first session started with the fact
retrieval test. After that, intelligence and working memory
were measured, followed by completing the questionnaires. The
procedural accuracy math test was completed in the second
session together with the remaining questionnaires. The specific
order in which the questionnaires were filled out, could not
be fully standardized, due to lot of individual differences
between children regarding the duration of the standardized
tests and their alertness during research. Therefore, the order
was adapted to keep the child motivated to take part in
the research by, for example, alternating longer with shorter
questionnaires.

The questionnaires for the parents and the teacher were given
to the parents during the first session, and handed back to the
researchers after the research had finished.

Material
Antecedent (A) and O factors were measured through
questionnaires. More specifically, for the O factors, teachers
were asked how many years of experience they had with teaching
mathematics and how many hours of mathematical instructions
the children received per week (teaching hours).

To measure A factors, parents were asked about their
aspirations regarding the mathematical abilities of their children.
They had to reflect on the score they wanted their child to have at
the end of the current school year (in percentage). Additionally,
information on birth order and birth weight of the child was
collected. The SES of the family of the child was calculated
using the Hollingshead index, combining the educational level
and the current job of both parents into one score. The higher
this score, the higher the SES of the family (Hollingshead,
1975, Unpublished). With regards to the P factors the following
instruments were used.

Intelligence
It was measured using an abridged Dutch version of the Wechsler
Intelligence Scale for Children-III (WISC-III-NL; Kort et al.,
2005). The total intelligence quotient or IQ (M = 100; SD = 15)
was obtained by combining the separate scores on the following
subtests: Vocabulary, Similarities, Picture Concepts, and Block
Design. The reliability of this short form was 0.92 and the
distribution of total IQ-scores calculated with the short form did
not significantly differ from the distribution of scores on the full
intelligence test (Grégoire, 2000). Cronbach’s α of the total IQ in
the current sample was 0.795.

Working Memory
It was assessed with the Working Memory Index of the Dutch
version of the Clinical Evaluation of Language Fundamentals-4
(CELF-IV-NL; Kort et al., 2008). By combining the subtests of
Forward and Backward Number Repetition and the subtest of
Familiar Sequences, a score for working memory was calculated.
Cronbach’s α was 0.786 for this sample.

Motivation for Mathematics
It was measured with the Dutch version of the Academic Self-
Regulation Scale (Vansteenkiste et al., 2009) which consists of 24
questions which allow the calculation of the level of autonomous
and controlled academic motivation. As suggested by the authors,
the introduction for the questions was changed from “I am
motivated to study because. . .,” to “I am motivated to study
mathematics because . . .” in order to measure motivation with
regards to mathematics specifically. The child had to respond on
a 5-point Likert scale to statements such as “because I find this an
important goal in my life” as an index of autonomous motivation
and “because other people (e.g., parents, friends, teachers) oblige
me to do so” to measure controlled motivation. The score for
each scale was calculated by averaging the score on the items
belonging to that scale. Cronbach’s α for this sample was 0.849
for autonomous and 0.727 for controlled motivation.

Personality
It was assessed by the Hierarchical Personality Inventory for
Children (HiPIC; Mervielde and de Fruyt, 2009), filled out
by the parents. This questionnaire was based on the Big Five
Personality Theory (Costa and McCrae, 1992) and consisted
of 144 items to measure the five personality traits: openness,
conscientiousness, extraversion, agreeableness, and emotional
stability (versus neuroticism). For each item, the parent had to
indicate on a 5-point Likert scale how well that item applied
to their child (e.g., “my child likes to learn new things”). The
score for each personality trait was calculated using an algorithm
in which some items were recoded inversely. The internal
consistency of this questionnaire was good (α = 0.80–0.92) with
a test–retest reliability of α = 0.72–0.83 (Egberink et al., 2010).
Cronbach’s α for this sample was 0.868 for openness, 0.920 for
conscientiousness, 0.642 for extraversion, 0.686 for agreeableness,
and 0.905 for emotional stability.

Temperament
It was estimated with the Behavioral Inhibition (BIS) and
Behavioral Activation (BAS) Questionnaire (Carver and White,
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1994; translated by Franken et al., 2005). The children were asked
to rate 24 items on a 4-point Likert scale. The score for BIS was
calculated by averaging the score on seven items, for example,
“I worry about making mistakes.” Two out of seven items were
recoded reversely. For BAS, the score was calculated by averaging
the score on 13 items, for example, “When I want something, I
usually go all-out to get it.” The internal consistency of the scales
have proven to be acceptable with BIS: α = 0.82 and BAS: α = 0.73
(Smits and Boeck, 2006). Cronbach’s α for this sample was 0.625
for BIS and 0.752 for BAS.

Subjective Well-Being
It was determined through the Dutch version of the Positive and
Negative Affect Schedule (PANAS; Watson et al., 1988; translated
by Engelen et al., 2006). Children indicated on a 5-point Likert
scale how many negative (e.g., guilt and sadness) and positive
(e.g., success and interest) emotions they experienced on a regular
school day. Scores were calculated for the level of positive affect
and the level of negative affect by averaging the score on 10 items.
Cronbach’s α for this sample was 0.738 for positive affect and
0.708 for negative affect.

Self-Esteem
It was evaluated through the Dutch version of the Rosenberg
self-esteem scale (Franck et al., 2008). Children had to judge 10
statements on a 4-point Likert scale. Examples of questions were:
“In general, I am happy with myself ” and “Sometimes, I feel like
I am a failure.” A total self-esteem score was calculated by adding
up the scores on all 10 items. Higher scores corresponded with
higher levels of self-esteem whereas lower scores corresponded
with lower levels of self-esteem. The internal consistency of the
scale was high with a Cronbach’s α of 0.76 (De Corte et al., 2007).
For this sample, α was 0.750.

Children’s Self-Perception of Academic Competence
It was assessed with the Self-Perception Profile for Children
(Harter, 1985; translated by Veerman et al., 2004). This
questionnaire measures how children perceive their own
competences on several life domains. For the current study, self-
perceived competence on the school level was used. The total
score for that scale was calculated by adding up children’s scores
on six questions. For each question, the child had to choose
between two sentences and then indicate if that sentence is
somewhat or entirely true for them. Every item received a score
ranging from 1 to 4. The internal consistency was good, with
a Cronbach’s α of 0.78 (Veerman et al., 2004). For the current
sample, α for self-perceived academic competence was 0.809.

Mathematical Abilities
As outcome measures, fact retrieval speed and procedural
accuracy were investigated. To measure the fact retrieval speed,
the Arithmetic Number Fact Test (TTR; de Vos, 2002) was
used. Children had to solve as much additions (e.g., “7 + 2”),
subtractions (e.g., “6 − 5”), multiplications (e.g., “5 × 8”),
divisions (e.g., “27 : 9”), or a mix of these exercises as possible
in 5 min. The number of correct answers was used as outcome
measure. This test has been standardized for Flanders on a sample
of 10,059 children (Ghesquière and Ruijssenaars, 1994). The

psychometric value of the test has been demonstrated with a
Cronbach’s alpha of 0.90 (Desoete and Roeyers, 2005). For this
sample Cronbach’s α was 0.954.

To measure the procedural accuracy skills of the child,
the Cognitive Developmental skills in aRithmetics Test (CDR;
Desoete and Roeyers, 2002) was administered. This test evaluates
the understanding and proficiency needed to solve 90 exercises
in a number-problem or word-problem format (e.g., “283 times
more than −71 is . . .”; “27681 : 90 = . . .”; “Wim has 4.8 kg of
flour. Jan has a double amount of flour. How many flour do Jan
and Wim have together?”) without a time limit. The number of
correct answers was calculated as outcome measure. The CDR
has been standardized on 1332 Flemish children (Desoete and
Roeyers, 2005). The internal consistency for this sample was
Cronbach’s α = 0.860.

Statistical Analyses
Before conducting statistical analyses to examine the hypotheses,
the missing data (2.381% empty cells) was examined to asses
if these items were missing completely at random (MCAR).
Little’s MCAR test confirmed that data was missing completely
at random, χ2(68, n = 114) = 63.569, p = 0.630. Missing values
were imputed with the expectation-maximization technique.

Since the assumptions for parametric testing were met,
Multivariate Analyses of Covariance (MANCOVA) were
conducted on the A and P factors separately to examine the
first hypothesis. Intelligence was used as covariate, since the
MLD and control group significantly differed on IQ (see section
“Sample”). To examine the second and third hypothesis, linear
regression analyses were conducted with the A, O, and P
factors as predictors for fact retrieval speed on the one hand
and as predictors for procedural accuracy on the other hand.
Interaction terms with group (MLD or control) were added for
those variables of which the MANCOVA (Hypothesis 1) revealed
that they differed between both groups. The raw scores of the
mathematical tests were transformed into z-scores for each grade
separately. This was done by standardizing them by the group
means per grade, to correct for age effects. Finally, mediation
analyses were conducted to test whether the effect of the A
predictors on mathematical performance was mediated by the O
and/or P predictors (Hypothesis 4).

RESULTS

Hypothesis 1: There Will Be Differences
in Antecedent and Propensity Indicators
Between Children With and Without
Mathematical Learning Disabilities (MLD)
A MANCOVA was conducted on the A predictors, with MLD
status as independent variable and intelligence as covariate.
Multivariate results revealed significant differences in A factors,
F(4,112) = 21.738, p < 0.001, η2

p = 0.437. Furthermore, on the P
factors, a similar MANCOVA was conducted.

Multivariate results revealed significant differences in P
factors, F(12,104) = 7.760, p < 0.001, η2

p = 0.472. Univariate
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results, means (M) and standard deviations (SDs) for the A and P
predictors can be found in Tables 1, 2, respectively.

Parents of children in the MLD group had significantly lower
aspirations [antecedent (A)]. Additionally, these children scored
significantly lower on openness, conscientiousness, emotional
stability, autonomous motivation, self-esteem, self-perceived
competence, intelligence, and working memory when compared
to children in the control group. In contrast, they scored
significantly higher for negative affect and BAS (P).

Hypothesis 2: A Selection of Antecedent,
Opportunity, and Propensity Indicators
Will Predict Fact Retrieval Speed
Multiple regression analysis with the A variables, group (MLD
or control) and interaction of parental aspirations × group as
predictors for the z-scores on the TTR revealed a significant
regression equation, F(6,114) = 17.256, p< 0.001, R2 = 0.483. The
regression coefficients, standard deviations and the significance
tests for the different predictors can be found in Table 3A.

Table 3A demonstrates a significant main effect for parental
aspirations and group (MLD or control) on fact retrieval scores.
The interaction effect of parental aspirations × group was also
significant (see left part of Figure 3). The regression line for
the MLD group was non-significant, F(1,60) = 3.290, p = 0.075,
R2 = 0.051. However, parental aspirations were predictive for fact
retrieval speed in the control group, F(1,52) = 33.163, p < 0.001,
R2 = 0.385.

Next, the multivariate regression with the O predictors for fact
retrieval was significant, F(2,114) = 4.079, p < 0.001, R2 = 0.066.
The univariate results and coefficients can be found in Table 3B
and indicated that the years of experience the teacher had was
predictive for fact retrieval speed.

Further, the multiple regression analysis with the P
variables, group (MLD or control) and separate interaction
variables (Group × BAS, × openness, × conscientiousness,
× emotional stability, × autonomous motivation, × self-esteem,
× negative affect, × self-perceived competence, × intelligence,
and × working memory) as predictors was conducted on fact
retrieval speed. This analysis revealed a significant regression
equation, F(24,114) = 4.281, p< 0.001, R2 = 0.525 (see Table 3C).

Results showed a significant main effect of intelligence
and a trend for group on fact retrieval speed. Furthermore,
the interaction of self-perceived competence × group was
significant (see right part of Figure 3). The regression lines

per group indicated that self-perceived competence was a
significant predictor for fact retrieval speed in the control group,
F(1,52) = 24.295, p< 0.001, R2 = 0.314, but not in the MLD group
F(1,60) = 0.711, p = 0.402, R2 = 0.012.

Hypothesis 3: A Selection of Antecedent,
Opportunity, and Propensity Indicators
Will Predict Procedural Accuracy
Linear regression analyses were conducted for the third
hypothesis to predict the z-scores on the CDR. The same
interaction variables as in Hypothesis 2 were added into the
model.

The multiple regression analysis with the A variables, group
(MLD or control) and interaction of parental aspirations× group
as predictors for procedural accuracy revealed a significant
regression equation, F(6,114) = 19.819, p< 0.001, R2 = 0.517 (see
Table 4A).

There was a significant main effect of SES on procedural
accuracy and a trend towards significance for parental aspirations
as predictor. Next, the multivariate regression with the O
factors as predictors for procedural accuracy was significant,
F(2,114) = 3.898, p < 0.001, R2 = 0.063. The univariate results
and coefficients can be found in Table 4B. None of the predictors
seemed to be predictive on the univariate level, however, the years
of experience of the teacher was marginally significant.

A multiple regression analysis with the P variables,
group (MLD or control) and separate interaction variables
(Group× BAS, × openness, × conscientiousness, × emotional
stability, × autonomous motivation, × self-esteem, × negative
affect, × self-perceived competence, × intelligence,
and × working memory) as predictors was conducted on
procedural accuracy. This analysis revealed a significant
regression equation, F(24,114) = 8.770, p < 0.001, R2 = 0.694
(see Table 4C).

The univariate results indicated a significant main effect
for positive affect and intelligence on procedural accuracy.
Furthermore, there was a trend towards a significant main effect
for negative affect, emotional stability, and conscientiousness.
The interaction effects for group × working memory and
group × self-perceived competence were significant (see
Figure 4). Working memory was a significant predictor for
procedural accuracy in the control group, F(1,52) = 26.117,
p< 0.001, R2 = 0.330, but not in the MLD group F(1,60) = 2.025,
p = 0.160, R2 = 0.032. Also for self-perceived competence, a

TABLE 1 | Multivariate Analyses of Covariance (MANCOVA) on Antecedent predictors with intelligence as covariate.

MLD Control

M SD M SD F p η2
p

Parental Aspirations 63.923 8.769 82.668 8.909 86.352 <0.001∗∗∗ 0.429

SES 42.913 10.512 44.021 10.717 0.703 0.403 0.006

Birth Order 1.715 0.906 1.632 0.821 0.460 0.499 0.004

Birth Weight 3284.504 469.444 3288.083 421.967 0.024 0.877 0.000

η2
p interpretation: 0.020 = small effect; 0.130 = medium effect; 0.260 = large effect; ∗p < 0.050; ∗∗p ≤ 0.010; ∗∗∗p ≤ 0.001; MLD = Mathematical Learning Disabilities.
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TABLE 2 | Multivariate Analyses of Covariance (MANCOVA) on Propensity predictors with intelligence as covariate.

MLD Control

M SD M SD F p η2
p

BIS 2.827 0.539 2.642 0.494 2.671 0.105 0.023

BAS 3.117 0.475 2.974 0.399 4.131 0.044∗ 0.035

Openness 85.095 11.067 94.780 10.244 8.459 0.004∗∗ 0.069

Conscientiousness 99.238 20.331 106.543 17.191 8.125 0.005∗∗ 0.066

Emotional Stability 45.175 11.007 51.854 10.352 4.501 0.036∗ 0.038

Autonomous Motivation 2.893 0.864 3.334 0.933 4.380 0.039∗ 0.037

Controlled Motivation 2.929 0.732 2.780 0.826 0.000 0.997 0.000

Working Memory 15.762 3.306 21.291 3.804 34.700 <0.001∗∗∗ 0.232

Positive Affect 3.544 0.625 3.606 0.623 0.118 0.731 0.001

Negative Affect 2.380 0.587 2.091 0.555 4.295 0.040∗ 0.036

Total Self-Esteem 19.714 4.567 22.200 3.638 5.392 0.022∗ 0.045

Self-Perceived Competence 12.762 3.609 18.324 3.644 43.636 <0.001∗∗∗ 0.275

η2
p interpretation: 0.020 = small effect; 0.130 = medium effect; 0.260 = large effect; ∗p < 0.050; ∗∗p ≤ 0.010; ∗∗∗p ≤ 0.001; MLD = Mathematical Learning Disabilities.

significant regression equation was found in the control group,
F(1,54) = 37.647, p < 0.001, R2 = 0.415, but not in the MLD
group, F(1,62) = 1.380, p = 0.245, R2 = 0.022. There was a
trend towards a significant effect for the interaction between
group× self-esteem on procedural accuracy.

Hypothesis 4: The Predictive Value of
Some Antecedent Variables Will Be
Mediated Through Some Opportunity
and Propensity Variables
Mediation analyses were conducted (Hypotheses 2 and 3)
in “Process” by Andrew Hayes (Field, 2016). Since parental
aspirations× group (MLD or control) was a significant predictor
for fact retrieval speed, it was examined if this effect was mediated
through teachers’ experience (significant O predictor) on the
one hand and through self-perceived competence × group and
intelligence (significant P predictors) on the other hand.

The results revealed that the effect of parental aspirations
on fact retrieval speed was not mediated through teachers’
experience for both the MLD and the control group. Results for
the MLD group are b = 0.000, BCa CI [−0.007, 0.004] and for the
control group b = 0.000, BCa CI [−0.007, 0.008].

Further, a significant indirect effect of parental aspirations
on fact retrieval speed through self-perceived competence was
revealed for both the MLD group, b = 0.004, BCa CI [0.000,
0.011], and the control group, b = 0.013, BCa CI [0.002, 0.028].
The indirect effect of parental aspirations through intelligence
was non-significant, b = 0.004, BCa CI [−0.002, 0.012].

Because SES was a significant predictor for procedural
accuracy, a possible mediation through intelligence and positive
affect on the one hand and self-perceived competence × group
(significant P predictors) on the other hand was examined.
Mediation through intelligence was significant, b = 0.014, BCa CI
[0.005, 0.024]. No indirect effect was found for SES on procedural
accuracy through positive affect, b = −0.002, BCa CI [−0.006,
0.001]. The indirect effect of SES on procedural accuracy through

self-perceived competence was non-significant for both the MLD
group, b =−0.000, BCa CI [−0.007, 0.007] and the control group,
b = 0.005, BCa CI [−0.001, 0.014].

DISCUSSION

Throughout the last decade, several predictors of mathematical
learning have been proposed. To evaluate individual differences
and the unique contribution of predictors, it is important to
take into account the interrelationships between those predictors.
Within the O-P Model, it is suggested that learning occurs as the
result of A, O, and P factors (Byrnes and Miller, 2007). Studies
on large secondary datasets have revealed the value of this model
in kindergarten (Byrnes and Wasik, 2009; Wang and Byrnes,
2013), the beginning of primary school (Byrnes and Wasik, 2009),
and in secondary school (Byrnes and Miller, 2007, 2016). To the
best of our knowledge, no studies have examined this model by
collecting primary data in the second half of primary school in
a group of children with and without MLD. This study aimed
to fill this gap in the existing research by investigating whether
children with and without MLD differ on A and P variables
and assess whether information on the combination of these
variables adds to the current knowledge on mathematical abilities
and disabilities. Moreover as mathematics has been described as
componential in nature (Dowker, 2015), the relationship with
both fact retrieval speed and procedural calculation is examined
and compared.

Differences in Antecedent and
Propensity Indicators Between Children
With and Without MLD
Results showed significant differences in both A and P factors
when comparing children with and without MLD.

In contrast with the hypotheses, children with MLD did
not differ significantly from typically developing children
on the A factors, with regards to birth weight, SES, and
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TABLE 3 | Multivariate Regression Models with Antecedent, Opportunity, or Propensity predictors on fact retrieval speed (tested with the TTR).

B SE β t p

(A) Antecedent predictors (constant) 1.548 0.917 1.687 0.094

F = 17.256, R2 = 0.483 (p < 0.001∗∗∗) Parental Aspirations −0.024 0.011 −0.313 −2.215 0.029∗

SES −0.001 0.006 −0.006 −0.080 0.936

Birth Order −0.123 0.080 −0.109 −1.539 0.127

Birth Weight −9.849e−005 0.000 −0.045 −0.648 0.518

Group (MLD, Control) −5.450 1.184 −2.790 −4.603 <0.001∗∗∗

Group × Parental Aspirations 0.085 0.016 3.623 5.357 <0.001∗∗∗

(B) Opportunity predictors (constant) −0.820 0.358 −2.292 0.024

F = 4.079, R2 = 0.066 (p = 0.019∗) Teachers’ Experience (years) 0.020 0.010 0.185 2.019 0.046∗

Hours of math per week 0.108 0.066 0.149 1.622 0.108

(C) Propensity predictors (constant) 1.271 1.686 0.754 0.453

F = 4.281, R2 = 0.525 (p < 0.001∗∗∗) BIS −0.072 0.163 −0.039 −0.444 0.658

BAS 0.181 0.254 0.082 0.715 0.477

Openness 0.016 0.011 0.196 1.443 0.155

Conscientiousness −0.009 0.006 −0.173 −1.393 0.167

Emotional Stability −0.007 0.012 −0.075 −0.541 0.590

Autonomous Motivation 0.006 0.130 0.005 0.043 0.966

Controlled Motivation 0.094 0.103 0.075 0.919 0.360

Working Memory 0.035 0.050 0.396 0.702 0.484

Intelligence −0.030 0.011 −0.405 −2.672 0.009∗∗

Positive Affect −0.168 0.146 −0.107 −1.157 0.250

Negative Affect −0.092 0.195 −0.056 −0.474 0.637

Total Self-Esteem 0.041 0.026 0.180 1.549 0.125

Self-Perceived Competence −0.040 0.034 −0.188 −1.178 0.242

Group (MLD, Control) −4.519 2.480 −2.313 −1.822 0.072

Group × BAS 0.176 0.386 0.272 0.455 0.650

Group × Openness −0.020 0.018 −0.986 −1.136 0.259

Group × Conscientiousness 0.013 0.010 0.742 1.343 0.182

Group × Emotional Stability 0.011 0.017 0.311 0.663 0.509

Group × Autonomous Motivation −0.056 0.175 −0.101 −0.318 0.751

Group × Working Memory 0.035 0.050 0.396 0.702 0.484

Group × Intelligence 0.029 0.016 1.584 1.897 0.061

Group × Negative Affect 0.002 0.296 0.002 0.006 0.995

Group × Total Self-Esteem −0.063 0.044 −0.729 −1.409 0.162

Group × Self-Perceived Competence 0.166 0.050 1.611 3.317 0.001∗∗

∗p < 0.050; ∗∗p ≤ 0.010; ∗∗∗p ≤ 0.001; MLD = Mathematical Learning Disabilities.

birth order. However, they did differ on parental aspirations.
Parents had significantly lower aspirations toward mathematical
learning when their children had MLD. A large effect
size was found. Further research is needed to examine
whether these lower aspirations were caused by children’s
continuous struggle with math learning or if the lower math
performances of children with MLD are due to lower parental
aspirations.

With regards to the P factors, children with and without
MLD differed on temperament, personality, motivation, working
memory, SWB, self-esteem, and self-perceived competence, after
controlling for intelligence. Regarding temperament, children
with MLD had higher scores on BAS compared to typically
developing children. However, in contrast with Van Beek et al.
(2013), results did not show significant differences between both
groups for BIS. This unexpected result could be due to a power

problem. Our findings seem to indicate that children with MLD
might be more sensitive for rewards than peers without MLD.
This might implicate that teachers should use rewards and
positive consequences as a lever to enhance their mathematical
performances.

Concerning personality, children with MLD were less open
to new experiences, were less conscientious, and had lower
scores for emotional stability compared to peers in the control
group. The effects of openness and conscientiousness were larger
than the effect of emotional stability (versus neuroticism). These
results are in line with earlier research which indicated openness
and conscientiousness as the personality traits most associated
with mathematical performance (Poropat, 2009; Zhang and
Ziegler, 2016).

Analysis of the P factor of motivation indicated no differences
in the amount of controlled motivation (where the force to fulfill
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FIGURE 3 | Interaction effect between Parental Aspirations, Self-Perceived Competence, and group (MLD or control) for fact retrieval speed.

a task is external; e.g., a reward) between children with and
without MLD. However, children with MLD had lower levels of
autonomous motivation (where one fulfills a task for an internal
reason such as passion or future relevance of the topic) when
compared to controls. This indicates that children from both
groups were equally motivated for mathematics because they
had to, whereas children with MLD were less motivated for
mathematics because they wanted to. Next, in line with literature
(Roth et al., 2015; Peng and Fuchs, 2016), results revealed that
children with MLD experienced more difficulties with working
memory when compared to typically developing children. This
effect was between medium and large indicating that working
memory problems might be impactful for children with MLD.

Furthermore, children with MLD experienced more negative
affect on a regular school day than their typically developing
peers in the same school context. There were no significant
group differences found for positive affect. When examining
self-esteem, data revealed that children with MLD reported
lower self-esteem than their peers without MLD. These results
indicate the impact of MLD on the SWB of children.
Even though they seemed to experience the same amount
of positive feelings as their typically developing peers, they
experienced more negative affect and more negative feelings
toward themselves. In line with the reciprocal-effects model
(Guay et al., 2003; Seaton et al., 2015), it is possible that
having MLD impacts children’s SWB, which in its turn affects
their mathematical abilities resulting in more severe math
problems.

Finally, children with MLD perceived their own academic
competences much lower (large effect size) than did typically
developing children, which indicated that they were aware of
their own lower capacity in mathematics.

The Predictive Value of Antecedent,
Opportunity, and Propensity Factors for
Math Performance
First, some A, O, and P factors were predictive for fact
retrieval speed. The combination of SES, birth weight, parental
aspirations, and birth order as A predictors explained 48.3%
of variance in fact retrieval speed. In line with earlier research
(Blevins-Knabe et al., 2007; Kleemans et al., 2012; Niklas et al.,
2016), parental aspirations towards mathematical performance
were a significant A predictor. Parents who wanted their
children to score higher at the end of the current school year
tended to have children who performed better in mathematics.
Nonetheless, in our dataset, parental aspirations were important
predictors only for typically developing children. Additionally,
this effect was partially mediated through children’s self-
perceived competence. However, based on the current study,
no conclusions can be drawn about the direction of the effect.
For instance, it is possible that lower math abilities of children
influenced parental aspirations and children’s self-perceived
competence. In contrast, it is possible that lower parental
aspirations influenced children’s self-perceived competence and
in their turn resulted in lower math abilities. However, reciprocal
effects are also a possibility. Additional and longitudinal studies
are necessary to understand the effect of parental aspirations
more clearly. Moreover, not finding a predictive effect of parental
aspirations for fact retrieval speed in the MLD group could be
associated with severity or specificity of MLD as a developmental
disorder. It is possible that persevering fact retrieval or fluency
problems that characterize MLD cannot be influenced by parents’
expectations.

In contrast with the available literature on A predictors, SES,
birth weight, and birth order did not significantly predict fact
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TABLE 4 | Multivariate Regression Models with Antecedent, Opportunity, or Propensity predictors on procedural accuracy (tested with the CDR).

B SE β t p

(A) Antecedent predictors (constant) −2.133 0.896 −2.358 0.020

F = 19.819, R2 = 0.517 (p < 0.001∗∗∗) Parental Aspirations 0.017 0.011 0.227 1.659 0.100

SES 0.014 0.006 0.146 2.171 0.032∗

Birth Order 0.080 0.078 0.070 1.027 0.307

Birth Weight 0.000 0.000 −0.046 −0.686 0.494

Group −0.486 1.156 −0.246 −0.420 0.675

Group × Parental Aspirations 0.017 0.015 0.735 1.125 0.263

(B) Opportunity predictors (constant) −0.812 0.362 −2.243 0.027

F = 3.898, R2 = 0.063 (p = 0.023∗) Teachers’ Experience (years) 0.019 0.010 0.180 1.965 0.052

Hours of math per week 0.107 0.067 0.146 1.596 0.113

(C) Propensity predictors (constant) −3.834 1.369 −2.800 0.006

F = 8.770 R2 = 0.694 (p < 0.001∗∗∗) BIS −0.029 0.132 −0.016 −0.223 0.824

BAS 0.203 0.206 0.091 0.983 0.328

Openness 0.000 0.009 0.002 0.018 0.986

Conscientiousness −0.013 0.008 −0.720 −1.623 0.108

Emotional Stability −0.020 0.014 −0.548 −1.453 0.150

Autonomous Motivation 0.034 0.105 0.031 0.319 0.750

Controlled Motivation −0.045 0.083 −0.035 −0.534 0.594

Working Memory −0.002 0.028 −0.008 −0.065 0.949

Intelligence 0.023 0.009 0.317 2.608 0.011∗

Positive Affect −0.323 0.118 −0.203 −2.731 0.008∗∗

Negative Affect 0.302 0.158 0.179 1.904 0.060

Total Self-Esteem −0.031 0.021 −0.134 −1.434 0.155

Self-Perceived Competence −0.015 0.028 −0.068 −0.533 0.595

Group (MLD, Control) −0.645 2.014 −0.326 −0.320 0.750

Group × BAS −0.105 0.313 −0.160 −0.334 0.739

Group × Openness 0.014 0.014 0.694 0.995 0.322

Group × Conscientiousness −0.013 0.008 −0.720 −1.623 0.108

Group × Emotional Stability −0.020 0.014 −0.548 −1.453 0.150

Group × Autonomous Motivation −0.223 0.142 −0.402 −1.568 0.120

Group × Working Memory 0.082 0.041 0.908 2.006 0.048∗

Group × Intelligence −0.017 0.013 −0.886 −1.322 0.190

Group × Negative Affect −0.038 0.240 −0.043 −0.159 0.874

Group × Total Self-Esteem 0.071 0.036 0.819 1.973 0.052

Group × Self-Perceived Competence 0.128 0.041 1.225 3.141 0.002∗∗

∗p < 0.050; ∗∗p ≤ 0.010; ∗∗∗p ≤ 0.001; MLD = Mathematical Learning Disabilities.

retrieval speed. The lack of association between SES and fact
retrieval speed might be explained by the limited sample size
or by the nature of fact retrieval mathematics as component
of mathematics. Since retrieving arithmetic facts depends on
drill and memorization, it could be less susceptible to the job
and educational level of parents than other components of
mathematics. On birth weight, the literature focused especially
on effects of extremely low birth weight (<1500 g; De Rodrigues
et al., 2006; Chatterji et al., 2014). In the current sample, none
of the children had birth weights below 2000 g. Further, the
results of this study did not confirm earlier studies which reported
better performance in academic contexts when higher in the
birth order (Hotz and Pantano, 2015). This might be due to the
small variability in birth order places of the participants, since
86.4% of this sample was the first or second born child in their
family.

This study confirmed that mathematical abilities improve
with more O’s (Zhang, 2008; Byrnes and Wasik, 2009). The
O’s explained 6.6% of the variance in fact retrieval speed.
More experienced teachers seem to have a positive impact
on children’s math performances. The number of hours of
mathematics instruction children received per week had no
significant effect. This might indicate that not the quantity
(number of hours) but the quality (teachers’ experience) of
instruction matters. Furthermore, mediation of A through O
variables was not found in the current study since parental
aspirations did not predict teachers’ experience. This might
be explained by the specific selection of O variables in
the current study compared to earlier studies on the O-P
Model (e.g., Byrnes and Wasik, 2009) which included richer
O measurements. Future research should measure O factors
more broadly, whereas now teachers were only asked about
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FIGURE 4 | Interaction effect between Working Memory, Self-Perceived Competence, and group (MLD or control) for procedural accuracy.

their years of experience and how many hours they taught
mathematics.

The P variables included in this study explained 52.5% of the
variance found in fact retrieval speed, which indicated that the
P factors are the strongest predictors for retrieving arithmetic
facts. This is in line with earlier research on the O-P Model
(Byrnes and Wasik, 2009). Both intelligence and self-perceived
competence were significant predictors in earlier studies (Arefi
et al., 2014; Peng and Fuchs, 2016). However, the effect of self-
perceived competence was only present in typically developing
children, but not in children with MLD. Analog to parental
aspirations, this might be related to the severity of fact retrieval
deficits and might not be influenced by having higher perceptions
of your own competences. It is important to note that also here,
no conclusions can be drawn about the direction of the effects.
Longitudinal studies are necessary but in line with the literature
we can expect reciprocal effects between academic self-concept
and academic achievement (Guay et al., 2003; Seaton et al.,
2015).

Second, procedural accuracy could be predicted by some
of the A, O, and P factors. The combination of SES, birth
weight, parental aspirations, and birth order as A predictors
explained 51.7% of the variance in procedural accuracy. Children
with higher SES, performed better in procedural calculation,
which is in line with earlier research (Wang et al., 2013). The
data on parental aspirations of this study did not confirm its
predictive value for procedural calculation, in contrast with
the existing literature (Blevins-Knabe et al., 2007; Kleemans
et al., 2012; Niklas et al., 2016). However, this could be related
to power-issues since there was a trend towards a significant
effect.

Analysis of procedural calculation, confirmed that
mathematical abilities become better with more O’s (Zhang,
2008; Byrnes and Wasik, 2009). O’s explained 6.3% of
the variance. There was a trend towards a significant

association for the years of experience the teacher had.
The same conclusions could be drawn as for fact retrieval
fluency.

The P variables were the most predictive for procedural
calculation, which is in line with earlier research on the O-P
Model (Byrnes and Wasik, 2009). They explained 69.4% of
variance. Intelligence, positive affect, working memory, and
self-perceived competence were significant predictors. Higher
levels of intelligence were associated with higher scores in
procedural accuracy, which is in line with the literature (Roth
et al., 2015; Peng and Fuchs, 2016). Moreover, the effect of
SES on procedural calculation abilities was partially mediated
through intelligence in this sample. With regards to working
memory capacity, a significant association with procedural
accuracy was found in the typically developing children. This
association is in line with work of De Weerdt et al. (2013).
A positive association between self-perceived competence, and
procedural calculation was found, confirming results from
earlier studies (Arefi et al., 2014). However, the effect of self-
perceived competence was only present in typically developing
children, not in children with MLD. This is analog to the
findings on self-perceived competence and fact retrieval speed.
Again, it is reasonable to expect reciprocal effects between self-
perceived competence and procedural accuracy (Guay et al.,
2003; Seaton et al., 2015). Not finding an effect of self-perceived
competence for children with MLD might be the result of
severe deficits that are not susceptible for influences of self-
perceived competence. Additionally, a negative association was
found between positive affect and procedural accuracy, which is
in contrast with the literature on SWB (Quinn and Duckworth,
2007). Additional research is necessary to confirm and explain
this finding.

Third, when comparing the effects of A, O and, P
variables on fact retrieval speed with procedural accuracy,
some important similarities and differences should be noted.
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Antecedent (A) factors explained about half of the variance
in both types of math learning. However, for fact retrieval,
the most important predictor was parental aspirations, whereas
for procedural accuracy, SES seemed more important than
parental aspirations. Furthermore, results revealed that the
impact of A variables was mediated through P variables.
More specifically, the effect of parental aspirations on fact
retrieval speed was partially mediated through children’s self-
perceived competence and the effect of SES on procedural
accuracy was partially mediated through intelligence. These
results provide evidence for the structure of the O-P Model
(Byrnes and Miller, 2007). Nonetheless, in contrast with the
proposed structure of the model, the data of this study did
not confirm the mediation of A variables through O factors,
which could be explained by the rather limited measures
of O variables in the current study. Future research should
include richer measurements of O’s. For O variables, about
6% of the variance for each of the mathematical components
could be explained. Teachers’ years of experience proved to
be an important factor, which highlights the importance of
the quality and not quantity of instruction. The P variables
were the strongest predictors of math abilities and more
variance could be explained for procedural accuracy (about
70%) compared to fact retrieval fluency (about 50%). In earlier
research on the O-P Model (Byrnes and Miller, 2007), P variables
were also the strongest predictors for outcome. However, in
the current study different P’s seemed to be predictive for
fact retrieval compared to procedural calculation. Intelligence
and self-perceived competence contributed to both types of
mathematics, whereas positive affect and working memory were
only predictive for procedural calculation. This could be related
to the nature of the tasks used. In procedural calculation, children
have to understand the mathematical principles and procedures
to find the correct answer. Compared to fact retrieval tasks
where arithmetic facts have to be memorized and retrieved,
it makes sense that procedural accuracy is more susceptible
to other influences than intelligence (e.g., positive affect and
working memory). Moreover, fact retrieval depends on drill and
memorization and therefore retrieving arithmetical facts might
be less susceptible to the influence of P variables in general.
This could also be the explanation of why more variance is
explained by P variables for procedural calculation compared to
fact retrieval fluency.

Finally, in contrast with the hypotheses, no association
with mathematical abilities was found for motivation,
personality and temperament. Although the literature on
personality describes conscientiousness and openness as the
most predictive personality traits for academic performances
(Poropat, 2009; Zhang and Ziegler, 2016), when these variables
were simultaneously investigated with other P variables in a
holistic model, no predictive value was revealed. This emphasizes
the importance of taking into account the interrelationship
between several predictors in order to thoroughly understand
mathematical development. However, we did find significant
differences in personality when comparing children with
and without MLD (see section “Differences in Antecedent
and Propensity Indicators Between Children With and

Without MLD”). Regarding autonomous motivation and
temperament factors (BIS and BAS), this study did not reveal
a predictive value for mathematical abilities when investigated
within a holistic model. This is in contrast with the existing
literature on motivation (Taylor et al., 2014) and temperament.
Nonetheless, we did find significant differences for these
variables when comparing children in the MLD group with
their typically developing peers (see section “Differences in
Antecedent and Propensity Indicators Between Children With
and Without MLD”). When trying to predict outcome, it
seems to be important to examine multiple variables within a
holistic framework and to compare children with and without
MLD.

Limitations and Suggestions for Future
Research
Every study has limitations. In this study, the sample size was
rather small which could have repercussions on results. The
sample size in previous work on the O-P Model was much larger.
However, the data used in this study were primary collected
data from an MLD population, whereas all previous studies
used secondary data from a general population. We should take
into account that some significant associations or differences on
population level could not be detected within this sample due to
power issues but it is a strength that data is collected within a
clinical population. Future research should collect primary data
on larger sample sizes.

Furthermore, in previous studies on the O-P Model, prior
knowledge was a strong predictor of math performance (Byrnes
and Miller, 2007). In the current study, this variable could
not be examined since we were not able to collect data
that was comparable across children. The children lived in
different cities and attended different schools. Additionally, there
were no standardized measures of prior knowledge previously
administered in all children. However, in a follow-up study
the collected measures of current skills will be used as prior
knowledge for their skills in wave 2.

Finally, because this was a cross-sectional study, no
conclusions about cause-and-effect can be made. Additional,
longitudinal studies are currently being conducted.

CONCLUSION AND IMPLICATIONS FOR
PRACTICE

Despite the limitations, our results support the fact that children
with MLD differ on A (e.g., parental aspirations) as well as
on several (both cognitive and non-cognitive) P indicators. An
exclusive P approach or only assessing cognitive predictors might
not be a good idea.

Second, the O-P Model revealed to be applicable to the
study of children with MLD. However, our findings also
demonstrated that general protocols for the assessment of
procedural calculation abilities or fact retrieval speed should not
be implemented in the same way to test children with MLD and
their typically developing peers. Since different predictors for
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mathematical abilities were found in children with and without
MLD and in line with the componential nature of mathematics,
adequately customized and broad assessments remain needed.
Regarding procedural calculation, our findings revealed the
importance of questionnaires on SES and tests on intelligence,
positive affect, working memory, self-esteem, and self-perceived
competence. With regards to fact retrieval speed, questionnaires
on parental aspirations, and teachers’ experience, intelligence
tests and a questionnaire on self-perceived competence seem
indicated.

Finally, the current findings seem to indicate that children
with MLD might be more sensitive to rewards, less open
to new experiences and less conscientious. In addition, they
were less autonomously motivated and had lower levels of
SWB, lower self-esteem and lower self-perceived competence.
These findings suggest the importance of positive feedback and
psychoeducation including the enhancement of the autonomous
motivation for mathematics in those children, in addition to
the focus on their math acquisition. Therapy should focus on

their strengths and reward small positive steps in the correct
direction.
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Response to Intervention (RTI) was accepted in the early 2000s as a new framework for

identifying learning difficulties (LD) in the U.S. In Finland, a similar multi-tiered framework

has existed since 2010. In the present study, these frameworks are presented from

the viewpoint of the role of assessment and instruction as expressed in documents

that describe the frameworks, as it seems that these two components of RTI are the

most disparate between the U.S. and Finland. We present a suggestion for the Finnish

framework as an example of support in mathematics learning that incorporates principles

of RTI (such as systematized assessment and instruction, cyclic support, and modifiable

instruction). Finally, recommendations are presented for further refining and developing

assessment and instruction policies in the two countries.

Keywords: comparative study, response to intervention framework, assessment, instruction, support in

mathematics

Why do we need educational frameworks and guidelines for providing support? Why can teachers
not rely on their education and knowledge of learning and provide sufficient instruction and
support for all students in need of something extra? These are the questions we discuss in the
present paper. Different countries have different approaches to these matters, but we choose to
compare themulti-tiered frameworks for support in learning used in the United States and Finland,
as interesting similarities and dissimilarities exist. In the U.S., Response-To-Intervention (RTI) has
long been a suggested framework for identifying students with disabilities. It provides guidelines for
early prevention and for delivering evidence-based instruction with intensifying tiers of support.
Close monitoring of student progress is also at the core of the U.S. RTI. Informed decision making
at all levels within the system (administrative, teacher, and parental; see Fuchs and Fuchs, 2005)
is provided. The basic idea of RTI in the U.S. is that the school provides the child with research-
based instruction while the child is in the general education environment, and the school adjusts
the intensity or nature of assessment and instruction according to the student’s progress (Fuchs and
Fuchs, 2005).

In our previous paper on the U.S. RTI and Finnish “RTI” (Björn et al., 2016), we
found that the original purpose and, subsequently, the definition of RTI framework in
these countries differed to some extent. The present paper on assessment and instruction
within RTI frameworks in the U.S. and Finland is an extension of the previous papers. We
previously found that RTI in the U.S. was primarily developed for LD (Learning Difficulty)
identification, and the Finnish version was primarily intended to re-structure the existing
support service framework for struggling students (Björn et al., 2016). Instead of the Finnish
framework, the prevention of LD was an acknowledged goal in the frameworks of both
countries. It seemed that the two frameworks were similar in appearance but differed in
content and delivery. We wanted more knowledge that would explain why the renewed
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Finnish framework was outlined similar to the U.S. RTI, however,
we found that the massive amount of existing knowledge on the
pros and cons of the approach seemed to be neglected by the
formal documents defining Finnish version of the framework,
as many important definitions were not made explicit in formal
documents.

We further realized that the role of the special education
service system differed within the RTI framework in different
parts of the U.S., while in Finland, special educational services
have the same role within an RTI-like framework throughout
the country (Björn et al., 2016). Thus, the present work
presents the frameworks in the two countries but with a specific
focus on assessment and instruction. The goal is to determine
ways to refine both frameworks, with a special emphasis on
bringing forward support for mathematics learning in Finland.
We start this paper by briefly introducing the creation and
implementation process of RTI in the U.S. and Finland. This
is followed by differences and similarities in the definitions
of assessment and instruction in these countries at each tier
of support. Then, a suggestion for structuring support in
mathematics in Finland is presented. We conclude by discussing
possibilities for further refinements of the RTI approach in both
countries.

THE CREATION AND IMPLEMENTATION
OF RTI IN THE U.S. AND FINLAND

Some earlier studies have examined the differences between
identification and learning support frameworks in the U.S. and
Finland (see Itkonen and Jahnukainen, 2007; Jahnukainen, 2011;
Björn et al., 2016). However, information about distinctions
in the ways these countries operationalize RTI assessment and
instruction is absent. The types of policy papers that present
and compare educational frameworks implemented in different
countries are important because even though the processes
behind the reforms differ, the actual need for constructing
frameworks for support in learning stems from the same source.
That is, all education systems try to teach students effectively and
at a reasonable cost. Such reforms are also nationwide processes,
and each country may learn something from other countries
despite cultural differences.

The U.S. school system consists of public and private schools.
The average school age ranges from about age 5–18 years. The
Finnish school system is public; there are basically no private
schools. Children enter the compulsory schooling system the year
they turn seven years old. Compulsory schooling lasts nine years,
until the child reaches the age of 15 or 16 (depending on the time
of year the child was born). The overall educational standards
are run by the Ministry of Education, Science, and Culture, but
the schools may relatively freely implement support in their own
curricula (www.minedu.fi).

Although RTI in the U.S. as an approach to identifying
and instructing especially students with LD has a long history
(dating back to the 1970’s), the implementation of RTI after
the Individuals with Disabilities Education Act, (IDEA, 2004),
enacted in 2004, has been interpreted as somewhat problematic.

For example, Zirkel and Thomas (2010) conducted a survey that
addressed the early years of RTI implementation in the U.S.
Those authors found that although RTI has been an allowable
substitute for the widely used IQ discrepancy criteria since 2004
(see Fuchs and Fuchs, 2006), confusion still persists between, for
example, legal requirements and professional recommendations.
Zirkel and Thomas have concluded that the legal content of RTI is
still somewhat incomplete. This probably explains why countless
versions of RTI have emerged. However, schools in the U.S. may
still use the IQ discrepancy model along with RTI (see Zirkel,
2012a,b,c) in the process of identifying LD. Although RTI models
vary considerably from state to state and from district to district
in the U.S., many approaches are comparable to the three-tiered
RTI framework currently in use in Finland (Björn et al., 2016).

In Finland, the Ministry of Education, Science, and Culture
formed a steering group in 2006 to focus on developing a
strategy for special education in basic education. Several tasks
were to be achieved: developing ways to analyze the need for
the amount of special educational services, developing legislation
concerning special education, developing teacher education,
developing administrative procedures in special educational
services, and developing other areas related to special education.
Consequently, a new strategy for special education was published
in 2007.

Based on this strategy document, a renewed Basic Education
Act was introduced in 2010 and was officially implemented in
August 2011 in all Finnish schools (Pesonen et al., 2015). This
lead to a framework with three levels of support for learning:
Tier 1 general support (including co-teaching, differentiated
teaching, etc. as forms of support); Tier 2 intensified support
(domain-specific learning plans and support in reading, writingin
flexible groups in addition to the forms of support mentioned
before); and Tier 3 special support (all previous forms of support
and individualized education plans) at each level, the student
is entitled to a variety of forms of support (e.g., even special
education, see Björn et al., 2016).

RTI as an approach to the identification and support of LD is
gradually being implemented throughout Europe. For example,
in the Netherlands, the Dutch Act on “Passend Onderwijs”
adopted in 2014, states that all children should be included in
mainstream education asmuch as possible, with financial support
provided to schools by regional educational administrations. In
addition to this, there is growing interest in using this framework
throughout many countries in primary education (Scholvink and
Janssen, 2014). According to the interpretation of RTI in the
Netherlands, Tier 1 support is provided inside the classroom
by the classroom teacher. This includes direct and differentiated
instruction for all students. However, Tier 2 and Tier 3 support is
mostly provided by a remedial teacher outside the classroom.

The U.S. RTI system has two main approaches to instruction:
the problem-solving model and the standard protocol model
(Fuchs et al., 2010; Jenkins et al., 2013). In the problem-solving
model, a student’s deficits are addressed by implementing a
research-based intervention specially designed for that individual
student (Johnson et al., 2006; Fuchs et al., 2010). Typically
in the problem-solving model, decision-making teams, which
may consist of teachers, administrators, school psychologists,
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and parents, follow a recursive four-step process: (a) define
the problem, (b) plan an intervention, (c) implement the
intervention, and (d) evaluate the student’s progress (Fuchs
et al., 2003; Bender and Shores, 2007). In the standard protocol
model, students with similar difficulties (e.g., problems with
reading fluency) are given research-based interventions that
have been standardized and proven effective for students with
similar difficulties for a predetermined amount of time (Johnson
et al., 2006). The problem-solving model resembles the Finnish
framework more than the standard protocol approach (Björn
et al., 2016).

RTI ASSESSMENT AND INSTRUCTION

Because LDs (typically in reading or math or both) are major
reasons for the need of extra support in learning (Fletcher et al.,
2007), relevant guidelines for both assessment and instruction are
needed (Fuchs et al., 2010, 2012). The concept of assessment is
often viewed as unidirectional. It used to be interpreted as an
authority administering assessments, with the examinee viewed
as an object of classification (Ysseldyke et al., 1983). In RTI,
however, as Grigorenko (2009) has noted, the roots of assessment
in RTI seem to be related to dynamic assessment (DA; see
also Elliott, 2000, 2003; Fuchs et al., 2007, 2011) in which the
assessment is flexibly intertwined with teaching sequences. This
enables up-to-date assessment results that can quickly inform the
instruction. Relevant and supplementary skills-based testing is
also an important component of RTI assessment as is progress
monitoring. It has been proposed that the performance of
“nonresponders,” (i.e., those children who do not show progress
in academic skills) is monitored frequently with a set of short
instruments relevant to these skills (Fuchs and Fuchs, 2005). By
monitoring a student’s learning and comparing it to that of peers
receiving the same instruction, teachers can determine whether
the student’s academic level and rate of progress warrant further
assessment or formal evaluation (Fuchs and Fuchs, 2005).

The first important assumption acknowledged in both RTI
and DA is that conventional assessment does not work for
children who have diverse educational and cultural experiences.
These children are often those who need more intensified
support in learning. The second assumption is that, instead
of focusing on children’s skills and abilities at a specific time
(Fuchs et al., 2010), children have the potential to learn with
adequate education or intervention (Fuchs et al., 2007). The
third assumption is that the reason for assessment is to inform
intervention, and consequently, the results of assessment should
have direct implications for selecting or modifying instruction.
The assessment data and continuous progress monitoring inform
instruction at each tier. Additionally, research-based curriculum
and instruction, as well as the systematic assessment of the fidelity
with which instruction and interventions are implemented, are
essential (National Association of State Directors of Special
Education, 2005; Fuchs et al., 2007). It is important to note that
assessment also includes other foci than learning outcomes in
which the student’s task-motivation (Eccles, 2005), academic self-
efficacy, and metacognitive skills (Seaton et al., 2013) are taken

into account in addition to the important assessment of the
learning environment (Johnson et al., 2006).

Next, we will go through assessment and instruction policies
in each overall Tier (the 3-tier RTI frameworks used here)
comparing the US. and Finland. After that, we will present
a model for providing individual support in mathematics
according to Finnish RTI framework and legislation.

TIER 1ASSESSMENT AND INSTRUCTION

See Table 1 for a comparative presentation of assessment and
instruction practices within RTI frameworks in the U.S. and
Finland. Tier 1 in the U.S. RTI includes statewide norms as well
as suggested materials and assessments usually performed within
general education settings. On Tier 1, according to Fuchs and
Fuchs (2005), struggling children are identified through poor
performance in classwide, schoolwide, or districtwide screening
intended to designate which children are at risk of academic
or behavioral problems. In Finland, to date, there is no formal
guidance on performing screenings within the RTI framework.
Some type of universal screening might (once or twice per year),
however, be performed according to a school’s and municipality’s
own system. Finnish teachers may freely decide when, how,
and with which the screenings are performed. The frequency of
screening is normally three times per year in RTI, but once again,
it is not clearly localized within the Finnish framework.

The latest addition to the screening procedure in the
U.S. RTI framework was suggested by Fuchs et al. (2012).
Originally, support when moving from Tier 1 to Tier 2 was
based on one screening phase according to which students
who did not respond to instruction were referred for more
intensive support. The new procedure involves a second stage
of screening performed after a short period of support, which
can contribute to accurate identification of students who require
a supplemental layer of reading intervention (Compton et al.,
2012) or math intervention (Fuchs et al., 2011). Another
innovation by researchers actively working with the U.S. RTI
was a second stage of diagnostic assessment that could be used
to move students who did not respond to a supplemental layer
of tutoring immediately to a more intensive and perhaps long-
term intervention they required (Compton et al., 2012). Without
such a second stage of screening, schools would provide costly
intervention to many students who did not need it. Compton
et al. (2012) have suggested a multistage screening process near
the beginning of the first grade to avoid an “RTI wait-to-fail”
model, in which children are required to participate in 10–
30 weeks of supplemental intervention that could have been
predicted to be inadequate.

In Finland, an optional learning plan is suggested (e.g., in the
Basic Education Act, 2010) at the Tier 1 level called “general
support.” This plan entails a means for assessment and support.
The U.S. version of RTI suggests no such documentation. The
frequency of progress monitoring (although it shows significant
variation) is high within RTI and is not definedwithin the Finnish
framework. In other words, in the renewed Finnish framework
of support in learning, the role of assessment and instruction is
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TABLE 1 | Assessment and Instruction on each Tier of RTI/Level of support, Finnish framework.

RTI Finnish framework

Tier 1 (Primary prevention) General support

ASSESSMENT

Type of assessment/identification Universal Screening, statewide normsa Not Specified (NS)b

Frequency of screening 3 times per year £ NS

Who does assessments General education teacher NS

Who makes decisions Multiprofessional team, parents Multiprofessional team, parents

Materials used in progress monitoring CBM NS, usually group assessments

Type of progress monitoring Academic skills development monitoring NS

Frequency of progress monitoring Weekly, for 5-8 weeks for at-risk students 1–2 times per year

INSTRUCTION

Length of Tier max 8 weeks (1 year∧) NS

Intensity of intervention(s) 90min daily (in reading) £ Within regular school work, NS

Type of interventions Core, With NS/With, PT, SG, Ind

Type of instruction Explicit, top-down (Differentiated instruction) Differentiated instruction, etc.

Methods of interventions/instruction Research-principled instruction, curricular∧ Flexible

Movement criteria between Tiers Final status NS

Tier 2 (Secondary prevention) Intensified support

ASSESMENT

Type of assessment/identification Instruction-based, skill-specific NS

Who does assessments Trained school personnel School personnel

Who makes decisions Multiprofessional teams, parents Multiprofessional teams, parents

Materials used for assessments Progress monitoringc NSc

Type of progress monitoring CBM Learning plan assessment

Frequency of progress monitoring No less than once every 2 weeks∧ NS

INSTRUCTION

Length of Tier max 1 school year (9-30 weeks∧ ) NS

Intensity of intervention(s) min 3 times/week, min 20–30 min/session∧ “More intense”

Type of interventions Targeted/SG (3–5 students) NS/PT, FT, With, SG, Ind

Type of instruction Standard protocol, replicable (Team problem-solving,

Behavioral consultation)

Flexible, NS

Methods of interventions/instruction Specified programs, scripted protocols, evidence-b. NS

Movement criteria between Tiers Final status; cut point slope∞ NS

Tier 3 (Tertiary prevention) Special support

ASSESSMENT

Type of assessment/identification Curriculum-based, diagnostic NS

Who does assessments Highly skilled/educated school personnel School personnel, consultation

(medica

Who makes decisions Multiprofessional teams, parents Multiprofessional teams, parents

Materials used for assessments Progress monitoring, diagnostic tools Standardized tests available, but NS

Type of progress monitoring CBM, diagnostic tests, IEP Pedagogic plan assessment, IEP

Frequency of progress monitoring No less than once a week∧ NS

INSTRUCTION

Length of Tier Min. 15–20 weeks∧ NS

Intensity of intervention(s) More frequently than Tier 2, min 30 min/session∧ “More intense”

Type of interventions Intense, SG, Ind (1–2 students) Flexible, Ind, NS

Type of instruction Data-based instruction (expert consultation) PT, FT, With, SG, Ind

Methods of interventions/instructionSpecified

programs, individual

Specified programs, individual NS

(Continued)
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TABLE 1 | Continued

RTI Finnish framework

Tier 3 (Tertiary prevention) Special support

Movement criteria between Tiers Final status; cut point slope, individual progress∧ Re-assessments especially in

transitions

aScreening, see: http://www.rti4success.org/screeningTools/
bhttp://www.lukimat.fi/lukimat-oppimisen-arviointi/materiaalit/tuen-tarpeen-tunnistaminen: materials for performing universal screening exist but they are not formally linked to the

renewed framework.
cProgress monitoring, see: http://www.rti4success.org/progressMonitoringTools, https://charts.intensiveintervention.org/chart/progress-monitoring; Finnish progress monitoring would

http://www.lukimat.fi/lukimat-oppimisen-arviointi/materiaalit/oppimisen-seuranta exist but they are not formally linked to the renewed framework; ∧Johnson, E., Mellard, D., Fuchs, D.,

McKnight, M. for NRCLD (2006); NS, Not Specified; PT, Part-time special education (in the USA: inclusive teaching); FT, Full-time special education (such as special classes, self-

contained classrooms); With, Student within mainstream education, although has LD; SG, Small-group instruction (such as “Tier time,” resource rooms), Ind, Individual instruction.∞

as in performance below/above 25th percentile.£ These examples from New York State Special Education Department website: http://www.p12.nysed.gov/specialed/RTI/guidance/

instruction.htm

somewhat undefined although the framework mentions possible
forms of support (such as co-teaching, smaller study groups, etc.).

According to Fuchs and Fuchs (2005), in the three-tier U.S.
RTI model, Tier 1 concerns at-risk children who have been
identified through a screening process. They receive research-
based instruction, sometimes in small groups, sometimes as part
of a classwide intervention. A certain amount of time (generally
not more than 6–8 weeks) is allotted to see if the child responds
to the instruction. Each student’s progress is monitored closely
(for more information, see: http://www.rtinetwork.org/essential/
assessment/progress/validated-forms-progressmonitoring). The
intervention programs may be selected from a bank of research-
proven interventions based on school resources in the U.S. The
concept of progress monitoring (CBM) and a resource bank
of suggested intervention methods are not mentioned at all in
documents defining the Finnish framework.

TIER 2 ASSESSMENT AND INSTRUCTION

In the U.S. RTI, Tier 2 (also referred to as secondary prevention)
belongs to general education as an instructional service.
In Finland, this level called “intensified support,” including
assessment as well as instruction, is organized via consultation
and collaboration between teachers. In the U.S. RTI, assessment
is instruction-based and skill-specific. The Finnish framework
provides no formal guidance for assessment (in the sense of
frequency). However, Finnish schools may, for example, decide
whether to do a skill-specific assessment of students in need of
extra support in learning. The Finnish framework provides for
an obligatory learning plan at this level of intensified support in
which the support a student receives is reported by teachers. No
description of frequency or type of progress monitoring exists
in the Finnish framework at the level of intensified support.
The learning plan document consists of descriptions of different
forms of support provided for a student. Large variation exists, as
there is no guidance on time for support.

Multi-professional consultation is made in problem-solving
RTI frameworks. Evidence-based protocols are used by reading
specialists, special education teachers, and paraprofessionals in
some RTI versions. Tier 2 within the RTI framework is an
important stage between Tier 1 and the intensified Tier 3.
Therefore, instruction on Tier 2 is evidence-based as well as

performed in short periods to allow for the instruction to be
modified in a timely manner (Fuchs and Fuchs, 2005). According
to Fuchs and Fuchs (2005), if the child does not respond to the
first level of group-oriented interventions, he or she typically is
moved to the next RTI level. The length of time on Tier 2 has been
reported to vary between 9 and 30 weeks, even one school year.
The time allotted to see if the child responds to interventions
at this more intensive level may be longer than on Tier 1. The
intervention has been successful if the child shows adequate
progress.

The group size of students receiving support given outside
classrooms is another important feature on Tier 2 of RTI
(Berkeley et al., 2009). For example, the state of Kansas has
indicated that small-group instruction should consist of between
three and five students on Tier 2 and fewer than three students
on Tier 3. Other state models are more flexible in group size
requirements. Arizona’s model, for example, allows for large- or
small-group instruction on Tier 1, small group instruction on
Tier 2, and small or individualized instruction on Tier 3.

Within the Finnish framework, small-group instruction, along
with the overall instruction that takes into account the diversity
of students, is often described as “flexible.” This type of support
is usually provided by special needs teachers or regular classroom
teachers. However, co-teaching is a suggested form of support
in the documents that have followed the actual Finnish law (for
example, see Ahtiainen et al., 2012).

TIER 3 ASSESSMENT AND INSTRUCTION

Tier 3 in the U.S. framework differs in many ways from the
equivalent level of the Finnish framework, which is called “special
support.” For example, the RTI framework in many US states
does not include any form of special education at this tier
(although it has been frequently suggested by researchers in
the field, see the work of Fuchs and Fuchs, 2005, for example).
In contrast, this tier entirely belongs to special education in
Finland although a student might still receive support and
instruction in regular classroom instruction. If the support
offered within the first two RTI tiers in the US has not been
enough, significantly more intensified (no less than once a week
for 15–20 weeks) instruction is then essential (Fuchs and Fuchs,
2005). Furthermore, if the child does not respond to instruction
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at this level, then he or she is likely to be referred for a full
and individual evaluation. This referral is a major difference
between the U.S. version of RTI and the Finnish framework. The
child has already been assessed many times during the level of
intensified support in Finland, but not in a unified manner across
municipalities or schools within the same district as there is a
lack in formal guidance on performing the assessment. Access to
special education services in Finland does not require statements
of eligibility but is based on multidisciplinary decision-making
that also involves the caregivers’ opinions. The U.S. RTI provides
for instruction for one or two students at a time. The Finnish
system lacks explicit min–max descriptions for different levels
of support, but many times a student on Tier 3 is situated,
at least part of a day, in small groups outside the regular
classroom for the most important content areas (usually literacy
skills and mathematics). All possible forms of instruction are
in use at this level of support in Finland. An obligatory
pedagogical review is conducted of all students, and the existing
means of support and goals for learning are defined in this
review.

Tier 3 RTI in the U.S. has an interesting feature: individualized
data-based instruction (or experimental teaching; for a case
example, see Fuchs et al., 2010). DBI is a research-based
process for individualizing and intensifying interventions
through the systematic use of assessment data, validated
interventions, and research-based adaptation strategies (see
more at: http://www.intensiveintervention.org). This form of
instruction resembles in many ways the flexibility and degree
of individual assessment and instruction that exists in the
Finnish framework; teaching methods are individually adjusted.
However, what is missing from the background of the
Finnish framework is a research-based resource center that
would actually validate using individually adjusted instructional
methods.

Assessment and instruction in the U.S. RTI framework seem
to be closely intertwined. First, the forms of assessment are
defined in more detail in the U.S. framework. Second, the main
forms of instruction/intervention delivered to students within the
U.S. RTI framework rely on research-based interventions, which
often include well-defined assessment and programmatic content
designed to ensure intensity and duration (Fuchs and Fuchs,
2006). In contrast, the Finnish framework does not include
clear definitions for support or follow-up of learning results.
Because students with severe learning difficulties in mathematics
are in need of the most intensive support, we will next present
a suggestion for refining the Finnish framework in terms of
individual support in mathematics. Note that our suggestion
might be used in other content areas as well.

FINNISH FRAMEWORK FOR INDIVIDUAL
SUPPORT IN MATHEMATICS: AN
EXAMPLE OF RTI INTERPRETATION

We have identified a national need for bringing more content
and research-based substance to the RTI-like framework, as well
as a more systematized approach in Finland. This can be done

by providing the support stipulated in formal legislation and
other documents schools and teachers currently use in their
everyday work. We have not tried to present everything as
so much better in the U.S, by using U.S. RTI as an example,
but we want to point out that the way Finnish three-tiered
framework is currently presented has left toomuch room for local
interpretation. By discussing this in an international forum, we
believe that other countries currently in the process of developing
their own RTI frameworks might be able to handle building
and implementing the framework even better than Finland and
the U.S.

We have published a more comprehensive Finnish version of
this suggestion on support in mathematics (see Björn et al., 2015)
incorporating all three tiers of support, but we have rethought
and refined the model in terms of Tier 3 support in mathematics
for the present paper. Overall, our suggestion needs to omit some
of the principles already in use in the U.S., but that is mainly due
to the current lack of material (e.g., assessment tools, progress
monitoring tools, etc.) Our suggestion follows Finnish legislation
and the outline of the Finnish RTI or “three-tiered framework for
support” but incorporates the suggestions of Gersten et al. (2009)
and Bryant et al. (2014).

Slavin and Lake (2008) have pointed out that the best learning
results in mathematics may be achieved by using systematized,
yet flexible, ways of support. Which means that teachers should
be given possibilities to modify the support offered (see, Lemons
et al., 2014). In Finland, special educational services (as in
support provided by a special needs teacher) are available at
all three tiers of support. However, the main principle should
be that the more intensive the need for support, the more
individualized support should be given (Gersten et al., 2009).
Consequently, Tier 3 support in primary school should mean
choosing evidence-based intervention material as the basis for
planning mathematics instruction (Mononen, 2014).

Tier 1 and Tier 2 support precede Tier 3. If preliminary
support for learning mathematics in the classroom as part of
a large group or even occasionally as part of a small group
had been attempted without clear signs of acceleration of math
skills, then, according to Finnish law, a formal referral to special
education would be needed for Tier 3 support. Subsequently, an
individual education plan (IEP) with plans for instruction would
be drawn up with the participation of the student, caregivers,
school psychologist, classroom teacher, and special needs teacher.
We suggest that approach to instruction during a school year
would consist of several cycles. The current situation in schools
is that each teacher (or teacher and special needs teacher-pair)
decide on the frequency and content of support. This results in
differing practices, and the rights of suitable instruction provided
for each individual student in need of support in mathematics are
not addressed adequately.

To correct this situation, we suggest that each cycle of support
lasts for 5–7 weeks, and that the support is provided 3–4 times per
week (each session duration 30min of intensive work). starting
frommaking sure very basic math skills are learned (number line
skills backwards and onwards, calculations including additions,
subtractions, overall estimation ability). By viewing the support
as cycles throughout the school year, groups/pairs of students
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participating in Tier 3 support could work together regardless of
age. We recommend that students work in pairs or small groups,
maybe occasionally even provided with fully individualized
support. This means that based on “what works” literature (see
Gersten et al., 2009), students that need intensive support in
mathematics would benefit the most from support given in
smaller groups rather than in a large classroom group. We
have conducted an intervention with trials on individual support
provided in a regular classroom for students in need of support
in mathematics Björn et al., (under review), but those inclusion
trials did not fully convince us of their superiority to small-group
intervention outside the regular classroom. Consequently, we
think that intensive intervention periods provided as relatively
short cycles, instead of continuous intensive instruction, would
enable testing the regular classroom as a learning environment
occasionally, and, if sufficient skills have been learned, the
“pull out” type of instruction/intervention outside the regular
classroom could be stopped at some point.

Each support cycle would begin and end with a short
assessment of learning gains so that adjustments of instruction
could be made in a timely manner. A cyclic assessment also
enables the teacher to determine the point at which each
basic math skill has been learned. This way, the approach for
assessment and instruction would be “continuous” in terms
of what we know about the persistence of developmental
mathematics learning difficulties (Fletcher et al., 2007).

We cannot expect severe mathematics learning difficulties to
be “cured” even by repeating several cycles of support during
a school year; instead, support would need to be provided over
several school years. The teaching contents during these support
sessions would include basic arithmetic and estimation skills,
according to individual needs, for as long as deemed necessary.
Continuity of the support would be ensured by keeping a record
of the support and assessment given to each student. Givingmany
alternate suggestions for intervention programs to be selected
from as the instructional basis for this support cannot be done
at this time. This is due to the fact that, to date, only a few
intervention programs for mathematics are available in Finland
(for more information, see www.lukimat.fi).

What we have presented here can be summed up like
this; assessment and instruction on Tier 3 (special support)
should be continuous, cyclic, individual, and based on evidence-
based intervention programs. Support can be provided in many
different contexts, but it must be systematized and modifiable
between cycles.

DISCUSSION

In this paper, we presented the RTI framework and the three-
level Finnish educational support system from the viewpoints of
assessment and instruction. Themodels were implemented based
on similar background philosophies: the right to receive the
best possible preventive support for learning and participation.
Tohe recent Finnish reform (Basic Education Act, 2010), after
many phases, developed into a model in similar to the U.S. RTI
model (Fuchs and Fuchs, 2005), at least on the surface. However,
there are many differences that might give new insights to any

country planning to develop similar frameworks. For example,
the current U.S. model aims for the identification and prevention
of further learning difficulties (Compton et al., 2012) by placing a
student within a suitable tier of intervention (Vaughn and Fuchs,
2003). The Finnish model, in contrast, mainly aims at supporting
learning at the earliest time point possible (Opetusministeriö.
Erityisopetuksen strategia, 2007) within the three-tiered
framework.

The major finding of the present analysis is that unlike
the renewed Finnish system of support in education, the U.S.
RTI framework included as early as 2004 many suggested
materials for universal screening, early intervention, multi-
tiered levels of support, evidence-based intervention, data-based
decision-making regarding intervention, and using students’
responsiveness to evidence-based instruction in evaluating
disability status (Haager et al., 2007). RTI in the U.S. has
succeeded in accelerating a paradigmatic change in the uses of
testing. Instead of focusing on learning achievement at one point,
RTI focuses on individual responses in relation to instruction
(Fletcher and Vaughn, 2009; Fuchs et al., 2010).

Moreover, the concept of evidence-based teaching or
evidence-based intervention is not present in either of the
Finnish documents (Opetusministeriö. Erityisopetuksen
strategia, 2007; Basic Education Act, 2010) or in Finnish schools.
In the Finnish model, individual assessment (progress when
receiving support) is not described. Thus, one major observation
that might explain why there is such a noticeable difference
between RTI and the Finnish framework is that there is no such
large degree of teacher accountability in Finnish school culture
(see Sahlberg, 2010) as may be observed to exist within the U.S.
For example, the concept of “fidelity to instruction” (Fuchs et al.,
2007) is not yet in use in Finland. Instead, the concept of “trust”
is used frequently (see Itkonen and Jahnukainen, 2007) when
talking about teachers’ work.

Municipalities, schools, and teachers in Finland have a
relatively broad autonomy in interpreting legislation and
curricular instructions. One reason for this is the equity of
the Finnish educational policy system (Linnakylä et al., 2011).
Another reason for this type of freedom is that Finnish teachers
must have a Master’s degree in education to be recruited to
a permanent teaching position. Due to this high educational
level, Finnish teachers are often deemed as trusted professionals.
Therefore, they are used to making decisions on how to
assess students’ skills, what type of instruction to apply, and
how long to give instruction before making a decision on
whether or not to move the student to the next level of
support. This results in very individual and different ways
of supporting students’ learning processes. However, bringing
a more interventionist approach to learning support within
the Finnish educational system would allow more systematic
development of instructional practices as well as accumulation,
documentation, and distribution of knowledge. Also clear
instructions on how to implement these practices are still needed.
That is why we have presented a suggestion for providing support
in mathematics. However, we are well aware that this suggestion
will not be taken seriously as long as the formal documents
praise the pedagogical freedom of teachers and local solutions
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(as suggested in problem-solving RTI models) for learning
difficulties.

A debate about the aims, justification, and uses of the
framework of the U.S. RTI (e.g., Artiles et al., 2010; Fuchs et al.,
2010; Vaughn et al., 2010; Fuchs and Fuchs, 2017) is still ongoing.
Perhaps one way to further clarify the uses of RTI in the US
would be that, because they are originally based on the traditions
of dynamic pairing of assessment and instruction, they should
be seen as a series of carefully selected protocols in the future
(Fuchs et al., 2010). This would ensure instructional replicability
and flexibility, and the process of identifying learning difficulties
would be made clearer.

RECOMMENDATIONS

Within education systems there are always possibilities for
improvement, even after reforms take effect. The present analysis
contributes to this goal and to the research literature by
identifying similarities and differences between two countries
with significant experience of RTI-like frameworks. Because
formal identification of learning disabilities is not a central part
of the current Finnish framework, it is understandable that it
resembles those RTI systems that take a problem-solving and
consultation-based approach (Ikeda and Gustafson, 2002). A
much-welcomed addition to the Finnish RTI would be the data-
informed, decision-making and systemized use of standardized
assessment and instruction tools, based on systematized progress
monitoring (see Fuchs and Fuchs, 2005). This is a question of the
allocation of funds that have not been directed toward developing
assessment tools and intervention programs in Finland. This is
a major difference between Finland and the U.S., where major
technical assistance centers, with federal funding, are available
to support RTI implementation (e.g., the National Center for
Response to Intervention (2016; http://www.rti4success.org/);
the National Center for Intensive Intervention (National Center
for Intensive Intervention; http://www.intensiveintervention.
org).

If Finland would like to move toward evidence-based or
research-based instruction in schools, one of the existing
stakeholders (e.g., the Finnish National Board of Education
or the Ministry of Culture and Education) should take steps
toward establishing similar centers. However, we continuously
seek funding to make the www.lukimat.fi service a national RTI
center that would be strongly connected to the best universities
with the aim of developing evidence-based intervention and
advising teachers in addressing learning difficulties.

Although the RTI framework seems to be clear, the IDEA
legislation leaves toomuch room formultifaceted interpretations,
a situation that leads to, for example, seven-tiered RTI models
and the impossibility of comparing the uses of RTI across the U.S.
On the other hand, the three-tiered Finnish framework is clear
in its background philosophy and purpose (Sabel et al., 2011),
but it lacks content: no assessment or intervention tools have
been indicated although there are a few available. This lack of
indication of materials has led to multiple interpretations of what
qualifies as assessment tools (and to discussions if there is a need

for using assessment tools at all) and of what intensified or special
instruction means.

CONCLUSIONS

What follows from revealing these differing profiles of assessment
and instruction within the two countries are some modest
suggestions for concluding remarks. For the RTI model used in
the U.S., it would be useful to simplify the RTI models in use
(see also, Fuchs and Fuchs, 2017) and return to its origins: a
three-tiered model with research-based instruction on the first
tier, standard protocols on the second tier, and intensive, method-
rich, research-based teaching on the third tier. With regards to
the future of the Finnish model, the priority, of course, is to
collect and create a national resource for assessment materials as
well as intervention materials suitable for instructional packages
with different intensities and lengths. This process would lead to
the use of similar assessment methods and intensified instruction
across schools and municipalities and also cumulative knowledge
on “what works with whom.” Because the current legislative
framework in Finland clearly indicates that support for learning
with increasing intensity is required by law, now is a good
time to start developing actual assessment policies and ways to
implement evidence-based instruction practices intended for the
support of learning.
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Several studies have shown that Executive Functioning (EF) is a unique predictor
of mathematics performance. However, whether or not children with mathematics
difficulties (MD) experience deficits in EF remains unclear. Thus, the purpose of this study
was to examine if Chinese children with MD experience deficits in EF. We assessed 23
children with MD (9 girls, mean age = 10.40 years), 30 children with reading difficulties
and MD (RDMD; 12 girls, mean age = 10.82 years), and 31 typically-developing
(TD) peers (16 girls, mean age = 10.41 years) on measures of inhibition (Color-Word
Stroop, Inhibition), shifting of attention (Planned Connections, Rapid Alternating Stimuli),
working memory (Digit Span Backwards, Listening Span), processing speed (Visual
Matching, Planned Search), reading (Character Recognition, Sentence Verification), and
mathematics (Addition and Subtraction Fluency, Math Standard Achievement Test). The
results of MANOVA analyses showed first that the performance of the MD children in all
EF tasks was worse than their TD peers. Second, with the exception of the shifting tasks
in which the MD children performed better than the RDMD children, the performance
of the two groups was similar in all measures of working memory and inhibition. Finally,
covarying for the effects of processing speed eliminated almost all differences between
the TD and MD groups (the only exception was Listening Span) as well as the differences
between the MD and RDMD groups in shifting of attention. Taken together, our findings
suggest that although Chinese children with MD (with or without comorbid reading
difficulties) experience significant deficits in all EF skills, most of their deficits can be
accounted by lower-level deficits in processing speed.

Keywords: executive functioning, math disabilities, working memory, speed of processing, Chinese

INTRODUCTION

Several studies have reported that approximately 20% of school-age children experience
mathematics difficulties (MD; see Gross-Tsur et al., 1996; Landerl and Moll, 2010; Geary, 2011;
Moll et al., 2014). To better understand the cognitive underpinnings of MD, researchers have
further examined the role of several candidate cognitive processes such as general cognitive ability
(e.g., Toffalini et al., 2017), working memory (e.g., Passolunghi and Siegel, 2001; Swanson and Kim,
2007), speed of processing (e.g., Koontz and Berch, 1996; Compton et al., 2012), and phonological
processing (e.g., Wise et al., 2008; Mazzocco and Grimm, 2013). One of the skills that remain largely
unexplored is that of executive functioning (EF). Thus, the purpose of this study was to examine if
children with MD experience deficits in EF.
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EF is an umbrella term used to represent processes that allow
individuals to respond flexibly to our environment and engage
in deliberate, goal-directed behavior (e.g., Chan et al., 2008;
Diamond, 2013). The three most studied EF skills1, particularly
in relation to mathematics, are inhibition (the ability to suppress
distracting information), shifting of attention (the ability to
switch between mental sets, representations, and tasks), and
working memory (the ability to store information for a short
period of time and manipulate or process it)2. To date, several
studies with typically developing (TD) children have shown
that these three EF skills predict (jointly or independently)
mathematics performance across a wide range of ages (e.g., Espy
et al., 2004; Blair and Razza, 2007; Clark et al., 2010; Lan et al.,
2011; Monette et al., 2011; van der Ven et al., 2012; McClelland
et al., 2014; Viterbori et al., 2015; Chung et al., 2016; Purpura
et al., 2017; see also Friso-van den Bos et al., 2013; Yeniad et al.,
2013, for evidence from meta-analyses). In addition, there is
some evidence that poor EF correlates with mathematics learning
disabilities (e.g., Toll et al., 2011; Willoughby et al., 2016; Morgan
et al., 2017).

There are several reasons why inhibition, shifting of attention,
and working memory may relate to mathematics (Swanson and
Beebe-Frankenberger, 2004; Censabella and Noël, 2008; Bull
and Lee, 2014). First, inhibition may help individuals suppress
the retrieval and use of developmental immature strategies,
inappropriate number bonds (e.g., answering “18” to 3+ 6= ?),
or the use of information from a word problem that is irrelevant
to the solution. Inhibition may also help working memory
because inhibition of irrelevant information prevents working
memory from becoming overloaded from this information.
In turn, shifting of attention may help individuals alternate
successfully between mathematical operations, solution
strategies, and notations (e.g., between verbal digits, Arabic
numerals, and non-symbolic quantity representations), or
between the steps involved in solving a multistep problem.
Finally, working memory may provide support for strategies
such as verbal counting, the direct retrieval of arithmetic facts,
the coordination of multiple steps in complex mathematics
problems, and the maintenance of interim calculations during
mental arithmetic.

Despite the volume of research examining the role of EF
skills in TD children (see e.g., Bull and Lee, 2014; Cragg and
Gilmore, 2014, for a review), far less is known about the role
of EF skills in MD. In addition, the few studies that compared
children with MD to TD children have produced mixed findings.
Passolunghi et al. (1999; see also Passolunghi and Siegel, 2001,
2004) have found that children who were poor problem solvers
were performing significantly lower than good problem solvers
in working memory tasks. In addition, as a group, they were

1We acknowledge that some researchers use the term in a broader way and include
under the umbrella of EF skills such cognitive flexibility, verbal fluency, and
planning (e.g., Latzman and Markon, 2010; Testa et al., 2012).
2Notice that inhibition, shifting of attention, and working memory are also
broad terms (Nigg, 2000; Friedman and Miyake, 2004; Wager et al., 2006;
Baddeley, 2012). For example, working memory consists of four components:
central executive, phonological look, visuo-spatial sketchpad, and episodic buffer
(Baddeley, 2012).

committing more intrusion errors (i.e., they recalled non-target
information more often) in a Listening Span task. Based on these
findings, Passolunghi and colleagues concluded that the working
memory deficits exhibited by children with poor problem
solving skills can be traced to more fundamental deficits in
inhibition. Because children with MD could not inhibit irrelevant
information, more information (relevant or not) was kept active
in working memory, which, in turn, overloaded its capacity.
Fuchs and colleagues (e.g., Fuchs et al., 2005, 2006) also reported
that children with MD had elevated levels of inattentive behavior
(based on teacher ratings of attentional skills) and that inattentive
behavior, along with working memory deficits, predicted the
emergence of computational and problem-solving mathematical
difficulties over the course of Grade 1. In contrast to these
findings, some studies have shown that children with MD do not
experience deficits in inhibition (e.g., van der Sluis et al., 2004;
Censabella and Noël, 2005; de Weerdt et al., 2013; McDonald and
Berg, 2017). For example, van der Sluis et al. (2004) found that
children with MD differed from the control group only on tasks
involving both inhibition and shifting, and not on tasks involving
only inhibition.

Similar contradictory findings have been reported for working
memory, and each one of its components (central executive,
phonological loop, and visuo-spatial sketchpad; see Passolunghi,
2006, for a review). For example, whereas some researchers
have shown that children with MD experience deficits in central
executive (e.g., Geary et al., 2000; Passolunghi and Siegel, 2001;
Swanson and Sachse-Lee, 2001; Cai et al., 2013), others did
not (e.g., McLean and Hitch, 1999; Schuchardt et al., 2008;
McDonald and Berg, 2017). Likewise, whereas some researchers
have reported significant deficits among children with MD in
phonological loop (e.g., Geary et al., 1991; Swanson and Sachse-
Lee, 2001; van der Sluis et al., 2005; Cai et al., 2013) and in
visuo-spatial sketchpad (e.g., McLean and Hitch, 1999; D’Amico
and Guarnera, 2005; Berg, 2008; Cai et al., 2013; Szűcs et al.,
2013), others did not (e.g., Bull et al., 1999; Geary et al., 2000,
2004; Landerl et al., 2004).

Several issues need to be considered when interpreting these
conflicting results. The first issue relates to speed of processing
and whether its effects are partialled out or not before testing
for differences between groups in EF. Some studies have shown
that children with MD process information more slowly than TD
children (e.g., Bull and Johnston, 1997; Swanson and Sachse-Lee,
2001; Chan and Ho, 2010; Vukovic and Siegel, 2010; however, see
also Berg, 2008). Because speed of processing is a strong predictor
of mathematics performance (e.g., Bull and Johnston, 1997; Fuchs
et al., 2006; Peng et al., 2016; Cui et al., 2017), it is possible that
MD persist because of persistent deficits in speed of processing,
which hinder automatic fact retrieval from long-term memory.

Relatedly, little attention has been paid on how speed of
processing has been operationalized in different studies. Some
researchers have used naming speed tasks (i.e., digit naming)
as measures of speed of processing (e.g., Geary et al., 2007;
Chan and Ho, 2010; Vukovic and Siegel, 2010; Moll et al., 2016).
Using a naming speed task as a measure of processing speed
is problematic because of evidence showing that measures of
naming speed do not load on the same factor as measures of speed
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of processing (e.g., Visual Matching, Cross-out; see van den Bos
et al., 2003; Bowey et al., 2004). In addition, poor performance
in a naming speed task does not necessarily mean that children
experience difficulties in processing speed. Poor performance in
a naming speed task may also reflect low-quality phonological
representations (e.g., Elbro, 1998), problems in simultaneously
processing multiple stimuli when they are presented in serial
fashion (e.g., Protopapas et al., 2013), or even problems in
forming a “perceptual anchor” in tasks that involve a small set
of repeated stimuli (e.g., Ahissar, 2007). Second, because most of
the EF tasks (particularly the inhibition and shifting of attention
tasks) are speeded and because MD children are often selected
based on their poor performance in calculation fluency tasks, this
may give rise to EF difficulties. Thus, unless the effects of speed of
processing are controlled, we cannot exclude the possibility that
the observed difficulties of children with MD in EF tasks are due
to lower-level processing speed deficits (see van der Sluis et al.,
2004, for a similar argument). In the present study we used more
conventional measures of processing speed and we also partialled
out the effects of speed of processing prior to testing for group
differences in EF skills.

The second issue relates to comorbidity between reading
and mathematics. Math difficulties often co-occur with reading
difficulties in children with learning disabilities (Gross-Tsur et al.,
1996; Moll et al., 2014). Some researchers have argued that
children with MD are cognitively different from children with
RDMD (e.g., Geary et al., 2007; Landerl et al., 2009; Compton
et al., 2012). Because most previous studies did not distinguish
between children with MD and children with RDMD (e.g., Geary
et al., 2007; Berg, 2008; Censabella and Noël, 2008; Cai et al.,
2013), the discrepant findings may reflect a mixed pattern of EF
deficits for children with MD and children with RDMD.

It is also worth noting that most previous studies on EF and
MD have been conducted in North America or in Europe (see list
of studies in the meta-analyses by Friso-van den Bos et al., 2013
and Yeniad et al., 2013), and we do not know if their findings
generalize to an East Asian country (e.g., China). We have several
reasons to believe that the findings may be different. First, some
cross-cultural studies have shown that Chinese children perform
better than North American children not only on mathematics
skills (e.g., Zhao et al., 2014; Lonnemann et al., 2016; see also
Wang and Lin, 2009), but also on EF skills (e.g., Sabbagh et al.,
2006; Lan et al., 2011). However, the superior performance of
Chinese children in both skills has not led to stronger effects of
EF on mathematics skills. Lan et al. (2011), for example, found
that whereas inhibition was a unique predictor of calculation
ability among American preschoolers, it was not among Chinese
preschoolers. Second, Geary et al. (2000) found that American
children with MD (with or without comorbid reading difficulties)
committed more counting string errors (e.g., recalling the
number following one of the addends in the counting string)
than their TD peers. They attributed this to inefficient inhibition
of irrelevant associations. However, Chinese children practice
simple additions and subtractions from the age of 3 (Cheng et al.,
2001) and by the time they go to elementary school, they are
expected to retrieve the answer to simple calculation problems
from their long-term memory. Consequently, Chinese children

with MD may not experience deficits in inhibition. In line with
this hypothesis, Peng et al. (2012) found that performance in a
color-word Stroop task (one of the most widely used measures of
inhibition) did not differentiate Chinese fifth-graders with MD
from their TD peers. Finally, the Chinese linguistic system (e.g.,
short pronunciation of numbers in Chinese and regular number
naming structure; see Ng and Rao, 2010, for details) may increase
the working memory capacity and reduce the working memory
difficulties in Chinese children with MD. Given that only two
studies to date have examined the role of EF skills in MD in China
(Chan and Ho, 2010; Peng et al., 2012) and none of them has
controlled for the effects of speed of processing, more research is
needed on this topic.

MATERIALS AND METHODS

Participants
The participants in this study were 84 Chinese children (37 girls,
47 boys; mean age = 10.56 years, SD = 1.11) attending five
inner-city public schools in Hangzhou. Because there is no formal
diagnosis and coding of children as math or reading disabled
in China, to select our participants we used the following two-
step approach: First, we administered a calculation fluency task
(Addition and Subtraction Fluency from WIAT-II; Wechsler,
2009) and a reading fluency task (Sentence Verification; Lei et al.,
2011) to a large group of Grade 4, 5, and 6 children (n = 1,160;
570 girls and 590 boys). Both tasks were administered to the
whole classroom by our trained graduate students.

Second, based on the performance of the children in these two
screening measures, we carefully selected three groups of children
according to the following criteria: children in the control group
had to score at or above the 35th percentile of their grade level
in both arithmetic and reading fluency tasks. Children with MD
only had to score below the 20th percentile of their grade level in
arithmetic fluency (i.e., ≤raw score of 79 in Grade 4; ≤raw score
of 92 in Grade 5;≤raw score of 93 in Grade 6) and above the 35th
percentile of their grade level in reading fluency (i.e., ≥raw score
of 59 in Grade 4; ≥raw score of 66 in Grade 5; ≥raw score of 67
in Grade 6). Finally, children with both mathematics and reading
difficulties had to score below the 20th percentile of their grade
level in both mathematics and reading3.

From this selection procedure, we first identified 33 children
with poor reading and poor mathematics performance and 25
children with poor mathematics and good reading performance.
Three children from the former and two children from the latter
group had a non-verbal IQ lower than 85 (assessed with Raven’s
Matrices) and were excluded from further testing. Thus, our
final sample consisted of 30 children with poor mathematics and
poor reading performance (18 boys, 12 girls; 10 from Grade 4,

3The 20th and 35th percentiles are commonly used as cutoff scores to select
participants with and without reading/mathematics difficulties (e.g., Badian, 1999;
Landerl et al., 2004; Fuchs et al., 2008; Tang, 2012). However, as indicated in
Swanson and Jerman’s (2006) meta-analysis, measures used to establish math
disabilities vary from the 48th percentile to the 8th percentile. Geary (2003) also
argued that there are no universally agreed-upon criteria for the diagnosis of math
difficulties.
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8 from Grade 5, and 12 from Grade 6) and 23 children with
poor mathematics and good reading performance (14 boys, 9
girls; 9 from Grade 4, 7 from Grade 5, and 7 from Grade 6).
Next, to select the children with no reading or MD, we randomly
sampled one twentieth of the children meeting the selection
criterion (a score higher than the 35th percentile in both reading
and mathematics) in each grade4. This resulted in 32 children.
A child with a non-verbal IQ score lower than 85 was further
eliminated leaving us with a sample of 31 children (15 boys, 16
girls; 12 from Grade 4, 10 from Grade 5, and 9 from Grade 6).
Parental permission and ethical approval from the Research
Ethics Committee of the Zhejiang Gongshang University was
obtained prior to testing. Descriptive statistics on age, non-verbal
IQ, reading fluency, and arithmetic fluency tasks are presented in
Table 1.

Materials
Non-verbal IQ
Non-verbal IQ was assessed with Raven’s Standard Progressive
Matrices (Raven et al., 2016). Children were presented with a
pattern of shapes/geometric designs that was missing a piece and
were asked to choose among six to eight alternatives the piece that
would accurately complete the pattern. The task consisted of five
sets of 12 items (total of 60). A child’s score was the total number
correct. Cronbach’s alpha reliability coefficient in our sample was
0.89.

Speed of Processing
To assess speed of processing we administered two measures:
Visual Matching and Planned Search. In Visual Matching,
children were required to find and underline the two numbers
that were the same in each of the eight rows in a card. There
were six numbers of the same length in each row (e.g., 6, 2, 9,
6, 7, 1). In Card 1, the first four rows contained 2-digit numbers
and the last four 3-digit numbers. In Card 2, the first four rows
contained 4-digit numbers and the last four 5-digit numbers.
Maximum time allowed per card was 180 s. A participant’s score
in Cards 1 and 2 was the total time divided by the number
of correct responses. Cronbach’s alpha reliability coefficient in
our sample was 0.85. In Planned Search, children were asked to

4The decision to sample one twentieth of these children was made so that we would
have at least as many children in this group as in our second largest group (the
group with poor reading and mathematics performance).

match as quickly as possible a target object, number, or letter
(located inside a box in the middle of a visual field) with the same
object, number, or letter that was located in the visual field among
distractors. Each item consisted of two searches, one on the top
half of the page and one on the bottom half of the page. Each
target had only one match on a page. We recorded the time to
complete each search on each page and the participant’s score was
the total time to complete all searches. Cronbach’s alpha reliability
coefficient in our sample was 0.79.

Executive Functioning
Inhibition
Inhibition was assessed with the Expressive Attention task from
DN CAS-2 (Naglieri et al., 2014) and the Inhibition task from
NEPSY-II (Korkman et al., 2007). In Expressive Attention,
children were presented with three pages of stimuli. In the first
page, children were asked to read color words [i.e., (blue),
(yellow), (red), (green)] that were semi-randomly arranged
in eight rows of five. In the second page, children were asked
to name an array of color patches of the aforementioned colors.
In the third page, children were asked to name as fast as and as
accurately as possible the color of the ink in which color words
were printed [e.g., the word (Red) printed in blue ink] instead
of saying the color word. Before each timed trial, the children
were presented with a practice page to ensure they understood
the instructions. A participant’s score was the time to finish the
third page. Cronbach’s alpha reliability coefficient in our sample
was 0.77. In the Inhibition task, children were required to look at
a series of black and white shapes or arrows and name the shape
(e.g., say square or circle), the direction (e.g., say up or down),
or the opposite (e.g., when you see a square shape, say circle; and
when you see a circle shape, say square), depending on the color
of the shape or arrow. The completion time in seconds for the test
items in each condition (i.e., Naming, Inhibition, and Switching)
was recorded. A participant’s score was the total time to finish
the Inhibition task. Cronbach’s alpha reliability coefficient in our
sample was 0.82.

Shifting
Shifting was assessed with the Planned Connections task from
the DN CAS-2 battery (Naglieri et al., 2014) and the Rapid
Alternating Stimuli (RAS) task from the RAN/RAS test battery
(Wolf and Denckla, 2005). Planned Connections is a transparent

TABLE 1 | Descriptive statistics on the screening measures separately for each group.

TD (n = 31) MD (n = 23) RDMD (n = 30)

M (SD) M (SD) M (SD) F Group comparisons

Age (years) 10.50 (0.86) 10.40 (1.24) 10.82 (1.11) 1.05 TD = RDMD = MD

Raven 105.42 (6.35) 102.30 (5.57) 102.38 (5.34) 1.41 TD = RDMD = MD

Sentence Verification 72.29 (4.58) 69.35 (6.54) 38.60 (6.92) 227.44∗∗∗ TD = MD > RDMD

Character Recognition 142.65 (3.77) 139.43 (8.48) 124.50 (9.06) 51.34∗∗∗ TD = MD > RDMD

Calculation Fluency 135.45 (17.32) 80.00 (10.02) 70.93 (17.11) 115.50∗∗∗ TD > MD = RDMD

MSAT 35.61 (7.49) 32.70 (7.25) 29.77 (5.86) 5.51∗∗∗ TD > MD = RDMD

TD, typically developing group; MD, mathematics difficulties group; RDMD, reading and mathematics difficulties group. ∗∗∗p < 0.001.
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adaptation of Trail Making (Reitan and Wolfson, 1992). In this
task, children were presented with four pages of numbers (1–13)
and letters (A–M), and, in each page, they were asked to connect
the numbers to the letters in successive order (1, A, 2, B, 3,
C, etc.) as fast and as accurately as possible. The score was the
total time to finish all pages. Cronbach’s alpha reliability in our
study was 0.80. In RAS, children were required to name as fast
and as accurately as possible color patches mixed up with digits
(i.e., blue, 2, yellow, 6, green, 9, black, 7, etc.). The color patches
and digits were randomly presented in five rows of ten. Prior
to testing, the children were asked to name each of the RAS
stimuli in a practice trial to ensure familiarity. A participant’s
score was the total time to name all items. Wolf and Denckla
(2005) reported test-retest reliability for this task to be 0.84.

Working memory
The Digit Span Backwards task and the Listening Span task were
used to assess working memory. The Digit Span Backwards task
was adopted from WISC-III (Wechsler, 1992). Children were
asked to repeat a sequence of digits in the reverse order. The
strings of digits were presented orally by the experimenter with
a time interval of about 1 second between each digit. The strings
started with only two digits and one digit was added at each
difficulty level (the maximum length was seven digits). The task
was terminated when children failed both trials of a given length.
The children’s score was the number of digit strings accurately
recalled. Cronbach’s alpha reliability coefficient in our sample
was 0.75. The Listening Span task was adapted in Chinese from
Daneman and Carpenter (1980). The children listened to groups
of sentences and were asked to determine if each sentence was
true or false (e.g., “All mothers work in an office”). Children were
instructed to keep the last word in each sentence in their memory
and then after completing a sentence group they were asked to say
the last word in each sentence in the same order. A participant’s
score was the total number of sets correctly recalled (max = 5).
Cronbach’s alpha reliability coefficient in our sample was 0.81.

Arithmetic Skills
Arithmetic accuracy
The Math Standard Achievement Test (MSAT) from Dong and
Lin (2011) was used to assess arithmetic accuracy. The task
has been used in previous studies in China showing good
psychometric properties (e.g., Cai et al., 2013, 2018). The test
included 30 items: 26 items were multiple choice questions (e.g.,

If is number 31, what number is ? 4, 9, 45, or 54?)
and 4 items were fill-in questions (e.g., Based on the map you have
in front of you, how long will it take Fang to go to the bookstore, if
he first passes by Li’s home?). The task was discontinued after four
consecutive errors. A participant’s score was the total number
correct. Cronbach’s alpha reliability coefficient in our sample
was 0.84.

Arithmetic fluency
To assess arithmetic fluency we administered the addition and
subtraction fluency tasks from WIAT-III (Wechsler, 2009). In
each subtest, children were asked to solve as many additions or
subtractions as possible within a 1-min time limit by writing their

response in the space provided beside each problem. Each subtest
included two pages (24 items on each page; total of 48 problems).
A participant’s score was the total correct number of additions
and subtractions completed within the time limit. The scores in
addition fluency correlated 0.85 with the scores in subtraction
fluency.

Reading Skills
Reading accuracy
Character Recognition was adopted from Li et al. (2012) to assess
reading accuracy. The task has been used in previous studies
in Chinese showing good reliability and validity evidence (e.g.,
Xue et al., 2013; Zhang et al., 2013; Liao et al., 2015). Children
were asked to read aloud 150 Chinese two-character words that
were arranged in terms of increasing difficulty. The task was
discontinued after 15 consecutive errors. A participant’s score was
the total number correct. Cronbach’s alpha reliability coefficient
in our sample was 0.89.

Reading fluency
Sentence Verification from Lei et al. (2011) was used to assess
reading fluency. The task has been used in previous studies in
Chinese showing good psychometric properties (e.g., Liao et al.,
2014; Pan et al., 2016; Xia et al., 2018). Children were asked
to read silently simple sentences and indicate if the meaning
of each sentence was true or false by circling Y (for Yes) or N
(for No) printed at the end of each sentence (e.g., Horse is an
animal. Y – N). The semantic content and linguistic format of
each sentence was simple so that only very basic comprehension
processes were required. A 3-min time limit was implemented.
A participant’s score was the total number of correctly answered
sentences.

Procedure
Testing was conducted by the first and third authors, and
six graduate students who received extensive training on test
administration and scoring. Sentence Verification, and Addition
and Subtraction Fluency were administered in a group setting.
The rest of the tasks were administered to each child individually
during school hours in a quiet room at school. Individual
testing took place 3 weeks following the group testing and lasted
approximately an hour.

RESULTS

Group Comparisons on Inhibition
First, we ran a MANOVA with the two inhibition tasks as
dependent variables and group as a fixed factor. The results
revealed a main effect of group, Wilk’s λ = 0.610, F(4,160) = 11.23,
p < 0.001. Follow-up ANOVAs showed that the groups differed
in both Expressive Attention [F(2,81) = 18.85, p < 0.001] and
Inhibition [F(2,81) = 18.90, p < 0.001]. Post hoc analyses showed
that the TD group performed better than the MD and RDMD
groups in both Expressive Attention and Inhibition (see Table 2).
No significant differences were found between the MD and the
RDMD groups.
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1. Group Comparisons on Shifting

A MANOVA with the two shifting tasks as dependent variables
and group as a fixed factor revealed a main effect of group, Wilk’s
λ = 0.579, F(4,160) = 12.57, p < 0.001. Follow-up ANOVAs
showed that the groups differed in both Planned Connections
[F(2,81) = 21.65, p < 0.001] and RAS [F(2,81) = 17.80, p < 0.001].
Post hoc analyses showed that the TD group performed better
than the MD and RDMD groups in both Planned Connections
and RAS. The MD group also performed significantly better than
the RDMD group (see Table 2).

Group Comparisons on Working Memory
Next, we ran a MANOVA with the two working memory tasks
as dependent variables and group as a fixed factor. The results
revealed a main effect of group, Wilk’s λ = 0.745, F(4,160) = 6.34,
p < 0.01. Follow-up ANOVAs showed that the groups differed
in both Digit Span Backwards [F(2,81) = 10.46, p < 0.001] and
Listening Span [F(2,81) = 8.04, p < 0.01]. Post hoc analyses
showed that the TD group obtained significantly higher scores
than the MD and RDMD groups in both Digit Span Backwards
and Listening Span. There was no significant difference between
the MD and RDMD groups (see Table 2).

Group Comparisons on Processing
Speed
Finally, we ran a MANOVA with the two processing speed tasks
as dependent variables and group as a fixed factor. The results
revealed a main effect of group, Wilk’s λ = 0.640, F(4,160) = 10.01,
p < 0.001. Follow-up ANOVAs showed that the groups differed
in both Visual Matching [F(2,81) = 22.03, p < 0.001] and Planned
Search [F(2,81) = 4.99, p < 0.05]. Post hoc analyses showed that
the TD group obtained significantly higher scores than the MD
and RDMD groups in both Visual Matching and Planned Search.
Again, there was no significant difference between the MD and
RDMD groups (see Table 2).

Group Comparisons on Executive
Functioning After Controlling for
Processing Speed
Finally, we performed three MANCOVAs (one for each EF skill)
covarying for the effects of processing speed (Visual Matching
and Planned Search) (see Table 2). In terms of inhibition,
the results revealed a main effect of group, Wilk’s λ = 0.861,
F(4,158) = 3.07, p < 0.001. Follow-up ANCOVAs showed that
the groups differed in both Expressive Attention [F(2,80) = 4.62,
p < 0.05] and Inhibition [F(2,80) = 3.99, p < 0.05]. Post hoc
analyses revealed no significant differences between the TD and
MD groups. In addition, both groups performed significantly
better than the RDMD group.

In terms of shifting, the results of MANCOVA revealed a main
effect of group, Wilk’s λ = 0.832, F(4,158) = 3.80, p < 0.001.
Follow-up ANCOVAs showed that the groups differed in both
Planned Connections [F(2,80) = 4.83, p < 0.05] and RAS
[F(2,80) = 4.84, p < 0.05]. Post hoc analyses revealed that the
only significant difference was between the TD and the RDMD
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groups. The MD group did not differ significantly from the TD
and RDMD groups.

Finally, in terms of working memory, the results of
MANCOVA revealed a main effect of group, Wilk’s λ = 0.858,
[F(4,158) = 3.14, p < 0.001]. Follow-up ANCOVAs showed that
the groups differed in both Digit Span Backwards [F (2,80) = 3.12,
p < 0.05] and Listening Span, [F(2,80) = 5.60, p < 0.05]. Post hoc
analyses showed no significant differences between the TD and
MD groups in Digit Span Backwards, but significant difference
between the two groups in Listening Span. The MD group did not
differ from the RDMD group on either working memory task.

DISCUSSION

Several studies have demonstrated that EF is an important
predictor of mathematics performance and a risk factor of MD
(see Bull and Lee, 2014; Cragg and Gilmore, 2014, for reviews).
Nevertheless, because EF consists of several sub-components
(inhibition, shifting, and working memory; Miyake et al., 2000)
and because MD overlaps with reading difficulties (Landerl and
Moll, 2010), it remains unclear if MD children have a deficit
in all EF sub-components and if these deficits are accentuated
by concomitant difficulties in reading disabilities. Thus, in this
study, we sought to examine the nature of EF deficits in Chinese
children with mathematics disabilities (with or without comorbid
reading difficulties).

First, our results showed that the MD children differed from
their TD peers on all EF skills (see Chan and Ho, 2010; Cai
et al., 2013, for similar findings). However, most differences
disappeared once we controlled for the effects of speed of
processing. Notably, the only difference between the TD and
MD groups that remained significant was in Listening Span.
This suggests that the significant differences between MD and
TD children in inhibition or shifting of attention that have been
reported in previous studies (e.g., Geary et al., 2000, 2007; Szűcs
et al., 2013; McDonald and Berg, 2017) may reflect differences
between groups in speed of processing more so than in EF.
The argument put forward by some researchers that deficits
in inhibition are likely responsible for the observed deficits of
MD children in working memory (e.g., Passolunghi et al., 1999;
Passolunghi and Siegel, 2001) does not seem to be supported by
our findings either, because the MD group continued to perform
more poorly than the TD group in Listening Span despite their
equal performance in inhibition (that is after controlling for
processing speed).

The absence of a significant difference between the TD
and MD groups in our study may also reflect cultural
differences. More specifically, because Chinese children go to
school at the age of 3 and they systematically practice simple
additions/subtractions, by the time they go to Grade 1 they are
able to retrieve the answer to simple calculation problems from
their memory (Geary et al., 1996). This likely reduces interference
from competing responses and decreases the effect of inhibition
in mathematics. In addition, because Chinese digits have a
shorter pronunciation duration than digits in other languages
such as English (digits in China are monosyllabic) and because
shorter names allow for a greater number of digits to be stored

in working memory, this may explain why we did not observe
any differences between the MD and TD groups in Digit Span
Backwards.

Second, our findings replicate those of previous studies
in North America/Europe (e.g., Swanson, 1993; Geary et al.,
2000; Passolunghi and Siegel, 2001; Swanson and Sachse-Lee,
2001; Andersson and Lyxell, 2007) showing persistent deficits
of the MD group in working memory (at least on measures
of the central executive such as Listening Span). Although
similar differences were detected in Digit Span Backwards, they
did not survive the statistical control of speed of processing.
An explanation may relate to the nature of the Digit Span
Backwards task. More specifically, some researchers have argued
that although it is frequently used as a measure of working
memory, it is relatively shallow in its processing demands (e.g.,
St Clair-Thompson, 2010; Georgiou and Das, 2016).

Some limitations of the present study are worth mentioning.
First, our participants did not come with a formal diagnosis of
learning disabilities. Such a diagnosis does not exist in China.
That is also why we selected our participants by first screening
a relatively large sample of children. Second, we screened our
participants using reading and mathematics fluency tasks in a
group setting. Despite the fact that this is a convenient approach
and it has been used in several previous studies to screen children
for learning disabilities, we acknowledge that it comes with
limitations (e.g., some children may get distracted in the presence
of other students and may not invest the maximum of their
effort). Nonetheless, we obtained similar differences between
groups in the two individually administered measures (Character
Recognition and MSAT), which allows us to say with some
confidence that our selection worked quite well. Third, we did not
manipulate the modality of the EF tasks (i.e., verbal vs. quantity)
in our study. For example, some previous studies have used either
verbal or numerical EF tasks to rule out the possibility that EF
deficits manifest themselves only within a specific domain (e.g.,
Peng et al., 2013). Fourth, because of limited resources, we did not
assess children with only reading difficulties. We acknowledge
that this would have strengthened the findings of our study.
Finally, we espoused a rather narrow view of EF consisting
of three core components. That is why we did not administer
measures of planning or visual-spatial memory and we did not
assess other types of inhibition that are often operationalized with
Go/No-go tasks. Future studies may assess EF more broadly.

CONCLUSION

To conclude, our findings add to a growing body of research on
the role of EF skills in MD (e.g., Swanson, 1993; Passolunghi
and Siegel, 2001; van der Sluis et al., 2004; Geary et al., 2007;
Compton et al., 2012; Peng et al., 2012) highlighting the role
of speed of processing as a mediating factor in the severity of
EF difficulties. Importantly, although our MD group differed
from the TD group on all EF tasks, after controlling for speed
of processing, the only difference that remained significant
was in Listening Span. Although we are not the first ones to
report non-significant differences between children with and
without MD in inhibition and/or shifting of attention (see e.g.,
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van der Sluis et al., 2004; Censabella and Noël, 2008 for similar
findings), our study is the first one to show this in mainland
China. We argue here that the linguistic features of Chinese (i.e.,
short pronunciation of digits in Chinese, transparent number-
naming system), the age at which children start learning to
do simple calculations, and the increased levels of parental
involvement in children’s learning (particularly in mathematics;
see Deng et al., 2015) may alleviate the negative impact of EF
difficulties in MD in China. Future studies may examine the role
of different EF skills in MD across cultures.
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We investigated the Spatial Numerical Association of Response Codes (SNARC) effect
in 240 adults using a parity judgment and a magnitude classification task. Eight numbers
from 1 to 9 except 5 were randomly presented one at a time, half of the participants were
asked to compare these number with the target number 5 in the magnitude classification
task; the other half of the participants were asked to judge whether these numbers
were even or odd. It was called a phase when all eight numbers were tested; there
were in total 16 phases. Detailed analyses of the changes in response times across the
range of numbers and the chronological trend of the SNARC effect size over 16 phases
estimated by a curvilinear regression model were reported. This phase-to-phase design
and analyses provide an insight into the process of the SNARC effect in different tasks.
We found that the SNARC effect emerged earlier and stayed more stable in magnitude
classification task than in the parity task during the time course. Furthermore, the size
of SNARC effect increased with time in the magnitude classification task, whereas it
fluctuated up and down over time in the parity task. These findings indicate that the
association of the number and space is dynamic and the process of the SNARC effect
varies across tasks.

Keywords: SNARC effect, parity judgment task, magnitude classification task, phase-to-phase design and
analyses, process perspective

INTRODUCTION

It is well known that the processing of numerical magnitude is closely related to spatial processing
in the domain of numerical cognition (Wood et al., 2008; Fias et al., 2011). The Spatial Numerical
Association of Response Codes (SNARC) effect refers to the phenomenon that individuals typically
react faster to relatively smaller numbers with left-sided responses and they react faster to relatively
larger numbers with right-sided responses. It is one of the most striking demonstrations of the
numerical-spatial association (Dehaene et al., 1993). The SNARC effect has long been ascribed to a
mental number line stored in the long-term memory (Dehaene, 1992; Gevers et al., 2003).

However, accumulating evidence suggests that many transient factors can affect The SNARC
effect. For instance, the given number range and the reference number affect participants’ left or
right side responses (Dehaene et al., 1993; Fias et al., 1996; Ben Nathan et al., 2009): The number
5 receives faster right side responses when the overall range is 1–5, but it receives faster left side
responses when the range is 4–9 (Dehaene et al., 1993). Moreover, task instructions also affect the
SNARC effect (Ristic et al., 2006; Viarouge et al., 2014a): asking participants to imagine a linear
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rule leads to a standard SNARC effect, whereas asking them
to imagine a circular clock leads to a reversed SNARC effect
(Bächtold et al., 1998). Additionally, researchers also found
that the directional component of a prior spatial activity (e.g.,
directions in number placement or text-reading) modulated the
strength of the SNARC effect (Shaki and Fischer, 2008; Fischer
et al., 2010). These findings indicate that spatial–numerical
associations are not fixed; they can be affected by tasks and
measurements.

An impressive number of studies on spatial-numerical
associations using the repetition design, which presented
numerous repetitions of single digits (Wood et al., 2008; Fischer
and Shaki, 2014), but only a few focused on the repetition effect.
For example, in order to explore the exact task factors that
affect the SNARC effect, some studies focused more precisely
on the trial-to-trial changes (Notebaert et al., 2006; Fischer
et al., 2010; Pfister et al., 2013). Pfister et al. (2013) examined
the effect of prior trials on the SNARC effect, specifically
how the preceding congruency between the target number’s
spatial association and the required response influenced the
SNARC effect. They asked participants to perform a parity
judgment task, and found that the size of SNARC effect was
reduced instantly after participants experienced the preceding
incongruence. Studies (Notebaert et al., 2006; Fischer et al., 2010;
Pfister et al., 2013) with such sequential modulation provide
a finer measurement of the dynamics of the SNARC effect,
and indicate that the spatial–numerical associations could be
a real-time control process. However, this trial-to-trial design
may be useful for parity judgment tasks, but it can not be
applied to a magnitude classification task, because in a magnitude
classification task, congruent trials and incongruent trials are
often separated into two blocks. The instant control over
spatial-numerical associations like Pfister et al. (2013) can not be
obtained in a magnitude classification task.

Both magnitude classification tasks and parity judgment
tasks are commonly used methods for investigating the SNARC
effect. In parity judgment tasks, participants are asked to judge
whether digits are odd or even; in magnitude classification tasks,
participants are asked to judge whether digits are smaller or
larger than a reference number. Whether these two types of tasks
involve the same processes of spatial–numerical associations are
controversial.

Some studies found that the number-space associations
measured by the parity task and magnitude classification task
shared common processes. For example, Cheung et al. (2015)
found a significant correlation between the sizes of SNARC effects
in these two tasks (see also Georges et al., 2017). Furthermore,
several studies suggest that the number-space associations in
both parity and magnitude processing tasks arise from the
verbal-spatial coding mechanisms (Gevers et al., 2010; Imbo
et al., 2012). Though these findings suggest a single predominant
account, accumulating evidence has indicated the task-dependent
coding mechanism.

The magnitude classification task and the parity judgment
task differ in many ways, therefore they may capture different
aspects of spatial–numerical associations. First, the processing
of magnitude information is different, magnitude information is

implicitly and automatically activated in parity judgment task,
whereas it is not the case for the magnitude task, in which
numerical magnitude is task-relevant and needs to be processed
voluntarily (Priftis et al., 2006; Shaki and Fischer, 2018); Second,
the difference also exists in the response selection stage, for
magnitude classification, the same responses were associated with
numbers that were smaller or larger than the referent, whereas
for parity judgment, the responses alternate for each number
(van Dijck et al., 2009). Besides, parity judgment has a unique
effect, i.e., the MARC effect (Nuerk et al., 2004; Roettger and
Domahs, 2015), where odd numbers are responded faster on
left hand side and even numbers are responded faster on right
hand side. This effect is usually not present in the magnitude
classification task. Furthermore, studies using both tasks showed
that the number-space mapping required different modalities
(Herrera et al., 2008; van Dijck et al., 2009) and different
amounts of working memory resources (Deng et al., 2017) for
magnitude classification and parity judgment. Thus, it is desirable
to explore the differences of number-space association process
that is involved in magnitude classification tasks and parity
judgment tasks.

The present study examined the differences in the
number-space association process using the magnitude
classification task and the parity judgment task. Unlike previous
researchers focusing on the influence of a prior trial on the next
trial (as in Notebaert et al., 2006; Fischer et al., 2010; Pfister
et al., 2013), we think the process of state changes trial-to-trial,
throughout all the trials (Macdonald et al., 2011; Unsworth
and McMillan, 2014; Amir et al., 2016). Therefore, we adopted
the trial-to-trial processing perspective and investigated the
phase-to-phase changes for each participant. In our study, eight
numbers from 1 to 9 (except 5) were tested in random order
for both tasks; the unit of eight trials was considered as a phase.
Our study was designed and data analyses (e.g., regression) were
conducted in a phase-to-phase manner. We report changes of
the SNARC effect during the time course of all 16 phases, where
the size of the SNARC effect was represented by the regression
coefficients. Our phase-to-phase design and analyses provided
a micro-level perspective for better understanding the process
of number and space association and its variations in different
numerical tasks.

MATERIALS AND METHODS

Participants
A total of 240 native Chinese adults participated the
experiment. All were right-handed and reported normal or
corrected-to-normal vision. We divided participants randomly
into two groups each with 120 adults: one group (74 females,
46 males; 18–28 years old, mean age 22.68 years) was assigned
to complete the magnitude classification task, and the other
group (73 females, 47 males; 18–29 years old, mean age 22.32
years) was assigned to complete the parity judgment task.
None of the participants were familiar with the purpose of the
study. We explained the procedures of the experiment and
obtained participants’ informed consent before experiment.
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Participant each received a small amount of monetary reward
after experiment.

Stimuli and Procedure
The experiment was programmed using E-Prime 2 Professional
Software on a 17-in. LCD computer screen (1,280 × 1,024 pixels).
Stimuli were Arabic numbers (Arial font, 48 point size) in the
range from 1 to 9 with the exception of 5. Between stimulus
presentations, participants saw a fixation point, which was an
asterisk (∗) of size 48 points in the center of the screen. All stimuli
were in black showing on a white background. Participants
indicated their judgments by pressing either the A or L key on
a standard QWERTY computer keyboard.

For both the magnitude classification task and parity judgment
task, each trial started with a 300 ms presentation of the fixation
asterisk, then a target number appeared in the center of the
screen. Participants had to make their judgments within 5000 ms
by pressing corresponding keys. In magnitude classification task,
participants were asked to judge whether digits are smaller
or larger than a reference number. In parity judgment task,
participants were asked judge whether digits are odd or even.
There would be a 1000 ms of blank screen following each trial.
Participants’ response accuracy and response time were recorded.

For each task, we presented a total of 128 trials
(8 numbers × 16 phases) in two blocks. Each block contained 8
successive phases. In each phase, all of the 8 numbers (i.e., 1, 2, 3,
4, 6, 7, 8, and 9) were tested in a random order. These two blocks
differed in their response mapping. In magnitude classification
task, we had one block that mapped small numbers on the left
side and large numbers on the right side, and the other block that
counterbalance the mapping. In parity judgment task, we had

one block that associated even numbers with left side and odd
numbers with right side, and the other block that counterbalance
the association. The order of blocks was also counterbalance
across participants. Before testing, participants completed six
practice trials to become familiar with the procedure. Phases
were labeled in the order of their occurrence, continuously
numbered from the first phase of the first block to the last phase
of the second block.

RESULTS

Data Treatment
We excluded trials with errors for data analyses. There were
2.29% of trials were with error for magnitude classification task;
there were 3.82% of trials were with error for parity judgment
task. Additionally, when participants’ RT deviated from the
corresponding cell mean by more than 3 standard deviations,
we considered this data as outliers. There were 0.91% outliers
in magnitude classification task and 1.26% outliers in parity
judgment task.

Response Times
The mean RTs and standard error of the mean (SEM) of
responses to each number magnitude in magnitude classification
task and parity judgment task were calculated (See Figure 1).
We performed a 2 (type of task: magnitude classification task,
parity judgment task) × 8 (number magnitude: 1, 2, 3, 4, 6,
7, 8, and 9) repeated measures ANOVA on mean reaction
times. The results revealed significant main effects of Task,
F(1,238) = 29.20, p< 0.0001, η2 = 0.109, and Number magnitude,

FIGURE 1 | Mean response time (RT) for magnitude classification task and parity judgment task as a function of number magnitudes.
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F(7,1666) = 46.30, p < 0.0001, η2 = 0.163. The interaction
was also significant, F(7,1666) = 63.02, p < 0.0001, η2 = 0.209.
Further, one way of simple effect analyses indicated that, the RTs
for all the numbers in parity judgment task were significantly
longer than those in magnitude classification task (all ps < 0.05)
except for the digit 4 (p = 0.165). The other way of simple effects
analyses suggested that, in the magnitude classification task, RTs
for both 4 and 6 were significantly longer than those for any other
digit (all ps < 0.001); RTs for 1, 2, 8, and 9 were significantly
shorter than those for 3, 4, 6, and 7 (all ps < 0.05). In the parity
judgment task, the RT for 1 was significantly shorter than those
for others (all ps < 0.001); the RT for 9 was significantly longer
than those for others (all ps < 0.0001).

In general, RTs for the parity judgment task were longer
than those for the magnitude classification task. RTs changed
across the eight number magnitudes differently in magnitude
classification task and parity judgment task. In magnitude
classification task, RT reflected a distance effect (Moyer and
Landauer, 1967; Sekuler and Mierkiewicz, 1977), which means
that RTs decreased when the distance between the standard and
the target increased. In the parity judgment task, RT reflected a
size effect (Starkey and Cooper, 1980; Dehaene et al., 1998), which
means that RTs increased as the magnitude increases.

SNARC Effects at Individual Level and at
Group Level
The SNARC effect traditionally has been indicated by the
existence of a difference of response time to the same number
between using left hand and using right hand, which oftentimes
favors the right hand for numbers greater than 5 and the left hand
for numbers less than 5.

For each participant and each number magnitude, we
calculated an RT difference (dRT) for each participant by
subtracting the mean RT using the left hand from the mean
RT using the right hand and regressed the dRT on number
magnitudes (i.e., 1–4, 6–9). The regression weights of each
participant indicated their SNARC effect (Fias et al., 1996),
which were used for further analyses. For both magnitude
classification and parity judgment task, we examined whether
the regression weights deviated significantly from zero at the
group by using t-tests. For the magnitude classification task,
M = −6.25, SD = 17.84, t(119) = −3.836, p < 0.0001. For the
parity judgment task, M = −7.59, SD = 9.92, t(119) = −8.39,
p < 0.0001. In both tasks, the slopes were significantly different
from zero, indicating the presence of the SNARC effect at the
group level. Moreover, an independent samples t-test was applied
to compare the regression weights for magnitude classification
task and parity judgment task. We found the difference was
not significant, t(238) = 0.72, p = 0.47. The sizes of the
SNARC effect in these two tasks were equal at the group
level.

Additionally, as expected, the majority of participants showed
the SNARC effect, which was negatively associated with the
number magnitude. There were 69.2% of participants (i.e., 83)
in the magnitude classification task and 75.8% of participants
(i.e., 91) in the parity judgment task showed such effect. TA
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13 SNARC Effects Across Phases

The mean RTs and standard deviations of each phase
for the parity and magnitude tasks were calculated (see
Tables 1, 2). For the magnitude classification task, we performed
repeated measures ANOVA with phase on mean reaction
times. The results revealed a significant main effect of phases,
F(15,1785) = 5.594, p < 0.0001, η2 = 0.045. The post hoc test
found that RTs for phase 1 and phase 9 were significantly longer
than those for others (all ps < 0.05); RTs for the rest of phases
did not differ from each other (all ps > 0.05). For the parity task,
the results of repeated measures ANOVA revealed a significant
main effect of phases, F(15,1785) = 4.526, p < 0.0001, η2 = 0.037,
the post hoc test found that the RT for phase 1 was significantly
longer than those for others (p < 0.05); RTs for the rest of phases
did not differ from each other (all ps > 0.05).

The SNARC effect was examined for each phase by applying
regression analyses on dRT with numerical magnitudes as the
predictor. For each phase, we calculated the dRT of each number
by subtracting the group-level mean RT using the left hand from
the group-level mean RT using the right hand. We were able
to calculate dRT this way because for each phase the order of
blocks was counterbalanced between participants. There were 60
participants who responded to the number with the right hand
and there were other 60 participants who responded to the same
number with the left hand. For all 16 phases, we calculated the
group-level regression slopes as precise quantifications of the
SNARC effect and R2 as an indicator of proportion of variance
explained by each regression model (Pfister et al., 2013).

As shown in Tables 3, 4, all 16 phases showed negative SNARC
slopes for both magnitude classification task and parity judgment
task. Eleven of the 16 phases in the magnitude classification task
showed significantly negative regression slops; two of 16 phases in
the parity judgment task showed significantly negative regression
slops. R2 values across all phases were comparatively low, with
most less than 0.4.

For each task, we examined the chronological trend across
all 16 phases by applying curve estimation, with time as an
independent variable and the regression slops of each phase as
the dependent variable.

For the magnitude classification task, the size of the regression
slops increased with time, p < 0.001; 90.7% of variance were
explained by the curvilinear regression model. For the parity
judgment task, the chronological trend was not clear (p > 0.05)
and the model only explained 0.9% of the variances (see Table 5).

As show in Figure 2, there was a growing trend of SNARC
effect throughout the phases in the magnitude classification task,
whereas the SNARC effect fluctuated throughout all the phases in
the parity judgment task.

DISCUSSION

We investigated the SNARC effect in a parity judgment
and a magnitude classification task with a relatively large
sample of participants. Detailed analyses of spatial–numerical
associations were reported from the perspective of processes.
We observed robust SNARC effects in both the magnitude

Frontiers in Psychology | www.frontiersin.org 6 June 2018 | Volume 9 | Article 95791

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00957 June 11, 2018 Time: 17:18 # 7

Deng et al. The Association of Number and Space Under Different Tasks

TABLE 5 | Model summary and parameter estimates.

Equation Model summary Parameter estimates

R Square F df1 df2 Sig. Constant b1

Magnitude classification 0.907 136.724 1 14 0.000 −2.335 −0.511

Parity judgment 0.009 0.124 1 14 0.730 −8.470 0.099

classification task and the parity judgment task, and most
of participants showed negative SNARC effects (Wood et al.,
2006a,b). However, analyses on RTs differences among number
magnitudes and the phase-to-phase changes revealed different
processes for these two tasks. These findings confirmed
that the SNARC effect can be easily affected by tasks by
providing evidence from the number’s spatial association
process.

Though both magnitude classification task and parity
judgment task are widely used for exploring the SNARC effect,
only a few studies focused on the repetition effect. Previous
researchers (Fias et al., 1996; Viarouge et al., 2014b) found that the
SNARC effect was relatively stable over sessions or blocks. In our
study, we looked into more refined differences between phases
within a block. With more detailed analyses regarding the time
course, we provided the first evidence for chronological changes
of the SNARC effect. The size of SNARC effects increased with
time in the magnitude classification task, whereas in the parity
task, the values of SNARC effect fluctuated up and down over
time. As suggested by Pfister et al. (2013) trial-to-trial design, it
is plausible when researchers zoom into the process and conduct
more detailed analyses, the refined differences over the process
can be observed; hence providing more information about
the underlying mechanism of spatial–numerical associations.
Moreover, as a repetition design our study was able to detect the
temporal differences of SNARC effect also because our analyses
of phases were group level and our sample size and number of

repetitions provided enough statistical power (Cipora and Nuerk,
2013; Cipora and Wood, 2017).

Furthermore, our results also showed that the SNARC effect
in magnitude classification task emerged earlier and stayed more
stable than it did in the parity judgment task. In the magnitude
classification task, most of the sizes of SNARC effect were
significantly negative and increased with time. However, in the
parity task, only a few SNARC effects were significantly negative
and the values fluctuated up and down over time. This task
difference may be because for parity judgment task, a single phase
was not long enough to establish a stable association between
number and space, making the SNARC effect hard to detect.
Also there was a notable dissociation between the RTs of number
judgments and the values of the SNARC effect, indicating a
different process in making number judgments.

The question that we may ask is why parity judgment and
magnitude classification engage different processes over time.
One explanation relates to differences between these two tasks,
which cashed out the SNARC effect (Georges et al., 2014, 2015).
In the current study, the magnitude classification task required
participants to process magnitudes; they were also primed by a
mental number line, especially when asked to respond to small
numbers with left hand and to respond to large numbers with
right hand. Whereas in the parity judgment task, the response to
the task (judge whether odd or even) influences the presentation
of the number-space association, therefore the number-space
association for each phase was weak and unstable. The stability

FIGURE 2 | The SNARC effects in the magnitude classification task and parity judgment task as a function of phase.
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difference between the two tasks could also explain why more
working memory resources were apparently needed in the parity
task than in the magnitude task (Deng et al., 2017). Working
memory resources were needed to rule out the influence of the
task set in the parity task, whereas they were only needed to
account for the inconsistency in the magnitude task.

Overall, the process difference between the parity task and
the magnitude task further illustrated that spatial–numerical
interactions in implicit and explicit magnitude processing
tasks potentially arise from qualitatively different cognitive
mechanisms. Some studies indicated the mechanisms difference
from a perspective of element analysis. For example, Georges
et al. (2017) found the spatial–numerical associations (SNAs)
measured by the parity task and the magnitude task correlated
with individual’s arithmetic performance, spatial visualization
ability and visualization profile differently. van Dijck et al. (2012)
found similar parity SNARC effects in normal population and
patients but different magnitude SNARC effects between the
two populations, indicating different origins for the two SNARC
effects. Similarly, their principle analyses also extracted separate
components for parity task and magnitude task, suggesting
different cognitive processes were engaged. Our study showed the
process where spatial–numerical associations varied in implicit
and explicit magnitude processing tasks. Besides, participants’
RTs in parity judgment task increased as number magnitudes
increased, which corresponded to the size effect (Dehaene et al.,
1998). However, their RTs in the magnitude task behaved more
categorically – their pattern can be approximated by two parallel
horizontal lines – one for numbers smaller than the criterion
and one for numbers larger than the criterion. All these results
are consistent with Gevers et al. (2006) study, thereby our study
further supports the task-dependent spatial coding mechanisms
(see also Wood et al., 2008).

A question that cannot be answered based on the present
results is whether the differences of the SNARC effect between
these two tasks reflect different number-space associations or
just different task demands. Previous research pointed out that
the SNARC effect was range-dependent (Dehaene et al., 1993),
reference-dependent (Bächtold et al., 1998; Ristic et al., 2006), and
task demand-dependent (Fischer et al., 2010; Pfister et al., 2013).
These characteristics can be considered as evidence for the role of
working memory in transient associations of space and number
(Fias et al., 2011; De Belder et al., 2015). Alternatively, researcher
(Gevers et al., 2006) adopting computational modeling argued

for a parallel activation of preexisting links between magnitude
and spatial representation and short-term links created on
the basis of task instructions. Recent research (Ginsburg and
Gevers, 2015; Huber et al., 2016) found that the SNARC effect
and the ordinal position effect resulted from the activation of
different representations, which supports the computational view
of number-space associations.

In conclusion, the present results trace out the process of
the number and space association in a magnitude classification
task and a parity judgment task. The analyses on RTs differences
and the phase-to-phase changes revealed that the formation of
the SNARC effect under tasks were different. These findings
remind us that the type of task is also a key element in the
exploration of the nature of the SNARC effect. More attention
and more research need to be done to better understand the
nature of SNARC effect and its variations in different tasks. To
address the above questions both more empirical evidence and
computational models will be helpful in the future.
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Children’s early numerical capacities form the building blocks for later arithmetic
proficiency. Linear number placements and counting skills are indicative of mapping,
as an important precursor to arithmetic skills, and have been suggested to be of vital
importance to arithmetic development. The current study investigated whether fostering
mapping skills is more efficient through a counting or a number line training program.
Effects of both programs were compared through a quasi-experimental design, and
moderation effects of age and socio-economic status (SES) were investigated. Ninety
kindergartners were divided into three conditions: a counting, a number line, and a
control condition. Pretests and posttests included an arithmetic (addition) task and
a battery of number sense tasks (comparison, number lines, and counting). Results
showed significantly greater gains in arithmetic, counting, and symbolic number lines
in the counting training group than in the control group. The number line training
group did not make significantly greater gains than the control group. Training gains
were moderated by age, but not SES. We concluded that counting training improved
numerical capacities effectively, whereas no such improvements could be found for
the number line training. This suggests that only a counting approach is effective for
fostering number sense and early arithmetic skills in kindergarten. Future research
should elaborate on the parameters of training programs and the consequences of
variation in these parameters.

Keywords: number sense, counting, number line, training, children, arithmetic

INTRODUCTION

Children’s early numerical capacities have received growing interest in the past decade: numerical
skills in kindergarten form the building blocks for later proficiency in mathematics (e.g.,
Passolunghi and Lanfranchi, 2012; Hornung et al., 2014). Number sense is the term most often
used to characterize the intuitive understanding of number and quantities and their relations
(Dehaene, 1997; Gersten and Chard, 1999; Spelke, 2000). Number sense refers to a cognitive
framework that allows a child to understand, for example, the difference between having two or
three sweets, but gradually develops into a much more advanced system of conceptual knowledge
that allows a person to intuitively understand abstract number relations and algorithms. Various
skills have been thought to be at the root of number sense development, among which the ability to
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map between symbolic and non-symbolic magnitudes (Dehaene,
2001; Mundy and Gilmore, 2009; Desoete et al., 2012; Kolkman
et al., 2013). In the current study, this mapping ability is trained in
typically performing kindergartners using two different training
programs, in order to investigate how the skill is best fostered and
how arithmetic skills can be fostered through mapping.

Kindergarten number sense can be divided into three skills:
non-symbolic skills, symbolic skills, and mapping between
non-symbolic and symbolic skills. Mapping has been found to
be the strongest predictor of later mathematical performance,
and was hypothesized to restructure non-symbolic number
knowledge of a child into a more conventional cognitive concept
of mathematics (Kolkman et al., 2013). Mapping is considered
to lie at the root of adequate development of arithmetic skills
(Siegler and Booth, 2004; Booth and Siegler, 2008; Wong et al.,
2016) and refers to a flexible integration between non-symbolic
and symbolic quantity processing, meaning that children with
well-developed mapping skills are able easily to transcode
between number words, number symbols, and non-symbolic
quantities. This transcoding ability may also make symbolic
quantities more meaningful to children, which is essential for
adequate arithmetic development (Wong et al., 2016).

Two lines of enquiry focus on the formation of mapping skills
in young children, the first of which focuses on counting skills.
Counting is considered a prerequisite for forming links between
symbolic and non-symbolic processing (Lipton and Spelke, 2005;
Le Corre and Carey, 2007). Reciting the counting sequence may
help children understand the cardinal value of number words,
thereby realizing that each number word relates to an exact
quantity using bottom-up processing (Noël and Rousselle, 2011).
In bottom-up processing, the individual stimulus, in this case
the quantity or number, is used to construct an understanding
of a system as a whole, in this case a system of numbers and
their quantitative relations such as bigger and smaller numbers.
A second line of enquiry focuses on linear placements of numbers
on a number line, which are indicative of mapping skills. Acuity
on a number line task is predictive of mathematics performance
(Booth and Siegler, 2008; Schneider et al., 2018), and can be
fostered in a top-down processing framework through number
line activities, such as playing numerical linear board games
(Siegler and Ramani, 2009; Fisher et al., 2011; Dackermann
et al., 2016), thereby forming a novel approach to intervention
in numerical skills. In this top-down presentation of number
relations, numbers are understood through their placement on
a scale with a predetermined number range, which forms the
context for the task, and the scale itself must be understood before
individual items can be placed on the scale (the number line).

Counting
Knowledge of counting and number symbols is considered an
important predictor of arithmetic performance (Kolkman et al.,
2013). Counting skills could predict the extent to which children
can estimate numerosities (Lipton and Spelke, 2005) and place
numbers on an empty number line (Desoete et al., 2013; Simms
et al., 2013; Friso-van den Bos et al., 2014). It has been proposed
that finger counting helps children associate between symbolic
magnitudes and non-symbolic sets of items through the finger

pattern, as well as understand basic operations such as addition
(Noël, 2005; Gracia-Bafalluy and Noël, 2008; Moeller et al., 2011)
using a bottom-up process in which combining small numbers
of objects into a bigger unit developmentally precedes more
complex operations with bigger numbers. Nearly all number
sense trainings include practicing counting procedures and
knowledge of number symbols (e.g., Van Luit and Schopman,
2000; Krajewski et al., 2008; Kroesbergen et al., 2012; Toll and
Van Luit, 2014), and isolated practice of counting procedures has
been found to generalize to improved multiplication proficiency
(Blöte et al., 2006). It was suggested that mapping, as the most
important factor of number sense, develops through counting
skills, as described by Le Corre and Carey (2007), who postulated
that children make analogies between the sequence in the count
list and quantifiable sets of objects, and use induction to learn to
understand the correspondence between the addition of an item
to a set and the progression through the count list. This implies
that the mapping between number words and tangible quantities
is first understood by a child through the bottom-up process of
counting, making counting a first step toward a more abstract
concept of number.

Number Lines
Number line placement acuity is also thought important for the
development of both arithmetic skill and broader mathematical
skills (Geary et al., 2007; Booth and Siegler, 2008; Schneider et al.,
2018). In a number line task, a child places a target number on
an empty number line bounded by the begin- and endpoints
marked on either side of the line – a top-down approach in
which the number range has been framed and individual units
need to be placed within this framework. To use number lines in
number tasks, children need to be able to relate a number to the
corresponding quantity and consequently realize that a number
obtains its position on the number line through its quantitative
value. Typically, young children make non-linear placements,
adhering to a logarithmic or power model of placements, while
older children show a more linear pattern of number placement,
with equal spacing between numbers of various sizes (Siegler and
Opfer, 2003; Siegler and Booth, 2004; Booth and Siegler, 2006;
Barth and Paladino, 2011). A more linear pattern of placements
is predictive of higher achievement in arithmetic in children
(Booth and Siegler, 2008). Acuity of number line placements
may be interpreted as a child’s ability to map between symbolic
numbers and non-symbolic quantities (Kolkman et al., 2013).
The symbolic numbers, in this interpretation, are the numbers
to be placed on the empty number line, and the non-symbolic
quantity is represented as the continuous space between the
extremities of the number line.

The training of number line placement has received growing
interest in the past few years (e.g., Fisher et al., 2011; Ramani
and Siegler, 2011; Dackermann et al., 2016). Playing numerical
linear board games, in which linear ordering of numbers was
emphasized, has repeatedly been reported to improve successfully
number line acuity (Siegler and Ramani, 2009; Fisher et al.,
2011) and thereby facilitate the mapping between numbers
and quantities. Furthermore, placement of numbers along the
continuum of a number line may be seen as a form of visual
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imagery of number information; a prerequisite for successful
acquisition of the more complex algorithm skills needed in
advanced mathematics (Zhang et al., 2012). Number line training
has also been demonstrated to enhance arithmetic performance
in a study among kindergarten children, but there was no transfer
effect to other measures of number sense (Maertens et al., 2016).

The Current Study
The present study aimed to investigate whether the development
of number sense and consequent arithmetic skills is more efficient
through a bottom-up counting or a top-down number line
training program in comparison to a control group through
experimental training studies. We expected both trainings to
have significant effects on measures of arithmetic and mapping,
and small transfer effects on symbolic number sense measures.
Moreover, we expected children enrolled in a number line
training to make greater gains on a measure of number line
acuity and children enrolled in a counting training to make
greater gains on a counting task than other groups, because these
skills were directly trained in these groups. However, we did
not expect significant training gains on non-symbolic number
sense measures because previous research showed no direct
relations between non-symbolic number sense and mapping, and
relations between arithmetic and number sense were dominated
by mapping skills rather than non-symbolic number sense
(Kolkman et al., 2013). Measures of non-symbolic number sense
were included nevertheless to get a full account of training
effects on number sense. Gains made after the interventions may
reflect the way in which kindergarten children normally (without
intervention) construct number knowledge, because according
to Piaget’s theory of cognitive development (Piaget, 1970), an
intervention that fosters knowledge the way children intuitively
approach it is likely to have greater effect than an intervention
that teaches children to think differently about the matter at hand
than they intuitively do.

Intervention in number sense skills in children of low
socio-economic status (SES) has aroused specific research interest
(Siegler and Ramani, 2008; Jordan et al., 2012; Dyson et al.,
2013). Greater gains have been reported for children from a low
SES background than for children from middle SES backgrounds
(Starkey et al., 2004). The current study attempted to replicate this
finding by creating a distinction between children from high or
low to average SES and investigating whether training is equally
effective for both groups of children. Finally, because age has been
found to explain differences in intervention outcomes between
studies (Kroesbergen and Van Luit, 2003), the age of the children
was included as a moderator variable.

MATERIALS AND METHODS

Participants
Ninety Dutch kindergartners with a mean age of 5 years and
8 months (SD = 4 months; range: 5;0–6;6 years) participated
in the study. Data of one child were removed because his
data produced outliers on multiple variables. Of the remaining
children, 47 were girls (52.8%). The number of children born in

the Netherlands was 83 (93.2%). Of all children born outside of
the Netherlands, at least one parent was born in the Netherlands.

In each class, nine children participated. After pretesting,
children were divided into three conditions: (1) a counting
training condition, (2) a number line training condition, and
(3) an ‘education as usual’ control group. They were distributed
across conditions in such a way that their counting and arithmetic
scores at pretest were approximately equal between groups, with
three children from each class participating in each condition,
to regulate group size and prevent differences in key outcome
measures at pretest. There was no age difference between the
three groups, F(2,86) = 0.55, p = 0.58, nor was there a difference
between any of the groups in any of the outcome measures during
pretest (ps ranging from 0.44–0.97).

Socio-economic status was measured using short
questionnaires filled out by parents. Children were coded
as coming from families with high SES if they had at least one
parent who had completed higher education. Of the children, 56
were coded as being from high SES families, 32 as being from low
to average SES families, and for one child no data were available.
Children from both SES categories were distributed equally
across training conditions, χ2(2, N = 88) = 0.22, p = 0.89.

Interventions
Each intervention group received 12 training sessions spread over
6 weeks in groups of three children, lasting approximately 20 min
per session. Difficulty of the sessions increased by extending the
range of numbers included in the games: numbers up to 10 were
included in the first four sessions, numbers up to 20 in the next
four sessions, and numbers up to 50 in the last four sessions.
This range was especially included because most children at the
end of kindergarten already know the range up to 20. In both
training programs, four games were played in total, and two
per session, so that each game was played every other session.
Number cards were used to support the activities in each training
program. Training sessions were not specifically planned during
class mathematics activities.

Counting Training
The counting training consisted of the following activities,
presented as games:

1. Resultative counting, using various simple motor activities
such as clapping, colorful cards, and objects to count.
Counting skills are predictive of proficiency in other
number-related tasks (Lipton and Spelke, 2005).

2. Counting on from a number higher than 1. Various sets
of colorful cards were used for this activity. Counting on
is a counting activity that requires the understanding of
cardinality (Van Luit and Van de Rijt, 2009).

3. Non-linear board game: in this board game, a six-sided die
was used to indicate the moves the children could make.
The squares on the board were not numbered, and some
of them contained an icon initiating a counting challenge.
Playing non-linear board games is not expected to facilitate
number line acuity, as opposed to linear board games
(Ramani and Siegler, 2011).
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4. Counting on: colorful stones of the same shape and size
were added to a pillow case to stimulate the use of
shortened counting and illustrate the concept of addition.

Number Line Training
The number line training consisted of the following activities,
presented as games:

1. Number-to-position game: an empty number line in the
form of a printed test tube was presented on worksheets,
and a number was located on the number line by the
children with a pencil. This game was based on the
number-to-position task (Siegler and Booth, 2004; Laski
and Siegler, 2007). For each session, ten numbers were
chosen that covered the entire range of the number line,
and the order of the items was semi-randomized.

2. Position-to-number game: a number line with a given
position was presented on worksheets, and the children
were asked to assign a number to the location. This
activity was based on the number line task (Siegler and
Booth, 2004; Laski and Siegler, 2007), but the position
was the information given to the child, and the number
the response by the child. The beginning and endpoint
were given. Target numbers covered the entire range of the
number line and were presented in semi-random order.

3. Linear numerical board game (Siegler and Ramani, 2008):
in this board game, a six-sided die was used to indicate the
moves the children could make. The squares on the board
were numbered, and the child was asked to state out loud
which squares were crossed during a move.

4. Linear numerical tag game: in this game, children
simulated a tag game on a board with numbered squares.
They chose a starting position and took turns to roll a
die indicating the number of steps (one to six) they could
move in either direction of the number line. They were
challenged to try to locate their tokens on the same square
as another child and received points for each time this
happened. The children were asked to state out loud which
squares were crossed during their move.

Control Group
A control group received education as usual and did not
participate in any research-related extra activities. Children in
the Netherlands typically receive full-day programs from the day
they turn 4 years old. Mathematics is part of every kindergarten
curriculum, and is taught through various age-appropriate
activities.

Measures
Arithmetic
To measure early arithmetic proficiency, children completed
16 addition problems displayed on the laptop screen. Of the
problems, 11 had an answer below 10 (e.g., 5 + 3) and 5 had
an answer between 10 and 20 (e.g., 6 + 8). Tie problems were
not included in the set of items. All problems were preceded by a
2-s alerting phase. The score was the number of correct answers.
Internal consistency at pretest was high, α = 0.94.

Number Sense: Comparison Tasks
The comparison task had two versions. In the symbolic version,
participants judged which of two Arabic numbers was bigger than
the other through a key press using the hand corresponding to the
location (left or right) of the selected stimulus on the screen. All
numbers were between 1 and 9. Each trial was preceded by an
alerting beep, and 1500 ms after the beep, the stimuli appeared.
The maximum response time was 5 s. There were four practice
trials and 26 test trials, and total accuracy was used as the score
of the child. Numerical distance could range from 1 to 4, each
distance appearing 8, 7, 6, and 5 times, respectively. The largest
number appeared on both sides of the screen 13 times. Symbolic
comparison tasks can be seen as measures of mapping because
it has been hypothesized that children use the mental number
line to complete the task (see: Kolkman et al., 2013). Test–retest
reliability of a similar task has been found to be good (Clarke and
Shinn, 2004).

The non-symbolic version of the comparison task was mostly
the same as the symbolic version, but sets of dots appeared instead
of Arabic numbers, controlled for dot size and surface array,
and counterbalanced for the location of the correct response.
To prevent counting strategies, the stimuli disappeared from the
screen after 840 ms. Numerical distance could range from 1
to 4, each distance appearing 8, 7, 6, and 5 times, respectively,
with a total of 26 trials. All trials were preceded by an alerting
beep, and 1500 ms after the beep, the stimuli appeared. The
maximum response time was 5 s. There were four practice trials
and 26 test trials, and total accuracy was used as the score of the
child. Numerical distance could range from 1 to 4. Non-symbolic
comparison tasks can be seen as measures of non-symbolic NS.

Number Sense: Number Line Tasks
The number line task (Siegler and Opfer, 2003) had two versions.
In the symbolic version, Arabic numbers between 1 and 100 were
displayed onscreen below a horizontal line. On both sides of
the line, the minimum (1) and maximum (100) were given, and
participants pointed to the position on the line they selected for
the target number. Twenty-two test trials were presented to the
participants, preceded by two practice trials in which they located
the numbers 1 and 100 on the line and received feedback. Test
trials were the numbers 2, 4, 9, 11, 14, 17, 23, 26, 31, 38, 44, 45,
52, 59, 61, 66, 73, 78, 84, 86, 92, and 99. Trials were presented in
random order. No feedback was given during the testing phase.
Symbolic number line tasks can be seen as measures of mapping
(Kolkman et al., 2013). The score of the child was the explained
variance of a linear slope (R2), indexed by the squared correlation
between estimated and actual positions.

The non-symbolic version of the number line task was similar
to the symbolic version, the only difference being that the
children located arrays of dots on the number line. We did not
control for any visual properties of these dots such as size or
surface array. Minimum and maximum were displayed in non-
symbolic form as well. The same numbers were used as in the
symbolic version, and numbers were also presented in random
order. The score of the child was the explained variance of a
linear slope (R2). Non-symbolic number line tasks can be seen
as measures of non-symbolic NS.

Frontiers in Psychology | www.frontiersin.org 4 June 2018 | Volume 9 | Article 97598

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00975 June 17, 2018 Time: 12:20 # 5

Friso-van den Bos et al. Counting and Number Line Training

Number Sense: Counting
To measure the counting skills, subscales of the ENT-R (Van
Luit and Van de Rijt, 2009) were used. The original ENT-R
consists of nine subscales. In this study, only the subscales
that measure counting were used, namely: (1) Use of number
words, such as rote counting; (2) Structured counting, such as
counting in two’s; (3) Resultative counting, such as counting
out a set of objects; and (4) General understanding of number
words, such as indicating which whole number is exactly between
two other numbers. Each subscale contains five items with
counting tasks ranging up to 20. Resultative counting up to 20
is expected of children at the end of kindergarten. One point
was awarded for each correct answer. Internal consistency of this
test is good (Van Luit and Van de Rijt, 2009). This scale can be
seen as a measure of symbolic number sense (Kolkman et al.,
2013).

Procedure
The current study was part of the MathChild study, which
was funded with a project grant from the Netherlands
Organisation for Scientific Research (NWO), grant 411-07-113.
The study proposal was evaluated for both quality and ethical
standards, and approved by NWO. The study conformed to
national and international standards of ethical research, as
summarized in the Netherlands Code of Conduct for Academic
Practice (Association for Universities in the Netherlands,
2004). Active parental consent was obtained prior to data
collection.

Pretests and posttests were conducted individually with an
interval of 6–8 weeks. The children were tested in a quiet
room inside the school by undergraduate students. All tasks
were administered on a laptop computer using E-Prime 1.2
software (Psychological Software Tools1). Because of budget
limitations, a variety of laptop computer brands and models
was used, therefore screen sizes varied as well. Prior to testing,
the students administering the tests were trained in the use of
the software and the standardized instruction and registration
of the tasks in a 2-h group session and successive self-guided
practice exercises covering all the instruments. The pretest
and posttest tasks were divided into two sessions, which took
place on 2 days no more than 1 week apart. After each
session, children were rewarded with a colorful sticker. During
the first session, children completed working memory tasks
(not included in the current analyses), arithmetic, symbolic
and non-symbolic comparison, and during the second session,
children completed the ENT, the symbolic number line task, and
the non-symbolic number line task. No variations in task order
were made.

Training sessions took place inside the school, in groups of
three children, and were led by trained undergraduate students.
Sessions were planned with the teacher and conducted by
the undergraduate students. The training sessions were not
digitalised, but conducted using colorful materials such as play
boards and pawns. Posttesting took place no more than 2 weeks
after the last session.

1http://www.pstnet.com

Analytical Strategy
To address the research questions, Hierarchical Linear
Modeling (HLM) was applied using the software package
HLM version 6.06. Scores on the various tasks measuring
arithmetic proficiency and number sense served as dependent
variables. Three-level hierarchical models were estimated with
measurement occasion at the first level, individual children at
the second level, and the groups in which children were trained
at the third level (children in the control group were nested
in kindergarten classes). Main effects of occasion (level 1) and
training condition (level 3) were added first, and interactions
between occasion and training condition were added in a second
step, indicating differential growth of children in each of the
conditions. If significant interactions were found, post hoc
analyses using the counting training as a reference category were
conducted to investigate the difference between children in the
counting and number line condition.

To control for Type I errors, the Benjamini–Hochberg
correction was used, in which alpha values are adjusted for
the number of analyses reported (in this case: six hierarchical
regression analyses, or one analysis for each of the measures
listed) based on the rank-order of p-values (Benjamini and
Hochberg, 1995). Probability values are not compared with a
static alpha value, but with a corrected ‘α. Separate corrections
were performed for post hoc analyses.

RESULTS

Correlations between measures at pretest and moderators can be
found in Table 1. Descriptive statistics of all three groups and the
total sample in each measure can be found in Table 2.

Training Effects
Results of the hierarchical regression analyses are reported in
Table 3 for all measures. Each model concerns one of the outcome
measures. The variable Time is indicative of mean growth across
all conditions between pretest and posttest. Analyses show that
mean growth between pretest and posttest was significant for
counting and for non-symbolic number line performance, but
not for any other measure (Table 3).

The interactions between time and condition are indicative
of divergence in growth between the experimental group and
the control group, the latter group serving as a reference group.
Results show that arithmetic scores were significantly predicted
by an interaction between counting training and time, indicative
of larger gains within the counting group (explained variance at
the occasion level: 17.85%; see Table 3). There was no evidence
for greater gains within the number line group than in the control
group. Post hoc tests indicated that the counting group did not
make greater progress than the number line group, B = −1.26,
β =−0.09, p = 0.11.

There was no interaction between training condition and
time on the symbolic comparison test (explained variance at
the occasion-level: 3.66%; see Table 3). Interaction effects on
scores of non-symbolic comparison were not significant either
(explained variance at the occasion level: 2.56%). No post hoc
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TABLE 1 | Correlations between measures at pretest, and moderator variables.

1 2 3 4 5 6 7

(1) Symbolic comparison –

(2) Non-symbolic comparison 0.31∗∗ –

(3) Symbolic number line 0.33∗∗ 0.34∗∗ –

(4) Non-symbolic number line 0.23∗ 0.36∗∗ 0.45∗∗∗ –

(5) Counting 0.38∗∗∗ 0.37∗∗∗ 0.58∗∗∗ 0.47∗∗∗ –

(6) Arithmetic 0.42∗∗∗ 0.37∗∗∗ 0.58∗∗∗ 0.51∗∗∗ 0.72∗∗∗ –

(7) Age 0.03 0.13 0.12 0.18 0.23∗ 0.25∗ –

(8) SES 0.11 0.22∗ 0.05 0.02 0.22∗ 0.19

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; all correlations are Pearson’s correlations, except correlations with SES, which are Spearman’s rank correlations.

TABLE 2 | Descriptive statistics at pretest and posttest, for the counting group, number line group, control group, and total sample.

Task Counting group Number line group Control group Total

Pretest
mean (SD)

Posttest
mean (SD)

Pretest
mean (SD)

Posttest
mean (SD)

Pretest
mean (SD)

Posttest
mean (SD)

Pretest
mean (SD)

Posttest
mean (SD)

Arithmetic 6.03 (5.67) 7.93 (4.47) 5.93 (5.46) 6.77 (5.42) 6.85 (5.54) 7.14 (4.97) 6.25 (5.51) 7.27 (4.94)

Symbolic comparison 20.67 (4.77) 20.97 (4.49) 20.77 (5.06) 21.83 (3.99) 21.28 (4.41) 22.10 (2.80) 20.90 (4.71) 21.63 (3.82)

Non-symbolic comparison 20.83 (4.46) 21.43 (3.76) 20.93 (4.70) 20.48 (3.92) 21.10 (3.50) 21.52 (3.44) 20.96 (4.21) 21.14 (3.70)

Symbolic number line∗ 0.32 (0.25) 0.47 (0.23) 0.35 (0.26) 0.45 (0.29) 0.40 (0.27) 0.41 (0.30) 0.36 (0.26) 0.44 (0.27)

Non-symbolic number line 0.55 (0.22) 0.66 (0.20) 0.54 (0.26) 0.65 (0.22) 0.48 (0.28) 0.63 (0.27) 0.52 (0.25) 0.65 (0.23)

Counting (ENT-R) 11.13 (4.98) 14.43 (4.01) 11.50 (4.69) 13.83 (4.29) 11.79 (4.04) 13.55 (4.14) 11.47 (4.55) 13.94 (4.12)

∗Scores on the number line tasks reflect fit with a linear trend of individual data points. When using median estimates of all children on the symbolic number line task, fit
with a linear and a logarithmic trend at pretest was comparable to previously reported estimates of fit (Berteletti et al., 2010 ): R2 lin = 0.74, R2 log = 0.96. Moreover, data
of all except two children correlated positively with the presented numbers, indicating that the children understood the task well.

analyses were conducted for either symbolic or non-symbolic
comparison.

There was a significant interaction between training condition
and time predicting scores on the symbolic number line test,
indicative of larger gains in the group following the counting
training in comparison to the control group, but not the number
line training (explained variance at the occasion level: 21.50%;
see Table 3). Post hoc analyses indicated that the counting
group did not make more gains than the number line group,
B = −0.07, β = −0.09, p = 0.25. There was no significant
effect of an interaction between training condition and time on
non-symbolic number line performance (explained variance at
the occasion level: 34.68%; see Table 3).

Finally, in the model predicting counting (ENT-R) scores,
there was a significant interaction between counting training and
time (Table 3), but not between number line training and time,
indicative of greater gains within the counting group, but not
the number line group, than in the control group (explained
variance at the occasion level: 45.43%). Post hoc tests indicated
that the counting group did not progress more than the number
line group B =−0.81, β =−0.06, p = 0.45.

Moderation of SES and Age
For all measures in which there was divergence in growth
between the experimental groups and the control group, main
effects of SES and age were included, as well as interactions
between these variables and training gains, to investigate whether

change in scores in number sense and mathematics could
be explained by variation in SES and/or age of the children.
Significant interaction effects were indicative of divergence in
growth between children of various SES or ages.

The SES did not predict growth in any of the measures for
the children enrolled in the counting training, or for arithmetic,
symbolic number line, or counting scores for children enrolled in
either of the training groups (all ps > 0.05). Age of the children
predicted growth of children enrolled in the counting training in
arithmetic, B =−0.74, β =−4.57, p = 0.03, and symbolic number
line scores, B = −0.04, β = −4.78, p < 0.01, but not in counting,
B = −0.45, β = −3.21, p = 0.07, and it did not predict growth
in scores of children enrolled in the number line training, all
ps > 0.05.

CONCLUSION AND DISCUSSION

In the current study, the possibilities of advancing number sense
and arithmetic using bottom-up counting training and top-
down number line training were investigated. Both counting
skills and number line skills may be used to fine-tune mapping
between symbolic and non-symbolic representations (Le Corre
and Carey, 2007; Booth and Siegler, 2008; Noël and Rousselle,
2011), which may form a foundation for arithmetic development
(Wong et al., 2016). The current study investigated mapping in
a quasi-experimental design. We attempted to foster mapping
skills using counting activities and number line activities, both of
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which have been hypothesized to advance mapping capacities in
young children (Lipton and Spelke, 2005; Le Corre and Carey,
2007; Siegler and Ramani, 2009; Fisher et al., 2011).

Results indicate that kindergartners outperformed the control
group only after counting training. This implies that number
processing and consequent arithmetic skills can be nurtured
through counting activities (Lipton and Spelke, 2005; Le Corre
and Carey, 2007), and it may suggest that development in the
school context is also furthered by counting more than by
number line training. Formation of mapping skills may occur
through the repeated bottom-up process of matching number
words with visible quantities, as suggested by Le Corre and
Carey (2007), and quantities may more easily be processed by
assessing individual items in a set one-by-one than by placement
in a higher-order framework, which is done in number line
tasks using top-down processing. This more fluent processing
may have led to significant gains in the counting group and
not the number line group in comparison to the control group,
even when measuring progress through a number line task. This
is congruent with the notion that mapping fosters arithmetic
skills by making symbolic numbers more meaningful to children
(Wong et al., 2016); something that is likely more easily achieved
through a tangible and observable counting process than through
an abstract number line game. It should be noted though that
differences in gains between the counting group and the number
line group were not significant. Rather, the number line group
made small (non-significant) progress on several tasks that imply
that with sufficient power, number line activities would in fact
show small effects on number sense measures, although not in
the same order of magnitude as the counting training, nor would
they be of the same order as the effects previously reported (e.g.,
Siegler and Ramani, 2009; Maertens et al., 2016).

Advances in mapping could be seen in the number line task,
measuring mapping, but not on the symbolic comparison task,
scores on which can also be seen as an indication of mapping
skills (Kolkman et al., 2013). This may be due to the low difficulty
of the task. Numbers ranged up to 9, and children showed no
obvious difficulties completing the task. This is also apparent
from their scores at pretest, during which children performed
well above the chance level of 50%. Possibly, the few mistakes
made by children were due to other factors such as attentional
resources, rather than their mapping capacities.

It is also worth noting that the counting training had no effects
on measures of non-symbolic processing. Effects of number sense
training on non-symbolic tasks have previously been found to be
lacking (Malofeeva et al., 2004) or to have smaller effects than on
symbolic tasks (Wilson et al., 2006), suggesting that it is primarily
the symbolic skill level that interacts with broader numerical
development and plays a key-role in the development of number
sense. It has been hypothesized that non-symbolic skills serve
as a foundation for all further development in mathematics and
number skills (Dehaene, 2001), but the current study suggests
that limited gains in non-symbolic skills do not constrain gains
in symbolic skills.

Younger children made somewhat greater gains during the
counting training than older children in arithmetic and number
line scores. This may be due to a difference in time spent at

school between the children. The correlation of scores with the
age of the children may be indicative of a catch-up effect in
younger children, after more instruction. However, the absence of
correlations between age and most measures at pretest indicates
that this explanation does not sufficiently explain the current
results. Alternatively, younger children may have found the
activities from the training more appealing, or they may have
complied more with instructions set by the trainer, resulting in
greater training effects. The effects are contrary to the results
presented in the meta-analysis by Kroesbergen and Van Luit
(2003), who reported greater training effects of older children.
It should be noted, however, that these concerned between-
study differences, which may be the result of differences between
trainings, and that this is not necessarily indicative of similar
within-group moderation effects.

The finding that training gains are moderated by the SES
of children (Starkey et al., 2004) could not be replicated. The
absence of a moderation effect of SES may be caused by the
criterion for group membership. In the current study, children
were classified based on the educational level of the parents,
while children in the study by Starkey et al. (2004) were
classified based on parental income. Although both are indicative
of SES, these constructs may have different implications for
child development. More specifically, any difference in material
resources such as educational materials for children, that may
have been associated with differences in training gains in the cited
study, may not have been relevant for the groups constructed
in the current study. A second cause of the disparity might be
the inequality in incomes between families, which is smaller in
the Netherlands than in the United States (Central Intelligence
Agency, n.d.) and may therefore have smaller consequences for
child outcomes.

Future research is needed to elaborate on the parameters of
similar training programs. For example, it may be investigated
what the effects are of the duration of a training. A meta-
analysis concerning the effects of mathematics and number sense
trainings has suggested that longer trainings yielded smaller
training gains (Kroesbergen and Van Luit, 2003). However, the
authors proposed that this was due to differences in scope of
the training studies: shorter trainings aimed to improve a more
narrow range of skills, leading to more improvement in fewer
skills. In a study investigating two training programs with a
similar scope, greater training gains and more transfer were
reported for the training with the more extensive time span
(Toll and Van Luit, 2014). This difference in training gains was
significant for general mathematics, and marginally significant
for arithmetic. Other evidence concerning the duration of
training is scarce, although effects of very short number
intervention studies of only four sessions have been reported
(Ramani and Siegler, 2008, 2011; Whyte and Bull, 2008).

Also, the range of numbers included is a topic that may be
investigated in future research. In the current study, numbers up
to 50 were included in the training programs, but other studies
have reported on trainings using number ranges up to 10 (Siegler
and Ramani, 2008, 2009), up to 15 (Van Luit and Schopman,
2000; Blöte et al., 2006), up to 20 (Fisher et al., 2011) or up to
21 (Baroody et al., 2009). It is likely that children of different ages

Frontiers in Psychology | www.frontiersin.org 8 June 2018 | Volume 9 | Article 975102

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00975 June 17, 2018 Time: 12:20 # 9

Friso-van den Bos et al. Counting and Number Line Training

benefit to a different extent from training programs that focus
on different number ranges, and that older children benefit
more from broader number ranges as they are already familiar
with smaller numbers. However, the exact effect of the inclusion
of different number ranges in training programs is as yet
unknown.

A limitation of the current study is the sample selection. In
the current study, all children were eligible for participation,
while not every child was in direct need of a number sense
intervention. This may have limited the gains children made
during the trainings compared to the control group: children
not at-risk for delays in number sense typically make gains
in number sense that are sufficient to start formal education
without intervention, explaining gains in the control group.
Also, longitudinal studies are needed to map the benefits of
the interventions fully. Finally, the matching procedure in the
current study, in which children were matched at school-level,
ensured great variation in number knowledge between children
in each training group. Smaller variation in number knowledge
may be more beneficial to training gains, because of a more
equal level between children at the start of the training,
making activities similarly useful to all children in a training
group.

A second limitation is the number range covered by the tasks
used to evaluate children’s progress in numerical skills. This
number range differed per task, with number line tasks ranging
up to 100, arithmetic and counting items dealing with quantities
up to 20, and comparison tasks only ranging up to 9. This
difference in tasks hampers a full comparison in progress between
tasks. Conclusions, therefore, can only be made with regard to
the comparison in progress between experimental groups and the
control group, and not with regard to any difference in progress
between various tasks used to index numerical skills. Moreover,
number ranges covered during the training sessions only partially
overlapped with the pre- and post-tests. Perhaps training gains
would be larger if the same number ranges were covered in the
training tasks.

Nevertheless, the current study adds to the body of literature
by providing experimental evidence for the importance of

counting to advance mapping skills and arithmetic skills, and
the smaller, non-significant training gains after a number line
training. Non-symbolic skills were not influenced by training
at all. These findings are of both theoretical and practical
significance, because of the implications they have for theories
concerning the building of mapping skills and its consequence
for arithmetic development, and because of the clear distinction
they make in effectiveness of different training activities, which
has clear and large implications for the effectiveness of school
curricula focusing on number sense.
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Executive functioning (EF), an umbrella term used to represent cognitive skills
engaged in goal-directed behaviors, has been found to be a unique predictor of
mathematics performance. However, very few studies have examined how the three
core EF subcomponents (inhibition, shifting, and working memory) predict the growth
parameters (intercept and slope) in mathematics skills and even fewer studies have
been conducted in a non-Western country. Thus, the purpose of this study was to
examine how inhibition, shifting, and working memory predict the growth parameters
in arithmetic accuracy and fluency in a group of Chinese children (n = 179) followed
from Grade 2 (mean age = 97.89 months) to Grade 5 (mean age = 133.43 months).
In Grade 2, children were assessed on measures of nonverbal IQ, number sense,
speed of processing, inhibition, shifting, and working memory. In addition, in Grades
2–5, they were assessed on arithmetic accuracy and fluency. Results of structural
equation modeling showed that nonverbal IQ, speed of processing, and number sense
predicted the intercept in arithmetic accuracy, while working memory was the only EF
subcomponent to predict the slope (rate of growth) in arithmetic accuracy. In turn,
number sense, speed of processing, inhibition, and shifting were significant predictors of
the intercept in arithmetic fluency. None of the EF subcomponents predicted the slope
in arithmetic fluency. Our findings reinforce those of previous studies in North America
and Europe showing that EF contributes to mathematics performance over and above
other key predictors of mathematics, and suggest that different EF subcomponents may
predict different growth parameters in mathematics.

Keywords: executive functioning, working memory, arithmetic, mathematics, Chinese, longitudinal

Frontiers in Psychology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 1037106

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.01037
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2018.01037
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.01037&domain=pdf&date_stamp=2018-06-21
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01037/full
http://loop.frontiersin.org/people/232702/overview
http://loop.frontiersin.org/people/574584/overview
http://loop.frontiersin.org/people/360436/overview
http://loop.frontiersin.org/people/485306/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01037 June 19, 2018 Time: 17:9 # 2

Wei et al. EF and Growth in Mathematics

INTRODUCTION

Executive functioning (EF), an umbrella term used to represent
cognitive skills engaged in goal-directed behaviors, such as
inhibition, mental flexibility, and working memory (e.g., Chan
et al., 2008; Best et al., 2009; Diamond, 2013), is important
not only for behavioral regulation in classroom that ultimately
enhances learning (e.g., Day et al., 2015), but also for the
development of specific cognitive skills that further support
children’s academic performance (e.g., Fuhs et al., 2016). One of
the academic skills that EF appears to make a unique contribution
to is mathematics (e.g., Espy et al., 2004; Blair and Razza,
2007; Willoughby et al., 2012; Allan et al., 2014). Despite the
acknowledged importance of EF in mathematics performance, far
less is known about how EF subcomponents predict the growth
parameters (intercept and slope) of mathematics development.
Therefore, the purpose of this study was to examine how
the three core EF subcomponents (inhibition, shifting, and
working memory) predict the growth parameters of two different
mathematics skills (arithmetic accuracy and fluency) in a sample
of Chinese children followed from Grade 2–5.

Executive functioning has been conceptualized as a
multicomponent construct composed of inhibition, shifting, and
working memory (e.g., Miyake et al., 2000; Lehto et al., 2003; Wu
et al., 2011; Xu et al., 2013; however, see also Testa et al., 2012, for
more EF subcomponents). Inhibition, defined as the ability of an
individual to override a dominant but inappropriate response,
may help children suppress inappropriate strategies while
operating on math problems or suppress the prepotent activation
of an inappropriate number representation (Bull and Lee, 2014).
In turn, shifting, defined as flexibly switching attention between
different mindsets, may help individuals switch between different
operation rules. Finally, working memory, defined as the ability
of an individual to hold information in short-term memory
(storage) while processing some other (processing), is needed
when solving different mathematics problems [e.g., (3 + 5) ∗
4 = ?] because individuals need to first hold part of the solution in
their memory (e.g., the result of 3 + 5) before executing another
operation (e.g., multiplying by 4).

Among the three EF subcomponents, working memory is
perhaps the most studied in relation to mathematics (see
Raghubar et al., 2010, for a review). Two meta-analyses have
reported a moderate correlation between working memory and
different mathematics skills (rs ranged from 0.31 to 0.38 in
Friso-van den Bos et al., 2013; the average correlation was
0.35 in Peng et al., 2015). Recent studies have also shown that
inhibition and shifting are significant correlates of mathematics
performance (e.g., Blair and Razza, 2007; Andersson, 2008;
Clark et al., 2010; Willoughby et al., 2012; Gilmore et al., 2015;
Cragg et al., 2017; Purpura et al., 2017), although the strength
of their relationship appears to be lower compared to that of
working memory. In their meta-analyses, Allan et al. (2014) and
Friso-van den Bos et al. (2013) reported an average correlation
of 0.27 between inhibition and mathematics. Likewise, Yeniad
et al. (2013) and Friso-van den Bos et al. (2013) found the
correlation between shifting and mathematics to be 0.26 and 0.28,
respectively.

Unfortunately, most previous EF studies have focused on the
role of individual EF subcomponents and, as a result, we do
not know how they predict mathematics skills in the presence
of each other. In addition, the few studies that have included
all three EF subcomponents have produced mixed findings (e.g.,
Bull and Scerif, 2001; Andersson, 2008; Agostino et al., 2010;
van der Ven et al., 2012; Cantin et al., 2016; Lubin et al., 2016;
Cragg et al., 2017; Vandenbroucke et al., 2017). For example,
whereas some studies have found working memory to account
for unique variance in mathematics skills after controlling for
the effects of all other EF subcomponents (e.g., Bull and Scerif,
2001; Agostino et al., 2010; Lubin et al., 2016; Cragg et al., 2017;
Vandenbroucke et al., 2017), others failed to find any significant
effects (e.g., Espy et al., 2004; Cantin et al., 2016). Similarly,
whereas some studies have found that inhibition and shifting
make a unique contribution to mathematics skills (e.g., Espy et al.,
2004; Andersson, 2008; Cantin et al., 2016; Cragg et al., 2017;
Purpura et al., 2017), others did not (e.g., Monette et al., 2011;
Rose et al., 2011; Lee et al., 2012; Vandenbroucke et al., 2017).

There might be two reasons for the mixed findings. First,
they may reflect differential effects of EF subcomponents
on different mathematics skills. Mathematics skills consist of
several components themselves including arithmetic accuracy
(the accuracy of performing different operations either by using
procedural or retrieval strategies) and arithmetic fluency (the
speed with which different arithmetic problems are solved).
In studies in which math accuracy scores were used, working
memory was found to make a unique contribution (e.g.,
Andersson, 2008; Agostino et al., 2010; Lee et al., 2012; Cragg
et al., 2017). In contrast, in studies in which fluency scores
were used, working memory did not predict mathematics (e.g.,
Andersson, 2008; Cantin et al., 2016; Purpura et al., 2017). The
opposite pattern appears to be true for inhibition and shifting.
Studies have reported a unique contribution of shifting and
inhibition to arithmetic fluency (e.g., Andersson, 2008; Clark
et al., 2010; Cragg et al., 2017) but not to accuracy (e.g., Agostino
et al., 2010; Lee et al., 2012). Cragg and Gilmore (2014) concluded
that the contribution of EF subcomponents may differ across
different aspects of mathematics skills.

Second, most previous studies examining the contribution of
inhibition and shifting to mathematics skills have administered
speeded measures of both, without controlling for the effects of
speed of processing. As van der Sluis et al. (2007), and more
recently Georgiou and Das (2018) have indicated, in this kind of
studies unless researchers control for speed of processing we do
not know if the effects of EF on mathematics are driven by their
executive processing demands or by speed. Most of the EF tasks,
especially the inhibition and shifting tasks, are speeded because of
ceiling effects in accuracy (e.g., Anderson, 2002; Lee et al., 2012).
The results of a meta-analysis by Yeniad et al. (2013) showed
that the average correlation between response time measures of
shifting and mathematics (r = 0.36) was higher than that between
accuracy measures of shifting and mathematics (r = 0.25). Rose
et al. (2011) and Bull and Lee (2014) further argued that the
variance in mathematics skills explained by EF may be attributed
to speed of processing, because speed of processing, as a domain-
general cognitive skill, also contributes to mathematics. Thus, the
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contribution of EF subcomponents, especially of inhibition and
shifting, may decrease when the effects of speed of processing are
controlled. In line with this prediction, some studies have found
that inhibition was no longer predicting the mathematics skills
when the effects of speed of processing were controlled (Rose
et al., 2011; Purpura et al., 2017). Fuchs et al. (2006) also showed
that working memory did not explain any unique variance in
mathematic skills after controlling for the effects of speed of
processing and nonverbal IQ. Certainly, these findings need to
be replicated.

Beyond the contradictory findings of previous studies that
included all three EF subcomponents, previous studies examining
the role of EF in mathematics skills suffer from at least three
limitations. First, most previous studies have not examined the
role of the EF subcomponents in the presence of other key
predictors of mathematics such as number sense. Number sense
refers to an individual’s “fluidity and flexibility with numbers,”
which includes skills such as understanding what numbers mean
and how they relate to each other (Gersten and Chard, 1999). The
first reason why the effects of number sense should be partialled
out is that some EF tasks (e.g., Trail Making) typically use
numbers as their stimuli and this may inflate the relations with
mathematics (Cragg and Gilmore, 2014). In addition, although
some previous studies have shown that earlier EF predicts future
number competence (e.g., Kolkman et al., 2013; McClelland
et al., 2014; Purpura et al., 2017), little is known about whether
EF continues to predict mathematics skills after controlling for
number competence such as number sense. Fuhs et al. (2016),
for example, found that the effects of early EF on concurrent
mathematics performance were fully mediated by number sense,
and Simanowski and Krajewski (2017) also found that EF in
kindergarten could not predict mathematic skills in Grades
1 and 2 (mean ages were 87 and 99 months, respectively)
after controlling for early number competence. Therefore, as
Viterbori et al. (2015) have suggested, children’s number sense
should be controlled before examining the contribution of EF
subcomponents to mathematics skills.

Second, most previous studies examining the relationship
between EF and mathematics are cross-sectional (e.g., Agostino
et al., 2010; Rose et al., 2011; Cantin et al., 2016). The few
longitudinal studies (e.g., Swanson, 2006; McClelland et al., 2014;
Simanowski and Krajewski, 2017; Vandenbroucke et al., 2017)
have covered only a limited developmental span (most often from
Kindergarten to Grades 1 and 2) and have used the EF skills
(assessed at an earlier point in time) to predict mathematics skills
at a later point in time (often assessed once). To our knowledge,
only a handful of longitudinal studies have examined how EF
predicts different growth parameters (intercept and slope) in
mathematics (see Bull et al., 2008; Geary, 2011; van der Ven
et al., 2012; Van de Weijer-Bergsma et al., 2015; Lee and Bull,
2016), and of these studies only two had assessed all three EF
subcomponents (Bull et al., 2008; van der Ven et al., 2012). The
results of van der Ven et al. (2012) showed that working memory
(updating) in Grade 1 (mean age = 77 months) correlated with
the intercept in mathematics (a comprehensive mathematics test)
during Grades 1 and 2 (mean age = 95 months), while a factor
composed of inhibition and shifting in Grade 1 did not correlate

with either growth parameter. Similarly, the results of Bull et al.
(2008) showed that working memory along with inhibition at
kindergarten (mean age = 54 months) predicted the intercept in
mathematics during Grade 1 (5–6 years old) and Grade 3 (7–8
years old). Furthermore, Geary (2011) and Lee and Bull (2016)
examined the growth parameter of arithmetic accuracy (assessed
with numerical operations) during a longer span (more than 3
years), and found working memory also predicted the slope in
arithmetic accuracy. Another study, Van de Weijer-Bergsma et al.
(2015), found working memory at the beginning of Grade 2 (6–
8 years old) correlated with the intercept not the slope in math
fluency during Grade 2. Thus, more research is needed on how
all three EF subcomponents predict the growth parameters of
mathematics development.

Finally, almost all of the studies reviewed above were
conducted in North America or Europe and we do not know
if their findings generalize to East Asian countries (e.g., China).
There are reasons to believe that the role of EF subcomponents
may be different in China than in Western countries. The
first reason relates to the role of working memory. Because
Chinese digits are monosyllabic and have a shorter pronunciation
duration they allow individuals to hold a larger number of
digits in their short-term memory. If simple calculations can be
solved with direct retrieval of facts from long-term memory, then
individuals with a larger pool of arithmetic facts in their memory
should also have superior performance in calculations. Indeed, a
few cross-cultural studies have shown that Chinese outperform
North Americans in mental calculation (e.g., Stevenson et al.,
1990; Campbell and Xue, 2001; Wang and Lin, 2009; Lonnemann
et al., 2016). Imbo and LeFevre (2009) also showed that
Chinese university students required fewer working memory
resources than Belgian or Canadian university students when
solving complex addition problems. If Chinese children solve
simple addition and subtraction problems by relying on rote
memorization, then the contribution of working memory may
not be as strong as it has been reported in previous studies in
North America. Some studies have provided evidence in support
of this hypothesis (e.g., Geary et al., 1996; Thorell et al., 2013; Cui
et al., 2017), but more research is needed.

Second, inhibition may be less important for mathematics
skills among Chinese children than among North-American
children. Geary et al. (1996) found that more than half of
American children in Grade 2 (mean age = 94 months) and Grade
3 (mean age = 104 months) were still using basic strategies in
addition, such as counting fingers and verbal counting, while
almost all Chinese children in the same grades (with comparable
mean ages) were relying on direct retrieval. Relying on strategies
such as verbal counting may lead to one of the most common
errors in calculation, i.e., a counting-string associate of one of
the addends (e.g., 3 + 5 = 6; Siegler and Shrager, 1984). To
avoid this error, American children have to actively suppress
any irrelevant association when retrieving arithmetic facts from
long-term memory. In contrast, Chinese children may not need
to inhibit irrelevant associations if they directly retrieve the
answers to calculations from their long-term memory. Indeed,
Lan et al. (2011) found that inhibition of Chinese preschoolers
uniquely predicted counting, but failed to predict calculation,
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while inhibition of American children uniquely predicted both
counting and calculation. Similarly, Peng et al. (2012) found
that performance on a color-word Stroop task (one of the
most widely used measures of inhibition) failed to differentiate
between Chinese fifth-graders with mathematics difficulties and
their typically developing peers (the mean age of both groups was
132 months).

To our knowledge, only four studies have examined the
contribution of EF to mathematics skills among Chinese children
and all of them have focused on the concurrent relationships
between some EF subcomponents and mathematics during
kindergarten. Three studies with Chinese preschoolers (Zhang,
2016; Chung et al., 2017; Zhang et al., 2017) showed that
inhibition and working memory or an EF factor composed
of inhibition and working memory uniquely predicted early
mathematics skills after controlling for rapid naming, vocabulary,
and visual skills. Another study (Lan et al., 2011) found that
Chinese preschoolers’ inhibition predicted counting, but failed to
predict calculation. Working memory predicted both counting
and calculation. Therefore, it remains unclear whether EF
subcomponents can predict mathematics skills longitudinally,
especially the growth rate of mathematics skills.

The Present Study
The purpose of this study was to examine how the three core
EF subcomponents (inhibition, shifting, and working memory)
predict the growth parameters (intercept and slope) of arithmetic
accuracy and fluency in a group of Chinese children followed
from Grade 2 to 5. Based on the findings of previous studies that
examined the predictors of growth parameters in mathematics
performance (see Bull et al., 2008; Geary, 2011; van der Ven et al.,
2012; Van de Weijer-Bergsma et al., 2015; Lee and Bull, 2016), we
expected that:

(1) Working memory would predict both growth parameters of
arithmetic accuracy (see Geary, 2011; Lee and Bull, 2016),
and the intercept of arithmetic fluency (see Van de Weijer-
Bergsma et al., 2015),

(2) Inhibition would predict only the intercept of arithmetic
fluency (see Bull et al., 2008) and,

(3) Shifting would not predict any growth parameter in any
mathematics skill (see van der Ven et al., 2012).

MATERIALS AND METHODS

Participants
One hundred seventy-nine Grade 2 Chinese children (82 girls and
97 boys; mean age = 97.89 months, SD = 3.56) were recruited
on a voluntary basis from public schools in Shanghai (China)
to participate in the study (T1). The children were reassessed
in Grades 3, 4, and 5 (T2, T3, and T4), when they were 109.65
(SD = 3.62), 122.99 (SD = 3.55) and 133.43 (SD = 3.70) months
old, respectively. By Grade 5, only 165 children (or 92% of
the original sample) remained in the study. The children who
withdrew from the study did not differ significantly from the
children who remained in the study on any of the measures

administered in Grade 2 (all ps > 0.10). All children were
native speakers of Mandarin and none was experiencing any
intellectual, sensory, or behavioral difficulties (based on teachers’
reports). Most of the children came from families of middle
socioeconomic background (based on parents’ occupation and
education). Parental permission and ethical approval from the
Research Ethics Committee of East China Normal University was
obtained prior to testing.

Materials
Nonverbal IQ
To assess nonverbal IQ we administered the Nonverbal Matrices
task from the Das–Naglieri Cognitive Assessment System (DN
CAS) battery (Naglieri and Das, 1997). This task has been used
in several previous studies in Chinese showing good reliability
and validity evidence (e.g., Liao et al., 2008; Deng et al., 2011).
Children were presented with a page containing a pattern of
shapes/geometric designs that was missing a piece and were asked
to choose among five or six alternatives the piece that would
accurately complete the pattern. The task was discontinued after
four consecutive errors and a participant’s score was the total
number correct. The Cronbach’s alpha reliability coefficient in
our sample was 0.94.

Speed of Processing
To assess speed of processing we administered Visual Matching
from the Woodcock–Johnson Tests of Cognitive Abilities
(Woodcock and Johnson, 1989). Children were presented with
60 rows of numbers and were asked to cross out the two identical
numbers in each row (e.g., 8, 9, 5, 2, 9, and 7) within a 3 min time
limit. The first 20 rows used single-digit numbers, followed by 20
rows of two-digit numbers, and 20 rows of three-digit numbers.
A participant’s score was the total number of correctly completed
rows. The Cronbach’s alpha reliability coefficient in our sample
was 0.84.

Number Sense
Number Sets was adopted from Geary et al. (2009) to assess
number sense. Children were presented with four pages and each
page included a target number at the top of each page (e.g., 5) and
sets indicated by two or three linked boxes with Arabic numerals
(e.g., 2) and concrete objects (e.g.,    ). Children were asked
to circle all the sets that can be put together to match the target
number. The target number of the first two pages was 5 and
the time limit was 60 s per page. The target number of the last
two pages was 9 and the time limit was 90 s per page. Signal
detection method was used to calculate each child’s sensitivity (d’)
in detecting the correct sets based on the number of hits and the
number of false alarms (see Geary et al., 2009, for details). The
Cronbach’s alpha reliability coefficient in our sample was 0.88.

Executive Functioning
Shifting
Shifting was assessed with the Planned Connections task from the
DN CAS battery (Naglieri and Das, 1997). Planned Connections
is a transparent adaptation of the Trail Making task (Reitan
and Wolfson, 1992). In this task, children were presented with
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two pages of numbers (1–14) and letters (A–N), and, in each
page, they were asked to connect the numbers to the letters in
successive order (1, A, 2, B, 3, C, etc.) as fast as possible. The
score was the total time to finish both pages. The Cronbach’s alpha
reliability coefficient in our sample was 0.80.

Inhibition
Inhibition was assessed with the Expressive Attention task
from the DN CAS battery (Naglieri and Das, 1997). Expressive
Attention is a transparent adaptation of the color-word Stroop
task. Children were presented with one page of color rectangles
and two pages of Chinese color characters (e.g., [blue],

[yellow], [red], [green]). In each page, the stimuli were
semi-randomly arranged in eight rows of five. Children were
asked to read aloud the color of rectangles in the first page and to
name the color characters in the second page as fast as possible.
In the third page, children were asked to name as fast as possible
the color of the ink in which the color characters were printed
(e.g., the character [Red] may appear in green ink) instead of
saying the color character. A practice page was presented before
each trial to ensure all children understood the instructions. The
children’s response time on the third page was used as a measure
of inhibition. The Cronbach’s alpha reliability coefficient in our
sample was 0.88.

Working memory
The Backward Digit Span task from Wechsler Intelligence
Scale for Children-Revised (Wechsler, 1974) was used to assess
working memory. In this task, children were asked to repeat a
sequence of digits in the reverse order. The strings of digits were
presented orally by the experimenter with a time interval of about
1 s between each digit. The strings started with only two digits and
one digit was added at each difficulty level (the maximum length
was eight digits). The task was discontinued when participants
failed both trials of a given length. A participant’s score was the
maximum length of digit string recalled correctly. The Cronbach’s
alpha reliability coefficient in our sample was 0.80.

Arithmetic Skills
Arithmetic accuracy
The Numerical Operations task from Wechsler Individual
Achievement Test (Wechsler, 2002) was used to assess arithmetic
accuracy. There were 61 problems arranged in increasing
difficulty that measure arithmetic skills in basic operations
(addition, subtraction, multiplication, and division) with integers
and fraction, algebra, and geometry. Children were asked to
write down the answer to each problem in untimed conditions.
A discontinuation rule of four consecutive errors was applied and
a child’s score was the total number correct. The Cronbach’s alpha
reliability coefficient in our sample ranged from 0.90 to 0.94.

Arithmetic fluency
To assess arithmetic fluency we administered the Basic
Arithmetic Test (BAT, Aunio and Räsänen, 2007, Unpublished).
Children were asked to write down the answers to 28 calculation
problems within a 3 min time limit. The task consisted of 28
problems: 14 additions (e.g., 2 + 1 = ? and 3 + 4 + 6 = ?) and
14 subtractions (e.g., 4 – 1 = ? and 20 – 2 – 4 = ?) that were mixed

up and presented in two pages. The score was the total number
correct divided by the time (in minute) to complete all items. The
Cronbach’s alpha reliability coefficient in our sample ranged from
0.80 to 0.86.

Procedure
All children were individually assessed in a quiet room at
school by the first author and trained graduate students.
Testing at all measurement points was completed in April/May
(8–9 months after the beginning of the school year). The
first testing was completed in two sessions of 30 min each.
In Session A, Nonverbal Matrices, Visual Matching, Planned
Connections, Expressive Attention, and Backward Digit Span
were administered. In Session B, Number Sets, Numerical
Operations, and BAT were administered. The order of the tasks
within each session was fixed. From T2 to T4, only Numerical
Operations and BAT were administered.

Data Analysis
All measures were initially scrutinized for normality. One-
way repeated-measures analysis of variance for each arithmetic
skill was conducted to examine the main effects of time
(linear terms) and time squared (quadratic terms). Pearson
correlation coefficients were computed among all variables.
Latent growth models were constructed with AMOS 17.0 to
predict the growth parameters in each arithmetic skill from the
six predictor variables measured. Full information maximum
likelihood method was applied to make full use of the data.

RESULTS

Preliminary Data Analysis
Descriptive statistics for all the measures used in our study are
shown in Table 1. An examination of the distributional properties
of the measures revealed that they were within acceptable levels
(Tabachnick and Fidell, 2007). The results of one-way repeated-
measures analysis of variance for each mathematics skill showed

TABLE 1 | Descriptive statistics for all variables used in the present study.

M SD Min. Max.

Nonverbal IQ 19.77 4.15 12 32

Speed of processing 38.47 5.15 24 51

Number sense 3.14 0.46 1.80 3.83

Inhibition 68 17.25 31 130

Shifting 136.50 46.67 52 292

Working memory 4.13 1.26 2 8

Arithmetic accuracy T1 23.08 2.18 18 31

Arithmetic accuracy T2 28.84 3.14 21 36

Arithmetic accuracy T3 33.49 4.91 25 48

Arithmetic accuracy T4 38.70 7.02 26 54

Arithmetic fluency T1 12.96 3.04 6.96 22.82

Arithmetic fluency T2 15.44 3.90 7.73 31.26

Arithmetic fluency T3 17.88 4.45 8.29 32.36

Arithmetic fluency T4 19.89 4.65 8.67 35.25
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a significant main effect of linear terms of time (for arithmetic
accuracy, F(1,163) = 951.19, p < 0.001; for arithmetic fluency,
F(1,162) = 538.85, p< 0.001), and a non-significant main effect of
quadratic terms of time (for arithmetic accuracy, F(1,163) = 1.91,
p> 0.05; for arithmetic fluency, F(1,163) = 2.16, p> 0.05), which
indicated a linear growth trend for both mathematics skills.

Correlations Among All the Measures
Table 2 shows the results of the correlational analysis. There
was moderate to high stability between all measurement points
for arithmetic accuracy (the correlations ranged from 0.35
to 0.61), and high stability between all measurement points
for arithmetic fluency (the correlations ranged from 0.54 to
0.67). Besides, arithmetic accuracy correlated significantly with
arithmetic fluency at all measurement points. Nonverbal IQ,
speed of processing, number sense, inhibition, and working
memory at T1 correlated significantly with arithmetic accuracy
at all measurement points (absolute rs values ranged from 0.15
to 0.36), and shifting correlated significantly with arithmetic
accuracy at T3 and T4. Speed of processing, number sense, and
inhibition at T1 correlated moderately with arithmetic fluency
at all measurement points (absolute rs values ranged from 0.30
to 0.43). Finally, working memory at T1 correlated weakly with
arithmetic fluency at T2 and T4, and shifting correlated weakly
with arithmetic fluency at T3.

Latent Growth Models for Arithmetic
Skills
First, unconditional latent linear growth models (without any
predictors) were constructed, in which the intercept represents
the arithmetic skill at T1, and the slope represents the rate of
linear growth from T1 to T4. The model for arithmetic fluency
showed a good fit, χ2 = 4.55, df = 5, p = 0.47, CFI = 1.000,
TLI = 1.003, RMSEA = 0.000, and the correlation between the
intercept and slope was not significant (estimated r = 0.31,
p > 0.12). In turn, the model for arithmetic accuracy did not

fit the data well. The modification indices indicated that the
estimated residual of arithmetic accuracy at T3 was related to that
of T4, suggesting that the two measurements shared some unique
variance that was not included in the model. After incorporating
the above relation in the model, the model fit the data very
well, χ2 = 7.43, df = 4, p = 0.12, CFI = 0.981, TLI = 0.953,
RMSEA = 0.069, and the correlation between the intercept and
slope was significant (estimated r = 0.82, p < 0.05). The results
also showed a significant variance in the intercepts and slopes
of both mathematics skills (for arithmetic accuracy, σi

2 = 1.74,
p < 0.05, σs

2 = 1.36, p < 0.05; for arithmetic fluency, σi
2 = 6.29,

p< 0.001, σs
2 = 0.66, p< 0.01).

Next, six variables at T1 were used to predict the intercept and
slope of a linear growth model for each mathematics skill. In both
models, the intercept was allowed to correlate with the slope, and
the residuals of the predictors were allowed to be correlated. The
models predicting growth in arithmetic accuracy and arithmetic
fluency are shown in Figures 1, 2, respectively, with non-
significant paths removed. Both models fit the data well (for
arithmetic accuracy, χ2 = 14.97, df = 16, p = 0.53, CFI = 0.935,
TLI = 1.010, RMSEA = 0.000; for arithmetic fluency, χ2 = 16.63,
df = 17, p = 0.48, CFI = 1.000, TLI = 1.002, RMSEA = 0.000).
Nonverbal IQ and speed of processing predicted the intercept
of arithmetic accuracy and accounted for 36.4% of the variance.
Nonverbal IQ and working memory predicted the slope of
arithmetic accuracy and accounted for 31.3% of the variance.
Speed of processing, number sense, inhibition and shifting
predicted the intercept of arithmetic fluency and accounted for
39.6% of the variance. No variables predicted significantly the
slope of arithmetic fluency.

DISCUSSION

This study aimed to examine how the three core EF
subcomponents (i.e., inhibition, shifting, and working memory)
predict the growth parameters of two mathematics skills (i.e.,

TABLE 2 | Correlations between cognitive predictors and mathematics outcomes.

1 2 3 4 5 6 7 8 9 10 11 12 13

(1) Nonverbal IQ

(2) Speed of processing 0.22

(3) Number sense 0.26 0.39

(4) Inhibition −0.25 −0.43 −0.32

(5) Shifting −0.21 −0.38 −0.42 0.30

(6) Working memory 0.23 0.26 0.16 −0.29 −0.07

(7) Arithmetic accuracy T1 0.23 0.28 0.21 −0.19 −0.09 0.20

(8) Arithmetic accuracy T2 0.33 0.28 0.26 −0.15 −0.14 0.25 0.44

(9) Arithmetic accuracy T3 0.36 0.22 0.25 −0.20 −0.17 0.22 0.43 0.55

(10) Arithmetic accuracy T4 0.33 0.20 0.28 −0.17 −0.21 0.34 0.35 0.51 0.61

(11) Arithmetic fluency T1 0.06 0.42 0.37 −0.33 −0.14 0.15 0.30 0.38 0.23 0.31

(12) Arithmetic fluency T2 0.17 0.40 0.30 −0.33 −0.07 0.22 0.34 0.34 0.35 0.29 0.57

(13) Arithmetic fluency T3 0.19 0.43 0.35 −0.34 −0.16 0.14 0.44 0.31 0.32 0.31 0.60 0.62

(14) Arithmetic fluency T4 0.18 0.38 0.34 −0.37 −0.13 0.31 0.36 0.36 0.32 0.30 0.54 0.60 0.67

Correlations lower than 0.16 were not significant. Correlations between 0.16 and 0.20 were significant at the 0.05 level and correlations higher than 0.20 were significant
at the 0.01 level.
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FIGURE 1 | Predicting the intercept and slope in arithmetic accuracy. Model
Fit: χ2 = 14.97, df = 16, p = 0.53, CPI = 0.935, TLI = 1.010, RMSEA = 0.000,
∗p < 0.05, ∗∗p < 0.01.

FIGURE 2 | Predicting the intercept and slope in arithmetic fluency. Model Fit:
χ2 = 16.63, df = 17, p = 0.48, CFI = 1.000, TLI = 1.002, RMSEA = 0.000,
∗p < 0.05, ∗∗∗p < 0.01.

arithmetic accuracy and fluency) in a group of Chinese children
followed from Grade 2 to 5. The results showed that the three EF
subcomponents were interrelated, but predicted different growth
parameters in different mathematics skills. Whereas working
memory uniquely predicted the slope of arithmetic accuracy,
inhibition and shifting predicted the intercept of arithmetic
fluency.

In contrast to our expectation (see Hypothesis 1) and to the
findings of some previous studies (e.g., Viterbori et al., 2015;
Cragg et al., 2017), working memory did not uniquely predict
the growth parameters of arithmetic fluency. This may be due to
the fact that neither Cragg et al. (2017) nor Viterbori et al. (2015)
controlled for number sense and/or speed of processing before
examining the contribution of working memory to arithmetic
fluency. However, it may also reflect differences in the amount of
working memory involved in the strategies used to solve simple
calculations in different countries. Children in North America
learn how to solve simple calculations in Grade 1 and by Grade 2
(when we first assessed them) they still use “immature” strategies
(e.g., counting on) that tax working memory (e.g., Geary et al.,
1996; Bailey et al., 2012; see also Miller et al., 2005, for a review
of differences in how children learn mathematics in China and

the United States). In contrast, in China, Grade 2 children solve
simple calculations by retrieving the answer from their long-
term memory. This is because they have been practicing simple
calculations since the age of 3 (when they go to kindergarten).

Second, our results showed that working memory uniquely
predicted the slope in arithmetic accuracy (see Geary, 2011;
Viterbori et al., 2015, for a similar finding). This suggests that
working memory contributes to the learning of new operations,
which are basic operations in lower grades and more complex
operations in higher grades. Geary (2011) and Yen et al.
(2017) also argued that EF may be more important in higher
grades, because more complex and difficult operations need the
extensive engagement of central executive. Once the operation
and calculation reaches an automatic level, working memory may
no longer have a role to play in the calculation process (Träff,
2013; Cowan and Powell, 2014).

In line with our second hypothesis, we also found that
inhibition uniquely predicted the intercept in arithmetic fluency
even after controlling for the effects of nonverbal IQ, speed of
processing, and number sense. Viterbori et al. (2015) have argued
that inhibition may be involved in the process of retrieving
the arithmetic facts and is required for suppressing competing
responses. For example, when retrieving the answer 5 in response
to 3 + 2, children need to suppress 6 as the solution to 3 × 2,
considering that single digit multiplication is learned by most of
Chinese children through rote memory (Zhou et al., 2006).

In contrast to our third hypothesis as well as to the findings
of previous studies (e.g., Cantin et al., 2016; Cragg et al., 2017;
Simanowski and Krajewski, 2017), shifting was a significant
predictor of the intercept in arithmetic fluency. A possible
explanation may be that we used time scores of shifting, while
Cantin et al. (2016) and Cragg et al. (2017) used accuracy scores.
It may also be due to the task we used to operationalize arithmetic
fluency. Specifically, because BAT mixes up the addition and
subtraction problems, children likely had to switch between
addition and subtraction mindsets.

However, neither inhibition nor shifting predicted the slope
of arithmetic fluency. Because Chinese children learn different
calculations when they go to kindergarten (at the age of 3), by
the time they reach elementary school they have already mastered
simple calculations. Subsequently, when asked to perform simple
calculations they rely more on fact retrieval than on procedural
strategies (e.g., Geary et al., 1996; Bailey et al., 2012; Vanbinst
et al., 2015). Inhibition and shifting may be important in
arithmetic fluency in China but in earlier grades when Chinese
children learn to perform simple calculations (i.e., the 3 years of
kindergarten).

Some limitations of the present study are worth mentioning.
First, we used single measures of each EF subcomponent and
this may have weakened each construct and subsequently its
contribution to mathematics. Future studies should assess each
EF component with more tasks. Second, in order to directly
compare the contribution of EF subcomponents to timed
and untimed mathematics skills, we did not include problem
solving since problem solving is a higher-level mathematics
skill predicted not only by domain-general skills, but also
by reading-related skills (e.g., Andersson, 2008; Träff, 2013).
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Third, our measures of working memory and shifting involved
numerical stimuli. This may have increased the contribution of
their respective constructs to mathematics. However, notice that
we controlled for the effects of other cognitive skills that also
contained numerical stimuli (e.g., speed of processing, number
sense). Fourth, we did not obtain information on family’s income.
Some studies (e.g., Hackman et al., 2015; Chung et al., 2017)
have shown that family’s income correlates with both EF and
children’s math achievement. This implies that the relationship
between EF and mathematics might be due to family’s income.
Future studies should explore this possibility. Fifth, due to time
restrictions, we took a purely cognitive view of mathematics. We
acknowledge that affective, social, and emotional attributes may
play an equally strong role in mathematics development. Finally,
although many Chinese parents pay private tutors (typically from
commercial education companies) to instruct their children to
practice mathematical skills with more homework, we were not
able to obtain information on this issue and, as a result, we were
not able to control for its effects on mathematics skills.

CONCLUSION

Our study adds to a growing body of research on the contribution
of different EF subcomponents to mathematics development
(e.g., van der Ven et al., 2012; Van de Weijer-Bergsma et al., 2015;
Lee and Bull, 2016) suggesting that different EF subcomponents
may contribute to different growth parameters in arithmetic
accuracy and fluency, even after controlling for the effects of
other known predictors of mathematics (i.e., nonverbal IQ, speed
of processing, and number sense). We echo here Cragg and
Gilmore’s (2014) conclusion that different EF skills contribute
to different components of mathematical knowledge as well
as Miyake et al.’s (2000) conclusion that the unity of the EF
subcomponents is important but it is diversity in what skills

they predict that makes things interesting. From a practical
point of view, this suggests that depending on what mathematics
outcome we want to predict we should include different types of
EF tasks to maximize our predictive power. At the same time,
this finding implies that depending on the type of mathematics
difficulties a child has (e.g., procedural vs. semantic memory
difficulties; Geary, 1993) and to the extent we want to provide
an EF intervention (see Dias and Seabra, 2017), we need to focus
on different EF subcomponents to maximize our chances to be
effective.
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Most empirical evidence supports the view that non-symbolic and symbolic
representations are foundations for advanced mathematical ability. However, the
detailed development trajectories of these two types of representations in childhood
are not very clear, nor are the different effects of non-symbolic and symbolic
representations on the development of mathematical ability. We assessed 253 4- to
8-year-old children’s non-symbolic and symbolic numerical representations, mapping
skills, and mathematical ability, aiming to investigate the developmental trajectories
and associations between these skills. Our results showed non-symbolic numerical
representation emerged earlier than the symbolic one. Four-year-olds were capable
of non-symbolic comparisons but not symbolic comparisons; five-year-olds performed
better at non-symbolic comparisons than symbolic comparisons. This performance
difference disappeared at age 6. Children at age 6 or older were able to map
between symbolic and non-symbolic quantities. However, as children learn more about
the symbolic representation system, their advantage in non-symbolic representation
disappeared. Path analyses revealed that a direct effect of children’s symbolic numerical
skills on their math performance, and an indirect effect of non-symbolic numerical
skills on math performance via symbolic skills. These results suggest that symbolic
numerical skills are a predominant factor affecting math performance in early childhood.
However, the influences of symbolic and non-symbolic numerical skills on mathematical
performance both declines with age.

Keywords: non-symbolic numerical representation, symbolic numerical representation, mapping, mathematical
ability, mathematical development

INTRODUCTION

The Developmental Trajectories of Non-symbolic and Symbolic
Representation Abilities
A variety of studies have suggested that animals and humans shared the capacity of non-symbolic
representation (Wynn, 1992; Pica et al., 2004; Flombaum et al., 2005), which has been attributed
to the so-called approximate number system (ANS) (Feigenson et al., 2004; Barth et al., 2005,
2006, 2008; Dehaene, 2011). The ANS system has three features. First, it is inherent and universal
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(Wynn, 1992; Pica et al., 2004; Flombaum et al., 2005); animals
and humans share the system. Second, it represents quantities in
an approximate way (Feigenson et al., 2004). Third, the precision
of ANS system increases with age (Halberda et al., 2008).
Correspondingly, there are three different characteristics for
symbolic number representation system. First, it is an acquired
system, it is affected by the language faculties (Pica et al., 2004;
Xenidou-Dervou et al., 2015). Second, it represents quantities
precisely (Izard and Dehaene, 2008; Mussolin et al., 2014). Third,
with age, the system can manipulate increasingly larger range
with higher accuracy (Halberda et al., 2008; Praet and Desoete,
2014).

Children’s non-symbolic skills emerge early and develop
continuously over time (Barth et al., 2005, 2006, 2008; Halberda
et al., 2008). Libertus et al. (2011) assessed non-symbolic skills
with numbers range 4 to 15. They found that 4-year-olds were
able to complete their non-symbolic comparison task. Toll et al.
(2015) tested non-symbolic skills with a larger range of 1–100
and found the similar results in 4-year-olds. Wagner and Johnson
(2011) assessed non-symbolic skills with numbers range 1–50.
They found 3-year-olds performed above chance level in non-
symbolic comparison task with numerosities 1–4. Many studies
(Barth et al., 2005; Sasanguie et al., 2013; Hyde et al., 2014;
Vanbinst et al., 2015) examined the non-symbolic comparison
ability in 5-year-olds and older children. They found the skill
kept developing during childhood, even till adulthood. Barth et al.
(2005) found that adults were significantly more accurate than
5-year-old children in the non-symbolic comparison task.

Research showed symbolic skills emerged at 5 years old,
before the start of formal schooling (Kolkman et al., 2013).
Children were able to do symbolic representation task at age 5
(Gilmore et al., 2007). What makes them capable of symbolic
numerical representations before formally learning numerical
symbols? Some researchers (Gilmore et al., 2007) argued that
children might pass the task with the help of their ANS. It is
plausible that they converted symbolic Arabic numbers to non-
symbolic numerosities. In other word, they had the mapping
ability, which enabled the process of transforming non-symbolic
representation and symbolic representation information into one
another. Other researchers argued that informal mathematical
activities help improve children’s symbolic skills (Skwarchuk
et al., 2014; Berkowitz et al., 2015). Although 4- or 5-year-
old children have not obtained mathematical education from
school, they may have already been exposed to many informal
mathematic activities, such as playing number board game,
reading stories involved quantities, and so on. With so many
possible exposures to mathematical knowledge, this study tries
to explore whether children as young as 4 years old are able to
represent and compare symbolic Arabic numbers.

The relationship between symbolic skills and non-symbolic
skills has been discussed a lot in this field. Some researchers
claim that non-symbolic and symbolic skills are separable (They
adopted non-symbolic comparison and symbolic comparison
tasks which are similar to tasks in our current study) (Kolkman
et al., 2013). They rely on two distinct systems and do not
share the same underlying ability (Xenidou-Dervou et al.,
2015). Other researchers believed that both non-symbolic and

symbolic comparison abilities, to some extent, relied on the
ANS system (Chen and Li, 2014; van Marle et al., 2014).
Furthermore, the majority of previous studies focused on the
correlation between non-symbolic and symbolic representation
skills (Castronovo and Goebel, 2012; Gobel et al., 2014). Most
researchers believe there is a positive correlation between non-
symbolic and symbolic skills (Kolkman et al., 2013; van Marle
et al., 2014; Toll et al., 2015). Other researchers (Fazio et al.,
2014) found no correlation between these two types of skills.
The available evidence is not congruent, both distinctions and
connections between symbolic and non-symbolic comparison
abilities were reported. The development trajectories of these
two are not very clear. Some tasks used by previous researchers
were too difficult to detect children’s emerging numerical
skills. For example, Xenidou-Dervou et al. (2015) assessed 5-
and 6-year-olds’ non-symbolic and symbolic abilities by using
approximate addition tasks, which were harder than comparison.
In their task, children had to add the two quantities first
and then to compare the numerosities. That is to say, their
task also required children’s arithmetic ability at the same
time. The present study used comparison tasks to test both
symbolic and non-symbolic abilities. We aim to provide more
comprehensive developmental trajectories of non-symbolic and
symbolic capacities in preschoolers and young primary students.

The Associations Between Numerical
Representation Skills and Mathematical
Ability
The association between non-symbolic representation and
mathematical ability is not clear. Many studies showed positive
correlations between non-symbolic representation skills and
mathematical ability in children and adults (DeWind and
Brannon, 2012; Libertus et al., 2012; Bonny and Lourenco,
2013). Libertus et al. (2012) assessed 3- to 5-year-olds’ non-
symbolic comparison precision and mathematical ability. They
found there was a significant positive correlation between the
precision of non-symbolic task and mathematical achievement.
Halberda et al. (2008) found similar results in older children.
Furthermore, longitudinal data showed that non-symbolic skills
in early childhood significantly predicted later mathematical
abilities (Halberda et al., 2008; Mazzocco et al., 2011; Libertus
et al., 2013). However, other researchers did not find positive
correlations between non-symbolic representation skills and
mathematical ability in children (Holloway and Ansari, 2009;
Sasanguie et al., 2013) and adults (Inglis et al., 2011; Price
et al., 2012). It appears that not all researchers consider that
non-symbolic representation ability and mathematical ability are
related. Therefore, the issue, whether the ability of non-symbolic
representation play an important role in the development of
mathematical ability or not, needs further explorations.

Researchers have reached a consensus about the relationship
between symbolic skills and mathematical ability. That is,
symbolic skills have a significant impact on mathematical ability.
Bugden and Ansari (2011) found a significant positive correlation
between symbolic comparison skills and mathematical ability in
1st and 2nd grade children from primary school. Toll et al. (2015)
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investigated children’s non-symbolic and symbolic comparison
skills; they found that symbolic comparison skills were the most
important predictor for mathematical ability. Similar results were
also found from a longitudinal study (Kolkman et al., 2013).

Most empirical evidence supports the view that non-symbolic
and symbolic comparison skills are foundations for advanced
mathematical ability (Libertus et al., 2011; Castronovo and
Goebel, 2012). van Marle et al. (2014) assessed non-symbolic,
symbolic skills, and mathematics ability of 4-year-olds. They
found the relation between non-symbolic skills and mathematics
ability was completely mediated by children’s performance on
the symbolic comparison task. Similar results were also found
in 6-year-olds (Gobel et al., 2014). However, Fazio et al. (2014)
assessed children of 10 years old, and they found symbolic
and non-symbolic skills related to mathematics ability uniquely.
Up to now, it still seems unclear how non-symbolic, symbolic
comparison skills, and mathematical performance relate to each
other.

In addition, some researchers believed that the ability to
map between symbolic and non-symbolic quantities was an
important factor in the development of children’s mathematical
ability (Brankaer et al., 2014). This may be because the mapping
capability reflects an individual’s ability to process different types
of magnitude information. The better one is at mapping, the
better he/she could learn advanced mathematics. Mundy and
Gilmore (2009) tested children’s bi-directional mapping ability
and their mathematical performance. A significant prediction
of mapping ability was found for mathematical performance.
Similar results were also found by Kolkman et al.’s (2013)
and Brankaer et al. (2014) path analyses. However, Friso-van
Den Bos et al. (2015) tracked 442 5-year-olds for 3 years;
they found children’s mapping skill did not significantly predict
their mathematical achievements. Therefore, the impact of
mapping skills on mathematical ability has not been uniformly
concluded.

Present Study
In sum, this study aims to achieve two goals. First, we aim
to provide detailed development trajectories of non-symbolic
and symbolic representation skills in childhood. Previous studies
mostly focused a few age groups (Barth et al., 2005, 2006,
2008; Gilmore et al., 2007; Xenidou-Dervou et al.’s 2015). Data
capturing a longer developmental period throughout childhood
are needed. The available evidence showed both distinctions and
connections between symbolic and non-symbolic comparison
abilities. We predict that children are more experienced at the
non-symbolic task than symbolic task in early childhood, but
as they learn more about the symbolic representation system,
children’s advantage in non-symbolic skill will disappear. Second,
this study aims to investigate the associations between numerical
representation skills and mathematical ability in childhood.
Researchers investigating the issue focused on different age
ranges and therefore generated different results (Gobel et al.,
2014; van Marle et al., 2014; Friso-van Den Bos et al., 2015). The
exact relations between non-symbolic, symbolic comparison, and
mathematical performance remain unclear. We focused the age
range of 4 to 8 and predicted that the relationships between these

three types of abilities might be different for different age groups
in our study.

MATERIALS AND METHODS

Ethics Statement
This research was approved by the local ethical committee
of Beijing Normal University. We obtained informed written
consent from caretakers or guardians on behalf of the child
participants involved in the study, according to the institutional
guidelines of Beijing Normal University.

Participants
A total of 253 children (116 girls) were recruited from 2
public schools located in Baoji, Shaanxi province, China.
Forty-six 4-year-olds (M = 48.1 months, SD = 4.2), 61 5-
year-olds (M = 59.6 months, SD = 3.6), and 62 6-year-
olds (M = 73.4 months, SD = 3.4) were recruited from one
kindergarten; 39 7-years-olds (M = 83.2 months, SD = 2.5) and
45 8-years-olds (M = 96.3 months, SD = 3.4) were recruited
from a primary school (the 1st and 2nd grades). All children
were tested around March, during the second half of the Chinese
academic year. All children are Mandarin native speakers. They
were mostly from families of middle socioeconomic status. All
children gave oral consent and their parents gave written consent
before participation. A gift (i.e., a book) was sent to each child
after participation.

Measures
Number-Naming
Children’s number-naming ability was measured. They were
asked to read loudly 50 Arabic numbers, which were written in
five lines on a piece of paper (21 cm× 29.7 cm). Numbers on the
five lines were 1–10, 11–20, 21–30, 31–40, and 41–50 successively.
Children obtained 1 point for successfully naming all numbers
in one line. Otherwise, they obtained 0 point. The total scores
ranged from 0 to 5.

Verbal-Counting
To assess verbal-counting skills, children were asked to count
loudly numbers from 1 to 100. These numbers were divided to
ten groups (i.e., 1–9, 10–19, 20–29, until 100). They obtained 1
point for successfully counting one entire group. Otherwise, they
obtained 0 point. The total scores ranged from 0 to 10.

Non-symbolic Comparison
We tested children’s non-symbolic skills using tasks programmed
in E-prime. Similar to Wagner and Johnson (2011), we presented
participants two black dots arrays and they were asked to
decide, without counting, which one contained more dots (see
Figure 1A). Children were instructed pressing “C” key for
quantity on the left and pressing “M” key for quantity on
the right. They had a maximum of 10 s to respond and they
were required to respond as accurately and quickly as possible.
If children did not respond within the 10 s, the trial would
automatically be coded as incorrect. The inter-trial interval was
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FIGURE 1 | Schematic depictions of numerical comparison tasks and
mapping tasks. (A) An example trial of non-symbolic comparison task.
(B) An example trial of symbolic comparison task. (C) An example trial of
non-symbolic to symbolic mapping task. (D) An example trial of symbolic to
non-symbolic mapping task.

1000 ms. All children received four practice trials, followed by
feedback (“

√
” or “×”) to make sure they understand the task.

After that, they received 32 test trials without feedback.
The numerosities included in this task ranged from 5 to

50. The numerical ratios between the two dot arrays were 2/3,
3/4, 4/5, 5/6. There were eight test trials at each ratio level1.
The order of test trials was random. The probability of large
or small numerosities is balanced on the two sides. The dots
were constructed in Microsoft Visual C++ 6.0, with the size
ranging from 0.2 to 0.6 cm. To rule out judgments based on the
continuous dimension of surface area rather than number, the
paired dot arrays were matched for total area filled (Feigenson
et al., 2002; Rousselle et al., 2004).

Symbolic Comparison
This task was identical to the non-symbolic comparison task
except that all dots were replaced by their corresponding Arabic
numbers (see Figure 1B). Numbers used in each comparison
were the same as those in the non-symbolic task. All children
received 4 practice trials and 32 test trials.

Mapping
We used a similar task to Mundy and Gilmore (2009), which
contained two sub-tasks: (1) Non-symbolic to symbolic mapping
task (N-S task). In this task, a target dot array was presented,
followed by two alternative Arabic numbers (See Figure 1C).
Children were asked, “Which Arabic number was equal with the

1The paired arrays tested for ratio 2/3 were 6 vs. 9, 8 vs. 12, 10 vs. 15, 12 vs. 18, 14
vs. 21, 16 vs. 24, 18 vs. 27, and 20 vs. 30. The paired arrays tested for ratio 3/4 were
6 vs. 8, 9 vs. 12, 12 vs. 16, 15 vs. 20, 18 vs. 24, 21 vs. 28, 24 vs. 32, and 27 vs. 36. The
paired arrays tested for ratio 4/5 were 8 vs. 10, 12 vs. 15, 16 vs. 20, 20 vs. 25, 24 vs.
30, 28 vs. 35, 32 vs. 40, and 36 vs. 45. The paired arrays tested for ratio 5/6 were 5
vs. 6, 10 vs. 12, 15 vs. 18, 20 vs. 24, 25 vs. 30, 30 vs. 36, 35 vs. 42, and 40 vs. 48.

previous dot array?” (2) Symbolic to non-symbolic mapping task
(S-N task). In this task, a target Arabic number was presented,
followed by two alternative dot arrays (See Figure 1D). Children
were asked, “Which dot array was equal with the previous Arabic
number?” similarly, children were asked to press “C” or “M” key
to response. The target quantity lasted for 1000 ms and then the
alternative choices were presented. Children had a maximum of
10 s to respond and they were required to respond as accurately
and quickly as possible. If children did not respond within the
10 s, the trial would automatically be coded as incorrect. The
inter-trial interval was 1000 ms. For sub-tasks, children received
4 practice trials and 24 test trials.

The target quantities varied from 5 to 50, and the alternative
choices consisted of the correct quantity and a distractor. The
ratio between the correct quantity and the distractor were 2/3
and 4/5. There were 12 test trials at each ratio level2. The correct
quantities were counterbalanced in comparable amount within a
pair (i.e., larger or smaller) across trials. The same numerosities
were tested in both sub-tasks.

Mathematical Competence
We administered Form A of the Test of Early Mathematics
Ability-Third Edition (TEMA-3; Ginsburg and Baroody, 2003)
to assess their mathematical ability. The TEMA-3 measures
many aspects of mathematical performance in childhood, such
as numeracy skills (e.g., verbally naming written numbers),
number-comparison skills (e.g., determining which of two
dot arrays is more), calculation skills (e.g., solving addition
or subtraction problems physically or mentally), and number
concepts (e.g., answering how many hundreds are in one
thousand). It consists of 72 items. Following the standardized
administration of the TEMA-3, we started testing with items
according the norms for each age group. The test stopped when
a child answered 5 consecutive items incorrectly. Scores from the
TEMA-3 was normalized for children from 3 years 0 months to
8 years 11 months, and previous research (Ginsburg and Baroody,
2003; Mazzocco et al., 2011) showed relatively high test–retest
reliabilities (r = 0.82, 0.93) of TEMA-3. Meanwhile, children’s
performances on TEMA-3 are also highly correlated with their
performances on other math achievement tests (Newcomer,
2001; Woodcock et al., 2001).

Procedure
Children were tested individually in a quiet laboratory room,
accompanied by one experimenter. All participants complete the
number-naming and verbal-counting tasks first, and then the
non-symbolic, symbolic comparison tasks and mapping task,
which were programmed in E-prime version 2.0 (Psychological
Software Tools, Pittsburgh, PA, United States) and presented by
a Dell E450 computer. Children complete TEMA-3 last. A short
break was provided in-between of tasks. Children received a small
reward after the experiment.

2The pairs tested for ratio 2/3 were 6 vs. 9, 8 vs. 12, 10 vs. 15, 12 vs. 18, 14 vs. 21,
and 16 vs. 24. The correct quantities were 9, 12, 10, 18, 14, and 16, respectively. The
pairs tested for ratio 4/5 were 8 vs. 10, 12 vs. 15, 16 vs. 20, 20 vs. 25, 24 vs. 30, and
28 vs. 35. The correct quantities were 8, 15, 16, 25, 24 and 35, respectively. Each
pair was tested twice.
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RESULTS

Descriptive Statistics
Four- to 8-year-olds’ performances on the number-naming task,
the verbal-counting task, non-symbolic, symbolic comparison
tasks, mapping tasks, and TEMA-3 were presented in Table 1.
One-sample t-tests showed that all age groups performed
well above chance-level in the non-symbolic comparison task.
However, only 5- to 8-year-olds performed above chance in
symbolic comparison task. Six- to 8-year-olds performed above
chance in mapping tasks, but not 4-to 5-year-olds.

The Development Trajectories of
Non-symbolic and Symbolic
Representation Abilities
Four-year-old children performed at chance level in symbolic
comparison task. Therefore, their data were eliminated from the
following analysis. In order to provide detailed descriptions on
the development of non-symbolic and symbolic representation
capacities during childhood, we conducted a 2 (Task: non-
symbolic and symbolic) × 4 (Ratio: 2:3, 3:4, 4:5, 5:6) × 4
(Age: 5, 6, 7, 8 years old) repeated measures ANOVA on
children’s performance accuracy. Mauchly’s test indicated
that the assumption of sphericity had been violated for Ratio,
χ2(5) = 19.256, p = 0.002. Therefore, we corrected the degrees
of freedom by using the Greenhouse–Geisser estimates. The
Box’s M test result for the homogeneity of variance hypothesis
was significant (Box’s M test = 324.071, F = 2.742, p = 0.000).
Therefore, we showed the results of Friedman and Wilcoxon non-
parametric test at the same time. Results demonstrated the main
effects of Ratio, F(2.800,489.916) = 43.220, p < 0.001, η2

p = 0.198,
Task, F(1.000,175.000) = 11.611, p < 0.010, η2

p = 0.062, Age,
F(3,175) = 12.312, p < 0.001, η2

p = 0.174, a significant interaction
between Task and Ratio, F(2.855,504.891) = 19.649, p < 0.001,
η2

p = 0.101, and a marginal significant interaction between Task

and Age, F(3.000,175.000) = 2.639, p = 0.051, η2
p = 0.043. Further

simple effect analyses (and the Friedman non-parametric test)
for the interaction between Task and Ratio indicated that, both
in non-symbolic and symbolic comparison tasks, there was a
significant ratio effect, Fnon−symbolic(3,525) = 17.720, p < 0.001,
η2

p = 0.091 [χ2(3) = 68.208, p < 0.001], Fsymbolic(3,525) = 43.660,
p < 0.001, η2

p = 0.199 [χ2(3) = 104.614, p < 0.001]. Further
simple effect analyses for the interaction between Task and Age
demonstrated that, 5-year-olds were better at non-symbolic task
than symbolic task, F(1,175) = 12.910, p < 0.001, η2

p = 0.068,
but other age groups performed equally on the symbolic
and the non-symbolic task, F6−year−olds(1,175) = 2.190,
p = 0.141, F7−year−olds(1,175) = 2.500, p = 0.116,
F8−year−olds(1,175) = 0.010, p = 0.914 (See Figure 2). The
Wilcoxon non-parametric test confirmed the similar effect of
age, Z5−year−olds = −2.570, p < 0.050, Zs for other age groups
were from−1.504 to−0.296, Ps > 0.050. These results suggested
the advantage of non-symbolic numerical representations over
symbolic ones was salient in early childhood. However, after 5, as
children learn more about the symbolic representation system,
their advantage in non-symbolic representations disappeared.

The Associations Between Numerical
Representation Skills and Mathematical
Ability
Correlation coefficients and partial correlation coefficients
(controlling for age) between different tasks were presented
Table 2. There were strong associations between number-
naming, verbal-counting skills, non-symbolic and symbolic
comparison tasks and mathematical ability, but after controlling
for age, the correlations between verbal-counting abilities,
numerical comparison skills, and mathematical ability were not
anymore significant. This indicated that the verbal-counting
ability had no significantly direct effect on non-symbolic,
symbolic comparison, and mathematical skills. However, both

TABLE 1 | Children’s performance in numerical comparisons, mapping tasks, and mathematical ability test.

4 years old 5 years old 6 years old 7 years old 8 years old

M SD M SD M SD M SD M SD

Na 1.600 1.195 3.390 1.715 4.980 0.127 5.000 0.000 5.000 0.000

VC 2.150 1.966 5.440 3.165 9.160 1.883 10.000 0.000 10.000 0.000

N 0.649∗∗∗ 0.158 0.811∗∗∗ 0.169 0.861∗∗∗ 0.126 0.926∗∗∗ 0.096 0.894∗∗∗ 0.133

d = 0.689 d = 0.843 d = 0.944 d = 0.976 d = 0.948

S 0.517 0.053 0.731∗∗∗ 0.161 0.837∗∗∗ 0.138 0.893∗∗∗ 0.098 0.896∗∗∗ 0.084

d = 0.822 d = 0.925 d = 0.971 d = 0.978

NS 0.511 0.037 0.513 0.135 0.568∗∗ 0.147 0.564∗∗ 0.141 0.562∗∗ 0.142

d = 0.424 d = 0.418 d = 0.404

SN 0.502 0.042 0.558 0.171 0.578∗∗∗ 0.159 0.579∗∗∗ 0.122 0.589∗∗∗ 0.150

d = 0.442 d = 0.548 d = 0.513

TEMA-3 110.77 7.316 111.43 8.449 108.75 7.534 110.36 9.923 112.53 6.541

Na, number-naming ability; VC, verbal-counting ability; N, non-symbolic comparison task; S, symbolic comparison task; NS, non-symbolic to symbolic mapping; SN,
symbolic to non-symbolic mapping. One-sample t-tests were used to compare children’s accuracies in non-symbolic, symbolic comparison tasks, mapping tasks with
the chance level, ∗∗∗ indicates p < 0.001, ∗∗ indicates p < 0.01. d refers to the effect size.
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FIGURE 2 | The interaction of age and task across non-symbolic and
symbolic comparison tasks. Children performed significantly better in
non-symbolic comparison task than the symbolic one at 5 years old.
Accuracies on symbolic and non-symbolic comparison tasks were not
different for 6-, 7-, and 8-year-olds. ∗∗∗ Indicates p < 0.001.

correlation and partial correlation analyses showed strong
associations between number-naming, numerical comparison,
and mathematical skills, and between the mapping skills
and symbolic representation skills. These close links between
each type of skills and the mathematical ability allow us to
construct a structure model to better understanding of the
mechanism.

We conducted structural equation modeling (SEM) analyses
to examine the associations between non-symbolic, symbolic,
mapping skills, and mathematical ability using Mplus Version
7. We developed one model for the developmental period
from age 5–8 (Model A) and four separate models for each
age groups (see Table 3, Model B was for 5-year-olds, Model

TABLE 2 | Correlation coefficients and partial correlation coefficients (controlling
for age) between different numerical tasks.

Na VC N S NS SN

Na r 1.000

rp 1.000

VC r 0.867∗∗∗

rp 0.440∗∗∗

N r 0.556∗∗∗ 0.548∗∗∗

rp 0.218∗∗ 0.045

S r 0.555∗∗∗ 0.251∗∗ 0.517∗∗∗

rp 0.435∗∗∗ 0.129 0.465∗∗

NS r 0.055 0.077 0.088 0.155∗

rp 0.060 0.069 0.091 0.163∗

SN r 0.086 −0.026 0.109 0.198∗∗ 0.069

rp 0.084 −0.039 0.104 0.204∗∗ 0.069

TEMA-3 r 0.809∗∗∗ 0.727∗∗∗ 0.570∗∗∗ 0.568∗∗∗ 0.118 0.087

rp 0.296∗∗∗ 0.044 0.228∗∗ 0.426∗∗∗ 0.185∗ 0.108

∗ Indicates p < 0.050, ∗∗ indicates p < 0.010, ∗∗∗ indicates p < 0.001. Na, number-
naming ability, VC, verbal-counting ability; N, non-symbolic comparison task; S,
symbolic comparison task; NS, non-symbolic to symbolic mapping; SN, symbolic
to non-symbolic mapping.

C was for 6-year-olds, Model D was for 7-year-olds, Model
E was for 8-year-olds). The SEM fit indexes (Confirmatory
Fit Index and Root Mean Square Error of Approximation)
suggested a goodness of fit for all five models (see Table 3).
Model A, capturing the entire developmental period from
age 5 to 8, explained 42.1% of the variance in mathematical
ability. It revealed a direct effect of symbolic skills on mapping
skills and mathematical ability (see the effect values marked
in Table 3). Children’s non-symbolic skills affected their
mathematical ability indirectly, via symbolic skills. Comparing
the four models for different age groups, we found that
this indirect effect of non-symbolic skills on mathematical
ability was only significant for 5- and 6-year-olds, but not
for 7- and 8-year-olds. The direct effect of symbolic skills
on mathematical ability was significant for 5-, 6-, and 7-year-
old, but not for 8-year-olds. Furthermore, the effect values
of both non-symbolic and symbolic numerical representation
skills on mathematical performance declined with age (see
effect values marked in Table 3). Across models, we did not
found significant effects of mapping skills on mathematical
ability.

DISCUSSION

We investigated two issues in our study. First, we showed
detailed developmental trajectories of non-symbolic and
symbolic representation skills from age 4 to 8. Children were able
to do non-symbolic representation task at age 4. Five-year-olds
performed better in the non-symbolic task than they did in the
symbolic one. However, after 5, as children learn more about the
symbolic representation system, their advantage of non-symbolic
skills disappeared. Second, we found a significant effect of
symbolic skills on math performance and an indirect effect of
non-symbolic skills on the mathematical ability via symbolic
skills. Both the direct effect of symbolic skills and the indirect
effect non-symbolic skills declined with age. This suggests that
non-symbolic and symbolic numerical representation skills may
no longer be the major factors for math performance of children
in primary school.

The Developmental Trajectories of
Non-symbolic and Symbolic
Representation Abilities
A variety of studies suggested the inherent and universal
nature of non-symbolic representation (Wynn, 1992; Pica et al.,
2004; Flombaum et al., 2005). The current study demonstrated
children as young as 4 years old were able to represent and
compare non-symbolic quantities of range 5 to 50 successfully
and flexibly. Similar paradigm was also used by Toll et al.’s
(2015) testing children’s non-symbolic comparison for numbers
ranging from 1 to 100. Children performed well on their non-
symbolic comparison task starting from age 4. For a smaller
and narrower range of number from 4 to 15, researchers found
similar results in 4-year-olds (Libertus et al., 2011). Wagner and
Johnson (2011) assessed non-symbolic comparison skills with
numbers range 1–50. They found 3-year-olds performed above
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TABLE 3 | The SEM of non-symbolic, symbolic representation, mapping skill, and mathematical ability.

Model A (5- to 8-year-olds)
Bootstrap: χ2(1) = 0.379, p = 0.538 CFI = 1.000
RMSEA = 0.000

SEM analyses revealed the indirect effect value of the non-symbolic number skills on the mathematical ability is
0.340 (p < 0.000).

Model B (5-year-olds) Bootstrap: χ2(1) = 0.130,
p = 0.719 CFI = 1.000 RMSEA = 0.000

SEM analyses revealed the indirect effect value of the non-symbolic number skills on the mathematical ability is
0.421 (p < 0.010).

Model C (6-year-olds) Bootstrap: χ2(1) = 0.083,
p = 0.773 CFI = 1.000 RMSEA = 0.000

SEM analyses revealed the indirect effect value of the non-symbolic number skills on the mathematical ability is
0.172 (p < 0.050).

Model D (7-year-olds) Bootstrap: χ2(1) = 2.563,
p = 0.109 CFI = 0.950 RMSEA = 0.053

SEM analyses revealed the indirect effect value of the non-symbolic number skills on the mathematical ability is
not significant. The indirect effect value is 0.238 (p = 0.063).

Model E (8-year-olds) Bootstrap: χ2(1) = 0.014,
p = 0.906 CFI = 1.000 RMSEA = 0.000

SEM analyses revealed the indirect effect value of the non-symbolic number skills on the mathematical ability is
not significant. The indirect effect value is 0.046 (p = 0.672).

N to S mapping skill, Non-symbolic to Symbolic mapping skill; S to N mapping skill, Symbolic to Non-symbolic mapping skill. ∗ Indicates p < 0.05, ∗∗ indicates p < 0.01,
∗∗∗ indicates p < 0.001.
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chance level in non-symbolic comparison task with numerosities
1–4. To prevent children from precisely tracking dots, we used
numerosities larger than 4. Although different stimuli were used
in our study, the present results are still in line with previous
studies, which provided evidence for the development of non-
symbolic capacity after age 4 (Libertus et al., 2013; Vanbinst
et al., 2015). However, for symbolic representation, our study
showed 5-year-olds and older children, but not 4-year-olds,
performed well in our comparison task. Similarly, previous
studies (Gilmore et al., 2007; Kolkman et al., 2013) reported that
children started being able to do symbolic representation task at
the age of 5, before the start of formal schooling. Furthermore,
researchers had found symbolic representation skills developed
continuously during childhood (Li et al., 2017). These results
indicate the acquired nature of the symbolic comparison skills.
As a learned ability, its development is built on some more
fundamental capacities, such as non-symbolic representations.
Our SEM analyses showed a significant effect of non-symbolic
skills on symbolic skills (see effect values in model B to model E).
The indirect effect of the non-symbolic skills on mathematical
abilities was carried out by symbolic skills. Therefore, we think,
to some extent, the mastery of non-symbolic comparison skills
was as precondition for the development of symbolic comparison
skills.

There are limited studies in the field describing development
trajectories of non-symbolic and symbolic comparison ability
for a larger age span in childhood. Oftentimes researchers
only investigated 2 to 3 age groups. For example, Xenidou-
Dervou et al. (2015) focused on 5- and 6-year-olds. They
also considered the developmental changes of non-symbolic
and symbolic abilities. However, they used the approximate
addition tasks, which were more difficult than the approximate
comparison tasks in our study. In their task, children had
to add the two quantities first and then to compare the
numerosities, which required the arithmetic ability at the same
time. Xenidou-Dervou et al. (2015) found that the ability
of symbolic addition emerged around age 6. Our results
provide detailed developmental trajectories of non-symbolic
and symbolic comparison abilities for a larger age span in
childhood. We found that 4-year-olds were able to do non-
symbolic comparisons, but not symbolic comparisons. Five-
year-olds were able to do both types of comparisons, but they
performed better at the non-symbolic task than the symbolic one.
However, this performance difference disappeared around the
age of six. We think these developmental changes may be related
to the different characteristics of non-symbolic and symbolic
skills. Non-symbolic representation ability is inherent, shared by
humans and animals (Wynn, 1992; Pica et al., 2004; Flombaum
et al., 2005). However, symbolic comparison ability is affected
by education (Xenidou-Dervou et al., 2015), and its emergence
requires a certain foundation (Kolkman et al., 2013). Many
researchers have found that children’s symbolic representation
skill will rapidly increase in the 1st grade (Xenidou-Dervou
et al., 2015; Li et al., 2017). Therefore, we observed that children
could pass non-symbolic tasks at a very young age, but they
were not able to pass symbolic representation tasks until 5 years
old. However, with more education, children’s symbolic skills

improve rapidly and their advantage in non-symbolic skills
disappears around 6 years old.

The Associations Between Numerical
Representation Skills and Mathematical
Ability
Fazio et al. (2014) proposed three hypotheses about the
relationship between non-symbolic, symbolic skills, and
mathematical ability: (1) non-symbolic skills have indirect effects
on mathematics achievement. That is, children with better
non-symbolic skills acquire the symbolic numerical system more
easily, which in turn improves their mathematical ability; (2)
non-symbolic skills have both direct and indirect effects on
mathematics achievement; (3) non-symbolic and symbolic skills
may independently affect overall mathematics achievement. In
the current study, we found an indirect effect of non-symbolic
skills on mathematical abilities via symbolic skills, which
supports Fazio et al.’s (2014) first hypothesis. Similar results were
also found by van Marle et al. (2014), who assessed non-symbolic,
symbolic skills, and mathematics achievement in 4-year-olds
and found that the relation between non-symbolic skills and
mathematics achievement was fully mediated by children’s
symbolic skills. Differently, a significant positive correlation
between the precision of non-symbol quantity and mathematical
achievement in 3- to 5-year-old children was reported by
Libertus et al. (2012). They used children’s ANS acuity, rather
than accuracy, as an indicator of children’s non-symbolic skill.
The ANS acuity is represented by Weber’s fraction, which is
derived from the theoretical hypothesis of psychophysics. It is an
indirect indicator for numerical representation ability. However,
the ANS accuracy illustrates numerical representation ability
more directly. This measurement difference might result the
different findings here. On the other hand, as shown in previous
studies (Kolkman et al., 2013; Toll et al., 2015), we also found a
significant effect of symbolic skills on mathematical ability.

In addition, we found that children’s mapping ability
had no significant effects on their mathematical ability.
However, using similar paradigm, Mundy and Gilmore’s (2009)
found children’s bi-directional mapping ability predicted their
mathematical achievement significantly. This result might be
because, comparing to our tasks using comparison ratios of
2/3 and 4/5, Mundy and Gilmore’s (2009) tasks were easier.
They used relative easy comparison ratios of 1/2 and 2/3. Other
researchers used different paradigms to assess children’s mapping
ability. For example, Kolkman et al. (2013) found mapping skills
was an important predictor for math performance. However,
they used symbolic number-lines and symbolic comparison tasks,
which are very different from our bi-directional mapping task.
Therefore different results were generated.

Finally, we found the associations between numerical
representation skills and mathematical abilities varied across
age groups. The indirect effect of non-symbolic skills on
mathematical abilities was only significant for 5- and 6-year-
olds, but not for 7- and 8-year-olds. The direct effect of symbolic
skills on mathematical abilities was significant for 5-, 6-, and
7-year-olds, but not for 8-year-olds. In general, the impacts of
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non-symbolic and symbolic numerical representation skills on
mathematical performance both declined with age. We think
the result may suggest, with age, non-symbolic, and symbolic
numerical representation skills were no longer major factors for
math performance. Similar developmental trend has been found
in previous studies as well. A significant positive correlation
between the non-symbolic skill and mathematical achievement
was reported for 3- to 5-year-olds (Libertus et al., 2012); with
age, this positive correlation disappeared for 6- to 8-year-olds
(Holloway and Ansari, 2009). Meanwhile, there are studies
(Halberda et al., 2008; Bugden and Ansari, 2011; Linsen et al.,
2015) showed correlations between numerical representation
skills and mathematical ability throughout childhood. However,
their methods were quite different from ours. For example,
instead of TEMA-3, Bugden and Ansari (2011) used two
mathematics subtests from the Woodcock Johnson III and
Linsen et al. (2015) used multi-digit subtraction task to assess
children’s mathematical ability. Also, many of previous studies
only investigated 2 to 3 age groups, which may affect how their
results can be generalized.

Limitations and Future Research
The current study has limitations and therefore requests future
research to further clarify these questions. First, with the
cross-sectional design of the current study, the developmental
information provided by the data was limited. We were not
able to examine longitudinally interactions of non-symbolic
and symbolic representation skills and their association with
mathematical ability. This requests future research to clarify the
issue. In fact, we are currently working on the follow-up of this

study. With the longitudinal data, we would be able to draw a
more comprehensive picture on the development of children’s
numerical representation capacities and their association with
mathematical performance. Second, in this study, we only
considered numerosities larger than 4, which made tasks difficult
for 4-year-olds. The reason we used numerosities larger than
4 is to prevent children from precisely tracking dots, because
previous research (Feigenson et al., 2004) shown that children
developed a system to keep track of small numbers precisely
from very young. However, with numerosities smaller than 4, we
may be able to capture 4-year-olds’ performance in the symbolic
comparison task. Future research needs to address this issue and
compare children’s non-symbolic and symbolic comparison skills
and mapping ability for both large and small numerosities.
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While numerical skills are fundamental in modern societies, some estimated 5–7% of

children suffer from mathematical learning difficulties (MLD) that need to be assessed

early to ensure successful remediation. Universally employable diagnostic tools are

yet lacking, as current test batteries for basic mathematics assessment are based on

verbal instructions. However, prior research has shown that performance in mathematics

assessment is often dependent on the testee’s proficiency in the language of instruction

which might lead to unfair bias in test scores. Furthermore, language-dependent

assessment tools produce results that are not easily comparable across countries.

Here we present results of a study that aims to develop tasks allowing to test for

basic math competence without relying on verbal instructions or task content. We

implemented video and animation-based task instructions on touchscreen devices that

require no verbal explanation. We administered these experimental tasks to two samples

of children attending the first grade of primary school. One group completed the tasks

with verbal instructions while another group received video instructions showing a

person successfully completing the task. We assessed task comprehension and usability

aspects both directly and indirectly. Our results suggest that the non-verbal instructions

were generally well understood as the absence of explicit verbal instructions did not

influence task performance. Thus we found that it is possible to assess basic math

competence without verbal instructions. It also appeared that in some cases a single

word in a verbal instruction can lead to the failure of a task that is successfully completed

with non-verbal instruction. However, special care must be taken during task design

because on rare occasions non-verbal video instructions fail to convey task instructions

as clearly as spoken language and thus the latter do not provide a panacea to non-verbal

assessment. Nevertheless, our findings provide an encouraging proof of concept for the

further development of non-verbal assessment tools for basic math competence.

Keywords: nonverbal, assessment, mathematics, language, dyscalculia, video, instruction, screener

126

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.01076
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.01076&domain=pdf&date_stamp=2018-06-26
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:max.greisen@uni.lu
https://doi.org/10.3389/fpsyg.2018.01076
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01076/full
http://loop.frontiersin.org/people/129729/overview
http://loop.frontiersin.org/people/128892/overview
http://loop.frontiersin.org/people/207168/overview
http://loop.frontiersin.org/people/530671/overview
http://loop.frontiersin.org/people/145272/overview
http://loop.frontiersin.org/people/21451/overview


Greisen et al. Assessing Basic Math Competence Nonverbally

INTRODUCTION

Basic counting and arithmetic skills are necessary to manage
many aspects of life. Although primary education focuses
on these subjects, 5–7% of the general population suffer
from mathematical learning difficulties (MLD) (Butterworth
et al., 2011), often leading to dependence on other people or
technology.

Early diagnostic is key to remedying MLD (Gersten et al.,
2005). Basic mathematical skills, e.g., counting, quantity
comparison, ordering, and simple arithmetic are the strongest
domain-specific predictors for mathematical performance in
later life (Desoete et al., 2009; Jordan et al., 2010; LeFevre et al.,
2010; Hornung et al., 2014). Valid MLD assessments exist in
various forms and for all ages (van Luit et al., 2001; Haffner
et al., 2005; Schaupp et al., 2007; Noël et al., 2008; Aster et al.,
2009; Ricken et al., 2011). However, all of them rely on verbal
instructions and (in part) verbal tasks.

This is a problem. First, performance in mathematical tests is
predicted by the pupils’ proficiency in the instruction language
(Abedi and Lord, 2001; Hickendorff, 2013; Paetsch et al., 2016).
Others have shown that the complexity of mathematical language
content of items is predictive of performance (Haag et al., 2013;
Purpura and Reid, 2016). Diagnostic tools for MLD relying
on language may therefore significantly bias performance in
test-takers that are not proficient in the test language, leading
to invalid results (see Scarr-Salapatek, 1971; Ortiz and Dynda,
2005 for similar considerations concerning intelligence testing).
Furthermore, the match between math learners’ language profiles
and the linguistic context in which mathematical learning
takes place plays a critical role in the acquisition and use of
basic number knowledge. Matching language contexts improve
bilinguals’ arithmetic performance in their second language (Van
Rinsveld et al., 2016), and neural activation patterns of bilinguals
solving additions differ depending on the language they used,
suggesting different problem-solving processes (Van Rinsveld
et al., 2017).

In linguistically homogeneous societies, where the mother
tongue of most primary school children matches the language
of instruction and assessment tools, this is less of a problem.
It is however critical in societies with high immigration and,
therefore, linguistically diverse primary school populations. In
Luxembourg, for instance, where the present project is located,
currently 62% of the primary school students are not native
Luxembourgish speakers (Ministère de l’éducation nationale de
l’enfance et de la Jeunesse, 2015). Due to migration, multilingual
classrooms are steadily becoming the rule rather than the
exception (e.g., from 42% foreign speakers in 2004 to 62% in
2014) (Ministère de l’éducation nationale de l’enfance et de la
Jeunesse, 2015), likely increasing the urgency of the problem in
the future.

Even in traditionally multilingual contexts, diagnostic tools
for the assessment of basic numerical abilities in early childhood
are available in a few selected languages only, usually those that
are best understood by most, yet not necessarily all students.
As described above, this leads to invalid conclusions about
non-native speakers’ ability. In addition, comparisons between

different tools and even different linguistic versions of the
same tool are difficult because the norms they are based on
are usually collected in linguistically homogenous populations
and can thus not be extrapolated to populations with different
linguistic profiles.

The present study originated in a project that aims to develop
a test of basic numerical competencies which circumvents
linguistic interference by relying on non-verbal instructions
and task content. In the field of intelligence assessment,
the acknowledgment of language interference has led to the
development of numerous non-verbal test batteries (Cattell and
Cattell, 1973; Lohman and Hagen, 2001; Naglieri, 2003; Feis,
2010). However, these tools tackle only the problem of verbal
tasks, not of verbal instructions. The same is true for numeracy
assessment. Although many test batteries (e.g., Tedi-MATH,
Zareki-R, ERT0+, OTZ,Marko-D, to name a few) use non-verbal
and non-symbolic tasks (e.g., arithmetic, counting, or logical
operations on numbers), they still rely on verbal instructions,
which may limit the testee’s access to the content. Linguistic
simplification of mathematics items can improve performance
for language minority students (Haag et al., 2014). However, we
think that for many simple tasks, verbal content and instructions
can be avoided altogether. These tasks that children of (above-)
average ability usually solve easily are crucial to the diagnosis of
MLD, as they allow for a differentiation of children’s numerical
abilities at the bottom end of the ability distribution. Hence,
non-verbal assessment of basic mathematical skills may help
identify children in need of intervention at an early age and
independently of their linguistic abilities, thus reducing the
bias that common assessments often suffer from. Comparable
approaches have been taken in the field of intelligence testing for
the hearing-impaired, in which pantomime instructions for the
Wechsler performance scale have been explored (Courtney et al.,
1984; Braden and Hannah, 1998).

With this goal in mind, using available test batteries and
the official study plan (MENFP, 2011) as a reference for task
content and design, we developed different task types for which
a valid non-verbal computerized implementation was possible.
Governmental learning goals for preschool mathematics include
but are not limited to: Ability to represent numbers with concrete
material, ordering abilities (range 0–10), definition, resolution &
interpretation of an arithmetical (addition/subtraction) problem
based on images and mental addition/subtraction (range 0–10).

The tasks we developed encompass and measure all the above
competencies: Quantity representation, ordering abilities as well
as symbolic and non-symbolic arithmetic. We chose to add
a quantity comparison task as it has been found to be one
of the most consistent predictors of later math performance
(e.g., De Smedt et al., 2009; Sasanguie et al., 2012; Nosworthy
et al., 2013; Brankaer et al., 2017; see Schneider et al., 2017
for a meta-analysis). Instead of using verbal instructions, we
convey task requirements with the use of videos that show
successful task completion and interactions with the tasks from
a first-person point of view. Prior research has shown improved
performance in a computerized number-line estimation task for
participants who viewed videos of a model participant’s eye
gaze or mouse movements, compared to control conditions
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both with and without anchor points (Gallagher-Mitchell et al.,
2017).

The aims of the present study were to evaluate whether
basic math competence can be assessed on a tablet PC without
language instructions and whether the mode of instruction
affects performance. To this end, we designed a set of
computerized tasks based on validated assessments measuring
basic non-symbolic and symbolic mathematical abilities, which
were administered either non-verbally (using computer-based
demonstrations; experimental condition) or traditionally (using
verbal instructions; control condition). Because young school
children’s attention span is limited (Pellegrini and Bohn, 2005),
some of the tasks were administrated to one sample (Sample 1)
in a first study and the remainder to another sample (Sample
2) in a second study 5 months later. First, considering that
the non-verbal mode of instruction was new, we examined
possible difficulties both directly (understanding of feedback
and navigation) and indirectly (repeated practice sessions).
Second, though tasks were derived from field-tested assessments,
performance on the new tasks was correlated with performance
on two standardized and one self-developed measure in order to
ensure task validity. Third, we examined students’ performance
compared by condition and overall. Considering the novelty of
the non-verbal task administration, we did not specify directed
hypotheses but examined this question exploratively.

METHODS

Participants
Table 1 shows participant demographics, language background
and socio-economic status. The ISEI is the International Socio-
Economic Index of Occupational Status, used in large scale
assessments. It ranges from 16 (e.g., agricultural worker) to 90
(e.g., judge). An average ISEI of 50 will thus indicate above
average socio-economic status. As we could not directly assess
socio-economic status in our studies, ISEI was estimated based
on the communes in which the studies took place. This data
is publicly available and in Luxembourg the communes average
ISEI ranges from 35 to 65. All participants were recruited
from first grade in Luxembourg’s primary schools with the
authorization of the Ministry of Education and the directors
of the participating school sectors. Participants from the first
sample were tested after 5 weeks of schooling while participants
from the second sample were tested after 28 weeks of schooling.
Teachers interested to participate in the study with their classes
received information and consent letters for the pupil’s legal
representatives. Only pupils whose parents consent was obtained
participated in this study. All children in Luxembourg spend
two obligatory years in preschool and about a third of them
participate in an optional third year of preschool prior to the two
mandatory years (Lenz, 2015).

Materials
Experimental Tasks
As mentioned, the two samples received different types of tasks.
In the following, all task types will be described in order of their
administration. The number in parentheses after each task name

indicates the sample it was administered to. Example images for
each task are presented in Figure 1.

Quantity Correspondence (S1)
The first task required determination of the exact quantity of
the target display and choosing the response display with the
corresponding quantity (both ranging from 1 to 9). Each item
consisted of a target quantity displayed at the center of the
screen (stimulus). The nature of the quantity was varied and
was either non-symbolic (based on real objects [fruit], abstract
[dot collections]) or symbolic (Arab numerals). In the lower
part of the screen, three different quantities were displayed
to the participant from which he/she was to choose the one
corresponding to the stimulus (multiple-choice images). The
item pool consisted of five subgroups of items containing four
items each:

1. Non-symbolic, identical objects for stimulus and multiple-
choice images

2. Non-symbolic, different objects for stimulus and multiple-
choice images

3. Non-symbolic, collections of black dots of variable sizes and
configurations

4. Symbolic, Arabic numerals in both stimulus and multiple-
choice images

5. Mixed (combinations of the preceding characteristics)

Image characteristics (object area, total occupied area, etc.) were
manually randomized but not systematically controlled for.

Quantity Comparison (S1)
The second task required determining and choosing the larger of
two quantities (range: 1–9) displayed at the center of the screen.
The nature of the quantities was varied similarly to the first
task:

1. Non-symbolic, each quantity being composed of different
objects (4 items)

2. Non-symbolic, each quantity being composed of collections of
black dots of variable sizes and configurations (4 items)

3. Symbolic, at least one of the two displays showing an Arabic
numeral (4 items)

Ordering (S1)
The third task required reordering 4 images by increasing
quantities (range 1–9). The characteristics were divided into 2
subgroups, represented by 4 items each:

1. Ordering based on non-symbolic quantity
2. Ordering based on numerical symbols (Arabic digits)

Non-symbolic Addition (S2)
The first task required to solve a non-symbolic addition problem.
Participants saw an animation of 1–5 pigs entering a barn. The
barn door closed. Then, the door opened again, and 1–5 more
pigs entered the barn. The door closed again. The result range
included the numbers from 3 to 8 only. In the non-symbolic

answer version of this task (3 items), participants were then
presented with three images containing an open barn with pigs
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TABLE 1 | Participant demographics, language background and SES.

Sample N % girls Age Schooling Language ISEI

M (SD) % RO % LG % OT M (SD)

Sample 1 96 53.1 6 years; 7 months (4 months) Grade 1 (5 weeks) 30.2 55.2 14.6 50 (6.3)

Sample 2 141 48.2 7 years; 2 months (4 months) Grade 1 (28 weeks) 55.3 34.8 9.9 47.9 (7.2)

% RO, percentage of Romance language speaking children (French, Portuguese, Italian, Spanish). % LG, percentage of children speaking Luxembourgish or German. % OT, percentage

of children with other language backgrounds (Slavic, English). ISEI, International Socio-Economic Index of Occupational Status.

FIGURE 1 | Example Images of the experimental tasks.

inside. Their task was to choose the image showing the total
number of pigs left in the barn. In the symbolic answer version
of the task (3 items), participants selected the correct number of
pigs from an array of numerals from 0 to 9 in ascending order to
choose from.

Non-symbolic Subtraction (S2)
The second task required solving a non-symbolic subtraction
problem using the same pigs-and-barn setting described above.
Participants were shown an animation of an open barn
containing some pigs, after which some pigs left and the barn
door closed. The minimum number of pigs displayed in a group
was 2, the maximum was 9. The result range was from 1 to 6.
Symbolic and non-symbolic answer versions (3 items each) were
the same as above.

Crossmodal Addition (S2)
The third task for Sample 2 required solving a crossmodal
addition problem using visual and auditory stimuli. Participants
saw an animation of coins dropping on the floor, each one
making a distinctive sound. A curtain was then closed in front of
the coins. More coins dropped, but the curtain remained closed.
Participants could only hear but not see the second set of coins
falling. Their task was to choose the total amount of coins on
the floor, both the ones they saw and heard and the ones they

only heard but did not see falling. Theminimum number of coins
displayed/heard was 1, the maximum was 5. The result range was
from 3 to 7. In the non-symbolic answer version of this task (3
items), participants were presented with three images showing
coins on the floor with an open curtain. Their task was to choose
the image showing the total number of coins that are now on
the floor. In the symbolic answer version of the task (3 items),
participants were presented with an array of numerals from 0 to
9 in ascending order to choose from.

This task aimed to assess numerical processing at a crossmodal
level, requiring a higher level of abstraction than unimodal tasks
like the non-symbolic addition and subtraction tasks where only
visual information is processed before answering the question.
The addition of discrete sounds as stimuli adds a layer of
abstraction that is not present in the other addition tasks
(symbolic or non-symbolic) and ensures that responses must be
based on a truly abstract number sense, capable of representing any
set of discrete elements (Barth et al., 2003), independently from its
physical nature and prior cultural learning of number symbols.

Symbolic Arithmetic: Addition and Subtraction (S2)
In this task, participants had to solve traditional symbolic
arithmetic problems in the range of 0–9, both addition (6 items)
and subtractions (6 items), shown at the center of the screen. The
answer format in this task was symbolic only, i.e., participants
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were presented with an array of numerals from 0 to 9 in ascending
order below the problem to choose their answer from.

Observation and Interview Sheets
To examine the usability of instructions and task presentation,
test administrators collected information about participants’
behavior during testing through semi-structured observation and
interview sheets. Of special interest were the observations about
the general use of the tablet and the tool’s navigational features
as well as participants’ understanding of both video and verbal
instructions and feedback elements in both groups.

The following questions (yes-no format) were answered for
each participant and task: (1) Did the participant understand the
purpose of the smiley? (2) Did the participant understand the
use of the blue arrow as a navigational tool? To this aim, the test
administrators asked the participants to describe the task, the role
of the smiley, and the role of the arrow and evaluated that answer
as a “Yes” or a “No.” These questions were followed by empty
space for comments.

Demographics and Criterion Validation
Tasks
After completion of the digitally administered tasks, all
children received a paper notebook containing a demographic
questionnaire as well as some control tasks. The questionnaire
collected basic demographic data (age, gender, language spoken
with mother). Control tasks were included to examine the
criterion validity of the experimental tasks andwere administered
to both samples. The paper pencil control tasks were:

• TTR (Tempo Test Rekenen) (De Vos, 1992): a classical
standardized measure of speeded arithmetic performance.
Participants had 60 s for each subtest. Arithmetic difficulty
increased systematically within each subtest list, with operands
and results in the range of 1–100. As multiplication and
division were not part of the participant’s curriculum at that
age, we used the addition and subtraction subtests only.

• “How many animals?”(Counting and transcoding): Since
all of our experimental task assume basic counting skills,
we included this self-developed counting task, in which ten
paper sheets displaying a randomly arranged variable number
of animals (range: 3–19) were presented successively to the
participants, who reported how many animals they saw.
Their oral answer was noted on a coding sheet by the test
administrators. Furthermore, participants wrote down their
answer on a separate coding sheet included in the participant
notebook. This resulted in two separate measures: one for
counting (oral) and one for transcoding ability (written).

• SYMP (Symbolic magnitude processing test) (Brankaer
et al., 2017): a standardized measure of symbolic number
comparison performance (1- and 2-digit, ranging from 1 to
10 and from 12 to 99, respectively). It includes a motor speed
control task requiring participants to cross out the black shape
in pairs of black/white shapes. Participants had 30 s for each
subtest. Although number comparison abilities assessed by the
SYMP test do not strictly constitute a measure of curricular

learning goals, we choose to include it due to its well-
recognized power to predict later differences in standardized
mathematical tests and distinguish children with MLD from
typically developing peers (see Schneider et al., 2017 for a
meta-analysis). In contrast to the TTR scales and the counting
task, correlation with the SYMP does not inform on the ability
of our tasks to predict children’s achievement on higher level
learning goals but allows to compare performance in our tasks
to another low-level predictor of later math competence.

Design and Procedure
Experimental Design
To evaluate comprehensibility and effectiveness of the video
instructions in comparison to classical verbal instructions, we
implemented a between-group design in the two samples. All
children solved the tasks on tablet computers, but under two
different conditions. In the experimental condition (non-verbal
condition), instructions were conveyed through a video of a
person performing specific basic mathematical tasks, followed
by a green smiley indicating successful solution of the task.
Importantly, children did not receive any verbal instructions
in the experimental condition. In the control condition
(verbal condition), children received verbal instructions in
German, the official instruction language for Mathematics
in elementary schools in Luxembourg. Analogous to usual
classroom conditions, test administrators read the instructions
aloud to the children. In both conditions, tasks were presented
visually on tablet computers, either through static images or
animated “short stories.” In both samples, one group was
allocated to the experimental non-verbal condition without
language instructions and the other group was assigned to the
verbal condition, respectively.

Task Presentation
The three main tasks for Sample 1 were presented on iPads
using a borderless browser window. Two children were tested
simultaneously. They were connected to a local server through
a secured wireless network set up by the research team at each
school to store and retrieve data. The tasks were implemented
using proprietary web-based assessment-building software under
development by the Luxembourg Centre for Educational Testing.
Sample 2 worked on Chromebooks instead of iPads. The
advantage of Chromebooks is that they are relatively inexpensive,
are optimized for web applications, and provide both touchscreen
interactivity and a physical keyboard when necessary. Four
children were tested simultaneously to speed up data collection.

After the initial setup of the hardware (server, wireless
connection), participants were called into the test room in groups
of two (Sample 1) or four (Sample 2) and seated individually
on opposite sides of the room, allowing to run multiple test
sessions simultaneously. Participants were randomly assigned
to one of two groups. A trained test administrator supervised
each participant during the test session. Since the tasks for
Sample 2 used audio material, participants were provided with
headphones, which they wore during the video instructions and
the tasks.
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Both samples were presented with either non-verbal or verbal
instructions. In the non-verbal condition (experimental group),
each participant was shown three items, with the exception of
the comparison task, where ten instruction items were given
to account for the less salient nature of the implicit “Where
is more?” instruction. The video also clarified how to proceed
to the next item by the person touching a blue arrow pointing
rightwards on the top right corner of the screen, after which a
new item was loaded. In the verbal condition (control group),
the test administrator read the standardized oral instructions to
the participant in German, thus mimicking traditional teaching
and test situations. The instruction was repeated by the test
administrator while the first practice item was displayed to
facilitate the hands-on understanding of the task. After the
instruction, participants were given three practice items with
the same smiley-type feedback they had just witnessed (a happy
green face for correct answers, an unhappy red face for wrong
answers). After successful completion of the three practice items,
the application moved on to the test items. If one or more
answers were wrong, all three practice items were repeated once,
including those that had been solved correctly in the first trial. At
the end of this second run, the application moved on to the test
items, even if one or more practice items had still been answered
incorrectly. After each practice session, an animation showing a
traffic light switching from red to green was displayed to notify
children that the test was about to start.

At the end of the three tasks, a smiley face was displayed
thanking the participants for their efforts. At the end of
the individual testing sessions, all participants were regrouped
in their classroom to complete the pen-and-paper measures
instructed orally by the test administrators.

Scoring
Scores from symbolic and non-symbolic subgroups of items in
most experimental tasks were averaged and operationalized as

POMP (percentage of maximum performance) scores (Cohen
et al., 1999), giving rise to two scores in each task. The exception
was the symbolic arithmetic task in Sample 2, which by its nature
included only symbolic answer formats, but offered both addition
and subtraction items, producing one score for each operation
type. All scores from the criterion validation tasks are expressed
as POMP scores.

RESULTS

In line with our research questions outlined in the introduction,
we will first report findings on participants’ difficulties by
experimental condition, as usability represents an important
prerequisite. Results on the directly assessed difficulties will focus
on understanding of feedback and navigation, whereas indirectly
assessed difficulties comprise findings on repeated practice. This
is followed by descriptive analyses including scale quality, tests
of normality, and scale intercorrelations. As we also examined
the convergent validity of our tasks (another prerequisite), which
were based on existingmeasures, we subsequently report findings
on the correlations with the external measures, i.e., the paper
pencil tests (see Materials section). Finally, we will compare
performance by experimental condition.

Observation Data
Directly Assessed Difficulties: Understanding of

Feedback and Navigation
The following results are based on the observation sheets for each
task. Table 2 shows the number of participants that understood
the smiley as a feedback symbol and the number of participants
that understood the arrow as a navigational interface element.
Discrepancies in the total number of participants are due to
missing data points for some participants.

TABLE 2 | Directly assessed difficulties by experimental condition.

Sample Task type Condition Smiley χ
2 df p Navigation χ

2 df p

1 Quantity correspondence Verbal 46/46 1.01 1 0.315 45/46 6.03 1 0.014

Non-verbal 45/46 38/46

Quantity comparison Verbal 46/46 1.01 1 0.315 46/46 1.01 1 0.315

Non-verbal 45/46 45/46

Ordering Verbal 46/46 1.03 1 0.309 46/46 1.06 1 0.304

Non-verbal 44/45 43/44

2 Non-symbolic addition Verbal 70/70 3.02 1 0.082 69/70 5.82 1 0.016

Non-verbal 68/71 62/70

Non-symbolic subtraction Verbal 70/70 n.a. 68/69 1.02 1 0.312

Non-verbal 71/71 70/70

Cross-modal addition Verbal 70/70 1.02 1 0.312 68/69 1.04 1 0.309

Non-verbal 71/71 70/70

Symbolic arithmetic Verbal 69/69 n.a. 68/68 n.a.

Non-verbal 71/71 71/71

n.a., not applicable due to 1-level factor.
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Summarily, we observed that all but a few participants had
correctly understood the feedback symbols and the navigation
arrow from the start.

Indirectly Assessed Difficulties: Practice Repetition
As an indirect measure of usability, we examined whether the
number of participants that repeated the practice session of
each task differed by experimental condition. Table 3 presents
contingency tables and χ

2-tests of association. Figure 2 presents
percentage of repeaters per condition and task.

TABLE 3 | Indirectly assessed difficulties (practice repetition) by experimental

condition.

Sample Task type Condition Repeater χ
2 df p

No Yes

1 Quantity

correspondence

Verbal 27 19 0.55 1 0.46

Non-verbal 33 17

Quantity

comparison

Verbal 38 8 7.90 1 0.005

Non-verbal 28 22

Ordering Verbal 4 42 51.70 1 <0.001

Non-verbal 41 9

2 Non-symbolic

addition

Verbal 47 23 5.81 1 0.016

Non-verbal 60 11

Non-symbolic

subtraction

Verbal 47 23 3.14 1 0.076

Non-verbal 57 14

Cross-modal

addition

Verbal 30 40 6.82 1 0.009

Non-verbal 46 25

Symbolic

arithmetic

Verbal 53 17 0.27 1 0.6

Non-verbal 51 20

The number of participants that repeated the practice session
did not vary significantly between conditions in the Quantity
correspondence task, the Non-symbolic subtraction task and the
Symbolic arithmetic task. Fewer participants repeated the practice
session in the non-verbal condition of the Ordering, Non-
symbolic addition and Cross-modal addition tasks. Inversely,
more participants repeated the practice session in the non-verbal
condition of the quantity comparison task.

Task Descriptives
Internal Consistency
Internal consistency of the experimental tasks in the first sample
ranged from good to questionable (see Table 4). Only the
Ordering task with non-symbolic answers showed unacceptable
internal consistency. Due to the low number of items in each
task, we estimated internal consistency without differentiation
as to answer format in the second sample. While the Symbolic
arithmetic task provided acceptable (Subtraction) to good
(Addition) internal consistency, the three other tasks only
reached poor to questionable consistency.

Tests for Normality
All task scores showed ceiling effects (somewhat less pronounced
in Sample 2), independently from experimental group or the
symbolic nature of the task, thus deviating significantly from the
normal distribution (statistical tests for all subtests are reported
in Table 4). Skewed distributions were expected considering
the test was designed to differentiate at the bottom end of
the ability distribution. Consequently, the Shapiro-Wilks tests
showed substantial non-normality. Therefore, we conducted
non-parametric analysis of variance to examine possible group
differences in task performance.

FIGURE 2 | Percentage of repeaters by task and experimental group.
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TABLE 4 | Task performance, descriptives and non-verbal vs. verbal comparison.

Task type Cond. N M(POMP) (SD) Range Internal consistency Skewness S-W ANOVA (K-W)

Theor. Emp. α ω W p χ
2 P

SAMPLE 1

Quantity correspondence (NS) Verbal 46 0.86 (0.19) 0–1 0.08–1 0.813 0.852 −1.77 0.69 <0.001 1.47 >0.05

Non-verbal 50 0.91 (0.16) 0–1 0.17–1 −2.54

Quantity correspondence (S) Verbal 46 0.96 (0.09) 0–1 0.63–1 0.746 0.819 −2.39 0.48 <0.001 1.63 >0.05

Non-verbal 50 0.92 (0.17) 0–1 0.25–1 −2.63

Quantity comparison (NS) Verbal 46 0.95 (0.13) 0–1 0.50–1 0.892 0.899 −2.94 0.48 <0.001 1.62 >0.05

Non-verbal 50 0.87 (0.27) 0–1 0–1 −1.94

Quantity comparison (S) Verbal 46 0.96 (0.14) 0–1 0.25–1 0.697 0.737 −3.54 0.48 <0.001 3.70 >0.05

Non-verbal 50 0.88 (0.24) 0–1 0–1 −2.00

Ordering (NS) Verbal 46 0.78 (0.26) 0–1 0.25–1 0.462 0.521 −0.68 0.83 <0.001 0.60 >0.05

Non-verbal 50 0.74 (0.25) 0–1 0–1 −0.80

Ordering (S) Verbal 46 0.92 (0.22) 0–1 0–1 0.735 0.763 −2.78 0.53 <0.001 3.02 >0.05

Non-verbal 50 0.88 (0.23) 0–1 0–1 −2.08

SAMPLE 2

Non-symbolic addition (NS) Verbal 46 0.78 (0.24) 0–1 0–1 0.495 0.553 −0.82 0.75 <0.001 1.94 >0.05

Non-verbal 50 0.84 (0.19) 0–1 0.33–1 −0.69

Non-symbolic addition (S) Verbal 46 0.66 (0.31) 0–1 0–1 −0.40 0.84 <0.001 0.15 >0.05

Non-verbal 50 0.67 (0.32) 0–1 0–1 −0.63

Non-symbolic subtraction (NS) Verbal 46 0.88 (0.21) 0–1 0–1 0.593 0.618 −1.88 0.61 <0.001 0.00 >0.05

Non-verbal 50 0.89 (0.19) 0–1 0.33–1 −1.51

Non-symbolic subtraction (S) Verbal 46 0.62 (0.35) 0–1 0–1 −0.50 0.83 <0.001 1.27 >0.05

Non-verbal 50 0.69 (0.33) 0–1 0–1 −0.78

Cross-modal addition (NS) Verbal 46 0.79 (0.26) 0–1 0–1 0.439 0.480 −0.90 0.75 <0.001 0.03 >0.05

Non-verbal 50 0.79 (0.27) 0–1 0–1 −1.07

Cross-modal addition (S) Verbal 46 0.62 (0.33) 0–1 0–1 −0.49 0.86 <0.001 1.37 >0.05

Non-verbal 50 0.57 (0.31) 0–1 0–1 −0.28

Symbolic arithmetic (Add.) Verbal 46 0.95 (0.14) 0–1 0–1 0.880 0.888 −4.76 0.32 <0.001 0.07 >0.05

Non-verbal 50 0.94 (0.21) 0–1 0–1 −4.05

Symbolic arithmetic (Sub.) Verbal 46 0.85 (0.23) 0–1 0–1 0.787 0.803 −2.04 0.66 <0.001 0.01 >0.05

Non-verbal 50 0.83 (0.27) 0–1 0–1 −1.84

POMP, Percentage of maximum performance; S-W, Shapiro-Wilk test of normality; K-W, Kruskal-Wallis ANOVA on ranks.

Scale Intercorrelations
In Sample 1 performances on almost all experimental tasks
correlated significantly among each other (see Table 5).
The exception was the Quantity comparison task (symbolic
format), which did not correlate significantly with the Quantity
correspondence task (non-symbolic format) and with the
Ordering task (both formats).

The reported correlations in the following paragraph are
all significant (see Table 6). Letters in parentheses indicate
the answer format (NS = non-symbolic; (S) = symbolic). In
Sample 2, performances in Symbolic arithmetic (addition and
subtraction) correlated with each other and with performance
in all other tasks having a symbolic response format (i.e. Non-
symbolic addition, Non-symbolic subtraction, and Cross-modal
addition). Performance in Symbolic arithmetic did not correlate
with performance in tasks requiring non-symbolic output,
except for the Non-symbolic subtraction task. Performances
in Non-symbolic addition and subtraction (S) correlated with
performance on all other tasks. Performances in the two
Non-symbolic arithmetic (NS) did not correlate with each

other. Performance in Cross-modal addition (S) correlated with
performance in all other tasks, except Non-symbolic arithmetic
(i.e., Non-symbolic addition and Non-symbolic subtraction) with
non-symbolic response formats. Performance in Cross-modal
addition (NS) correlated with performance in all other tasks,
except Symbolic arithmetic.

Criterion Validity
In Sample 1, average performance (all experimental tasks
combined) correlated significantly with all criterion validity tasks
(see Table 7) except with the two-digit SYMP test.

In Sample 2, average performance (all experimental tasks
combined) correlated significantly with all criterion validity
tasks.

Comparison of Task Performance: Verbal
vs. Non-verbal Instructions
Analyses of variance (Kruskal-Wallis) on task scores with
experimental group (verbal vs. non-verbal) as between-subjects
factor revealed no significant differences in any of the
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TABLE 5 | Scale intercorrelations: Sample 1.

Scale intercorrelations Quantity correspondence Quantity comparison Quantity comparison Ordering Ordering

Sample 1 (S) (NS) (S) (NS) (S)

Quantity correspondence (NS) Rho 0.516 0.424 0.189 0.436 0.296

p <0.001 <0.001 0.065 <0.001 0.003

Quantity correspondence (S) Rho 0.374 0.212 0.294 0.215

p <0.001 0.038 0.004 0.036

Quantity comparison (NS) Rho 0.612 0.443 0.381

p <0.001 <0.001 <0.001

Quantity comparison (S) Rho 0.125 0.147

p 0.225 0.153

Ordering (NS) Rho 0.519

p <0.001

S, Symbolic answer format; NS, Non-symbolic answer format; Rho, Spearman’s rho.

TABLE 6 | Scale intercorrelations: Sample 2.

Scale intercorrelations NS Add. NS Sub. NS Sub. Cross. Add. Cross. Add. Sym. Arith. Sym. Arith.

Sample 2 (S) (NS) (S) (NS) (S) (Add) (Sub)

Non-symbolic addition (NS) Rho 0.257 0.157 0.317 0.306 0.162 0.138 0.046

p 0.002 0.063 <0.001 <0.001 0.056 0.102 0.590

Non-symbolic addition (S) Rho 0.335 0.372 0.244 0.260 0.236 0.417

p <0.001 <0.001 0.003 0.002 0.005 <0.001

Non-symbolic subtraction (NS) Rho 0.342 0.197 0.042 0.241 0.231

p <0.001 0.019 0.619 0.004 0.006

Non-symbolic subtraction (S) Rho 0.249 0.290 0.193 0.352

p 0.003 <0.001 0.022 <0.001

Cross-modal addition (NS) Rho 0.301 0.091 0.165

p <0.001 0.282 0.051

Cross-modal addition (S) Rho 0.207 0.211

p 0.014 0.012

Symbolic arithmetic (addition & subtraction) (S) Rho 0.262

p 0.002

(S), Symbolic answer format; (NS), Non-symbolic answer format; Rho, Spearman’s rho.

TABLE 7 | Criterion validity.

Criterion validity TTR+ TTR− Counting Counting SYMP SYMP

(oral) (written) (one digit) (two digit)

SAMPLE 1

Average test score (all tasks) Rho 0.453 0.349 0.279 0.475 0.308 0.111

p <0.001 <0.001 0.006 <0.001 0.002 0.28

SAMPLE 2

Average test score (all tasks) Rho 0.431 0.355 0.441 0.499 0.409 0.26

p <0.001 <0.001 <0.001 <0.001 <0.001 0.002

Rho, Spearman’s rho.

tasks, neither in Sample 1 nor in Sample 2 (see Table 4).
Overall performances were very high in the non-verbal and
in the verbal condition (ranging between 57 and 96%),
indicating that children succeeded comparably well in both
conditions.

DISCUSSION

The purpose of the present study was to explore the possibility
of measuring basic math competence in young children without
using verbal instructions. To this aim we developed a series
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of computerized tasks presented on tablet-computers either
verbally, using traditional language instructions or non-verbally,
using video instructions repeatedly showing successful task
completion and assessed whether the instruction type influenced
task performance.

Usability Aspects
To check whether this new mode of instruction was effective,
we assessed the comprehensibility of the tasks both directly
and indirectly. Regarding the prior, the feedback symbols (the
green happy and the red sad smiley faces during the instruction
and practice phase) were easily understood by most if not all
participants. The same is true for the navigation symbol (the
arrow to both save the answer and switch to the next item).

As an indirect assessment of task comprehension, we
examined differences in the number of participants that repeated
the practice session of each task. Given the low difficulty level
of the tasks presented during instruction and practice, we
assumed that children who did not get the practice items right
in their first attempt had not understood the purpose of the
task at first and therefore needed a second run. In three tasks
[Quantity correspondence (S1), Non-symbolic subtraction (S2),
and Symbolic arithmetic (S2)], the number of repeaters did not
vary significantly, suggesting that non-verbal instructions can
be understood as well as verbal ones. On the other hand, we
observed significantly less repeaters in three other tasks [Non-
symbolic addition (S2), Ordering (S1) and Cross-modal addition
(S2)] when children were instructed non-verbally, implying that
non-verbal instructions can be more effective than verbal ones
in these situations. This tendency was especially pronounced
in the Ordering task. Finally, we found an inverse difference
in repeaters in the Quantity comparison task. Significantly
more participants repeated the practice session of the Quantity
comparison task when they received non-verbal instructions.
Conveying “choose the side that has more” through a video
showing successful task completion repeatedly seems to have
worked less well than simply giving the participants an explicit
verbal instruction to do so, even though we displayed more
repetitions in this task than in the other tasks. This shows that
not every task instruction can be easily replaced by non-verbal
videos without adding unnecessary complexity. This result stands
in stark contrast with our observations concerning the Ordering
task, which was understood much better following non-verbal
instructions. Because the verbal instruction requested to order
items from left to right, the extreme difference in repeaters (91%
vs. 18%) could possibly be attributed to the fact that reliable
left /right distinction has not been achieved by children of this
age. Notwithstanding, this observation illustrates well that a
single word in the instruction can lead to a complete failure to
understand the task at hand and that this can be easily avoided by
using non-verbal video instructions. Taken together, our results
based on the repetition of practice items suggest that non-
verbal instructions are an efficient alternative to the classically
used verbal instructions and might in some cases even be more
direct and effective. However, they do not provide a universally
applicable solution, because on rare occasions they fail to convey
task instructions as clearly and unequivocally as spoken language.

Anecdotally, it appeared that children were generally highly
motivated to complete our tasks and many asked if they could do
them again. This might be due to the video-game-like appearance
of the assessment tool, which differs considerably from the
paper-and-pencil material that they encounter in everyday math
classes, which probably helped to promote task compliance and
motivation (Lumsden et al., 2016).

Validity Aspects
Scale intercorrelations indicate that performance in the three
tasks assessed in Sample 1 (i.e., Quantity correspondence,
Quantity comparison, Ordering) largely correlated, which may
reflect the fact that they rely, at least in part, on the
same basic numerical competences. While performance on the
non-symbolic version of the Quantity comparison task did
correlate with performance on most other experimental tasks,
performance on the symbolic version of theQuantity comparison
task shows less consistent correlations with performance on
other tasks. Most strikingly, the latter does not correlate
significantly with performance on the Ordering task, both
symbolic and non-symbolic versions. This stands in contrast with
most findings in recent literature that report strong correlation
between performance on tasks measuring cardinality (Quantity
comparison task) and ordinality (Ordering task) (e.g., Lyons et al.,
2014; Sasanguie et al., 2017; Sasanguie and Vos, 2018). This
might be due to reporting correlations for the whole sample
without distinguishing instruction type: a large proportion of
participants in the video condition of the task did not seem
to correctly understand its purpose, which could explain the
absence of correlation between its performance and any other
task. Accordingly, the Quantity comparison task will need to
be adapted in future studies. Sample 2 consisted of calculation
tasks that were either presented in classical symbolic or more
unusual non-symbolic and/or cross-modal format (i.e., Symbolic
addition and subtraction, Non-symbolic addition and subtraction,
Cross-modal addition). In this sample, performance in symbolic
arithmetic correlated with performance in those tasks having
a symbolic response format, but not those requiring non-
symbolic answers. This points toward a special role of number
symbol processing, in line with the importance of this ability
for mathematics (e.g., Bugden and Ansari, 2011; Bugden et al.,
2012). Interestingly, and in line with the importance of number
symbols, performance in non-symbolic arithmetic tasks with
symbolic output formats also correlated with all calculation tasks
of Sample 2. While validating the main expectations concerning
our task and their properties, conclusions concerning scale
intercorrelations remain provisional at this stage, since all tasks
could not be correlated with each other in the present design due
to two different participant samples.

Considering the overall medium reliability of our
experimental tasks, special care should be taken to include
more items assessing performance in the different tasks in
further developments of this project.

Finally, we observed that average performance of all
experimental tasks combined correlated significantly with
performance in most (Sample 1) to all (Sample 2) control tasks.
The control tasks were chosen to cover the most established
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measures of basicmath competences in young children, known to
predict latter differences in standardized mathematical tests and
distinguish children with MLD from typically developing peers.
We therefore included tasks assessing children’s abilities to count
(Goldman et al., 1988; Geary et al., 1999; Passolunghi and Siegel,
2004; Willburger et al., 2008; Hornung et al., 2014), to compare
symbolic magnitudes (De Smedt et al., 2009, 2013; Brankaer
et al., 2017) and to calculate (De Vos, 1992; Geary et al., 1993;
Klein and Bisanz, 2000; Locuniak and Jordan, 2008; Geary, 2010).
The non-significant correlation between performance of the tasks
in the first sample with performance in the two-digit symbolic
number comparison task can be attributed to participant’s lack of
knowledge on two-digit numbers at the time of data collection
(approx. 5 weeks of schooling) (MENFP, 2011; Martin et al.,
2013).

Task Performance Compared by
Experimental Group
Type of instruction prior to the test did not affect participants’
performance in any of the experimental tasks. We observed high
average performance in both samples and similar performances
in both experimental conditions. This leads us to conclude that
instruction type does not seem have an observable effect on future
task performance. In other words, explicit verbal instructions
can be replaced by videos showing successful task completion
for children to understand the functioning and purpose of the
numerical and mathematical tasks. This is an important result
when put in the context of multilingual settings in particular,
where the language of instruction can have considerable negative
effects on task performance. Indeed, video instructions seem
to work as well as traditional verbal instructions while taking
language out of the equation.

At this point, we want to stress that we do not claim
that mathematics and language can be assessed independently
(Dowker and Nuerk, 2016). Indeed, prior research has shown
that while the logic and procedures of counting are stored
independently from language, the learning of even small number
words relies on linguistic skills (Wagner et al., 2015). Also,
languages inverting the order of units and tens in number
words negatively affect the learning of number concepts and
arithmetic (Zuber et al., 2009; Göbel et al., 2014; Imbo et al.,
2014). Other studies have highlighted that proficiency in the
language of instruction (Abedi and Lord, 2001; Hickendorff,
2013; Paetsch et al., 2016; Saalbach et al., 2016) and, more
specifically, the mastery of mathematical language are essential
predictors of mathematics performance (Purpura and Reid,
2016). It also becomes increasingly clear that test language
modulates the neuronal substrate of mathematical cognition
(Salillas and Carreiras, 2014; Salillas et al., 2015; Van Rinsveld
et al., 2017). On the other hand, we do claim that a testee’s access
to the assessment tools should not be limited by proficiency in a
certain language. Althoughmost existing tasks already use images
to minimize linguistic load, they still rely on some form of verbal
instruction or vocabulary that needs to be fully understood to
solve the task correctly. We thus think that it is not sufficient
to minimize language load in mathematics items, but that it

would be preferential to remove linguistic demands altogether.
Our results show that this can be achieved by using implicit
video instructions that rely on participant’s non-verbal cognitive
skills.

Limitations and Future Studies
A first limitation for the interpretation of our results are the
medium internal consistency scores of many of our tasks. We
aimed to explore as many tasks as possible using non-verbal
instructions, while keeping total test time under 40min due to
children’s limited attention span (Manly et al., 2001). This led to
some psychometric compromises by offering only a few items
per task and subscale (i.e., symbolic and non-symbolic answer
format), especially for the tasks in the second sample. In the
future, we will select the tasks with the highest potential of
differentiating in the lower spectrum of ability and supplement
them with more items.

To further differentiate experimental conditions, it would
have been possible to present only word problems and exclude
all animations in the verbal instruction group whenever possible.
For example, instead of showing pigs moving into a barn,
the animation could be replaced with a written/spoken story
on pigs going into a barn before offering three possible
answers. We expect that such a contrasted design would lead
to more significant differences in task comprehension and
would be particularly interesting to investigate differences in
item functioning in relationship to the participant’s language
background. In order to provide a robust proof of concept for
the valid use of video instructions we decided here to adapt a
more conservative approach with minimal differences between
the video and verbal conditions. However, it would be interesting
to use also more contrasted conditions in future studies.

Additionally, we anecdotally observed that touchscreen
responsiveness seemed to be an issue with more impulsive
participants. Indeed, when the touchscreen did not react to a first
touch by showing a bold border around the selected image, these
participants switched to another answer. We speculate that they
interpreted the non-response of the tool as a wrong answer on
their part and choose to try another one. This is an unfortunate
but important technical limitation that will be addressed in future
versions of the application, as impulsivity and attention issues
are strongly correlated with mathematical abilities, especially in
the target population for this test (LeFevre et al., 2013). Finally,
we want to stress the difference in participant’s age between the
two sets of tasks presented here. In future developments of this
project, homogenous groups of children from the first half of the
first grade should be targeted.

CONCLUSION

Taken together, these preliminary results show that explicit verbal
instructions do not seem to be required for assessing basic
math competencies when replaced by instructional videos. While
variations depending on the task and the quality of experimental
instructions are present, video instructions seem to constitute a
valid alternative to traditional verbal instructions. In addition, the
video-game-like aspect of the present assessment tool was well
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received, contributing positively to children’s task compliance
and motivation. All in all, the results of this study provide
an important and encouraging proof of concept for further
developments of language neutral and fair tests without verbal
instructions.
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Early number skills underlie success in basic arithmetic. However, very little is known
about the skill profiles among children in preprimary education and how the potential
profiles are related to arithmetic development. This longitudinal study of 440 Finnish
children in preprimary education (mean age: 75 months) modeled latent performance-
level profile groups for the early number skill components that are proposed to be key
predictors of arithmetic (symbolic number comparison, mapping, and verbal counting
skills). Based on three assessment time points (September, January, and May), four
profile groups were found: the poorest-performing (6%), low-performing (16%), near-
average-performing (33%), and high-average-performing children (45%). Although the
differences between the groups were statistically significant in all three number skill
components and in basic arithmetic, the poorest-performing children seemed to have
serious difficulties in accessing the semantic meaning of symbolic numbers that was
required in the number comparison and mapping tasks in this study. Interestingly, the
tasks demanding processing between quantities and symbols also most differentiated
the poorest-performing children from the low-performing children. Due to remarkable
and stable individual differences in early number skill components, the findings suggest
systematic support and progress monitoring practices in preeducational settings to
diminish and avoid potential difficulties in arithmetic and mathematics in general.

Keywords: early number skill components, arithmetic, preprimary education, latent profile analysis, poorest-
performing children, low-performing children

INTRODUCTION

Typically, as an innate ability, children are able to quickly discriminate small sets of quantities
without counting (1-4; subitizing range), and they can detect which of two presented quantities
is larger if the difference between them is large enough (Dehaene, 2011; see also von Aster, 2000;
von Aster and Shalev, 2007). It has been proposed that this ability is critical for the development
of early number skills and especially for number concept skills for which children need to learn
the quantitative meaning of small number words (one, two, and three; Butterworth, 2005), and
later on, to map verbal and quantitative representations to corresponding number symbols. Along
these skills, children recite number words very early (Fuson, 1988; Wynn, 1990; Krajewski and
Schneider, 2009) which forms a base for learning exact verbal counting list (Fuson, 2009) and for
enumerating and calculating quantities above the aforementioned subitizing range. To enumerate
quantities correctly, children need to master and follow the procedural principles for counting
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(Gelman and Gallistel, 1978; one-to-one correspondence,
stable order of the counting words, and cardinality). Children
also need to understand what can be counted and that the order
in which the quantities are counted does not matter (Gelman
and Gallistel, 1978). These principles are vital for exact object
counting (see also Krajewski and Schneider, 2009; Dehaene,
2011), which, in turn, relates to the development of number
concept skills. Thus, understanding the association between
different numerical representations that are number words,
quantities, and Arabic number symbols plays a critical role in
the development of early number skills (Krajewski and Schneider,
2009; Geary, 2013). Furthermore, this skill allows and strengthens
the understanding of explicit number system (knowing the exact
relationships between numbers) that can be seen as prerequisite
for the ability to compose and decompose magnitudes and for
learning efficient and flexible arithmetical calculation strategies
(Krajewski and Schneider, 2009; Geary, 2013).

Atypicalities in number skills development and lack of early
numerical experiences, as well as math language, increase the risk
of facing challenges in learning arithmetic and mathematics at
school. One main feature in mathematical learning difficulties
(MD) is dysfluency in calculation skills that is deficit in arithmetic
fact retrieval (Geary, 2011). That is why researchers try to draw
a theoretical picture of number skills development and specify
the critical early components related to arithmetic. It has been
proposed that the strongest predictor of fluent arithmetic may
be symbolic number processing skills (Bartelet et al., 2014;
Skagerlund and Träff, 2014; De Smedt, 2015; Vanbinst et al.,
2015). Children with MD might have deficits in accessing the
numerical meaning from Arabic number symbols (assessed
typically by number comparison task; which of the two number
symbols is larger) which could then be related to basic arithmetic
skills and math achievement in general (Rousselle and Noël,
2007; De Smedt and Gilmore, 2011; De Smedt, 2015). On
the other hand, deficit in symbolic number processing might
become visible in mapping task where fluent ability to transcode
between non-symbolic and symbolic numerical notations is
required. Previous research has shown that symbolic number
comparison and mapping are separable although correlated skills,
and mapping is related to mathematics achievement over and
above numerical magnitude comparison skills (Brankaer et al.,
2014). Deficits in mapping could also explain difficulties in
understanding number relations (Geary, 2013). Finally, it has also
been proposed that verbal counting plays an important role as
a predictor of fluent arithmetic (e.g., Aunola et al., 2004; Zhang
et al., 2014; Koponen et al., 2016), and could be a core component
in identifying children with potential MD.

Before formal schooling, children typically use counting based
strategies for solving simple sums and ease their counting
by using manipulatives, fingers, and/or verbal counting. Later,
counting strategies develop (through counting all – counting on –
counting on from larger number) in consequence of repetitions
and routines which in turn allow children to strengthen
associations between arithmetical problems and their solutions
(Peters and De Smedt, 2018). That is why verbal counting
might play an important and foundational role in learning
arithmetic.

As known, individual differences in early number skills appear
to be relatively stable and the differences widen in subsequent
years (e.g., Aunola et al., 2004; Desoete and Grégoire, 2006;
Murphy et al., 2007; Geary et al., 2008; Morgan et al., 2009,
2011; Wong et al., 2014). To better understand the potential
qualitative differences between the poorest-performing and low-
performing children (Geary, 2011), and to give targeted support
for individual needs (Dowker and Sigley, 2010) we need specific
knowledge of children’s skill-profiles in separate number skill
components. To date, mostly two types of studies have examined
these early number skill components: studies on a certain
factor (Price and Wilkey, 2017; Vanbinst et al., 2018) and
studies on composite scores (Jordan et al., 2006, 2007; Aunio
et al., 2015). The first type tries, more or less, to deepen the
knowledge of the core factors of MD but typically does not
simultaneously model two or more core components at the same
time. The second type tries, more or less, to understand the
developmental trajectories of number skills underlying fluent
arithmetic. Neither approach allows us to draw a clear picture of
how these early number skill components are related and what
kind of skill profiles may exist at kindergarten age before formal
schooling.

To conclude, defining a clear picture of the underlying
components predicting arithmetic skills is challenging due to the
varying approaches, measures, sampling issues, and age levels
used in previous studies (see De Smedt et al., 2013; Lyons et al.,
2014; Hart et al., 2016). Thus, we need specific knowledge of
the individuality in the number skill components. This question
is not only theoretically interesting but also provides new
information for planning and suggesting reasonable, targeted
support to prevent persistent deficits and cumulative difficulties
in mathematics (Butterworth et al., 2011; Geary, 2011). One way
to examine the individual differences in theoretically distinct
and unique contributors of basic arithmetic is to use person-
oriented analysis methods (Bartelet et al., 2014; Skagerlund
and Träff, 2014). This approach tries to get support and add
potential new knowledge for existing theories by driving the
data instead of differentiating groups of children who are
clustered with certain cut-off thresholds. The present study
implemented latent profile analysis method (LPA) to investigate
the heterogeneity of potential early skill profiles in the three
number skill components strongly underlying fluent arithmetic:
symbolic number processing (NC), mapping (MS), and verbal
counting skills (VC). Along these skills, non-symbolic magnitude
comparison and number line acuity also predict arithmetic
achievement. However, symbolic number comparison correlates
more strongly with math achievement than non-symbolic
number comparison (for review see Schneider et al., 2017; within
kindergarteners see Sasanguie et al., 2012). In addition, instead
seeing number line acuity as a direct predictor of math skills
it should be seen as a factor influencing on the developmental
process of both skills (e.g., Friso-van den Bos et al., 2015). The
main interest of the current study was to get more evidence
of the early number skill components that challenge especially
the poorest- and low-performing children the most and that
are measurable for practitioners in small-group conditions by
paper-and-pencil tasks.
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This longitudinal study aimed first to examine whether
different performance-level profile groups in early number skill
components are found among children in preprimary education
(research question 1, RQ1). The second aim was to examine
which of the components potentially differentiates the profile
groups the most (RQ2). The third aim was to examine whether
the preprimary education group, gender, or age plays a role in
belonging to a certain profile group (RQ3). Finally, the between-
group differences in basic arithmetic were tested (RQ4). The three
screening tools with negatively skewed distribution were used to
assess early number skill components in September, January, and
May. With this procedure, the study aimed to deepen knowledge
of the skill performance of poorly performing children through
the preprimary education year (for researchers) and to reliably
screen children in need of extra support for numerical skills (for
practitioners). Therefore, differentiation of performance levels
among typical-, average-, or high-achieving children was not
the focus. The theoretical model and the three main research
questions are presented later in Figure 1.

MATERIALS AND METHODS

Participants
At the outset, 35 kindergarten teachers voluntarily participated
in the study as data collection coordinators. Parents received an

information letter with the descriptions of our study purpose,
procedure, and contact information. Parents were informed of
their right to decline or discontinue the children’s participation
to our study at any time point. Parents were also informed that
we will not ask any information to identify children from the
data (such as surname, birth date, etc.) and therefore, written
permissions from parents to us were not required. The final
sample sizes varied from 486 to 557 kindergarteners, depending
on the assessment point and given the option for teachers,
parents, and children to commence or cease participation at
any point. Altogether, 30 teachers and 440 kindergarteners
who participated in all three assessment time points were
included in the analyses. These longitudinal data for Finnish
kindergarteners were geographically representative, and when
tested, participant attrition was not found to be systematically
related to any of the early number skill components assessed
in this study. The final sample consisted of 223 girls (mean
age = 75.19 months, SD = 3.58) and 215 boys (mean
age = 74.94 months, SD = 3.75) and two other children with
missing gender information.

Procedure
In August, the volunteer teachers were trained for the three-
tiered group assessment procedure, which was conducted in
September, January, and May during the preprimary education
year. The following number skill components were assessed:

FIGURE 1 | Mixture model along the three research questions of the current study. COMP(a), approximate number comparison skill; NC(c), cardinal number concept
skill; VC, verbal counting skill; COMP(e), exact number comparison skill; NC(o), ordinal number concept skill; C, latent class; RQ1–RQ3, research questions 1–3.
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symbolic number comparison (September, January, and May),
mapping (September, January, and May), and verbal counting
skills (January and May). The tools were piloted before the
actual study to ensure that the participating teachers were able
to follow the instructions for the assessment procedure, and
that the items would measure expected dimensions and cover
individuality of skill-levels. The teachers then administered the
assessment procedure within their own preprimary education
group during small group sessions (of 5-8 children). The teachers
instructed the tasks item by item to the children who responded
by cross marking one of the three alternatives presented on the
paper. After each assessment point, the teachers returned all
materials for each assessment point to the research assistants
who were trained to work with the data. This procedure was
carried out at each assessment time point (September, January,
and May). After each assessment point, we tested the validity
and difficulty of items. Based on the results and expected skills
development, the amount of items were reduced and changed
and new skill components added to the following screener for
receiving meaningful variance.

With individual and small group assessment settings
(attention), and with permission to repeat the instructions
(working memory), as well as by using multiple-choice, paper-
and-pencil items without time limits (response inhibition), the
demand for executive functioning skills during the assessments
was thought to be diminished. By varying and challenging the
number skill components over time (i.e., changing numerical
distances among alternatives, growing the number area, and
adding assessed components), the difficulty level was thought
to increase from fall to winter to spring. With this decision,
practitioners could screen weaknesses at different cross-sectional
time points by comparing the individual performance levels to
typically developing children with diminished risk of a potential
floor or ceiling effect or a test–retest effect.

Measures
Symbolic Number Comparison
Symbolic number comparison skill was assessed at time point 1
(eight items, Cronbach’s alpha = 0.88) and time point 2 (six items,
Cronbach’s alpha = 0.91) in small group settings. At both time
points, the first half of the assessment tasks included items from
which the child was asked to choose and mark the largest written
number among three alternatives, presented horizontally (e.g., 9,
4, and 7). The second half consisted of tasks in which the child was
asked to choose the smallest written number (e.g., 6, 10, and 8).
Each item was coded as zero (incorrect) or 1 point (correct) or
as an empty cell (missing value), so that the approximate number
comparison formed a categorical variable for the analysis. At time
point 3, the number comparison task required exact comparison
skill (four items, Cronbach’s alpha = 0.59). The child was asked
to choose which of the three alternatives included one more,
two more, one fewer, and two fewer than the item originally
presented. Each item was coded as zero (incorrect) or 1 point
(correct) or as an empty cell (missing value) and was set as
categorical items for the analysis to first evaluate their validity
and difficulty level in assessing number comparison skills. Based

on the item difficulty analysis (see section “Data Analysis” and
the Appendix), three NC variables, one per time point, were
included in the final analysis as parceled variables (NC_1, NC_2,
and NC_3).

Mapping
Mapping skills were assessed at time point 1 (16 items, Cronbach’s
alpha = 0.88) and time point 2 (eight items, Cronbach’s
alpha = 0.71) in small group settings. The test included four
types of tasks each consisting of four items (time point 1) or two
items (time point 2). For each task type, the child was asked to
choose the corresponding numerical representation from among
three alternatives. First, number words were contrasted with
quantities (dots), and then number words were contrasted with
written number symbols (e.g., the number word “eight” was
said aloud and the written symbols 7, 9, and 8 were presented),
then, quantities were contrasted with written symbols (without
verbal hints), and finally, written symbols were contrasted with
quantities. Each item was coded as zero (incorrect) or 1 point
(correct) or as an empty cell (missing value) so that cardinal
number concept skill formed a categorical variable for the
analysis. At time point 3, the task consisted only of four items
(Cronbach’s alpha = 0.60) in which the child was asked to mark
the 12th, the 17th, every 2nd, and finally, every 3rd item among
several alternatives presented horizontally for each task. Each
item was coded as zero (incorrect) or 1 point (correct) or as an
empty cell (missing value) and was set as categorical items for
the analysis to first evaluate their validity and difficulty level in
assessing mapping skills. Based on item difficulty analysis (see
section “Data Analysis” and the Appendix), three MS variables,
one per time point, were included in the final analysis as parceled
variables (MS_1, MS_2, and MS_3).

Verbal Counting
Verbal counting was assessed individually at time point 2 and
at time point 3 with identical tasks (nine items, Cronbach’s
alpha = 0.84 and 0.82, respectively). First, the child was asked
to count forward starting from one. This task was divided into
three subtasks: to count correctly up to the number word 10,
to the number word 20, and to the number word 30. Second,
the child was asked to count backward, again in three subtasks:
to count backward correctly from 5 to 1, from 12 to 8, and
from 20 to 16. Third, the child was asked to skip count by twos,
again in three subtasks: to count correctly up to the number
word 10, to the number word 18, and to the number word 30.
Each item was coded as zero (incorrect) or 1 point (correct)
or as an empty cell (missing value) and was set as categorical
items for the analysis to first evaluate their validity and difficulty
level in assessing verbal counting skills. Based on item difficulty
analysis (see section “Data Analysis” and the Appendix), two VC
variables, one per time point, were included in the final analysis
as parceled variables (VC_2 and VC_3; numbers indicating the
time point).

Basic Arithmetic Story Problems
Basic arithmetic was assessed at time point 3 (eight items,
Cronbach’s alpha = 0.63) in small group settings. Four of the
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assessment tasks were verbally presented addition tasks (A boy
has three fishes. He gets two more fishes. How many fishes does he
have now?), in which the children needed to give their responses
by marking the correct number symbol among three alternatives
presented horizontally. With a similar procedure, the child was
asked to respond to four other tasks that were subtraction tasks
(A girl has five keys. She gives two keys away. How many keys
does she have now?). Each item was coded as zero (incorrect) or
1 point (correct) or as an empty cell (missing value). Because
this study focused on the prerequisite skills for arithmetic (NC,
MS, and VC), this task was included in post hoc analysis only
as a sum score of eight items for testing potential differences
in basic arithmetic between hypothetically meaningful profile
groups.

Data Analysis
First, item response theory (IRT) analysis was needed and
conducted for each of the eight number skill components: to
assess the items’ ability to measure the dimensions and cover
all the individuals’ skills level, to evaluate item difficulties, and
factor loadings. Model parameters were estimated using the
weighted least squares means and variance adjusted (WMLSV
estimator) estimation in Mplus version 7.11 (Muthén and
Muthén, 1998-2012). Goodness-of-fit was evaluated based on
the following criteria: chi-square test of model fit (χ2), root-
mean-square error of approximation (RMSEA), comparative fit
index (CFI), Tucker-Lewis index (TLI), and weighted root-mean-
square residual (WRMR). Values for well-fitting measurement
models were as follows: RMSEA < 0.06, CFI > 0.95, TLI > 0.95,
and WRMR < 0.09. To reduce the number of estimated
parameters for the sample size, parcels were formed using item
difficulty information from the IRT analysis. The classification
of individual items into the parcels was also based on content
(e.g., different types of verbal counting items, including counting
on, counting backward from a given number, and counting on
by twos, were mixed in each verbal counting parcel to add
balance among the three parcels). The goodness-of-fit with the
estimates RMSEA, TLI, CFI, and WRMR for different types of
latent number skill components are presented in the Appendix
along the item difficulty information and factor loadings per
dimension (NC_1, MS_1, and VC_2). The time points, when the
components were assessed the first time, were used because the
following components were formed from the originally presented
items (i.e., the following assessment points contained an equal

or smaller number of items compared to previous assessment
points). To better evaluate the validity of the NC and MS
components at time point 3 (because the reported Cronbach
alpha values were relatively small probably due to the small
number of items, 0.59 and 0.60, respectively), the factor loadings
for these dimensions (NC_3 and MC_3) are also presented
separately in the Appendix. Correlations between the eight latent
number skill factors are presented in Table 1 for the whole
sample (N = 440). Based on the measurement models, factor
scores were computed for use in the second step of the analysis.
Item difficulty, standardized factor loadings of each item, and the
parceling information are presented in the Appendix.

Second, LPA across a total of eight latent number component
factor scores was used to empirically identify potential skill profile
groups (RQ1). Mplus provides several statistical fit indices for
deciding the number of latent classes. In the present study,
individuals (N = 440) were classified into different latent profile
groups using the following criteria: the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), the
adjusted BIC, the entropy index, average posterior probabilities,
and statistical test results for the Lo-Mendell-Rubin Likelihood
ratio test (LMRL), Lo-Mendell-Rubin test (LMR), and bootstrap
likelihood ratio test (BLRT). As the three screening tools were
developed to differentiate the potential skill levels of poorly
performing children and their potential differences on separate
number skill components (RQ2), LPA was terminated when
the average posterior probabilities and class counts proposed
new groups of near-average- and/or high-average-performing
children with small class counts. Analyses for between-profile-
group differences in terms of preprimary education group, age,
and gender (RQ3) were conducted using the auxiliary option
in Mplus (Muthén and Muthén, 1998-2012). Finally, for testing
potential group differences in BA, the independent samples t-test
was used (RQ4).

RESULTS

Research Question 1
In LPA, the parsimonious number of classes was four with class
counts of 25 (the poorest-performing; 6%), 71 (low-performing;
16%), 147 (near-average-performing; 33%), and 197 (high-
average-performing; 45%) when all eight latent basic number
skill components were included in the analysis (Figure 2).

TABLE 1 | Correlations between early number skill component factor scores.

Factor 1 2 3 4 5 6 7

(1) Number Comparison (NC_1)

(2) Mapping Skills (MS_1) 0.695

(3) Number Comparison (NS_2) 0.723 0.637

(4) Mapping Skills (MS_2) 0.533 0.785 0.604

(5) Verbal Counting (VC_2) 0.556 0.710 0.706 0.616

(6) Number Comparison (NC_3) 0.616 0.713 0.715 0.677 0.725

(7) Mapping Skills (MS_3) 0.535 0.684 0.764 0.619 0.639 0.764

(8) Verbal Counting (VC_3) 0.516 0.710 0.665 0.612 0.907 0.733 0.684
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FIGURE 2 | Latent profile groups across three time points with standardized estimates for intercept of each latent factor. COMP(a), approximate number comparison
skill; NC(c), cardinal number concept skill; VC, verbal counting skill; COMP(e), exact number comparison skill; NC(o), ordinal number concept skill; 1–3, time points
1–3.

Average latent class probabilities for most likely latent class
membership were 0.999 for the poorest-performing group, 0.964
for the low-performing group, 0.954 for the near-average-
performing group, and 0.970 for the high-average-performing
group indicating very high stability of group membership. Model
fit indices for different class solutions are presented in Table 2.

Research Question 2
Based on confidence interval comparisons, all four profile groups
differed statistically significantly from each other on every latent
skill component over the preprimary education year (Table 3).
Further, the poorest-performing children performed equally
poorly in number comparison and mapping tasks while for the
other groups of children mapping task seemed to somewhat
be easier than number comparison task. The percentages of
accuracy were 35% for the poorest-, 51% for the low-, 79%
for the near-average-, and 97% for the high-average-performing
children in number comparison task. The respective percentages

were 38, 69, 93, and 98% for the group of poorest-, low-, near-
average-, and high-average-performing children in mapping.
That is why mapping skill seemed to most differentiate the
poorest-performing children from the other profile groups
(Figure 2). In more detail, the items that required mapping
between quantities and written number symbols and vice versa
were the most difficult for the poorest-performing children.
The percentages of correctly mapped numerical representations
in the poorest-performing group were as follows: 23% for
quantities to number symbols and vice versa and 54% for number
words to quantities and vice versa. The respective percentages
were 56 and 81% for the group of low-performing children;
90 and 96% for the near-average-; and 97 and 99% for the
high-average-performing children.

Research Question 3
There were no between-group differences in terms of
participating in preeducation instruction in a certain

TABLE 2 | Standardized fit indices for latent profile analysis over early number skill components.

No. of classes LL No. of free parameters AIC BIC Adj. BIC Entropy VLMR Adj. VLMR BLRT

2 −4040.83 25 8131.65 8233.82 8154.49 0.96 p < 0.001 p < 0.001 p < 0.001

3 −3661.77 34 7391.55 7530.50 7422.60 0.93 p = 0.054 p = 0.056 p < 0.001

4 −3429.83 43 6945.66 7121.39 6984.93 0.94 p < 0.001 p < 0.001 p < 0.001

5 −3313.62 52 6731.25 6943.76 6778.74 0.94 p = 0.085 p = 0.089 p < 0.001

6 −3238.58 61 6599.16 6848.45 6654.87 0.95 p = 0.225 p = 0.230 p < 0.001

LL, log-likelihood; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; Adj., adjusted; VLMR, Vuong-Lo-Mendell-Rubin test; BLRT, Bootstrap Likelihood-
Ratio-Test. The best-fitting solution is shown in boldface.
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TABLE 3 | Standardized estimates for intercepts with confidence intervals in four-class solution over early number skill components.

Latent group

Poorest-performing (25) Low-performing (71) Near average-performing (147) High average-performing (197)

Latent variable i (SE) CI (99%) i (SE) CI (99%) i (SE) CI (99%) i (SE) CI (99%)

Lower Upper Lower Upper Lower Upper Lower Upper

Time point 1

Number comparison −2.53 (0.27) −2.15 −1.351 −1.49 (0.20) −1.349 −0.71 −0.08 (0.12) −0.28 0.17 0.92 (0.06) 0.57 0.69

Mapping skills −6.08 (0.54) −3.17 −2.33 −2.46 (0.26) −1.40 −0.83 0.46 (0.11) 0.09 0.32 1.30 (0.10) 0.55 0.63

Time point 2

Number comparison −3.17 (0.29) −2.12 −1.40 −1.79 (0.16) −1.21 −0.78 −0.64 (0.12) −0.55 −0.17 1.52 (0.10) 0.76 0.93

Mapping skills −5.61 (0.56) −3.56 −2.36 −1.49 (0.25) −1.10 −0.47 0.38 (0.08) 0.11 0.30 0.96 (0.08) 0.45 0.56

Verbal counting −3.75 (0.32) −2.38 −1.77 −1.95 (0.21) −1.32 −0.84 −0.27 (0.14) −0.34 0.05 1.37 (0.11) 0.67 0.84

Time point 3

Number comparison −3.63 (0.33) −2.44 −1.69 −1.83 (0.18) −1.27 −0.81 −0.29 (0.10) −0.32 −0.01 1.33 (0.12) 0.64 0.87

Mapping skills −3.27 (0.32) −2.40 −1.55 −1.50 (0.13) −1.09 −0.71 −0.44 (0.10) −0.41 −0.11 1.28 (0.11) 0.64 0.90

Verbal counting −3.86 (0.34) −2.47 −1.79 −1.98 (0.20) −1.34 −0.85 −0.19 (0.13) −0.30 0.09 1.34 (0.09) 0.67 0.81

I, intercept; CIs, confidence intervals.

kindergarten group (n = 30). However, according to the
chi-square test with basic precursors, the high-average-
performing children were statistically significantly older (mean
age, 75.84 months, SE = 0.25) than the children in the three
other groups (the poorest-performing mean = 73.87 months,
SE = 0.78, chi-square = 5.90, p = 0.015; low-performing
mean = 74.04 months, SE = 0.48, chi-square = 11.28, p = 0.001;
near-average-performing mean = 74.69 months, SE = 0.31,
chi-square = 7.97, p = 0.005). Finally, there appeared to be
more boys within the poorest-performing group than in the
near- (chi-square = 6.85, p = 0.009) or high-average-performing
(chi-square = 7.18, p = 0.007) groups but not compared to the
low-performing group. To conclude, the poorest- and low-
performing profile groups did not differ in terms of kindergarten
group, age, or gender.

Research Question 4
Latent profile analysis method showed that the poorest- and low-
performing profile groups were unique. To confirm the result,
an independent-samples t-test was used to examine the potential
group difference in basic arithmetic. According to the t-test, the
poorest-performing children performed statistically significantly
poorer in basic arithmetic than the low-performing children
(the poorest-performing mean = 4.61, SD = 1.67; low-performing
mean = 5.89, SD = 1.70; t(92) = −3.14, p = 0.002, d = 0.45).

DISCUSSION

In the present study, latent profile analysis was used to identify
potential performance-level groups among 440 Finnish children
(6- to 7-year-olds) with distinct number skill profiles. The
performance levels in three number skill components, with
which fluent arithmetic skills have typically been predicted,
were assessed three times during the preprimary education

semester in September, January, and May. The components
were number comparison, mapping between different numerical
representations (quantities, number words, and number
symbols), and verbal counting.

The results of the present study revealed four types
of performance profile groups across number comparison,
mapping, and verbal counting skills. There was a statistically
significant difference in all number skill components between
the poorest- (6%), low- (16%), near-average- (33%), and high-
average-performing children (45%). Based on these results,
the poorest- and low-performing children seem to need acute
support for all early number skill components. In particular, the
poorest-performing children seem to need specific training for
number comparison and mapping skills. Especially, the task types
that required exact mapping of quantities with number symbols,
as well as number symbols with quantities were the most difficult
for the poorest-performing children. Instead, the percentages
of accuracy in tasks dealing with number words (number
word–quantity and number word–number symbol mapping)
were higher. Moreover, the poorest-performing children differed
statistically significantly from low-performing children in basic
addition and subtraction story problem-solving skills (d = 0.45).
The poor performance in the early number and story problem-
solving skills indicate a clear risk for arithmetical difficulties
especially among the poorest-performing children.

Aligned with previous literature, the LPA in the present study
suggests that 96 children (22% of the total sample) performed
less well than the near- or high-average-performing children. Of
these 96 children, 71 formed one unique profile group (low-
performing children, representing approximately 16% of the
total sample), and 25 formed another unique profile group (the
poorest-performing children, representing approximately 6% of
the total sample) with high stability of group membership. These
proportions (16 and 6%) seem somewhat to be in line with
previous findings that children struggling with math skills could
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have different types of growth rates if their initial performance
level varies between the 11th and 25th percentiles or falls
below the 10th percentile (Murphy et al., 2007; Morgan et al.,
2009, 2011; Salaschek et al., 2014). This study offers support
for this phenomenon by showing that these performance-level
differences already exist before formal schooling. The findings
are also in line with previous literature (concerning performance
levels) although the present study used only very basic number
skill components instead of school mathematics (Murphy et al.,
2007; Morgan et al., 2009, 2011; Salaschek et al., 2014). Finally,
interestingly, the proportion of the poorest-performing children
(6%) found in this study was comparable to the estimated
prevalence of children with MD who are typically diagnosed
as having deficits in arithmetic fluency at older age levels
(varying between at 3–7, 5–7, and 5–8%; Landerl and Moll, 2010;
Butterworth et al., 2011; Geary, 2011).

The findings also suggest that the poorest-performing children
have serious deficits in all early number skills. Further, the
percentages of correctness were at the same level within
the poorest-performing children in number comparison (35)
and in mapping (38). However, the other groups seemed
to perform better in mapping than in number comparison
task. The percentages of correctness were 69, 93, and 98
within the low-, near-average-, and high-average-performing
children, respectively. In number comparison, the corresponding
percentages within the low-, near-average-, and high-average-
performing children were 51, 79, and 97, respectively. That is why
the mapping task differentiated the poorest-performing children
from the other groups the most.

In more detail, in mapping task, the poorest-performing
children seemed to have more serious deficits than low-
performing children especially in matching written number
symbols to the corresponding quantities and vice versa. The
poorest-performing children showed less serious deficits when
verbal number words were included in the mapping tasks. It
follows that these findings cannot be explained (at least not
fully) by weak dot counting skills or by verbal deficits, as a
comparable performance in that case would have been found
in written symbol–quantity and verbal number word–quantity
mapping tasks. Moreover, the number word–written symbol
mapping task was easier for the poorest-performing children
than the written symbol–quantity task. This finding lends further
support to the suggestion that the most serious deficits are
in finding associations between written number symbols and
quantities and thus, support the theoretical hypothesis of children
with MD having deficits in accessing numerical meaning from
written number symbols (De Smedt and Gilmore, 2011). This
was supported also by the fact that tasks dealing with number
words were easier for the poorest-performing children. That is
why number sense (or module) deficit was not supported in our
study.

From the developmental perspective, these findings are in
line with previous studies suggesting stable and even increasing
differences between the unique poorest- and low-performing
profile trends (Murphy et al., 2007; Morgan et al., 2009, 2011;
Geary, 2011; Wong et al., 2014). Additionally, the mapping tasks
operated with number words are developmentally more familiar

to children at first than the tasks requiring understanding of
the direct quantity–symbol relationship without verbal support
(Dehaene, 1992; von Aster and Shalev, 2007; Geary, 2013). To
link these findings to longitudinal studies focusing approximately
on the same age level, this study showed that children’s age is
positively associated with performance level as was shown in
Jordan et al.’s (2006) longitudinal study. Older children may have
more experience with numbers and (numerical) language than
their younger age peers. Therefore, the differences in readiness to
benefit from early instructions and participate in peer discussions
can be greater between the age levels at the beginning of formal
schooling. In contrast to previous findings (for a review, Jordan
et al., 2006, 2007; Devine et al., 2013), boys were overrepresented
among the low-performing children in the present study in
comparison to near- and high-average-performing children, but
the poorest- and low-performing groups did not differ by age or
gender. The contradictory findings concerning gender differences
in mathematics might be due to the methods used for testing
differences (Devine et al., 2013). In general, in population-based
studies, there are no clear gender differences in the mean level
(for a review, see Hyde et al., 2008; Lindberg et al., 2010), but
a difference can be found among lower- or higher-performing
children (Devine et al., 2013; Stoet and Geary, 2013).

Implications for Educational Practice
The present findings suggest that theoretically valid screening
tools have potential to identify children in need of extra
support in early number skill components. Moreover, by
assessing number comparison, mapping, and verbal counting,
it is possible to identify a subgroup of children, with a
corresponding prevalence rate of MD, whose poor number skill
performance seems to be stable during the whole preprimary
education year. The findings suggest that educational practices
for early identification of MD risk and early number skills
intervention should focus on the most basic skills, especially on
quantity-number symbol mapping skill (and vice versa) which
most differentiates the poorest-performing children from low-
performing children. The stability of poor performance levels
found throughout preprimary education indicates a need for
systematic progress monitoring of number skill development, as
well as planning and offering appropriate mathematical support
at the very beginning of formal schooling or perhaps earlier.

Limitations
Deficits in working memory, language, and visuospatial skills
(Raghubar et al., 2010; Geary, 2011), processing speed (Willcutt
et al., 2013), and certain domains of executive functioning (Friso-
van den Bos et al., 2013; Price and Fuchs, 2016; Price and Wilkey,
2017) are also found to be associated with arithmetic skills
or math performance more generally. Thus, in future studies,
by controlling for general domain skills (see also Kaufmann
et al., 2013) and task-specific requirements (De Smedt et al.,
2013; Price and Wilkey, 2017), we could better understand the
potential qualitative differences between the poorest-performing
and low-performing children (Geary, 2011). We also could
better identify those children (most) at risk for MD and
likewise, plan meaningfully targeted support for individual needs
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(Landerl et al., 2009; Rubinsten and Henik, 2009; Butterworth
et al., 2011). Unfortunately, in our study administered by
teachers, we could not measure these general cognitive skills.
We only tried to minimize the demand of executive functioning
skills by using a certain type of assessment procedure (e.g.,
small group sessions, permission to repeat the instructions, only
a cross-marking requirement in responses, and non-speeded
tasks).

The study tools were developed and tested for practical
use. The aim was to develop a set of screeners that could
first identify (alert) children in need of extra evaluation and
immediate early number skill support (at the beginning of
pre-primary education) and then evaluate the progress (in winter
and spring times). For this reason, a larger amount of basic
skills’ items were included into the first screener and then the
amount of these items were reduced for being able to add
theoretically and developmentally meaningful skills’ items into
the following screeners (winter and spring) without increasing
the assessment effort. This causes three clear limitations for this
study. First, reducing the number of items and by changing
the assessed skill components we were not able to analyze
the number skill development comprehensively (LPA was used
instead of growth curve models). Second, by reducing the
number of items, some of the sub-skill dimensions showed
low reliability values although the reliability for the three
screeners as a whole were relatively high (Cronbach alpha
values being 0.91; 0.88; and 0.84 respectively). That is why
IRT- and factor analysis were conducted for showing the
validity of skill components. Third, we were not able to
measure all important skills related to arithmetic development.
For instance, number line estimation task (as one of the
critical measures) would require careful interpretations of the
correctness and would therefore be difficult to conduct in
screeners meant for practical use. Further, to assess non-symbolic
comparison skills with a paper-and-pencil task (which would
have been the case in our study), well-controlled items would
have been needed (controlling for instance for area, ratio,
distance, and response time). However, as they are important,
both skills could be individually assessed for example after a
classroom-based screening situation for confirming the skill-
levels.

One main criticism of using LPA is that the proposed number
of classes may not refer to existing subpopulations within the
population (Bauer and Curran, 2004). However, in this study,

the best-fitting solution (four profile groups) and the alternative
solutions (five or six profile groups) proposed one clear group
of the poorest-performing children, in which the latent early
number skill components differ most from the other skill-
level groups. Thus, findings concerning the poorest-performing
children seemed reliable.
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The aim of the present study was to extend the previous intervention research in math
by examining whether elementary school children with poor calculation fluency benefit
from strategy training focusing on derived fact strategies and following an integrative
framework, i.e., integrating factual, conceptual, and procedural arithmetic knowledge. It
was also examined what kind of changes can be found in frequency of using different
strategies. A quasi-experimental design was applied, and the study was carried out
within the context of the school and its schedules and resources. Twenty schools in
Finland volunteered to participate, and 1376 children were screened in for calculation
fluency problems. Children from second to fourth grades were recruited for the math
intervention study. Children with low performance (below the 20th percentile) were
selected for individual assessment, and indications of using counting-based strategies
were the inclusion criteria. Altogether, 69 children participated in calculation training
for 12 weeks. Children participated in a group based strategy training twice a week
for 45 min. In addition, they had two short weekly sessions for practicing basic
addition skills. Along with pre- and post-intervention assessments, a 5-month follow-
up assessment was conducted to exam the long-term effects of the intervention.
The results showed that children with dysfluent calculation skills participating in the
intervention improved significantly in their addition fluency during the intervention
period, showing greater positive change than business-as-usual or reading intervention
controls. They also maintained the reached fluency level during the 5-month follow-
up but did not continue to develop in addition fluency after the end of the intensive
training program. There was an increase in fact retrieval and derived fact/decomposition
as the preferred strategies in math intervention children and a decrease of the use of
counting-based strategies, which were the most common strategies for them before
the intervention. No transfer effect was found for subtraction fluency.

Keywords: intervention, calculation fluency, calculation strategies, derived fact, mathematical learning difficulties
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INTRODUCTION

Arithmetic calculation is a basic academic skill that, along with
reading and writing skills, forms the foundation for academic
learning and practical skills of daily life. While there are some
national and cultural differences, some studies suggest that
approximately 20% of people struggle with basic numerical skills
(e.g., Bynner and Parsons, 1997). Studies in several countries
suggest that about 5–7% of the population have severe specific
mathematical learning difficulties (MD) (Shalev et al., 2005;
Butterworth et al., 2011; Geary et al., 2012), although the
figure depends on the exact criteria used for diagnosing MD
(Kaufmann et al., 2013). In general, the term Mathematical
Learning Difficulty (MD) is used broadly to describe a wide
variety of deficits in math skills, such as problems in the
estimation and processing of quantity and in using the mental
number line, in transcoding between number words, digits and
quantities or problems in understanding the Base-10 number
system or fluently solve simple arithmetic problems and instead
use immature counting strategies (e.g., Gersten et al., 2005). It has
been proposed that arithmetical fact retrieval deficit resistant to
instructional intervention might be a useful diagnostic indicator
of arithmetical forms of MLD (Geary, 2004). In the present study
we will focus on these arithmetic dysfluency problems.

Difficulties in arithmetic can have serious long-term
consequences for later school achievement and limit one’s
societal and occupational opportunities in adult life (Bynner
and Parsons, 1997; Parsons and Bynner, 2005). Individuals
with numeracy difficulties tend to leave school early, frequently
without qualifications, and have more difficulty than those
without such difficulties in getting and maintaining full-time
employment (Bynner and Parsons, 1997; Parsons and Bynner,
2005). Gross et al. (2009) estimated that mathematics learning
problems reduce an individual’s earnings by at least 10%, even
after controlling for socio-economic status and other factors.
Effective tools for support should be available at schools to
provide adequate basic skills and to diminish later difficulties in
basic mathematical skills, and thus, prevent long-lasting negative
impacts.

Dysfluency in arithmetic calculation, i.e., difficulty in fact
retrieval is the most typical feature of MDs. Children with
dysfluency problems often rely on slow and error-prone counting
strategies, such as counting all or counting on from the first
number (Geary, 2004). They show problems in shifting from
immature counting strategies to more advanced strategies, such
as direct and fast fact retrieval, decomposing the problem
into smaller facts (7 + 6 → 7 + 3 = 10, 10 + 3 = 13),
or deriving unknown arithmetical facts from known facts
(7 + 6→ 6 + 6 = 12→ 7 + 6 = 12 + 1 = 13), despite several
years of formal schooling. The differences in math performance
between typically performing children and children with MDs
can be striking. Even young primary school children can often
retrieve answers from memory or derive and predict unknown
arithmetical facts from known facts without direct teaching
(Dowker, 1998, 2014; Canobi, 2005), whereas children with
difficulties may not learn to use these more advanced strategies
despite practicing arithmetic at school for several years and

despite having a normal cognitive capacity. Previous intervention
research aimed at enhancing calculation fluency in children with
MDs has generally focused either on training fact retrieval itself
or more efficient counting-based strategies, such as counting on
from the largest number, (e.g., Christensen and Gerber, 1990;
Tournaki, 2003; Fuchs et al., 2006), and thus the effectiveness
of training MD children in derived fact and decomposition
strategies remains unclear.

The development of calculation fluency is a multidimensional
process. According to the overlapping waves theory (Siegler,
1996), one dimension influencing the development of calculation
fluency is the frequency of using different strategies: during
the typical development of calculation, more efficient strategies
(such as fact retrieval and deriving/decomposing) become more
dominant. According to this view, difficulties in calculation
fluency involve the infrequent use of efficient calculation
strategies and the frequent use of slow and error-prone counting-
based strategies. Difficulties in calculation fluency and in making
the shift to more frequent use of more efficient strategies can
stem from several sources. First, it has been suggested that rapid
access to long-term memory is central for the ability to retrieve
arithmetical facts from memory, and that difficulties in this
area constitute the key deficit underlying calculation dysfluency
among children with MDs, making it difficult for them to use
the most efficient strategies. This deficit is particularly marked
regarding learning multiplication tables, which is the arithmetical
operation mostly relying on arithmetical fact retrieval, and it is
also required for fluent addition and subtraction.

The second key deficit might be related to conceptual
knowledge, which enables individuals to determine the answer to
an unknown problem using some known fact, i.e., using derived
fact strategies and/or dividing the problem into smaller sums
that are easier to solve or retrieve (decomposition), and thus
can provide effective back-up strategies when fact retrieval is not
possible. Dowker (2009) has suggested that use of these derived
fact and decomposition strategies might be an indication of the
extent to which children have an explicit understanding of the
connections between individual number facts and/or between
different arithmetical operations. Thus, a lack of conceptual
understanding might be one reason children with MDs do not
typically use the more advanced strategies but rely mostly on
slower counting-based strategies, such as to start counting from
the first addend in the problem (COF/Counting on from the
first number) rather than the more sophisticated strategy, i.e.,
Counting min strategy, where counting starts from the larger
addend. The third deficit is related to the mastery of rules and
calculation procedures, i.e., Procedural knowledge (Geary, 1993),
which means knowing how to use certain arithmetic strategies,
such as “borrowing: in subtraction.”

This classification of deficits is in line with the theory that
arithmetical knowledge consists of at least three different types
of knowledge: factual, conceptual, and procedural (Girelli et al.,
2002). Deficit in one type of knowledge might be compensated
when using other knowledge as well as by learning how to
integrate these knowledge. Difficulty in retrieving arithmetical
facts from memory is one of the most consistent findings
in the MD literature (e.g., Geary, 1993; Jordan et al., 2003;
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Cirino et al., 2007; Geary et al., 2007), and this difficulty
is known to be rather persistent. Thus, including two other
components, procedural and conceptual knowledge, for training,
in addition to fact retrieval, could contribute to the development
of compensatory mechanisms for children with difficulties in
arithmetical calculation (Girelli et al., 2002).

In recent times, a wide variety of educational interventions
have been developed for helping children with difficulties of
varying severity in mathematics (Chodura et al., 2015; Dowker,
2017). They have targeted a wide variety of components and
subcomponents of arithmetic and have been flexibly adapted
to individual children, e.g., Catch Up Numeracy TM (Dowker
and Sigley, 2010; Holmes and Dowker, 2013) and Numbers
Count (Torgerson et al., 2011). However, it is still true to say
that most educational interventions thus far have targeted just
one component, most commonly factual knowledge trained by
drilling (e.g., Christensen and Gerber, 1990; Hasselbring et al.,
1988; Fuchs et al., 2006). Some more recent studies have, however,
compared two or more interventions focusing on different
components, and thus using different methods of training, e.g.,
drilling (factual knowledge) with procedural strategy training
(with or without conceptual knowledge) versus more general
procedural training with multi-digit numbers (Powell et al.,
2009), or drilling alone versus a procedural strategy training alone
versus the combination of approaches (Woodward, 2006; Fuchs
et al., 2008; for review, see Fuchs et al., 2010).

Findings as to the effectiveness of these approaches are mixed.
Some of the studies suggest that children with MDs benefit
more from strategy instruction or a combination of strategy
training and drilling instead of instruction through pure drill
and practice, which targets only factual knowledge (Tournaki,
2003). In the study by Tournaki (2003), single-digit addition
facts were taught through strategy instruction as well as drill
and practice. The results showed that second graders with MDs
benefited more from strategy instruction than from instruction
through drill and practice (Tournaki, 2003), whereas typically
developing controls improved significantly both in the strategy
and the drill-and-practice conditions compared to the control
condition. However, these two intervention conditions also
differed regarding feedback, in that immediate feedback was
provided in the strategy condition and delayed feedback in drill-
and-practice conditions, so that is difficult to separate the effects
of the differences in feedback from those in training (see Powell
et al., 2009). In an intervention study by Woodward (2006)
with a group of fourth graders (9–10 year olds) with a wide
ability range in arithmetic, a combination of strategy training
and drilling on facts led to greater improvement in calculation
fluency than drilling alone. In contrast, Powell et al. (2009)
did not find any differences in post-test performance between
children with MDs who received just fact retrieval training and
those who received a combination of fact retrieval and strategy
instruction among children with MDs. Both intervention groups
performed significantly better at the post-test than a business-as-
usual control group.

The concept of integrating all three kinds of arithmetical
knowledge has been applied in few single-case intervention
studies. Case studies with adult (Girelli et al., 2002) and with

child (Koponen et al., 2009) have suggested that if arithmetical
fact retrieval is severely impaired and resistant to intervention,
a better way of improving children’s calculation skills might be
to train them in more efficient calculation strategies that rely
on procedural and conceptual knowledge. The main principle of
both studies was that rather than training children in arithmetical
facts by rote learning, the aim was to enable them to use
conceptual and procedural knowledge to construct calculation
strategies based on meaningful relationships between the known
and unknown arithmetical facts. This is important, both because
derived fact strategies are themselves an important aspect of
arithmetical reasoning (Dowker, 1998, 2014; Canobi, 2005; Star
and Rittle-Johnson, 2008) and because children with difficulties
in fact retrieval may be able to use such strategies to compensate.
Although rigid counting-based strategy use characterizes many
children with MDs, some studies suggest that the ability to use
derived fact strategies is a relative strength for some low attainers
in arithmetic (Russell and Ginsburg, 1984; Dowker, 2009); it may
be possible to capitalize on this in enabling them to develop and
use compensatory strategies. In Koponen et al. (2009), single-
case study, a child was trained to use known arithmetical facts
to derive other facts by comparing the magnitude of numbers
presented in one arithmetical problem to those of the other
problem. He was enabled to determine, based on this comparison,
and his previous knowledge of arithmetical operations and
principles, how the answers of the two arithmetical problems
differed in magnitude (e.g., 5+ 5 = 10, 5+ 6 = ?). The procedural
training that he received was linked to his existing conceptual
knowledge of numbers and arithmetical operations as well as
some familiar arithmetical facts, such as 5+ 5 = 10.

Because there are only a few studies, mostly focusing on
single cases, more evidence is needed regarding the effect of
strategy intervention integrating the three types of arithmetical
knowledge. Besides individually tailored remediation, there is a
need for intervention tools and programs that can be effectively
applied in small groups or even in classrooms to support
calculation fluency among children to whom curriculum-based
instruction and training at school is not sufficient to provide
adequate calculation skills. This would contribute to such an
intervention program becoming sustainable in a school long
term, independently of a concurrent research program.

Another gap in the existing intervention literature is that
many previous studies focusing specifically on strategies have
focused on a rather limited set of strategies emphasizing those
usually learned at early phase of typical strategy development.
For example, in a study by Tournaki (2003), strategy training
included teaching the minimum addend strategy, in which the
student determines the larger addend and counts on from that
cardinal value the number units specified by the smaller addend
(e.g., 2+ 6, students start from 6 and adds two more). Fuchs et al.
(2009) carried out an intervention in which children practiced
n + 0, n + 1, n + 2 strategies utilizing counting sequence
and number knowledge, and although the doubles (2 + 2;
6 + 6 etc.) were trained as well, the focus was on “know it or
count it.” There have been rather few intervention programs
emphasizing alternative calculation strategies, such as derived
fact strategies, among children with poor calculation fluency.
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There are, however, several studies of interventions involving
training in derived fact strategy use, which have tended to yield
positive short-term results, but most such studies have either been
embedded in practice rather than research and have, for example,
lacked control groups (Thornton, 1978; Steinberg, 1985; Adetula,
1996; Askew et al., 2001) or have included derived fact strategy
training as just one of many components of an intervention
program (Dowker and Sigley, 2010; Holmes and Dowker, 2013;
Bakker et al., 2015), making it hard to assess the specific impact
of derived fact strategy training.

One study that did compare derived fact strategy training
with procedural training was carried out by Caviola et al. (2016).
They divided 219 third and fifth graders into three approximately
equal groups: a computer-based (derived fact) strategic training
group in mental addition, a procedural training group in mental
addition, and a business-as-usual control group. Both forms
of training had positive effects on addition post-tests, with the
strategic training being more effective with the third graders, and
the procedural training with the fifth graders. This study did not,
however, focus on children with MDs.

Moreover, in previous studies calculation outcome measures
have mainly involved calculation fluency and accuracy, not the
frequency of use in different strategies. Thus, it does not allow
for concluding which type of intervention promotes the use of
which strategies (Fuchs et al., 2010). Finally, most of the above-
mentioned intervention studies have not examined whether the
intervention effect is maintained over time, i.e., whether training
enhances the learning only temporarily or whether there are long-
term benefits.

Present Study
The present study extends the previous intervention research
in math by examining whether children with poor calculation
fluency benefit from derived fact strategy training based on an
integrative framework (i.e., integrating factual, conceptual, and
procedural knowledge training) administered at a school setting
in small groups. The long-term benefits of the intervention
were assessed 5 months after the intervention ended. The
development of the Math intervention group was compared with
two different kinds of control groups, one receiving similar kinds
of intensive support provided by a special education teacher
and implemented in small groups but in a different context
(reading intervention group). Another control group consisted
of classmates, who were performing the “next poorest” in the
classroom, matched for gender (if possible) and who had the same
classroom teacher as the Math intervention group and received
business-as-usual instruction at school. Both calculation fluency
and changes in the frequency of using different kinds of strategies
were assessed. The specific research questions were:

(1) Does explicit strategy training integrating factual,
conceptual, and procedural knowledge improve the
calculation fluency of addition among children with poor
calculation fluency?

(2) Does the calculation fluency development of the explicit
strategy training group differ from that of a control
group receiving a similarly intensive reading intervention

(controlling for additional instructional attention and peer
group support) or from the development of business-
as-usual classmate controls with low performance in
calculation fluency?

(3) Does the explicit strategy training integrating factual,
conceptual, and procedural knowledge also change the
frequency of use in different strategies?

MATERIALS AND METHODS

Participants
This study was part of a longitudinal Self-efficacy and Learning
Disability Intervention research project (SELDI; 2013–2015)
focusing on elementary school children’s self-beliefs, motivation,
and reading and math fluency skills, and in support of children
with reading or math difficulties. The data for the present
study were collected between November 2013 and October 2014.
A total of 20 schools in urban and semi-urban areas in Central
and Eastern Finland volunteered to participate, from which
the classes and children were recruited for this study. Written
consent was obtained from the guardians of the participants. The
research procedure was evaluated by the University of Jyväskylä
Ethical Committee.

The original sample consisted of 1,327 children (638
girls, 689 boys) from grades 2 to 5. Of the participants,
178 (13.41% of the original sample) were second graders
(Mage = 8.35 years, SD = 0.32 years), 471 (35.49%) were third
graders (Mage = 9.34 years; SD = 0.31 years), 383 (28.86%) were
fourth-graders (Mage = 10.40 years; SD = 0.35 years), and 295
(22.23%) were fifth graders (Mage = 11.39 years; SD = 0.36 years).
A calculation strategy training was provided for children from
second to fourth grades.

A quasi-experimental design was applied, as the school,
classes, and teachers volunteered to participate, written consent
from parents was required to participate, and the study was
carried out within the context of the school and its schedules and
resources. Screening was conducted according to both reading
and calculation fluency, and volunteer teachers were randomized
to have either reading or arithmetic training group with or
without specific self-efficacy feedback. Approximately half of the
children participating in the Math intervention received self-
efficacy feedback, following the intervention manual, and the
other half received the usual feedback given by special education
teacher also providing the strategy training. Both groups had
identical strategy training. These two intervention groups were
balanced according to the calculation fluency in the pretest. The
two groups neither differed in addition fluency at any assessment
point nor in development (p < 0.05) and were thus treated as a
unitary group in the present study.

Screening Procedure for Intervention
Screening for the calculation strategy intervention included
two steps. First, all participants from the original sample were
assessed in terms of their calculation fluency using group-
administered timed calculation tasks (Koponen and Mononen,
2010a, unpublished). Children from grades 2 to 4 whose
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performance was at or below the 20th percentile in the calculation
fluency task were then selected for individual assessment.
Individual assessment included 20 single-digit addition items
(2 + 8, 5 + 4, 9 + 6, 7 + 3 etc.) presented one by one
in a game-like situation. Children were asked to respond as
quickly as possible to each item. Only for correct responses
given within 3 s, a point was scored. Inclusion criteria for the
intervention were that children showed dysfluency, both in the
group-administered calculation fluency task (i.e., performance at
or below the 20th percentile) and in the individual assessment
situation requiring fast fact retrieval or the efficient use of back-
up strategies (slow or incorrect response at least 30% of the
simple addition items). Altogether, 69 children met this selection
criteria and were included in the present analyses. An additional
six children with low calculation fluency, but who did not meet
the selection criterion, participated in the Math intervention for
practical reasons (i.e., to be able to form a group) but were not
included in the analyses.

Control Groups
In the present study, the development of the Math intervention
group during the baseline, intervention, and follow-up periods
was contrasted with the development of the reading intervention
controls and the classmate controls. To form the classmate
control groups (N = 69), one child from the class of each
participant of the Math intervention was selected based on having
the next-lowest addition fluency score.

Classmate controls were matched for gender (when
possible), and they received business-as-usual support, including
special education usually provided in the school. The reading
intervention group consisted of children with reading fluency
deficits who received the intervention as part of the SELDI
project in small groups during the same period (N = 85; for
details, see Aro et al., in press).

Intervention Design and Procedure
We applied an intervention design with two pre-, one post-,
and one follow-up assessment. Pre-intervention assessments
were conducted in November and January. The 12-week-long
interventions started in the end of January. A post-intervention
assessment was conducted right after the intervention ended
in April, and a follow-up assessment 5 months after ending
the intervention in the end of September or in the beginning
of October. As an exception, the forced fact retrieval and
arithmetic fluency tasks were not repeated in January at the
second pre-intervention assessment, and strategy use in free-
choice condition was assessed at second but not the first pre-
intervention assessment.

All calculation fluency tasks together with reading fluency
tasks, non-verbal reasoning tasks, self-efficacy and other
questionnaires were administered in groups and conducted
during three assessment sessions (30–45 min each) at pre1-,
post- and follow-up assessments. At the second pre-intervention
assessment shortened assessment battery, including addition and
subtraction fluency tasks, was administered during one group
assessment session. Group assessment was administered before
individual assessment at each time point.

Measures
Calculation Fluency Measures
Basic addition and arithmetic fluency were assessed
using one individually administered game-like assessment
task administered individually, as well as three group
paper-and-pencil tests with time limits.

The individual game-like assessment used a no-choice
technique to assess addition fluency. The children were shown a
card with an addition problem on it and were required to answer
correctly less than in 3 s to win the card. For the sake of simplicity,
we call this test the forced fact retrieval task and the outcome
variable fact retrieval ability, as has been done in several previous
studies (Russell and Ginsburg, 1984; Siegler and Shrager, 1984;
Jordan and Montani, 1997; Geary et al., 2000, 2012; Jordan et al.,
2003). However, at the same time we must accept the fact that
other fast back-up strategies are also possible despite the short
time allowed for solving the problem, e.g., derived fact strategies.
As a screening and near transfer task children were given a 2-min
group test of addition fluency (Koponen and Mononen, 2010a,
unpublished), which consisted of 120 items with addends smaller
than 10. As a far transfer task, children were given a similar
subtraction test (Koponen and Mononen, 2010b, unpublished)
consisting of 120 items with answers in the range of 1 to 9 and
2-min time limit. Another far transfer task was the three-minute
Basic Arithmetic test (Aunola and Räsänen, 2007), which consists
of 30 single-digit and multidigit addition, subtraction, division,
and multiplication items. In each test, one point was given from
all correctly solved items, and the sum score was counted for each
test. Correlation between addition, subtraction and arithmetic
tasks in original sample varied from 0.74 to 0.85.

Strategy use in a free-choice condition was assessed with 12
addition items in a similar manner as in the forced fluency task
with the exception that children were instructed to solve each
addition item in a way that is best for them, i.e., the way that
will get the correct answer as quickly as possible. The response
time was measured, strategy use was observed, and children were
asked to describe/show how they calculated if this was unclear.
Strategies were classified into four groups. If a child answered
correctly within 3 s and without any signs of using counting,
the strategy was classified as fact retrieval. If a child’s response
time was over 3 s but no signs of using a counting strategy
were observed or reported or the child reported that he/she used
10 pairs, doubles, or some other known arithmetical fact as a
help or used a decomposition strategy, the strategy was classified
as derived fact/decomposition. If the child’s response time was
3 s or more and if the child reported or demonstrated the use
of counting, the strategy was classified as mental counting or
counting aloud, depending on whether s/he produced number
words silently or aloud.

Background Measures
Non-verbal reasoning was assessed in a group situation using
Raven’s Colored Progressive Matrices (CPM; Raven et al., 1999).
The CPM comprises 36 items divided into three sets of 12 (set
A, Ab, and B). Within each set, items are ordered in terms
of increasing difficulty. Additionally, vocabulary was assessed
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individually using the Vocabulary subtest from the Wechsler
Intelligence Scale for Children-IV (WISC-IV; Wechsler, 2010)
with Finnish normative data. In this task words of increasing
difficulty are presented orally, and children are required to
define the words. According to test manual Cronbach’s alpha
for 8–11 years old varied from 0.83 to 0.87. Visuo-spatial skills
were assessed using the Block Design subtest of the WISC-IV
(Wechsler, 2010). In this test, the individual is presented with
identical blocks with surfaces of red, surfaces of white, and
surfaces that are half red and half white. Using an increasing
number of these blocks, the individual is required to replicate a
pattern that the examiner presents to them—first as a physical
model, and then as a two-dimensional picture. The number of
blocks required to match the presented models increases, and
the patterns become increasingly difficult to visually dissect into
components. According to test manual Cronbach’s alpha for 8 to
11 years old varied from 0.73 to 0.76.The standardized scores of
each test are presented in Table 1.

Intervention Program
In the present intervention study, a shortened version of the
SELKIS intervention program (Koponen et al., 2011) was used.
This program focuses on derived fact strategy training and
aims at helping children to discover more efficient calculation
strategies using their existing knowledge of number sequences,
number concepts, and arithmetical facts (conceptual knowledge).
Children participated in the Strategy training group sessions
twice a week for 45 min. The number of participants in the groups
varied between 4 and 6. In addition, they had two short weekly
Gaming sessions for practicing basic addition skills by playing
math games and got a worksheet for homework including similar
kinds of additions practiced during strategy sessions.

Strategy Training Group Sessions
Addition strategies were trained twice a week in group
sessions conducted by special education teacher following the
intervention manual. The contents and order of strategy training
is presented in Table 2. Each session started with checking the
homework and followed by instruction sessions, exercises, and
closing. Each session consisted of one or two, about 10–15 min’
long, strategic instruction sessions as well as of short games and
exercises. During the instruction teacher modeled and discussed
with children about the magnitude relations between numbers
and how counting sequence and addition are linked with this
knowledge of number relations (two steps forward in counting
sequence – number that is two larger – x + 2). Moreover,
children were instructed to pay attention and compare how
arithmetical facts are related according magnitude (5 + 5 and
6+ 5, six is one more than five, six and five makes one more than
five and five). These discussions aimed at guiding the children
to discover new strategies based on conceptual understanding.
Intervention program manual instructed teachers to encourage
children to verbalize their thinking and strategies as well as
to point out that use of several strategies is possible and each
child should find the fastest strategies for him or herself. After
instruction sessions children practiced calculation strategies by
playing familiar games embedded with arithmetical contents,

such as a board game with doubles and doubles +1, Bingo, card
games with ten pairs.

Gaming Sessions
Short game-like practicing sessions were arranged twice a week
each lasting about 15 min. The Gaming sessions were organized
and instructed by school assistant or classroom teacher who
followed the intervention manual. During these sessions children
played games that were already introduced during the Strategy
training sessions (card games, board games, etc.) and the aim was
to provide repetitions in using addition strategies and achieve
fluency. After each session children got a marking (sticker or
stamp) to their “game chart.”

Teacher Training and Fidelity
Before the intervention periods, researchers instructed all
participating teachers on how to implement the intervention
program and provided them with detailed session-by-session
manuals. Two 3-h-long training sessions were organized
including the theory of calculation fluency development as well
as how to implement intervention in practice using the program
manual. After the third intervention session, researchers called
to each teacher to ensure that manuals were followed, and main
principals of the programs understood. Moreover, two meetings
were arranged during the intervention to share experiences and
ensure that all the teachers had common understanding of the
key points. Teachers also filled a checklist type of diary, marking
the completed intervention sessions and noting any exceptions
in intervention activities or attendance of participants. There
was altogether 128 activities within 24 strategy training sessions
(introduction of strategies, games/exercises, starting and closing
activities) and the average amount of activities completed by
teachers without exceptions (e.g., didn’t have time enough) was
97%. The attendance percentage of individual children varied
typically from 92 to 100% in a group meaning that in most of
the groups one child was not absent more than 2 times out of
24 intervention sessions. However, there were four children that
missed 4 out of 24 intervention sessions, one missed 5 and one 7.
All these children were included in the analyses.

Data Analyses
The mean values, mean standard scores and standard deviations
of the background variables (Age, Raven’s CPM, Block Design,
Vocabulary) were calculated. The differences between the
Math intervention group and two control groups (Reading
intervention controls and Business-as-usual controls) were
analyzed by means of independent-samples t-tests. Gender
differences were analyzed using Chi-square tests. The means
and standard deviations for calculation fluency measured
variables (fact retrieval, addition fluency, subtraction fluency, and
arithmetic fluency) were calculated at each assessment point, and
the mean differences between the math intervention group and
classmate controls were tested using independent-samples t-tests.
Differences between the Math intervention group and Reading
group were analyzed using univariate analysis of covariance
(ANCOVA) using age and gender as the covariate.
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TABLE 1 | Descriptive statistics of background variables for the math intervention, reading intervention and business as usual controls.

Math intervention Reading intervention Controls

N 69 85 69

Gender (boys%) 48% 66%∗ 49%

Age (M) 113.51 123.99∗∗∗ 113.21

SD 10.65 11.48 12.5

Ravena (M) 8.74 9.04 9.67

SD 3.81 3.27 3.00

Block designa 8.65 9.16 NA

SD 3.22 3.15 NA

Vocabularya 7.89 7.65 NA

2.75 3.34 NA

aStandard score (Mean = 10, SD = 3). NA, not available. ∗p < 0.05, ∗∗∗p < 0.001.

The intervention effect in the four outcome measures (fact
retrieval, addition fluency, subtraction fluency, and arithmetic
fluency) was first analyzed in the Math intervention group
using univariate ANOVA for repeated measures (repeated-
measures ANOVA) with time (pre-test1 vs. pre-test2 vs. post-
test vs. follow-up) as a within-subject factor. The partial eta-
square was calculated as a measure of effect size. In a second
analysis, the progress of the Math intervention group was
compared with that of the Business-as-usual controls, and group
was added as a between-subjects factor. Because there were
statistically significant differences in age and gender between
the Reading and Math intervention groups, age and gender
were used as covariates and univariate analysis of covariance
for repeated measures (repeated-measures ANCOVA) as the
analysis method. Where an interaction effect was found, planned
contrasts on pre-, post-, and follow-up tests scores were
conducted.

RESULTS

Descriptive Statistics
The means and standard deviations of the age and standardized
scores for the CPM, Block Design, and Vocabulary variables
as well as percentage of boys in each group are presented in
Table 1. There were significantly more boys than expected in
the Reading intervention group and more girls in the Math
intervention group [χ2(1) = 4.83, p < 0.05], and the children
in the Reading group were on average older [t(141.81) = −5.60,
p < 0.001]. As expected, there were no gender or age differences
between the Math intervention group and the Business-as-usual
controls, as the groups were originally matched for gender and
grade [χ2(1) = 0.03, p > 0.05; T(134) = 0.26, p > 0.05].
Analyses showed that the Math intervention group did not
differ significantly on the Raven’s Matrices test from either
Business-as-usual controls [t(121.87) = −1.83, p > 0.05] or
Reading intervention controls [T(122.23) = −1.78, p > 0.05].
There were no statistically significant differences between the
Math and Reading intervention groups on either the Block
Design test [t(146) = −0.96, p > 0.05] or the Vocabulary test

[tT(144.92) = 0.63, p > 0.05] (data were not available for the
Business-as-usual controls).

Efficacy of the Intervention Among
Children With Dysfluent Calculation
Skills
The means and standard deviations of all calculation fluency
measures (fact retrieval, addition fluency, subtraction fluency,
and arithmetic fluency) for each group at each assessment
point (pretest1, pretest2, post-test, follow-up) are presented in
Table 3. The results of the repeated-measures ANOVAs for the
math group are presented in Table 4. Statistically significant
effects were found for time in all the calculation fluency tests.
Calculation fluency showed favorable development among the
Math intervention group throughout the entire study period in
all four measured sub-skills. The effect sizes ranged from 0.24 to
0.65. The lowest level of improvement was found for subtraction
and the highest for the forced fact retrieval and for addition
fluency tasks.

Planned contrast was used to analyze the development of
calculation fluency in the Math intervention group in more
depth. The analysis of the calculation fluency tasks including
addition (fact retrieval, addition fluency, and arithmetic fluency)
indicated statistically significant development during the
intervention period (p < 0.001, η2

p = 0.76; p < 0.001, η2
p = 0.49,

p < 0.001, η2
p = 0.36, respectively). In addition, fluency task data

were also available from the baseline period (pretest1–pretest2),
showing significant improvement (p < 0.001, η2

p = 0.35). From
the post-test to follow-up, significant improvement was found in
arithmetic fluency (p < 0.05, η2

p = 0.08), but not in fact retrieval
(p > 0.05, η2

p = 0.05) or addition fluency (p > 0.05, η2
p = 0.01).

In subtraction fluency, the greatest improvement was during the
follow-up (p < 0.001, η2

p = 0.19) after a very small but significant
improvement during the intervention (p < 0.05, η2

p = 0.06).

Group Differences in Calculation Fluency
Development
First, we analyzed the fact retrieval, in which the data
were available only for the Math and Reading intervention
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TABLE 2 | Contents of math intervention.

Session 1: Starting session

Sessions 2–4: Rules for adding one or two (N + 1 and N + 2) as well as commutativity principle for addition (a + b = b + a)

Sessions 5–6: Add to five (5+, 1/2/3/4/5). Decomposing numbers 6–9 to 5 and x. Verbalizing “five and two makes seven.”

Sessions 7–10: 10-pairs and 10-pairs plus 1 (deriving answer by using 10-pairs, 5 + 6→ 5 + 5 = 10 and 5 + 6 “is one more” 11);

Session 11: Add to 10 (structure of numbers 11–19). Verbalizing “10 and 2 makes 12.”

Session 12: Rehearsal

Sessions 13–14: Use the structure of five when solving sums with numbers from 5 to 9 (6 + 7 = 5 + 1 + 5 + 2 = 10 + 3)

Sessions 15–18: Doubles and doubles plus 1 (deriving answer by using doubles, 7 + 6→ 6 + 6 = 12 and 7 + 6 “is one more” 13)

Sessions 19–22: Add to 9 or 8 (deriving answer by using sums including number 10; 10 + 7 = 17, 9 + 7 is one less and 8 + 7 is two less)

Session 23: Rehearsal

Session 24: Ending session

TABLE 3 | Performance at pretest, post-test and follow-up scores and mean differences.

Group Math (N = 69) R (N = 85) C (N = 69) Paired comparison

M SD M SD M SD Math vs. C Math vs. R

Fact retrieval

Pre 8.59 4.31 15.73 3.40 NA NA Math < R; F (1,139) = 73.66∗∗∗a

Post 15.59 2.80 17.05 2.81 NA NA Math < R; F (1,138) = 3.14 nsa

Follow-up 14.82 3.36 17.03 3.41 NA NA Math < R; F (1,132) = 7.10∗∗a

Addition

Pre1 15.84 5.56 29.96 11.28 20.16 5.00 Math < C; t(136) = −4.82∗∗∗ Math < R; F (1,141) = 39.25∗∗∗a

Pre2 19.30 5.67 31.04 11.94 23.07 5.61 Math < C; t(126) = −3.78∗∗∗ Math < R; F (1,137) = 21.37∗∗∗a

Post 26.40 8.86 36.01 14.70 27.32 7.26 Math = C; t(126) = −0.64 ns Math < R; F (1,140) = 4.13∗a

Follow-up 26.13 8.68 39.40 14.60 30.53 9.02 Math < C; t(126) = −2.81∗∗ Math < R; F (1,135) = 16.22∗∗∗a

Subtraction

Pre1 14.01 5.54 25.52 9.99 18.39 6.34 Math < C; t(136) = −4.32∗∗∗ Math < R; F (1,142) = 33.86∗∗∗a

Pre2 14.76 6.12 23.27 10.10 17.41 6.62 Math < C; t(127) = −2.36∗ Math < R; F (1,137) = 15.39∗∗∗a

Post 16.15 5.64 26.99 10.78 21. 97 6.85 Math < C; t(126) = −5.28∗∗∗ Math < R; F (1,140) = 25.56∗∗∗a

Follow-up 18.88 6.88 30.99 12.70 24.07 8.40 Math < C; t(126) = −3.84∗∗∗ Math < R; F (1,135) = 22.45∗∗∗a

Arithmetic

Pre 8.13 3.59 13.33 4.08 10.71 4.71 Math < C; t(125.12) = −4.59∗∗∗ Math < R; F (1,139) = 30.29∗∗∗a

Post 10.50 4.30 13.85 5.12 12.68 3.72 Math < C; t(126) = −3.05∗∗ Math < R; F (1,140) = 5.27∗a

Follow-up 11.82 4.03 15.24 4.29 13.98 4.12 Math < C; t(126) = −3.00∗∗ Math < R; F (1,139) = 30.29∗∗∗a

Math, math intervention group; R, reading intervention group; C, business-as-usual controls. aage and gender as covariate. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

TABLE 4 | Within-Group effect among math intervention group in calculation fluency across the time periods and task.

Task WS effects WS contrast

Baseline Intervention Follow-up

Forced fact retrieval F (df) 118.8 (2, 126) NA 194.6 (1, 63) 3.5 (1, 63)

sig. 0.00 NA 0.00 0.07

η2
p 0.65 NA 0.76 0.05

Addition fluency (2 min) F (df) 64.1 (2, 119.5)a 33.0 (1.61) 58.0 (1, 61) 0.4 (1, 61)

sig. 0.00 0.00 0.00 0.56

η2
p 0.51 0.35 0.49 0.01

Subtraction fluency (2 min) F (df) 20.0 (2.6, 162.7)b 4.23 (1.62) 4.1 (1, 62) 14.7 (1, 62)

sig. 0.00 0.04 0.05 0.00

η2
p 0.24 0.06 0.06 0.19

Arithmetic fluency (3 min) F (df) 34.2 (2, 128) NA 35.3 (1, 64) 5.9 (1, 64)

sig. 0.00 NA 0.00 0.02

η2
p 0.35 NA 0.36 0.08

aGreenhouse-Geisser; bHuynh-Feldt.
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TABLE 5 | Within-group and between-group effects among math intervention and control groups in calculation fluency across the time periods and tasks.

Math and reading groups WS effects WS contrast Time∗Group

Time Time∗Group Baseline Intervention Follow-up

Forced fact retrieval F (df) 3.97(1.82, 235.1)b,c 31.84 (1.7, 235.1)b NA 55.84 (1, 127) 1.54 (1, 127)

sig. 0.02 p < 0.001 NA p < 0.001 0.22

η2
p 0.03 0.20 NA 0.31 0.01

Addition fluency (2 min) F (df) 1.83 (2.66, 343.52)b,c 4.03 (2.66, 343.52)b 0.93 (1, 129) 7.04 (1, 129) 8.71 (1, 129)

sig. 0.14 0.01 0.34 0.01 0.01

η2
p 0.01 0.03 0.01 0.05 0.06

Arithmetic fluency (3 min) F (df) 1.05 (2, 264)c 5.16 (2, 264) NA 8.96 (1, 132) 0.14 (1, 143)

sig. 0.35 0.01 NA 0.01 0.71

η2
p 0.01 0.04 NA 0.06 0.01

Math and classmates groups WS effects WS contrast Time∗Group

Time Time∗Group Baseline Intervention Follow-up

Addition fluency (2 min) F (df) 93.07 (2.1, 236.1)a 4.28 (2.1, 236.1)a 2.92 (1, 112) 1.0 (1, 112) 1.0 (1, 112)

sig. 0.00 0.01 0.09 0.04 0.00

η2
p 0.45 0.04 0.03 0.04 0.11

Arithmetic fluency (3 min) F (df) 57.64 (2, 234) 0.29 (2, 234)

sig. .00 0.75

η2
p 0.33 0.00

aGreenhouse-Geisser; bHuynh-Feldt; cAge and gender as covariate.

groups. Repeated-measures ANCOVA Statistically significant
main effects of time were found, indicating that performance
improved in both groups throughout the entire study period
(Tables 3, 5). More importantly, there was an interaction between
time and group, which was further explored with planned
contrasts.

The group–time interaction was statistically significant
during the intervention (p < 0.001, η2

p = 0.31) but not
during the follow-up (p > 0.05). As seen in Figure 1, the
calculation fluency of the Math intervention group developed
clearly during the intervention period, and their skill level
remained the same during the follow-up, whereas among the
Reading intervention group, small and stable improvements
in calculation fluency were found throughout the entire
period.

Second, we analyzed the addition fluency task using repeated-
measures ANCOVA when comparing math intervention group
with the reading group and ANOVA with the Business-as-
usual controls. When comparing Math intervention group with
Reading intervention group non-significant effect for time,
gender and age were found. When comparing Math intervention
group with Business-as-usual controls, there was a statistically
significant main effect of time indicating that performance
improved among Math intervention and Business-as-usual
groups during the study period (Tables 3, 5). More importantly,
there was an interaction between time and group in both analyses
as well, which were further explored with planned contrasts.
In both analyses, the group × time interaction was statistically
significant during the intervention and follow-up but not during
the baseline. As seen in Figure 2, during the intervention

period (i.e., from pre-test2 to post-test) the development of the
skills of the three groups differed: although all three groups
showed improvement in their skills, the Math intervention group
improved faster than the other two groups and did not differ from
the Business-as-usual controls at post-intervention assessment
(Table 3). At follow-up, the fluency level remained the same in
the Math intervention group, while it improved somewhat in
the Reading intervention and Business-as-usual control groups.
The latter groups showed a constant rate of improvement
throughout the study period, while the Math intervention group
showed the greatest rate of improvement during the intervention
itself.

Third, we analyzed the arithmetic fluency task using
repeated-measures ANCOVA/ANOVA. When comparing Math
intervention group with Reading intervention group non-
significant effects for time, gender and age were found but
significant interaction between time and group was found,
suggesting that the development of arithmetic fluency differed
between the Math and Reading groups. This was further
explored with planned contrasts. The group × time interaction
was statistically significant during the intervention but not
during the follow-up. The Reading and Math intervention
groups differed in their level of improvement during the
intervention, but not during the follow-up. When comparing
Math intervention group with Business-as-usual controls, there
was a statistically significant main effect of time indicating that
performance improved across Math intervention and Business-
as-usual groups during the study period (Tables 3, 5). In contrast,
the group× time interaction was not significant compared to the
Math intervention group and Business-as-usual controls. As seen
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FIGURE 1 | Development of fact retrieval skill.

FIGURE 2 | Development of addition fluency.

in Figure 3, the Math intervention group and the Business-as-
usual group showed similar improvement in arithmetic fluency
during the intervention period, whereas the Reading intervention
group showed slower improvement than the other two groups.

The Math intervention group did not show significant
improvement in subtraction fluency during the intervention, and
thus further analyses of progress in this subtraction fluency were
not carried out.

Changes in the Frequency of Used
Strategies in the Free-Choice Condition
Finally, the effects of the explicit strategy training on the
frequency of use of different strategies were investigated. As
seen in Figure 4, before the intervention, counting in mind

was the most frequently used calculation strategy among the
Math intervention participants, and fact retrieval was the most
frequently used strategy among the Reading intervention group
(note: these data were not available for the Business-as-usual
controls). After the intervention, fact retrieval became the
most frequently used strategy among the Math intervention
participants as well; the use of derived fact strategies also increased
in this group, while the use of counting-based strategies decreased
among the Math intervention children. All changes during
the intervention, the increasing trend in using fact retrieval
and derived fact, and the decreasing trend in using counting
strategies, were significant among the Math intervention children
(p < 0.05, η2

p = 0.06–0.44) but not among the Reading
intervention participants (p > 0.05) when tested using repeated
measures ANCOVA. Using univariate analysis of covariance
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FIGURE 3 | Development of arithmetic fluency.

(ANCOVA) age and/or gender as the covariate it was further
analyzed that the Reading intervention children used significantly
more fact retrieval at each time point (p < 0.05), although the
difference was smaller after the intervention (η2

p = 0.03) than
before the intervention (η2

p = 0.17). There were no differences
in using deriving strategies before intervention or right after
(p < 0.05) but the Math group used more deriving strategies
after 5 months follow-up (p < 0.05, η2

p = 0.04). The Math
intervention group used more counting in mind strategies before
the intervention (p < 0.05, η2

p = 0.10) but statistically significant
differences were not found after intervention at post or follow-
up assessment (p > 0.05). No differences (p > 0.05) were found
in frequency of using counting aloud strategies at any assessment
point, due to infrequent use of this strategy in both groups.

DISCUSSION

The aim of the present study was to extend the previous
intervention research in math by examining whether elementary
school children with poor calculation fluency benefit from
strategy training focusing on derived fact strategies and
following an integrative framework (i.e., integrating factual,
conceptual, and procedural arithmetic knowledge). The kinds
of changes in the frequency of using different strategies were
also examined. The SELKIS strategy training program (Koponen
et al., 2011) was implemented in small groups by trained special
education teachers, highlighting the ecological validity of the
present intervention study. Moreover, a 5-month follow-up was
conducted to examine the long-term effects of the intervention.
The results showed that children with dysfluent calculation skills
participating in the Math intervention developed significantly in
their addition fluency during the intervention period. They also
maintained the reached fluency level during the 5-month follow-
up but did not continue to further develop in addition fluency
after the intensive training program ended. A similar kind of

developmental slope was found both in fact retrieval as well as in
addition fluency assessed in a group situation. Arithmetic fluency,
covering all four arithmetical operations and both single-digit as
well as multi-digit items, also improved significantly during the
intervention period. In contrast, little improvement was found in
subtraction fluency during the intervention, and a slightly larger
but still very limited improvement was found in subtraction
during the 5-month follow-up period.

Further support for a significant effect of the intervention
on addition fluency comes from comparing the level of
improvement in the Math intervention group with that of the
two control groups. Significant group interactions were found
in the forced fact retrieval task and in the addition fluency task.
The Math intervention group showed more rapid improvement
during the intervention than the two control groups and reached
the level of Business-as-usual controls at post-intervention
assessment point in addition fluency. They maintained the
achieved fluency level during the 5-month follow-up but,
unfortunately, did not continue to increase their calculation
fluency after the intensive intervention period ended. The control
groups, in contrast, showed a smooth slope of development in
addition fluency throughout the period. The Math intervention
group also improved significantly in arithmetic fluency during
the intervention period and the interaction between time and
group was significant, but their progress did not differ from
that of the Business-as-usual controls. Interestingly, the Reading
intervention group showed less improvement in arithmetic
fluency than either of the other groups.

The maintenance of post-intervention level in addition
fluency at the 5-month follow-up assessment provided support
for the long-term benefits of the training. However, interesting
and important question, as well, is why the Math intervention
group did not continue to improve their fluency in addition after
the intervention ended. There are several possible explanations.
It seems that children with poor calculation fluency require
explicit instruction as well as intensive training in order to
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FIGURE 4 | Development of strategy use in free choice condition.

extend their arithmetical knowledge and improve efficient
strategy use. A summer holiday, lasting two and half months,
took a place during follow-up period and naturally can be
treated as a non-training period. Moreover, instruction in
math typically follows periods including different mathematical
contents, such as numbers and operation, geometry, and
measurement etc., and thus periods focusing other contents than
arithmetic, may not provide intensive training for calculation
fluency. In further studies, it should be examined whether
we could improve the fluency development after intensive
training period by providing material and instruction how
to support and strength the use of efficient calculation
strategies as part of the Business-as usual instruction in a
classroom.

Previous intervention research has generally assessed the
efficacy of math intervention training on calculation fluency
and accuracy level and not analyzed the changes in strategy
use (see Fuchs et al., 2010). In the present study, in a
free-choice condition math intervention children increased
their use of fact retrieval and derived fact/decomposition
as preferred strategies and decreased their use of counting-
based strategies, which were their most common strategies
before the intervention. The Math intervention group differed
from the Reading group using more frequently counting-
based strategies before the intervention. Differences were not
significant after the intervention. Although the differences in
use of retrieval strategies was significant in all assessment
points favoring the Reading intervention group, the difference
was clearly smaller after the intervention than before it.
Moreover, the Math intervention participants used more derived
fact/decomposition strategies at follow-up assessment than the
Reading group. This finding suggests that despite having
dysfluency in basic calculation skills after several years of training
at school, explicit instruction utilizing an integrative framework
in calculation strategy training can help children to use more
often efficient back-up strategies and fact retrieval instead of
counting.

The finding related to the missing transfer effect of
addition strategy training to subtraction fluency was unfortunate.
Moreover, in arithmetic fluency tasks, no developmental trend
was identified among math intervention children that would
have differed from their classmate control; thus, significant
development in arithmetic fluency cannot be concluded to result
from the intervention but could be due to schooling in general.
However, this finding was not highly surprising, considering
that a typical feature of children with MDs is a difficulty in
spontaneously discovering efficient calculation strategies (Geary,
1993). It is likely that different arithmetical facts and arithmetic
operations, e.g., addition and subtraction, are more isolated for
MD children and for this reason they cannot use their knowledge
of addition facts when solving subtraction problems. This
could explain why spontaneous transfer did not happen across
the arithmetic operations, although children started to make
more frequent use of retrieval and derived fact/decomposition
strategies in addition. Moreover, even typically achieving children
often fail to extend their knowledge of addition principles
appropriately to subtraction principles (Dowker, 1998, 2014).
For example, they find the addition/subtraction inverse principle
far more difficult to recognize and use than addition-specific
principles, such as commutativity, and often overextend addition
principles to subtraction, e.g., saying that if 14 − 5 = 9, 14 − 6
must be 10 “because 6 is one more than 5.” Thus, explicit
instruction and intensive practice are likely to be required to
learn to use derived fact/decomposition strategies for subtraction,
rather than expecting them to spontaneously extend their
strategic knowledge in addition also to subtraction.

Limitations and Further Directions
Some limitations of the study should be considered when
interpreting the current findings. The main limitations are
related to the quasi-experimental nature of the design. Since
the study was conducted in ecologically valid conditions as part
of everyday school routines, blind and fully random matching
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of the participants was not achievable. However, children were
carefully selected for interventions, and participants showed
signs of dysfluency both in group-administered addition fluency
task (where items were presented as a list) and in individually
administered assessments (where items were presented one
at the time). The inclusion of individual assessment is an
essential strength of the participant selection, as group tests
are not optimal for all children to show their abilities and
could more likely lead to identifying false-positive cases. The
most serious limitation may be that we did not have data from
the Business-as-usual controls for all measures. However, the
Reading intervention group data were available for all measures,
and this is a more stringent control group.

Another limitation is that, due to the limited resources
available, procedures that would allow full monitoring of
the reliability and validity of the interventions (e.g., video-
recordings) could not be implemented. The measures taken
to guarantee the fidelity (teacher training, session-by-session
manual, filling diary, meetings and phone calls during the
intervention) support the understanding that the programs were
implemented following the program manual and intervention
design.

Finding a significant intervention effect for low-attaining
children, which also remained during the follow-up period, is
a positive and promising result, but at the same time only the
first step. Further studies comparing this kind of integrative
framework to other intervention approaches with even longer
follow-up and other age groups are needed to clarify the question
of what the most efficient intervention approaches for low
attaining pupils are. It would also be beneficial to explore
whether the intervention is equally effective in all age groups,
especially given Caviola et al. (2016) findings on the differential
effectiveness of derived fact training and procedural training in
the third- and fifth-grade groups.

It would also be desirable to investigate the specificity of the
effects, both within arithmetic and between arithmetic and other

subjects. In this study, training in addition had little impact
on subtraction. Further research is recommended to determine
whether the same would be found regarding the effect of training
in subtraction on addition.

Despite the positive findings related to the intervention effect,
it should be noted that, as found in other intervention studies,
there were differences in responsiveness among intervention
participants. In the future, the variation in responsiveness should
be studied to better understand the factors influencing the
benefits of derived fact strategy training within an integrative
framework, and to gain a better understanding of how to target
interventions for groups of participants, and to maximize their
effectiveness.
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We examined how children’s strategy choices in solving complex subtraction problems

are related to grade and to variations in problem complexity. In two studies, third- and

fifth-grade children (N≈160 each study) solved multi-digit subtraction problems (e.g.,

34–18) and described their solution strategies. In the first experiment, strategy selection

was investigated by means of a free-choice paradigm, whereas in the second study a

discrete-choice approach was implemented. In both experiments, analyses of strategy

repertoire indicated that third-grade children were more likely to report less-efficient

strategies (i.e., counting) and relied more on the right-to-left solution algorithm

compared to fifth-grade children who more often used efficient memory-based retrieval

and conceptually-based left-to-right (i.e., decomposition) strategies. Nevertheless, all

strategies were reported or selected by both older and younger children and strategy

use varied with problem complexity and presentation format for both age groups. These

results supported the overlapping waves model of strategy development and provide

detailed information about patterns of strategy choice on complex subtraction problems.

Keywords: mental calculation, subtraction problems, strategy choice, children, mathematics, problem solving,

arithmetic

INTRODUCTION

Understanding how children choose and apply a specific strategy to solve a mathematical
problem is an important issue in the field of numerical cognition. Individuals’ strategy
choices are influenced by many factors, including their repertoire or knowledge of strategies
(Kilpatrick et al., 2001; Baroody and Dowker, 2003), their expertise in implementing
those strategies (Torbeyns et al., 2006; Verschaffel et al., 2007), and their overall level of
mathematical achievement (Geary et al., 2000; Smith-Chant and LeFevre, 2003). Although
some studies have examined children’s performance in solving complex arithmetic problems,
the results have varied depending on children’s age and consequently their arithmetic
expertise, the specific arithmetic operation, and the type of strategy assessment applied
(e.g., Torbeyns et al., 2009a,b; Torbeyns and Verschaffel, 2016; Lemaire and Brun, 2018).
Accordingly, in the present research we conducted two large scale studies using two different
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types of strategy assessment in which we investigated how
children at different stages of their primary education perform
complex subtraction problems varying in the degree of
complexity. By manipulating these key variables, we were able
to provide a comprehensive overview of the factors influencing
children’s strategy choices on multi-digit subtraction problems.

Among the four basic arithmetic operations, that is, addition,
subtraction, multiplication, and division, subtraction is of
particular interest because children and adults report using a
wide range of different strategies, both on simple problems such
as 14–6 (e.g., LeFevre et al., 2006) and on complex problems
such as 24–9 or 56–23 (Torbeyns et al., 2009a; Linsen et al.,
2014). According to Lemaire and Siegler (1995), arithmetical
strategy use entails two components: first choosing a strategy
(strategy choice), and then implementing the chosen strategy
(strategy execution) to solve the arithmetic problem. In the
present study, the focus was on the process of strategy choice.
Strategy choice is associated not only with an individual’s level
of skill in simple arithmetic (Smith-Chant and LeFevre, 2003),
but also with the specific features of a given problem (e.g.,
problem difficulties in terms of number of digits in each operand
or the presence/absence of a borrow procedure; Imbo et al.,
2007), and the context of the problem, such as the presentation
format (e.g., problems presented in horizontal vs. vertical format
Trbovich and LeFevre, 2003; Lemaire and Calliès, 2009; Imbo
and LeFevre, 2010). Like Lemaire and Brun (2018), in the present
study we provide a detailed analysis of strategies used by children
to solve subtraction problems, investigating for the first time
how different problem features (i.e., problem complexity and
presentation format together) influence children’s strategies and
performance, as well as how such strategic behavior changes with
children’s age and related expertise.

Subtraction Strategies
Adults and children have been observed to use a variety of
strategies on subtraction problems and these strategies can be
categorized according to the type of computations involved.
For the very simplest problems, such as 5–3, memory retrieval
is usually reported, but various counting strategies, such as
counting up (i.e., for 5–3, counting 4, 5) are also used (e.g.,
LeFevre et al., 2006). Solvers may also report counting up
or down on large problems such as 52–49 (Torbeyns et al.,
2009b). Another way of categorizing strategies on more complex
problems is to consider the solution path, such that strategies can
be divided into two main categories (Green et al., 2007; Imbo and
LeFevre, 2009). In right-to-left strategies, the operands are treated
as concatenations of single digits and calculation considers each
columnar operation separately, for example, solving 45–29 by
subtracting 15–9 = 6 and 3–2 = 1. For subtraction, the right-to-
left strategy is a mental version of column-by-column algorithm
taught at school for use in written calculation. In contrast, in left-
to-right strategies, operands are represented and manipulated in
a more holistic manner. For example, 64–12 can be decomposed
into 60–10 = 50 and 4–2 = 2, and then reassembled to obtain
the answer (i.e., 52; Lemaire and Calliès, 2009), or 69–13 can
be solved by rounding to 70–13 = 57 and then subtracting 1.
Often referred to as transformation or decomposition strategies,

the left-to-right approach requires conceptual understanding of
the structure of numbers (LeFevre et al., 2006).

Children show developmental and educational changes in
the use of the left-to-right and right-to-left strategies described
above, mainly corresponding to strengthening of their mental
calculation skills due to the acquisition of multi-digit algorithms
(written) procedures (Fuson et al., 1988; Geary et al., 2004).
In particular, in European countries such as Belgium, Italy,
and the Netherlands, children are taught mental computation
for multi-digit subtraction in second grade, and start to learn
the written algorithm in third grade (Cornoldi and Lucangeli,
2004; Caviola et al., 2014). However, in the US and Canada,
less emphasis is placed on mental computation, especially for
multi-digit problems, which are thought to be solved through
the written algorithm (Baroody and Dowker, 2003). Accordingly,
strategy use might vary across countries and school systems.

A few researchers have studied children’s strategies on
complex subtraction but none has documented the full range of
strategies used (Beishuizen, 1993; Lemaire and Calliès, 2009). For
example, Lemaire and Calliès (2009) compared the performance
of 20 fifth- and 20 seventh-grade students in France on complex
subtractions, however, they restricted children’s strategy choices
to two left-to-right methods (i.e., full and partial decomposition).
Other researchers have focused on subtraction-by-addition
strategies (e.g., Linsen et al., 2014). Thus, currently there is no
information about the extent of children’s spontaneous strategy
use on complex subtraction.

Other important factors in children’s strategy choices, beyond
their levels of automaticity and strategy knowledge, are the
characteristics of the problem. Problem complexity is one
feature that is assumed to influence children’s strategy choices
(Lemaire and Lecacheur, 2011; Ardiale and Lemaire, 2013).
One way to vary problem complexity is to include a carry
or borrow requirement (Noël et al., 2001; Imbo et al., 2007).
Superficial features of the problems, such as presenting the
problems in a horizontal vs. a vertical format, may also
influence children’s strategy choice. Overall, processing efficiency
varies with presentation format, and complexity (Trbovich
and LeFevre, 2003; Lemaire and Calliès, 2009; Imbo and
LeFevre, 2010; Caviola et al., 2012), but, to the best of our
knowledge, none of the previous studies examined in a larger
set of problems how different features can interact to influence
children’s strategy choice. Moreover, researchers have suggested
that manipulations of presentation format can trigger differential
recruitment of cognitive resources, leading to variability in the
solution procedures that participants select as a function of
format (Trbovich and LeFevre, 2003). For example, vertically-
presented problems required more visual resources, whereas
horizontally-presented problems required more phonological
resources (Caviola et al., 2012). Thus, presentation format may
influence selection of strategies, however, this possibility has not
been assessed in children.

Methods for Studying Strategy Choices
In the strategy literature, among others, the twomost widely used
methods implemented to evaluate strategy choice and execution
are free-choice report and forced-choice methods. Free-choice
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reports require participants to verbally report which strategy they
used to solve a problem immediately after solving it with no
restrictions on the strategy repertoire ( e.g., Siegler, 1988; Davis
and Carr, 2001; Mabbott and Bisanz, 2003; Noël et al., 2004;
Torbeyns et al., 2005). This method leads to a broader collection
of strategies than forced-choice methods, under the assumption
that participants have sufficient metacognitive/introspective and
verbal abilities enabling them to provide accurate verbal report
of strategies used (Kirk and Ashcraft, 2001). Free-choice reports
may not be valid for processes that are fast and automatic
(Ericsson and Simon, 1993), and may not be appropriate for
children if their verbal abilities are limited (Siegler and Stern,
1998). On this view, free-choice reports may potentially lead to
biases, such as the over-reporting of strategies whose salience
is high, and conversely, the under-reporting of fast or less
procedural ones (Ericsson and Simon, 1993; Kirk and Ashcraft,
2001; Thevenot et al., 2010).

To address some of the limitations of free-choice retrospective
reports, Siegler and Lemaire (1997) developed a modified
method, known as the choice/no-choice paradigm. This method
consists of a forced choice condition, where individuals apply
a preferred strategy (chosen from a restricted set of two or
three options), and two or more no-choice conditions, where
they are required to solve all problems with a single strategy;
thus, the number of no-choice conditions corresponds to
the number of options in the forced-choice condition (e.g.,
Imbo and Vandierendonck, 2007a,b,c; Reed et al., 2015). The
choice/no-choice paradigm provides information on strategy
efficiency from the no-choice condition, independently of the
choice process, whereas the comparison of performance in
the no-choice and the choice condition gives an indication
of people’s strategy adaptivity (i.e., the selection of the most
efficient procedure from the limited set provided). Although
this method does address some of the problems of the free
choice approach, specifically, the concern that strategy choice
and efficiency are confounded, there are also criticisms (Luwel
et al., 2009). In particular, the choice/no-choice approach limits
the strategies that are available because a limited number of
no-choice conditions are included and thus may not provide
the “best” strategy on any given trial (cf. Imbo and LeFevre,
2011; Xu et al., 2014). In order to address these limitations,
some authors have implemented a method that we can define
as a discrete-choice method, where participants were asked to
select between a larger number of given strategy alternatives,
within the prospective that providing a broader choice of
strategies gives better information about children’s choices (e.g.,
Lemaire and Brun, 2018). The strength of this discrete-choice
approach lies in the opportunity to determine the effects of
explanatory variables from a more extensive set of options,
which provides less restriction on individuals’ strategy selection
(Xu et al., 2014). A similar discrete-choice strategy method,
in which a set of options was provided, has been used
extensively within the domain of simple arithmetic with adults
(e.g., Campbell and Xue, 2001; Campbell and Austin, 2002;
Imbo and Vandierendonck, 2007a, 2008) and with children,
combined with a choice/no-choice experimental design (Imbo
and Vandierendonck, 2007b).

In the present study, rather than focusing solely on one single
method to assess strategy choice, we tested two cohorts of third-
and fifth-school graders in two different experiments in order to
indirectly compare free-choice and a discrete-choice approaches.

The Present Research
The central questions in the present research were how children’s
strategy choices are influenced by (a) their level of expertise
(e.g., grade 3 vs. 5), (b) problem features (e.g., complexity and
contextual features), and (c) the type of strategy assessment
to collect strategy reports. In two experiments, children in the
same age-range were tested with the same pool of multi-digit
subtraction problems (e.g., 23–3; 47–19). Across experiments,
two methods of assessing children’s strategy choice were used. In
Experiment 1, strategies were assessed on a problem-by-problem
basis by means of immediate retrospective verbal self-reports. In
Experiment 2, children were asked to choose the strategies used
from among a list of alternatives that was based on the solution
procedures observed in Experiment 1.

In order to assess the role of expertise in strategy choices, we
tested Italian children in grades three and five. This age range
is assumed to cover an important transition period between
the use of mental and written strategies: children in third
grade have yet to fully master multi-digit calculation, but by
fifth grade they will have started to automatize more efficient
calculation skills (Baroody and Dowker, 2003). In particular,
Italian curriculum for teaching arithmetic is based on the written
standard approach that requires children in grade 1 (typically 6
years old) to consolidate their counting skills and start learning
the principles of adding and subtracting (left-to-right strategies).
In second grade, the procedures for solving written additions
and subtractions calculation are taught (in that order) using a
columnar (right-to-left) strategy (Cornoldi and Lucangeli, 2004).
Thus, third-grade children are expected to be reasonably skilled
at single-digit computations and are presumably more likely to
use simpler but less efficient strategies (e.g., counting) compared
to fifth-grade children. In contrast, fifth-grade children are
expected to have more efficient calculation skills —they should
be more likely to accurately retrieve arithmetic facts and to have
a greater knowledge of efficient strategies such as decomposition
or the right-to-left algorithm (Baroody and Dowker, 2003). Thus,
large differences in strategy selection could be anticipated in this
age range (cf. Lemaire and Calliès, 2009; Lemaire and Brun,
2018).

Problem features also expected to influence the choice of
strategy: Children are more likely to use memory retrieval
for easier problems when this strategy will probably produce
the right answer, whereas they choose computational strategies
for more difficult problems when retrieval is less likely to
generate the right answer (Siegler, 1996; Lemaire and Calliès,
2009). The likelihood of a given computational strategy being
chosen thus depends on the characteristics of the problem.
There is evidence to suggest that children are unlikely to use
the most advanced computational strategy available to them
unless the difficulty of the problem demands it. On this view,
increasing the difficulty of the problem will promote the use of
more advanced computational strategies because children will
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maximize efficiency while preserving accuracy. Efficiency usually
declines for problems that involve carrying or borrowing (Noël
et al., 2001; Imbo et al., 2007), as well as for problems with
increasing number of digits (Green et al., 2007; Imbo et al.,
2007). Thus, to explore how problem features influenced strategy
choices for these children, we manipulated the complexity of the
problems (i.e., whether a borrow was required and the number
of digits in the problem) and presentation format (i.e., horizontal
vs. vertical).

In summary, the goals of the present experiments were to
(a) compare two different methods to assess children’ strategy
choice; (b) replicate previous findings on how children’ age
effects performance in solving complex subtraction problems;
and (c) test the relations among children’ age, problem features,
and strategy choice. Further, we used a novel method to
analyze strategy choices, specifically, multinomial modeling of
the frequency of strategy choices. Accordingly, our emphasis was
not on strategy adaptivity (which is the focus of the choice-no-
choicemethod); instead, we explored the development of strategy
choices according children’s own repertoire.

Overall, we expected to find similar patterns in both
experiments. First, we predicted that fifth-graders would make
more use of retrieval and less use of counting than third-
graders in solving subtractions without borrowing (e.g., 24–3).
Second, we expected to see an increasingly efficient use of
the decomposition strategy by older children, and a more
consistent use of the right-to-left strategy, especially in problems
presented in columns with borrowing. Third, we expected that
children would perform better while solving single-digit no-
borrow problems (e.g., 45–2) than while solving double-digit
borrow problems (e.g., 45–19) and would use decompositions
(left-to-right procedures) and standard algorithms (right-to-
left procedures) more on complex problems than on simpler
problems. Finally, we predicted that children would be
more likely to solve horizontally-presented problems with
decomposition strategies and vertically presented problems
with the right-to-left algorithm (Trbovich and LeFevre, 2003;
DeStefano and LeFevre, 2004).

EXPERIMENT 1

In this study, we tested children’s strategy selection onmulti-digit
subtraction problems by means of immediate retrospective self-
report. In addition to replicating the results of previous studies on
complex subtraction (Torbeyns and Verschaffel, 2016; Lemaire
and Brun, 2018), we wanted to (a) determine the full repertoire of
strategies used by children in solving this type of problem, and (b)
analyze themediating roles of children’s age and problem features
on strategy choice.

METHODS

Participants
Participants included 155 children: 76 in third grade (50 boys, 26
girls) with a mean age of 105.9 months (SD = 3.8; range = 99–
112 months), and 79 in fifth-grade (42 boys, 37 girls) with a mean
age of 129.8 months (SD = 3.5; range = 124–143 months) who

were attending Italian urban state schools. Parental consent was
obtained. Children with special educational needs, intellectual
disabilities, or neurological/genetic disorders, as indicated by
their teachers, were not included in the study.

Materials
Arithmetical Achievement
To assess arithmetical achievement, participants were initially
presented with paper-and-pencil tasks adapted from an age-
standardized Italian battery (Biancardi and Nicoletti, 2004).
In the complex written calculation test, children attempted 12
written calculation problems (4 additions, 4 subtractions, and 4
multiplications; e.g., 46+18 = ?; 54–27 = ?; 23×41 = ?) without
time limits. Scores were total correct (Cronbach’s alpha = 0.78).
In the simple calculation test, children attempted 16 problems (8
additions and 8 subtractions) with operands between 1 and 9. For
both addition and subtraction half of the results were less than 10
(e.g., 4+2 = ?; 7−5 = ?), and the other half were more than 10
(e.g., 10+12 = ?; 30–6 = ?). The total time allowed to complete
the test was 200 s. Cronbach’s reliability coefficients were higher
than 0.80 for each set of problems.

Computer-Based Experimental Task
Children solved multi-digit subtraction problems. Two problem
sets were created, each with 32 problems (see the Supplementary
Material for the whole sets). In order to manipulate problem
difficulty, problems were characterized by the presence/absence
of borrowing procedure and by the number of digit of the
subtrahend. One set required a borrow procedure in the unit
position (e.g., 31–19 = ?), and the other set did not require
a borrow procedure (e.g., 38–26 = ?). Half of each set had a
subtrahend with a one-digit number (e.g., 58–6) and the other
half had a subtrahend with a two-digit number (e.g., 43–12).
The correct answers for all the 64 subtraction problems ranged
from 11 to 62. Following previous literature, to control the
difficulty of the individual problems, certain types were excluded
(e.g. Campbell, 2005): (a) no operand had 0 or 5 as the unit
digit; (b) digits were not repeated in the same decade or unit
positions across operands (e.g., 64−24 = ?); (c) no digits were
repeated within operands (e.g., 66−31 = ?); (d) no correct
answers for the decades or units equaled 0 (e.g., 36−16= ?); and,
finally, (e) no correct answers coincided with the second operand
(e.g. 24−12 = ?). Furthermore, the outcome of subtractions
(i.e., odd or even numbers) and the presentation format (i.e.
horizontal or vertical) were controlled. Within each set, half of
the problems were assigned to the vertical presentation and half
to the horizontal presentation.

Procedure
Children were tested in two sessions. At the beginning of the
experimental session, in a group session lasting about 30min,
individuals’ mathematical achievement was assessed with paper-
and-pencil tasks adapted from the standardized Italian battery
developed by Biancardi and Nicoletti (2004) in their classroom.
In an individual session lasting∼60min, the children were tested
in a quiet room using the computer-based experimental task.
The task was programmed using E-Prime software (Psychology
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Software Tools, Inc., Pittsburgh, PA, USA) and presented on a 15-
inch 1024× 768 pixel computer screen. Problems were shown in
72-point Times New Roman black font on a white background in
the center of the screen. Participants sat 60 cm from the screen.
The E-Prime software controlled how long time the stimulus was
displayed and recorded accuracy, response times (RTs), and the
selected strategies for each trial.

Each trial began with the presentation of a fixation point (∗)
in the center of the computer screen for 750ms. Then a problem
was displayed (horizontally or vertically) in the center of the
screen. Each trial was timed as of the moment when the problem
appeared on the screen and ended when the experimenter
pressed a button as promptly as possible after participants gave
their answers. Problems were presented in a pseudo-random
order.

Children were randomly assigned to one of two problem sets,
that is, problems with or without a borrow requirement, such that
there were 73 children (39 boys, 34 girls; 37 third- and 36 fifth-
graders) in the no-borrow condition, and 82 (53 boys, 29 girls; 39
third-, and 43 fifth-graders) in the borrow condition.

Each participant solved 4 practice trials and 32 experimental
trials. Trial-by-trial feedback on calculation accuracy was only
given during the practice trials. Children were told that they
would see two-digit subtraction problems (e.g., 79-37; 92-59) on
the computer screen: they were asked to do the calculation aloud
and to give their answers aloud, focusing equally on speed and
accuracy. Immediately after having provided each solution, they
were asked to verbally explain how they had reached the result
(each answer was recorded).

Classification of Self-Reports
Participants’ verbal self-reports were classified into five different
strategy categories by two trained judges on the basis of the
narrative procedure descriptions. The two judges agreed on
the classification of 97% of the problems. Five main strategies
emerged when children’s self-reports were analyzed. Trials were
categorized as: (1) retrieval when participants simply reported
remembering or knowing the answer (); (2) counting when
children described a sequential subtraction of a one unit at a time
(e.g., 24–3 as 24, 23, 22, answer 21); (3) left-to-right decomposition
when the answers were obtained by breaking a larger problem
down into smaller ones (e.g., regrouping strategies); (4) right-
to-left algorithm when children described arriving at the answer
by first subtracting the units and then the tens (e.g., . . . ); (5)
other when children reported guessing or a mixture of different
procedures on the same problem.

RESULTS

Arithmetical Achievement
Performance on the two arithmetic achievement tasks was
analyzed in 2 (grade) × 2 (condition: borrow, no-borrow)
ANOVAs. Consistent with the use of a grade-standardized score,
there were no effects of grade, and no effects of condition,
indicating that children at both grades had mathematical abilities
expected for their age, and that the two randomly assigned
groups of children (borrow and no-borrow conditions) were

equally matched on arithmetic skills. The descriptive statistics
and ANOVAs results for these analyses are presented in the
Supplementary Material.

Accuracy and Response Times
Accuracy was the percentage of correct responses; response times
were calculated on the basis of correct trials only.

The descriptive statistics for performance on the multi-
digit subtraction task are shown in Table 1 (upper panel). In
order to verify which manipulated variables influenced the
performance ofmulti-digit subtraction problems, response times,
and accuracy were analyzed in separate 2 (complexity: one- vs.
two-digit numbers in the subtrahend) by 2 (format: horizontal,
vertical presentation) × 2 (grade: 3, 5), × 2 (condition: borrow,
no-borrow) mixed ANOVAs, with repeated measures on the first
two factors. The results of these analyses are shown in Table 2.
For the sake of simplicity, the two-way interactions are discussed
only when the three-way interactions were not significant.

As expected, the main effect of grade was significant, showing
that children in third grade performed significantly worse
than those in fifth grade (84 vs. 89%). There were also main
effects of format, condition and complexity: children showed
a better performance when problems were vertically presented
(88 vs. 85%), they solved borrow problems less accurately
than no-borrow problems (82 vs. 91%), and they performed
less accurately on problems with double-digit subtrahends than
on those with single-digit subtrahends (82 vs. 92%). These
differences were confirmed also by the two-way interaction
between condition and complexity: the difference between
borrow and no-borrow problems was larger for problems with
double-digit subtrahends (i.e., 13%; 75% vs. 88%) than for
problems with single-digit subtrahends (i.e., 5%; 89% vs. 94%),
although both differences were significant (ps < 0.001). The
significant interaction between complexity and grade indicated
that the difference among grades was due to the complexity of the
problems: younger children registered lower performance only
when they solved subtractions with double-digit subtrahends
(i.e., 78 vs. 86%; p < 0.01).

Finally, the interaction between complexity × format and
between condition× format were significant, as well as the three-
way interaction among complexity, condition, and format. These
interactions revealed that the presentation format influenced
children’s performance only when they were asked to solve the
hardest problems, that is, double-digit subtrahends involving
borrowing (i.e., 71 vs. 81%; p < 0.001).

The analysis of response time showed significant main effects
of grade, condition (borrow status), and complexity. Hence,
third-graders were slower than fifth graders (17 vs. 10 s), children
who solved borrow problems responded more slowly than those
who solved no-borrow problems (19 vs. 9 s), and children
solved problems with double-digit subtrahends more slowly than
those with single-digit subtrahends (17 vs. 11 s), as highlighted
by the interaction of condition × complexity (ps < 0.001).
The complexity × format interaction was also significant. For
problems with two-digit subtrahends, children solved problems
in vertical format faster than those in horizontal format (16
vs. 18 s, p < 0.01) whereas, for problems with single-digit
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TABLE 1 | Descriptive statistics (M = mean; SD = standard deviations) of multi-digit subtraction problems.

Experiment 1

Third grade Fifth grade

Horizontal Vertical Horizontal Vertical

Group Complexity M SD M SD M SD M SD

ACCURACY

No-borrow One-digit 92.91 10.84 92.22 12.62 95.83 6.68 95.13 9.57

Two-digit 82.43 18.97 81.08 18.31 93.40 8.70 96.53 6.42

Borrow One-digit 89.10 13.51 87.50 13.14 90.41 13.59 89.83 13.15

Two-digit 69.55 27.48 79.16 20.75 71.80 23.64 82.56 16.62

RESPONSE TIME

No-borrow One-digit 8.73 4.03 8.96 4.17 3.66 1.07 4.03 1.34

Two-digit 15.92 7.32 14.21 4.38 6.84 2.23 6.80 2.13

Borrow One-digit 18.01 12.95 20.04 11.41 11.45 6.52 13.07 5.98

Two-digit 26.34 15.51 23.92 12.57 21.21 16.31 17.93 7.99

Experiment 2

ACCURACY

No-borrow One-digit 92.39 16.77 90.22 16.23 94.05 11.79 94.64 10.01

Two-digit 79.62 23.33 77.17 22.25 85.12 20.52 84.23 16.35

Borrow One-digit 72.87 27.23 74.39 26.21 83.42 21.25 81.79 22.00

Two-digit 46.65 32.12 52.74 32.66 65.22 31.61 68.48 24.96

RESPONSE TIME

No-borrow One-digit 6.82 3.51 7.60 4.70 5.28 4.71 5.46 4.72

Two-digit 14.15 5.65 13.38 4.48 10.65 7.92 9.89 6.11

Borrow One-digit 15.82 7.51 17.41 7.93 11.73 6.28 12.70 6.33

Two-digit 25.17 9.93 22.60 9.20 18.79 10.30 16.41 7.05

Accuracy refers to the percentage of correct problems; response times are expressed in seconds.

TABLE 2 | Results of the mixed-design 2 × 2 × 2 × 2 ANOVAs for the accuracy and RTs, with grade (third and fifth grade) and condition (absence or presence of

borrowing procedure) as the between-participants factors, and complexity (single or double-digit subtrahend) and format (horizontal or vertical presentation) as repeated

measures (Experiment 1).

Accuracy Reaction times

df F p LogBF F p LogBF

Grade (G) 1,151 8.44** 0.004 13.12 28.83** < 0.0001 40.43

Condition (Cond) 1,151 23.75** <0.0001 34.84 74.93** < 0.0001 93.18

Complexity (C) 1,151 55.32** <0.0001 73.45 125.88** < 0.0001 140.15

Format (F) 1,151 6.03* 0.015 9.16 1.14 0.288 1.74

G*Cond 1,151 2.58 0.110 4.18 0.06 0.802 0.10

G*C 1,151 4.84* 0.029 7.45 1.10 0.296 1.68

G*F 1,151 0.76 0.383 1.17 0.03 0.869 0.04

Cond*C 1,151 9.16** 0.003 13.90 4.60* 0.034 6.95

Cond*F 1,151 5.52* 0.020 8.52 0.09 0.765 0.14

C*F 1,151 12.75** <0.0001 18.95 11.62** 0.001 17.15

G*Cond*C 1,151 3.26 0.073 5.06 5.11 0.025 7.70

G*Cond*F 1,151 0.092 0.762 0.14 1.04 0.310 1.59

G*C*F 1,151 0.41 0.522 0.61 0.11 0.746 0.16

Cond*C*F 1,151 7.27* 0.008 11.20 4.13* 0.044 6.25

G*Cond*C*F 1,151 0.37 0.544 0.55 0.34 0.562 0.52

LogBF, approximated bayes factor; G, Grade; Cond, Condition; C, Complexity; F, presentation Format. *p < 0.05; **p < 0.01.
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subtrahends, they solved problems in vertical format more slowly
than those in horizontal format (12 vs. 10 s, p< 0.05). Finally, the
three-way interaction among condition, complexity, and format
is shown in Figure 1 (upper panel). Children who solved no-
borrow problems did not show any effects of format, whereas
those who solved borrow problems showed the interaction of
complexity and format (ps < 0.01).

Self-Report
The analyses of accuracy and response times showed that
problem features influenced children’s performance, and thus
their strategy efficiency. Descriptive data on strategy choices for
children in third- and fifth-grade are presented in Table 3 which
shows the number of children who used the strategy at least
once and the observed frequencies across grades, conditions,
complexity, and presentation format.

The Table shows the number of children who reported
using each strategy at least once: the use of strategies varied
significantly across ages, in particular for the more complex
strategies: more older children reported left-to-right strategy
than younger children (61 vs. 33%), χ

2 (1, N = 155) = 12.07,
p < 0.001, Cramer’s phi = 0.279 whereas younger children
reported to use more often the right-to-left-algorithm (93
vs. 93%), χ

2 (1, N = 155) = 8.05, p = 0.005, Cramer’s
phi = −0.228. For the simpler strategies, the differences are less
evident, but the emerged pattern seems to indicate that older
children are more likely to report retrieval and less likely to use
counting compared to the younger children. Thus, the overall
comparison of strategy repertoire across grade shows changes
as a function of children’s expertise: these shifts in strategy
repertoire with grade are consistent with increased access to
stored arithmetic facts and a greater conceptual understanding
of number.

Next, we explore the patterns of strategy selection in relation
to problem features. We analyzed strategy choices in order to
determine whether they varied with the same problem features as
did strategy efficiency. Of interest was the frequency of strategy
choice across all problems, regardless of whether those choices
resulted in accurate performance. As previously mentioned, the
155 children each solved 32 subtraction problems, hence there
were a total of 4,960 trials for analysis.

Analyses of strategy choices were performed using the
statistical software R (R Core Team, 2015) using the following
packages: vglm for the Multinomial models (Yee and Wild, 1996;
Yee, 2015) and Bayes Factor for Bayesian estimates (Morey and
Rouder, 2015). To determine the best fitting model for describing
the relation between problem features and strategy choices, we
analyzed the data with a series of multinomial models. Each
model included the four independent variables: grade, condition,
complexity, and presentation format. This type of discrete-choice
model permits the set of choice (the four strategy options) to
vary by participants and can incorporate explanatory variables
that can characterize the pattern of frequencies, in this situation,
strategy choice.

A model-selection strategy was performed using a procedure
to detect the best-fitting model (for an example, see Fox,
2015). The type of strategy that was selected on each trial

was the dependent variable and there were four predictors:
school grade attended (grade, with two levels: third and fifth
grade); presence or absence of borrowing procedure (condition,
with two levels: with or without borrowing); complexity of the
subtrahend (subtrahend with one- or two-digits) and stimulus
presentation format (two levels: horizontal or vertical). Then,
starting from the null model (M0–i.e., the model including
only intercepts and no predictors), we built the various models
developed from all the possible combinations of the four
predictors. After the null model (M0), we first explored the
additive model; next all the possible two-way interactions
were tested. Afterward, all the three-way interactions were
explored. In total there were 14 models resulting from all the
possible combination of the predictors—the saturated model
with all predictors did not converge and so it was not
included.

We used the likelihood ratio test to compare models, taking
into consideration the Bayesian information criterion (BIC;
Schwarz, 1978). In Table 3, the results of model comparisons
are reported. 1BIC indicates the differences between the null
model (M0) and each subsequent model; a positive 1BIC
value implies that a given model is better than the null
model. In order to compare the relative evidence for each
different model we calculated the Log Bayes Factor (BF)
approximations (see Table 4), using the formula (1BIC/2;
Raftery, 1995). For example, a Log BF value of 3 indicates
that one model is twenty [exp (3) = 20] times more likely
than the null model, a difference that has been characterized
as strong (Wagenmakers, 2007; Wetzels et al., 2011). More
generally, the higher the 1BIC and BF, the more likely the
model is in comparison to the null model and thus provides
a good fit to the data. Details of the multinomial process
and the indexes that guided the model selection are given in
Table 4.

In the first step, which involved considering additive effects
only (comparable to a main effects model), including all
four predictors, a positive 1BIC value of 3,364 was found,
indicating that it was a significantly better fit than the null
model. This finding indicates that all four predictors influenced
strategy selection. Subsequently, inclusions of two- and three-
way interactions improved the overall model fit. Following this
procedure, the best-fitting model was M11 (see Table 3), which
included the interaction of three factors, that is borrow × grade
× complexity and an additive effect of presentation format.
Comparing the 1BIC values, we found that M11 explained the
data more than a million times (Log BF = 14) better than
any of the other models. The interactive portion of the M11
model is represented in Figure 2 (upper panel), which shows
the estimated probability for each strategy as a function of
each combination of grade, complexity, and condition (borrow
vs. no-borrow). The three-way interaction reflects the influence
of the older children’s greater experience and reveals clear
differences in strategy choice across the problem features. In
particular, the strategy used most frequently was the right-to-
left procedure (i.e., St. Alg. In Figure 2): It was used on more
problems than other strategies by both third- and fifth-graders
on two-digit problems, but the younger children tended to
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FIGURE 1 | Representation of the three-way interaction of borrow*complexity*presentation format on correct RTs for Experiment 1 and 2.
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TABLE 3 | Descriptive data on strategy choices for children in third- and fifth-grade; showing the number of children who used the strategy at least once (n), the range,

and the observed frequencies according grade, condition, complexity, and presentation format.

Third graders Fifth graders

No borrow Borrow No borrow Borrow

Simple Complex Simple Complex Simple Complex Simple Complex

n Range Col Row Col Row Col Row Col Row n Range Col Row Col Row Col Row Col Row

Experiment 1 (n = 76) (n = 79)

Retrieval 29 0–14 90 94 0 1 1 1 1 0 38 0–18 188 192 5 7 2 0 2 1

Counting 31 0–23 47 50 2 3 28 29 10 17 28 0–16 27 28 5 0 18 24 1 2

Left-to-right 25 0–32 6 4 6 6 60 83 40 38 48 0–32 30 31 42 52 165 182 117 137

Right-to-Left 71 0–32 138 143 282 6 147 121 217 38 61 0–32 35 34 230 52 86 78 177 137

Other 34 0–32 15 5 6 7 76 78 44 52 34 0–30 8 3 6 3 73 60 47 45

Experiment 2 (n = 88) (n = 87)

Retrieval 39 0-19 59 74 27 20 28 29 12 14 70 0–27 171 181 48 40 60 86 24 25

Counting 76 0-32 121 127 98 95 115 109 59 56 59 0–30 40 44 43 35 81 77 71 52

Left-to-right 42 0-25 28 22 30 27 61 53 64 60 59 0–26 13 28 49 65 79 77 101 129

Right-to-Left 86 0-32 168 153 221 234 124 137 193 198 78 0–32 104 75 188 188 148 128 172 162

n is the number of individuals in each grade who reported using the procedure at least once. Col, columnar (vertical) presentation; Row, horizontal presentation.

TABLE 4 | Model comparison for strategy choice in Experiment 1.

BIC ∆BIC Log BF Model

M0 3832 0 1

M1 468 3364 37.31 pres.form + condition + grade + complexity

M2 445 3387 25.68 complexity + condition * grade + pres.form

M3 460 3371 33.40 pres.form + condition + grade * complexity

M4 478 3353 42.44 grade * pres.form + condition + complexity

M5 422 3410 14.31 pres.form + grade + complexity * condition

M6 470 3362 38.03 grade + condition * pres.form + complexity

M7 478 3354 42.29 condition + grade + pres.form * complexity

M8 432 3399 19.45 grade * pres.form + condition * complexity

M9 462 3370 34.13 condition * pres.form + complexity * grade

M10 455 3377 30.67 complexity * pres.form + grade * condition

M11 393 3438 condition * grade * complexity + pres.form

M12 466 3366 36.25 complexity + condition * pres.form * grade

M13 486 3346 46.20 condition + pres.form * grade * complexity

M14 439 3393 22.82 grade + condition * complexity * pres.form

BIC, Bayesian Information Criterion; ∆BIC, BIC difference with respect to the null model

(M0); LogBF, approximated bayes factor respect to the best model (M1) calculated

through the relative likelihood [i.e., (∆BIC/2)]. The higher the ∆BIC the better the model.

Strategy, type of strategy (i.e., counting, retrieval, decomposition, and written calculation);

Grade, 3rd and 5th grade; Complexity: single or double-digit subtrahend; Condition

(absence or presence of borrowing procedure); Pres.form, vertical and horizontal

presentation format.

use this procedural strategy even more often than the older
children.

Other differences in strategy choice were found that were
also related to grade. For example, retrieval was reported
more frequently by fifth- than by third-graders on the simpler
problems, that is, on no-borrow problems with a single-digit
subtrahend (e.g., 57– 6). Both counting and decomposition

strategies were generally reported less frequently than the right-
to-left algorithm, except on one-digit borrow problems for fifth
graders, where this strategy was the most frequent. Counting
was reported somewhat more often by third- than by fifth-
grade children, for all problems except the two-digit no-borrow
problems. The left-to-right decomposition strategy was reported
more often by fifth- than by third-grade children, specifically on
problems with two-digit subtrahends, although the differences
were modest. Finally, children’s strategy reports were more likely
to include a mixture of strategies (i.e., Other in Figure 2) borrow
problems, especially one-digit ones. In summary, across grades,
children showed a pattern of shifting from counting to retrieval
strategies on the easier problems, that is, those with one-digit
subtrahends, and a similar, but smaller shift toward left-to-
right strategies on the harder problems, especially in the borrow
condition. As Figure 2 (upper panel) highlights, the presence or
absence of borrowing as well as the complexity of the subtrahend
interacted to determine which strategy children selected on
specific problems, suggesting that they were influenced by these
factors as they chose which strategies to implement.

An additive effect of presentation format was observed,
showing that this feature did not interact with problem
characteristics in influencing children’s strategy choices: the
difference in the frequency use according the vertical or
horizontal presentation format was small but consistent across
other combinations of predictors. This is an interesting and novel
finding, because it indicates that strategy choice can be influenced
both by factors inherent to the solution process (i.e., problem
complexity) and by features of the visual display (i.e., format).

EXPERIMENT 2

In Experiment 2 we explored patterns of strategies chosen
by children using an extended forced-choice condition. As
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FIGURE 2 | Principal effects of the best model for prediction of strategy choice in both Experiments. Figures show a representation of the estimated probability of

strategy choice according the interaction of grade*borrow*complexity. Presentation format is not reported in the figure because it enters in the models as additive

factor. Retr., retrieval; Count, counting; Decomp, left-to-right procedure; St. Alg, right-to-left procedure; Other, confusing reporting.

in Experiment 1, children performed the same two tasks—
the paper-and-pencil tasks assessing arithmetical achievement
and the computerized mental subtraction task—with the only
difference related to the collection of the strategy used. In
this experiment, children were asked to choose the strategies
used among a repertoire of alternatives based on the solution
procedures resulted from Experiment 1. The goals of this
experiment were to (a) replicate the results emerged in
Experiment 1 and (b) determine whether the pattern of factors

that emerged in the multinomial analysis is generalizable to data
collected via another method of assessing strategy choice.

METHODS

Participants
Participants included 175 children: 88 in third grade (47 boys, 41
girls) with a mean age of 100.2 months (SD = 3.6; range = 93–
107.5 months), and 87 in fifth-grade (39 boys, 48 girls) with
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a mean age of 124.7 months (SD = 4.3; range = 109–140.5
months) who were attending Italian urban state schools.
Parental consent was obtained. Children with special educational
needs, specific learning disorders, intellectual disabilities, or
neurological/genetic disorders, as indicated by their teachers,
were not included in the study.

Procedure
The design and procedure exactly replicated those of Experiment
1, with the sole exception being the way children strategy choices
were collected. Children were asked to indicate how they had
solved each problem by choosing one of four strategies (counting,
retrieval, left-to-right decomposition, or right-to-left algorithm),
which were explained with examples at the beginning of the
individual session. Thus, in the present research, after completing
each operation, participants were asked to indicate which out of
four strategies they had used to solve each problem.

Children were randomly assigned to either the no-borrow or
borrow condition, such that there were 89 children (45 boys, 44
girls; 48 third- and 41 fifth-graders) in the no-borrow condition,
and 86 (41 boys, 45 girls; 40 third-, and 46 fifth-graders) in the
borrow condition.

RESULTS

Arithmetical Academic Achievement
Performance on the arithmetic achievement tasks was analyzed
in 2 (grade) × 2 (condition: borrow, no-borrow) ANOVAs. No
differences were observed neither in relation to the grade nor to
the assigned condition (see Supplementary Material).

Accuracy and Response Times
As in Experiment 1, the descriptive statistics for performance
on the multi-digit subtraction task are shown in Table 1 (lower
panel). Both percentage of correct responses and correct mean
latency were examined with separate 2 (complexity: one- vs.
two-digit numbers in the subtrahend) by 2 (format: horizontal,
vertical presentation) × 2 (grade: 3, 5), × 2 (condition: borrow,
no-borrow) mixed ANOVAs, with repeated measures on the first
two factors. The results of these analyses are shown in Table 5.

Regarding the accuracy, the main effect of grade was
significant, showing that younger children performed
significantly worse than the older ones (73 vs. 82%). Consistent
with Experiment 1, the effects of condition and complexity
were significant: No-borrow problems were easier to solve than
borrow problems (87 vs. 68%), and problems with one-digit
subtrahends were easier to solve than those with two-digit
subtrahends (85 vs. 70%). In contrast to Experiment 1, there
were no significant effects of format. The only significant
interaction was condition × complexity which confirmed that
difference between borrow and no-borrow problems was larger
for more complex problems (i.e., two-digit: +24%; 58 vs. 82%:
one-digit:+15%; 78 vs. 93%; ps < 0.001).

Similar to the results for accuracy, there were significant main
effects of grade, condition (borrow status), and complexity in
the analysis of response time. Hence, third-graders were slower
than fifth graders (15 vs. 11 s), children who solved borrow

problems responded more slowly than those who solved no-
borrow problems (17 vs. 9 s), and children solved problems
with double-digit subtrahends more slowly than those with
single-digit subtrahends (16 vs. 10 s). The interaction of grade
x complexity was significant. At both age groups, children were
faster to solve problems with one-digit than those with two-digits
subtrahends (ps < 0.001), however this difference was larger for
children in third grade than those in fifth grade (12 vs. 19 s for
third graders and 9 vs. 14 s for fifth graders). As in Experiment
1, the complexity x format and the condition x complexity x
format interactions were significant. In particular, children did
not show any effects of format during the execution of no-borrow
problems whereas when children solved borrow problems, they
were faster in vertical than in horizontal format with two-digit
problems (15 vs. 17 s, p < 0.001) and slower in vertical format
than in horizontal format with single-digit problems (11 vs.
9 s, p < 0.001). The three-way interaction among condition,
complexity and format is shown in Figure 1 (lower panel).

Strategy Choice
As in the previous experiment, we analyzed strategy choices in
order to determine whether they varied with the same problem
features as did strategy efficiency, regardless of whether those
choices resulted in accurate performance (see Supplementary
Materials for the observed frequency of the strategies). The
descriptive data on strategy choices are reported in Table 3.
As for Experiment 1, the number of children who reported
using each strategy at least once varied significantly across ages
for all four strategies. More older children reported retrieval
than younger children (80 vs. 44%), χ

2 (1, N = 175) = 24.38,
p < 0.001, Cramer’s phi = −0.373 whereas fewer older children
reported counting than younger children (68 vs. 86%), χ

2 (1,
N = 175) = 8.53, p = 0.003, Cramer’s phi = 0.221. For the
more complex strategies, more older than younger children
reported using the left-to-right strategy (68 vs. 48%), χ

2 (1,
N = 175) = 7.23, p < 0.007, Cramer’s phi = −0.203. Finally,
although a majority of children in both grades reported using the
right-to-left algorithm, more younger than older children used
the strategy at least once (98 vs. 90%), χ2 (1, N = 175) = 4.84,
p = 0.023, Cramer’s phi = 0.166. Thus, in line with the previous
experiment, the overall comparison of strategy repertoire across
grade shows changes as a function of children’s expertise. In
the next paragraph, we analyze the patterns of strategy selection
according to problem features.

Multinomial models and a model-selection strategy were used
to analyze strategy choices in relation to problem features and
grade on a trial-by-trial basis (175 × 32 = 5600 trials), as
described in Experiment 1. Details of the multinomial process
and the indexes that guided the model selection are reported in
Table 6.

These analyses precisely confirmed the former results: the
best-fitting model was M11, which included the interaction of
the three same factors, borrow x grade x complexity, and an
additive effect of presentation format. Comparing the 1BIC
values, we found that M11 explained the data more than 2,900
times (Log BF = 8) better than any of the other models. Figure 2
(lower panel) shows the estimated probability of this model
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TABLE 5 | Results of the mixed-design 2 × 2 × 2 × 2 ANOVAs for the accuracy and RTs, with grade (third and fifth grade) and condition (absence or presence of

borrowing procedure) as the between-participants factors, and complexity (single or double-digit subtrahend) and format (horizontal or vertical presentation) as repeated

measures (Experiment 2).

Accuracy Reaction times

df F P LogBF F P LogBF

Grade (G) 1,171 9.95** 0.002 14.75 17.86** < 0.0001 25.98

Condition (Cond) 1,171 45.64** <0.0001 61.95 78.99** < 0.0001 99.52

Complexity (C) 1,171 104.24** <0.0001 123.88 397.57** < 0.0001 315.29

Format (F) 1,171 0.27 0.604 0.31 3.47 0.064 5.25

G*Cond 1,171 2.24 0.136 3.41 1.99 0.160 3.04

G*C 1,171 3.50 0.063 5.29 8.63** 0.004 12.91

G*F 1,171 0.04 0.841 11.77 0.41 0.521 1.53

Cond*C 1,171 7.87** 0.006 0.06 1.01 0.318 0.64

Cond*F 1,171 2.89 0.091 4.36 1.36 0.245 2.08

C*PF 1,171 0.99 0.322 1.52 26.18** <0.0001 37.15

G*Cond*C 1,171 0.66 0.419 1.00 0.03 0.854 0.05

G*Cond*F 1,171 1.53 0.217 2.34 0.01 0.921 0.02

G*C*F 1,171 0.01 0.908 0.02 0.53 0.466 0.82

Cond*C*F 1,171 2.10 0.150 3.20 6.62* 0.011 9.97

G*Cond*C*F 1,171 0.04 0.843 0.06 0.01 0.916 0.02

Strategy, type of strategy (i.e., counting, retrieval, decomposition, and written calculation); Grade: 3rd and 5th grade; Complexity, single or double-digit subtrahend; Condition (absence

or presence of borrowing procedure); Pres.form, vertical and horizontal presentation format.

for each strategy as a function of each combination of grade,
complexity, and condition (borrow vs. no-borrow). The overall
pattern confirmed the strategy used most frequently was the
right-to-left procedure: It was used on more problems than other
strategies by both third-graders on all four types of problems and
by fifth-graders on all except single-digit no-borrow problems,
which were very frequently solved with retrieval. Retrieval was
reported more frequently by fifth- than by third-graders on all
problems, especially the simpler ones, and both counting and
decomposition strategies were generally reported less frequently
than the right-to-left algorithm. Compared to Experiment 1,
counting was generally used more often, especially by third-
grade children, for all problems except the hardest (i.e., two-
digit borrow problems). The left-to-right decomposition strategy
was reported somewhat more often by fifth- than by third-grade
children, specifically on problems with two-digit subtrahends,
although it was less used compared to Experiment 1. These
analyses confirmed that the presence or absence of borrowing
as well as the complexity of the subtrahend interacted with
children’s expertise to determine which strategy they selected on
a specific problem.

This pattern of results strengthens the secondary role of
presentation format that seems not to directly influence children’s
strategy choices: small differences in the frequency use emerged
according the vertical or horizontal format and, above all,
consistent across other combinations of predictors.

DISCUSSION

Children use a variety of strategies to solve mathematical
problems (e.g., Barrouillet et al., 2008). Their strategy repertoire

is assumed to reflect an integrated network of conceptual and
procedural knowledge that allows them to decide how to perform
a strategy, when to use it, and why (Hiebert and Lefevre, 1986;
Bisanz and LeFevre, 1990). The goal of the present research
was to explore key factors that influence children’s strategy
choices on multi-digit subtraction problems and to directly
compare two different methods for assessing children’s strategy
choices. To achieve this end, two different experiments were
conducted on similar cohorts of third- and fifth-grade children:
In the first experiment, strategy selection was investigated by
means of a free-choice (verbal self-report) paradigm, whereas in
the second study a discrete-choice approach was implemented.
Problem features, such as complexity (i.e., whether there were
one- or two-digit subtrahends) and whether the solution crossed
a decade boundary (i.e., required a borrow operation) were
manipulated, in addition to presentation format (i.e., horizontal
vs. vertical alignment). Classical statistical analyses were applied
to children’s performance (i.e., accuracy and response times),
and multinomial models were used to analyze strategy choices
in relation to problem features and grade on a trial-by-trial basis.

Analyses of accuracy and response times in both experiments
showed typical age-related improvement in performance: Fifth-
grade children solved problems more quickly and accurately
than third-grade children. Children’s accuracy was sensitive to
problem features that influence the difficulty of the problem,
specifically, children assigned to the borrow condition correctly
solved fewer problems than children assigned to the no-borrow
condition and both groups were less accurate in solving problems
with a double-digit subtrahend. A comparison of the results of
the two studies revealed a discrepancy related to the contextual
feature: In the first experiment children’s performance was
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TABLE 6 | Model comparison for strategy choice in Experiment 2.

BIC ∆BIC Log BF Model

M0 1453 0 1

M1 401 1052 16.20 pres.form + condition + grade + complexity

M2 385 1068 8.32 complexity + condition * grade + pres.form

M3 391 1061 11.55 pres.form + condition + grade * complexity

M4 400 1053 15.89 grade * pres.form + condition + complexity

M5 398 1055 14.59 pres.form + grade + complexity * condition

M6 406 1047 18.75 grade + condition * pres.form + complexity

M7 402 1051 16.66 condition + grade + pres.form * complexity

M8 397 1056 14.27 grade * pres.form + condition * complexity

M9 397 1056 14.09 condition * pres.form + complexity * grade

M10 386 1067 8.78 complexity * pres.form + grade * condition

M11 368 1084 condition * grade * complexity + pres.form

M12 396 1057 13.70 complexity + condition * pres.form * grade

M13 399 1054 15.29 condition + pres.form * grade * complexity

M14 409 1043 20.56 grade + condition * complexity * pres.form

BIC, Bayesian Information Criterion; ∆BIC, BIC difference with respect to the null model

(M0); LogBF, approximated bayes factor respect to the best model (M11) calculated

through the relative likelihood [i.e., (∆BIC/2)]. The higher the ∆BIC the better the model.

Strategy, type of strategy (i.e., counting, retrieval, decomposition, and written calculation);

Grade, 3rd and 5th grade; Complexity: single or double-digit subtrahend; Condition

(absence or presence of borrowing procedure); Pres.form, vertical and horizontal

presentation format.

influenced by the presentation format only when they had
to solve the hardest problems (vertical presentation improved
correct responses); whereas, in the second experiment, children’s
accuracy was not sensitive to presentation format. Children’s
latencies, in contrast, were related to all of the problem features,
and showed the same pattern of significant effects in both
experiments. Increased complexity (both in terms of borrowing
procedure and subtrahend size) slowed problem execution.

Presentation format also influenced solution latencies in
relation to problem difficulty: Children were faster to correctly
solve double-digit borrow problems presented in columns than
in rows, whereas the reverse pattern was found for single-
digit problems. The differential efficiency of performance shown
on correct latencies (i.e., for borrow problems, children were
faster in horizontal format for one-digit problems such as
73–5 but faster with vertical format for two-digit problems
such as 43–29) suggests that choices were not strategic, per
se, but were driven more directly by problem format. This
conclusion is consistent with the absence of any interactions
between presentation format and either grade or complexity
on strategy choice. Other research has suggested that different
working memory resources may be implicated as a function of
presentation format (e.g., Trbovich and LeFevre, 2003; Caviola
et al., 2012). Thus, manipulation of presentation format may
influence strategy choices independently of factors that are
related to expertise or problem complexity.

The increased level of performance with age corresponds to
similar patterns found in previous research (see Campbell, 2005;
Cohen Kadosh and Dowker, 2015 for a general overviews), such
that children’s performance on complex subtraction problems

is linked to their level of experience (i.e., school grade) and
to variability in problem features that reflect computational
processes (Imbo and Vandierendonck, 2007c; Lemaire and
Calliès, 2009). Novel results were obtained for presentation
format where effects occurred only on borrow problems and
varied with complexity. These patterns were further qualified
by the analyses of strategy choice, as described below. Further
research on the relations between superficial features and those
tied directly to computational demands may have important
implications for understanding children’s solution processes on
complex problems. For example, it would be interesting to better
understand how different combinations of characteristics, such as
problems presented in other familiar formats (e.g., auditory; Noël
et al., 1997; LeFevre et al., 2001), may also influence accuracy and
response times.

The second novel and interesting set of results concerns
children’s strategy choice. No previous research defined in detail
the full range of strategies used by children to solve complex
subtraction problems. In both experiments, we analyzed strategy
choices using multinomial modeling in which all factors, that
is, expertise (i.e., grade), complexity of problem, condition (i.e.,
borrow vs. no-borrow) and presentation format were included as
predictors. Interestingly, the best-fitting model was the same in
both experiments and included a three-way interaction of grade,
condition, and complexity, and an additive effect of presentation
format. First, consider problems with one-digit subtrahends.
We observed in both studies that fifth-grade children choose
retrieval more than third graders on no-borrow problems (e.g.,
78–5) whereas third-grade children were more likely to choose
the standard algorithm. In contrast, third-grade children chose
counting more often than fifth graders on both borrow (e.g.,
73–5) and no-borrow problems (e.g., 89–7). These patterns
for single-digit subtractions show a shift from less- to more-
sophisticated strategies with expertise (i.e., more retrieval, less
counting), accompanied by a higher reliance on algorithmic
solutions by the younger children.

For the more difficult problems with two-digit subtrahends,
compared to fifth-graders, third graders chose counting more
often on no-borrow problems (e.g., 68–41), and the standard
algorithm more often on borrow problems (e.g., 43–29).
Compared to third-graders, fifth graders more often chose
decompositions for both borrow and no-borrow problems.
Again, these patterns of strategy choice, emerged in both studies,
indicate that older children, relied more on strategies that were
efficient (i.e., less use of counting) and reflected their superior
conceptual understanding (i.e., more use of decompositions).
It is worth to remember that these differences which emerged
in strategies selection may reflect a schooling or recency effect
(Lemaire and Brun, 2018): third graders may be more likely to
choose a standard (written) algorithm solution because it is a
strategy that they recently learnt at school (it is taught during the
second and third grades in Italy), whereas older children can rely
onmore efficient strategies (i.e., decomposition) linked to a better
mastery of basic arithmetic knowledge.

At a more general level, multinomial modeling of strategy
choices confirmed the importance of some key influences
on children’s strategy choices for subtraction. The presence
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or absence of borrowing, the value of the subtrahend, and
presentation format all influenced which strategy was adopted
to solve the problems. Moreover, in line with our expectations,
children varied in their strategy repertoires and their use of
those strategies according to their level of experience and in
relation to problem complexity. These findings extend results
reported in previous studies, encompassing a wider range of
subtraction problems. Previous research on simple addition
problems indicated that children tend to shift from counting
(an inefficient procedural strategy) to more efficient memory-
based retrieval with increased age (Widaman et al., 1992; Lemaire
and Siegler, 1995; Geary, 2004; Reed et al., 2015). The present
results support a similar pattern for complex subtraction, but
show that shifts are related to problem features and that there
is also considerable persistence in strategy availability with
development from grades three to five. Taken together, these
outcomes support Siegler’s overlapping waves model (1996), at
least for the retrieval vs. non-retrieval strategies: Children do not
simply use a particular strategy until a better one is available,
instead they have many strategies at once and it is frequency
of use that changes across development (Lemaire and Siegler,
1995).

In previous research, children also showed developmental
and educational changes in the use of left-to-right and right-to-
left strategies (Fuson et al., 1988; Geary et al., 2004). Both the
methods we used to assess strategy choice showed that children
have a wide repertoire of strategies that overlapped from third-
to fifth-grade, and that, although strategy choice changed with
grade, it also depended heavily on problem features. Thus, the
present study was consistent with the findings of persistent
diverse strategy use across expertise, a finding observed even
among adults solving simple arithmetic problems (e.g., LeFevre
et al., 1996; Barrouillet et al., 2008), and extended the conclusion
that children do not use a single strategy to solve two-digit
subtraction problems (Lemaire and Calliès, 2009). Thus, our
findings replicated similar patterns from previous studies and
extended the overlapping waves model to a wider repertoire of
strategies. In fact, these four strategy categories were often used in
previous studies and account well for data observed in adults ( e.g.
Campbell and Xue, 2001; Campbell and Austin, 2002; LeFevre
et al., 2006) whereas all of them were never considered together
before in a developmental sample.

Finally, the present research shows the validity of two
different self-report methods for assessing strategy choice: Both
free-choice and discrete-choice approaches provided valuable
information about strategy repertoire and strategy choices.
Another important contribution of the present work is the use
of a novel analysis of categorical data on strategy choices on a
problem-by-problem basis. Together, the combination of self-
report method and categorical analyses of those self-reports
allowed us to document developmental changes in relation to
different problem features that are known to influence strategy
efficiency. Previously, the use of strategies has often been
examined in terms of strategy efficiency and adaptivity (Lemaire
et al., 2000), which refers to the speed and accuracy with which
strategies are implemented: A multilevel modeling approach
extends the analyses of these aspects from an individual to an
item level. Future studies may apply this approach which allows a

sufficient amount of data for establishing temporal and accuracy
characteristics of the strategies in a reliable way (Luwel et al.,
2009).

As always, this research had limitations. First, as noted
by Lemaire and Brun (2018), allowing students to have full
choice of strategies does not allow an unbiased investigation of
strategy execution and efficiency and so future studies should
specifically address this limitation. Second, further research
should explore how individual differences in cognitive resources
can differently affect the pattern of strategies that students
select and apply to different types of problems, maybe also
including both simple and complex problems in a within subject
design. For example, researchers have shown that children with
mathematical difficulties distribute working memory recourses
differently than do their typically-developing peers (Mammarella
et al., 2013a,b). Future research should address this important
issue because it has clear implications for scenarios outside the
experimental setting, such as in teaching decisions (e.g., when
teachers have to choose whether to focus on practice or on
exploration and flexibility; Imbo and LeFevre, 2009), and in the
clinical setting (e.g., for the development of effective intervention
programs; Caviola et al., 2016). It is generally assumed that
children experiencing mathematical learning difficulties find it
difficult to use both retrieval and right-to-left strategies (see
Geary, 2004, for a review). But a more in-depth knowledge of
which strategies prove more efficient in relation to a problem’s
complexity and an individual’s resources might help to improve
such children’s mathematical achievement and may be beneficial
in the design of appropriate diagnostic tools and educational
interventions. Finally, it is important to conduct cross-cultural
studies to understand how cultural and schooling effects may
influence strategy selection for children of various ages (Imbo
and LeFevre, 2009, 2011).

In brief, the present research showed that there is great
variability in strategy selection in complex subtraction problems
and revealed important effects of grade, problem complexity,
and presentation format on how participants solve complex
arithmetic problems, both in terms of performance and in
choice of strategies. We found that problem features influence
performance, either because these physical qualities compromise
the efficiency of strategies that they usually applied in mental
calculation or because one or more of these features directly
influences strategy choice.
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Do Exact Calculation and
Computation Estimation Reflect the
Same Skills? Developmental and
Individual Differences Perspectives
Dana Ganor-Stern*

Achva Academic College, Arugot, Israel

Groups of children in 4th, 5th, and 6th grades and college students performed exact
calculation and computation estimation tasks with two-digit multiplication problems.
In the former they calculated the exact answer for each problem, and in the latter
they estimated whether the result of each problem was larger or smaller than a
given reference number. The analyses of speed and accuracy both showed different
developmental patterns of the two tasks. While the accuracy of exact calculation
increased with age in childhood, the accuracy of the estimation task reached its
maximum level already in 4th grade and did not change with age. The reaction time
of the exact calculation task was longer than that of the estimation task. The reaction
time for both tasks remained constant in childhood and decreased in adulthood,
with the improvement in speed larger for the exact calculation task. Similarly, within
group variability in accuracy was larger in the exact calculation task than in the
computation estimation task. Finally, low correlation was found between the accuracy of
the two tasks. Together, these findings suggest that exact calculation and computation
estimation reflect at least in part different skills.

Keywords: numerical cognition, computation estimation, exact calculation, development, multi-digit arithmetic,
individual differences

INTRODUCTION

The present study focuses on the ability to solve multi-digit multiplication problems exactly
and approximately. Children learn in school to solve arithmetic problems exactly. It has been
shown that in the early stages of multiplication skill acquisition children use various calculation
techniques to solve single digit (1D) multiplication problems (e.g., Siegler, 1988; Koshmider and
Ashcraft, 1991). Similar to the process that occurs for single digit addition problems, with practice
children gradually shift to solving such problems through retrieval from memory (e.g., Ashcraft
and Battaglia, 1978; Ashcraft, 1992; LeFevre et al., 1996). Such a strategy shift is assumed to be due
to an associative network stored in long term memory that includes the single digit multiplication
or addition problems together with their respective answers (e.g., Siegler, 1988; Koshmider and
Ashcraft, 1991). The formation of this associative network depends on an extensive practice with
such problems and thus it is more likely to be formed when the problem set is small, as in the case of
single digit multiplication or addition problems (e.g., Zbrodoff and Logan, 1986; Logan and Klapp,
1991).
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Much less research was devoted to the investigation of how
multidigit multiplication problems are solved (e.g., van der Ven
et al., 2015). The number of multidigit numbers is substantially
larger than the number of single digit numbers, and therefore the
number of multiplication problems composed of such numbers
is also greater. Each problem will thus receive less practice,
and this will lead to weak, if any, associations between the
problems and their respective answers (Siegler, 1988; Koshmider
and Ashcraft, 1991). Thus, although the ability to solve complex
multi-digit arithmetic problems via calculation improves with
age during childhood and from childhood to adulthood, as
indicated by increased accuracy and speed (Jordan et al., 2003;
Ulf, 2010), such problems in large will not be solved in any
stage via retrieval, but rather through the application of multi-
step calculation algorithms, that rely heavily on working memory
(Lee and Kang, 2002; DeStefano and LeFevre, 2004; Kalaman and
Lefevre, 2007; Raghubar et al., 2010). Due to working memory
limitations people often use paper and pencil, or even turn to
calculators.

In many real life circumstances it is sufficient to produce
approximate, rather than exact answers to complex arithmetic
problems such as multi-digit multiplication problems. For
example, when planning a wedding party one might be interested
in the approximate rather than exact cost involved in inviting
130 people, with the price of catering being 27$ per person. The
process of producing an approximate answer to an arithmetic
problem is called computation estimation (Rubinstein, 1985).
Its main advantage is that it takes less time and attentional
resources than exact calculation, and thus can be used in
circumstances where time or attention resources are limited. It
should be noted that the importance of computation estimation
is not undermined by the wide use of calculators, as using
a calculator to solve a multidigit problem is prone to typing
errors, and computation estimation can be used as a sanity
check to quickly evaluate whether the calculator generated
answer is reasonable (LeFevre et al., 1993; Siegler and Booth,
2005).

Despite its importance, computation estimation has received
relatively little attention in the educational system and in
the numerical cognition literature (e.g., Siegler and Booth,
2005). One way to investigate this skill is using the estimation
production task, in which participants are asked to produce an
approximated answer for an arithmetic problem (e.g., LeFevre
et al., 1993; Dowker et al., 1996; Lemaire and Lecacheur, 2002;
Imbo and LeFevre, 2011). It has been shown that the accuracy of
such approximated answer improves with age, although it is still
poor even for adults (e.g., LeFevre et al., 1993). An examination of
the strategies used based on participants self reports, reveals the
use of various rounding techniques (e.g., Lemaire and Lecacheur,
2002; Lemaire et al., 2004; Siegler and Booth, 2005). With age
there is an increased use of the more complex rounding strategies,
and more adaptivity in strategy selection, such that the rounding
procedure that introduced the least amount of error is chosen
more often (e.g., Lemaire and Lecacheur, 2011). With age there
is also more frequent use of post-compensation procedures to
correct for the error introduced by the rounding procedures (e.g.,
Siegler and Booth, 2005).

In the estimation comparison task, another experimental
paradigm used to study computation estimation in the context of
multi-digit arithmetic, a multidigit multiplication problem was
presented together with a reference number, and participants
were required to estimate whether the exact answer to the
problem was larger or smaller than the reference number (Ganor-
Stern, 2015, 2016, 2017; Ganor-Stern and Weiss, 2015). The
reference number was either far or close to the exact answer.
The advantage of this task is that it enables the use of two
distinct strategies. The first is the approximated calculation
strategy, which involves rounding procedures, is the strategy
mainly used in the estimation production task. The second is the
sense of magnitude strategy, which involves an intuitive sense of
magnitude without any calculation and it can be used only in this
task due to the presence of the reference number. This strategy
probably reflects the life-long experience with solving arithmetic
problems and even the practice provided by the experimental
session (Ganor-Stern and Weiss, 2015; Ganor-Stern, 2016). Past
research has repeatedly shown adaptivity in strategy choice, as
the approximated calculation strategy was used more often when
the reference number was close to the exact answer, and thus
the sense of magnitude cannot guarantee a correct response,
while the sense of magnitude was used more often when the
reference number was far from it. In terms of speed and accuracy
it has been consistently shown that performance in this task is
enhanced for reference numbers that are far vs. close to the exact
answer, and for those that are smaller vs. larger than the exact
answer (Ganor-Stern, 2015, 2016, 2017; Ganor-Stern and Weiss,
2015).

Ganor-Stern (2016) has investigated the developmental
pattern of performance in this task looking at 4th graders, 6th
graders and college students. There was some improvement in
accuracy with age, as percent error was 22% for 4th graders and
17% for 6th graders and 16% for adults. This improvement was
limited to trials in which the reference numbers were close to the
exact answer; there was no improvement in accuracy for trials
where the reference numbers were far from the exact answer.
There was a substantial improvement in speed with age, especially
in adulthood. Thus, while 4th and 6th graders took on average
12 and 11 s to respond, respectively, adults responded in only
4 s. In terms of strategy use, with age there was a decrease in
the use of the sense of magnitude strategy and an increase in the
use of the approximated calculation strategy, which presumably
underlies the improvement in the accuracy for the close reference
trials.

Present Study
Despite the fact that estimation of the results of arithmetic
problems is a useful skill in life it is still debated whether it
reflects the same skill as solving the same problems exactly. This
is the main question addressed by the current research. Research
conducted on young children (between ages 5 and 9 years old)
has shown positive relationship between the exact calculation
and the estimation skills using addition problems (e.g., Dowker,
1997). Although when looking at children who show especially
weak exact calculation skills, their estimates were found to be
similar to those with average calculation skills, which implies
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some dissociation between the two skills (Dowker, 2005). In a
similar manner, a study by Liu (2013) conducted on adults has
shown that the problem size affected exact calculation but not
estimation. Specifically, the larger the problem the higher the
error rate and reaction time when participants solved it exactly,
but not when they estimated its answer.

The present study expands past research by using a different
estimation task than Dowker (1997) and Liu (2013), by looking
at the developmental patterns of the estimation and exact
calculation tasks from childhood to adulthood, at individual
differences within each task and age group, and at the correlation
between performance in the estimation and exact calculation
tasks.

Specifically, groups of 4th graders, 5th graders, 6th graders,
and college students solved a set of 20 2D multiplication problems
exactly, and estimated the results of another set of 40 similar
2D multiplication problems relative to a reference number using
the estimation comparison task (Ganor-Stern, 2015, 2016, 2017).
In both tasks, speed and accuracy were analyzed by age. For
the estimation task the analysis looked also at the effects of
the reference number characteristics (its magnitude relative to
the exact answer and its distance from the exact answer) on
performance.

As to the predictions, on the one hand, one might expect
a strong relationship between performance in the two tasks,
as they both require arithmetic processing of the same
stimuli (e.g., Dowker, 1997). On the other hand, past research
provided evidence for dissociations between exact calculation
and approximation, as exact calculation is language-dependent
while approximation is not (e.g., Pica et al., 2004). Moreover,
they seem to activate different areas in the brain. During exact
calculation there is strong activation in the left inferior prefrontal
cortex, while during approximation there is activation in the
inferior parietal lobule in both hemispheres (e.g., Dehaene et al.,
1999).

Furthermore, while the exact calculation task used in the
current study involves a long working-memory-dependent
algorithmic process, the computation estimation task seems to
reflect a basic sense of magnitude together with a shortened
algorithmic process (Ganor-Stern and Weiss, 2015; Ganor-Stern,
2016). Indeed, the results of a recent study on the effect of
attention deficit hyperactivity disorder (ADHD) on estimation
vs. exact calculation support some dissociation between exact
calculation and the two strategies involved in the estimation
comparison task. Participants with ADHD, which is assumed
to involve working memory and executive function deficiencies
(Castellanos et al., 2006), were impaired when conducting exact
calculation and when using the approximated calculation strategy
in the estimation task, but not when the sense of magnitude
strategy was used (Ganor-Stern and Steinhorn, 2018).

As to development with age, based on past research
that showed little improvement in estimation accuracy from
childhood to adulthood (Ganor-Stern, 2016), but a significant
improvement in the accuracy of exact calculation (e.g., Ulf, 2010)
we expect to see more improvement with age in the accuracy of
exact compared to approximated calculation. Speed is expected
to increase in both tasks, although to a greater extent in the

exact calculation task (e.g., Ulf, 2010). Finally, we expect to
find more variability in performance (in accuracy or speed)
across participants within each age group in the exact calculation
compared to the estimation task (Dowker, 2005).

MATERIALS AND METHODS

Participants
There were four groups of participants. Thirty three children
from fourth grade (20 females), 33 children from 5th grade
(16 females), 33 children from 6th grade (18 females), and 25
college students (23 females). The children were from three
public schools in the center of Israel, and the college students
were from a public academic college. The average age of the 4th
graders was 9.8 years old, of the 5th graders it was 10.9 years
old, of the 6th graders it was 12.04 years old, and of the college
students it was 23.1 years old.

Ethics Statement
The procedure was approved by the ethics committees of the
Israeli Ministry of Education and of Achva Academic College,
Israel. The college students provided written informed consent to
participate in this study. Adhering to the policy of the Ministry of
Education IRB, the parents of the school children denied consent
by returning an enclosed form.

Stimuli
The stimuli were 60 2-digit (D) multiplication problems. The
problems in the estimation and in the exact calculation tasks
were different, however, they were constructed with the same
following restrictions. There were no tie problems. No operand
had 0 as units digit. No reversed orders of operands were used
(43 × 76 was not used with 76 × 43). The larger operand was
on the left in half of the problems, and on the right in the
other half. The problems for the estimation task were taken from
Ganor-Stern (2016). The range of exact answers in the exact
calculation task was 903–6391, and in the estimation task it was
768–8178.

The multiplication problems in both tasks were printed on
sheets of paper. The exact calculation task included two sets
of 10 problems each. Four problems were printed vertically on
each page to leave space for the calculation. The estimation task
that included 40 items was printed on a booklet. Each item
was composed of a 2D multiplication problem with a reference
number below it, and the word “smaller” written beneath the
reference number on the left side, and the word “larger” written
on the right side (Ganor-Stern, 2016). Four problems were
printed on a sheet of paper. The reference numbers were of 4
types: (1) one which was about one fifth of the exact answer,
(2) one which was about five times the exact answer, (3) one
which was about one half of the exact answer, and (4) one which
was about twice the exact answer. Ten problems were associated
with each reference number type. Types (1) and (2) are the far
condition, and types (3) and (4) are the close condition. In (1) and
(3) the exact answer is larger than the reference number, and in
(2) and (4) the exact answer is smaller than the reference number.
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Reference numbers were rounded to the nearest hundred. In
half of the trials the exact answer was larger than the reference
number, and in the other half it was smaller than the reference
number.

Procedure
The experiment took place in a class setting. The experimenter
explained the participants that they will be solving 2D
multiplication problems. The participants were first given a set
of 10 2D multiplication problems printed on sheets of paper,
and were instructed to solve the problems exactly on the paper
sheets. Then they were given a booklet with 40 estimation
items. Each item was consisted of a 2D multiplication problem
with a reference number below it, and the word “smaller” on
the left side, and the word “larger” on the right side. The
participants were asked to indicate for each problem whether they
estimated the exact answer to be smaller or larger than the given
reference number by marking either the word “larger” or the
word “smaller.” Finally, the participants were given a new set of
10 2D multiplication problems printed on sheets of paper to solve
them exactly on the paper. There were no time limits. For each
task, the experimenters documented on each participant’s sheet of
paper the time he/she started each set of problems. The students
were asked to raise their hands when they finished the current
set. The experimenter documented the time the participant ended
the task on the paper sheet, and handed him/her the following
set. Participants were not allowed to use calculators in any of the
tasks.

RESULTS

The performance measures for each task were the accuracy
for each problem and the solution time for each problem set,
which was divided by the number of problems, for an average
solution time for a single problem. The analyses examined
the developmental patterns within each task, the between-
participants variability within each task, and the relationship
between performance in the two tasks.

The Developmental Pattern in the Exact
Calculation Task
A one way Analysis of Variance (ANOVA) on the percentage
of correct responses in the exact calculation task with age
as a between-participants variable has shown that percent of
correct responses increased with age (F3,118 = 8.07, MSE = 8.49,
p = 0.0001, η2

p = 0.17). Sheffe post hoc tests showed that 4th
graders were less accurate (36%) than the other groups (p < 0.05),
that did not differ (Figure 1). Percent of correct responses
was 62, 69, and 62 for 5th graders, 6th graders and adults,
respectively. The speed analysis revealed a significant effect of
age (F3,120 = 24.40, MSE = 1386.7, p = 0.0001, η2

p = 0.38).
Sheffe post hoc tests showed that the adults were faster than
the children groups (p < 0.05), that did not differ. Average
response time was 88.82, 90.00, and 89.46 s for the 4th graders,
5th graders, and 6th graders, respectively, and it was 18.12 s for
adults (Figure 2).

FIGURE 1 | Percent of correct responses for the exact calculation and
estimation tasks by age group.

FIGURE 2 | Average response time (in seconds) for the exact calculation and
estimation tasks by age group.

The Developmental Pattern in the
Estimation Task
An ANOVA on the average response time has shown a significant
effect of age (F3,119 = 9.72, MSE = 48.52, p = 0.0001, η2

p = 0.20).
Again sheffe post hoc tests have shown that adults were faster than
the children groups when solving the estimation task (p < 0.01),
while the children groups did not differ in speed (Figure 2). Thus,
while it took adults on average 10.2 s to respond to a problem, it
took 4th graders about 22.73 s, 5th graders 21.5 s, and 6th graders
23.77 s.

The accuracy analysis included in addition to the age factor
also the within-participant factors of the size of the reference
number (larger vs. smaller than the exact answer) and its distance
from the exact answer (far vs. close).1 As was found in past

1As the estimation task included only one problem set, we had an accuracy measure
for each item and a speed measure for the whole set. This enabled us to analyze the
effect of reference number characteristics and to calculate the split half reliability
of the estimation task for accuracy only, and not for speed.
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research with the same task (Ganor-Stern, 2015, 2016, 2017;
Ganor-Stern and Weiss, 2015), accuracy was higher when the
reference number was far (83%) compared to close (78%) to
the exact answer (F1,120 = 19.66, MSE = 0.36, p = 0.0001,
η2

p = 0.14). It was also higher when the reference number was
smaller (83%) than the exact answer compared to when it was
larger (79%) than it, although the effect was marginally significant
(F1,120 = 3.55, MSE = 0.06, p = 0.06, η2

p = 0.03). Importantly, as
can be seen in Figure 1, accuracy did not differ across the age
groups (F < 1).

Cross-Participants Variability in
Performance in the Exact Calculation
and Estimation Tasks
To examine cross-participants variability in performance the
coefficient of variability was calculated for each age group and
for each task, for accuracy and speed separately. This was done
by dividing the standard deviation of accuracy and of speed
across participants by the group average and multiplying by 100.
The results (Table 1) show that the coefficient of variability in
accuracy was higher for the exact calculation task compared to
the computation estimation task, and that it decreased with age
for the former but not for the latter. The coefficient of variability
in speed does not show a consistent pattern across tasks or
across age.

Relationship Between the Performance
in the Exact Calculation and Estimation
Tasks
To examine the relationship between the two tasks, we calculated
the correlation between the accuracy of the two tasks and the
reaction time of the two tasks. This was done separately for
each age group, and across age groups (Table 2). The correlation
between the accuracy of the two tasks, collapsed across the age
groups, was 0.35 (p < 0.05), and between the speed of the two
tasks was 0.60 (p < 0.05). As can be seen in Table 2, the pattern
of stronger inter-task correlation in speed than in accuracy was
found in most age groups. This is possibly due to the low
variability in accuracy found in the estimation comparison task.
Accuracy level in the estimation task showed the least variability
across the age groups (Figure 1) and across- participants within
each age group (Table 1).

To examine whether the low inter-task correlation (at least in
accuracy) is due to low reliability of the tasks, we calculated split

TABLE 1 | Coefficient of variability in accuracy and speed by task and age group.

Accuracy Speed

Age group Exact Computation Exact Computation

calculation estimation calculation estimation

4th grade 77.72 15.64 47.73 44.99

5th grade 49.61 17.71 45.13 66.87

6th grade 35.01 20.00 44.14 40.69

Adults 51.44 17.79 38.32 36.02

TABLE 2 | Inter-task correlation and reliability coefficients by task and age group.

Inter-task correlation Split-half reliability

Accuracy Speed Exact Exact Estimation

Calculation Calculation Accuracy

Accuracy Speed

All 0.35 0.60 0.87 0.88 0.79

4th grade 0.35 0.38 0.77 0.86 0.58

5th grade 0.36 0.62 0.88 0.78 0.89

6th grade 0.13 0.35 0.83 0.95 0.79

Adults 0.53 −0.07 0.89 0.92 0.84

The numbers in plain font represent significant correlations (p < 0.05), while the
numbers in italics and in a smaller font represent insignificant correlations.

half reliabilities for each of the tasks. As can be seen in Table 2 the
split half reliabilities of the two tasks were relatively high (in most
cases they were higher than 0.80), thus suggesting that the inter-
task correlations were not restricted by the tasks reliabilities1.

DISCUSSION

From a developmental perspective, accuracy in the exact
calculation task improved from 4th to 5th grade and then
remained unchanged up to adulthood. Note that percent
of correct responses hardly reached 70%, far from perfect
accuracy, thus suggesting that participants even in adulthood
are not proficient in solving multi-digit multiplication problems,
probably due to the wide use of calculators. Note that the
accuracy level of the two tasks is not comparable as the exact
calculation task is an open ended task, while the computation
estimation task is a forced choice one. Thus, what seems
to be informative is the different patterns across age. While
exact calculation accuracy increased with age, accuracy of the
computation estimation task did not change by age at all. As
to speed, speed improved in both tasks mainly in adulthood,
although the increase was much more pronounced for the exact
calculation task.

Past research has found a continuous improvement in
accuracy (van der Ven et al., 2015) and in speed (Koshmider
and Ashcraft, 1991; De Brauwer and Fias, 2009) throughout
childhood when solving single digit multiplication problems
exactly. In the present study the only improvement in accuracy
of exact calculation was found between 4th and 5th grades. The
reason might lie in the difference between single vs. multiple digit
multiplication. Single digit multiplication is practiced on its own,
and as part of multidigit multiplication, and thus it continues to
improve. Multidigit multiplication is practiced much less, in part
due to the increased use of calculators.

The main improvement in speed is seen in adulthood. This is
true for both tasks but it is more apparent for the exact calculation
task. This improvement could be due to improvement of domain-
specific skills, such as calculation skills (e.g., Pauli et al., 1994),
or domain general factors, such working memory and decision
processes (e.g., Berg, 2008). The fact that the improvement in
speed in adulthood was not accompanied with an improvement
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in accuracy might suggest that domain general factors accounted
for it.

Note that the accuracy levels in the estimation task of the
current study are comparable to those found in past research
using the same task and the same age groups (Ganor-Stern,
2016). The reaction time here are longer due to the use of paper
and pencil, however, the speed patterns are similar. In both
studies speed remained unchanged in childhood and it improved
considerably in adulthood. The facts that similar patterns were
found in the two studies both in accuracy and in speed despite
the use of different procedures [i.e., the current study used a
paper and pencil procedure, while in Ganor-Stern (2016) the
experiment was computerized] provide convergent validity to the
current results.

The different developmental trajectories of the two tasks
suggest that they do not reflect the same skill. In a consistent
manner, the analysis of variability has shown that the variability
in accuracy was smaller for the computation estimation task
than for the exact calculation task. Moreover, while for the
exact calculation task this variability decreased with age,
consistent with past research (De Brauwer and Fias, 2009),
for the computation estimation task it did not. The relatively
low correlation between the accuracy of the two tasks also
corroborates the dissociation between the two tasks.

The present research showing an increase in accuracy
between 4th and 6th grades in the exact calculation task
is in line with Ulf (2010), who found a similar pattern.
Note, however, that in contrast to the present findings, Ulf
also reported an improvement in approximated calculation
between 4th and 6th grades. A possible explanation for
this difference is the nature of the estimation task used.
In Ulf (2010) children were given addition and subtraction
problems composed of 2D numbers presented vertically. Each
problem was accompanied with two proposed answers, and
the task was to choose the answer that was closest to the
correct answer. Such a task might encourage participants
to solve the problem exactly, and thus might show similar
improvements with age for the exact calculation and estimation
tasks.

The current estimation comparison task seems to capture
not only approximated calculation but also sense of magnitude
for the results possible for such multidigit multiplication
problems. This is indicated by the use of sense of magnitude
strategy itself, and by the adaptive choice between the sense
of magnitude and the approximated calculation strategies. This
sense of magnitude might be related to the Approximate
Number System (ANS), which represents magnitudes in
an approximated manner, develops early, and is language
independent (Ansari, 2008; Mazzocco et al., 2011a,b; Park and
Brannon, 2013).

Across studies and age groups participants use the
approximated calculation strategy more often when the
reference numbers are close to the exact answer than when they
are from it, suggesting that participants have a rough sense for
how big the answers could be, and thus use the approximated
calculation strategy more often when the reference number is
within this range and the sense of magnitude strategy when the

reference number it is outside of it (Ganor-Stern, 2015, 2016,
2017; Ganor-Stern and Weiss, 2015). Importantly, this pattern of
adaptive strategy choice was found even for children as young as
4th graders (Ganor-Stern, 2016) and for adults diagnosed with
developmental dyscalculia (Ganor-Stern, 2017).

The conclusion of the current study that exact calculation
and estimation do not reflect the same skill is consistent
with past research that argue for a dissociation between
estimation and exact calculation (e.g., Pica et al., 2004; Liu,
2013), more generally it is compatible with theories that
emphasize the componential nature of arithmetic (e.g., Dowker,
2005).

The current study did not collect information about strategy
use. Future research, in which participants describe the strategy
they used on a trial by trial basis should look at the relationship
between exact calculation and estimation performance separately
for the two strategies used. It is predicted that the correlation
between the accuracy of the estimation and exact calculation tasks
will be higher for trials in which the approximated calculation
strategy was used.

Limitations of the Present Study
The fact that the computation estimation task was a forced choice
task, and the exact calculation task was an open ended one
prevents a direct comparison of the accuracy and speed of the
two tasks, and this might be seen as a limitation of the current
study. The rational for this design is that the use a forced choice
task with reference numbers in the estimation task allowed using
sense of magnitude when solving this task, especially with far
reference numbers. For the exact calculation task, the use of a
forced choice task might have encouraged participants to use
shortcut strategies, such as parity rules, (e.g., Lemaire and Fayol,
1995) rather than to go through the whole solution process, and
thus an open ended format was used. Furthermore, the task
order was determined by school considerations, which did not
allow for a random or counterbalanced design. As a consequence
no conclusions on the effect of performing one task on the
other task can be drawn. Finally, the measurement of speed was
possible for the whole set rather than for each item, due to
the use of paper and pencil, rather than a computerized task.
This was done because solving complex multidigit multiplication
problems is usually done in everyday life with paper and
pencil, and the experimental setting tried to mimic these natural
conditions.
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Variability in Single Digit Addition
Problem-Solving Speed Over Time
Identifies Typical, Delay and Deficit
Math Pathways
Robert A. Reeve1* , Sarah A. Gray1, Brian L. Butterworth1,2 and Jacob M. Paul1

1 Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia, 2 Centre for Educational
Neuroscience, University College London, London, United Kingdom

We assessed the degree to which the variability in the time children took to solve single
digit addition (SDA) problems longitudinally, predicted their ability to solve more complex
mental addition problems. Beginning at 5 years, 164 children completed a 12-item SDA
test on four occasions over 6 years. We also assessed their (1) digit span, visuospatial
working memory, and non-verbal IQ, and (2) the speed with which they named single
numbers and letters, as well the speed enumerating one to three dots as a measure of
subitizing ability. Children completed a double-digit mental addition test at the end of the
study. We conducted a latent profile analysis to determine if there were different SDA
problem solving response time (PRT) variability patterns across the four test occasions,
which yielded three distinct PRT variability patterns. In one pattern, labeled a typical
acquisition pathway, mean PRTs were relatively low and PRT variability diminished over
time. In a second pattern, label a delayed pathway, mean PRT and variability was high
initially but diminished over time. In a third pattern, labeled a deficit pathway, mean PRT
and variability remained relatively high throughout the study. We investigated the degree
to which the three SDA PRT variability pathways were associated with (1) different
cognitive ability measures, and (2) double-digit mental addition abilities. The deficit
pathway differed from the typical and delayed pathway on the subitizing measure only,
but not other measures; and the latter two pathways also differed from each other on the
subitizing but not other measures. Double-digit mental addition problem solving success
differed between each of the three pathways, and mean PRT variability differed between
the typical and the delayed and deficit pathways. The latter two pathways did not differ
from each other. The findings emphasize the value of examining individual differences
in problem-solving PRT variability longitudinally as an index of math ability, and highlight
the important of subitizing ability as a diagnostic index of math ability/difficulties.

Keywords: typical, delayed, deficit math pathways, single digit addition problem solving speed variability,
subitizing ability, longitudinal analysis

INTRODUCTION

One goal of early math instruction is to help children acquire the basic arithmetic skills necessary
to solve more complex calculation problems. Ensuring children acquire good single digit addition
(SDA) number fact abilities, for example, is a learning objective in many countries (OECD, 2014).
While instructional emphases differ (e.g., from a focus on rote learning to reasoning strategies),

Frontiers in Psychology | www.frontiersin.org 1 August 2018 | Volume 9 | Article 1498187

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.01498
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2018.01498
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.01498&domain=pdf&date_stamp=2018-08-14
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01498/full
http://loop.frontiersin.org/people/34893/overview
http://loop.frontiersin.org/people/388198/overview
http://loop.frontiersin.org/people/30183/overview
http://loop.frontiersin.org/people/113683/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01498 August 13, 2018 Time: 8:29 # 2

Reeve et al. Typical, Delay, Deficit Math Pathways

children tend to use so-called procedural strategies
(e.g., counting all items) before so-called conceptual strategies
(e.g., decomposition of number facts) to solve SDA problems
(Butterworth, 2005; Geary and Hoard, 2005; Siegler, 2016); and,
children may use both procedural and conceptual strategies
on a single test occasion. While the association between the
strategies used to solve SDA problems and problem-solving
success varies within and across age, most children solve SDA
problems eventually (Paul and Reeve, 2016). Nevertheless, this
acquisition variability raises the possibility that different SDA
acquisition pathways are embedded within a general acquisition
pathway. Insofar as different SDA acquisition pathways can be
identified, it is possible they lead to a single ability end-point
(equifinality); it is also possible that different pathways reflect
different ability profiles, which would have implications for our
understanding of math development.

The present study addressed the issue of whether it is
possible to distinguish typical, deficit and delay SDA acquisition
pathways in primary-aged school children based on changes in
the variability of the speed with which children solved SDA
problems over a 5-year period. We focused on variability in
SDA problem-solving speed because arguably it represents an
index of changes in SDA problem-solving efficiency, especially
when examined over time. Focusing on problem solving speed
also allowed us to examine SDA problem solving after children
were able to solve problems correctly. In general, it would be
expected that children’s SDA problem-solving speed trajectory
would decline and become less variable over time. It is possible
that problem-solving speed will decline slowly for some children
(a delayed pathway?), or continues to be variable (a deficit
pathway?) over time. Given the importance of SDA abilities
in curricula, understanding the factors associated with different
SDA developmental pathways may have diagnostic significance,
as well as contribute insights to our understanding of the nature
individual differences in math development more generally.

SDA Strategy Change
The strategies children employ to solve single addition problems
skills, on average, change in their conceptual sophistication over
time and are claimed to represent changes in math reasoning
abilities (Baroody, 2003; Butterworth, 2005; Siegler, 2006; Geary
et al., 2007; Jordan et al., 2009; Paul and Reeve, 2016). Children
initially guess answers, following which they may use a count
all strategy to individually enumerate the numbers of the two
addends. Subsequently, they may adopt a count on strategy
(specifying the cardinal value of the first addend, and sequentially
enumerating the numbers of the second addend). Children may
then employ a min strategy (counting on from the larger of the
two addends when it is the second term). In time, they begin
using more sophisticated strategies, including the decomposition
of number facts and retrieval of answers from memory (Baroody
and Dowker, 2003; Geary et al., 2007).

How should these changes in the acquisition of SDA
problem solving abilities be characterized? As Siegler notes,
the development of children’s reasoning strategies is more
variable than often acknowledged (Siegler, 2007, 2016). Siegler
(1996, 2000) characterized reasoning development in terms

of changes in the selection of strategy options over time.
Commonly, children use a mix of strategies to solve problems,
with a progressive reduction of less sophisticated strategies
accompanying the acquisition of problem solving ability (usually
across age). That is, with age and/or experience, children solve
problems more quickly and select more efficient strategies, and
less efficient strategies disappear from their repertoire (Torbeyns
et al., 2004).

Is strategy change the same for all children, or are there
different strategy change profiles and, if there are, what do
they imply about children’s abilities? Siegler’s overlapping wave
model suggests the acquisition of problem solving competence
may be analyzed along five dimension of change—path, rate,
breadth, sources and variability (see Siegler, 2005). Siegler
and colleagues (Siegler, 2005, 2016) suggest these dimensions
may be studied using the so-called microgenetic method in
which multiple observations of strategy change are made from
the beginning of change to the point at which strategy-
use becomes relatively stable. Strategies are subjected to
a trial-by-trial analysis, the aim of which is to infer the
processes that give rise to strategy change (Siegler and Crowley,
1991). While the focus on microgenetic methods hints at
the multidimensional nature of individual differences in the
acquisition of a specific ability, it has had relatively little to
say about (1) the significance of different acquisition pathways,
(2) the cognitive indices associated with different pathways, or
(3) whether the same indices are relevant at different change
points.

In the present study, we investigated changes in SDA problem
solving speed variability (PRT) patterns longitudinally. The
rationale for focusing on problem solving speed variability is
we have found a close association between strategy-use and
problem solving speed (Canobi et al., 1998, 2002; Paul and Reeve,
2016; Major et al., 2017). For example, a count all strategy,
where each addend is individually enumerated, takes more time
to execute and is more error prone than a retrieval strategy
where answers are retrieved from memory (i.e., the answer
is known and does not require computation). And, we have
found a strategy-speed correlation independent of whether SDA
problem was solved correctly or not (Paul and Reeve, 2016).
We argue that the time taken for an individual to answer to
a SDA problem is a defensible proxy for SDA strategy use
(Major et al., 2017). Moreover, we can analyze the variability
in SDA PRTs after individuals have learned to solve problems
correctly.

Analyzing the variability in the speed with which individuals
react to an event or solve problems has a long history in research
on the neurophysiological basis of individual differences (Jensen,
1992). Indeed, it was pointed out 50 years ago that inter-event
variability in RTs is not necessarily a measurement error in the
narrow sense, but maybe a robust phenomenon in which there
are reliable individual differences in RT patterns (Berkson and
Baumeister, 1967). Recent research examining the RT patterns
of children with ADHD, for example, shows they tend to have
atypical RT patterns on attention tasks (Lewis et al., 2017).
However, as far as we are aware, no research has investigated the
significance of different RT patterns in SDA problem solving.
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Cognitive Factors That May Affect SDA
Strategies
A number of studies have investigated the association between
cognitive factors (e.g., IQ, working memory), SDA strategy-
use and problem solving ability (e.g., Paul and Reeve, 2016).
Interpreting the importance of age-related factors responsible for
general SDA abilities can be problematic since many abilities are
correlated with age (Reeve et al., 2015). Furthermore, correlations
tend to be modest, suggesting significant within-age variability in
the factors affecting math abilities (Dowker, 2005). Nevertheless,
associations have been found between SDA problem solving
abilities, and some cognitive competencies (i.e., IQ, working
memory) as well as core number abilities (dot enumeration,
magnitude comparison) (Paul and Reeve, 2016). Increases in
working-memory span (WM), for example, are associated with
SDA problem solving accuracy (Raghubar et al., 2010). And
poor WM capacity is thought to affect SDA strategies (e.g., by
affecting the ability to monitor counting: see Dowker, 2005), and
good WM capacity is associated with sophisticated SDA strategies
(Geary, 2011; Geary et al., 2012). However, the association
between the form of WM and math ability changes with age. In
the young, math abilities tend to be correlated with visuospatial
working memory (VSWM); and in older children verbal WM
is more associated with math ability (De Smedt et al., 2009;
Ashkenazi et al., 2013; van der Ven et al., 2013). This finding is
consistent with the claim that visuospatial reasoning abilities are
critical for early math (Gelman and Butterworth, 2005; Siegler
and Mu, 2008; Dehaene and Brannon, 2011; Reeve et al., 2015).

In some studies non-verbal intelligence (NVIQ) is related to
math abilities (Szűcs et al., 2014; however, see Reeve et al., 2012).
In a longitudinal study Geary et al. (2017) reported that NVIQ
was a stable predictor of children’s math achievement (see also
Van de Weijer-Bergsma et al., 2015; Lee and Bull, 2016; Tolar
et al., 2016). One explanation for this association is NVIQ, in part,
requires visuo-spatial abilities which are thought to be necessary
for early math problem-solving ability (Szűcs et al., 2014). The
question of the kinds of visuo-spatial skills that support different
kinds of early math abilities is yet to be resolved, however.

Core number abilities are claimed to support early math
development (Butterworth, 2010). The ability to rapidly and
precisely enumerate small sets, for example, predicts concurrent
and future math achievement (Reeve et al., 2012; Sasanguie et al.,
2013; Bartelet et al., 2014; Gray and Reeve, 2014; Major et al.,
2017). Dot enumeration tasks assess at least two components:
a subitizing and a counting component. Subitizing is assessed
by evaluating the way small sets (n < 4) are enumerated,
which is usually accurately, rapidly and without error; counting
is evaluated by assessing the way larger sets (n > 4) are
enumerated, which usually more slowly and prone to counting
errors (Schleifer and Landerl, 2011).

Reeve et al. (2012) identified three distinct dot enumeration
profiles in 5-year-olds and showed profile membership remained
stable over the primary school years. The three profiles
differed in subitizing range, subitizing slope and intercept, but
not counting slopes. Moreover, the profiles were associated
with differences in math problems solving abilities. A similar
pattern of findings has been observed in preschool children

(Gray and Reeve, 2014, 2016). We suggest that children with
limited subitizing abilities may lack the ability to readily
extract pattern or grouping information from small sets of dots
(Butterworth, 2003; Ashkenazi et al., 2013). Why might this be
important for numerical cognition? The ability to “know” the
number “2” or “3” can be represented by a collection of two or
three dots respectively, without counting individual dots, is an
index of set knowledge (Butterworth, 2010); and set manipulation
represents an important aspect of the development of numerical
cognition (Gallistel and Gelman, 1992). The degree to which set
knowledge changes in childhood is yet to be specified, however.

In recent research, Major et al. (2017) showed that dot
enumeration profiles, in conjunction with performance on a
standardized math test (the TEMA), assessed at school entry,
predicted children’s SDA problem solving speed longitudinally.
However, the Major et al. findings were based on a general
longitudinal path analytic model and their findings are silent
about the possibility of different SDA PRT pathways, which is the
focus of the current research.

The Current Research
The current research examined changes in children’s SDA
problem-solving response time variabilty (PRT) four times over
6 years (at 6, 7, 9, and 10 years) to determine whether it is possible
to identify separate SDA PRT trajectories across time. Insofar as
different speed trajectories could be identified, we investigated the
degree to which different cognitive indices (i.e., VSWM assessed
at 7 years, WM assessed at 9 years, speed naming numbers/letters,
non-verbal IQ, and dot enumeration RTs in the subitizing range
assessed at 9 years) were associated with different SDA PRT
pathways; and the degree to which different SDA PRT pathways
predicted performance on a double-digit mental addition (DDA
assessed at 10 years) accounting for other cognitive abilities.

We included the VSWM and WM measures because math
abilities tend to be correlated with VSWM in young children and
with verbal WM in older children (Ashkenazi et al., 2013). We
included the DDA task because on face-value it is a conceptually
more complex version of the SDA task (see Major et al., 2017;
Lemaire and Brun, 2018). Of interest is the degree to which
different math acquisition pathways (i.e., variability in single digit
addition problem speed over time) are associated with a common
outcome. We included the naming numbers/letters speed task to
assess for the possibility that findings reflect the speed with which
information, particularly numerical information, is retrieved
from memory.

We included the dot enumeration measure since previous
research had shown that differences in responding to 1–3 dots
is associated with math abilities at school entry and over the long
term (Reeve et al., 2012; Major et al., 2017).

To identify different possible SDA speed variability trajectories
over time, we used latent profile analysis (LPA) based on each
individual child’s mean variability in SDA PRTs at each of the four
SDA assessment times. In LPA individuals are assigned to one of a
number of subgroups or profiles that share common data patterns
(Van Der Maas and Straatemeier, 2008). (This form of analysis
has been used to characterize changes in the relationship between
SDA strategy over time and VSWM—see Geary et al., 2009.)
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Given the analytic focus of our research is change in the
variability in SDA PRTs over time (rather than SDA strategy-use
or problem-solving success), it would seem a priori reasonable to
expect at least three PRT profiles to emerge from LPA: (1) a typical
pathway in which mean SDA PRT variability diminishes over
time; (2) a delayed SDA PRT pathway in which PRTs variability is
high initially, but diminishes over time; and (3) a deficit pathway
in which PRT variability remains relatively high over time. We
acknowledge other profiles may emerge from LPA; however, we
cannot anticipate what these might be a priori.

Insofar as SDA PRT variability pathways reflect different
math specific (dot enumeration—subitizing ability, speed naming
numbers) and/or general cognitive abilities (VSWM, WM, speed
naming letters and NVIQ), we test several working hypotheses.
Specifically, we expected children assigned to a delayed SDA PRT
pathway would differ from children assigned to a typical pathway
in their general cognitive capacities, but not their math specific
ability (subitizing ability). Given the SDA PRTs of children in the
delayed profile approach that of children in the typical profile
over time, the delay is likely attributable to differences in general
cognitive abilities. We expected children assigned to a deficit
SDA PRT profile would differ from children in the typical and
delayed pathway in their subitizing ability, and possibly their
general cognitive abilities. This hypothesis is based on previous
research which shows children with a math deficit also have
poor subitizing abilities, but not necessarily general cognitive
difficulties (Reeve et al., 2012; however see Gray and Reeve, 2016).

Insofar as different SDA PRT variability pathways reflect
different arithmetic abilities, children assigned to the typical
profile would be expected to perform better (would show less
variability in response time and be more accurate) than those
assigned to the delay profile who, in turn, would perform better
than children assigned to a deficit profile on the double-digit
mental addition task (DDA).

MATERIALS AND METHODS

Participants
One hundred-sixty-four children (M = 72.59 months,
SD = 4.58 months at the beginning of the study), comprising
65 girls (M = 71.52 months, SD = 4.47 months) and 99 boys
(M = 73.29 months, SD = 4.54 months), attending schools in
middle-class suburbs of a large Australian city, participated
in the study. All children spoke fluent English, had normal
or corrected to normal vision and had no known learning
disabilities (according to school personnel). The data reported
herein were collected on four different occasions, namely, when
children were 6, 7, 9, and 10 years of age. The children were part
of a larger study investigating the development of math ability
in preadolescent children across the primary/elementary school
years (see Reeve et al., 2012 for details—note, only children
who completed all assessments were included in the present
study). At Time 2 children were 7-years-old (M = 85.59 months,
SD = 4.08 months), at Time 3 children were 10-years-old
(M = 122.85 months, SD = 4.26 months), and at Time 4 children
were 11-years-old (M = 129.49 months, SD = 4.55 months).

The study was conducted in compliance with the requirements
of the authors’ University’s Human Ethics Committee and the
agreement of participating schools. Parents provided written
consent allowing their child to participate in the project.

Materials and Procedure
Single-Digit Addition (Completed on All Four
Occasions)
Twelve SDA problems were presented at each time point (see
Table 1). Each pair of digits was presented in both orders (i.e.,
2 + 5 and 5 + 2) to counterbalance and allow for the possibility
to solve problems using a “min-counting” strategy (e.g., begin the
count sequence from the largest addend to minimize the counting
distance, irrespective of the fact that problems are read from left
to right: see Paul and Reeve, 2016). Before beginning the task,
children completed practice trials to familiarize them with the
requirement to solve problems as quickly and as accurately as
possible. Problems were presented in a random order. Problems
appeared in the center of a 15′′ laptop screen in the form
of a + b = . Problem-solving accuracy and response times
were recorded. The Chronbach’s alphas, and associated 95%
confidence interval for each SDA time measure, were—Time 1:
0.88 (0.85, 0.90); Time 2: 0.90 (0.87, 0.92); Time 3: 0.89 (0.86,
0.91); Time 4: 0.89 (0.87, 0.92).

Double-Digit Addition (Completed at 10 Years)
Twenty-four pairs of double-digit addend problems were
presented (e.g., 28 + 19), in which the sum of the addends
was less than 100 (see Table 2). Problem-solving accuracy and
response times were recorded (Cronbach’s alpha = 0.95: 95%
CI = 0.94 – 0.96.)

Forward Corsi Span (Completed at 6 Years)
The Corsi Blocks task (Milner, 1971) assessed visuo-spatial
working memory, and was administered and scored following
Kessels et al. (2000) procedure. An interviewer taps a sequence
of blocks that attempts to repeat: beginning with two blocks,
increasing by one block following each correct reproduction, up
to a maximum of nine blocks. Testing concluded after two failed

TABLE 1 | Single-digit addition problem set repeated across Time 1 – Time 4.

Pair Left addend Right addend Total sum Numerical distance

Pair 1 2 4 6 2

Pair 2 4 2 6 2

Pair 3 2 5 7 3

Pair 4 5 2 7 3

Pair 5 3 5 8 2

Pair 6 5 3 8 2

Pair 7 2 6 8 4

Pair 8 6 2 8 4

Pair 9 3 6 9 3

Pair 10 6 3 9 3

Pair 11 2 7 9 5

Pair 12 7 2 9 5
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TABLE 2 | Double-digit addition problems.

23 + 16 24 + 18 16 + 27

52 + 34 29 + 53 47 + 38

46 + 37 25 + 12 37 + 46

12 + 25 46 + 53 42 + 35

18 + 24 38 + 47 53 + 29

34 + 52 19 + 28 15 + 31

31 + 15 16 + 23 27 + 16

53 + 46 28 + 19 35 + 42

trials. The longest correct block tap sequence is the VSWM span.
Reliability was α = 0.70.

Backward Digit Span (Completed at 7 Years)
The backward version of the WISC-R Digit Span test was
administered and scored as per the WISC-R Manual (Wechsler,
1986). This measure has been used to index WM capacity for
verbal information (Geary et al., 2012). Reliability was α = 0.63.

Naming Numbers Naming Letters (Completed at
9 Years)
In the naming numbers and naming letters tasks, the numbers
1–9 and the letters A–J (excluding the letter I because of its
similarity to the number 1), respectively, were used. The two tasks
comprised 36 trials, four each for the nine stimuli. The stimuli
for both tasks, all of which were approximately 2 cm high on
screen, were presented in one of four fixed random orders; the
only constraint was that each stimulus should be different to
the immediately preceding stimulus. Presentation order of the
naming numbers and naming letters tasks was counterbalanced.
(Cronbach’s alphas: Naming Numbers = 0.96: 95% CI = 0.96 – 0.9;
Naming Letters = 0.99: 95% CI = 0.99 – 0.99.)

Raven’s Colored Progressive Matrices (RCPM)
(Completed at 9 Years)
The RCPM is a measure of non-verbal IQ suitable for young
children. It was included to assess the association between SDA
processing speed and intelligence (Luwel et al., 2013). RCPM
was administered following manual instructions (Raven et al.,
1986), and scored using age norms (Raven et al., 1998). Research
show good inter-item consistency and split-half reliability in a
sample of Australian children (Cotton et al., 2005). The reliability
estimate for the current sample was good (α = 0.82).

Dot Enumeration (Completed at 10 Years)
Dot arrays comprising one to nine black dots (0.2 cm diameter)
were presented on a white background. Dots were randomly
positioned within a 15 cm × 11 cm grid and were no less
than 2 cm apart (to reduce perceptual grouping cues). Each dot
numerosity was presented eight times (n = 72 trials overall).
Children were instructed to report as quickly and accurately as
possible the number of dots in the array. Response accuracy and
RTs were recorded. Here, only responses to dot arrays in the
subitizing range (1–3 dots) were included in the analysis (24
trials). Previous research has shown differences in responding
to 1–3 dots (i.e., differences in RTs, slope and intercept of the

subitizing range) is associated with math abilities at school entry
and over the long term (Reeve et al., 2012; Major et al., 2017).
However, the speed enumerating dots in the counting range
(5–8 dots) was not associated with math ability (Reeve et al.,
2012). It is worth noting that Anobile et al. (2016) showed that
numerosity, but not texture-density, discrimination correlates
with math ability in children. (Cronbach’s alpha = 0.83: 95%
CI = 0.79 – 0.86.)

Rationale for Measures
We calculated a measure of SDA problem-solving RT variability
(SDAvar) for each child (i) by subtracting their average RT (µi)
at each time point from each of the twelve SDA problems (qj),
and then taking the sum of the absolute values of these deviations
(| µ – q | ):

SDAvar =

n∑
i=1

|qi − µi|

The same procedure was used to create RT variability measures
for the naming numbers RTvar (nine trials), naming letters RTvar
(nine trials), dot enumeration (DEvar, 24 trials), and double-digit
addition (DDAvar, 24 problems) tasks. For dot enumeration, only
responses to dot arrays in the subitizing range (1–3 dots) were
included in this analysis (24 trials). Previous research has shown
differences in responding to 1–3 dots (i.e., differences in RTs,
slope and intercept of the subitizing range) is associated with
math abilities at school entry and over the long term (Reeve et al.,
2012; Major et al., 2017).

Corsi span (VSWM) scores represent the average of two trials
of the forward version of the task (see Kessels et al., 2000).
Digit span scores were measured as the sum of the forward
and backward versions of the WISC-R test. Raven’s (NVIQ) raw
scores are used in analyses since scaled percentile scores were at
ceiling level and non-normally distributed.

Analytic Approach
We used MPlus (Muthén and Muthén, 1998–2013) latent
class/profile analysis to identify SDA problem-solving speed
profiles. (It should be noted that we did not examine SDA
problem solving success – most children were performing at
ceiling on the second test occasions.) We estimated three LPA
models with an increasing number of profiles based on expected
patterns of change in SDA problem-solving variability over
time: (1) a two profile solution would differentiate a typical
pathway (e.g., decreased variability over time) from a deficit
pathway (e.g., minimal decrease in variability over time); (2) a
three profile solution would differentiate a typical pathway, a
delayed pathway (e.g., slower decrease in variability over time
compared to typical performance) and a deficit pathway; and (3)
a four profile solution was expected to identify a typical pathway,
a delayed pathway and a deficit pathway, while also allowing for
the possibility of another different pathway (e.g., irregular shifts
in variability over time).

Once profiles were identified, children were allocated to
the profile with the highest probability of membership. To
further distinguish between these pathways, One-way ANOVAs
were conducted to characterize differences in measures of
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cognitive ability (i.e., VSWM, naming numbers RT variability,
naming letter RT variability, digit span, NVIQ, and subitizing
RT variability) between the profiles. One-way ANOVAs were
also conducted to determine whether profiles were associated
with double-digit addition problem-solving accuracy and
response time variability. Regression analyses were conducted
to determine the independent contribution of the profiles
and cognitive abilities in predicting double-digit addition
problem-solving accuracy and response time variability.

RESULTS

Descriptive Statistics
Bivariate correlations and means (standard deviations) for
measures are reported in Table 3. Of note, SDA PRT variability
(SDAvar 6, 7, 9, and 10 years) showed an average decrease in PRT
over time; however, there was significant variation in means over
time, suggesting different patterns of variance may be embedded
within the overall variance. We used LPA to investigate this
possibility.

SDA Problem Solving Speed Profiles
Latent profile models with two to four profiles were compared
in terms of different goodness-of-fit indices to determine the
best-fitting solution to the data. Table 4 shows all relative
fit statistics (AIC, BIC and aBIC) improved for models with
an increasing number of profiles and entropy values were
high (≥0.8, suggesting good separation of profiles; Clark and
Muthén, 2009). While the four-profile solution provided better
fit than the three-profile solution (i.e., significant bootstrap
likelihood-ratio test scores; see Table 4), examination of the four
profiles revealed two profiles were similar—both profiles showed
patterns of delayed decrease in variability over time, which
were not meaningfully different from each other. The three-
profile solution characterized more distinct patterns of change
in variability over time, and were more consistent with typical,
delayed and deficit pathways. Since the three-profile model was
a more parsimonious description of the data and was less likely
to lead to over-fitting our sample than the four-profile model,
the three-profile model was selected for further examination (see
Supplementary Material).

The three profiles differed in mean RT and SDA variability
measures over time (see Figure 1). The first pathway (Typical
pathway, n = 71, 43.3%) showed a decrease in SDA problem-
solving speed variability over time, and exhibited minimal
variability at Times 3 and 4. The second pathway (Delayed
pathway, n = 78, 47.6%) showed a similar decrease in RT
variability over time; however, the variability was still decreasing
at Times 3 and 4. The third pathway (Deficit pathway, n = 15,
9.1%) showed a decrease in RT over time but SDA variability
remained high.

Analysis of Cognitive Abilities Across
SDA PRT Profiles
One-way ANOVAs were conducted to determine whether
the measures of cognitive ability differed across the three

profiles. Bias-corrected and accelerated bootstrap estimates
(95% confidence, 1000 draws) are reported to account for
unequal variance between profiles, and Welch correction for
robust test of equality of means was applied when necessary.
The profiles differed significantly in terms of subitizing RTvar
[FWELCH (2, 34.93) = 8.48, p = 0.001, Levine = 17.37,
p < 0.001]. The Typical pathway had significantly lower
subitizing RTvar compared to the Delayed (p = 0.020) and Deficit
(p = 0.011) pathways, while the Delayed pathway had significantly
lower subitizing RTvar compared to the Deficit (p = 0.046)
pathway. The pathways did not significantly differ in terms of
VSWM span [F(2,161) = 0.89, p = 0.413], naming numbers
RTvar [F(2,161) = 0.62, p = 0.540] or naming letters RTvar
[F(2,161) = 0.59, p = 0.553], digit span [F(2,161) = 1.96, p = 0.144]
or NVIQ [F(2,161) = 1.49, p = 0.228].

Association Between Variability
Pathways and Double Digit Addition
Ability
A one-way ANOVA (bias-corrected and accelerated bootstrap
estimates) compared the double-digit problem-solving accuracy
across the three profiles. Double-digit accuracy differed
significantly between the profiles [FWELCH(2,35.22) = 13.12,
p < 0.001, Levine = 19.97, p < 0.001]. Post hoc comparisons
(corrected for unequal variances, Games-Howell) showed the
Typical Pathway (M = 0.92, SD = 0.09) had significantly higher
double-digit problem-solving accuracy than the Delayed Pathway
(p < 0.001) and Deficit Pathway (p = 0.016); the Deficit Pathway
(M = 0.75, SD = 0.20) had the lowest double-digit problem-
solving accuracy, but was not significantly different from the
Delayed Pathway (M = 0.83, SD = 0.16).

A separate one-way ANOVA compared response time
variability between profiles, which showed double-digit
response time variability differed significantly across profiles
[FWELCH(2,35.65) = 25.10, p < 0.001, Levine = 9.67, p < 0.001].
Post-hoc comparisons showed the Typical Pathway (M = 53.55,
SD = 27.12) had significantly lower double-digit response
time variability than both Delayed Pathway (p = 0.001) and
Deficit Pathway (p < 0.001); the Delayed Pathway (M = 85.20,
SD = 38.93) had significantly lower double-digit response time
variability than the Deficit Pathway (p = 0.037); and the Deficit
Pathway (M = 126.96, SD = 56.89) had the highest double-digit
response time variability.

The cognitive abilities and pathway membership (dummy
coded relative to the Deficit Pathway) were entered into separate
linear regression analyses to determine the degree to which
they predicted double-digit addition problem-solving accuracy
(Model 1, Table 5) and response time variability (Model 2,
Table 6). (Note, we report separate analyses that included/exclude
the pathways for clarify sake.) Overall, only the subitizing
measure significantly predicted DDA accuracy [Model 1a (with
cognitive abilities): F(6,157) = 3.19, p = 0.006; Model 1b (with
variability profiles): F(8,155) = 4.42, p < 0.001] and response time
variability [Model 2a (with cognitive abilities): F(6,157) = 7.16,
p < 0.001]; Model 2b (with variability profiles): F(8,155) = 10.55,
p < 0.001).
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TABLE 3 | Bivariate correlations and means (standard deviations) for all measures.

1 2 3 4 5 6 7 8 9 10 11 12

(1) SDAvar 6 years –

(2) SDAvar 7 years 0.17∗ –

(3) SDAvar 9 years 0.09 0.33∗∗∗ –

(4) SDAvar 10 years 0.09 0.36∗∗∗ 0.65∗∗∗ –

(5) VSWM −0.09 −0.07 −0.06 −0.18∗ –

(6) Naming numbers
RTvar

−0.04 0.01 0.07 −0.03 −0.05 –

(7) Naming letters RTvar −0.04 0.05 0.09 −0.01 −0.08 0.84∗∗ –

(8) Digit span −0.14 −0.12 −0.03 −0.03 0.05 0.09 0.08 –

(9) NVIQ 0.08 −0.13 −0.06 −0.04 0.23∗∗ −0.11 −0.15 0.28∗∗ −

(10) DEvar −0.08 0.29∗∗ 0.45∗∗ 0.55∗∗ −0.14 0.05 0.09 0.00 −0.09 –

(11) DDAacc −0.27∗∗ −0.26∗∗ −0.34∗∗ −0.27∗∗ 0.04 −0.03 −0.07 0.12 0.01 −0.29∗∗ –

(12) DDAvar 0.25∗∗ 0.42∗∗ 0.40∗∗ 0.58∗∗ −0.05 −0.03 −0.02 −0.15 −0.00 0.43∗∗ −0.52∗∗ –

Mean 39.99 23.92 8.93 7.89 3.66 3.38 4.44 9.13 31.64 4.81 0.86 75.32

SD 27.47 16.79 8.29 6.34 0.65 0.83 1.31 2.19 3.51 2.22 0.15 42.53

SDAvar is the sum of trial-by-trial variability in single-digit addition problem-solving (12 trials); VSWM is the average block length across two forward trials; Naming
numbersvar and Naming lettersvar is the sum of trial-by-trial variability (nine trials); Digit span is the sum of sequence length across forward and backward trials; NVIQ is
the raw Raven’s score; DEvar is the sum of trial-by-trial variability (24 trials); DDAacc is the accuracy of double-digit addition problem-solving; and DDAacc is the sum of
trial-by-trial variability in double-digit addition problem-solving (24 trials). ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

TABLE 4 | Latent profile analysis goodness-of-fit indices.

Profiles Parameters LL AIC BIC aBIC BLRT Entropy

2 17 −2425.42 4884.83 4937.53 4883.71 <0.001 0.86

3 26 −2373.91 4799.83 4880.42 4798.11 <0.001 0.83

4 35 −2342.39 4754.78 4863.28 4752.47 <0.001 0.85

LL, Log-likelihood; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; aBIC, Adjusted Bayesian Information Criterion; BLRT, Bootstrap Likelihood-Ratio
Test (100 draws).

DISCUSSION

The study investigated whether different patterns of change in
SDA PRT trajectories in primary/elementary aged children could
be identified over a 6 years period, and the degree to which
these patterns reflect typical, delayed or deficit math acquisition
pathways. It also assessed the degree to which different SDA
PRT change pathways were associated with differences in VSWM,
WM, NVIQ, digit naming and subitizing speed, as well as the
degree to which the different SDA PRT pathways predicted
double digit mental addition problem solving speed and accuracy.

Four findings are of note. First, three distinctly different
SDA PRT pathways were identified. In one, labeled a typical
acquisition pathway, mean SDA PRT was relatively fast, with
relatively little PRT variability. In the second, labeled a delayed
pathway, both SDA PRT means and variability were high initially,
but diminished over time. In the third pathway, labeled a deficit
pathway, SDA PRT mean and variability remained relatively
high over the 6 years assessment period. As noted earlier,
nearly all children were able to solve SDA problems correctly.
Second, with one exception, the three SDA PRT pathways
differed in the subitizing variability measure only, and no other
cognitive measures. The exception was WM was associated with
DDA problem solving success. Third, the subitizing variability
measure remained associated with both the DDA success and

variability measures, after the pathway factor had been included
in regression equations. Fourth, the typical pathway contributed
to the equation predicting DDA variability over and above the
deficit pathway; and the delayed pathway over and above the
deficit pathway. And, the typical pathway contributed to the
equation predicting DDA problem solving success over and
above the deficit pathway; however, the delayed pathway did not
contribute to the prediction equation over and above the deficit
pathway.

The pattern of findings support the claims that (1) speed
variability signatures are associated with math problem solving
ability, even when problems are solved correctly, (2) with
the exception of subtizing speed signatures, standard cognitive
indices appear unrelated to SDA speed variability indices; and
(3) variability in dot enumeration speed signatures within
the subitizing range predicts math ability (at least, double-
digit mental addition ability). The question remains, why are
dot enumeration speed variability signatures specifically, and
problem solving variability signatures generally, a predictor of
individual difference in math abilities? One answer to this
question lies in understanding the reason(s) for differences in dot
enumeration subitizing ability.

In a series of studies, we have shown that dot
enumeration abilities, and subitizing ability in particular,
are associated with children’s math abilities (Reeve et al., 2012;
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FIGURE 1 | Three profiles identified from latent profile analysis of SDA problem
solving response time variability (SDAvar) assessed at 6-, 7-, 9, and 10-years
(A) Typical, (B) Delayed and (C) Deficit pathways. Solid line represents profile
mean SDAvar and shaded region represents ± 1 standard deviation.

Gray and Reeve, 2014, 2016; Major et al., 2017). In large measure,
these studies were motivated by a desire to better understand
the reasons for individual differences in Butterworth’s dot
enumeration task (see Butterworth’s, 2003, “Dyscalculia
Screener”). Reeve et al. (2012) showed that individual differences
in children’s subitizing abilities (indexed by the subitizing range,
slope and intercept) assessed at school entry predicted math
performance across the primary/elementary school years. While
these subitizing indices “improved” across time, children’s
performance changed at a relative rate compared to each other
(i.e., rank order correlations remain stable). Moreover, Major
et al. (2017) showed that subitizing abilities assessed at school

entry was as good a predictor of school math performances as
performance on a standardized math test (The Test of Early
Mathematics Ability) in the short term, and a much better
predictor in the long term. Furthermore, Gray and Reeve (2014,
2016) showed that pre-schooler’s dot enumeration abilities also
predict their emerging math abilities. Other researchers have also
found a relationship between subitizing dot enumeration and
poor math abilities (Desoete et al., 2009; Reigosa-Crespo et al.,
2012; Landerl, 2013).

These findings indirectly emphasize the importance of
variability in subitizing speed as a predictor of math ability,
but not the reason(s) for its importance. We suggest that
poor subitizing abilities reflect a lack an ability to readily
extract pattern or grouping information from small sets of dots
(Butterworth, 2003; Ashkenazi et al., 2013). Why might this be
important for numerical cognition? The ability to “know” the
number “2” or “3” can be represented by a collection of two
or three dots respectively, without counting individual dots, is
arguably a fundamental index of set knowledge (Butterworth,
2010). In the absence of “automatic” set extraction ability,
individuals would need to count individual dots. Indeed, set
manipulation ability is argued to be an important ability in
the development of numerical cognition (Gallistel and Gelman,
1992). We suggest the three speed profiles identified herein
reflect different levels of set extraction ability. In the absence of
set knowledge, numerical reasoning is likely to be difficult, as
is evident in individuals with developmental dyscalculia, who
appear to lack the ability to extract information from small sets
of dots at a glance (Butterworth, 2010).

The number of children assigned to the deficit profile in the
current analysis (8.5% of the sample) is similar to the number
of children thought to possess dyscalculia in general population
(see Butterworth, 2010). Insofar as the variability in the speed
with which small arrays of dots are enumerated is an index
of set ability, it is reasonable to ask whether it is a general
cognitive or a number specific constraint. It has long been
claimed that processing speed is a proxy measure of intelligence
(Coyle et al., 2011; however, see Cepeda et al., 2013). Caution
should be exercised, however, in arguing for a general processing
speed hypothesis on the basis of our findings for two reasons.
First, the focus of our research was variability in the speed with
which children solve number problems, rather than speed per se.
Second, while SDA PRT variability and subitizing RT variability
independently contributed to the equation predicting double-
digit mental addition (success and response time variability), it
is difficult to specify the reason(s) for this independence. The
acquisition of math ability comprises different components, the
importance of which likely varies with age (Dowker, 2005; Gray
and Reeve, 2016). It is possible that effective set abilities in the
young facilitate the emergence of other math skills, including
SDA abilities.

It is worth noting that the variability in speed with which
children named the numbers one to nine and the letter A to J
was unrelated to other speed variability measures, which argued
against the claim that speed variability is a general cognitive
constraint, and rather supports the claim that it is number-
specific constraint.
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TABLE 5 | Model 1: Linear regressions predicting DDA PRT success.

Beta SE β t p

Model 1a – Cognitive Abilities

VSWM span 0.01 0.03 0.05 0.32 0.793

Naming numbers RT −0.01 0.02 −0.10 −0.71 0.590

Naming letters RT 0.00 0.02 0.00 0.01 0.992

Digit span 0.01 0.01 0.15 1.84 0.050

NVIQ −0.00 0.00 −0.07 −0.84 0.480

Subitizing RT −0.02 0.01 −0.29 −3.83 0.001∗∗

Model 1b – Variability Profiles

VSWM span 0.01 0.02 0.04 0.31 0.785

Naming numbers RT −0.01 0.02 −0.12 −0.88 0.458

Naming letters RT −0.00 0.02 −0.02 −0.20 0.857

Digit span 0.01 0.01 0.11 1.40 0.130

NVIQ −0.00 0.00 −0.08 −0.96 0.447

Subitizing RT −0.01 0.01 −0.19 −2.37 0.023∗

Typical Pathwaya 0.12 0.04 0.39 2.63 0.036∗

Delayed Pathwaya 0.03 0.04 0.11 0.81 0.550

aDummy-coded relative to the Deficit pathway. P-values are bias-corrected accelerated bootstrap estimates (1000 samples). ∗∗p < 0.01, ∗p < 0.05.

TABLE 6 | Model 2: Linear regression predicting DDA PRT variability.

Beta SE β t p

Model 2a – Cognitive abilities

VSWM span −5.21 6.70 −0.10 −0.78 0.506

Naming numbers RT 2.90 4.29 0.09 0.68 0.573

Naming letters RT 0.47 4.86 0.01 0.10 0.913

Digit span −3.38 1.45 −0.17 −2.33 0.053

NVIQ 1.01 0.94 0.08 1.07 0.388

Subitizing RT 8.27 1.37 0.43 6.02 0.001∗∗

Model 2b – Variability Profiles

VSWM span −5.30 6.13 −0.14 −0.87 0.452

Naming numbers RT 3.71 3.92 0.12 0.95 0.433

Naming letters RT 1.39 4.45 0.02 0.31 0.740

Digit span −2.29 1.34 −0.12 −1.71 0.153

NVIQ 1.22 0.86 0.10 1.41 0.245

Subitizing RT 5.22 1.39 0.27 3.75 0.003∗∗

Typical pathwaya
−54.56 11.25 −0.64 −4.85 0.001∗∗

Delayed pathwaya
−27.38 10.70 −0.32 −2.56 0.062

aDummy-coded relative to the Deficit pathway. P-values are bias-corrected accelerated bootstrap estimates (1000 samples). ∗∗p < 0.01.

Limitations of Research
In the present study we examined the variability in SDA
problem solving speed. On the basis of our previous research,
we are reasonably confident problem solving speed reflects SDA
strategy-use—immature SDA strategies take longer to execute
than more mature strategies (see Canobi et al., 1998, 2002; Paul
and Reeve, 2016). Nevertheless, we did not examine the mix of
SDA problem solving strategies, or how this mix changes in the
typical, delayed and deficit groups over time. It is possible that
the speed variability measure may obscure other indices (e.g.,
variability in speed taken to execute the same SDA strategy over
time).

While we have argued for a distinction between a typical,
delayed, and deficit math pathway, it is important not to overstate
the robustness of this argument for two reasons. First, we have
focused on a relatively narrow range of computation abilities
(SDA and DDA) over a relatively short time. It is possible, with
time, the performance of children in the deficit and delayed
groups would approach the performance of children in the
typical pathway group. Second, although we focused on mental
addition in the pre-adolescent years because of its importance in
math curricula, we recognize the pattern of findings may differ
for other math competencies (e.g., subtraction, multiplication,
division).
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CONCLUSION

We have argued that the variability in the speed with which
children enumerate one to three dots is an index of the ability
to rapidly extract set knowledge, which, in turn, is a key
ingredient in the acquisition of preadolescent children’s math
ability. However, the degree to which set knowledge changes
in childhood is yet to be specified precisely, or the degree
to which it is supported by other cognitive functions (e.g.,
attention abilities). Nevertheless, we suggest our findings have
diagnostic and intervention implications. Given the variability in
dot enumeration RTs is a diagnostic measure of math ability, it is
a relatively easy measure to collect and interpret.
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Making adaptive choices between solution strategies is a central element of
contemporary mathematics education. However, previous studies signal that students
make suboptimal choices between mental and written strategies to solve division
problems. In particular, some students of a lower math ability level appear inclined to
use mental strategies that lead to lower performance. The current study uses a pretest-
training-posttest design to investigate the extent to which these students’ choices
for written strategies and performance may be increased. Sixth graders of below-
average mathematics level (n = 147) participated in one of two training conditions:
an explicit-scaffolding training designed to promote writing down calculations or a
practice-only training where strategy use was not explicitly targeted. Written strategy
choices and performance increased considerably from pretest to posttest for students
in both training conditions, but not in different amounts. Exploratory results suggest that
students’ strategy choices may also be affected by their attitudes and beliefs and the
sociocultural context regarding strategy use.

Keywords: mathematics, multi-digit arithmetic, division, solution strategies, adaptivity, training

INTRODUCTION

Tasks are executed using a variety of strategies during all phases of development (Siegler, 1987,
2007; Shrager and Siegler, 1998). For example, infants vary in their use of walking strategies (Snapp-
Childs and Corbetta, 2009), first graders in their use of spelling strategies (Rittle-Johnson and
Siegler, 1999), and older children in their use of transitive reasoning strategies (Sijtsma and Verweij,
1999). This large variance in strategies goes together with widely differing performance rates of the
different strategies, thereby having profound effects on performance levels. As such, strategies have
received ample research attention.

Children’s and adults’ strategy use has been investigated for many cognitive tasks, such as
mental rotation (Janssen and Geiser, 2010), class inclusion (Siegler and Svetina, 2006), and
analogical reasoning (Stevenson et al., 2011). A cognitive domain that has featured prominently
in strategy research is arithmetic. Many studies have been conducted on elementary addition
(e.g., Geary et al., 2004; Barrouillet and Lépine, 2005), subtraction (e.g., Barrouillet et al., 2008),
multiplication (e.g., Van der Ven et al., 2012), and division (e.g., Mulligan and Mitchelmore, 1997;
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LeFevre and Morris, 1999; Campbell and Xue, 2001; Robinson
et al., 2006), which concern operations in the number domain
up to 100 that are taught in the lower grades of primary school.
Fewer studies have addressed strategy use in more complex
multidigit arithmetical tasks in the higher grades, involving larger
numbers or decimal numbers (e.g., Selter, 2001; Van Putten et al.,
2005; Torbeyns et al., 2009; Schulz and Leuders, 2018). Multi-
digit division in particular is an understudied topic. Since many
students experience difficulties in this domain, further study into
the strategies students use and how these are affected by student
and instructional factors is called for (Hickendorff et al., 2010;
Robinson, 2017).

Adaptive Strategy Use
Strategy use in both elementary and multidigit arithmetic consists
of different components (Lemaire and Siegler, 1995): individuals’
strategy repertoire (which strategies are used); frequency (how
often each strategy is used); efficiency (the accuracy and speed of
each strategy); and adaptivity (whether the most suitable strategy
for a given problem is used). These four aspects together shape
arithmetical performance.

With mathematics education reforms that have taken place
in various countries over the past decades (Kilpatrick et al.,
2001), adaptive expertise has become increasingly important
(Baroody, 2003; Hatano, 2003; Verschaffel et al., 2009; McMullen
et al., 2016). Adaptive expertise includes flexibility (using various
strategies) and adaptivity (selecting the optimal strategy). It
contrasts with routine expertise, where children apply standard
procedures in an inflexible and inadaptive way (Hatano, 2003).
Choosing the most suitable strategy for a given problem (i.e.,
making an adaptive strategy choice) is therefore crucial in
contemporary mathematics education.

There are several ways to define adaptivity of a strategy
choice, dependent on what is considered the most suitable or
“optimal” strategy (Verschaffel et al., 2009). One way is to define
adaptivity solely based on task variables: the characteristics of a
problem determine which strategy is optimal (e.g., the adaptive
strategy choice for a problem like 1089÷11 would be to use the
compensation strategy: 1100÷11−1). However, individuals differ
in their mastery of different strategies, and the strategy that is
most efficient for one person does not have to be the most efficient
strategy for another person. A second, more comprehensive,
definition of adaptivity therefore also takes individual differences
into account: the optimal strategy is the one that is most efficient
for a given problem for a particular person. A third definition
even includes contextual variables in the definition, such as
aspects of the test (e.g., time restrictions and characteristics
of preceding problems) and affective aspects of the broader
sociocultural context.

Strategy use is not an exclusively cognitive endeavor. Affective
factors, like individuals’ beliefs, attitudes, and emotions toward
mathematics in general and (adaptive) strategy use in particular,
to some extent influenced by the sociocultural context, have
been argued to be very important in shaping individuals’ strategy
repertoire and choices (Ellis, 1997; Verschaffel et al., 2009).
Ellis (1997) identified several affective, sociocultural factors that
impact strategy use. Students have an implicit understanding of

which ways of problem solving are valued by their community:
whether speed or accuracy is more important; whether mental
strategies are valued over using external aids; whether using
conventional procedures or original approaches is preferred; and
whether asking for help in problem solving is desirable.

Given the importance of affective variables (attitudes and
beliefs) as determinants of (adaptive) strategy use and the scarcity
of research addressing this, further research is called for. We
argue that it is theoretically interesting as well as practically highly
relevant to investigate in what way the sociocultural context may
be manipulated to favorably influence strategy choices. A domain
for which this is particularly relevant is multidigit division, since
studies reported that students tend to make sub-optimal choices
between mental and written strategies for this type of problems
(Hickendorff et al., 2009, 2010; Fagginger Auer et al., 2016), which
will be elaborated on in the following.

Strategies for Solving Multi-Digit Division
Problems
In mathematics education reform, standard, digit-based written
algorithms to solve multi-digit arithmetic problems have a less
prominent role than in more traditional mathematics education
(Torbeyns and Verschaffel, 2016). In the Netherlands, the
traditional algorithm for the operation of division was even
abandoned in favor of a new standardized strategy: the whole-
number-based approach (Janssen et al., 2005; Buijs, 2008). The
major difference between the digit-based algorithm and the
whole-number-based approach is whether or not the place value
of the digits in the numbers is ignored or respected (Hickendorff
et al., 2017; see Table 1 for examples). That is, in the digit-based
algorithm the place value of the digits is ignored (e.g., in Table 1,
the “54” of 544 is dealt with as 54 and not as 540), whereas the
whole-number-based approach respects the place value (e.g., in
Table 1, 340 is subtracted from 544; Van den Heuvel-Panhuizen
et al., 2009). In contemporary mathematics textbooks, the whole-
number-based approach is instructed from fifth grade onward,
and it is not before sixth grade that the digit-based is instructed
(Hickendorff et al., 2017).

Dutch national assessments in 1997 and 2004 showed a
decrease in sixth graders’ use of the digit-based algorithm,
but use of the whole-number-based approach did not increase
accordingly. Instead, students made more use of strategies
without any written work (Hickendorff et al., 2009). These mental

TABLE 1 | Examples of the digit-based algorithm, whole-number-based
approach, and other written strategies applied to the division problem 544÷34.

Digit-based algorithm Whole-number-based
approach

Non-algorithmic
strategies

34/544\16 544:34 = 10 × 34 = 340

34 340 - 10 × 13 × 34 = 442

204 204 16 × 34 = 544

204 102 - 3×

0 102

102 - 3× +

0 16×
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strategies turned out to be very inaccurate compared to written
strategies (digit-based or otherwise), suggesting that suboptimal
strategy choices were made. This partly explained the large
performance decline that was observed for multidigit division in
the assessments (Hickendorff et al., 2009).

In follow-up studies, Fagginger Auer et al. (2016) and
Hickendorff et al. (2010) showed that performance improved
when writing down calculations was required in (lower
mathematical ability) students who spontaneously solved
division problems without any written work. This shows that a
contextual factor - requiring the use of more efficient strategies
- can affect performance favorably in the short term. A valuable
next step would be an investigation of instructional contexts
that increase students’ spontaneous choices for efficient strategies,
thereby foregrounding improvements in performance in a more
sustainable way than by using test instructions to force students
to write down their work.

Present Study
The present study is intended as a first step of such an
investigation. It focuses on (1) the determinants of students’
spontaneous choices between mental and written division
strategies and (2) the effect of a training designed to increase
students’ choices for written rather than mental strategies, and
thereby also their performance. Using a pretest-training-posttest
design, an explicit-scaffolding training condition designed to
promote writing down calculations was compared to a practice-
only training condition where strategy use was not explicitly
targeted. The explicit-scaffolding training involved a step-by-
step problem-solving plan for multi-digit division problems,
based on the principles of direct, explicit instruction that lower-
ability students tend to profit from (Kroesbergen and Van Luit,
2003; Gersten et al., 2009). The practice-only training involved
practicing problem solving only, without explicit scaffolding,
but with feedback on the accuracy of the outcome as in the
explicit-scaffolding condition.

The study focuses on sixth graders of below-average
mathematics achievement level. We focused on sixth graders
since in the Netherlands instruction in standardized written
strategies begins in grade five. Therefore, sixth graders are
likely to have experience with written strategies which would
be a prerequisite to choose them. After grade six students
enter secondary school, where other aspects of mathematics are
central to instruction and practice. We focused on below-average
achievers because these students tend to be more inclined to use
mental strategies than their higher-achieving peers, whereas they
have the lowest performance with mental strategies (Hickendorff
et al., 2010; Fagginger Auer et al., 2016). In other words: with
these students there is most need for, as well as most room for,
improvement.

The study aimed to address three sets of research questions
and accompanying hypotheses. Research question 1 was: to
what extent are individual differences in strategy choice (mental
vs. written) related to students’ attitudes and beliefs toward
mathematics in general and toward strategies in particular, and to
aspects of the sociocultural context of the students’ mathematics
classroom (mathematics instruction, teacher attitudes and

beliefs)? This investigation is exploratory in nature, and therefore
we did not formulate a priori hypotheses.

Research question 2 was: to what extent do the two training
types affect students’ strategy choice? Hypothesis 2a was that
written strategy choices increase more from pretest to posttest
in the explicit-scaffolding training than in the practice-only
training. Hypothesis 2b was that the effects of the explicit-
scaffolding training on the use of written strategies is larger for
boys than girls, since boys tend to use more mental strategies in
division than girls (Hickendorff et al., 2009, 2010; Fagginger Auer
et al., 2013).

Research question 3 was: to what extent do the two training
types affect students’ performance? Hypothesis 3a was that
performance increases from pretest to posttest in both training
types since students in both conditions can practice solving
division problems and receive outcome feedback. Hypothesis
3b was that the performance increase in the explicit-scaffolding
training is larger than in the practice-only training, as a corollary
of the expected increase of written strategies in the former group.
Furthermore, within the explicit-scaffolding training, we expect
to find different performance gains with regard to students’
gender, mathematical ability level and working memory capacity
(hypothesis 3c–3e). Hypothesis 3c was that the performance gains
are larger in boys than in girls, as a corollary of the expectation
that boys show a larger increase in written strategies use (cf.
hypothesis 2b). Hypothesis 3d was that performance gains are
larger for students with lower compared to higher mathematical
ability level, because mental strategies are especially inaccurate
for lower ability students (Hickendorff et al., 2010; Fagginger
Auer et al., 2016. Finally, Hypothesis 3e was that training has
a larger effect on performance when students’ working memory
capacity is lower, since mental strategies demand working-
memory resources. Freeing up those resources by writing down
calculations may therefore have a larger impact in students with
lower working-memory capacity (in line with cognitive load
theory; Paas et al., 2003). This is especially relevant in our sample,
given that students with a lower mathematical ability tend to have
a lower working memory capacity than higher ability students
(Friso-van den Bos et al., 2013).

MATERIALS AND METHODS

Participants
In total, 19 different classes of 15 different schools agreed to
participate. The schools were located in different medium-sized
to large cities in the megalopolis in central-west Netherlands (the
Randstad) and from one smaller city in east Netherlands.

There were 323 sixth graders in total, of whom 186 students
had a percentile score below 50 on the most recent standardized
national mathematics test (Janssen et al., 2010). Furthermore,
students with a percentile score below 10 (n = 39) were
excluded because atypical problems such as dyscalculia could
occur in this group. Our effective sample of below-average
achievers (percentile score between 10 and 50) thus contained
147 students (64 percent girls; mean age 11 year 9 month with
SD = 5 month). These students were assigned to one of the
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two training conditions using random assignment with gender,
ability quartile and school as blocking variables: 74 received
explicit-scaffolding training and 73 practice-only training.

The 19 teachers of the students (8 female) were on average
38 years old. Four different textbooks were used across the classes:
Wereld in Getallen (9 classes), Pluspunt (5 classes), Alles Telt
(4 classes), and Rekenrijk (1 class).

Materials
Pretest and Posttest
The pretest to assess students’ division strategy choices and
performance contained twelve multidigit division problems
presented in Table 2. These problems were selected from the
two most recent national assessments of mathematical ability at
the end of primary school (Janssen et al., 2005; Scheltens et al.,
2013), so that they resemble the type of problems students are
used to solving (ecological validity). All problems were situated
in realistic problem solving context (e.g., determining how many
bundles of 40 tulips can be made from 2500 tulips), except for
the problem 31.2÷1.2. The test also contained twelve problems
involving other mathematical operations (all from the most
recent national assessment) as filler items. The posttest was
identical to the pretest to allow for a direct comparison of results.
Since the pretest and posttest were a month apart and students
are used to solve arithmetic problems on a daily basis in their
mathematics lessons during that period, it was very unlikely that
students remembered any of the (rather complex) solutions.

Prior to the pretest and the posttest students received an
instruction in which the experimenter explained that the students
had to do a booklet with mathematics problems. The researcher
explicitly stated that this was not a test but that (s)he was
interested in learning more about how students go about solving
such problems. Furthermore, students were instructed that if
they wanted to write down calculations, they could do so in the
booklet.

After students completed the mathematics problems in the
booklets, the accuracy of the answer (correct or incorrect) and
use of written work (yes or no) were scored for each problem.
Solutions with written work were further classified into one of

TABLE 2 | The division problems in pretest and posttest. Problems presented in
italics are parallel versions of the problems that are not yet released for publication.

Number Problem

1. 1536÷16 = 96

2. 872÷4 = 218

3. 31.2÷1.2 = 26

4. 6496÷14 = 464

5. 544÷34 = 16

6. 11585÷14 = 827.5

7. 47.25÷7 = 6.75

8. 157.50÷7.50 = 21

9. 2500÷40 = 62

10. 1470÷12 = 122.50

11. 736÷32 = 23

12. 16300÷420 = 39

three strategy categories: the digit-based algorithm, the whole-
number-based approach, and other written strategies (see Table 1
for examples).

Training Problems
The problems used in the three training sessions between the
pretest and posttest were three sets of parallel versions of the
twelve problems in Table 2.

Student and Teacher Questionnaires
The students filled out a questionnaire of seven questions
(Appendix A) on their attitudes and beliefs toward mathematics
in general and strategies in particular. The teachers filled out
a questionnaire of fifteen questions (Appendix B) on their
instructional practices regarding standardized division strategies,
and attitudes/beliefs toward the importance of writing down
calculations and various aspects of flexible and adaptive strategy
use. The student and teacher questionnaires were devised
specifically for this study.

Working Memory Tests
Students’ working memory capacity was assessed using a
computerized version of the digit span test from the WISC-III
(Stevenson and De Bot, unpublished; Wechsler, 1991), and their
spatial working memory using a computerized version of the
Corsi block test (Corsi, 1972).

Training
In the training sessions, students worked on the set of training
problems for that week. The experimenter evaluated each answer
when it was written down and told the student whether it was
correct or incorrect. When correct, the students proceeded to the
next problem. When incorrect, the student tried again. Accuracy
feedback was provided again, and regardless of whether the
solution was correct this time, the student proceeded to the next
problem. The session was terminated when 15 min had passed.

Two aspects differed between the two training types. First,
students in the practice-only training were free in how they
solved the problems (just as in the pretest), whereas the students
in the explicit-scaffolding condition had to write down their
calculations in a way that “would allow another child to see
how they had solved the problem” (but apart from that, the
choice for which type of written strategies was free). Second,
when students in the practice-only condition failed to provide
the correct answer in their first problem-solving attempt, they did
not receive any feedback other than that the answer was incorrect
before they could try to solve the problem in the second attempt.
By contrast, when students in the explicit-scaffolding condition
failed to provide the correct answer the first time, they were
provided with explicit systematic scaffolding how to write down
their calculations in a standardized way at the second attempt.
A printed version of this step-by-step plan was always on the
table so that students could use it whenever they wanted. When
students were stuck in their problem solving, the experimenter
used the plan and standardized verbal instructions to help the
students with writing down calculations. No feedback was given
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FIGURE 1 | The step-by-step plans in the explicit-scaffolding training in two versions: for students using the digit-based algorithm, and for students using the
whole-number-based approach.

on the accuracy of what students wrote down (e.g., mistakes in
the multiplication table), except for the final answer.

Since classes differed in which type of standardized strategy
was instructed, there were two versions of the plan: one for

students taught the digit-based algorithm and one for students
taught the whole-number-based approach (see Figure 1). In cases
where students were taught both standardized strategies, the
experimenter showed both step-by-step plans and the student
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could select the strategy (s)he was used to applying. Both versions
consist of five highly similar steps (with step 3 and 4 repeated as
often as necessary): (1) writing down the problem; (2) writing
down a multiplication table (optional step); (3) writing down
a number (possibly from that table) to subtract; (4) writing
down the subtraction of that number; and (5) finishing when
zero is reached, which in the case of the whole-number-based
approach requires a final addition of the repeated subtractions.
Each step was represented by a symbol to make the step easy to
identify and remember (the symbols in the ellipses on the left
side of the scheme). Below this symbol, a general representation
of the step was given, with question marks for problem-specific
numbers already present at that step and dots for the numbers
to be written down in that step. On the right-hand side of the
plan, an example of the execution of each step for the particular
problem 234÷18 was given in a thinking cloud. On both sides,
the elements to be written down in the current step were in bold
font.

Procedure
The study was conducted over a period of 5 weeks in the
fall. In week 1, students first completed the pretest in their
classroom, in a maximum of 45 min, and also the two working
memory tasks (on the computer) and the student questionnaire.
In week 2–4, students participated in three individual training
sessions of 15 min each (one per week) with an experimenter.
The experiment was concluded in week 5, in which students
completed the posttest. The teacher filled out the teacher
questionnaire in week 1.

Statistical Analysis
Research Question 1
Correlations were used to explore relations between students’
percentage of written strategy choices across the twelve pretest
problems on the one hand and (a) student factors (attitudes and
beliefs, based on student questionnaire) and (b) classroom factors
(mathematics educational practices and sociocultural context,
based on teacher questionnaire) on the other. These were point-
biserial correlations for dichotomous questionnaire responses
and Spearman’s rank correlations for scales.

Research Questions 2 and 3
Explanatory IRT models (De Boeck and Wilson, 2004) were
used to model the effect of the training types on pretest-posttest
differences in strategy choice (question 2) and in performance
(question 3), as well to investigate differential training effects
by students’ gender, mathematical ability level, and working
memory. Measuring learning and change has inherent problems
(Embretson and Reise, 2000; Stevenson et al., 2013). For instance,
the interpretation of change scores depends on the score at
pretest (e.g., a change from 1 to 3 may not mean the same
as a change from 6 to 8), because sum scores in general and
change scores in particular are not of interval measurement
level. IRT models place persons and items on a common
latent scale, resulting in a higher likelihood that the persons’
ability estimates are of interval measurement level than simple
sum scores (Embretson and Reise, 2000). To answer research

question 2, the dependent variable of the IRT models was
strategy choice (written vs. not written) on each problem
of the pretest and posttest, whereas it was accuracy of the
answer (correct vs. incorrect) in the analyses to answer research
question 3.

IRT models can be extended with an explanatory part by
including explanatory variables, which can be item factors,
person factors, and person-by-item factors. The current analyses
included the following person factors: students’ training
condition, gender, mathematical ability score, and working
memory. The person-by-item factor solution strategy choice
(mental vs. written) was included in research question 3 only.

(Explanatory) IRT models can be estimated as multilevel
logistic regression models, using general purpose software for
generalized linear mixed models (GLMM) (De Boeck and
Wilson, 2004). In the present study, the models were fitted
using the lme4 package in R (De Boeck et al., 2011; Bates
et al., 2014). All models were random person-random item
Rasch models (RPRI; De Boeck, 2008), with a random intercept
for students, and also a random intercept for items (as the
problems were considered a draw from the larger domain
of multidigit division). The explanatory variables were added
in stepwise fashion (as in Stevenson et al., 2013, see also
Pavias et al., 2016), allowing evaluation of the added value
of each step by comparing the models based on the Akaike
Information Criterion (AIC), Bayesian Information Criterion
(BIC), and likelihood ratio tests. The AIC and BIC balance
model fit and parsimony (lower values are better). The likelihood
ratio test (LRT) statistically tests the added value of including
a specific explanatory variable by testing whether the more
complex model with this specific explanatory variable included
fits significantly better than the less complex model (without that
variable).

For an indication of the size of significant effects, the
probability of using a written strategy (question 2), or providing
a correct answer (question 3), is computed for different
levels of the explanatory variable of interest (with all other
explanatory variables in the model set at the sample mean in
the sample). For example, for the effect of testing occasion
(pretest or posttest), the probability of a correct answer for
an average student on an average problem on both the
pretest and the posttest is computed. For scale variables (e.g.,
mathematics ability score) the effects of a difference of one
standard deviation around the mean (M−0.5SD to M+0.5SD) are
given.

RESULTS

Research Question 1: Determinants of
Written Strategy Choices
Students used written strategies in 59 percent of their
pretest solutions, which varied across problems between 33
percent (31.2÷1.2) and 76 percent (544÷34), and across
students between 0% (n = 13) and 100% (n = 15). In
the following we report correlations between students’
percentage of written strategy choices across the twelve
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pretest problems on the one hand, and (a) student factors
(attitudes and beliefs) and (b) classroom factors (mathematics
educational practices and sociocultural context) on the
other.

Student Factors
Appendix A shows the frequencies of the students’ (n = 147)
responses to the questionnaire items regarding their
mathematical attitudes and beliefs, and the correlation of
these responses with their percentage of written strategy choices
at pretest. In the following, only significant correlations are
discussed.

On average, the students had a slightly positive attitude
toward mathematics (M = 2.8 on a 5-point scale), reported
putting quite some effort into math (M = 4.3), were slightly
positive about their mathematical ability (M = 2.8), and almost
all students (97 percent) reported valuing accuracy over speed.
These factors were not significantly related to written strategy
choices. On the questions concerning strategy use, a majority
of students (77 percent) found it more important to be able to
solve mathematical problems with rather than without paper,
and this was positively related to using written strategies
(r = 0.23). Students reported that they sometimes answer without
writing down a calculation (M = 2.6) and this self-reported
frequency of non-written strategies was negatively related to
using written strategies at pretest (r = −0.19). When asked to
select their reasons to not write down calculations (multiple
answers possible), the most frequently reported reason (selected
by 49 percent of students) was because they “did not feel
it was necessary,” followed by because “it was faster” (41
percent). Other reasons were because of “not feeling like it”
(22 percent), because they “guessed the solution rather than
computing it” (14 percent), because “mental strategies are more
accurate” (14 percent), and because “it is smarter to be able to
solve a problem mentally” (11 percent). Virtually no students
(1 percent) reported they used a mental strategy because “it was
cooler.”

Classroom Factors
Appendix B shows what the 19 teachers reported on the teacher
questionnaire. With the exception of one item, the teachers’
responses were unrelated to their students’ use of written
strategies. Most teachers taught their students only the whole-
number-based approach exclusively (n = 11) or in combination
with the digit-based algorithm (n = 5); three teachers taught
their students the digit-based algorithm exclusively. On average,
teachers did not prefer one standardized strategy over the other
(M = 3.0), but did prefer the use of standardized over non-
standardized approaches (M = 2.2). Only this item correlated
with students’ use of written strategies: the more teachers
preferred non-standardized strategies, the lower the percentage
of their students’ written strategies (r = −0.46). On average,
teachers found performing calculations well on paper and
mentally equally important for their students (M = 3.0). They
reported instructing their students in writing down calculations
frequently (on average almost daily, M = 4.2). Concerning
multidigit division problems specifically, teachers on average

found writing down calculations somewhat more important
for their students than trying to do it mentally (M = 2.4)
and valued accuracy somewhat over speed (M = 2.5). Making
a good estimation of the solution was valued more than
being able to determine the exact solution (M = 3.5), as
was knowing more solution procedures rather than just one
(M = 3.4). Teachers considered using a standardized approach
versus choosing a custom solution strategy on average equally
important (M = 3.0), and valued convenient shortcut strategies
somewhat more than using an approach that can always be
applied (M = 3.3).

Research Questions 2 and 3
Descriptive Statistics
Table 3 presents descriptive statistics about the content of
the training. As instructed, students in the explicit-scaffolding
condition virtually always wrote down a calculation (98–99
percent). Though not instructed to do so, students in the practice-
only condition also had a high and increasing tendency to use
written strategies (81–93 percent). The feedback in the explicit-
scaffolding condition (on average 3.3 times per session) included
writing down a multiplication table (0.8 times), selecting a
number from that table (1.1 times), writing down of the problem
(0.5 times), subtracting the selected number (0.5 times), and
finishing the procedure (0.5 times).

Research Question 2
The effects of the training on written strategy choices were
evaluated using a series of explanatory IRT models on the pretest
and posttest data, with successively more explanatory variables
(see Table 4). First a baseline model for the probability of a
written strategy choice was fitted with only random intercepts
for students and problems and no covariates (model M0). In
model M1, main effects were added for the student characteristics
gender, mathematical ability and working memory capacity,
which improved fit according to all criteria. Fit was further
improved by adding a main effect for testing occasion (pretest
vs. posttest; model M2). However, the change in written strategy
choices from pretest to posttest did not significantly differ
for the two training groups (model M3). Adding interactions
between condition, testing occasion and student characteristics
also did not improve the model (models are not included in
Table 4).

Interpretation of the best fitting model, M2, shows that girls
used more written strategies (P = 0.94) than boys (P = 0.74),
z = −6.0, p < 0.001, and that mathematical ability score was
positively associated with using written strategies (P = 0.80
vs. P = 0.92 for one standard deviation difference), z = 4.3,
p < 0.001. Working memory (sum score of the verbal and
spatial working memory scores) had no significant effect,
z = −0.6, p = 0.55. Students used more written strategies at
the posttest (P = 0.94) than at the pretest (P = 0.76), z = 13.5,
p < 0.001.

To investigate whether the two trainings differ in the
type of written strategies they elicited, Table 5 presents a
more detailed categorization of strategies than just written
or non-written. It shows that the frequency of using the
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TABLE 3 | Descriptive statistics of training sessions (averages across students).

Training Number of
problems per

session

Number of
second attempts

per session

Feedback
Frequeny per

session

% Written strategies

Session 1 Session 2 Session 3

Explicit scaffolding 5.1 1.6 3.3 98 99 99

Practice-only 6.1 1.8 – 81 87 93

TABLE 4 | Explanatory IRT models for effects on written strategy choices (all comparisons are to Mn−1).

Model Added fixed effects LL # Parameters AIC BIC Likelihood Ratio Test

M0 −1337.6 3 2681.1 2699.4

M1 Gender, math ability, and working memory −1315.7 6 2643.3 2679.8 χ2(3) = 43.8, p < 0.001

M2 Testing occasion −1216.5 7 2447.0 2489.5 χ2(1) = 198.3, p < 0.001

M3 Condition × occasion −1215.6 9 2449.2 2503.9 χ2(2) = 1.7, p = 0.42

digit-based algorithm and whole-number-based approach,
other written strategies, non-written strategies and other
strategies is almost identical (differences of no more than
five percentage points) in the two training groups - both
at pretest and at posttest. In both groups, similar increases
in the use of both types of standardized strategies and
decreases in the use of other written and non-written strategies
occurred.

Research Question 3
Model fit statistics for performance (accuracy) are presented
in Table 6. As for written strategy choices, first a baseline
model for the probability of a correct response was fitted
(M0), and again, this model was improved by adding student
gender, ability and working memory (M1) and by adding testing
occasion (M2), but not by adding condition effects (M3). The
best fitting model, M2, shows that girls (P = 0.43) performed
better than boys (P = 0.28), z = −3.8, p < 0.001, and that
general mathematics ability score was positively associated with
performance (P = 0.28 vs. P = 0.43 for one SD difference),
z = 4.5, p < 0.001. Working memory had no significant
effect, z = 0.04, p = 0.97. Students performed better at the
posttest (P = 0.48) than at the pretest (P = 0.24), z = 11.9,
p < 0.001.

Next, the difference in accuracy between written and non-
written strategies was investigated by fitting a model for
accuracy with main effects for all previous predictors (student
characteristics, testing occasion, and condition) and strategy
choice (written or not), and all first-order interactions between
strategy choice and the other predictors. This showed that
written strategies were much more accurate (P = 0.40) than
non-written strategies (P = 0.19), z = 4.1, p < 0.001, and that
this did not depend significantly on testing occasion, z = 1.1,
p = 0.27, gender, z = 0.0, p = 0.99, ability, z = 1.0, p = 0.32,
working memory, z = 0.3, p = 0.75, or condition, z = −1.0,
p = 0.33. Finally, we investigated the extent to which individual
students’ gains in written strategy choices from pretest to
posttest were related to their gains in accuracy from pretest
to posttest. Spearman’s rank correlation between difference in
written strategy use and difference in accuracy was significant

TABLE 5 | Strategy use proportions on the pretest and posttest in the different
training conditions.

Pretest Posttest

Explicit-
scaffolding

Practice-
only

Explicit-
scaffolding

Practice-
only

Digit-based algorithm 0.09 0.09 0.13 0.13

Whole-number approach 0.37 0.40 0.61 0.62

Other written 0.19 0.19 0.13 0.08

No written work 0.35 0.30 0.13 0.17

Remainder 0.01 0.02 0.00 0.00

and positive: r(142) = 0.23, p = 0.006. These results show that not
only written strategies are more accurate than mental ones, but
also that increasing the use of written strategies leads to increased
performance.

DISCUSSION

The current study’s aim was to investigate determinants of
below-average sixth graders’ choices between mental and written
strategies for solving multi-digit division problems, and the effect
of a training to increase students’ choices for written rather
than mental strategies. First, exploratory analyses showed that
individual differences in strategy choice (mental vs. written)
were related to some aspects of students’ attitudes and beliefs
toward strategy use, but not to their attitudes and beliefs toward
mathematics in general. Specifically, students who reported that
it is more important to solve problems with rather than without
paper, and students who reported not so often using non-written
strategies were more inclined to use written strategies at the
pretest items. Students’ individual differences in strategy choice
were related to only one aspect of the sociocultural context
(as measured with a teacher questionnaire): the more teachers
valued standardized over non-standardized strategies, the more
their students used written strategies. An important remark
is that since there were only 19 teachers in our sample, low
statistical power may have prevented finding other significant
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TABLE 6 | Explanatory IRT models for effects on accuracy (all comparisons are to Mn−1).

Model Added fixed effects LL # Parameters AIC BIC Likelihood Ratio Test

M0 −1801.0 3 3607.9 3626.1

M1 Gender, math ability, and working memory −1785.3 6 3582.5 3619.0 χ2(3) = 31.4, p < 0.001

M2 Testing occasion −1711.1 7 3436.3 3478.8 χ2(1) = 148.3, p < 0.001

M3 Condition × occasion −1710.8 9 3439.6 3494.2 χ2(2) = 0.7, p = 0.70

associations. Furthermore, the students were instructed by
their current teacher for only 2–4 months, which could be
another explanation that there were hardly any relations found
between teachers’ instructional practices and students’ strategy
use. Overall, teachers reported frequent instruction in writing
down calculations, preferred use of a standardized over a non-
standardized strategy, and valued written strategies somewhat
over mental strategies and accuracy somewhat over speed.
These results suggest a sociocultural context in which there
is room for written strategies, but where it is not the highest
priority.

In the second part of the study, the effects of a training
designed to promote students’ choices for written rather
than mental strategies (and thereby, their performance) were
compared to the effects of a practice-only training. In both
training conditions the use of written strategies and accuracy
increased from pretest to posttest, written strategies were more
accurate than mental ones, and individual students’ increase in
the use of written strategies was related to their performance
gains. However, the hypothesized differential training effects
were not observed. Students’ written strategy choices increased
to the same extent in both training conditions (in contrast
with hypothesis 2a) and there were no differential training
effects for boys and girls (in contrast to hypothesis 2b).
Regarding performance, performance (accuracy) increased in
both groups from pretest to posttest (in line with hypothesis 3a),
but not more so in the explicit-scaffolding training condition
(in contrast to hypothesis 3b). Furthermore, there were no
differential performance gains by gender, mathematical ability
level, or working memory (in contrast to hypotheses 3c–
3e).

All in all, written strategy choices and performance were
considerably higher after training than before training,
irrespective of the type of training. Both training types were
thus effective in increasing the use of written strategies and
thereby performance. However, the elements of explicit
scaffolding written strategy use did not add to the effect of
only practicing solving the problems with outcome feedback.
While writing down calculations was not required during
practice-only training, it did occur frequently and increasingly
across the training sessions. In the first session calculations
were written down in 81 percent of the problems - considerably
more than the 70 percent during the pretest. This increased
up to 93 percent in the third training session, whereas
it decreased to 87 percent in the posttest again. As such,
students practiced written calculations almost as much in the
practice-only training as in the explicit-scaffolding training,
reducing the contrast between the two conditions. The

common elements of both trainings – practicing written
strategies with outcome feedback – therefore seem to
account for the observed changes in strategy choices and
accuracy.

In the practice-only condition, the relatively high frequency of
written strategy choices in the training sessions compared to the
pretest and posttest may possibly be explained by differences in
the setting: in a classroom (at pretest and posttest) versus one-on-
one with an experimenter (training sessions). Previous research
showed a similar difference between a classroom administration
setting and individual testing (Van Putten and Hickendorff,
2009). A possible explanation is that students use written
strategies because they think the experimenter may expect or
prefer that (i.e., demand characteristics; Orne, 1962), in line with
the students’ teachers’ light preference of written over mental
strategies.

The increase in the use of written strategies over the three
training sessions in the practice-only training may possibly be
explained by the direct accuracy feedback after each solution
(Ellis et al., 1993), and the requirement to do a problem again
when the first solution was incorrect. Direct accuracy feedback
allows for an immediate evaluation of the success of the strategy
that was applied, and this evaluation should often be in favor
of written rather than mental strategies given the considerably
higher accuracy of the former. Combined with the extra effort
associated with an incorrect solution (redoing the problem),
this is likely to be an important incentive for written strategy
choices.

The element that was unique to the explicit-scaffolding
training was the requirement to use a written strategy, scaffolded
by a step-by-step plan for writing down calculations. The finding
that this element apparently did not have an additional effect
contrasts with the results of a meta-analysis on mathematics
interventions for low-ability students that identified such plans
as an important component of effective interventions (Gersten
et al., 2009). In the current study students turned out to
require little feedback based on the plan, and the feedback
that was given most often concerned an optional element:
the multiplication table. Furthermore, students in the practice-
only training turned out to practice solving on average one
problem more compared to students in the explicit-scaffolding
training, which may have masked potential positive effects
of the scaffolding elements (similar to Van de Pol et al.,
2015).

In addition to the finding that there were no differences in
the effects of the two training types, also no differential training
effects by gender, mathematical ability and working memory were
found. This may be explained by the same reasoning: in practice
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the difference between the two training types may have been
much smaller than intended.

Limitations
There are several limitations that deserve attention. First, there
was no genuine control group of students who did not receive
training. Therefore it is not possible to ascribe with certainty the
gains in written strategy use and performance to the training.
We did, however, collect pretest and posttest data from the 137
students with above-average mathematics achievement level who
were in the participating classes, but did not participate in any
of the trainings. The pretest-to-posttest increase in both the
use of written strategies and in performance was significantly
higher in the (below-average achieving) students who received
training than in the (above-average) students who did not receive
training This differential learning effect supports confidence in
the interpretation that it was the training that was effective in
increasing written strategy use and performance, although the
difference in achievement level between the two groups (below-
average vs. above-average) possibly confounds this effect.

A second limitation is that there was no retention test. It was
therefore not possible to analyze the stability of the trainings’
effects. Future studies should include a follow-up test later in the
school year to address this specifically.

A third limitation concerns the measurement of the teacher’s
instructional practices. The use of a questionnaire may not
present a complete picture of the actual instructional activities
taking place in the mathematics classroom (Porter, 2002), and
future studies should include classroom observations to measure
the instruction in a more direct way. Moreover, the amount of
time the students were instructed by their teacher was relatively
short (2–4 months) possibly weakening the effect the teacher’s
instructional practices may have had. Future studies could be
conducted in the second half of the school year so that the
students have received instruction from their teacher for a longer
period of time.

Future Directions
The results of the present study provide several suggestions for
future research on strategy training programs. The results suggest
that direct accuracy feedback (possibly with some cost attached
to incorrect solutions) may be conducive to beneficial changes
in strategy choices. They also show that considerable changes
in strategy choices and improvements in performance may be
achieved with as few as three training sessions of 15 min (in line
with the finding of Kroesbergen and Van Luit, 2003, who found
that longer mathematics interventions are not necessarily more
effective). As said, a follow-up test after a longer period of time
(e.g., several months) should be used to establish whether the
changes are lasting.

The results also provide suggestions for other possible ways to
influence students’ choices between mental and written strategies.
Since strategy choices appear to be related to students’ valuing
of written strategies and to teachers’ valuing of standardized
over non-standardized strategies, a sociocultural context that
highlights these aspects may affect strategy students’ strategy
choice (Ellis, 1997). This might be achieved by having teachers

express more appreciation of the use of external aids in problem
solving and of standardizing written solution steps.

CONCLUSION

The present study showed that three training sessions in
which students practice solving division problems with written
strategies and receive feedback on the accuracy of the outcome,
whether or not explicitly scaffolded with a step-by-step direct-
instruction plan, increased below-average sixth graders’ use of
written strategies and performance in solving multi-digit division
problems. Given the fact that students seem to make sub-optimal
choices for non-written strategies in this domain, this is an
important starting point for efforts to increase the use of written
strategies. Further research is necessary to identify the optimal
set-up of a training targeting students’ written strategy use.
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APPENDIX A

Student Questionnaire
The proportion of students choosing each alternative is given in between brackets. For 5-point scales the mean is also presented. The
correlations are between the students’ question response and the students’ frequency of written strategy choices on the pretest; statistically
significant correlations are in bold.

1. How much do you like math? not at all (0.10)/not so much (0.21)/it’s okay (0.45)/quite a bit (0.23)/a lot (0.01); M = 2.85;
r(144) = 0.06, p = 0.473.

2. How much effort do you put into math? none (0.00)/not so much (0.01)/a bit (0.08)/quite a lot (0.53)/a lot (0.38); M = 4.29;
r(145) = 0.10, p = 0.236.

3. How good do you think you are at math? not good at all (0.07)/not so good (0.25)/okay (0.46)/quite good (0.22)/very good (0.00);
M = 2.84; r(145) = 0.07, p = 0.385.

4. What is more important to you when you solve a mathematics problem? solving the problem quickly (0.02)/finding the correct
solution (0.98); r(143) = 0.06, p = 0.487.

5. What is more important to you when you solve a mathematics problem? being able to do it mentally (0.22)/being able to do it
using paper (0.78); r(143) = 0.23, p = 0.005.

6. How often do you solve problems without writing down a calculation? almost never (0.16)/not often (0.29)/sometimes (0.40)/often
(0.12)/very often (0.03); M = 2.56; r(145) =−0.19, p = 0.019.

7. When you do not write down a calculation, why is that? (tick boxes that apply).

• because it is faster (0.41)
• because then you get a correct solution more often (0.14)
• because doing mental calculation shows you are smart (0.11)
• because it is cooler to do mental calculation (0.01)
• because you do not feel like writing anything down (0.22)
• because you guessed the solution (0.14)
• because it is not necessary to write down a calculation (0.49)

APPENDIX B

Teacher Questionnaire
The proportion teachers choosing each alternative is presented between brackets. For 5-point scales the mean is also presented. The
correlations are between the question response and the frequency of the teachers’ students average percentage of written strategy choices
on the pretest; statistically significant correlations are in bold.

1. Do you teach your students the whole-number-based algorithm, digit-based algorithm or non-algorithmic approaches
for solving multidigit problems (such as 544÷34 or 12.6÷1.4)? When multiple approaches apply, tick multiple boxes.
whole-number-based algorithm (0.58)/both whole-number-based and digit-based algorithm (0.26)/digit-based algorithm (0.16);
r(17) =−0.18, p = 0.462.

2. To what extent do you as a teacher prefer a division algorithm? strong preference whole-number-based - strong preference digit-
based (5-point scale): M = 3.0; r(17) = 0.06, p = 0.798.

3. To what extent do you as a teacher prefer an algorithmic over a non-algorithmic approach? strong preference algorithmic - strong
preference non-algorithmic (5-point scale): M = 2.2; r(17) =−0.46, p = 0.048.

4. Which ability do you find more important in general for your students? performing calculations well on paper - performing
calculations well mentally (5-point scale): M = 3.0; r(17) =−0.19, p = 0.444.

5. How often do you instruct your students in writing down intermediate steps or calculations? almost never - daily (5-point-scale);
M = 4.2; r(17) = 0.297, p = 0.217.

6. What is more important to you when your students solve multidigit division problems? (six 5-point scales).

• that they write down all calculations - that they try to do it mentally: M = 2.4; r(17) =−0.26, p = 0.275.
• that they keep trying until they get the correct solution, even if that takes a lot of time - that they can do it quickly, even if they

sometimes make mistake: M = 2.5; r(17) =−0.29, p = 0.234.
• that they can determine the exact answer - that they can make a good estimation of the answer: M = 3.5; r(17) =−0.10, p = 0.695.
• that they know one solution procedure - that they know multiple solution procedures: M = 3.4; r(17) = 0.35, p = 0.14.
• that they use an algorithm - that they choose their own solution strategy: M = 3.0; r(19) =−0.10, p = 0.687.
• that they use a method that can always be applied - that they use convenient shortcut strategies (such as 1089÷11 = 1100÷11−1):

M = 3.3; r(17) =−0.24, p = 0.320.
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This article presents the results of a comparative study regarding the impact and
contribution of two instructional approaches to formal and informal mathematical
reasoning with two groups of Spanish students, aged four and five. Data indicated
that for both age groups, children under the ABN method [Open Algorithm Based
on Numbers (ABN)] (n = 147) achieved better results than the group under the CBC
approach (Closed Algorithms Based on Ciphers) (n = 82), which is the widespread
approach in Spanish schools to teach formal and informal mathematical reasoning.
Furthermore, the comparative analyses showed that the effect is higher in the group of
students who received more instruction on skills considered domain-specific predictors
of later arithmetic performance. Statistically significant differences were found in 9 of the
10 dimensions evaluated by TEMA-3 (p < 0.01), as well as on estimation tasks in the
number-line for the 5-year-old-group. However, the 4-year-old group only presented
significant results in calculation and concepts tasks about informal mathematical
reasoning. We discuss that these differences arise by differential exposure to specific
number-sense tasks, since the groups proved to be equivalent in terms of receptive
vocabulary, processing speed, and working memory. The educational consequences of
these results were also analyzed.

Keywords: domain-specific precursors, TEMA-3, early arithmetic, ABN method, mathematics

INTRODUCTION

During the 1st years of their lives, students pay special attention to their environment and innately
show curiosity about the quantitative relationships that occur around them, thus developing
informal mathematical reasoning. These skills are the basis for the mathematical concepts taught
at school. As students begin receiving formal instruction, mathematical reasoning is developed
and refined (Ginsburg et al., 1998). Children leave aside intuition and develop different types of
arithmetic reasoning, such as algebraic reasoning and verbal reasoning, among others. Formal
mathematical reasoning requires from students a competent level in the management of symbols
and language (Godino and Font, 2003). In particular, formal mathematical reasoning involves
conventional knowledge related to number literacy as well as knowledge about the basic concepts
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of the decimal system. Furthermore, it also includes the
knowledge of number facts and calculation, since instruction and
memorization are necessary both for the recovery of number facts
as well as for carrying out complex arithmetic operations, such
as addition and subtraction with regrouping, solving operations
with numbers with middle-zeros, etc. (Robinson et al., 2018).

In order students attain the necessary arithmetic skills for the
curriculum content acquisition, it is necessary to ensure they
develop from an early age, and in an up-close and meaningful
way, contents such as counting as well as relational aspects
and processes: problem-solving and number representation
(Ginsburg and Baroody, 2007; Alsina, 2012). This is the reason
why researchers are focusing their efforts on the study of the
mechanisms underlying the arithmetic skills development. One
of the main goals is the identification and analysis of the predictor
variables for arithmetic performance. They are variables on which
the most complex mathematic learning is developed (Cargnelutti
et al., 2017; Cerda et al., 2015).

There is a long researching studies that defends the role of
number sense as a strong predictor of successful mathematics
performance, above other general factors such as vocabulary
and working memory (Jordan et al., 2007, 2008, 2009). Jordan
et al. (2008) define the number sense as the ability to understand
numbers and arithmetic operations, together with the capacity to
make arithmetical judgments resulting from the understanding
of numbers and arithmetic facts. According to Jordan et al.
(2008), number sense includes the ability to count, knowledge of
numbers, and number facts. The topic linking the role of number
sense and performance in mathematics is also supported because
in having a weak number sense, makes the formal instruction
process more difficult for students. This difficulty continues
when students go along the compulsory schooling (Baroody
and Rosu, 2006). In addition, there is also substantial evidence
that accounts the significant relationship between cardinality
and number series understanding, achievement of multiplication
solving problems, addition and subtraction (De Smedt et al.,
2013; Lyons et al., 2014; Vogel et al., 2015).

Counting could also be an important predictor of
mathematical performance (Geary, 2011; Bartelet et al.,
2014). So, number knowledge involves recognizing differences
between quantities and making judgments about the identified
quantities. Although younger children rely on visual perception
instead of counting to make these type of judgments, however, it
has been found that at the age of six, most children incorporate
notions of quantities and counting schemes into a mental
number-line (Siegler and Booth, 2004). Children associate
that numbers presented after other numbers in a counting
sequence and, therefore, in a number-line, correspond to a
higher number than those presented before. Consequently,
students develop a linear representation of numerical
magnitudes, which support the learning of the positional
value of numbers and the elaboration of mental calculation.
This linear representation, along with the operation of counting,
should predice mathematics learning difficulties (MLD) (Geary
et al., 2009). Cirino (2011) also identified the symbolic and
non-symbolic comparison tasks, and the principles or concepts
related to competent counting, such as symbolic labeling and

knowledge of the number sequence, as latent variables related to
number knowledge.

It has also been maintained that infants can make computation
using physical references (Jordan et al., 2008). However, as
children start formal education, they begin to use algorithms,
understood as sequences of unambiguous instructions used
to obtain a required result (Jordan et al., 2008). These
sequences contribute to understand some basic mathematical
concepts, such as seriations, patterns, forms, comparisons,
estimations, verifications, etc. (Levitin, 2015). Key factors
associated with the number concept emerge as precursors of
mathematical development, and improve the understanding
of fundamental arithmetic concepts and facts that, with
appropriated instructional approaches, should enable children a
higher academic achievement.

In general, teaching methods in formal education are
facilitated by the use of textbooks, designed to meet the
curriculum needs. These books offer an organized scheme for
teaching and learning (Fan et al., 2013; Hadar, 2017). Within
the Spanish and international context of mathematics formal
instruction, (even if there are differences attributable to teacher’s
management, textbooks, and schools’ pedagogical guidelines),
there is a certain homogeneity in terms of teaching methods.
Namely, the most extended mathematics teaching approach
focuses on learning of additive and multiplicative structures
through algorithmic processes based on number figures (Barba-
Uriach and Calvo, 2012). We will refer to this approach as the
Closed Algorithms Based on Ciphers (CBC) methods.

The algorithms from the CBC methods develop after
understanding the numbers’ place value. CBC is implemented
with numbers. The facts numbers, sequence of steps, and
calculations required by the process (which determine the
arithmetic tasks), are completely predefined when the quantities
involved in the algorithmic are established. In this sense, if two
individuals use the same algorithm to perform an arithmetic
task, both subjects will necessarily follow the same intermediate
steps. Moreover, in a traditional CBC approach, the partial
calculations completed is not a requirement to the problem that
is being solved. Thus, they become only crucial steps for the
correct functioning of the algorithm. In addition, in a CBC
approach, there is more room for error, because non-specific
reference mechanisms to monitor the problem’s partial steps are
not trained.

Faced with this condition, several Spanish countries school
systems are currently implementing the Open Algorithm Based
on Numbers (ABN) method (Martínez-Montero and Sánchez,
2013). This approach gathers and addresses the natural route
of each stages of the exploratory process that children utilize
to understand numbers and their properties. This route is
used as the background to design the instructional sequences
and significant algorithms to perform facts with numbers. The
ABN method has precedents in some educational proposals
launched in the Netherlands to renew the mathematics teaching
and learning in general and particularly teaching methodology
for calculation. This was called “realistic mathematics.” This is
oriented to development mathematical competence and fostering
mathematical reasoning through manipulative and stimulating
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instruments for students in order to increase motivation and
attention.

Implementation of ABN procedure begins in the academic
course of 2008/2009 in a group of first grade of primary
school in a public school at Cadiz (Spain). One year later,
ABN extends in 4 more schools in the same province with
approximate 125 students first graders. During the 2011–2012
different nationwide schools started implementing ABN method,
distributed by more than 10 Spanish autonomous communities.
Throughout 2013 keep growing the Spanish public schools using
this method, and starting from the 1st year of preprimary
education. In addition ABN begins to expand internationally in
other countries such as Mexico, Argentina or Chile. But there
are still no published results on these experiences. According
to data provided by Cantos (2016) currently between 6,000 and
7,000 classrooms follow the ABN methodology, representing an
approximate total number of 200,000 students learning math
with ABN.

The integration of this path to the ABN method also
provides an adequate understanding of the different steps for
calculation process. Thus, with regard to the additive and
multiplicative algorithmic, these processes can be understood
as a transformation of resulting quantities from a dynamic
operative process. Namely, a process in which each sequence is
a sub-process involving explicit quantities, which are operated
under the user’s criteria. Starting in early childhood, the
ABN method focuses on performing math tasks with whole
numbers, according to ranges or universes numbers. The method
uses different formats for representation and manipulation of
specific numbers, according to concrete, pictorial, abstract (CPA)
instructional approach to teaching, that develops a deep and
sustainable understanding of maths in pupils (Bruner, 1966).
The principle of the ABN method is to maintain the numerosity
of quantities all the times, in terms of knowledge, composition
and decomposition, as well as taking into consideration how
they operate in relation to other quantities (Martínez-Montero,
2010, 2011). In recent years, there has been evidence of the effect
that this new methodology should have: to learn mathematics
in a realistic and quotidian way, moving away from the mere
acquisition of strategies and knowledge of symbols, that does
not guarantee a realistic understanding (Bracho-López et al.,
2014a). In this way, the unidirectional and sequential transfer
of information is avoided, to give way to a more active learning
process, in accordance with the context of student development
(Novo et al., 2017).

With ABN approach, algorithmic are latent parts in the
process of structuring mathematical knowledge. A meaningful
mathematical understanding is developed throughout schooling.
This knowledge structure also contributes to early approaches to
Algebra, by experimentally incorporating mathematical concepts
such as equations, powers, roots, etc. ABN approach requires
focusing on the early skills acquisition to allow adequate
understanding of the number but not only to reel number
sequences off by memory. Thus, the ABN method focuses
on developing in children the ability to establish differences
or similarities between groups; relations between objects by
grouping them according to specific criteria; pairing set elements

with only one element from a different set; to intuit the order
of objects according to number ranges; and, to use acquired
problem-solving skills to elucidate daily life problems that involve
counting. The flexibility that characterizes the ABN method not
only offers an advantage in the development of original solution
approaches or different types of solutions, but it also provides a
set of strategies to adequately solve mathematic tasks (Torbeyns
et al., 2005).

This previous background allows us to claim that a timely
and adequate assessment of informal and formal reasoning (both
regarding skills and concepts associated with early mathematical
competence), can significantly contribute to the analysis and
prediction of students achieving. Both dimensions are precursors
of students’ performance in mathematics. In the same way, given
the emphasis of the ABN method in working with quantities
from the early stages, it is relevant to examine whether or not the
exposure to a specific instructional approach for the development
of mathematics skills, concepts and principles in early childhood
education produces a differential level of development in
students. In short, this research aims to determine potential
differences linked to a specific instructional approach to formal
and informal mathematical reasoning in a group of preschool
children.

The following three hypotheses are proposed for this study:

(1) There are significant differences for ABN method
students group in comparison to CBC group, in
informal mathematical reasoning. Specifically in counting,
comparisons, calculation and informal concepts, regardless
of the school year.

(2) There are significant differences for ABN method students
group in comparison to CBC group, in the formal
mathematical reasoning. Specifically in number facts,
formal calculation, and formal mathematical concepts,
regardless of the school year.

(3) There are significant differences for ABN method students
group in comparison to CBC group, in number-line
estimation, regardless of the school year.

MATERIALS AND METHODS

A quasi-experimental descriptive and comparative cross-
sectional design was used. Measurements of the dependent
variables were taken in a single moment. Mathematical
performance was compared in two different ages groups of
students (4 and 5 years), with two types of mathematical
instruction approaches (ABN and CBC). Considering the
characteristics of the cross-sectional designs, three measures of
control over cognitive variables were used in order to guarantee
the groups’ equivalence and comparability. The designs of
causal type, with control variables such as those used in this
work, allow to establish some relevant inferences, given that the
cause-effect relationships already occurred or occur during the
process of measuring (Hernández et al., 2014). These kinds of
designs have been used for that purpose in other similar qualified
investigations (Wang et al., 2016).
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Participants
The total sample of students (n = 224) belonged to five public
schools from Spain, four of them located in the community of
Andalusia and one of them in the community of Madrid. In the
Spanish public school system, most of the parent’s choice the
school according with the standard of proximity to their homes.
This criterion maintains the patterns of social stratification
associated with residential zone (Mancebon-Torrubia and Perez
Ximenez-de-Embun, 2014). Social and economic neighborhood
similarities are usually coincident with the social and economic
structure of schools settled on the same neighborhood. According
to the OECD (2015) report, Spanish school system holds one of
the highest social-economical homogeneity rates in classrooms.
In this study, schools were settled in middle-class neighborhoods,
considering that social-economic differences between students
were not relevant. Teachers’ background was also similar,
considering that in the Spanish education system all Pre-school
and Primary school teachers hold a University degree. Thus,
the socioeconomic composition of these five public schools
corresponds to middle-class standards. The participants were
224 students, of which 110 (49.1%) girls and 114 boys (50.9%).
The average age for the female group was of 65.47 months
(SD = 6.98). The average age for the male group was of
64.33 months (SD = 6.45). 111 students belonged to the 4-
year-old pre-school class, and 113 to the 5-year-old pre-school
class. Although so far ABN is being used from 4 to 14 years
old students, we consider that the beginning of the schooling
and the first contact for children with the formal academic
math is important for learning this subject. Several longitudinal
studies shown that when young children start having trouble
with mathematic, they keep on this problem later (Navarro et al.,
2012).

Students taught under the Open Algorithm Based on Numbers
method (ABN group) were 142; 74 aged 4, and 68 aged 5.
Student under the Closed Algorithms Based on Ciphers (CBC
group) were 82; 37 aged 4 and 45 aged 5. Students with special
educational needs were not included in this study.

Procedure
Trained professionals carried out participants’ assessment in two
sessions. Each was of approximately 15–20 min. The purpose
of this design was to attend to the particular characteristics of
the students, and to avoid student’s tiredness. The evaluation
conditions were optimal. The assessment was conducted in
settings free of distractions that could interfere in the results.
One session consisted in the administration of TEMA-3 test to
evaluate students’ mathematical competence. The other session
focused on the evaluation of the control variables (verbal
working memory, receptive vocabulary, and processing speed).
During this session, the number-line estimation test was also
administered. Harvey and Miller (2017) reported that receptive
vocabulary significantly affects to early math skills. Also, Peng
et al. (2016) considered that processing speed and working
memory as variables related to mathematical competence. These
two subtests were used as control tests to establish the equivalence
of the groups.

This study considered two groups of students, which will
be referred to CBC-group and ABN-group. The CBC-group
consisted of students who received instruction under the CBC
approach. This type of education is widespread in most Spanish
and other countries schools, and it characterizes for adjusting
to the contents required by the educational administration of
the country. CBC methodology focuses on the monitoring of
content learning through textbooks. The didactic proposal of
textbooks is mostly oriented to a CBC additive and multiplicative
structure. The ABN-group was composed of students who
received mathematical instruction through the ABN method.
The teachers in charge of this group had a specific training
in the ABN instructional method. Teachers’ training took into
account the contents, competencies and specific goals required by
the educational administration government for each grade. Both
groups of participants received the compulsory mathematics
contents stated in the school curriculum for each grade, but
with different approach. Instructional timing was the same for
both groups and it was accordingly to the instructional schedule
established by the Spanish Ministry of Education. Thus, the
significant difference between both groups was the mathematics
instructional approach used. It is important to note that all
participating students received mathematics instruction through
one method or the other from the 1st year of preschool education.

All subjects gave written informed consent in accordance with
the Declaration of Helsinki. Informed consent was obtained from
parents, teachers and school principals involved in this study.

Instruments
Test of Early Mathematics Ability-Third Edition,
TEMA-3 (Ginsburg and Baroody, 2007)
This test assesses mathematical competence and consists of two
subtests that focus on the evaluation of informal and formal
reasoning, both in terms of skills and concepts. The informal
reasoning subtest is composed of tasks aimed at the assessment
of counting, comparison of quantities, informal calculation and
basic informal concepts. The formal reasoning subtest evaluates
conventions related to number quantity literacy, knowledge
of number facts, formal calculation, and formal mathematical
concepts.

TEMA-3’s administration was individual taking around
30 min. Administration timing differs according to the student’s
age. The test is applicable to children aged between 3 and 9 years
old. TEMA-3 has 72 items presented in order of increasing
difficulty. The Cronbach’s alpha for this test was 0.91 for 4-year-
olds and 0.95 for 5-year-olds.

In the Spanish standardization for TEMA-3, it is reported the
following scores: 4 years (M = 15.25, SD = 5.89), and 5 years
(M = 25.03, SD = 7.23). The range data (minimum and maximum
score) do not appear in the Spanish standardization manual.

Numerical Estimation Task (Siegler and Booth, 2004)
This pencil-and-paper test evaluates estimation skills in a
number-line. For its administration, participants are presented
with a sheet of paper with a 20-centimeter number line, which
starts at zero and ends at 20. Above the line, in the upper central
part of the sheet, a number is shown. Participant must point out
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the number in the straight line. The test consists of 10 items,
which correspond to the following numbers: 2, 4, 7, 8, 11, 13, 16,
17, 18, and 19, randomly presented. The mean comparison rate
was calculated according to the number of correct answers with
respect to the number requested by the test versus the number
provided by the student. Answers were considered correct if they
did not present a rate of error higher than ±15% for the requested
number. The Cronbach’s alpha for this test was 0.80

Coding Subtest From the Wechsler Preschool and
Primary Scale of Intelligence, Third Edition
(WPPSI-III) (Wechsler, 2009)
This test is included within the Wechsler Intelligence Scale
for preschool and primary school (Wechsler, 2009). It assesses
processing speed, visual perception, visual-manual coordination,
short-term memory, learning ability, and cognitive flexibility.
The student must complete a set of 64 figures presented with
the appropriate symbols. Participant must follow the reference
models within a time limit of 2 min. The Cronbach’s alpha for
this test was 0.84.

Receptive Vocabulary Test From the Dyslexia
Screening Test - Junior (DST-J) (Fawcett and
Nicolson, 2013)
This test is a measure of vocabulary mastery and reasoning
ability. The purpose of this test is to evaluate receptive vocabulary
through a multiple-choice format. The test comprises 18 items;
each correct item receives one point. The Cronbach’s alpha for
this test was 0.74.

Backward Digit Task From the Dyslexia Screening
Test - Junior (DST-J) (Fawcett and Nicolson, 2013)
This test measures verbal working memory. It involves the oral
repetition of digits in reverse order. As the number of trials
increases, the number of digits increases and, consequently, the
difficulty of the task. This task is composed of seven series of

two items each. The test includes three items plus two additional,
administrated in case that child has difficulties in properly
understanding the instructions. The Cronbach’s alpha for this test
was 0.85

Statistical Analyses
In order to calculate the comparative analyzes between average
scores obtained by the ABN and CBC groups, one-way ANOVA
tests were completed. Whenever the homoscedasticity of the
variances was not proven, a correction of the degrees of freedom,
and Welch’s robust test was applied. The effect size was also
calculated for the total variables measured.

RESULTS

In order to establish that the ABN and CBC groups were
equivalent, three control tests were computed. A receptive
vocabulary test, a processing speed test, and a working memory
test of backward digits.

Table 1 shows the correlations matrix of the scores and
total scores of the subtests of formal and informal mathematical
thinking of the TEMA-3 test reached by the students, with the
purpose of analyzing the intensity of the associations between
them. It is observed that all of them are statistically significant.

In order to examine if there were differences in the scores
of these variables according to the age group, comparisons were
made by means of simple ANOVA tests.

No significant differences were found in the receptive
vocabulary test results for the 4-year-old group [MdnCBC = 11.56,
SDCBC = 1.96; MdnABN = 12.17, SDABN = 1.82; F(1,109) = 2.604,
p > 0.01]. Likewise, no significant differences were found for
the WPPSI [MdnCBC = 27.02, SDCBC = 11.20; MdnABN = 26.79,
SDABN = 11.03; F(1,109) = 0.011, p > 0.01] and neither were
there significant differences in the comparison between the
backward digit test for the 4-year-old group [MdnCBC = 1.48,

TABLE 1 | Correlation matrix of the student scores in formal and informal mathematical thinking subtest of TEMA-3.

Informal
reasoning

Counting Comparing Informal
calculations

Informal
concepts

Formal
reasoning

Conventions Number
facts

Formal
calculations

Concepts

Informal
reasoning

1 0.967∗∗ 0.793∗∗ 0.854∗∗ 0.658∗∗ 0.853∗∗ 0.856∗∗ 0.476∗∗ 0.277∗∗ 0.442∗∗

Counting 1 0.677∗∗ 0.747∗∗ 0.573∗∗ 0.860∗∗ 0.876∗∗ 0.470∗∗ 0.263∗∗ 0.402∗∗

Comparing 1 0.662∗∗ 0.466∗∗ 0.638∗∗ 0.643∗∗ 0.323∗∗ 0.218∗∗ 0.376∗∗

Informal
calculations

1 0.537∗∗ 0.676∗∗ 0.680∗∗ 0.354∗∗ 0.198∗∗ 0.403∗∗

Informal
concepts

1 0.546∗∗ 0.464∗∗ 0.472∗∗ 0.309∗∗ 0.345∗∗

Formal
reasoning

1 0.944∗∗ 0.692∗∗ 0.476∗∗ 0.489∗∗

Conventions 1 0.452∗∗ 0.261∗∗ 0.367∗∗

Number facts 1 0.622∗∗ 0.253∗∗

Formal
calculations

1 0.192∗∗

Concepts 1

**p < 0.01.

Frontiers in Psychology | www.frontiersin.org 5 September 2018 | Volume 9 | Article 1811215

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01811 September 21, 2018 Time: 14:46 # 6

Cerda et al. ABN Method and Domain-Specific Precursors

SDCBC = 1.30; MdnABN = 1.63, SDABN = 1.47; F(1,109) = 0.251,
p > 0.01].

Similarly, no significant differences were found in the
receptive vocabulary test results for to the 5-year-old group
[MdnCBC = 12.57, SDCBC = 1.58; MdnABN = 12.67, SDABN = 1.38;
F(1,111) = 0.122, p > 0.01]. Likewise, no significant differences
were found in the results for the WPPSI [MdnCBC = 34.80,
SDCBC = 9.43; MdnABN = 35.64, SDABN = 10.43; F(1,111) = 0.192,
p > 0.01]; and neither were there significant differences in the
comparison between the backward digit test for the 5-year-
old group [MdnCBC = 2.22, SDCBC = 1.44; MdnABN = 2.91,
SDABN = 1.33; F(1,111) = 6.765, p > 0.01].

Several comparative analyzes were carried out in order
to guarantee equivalence and comparability among ABN and
CBC groups (gender, mathematical instructional method and
autonomous community): (a) Gender (4-year-old). For the 4 years
aged group, vocabulary [t(109) = 0.267; p > 0.05], processing speed
[t(109) = −2.314; p > 0.05], and working memory [t(109) = −0.336;
p > 0.05] differences between groups were not significant for
gender; (b) Mathematical instructional method (4-year-old). In
the same way, there were no statistically significant differences
in vocabulary [t(109) = −1.614; p > 0.05], processing speed
[t(109) = 0.103; p > 0.05], and working memory [t(109) = −0.501;
p > 0.05] for math instructional method used; (c) Autonomous
community (4-year-old). Vocabulary [t(109) = −0.475; p > 0.05],
processing speed [t(109) = 1.784; p > 0.05], and working memory
[t(109) = 0.351; p > 0.05] differences between groups were not
significant for autonomous community of the schools where
students attended; (d) Gender (5-year-old). For the 5 years aged
group, vocabulary [t(109) = 0.267; p > 0.05], processing speed
[t(109) = −2.314; p > 0.05], and working memory [t(109) = −0.336;
p > 0.05] differences between groups were not significant for
gender; (e) Mathematical instructional method (5-year-old). In
the same way, there were not statistically significant differences
in vocabulary [t(109) = −1.614; p > 0.05], processing speed
[t(109) = 0.103; p > 0.05], and working memory [t(109) = −0.501,
p > 0.05] for method of instruction; (f) Autonomous community
(5-year-old). Either, in vocabulary [t(109) = −0.475; p > 0.05],
processing speed [t(109) = 1.784; p > 0.05], and working memory
[t(109) = 0.351; p>0.05] for autonomous community of the schools
where students attended, no statistically significant differences
were found.

Table 2 shows TEMA-3 subtests scores comparing the two
instructional methods (CBC and ABN).

Statistically significant differences were found (p < 0.05)
between the CBC and ABN groups in informal calculation and
informal concepts dimensions, although effect sizes were small.
In formal reasoning calculations dimension, 4-year-old children
were not able to correctly solve any task. A possible explanation
should be, because the suspension criterion was used before being
able to solve them. The same works to number facts dimension,
where 4-year-old students did not solve any tasks. However, some
ABN-group participants appropriately solved up to two tasks of
this type (Table 3).

Since five different schools participated in this study, a cross-
school analysis has been carried out. This statistical analysis
generated two categories of schools according to the Autonomous

Community to which they belong: Andalusia and Madrid.
The purpose was to explore whether there were differences.
Comparing the average scores in informal and formal thinking,
in each age group analyzed, independently of the instructional
method, few statistically significant differences in most of
the dimensions explored were found. For 4 year-old groups
no statistically differences were found in informal reasoning
(counting, comparing, informal calculations, informal concepts),
either formal reasoning (conventions, number facts, formal
concepts, comparing). For the 5 year-old group no statistically
significant differences were found in comparing, number facts
and formal concepts. However, differences were found for 5 year-
old group in informal reasoning [F(1,111) = 19.011, p < 0.05,
η2 = 0.146], and the following subtests of this component:
counting [F(1,111) = 18.249, p < 0.05, η2 = 0.141]; informal
calculations [F(1,111) = 13.616, p < 0.05, η2 = 0.109], and informal
concepts [F(1,111) = 20.331, p < 0.05, η2 = 0.155]. Similarly,
differences were found in formal reasoning [F(1,111) = 14.67,
p < 0.05, η2 = 0.117]: conventions [F(1,111) = 13.565, p > 0.05,
η2 = 0.109], and formal calculations [F(1,111) = 1.954, p > 0.05,
η2 = 0.108].

Statistically significant differences were found in 9 out of
10 dimensions compared (p < 0.01). In particular, counting
dimension, which is part of the development of informal
reasoning, a large effect size was found. In addition, significant
differences and a large effect size were found of convention
dimensions, which is part of development of formal reasoning.

In order to support that instructional approach generated
a positive interaction cross-age effect, an additional statistical
analyzes were carried out. This effect reproduces time effect
learning with the instruction methodology (ABN or CBC), by
observing the informal and formal mathematical thinking tasks
data analyzed.

A significant disordinal interaction between the teaching
method and students age was found, regarding the level of
mathematical informal thinking: The methods’ effect was not the
same for each age students group, but the difference was always
for the ABN group [F(1,220) = 10.68; p < 0.05, η2 = 0.046].
Similarly, statistical differences were found considering the
learning method [F(1,220) = 37.11; p < 0.05, η2 = 0.144]; and by
age group [F(1,220) = 60.34; p < 0.05, η2 = 0.215]. These main
effects indicated that ABN method’ students achieved higher than
CBC method’ students. Furthermore, 5-year-old students group
achieved better in math informal thinking than their 4 years
peers; (a) Mathematical formal thinking dimension comparison.
Regarding the math formal thinking dimension, a significant
interaction effect between instructional method and age group
was found [F(1,220) = 16.39; p < 0.05, η2 = 0.069]. In the same
way, differences were found by learning methodology (ABN
or CBC) [F(1,220) = 28.94; p < 0.05, η2 = 0.116]; and by age
group [F(1,220) = 40.01; p < 0.05, η2 = 0.154]. Concerning the
dimensions that conform the math formal thinking, interaction
effect was found in conventionalism [F(1,220) = 17.99; p < 0.05,
η2 = 0.076]; but none in numerical facts [F(1,220) = 3.09; p > 0.05,
η2 = 0.014]. Main effects were found according to the ABN or
CBC method [F(1,220) = 6.96; p < 0.05, η2 = 0.031]; and by age
group [F(1,220) = 8.50; p < 0.05, η2 = 0.037]. None interaction

Frontiers in Psychology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 1811216

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01811 September 21, 2018 Time: 14:46 # 7

Cerda et al. ABN Method and Domain-Specific Precursors

TABLE 2 | Descriptive statistics for the different TEMA-3 test dimensions for the 4-year-old CBC and ABN groups.

Dimensions Group N M SD CI 95% MIN MAX F η2

Informal reasoning CBC 37 17.35 4.87 15.72–18.98 8 27 3.428 0.030

ABN 79 19.18 6.03 17.82–20.53 4 35

Total 116 18.59 5.73 17.54–19.65 4 35

Counting CBC 37 11.22 2.95 10.23–12.20 6 19 2.392 0.021

ABN 79 12.16 3.67 11.34–12.99 2 22

Total 116 11.86 3.47 11.22–12.50 2 22

Comparison CBC 37 2.51 1.07 2.15–2.87 1 5 0.486 0.004

ABN 79 2.62 1.19 2.35–2.89 1 5

Total 116 2.59 1.15 2.37–2.80 1 5

Informal calculation CBC 37 2.03 1.30 1.59–2.46 0 4 4.154* 0.037

ABN 79 2.52 1.35 2.21–2.82 0 5

Total 116 2.36 1.35 2.11–2.61 0 5

Informal concepts CBC 37 1.59 0.60 1.39–1.79 0 2 4.885* 0.043

ABN 79 1.81 0.60 1.67–1.94 0 3

Total 116 1.74 0.61 1.62–1.85 0 3

Formal reasoning CBC 37 3.00 1.22 2.59–3.41 1 6 1.302 (FWelch) 0.009

ABN 79 3.30 1.88 2.88–3.72 0 10

Total 116 3.21 1.70 2.89–3.52 0 10

Conventions CBC 37 2.08 1.14 1.70–2.46 0 5 1.345 (FWelch) 0.010

ABN 79 2.35 1.52 2.01–2.69 0 6

Total 116 2.27 1.41 2.00–2.53 0 6

Number facts CBC 37 0 0 0 0 0 1.842 0.017

ABN 79 0.07 0.30 0.0–0.14 0 2

Total 116 0.05 0.25 0.0–0.09 0 2

Formal calculation CBC 37 0 0 0 0 0

ABN 79 0 0 0 0 0

Total 116 0 0 0 0 0

Concepts CBC 37 0.92 0.28 0.83–1.01 0 1 0.165 0.002

ABN 79 0.89 0.35 0.82–0.97 0 2

Total 116 0.90 0.33 0.84–0.96 0 2

TEMA-3 Total score CBC 37 20.35 5.84 18.40–22.30 11 33 2.968 0.027

ABN 79 22.48 7.60 20.77–24.18 4 45

Total 116 21.80 7.13 20.49–23.11 4 45

*p < 0.05.

effects were found in formal calculus [F(1,220) = 1.46; p > 0.05,
η2 = 0.007]; although the main effect attributable to the age
group was found [F(1,220) = 4.10; p < 0.05, η2 = 0.018], but
not by method [F(1,220) = 1.46; p > 0.05, η2 = 0.007], neither
in formal mathematical thinking [F(1,220) = 2.58; p > 0.05,
η2 = 0.012]. A main effect attributable to the age group was
observed [F(1,220) = 3.94; p < 0.05, η2 = 0.018], rather than
by the method [F(1,220) = 0.81; p > 0.05, η2 = 0.004]; (b)
TEMA-3 score comparison. Regarding the TEMA 3 direct scores,
a significant interaction between mathematics learning method
(ABN or CBC) and the students’ age [F(1,220) = 13.05; p < 0.05,
η2 = 0.056] was found between. Significant differences were also
observed by the learning method [F(1,220) = 37.92; p < 0.05,
η2 = 0.147]; and by age group [F(1,220) = 59.44; p < 0.05,
η2 = 0.213]. These main effects suggest that participants who
learned mathematics with the ABN approach achieved higher
results than students who learned with the CBC method.
Similarly, 5-year-old students achieved higher average scores in
informal mathematical thinking than those in 4 year-old group.

For numerical estimation tasks, statistically significant
differences were found in 5-year-old group. Specifically, when
comparing student averages regarding the ability to estimate
numbers, significant differences were found for the ABN-group,
with a small effect size (Table 4).

DISCUSSION

The previous results support the hypothesis about the positive
impact of the ABN method on the dimensions that make up
formal and informal reasoning. Namely, the participants who
were under the ABN approach obtained significantly higher
results than the CBC approach. Thus, it can be maintained that
the ABN method provides an integrated perspective, based on
the significant learning of the decimal counting system, as well
as providing complete understanding of basic math processes
and their properties (Martínez-Montero, 2010, 2011; Martínez-
Montero and Sánchez, 2011). Even so, results indicate that
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TABLE 3 | ANOVA and effect size results of TEMA-3 dimensions for the 5-year-old CBC and ABN groups.

Dimensions Group N M CI 95% MIN MAX F η2

Informal reasoning CBC 45 20.69 19.17–22.21 5 32 51.58** 0.317

ABN 68 27.63 26.41–28.85 14 36

Total 113 24.87 23.73–26.00 5 36

Counting CBC 45 12.71 11.71–13.71 4 21 51.02** 0.315

ABN 68 17.40 16.55–18.24 9 22

Total 113 15.53 14.76–16.30 4 22

Comparing CBC 45 3.22 2.92–3.52 1 5 15.25** 0.121

ABN 68 3.99 3.73–4.23 1 6

Total 113 3.68 3.48–3.88 1 6

Informal calculations CBC 45 2.98 2.60–3.35 0 5 21.33** 0.161

ABN 68 3.94 3.70–4.18 1 5

Total 113 3.56 3.33–3.78 0 5

Informal concepts CBC 45 1.82 1.66–1.98 0 3 19.29** 0.148

ABN 68 2.29 2.15–2.43 1 4

Total 113 2.11 1.99–2.22 0 4

Formal reasoning CBC 45 3.58 3.01–4.14 0 12 40.69** 0.268

ABN 68 5.97 5.48–6.45 2 12

Total 113 5.02 4.59–5.44 0 12

Conventions CBC 45 2.53 2.12–2.95 0 7 56.74** 0.338

ABN 68 4.43 4.12–4.73 1 7

Total 113 3.67 3.37–3.97 0 7

Number facts CBC 0.08 0.46 −0.05–0.22 0 3 7.13** (FWelch) 0.049

ABN 0.42 0.86 0.21–0.63 0 4

Total 0.29 0.75 0.15–0.43 0 4

Calculations CBC 0.02 0.14 −0.02–0.06 0 1 2.04 (FWelch) 0.014

ABN 0.08 0.33 0.00–0.16 0 2

Total 0.06 0.27 0.01–0.11 0 2

Concepts CBC 0.93 0.25 0.85–1.00 0 1 5.85* 0.050

ABN 1.02 0.17 0.98–1.07 1 2

Total 0.99 0.21 0.01–0.95 0 1

TEMA-3 Total score CBC 45 24.27 22.23–26.30 5 43 52.26** 0.320

ABN 68 33.60 31.98–35.22 17 47

Total 113 29.89 28.37–31.40 5 47

**p < 0.01, *p < 0.05.

TABLE 4 | Descriptive and inferential analyses results for the numerical estimation
task for CBC and ABN groups.

Course Method F η2

CBC ABN

M SD N M SD N

4 year-old 2.46 1.80 37 3.22 1.96 74 3.871 0.034

5 year-old 2.58 2.01 45 3.94 1.99 68 12.50** 0.101

Total 2.52 1.91 82 3.56 2.05 142 14.43** 0.061

**p < 0.01.

this differential gain is substantial for the 5-year-old group,
where statistically significant differences were found in all
formal and informal mathematical reasoning dimensions. For the
4-year-old children, informal calculations and informal concepts
dimensions were found statistically significant.

A potential explanation for these results is that children
in the 5-year-old group have received 2 years of systematic
formal instruction in mathematics, which has included both
ABN and CBC approaches. Therefore, the ABN group students
showed a higher ability to successfully solve the tasks that
compose each of the dimensions associated with formal and
informal reasoning, assessed by TEMA-3 test, because the
test scores provide a standardized measure of early arithmetic
performance (Núñez and Lozano, 2009; Ryoo et al., 2015).
These results are relevant, because the tested skills for
informal mathematical reasoning, such as the ability to pay
selective attention to numbers contribute to the development
of the number sense. This is one of the main predictors
of arithmetic performance. In addition, this type of number
acuity reinforces mathematical achievement in early childhood,
even though the influence of non-numerical characteristics
significantly decreases when children developmental progresses.
Even so, the ability to pay selective attention remains as a
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determining factor for decision-making at all ages (Starr et al.,
2017).

Similarly, the ability to compare properly and quickly
numerical magnitudes, was a predictor of achievement in
mathematics, independent of age, intellectual capacity, and
number identification speed (De Smedt et al., 2009; Fazio et al.,
2014). Several studies have found that babies are able to selectively
pay attention to numbers and size, which could be considered
to be the basis for the development of number-sense (Cantrell
and Smith, 2013; Mou and vanMarle, 2014; Szkudlarek and
Brannon, 2017). Furthermore, there is evidence that number
representations, even in adulthood, are influenced by non-
numerical properties, such as the size of stimuli, for example
(Defever et al., 2013; Fuhs and Mcneil, 2013; Gilmore et al., 2013;
Szucs et al., 2013).

Likewise, there is significant evidence of the relationship
between processing of cardinality and number seriation and
arithmetic achievement. Namely, this is found in conditions
involving easy multiplication, addition and subtraction tasks
(De Smedt et al., 2013; Lyons et al., 2014; Chu et al., 2015;
Vogel et al., 2015). Therefore, to improve all these capacities
is optimistic, because it provides a better understanding of the
cognitive architecture underlying achievement in early childhood
education in mathematics, and the impact of different approaches
for teaching and learning (Lo et al., 2017).

In summary, in the case of the 5-year-old group, significant
differences were verified for the total number of dimensions
that make up informal reasoning. In the case of the 4-year-
old group, statistically significant differences for the ABN
group were found just in calculation and informal concepts
dimensions. Consequently, no significant differences were found
for counting and comparison of quantities dimensions for this
group. These results can be explained because ABN method
produces differences achievement for the 4-year-old group for
more complex informal tasks; in which students need not only
knowledge of numbers, but also the management and application
of resolution strategies.

With respect to the second hypothesis, for the 5-year-old
group, the boys and girls under the ABN method showed a better
performance on the direct score associated with formal reasoning
than their peers under the CBC methodology did. Formal
reasoning is a very relevant dimension of children’s mathematical
reasoning, since it implies knowledge and skills, such as the
conventions of reading and writing of quantities, the command of
number facts, and formal calculation. In this sense, our findings
provided relevance to the accuracy of formal procedures and
to the basic concepts of the decimal system, such as space
value and equivalences between different orders of magnitude.
Even though the ABN method has been recently incorporated
in Spanish school curricula, these findings coincide with other
research previously conducted about the ABN method (Adamuz-
Povedano and Bracho-López, 2014; Bracho-López et al., 2014b;
Aragón et al., 2017a,b).

Considering the convention dimensions, the existence of
errors in the literacy of the quantity for single items may indicate
that certain rules have not been fully learned. This finding
becomes clearer when other variables are controlled, such as

the educational level of students’ parents and their previous
levels of literacy. The ABN method contributes in making these
operations automatic. In addition, the results obtained in this
research are consistent with a previous study with primary
school students. Bracho-López et al. (2014b) showed that a
student’s following the ABN method got significant differences
compared to their peers under the CBC approach in tasks
involving the decimal system and number facts. Likewise, Moore
et al. (2016) demonstrated that the cardinal knowledge exhibited
by preschoolers, as well as their competence in manipulation
of quantities associated with symbolic numerals, predicted
higher flexibility in processing of magnitudes and in academic
performance in the future. In this respect, the ABN group
obtained significantly higher results in the domains of number
facts and calculation when compared with the CBC group.

The significance of these findings lies in the fact that as
children progress in a formal instruction, they are expected
to begin using algorithms that synthesize sequences of
unambiguous instructions to obtain a required result; algorithms
that are also assumed to contribute to the basic understanding
of mathematical concepts (Levitin, 2015). Hence, finding a
better performance in these tasks in the ABN group evidences
the strengthening and earlier consolidation of these type of
procedural logic operations of abstract nature. In the same way,
it is very important to achieve proficiency of number facts, since
they are one of the central goals for the mathematics teaching
in early education. Namely, students in their 1st years of formal
education must be able to remember and provide fast responses
to the calculations involved in basic tasks. Domain number
facts facilitates and speeds up these processes, leaving space and
opportunity to better understanding. It is worth to mention that
a good command of this skill does not only involve memory, but
is also linked to the application of previously stored rules, which
allows easier access to the processing of symbolic magnitudes
(De Smedt et al., 2013).

Finally, with respect to formal calculation, the ABN students
also obtained better results than their peers following the CBC
methodology. It is important to remember that performing
formal calculations entails a command of the decimal number
system, counting strategies, and knowledge of number facts.
In the case of the ABN method, algorithmic operations are
part of learning activities and contribute to meaning making.
These two facts contribute to a better predisposition and attitude
toward to complete the task, which has a favorable impact in
the conceptual knowledge that children incorporate and bring
into play when making strategic decisions for the resolution of
problems (Robinson and Dubé, 2012).

The third hypothesis of this research focused around of
significant differences between both approaches concerning
numerical estimation in the number-line tasks. The results
showed significant differences for the 5-year-old ABN group.
According to a previous study, this advantage was also at the age
of 6 years (Aragón et al., 2017b). The importance of this result lies
in the fact that estimation skills contribute to a good arithmetic
competence, since the proficiency in these tasks involves capacity
to provide meaning to the magnitude of numbers in a number-
line (Laski and Siegler, 2007). However, numerical estimation
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tasks stand out as one of the most complex numerical activities
for 5-year-old students (Araújo et al., 2014). As students progress
in a formal instruction, they make fewer errors and improve
their accuracy (Siegler and Opfer, 2003). Therefore, an adequate
training in basic concepts underling numerical estimation skills
(as the ABN method does), contributes to improve this ability.
Estimation is a relevant part of the prerequisites of early
arithmetic skills and contributes to a good performance in
mathematics in later stages of formal instruction. Concerning this
matter, Watts et al. (2014) evaluated early arithmetic variables in
early childhood education and confirmed that early arithmetic
competences were predictors for achievement in primary, and
also secondary education.

In short, the impact of the mathematical structure developed
by the ABN method leads to a better understanding of several
essential operations of Algebra (roots, powers, functions, for
example). This is because algebra is a discipline in close
conceptual relationship with arithmetic. However, in the case
of Algebra, the processes and concepts involve a bigger
capacity for abstraction. This capacity could be promoted
through higher skills for arithmetic representation and could
lay the foundations for algebraic representation (Humberstone
and Reeve, 2018). Furthermore, this relationship could also
explain the higher levels of achievement exhibited by the
ABN children in formal and informal reasoning dimensions
assessed.

Finally, it should be considered that the differences between
the ABN and CBC methodologies are not limited to the mere use
of a specific type of algorithmic strategy. The differences between
the two approaches lies in understanding the mathematical
structure underlying arithmetic operations, which is a critical
factor for the development of many others mathematical skills
(National Governors Association Center for Best Practices and
Council of Chief State School Officers, 2010). From this point
of view, we believe that the ABN method defines the processes
for arithmetic operations by using methods of decomposition
and tasks with quantities. It allows a better understanding
of the underlying mathematical structure, as well as better
predisposition and basis for the understanding of problems
of an additive and multiplicative nature. It is well stablished
that additive and multiplicative tasks share some concepts such
as identity, negation, commutativity, equivalence, reversal, and
associativity (Robinson et al., 2018). They are key for building
the formal arithmetic knowledge in the algebra constructing
phases.

Study Limitations and Future
Perspectives
Since this research was not an experimental time-series design,
we are not able to attribute conclusively the difference in
formal and informal mathematical reasoning to the instructional
approaches used. Even so, the control tests used established
that the qualifications of the ABN and CBC groups compared
equivalent. Therefore, we can infer that the differences found
can be function of the instructional approach, given that the
immersion time of both groups corresponds to the same number
of school years.

It should also be mentioned that the effect of the teacher
instruction, in terms of years of service, initial teacher training
approaches, and/or gender, as well as the students themselves, are
also limitations that could have had an effect on the differential
results observed, in the sense of mitigating or enhancing the
observed differences.

Therefore, for future research and in order to have control
over the sources challenging internal and external validity, a
quasi-experimental longitudinal study is proposed. We believe
that this type of design will strengthen the hypothesis about the
favorable impact of the ABN instructional approach on informal
and formal mathematical reasoning and it will provide a more
robust basis to prove the methods’ positive effect on performance
in the arithmetic development. Finally, we also deem that the
effect of the ABN approach could be compared to other types of
flexible or innovative approaches in the field of early mathematics
teaching, in order to provide more support to the instructional
potential of the ABN approach.
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The Dutch protocol, ‘Dyscalculia: Diagnostics for Behavioral Professionals’ (DDBP
protocol; Van Luit et al., 2014), describes how behavioral experts can examine
whether a student has developmental dyscalculia (DD), based on three criteria: severity,
discrepancy, and resistance. In addition to distinguishing the criteria necessary for
diagnosis, the protocol provides guidance on formulating hypotheses by describing
and operationalising four possible associative cognitive factors of math problems:
planning skills, naming speed, short-term and/or working memory, and attention. The
current exploratory and descriptive research aims to describe the frequency of these
four primary associative cognitive factors in students with DD from the Netherlands.
Descriptive data from 84 students aged 8–18 years showed that deficits in naming
speed (in particular, in naming numbers) were the most frequent explanation of math
problems in children with DD, followed by deficits in short-term/working memory and
planning skills. Deficits in attention were the least frequent. The findings are explained in
light of current literature, and suggestions for follow-up research are presented.

Keywords: dyscalculia, planning, naming speed, memory, attention, diagnosis, protocol

INTRODUCTION

Many students in primary and secondary education experience problems with mathematics (Geary,
2004). Math problems can have major consequences for their further educational career and for
their ability to live independently in society (Every Child a Chance Trust, 2009). Math problems
that are extensive and persistent in nature may indicate developmental dyscalculia (DD). Although
there is inconsistent use of terminology in the literature, researchers agree that DD refers to the
existence of a severe disability in learning mathematics. Ruijssenaars et al. (2016, p. 28) defined
DD as a disorder characterized by persistent problems with learning and fluency and/or accurate
recall and/or application of mathematical knowledge (facts and understanding). The prevalence of
DD is estimated to be between 2 and 3% in students in the Netherlands (Ruijssenaars et al., 2016).
Percentages are higher in international research (3–8%), depending on how researchers define such
mathematical disorders (Desoete et al., 2004; Dowker, 2005; Shalev et al., 2005). The disability can
be highly selective, affecting learners with normal intelligence (e.g., Landerl et al., 2004), although
it also co-occurs with other developmental disorders, including reading disorders (Ackerman and
Dykman, 1995; Light and DeFries, 1995; Gross-Tsur et al., 1996) and attention deficit hyperactivity
disorder (ADHD; Monuteaux et al., 2005).
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Within the revised fourth edition of the Diagnostic and
statistical manual of mental disorders (DSM-IV-TR; American
Psychiatric Association, 2000) the now-obsolete diagnostic
criteria for Mathematics Disorder (code: 315.1) were: (A)
Mathematical ability, as measured by individually administered
standardized tests, is substantially below that expected given
the person’s chronological age, measured intelligence, and age-
appropriate education; (B) The disturbance in Criterion A
significantly interferes with academic achievement or activities
of daily living that require mathematical ability; and (C) If
a sensory deficit is present, the difficulties in mathematical
ability are in excess of those usually associated with it. The
fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5; American Psychiatric Association, 2013)
takes a different approach to learning disorders than previous
editions of the manual by broadening the category, in order to
increase diagnostic accuracy and effectively target care. Specific
learning disorder is now a single, overall diagnosis, incorporating
various deficits that impact academic achievement. The criteria
describe shortcomings in general academic skills, providing
detailed specifiers for the areas of reading, mathematics, and
written expression. Diagnosis of this disorder requires persistent
difficulties in reading, writing, arithmetic, or mathematical
reasoning skills during the formal years of schooling. Symptoms
may include inaccurate or slow and effortful reading, poor
written expression that lacks clarity, difficulties remembering
number facts, or inaccurate mathematical reasoning. Current
academic skills must be well below the average range of scores in
culturally and linguistically appropriate tests of reading, writing,
or mathematics. The individual’s difficulties must not be better
explained by developmental, neurological, sensory (vision or
hearing), or motor disorders and must significantly interfere with
academic achievement, occupational performance, or activities of
daily living.

Despite the changes from DSM-IV-TR to DSM-5, it remains
necessary to perform extensive diagnostic testing to establish
whether DD is present. The Dutch ‘Protocol dyscalculia:
Diagnostics for behavioral professionals’ (DDBP protocol; Van
Luit et al., 2014) describes how behavioral experts can examine
whether a student, from 8 years of age and older, has DD.
The DDBP protocol contains guidelines and suggestions about
the variables that can be investigated, and the methods used,
during a diagnostically examination of DD. Due to its structured
and comprehensive nature, the DDBP protocol has now been
systematically implemented in many social care settings in
education in the Netherlands and Flanders (Belgium). The DDBP
protocol deals with the criteria that must be met in order to
diagnose DD (Van Luit, 2012; Van Luit et al., 2014), namely:

(1) The criterion of severity: there is a significant delay in
automated math skills as compared to peers and/or fellow
children and a significant delay in mastering the substantive math
skills of the various domains. At the end of primary school, for
example in sixth grade, there must be a delay of at least 2 years
on a standard (national) math test. For such a test this would
mean that a student at the end of sixth grade would fail a test
designed for children at the end of fourth grade. In earlier grades,
for example halfway through fifth grade, this would mean that the

student would fail the test designed for students at the end of third
grade. At the beginning of fourth grade, a student would fail the
test designed for children at the end of second grade. Dyscalculia
is rarely diagnosed before the end of third grade.

(2) The criterion of discrepancy: there is a significant delay
in mathematics with respect to what can be expected of
the individual, based on their individual development. In
determining dyscalculia, the presence of an average intelligence
is not typically required. The cognitive level is mostly assessed
by an intelligence test. Children with dyscalculia can have an
under- or above-average intelligence level. It is not possible to
determine dyscalculia when the student has an intelligence score
of 70 or below, because in that case the low mathematical skills are
expected relative to the child’s personal abilities. When the total
IQ score is between 71 and 85, diagnosing dyscalculia must be
done with caution. Mathematics requires a complex skill set that
relies on higher cognitive functions. Therefore, it is not realistic
to expect that children with an IQ at this level will develop and
achieve the same math abilities as their peers with an average IQ
score. For these children the lag in mathematical skills needs to be
larger (at the end of grade six, at least three years) than the lag of
mathematical skills of a person with an average intelligence score
(at the end of grade six, at least 2 years).

(3) The criterion of didactic resistance: there is a persistent
mathematical problem, which is resistant to specialized help.
To determine the persistence of the deficit, the structural and
specialized help a student had received in mathematics is
investigated. Receiving most attention here are past reports of
offered help. According to the model of ‘response-to-instruction,’
didactic resistance can only be determined with full certainty
when the conditions for all three criteria have been met (Fuchs
and Vaughn, 2012). Thus dyscalculia cannot be diagnosed if the
third criterion has not been complied with, a condition that also
applies to children in secondary school.

Since recent research has increasingly recognized the
heterogeneity of DD by differentiating among underlying
cognitive deficits (Murphy et al., 2007; Rubinsten and Henik,
2009; Geary, 2011; Kaufmann et al., 2013; Skagerlund and
Träff, 2016), identification of DD does not on its own provide
sufficient information about the educational needs of an
individual student with math problems. The DDBP protocol
therefore provides, in addition to the above three criteria,
guidance on performing diagnostic research by describing
and operationalising four possible associative, or primary,
factors related to a student’s math problems: planning skills,
naming speed, short-term and working memory, and attention.
(Number sense is also mentioned within the DDBP protocol,
but was not taken into account in this research due to issues
relating to the time frame.) The five factors (including number
sense) are in line with international research on the underlying
neurocognitive correlational and causal factors in mathematical
difficulties (Träff et al., 2017). Where the diagnosis of DD
provides some information about the presence of the problem,
identification of these additional factors enables a more
complete and integrated picture of an individual student’s
educational needs – and thus a sounder basis for appropriate
interventions. This might include compensation, remediation
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and/or dispensation, depending on discovered associative
factor(s).

A distinction is made here between primary associative and
secondary associative factors. Secondary factors mentioned in
the protocol, for example, are work attitude and motivation,
self-concept, anxiety, reading problems and delayed or disturbed
social-emotional development (e.g., Carey et al., 2016; Sorvo
et al., 2017). As mentioned, the DDBP protocol names five
primary associative factors; however, these possible factors are
certainly not exhaustive. The first primary factor is planning
skills. Planning processes are required during math tasks for
choosing and applying strategies, monitoring calculation(s),
applying mathematical knowledge, and checking the answer (Das
and Naglieri, 1997). Deficits in planning skills therefore seem to
explain an important part of why students with DD have difficulty
performing mathematical procedures. Students with DD have
been found to have deficits in planning, as compared to students
without DD (Kroesbergen et al., 2003). The second primary factor
is naming speed. Naming speed is the speed of access to (specific)
information in long-term memory. A deficit in naming speed
can mean that more time and effort is needed during math
tasks to make relevant information readily available for solving
a task. In students with DD, there is evidence of a deficit in
the naming speed of numbers or, alternatively, general deficits
in naming speed (D’Amico and Passolunghi, 2009; Mazzocco
and Grimm, 2013; Koponen et al., 2017). The third primary
factor is short term and/or working memory. During math
tasks, a large amount of information must be retained and
processed. This requires the application of both short-term and
working memory. Various studies have found that difficulties
in storing, editing, and reproducing auditory information in
verbal memory (Berg, 2008) as well as visuospatial information
in visual memory (D’Amico and Guarnera, 2005) can underly
deficits in DD (Raghubar et al., 2010; Toll et al., 2011). The fourth
primary factor is attention. Being able to focus and maintain
attention ensures that math tasks are accurately represented
during problem solving and, further, that math facts are readily
and accurately recalled from memory (Passolunghi and Cornoldi,
2000). Also, by maintaining attention, a student can focus on
math problems for longer periods of time (Roeyers and Baeyens,
2016). In the case of students with DD, attentional skills are often
weaker (Kroesbergen et al., 2003); these students also can have
difficulty suppressing responses (i.e., lower inhibitory control;
D’Amico and Passolunghi, 2009; Ashkenazi and Henik, 2010;
Navarro et al., 2011). The fifth primary factor is number sense.
Recent research (De Smedt et al., 2009; Fuchs et al., 2010; LeFevre
et al., 2010; Kolkman et al., 2013; Schneider et al., 2017) shows
that number sense, the ability to process, understand and estimate
numerical quantities (Dehaene, 1992), is a predictive factor in the
development of math skills. Deficits in number sense appear to
be a possible explanation for serious math problems (Mussolin
et al., 2010; Piazza et al., 2010; Mazzocco et al., 2011). Research
in developmental neuroscience (e.g., Olsson et al., 2016) has
even identified neural markers of impairments in numerosity
processing in DD (for a review, see Butterworth et al., 2011).

Although recent research has repeatedly linked the five
factors to the presence of math problems, few studies (e.g.,

Navarro et al., 2011) have tested all the factors together. The
literature is also missing clinically oriented research involving
an adequate number of students diagnosed with persistent
mathematical learning disabilities (i.e., DD). The limited amount
of research into DD is largely due to issues of feasibility and
generalisability. However, research into a target clinical group,
whether descriptive or not, can provide valuable information
about the presence of the factors in students with DD. Of
particular benefit can be information about the frequency with
which those students fail to perform, in comparison with their
peers.

The current research aimed to describe the frequency of
four of the five primary associative factors in students with
DD. Otherwise put, it examined in how many children the
four factors1 could be identified as underlying mechanisms of
their math issues. The central research question was, ‘What
is the frequency of deficits in planning skills, naming speed,
short-term and/or working memory, and attention in children
with DD?’ The research objective was twofold. Firstly, the
study aimed to examine, per factor, the percentage of students
showing deficits in that particular domain. Secondly, it sought
to investigate the multifactorial distribution of deficits in these
primary factors, as may contribute to DD, i.e., how many students
with DD have deficits on one or more of the primary associative
factors? Although insight into a limited group of children does
not provide information about the strength of the relationship
between an associative factor and the presence of math problems
per se, it lends support for the outlined diagnostic framework
in the DDBP protocol. This may be especially so because of
the clinical sample itself and the extensive diagnostic evaluations
performed prior to diagnosing DD – and thus prior to inclusion
in this research. Empirical evidence regarding these underlying
factors can provide additional insight into the nature of such
mathematical deficits. As such, it can contribute to accountability
of procedures within diagnostic care. This can help clinicians
and teachers alike to identify targets of intervention and, as well,
enable students with DD to overcome their deficiencies in the
field of mathematics.

MATERIALS AND METHODS

Participants
The participants included in this study were 84 students from
the Netherlands (8–18 years of age) were visiting a university
institute for learning difficulties because of their problems with
mathematics and were not diagnosed with DD before. Only
those who were diagnosed with DD were included in this study.
Diagnostic examination into math difficulties was conducted
during the period 2009–2015, and was based on diagnostic
research using the three criteria of the DDBP protocol. A consent

1The fifth factor, number sense, was not included in this research because of the
time frame of the study (in the DDBP protocol, number sense has only been
considered a primary factor since 2014; Van Luit et al., 2014). This meant that,
first, number sense skills had been measured in too few children and, second, too
much variation between test materials made comparison of the available data on
number sense impossible.
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statement for participation in scientific research was signed by
parent(s) or those with parental authority for all participants.
Table 1 describes the 84 students included in the current research.
More than three quarters of the students (n = 64, 76.2%) were
girls. This skewed distribution of sex was remarkable because
previous research (Devine et al., 2013) did not reveal such gender
differences. The mean intelligence score of the participants was
91.28 (SD = 11.30). For almost all students (n = 81), the Speed
Number Facts Test (SNFT; De Vos, 1992, 2010) had been
administered as one component of the diagnostic procedure.
The SNFT was used to measure the amount of memorized
mathematical facts. The raw average total score on the SNFT
was 73.00 (SD = 30.83, n = 58) on the 2010 version and
67.00 (SD = 20.63, n = 20) on the 1992 version. In the case
of three students, due to their young age and in accordance
with the manual, only the addition and subtraction parts were
administered. Their average raw score on the 2010 version was
27.50 (SD = 0.71, n = 2), and on the 1992 version was 19.00 (n = 1).

Procedure
All students had come for diagnostic assessment at the same
university institute for learning difficulties. The child’s scores, as
obtained from the diagnostic examination, were anonymously
processed in an SPSS database. In order to diagnose DD, the
following procedure was followed: (a) collection of information
on (academic) performance from parents and school records
(answers on standardized questionnaires and data from national
mathematics tests); and (b) individual diagnostic examination
(administered in two to three blocks of time, each lasting
approximately 5 h). All diagnostic testing took place individually
in a quiet space and was performed by a clinician with at least a
master’s degree in psychology under supervision of a psychologist
with a doctoral degree.

Measures
The performance of the students on each primary factor was
measured with one specific instrument (as part of the detailed
procedure described in DDBP). A description of each instrument
is provided below. Due to diagnostic considerations (age, time,
the size of the test battery, etc.), not every instrument was used
with every student. For each research measure, we indicated how
many student scores were available. Seventy students (83.3%)
were administered all measures. The instrument descriptions
below include information on standardization (mean and
standard deviation), and a cut-off score (mean minus one
standard deviation) that indicates deficits in the specific area.

Planning
The Planning scale of the Cognitive Assessment System (CAS;
individual test for children aged 5–17 years; Das and Naglieri,
1997) was used to measure planning skills. This scale consists
of two (short version) or three (full version) subtests. In both
cases a standardized score is derived (M = 100, SD = 15).
The subtests are “Matching Numbers,” “Planned Codes,” and
“Planned Connections” (Das and Naglieri, 1997). The “Matching
Numbers” subtest consists of four pages, each with eight rows
of six numbers. The numbers increase in size from one to
seven digits. The student must underline the two corresponding
numbers in each row. The “Planned Codes” subtest consists
of two parts. A legend at the top of the page shows which
codes belong to the letters A through D. The page contains 56
letters without codes arranged in different combinations. The
student must fill in the correct code below each letter. The
“Planned Connections” subtest consists of items that increase in
difficulty. Each item consists of a page where numbers or letters,
distributed randomly across the page, must be connected by the
student in the correct order. The subtest scores are determined
by both accuracy and speed (Das and Naglieri, 1997). A score
below 85 indicates deficits in planning. The Planning scale was
administered to 81 students (96.4%). The CAS has been found to
provide a valid picture of information processing (Kroesbergen
et al., 2002; Van Luit et al., 2005); the average reliability coefficient
for the Planning scale is 0.88 (Das and Naglieri, 1997; Naglieri,
1999).

Naming Speed
Four cards of the Rapid Naming & Reading Test (RN&RT; Van
den Bos and Lutje Spelberg, 2007) were used to measure the
naming speed of colors, digits, pictures and letters. This task
provides an indication of how quickly a student can extract verbal
information about visual characters from memory. With each
card, the student must identify one kind of visual character as
quickly as possible. The time (in seconds) a student takes to name
the characters on a single card is counted as the raw score; this is
then converted to a standard score (M = 10, SD = 3). A standard
score below seven indicates deficits in naming speed. The RN&RT
was administered to 80 students (95.2%). Research has shown
that the RN&RT is sufficiently reliable and valid (Van den Bos
and Lutje Spelberg, 2007).

Short-Term and Working Memory
The computerized Automated Working Memory Assessment
(AWMA; Alloway, 2007) was used to measure the capacity of

TABLE 1 | Participant data for total group by education level.

n (%) Sex Age in months

Boys (%) Girls (%) M SD Min Max

Primary education 56 (66.7) 14 (25.0) 42 (75.0) 126.21 12.90 96 149

Other education∗ 28 (33.3) 6 (21.4) 22 (78.6) 175.00 18.73 145 212

Total 84 (100.0) 20 (23.8) 64 (76.2) 142.48 27.56 96 212

∗Secondary or vocational education (younger than 18 years).
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short-term and working memory. Scores on the AWMA are
fairly stable during the primary school period and show good
convergence with WISC-IV memory tasks (Alloway et al., 2008).
Each subtest out of six starts with a practice session and consists
of blocks containing six trials. The first block of each trial consists
of one stimulus. For each subsequent block, the trial increases
by one stimulus. After three errors in one block, the task is
terminated. After four correct answers in one block, the student
can proceed to the next block and receives a maximum six points.
In other cases, the score is the number of correct items per
block. The raw score is the sum of all points scored. This raw
score is converted to a standard score (M = 100, SD = 15) per
subtest. The AWMA differentiates between four components of
short-term and working memory. Verbal short-term memory is
measured with the subtests “Digit recall,” “Word recall” and/or
“Non-word recall.” In these three subtests the student hears a
series of verbally presented numbers, words and/or nonsense
words, and must then recall this series correctly. If more than one
of the subtests was administered, an average for the verbal short-
term memory was calculated based on information in the manual.
Verbal working memory is measured with the subtest “Listening
recall.” The student hears a series of spoken sentences, and at
the end of each series must: (a) indicate whether the sentence
is true or false, and (b) recall the last word of each sentence in
sequence. (The true/false judgment is not included in the scores.)
Visuospatial short-term memory is measured with the subtest
“Dot matrix.” The student is shown the position of red dots in
a matrix of 4 × 4 boxes for two seconds. The position of these
dots must be identified in the correct order after the dots have
disappeared. Visuospatial working memory is measured with the
subtest “Odd one out”. The student views three shapes in boxes
next to each other and identifies the shape different from the
others. At the end of each trial, the student must identify, in
the correct order, the location of each shape that was the odd-
one-out. A standard score lower than 85 indicates deficits in
memory. Deficits may occur on one specific memory component
or multiple components at a time. The test–retest reliability for
the subtests is, respectively, 0.84, 0.76, 0.64, 0.81, 0.83, and 0.81
(Alloway et al., 2006).

Attention
The Attention scale of the Cognitive Assessment System (CAS;
individual test for children aged 5–17 years; Das and Naglieri,
1997) was used to measure attention. The scale consists of
two (short version) or three (full version) subtests. In both
cases a score was calculated (M = 100, SD = 15). The subtests
are “Expressive Attention,” “Number Detection,” and “Receptive
Attention” (Das and Naglieri, 1997). The “Expressive Attention”
subtest consists of a page with words like “blue” and “red” printed
in different colors. The student must name the color in which
the words are printed; the dominant response, the word which
is read, must be suppressed. Two exercises are taken in advance
to determine whether the student is sufficiently capable of naming
words and colors. The subtest score is determined based on speed
and accuracy on the final task. The “Number Detection” subtest
consists of two pages with numbers. These numbers are printed
in different fonts. On each page the student must underline the

numbers that look the same as those at the top of the page
(e.g., 1, 2, 3 printed in open font). This requires selectively
focusing attention on specifically printed numerical symbols. The
“Receptive Attention” subtest consists of pictures or letters in
pairs. The student must underline when the two pictures/letters
are the same or have a similar characteristic. These subtest scores
are also determined by accuracy and speed (Das and Naglieri,
1997). A scale score below 85 indicates deficits in attention.
The Attention scale was administered to 79 students (94.0%).
The CAS provides a valid picture of information processing
(Kroesbergen et al., 2002; Van Luit et al., 2005), and the average
reliability coefficient for the Attention scale is 0.88 (Das and
Naglieri, 1997; Naglieri, 1999).

RESULTS

Table 2 shows descriptive statistics for each factor and
component. On nearly all measures the average participant scores
were less than the mean scale or standard score (100 for planning,
memory and attention, 10 for naming speed), though not lower
than the criterion score indicating deficits in these factors (<85
for planning, memory and attention, <7 for naming speed). In
Table 3 correlations between all factors and components are
presented. This table shows significant correlations between all
factors (e.g., at least each factor correlated significantly with
at least one other factor). A strong association (r > 0.50)
was found between planning skills and attention, and between
components within naming speed, i.e., colors-pictures, numbers-
pictures, and letters-pictures). Moderate to strong associations
(0.3 < r < 0.05) were found between planning skills and
naming speed (i.e., colors); naming speed (i.e., colors) and short-
term/working memory (i.e., visual STM); and naming speed (i.e.,
colors) and attention.

Table 4 gives an overview of the number of students with
deficits by factor and component. Deficits in naming speed were
found in 54 students (64.3%), deficits in short-term/working
memory in 41 students (49.4%), deficits in planning skills in 37
students (45.7%) and deficits in attention in 10 students (12.7%).
Within the naming speed factor, deficits in naming numbers
were the most common (n = 37, 46.3%) and deficits in naming
colors were the least common (n = 26, 32.5%). Within the
short-term/working memory factor, deficits in visual short-term
memory were the most common (n = 21, 25.0%) and deficits in
verbal working memory were the least common (n = 4, 4.9%).
The number of students with deficits was associated with specific
factors; there were significantly more students with deficits in
planning skills, naming speed and short-term/working memory
than in attention [χ2(9) = 69.63, p < 0.01].

Table 5 gives an overview of the distribution of deficits in
the factors across students. To enhance clarity, in this table the
components are integrated into information about the given
factor. In other words, a deficit in one of the elements (subtests)
comprising naming speed or planning skills has been considered
as a deficit in that factor as a whole (instead of separate
components within that factor. The first column shows the
number of deficits (zero up to four) that could be present in
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students. The second column presents the number of students
who experienced each deficit. In the remaining columns the
contribution of the deficits over the four factors is shown. For

example, Table 5 shows that only one primary factor was found
in 26 students (31.0%). Within these 26 pupils, 61.5% had deficits
in naming speed, 23.1% had deficits in short term and/or working

TABLE 2 | Descriptive statistics for each factor and component.

Factor Component n M SD Min Max

Planning

Planning 81 86.47 12.77 57.00 127.00

Naming speed

Colors 80 8.58 3.39 1.00 16.00

Numbers 80 8.36 3.36 2.00 16.00

Pictures 80 8.68 3.30 1.00 16.00

Letters 80 9.16 3.28 1.00 17.00

Memory

Verbal STM 81 96.07 13.37 68.00 132.00

Verbal WM 82 109.72 14.31 74.00 138.00

Visuospatial STM 80 98.75 18.53 62.00 141.00

Visuospatial WM 79 96.92 14.54 65.00 139.00

Attention

Attention 79 95.81 11.65 63.00 133.00

STM, short-term memory; WM, working memory.

TABLE 3 | Correlations between all factors and component.

Factor (– component) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

(1) Planning – 0.41∗∗ 0.21 0.30∗∗ 0.16 0.28∗ 0.11 0.28∗ 0.20 0.60∗∗

(2) Naming speed – colors – 0.49∗∗ 0.68∗∗ 0.50∗∗ 0.18 0.21 0.37∗∗ 0.34∗∗ 0.46∗∗

(3) Naming speed – numbers – 0.55∗∗ 0.66∗∗ 0.01 −0.04 0.02 0.23∗ 0.26∗

(4) Naming speed – pictures – 0.60∗∗ 0.30∗∗ 0.23∗ 0.33∗∗ 0.41∗∗ 0.36∗

(5) Naming speed – letters – 0.14 0.04 0.16 0.22 0.25∗

(6) Memory – Verbal STM – 0.32∗∗ 0.09 0.32∗∗ 0.27∗

(7) Memory – Verbal WM – 0.21 0.40∗∗ 0.13

(8) Memory – Visual STM – 0.43∗∗ 0.29∗

(9) Memory – Visual WM – 0.33∗∗

(10) Attention –

∗ p < 0.05, ∗∗ p < 0.01, STM, short-term memory; WM, working memory.

TABLE 4 | Numbers and percentages of students with deficits for each factor and component.

Factor Component Deficit No deficit

n n % n %

Planning 81 37 45.7 44 54.3

Naming speed 80 54 67.5 26 32.5

Colors 80 26 32.5 54 67.5

Numbers 80 37 46.3 43 53.8

Pictures 80 31 38.8 49 61.3

Letters 80 27 33.8 53 66.3

Memory 83 41 49.4 42 50.6

Verbal STM 81 15 18.5 66 81.5

Verbal WM 82 4 4.9 78 95.1

Visuospatial STM 80 21 26.3 59 73.8

Visuospatial WM 79 16 20.3 63 79.7

Attention 79 10 12.7 69 87.3

STM, short-term memory; WM, working memory.
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TABLE 5 | Overview of the distribution of deficits in primary factors.

Number of deficits Students with this number of deficits Deficit in factor

Planning Naming speed Memory Attention

n % n % n % n % n %

0 13 15.5 0 0.0 0 0.0 0 0.0 0 0.0

1 26 31.0 4 15.4 16 61.5 6 23.1 0 0.0

2 25 29.8 14 56.0 19 76.0 17 68.0 0 0.0

3 14 16.7 13 92.9 13 92.9 12 85.7 4 28.6

4 6 7.1 6 100.0 6 100.0 6 100.0 6 100.0

memory and 15.4% had deficits in planning skills. Table 5 shows
three findings. Firstly, in 13 of 84 pupils, no primary factor of
DD was found. Secondly, the table shows that naming speed was
the most common unique factor of mathematical problems, with
61.5% of students with a deficit in at least one component within
naming speed. Thirdly, attention did not occur as a unique factor,
but only in conjunction with at least two other primary factors of
mathematical problems.

DISCUSSION

The purpose of the current study was to describe the frequency
of deficits on four primary associative factors for students with
a diagnosis of DD: planning, naming speed, short-term/working
memory, and attention. In 84 students aged 8–18 years with
a diagnosis of DD (according to the DDBP protocol), the
presence of deficits in these four factors was explored. Descriptive
information showed that no primary factor of DD was found
in 15.5% of the students. According to the DDBP protocol,
establishing DD with certainty is difficult when the underlying
factors of the mathematical problems remain unclear (Van Luit
et al., 2014). The protocol indicates that, if no primary cause
is found, a combination of secondary associative factors may
also lead to the diagnosis. For those student participants with
a diagnosis of DD but no underlying cognitive deficit, it may
be that: (a) number sense served as an important factor when
this factor is developed weak; (b) there were sufficient secondary
factors that supported the diagnosis; (c) the student had above-
average intelligence, meaning the criteria of deficits in planning,
naming speed, short-term/working memory and/or attention were
compensated for by other cognitive strengths; and/or (d) other
primary associative factors, as yet not identified, played a role.
Indeed, research has not yet been sufficiently conclusive to
confirm that there are only five primary associative factors
underlying DD (Van Luit et al., 2014; Träff et al., 2017).

The first research goal was to determine the percentage of
students with deficits in the primary factors, indicating deficits
in specific skills. The results show that deficits in naming speed
(especially in naming numbers) were diagnosed most frequently,
followed by deficits in short-term and working memory and in
the field of planning. Deficits in attention were diagnosed least
frequently. This could be explained in part by the fact that, in
children with (probable) AD(H)D, research into DD typically

does not take place before the symptoms of this disorder have
been reduced due to therapy and/or medication.

The second research goal was to investigate the multifactorial
distribution of deficits across these four primary factors in
students with DD. Deficits on one or two associative factors were
found for most students. In 15.5% of the students, no primary
underlying factor for DD was found. In 31% of the students
one primary underlying factor was found and in the remaining
53.6% of the children, deficits on three or four factors were
found. A breakdown of the four factors provided two interesting
insights into the presence of the four primary associative factors
in students with DD. Firstly, naming speed was the most common
unique factor of math problems. In more than half the cases
(61.5%), students with DD had difficulty readily finding relevant
information for solving a task. This finding is consistent with
the results from studies of D’Amico and Passolunghi (2009), and
Mazzocco and Grimm (2013). Secondly, in the current study,
attentional deficits never appeared as a unique primary factor
in pupils with DD, a finding also shown in previous research
(e.g., Roeyers and Baeyens, 2016). Deficits in attention were only
found when at least two other primary factors were present, and
this was the case only for a small portion of the sample (11.9%).
This means that focusing and sustaining attention can play a
role in DD, but these abilities are not at the forefront for this
particular clinical target group. As noted earlier, this finding is
possibly due to the deferral of children diagnosed with (probable)
AD(H)D. Deficits in naming speed, short-term/working memory
and planning were found to be the factors occurring most
frequently in the student participants.

Although this research was exploratory and descriptive, by
differentiating among cognitive deficits as may underly DD,
our findings nevertheless support the line of research focusing
on the heterogeneity of this clinical condition (e.g., Skagerlund
and Träff, 2016). The findings also highlight the added value
of systematically investigating primary factors during individual
diagnostic research, as encouraged in the DDBP protocol. The
results therefore emphasize the need for behavioral experts
to investigate these factors as extensively as possible when
conducting diagnostic research in severe mathematical problems.
As stated in the DDBP protocol (Van Luit et al., 2014),
having insight into a student’s performance in these (primary)
underlying factors can help experts address their problems, by
giving them additional understanding of the specific educational
needs of the student.
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An important limitation of the current research is the
absence of analysis into number sense. Research has shown
that the ability to process, understand and estimate numerical
quantities (Dehaene, 1992) is a predictive factor in the
development of mathematical skills (Fuchs et al., 2010; LeFevre
et al., 2010; De Smedt and Gilmore, 2011). Unfortunately,
as noted, the lack of valid standardized tests at the start
of our data collection led to the omission of this factor
in this study. There have been some promising relevant
testing protocols (e.g., Jordan et al., 2004), but until this
moment such tests have not been standardized. In follow
up research, it may be possible to investigate if deficits in
this area comprise an important primary factor for DD;
however, this must await a reliable and valid number sense
test. Follow up research also could systematically explore the
effects of secondary factors within the physical, social and
educational environment. Issues such as motivation, working
attitude, competence-perception and/or performance anxiety
in individual students may also exert a sizable influence on
performance in mathematics. These were not considered in our
study.

Another limitation of the current investigation is
the exclusive focus on a clinical sample. It would
be desirable for follow up research to compare an
atypical sample of students with a control group of
students without DD. This would allow the observed

frequency of primary factors in students with DD to be
compared with the occurrence of deficits in planning,
naming speed, memory and attention within the normal
population. Furthermore, in the current study, the clinical
group originates from the client population of a single
institution, which introduces the possibility of specificity.
It would be useful for further research to gather broader
information in order to form a more precise picture of
the presence of primary and secondary factors in a more
generalisable sample than in this current investigation.
Nevertheless, the exploratory and descriptive nature of
current research provides useful (clinical) information on
systematic investigation of primary factors in students with
(probable) DD.
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Mathematical word problem solving (MWPS) involves multiple steps, including
comprehending the problem statements, determining the arithmetic operations that
have to be performed, and finding the answers. This study investigated the relative
contributions of different cognitive and affective variables to children’s MWPS. To achieve
this goal, 116 third-grade Chinese children were tested. Results showed that after
controlling for age and non-verbal intelligence, the abilities to solve direct and indirect
mathematical word problems were positively correlated with the working memory
component of executive function, reading comprehension ability, math fact fluency
and math anxiety. Moreover, math anxiety was found to fully mediate the relationships
between reading anxiety and MWPS. Implications of the findings on how to promote
children’s MWPS skills were discussed.

Keywords: word problems, executive function, math fact fluency, reading comprehension, math anxiety, reading
anxiety, children, mathematics

INTRODUCTION

One of the major goals of mathematics learning is to know how to apply mathematical concepts
to solve problems in everyday life (Kilpatrick et al., 2001). Some children, however, struggle with
mathematical word problem solving (MWPS) (Hegarty et al., 1995). This happens perhaps because
MWPS is not a simple task but involves at least three steps. Children have to represent the problem
situation, choose a solution strategy, and apply the strategy to obtain the answer (Willis and Fuson,
1988). Therefore, MWPS does not only call for children’s mathematical knowledge, but also their
general cognitive skills (such as the abilities to focus only on relevant information in the problem
statements, storing information of the problem situation in the working memory while retrieving
possible solution strategies from the long-term memory) as well as their reading skills (Stern, 1993).
Occasionally, the situation is complicated by the fact that some children possess high levels of
mathematics or reading anxiety, and such negative feelings may greatly affect their performance
(Tsui and Mazzocco, 2006; Wu et al., 2012; Piccolo et al., 2017; Sorvo et al., 2017). In view of
the above, the present study was interested in investigating the relative contributions of different
cognitive and affective variables to children’s MWPS.

Word Problems: A Combination of Reading Comprehension
and Mathematical Problems
Mathematical word problems refer to mathematical problems that are embedded in story contexts.
Children are thus required to integrate their linguistic and basic calculation skills to find out their
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solutions (Ostad, 1998). One of the many ways to classify
mathematical word problems is based on the level of consistency
between the language used in the story and the arithmetic
operation that are called for. In direct problems, the arithmetic
operation required is consistent with the relational term used in
the problem (e.g., performing “addition” for a problem with the
relational term “more than”) (Lewis and Mayer, 1987; Parmar
et al., 1996). In contrast, in indirect problems, the arithmetic
operation required is inconsistent with the relational term used
in the problem (e.g., performing “addition” for a problem with
the relational term “less than”) (Lewis and Mayer, 1987; Parmar
et al., 1996). The present study sought to examine the correlates
of children’s performance on these two types of problems
because we would like to know whether the language used in
mathematical word problems would affect the types of cognitive
skills that were required to solve them, and the results might
inform how to help those who were weak in solving different
types word problems.

Several past studies have demonstrated the significant role of
language and literacy skills in MWPS. Lee et al. (2009) found
that children’s reading comprehension ability accounted for a
significant portion of the variance in their representation of
algebraic word problems. In the study of Hegarty et al. (1995),
compared to unsuccessful problem solvers, successful problem
solvers were less likely to adopt a direct translation strategy, i.e.,
simply looking for cues from numbers and keywords to come
up with a plan of solving the problem. Instead, they tended to
comprehend the problem and transform the problem statements
into a mental representation of the problem situation (Hegarty
et al., 1995). This perhaps suggests that MWPS, to certain extent,
requires a deep level of reading comprehension.

On the other hand, MWPS is, no surprise, a good indicator
of mathematical proficiency. In the study of Jitendra et al.
(2005), children’s performance in their word problem-solving
measures was positively correlated with their mathematical
concepts and computational skills. Lee et al. (2009) also showed
that children’s ability to discern quantitative relationships was
a positive correlate of their ability to represent algebraic word
problems. Interestingly, Fuchs et al. (2006) found that children’s
fluency in retrieving addition and subtraction facts, but not their
algorithmic computation ability, predicted their performance in
arithmetic word problems.

Anxiety and Task Performance
Anxiety can impair cognitive functioning. As sub-types of
anxiety, reading anxiety and math anxiety are not exceptions
and are found to be linked with individuals’ performance in
respective domains. Zbornik and Wallbrown (1991) found that
there was a negative correlation between reading anxiety and
reading achievement among upper primary school students.
Similarly, Kuşdemir and Katrancı (2016) showed that fourth
graders’ higher levels of reading anxiety were associated with
poorer performance in a reading comprehension test. Based
on a review of findings from the Program for International
Student Assessment (PISA) and a number of experimental
studies, Foley et al. (2017) concluded that math anxiety was
negatively correlated with math performance. The relationship

was evident across countries and was likely bidirectional in nature
(Foley et al., 2017). Carey et al. (2016) also supported the view
of bidirectionality. As they noted, laboratory studies suggested
that experimentally induced anxiety could lower individuals’
performance on math tasks, whereas data from children with
dyscalculia and longitudinal studies revealed that poor math
performance could evoke math anxiety (Carey et al., 2016).

To account for the mechanisms of how anxiety hampers
cognitive performance, Eysenck et al. (2007)’s attentional control
theory suggested that anxiety might make the individual less
capable of inhibiting incorrect responses and more susceptible
to distraction (e.g., threat-related stimuli that are irrelevant to
the task demands, worrying thoughts). Moreover, anxiety might
reduce the individual’s ability to switch attention between tasks
and process the secondary task in dual-task situations (Eysenck
et al., 2007).

Despite the fact that correct comprehension of the problem
statements was the very first step for successful MWPS, no
existing studies have examined the relative roles of reading
anxiety and math anxiety in MWPS. The present study thus
seeks to fill in this research gap. As demonstrated in past
studies, the nature and effects of reading anxiety and math
anxiety seemed to be intertwined with each other. Carey et al.
(2017) found that the higher the level of math anxiety of
primary and secondary school students in their sample, the
poorer their mathematics as well as reading performance. In
the study of Punaro and Reeve (2012), 9-year-old children
who reported high levels of worries toward the language task
also found the mathematical task worrying, whereas those
who reported high levels of worries toward the mathematical
task regarded the language task as less worrying than the
mathematical task. Punaro and Reeve (2012) then concluded that
literacy anxiety might be a maniefestation of general academic
anxiety but math anxiety was more domain-specific. Based on
this theoretical notion, we speculate that math anxiety (which
is a type of anxiety specifically related to the task under
investigation) would mediate the relationship between reading
anxiety (which is a sign of general academic anxiety) and
MWPS.

Executive Function and Mathematical
Learning
Executive function can be defined as the abilities to control and
shift attention in a flexible manner, inhibit impulsive responses
and retain information in working memory (Blair, 2016; Cantin
et al., 2016). These abilities set the foundation for us to make
plans, regulate emotions and control the display of impulsive
acts (Blair, 2016). Different researchers have used different
ways to measure executive function. Two common methods
include behavioral rating scales (which can be self-rated, or
rated by others like parents and teachers) and performance-based
measures (e.g., Color Word Stroop task, Dimensional Change
Card Sorting task) (Toplak et al., 2013; Cantin et al., 2016).

Numerous past studies have shown that children’s executive
function was correlated with mathematical proficiency. Blair
and Razza (2007) found that after controlling for non-verbal
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intelligence, young children’s inhibitory control (one component
of executive function) was positively associated with their
early mathematical ability. Bull and Scerif (2001) found
that after controlling for intelligence and reading ability,
in addition to inhibition efficiency, children’s mathematical
ability was also related to their perseveration and working
memory span. Cantin et al. (2016) found that there was a
direct positive linkage between elementary school children’s
cognitive flexibility and mathematical ability. Working
memory, inhibitory control and cognitive flexibility also
had indirect contributions to mathematical ability through
reading comprehension ability (Cantin et al., 2016). In the study
of Cragg et al. (2017), working memory, on the one had, had a
direct positive association with attainment in mathematics. On
the other hand, the two variables were indirectly associated via
knowledge of number facts, knowledge of conceptual principles
underlying arithmetics and skills in performing arithmetic
procedures (Cragg et al., 2017). Individuals’ inhibitory control
as demonstrataed in a numerical task also had indirect linkages
with mathematical achievement via knowledge of number facts
and skills in performing arithmetic procedures (Cragg et al.,
2017).

As suggested by Cawley and Miller (1986), in order to
solve mathematical word problems, children have to analyze
the problem situation by selecting useful information from the
problem statements, followed by determining which strategy
can best help solve the problem. In light of this, executive
function is expected to play an important role in MWPS.
For instance, Blair et al. (2015) found that there were robust
associations between young children’s exeuctive function and
MWPS. Swanson et al. (2008) revealed that children’s accuracy
in MWPS could be predicted by two components of working
memory (namely central executive and visual-spatial sketchpad),
as well as the growth of two components of working memory
(i.e., central executive and phonological storage). Lee et al.
(2009) showed that children’s working memory contributed
to their problem representation and solution formation for
algebraic word problems. Fuchs et al. (2006) found that after
controlling for non-verbal reasoning, children’s attention level
(as indicated by teachers’ rating of their inattentive behaviors)
was a positive correlate of their arithmetic word problem
solving. However, working memory did not uniquely explained
variance in arithmetic word problem solving, as it lost its
explanatory power when phonological decoding and sight word
efficiency were included in the path analysis model. Best et al.
(2011) further found that children’s executive function had a
stronger correlation with MWPS than calculation abilities. They
speculated that it was because calculation might just require the
individual to retrieve mathematics facts from long-term memory,
whereas MWPS often involves more plan generation and higher
levels of self-monitoring (Best et al., 2011).

Even more, with emotional control as one of its components,
executive function may help children regulate the negative
emotions, such as anxiety, induced during the learning process.
Jain and Dowson (2009), for example, found that there was
a negative correlation between children’s self-regulation and
mathematics anxiety. Bradley et al. (2010) found that after

receiving training on emotion self-regulation, high school
students in their sample showed lower levels of test anxiety. Lyons
and Beilock (2012) observed the brain activities of university
students with high levels of math anxiety when they were
attempting a mathematical task. Based on their findings, they
concluded that those who could control their cognitive resources
(such as shifting attention and inhibiting predominant responses)
before the task and reappraise negative emotional responses
during the task tended to perform better (Lyons and Beilock,
2012). Despite the above, no existing studies have considered
the contributions of math anxiety and reading anxiety when
examining the relationships of executive function and domain-
specific variables to MWPS. Moreover, the role of executive
function in different types of MWPS has minimally been
investigated. Compared to direct MWPS, we speculate that
indirect MWPS require more executive function resources to
solve, because children have to inhibit their intuitive response of
carrying out arithmetic operations simply based on the relational
term given (Daroczy et al., 2015). They also have to be more
cognitively flexible in order to rephrase the inconsistent relational
sentence and represent the problems properly (Lewis and Mayer,
1987).

Present Study
As discussed, MWPS is a crucial part of mathematics learning.
Despite the attention received by various researchers, the
contributions of different cognitive skills (including general
and domain-specific ones) to children’s MWPS have seldom
been compared, and the potential role of affective variables in
children’s MWPS has often been overlooked. The present study
thus sought to examine Chinese children’s MWPS in relation to
an array of cognitive and affective variables.

The cognitive variables under investigation included: (1)
non-verbal intelligence, (2) executive function (including five
components, namely inhibit, shift, emotional control, working
memory, and plan/organize), (3) math fact fluency, and (4)
reading comprehension. The first two were selected because
these general cognitive skills play an important role in many
types of cognitive processing (Fuchs et al., 2006; Jain and
Dowson, 2009; Lee et al., 2009). The third was selected because
good foundation skills in mathematics might facilitate children
to solve higher-level mathematical problems (Binder, 1996;
McCallum et al., 2006). The last was selected because past
studies have found a close linkage between children’s literacy and
mathematical development (Purpura et al., 2011), and MWPS
required children to represent the problem embedded in a piece
of text mathematically (Hegarty et al., 1995). Meanwhile, the
affective variables of interest were: (1) math anxiety and (2)
reading anxiety. These two variables are selected because it is
not uncommon for children to have these kinds of anxiety,
and these negative feelings have often been to hinder children’s
performance in related tasks (Piccolo et al., 2017; Sorvo et al.,
2017).

To obtain a more comprehensive capture of children’s
MWPS skills, their performance was assessed with two tasks,
namely direct and indirect problems. Compared to direct
problems, indirect problems may be more challenging. This

Frontiers in Psychology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 2357234

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-02357 December 14, 2018 Time: 14:33 # 4

Zhang et al. Mathematical Word Problem Solving

is because children have to be careful not to misinterpret the
relational statements and perform arithmetic operations that
are inconsistent with the relational term used in the problem
statements (Lewis and Mayer, 1987; Daroczy et al., 2015). The
whole indirect MWPS process may thus call for more and a wider
range of cognitive resources.

Behavioral rating scales would be used to measure
executive function, math anxiety and reading anxiety, whereas
performance-based measures would be adopted to assess the
remaining variables. We rely on behavioral rating scale rather
than performance-based measure for executive function because
two of the variables under focus were related to anxiety. We thus
wanted to assess executive function skills as displayed in natural
everyday life rather than stressful test situation. The behavioral
rating scale could allow us to assess the “emotional control”
component of executive function.

Based on results of past studies (e.g., Fuchs et al., 2006; Lee
et al., 2009; Punaro and Reeve, 2012; Cantin et al., 2016; Carey
et al., 2017), the followings are hypothesized:

H1a: Children’s MWPS is positively related to their non-
verbal intelligence, executive function, math fact fluency,
and reading comprehension ability.
H1b: Children’s MWPS is negatively related to their math
anxiety and reading anxiety.
H2: Compared to direct MWPS, indirect MWPS has
stronger correlations with executive function and reading
comprehension ability.
H3: Children’s math anxiety mediated the relationship
between their reading anxiety and MWPS.

To test our hypotheses, six-step hierarchical linear regression
analyses would be performed on direct and indirect MWPS,
respectively. In the first step, age and non-verbal IQ would be
entered, so as to control their effects on direct and indirect
MWPS. In the second step, executive function would be entered
because this could allow us to understand the extent to which
the contribution of the domain-general variable (i.e., executive
function) to MWPS was shared by the domain-specific ones.
Instead of combining the five components of executive function
into one latent variable and entering it into the regression
equation, the five components would be entered in stepwise
fashion. This was important because indirect MWPS might
require higher levels of inhibition of prepotent response than
direct MWPS, and such analytic approach could help us
know whether different component(s) of executive function had
differential associations with direct and indirect MWPS. In the
third step, math fact fluency would be entered because it assessed
one’s basic mathematical abilities and was apparently the most
relevant to MWPS. Adding it into the regression equations at
this stage could let us examine at later stages whether other
domain-specific cognitive and affective variables could make
unique contributions to MWPS after controlling one’s basic
mathematical abilities. The remaining three variables (i.e., math
anxiety, reading anxiety, and reading comprehension ability)
would be entered alternatively in the fourth to sixth steps. This
allowed us to investigate whether each of them could make

unique contributions to children’s MWPS. To test Hypothesis 3,
Baron and Kenny’s (1986) procedures would be used, as it has
extensively been used for mediation analysis among past studies,
including recently published ones (e.g., Zhang et al., 2017; Kam
et al., 2018; Mazzone et al., 2018).

MATERIALS AND METHODS

Participants and Procedure
The participants were 116 third-grade primary students (61 boys
and 55 girls, mean age = 9.60 years, SD = 0.50) from Zhuhai,
Guangdong Province of China. All participants were typically
developing children and written consent forms were collected
from their parents or guardians prior to the formal tests. The
experimental procedures were approved by the Ethics Committee
of University of Macau. All tests were carried out in accordance
with the approved guidelines and regulations. Six tasks were
administered to each child through two sessions, including
non-verbal intelligence, reading comprehension, reading anxiety
(session 1), executive function, math fact fluency, MWPS, and
math anxiety (session 2). The interval between the two sessions
was about 1 week and each session lasted for about 2 h. Children
could ask for a rest during the assessment. The executive function
of children was evaluated by their parents using the BRIEF scale.

Measures
Non-verbal Intelligence
Non-verbal intelligence was assessed using the Raven’s
Progressive Matrix (Set A and Set B) (Kratzmeier and Horn,
1980). Specifically, two sets were used with each contained 12
items. During the assessment, the child was tested independently
by research assistants and was asked to choose one piece of figure
that could best fit the missing part of a visual geometric picture
from six options. Each correct answer was scored as 1 and the
maximum total score was 24 (Cronbach’s α = 0.79).

Executive Function
The Behavior Rating Inventory of Executive Function (BRIEF)
(Gioia et al., 2000) was used, because it was a standardized
questionnaire and had widely been used to assess the executive
function (EF) of children aged from 5 to 18 years old among
past studies (e.g., Anderson, 2002; Isquith et al., 2004; Roth
et al., 2014). There were two versions of the BRIEF scale
(teacher version and parent version). In the present study, only
the parent version was adopted because parents were likely to
be more familiar with children’s performance in everyday life.
Five dimensions of children’s EF, including inhibit (10 items),
emotional control (10 items), shift (8 items), working memory
(10 items) and plan/organize (12 items), were assessed. For each
item, parents were asked to rate on a three-point scale. The higher
the children were scored, the worse their EF was (Cronbach’s
α = 0.83 for inhibit, Cronbach’s α = 0.73 for shift, Cronbach’s
α = 0.73 for emotional control, Cronbach’s α = 0.85 for working
memory, and Cronbach’s α = 0.78 for plan/organization).
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Reading Comprehension
During the task (Zhang et al., 2014), children were asked to read
each of the given sentences silently and then choose one picture
that best fits the sentence in meaning. There were 30 items, and
their difficulty levels were appropriate for third-grade primary
children in China. The maximum score was 30 (Cronbach’s
α = 0.67).

Math Fact Fluency
This test was adopted and modified from the tasks used by
Fuchs et al. (2006) and Nosworthy et al. (2013). In this test,
50 addition, 50 subtraction, and 50 multiplication items were
presented to students, respectively, and students were asked to
finish answering each type of items in 1 min. Before the test, the
test paper was sent out to students with the back of the paper
upward and no student was permitted to answer the questions
until the research assistant told them to start. All answers should
be provided within 1 min and students should stop answering
when the time was over. Each correct answer was scored as 1 and
the maximum score for the test was 150 (Cronbach’s α = 0.89).

Math Word Problem Solving
With reference to related past studies (Lewis and Mayer, 1987;
Nesher and Hershkovitz, 1994; Parmar et al., 1996), 22 two-step
mathematical word problems were created in accordance with
the mathematical abilities and social experience of third-grade
students in China. Of the two steps, one step involved addition
or subtraction, and the other step involved multiplication or
division. Half of the problems were direct problems, in which
the relational term used in the problem was consistent with
the arithmetic operation required for one step of the problem
(e.g., A diary book costs $23. Uncle Ho bought 72 diary books.
Uncle Wong bought 25 diary books fewer than Uncle Ho.
How much should Uncle Wong pay?). The remaining half
was indirect problems, in which the relational term used in
the problem was inconsistent with the arithmetic operation
required for one step of the problem (e.g., An exercise book
costs $23. Uncle Yeung bought 72 exercise books. Uncle Yeung
bought 28 exercise books more than Uncle Lee. How much
should Uncle Lee pay?). The presentation order of the two
kinds of problems was counterbalanced among participants, and
participants were asked to solve all the problems within a limited
period of time. The maximum score for each problem type was
11 (Cronbach’s α = 0.81 for direct problems and 0.74 for indirect
problems).

Math Anxiety
The Test Anxiety Scale of Pintrich et al. (1991) was adopted.
The original items about general test anxiety were modified to
make them specific to mathematics (e.g., changing the word “test”
to the phrase “math test”). Five 7-point items, ranging from 1
(totally incorrect) to 7 (totally correct), were used to evaluate the
math anxiety. The participants were asked to choose the number
of degree that best fit their status toward math. A sample item was
“I have an uneasy, upset feeling when I take a math exam.” The
maximum score for the scale was 35 (Cronbach’s α = 0.76).

Reading Anxiety
This scale consisted of five items. The items and instructions
given to participants were exactly the same as those of the
math anxiety scale, except that the word “math” was replaced
by the word “reading.” The maximum score was 35 (Cronbach’s
α = 0.89).

RESULTS

The descriptive summary of all the variables is displayed in
Table 1. As expected, the mean score of indirect MWPS
(3.11) was significantly lower than that of direct MWPS (3.78),
t(115) = 4.81, p < 0.001, showing that indirect word problems
were harder than direct word problems.

Table 2 shows the correlations and partial correlations (with
age and non-verbal IQ controlled) among all the variables.
As illustrated in Table 2, the construct validity of executive
function measurement was confirmed by the strong associations
among the four dimensions (i.e., inhibit, shift, emotion control,
and working memory), except the “plan/organize” dimension.
Both the zero-order correlation and partial correlation analyses
suggested that two aspects of executive function (i.e., inhibit and
working memory) strongly correlated with direct and indirect
MWPS. As expected, math fact fluency and math anxiety were
significantly correlated with both direct and indirect MWPS.
Reading comprehension and reading anxiety were also strongly
associated with direct and indirect MWPS.

To further examine the contributions of executive function,
math fact fluency, reading anxiety, math anxiety, and reading
comprehension to direct MWPS and indirect MWPS, six-
step hierarchical regressions were conducted (see Tables 3, 4).
As described earlier, age and non-verbal IQ were entered as
control variables in the first step. In the second step, the five
components of executive function were entered by stepwise.
Only working memory remained in the model and accounted
another 9% variance for direct MWPS and 8% variance for
indirect MWPS. Math fact fluency was entered in the third

TABLE 1 | Descriptive statistics for all measurements.

Minimum Maximum Mean SD

Non-verbal IQ 12.00 24.00 20.99 2.56

EF – Inhibit 37.00 69.00 49.96 7.94

EF – Shift 36.00 74.00 50.32 9.24

EF – Emotional control 36.00 67.00 48.92 8.20

EF – Working memory 38.00 74.00 52.68 8.24

EF – Plan/Organize 33.00 58.00 51.66 5.33

Math fact fluency 42.00 150.00 97.37 24.19

Direct MWPS 0.00 9.00 3.78 2.42

Indirect MWPS 0.00 10.00 3.11 2.20

Math anxiety 1.00 7.00 2.82 1.68

Reading comprehension 4.00 28.00 20.99 4.53

Reading anxiety 1.00 7.00 3.07 1.74

The scores of the EF dimensions had been transformed to standard scores
according to the BRIEF Manual.
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TABLE 2 | Correlations and partial correlations among variables.

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Age 1.00

2. Non-verbal IQ −0.10 1.00

3. EF – Inhibit −0.01 −0.09 1.00 0.60∗∗∗ 0.64∗∗∗ 0.74∗∗∗ 0.01 −0.16 −0.26∗∗
−0.24∗∗ 0.12 −0.13 0.21∗

4. EF – Shift −0.18 −0.10 0.60∗∗∗ 1.00 0.70∗∗∗ 0.59∗∗∗ 0.08 −0.17 −0.13 −0.18 0.14 −0.09 0.17

5. EF – Emotional control −0.13 0.08 0.62∗∗∗ 0.69∗∗∗ 1.00 0.59∗∗∗ 0.02 −0.07 −0.09 −0.09 0.05 −0.12 0.09

6. EF – Working memory 0.10 −0.07 0.74∗∗∗ 0.60∗∗∗ 0.59∗∗∗ 1.00 0.07 −0.13 −0.31∗∗
−0.29∗∗ 0.07 −0.17 0.15

7. EF – Plan/Organize −0.51∗∗
−0.07 0.02 0.17 0.07 0.12 1.00 0.16 −0.04 −0.08 −0.08 0.04 0.07

8. Math fact fluency −0.31∗∗ 0.05 −0.15 −0.10 −0.03 −0.10 −0.28∗∗ 1.00 0.46∗∗∗ 0.44∗∗∗
−0.15 0.18 −0.08

9. Direct MWPS −0.12 0.12 −0.27∗∗
−0.12 −0.07 −0.30∗∗

−0.01 0.47∗∗ 1.00 0.79∗∗∗
−0.40∗∗∗ 0.35∗∗∗

−0.30∗∗

10. Indirect MWPS −0.22∗ 0.19∗
−0.25∗∗

−0.15 −0.04 −0.27∗∗
−0.03 0.48∗∗ 0.80∗∗ 1.00 −0.39∗∗∗ 0.33∗∗∗

−0.32∗∗

11. Math anxiety 0.08 −0.13 0.130 0.14 0.04 0.07 −0.09 −0.17 −0.41∗∗
−0.41∗∗ 1.00 −0.18 0.77∗∗∗

12. Reading comprehension −0.08 0.21∗
−0.15 −0.09 −0.09 −0.17 0.06 0.20∗ 0.36∗∗ 0.36∗∗

−0.20∗ 1.00 −0.16

13. Reading anxiety −0.02 −0.10 0.21∗ 0.18 0.08 0.16 0.09 −0.08 −0.30∗∗
−0.32∗∗ 0.77∗∗

−0.17∗ 1.00

Correlations among variables are presented below the diagonal; partial correlations controlling for age and non-verbal intelligence are presented above the diagonal.
∗p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001.

step and could account for another 17% variance for direct
MWPS and 15% variance for indirect MWPS. Reading anxiety
could account for extra 5% variance for direct MWPS and
6% variance for indirect MWPS when age, non-verbal IQ,
working memory, and math fact fluency were statistically
controlled. In addition, math anxiety could uniquely predict
both direct (5%) and indirect (3%) MWPS in step 5. More
importantly, reading comprehension could still account for
3% variance for both direct and indirect MWPS in step 6,
indicating a unique role of reading comprehension in solving
math word problems. We performed another set of hierarchical
regressions to investigate the role of reading comprehension
in the relationship between reading anxiety and MWPS.
Results showed that reading anxiety could still account for 4%
variance for direct and indirect MWPS respectively after reading
comprehension was controlled. Finally, with a purpose to explore
the role of math anxiety in the relationship between reading
anxiety and MWPS, another set of hierarchical regressions

TABLE 3 | Hierarchical regression predicting direct math word problem solving.

Step β T R2 1R2

1 Age −0.11 −1.16 0.03 0.03

Non-verbal IQ 0.11 1.19

2 EF – Working memory −0.31 −3.419∗∗ 0.12 0.09∗∗

3 Math fact fluency 0.44 5.22∗∗∗ 0.29 0.17∗∗∗

4 Reading anxiety −0.23 −2.92∗∗ 0.34 0.05∗∗

5 Math anxiety −0.37 −3.07∗∗ 0.39 0.05∗∗

6 Reading comprehension 0.19 2.49∗ 0.42 0.03∗

4 Reading comprehension 0.24 2.95∗∗ 0.34 0.05∗∗

5 Reading anxiety −0.20 −2.63∗ 0.38 0.04∗

6 Math anxiety −0.34 −2.91∗ 0.43 0.05∗∗

4 Reading comprehension 0.24 2.95∗∗ 0.34 0.05∗∗

5 Math anxiety −0.30 −3.97∗∗∗ 0.42 0.08∗∗

6 Reading anxiety 0.06 0.50 0.42 0

∗p < 0.05; ∗∗ p < 0.01; ∗∗∗p < 0.001.

TABLE 4 | Hierarchical regression predicting indirect math word problem solving.

Step β T R2 1R2

1 Age −0.21 −2.27∗ 0.08 0.08∗

Non-verbal IQ 0.17 1.86

2 EF – Working memory −0.28 −3.24∗∗ 0.16 0.08∗∗

3 Math fact fluency 0.42 4.99∗∗∗ 0.31 0.15∗∗∗

4 Reading anxiety −0.25 −3.23∗∗ 0.37 0.06∗∗

5 Math anxiety −0.29 −2.44∗∗ 0.40 0.03∗

6 Reading comprehension 0.18 2.26∗ 0.43 0.03∗

4 Reading comprehension 0.22 2.73∗∗ 0.36 0.05∗∗

5 Reading anxiety −0.23 −2.96∗∗ 0.40 0.04∗∗

6 Math anxiety −0.27 −2.29∗ 0.43 0.03∗

4 Reading comprehension 0.22 2.73∗∗ 0.36 0.05∗∗

5 Math anxiety −0.28 −3.80∗∗∗ 0.43 0.07∗∗∗

6 Reading anxiety −0.02 −0.17 0.43 0

∗p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001.

was conducted. Surprisingly, after math anxiety was entered
in step 5, reading anxiety could not predict direct or indirect
MWPS in step 6, suggesting that the relationship between
reading anxiety and MWPS was possibly mediated by math
anxiety.

To provide more direct evidence confirming that reading
anxiety was associated with direct MWPS and indirect MWPS
with the mediation of math anxiety, we combined direct MWPS
and indirect MWPS as math word problem solving (WPS)
and conducted additional hierarchical regression analysis. Four
conditions should be met to confirm the full mediation effect
(Baron and Kenny, 1986). First, the reading anxiety (predictor)
should be significantly regressed (c) on math WPS (outcome).
Second, the mediator (math anxiety) should also be associated
with the outcome (b). Third, the predictor and mediator should
be closely related (a). Fourth, the predictor should be non-
significant after mediator was controlled (c’ < c). As illustrated
in Table 5, reading anxiety (condition 1) and math anxiety
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(condition 2) could both predict math WPS (direct and indirect
MWPS combined), respectively. In addition, reading anxiety was
significantly associated with math anxiety (condition 3). More
importantly, reading anxiety failed to predict math WPS after
math anxiety was statistically controlled. Therefore, the result
showed that reading anxiety was fully mediated by math anxiety
when predicting math WPS (see Table 5 and Figure 1).

DISCUSSION

The present study examined the relative contributions of different
cognitive and affective variables to children’s MWPS. Our
findings suggested that after controlling for age and non-verbal
IQ, children’s MWPS (no matter for direct or indirect problems)
was only significantly correlated with the working memory
component of executive function, math fact fluency, reading
comprehension and math anxiety. Regarding the relationships
of executive function and reading comprehension to MWPS,
their strengths were similar across direct and indirect problems.
Moreover, the association between reading anxiety and MWPS
was fully mediated by math anxiety.

Partially different from our initial speculations, only two of the
five components of executive function (i.e., inhibit and working
memory) had significant but weak zero-order correlations with
MWPS (including direct and indirect problems). No significant
associations were found for the remaining three components
(i.e., shift, emotional control, and plan/organize). However,
when age, non-verbal intelligence and the five components

were considered together in the regression equations, only
working memory remained as a significant correlate. This is
somehow similar to the findings by Lee et al. (2009), in
which only working memory, but not inhibition and mental
flexibility, were significantly related to skills of solving algebraic
problems. Moreover, different from our hypothesis, the strength
of the relationship between executive function and MWPS did
not vary much across direct and indirect problems. These
findings perhaps suggest that working memory shares some
overlapping roles with other components in MWPS but its role
is relatively more prominent. This happens possibly because
during MWPS, children have to handle multiple tasks within a
fairly short period of time, such as comprehending the problem
statements, memorizing various pieces of useful information
about the problem situation, forming a mental representation
of the problem situation in mathematical terms, recalling
possible solution strategies (Willis and Fuson, 1988). With better
working memory, children can perform the aforesaid tasks more
efficiently (Lee et al., 2009). Meanwhile, compared to working
memory, other components of executive function might be
relatively less crucial, given that the mathematical word problems
involved were not very complicated in nature (i.e., two-step word
problems only).

Consistent with our initial speculation and results of past
studies (Fuchs et al., 2006), math fact fluency was a significant
correlate of children’s direct and indirect MWPS. To recall, the
math fact fluency task required children to retrieve basic addition,
subtraction and multiplication facts accurately and quickly. The
ability to perform such a task well might thus help children to

TABLE 5 | Hierarchical regression examining the mediating effect of math anxiety.

Condition 1 Condition 2 Condition 3 Condition 4

β t β t β t β T

Reading anxiety −0.33 −3.69∗∗∗ – – 0.77 12.94∗∗∗ 0.02 0.12

Math anxiety – – −0.43 −5.11∗∗∗
−0.44 −3.33∗∗∗

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

FIGURE 1 | Math anxiety mediating reading anxiety and math WPS.
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free up more mental resources to handle more complicated tasks
required in the process of MWPS (Wong, 1986).

As expected, reading comprehension was a significant
correlate of both types of MWPS. This again shows that
it is important for children to have a deep comprehension
of the problem statements, instead of just relying on the
keywords in the problem statements (e.g., the number
words, the relational terms) to solve the mathematical word
problems (Hegarty et al., 1995). However, different from
our hypothesis, the strength of its relationship with MWPS
did not differ much across direct and indirect problems.
This happens perhaps because inconsistent language only
appeared in one of the several problem statements in indirect
problems. Thus, compared to direct problems, solving indirect
problems might not call for much extra reading comprehension
skills.

Of the two affective variables under investigation, math
anxiety seemed to be more relevant to MWPS than reading
anxiety was. On the one hand, though reading anxiety had
significant zero-order correlations with both types of MWPS, it
was not a significant correlate when math anxiety was included
in the regression equations. On the other hand, even after
controlling for all the cognitive variables, math anxiety could
still account for additional variance in both types of MWPS.
These results, somehow, are not surprising for at least two
reasons. First, as proposed by Punaro and Reeve (2012), reading
anxiety can be regarded as a sign of general academic anxiety. It
may therefore lose its power to explain variations in children’s
MWPS when it is considered together with math anxiety
(i.e., a specific type of anxiety associated with the academic
domain under examination). Second, reading comprehension
is only the very first step of MWPS, and literal understanding
the problem situation does not necessarily lead to a correct
answer. The fear of failure in representing the problem situation
from a mathematical perspective and performing the required
arithmetic operation might thus be more closely related to the
outcome of MWPS, i.e., obtaining the correct answer. Indeed,
high level of math anxiety can hinder children’s performance
on mathematical tasks by creating a disruption of their working
memory (Ashcraft and Kirk, 2001). Meanwhile, it is also possible
that children with high level of math anxiety might be less
willing to engage in math-related tasks in their everyday life,
which in turn make them have fewer opportunities to practice
their math skills and develop competency in MWPS (Fennema,
1989). Nevertheless, it should be noted that compared to the
possible score range (i.e., 1–7), the mean scores of math anxiety
and reading anxiety of our participants were only 2.82 and
3.07. In fact, in samples with higher levels of math anxiety
or reading anxiety, the contributions of executive function and
anxiety variables might become even more crucial, because
individual might suffer from greater impairments on working
memory and other executive function components (e.g., inhibit,
plan/organize) and it might be more important to possess higher
levels of the “emotional control” component for maintaining
performance.

Findings of the present study can provide educators and
parents with insights on how to promote children’s MWPS

skills. First, when teachers observe that a child makes mistakes
frequently when solving mathematical word problems, teachers
have to examine more closely the reason(s) for such a situation.
As shown in the present study, it might happen because the child
shows difficulties in processing multiple pieces of information
in the mind, comprehending the problem statements, and/or
retrieving basic math facts to find out the answers. These
different reasons indeed call for different approaches to help the
child.

Second, the present study shows that teachers have to find
out effective strategies to help children reduce math anxiety.
This is because the fear induced by the necessity of tackling
math problems might be so overwhelming that it can hinder
children’s math performance, even though the children might
have already possessed the required math knowledge and skills.
Teachers and parents should thus talk to children who show
high levels of anxiety, so as to understand the reasons underlying
their anxiety and adopt corresponding strategies to relieve their
stress.

The present study had several limitations that required
attention. First, given that all variables were measured
at one time point only, no causal relationships between
the variables can be drawn. Future researchers can thus
conduct longitudinal studies to examine the extent to
which various cognitive and affective variables and their
growth can predict children’s performance in MWPS in
future.

Second, the present study only relied on parental report
questionnaire to measure children’s executive function. Some
recent studies (e.g., Toplak et al., 2008, 2013) have suggested that
there were only modest correlations between the scores obtained
from behavioral rating scales and performance-based measures
and the two types of measures might assess two different cognitive
levels. Performance-based measures might assess the efficiency
of the cognitive processes that are employed for controlling
behaviors, whereas behavioral rating scales might tap on the
behaviors of how to achieve personal goals in real-life situations.
In the future, researchers can therefore measure executive
function using different methods and examined whether the
patterns of results found in the present study still hold the
same.

Third, the present study only focused on two types of
word problems (i.e., direct and indirect two-step arithmetic
word problems) and the outcome of children’s MWPS (i.e.,
the accuracy of their answers). In fact, the difficulty level of
arithmetic word problems depends on a range of linguistic,
numerical and contextual factors (Cummins et al., 1988;
Davis-Dorsey et al., 1991; Daroczy et al., 2015), and there
are different correlates of children’s performance in different
cognitive phases of MWPS (Lee et al., 2009). Future studies
can thus explore whether the variables associated with each
MWPS stage are the same across problem types and test
situations. This, in turn, can yield important implications
on how to help children tackle different types of word
problems.

In summary, the present study is one of the few studies
to investigate the relative contributions of different cognitive
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and affective variables to children’s MWPS. Our findings
showed that children’s MWPS was significantly correlated
with their working memory, reading comprehension, math
fact fluency and math anxiety. In order to provide more
effective support to children struggling with MWPS, it
is essential for teachers and parents to figure out in
which aspect these children show difficulties and adopt
corresponding strategies to help them overcome their
barriers.
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Kuşdemir, Y., and Katrancı, M. (2016). Anxiety and comprehension in reading: i
cannot find the main idea, my teacher! Educ. Sci. 41, 251–266. doi: 10.15390/
EB.2016.4951

Lee, K., Ng, E. L., and Ng, S. F. (2009). The contributions of working memory
and executive functioning to problem representation and solution generation in
algebraic word problems. J. Educ. Psychol. 101, 373–387. doi: 10.1037/a0013843

Lewis, A. B., and Mayer, R. E. (1987). Students’ miscomprehension of relational
statements in arithmetic word problems. J. Educ. Psychol. 79, 363–371.
doi: 10.1037/0022-0663.79.4.363

Lyons, I. M., and Beilock, S. L. (2012). Mathematics anxiety: separating the math
from the anxiety. Cereb. Cortex 22, 2102–2110. doi: 10.1093/cercor/bhr289

Mazzone, A., Camodeca, M., and Salmivalli, C. (2018). Stability and change
of outsider behavior in school bullying: the role of shame and guilt in
a longitudinal perspective. J. Early Adolesc. 38, 164–177. doi: 10.1177/
0272431616659560

McCallum, E., Skinner, C. H., Turner, H., and Lee, S. (2006). The taped-problems
intervention: increasing multiplication fact fluency using a low-tech, classwide,
time-delay intervention. School Psych. Rev. 35, 419–434.

Nesher, P., and Hershkovitz, S. (1994). The role of schemes in two-step problems:
analysis and research findings. Educ. Stud. Math. 26, 1–23. doi: 10.1007/
BF01273298

Nosworthy, N., Bugden, S., Archibald, L., Evans, B., and Ansari, D. (2013).
A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical
magnitude processing explains variability in primary school children’s
arithmetic competence. PLoS One 8:e67918. doi: 10.1371/journal.pone.0067918

Ostad, S. A. (1998). Developmental differences in solving simple arithmetic word
problems and simple number-fact problems: a comparison of mathematically
normal and mathematically disabled children. Math. Cogni. 4, 1–19. doi: 10.
1080/135467998387389

Parmar, R. S., Cawley, J. F., and Frazita, R. R. (1996). Word problem-solving
by students with and without mild disabilities. Except. Child. 62, 415–429.
doi: 10.1177/001440299606200503

Piccolo, L. R., Giacomoni, C. H., Julio-Costa, A., Oliveira, S., Zbornik, J., Haase,
V. G., et al. (2017). Reading anxiety in L1: reviewing the concept. Early Child.
Educ. J. 45, 537–543. doi: 10.1007/s10643-016-0822-x

Pintrich, P., Smith, D., Garcia, T., and McKeachie, W. (1991). A Manual for the
Use of The Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor,
MI: National Center for Research to Improve Postsecondary Teaching and
Learning.

Punaro, L., and Reeve, R. (2012). Relationships between 9-year-olds’ math and
literacy worries and academic abilities. Child Dev. Res. 2012, 1–11. doi: 10.1155/
2012/359089

Purpura, D. J., Hume, L. E., Sims, D. M., and Lonigan, C. J. (2011). Early literacy
and early numeracy: the value of including early literacy skills in the prediction
of numeracy development. J. Exp. Child Psychol. 110, 647–658. doi: 10.1016/j.
jecp.2011.07.004

Roth, R. M., Isquith, P. K., and Gioia, G. A. (2014). “Assessment of executive
functioning using the Behavior Rating Inventory of Executive Function
(BRIEF),” in Handbook of Executive Functioning, eds S. Goldstein and
J. A. Naglieri (New York, NY: Springer), 301–331. doi: 10.1007/978-1-4614-
8106-5_18

Sorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., et al.
(2017). Math anxiety and its relationship with basic arithmetic skills among
primary school children. Br. J. Educ. Psychol. 87, 309–327. doi: 10.1111/bjep.
12151

Stern, E. (1993). What makes certain arithmetic word problems involving the
comparison of sets so difficult for children? J. Educ. Psychol. 85, 7–23.
doi: 10.1037/0022-0663.85.1.7

Swanson, H. L., Jerman, O., and Zheng, X. (2008). Growth in working memory
and mathematical problem solving in children at risk and not at risk for serious
math difficulties. J. Educ. Psychol. 100, 343–379. doi: 10.1037/0022-0663.100.
2.343

Toplak, M. E., Bucciarelli, S. M., Jain, U., and Tannock, R. (2008).
Executive functions: performance-based measures and the behavior rating
inventory of executive function (BRIEF) in adolescents with attention
deficit/hyperactivity disorder (ADHD). Child Neuropsychol. 15, 53–72.
doi: 10.1080/09297040802070929

Toplak, M. E., West, R. F., and Stanovich, K. E. (2013). Practitioner review:
do performance-based measures and ratings of executive function assess the
same construct? J. Child Psychol. Psychiatry 54, 131–143. doi: 10.1111/jcpp.
12001

Tsui, J. M., and Mazzocco, M. M. (2006). Effects of math anxiety and perfectionism
on timed versus untimed math testing in mathematically gifted sixth graders.
Roeper Rev. 29, 132–139. doi: 10.1080/02783190709554397

Willis, G. B., and Fuson, K. C. (1988). Teaching children to use schematic drawings
to solve addition and subtraction word problems. J. Educ. Psychol. 80, 192–201.
doi: 10.1037/0022-0663.80.2.192

Wong, B. Y. L. (1986). “Problems and issues in definition of learning disabilities,”
in Psychological and Educational Perspectives on Learning Disabilities,
eds J. K. Torgesen and B. Y. L. Wong (New York: Academic Press),
3–26.

Wu, S., Amin, H., Barth, M., Malcarne, V., and Menon, V. (2012). Math anxiety in
second and third graders and its relation to mathematics achievement. Front.
Psychol. 3:162. doi: 10.3389/fpsyg.2012.00162

Zbornik, J. J., and Wallbrown, F. H. (1991). The development and validation of a
scale to measure reading anxiety. Read. Improv. 28, 2–13.

Zhang, J., McBride-Chang, C., Wong, A. M.-Y., Tardif, T., Shu, H., and
Zhang, Y. (2014). Longitudinal correlates of reading comprehension difficulties
in Chinese children. Read. Writ. 27, 481–501. doi: 10.1002/dys.1566

Zhang, J., Meng, Y., Wu, C., and Zhou, D. Q. (2017). Writing system modulates
the association between sensitivity to acoustic cues in music and reading ability:
evidence from Chinese–English bilingual children. Front. Psychol. 8:1965. doi:
10.3389/fpsyg.2017.01965

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Zhang, Cheung, Wu and Meng. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Psychology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 2357241

https://doi.org/10.1080/01443410.2018.1454588
https://doi.org/10.15390/EB.2016.4951
https://doi.org/10.15390/EB.2016.4951
https://doi.org/10.1037/a0013843
https://doi.org/10.1037/0022-0663.79.4.363
https://doi.org/10.1093/cercor/bhr289
https://doi.org/10.1177/0272431616659560
https://doi.org/10.1177/0272431616659560
https://doi.org/10.1007/BF01273298
https://doi.org/10.1007/BF01273298
https://doi.org/10.1371/journal.pone.0067918
https://doi.org/10.1080/135467998387389
https://doi.org/10.1080/135467998387389
https://doi.org/10.1177/001440299606200503
https://doi.org/10.1007/s10643-016-0822-x
https://doi.org/10.1155/2012/359089
https://doi.org/10.1155/2012/359089
https://doi.org/10.1016/j.jecp.2011.07.004
https://doi.org/10.1016/j.jecp.2011.07.004
https://doi.org/10.1007/978-1-4614-8106-5_18
https://doi.org/10.1007/978-1-4614-8106-5_18
https://doi.org/10.1111/bjep.12151
https://doi.org/10.1111/bjep.12151
https://doi.org/10.1037/0022-0663.85.1.7
https://doi.org/10.1037/0022-0663.100.2.343
https://doi.org/10.1037/0022-0663.100.2.343
https://doi.org/10.1080/09297040802070929
https://doi.org/10.1111/jcpp.12001
https://doi.org/10.1111/jcpp.12001
https://doi.org/10.1080/02783190709554397
https://doi.org/10.1037/0022-0663.80.2.192
https://doi.org/10.3389/fpsyg.2012.00162
https://doi.org/10.1002/dys.1566
https://doi.org/10.3389/fpsyg.2017.01965
https://doi.org/10.3389/fpsyg.2017.01965
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00089 January 31, 2019 Time: 14:51 # 1

ORIGINAL RESEARCH
published: 31 January 2019

doi: 10.3389/fpsyg.2019.00089

Edited by:
Natasha Kirkham,

Birkbeck, University of London,
United Kingdom

Reviewed by:
Annemie Desoete,

Ghent University, Belgium
Lu Wang,

Ball State University, United States

*Correspondence:
Mojtaba Soltanlou

mojtaba.soltanlou@uni-tuebingen.de

Specialty section:
This article was submitted to
Developmental Psychology,

a section of the journal
Frontiers in Psychology

Received: 10 March 2018
Accepted: 11 January 2019
Published: 31 January 2019

Citation:
Soltanlou M, Artemenko C,

Dresler T, Fallgatter AJ, Ehlis A-C and
Nuerk H-C (2019) Math Anxiety

in Combination With Low Visuospatial
Memory Impairs Math Learning

in Children. Front. Psychol. 10:89.
doi: 10.3389/fpsyg.2019.00089

Math Anxiety in Combination With
Low Visuospatial Memory Impairs
Math Learning in Children
Mojtaba Soltanlou1,2,3* , Christina Artemenko1,2, Thomas Dresler2,4,
Andreas J. Fallgatter2,4,5, Ann-Christine Ehlis2,4 and Hans-Christoph Nuerk1,2,3

1 Department of Psychology, University of Tuebingen, Tübingen, Germany, 2 LEAD Graduate School & Research Network,
University of Tuebingen, Tübingen, Germany, 3 Leibniz-Institut für Wissensmedien, Tübingen, Germany, 4 Department
of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tübingen, Germany, 5 Center for Integrative
Neuroscience, Excellence Cluster, University of Tuebingen, Tübingen, Germany

Math anxiety impairs academic achievements in mathematics. According to the
processing efficiency theory (PET), the adverse effect is the result of reduced processing
capacity in working memory (WM). However, this relationship has been examined mostly
with correlational designs. Therefore, using an intervention paradigm, we examined the
effects of math anxiety on math learning. Twenty-five 5th graders underwent seven
training sessions of multiplication over the course of 2 weeks. Children were faster and
made fewer errors in solving trained problems than untrained problems after learning.
By testing the relationship between math anxiety, WM, and math learning, we found that
if children have little or no math anxiety, enough WM resources are left for math learning,
so learning is not impeded. If they have high math anxiety and high visuospatial WM,
some WM resources are needed to deal with math anxiety but learning is still supported.
However, if they have high math anxiety and low visuospatial WM capacity, math learning
is significantly impaired. These children have less capacity to learn new math content
as cognitive resources are diverted to deal with their math anxiety. We conclude that
math anxiety not only hinders children’s performance in the present but potentially has
long-lasting consequences, because it impairs not only math performance but also math
learning. This intervention study partially supports the PET because only the combination
of high math anxiety and low WM capacity seems critical for hindering math learning.
Moreover, an adverse effect of math anxiety was observed on performance effectiveness
(response accuracy) but not processing efficiency (response time).

Keywords: math anxiety, math learning, children, individual differences, visuospatial working memory, processing
efficiency theory

INTRODUCTION

Math acquisition is influenced by emotional factors such as math anxiety (Dowker et al., 2016).
Individuals suffering from math anxiety experience a negative feeling whenever they are presented
with mathematics, which impairs their math performance (Devine et al., 2012; Suarez-Pellicioni
et al., 2016). Highly math-anxious individuals take a longer time to respond and/or make more
errors than individuals with less math anxiety during math problem solving. Supporting the
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behavioral findings, neuroimaging studies have shown that math
anxiety triggers the fear and hyper-sensitive brain network (for
a review see Artemenko et al., 2015). This negative relation
between math anxiety and math performance has been explained
in different ways. Ashcraft (2002) suggests that highly math-
anxious individuals tend to avoid activities and situations that
require math. As a consequence, they have less practice with
math, which hinders their math knowledge and ability. Another
explanation is that highly math-anxious individuals who think
that they are bad at math, can be easily distracted during the task
(Eysenck et al., 2007) because they do not feel self-confident, and
do not allocate their maximum effort to the task (Dowker et al.,
2016).

In addition to emotional factors, cognitive processes such
as working memory (WM) have been frequently shown to
be core determinants for successful learning in school (e.g.,
Aronen et al., 2005; Lee and Bull, 2016). Lee and Bull (2016)
argued that WM is needed while learning new skills including
math and also to integrate the new information with previously
acquired knowledge. According to Baddeley’s model (Baddeley,
1992), WM contains three components: (i) the visuospatial WM,
known as the visuospatial sketchpad, which is a transient storage
space for visual and spatial information; (ii) the verbal WM,
known as the phonological loop, or the transient storage of
verbal information; and (iii) the central executive, which is
involved in regulating, manipulating, and generally processing
the stored information. Prior studies have shown that different
WM components play distinct roles in academic achievement
during development. For instance, visuospatial WM was a strong
predictor of math performance in 7- to 9-year-old children,
whereas verbal WM and central executive were not (Holmes
and Adams, 2006). Soltanlou et al. (2015) revealed that verbal
WM was the best predictor of multiplication performance in
grade 3 (8–11 years old); however, visuospatial WM was the best
predictor of multiplication performance a year later in grade 4. In
general, there is agreement that WM has an integral role in math
performance (Menon, 2016; but see Nemati et al., 2017).

Working memory processes per se are also influenced by
emotional factors such as math anxiety. The literature shows
that math anxiety interferes with different WM components. For
instance, Passolunghi et al. (2016) observed that children with
low math anxiety show a better verbal WM than highly math-
anxious children in grades 6 to 8 (11–15 years old). DeCaro
et al. (2010) investigated the performance of adults on two kinds
of verbal WM-based and visual WM-based math tasks during
low- and high-pressure testing situations. The authors found
that while a high-pressure situation attenuated the performance
in a verbal WM-based math task, it was not influential in the
visual WM-based task. They suggested that anxiety has a greater
influence on verbal WM rather than visual WM. However, several
other studies suggest a selective disruption effect of anxiety
on visual WM in adults (Miller and Bichsel, 2004; Shackman
et al., 2006) and in children in grades 1 and 2 (7–9 years
old) (Vukovic et al., 2013). Despite these inconsistent findings
across the literature, there is general agreement that anxious
thoughts partially occupy WM capacities, which disrupts math
performance.

As mentioned above, math anxiety, WM, and math
performance are related to each other, whereby WM has
been suggested to mediate the anxiety-performance relationship
(cf. Figure 1). The processing efficiency theory (PET, Eysenck
and Calvo, 1992) offers a good explanation for the interaction
between them. The PET was developed based on Baddeley’s
model of WM (Baddeley, 1992) and suggests that anxiety
causes worry, which reduces the WM capacity, disrupting
concurrent tasks. It contains two main concepts: performance
effectiveness and processing efficiency (Eysenck and Calvo, 1992).
Performance effectiveness refers to the quality of performance,
i.e., the response accuracy, while processing efficiency refers
to the relationship between performance effectiveness and
a load of effort or cognitive resources, i.e., response time.
For instance, occupying WM capacity leads to performance
impairment (affecting performance effectiveness), but availability
of auxiliary cognitive resources maintains a given performance
level but at the cost of increased effort (affecting processing
efficiency). Therefore, according to the PET, WM might be the
best intermediate variable explaining the relationship between
math anxiety and math performance.

There are two different accounts regarding the interaction of
math anxiety, WM and math performance. One account is that
individuals with higher WM capacity have more resources to
simultaneously manage math anxiety and solve math problems
(Ashcraft and Kirk, 2001). For example, a study in 11- to 12-
year-old children reported that verbal WM accounts for 51% of
the association between trait anxiety and academic performance
including math (Owens et al., 2008). Therefore, children with
low WM capacity suffer more from math anxiety during math
problem solving. The other account suggests that individuals with
higher WM capacity suffer more from math anxiety (Beilock and
Carr, 2005) because they rely heavily on WM strategies to solve
math problems. Therefore, under any high-pressure situation,
their capacity is co-opted and they show a worse performance
(Ramirez et al., 2013). This deficit does not occur for individuals
with lower WM capacity because they do not rely massively on
WM strategies to solve math problems in the first place, but
rather use other strategies. Therefore, their performance does
not drastically diminish in high-pressure situations. For instance,
Ramirez et al. (2013) reported a relationship between math
anxiety and verbal WM in children with higher WM capacity
in grades 1 and 2 (see also Vukovic et al., 2013). So, despite
contradictory findings across mediation studies, they mostly
agree on the mediating role of WM in the association between
math anxiety and math performance.

Although these relationships have been frequently studied,
most of our knowledge comes from correlational studies, which
have investigated the influence of math anxiety on a single
measure of math performance. Therefore, longitudinal (e.g.,
Vukovic et al., 2013; Cargnelutti et al., 2016) and intervention
studies are needed to clarify the causality of these relationships
(Dowker et al., 2016). While correlational studies reveal possible
associations between two variables, causal studies indicate the
directionality of these associations. For instance, correlational
studies revealed that math anxiety is associated with poor
performance in both WM and math tasks. However, this
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FIGURE 1 | Path diagram: above panel depicts the total effect of the predictor (math anxiety) on the dependent variable (learning slopes) and below panel depicts
the direct effect of the predictor on dependent variable while controlling for the mediator (WM components) and the indirect effect of the predictor on the dependent
variable through the mediator.

relationship can be bidirectional: (i) math anxiety preoccupies
WM and individuals attend less to the task (Eysenck et al., 2007),
which leads to a low score on WM and math tasks (Ashcraft
and Kirk, 2001), and (ii) poor math knowledge makes individuals
worry because they feel incapable of solving math problems, so
they show a high score on math anxiety tests (Maloney et al.,
2011; Núñez-Peña and Suárez-Pellicioni, 2014; Lindskog et al.,
2017). Therefore, the perennial “chicken and egg” question will
not be resolved by correlational studies and intervention studies
are needed (Dowker et al., 2016).

In one of the few longitudinal studies, Cargnelutti et al.
(2016) observed that math anxiety and math performance have
a bidirectional relationship. Nevertheless, math performance has
a greater impact on math anxiety in 2nd graders (7–9 years
old), whereas the reverse directionality was observed a year
later in 3rd graders. Interestingly, they observed an indirect
effect of math anxiety in 2nd graders on math performance
in 3rd graders, suggesting poor math skills may cause math
anxiety in younger children that disrupts math performance
later. Supporting this finding, Ma and Xu (2004) suggested that
prior math achievement longitudinally predicts later attitudes
toward math across grades 7 to 12. However, the influence of
WM on the association between math anxiety and performance
was not investigated in these studies. Another longitudinal study
(Vukovic et al., 2013) investigated this relationship by taking into
account the WM capacity. The authors observed that high math
anxiety in 2nd graders predicts less math acquisition from grade
2 to grade 3 but only in children with higher visuospatial WM
capacity. Vukovic et al. (2013) suggested that math anxiety causes
poor math learning by affecting WM resources in school children.

Longitudinal studies, however, also come with the possible
confounding effects of brain maturation and concurrent
economic trends or other events affecting children’s lives over
a long timescale. Therefore, the findings of training studies
might differ from longitudinal studies (Soltanlou et al., 2018).
Accordingly, we conducted an intervention study in children
to uncover the association between math anxiety and math
learning, namely the difference in competence before and after
learning. Furthermore, the possible mediating roles of different
WM components were tested. We hypothesized that higher math

anxiety leads to less benefit from arithmetic learning, and that this
relationship is modulated by WM.

MATERIALS AND METHODS

Participants
Twenty six typically developing children from 5th grade
participated in the study. One child, who quitted training,
was excluded and the remaining 25 children (9 girls;
11.13 ± 0.46 years old) were included in the analyses. All children
were right-handed and had normal or corrected-to-normal vision
with no history of neurological or mental disorders. Intellectual
ability was measured by completing two subtests (similarities
and matrix reasoning) of the German version of the Wechsler
Intelligence Scale (Petermann et al., 2007), with resulting scores
of 107.40 ± 11.65 and 107.80 ± 10.61, respectively. Children
and their parents gave written informed consent and received
an expense allowance for their participation. All procedures of
the study were in line with the latest revision of the Declaration
of Helsinki and were approved by the ethics committee of the
University Hospital of Tuebingen.

Material
Math Anxiety
Math anxiety was assessed by selected items from the German
translation of the math anxiety questionnaire (MAQ) (Thomas
and Dowker, 2000; Krinzinger et al., 2007), which has
an internal consistency (Cronbach’s alpha) of 0.83–0.91 for
the whole questionnaire for different age groups. In the
questionnaire, we assessed three out of four subscales of the
MAQ: self-assessment in math, attitude toward math, and
concerns about math1. In our questionnaire, each subscale

1Krinzinger and colleagues (one of which – Nuerk – is co-author both of her
and our paper), developed the German version of the MAQ, which we used in
our study. Their results strongly suggested that the two subscales of “How happy
or unhappy are you if you have problems with...?” and “How worried are you
if you have problems with...?” actually measure the same construct, which is
negative emotions and anxiety concerning mathematics (see also Krinzinger et al.,
2009). Krinzinger et al. (2007) observed a correlation of 0.78 between these two
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contains five items describing different math-related topics
(calculation, handwritten calculation, mental calculation, simple
calculation problems, and difficult calculation problems). While
the subscales self-assessment in math and attitude toward
math demonstrate general math-related attitudes, the subscale
concerns about math indicates math anxiety (Krinzinger et al.,
2009). Since we are only interested in the influence of math
anxiety on math learning, we focus on the last subscale hereafter.
This subscale includes five items, which are rated on a five-point
Likert scale (ranging from 0 = very happy to 4 = very unhappy)
with a maximum score of 20. Thereby, higher values indicate
higher math anxiety.

Working Memory
Following Baddeley’s model (Baddeley, 1992), three components
of WM, i.e., verbal WM, visuospatial WM, and central executive
were measured. To this end, the letter span test (Soltanlou et al.,
2015) and the Corsi block-tapping test (Corsi, 1973) were used.
In the letter span test, the child had to recall spoken sequences
of letters (presentation rate: one letter per second). The test was
started with sequences of two letters. The sequence length was
increased by one letter if the child recalled correctly at least one
out of two sequences; otherwise, testing was stopped. In the Corsi
block-tapping test, the child was asked to point to the cubes
in the same order as the experimenter. Children started with
sequences of three cubes. The sequence length was increased by
one cube if the child recalled correctly at least two out of three
sequences; otherwise, testing was stopped. For the backward in
both tasks, children were asked to recall sequences in reverse
order. The forward and backward spans are distinguishable and
related differentially to math performance in children (Soltanlou
et al., 2015).

Hoshi et al. (2000) revealed that backward span leads to
greater activation in the bilateral prefrontal cortex than forward
span. Therefore, the forward span in the letter span test represents
the verbal WM, and the forward span in the Corsi block-
tapping test represents visuospatial WM. For both forward
and backward span of both verbal and visuospatial WMs, the
score was the maximum sequence length at which at least two
sequences were repeated correctly. The average of the backward
spans of the two tests represents the central executive. Note
that the backward span of the letter span test (e.g., Hadwin
et al., 2005) and the backward span of the Corsi block-tapping
test (e.g., Vandierendonck et al., 2004) have been separately
reported as measures of the central executive. Vandierendonck
et al. (2004) state a similar involvement of the central executive
in the backward span of the Corsi block-tapping test and
the backward letter/digit span (Vandierendonck et al., 1998).
Moreover, according to the theoretical definition, the central
executive is modality-independent (Baddeley, 1992) and is
involved in manipulating both verbal and visual information.

constructs in third graders, which is close to reliability. Since this means that we
essentially measure the same construct twice, we only used the first subscale in
the present study. As this study is a part of a larger project of math training in
children, we had to shorten some tests by only concentrating on the most relevant
parts. Therefore, these two MAQ subscales, which essentially measured the same
construct in German children, were the natural candidates for that.

Therefore, the average of the backward span in the letter
span and the Corsi block-tapping tests, which are functionally
similar (Logie, 2014), was considered to be an indicator of the
central executive in the current study. The internal consistency
(Cronbach’s alpha) is 0.79 and 0.70–0.79 for the letter span (Kane
et al., 2004) and the Corsi block-tapping test (Orsini, 1994),
respectively.

Multiplication
In the present study, 16 simple and complex multiplication
problems were used. Half of the problems of each set were used
as trained problems and the other closely matched half were used
as untrained problems. The sets were matched based on the sizes
of the operands and results, as well as the parity of the operands
and results, separately for simple and complex multiplication
problems. The simple problems (e.g., 3 × 7) included two
single-digit operands (range 2–9) with two-digit solutions (range
12–40). The complex problems included one two-digit operand
(range 12–19) and one single-digit operand (range 3–8) with a
two-digit solution (range 52–98). The sequence of small and large
operands within the problems was counterbalanced. Problems
with ones (e.g., 9 × 1), commutative pairs (e.g., 3 × 4 and 4 × 3)
or ties (e.g., 6 × 6) were not used (for more see Soltanlou et al.,
2018). According to the PET, which suggests the effect of math
anxiety on complex tasks, and because of our small sample size,
we only report the findings of complex multiplication problems.
Trained and untrained multiplication task in the pre-training and
post-training sessions has an internal consistency (Cronbach’s
alpha) of 0.82 in the current study.

Procedure
Measurement
This study is a part of a larger behavioral and neuroimaging
project on math learning in children (Soltanlou et al., 2017,
2018). In a within-subject experiment, math performance of
children was measured before and after training in both trained
and untrained complex multiplication problems. The IQ, MAQ,
and WM measures were administered after the post-training
measure. Measurement of math anxiety after the math task
has the advantage of avoiding any possible pre-judgment and
bias about the forthcoming task in children (see also Ramirez
et al., 2013). The math task was preceded by four practice trials.
Problems were presented on a touch screen and children had
to write their answers as quickly and accurately as possible and
then in order to continue, they needed to click on a gray box
presented on the right side of the screen (see Soltanlou et al.,
2018 for more details). The written response was not visible
to avoid any further corrections and to encourage children to
calculate mentally. The problems of each set were presented
in four blocks of 45 s, each followed by 20 s of rest. The
sequence of blocks and problems within the blocks was pseudo-
randomized. The problems, but not the sequence of the blocks
or problems, were identical for each set in pre-training and post-
training sessions. Whenever the total number of trials within a
set was reached, the same problems were presented again after
randomization. No feedback was given during the experiment.
The design was self-paced with a limited response interval of 30 s
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for each problem. Therefore, due to inter-individual differences,
the number of solved problems varied between children. The
inter-trial interval was set to 0.5 s. The experiment was run using
Presentation R©software version 16.3 (Neurobehavioral Systems
Inc.).

Training
Training was conducted via an online learning platform (Jung
et al., 2015, 2016; Roesch et al., 2016), which allows for at-home
training. The problems in the trained complex multiplication
condition were randomly repeated six times in each training
session. Each problem was individually presented along with 12
different choices including the correct solution (see Soltanlou
et al., 2018). Response intervals of complex problems ranged
randomly between 10 and 30 s, jittered by 2 s. Whenever the
child did not respond within the response interval, the computer
screen displayed the correct solution. Training was interactive
because children had to compete with the computer. In order
to create a more realistic competition, the computer responded
incorrectly in 30% of the problems. To provide immediate
feedback about the performance and to increase motivation, the
scores of the child and computer were shown on the right side
of the screen after choosing a solution. Both child and computer
received one point for each correct answer and one point was
deducted for each incorrect answer. The problem was presented
until the child or computer responded correctly. Children were
instructed to solve the problems as quickly and accurately as
possible. Children performed seven sessions of approximately
25-min interactive training between two measurement times:
one session in the lab and six sessions at home during about
2 weeks. The post-training session was conducted after these
2 weeks.

Analysis
For the math task, the written responses by children were
read out with the help of the RON program (Ploner, 2014).
Response times (RTs) were defined as the time from problem
presentation to pressing the gray box. Only mean RTs for
correct responses (74.45% of problems across both measurement
times) were included in the analyses. Error rate was defined
as the proportion of incorrect or missing responses to the
total number of presented trials. Furthermore, in order to
approximate a normal distribution, an arcsine-square-root-
transformation of error rate (Winer et al., 1971) was calculated.

Thereafter, learning slopes were calculated by subtracting the
mean RT and arcsine-square-root-transformed error rates of
the pre-training session by post-training session separately for
trained and untrained multiplication sets for each child. In
both RT and error rate, larger values show higher training
effects. Paired t-tests were conducted between trained and
untrained sets for both RT and error rate learning slopes
separately.

In order to test the associations between variables, correlation
and regression analyses were calculated. Based on these analyses,
mediation analysis was conducted by considering math anxiety
as a predictor, learning slopes as dependent variables, and any
WM component that significantly correlated with math anxiety,
as a mediator (cf. Figure 1). According to Baron and Kenny’s
(1986) causal-steps test (1986), four assumptions need to be
met for mediation analysis (see also Field, 2013): (1) the total
effect of a predictor on the dependent variable (path c) must be
significant, (2) the effect of predictor on mediator (path a) must
be significant, (3) the effect of mediator on dependent variable
(path b), while controlled for predictor, must be significant,
(4) the direct effect of predictor on dependent variable (path
c’), while controlled for mediator, must be smaller than the
total effect of predictor on dependent variable (path c) (cf.
Figure 1). However, more liberal mediation tests such as the
joint significance test (MacKinnon et al., 2002) suggest that
only the second and third assumptions are required and the
first and fourth assumptions are not necessary (for more see
Fritz and MacKinnon, 2007). The Sobel test or delta method
was used for the mediation analysis. This method estimates the
standard error of the indirect effect and assumes the sampling
distribution of the indirect effect as being normal2. It assesses the
presence of mediation by dividing the indirect effect by the first-
order delta-method standard error of the indirect effect and then
compares it against a standard normal distribution. If the result
of this calculation is significant, mediation is present (Fritz and
MacKinnon, 2007). The analysis was completed using RStudio
(RStudio Team, 2016) and jamovi software (jamovi project,
2018).

2Note that the non-parametric percentile bootstrap confidence interval method
with 5000 samples, which does not assume a normal distribution of the indirect
effect, revealed a similar suppression effect in mediation analysis (see the Result
section).

TABLE 1 | Correlation between math anxiety, WM components, and learning slopes.

Correlations

Mean (SD) Range 1 2 3 4 5 6

1. Math anxiety 12.92 (3.17) 0–20 – −0.12 −0.43∗ 0.02 −0.08 −0.31

2. Verbal WM 4.92 (1.04) 2–9 – −0.14 0.35∗
−0.10 0.15

3. Visuospatial WM 5.00 (0.58) 3–9 – 0.22 0.00 −0.20

4. Central executive 4.52 (0.81) 2.5–8.5 – −0.12 0.17

5. RT learning slope 4.27 (3.06) – – 0.66∗∗

6. Error rate learning slope 0.11 (0.20) – –

N = 25, ∗∗p < 0.01, ∗p < .05, two-tailed.
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RESULTS

Learning Slopes
A paired t-test on the RT learning slopes revealed a significant
training effect in trained problems (M = 4.27 s, SD = 3.06 s)
compared to untrained problems (M = 1.60 s, SD = 2.41 s),
t(24) = 3.91, p < 0.001, showing that children responded faster
to the trained set than untrained set due to training. A paired
t-test on the error rate learning slopes again revealed a significant
training effect in trained problems (M = 0.11, SD = 0.20)
compared to untrained problems (M = −0.04, SD = 0.18),
t(24) = 3.30, p = 0.003, showing that children made less errors
when solving trained problems than untrained problems due to
training.

Correlation and Regression
The correlation and regression analyses revealed the following
results. (1) No significant correlations between math anxiety and
learning slopes (path c) were observed. (2) A negative correlation
between math anxiety and visuospatial WM (path a) showed
higher anxiety with decreasing visuospatial WM. Since math
anxiety only correlated with visuospatial WM, further analyses
were conducted only on this WM component.

Additionally, significant correlations between verbal WM and
central executive, and between RT learning slope and error rate
learning slope, were observed. No other significant correlations
were observed (cf. Table 1).

(3) Regression analysis to test the effect of visuospatial WM
on error rate learning slope while controlling for math anxiety
(path b) was only marginally significant, R2 = 0.23, F(2,22) = 3.30,
p = 0.056 (cf. Table 2). The result revealed that the higher
math anxiety and the higher visuospatial WM (but marginally
significant) the lower math learning as indicated by error rates.
This finding shows a suppression effect: while neither math
anxiety nor visuospatial WM correlated with error rate learning
slope, by inserting them together, they significantly predicted
error rate learning slope. A suppression effect is defined when
adding the third variable (i.e., WM) increases the effect of
the independent variable (i.e., math anxiety) on the dependent
variable (i.e., learning), which is the opposite effect of the third
variable in mediation.

TABLE 2 | Regression analyses (path b).

b SE B t p

Math anxiety and visuospatial WM → Error rate learning slope

Constant 1.19 0.45 0.00 2.64 0.015∗

Math anxiety −0.03 0.01 −0.48 −2.33 0.030∗

Visuospatial WM −0.14 0.07 −0.41 −1.98 0.060

Math anxiety and visuospatial WM → RT learning slope

Constant 6888.40 7977.60 0.00 0.86 0.397

Math anxiety −101.70 226.80 −0.11 −0.45 0.658

Visuospatial WM −206.70 1246.90 −0.05 −0.21 0.836

N = 25; b, unstandardized beta coefficient; SE, standard error of b; B, standardized
beta coefficient. ∗p < 0.05.

FIGURE 2 | Simple slope analysis showing the effect of math anxiety on error
rate learning slope at three different levels of visuospatial WM capacity. The
scores of math anxiety and error rate learning slopes have been centered by
subtracting each value from the mean. While children with low and average
visuospatial WM capacity were significantly influenced by math anxiety and
drew less benefit from multiplication learning, children with high visuospatial
WM capacity were not significantly influenced by math anxiety.

Regression analysis to test the effect of visuospatial WM on
RT learning slope while controlling for math anxiety (path b) was
not significant, R2 = 0.01, F(2,22) = 0.10, p = 0.905 (cf. Table 2).
Since this assumption was not met for RT learning slope, further
analysis was conducted only on error rate learning slope.

(4) The mediation analysis revealed that by inserting
visuospatial WM as the mediator to the model, math anxiety
significantly predicts (path c’) error rate learning slope (cf.
Table 3). The suppression effect was also corroborated by this
finding that the estimation of the total effect (path c) is closer to
zero than the direct effect (path c’), and the estimation of direct
and indirect effects have opposite signs (MacKinnon et al., 2000).

In order to explore the relationship between these three
variables, a simple slopes analysis (Aiken and West, 1991) was
conducted on the z-transformed scores. According to the simple
slopes analysis, the effect of math anxiety on error rate learning
slope is investigated at low, average, and high levels of visuospatial
WM capacity. As a standard method, low and high levels are
defined as 1 SD below and above the mean, respectively. The
analysis revealed that children with low (b = −0.03, z = −2.60,
p = 0.009) and average (b = −0.03, z = −2.38, p = 0.017)
visuospatial WM capacity were significantly influenced by math
anxiety and got less benefit from multiplication learning (cf.
Figure 2), while children with high visuospatial WM capacity
are not significantly influenced by math anxiety (b = −0.02,
z = −1.19, p = 0.233).

DISCUSSION

In the present intervention study, children improved after
seven sessions of complex multiplication training. Moreover, an
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TABLE 3 | Mediation analysis between math anxiety, visuospatial WM, and error rate learning slope.

95% Confidence interval

Effect Label b SE Lower Upper Z p

Indirect a × b 0.011 0.007 −0.003 0.024 1.58 0.113

Direct c’ −0.030 0.012 −0.053 −0.006 −2.48 0.013∗

Total c −0.019 0.011 −0.042 0.004 −1.60 0.109

N = 25; b, unstandardized beta coefficient; SE, standard error of b.∗p < 0.05.

association between math anxiety, visuospatial WM, and math
learning was observed.

We observed a significant negative relationship between math
anxiety and visuospatial WM, suggesting that children with
higher math anxiety have less storage capacity for visual and
spatial information. This finding is in line with previous literature
reporting the influence of math anxiety on visuospatial WM (e.g.,
Trezise and Reeve, 2018). Miller and Bichsel (2004) found math
anxiety effects on visual WM but not on verbal WM. They suggest
that while other types of anxiety affect verbal processes, math
anxiety has a different unique effect on visual WM. In a similar
way, Shackman et al. (2006) observed that anxiety selectively
disrupts visuospatial WM but not verbal WM. However, the
adverse effect of anxiety on other WM components has been
shown as well. For instance, Hadwin et al. (2005) observed that
low-anxious children aged 9–10 years old were faster in doing
forward and backward digit span tasks (verbal WM and central
executive) than high-anxious children, but not in a visuospatial
WM task. Our finding suggests that because 5th graders rely on
their visuospatial WM to solve multiplication problems, if math
anxiety has any effect, this effect might be on this skill rather than
verbal WM.

Although literature reported a strong association between
WM and math performance (Aronen et al., 2005; Menon,
2016), we did not observe this relationship in the correlation
analysis. However, visuospatial WM was a nearly significant
predictor of error rate learning slope when we added math
anxiety to the model. This finding might point to the
necessity of math anxiety as an individual difference measure,
which needs to be taken into account when we investigate
math acquisition during development (Vukovic et al., 2013).
As Vukovic et al. (2013) suggest, math anxiety influences
how children utilize their WM capacity to learn math. The
importance of visuospatial WM in multiplication problem
solving has already been shown in children (Soltanlou et al.,
2015, 2017). Unexpectedly, the relationship between visuospatial
WM and error rate learning slope was negative, showing
that children with higher visuospatial WM get less benefit
out of multiplication learning. One interpretation might
be because they had already few errors in pre-training,
therefore, this short training did not lead to a significant
improvement in these children. However, this association will
be disambiguated later by exploring the interaction between
math anxiety, visuospatial WM, and error rate learning
slope.

Interestingly, by adding both math anxiety and visuospatial
WM as predictors of math learning, a suppression effect was

observed: the influence of math anxiety on math learning
increased by adding visuospatial WM to the regression model.
When exploring this relationship, we observed that while
children with a low and average capacity of visuospatial WM
are more influenced by math anxiety, children with a high
visuospatial WM capacity can compensate the negative influence
of math anxiety on learning. As Ashcraft and Kirk (2001)
suggested, individuals with higher WM capacity have more
resources to simultaneously deal with math anxiety and solve the
math problems (see also Miller and Bichsel, 2004). The general
pattern of findings – from the simple slope analysis – is partially
in line with the study by Owens et al. (2012). They showed that
trait anxiety is negatively correlated with cognitive performance
in 12- to 14-year-old children with low WM capacity; however, no
significant correlation was observed in children with average WM
capacity. Contradictory to our findings, they found a positive
relationship between trait anxiety and cognitive performance in
children with high WM capacity.

It seems that the combination of high math anxiety and low
WM is critical for hindering math learning. One might argue
that children with high WM capacity have enough resources to
attenuate the influence of math anxiety on math acquisition,
which is in line with the PET. We suggest that this claim is
correct if WM mediates the association between math anxiety
and math learning, similar to several correlational studies. These
studies revealed that either verbal WM (e.g., Owens et al., 2008)
or visuospatial WM (e.g., Miller and Bichsel, 2004) mediates
the anxiety-math performance association. There is a crucial
conceptual difference between mediation and suppression: while
WM reduces the influence of math anxiety on math performance
in mediation, this effect increases in suppression3. So, while the
correlational studies found the former, we observed the latter
in our learning study. Furthermore, as Hopko et al. (2003)
discussed, a single measure of math performance at a certain
time is not purely a measure of competence, but a measure of
both math anxiety and competence combined. Individuals start
solving math problems with different levels of math anxiety,
which is most probably represented in their output as well. We
conclude that the findings of correlational studies may not be
readily generalized to causal and intervention studies.

Furthermore, we found that math anxiety had a negative
influence on children with low and average WM capacity but this

3Note that this relationship was not a moderation because (1) in moderation the
relationship between predictor and dependent variable is significant per se but it
changes by the third variable, however, this relationship was not significant in
our data, (2) the interaction of math anxiety and visuospatial WM (moderation
analysis) did not significantly predict learning slopes.
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influence was not significant in children with high WM capacity.
As we explained in the introduction, there are two contradictory
accounts of the relationship between math anxiety and WM
capacity across the literature: one suggests that math anxiety has
a negative impact in individuals with low WM capacity (Ashcraft
and Kirk, 2001); the other suggests that individuals with higher
WM capacity suffer more from math anxiety (Beilock and Carr,
2005). Our findings adhere to the first account, showing that
children with higher WM capacity have enough resources to
deal simultaneously with anxious thoughts and also store and
manipulate new information (Eysenck et al., 2007). As Lee and
Bull (2016) argued, WM is needed when learning new academic
skills to integrate the new information with previously acquired
knowledge. This explanation is corroborated by neuroimaging
studies revealing increased prefrontal activation for emotion
regulation, in addition to the fundamental role of the right
amygdala in emotion processing (Young et al., 2012). Therefore,
prefrontal capacity that subserves cognitive processes such as
WM is partially allocated to regulate these affective responses.
Hence, this capacity is less available for the cognitive task at
hand, such as solving a math problem (Eysenck and Calvo, 1992;
Eysenck et al., 2007). Therefore, it is reasonable to see a stronger
association between math anxiety and math learning in children
with lower WM capacity.

Inconsistent with the PET, performance effectiveness
(response accuracy) and not processing efficiency (response
time) was influenced by math anxiety in our intervention
study. The prediction of the PET has received support and
contradictory evidence in the field of numerical cognition.
For instance, Ng and Lee (2010) observed that processing
efficiency – but not performance effectiveness – on a mental
arithmetic task is affected by test anxiety in 10-year-old children.
Vukovic et al. (2013), however, observed a negative correlation
between math anxiety and performance effectiveness in their
longitudinal study, which supports our findings (see also
Devine et al., 2012). Nonetheless, they did not measure the
response time in their math tasks, which might have shown
a significant association as well. In line with their finding,
Trezise and Reeve (2018) showed that while anxiety is negatively
related to the response accuracy in two low- and high-time
pressure conditions, there is no significant correlation between
math anxiety and response time in 14-year-old children. It
seems that the underlying mechanisms of one-time math
performance measures differ from math learning. We suggest
that – in line with the PET – a negative correlation between
math anxiety and math learning was observed in the present
study; however, contradictory to its prediction, this relationship
was between anxiety and response accuracy, and not response
time.

Limitations
There are some limitations that need to be taken into
account for interpretation of our findings which should be
addressed in future studies. Our study was a complex and
effortful intervention study, in which not so many children can
be easily tested, as compared to cross-sectional correlational
designs. Therefore, null effects in particular were and should

be interpreted with caution due to low power. Especially, if
there are smaller intervention or mediation effect sizes, it is
conceivable that they might be observed in a larger sample.
Moreover, in order to reduce confounding effect of maturation
and education, we conducted this study in a group of 5th
graders with a limited age range. Therefore, the influence of
math anxiety on learning, which we observed here, needs to
be further investigated in larger samples and in different age
groups to see whether our findings can be replicated and
generalized.

Moreover, it is suggested to measure the other types of
anxieties to see whether our findings are math specific or related
to trait or test anxiety as well. Although we investigated several
other interesting factors such as gender, task complexity, and
self-attitude in our study, however, because of the small sample
size, we focus only on the most important question: whether
math anxiety influence on math learning in children. Therefore,
it is suggested for future studies to consider these factors as
well.

CONCLUSION

Most studies so far have only investigated the influence of math
anxiety and WM on math performance. In such studies, both
variables have a negative impact on math performance, and in
some studies (in line with the PET) WM mediates the influence
of math anxiety on math performance.

Our study suggests that the case might be different for
the influence of math anxiety and WM on math learning.
While an influence of WM on math performance is ubiquitous,
we failed to find a significant influence of any of the WM
components on math learning. This might be partially consistent
with a recent meta-analysis showing that WM training does
not transfer strongly to other skills and capabilities like math
(Melby-Lervag et al., 2016). So, if a child has a higher
WM capacity or even if WM is improved after training,
he might have a good math performance – in both pre-
and post-training measures – but not necessarily improves
dramatically after math learning as compared to pre-training
performance.

While WM might not predict math learning per se, it fosters
the influence of math anxiety on math learning. Children with
a low visuospatial WM capacity suffer most from math anxiety
when they have to learn math. The explanation for this is in line
with the PET. If children have no or little math anxiety, enough
WM resources are left for math learning, so no major problems
occur. If they have high math anxiety and high visuospatial WM,
some WM resources are needed to deal with math anxiety but
learning is still supported. However, if they have high math
anxiety and low visuospatial WM capacity, math learning is
significantly impaired. These children have less capacity to learn
new math contents because they need all the resources to deal
with their math anxiety. This finding might be helpful for future
interventions and suggests that in order to improve children’s
performance, both math anxiety and WM capacity need to be
considered.
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Our findings show that math anxiety plays a major role
in multiplication learning and that data from performance
studiescannot be readily generalized to learning studies.
However, multiplication learning is a rather easy task (even if
the problems are difficult). The picture might change for other
math content. Our study suggests that it is worthwhile to examine
the influence of math learning in other math areas as well. After
all, learning math is what all children are asked to achieve and
where many children suffer tremendously. Therefore, although
intervention studies are hard to conduct, we believe it is a worthy
and necessary effort to be addressed in future studies if we want
to understand and promote math learning in children.
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The aim of this paper was to examine the roles of working memory, single-step mental
addition skills, and strategy use in multi-step mental addition in two independent
samples of Chinese elementary students through different approaches to manipulate
two dimensions of task characteristics (the primary task). In Study 1, we manipulated
strategy types through the dimension of schema automaticity (whether intermediate
sums were 10s) and the dimension of working memory load (WML, two steps versus
four steps). A hierarchical linear model (HLM) analysis was conducted at case level,
strategy level, and individual level. In Study 2, we manipulated task characteristics
through schema automaticity (one-time versus two-time regrouping) and the WML
(partial versus complete decomposition). A three-level HLM analysis was applied. The
general findings of Study 1 and Study 2 suggested that shorter response time on
single-step mental addition corresponded to shorter response time on multi-step mental
addition. The use of strategies (from easier to more difficult strategies) negatively
predicted response time on multi-step mental addition. Easier strategy was associated
with shorter response time on multi-step mental addition. Better phonological loop was
associated with shorter response time on multi-step mental addition. The findings in
both studies highlighted the important role of phonological loop in mental addition
in Chinese children, suggesting that the involvement of a specific subcomponent of
working memory in mental arithmetic might be subject to linguistic, instructional, and
contextual factors.

Keywords: working memory, automaticity, strategy use, mental addition, Chinese elementary students

INTRODUCTION

Research in mental arithmetic has received increasing attention in the past four decades (e.g.,
Groen and Parkman, 1972; Ashcraft, 1992, 1995; Sowder, 1992; Carroll, 1996; LeFevre et al.,
2003; Liu et al., 2015). Mental arithmetic refers to the process of performing arithmetical
calculation in the mind without external support such as using paper and pencil, calculators,
or computers (Reys, 1984; Maclellan, 2001). Within basic arithmetic operations of addition,
subtraction, multiplication, and division, addition is often learned more easily in children’s
learning trajectory, and addition serves as the foundation for learning the other three operations
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(Beishuizen et al., 1997; Bryant et al., 1999; Torbeyns et al.,
2009). In the domain of mental addition, researchers often
explored simple (single-digit) mental addition and factors that
affected simple mental addition in adult learners such as
college students (LeFevre et al., 1996; Butterworth et al., 2001;
De Rammelaere et al., 2001; Hecht, 2002). In recent years,
more attention has addressed complex mental addition (e.g.,
addition involving two or more digits); however, the participants
have been predominantly adult learners (Green et al., 2007;
Imbo and LeFevre, 2009; Klein et al., 2010; Moeller et al.,
2011).

Mental addition can be affected by individual characteristics
such as experiences in arithmetic problem solving, working
memory capacities, age, schema automaticity obtained by each
individual, and strategy used for problem solving (Zbrodoff
and Logan, 1986; Geary et al., 2004; Tronsky, 2005; Imbo
et al., 2007; Arnaud et al., 2008). Mental addition can also
be affected by task characteristics such as the difficulty level
of the presented problems, types of problems (e.g., addition,
subtraction, multiplication, and division), practice effects, and
working memory load (WML) required by the tasks (DeStefano
and LeFevre, 2004; Kalaman and LeFevre, 2007; Imbo and
Vandierendonck, 2008). In our previous studies, we examined the
effects of simple mental addition on complex mental addition,
the effects of subcomponents of working memory on complex
mental addition, and the moderating effects of working memory
on single-step mental addition in relation to multi-step mental
addition (Ding et al., 2017; Liu et al., 2017; Ding et al.
unpublished). For our current studies, we recruited Chinese
elementary students (Chinese children are anticipated to achieve
a high level of proficiency of basic arithmetics in the early
years of elementary school; People’s Education Press, 2017) and
focused on complex mental addition to explore the roles of
working memory, single-step mental addition, and strategy use
(manipulated by schema automaticity and WML) in multi-step
mental addition.

Working Memory and Mental Arithmetic
Although children might activate different strategies for addition
and multiplication, it is generally believed that children tend
to be slower and make more errors with larger problems (the
problem-size effect) and with problems that require carrying
(DeStefano and LeFevre, 2004). If a certain amount of working
memory is required for calculation of single-digit problems, we
anticipate that increased working memory would be required
for calculations involving multi-digit problems. Thus, in the
following review of literature, we summarized findings according
to single-digit problems and multi-digit problems, rather than
types of calculation (i.e., addition versus multiplication).

Mental arithmetic involves encoding the presented
information, executing the calculation in the mind, and providing
a response (LeFevre et al., 2005). During the calculation process,
one must temporarily maintain the intermediate results while
continuing the calculation in order to reach the final solution.
The role of working memory in mental arithmetic has been
examined in empirical studies (e.g., Lemaire et al., 1996;
Campbell, 1999; Lee and Kang, 2002; DeStefano and LeFevre,

2004; Meyer et al., 2010; Friso-van den Bos et al., 2013). Based on
Baddeley’s (1992) model of working memory, many researchers
explored phonological loop, visuospatial sketchpad (VSSP), and
central executive as the subcomponents of working memory in
relation to mental arithmetic. However, the findings regarding
the involvement of subcomponents of working memory in
mental arithmetic have been quite mixed (DeStefano and
LeFevre, 2004; Meyer et al., 2010; Caviola et al., 2012; Friso-van
den Bos et al., 2013).

The phonological loop was found to be involved in the process
of maintaining intermediate sums during multi-digit mental
addition (Ashcraft and Kirk, 2001; Noël et al., 2001; DeStefano
and LeFevre, 2004). Seitz and Schumann-Hengsteler (2000,
2002) found that maintaining intermediate results requires the
involvement of both the central executive and the phonological
loop, and they reported the involvement of the phonological
loop on two-digit plus two-digit addition tasks. Heightened
phonological loop skills appear to facilitate performance in
complex mental addition, indicating that strong phonological
loop is associated with shorter response time (Fürst and Hitch,
2000; Trbovich and LeFevre, 2003; Caviola et al., 2012).

The findings regarding the VSSP in mental arithmetic are
mixed, although there was some evidence to suggest that VSSP
might be involved in multi-digit problems (e.g., Logie et al., 1994;
Lee and Kang, 2002; Trbovich and LeFevre, 2003; Ashkenazi
et al., 2013; Laski et al., 2013). However, some studies reported
null findings regarding the role of VSSP in multi-step mental
arithmetic (Noël et al., 2001; Liu et al., 2017). Some reported that
the impact of VSSP on mental arithmetic decreased as children
matured (McKenzie et al., 2003; Holmes et al., 2008). In short,
the role of the VSSP in multi-step mental arithmetic remains
uncertain and warrants further research (DeStefano and LeFevre,
2004). The findings were not sufficiently comprehensive to draw
a conclusion.

The central executive is responsible for planning,
manipulating, and sequencing of information. The central
executive also coordinates the activities of phonological loop and
the VSSP. The findings regarding the central executive in mental
arithmetic are inconsistent. In terms of single-digit arithmetic,
some evidence pinpointed that central executive resources are
required to process single-digit problems (Kaye et al., 1989;
Ashcraft et al., 1992; Lemaire et al., 1996; De Rammelaere et al.,
1999, 2001; Seitz and Schumann-Hengsteler, 2000, 2002; Hecht,
2002). In multi-digit arithmetic, there has been evidence for the
involvement of the central executive in maintaining intermediate
results during calculation (Heathcote, 1994; Logie et al., 1994;
Fürst and Hitch, 2000; Seitz and Schumann-Hengsteler, 2000,
2002), whereas the influence of updating (one component of the
central executive) was not significant (Liu et al., 2017).

In short, there were relevant consistent findings regarding
the role of the phonological loop, rather than the VSSP and
the central executive system, in mental arithmetic. In addition,
because the Chinese mathematics curriculum emphasizes rote
memorization, drills, and practices to enhance proficiency in
mental arithmetic, the phonological loop appeared to be more
relevant to the instructional and linguistic contexts in which
Chinese children learn mental arithmetic. In Liu et al. (2017),
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Chinese children’s accuracy and response time on mental
multiplication were most susceptible to phonological loop
influence, when phonological loop, VSSP, and central executive
tasks were tested. Thus, our examination of working memory
focused on the phonological loop in the present studies.

Direct Retrieval and Schema
Automaticity in Relation to Mental
Arithmetic
Many factors contribute to how quickly and accurately an
individual can execute mental arithmetic. One general factor
is the individual’s ability to understand and apply problem-
solving strategies. Research has shown that it takes a long time
for most students to transition from a direct modeling of the
problem context, counting all of the numbers one by one, to the
point that they can use direct retrieval of math facts (Mulligan
and Michelmore, 1997; Downton, 2008). In comparison to low-
achieving students, Zhang et al. (2014) found that high-achieving
students demonstrated greater strategy flexibility during problem
solving and were more accurate in direct retrieval and performing
mathematics algorithm strategies. Direct retrieval is an important
component of the elementary mathematics curriculum. Direct
retrieval of number combinations is often achieved by typically
developing students by the beginning of third grade (e.g.,
approximately 8 to 9 years old) in the United States (Miller
and Hudson, 2007). Through repetitive practice, students learn
to directly retrieve mathematics facts. Although direct retrieval
is listed as one of the strategies for problem solving, it
involves the retrieval of mathematics facts from long-term
memory (i.e., the answer is obtained immediately) and does
not involve the process of using multiple steps for problem
solving.

According to the cognitive load theory (Sweller, 1988; Paas
et al., 2003; van Merriënboer and Sweller, 2005), human beings
have limited working memory to deal with all conscious activities
and unlimited long-term memory to store facts and schemas.
When students achieve automaticity with mathematic facts, they
have attained a level of mastery that enables them to retrieve
those facts from long-term memory without conscious effort or
attention, which reflects a highly efficient process (Ponser and
Snyder, 1975). A schema can be considered as a single entity
that comprises multiple elements and allows humans to bypass
irrelevant details. Automaticity is an important component in the
process of forming schema and is often achieved after practice.
In the domain of mathematics operation, an individual who
has attained the level of automaticity can directly retrieve facts
from long-term memory without conscious cognitive processing,
which is considered direct retrieval (Siegler and Shrager, 1984;
Siegler and Jenkins, 1989; Shrager and Siegler, 1998; Geary, 2011).
When multiple elements of basic arithmetic facts form large
operation units, students reach the level of mastery of schema
automaticity after repeated practice and frequent exposure to
the tasks (Sweller, 1988; Logan and Klapp, 1991; Wilkins and
Rawson, 2011). For example, when a student encounters 25 × 6
the first time, he or she might use a regular algorithm to obtain
the result. However, after repeated practice, the student might

memorize the result and directly retrieve the mathematics fact
(Compton and Logan, 1991; Wilkins and Rawson, 2011) without
utilizing regular operations or complex strategies.

Liu et al. (2017) reported that Chinese school systems
predominantly emphasize rote memorization of single-digit and
two-digit arithmetic facts. Because of repeated practice, many
Chinese elementary students eventually reach the level of mastery
of direct retrieval of basic arithmetic facts. Many Chinese
elementary students not only retrieve basic arithmetic facts, but
also rote memorize many schemas such as 25× 4 and 17+ 13. In
single-step mental addition, Chinese elementary students utilize
direct retrieval and schemas that become automatic. Thus, direct
retrieval and schema automaticity in single-step mental addition
might have an impact on the response time and accuracy rate of
multi-step mental addition.

Strategy in Relation to Complex Mental
Arithmetic
Children attempt different strategies such as decomposing and
transformation when they solve complex arithmetic problems
(Ashcraft and Fierman, 1982; Beishuizen et al., 1997; Lucangeli
et al., 2003; Arnaud et al., 2008; Lemaire and Callies, 2009). For
example, children could decompose “45+ 39” into “45+ 40− 1,”
“40 + 40 + 5 − 1,” “40 + 30 + 5 + 9,” “45 + 30 + 9,”
or “50 + 34.” When children apply different strategies during
mental arithmetic, they might utilize some schema such as
“40 + 30” or “45 + 30” and need to activate working memory
to complete processes such as transformation, temporarily
memorizing intermediate sums, and operation.

When children process complex mental arithmetic, they use
different strategies that are associated with different levels of
schema automaticity and WML. Given an arithmetic problem
(e.g., 16 + 27), a student could use complete decomposition
(e.g., decomposing 16 + 27 to 10 + 6 + 20 + 7, three steps
in total) to carry out the calculation step by step. Step-by-step
full decomposition or the use of an arithmetic algorithm often
involves many steps requiring a large amount of working memory
resources, which in turn might increase the response time to
obtain a solution. In contrast, a student could use an automatized
schema (e.g., converting 16+ 27 to 16+ 24+ 3 = 40+ 3 = 43, two
steps in total) that leads to fewer steps (requiring fewer working
memory resources) and shorter response time, in comparison
to full decomposition or the use of an arithmetic algorithm.
As a result, the effectiveness of a strategy used for mental
arithmetic might be contingent upon the automaticity level of
the strategy that was retrieved and the WML involved during
problem solving.

In a previous study, we examined schema automaticity and
WML through the perspective of task characteristics (Ding et al.,
2017) and manipulated the levels of schema automaticity and
WML (i.e., the original problem was 8 + 18 = 26). Schema
automaticity was operationalized by having the intermediate sum
being 10 or the intermediate sum not being 10. In terms of
WML, it was operationalized in the way that the problem had
fewer versus more steps. There were four strategy conditions:
(a) problems with high schema automaticity and low WML
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(8 + 12 + 6 =), (b) problems with high schema automaticity
and high WML (8 + 2 + 7 + 3 + 6 =), (c) problems with
low schema automaticity and low WML (8 + 6 + 12 =),
and (d) problems with low schema automaticity and high
WML (8 + 6 + 3 + 7 + 2 =). We were able to find
significant main effects of schema automaticity and WML and
a significant interaction effect between these two factors in
mental multiplication and addition among Chinese elementary
students. Our findings supported the important roles of schema
automaticity and WML during mental arithmetic.

Because this study focused on Chinese children, it is important
to have a brief review of how Chinese children learn math.
According to Wei (2014), math education in China has a number
of unique characteristics. Chinese children start learning the
mathematics facts at a very young age (age 4 or 5 years through
informal family education). According to People’s Education
Press, 2017, addition and subtraction of single-digit numbers
should be mastered with high fluency by the end of first grade
(age 6). Multiplication is introduced in the fall semester of second
grade (age 7) and should be mastered by the end of second
grade (People’s Education Press, 2017). Most simple arithmetic
facts such as addition, subtraction, multiplication, and division
are taught through memorization and routine practice (People’s
Education Press, 2017). Children take at least one math class
(40 min) with a single-subject math teacher (i.e., math teachers
teach math classes in multiple classrooms at the same grade) each
day, with at least 30 min of math homework on a daily basis.
One main goal of China’s math education is to develop not only
conceptual understanding (what), but also procedural knowledge
(how to) through practice and application (People’s Education
Press, 2017). Accuracy and fluency are highly regarded. From
Chinese math teachers’ standpoints, knowing a math concept
(knowing the concept) without the abilities to efficiently solve the
math problem (executing the operations) does not indicate skill
acquisition. Thus, Chinese children are expected to have a very
high level of accuracy and fluency on basic math facts. Given the
structure of Chinese math education, automaticity and working
memory appear to play a critical role in children’s learning.

The Purpose of the Present Study
In Ding et al. (2017), we found significant main effects of schema
automaticity and WML in relation to mental multiplication
through the perspective of task characteristics (examining
how the same group of students responded differently to
different strategy conditions). In Liu et al. (2017), our findings
indicated the important role of the phonological loop in
mental multiplication through the perspective of individual
characteristics (examining how individuals’ subcomponents
of working memory affected mental multiplication). Similar
findings were revealed in our study regarding mental addition
in Chinese children (2018). In short, the effectiveness of mental
arithmetic is contingent upon an individual’s basic mental
addition skills, the strategy selected, and the working memory
involved during problem solving. The purpose of this study was
to examine the effects of single-step mental addition skill, strategy
use, and working memory on multi-step mental addition.

Previous studies often examined the effects of simple mental
arithmetic skill, strategy use, and working memory on complex
mental arithmetic in isolation. We extended the previous studies
in four ways. First, we simultaneously examined the effects of
single-step mental addition, strategy conditions, and working
memory on multi-step mental addition. Second, we manipulated
the strategy through two dimensions of task characteristics,
including schema automaticity and WML, to control the
difficulty levels of strategy conditions. Thus, we generated four
strategy conditions. We utilized the no-choice format based on
Siegler and Lemaire (1997) in order to require all participants
to execute the four strategies to examine how the difficulty
levels of strategy use affected mental addition and this approach
was validated in Ding et al. (2017). Third, we used a three-
level hierarchical linear model (HLM) analysis to examine the
relations of key variables at the student level, strategy level,
and item level. Fourth, we tested our research questions in two
studies. In Study 1 and Study 2, we used different approaches to
decompose the addition problems and used different approaches
to manipulate the levels of schema automaticity and WML.
We wanted to explore whether Study 1 and Study 2 both
supported the effects of single-step mental addition skill, strategy
conditions, and working memory on multi-step mental addition.
Based on the findings of Ding et al. (2017), Liu et al. (2017),
Ding et al. (unpublished), we anticipated that better single-step
mental addition performance would be associated with better
multi-step mental addition performance (Hypothesis 1); the
strategy with high schema automaticity and low WML would
be associated with shorter response time on multi-step mental
addition (Hypothesis 2); and better working memory capacity
would be associated with shorter response time and higher
accuracy rate on multi-step mental addition (Hypothesis 3) in
both Study 1 and Study 2.

STUDY 1

Design
The dependent variable was the response time of the multi-
step mental additions. The independent variables included the
response time of the single-step mental additions, strategy
conditions (we manipulated the levels of schema automaticity
and WML to reflect four strategy conditions), and the
phonological loop task. We considered the single-step mental
addition performance as an indicator of children’s basic mental
addition skills. We considered the multi-step mental addition
performance as an indicator of children’s skills on complex
mental addition.

To account for student-level, strategy-level, and item-level
variances, a three-level HLM analysis was applied. At the item
level (Level 1), we used multi-step mental addition performance
as the dependent variable and single-step mental addition
performance as the independent variable to examine the effect
of single-step mental addition on multi-step mental addition. At
the strategy level (Level 2), we used the four strategy conditions
as the independent variable and the intercept of Level 1 as the
dependent variable to examine the effects of strategy use on
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multi-step mental addition. At the student level (Level 3), we
used the phonological loop task as the independent variable and
the intercept of Level 2 as the dependent variable to examine the
effect of phonological loop on multi-step mental addition.

Measures and Procedures
Strategy
In order to manipulate the levels of schema automaticity and
WML to reflect the strategy used for each question, we alternated
two aspects of the structural features of addition problems:
WML was manipulated by the steps involved in operations
(i.e., two steps versus four steps,) and schema automaticity
was manipulated by whether the single-step addition involved
intermediate sums of 10 (Lemaire and Callies, 2009; Klein et al.,
2010). In teaching practice, students are often taught to add base
5 numbers such as 1 + 4, 2 + 3, and then base 10 numbers,
such as 1 + 9, 2 + 8, 3 + 7, 4 + 6, and 5 + 5. In Chinese
math curriculum, speeded arithmetic strategies are often taught
to help students develop more efficient strategies and adding
intermediate sums to base 10 is often utilized (e.g., transforming
7 + 9 + 13 to 7 + 13 + 9 = 20 + 9 = 29). Thus, in the present
study, the problems with intermediate sums of 10 indicate a high
level of schema automaticity, in comparison to problems without
intermediate sums of 10. Given a problem such as 7 + 22 = 29,
there were four strategy conditions: (1) problems with high
schema automaticity and low WML such as 7 + 13 + 9 (there
was one intermediate sum being 10 and there were two steps),
(2) problems with high schema automaticity and high WML such
as 7 + 3 + 4 + 6 + 9 (there were two intermediate sums being
10 and there were four steps), (3) problems with low schema
automaticity and low WML such as 7 + 9 + 13 (there were no
intermediate sums being 10 and there were two steps), and (4)
problems with low schema automaticity and high WML such as
7 + 4 + 6 + 9 + 3 (there were no intermediate sums being 10
and there were four steps) (see Table 1). In order to ensure the
participants would perform according to the imposed problem
order and format, all problems were presented in the left-to-right
order.

Regression analysis treats all independent variables in the
analysis as numerical, which means that these variables are
interval or ratio scale variables. Our four strategy conditions

were nominal scale variables that included four categories of
strategies. Thus, dummy variables were created to correctly
analyze categorical variables. First, we treated the strategy
condition (1) as one category and the remaining three conditions
as another category. Then, we had the coding for strategy-a
(3, −1, −1, −1). Second, among the strategy conditions (2),
(3), and (4), we treated the condition (2) as one category, and
conditions (3) and (4) as another category. Then, we obtained
strategy-b (0, 2, −1, −1). Finally, we compared conditions (3)
and (4), so we obtained strategy-c (0, 0, 1, −1). We did not need
a fourth dummy variable to represent condition (4) because all
four strategy conditions were mutually exclusive (they did not
overlap) and exhaustive (no other levels exited for this variable;
Ding, 2000).

Multi-Step Addition Problems (Simultaneous
Presentation)
In total, there were six original questions, and each original
question was presented as four strategy conditions to reflect
high or low schema automaticity and high or low WML. For
example, an original problem was 12 + 25. There were four
strategy conditions: (a) problems with high schema automaticity
and low WML (12 + 18 + 7 =), (b) problems with high schema
automaticity and high WML (12+ 8+ 6+ 4+ 7 =), (c) problems
with low schema automaticity and low WML (12 + 7 + 18 =),
and (d) problems with low schema automaticity and high WML
(12 + 4 + 7 + 6 + 8 =). Thus, there were 24 multi-step
addition problems. E-prime was used for programming. All
problems were randomly presented by computers to counter the
order effect. Prior to testing, a stimulus of “+” appeared in the
center of the computer screen for 150 ms. The performance
on addition problems measured by simultaneous presentation
indicated student performance on multi-step mental addition.
The participants were instructed to orally report the answer as
soon as possible. When the examinee orally reported the answer,
the examiner entered the answer and clicked the “return” key.
Then, a stimulus of “+” appeared in the center of the computer
screen and the examinee moved on to the next testing item.
The computer recorded the accuracy and response time (i.e., the
duration was from the point of stimulus presentation to the point
that the examiner hit the enter key) for each testing item (i.e., both

TABLE 1 | Addition problems used during the testing (Study 1).

Original problems High automaticity Low automaticity

Low WML (1) High WML (2) Low WML (3) High WML (4)

8 + 18 = 26 8 + 12 + 6 = 8 + 2 + 7 + 3 + 6 = 8 + 6 + 12 = 8 + 6 + 3 + 7 + 12 =

12 + 25 = 37 12 + 18 + 7 = 12 + 8 + 6 + 4 + 7 = 12 + 7 + 18 = 12 + 4 + 7 + 6 + 8 =

21 + 25 = 46 21 + 19 + 6 = 21 + 9 + 3 + 7 + 6 = 21 + 6 + 19 = 21 + 3 + 6 + 9 + 7 =

24 + 27 = 51 24 + 26 + 1 = 24 + 16 + 2 + 8 + 1 = 24 + 1 + 26 = 24 + 2 + 1 + 8 + 16 =

17 + 17 = 34 17 + 13 + 4 = 17 + 3 + 9 + 1 + 4 = 17 + 4 + 13 = 17 + 1 + 4 + 3 + 9 =

19 + 35 = 54 19 + 31 + 4 = 19 + 1 + 12 + 18 + 4 = 19 + 4 + 31 = 19 + 18 + 1 + 4 + 12 =

RT M/SD in seconds 3.48 (1.86) 5.28 (2.81) 6.48 (3.56) 9.03 (3.89)

Cronbach’s α for RT 0.81 0.68 0.71 0.85

WML, working memory load; (1), (2), (3), and (4), conditions (1), (2), (3), and (4). RT, response time.
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correct or incorrect items). Cronbach’s α was 0.89 for response
time and 0.69 for accuracy, which is acceptable (DeVellis, 1991).

Single-Step Addition Problems (Successive
Presentation)
The same 24 addition problems were re-used. However, to obtain
the accuracy and response time on single-step addition, the
presentation of each testing item such as “8 + 6 + 3 + 7 + 2 =”
was successive. In other words, the computer first presented the
single step of “8 + 6 =.” The participant obtained the answer of
“14” and pressed the “Enter” key. Then, the computer presented
the next step “+3”; the participant obtained the answer of “17”
and pressed the “Enter” key. When the examinee orally reported
the answer, the examiner entered the answer and clicked the
“return” key. Then, a stimulus of “+” appeared in the center
of the computer screen and the examinee moved on to the
next testing item. There were 24 items in total. The response
time on single-step addition was defined as the total response
time on each successively presented item divided by the steps
involved in that item. All problems were randomly presented by
the computer. The computer automatically recorded the accuracy
and response time for each item. The internal consistency for this
instrument ranged from 0.68 to 0.86.

Working Memory Measure (Phonological Loop Task)
Based on our previous study examining subcomponents of
working memory among Chinese elementary students, only
phonological loop played a significant role in mental arithmetic,
whereas VSSP and central executive did not play a significant
role (Liu et al., 2017). Thus, we only included phonological
loop as a measure of relevant working memory in the present
study. The phonological loop task was developed based on
Grant and Dagenbach (2000) and Wang et al. (2008). In total,
there were 50 equations. Ten groups of equations consisted of
two independent sequences of three, four, five, six, and seven
equations. Participants were asked to determine whether the
presented equation was correct or incorrect while they tried to
memorize the second number of the equation (e.g., 7–3 = 4). Both
correct and incorrect answers were provided. The participants
used either the “left” or the “right” button of the mouse to
indicate “correct” or “incorrect.” Participants were exposed to
each equation a maximum of 4,000 ms. If a participant did
not respond within 4,000 ms, the next equation automatically
appeared on the computer. After one group of equations were
presented, the participants were asked to enter all of the second
numbers of those equations in a row. The E-Prime program
randomly presented all equations. The second number in two
adjacent equations should not be the same, and the second
number in each equation should not be the same as the correct
answer for that equation. The scores ranged from 0 to 50.
Higher scores indicated better phonological loop. The internal
consistency for this instrument in this sample was 0.81.

To counter an order effect, all problems of each task were
randomly presented by the computers. E-prime was used for
programming. Prior to testing, the participants received training
through practice items. The participants completed three tasks in
a random order.

Participants
Chinese elementary students master under-100 addition and
subtraction with and without regrouping by fall semester of
Grade 2. They learn under-100 multiplication and division by
the end of Grade 2. Running a power analysis on a repeated
measures ANOVA with four measures, a power of 0.80, an
alpha level of 0.05, and a medium effect size (f = 0.25) requires
a sample size of at least 24 (Faul et al., 2013). We recruited
40 participants for Study 1. Thus, we recruited 40 typically
developing third graders who should have fluently mastered
under-100 addition, subtraction, multiplication, and division by
the time of testing. The average age for the participants was
8.56 years (SD = 0.89) and 22 were females and 18 were males.
The participants were randomly recruited from an elementary
school in China. This study was approved by the Research Ethics
Committee of Beijing Normal University and the principals of
the participating schools. Written and Informed consent was
obtained from the parents/legal guardians of participants.

Results and Discussion
In Study 1, the main goal was to examine how single-step mental
addition, strategy use, and working memory affected multi-step
mental addition. To account for student-level, strategy-level, and
item-level variances, a three-level HLM analysis was applied.
Chang (2003) described HLM as a “regression of regression.”
The Level 3 sample size was 40, the Level 2 sample size was
160 (40 students completed four strategy conditions), and the
Level 1 sample size was 960 (40 students completed all 24
items). We maintained four decimals in the HLM results because
HLM results often carry very small but practically meaningful
numerical values (Chang, 2003, 2004).

All of the participants had very high levels of accuracy
(ranging from 84.17 to 95.71% among four conditions), and
there was little variation among the participants (M = 91.5%,
SD = 8.2%). Thus, the measure of accuracy was excluded as a
variable for analysis. We only used participants’ correct response

TABLE 2 | Descriptive statistics of response time at item-, strategy-, and
student-level (Study 1).

Variables N Mean SD Min Max

Item-level (Level 1)

Multi-step RT 896 7.62 4.72 1.45 39.04

Single-step RT 896 3.69 1.85 0.86 19.59

Strategy-level (Level 2)

Strategy-a 160

Strategy-b 160

Strategy-c 160

Student-level (Level 3)

Phono 40 36.05 8.53 10.00 47.00

We only analyzed correct response time. RT, response time (measured in seconds).
There were 24 testing items. The multi-step response time was calculated based
on the response time on each testing item. The single-step response time was
calculated based on the response time on each testing item divided by the
presentation steps involved in that item. Phono, phonological loop.
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time for further analysis. The descriptive statistics of different
variables are listed in Table 2.

In Table 3, the dependent variable was the average response
time of multi-step addition at Level 1 (item level). The
independent variable was the average response time of single-
step addition at Level 1, indicating the basic single-step addition
skill. γ100 (0.4620) was significant, which suggested that single-
step response time (indicating automaticity) had an effect on
multi-step response time in the positive direction. This suggested
that shorter response time on single-step mental addition led to
shorter response time on multi-step mental addition, supporting
Hypothesis 1.

At Level 2 (strategy-level), the dependent variable was
the intercept of Level 1 (the response time of multi-step
mental addition). Four strategy conditions were treated as
dummy variables, including strategy-a, strategy-b, and strategy-
c. γ010 (−1.0303), γ020 (−0.5679), and γ030 (−2.2791) were all
statistically significant, suggesting that strategy use had effects on
multi-step response time in the negative direction. The higher
the coding values for the strategies, the smaller the intercept. As
we explained earlier, our dummy variables coding for strategy
conditions included strategy-a (3, −1, −1, −1), strategy-b (0, 2,
−1, −1), and strategy-c (0, 0, 1, −1). The values of coding of
dummy variables followed a descending order from strategy (1)
to strategy (4). In short, easier strategy had larger coding value
and more difficult strategy had smaller coding value. The negative
coefficients indicated that the strategy condition with larger
coding values (an easier strategy condition) corresponded to a
smaller intercept (shorter response time), whereas the strategy
condition with smaller coding values (a more difficult strategy
condition) corresponded to a larger intercept (longer response
time). As the students moved from strategy (1) (e.g., strategy
with high schema automaticity and low WML) to strategy (4)

(e.g., strategy with low schema automaticity and high WML),
the intercept increased. It supported our hypothesis that the
strategy with high schema automaticity and low WML would be
associated with shorter response time, supporting Hypothesis 2.

At Level 3 (student-level), the independent variable was
phonological loop and the dependent variable was the intercept
of Level 2. The phonological loop (γ001 = −0.1017) negatively
predicted response time on multi-step response time. As the
phonological loop skill increased, the portion of intercept at
Level 2 that was determined by phonological loop decreased. The
higher the score on phonological loop, the lower the score on
response time (shorter response time), supporting Hypothesis 3.

STUDY 2

DeStefano and LeFevre (2004) recommended that in order to
further understand the role of working memory in arithmetic,
researchers should systematically manipulate factors such as
problem conditions, problem complexity, task requirement, and
so on. Thus, it is important to manipulate task characteristics
through different approaches to examine whether similar
findings regarding automaticity and WML could hold true.
In Study 2, the task characteristics were manipulated through
the levels of schema automaticity by using one-time versus
two-time regrouping and through the WML by using partial
versus complete decomposition. The level of schema automaticity
was manipulated through regrouping. Regrouping is defined as
making groups of 10s when adding two numbers and is another
name for carrying (Green et al., 2007). High schema automaticity
is defined as one-time regrouping and low schema automaticity
is defined as two-time regrouping. Empirical studies showed that
the number of regroupings had an impact on the difficulty level

TABLE 3 | Effects of automaticity, strategy, and phonological loop on response time: three-level regression coefficients (Study 1).

Fixed effect Coefficient SE T-ratio Approx. df P

Multi-step RT as the outcome measure

Student-level (Level 3)

For INTRCPT1 π0

INTRCPT2 β00

INTRCPT3 γ000 9.6469 1.7847 5.41 38 <0.001

Phono γ001 −0.1017 0.0440 −2.31 38 0.027

Strategy-level (Level 2)

For STATEGY-A β01

INTRCPT3 γ010 −1.0303 0.0707 −14.58 117 <0.001

For STATEGY-B β02

INTRCPT3 γ020 −0.5679 0.1388 −4.09 117 <0.001

For STATEGY-C β03

INTRCPT3 γ030 −2.2791 0.2617 −8.71 117 <0.001

Item-level (Level 1)

For ST-RT slope π1

INTRCPT2 β10

INTRCPT3 γ100 0.4620 0.1136 4.07 695 <0.001

We only analyzed correct response time. INTRCPT, intercept; Phono, phonological loop; RT, response time; ST-RT, single-step response time. It is common to retain four
decimals for HLM results (Chang, 2003).
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of the arithmetic problems (Imbo et al., 2007; Klein et al., 2010),
which led to different levels of automatic retrieval (Siegler and
Shrager, 1984; Ashcraft, 1992; Ashcraft and Christy, 1995; Hoyer
et al., 2003). Problems with one-time regrouping corresponded
to higher levels of schema automaticity whereas problems within
two-time regrouping corresponded to lower levels of schema
automaticity. The WML was manipulated through complete
decomposition or partial decomposition, which led to a different
number of steps in problem solving (Lemaire and Callies, 2009).
In partial decomposition, only one operand was decomposed, so
WML was low. In complete decomposition, two operands were
both decomposed, so WML was high. Thus, we systematically
manipulated the difficulty levels of automaticity and WML using
different arithmetic approaches in Study 2. A similar three-level
HLM analysis was utilized. If the findings in Study 1 would
hold true in Study 2, it would enhance the generalization of the
findings regarding the roles of automaticity and WML in mental
arithmetic in Chinese students.

Design
The dependent variable was multi-step mental addition
performance. The independent variables included single-step
mental addition performance, strategy use (we manipulated
the levels of schema automaticity and WML to reflect four
strategy conditions), and phonological loop. To account for
student-level, strategy-level, and item-level variances, a three-
level HLM analysis was applied. At the item level (Level 1), we
used single-step mental addition as the independent variable
and multi-step mental addition as the dependent variable. At
the strategy level (Level 2), we used the four strategy conditions
as the independent variable and the intercept of Level 1 as the
dependent variable. At the student level (Level 3), we used the
phonological loop as the independent variable and the intercept
of Level 2 as the dependent variable.

Measures and Procedures
Strategy
Similar to the design used in Study 1, we alternated two
aspects of the structural features of addition problems: Schema
automaticity was manipulated by the steps of regrouping
involved in operations (i.e., one-time regrouping indicates high
schema automaticity and two-time regrouping indicates low
schema automaticity) and WML was manipulated by whether
the addition involved partial decomposition (low WML) or full
decomposition (high WML). There were four strategy conditions
for each original question (e.g., 29 + 14 =), consisting of
(1) problems with high schema automaticity and low WML
such as (29 + 10) + 4 =? (one-time regrouping and partial
decomposition), (2) problems with high schema automaticity
and high WML such as (10 + 10) + (9 + 4) =? (one-
time and complete decomposition), (3) problems with low
schema automaticity and low WML such as (29 + 8) + 6 =?
(two-time regrouping and partial decomposition), and (4)
problems with low schema automaticity and high WML such
as (13 + 9) + (16 + 5) =? (two-time regrouping and full
decomposition). See examples in Table 4.

Our four strategy conditions were nominal scale variables that
included four categories of strategies. Thus, dummy variables
were created to analyze categorical variables. First, we treated
strategy condition (1) as one category and the remaining three
conditions as another category. Then, we had the coding for
strategy-a (3,−1,−1,−1). Second, among the strategy conditions
(2), (3), and (4), we treated condition (2) as one category, and
conditions (3) and (4) as another category. Then, we obtained
strategy-b (0, 2, −1, −1). Finally, we compared conditions (3)
and (4), so we obtained strategy-c (0, 0, 1, −1). We did not need
a fourth dummy variable to represent condition (4) because all
four strategy conditions were mutually exclusive (they did not
overlap) and exhaustive (no other levels exited for this variable;
Ding, 2000).

Multi-Step Addition Problems (Simultaneous
Presentation)
First, we selected eight addition problems (the range of sums was
43 to 91, M = 68, SD = 15.48). The eight problems were designed
following four rules: (a) within half of the problems, the larger
operands were in the left position (e.g., 63 + 18 =); within the
other half of the problems, the larger operands were in the right
position (e.g., 12 + 49 =); (b) the digits were not repeated in the
same unit or place value across operands (e.g., 64 + 14); (c) no
digits were repeated within operands (e.g., 55 + 11); and (d) no
operand had 0 in the ones place value (Lemaire and Callies, 2009).

By alternating the levels of automaticity and WML, there were
four conditions for eight original problems. Thus, we had 32
problems in total. Table 4 presents how we alternated schema
automaticity and WML in the four testing conditions. Cronbach’s
α was 0.92 for response time and 0.67 for accuracy, which is
acceptable (DeVellis, 1991). E-prime was used for programming.
The details of the procedure were similar to the description in
Study 1.

Single-Step Addition Problems
The same 32 addition problems were re-used. However, to
obtain accuracy and response time on single-step addition, we
decomposed the multi-step addition problems and generated 77
single-step addition problems. For example, (29 + 10) + 4 =
would be decomposed to two single-step addition problems,
including 29 + 10 = and 39 + 4 =. Some decomposition of
the multi-step addition problems would lead to repeated single-
step addition problems, and we only retained one of them.
All problems were presented randomly by the computer. The
stimulus of “+” was flashing in the center of the computer
screen and it continued flashing for 150 ms. Then, the single-step
addition problem was presented. The examinee orally reported
the answer, and the examiner manually entered the answer and
pushed “enter” for the next item to be presented. After the
examinee completed 20 items in a row, the examinee took a
short break. The computer automatically recorded the accuracy
and response time (i.e., the duration was from the point of
stimulus presentation to the point that the examiner hit the enter
key) for each item (i.e., both correct or incorrect items). We
considered the mean response time of all single-step addition
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TABLE 4 | Addition problems used during simultaneous presentation and descriptive statistics (Study 2).

Original problems High automaticity Low automaticity

Low WML (1) High WML (2) Low WML (3) High WML (4)

29 + 14 = 43 (29 + 10) + 4 = (10 + 10) + (9 + 4) = (29 + 8) + 6 = (13 + 9) + (16 + 5) =

18 + 34 = 52 (18 + 30) + 4 = (10 + 30) + (8 + 4) = (18 + 26) + 8 = (12 + 25) + (6 + 9) =

12 + 49 = 61 (10 + 49) + 2 = (10 + 40) + (2 + 9) = (8 + 49) + 4 = (4 + 23) + (8 + 26) =

14 + 49 = 63 (10 + 49) + 4 = (10 + 40) + (4 + 9) = (6 + 49) + 8 = (6 + 25) + (8 + 24) =

43 + 28 = 71 (40 + 28) + 3 = (40 + 20) + (3 + 8) = (17 + 28) + 26 = (26 + 7) + (17 + 21) =

63 + 18 = 81 (63 + 10) + 8 = (60 + 10) + (3 + 8) = (24 + 18) + 39 = (29 + 16) + (34 + 2) =

23 + 59 = 82 (20 + 59) + 3 = (20 + 50) + (3 + 9) = (16 + 59) + 7 = (17 + 34) + (6 + 25) =

57 + 34 = 91 (57 + 30) + 4 = (50 + 30) + (7 + 4) = (57 + 16) + 18 = (14 + 28) + (43 + 6) =

RT M/SD in seconds 5.73 (2.45) 6.02 (2.61) 11.75 (6.53) 20.30 (10.53)

Cronbach’s α for RT 0.83 0.85 0.82 0.87

WML, working memory load. (1), (2), (3), and (4), conditions (1), (2), (3), and (4). Condition 1: one-time regrouping and partial decomposition. Condition 2: one-time
regrouping and complete decomposition. Condition 3: two-time regrouping and partial decomposition. Condition 4: two-time regrouping and complete decomposition.
RT, response time.

problems involved in a multi-step mental addition as the single-
step response time corresponding to that multi-step mental
addition response time.

Working Memory Measure (Phonological Loop Task)
The details of the phonological loop task were provided in
Study 1.

To counter an order effect, all problems of each task were
randomly presented by the computers. E-prime was used for
programming. Prior to testing, the participants received training
through practice items. The participants completed three tasks in
a random order.

Participants
Running a power analysis on a repeated measures ANOVA with
four measures, a power of 0.80, an alpha level of 0.05, and
a medium effect size (f = 0.25) requires a sample size of at
least 24 (Faul et al., 2013). We recruited 43 typically developing
fourth graders (female = 25, male = 18) who should have fluently
mastered under-100 addition, subtraction, multiplication, and
division by the time of testing. They ranged from 9 to 11 years
old (M = 9.42, SD = 0.79), with 22 females and 21 males. The
participants were randomly recruited from an elementary school
in China. All children did not carry documented disabilities and
did not receive training on mental arithmetic. This study was
approved by the Research Ethics Committee of Beijing Normal
University and the principals of the participating schools. Written
and Informed consent was obtained from the parents/legal
guardians of participants.

Results and Discussion
In Study 2, the main goal was to examine how single-step
mental addition, strategy use, and working memory measure
affected multi-step mental addition. A three-level HLM analysis
was applied to account for student-level, strategy-level, and
item-level variances. The Level 3 sample size was 43, the Level
2 sample size was 172 (43 students completed four strategy
conditions), and the Level 1 sample size was 1,375 (43 students

completed 32 items and there were missing items). Based on
Chang (2003, 2004), we maintained four decimals in the HLM
analysis.

All of the participants had very high levels of accuracy (89.24%
for all conditions, SD = 7.8%) and there was little variation among
the participants. Thus, the measure of accuracy was excluded as a
variable for analysis. We only used participants’ correct response
time for further analysis. The descriptive statistics for different
variables are listed in Table 5.

In Table 6, the dependent variable was the average response
time of multi-step addition at Level 1 (item level). The
independent variable was the response time of single-step
addition at Level 1, indicating simple addition skills. γ100 (1.5751)
was significant and suggested that the single-step response
time had an effect on multi-step response time in the positive
direction. It indicated that better (faster) response time on single-
step mental addition decreased the response time on multi-step
mental addition, supporting Hypothesis 1.

TABLE 5 | Descriptive statistics of response time at item-, strategy-, and
student-level (Study 2).

Variables N Mean SD Min Max

Item-level (Level 1)

Multi-step RT 1224 9.98 7.73 2.50 66.22

Single-step RT 1224 2.80 1.32 0.94 10.87

Strategy-level (Level 2)

Strategy-a 171

Strategy-b 171

Strategy-c 171

Student-level (Level 3)

Phono 43 40.14 9.18 7.00 48.00

We only analyzed correct response time. RT, response time (measured by
seconds). There were 32 testing items. The multi-step response time was
calculated based on the response time on each testing item. The single-step
response time was calculated based on the response time on each testing item
divided by the presentation steps involved in that item. Phono, phonological loop.
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TABLE 6 | Effects of automaticity, strategy, and phonological loop on response time: three-level regression coefficients (Study 2).

Fixed effect Coefficient SE T-ratio Approx. df P

Multi-step RT as the outcome measure

Student-level (Level 3)

For INTRCPT1 π0

INTRCPT2 β00

INTRCPT3 γ000 8.2621 1.6268 5.08 41 <0.001

Phono γ001 −0.0530 0.0257 −2.06 41 0.045

Strategy-level (Level 2)

For STATEGY-A β01

INTRCPT3 γ010 −1.3622 0.0925 −14.73 125 <0.001

For STATEGY-B β02

INTRCPT3 γ020 −2.2642 0.1893 −11.96 125 <0.001

For STATEGY-C β03

INTRCPT3 γ030 −4.1992 0.3914 −10.73 125 <0.001

Item-level (Level 1)

For ST-RT slope π1

INTRCPT2 β10

INTRCPT3 γ100 1.5751 0.3050 5.16 1009 <0.001

We only analyzed correct response time. Phono, phonological loop; RT, response time; ST-RT, single-step response time; INTRCPT, intercept. It is common to retain four
decimals for HLM results (Chang, 2003).

At Level 2 (strategy-level), the dependent variable was the
average response time of multi-step mental addition. Four
strategy conditions were treated as dummy variables, including
strategy-a, strategy-b, and strategy-c. γ010 (−1.3622), γ020
(−2.2642), and γ030 (−4.1992) were all statistically significant,
suggesting that strategy use had effects on multi-step response
time in the negative direction. The negative coefficients indicated
that the strategy condition with larger coding values (easier
strategy condition) corresponded to a smaller intercept, whereas
the strategy condition with smaller coding values (more difficult
strategy condition) corresponded to a larger intercept. In other
word, as students moved from strategy (1) (easier strategy) to
strategy (4) (more difficult strategy), the intercept determined by
the strategies increased (indicating longer response time). This
supported our Hypothesis 2 that the strategy with high schema
automaticity and low WML would be associated with a shorter
response time.

At Level 3 (student-level), the phonological loop was the
independent variable and the intercept of Level 2 was the
dependent variable. The phonological loop (γ001 = −0.0530)
negatively predicted response time on multi-step mental
addition. As the phonological loop skill increased, the portion of
intercept of Level 2 determined by phonological loop decreased.
This finding supported our Hypothesis 3 that the higher the score
of the phonological loop, the shorter the response time.

GENERAL DISCUSSION

Main Findings
The findings reveal the important roles of working memory,
single-step mental addition skills, and strategy use in multi-
step mental addition. We manipulated the difficulty levels of the

tasks through the dimension of WML and schema automaticity
by using different approaches in Study 1 and Study 2. There
are three main findings revealed in Study 1 and Study 2. First,
children’s shorter response time on single-step mental addition
was associated with shorter response time on multi-step mental
addition, regardless of how we manipulated the levels of WML
and schema automaticity. Second, different strategy use was
enforced through the four strategy conditions for which we
manipulated the difficulty levels of schema automaticity and
WML. Easier strategy was associated with shorter response time.
Third, stronger phonological loop was associated with shorter
response time on multi-step mental addition.

Single-step response time was considered as children’s fluency
on simple addition facts. Our findings support the importance
of fluency in single-step addition facts in order for children to
perform efficiently on multi-step mental addition. These findings
confirm the importance of fluency in basic arithmetic facts,
which is consistent with previous findings indicating that direct
retrieval of simple mathematic facts is the most advanced and
most efficient strategy with regard to problem solving speed
and accuracy (Siegler, 1988; Geary et al., 2004). According to
the cognitive load theory (Sweller, 1988; Paas et al., 2003; van
Merriënboer and Sweller, 2005), high fluency on single-step
addition largely reduces the load on working memory, freeing
up working memory for more complex operations such as multi-
step addition. Low fluency on single-step addition facts indicates
that children who do not directly retrieve basic addition facts
from their unlimited long-term memory could be overwhelmed
by the number of interactive single-step addition facts that need
to be processed simultaneously before multi-step addition can
be processed (Paas et al., 2010). In the case that children are
not fluent with single-step addition facts, their execution of
single-step addition requires substantial resources of working
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memory in order to consciously process the intermediate sums
of single-step addition. Cumulatively, the process to execute
the intermediate sums of single-step addition, memorize the
intermediate sums, and add all intermediate sums to form the
total sums would warrant a large amount of processing time
(longer response time).

In Ding et al. (unpublished), we found that student response
time followed the order of strategy (1) < strategy (2) < strategy
(3) < strategy (4), from the fastest condition to the slowest
condition, by examining the descriptive statistics. The findings
of the HLM analysis concurred with our previous observations
(Ding et al., 2017), suggesting that high schema automaticity
and low WML corresponded with higher accuracy rate and
shorter response time. Under the strategy (1) condition, the
problems were presented with high schema automaticity and
low WML such as 8 + 12 + 6 (i.e., the difficulty levels on
both dimensions were low). The problem has an intermediate
sum of 10 and only has two steps. Thus, strategy (1) yielded
the fastest response time. Under the strategy (4) condition, the
problems were presented with low schema automaticity and high
WML such as 8 + 6 + 3 + 7 + 12 (i.e., the difficulty levels
on both dimensions were high). Thus, strategy (4) yielded the
slowest response time. Under strategy (2), problems with high
schema automaticity and high WML (8 + 2 + 7 + 3 + 6 =),
and strategy (3) problems with low schema automaticity and low
WML (8 + 6 + 12 =), only one dimension of the problem was
difficult and the other dimension of the problem was easy. The
findings in Ding et al. (2017) indicated that sacrificing resources
on WML while performing easier tasks (i.e., tasks that students
could retrieve automatically) rendered shorter response time,
whereas less demand on WML did not compensate for the limits
of automaticity, suggesting that children performed better in
condition (2) than they did in condition (3). Our Level-2 HLM
analysis supported our previous observations (Ding et al., 2017).
All coefficients at Level 2 are negatively significant, indicating
that an easier strategy condition (condition with larger dummy
variable coding value) led to a smaller intercept determined by
that strategy (i.e., shorter response time). In other words, the
use of a more effective strategy led to shorter response time on
multi-step mental addition.

Children’s performance on the phonological loop task
negatively predicted the response time on multi-step mental
addition, concurring with Liu et al. (2017), Ding et al.
(unpublished). Higher phonological loop scores corresponded
to shorter response time on multi-step mental addition. The
findings underline the important role of phonological loop in
mental arithmetic in Chinese children. Although there have
been mixed findings regarding the role of phonological loop
in single-step mental arithmetic in empirical studies conducted
with Western participants (e.g., Lemaire et al., 1996; De
Rammelaere et al., 1999, 2001; Seitz and Schumann-Hengsteler,
2000, 2002; Hecht, 2002), the critical role of phonological
loop has been demonstrated in single-step mental arithmetic
in Korean participants (Lee and Kang, 2002) and in multi-
step mental arithmetic in Chinese participants (Liu et al.,
2017; Ding et al. unpublished). We attributed such a universal
role of phonological loop in mental arithmetic to the unique
mathematics instructional approach adopted in the Chinese

education system. The Chinese school system emphasizes
practice and drills on basic mathematic facts. A large amount of
class time is designed to enhance children’s fluency on simple
arithmetic such as addition, subtraction, multiplication, and
division. For example, children are required to rote memorize
multiplication tables from 1 × 1 to 9 × 9, and children
often memorize such arithmetic facts through verbal rehearsal
(e.g., one one equals one, one two equals two). For one-digit
or two-digit addition and subtraction, rote memorization is
also greatly encouraged. Thus, it is rare to observe Chinese
children attempting a wide range of strategies to tackle simple
arithmetic problems because they often rely on verbal modality
to directly retrieve the results from long-term memory. China’s
Compulsory Education Law (National People’s Congress, 1986)
is responsible for students ranging from Kindergarten to Grade
9, and students within the age/grade range are entitled to free
public education. According to the data released by the Ministry
of Education (2014), there were 254,000 public schools serving
students from Kindergarten to Grade 9, whereas there were only
10,425 private schools serving K-9 students (only 4% of the
K-9 schools are private). In China, the standard mathematics
curriculum is developed by the Ministry of Education to avoid
disparities in education caused by regional differences, and all
public schools (96% of all K-9 schools) utilize the standard
mathematics curriculum mandated by the central government. In
other words, there is very little variation in terms of how Chinese
children are taught basic mathematic facts. Early mathematics
teaching in China encourages language-specific representations
of basic mathematic facts, which supports the critical role of
phonological loop in our findings.

It is ideal to analyze findings from the aspects of accuracy
and response time. However, it is noteworthy that Chinese
children were fairly accurate on mental addition (91.5% accuracy
rate for Study 1 and 89.24% accuracy rate for Study 2),
regardless of how the testing conditions were manipulated.
Thus, we did not include accuracy in the final analysis due
to little variation among the students (i.e., students were
fairly accurate regardless whether they spent more or less
time on problems). The findings concurred with the high
accuracy rate of Chinese children reported in Ding et al.
(unpublished). In the present studies, we artificially increased
the difficulty levels of the strategy conditions (i.e., strategies
1, 2, 3, and 4), and the complexity of the problem formats
appeared to affect the response time (i.e., children took
longer to respond to more complex problems). However,
the Chinese children in our studies continued to accurately
execute the problems and provide correct answers, regardless
of the increased steps or decreased schema automaticity to
retrieve arithmetic facts. The increased difficulty levels of the
problems obviously sacrificed their response time, but not their
accuracy rate. In China’s elementary mathematics curriculum
(People’s Education Press, 2017), exact arithmetic calculation is
largely emphasized, with less emphasis on number estimation
(i.e., teachers discourage approximate answers or guessing but
encourage accurate answers). A large amount of homework and
in-class practice serve to enhance children’s calculation accuracy.
Our findings echoed the evidence of performance advances for
East Asian students in simple arithmetic that occur in elementary
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school as early as Kindergarten (Siegler and Mu, 2008), secondary
school (Stevenson et al., 1993), and beyond (Stevenson and
Stigler, 1992).

We used different approaches to alternate the difficulty levels
of the strategies in Study 1 and Study 2. In Study 1, we
alternated the task difficulty levels through the dimension of
WML (i.e., two steps versus four steps) and the dimension of
schema automaticity (i.e., intermediate sums were 10 or were
not 10; Lemaire and Callies, 2009; Klein et al., 2010). Study
1 extended our previous study (Ding et al., 2017) in mental
multiplication to mental addition, but followed the same design
for task development. In Study 2, the schema automaticity was
manipulated by the steps of regrouping involved in operations
(i.e., one-time regrouping versus two-time regrouping), and
WML was measured by whether the addition involved partial
decomposition (low WML) or full decomposition (high WML;
Lemaire and Callies, 2009), which was not utilized in previous
studies. The general findings in Study 1 held true in Study 2, even
though the strategy conditions were manipulated differently.

LIMITATIONS AND CONCLUSION

We note that our studies have shortcomings. First, the
participants were limited to two independent samples of third
graders and fourth graders in large cities of China. The findings
might not be generalizable to learning of arithmetic in other
countries due to possible differences in instructional approaches
and learner characteristics. Second, we assumed that if a problem
was presented in a specific way (e.g., imposed problem format
such as 8 + 12 + 6, then children would calculate 8 + 12 = 20
first and then calculate 20+ 6 = 26 in that order); that is, children
would solve problems according to the enforced problem format.
It remains unclear whether a small portion of participants might
have generated their own strategy (e.g., 8+ 12+ 6, then children
would calculate 12+ 6 = 18 first and then calculate 8+ 18 = 26),
regardless of the problem format we enforced. There was no
mechanism to prevent spontaneous strategy use that did not
follow the imposed problem format. Nevertheless, even if in
some cases the students used some strategies to reorganize the
sequence of calculating a problem, they must have spent some
time observing the digital features of the problem and then
making decisions on what strategies they could generate and
use, which would have led to increased response time. Third,
the measures of accuracy and response time should be used for
analysis in an ideal situation. For example, both analyses for
accuracy and response time were provided for the examination
of mental multiplication in Ding et al. (2017). However, in the
samples in the present study, students were fairly accurate on all
addition task conditions regardless of how we manipulated the

tasks, although they demonstrated differentiated response time
under different addition task conditions. Due to the little variance
of accuracy rates among the participants, the measure of accuracy
rate was excluded for final analysis.

Despite the shortcomings, the present studies extend the
literature in a number of ways. First, we extended our alternation
of WML and automaticity from mental multiplication (Ding
et al., 2017) to mental addition. Second, within mental addition,
we applied different approaches to alternate the difficulty levels
of WML and schema automaticity in Study 1 and Study 2,
and the general findings were consistent in both studies. Our
findings indicate that future researchers might consider utilizing
different approaches to alternate WML and schema automaticity
and examine whether the findings hold true under different
testing conditions. Third, the present studies underscore the
importance of enhancing children’s fluency in simple arithmetic,
the use of effective strategy, and the important role of verbal
representation of arithmetic facts in Chinese children. The
homogenous evidence supports the activation of phonological
loop during mental arithmetic problem solving in Chinese
children. It highlights the importance of evaluating the linguistic
features and instructional contexts in which children become
fluent with basic arithmetic facts.
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Math anxiety (MA) is a phobic reaction to math activities, potentially impairing math
achievement. Higher frequency of MA in females is explainable by the interaction
between genetic and environmental factors. The molecular-genetic basis of MA has
not been investigated. The COMT Val158Met polymorphism, which affects dopamine
levels in the prefrontal cortex, has been associated with anxiety manifestations. The
valine allele is associated with lower, and the methionine allele with higher, dopamine
availability. In the present study, the effects of sex and COMT Val158Met genotypes
on MA were investigated: 389 school children aged 7–12 years were assessed for
intelligence, numerical estimation, arithmetic achievement and MA and genotyped for
COMT Val158Met polymorphism. The Math Anxiety Questionnaire (MAQ) was used to
assess the cognitive and affective components of MA. All genotype groups of boys
and girls were comparable regarding genotype frequency, age, school grade, numerical
estimation, and arithmetic abilities. We compared the results of all possible genetic
models: codominance (Val/Val vs. Val/Met vs. Met/Met), heterosis (Val/Met vs. Val/Val
plus Met/Met), valine dominance (Val/Val plus Val/Met vs. Met/Met), and methionine
dominance (Met/Met plus Val/Met vs. Val/Val). Models were compared using AIC and
AIC weights. No significant differences between girls and boys and no effects of the
COMT Val158Met polymorphism on numerical estimation and arithmetic achievement
were observed. Sex by genotype effects were significant for intelligence and MA.
Intelligence scores were higher in Met/Met girls than in girls with at least one valine
allele (valine dominance model). The best fitting model for MA was heterosis. In Anxiety
Toward Mathematics, heterozygous individuals presented MA levels close to the grand
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average regardless of sex. Homozygous boys were significantly less and homozygous
girls significantly more math anxious. Heterosis has been seldom explored, but in
recent years has emerged as the best genetic model for some phenotypes associated
with the COMT Val158Met polymorphism. This is the first study to investigate the
genetic-molecular basis of MA.

Keywords: COMT, catechol-O-methyltransferase, heterosis, math anxiety, sex differences, dyscalculia

INTRODUCTION

Math anxiety (MA) is a learned phobic reaction toward math
activities that may importantly impair math learning (Dowker
et al., 2016). MA is complex and manifests itself at different levels:
cognitive (negative attitudes, worrisome rumination, feelings
of helplessness, low self-esteem and self-efficacy, etc.); affective
(dysphoria); behavioral (avoidance, hurry to finish math tasks,
etc.); and physiological (sweating, trembling, high pulse rate,
etc.) (Ashcraft et al., 2007). Although MA is a multidimensional
construct, it is usually measured through self-report scales
focusing on two dimensions: cognitive (performance perceptions
and beliefs) and affective (emotional reactions and feelings)
(Wood et al., 2012, see review in Haase et al., 2019).

In this study, we investigate the relevance of the COMT
Val158Met polymorphism for sex differences in MA. In the
Introduction, we will present the following topics: (a) sex
differences in MA; (b) behavioral genetics of MA; (c) genetic
models; (d) COMT Val158Met polymorphism and cognition;
(e) COMT Val158Met polymorphism and anxiety; (f) outline of
the present study.

Sex differences in math anxiety have already been described.
MA levels are significantly higher in females than in males
(Hembree, 1990; Dowker et al., 2016) and in certain professional
categories, such as nurses and elementary school teachers
(Hembree, 1990; Beilock et al., 2010; McMullan et al., 2012).
Sex differences are observed from early school age on and tend
to increase over time (Dowker et al., 2012). Possible societal
consequences include less participation of females in math-
intensive fields (Ceci et al., 2014).

Issues involving sex, math achievement and MA are complex.
Low math achievement does not seem to be the cause of higher
MA levels in females. Average math performance in males and
females is highly similar. In recent years, a tendency of girls
to obtain better grades in math than boys has been observed
(Dowker et al., 2012). However, more males than females are
found at the highest levels of math performance (Wai et al., 2010;
Stoet and Geary, 2013).

Some possible experiential factors associated with higher
rates of MA in females would be proneness and willingness
to admit anxiety symptoms (Chapman et al., 2007; McLean
et al., 2011), a sex stereotype threat (Spencer et al., 1999),
and social transmission of MA by female teachers (Beilock
et al., 2010) and parents (Eccles et al., 1990, see review in
Gunderson et al., 2012). However, higher MA levels in girls
and undervaluation of girls’ math abilities by parents seem
to be independent of socioeconomic development and sex
equity in cross-national comparisons (Stoet and Geary, 2015,

2016; Ireson, 2016). This may indicate the effects of female
exposure to a more competitive environment or inherent
affective/motivational differences between the sexes.

Much attention has been given to the gender stereotype
threat as an important socio-cognitive mechanism underlying
MA (Dowker et al., 2016). When women are reminded
of the “males are better at mathematics than females”
stereotype, their performance drops (Spencer et al., 1999).
Neuroimaging studies indicate that the gender stereotype
threat in math situations activates ventral cerebral areas
associated with negative emotional processing and inhibits
dorsal areas relevant to controlled and math processing
(Krendl et al., 2008). However, Stoet and Geary (2012)
observed that most studies only uncovered stereotype effects
when prior math performance was statistically controlled.
Therefore, as math performance is the outcome of interest,
statistical control for prior math performance differences may
confound between predictor and outcome. Stoet and Geary
(2012) observed that only 55% of the studies replicated
the original Spencer et al. (1999) finding, half of which
adjusted for prior math achievement. Only 30% of studies
without such adjustment reported significant effects of the
stereotype threat.

In addition, neurocognitive differences could underlie MA
sex susceptibility. This is supported by a study showing that
lower MA levels in boys were mediated by better visuospatial
processing abilities (Maloney et al., 2012). These subtle, but
potentially relevant, cognitive differences could originate from
fetal testosterone levels (Stoet and Geary, 2016). Supporting this
hypothesis, a low negative correlation has been observed between
2D:4D digit-ratio, a marker of higher fetal testosterone levels,
and related constructs such as math achievement and computer
anxiety (de Bruin et al., 2006; Fink et al., 2006; Bull et al., 2010;
Brosnan et al., 2011).

There are many hypotheses, and the origins of the higher
female MA levels have been subject to considerable debate (Stoet
and Geary, 2012). Overall, it is safe to conclude that both genetic
and environmental factors contribute to the phenomenon.
A diathesis-stress model could be advanced to explain sex
differences in MA. According to this model, higher MA levels
in females could be the result of interactions between specific
neurocognitive vulnerabilities (such as fetal testosterone levels
and yet to be discovered genetic influences) and environmental
stress sources (such as low adult expectations and sex stereotype
threat). Testing of this model requires a deeper understanding
of the neurobiological, and especially the genetic, bases of
MA. Understanding the neurogenetic underpinnings of MA
susceptibility is essential for planning effective interventions.
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Behavioral genetics of math anxiety have already been
investigated. Two behavioral genetic studies investigated MA in
twins (Wang et al., 2014; Malanchini et al., 2017). Heritability
estimates were moderate (around 40%). Genetic correlations
were observed with other forms of anxiety such as general anxiety
and spatial anxiety. Both shared and non-shared environmental
influences were uncovered. Wang et al. (2014) results suggest
that MA emerges from the interaction between genetic influences
on math performance and general anxiety. General anxiety,
in turn, emerges from the interaction between genetic and
non-shared environmental influences. Malanchini et al. (2017)
obtained similar results, indicating a role for genetic and
non-shared environmental factors, and for both shared and
specific genetic influences on spatial anxiety and MA. No
genetic or environmental sex-specific effects were investigated in
these two studies.

To the best of our knowledge, no previous research has
addressed the molecular-genetic underpinnings of MA. Other
forms of anxiety have been associated with a host of genetic
polymorphisms in several neurochemical systems (Stein et al.,
2006). In this article, we focus on the dopaminergic system, as
it has been implicated in various forms of performance anxiety
(Mathew and Ho, 2006).

Another topic to consider is the genetic models to investigate.
The impact of a specific genetic variation on a phenotype depends
on the function of the protein or RNA considered. Most of the
proteins are expressed from both alleles. As a consequence, the
impact of genetic variants leading to aminoacid substitutions that
change protein function depend on the genotype, meaning the
pair of alleles present on an individual. For any locus having two
alleles, say, allele 1 and allele 2, the effect, the effects depend on
the genotype present, 11, 12, or 22. However, it also depends on
the relationship between these alleles. Consider, for example an
enzyme, being 1 the wild type allele and 2 a less functional allele.

In an additive or codominance model, the genotype 11 would
provide more enzyme activity, the genotype 12, less and the
genotype 22 still less activity. In a 1 dominant model, 11 and
12 genotypes would produce similar enzyme function and 22
genotype would provide less (or more) enzyme activity. In the
2 dominant model, the effect would be the contrary. A third
situation is seen when the both homozygous (11 and 22)
genotypes produce similar enzyme activity and the heterozygous
(12) genotype produces a different level of activity. When the
heterozygous genotype is advantageous, the term heterosis is
used. When the heterozygous genotype is disadvantageous, the
term anti-heterosis is used. The term overdominance is also used,
meaning heterosis. In Figure 1, we offer a graphic representation
of these phenomena.

COMT Val158Met polymorphism has already been associated
with cognition. Genetic polymorphisms in the catechol-O-
methyltransferase (COMT) gene are a possible source of sex
variability in cognitive and emotional processes, including math
achievement and MA. The COMT Val158Met polymorphism
(rs4680) has been particularly investigated. As a consequence
of a nucleotide substitution in codon 158, a valine (Val) in
position 158 of the protein is replaced by a methionine (Met).
Three genotypes are thus defined: Val/Val, Val/Met and Met/Met,

with consequences for the enzyme’s rate of catabolism. The
presence of valine as compared to methionine is associated with
higher COMT activity and lower dopamine availability at the
synaptic cleft (Chen et al., 2004). This COMT polymorphism has
been associated with several cognitive and emotional functions
regulated by the prefrontal and parietal cortices, such as working
memory (Goldberg et al., 2003; Mier et al., 2010; Júlio-Costa et al.,
2014), numerical cognition (Tan et al., 2007; Júlio-Costa et al.,
2013), impulsivity (Stein et al., 2006), anxiety (Mier et al., 2010;
Gottschalk and Domschke, 2017), and psychiatric conditions
such as schizophrenia (González-Castro et al., 2016), ADHD
(Kebir and Joober, 2011; Bonvicini et al., 2016), autism (Nikolac
Perkovic et al., 2014), etc.

Early results suggested that the valine allele would be
associated with lower working memory performance and
impulsivity (Stein et al., 2006; Mier et al., 2010; see also
Dickinson and Elvevag, 2009). The methionine allele was,
otherwise, implicated in higher working memory performance
and anxiety. The connection between COMT Val158Met and
numerical and arithmetic performance was explored in a study
performed with typically developing children aged 7–12. The
group with at least one methionine allele displayed more accurate
non-symbolic number estimation (indexed by the coefficient of
variation, cv), non-symbolic magnitude comparisons (indexed by
the internal Weber fraction, w) and number transcoding (Júlio-
Costa et al., 2013). Next, we discuss the association between
the Val158Met COMT polymorphism and anxiety manifestations
more specifically.

COMT Val158Met polymorphism and anxiety have also
been associated. The association of the COMT Val158Met
polymorphism with cognitive and emotional functions is subject
to influences by culture, age and sex in adult samples (see
reviews in Lee and Prescott, 2014; Barzman et al., 2015). The
COMT Val158Met polymorphism has been implicated in anxiety
manifestations in males and females (Hosák, 2007; Harrison and
Tunbridge, 2008). Early reviews pointed out that both the valine
and methionine alleles could be associated with anxiety-related
phenotypes such as personality traits (e.g., neuroticism) and
related disorders (e.g., generalized anxiety and panic disorder;
Domschke et al., 2004; Harrison and Tunbridge, 2008). In these
studies, interactions with sex were also extremely variable and
complex, with a tendency for genotype-phenotype associations to
be more salient in females.

More recent research also supports a nuanced picture
of the association between COMT genotypes and anxiety
manifestations. For example, Chen et al. (2011) found a
COMT-by-sex interaction effect on affect-related personality
traits in a large sample of the Chinese population. Males with
at least one valine allele showed significantly higher scores
on negative emotions than methionine homozygous males.
Valine homozygous males presented lower scores on positive
emotions, when compared with males possessing at least one
methionine allele. A reverse tendency was observed in females,
but the results were not significant. In another study, the
Val158Met polymorphism was observed to interact with sex and
neuroticism, but not with clinical symptoms of anxiety (Lehto
et al., 2013). The interaction with neuroticism was investigated
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FIGURE 1 | Graphic representation of the genetic models. y-axis: any hypothetical quantitative phenotype. x-axis: 1 and 2 are different alleles at the same locus and
11, 12, and 22 are the possible genotypes. The genetic models represent the different possible interactions between alleles in a specific genotype. Starting on the
top, left, and going clockwise, figures represent examples of additive (codominance), dominance, anti-heterosis and heterosis models.

at three different ages (15, 18, and 25 years) in the same
cohort. Valine homozygous females presented higher levels of
neuroticism in the last assessment when compared to all other
sex and genotype groups. Finally, females with at least one valine
allele presented a tendency for higher levels of state and trait
anxiety and lower reaction times than males, when viewing faces
expressing fear or anger (Domschke et al., 2012). Statistically
significant higher activation rates were observed using fMRI
in the ventral visual stream, amygdala, and lateral prefrontal
cortex in valine homozygous females, when compared with
all other sex and genotype groups. These studies show that
the associations between the effects of the COMT Val158Met
polymorphism and anxiety-related manifestations are complex
and moderated by sex.

Effects of the COMT val158met polymorphisms may interact
with sex hormones. It has been shown that estrogen down-
regulates COMT activity; i.e., this hormone reduces the rates

of enzyme activity (Gogos et al., 1998; Xie et al., 1999; Jiang
et al., 2003). Estrogen levels could then amplify the association
between the valine allele and lower dopamine bioavailability
in the synaptic cleft at the prefrontal cortex. A meta-
analysis suggested complex interactions between the COMT
Val158Met polymorphism and sex (Lee and Prescott, 2014).
Valine homozygous males had higher neuroticism and/or harm
avoidance than methionine homozygous males. No significant
associations were found in women. Lee and Prescott (2014)
criticize the current literature for not controlling the effects of
menstrual phase and the use of hormonal birth control.

The complexity of the interactions between the COMT
Val158Met polymorphism and sex is also reflected in studies
with children and adolescents. In general, studies with children
reveal that the COMT Val158Met polymorphism may act as
a moderator between different kinds of anxiety manifestations
in hetero-report measures and environmental stressors such as
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early emotional trauma and maternal anxiety. Some studies have
implicated the methionine allele (Olsson et al., 2007; Baumann
et al., 2013) and other studies have implicated the valine allele
(Sheikh et al., 2013, 2017). A dose effect for the methionine
allele was observed in Olsson et al. (2007) study. The number of
methionine alleles was associated with higher risk for persistent
episodic anxiety in females, but not in males.

However, other studies have reported negative results,
failing to find either the involvement of the Val158Met
polymorphism with anxiety or the interaction with sex (Evans
et al., 2009). The current state of knowledge does not
allow generalizations regarding the involvement of the COMT
Val158Met polymorphism in anxiety, role of the alleles involved,
interactions with other genes and hormones, or interactions with
sex and age. This is illustrated in Supplementary Table S1, which
presents the methods and results of the ten original articles
reporting 11 studies, identified at PubMed in October 15th, 2018
using the key words “COMT” AND “anxiety” AND “child.”
Fourteen out the 24 articles retrieved were excluded, because
they were review articles, or did not investigate human subjects,
did not focus on children, did not have comparison groups,
or focused on psychotic and obsessive-compulsive disorder
symptoms. One article reported results from two studies (Sheikh
et al., 2013). Six of the 11 reported studies investigated the
interaction between sex and COMT influences on anxiety.

The extant literature on effects of the sex by COMT Val158Met
polymorphism on anxiety-related manifestations is scarce and
extremely variable regarding age, anxiety measures, design,
sampling, etc. Half of the six studies specifically examining this
interaction obtained negative results. In only one of these studies
with significant interactions, data were provided, from which
a small effect could be estimated (d = 0.15) (Sheikh et al.,
2017). From this literature, it is not possible to formulate more
specific hypotheses on the COMT Val158Met polymorphism
effects on anxiety-related manifestations that could eventually
be applied to MA.

Outline of the Present Study
As reviewed above, MA is a potential cause of under-
representation of females in math-demanding careers. According
to the diathesis-stress model of etiology, MA could result
from the interaction of environmental and genetic factors.
Some environmental factors, such as the low expectations of
parents and teachers and the stereotype threat, have been
extensively investigated. Neurobiological studies have focused on
the possible role of fetal testosterone levels. No previous research
has directly addressed the molecular-genetic underpinnings of
MA and its sex differences.

In the current study, we investigate the impact of the
COMT Val158Met polymorphism and sex on numerical
estimation, math achievement and MA, searching for
interactions between these variables in school-age children.
To this end, we genotyped the COMT Val158Met
polymorphism in a group of demographically recruited,
school-age children, with intelligence scores above the
PR10. We also assessed the children’s performance on tests
of arithmetic achievement, numerical estimation and, in

MAQ, an MA self-report questionnaire (Haase et al., 2012;
Wood et al., 2012).

Studies investigating the association between the COMT
Val158Met polymorphism and several anxiety forms have
resulted in largely incongruent and inconclusive results. A source
of incongruent results in association studies is the genetic
models tested. Most association studies assume codominance
(additive, multiplicative, etc.) or dominance models. Heterosis
has been much less frequently tested when investigating the
effects of a single locus. At a single locus level, heterosis has
also been referred to as molecular heterosis (Comings and
MacMurray, 2000, for a review). It refers to a situation in
which the phenotype in heterozygous individuals differs from
that of both homozygotes. Positive heterosis refers to higher
performance in heterozygotes and negative heterosis refers to
lower performance in heterozygotes. Heterosis (here meaning
molecular heterosis) has been frequently described for some
genes expressed in the brain, including the dopamine receptors
and COMT (Comings and MacMurray, 2000; Gosso et al., 2008;
Luijk et al., 2011). The term overdominance is used in the
literature to imply that the hybrid vigor described in association
with heterosis is effectively caused by heterozygote advantage,
in opposition to epigenetic effects (Charlesworth and Willis,
2009, for a review).

In the present study, we investigate four different genetic
models, representing the different possible interallelic
interactions in a locus. First, in the codominance model,
results of the three possible genotypes (Val/Val, Val/Met, and
Met/Met) are compared. Second, in the heterosis model, the
results of children having the heterozygous genotype (Val/Met)
are compared to a group composed of the two homozygous
genotypes (Val/Val plus Met/Met). Third, in the valine dominance
model, results from children having at least one valine allele
(meaning genotypes Val/Val plus Val/Met) are compared with
the results of children having the Met/Met genotype. Fourth, in
the methionine dominance model, the results of children with at
least one methionine allele (Met/Met plus Val/Met genotypes) are
compared to the results of children having the Val/Val genotype.
To the best of our knowledge, this is the first study to investigate
the molecular-genetic underpinnings of MA.

MATERIALS AND METHODS

Participants
Participants were recruited from students in the 1st to 6th grades,
enrolled in public and private schools in Belo Horizonte city,
Brazil. Sampling was by convenience, respecting the proportion
of 80% of children attending public schools, as observed in
the city population. The sample covers the intermediate socio-
economic strata of the Brazilian population (PR25 to PR75)
(Associação Brasileira de Empresas de Pesquisa [ABEP], 2018).
The sample comprised 389 children with ages ranging from 7
to 12 years (mean age = 115.66 [sd = 12.97] months, 55.32%
female) and normal intelligence (PR > 10). Children participated
only after informed consent was obtained in written form from
parents and orally from themselves.
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Instruments
Raven’s Colored Progressive Matrices
General intelligence was assessed using the Raven’s Colored
Progressive Matrices – CPM (Angelini et al., 1999). z-scores were
calculated based on the manual’s norms.

Arithmetics Subtest of the Brazilian School
Achievement Test (TDE)
This test is composed of three simple orally presented word
problems (e.g., which is the largest, 28 or 42?) and 45 written
arithmetic calculations of increasing complexity (e.g., very easy:
4-1; easy: 1230 + 150 + 1620; intermediate: 823 × 96; hard:
3/4 + 2/8). Specific norms for each school grade were used
to characterize children’s performance (Stein, 1994; Oliveira-
Ferreira et al., 2012). For the present study, the z-scores were
calculated by grade.

Math Anxiety Questionnaire (MAQ)
The present study used a Brazilian Portuguese validated and
standardized version (Haase et al., 2012; Wood et al., 2012).
The MAQ items have the format of one out of four types
of questions: “How good are you at. . .”; “How much do you
like. . .”; “How happy or unhappy are you if you have problems
with. . .” and “How worried are you if you have problems
with. . .”. Each question is answered in regard to six different
categories related to math, namely: mathematics in general; easy
calculations; difficult calculations; written calculations; mental
calculations; and, math homework. Children are encouraged
with supportive figures to give their responses according to a
5-point Likert scale (coded 0 to 4). Responses for each kind
of question are used to build the four MAQ subscales: MAQ
A – Self-perceived Performance; MAQ B – Attitudes Toward
Mathematics; MAQ C – Unhappiness About Mathematics; and,
MAQ D – Anxiety Toward Mathematics, according to the
authors of the original British version (Thomas and Dowker,
2000). The MAQ assumes that MA is a multidimensional
construct. Scales MAQ A and MAQ B assess cognitive
dimensions and scales MAQ C and MAQ D tap on the
affective components of MA (Wood et al., 2012). The several
subscales represent correlated but independent dimensions. The
best structural description reduced the MAQ to two constructs,
assessing the cognitive (MAQ AB) and the affective (MAQ
CD) components of MA (Wood et al., 2012). The higher
the score, the higher the MA level. In the present sample,
Cronbach’s alpha coefficients were similar to those of the original
report (Wood et al., 2012), varying from 0.76 (MAQ B) to
0.86 (MAQ Total). An age-standardized z-score was calculated
for each MAQ scale.

Magnitude Estimation
In the non-symbolic magnitude estimation task, participants
were asked to estimate, with a verbal response, the quantity of
dots shown on the computer screen (Júlio-Costa et al., 2013;
Pinheiro-Chagas et al., 2014). Black dots were presented in
a white circle against a black background. The numerosities
were 10, 16, 24, 32, 48, 56, or 64 dots. Each numerosity was
presented 5 times, every time in a different configuration, such

that the same numerosity never appeared in consecutive trials.
The task comprised 35 testing trials. To avoid counting, the
maximum stimulus presentation time was set to 1,000 ms. As
soon as the child responded, the examiner, who was seated next
to the child, pressed the spacebar on the keyboard and typed
the child’s answer. Between individual trials, a fixation point
appeared on the screen, which was a cross printed in white,
with 3 cm for each line. To prevent the use of non-numerical
cues, the sets of dots were generated using MATLAB in such
a way that, in half of the trials, dot size remained constant
and total dot area covaried positively with the numerosity; in
the other half of the trials, total dot area was held constant
and dot size covaried negatively with numerosity. Thus, neither
total occupied area nor dot size could serve as cues for
distinguishing between the different numerosities. To avoid
memorization effects due to the repetition of a specific stimulus,
on each trial, the stimuli were randomly chosen from a set of
10 precomputed images with the given numerosity. The data
were trimmed for each subject, to exclude the responses 3 sd
below or above the mean chosen value across all of the trials.
As a measure of non-symbolic number representation acuity,
we calculated the mean coefficient of variation (cv) of each
child’s responses.

Procedures
Data collection took place at the participants’ schools. At first, the
intelligence test (Raven’s CPM) and the arithmetic subtest of the
Brazilian School Achievement Test (TDE – Math) were applied
in groups of eight children. This screening lasted approximately
40 min. Subsequently, parents were called to a meeting to
collect the biological material (peripheral venous blood or
saliva). Finally, children also answered the MAQ individually and
performed the numerical magnitude estimation task in a quiet
room (approximately 30 min). Data were collected from 395
children in the screening phase. Six children did not participate
in the individual assessment because they performed below the
PR10 on the Raven’s CPM.

Genetic Analyses
DNA was extracted from peripheral blood or saliva using
saline precipitation protocol (Miller et al., 1988). COMT
Val158Met (rs4680) polymorphism was genotyped using two
methods: (a) TaqMan SNP genotyping assay, genotyping
was performed in ABI 7900 and analyzed using TaqMan
Genotyper Software (Thermo Fisher Scientific, United States);
(b) Tetra-primer amplification refractory mutation system-
polymerase chain reaction (ARMS-PCR), as previously described
by Ruiz-Sanz et al. (2007). In approximately 20% of the
sample, genotyping was double-checked using PCR-RFLP
with the restriction enzyme Hsp92II. This confirmed the
results obtained through TaqMan SNP genotyping assay.
These procedures are described in Júlio-Costa et al. (2013).
Hardy–Weinberg equilibrium was tested using GenePop on
the Web (Raymond and Rousset, 1995; Rousset, 2008). The
predictive power sample of 80% by sex group was estimated
using the Quanto software, considering an alpha = 0.05
(Gauderman, 2002, 2003).
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Statistical Analyses
Group differences in the distribution of sex, age, intelligence,
school grade, arithmetic achievement, magnitude estimation,
mathematics anxiety, as well as interactions with the COMT
polymorphism, were examined. We explored the influence of
intelligence on math achievement, numerical estimation and
MA using correlation analysis, and the impact of sex using
t-Student test. Since intelligence may confound the interpretation
of possible interactions among sex, COMT polymorphism, school
achievement and math anxiety, this variable (intelligence) was
included as a covariate in further comparisons. The impact
of the COMT polymorphism on school achievement and
math anxiety was investigated by between-subjects analysis of
covariance (ANCOVA).

To examine the interaction between COMT genotype, MA,
and sex, we performed a four factorial ANCOVA using
sex and COMT polymorphism as between-subjects factors,
magnitude processing and arithmetic achievement as covariates;
this procedure was repeated using each MAQ scale as the
dependent variable. To test more specifically the COMT
polymorphism effects, four different genetic models were
assessed (i.e., codominance, heterosis, valine dominance, and
methionine dominance). In the first model, the codominance
in the COMT polymorphism was represented by a factor with
three levels (homozygotes Val/Val, homozygotes Met/Met, and
heterozygotes). In the second model, heterosis was represented
by a factor with two levels (homozygotes vs. heterozygotes). In
the third model, the dominance of valine was represented by a
factor with two levels (Val carriers vs. non-carriers). In the fourth
model, the dominance of methionine was represented by a factor
with two levels (Met carriers vs. non-carriers). To establish which
model accounts best for the data on MA, the Akaike Information
Coefficient was calculated for each of the four models as well as
the corresponding Akaike weights. A decision about the best fit
was made based on the Akaike weights (Burnham and Anderson,
2003). The Akaike Information Criterion (AIC) is a simple index
of the degree of disparity between a statistical model and the
empirical data. The lower the value of the AIC, the better the
model depicts features of the data. The AIC utilizes information
on the log-likelihood of each model as well as the number of
model parameters, and penalizes models with higher complexity.
It is a useful tool for comparing different statistical models. When
considering a set of alternative models with their respective AIC
values, the Akaike weights can be calculated. These indicate, as
a proportion value, how much better a model is in comparison
to alternative models (see Wagenmakers and Farrell, 2004 for a
primer). Statistic tests were considered significant when values of
p < 0.05 were observed.

RESULTS

Allele frequencies observed were Met: n = 310 (40%) and Val:
n = 468 (60%). Genotype frequencies for the COMT Val158Met
polymorphism in the sample are consistent with the Hardy–
Weinberg equilibrium (p = 0.49). Participants were assigned to
one of three groups according to their genotypes: (1) homozygous

children for the valine allele (Val/Val): n = 141 (36.2%), (2)
heterozygous children (Val/Met): n = 186 (47.8%) and (3)
homozygous children for the methionine allele (Met/Met): n = 62
(15.9%). Proportions of boys and girls, their age, intelligence,
grade, numerical magnitude estimation, arithmetic achievement,
and MA scores are comparable [χ2(1) = 0.14; p = 0.93;
η2 = <0.001] across the three COMT genotypes (Table 1).
For a predictive power of 80%, the required sample size is
147 boys and 195 girls. Our sample is composed of 174 boys
and 215 girls, evidencing that the sample has enough power
to detect differences in MAQ-D between the genotypic groups
considering sex.

Missing data were restricted to the variable coefficient of
variation (cv) of the numerical estimation task. In total, 16%
of the values were missing. A chi-square test revealed that the
proportion of missing values when considering sex and genotype
was comparable [χ2(1) = 2.26, p = 0.132]. Correlation coefficients
of coefficient cv (numerical estimation), arithmetic achievement
and intelligence with MA were calculated (Table 2). Intelligence
was positively correlated with arithmetic achievement and
numerical estimation, and negatively, with MAQ B – Attitudes
Toward Mathematics (one of the cognitive components of
MA as assessed by MAQ). Numerical estimation correlated
negatively with intelligence and arithmetic achievement, and
positively with MAQ A – Self-perceived Performance. In turn,
arithmetic achievement also correlated negatively with MAQ
A – Self-perceived Performance, MAQ B – Attitudes Toward
Mathematics, and MAQ C – Unhappiness about Mathematics.
All MA subscales correlated positively with each other.

We calculated the impact of the COMT Val158Met
polymorphism on the cv of numerical estimation, arithmetic
achievement, and intelligence using ANOVA models with sex
and the genetic models (i.e., codominance, heterosis, valine
dominance, and methionine dominance) as between-subject
factors, and compared the model fit using the AIC and AIC
weights. Sex and COMT Val158Met polymorphism had no
effect on numerical estimation, as no main- or interaction-effect
reached significance (all p > 0.2). Sex and COMT Val158Met
polymorphism also had no effect on arithmetic achievement
(all p > 0.3). Importantly, an effect of COMT Val158Met
polymorphism on intelligence was observed. The genetic model
of valine dominance reached the smallest AIC (df = 5, AIC = 896)
and the highest AIC weight (83%). All other models presented
AIC values > 900 and Akaike weights < 14%. In the valine
dominance model, a significant interaction for sex by genotype
was observed [F(1,385) = 9.40, p = 0.002, η2 = 0.023]. None of the
main-effects reached significance. Tukey post hoc tests revealed
higher intelligence scores in Met/Met girls than in girls with at
least one valine allele (p = 0.02).

Genetic models (i.e., codominance, heterosis, valine
dominance, and methionine dominance) were compared in
order to determine the contribution of valine and methionine
alleles to the sex-specific phenotypes of MA. The genetic models
were evaluated using four different ANCOVA models in which
numerical estimation and arithmetic achievement were entered
as covariates. Intelligence was not included as a covariate, for
statistical reasons (Miller and Chapman, 2001), since it is also
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TABLE 1 | Demographic data of children divided according to sex and genotype.

Sex Total Val/Val Val/Met Met/Met

n(%) n(%) n(%) n(%)

Sample distribution Girls 215(55) 79 (37) 103 (48) 33 (15)

Boys 174 (45) 62 (36) 83 (48) 29 (17)

Mean (sd) Mean (sd) Mean (sd) Mean (sd)

Grade – 4.0 (1.0) 4.0 (0.9) 4.0 (1.0) 4.1 (1.1)

Age (months) Girls 116 (12) 116 (13) 117 (12) 117 (13)

Boys 115 (14) 116 (13) 114 (15) 114 (16)

Coefficient of variation in magnitude estimation (z-score) Girls 0.19 (0.07) 0.18 (0.07) 0.19 (0.07) 0.20 (0.07)

Boys 0.20 (0.07) 0.19 (0.06) 0.19 (0.07) 0.21 (0.06)

Intelligence (z-score) Girls 0.71 (0.8) 0.61 (0.8) 0.60 (0.8) 0.93 (0.7)

Boys 0.80 (0.7) 0.89 (0.7) 0.82 (0.7) 0.53 (0.9)

Arithmetic achievement (z-score) Girls 0.29 (1.1) 0.23 (1.1) 0.19 (1.1) 0.45 (1.1)

Boys 0.20 (1) 0.31 (1) 0.14 (1) 0.14 (1)

MAQ A – Self-perceived Performance (z-score) Girls 0.06 (0.94) 0.11 (0.92) 0.06 (0.96) −0.04 (0.94)

Boys −0.08 (1) −0.24 (1.09) 0.04 (0.97) −0.09 (0.79)

MAQ B – Attitudes Toward Mathematics (z-score) Girls 0.00 (0.9) 0.05 (0.94) −0.05 (0.91) 0.01 (0.81)

Boys 0.01 (1.03) −0.07 (1.01) 0.13 (1.03) −0.13 (1.06)

MAQ C – Unhappiness About Mathematics (z-score) Girls .01 (0.99) 0.00 (1.11) −0.06 (0.98) 0.27 (0.91)

Boys −0.02 (0.92) 0.04 (0.85) −0.02 (0.9) −0.11 (0.99)

MAQ D – Anxiety Toward Mathematics (z-score) Girls 0.09 (0.99) 0.24 (1.05) −0.04 (0.95) 0.17 (0.95)

Boys −0.11 (0.92) −0.31 (0.91) 0.01 (0.83) −0.05 (1.14)

TABLE 2 | Correlation coefficients between cognitive variables and mathematics anxiety.

N = 327 Coefficient of
variation

Intelligence
(z-score)

Arithmetic
achievement

Attitudes
Toward

Mathematics

Unhappiness
About

Mathematics

Anxiety
Toward

Mathematics

Intelligence (z-score) −0.170∗

Arithmetic achievement −0.187∗∗ 0.414∗

MAQ A – Attitudes
Toward Mathematics

0.102 −0.124∗ −0.343∗

MAQ B – Unhappiness
About Mathematics

0.163∗∗ 0.006 −0.198∗∗ 0.567∗

MAQ C – Anxiety
Toward Mathematics

0.077 0.051 −0.018 0.317∗∗ 0.363∗

MAQ D –
Self-perceived
Performance

0.142∗∗ 0.068 −0.145∗∗ 0.284∗∗ 0.235∗∗ 0.556∗

∗p < 0.05, ∗∗p < 0.01.

TABLE 3 | Results and comparison of the genetic models for the COMT polymorphism on scale MAQ B – Attitudes Toward Mathematics.

Scale: MAQ B – Attitudes Toward Mathematics Df SS MS F-value P η2
p AIC/wAIC

Sex 1 0.03 0.03 0.03 0.86 0.0 910(65%)

Heterosis 1 0.54 0.54 0.60 0.45 0.0

z-mean cv of magnitude estimation 1 9.30 9.30 10.06 0.002 0.03

z-arithmetic achievement 1 9.02 9.02 9.75 0.002 0.03

Sex∗heterosis 1 5.20 5.20 5.62 0.02 0.02

Residuals 321 292.35 0.93

The other models presented AIC in the interval (913.5–913.8) and AIC weights in the interval (10.8–13%).
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associated with the COMT Val158Met polymorphism. Model
fit was compared using the AIC and AIC weights. No genetic
effects were observed on MAQ A – Self-perceived Performance
or MAQ C – Unhappiness about Mathematics, as no main
effect of sex or genetic model effect reached significance. In
contrast, the interaction of sex by genotype was significant
for MAQ B – Attitudes Toward Mathematics and MAQ D –
Anxiety Toward Mathematics. Attitudes Toward Mathematics
was better explained by a heterosis model (Table 3). Although
the interaction of sex by genotype in the heterosis model
reached significance, Tukey post hoc comparisons did not
reveal any significant difference in pairwise comparisons
(all p > 0.4, Figure 2).

MAQ D – Anxiety Toward Mathematics was also better
explained by the heterosis model (Table 4). Tukey post hoc
comparisons revealed significant differences in pairwise
comparisons between homozygous boys and girls (p < 0.005),
but not between the heterozygous boys and girls. No other
pairwise comparisons reached significance. Homozygous boys
were significantly less anxious than homozygous girls, but
heterozygous children were equally anxious regardless of their
sex (Figure 2). MAQ D – Anxiety Toward Mathematics of
heterozygous children were closer to the grand average.

DISCUSSION

In the present study, the effects of sex and COMT Val158Met
genotypes on MA were examined in a large sample of boys
and girls. No deviation from the Hardy–Weinberg Equilibrium
expectancy was detected, implying that eventual differences
between genotype groups do not reflect abnormalities in
population genetic structure. The proportion of boys and girls
in each genotype group was comparable. All genotype groups
of boys and girls were comparable regarding their ages, school
grades, number processing, and arithmetic abilities. Moreover,
no significant differences were observed between girls and boys
regarding numerical estimation or arithmetic achievement.

Intelligence was correlated positively and moderately with
arithmetic achievement, and negatively and weakly with
numerical estimation. Regarding MA, intelligence was negatively
and weakly correlated only with the subscale MAQ B – Attitudes
Toward Mathematics.

Correlations between MA and numerical/arithmetic tasks
were observed. Numerical estimation correlated positively with
MAQ A – Self-perceived Performance. Arithmetic achievement
correlated negatively and weakly with all MA components except
for MAQ D – Anxiety Toward Mathematics.

No associations between the COMT Val158Met
polymorphism on numerical estimation and arithmetic
achievement were observed. A sex by genotype interaction was
observed for intelligence. Intelligence scores were higher in
Met/Met girls than in girls with at least one valine allele (valine
dominance model).

Our main result is related to the genetic models explaining
MA. The best fitting model in both MAQ B - Attitudes Toward
Mathematics and MAQ D – Anxiety Toward Mathematics was

heterosis. In the case of MAQ B – Attitudes Toward Mathematics,
no post hoc pairwise comparisons reached significance. In
contrast, in the MAQ D – Anxiety Toward Mathematics scale,
homozygous boys were significantly less anxious than girls,
but heterozygous children were equally anxious regardless of
their sex; heterozygous individuals reported MA levels close to
the grand average.

In the next sections, we discuss the validity of our results,
the effects of the COMT Val158Met polymorphism on general
and numerical cognitive measures and on MA. We conclude by
discussing the importance of heterosis as an explanatory model
for the effects of the COMT Val158Met polymorphism on several
cognitive-behavioral phenotypes, including MA.

Number Processing, Arithmetic
Achievement, and Intelligence
The cognitive and math-related performances of children
observed in the present study were in line with data reported
in the literature (Dowker et al., 2016). Intelligence was positively
and moderately correlated with arithmetic achievement. Similar
results have been consistently observed in other studies and
intelligence is considered one of the best predictors of math
achievement (Pind et al., 2003; Rohde and Thompson, 2007;
Primi et al., 2010; Costa et al., 2011).

Intelligence was also negatively and weakly correlated
with numerical estimation. Correlations on the same order of
magnitude were observed in a large representative sample by
Tosto et al. (2017). Theoretically, no correlation, or only weak
correlations, might be expected, as the approximate number
system (ANS) underlying numerical estimation, is usually
understood to be a modular system relatively independent
from general intelligence (Dehaene, 1992; Mandelbaum,
2013). However, additional evidence casts doubt on this
assumption. Correlations between several tasks tapping the
ANS, such as verbal estimation and symbolic and non-symbolic
magnitude comparisons, are weak (Pinheiro-Chagas et al.,
2014; Tosto et al., 2014). General cognitive factors (e.g.,
inhibitory executive functions) play a role in some ANS-
related tasks, such as non-symbolic number comparison
(Gilmore et al., 2013; Szûcs et al., 2013). Finally, in a large
longitudinal study, age-varying patterns of predictive association
were observed between prior general cognitive abilities and
numerical estimation at age 16 (Tosto et al., 2017). Summing
up, our results agree with the hypothesis that general cognitive
requirements are important in the performance of numerical
estimation tasks.

Arithmetic achievement was negatively and weakly correlated
with numerical estimation, as observed by Tosto et al. (2017).
Significant but small differences in verbal numerical estimation
between children with and without math learning difficulties
have been reported (Mejias et al., 2012; Pinheiro-Chagas et al.,
2014). These results support the general view that basic numerical
abilities, such as non-symbolic magnitude estimation, may be
a precursor of the more advanced arithmetic abilities acquired
during formal education (Piazza et al., 2010; Ferreira et al.,
2012; Siegler and Braithwaite, 2017). However, the existence
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FIGURE 2 | Levels of math anxiety in boys and girls as a function of COMT Val158Met genotype (heterosis model). (Left) MAQ B – Attitude Toward Mathematics.
MAQ D – Anxiety Toward Mathematics (∗∗ Tukey HSD test adjusted for multiple comparisons, p < 0.005).

and strength of these associations may vary with age, tasks and
domains of math assessed (Tosto et al., 2017).

Boys and girls were comparable regarding their ages,
school grades, numerical estimation and arithmetic abilities
independently of their genotype groups. No significant
differences were observed between girls and boys in numerical
estimation or arithmetic achievement. Therefore, differences in
numerical estimation or arithmetic performance cannot account
for the impact of the COMT Val158Met polymorphism on MA.

Interestingly, higher intelligence observed in Met/Met girls
yields no higher arithmetic achievement in this group which,
at the first glance, seems to be counterintuitive. As discussed
below, Met/Met girls have higher MA levels, which could
reduce the impact of their general intellectual advantage on
arithmetic achievement.

Math Anxiety
All MA subscales were positively correlated. This is in line
with the literature pointing out that the four subscales of the
MAQ represent different facets of the MA construct (Krinzinger
et al., 2007; Wood et al., 2012), which are relatively independent
from intelligence (Hembree, 1990). Accordingly, with the
exception of MAQ B – Attitudes Toward Mathematics, no

MAQ subscale correlated with intelligence. MAQ B – Attitudes
Toward Mathematics exhibited a weak negative correlation with
intelligence, which corroborates previous findings (Minato and
Yanase, 1984; Moenikia and Zahed-Babelan, 2010) since, in the
MAQ B scale, higher scores code for more negative attitudes
toward mathematics.

Arithmetic achievement was negatively and weakly correlated
with all MAQ scales, except for MAQ D – Anxiety Toward
Mathematics. These results are also in line with previous studies
(Moenikia and Zahed-Babelan, 2010). Since correlations between
arithmetic achievement and MA are more pronounced in the
subscale measuring the affective component of MA (Krinzinger
et al., 2007; Haase et al., 2012; Wood et al., 2012), the effects
of sex by COMT genotype interactions on MA seem to be
emotionally mediated.

Our study was not designed to answer the question of
the specificity of results regarding MA, as we did not use
measures of more generalized anxiety or reading/spelling
performance. MA is a complex construct, including both
cognitive and affective dimensions (Dowker et al., 2016; Haase
et al., 2019). Behavioral genetic models have shown that
MA shares considerable sources of genetic and environmental
influences with other anxiety-related constructs (Wang et al.,

TABLE 4 | Results and comparison of the genetic models for the COMT polymorphism on scale MAQ D – Anxiety Toward Mathematics.

Scale: Maq D – Anxiety toward Mathematics Df SS MS F-value p η2
p AIC/wAIC

Sex 1 3.02 3.02 3.30 0.07 0.0 907 (72%)

Met dominance 1 0.01 0.01 0.01 0.91 0.003

z-mean cv of magnitude estimation 1 6.37 6.37 6.96 0.01 0.02

z-arithmetic achievement 1 5.00 5.00 5.46 0.02 0.02

Sex∗Met dominance 1 11.20 11.20 12.24 0.0005 0.04

Residuals 321 293.74 0.915

The other models presented AIC in the interval (910–918) and AIC weights in the interval (0–15%).
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2014; Malanchini et al., 2017). However, correlations between
MA and other forms of anxiety are usually weak (r = 0.3)
(Hembree, 1990), suggesting that MA and other forms of
anxiety represent partially independent dimensions. In a previous
study using MAQ in school-aged children, we observed that
correlations with generalized anxiety (assessed by CBCL)
were weak, and that MAQ levels were associated with
math performance but not with word spelling performance
(Haase et al., 2012). The reverse pattern was observed for
generalized anxiety. Generalized anxiety was associated with
spelling but not with math performance. Considering the
behavioral genetic results, it is safe to conclude that the
construct MA refers to the content of phobic reactions in
predisposed individuals.

Finally, differences in the covariance structure of MA in
children with different genotypes are possible but remain elusive
in the present study. This is because our sample size is not large
enough for a useful estimation of correlations coefficients for
different groups separately, particularly when considering only
the boys or only the girls with the Met/Met genotype.

COMT Val158Met Polymorphism and
Cognition
No main or interaction effects of the factors sex and COMT
polymorphism on basic magnitude estimation or arithmetic
achievement were observed in the present study.

A link between dopaminergic activity and magnitude
processing was established in experimental research in rodents.
In rodents, pharmacological inhibition or facilitation of
dopaminergic activity modulates temporal and numerical
magnitude estimation (Cordes et al., 2007; Coull et al., 2011).
Dopaminergic activity is related to the speed of the counting
mechanism underlying magnitude estimation according to
the accumulator model (Leslie et al., 2007). In humans,
one study from our research group investigated the impact
of the COMT Val158Met polymorphism on basic number
processing tasks (Júlio-Costa et al., 2013). In that study,
children with at least one methionine allele presented better
performance in the numerical estimation and other numerical
and arithmetic tests. The discrepancy between that study
and the present one is only apparent. A large proportion
of the sample assessed by Júlio-Costa et al. (2013) was also
included in the present study. Therefore, disappearance
of the effect with increase of sample size is indicative of a
false positive result, probably caused by the smaller sample
investigated in that study. The sample size of 327 children,
for whom data were available on cv in the current report,
offers a higher degree of protection against false positive
findings and may be given more weight than the partial
evidence published previously. Accordingly, evidence for a
detectable impact of the COMT Val158Met polymorphism
on basic magnitude estimation remains elusive, since the
positive evidence obtained in rodents using pharmacological
manipulations are much stronger than the functional differences
occurring naturally between the valine and methionine
containing enzyme.

Beyond the scope of basic magnitude estimation, sex and
COMT Val158Met polymorphism also seem to have no impact
on arithmetic achievement. In a small study using fMRI,
Tan et al. (2007) explored the role of the COMT Val158Met
genotypes in numerical/arithmetic processing. Adult carriers of
the valine allele had higher levels of dorsolateral prefrontal
cortex activation than individuals with other genotypes. This
activation correlated with arithmetic operations that require
working memory, but not with the operations requiring
long-term memory retrieval. The increased brain activation
during resolution of arithmetic problems in individuals with
the valine allele may be interpreted as a compensatory
mechanism (Tan et al., 2007). Consistent with the present
study, however, no effects of genotype were observed at the
behavioral level.

The connection between the COMT Val158Met
polymorphism and numerical/arithmetic performance could
also be investigated in 22q11.2 microdeletion syndrome
(22q11.2DS). Individuals with 22q11.2DS present several
phenotypic traits such as risk of schizophrenia, intellectual
disability and math learning difficulties in the presence of
hemizygosis at the COMT Val158Met locus (Karayiorgou
et al., 2010). Some research supports a role for the
valine allele in intellectual disability and schizophrenia
(Shashi et al., 2006, 2010), but results have not always
been replicated (Campbell et al., 2010; Franconi et al.,
2016). However, to the best of our knowledge, the specific
association between COMT Val158Met polymorphism
and numerical/arithmetic abilities has not yet been
investigated in 22q11.2DS.

A sex by genotype interaction was detected for intelligence.
Met/Met girls exhibited higher intelligence scores compared
to girls with at least one valine allele (valine dominance).
The methionine allele is associated with higher intelligence in
some studies (Enoch et al., 2009; Carmel et al., 2014), higher
cognitive performance, and also higher anxiety levels (Stein
et al., 2006; Dickinson and Elvevag, 2009). Specifically, Ramirez
et al. (2013) showed that MA is higher on the extremes of
the distribution of working memory capacity. Since Met/Met
girls generally present higher cognitive ability, they would
also be more affected by MA, as observed in the present
study. One possible mechanism of how higher levels of MA
may impair arithmetic achievement has been proposed by
Ramirez et al. (2013). According to them, high performing
individuals tend to rely on working memory-intensive solution
strategies, which are likely disrupted when MA interferes with
working memory. Therefore, Met/Met girls have high levels
of intelligence but also high MA levels, which could reduce
their general intellectual advantage on arithmetic achievement.
These findings suggest a sex-specific connection between higher
cognitive abilities, the Met/Met genotype, and susceptibility to
interference of MA on math performance, which will be explored
below in further detail. However, this connection between high
intelligence and MA in girls is not the whole story, since
Val/Val girls were not more intelligent than other groups of
children in our study. Interestingly, evidence indicates higher
levels of neuroticism in Val/Val women from adolescence to
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young adulthood (Lehto et al., 2013). Therefore, there is evidence
of higher levels of anxiety in both homozygous genotypes
of female participants. These pieces of evidence also will be
discussed in further detail in relation to the heterosis model in
the next section.

COMT Val158Met Polymorphism and MA
Sex and COMT polymorphism had a marginal effect on subscale
MAQ B – Attitudes Toward Mathematics, which represents a
more cognitive aspect of MA. Here, it is important to consider
the young age of the participants in our study. It is possible
that their self-concept and attitudes toward mathematics were
not yet as fully developed as later in puberty and adulthood.
Stronger effects of sex on the cognitive aspect of MA are known to
become more evident in older adolescents (Utsumi and Mendes,
2000; Mata et al., 2012). A specific interaction between sex
and grade was obtained by Wigfield and Meece (1988). These
authors assessed the cognitive and affective dimensions of MA
in 564 children from 6th to 12th grades. Grade differences
were observed only in the cognitive dimension, with older
children scoring higher than younger ones. Sex differences were
observed only in the affective dimension of MA, with girls
scoring higher. No sex by grade interactions were observed
(Wigfield and Meece, 1988).

In our study, more robust effects were observed in the subscale
MAQ D – Anxiety Toward Mathematics, which represents
a more affective aspect of MA. The interaction between sex
and the COMT Val158Met genotype in MAQ D – Anxiety
Toward Mathematics was significant under the heterosis model.
Significant differences between boys and girls were observed in
both homozygous groups, but not in heterozygous individuals.
Homozygous girls presented higher levels of MA than boys,
while heterozygous boys and girls did not differ regarding
MAQ D – Anxiety Toward Mathematics. The existing literature
on sex-related differences in anxiety levels associated with the
Met/Met and Val/Val genotypes (reviewed in Supplementary
Table S1) suggests different explanations for the higher levels of
MA observed in Met/Met or in Val/Val girls. Our comparison
of genetic models suggests that these apparently contradictory
results may reflect the fact that the heterosis model has not
been tested. The bulk of the literature on the COMT Val158Met
polymorphism focuses on statistical models separating all three
genotypes (codominance or additive models) or genotypes
organized in two groups (dominance models). Therefore, cases
in which heterosis is the correct genetic model for the data may
have been easily overlooked; and, the number of explanations for
the phenotypes connected with the different genotypes may be
artificially inflated.

The genetic heterosis model of MAQ D – Anxiety Toward
Mathematics suggests that homozygous girls are more susceptible
than boys to the emotional arousal elicited by math tasks
perceived as difficult. Whether the causal pathways of the genetic
effects of Met/Met and Val/Val genotypes are the same or not
is an open question. This can be answered only with more
detailed studies. In the final two sections, we are going to discuss:
(a) the mechanisms of estrogen effects that may contribute to
increase the levels of MAQ D – Anxiety Toward Mathematics

in homozygous girls; and (b) the role of heterosis in the COMT
Val158Met polymorphism.

Mechanisms of Estrogen Effects
on COMT
Sex differences in many behavioral traits in humans have been
described and attributed to the influence of sex hormones
through their influences on neurotransmitter systems, such as
dopamine (Sherwin, 2007; Riccardi et al., 2011; for an overview
of dopamine system, see Wahlstrom et al., 2010).

The increase in the estrogen levels during puberty down-
regulates COMT transcription and leads to sex differences in
COMT enzyme activity (Xie et al., 1999; Tunbridge, 2010).
As a consequence, females show higher dopamine levels in
the synaptic cleft in brain regions where COMT is the main
metabolizer of dopamine. Here, it is important to remember
that dopamine can be depleted from the synaptic cleft by
DAT1 or by COMT. Consequences of COMT malfunctioning are
more prominent in those regions where DAT1 is physiologically
poorly expressed, such as the prefrontal cortex. Therefore,
functional COMT polymorphisms have a strong impact in
cognitive tasks associated with attention and executive functions
(Riccardi et al., 2006, 2011).

There is another interaction mechanism between COMT
and estrogen. COMT metabolizes catechol estrogens (i.e., 2-
OHE2, 2-OHE1, 4-OHE2, and 4-OHE1) to methyl-estrogen,
which has been associated with cancer development and
progression (Dawling et al., 2001; Ashton et al., 2006).
These pathways have not yet been investigated in relation to
cognitive functions.

The relationship between estrogen and COMT is even more
complex. Men have 17% higher COMT activity in the prefrontal
cortex than women, independently of any polymorphisms (Chen
et al., 2004). Higher COMT activity in men has been described
in most tissues (reviewed by Harrison and Tunbridge, 2008).
Evidence for sexual dimorphism in COMT associated phenotypes
is abundant, but frequently conflicting, in the literature. This
suggests that a “dopaminergic tonus” or “optimal dopamine
level” may differ according to sex, age, brain region or system,
physiological or pathological state as well as pharmacological
responses (Jacobs and D’Esposito, 2011).

These effects are clear in the evaluation of the impact of the
COMT Val158Met polymorphism. For example, the association
of the Met allele with obsessive-compulsive disorder in men but
not in women (Karayiorgou et al., 1997) is a well replicated
finding (Pooley et al., 2007). The Met allele has been associated
with increased levels of anxiety and cautious personality (Enoch
et al., 2003; Olsson et al., 2005; Montag et al., 2012) (see
Supplementary Table S1), and anxiety disorder (Domschke et al.,
2004; Woo et al., 2004; Rothe et al., 2006).

However, it is important to consider that physiological sex
differences occur in many systems, not only in sex hormones.
As a consequence, effects attributed to differences in sex
hormones may reflect differences in other, less investigated
biological systems.

COMT genotype and sex hormone influence may interact
epigenetically in complex ways. In this sense, it is also important
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to consider that our participants were prepubertal children.
Investigations with post-pubertal participants should follow
the recommendations of Lee and Prescott (2014) to consider
menstrual cycle phase and use of oral anticonceptives.

Evidence for Heterosis in the COMT
Val158Met Polymorphism
As mentioned above, the interaction between the alleles may
take four main forms: codominance, heterosis, Val dominance
and Met dominance. The term codominance is used to refer
to situations in which the three genotypes have different effects
at the phenotype level. The most used codominance model is
the additive, in which each allele substitution has a incremental
effect (e.g., considering a locus with two alleles, 1 and 2, the
effects of the genotypes would be 11 < 12 < 22). In the heterosis
model, heterozygous individuals have a phenotype that differs
from both homozygous groups, which have similar phenotypes.
The phenotype in heterozygous individuals can be advantageous
(positive heterosis) or disadvantageous (negative heterosis).

Several examples of heterosis in the COMT Val158Met
polymorphism have been reported already. We will discuss only
those studies with substantial sample sizes. Barnett et al. (2007)
investigated the effects of the COMT Val158Met polymorphism
on working memory, verbal and motor inhibition, attentional
control, and IQ in a sample composed of 8,707 children, aged
8–10 years. These authors described heterozygous advantage in
a measure of sustained attention in boys but not in girls.

Gosso et al. (2008) described an example of positive heterosis
in working memory. These authors investigated a sample of over
600 participants, approximately half of them children. Positive
heterosis was detected: better results in working memory tests
were found in Val/Met individuals who presented also the DRD2
A1 allele, demonstrating also a gene-gene interaction.

Luijk et al. (2011) investigated the association of several
genetic polymorphisms and infant attachment security and
disorganization in a sample composed of over 500 children from
two different cohorts. COMT Val158Met heterozygotes were
more disorganized in both samples (combined effect size d = 0.22,
CI95 = 0.10–0.34, p < 0.001), which the authors considered an
example of negative heterosis.

Costas et al. (2011) investigated the hypothesis of
overdominance (a. k. a., heterosis) in two samples of persons
having schizophrenia (n = 762) and controls (n = 1,042).
In these samples, they detected a protective effect against
schizophrenia of the COMT Val/Met heterozygous genotype
(OR = 0.75, CI95 = 0.62–0.91, p = 0.003). In addition, they
conducted a meta-analysis including 13,894 schizophrenic
patients and 16,087 controls from 51 studies. A protective effect
of the Val/Met genotype was also detected (pooled OR = 0.946,
CI95 = 0.904–0.989, p = 0.015).

It is important to consider that heterosis is by far the less
investigated hypothesis regarding COMT effects on behavior.
The wild-type allele at the 158 position is a valine. The
mutation Val158Met is an evolutionary novelty present in
the human, but not in the gorilla, chimpanzee, bonobo,
and orangutan (Piffer, 2013). Currently, the frequency of

the Met allele is usually high (20–60%; Piffer, 2013) in
most of the populations reported so far. This is surprising,
considering that the enzyme activity is importantly reduced
by the Met allele. The high frequency of the Met allele
suggests that some selection mechanism is in place. From the
literature review presented here, two main possible mechanisms
emerge. The Met allele may have reached high frequencies
because Met/- genotypes are advantageous for some COMT
related phenotypes. Alternatively, heterosis itself is advantageous
because intermediate dopamine levels at the synaptic cleft would
be more adaptive, under usual environmental conditions, than
high or low levels (Arnsten, 1998). The same could happen
in the case of MA. Our data suggest a positive heterosis
model. Heterozygous individuals exhibit MA levels closer to
the grand average, and are less susceptible to worries related to
math performance. Males having both homozygous phenotypes
present lower MA than all other groups. Females having both
homozygous phenotypes present higher levels of MA than
all other groups.

It is important to note some limitations in our study. First, the
specificity of the MA construct could not be investigated, as we
did not include measures of achievement in other domains (such
as reading or spelling), as well as other anxiety-related constructs
such as self-efficacy and attitudes toward school performance
in general and generalized anxiety. Second, the sample size is
considerable, but still not enough for an analysis of different
genotype groups separately, particularly when considering only
the boys or only the girls with the Met/Met genotype. Third,
MA is not caused by a single gene, so that many more candidate
genes and environmental factors will need to be studied. Fourth,
MA probably results from a combination of math-specific factors
and general anxiety. The present study has ruled out the
likelihood of this gene operating by affecting math ability, but
it is not clear as yet whether it could be operating by affecting
general anxiety.

Notwithstanding its limitations, the present study adds
important information to the knowledge of the neurogenetic
underpinnings of MA: (a) a thorough understanding of the
origins of MA requires considerations of both environmental and
genetic factors; (b) the dopaminergic system, a multifunctional
system especially important in human evolution (Previc, 2009;
Piffer, 2013), is also relevant for clarifying the neurobiological
underpinnings of MA; (c) testing for associations between
psychological phenotypes and single-loci genetic markers should
consider all possible genetic models (dominance, codominance,
and heterosis); and (d) sex differences in MA associated
with the COMT Val158Met polymorphism are detectable even
before puberty. Sex differences in the effect of Val158Met
polymorphism in prepubertal children have already been
described for cognitive functions (Barnett et al., 2007). Future
research should investigate whether the heterosis model of the
interaction among sex, COMT Val158Met polymorphism and
MA is generalizable to other forms of anxiety. An epigenetic
research approach is required to address interactions among
the COMT Val158Met polymorphism with other dopaminergic
and non-dopaminergic genes and with sex-hormonal and other
metabolic pathways.
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Early math skills matter for later formal mathematical performances, academic and
professional success. Accordingly, it is important to accurately assess mathematical
school readiness (MSR) at the beginning of elementary school. This would help
identifying children who are at risk of encountering difficulties in math and then stimulate
their acquisition of mathematical skills as soon as possible. In the present study, we
present a new test that allows professionals working with children (e.g., teachers,
school psychologists, speech therapists, and school doctors) to assess children’s
MSR when they enter formal schooling in a simple, rapid and efficient manner. 346
children were assessed at the beginning of 1st Grade (6-to-7-year-olds) with a collective
test assessing early mathematical abilities (T1). In addition, children’s math skills were
evaluated with classical curriculum math tests at T1 and a year later, in 2nd Grade
(T2, 7-to-8-year-olds). After assessing internal consistency, three tasks were retained
for the final version of the MSR test. Test performance confirmed to be essentially
unidimensional and systematically related to the scores children obtained in classical
tests in 1st and 2nd Grade. By using the present MSR test, it is possible to identify
pupils at risk of developing low math skills right from the start of formal schooling in 1st
Grade. Such a tool is needed, as children’s level in math at school beginning (or school
readiness) is known to be foundational for their future academic and professional carrier.

Keywords: mathematical school readiness, numeracy, math skills, number sense, arithmetic, mathematical
learning

INTRODUCTION

Considering the importance of mathematics in modern society, math activities play a central role in
a child’s education. Building good math skills is an essential part of a first grader’s learning process
and determines academic success down the road. Indeed, it has been demonstrated that children’s
scholastic level at the beginning of formal schooling - or school readiness - is very important for
their future academic and professional carriers (Currie and Thomas, 1999; Duncan et al., 2007;
Romano et al., 2010). Especially, early math skills developed during kindergarten appear to be one
of the most powerful predictors of later formal learning, including reading (Duncan et al., 2007;
Pagani et al., 2010; Romano et al., 2010). In addition, many longitudinal studies have emphasized
the importance of early math skills for the development of more elaborate mathematical abilities
(e.g., Jordan et al., 2007, 2009; Aunio and Niemivirta, 2010). Moreover, young adults’ proficiency to
use simple math to solve problems encountered in everyday life seems to determine their likelihood
of full-time employment (e.g., Rivera-Batiz, 1992).
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Consequently, it seems highly relevant to evaluate early math
skills of children at the beginning of formal (mathematical)
learning, or in other words, their mathematical school readiness
(MSR). This allows us to identify children with low math skills at
the beginning of 1st Grade and to subsequently set up appropriate
educational support measures for the children in need (National
Research Council, 2001). These support measures will provide an
ideal basis for later mathematical learning and prevent a vicious
circle of poor basic skills leading to poor mathematical learning,
which in turn results in numerical shortcomings. However, to
be able to identify children in (great) difficulty, teachers need
validated and standardized tools. Yet, they deplore the lack of
such tools and indicate that they are usually forced to rely on
their own “home-made” tools or intuition, which is not ideal and
leaves them feeling uncomfortable (Do, 2007). Data showing that
teachers’ judgments are perceptually biased and that they have
difficulties judging their students’ cognitive potential confirm the
actual problem of the situation (e.g., Fischbach et al., 2013).

Mathematical school readiness focuses on the narrow
window of math development between the acquisition of
(pre)mathematical precursor skills in kindergarten and the
implementation of formal mathematical education in elementary
school. The acquisition of the Arabic number notation system
constitutes a key element of MSR, because it bridges the innate
core magnitude system (e.g., Feigenson et al., 2004) and the
development of the exact number representations underlying
the (ordinal) mental number line and arithmetic thinking (see
von Aster, 2000; von Aster and Shalev, 2007). According to
von Aster and Shalev’s (2007) four-step-developmental model
of number acquisition, the acquisition of the Arabic number
system (i.e., the visual Arabic code, see also Dehaene, 1992)
is a major challenge in the development of children’s math
skills. This acquisition implies the progressive learning of visual
number symbols (i.e., Arabic numbers), the place value syntax
and the corresponding transcoding rules (see Thevenot and
Fayol, 2018, for a review). Together with the verbal number
system, which develops during preschool years, the acquisition
of the Arabic notation system (including multi-digit numbers)
implicitly starts in preschool (Gilmore et al., 2007; Mejias and
Schiltz, 2013), probably because of the widespread use of digital
displays in children’s direct environment. It is then systematically
consolidated and enhanced during 1st Grade through formal and
explicit instruction (Mix et al., 2014).

However, poorly developed mathematical competencies are
observed in a non-negligible number of (young) children and
adults (3–7%; GrossTsur et al., 1996; Shalev et al., 2005; Reigosa-
Crespo et al., 2012; American Psychiatric Association [APA],
2013). According to the DSM-5 (2013), specific learning disorder
is now a single, overall diagnosis, incorporating deficits that
impact academic achievement. Specific learning disorder refers
to significant and persistent difficulties in learning and using
one’s cultural symbol systems (e.g., alphabet, characters, and
Arabic numbers) that are required for skilled reading, writing,
and math, and must be learned by instruction. Persons with
specific learning disorder are unable to perform academically at
a level appropriate to their intelligence and age. The definition
states that difficulties should have persisted for at least 6 months

despite interventions, and skills should be substantially below
those expected for that given age. It is now recommended to give
this diagnosis only from 1.5 standard deviations below the mean
for age (which correspond to a performance within the lowest 7%
in standardized mathematical tests, while previously the lowest
10% was commonly accepted). Beside those children with specific
learning disorder in math, individuals achieving between 11% and
25% in standardized mathematical tests are classically identified
as low math achievers (see Geary, 2011, for a review).

Low math achievers and especially individuals with specific
learning disorder in math already perform less accurately
than typically developing children in 1st Grade (Geary, 2011).
Moreover, those children who perform in the lowest quartile
in curriculum math tests also experience difficulties in basic
math skills. This includes the processing of numbers and
numerosities (Koontz and Berch, 1996; Landerl et al., 2004;
Rubinsten and Henik, 2005; Mussolin et al., 2010), even when
the task simply requires to count small sets of 1 to 4 items
(Willburger et al., 2008). Furthermore, there are small but
systematic group differences between 1st Grade children with
specific learning disorder in math and controls in number
naming, number writing (Geary et al., 1999) and comparing the
magnitude of one- or two-digit numbers (Landerl et al., 2004,
2009; Rousselle and Noël, 2007; Iuculano et al., 2008; Landerl
and Kölle, 2009). In sum, low math achievers and children with
specific learning disorder in math reveal atypical performances
in tasks requiring identification, representation and production
of numerical quantities and symbols, in number comparison, in
counting as well as in (simple) math problems.

There are currently a number of curriculum math tests for
young children, which aim to provide an exhaustive diagnoses
of mathematical learning disabilities (e.g., Van Nieuwenhoven
et al., 2008; Lafay and Helloin, 2016) or to rapidly screen
children’s ability in magnitude comparison (Nosworthy et al.,
2013; Brankaer et al., 2017), which is one of the major precursors
of math skills (Halberda et al., 2008). The former offer very
complete and detailed insights into a child’s mathematical
ability, but they have to be administered by specifically qualified
professionals (i.e., psychologists or speech therapists) in time-
consuming individual testing sessions. The latter can be easily
and quickly run in group settings by a wide range of school
professionals, but they focus on a specific mathematical precursor
ability and also require a specific psychological knowledge basis
for interpreting the results and translating them into classroom
practice. In contrast, there are currently no tests that allow school
teachers to evaluate children’s early mathematical abilities, by
administrating and interpreting a validated and standardized test
in the classroom setting. This is especially relevant and desirable
at the beginning of formal schooling, because it allows teachers
to identify those children with insufficient math skills directly
at the beginning of the formal learning trajectory. Accordingly,
teachers will be able to (a) set up appropriate learning and
catch-up measures and/or (b) orient children toward special
care. In summary, to the best of our knowledge, there are
currently no tests that allow teachers to assess MSR based on
psychometrically validated tasks with a high face-validity that can
be easily administered in classroom settings.
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Here we propose a test of MSR systematically assessing the
mastery of visual number symbols at the entrance of formal
schooling (i.e., at the beginning of 1st Grade). By this means,
we intend to provide a psychometrically validated tool that can
be easily used in classroom-settings and interpreted by school
teachers. The MSR test therefore consists of different tasks having
a high face-validity in the context of math education, while
being also firmly embedded in neuro-psychological theories of
typical and atypical numerical development. The test is composed
of tasks probing Arabic number identification, writing Arabic
numbers to dictation, writing Arabic numbers as a result of
counting, Arabic number comparison, as well as basic arithmetic
problem solving.

The present study aimed to evaluate the psychometric validity
of the MSR test and its constituent tasks. Moreover, it determined
the concurrent and predictive criterion validity of the test by
evaluating whether 1st Graders’ performances on the test could
significantly predict their performances on formal mathematics
tasks, evaluated at the time of testing and 1 year later in 2nd
Grade of elementary school. If the test items are valid and allow
predicting children’s mathematical performance in 2nd Grade,
then our test can help school teachers identify those children with
insufficient MSR, thereby providing them with an empirical basis
to orient these children toward dedicated educational support
and special care measures.

MATERIALS AND METHODS

Participants
Totally 346 participants (163 boys) were included in the study.
The mean age was 6.30 years [± 0.35].

Participants were recruited from twelve different public
schools in Belgium, at the beginning of 1st Grade.

This study was carried out in accordance with the
recommendations of the research ethics committee of the
Université Catholique de Louvain (Belgium). The protocol was
approved by the research ethics committee of the Université
Catholique de Louvain (Belgium). Written informed parental
consent was obtained for each of the children, in accordance with
the Declaration of Helsinki.

The schools’ socio-economic index level ranged from 4 to
20.1 Participating schools were distributed in five different
socio-economic index levels: One school was classified at
very low level “4” (including 12 participants); two schools
at intermediate level “12” (including 61 participants); four

1This socio-economic index was established in Belgium in 1998 to allocate
resources within the framework of the positive discrimination. It is updated every
5 years and it is constructed from the variables “per capita income, educational
attainment, unemployment, occupational and comfort level of housing.” To
each student corresponds an index defined by its area of residence. It is the
smallest administrative unit for which socioeconomic data are available. The
socio-economic index is then defined based on the average of the indices of its
student population; it does not correspond directly to the area of implantation,
or a measure of school performance. It allows one to rank schools on a scale
of 1–20, from the lowest socio-economic index to the highest. The choice of
variables, indices and formula has been approved by the Government of the French
Community (de Villers and Desagher, 2011; Mejias and Schiltz, 2013).

schools at intermediate level “13” (including 93 participants);
four schools at very high level “19” (including 166 participants),
and one school at highest level “20” (including 14 participants).
In each school, children were tested for the first time (T1) in
mid-September (6-to-7-year-olds) at the beginning of 1st Grade
and for the second time (T2) in mid-September 1 year later (7-
to-8-year-olds) at the beginning of 2nd Grade. Children’s age
in months was similar across the five different socio-economic
groups (with the largest age-difference in terms of months
between two groups belonging to socio-economic index 12 and
13, p = 0.08; all other contrasts, p > 0.3). Data were collected by
only one person.

Children who took part in the study had no history of
developmental disorders and were considered as typically
developing children by the Belgian psycho-medico-
social services.

Materials and Procedure
Mathematical School Readiness Test
To assess children’s MSR when they enter formal schooling
a collective test of early mathematical abilities was developed.
Considering the neuro-cognitive literature on typical and atypical
numerical development (e.g., von Aster and Shalev, 2007;
Dowker, 2008; Geary, 2011) this test aims to describe children’s
abilities focusing on the mastery of visual number symbols
typically required at the moment of formal (math) schooling
entrance (i.e., at T1, during the first month of the 1st Grade).
The test was designed to have a high face-validity for teachers
and therefore includes all early math abilities described also in the
school competence standards in Wallonia in Belgium (Van Lint,
2010) (i.e., visual number symbol identification, writing numbers
to dictation, symbolic quantity representation, counting abilities
and arithmetic abilities). The time required to complete the entire
test was approximately 20 min. Five tasks were administered and
evaluated (Appendix A):

(1) Identifying visual number symbols (number identification):
Arabic digits (3, 6, 8, and 9) were presented on a sheet
of paper amongst non-numerical stimuli (a, @, $, and f).
Children were asked to circle Arabic numbers (N = 4) and
to cross out if not a number (N = 4). Note that if the child
clearly identifies the numbers by circling them and does
not cross out the other symbols, a maximum score of 8 is
given. For example, a child who circles all the numbers and
another non-numerical symbol is given a score of 7, etc.
Average time required to achieve the subtest was 90 s.

(2) Writing numbers to dictation (number writing): Children
were told to write down the number they hear in the
correct box (boxes were presented sequentially in line, with
each box having a different color to prevent children from
getting lost (e.g., “write 4 in the blue box (. . .), now write
7 in the orange box, . . .”). Six single-digit (4, 7, 1, 6, 5, and
9) and 4 two-digit numbers (10, 11, 13, and 16) were orally
presented. Maximum score is 10 and the point is awarded
even if the number is mirrored. Average time required to
achieve the subtest was 180 s.
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(3) Comparing visual number symbols (number comparison):
Children were asked to circle the largest of the two
presented Arabic digits. A total of 12 pairs of numbers
ranging from “2” to “420” were presented (Four pairs of
one-digit numbers with a difference of 1 to 6; Six pairs of
two-digit numbers with a difference of 1 to 50; Two pairs
of three-digit numbers with a difference of 17 and 69; and
see section “Appendix A” for the detailed version of the
task). An example was given on the classroom’s blackboard
with “1” and “2.” The maximum score that can be obtained
in this task is 12. Average time required to achieve the
subtest was 210 s.

(4) Writing number symbols resulting from the counting of
visual collections (counting): Children were asked to count
four collections of 5 to 9 elements presented in an orderly
manner (e.g., bunnies presented in a line) or presented in
a disorderly manner (e.g., turtles presented in a scattered
manner) and write down their answers. In the latter task
three different collections were presented, two comprising
the same sort of animal (turtles and sharks, respectively)
and one with mixed animal sorts (lions and turtles). The
maximum score that can be obtained in this task is 4
and the point is awarded even if the number is mirrored.
Average time required to achieve the subtest was 120 s.

(5) Solving basic arithmetic problems (arithmetic problem
solving): Children were asked to resolve a maximum of
simple additions presented as “houses” of 4, 5, and 6
(N = 18). Operators and results of the arithmetic problems
ranged between (0 and 6). The maximum score that can be
obtained in this task is 18 and the point is awarded even if
the number is mirrored. Average time required to achieve
the subtest was 6 min.

Correct answers were scored as 1, wrong answers as 0.

Classical Mathematical Tests
To assess children’ formal mathematical skills when entering
primary schooling (i.e., at T1, simultaneously with the MSR test
administration) and after one entire year of formal schooling (i.e.,
at T2, during the first month of 2nd Grade), children were given
two different classical mathematical screening tests.

The arithmetic number fact test
Tempo Test Rekenen, TTR; De Vos (1992) this test consists
in two lists of arithmetic number fact problems, consisting of
additions and subtractions, respectively. Children have to solve
as many operations as possible within 1 min per condition. There
are enough operations planned so that the child does not reach
the end of the test in 1 min. Correct answers were scored as 1,
wrong answers as 0. A child’s total score in the Arithmetic Number
Fact Test corresponded to the sum of the scores obtained in the
respective tasks. The TTR test was administered at T1 and T2.

The kortrijk arithmetic test
Kortrijkse Rekentest-Revisie, KRT-R; Baudonck et al. (2006)
this standardized test measures children’s mathematical abilities
through two subscales, these subscales correspond to the mental
arithmetic computation (e.g., 43 + 36 = ...) and the number

system knowledge (e.g., 99 comes just after . . .) and are both
scored on a maximum of 30 points. Correct answers were scored
as 1, wrong answers as 0. There is no time limit to accomplish
the test. The maximum score that can be obtained on this scale
is 60. The KRT test was administered at T2 only as children
need several months of formal schooling before this test can
be administered.

STATISTICAL ANALYSIS

The entire sample size could not be included in the following
consistency analyses due to partial loss of data describing
participants’ performance in each item. Accordingly, they were
based on 158 out of 346 participants. The entire sample size is
included in the other analyses. Collected data is avalaible in the
Supplementary Material.

Reliability
Reliability was measured by assessing internal consistency for
each of the five tasks (number identification, number writing,
number comparison, counting, and arithmetic problem solving)
through Cronbach’s alpha and corrected item-total correlations.
The corrected item-total correlation is the correlation of a
selected item in one dimension with the other remaining items of
that dimension. The impact of items on internal consistency was
assessed by using Cronbach’s alpha with one-at-a-time deletion
procedure. Cronbach’s alpha is expected to exceed 0.7 (Nunnally
and Bernstein, 1978). We will consider this criterion as satisfied if
95% confidence intervals touch 0.7. Should a task not withstand
the criterion, it will be excluded from further analyses.

Validity
We evaluated construct, convergent and criterion validity.
Construct validity refers to the degree to which a test measures
what it claims to be measuring. Convergent validity is the degree
to which measures of constructs that should theoretically be
related, are in fact related. Criterion validity is the extent to which
a test result can be used to predict the outcome of interest.

Construct Validity
We assume that the competence underlying performance on
the MSR test is essentially unidimensional and can thus be
summarized in one total score. We evaluated this assumption
by looking at the interrelation of all psychometrically valid MSR
tasks. We expected the Pearson correlation coefficients to be
positive and significant. Unidimensionality was further assessed
with principal component analysis (PCA). We expected that,
adhering to the Kaiser (1960) criterion (keep only components
with an Eigenvalue above 1), only 1 factor would be retained.

Convergent Validity
An overall performance score for the MSR test was computed
as the average of the POMP (percent of maximum performance)
of all psychometrically valid tasks. In order to assess convergent
validity, we computed Pearson correlations of this score with the
classical mathematical tests (CMAS), composed of TTR proposed
at T1 and T2, and the KRT proposed at T2.
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Criterion Validity
As individuals achieving below the 25th percentile in
standardized mathematical tests are classically identified as
low math achievers (Geary, 2011), we can suppose that children
in this lower quartile are at risk of developing low mathematical
abilities. Moreover, children achieving at the lowest 7% should
be at risk of specific learning disorder in math.

We created one combined indicator for students’
mathematical ability at T2 (combined mathematical ability score;
CMAS): TTR at T2 and KRT scores were both standardized and
a sum score was created of these 2. Based on this sum score
and the thresholds mentioned above, students were classified as
“not at risk” (performance above the 25th percentile), “low math
achievers” (7th percentile – equal to or below 25th percentile), or
“potential specific learning disorder in math” (equal to or below
7th percentile).

For these groups we compared mean MSR scores using a one-
way ANOVA and a post hoc Tukey test, expecting to find that
scores would tend to be gradually lower from students “not at
risk” over “low math achievers” to “potential specific learning
disorder in math.” Additionally, using cross tables, we compared
the probability of identifying students classified as “potential
specific learning disorder in math” during T2 with our MSR test
to the probability of identifying them with the TTR at T1, using
the 25th percentile criterion.

Using multiple linear regression, we finally checked whether
students’ performance on the MSR test explained variance in their
score on the KRT at T2 over and above that explained by their
performance on the TTR at T1.

Statistical analyses were performed using RStudio
version 1.0.136.

RESULTS

Item difficulty ranges, mean POMP scores per task as well as the
POMP score ranges can be found in Table 1.

Reliability
The Cronbach’s alpha coefficients for the five tasks are reported
in Table 1 and range from 0.11 to 0.95. Due to low
internal consistencies of the tasks “number identification ” and

“counting,” these two tasks were dropped from further analyses.
For the three remaining tasks, corrected item-total correlations
coefficients were all r(156) ≥ 0.25, p < 0.01.

Validity
Construct Validity
Pearson correlations between the three remaining tasks were all
positive and highly significant (see Figure 1). Effect sizes ranged
from medium r(344) = 0.28 to large r(344) = 0.49, with p < 0.001
for each correlation coefficient.

The Kaiser-Meyer-Olkin measure of sampling adequacy was
0.62, so above the commonly recommended value of 0.6, and
Bartlett’s test of sphericity was significant (χ2 (3) = 147.34,
p < 0.001). Communalities were all well above 0.3. Given these
indicators, PCA was deemed to be suitable. Eigenvalues of the
extracted components were 1.76, 0.74, and 0.50, with the first
factor explaining 59% of the total variance. As expected, only one
factor is to be retained according to the Kaiser criterion.

Convergent Validity
Since PCA confirmed that one factor explains the majority of
the variance in task performance for number writing, number
comparison and arithmetic problem solving, an overall score in
the MSR test was computed as the average of the POMP of the
three tasks. The mean score of the test (n = 346) was M = 0.74,
SD = 0.26, with a minimum equal to 0.03 and a maximum of 1.
Distribution of the score is depicted in Figure 2.

The MSR score significantly correlated with TTR at T1
r(344) = 0.57, p < 0.001 TTR at T2 r(344) = 0.51, p < 0.001 and
KRT at T2 r(344) = 0.51, p < 0.001, see Figure 3.

Criterion Validity
The distribution of the CMAS (centered and standardized) is
presented in Figure 4. The Pearson correlation between CMAS
and MSR is r(344) = 0.56, p < 0.001. The boxplots in Figure 5
visualize the finding that, as expected, MSR scores tend to
be lower for students classified as “potential specific learning
disorder in math.” For the students classified as “low math
achievers,” scores tend to be somewhat better, but still lower
than for students that were identified as “not at risk.” A one-
way between subjects ANOVA confirms that mean scores of the 3
performance groups are significantly different with a large effect

TABLE 1 | Task performance.

Task N M POMP (SD) POMP Range Item difficulty range Dropped Internal consistency

Theor. Emp. %correct α (95% CI) r cor.

Number identification 158 0.98 (0.06) 0–1 0.63–1 96 – 100 3, 6, 8 0.53 (0.43 – 0.64) −0.031 –.0.59

Number writing 158 0.87 (0.13) 0–1 0.4–1 38 – 100 1, 4, 5 0.63 (0.55 – 0.75) 0.35 – 0.60

Number comparison 158 0.74 (0.19) 0–1 0.08–1 36 – 96 / 0.70 (0.64 – 0.77) 0.25 – 0.68

Counting 158 0.95 (0.12) 0–1 0.5–1 91 – 97 / 0.11 (−0.11 –0.34) −0.07 – 0.53

Arithmetic problem solving 158 0.66 (35) 0–1 0–1 50 – 82 / 0.95 (0.94 – 0.96) 0.56 – 0.82

POMP, Percentage of maximum performance; CI, confidence interval; Dropped, items that were dropped from internal consistency analysis due to lack of variance (all
answered correctly).
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FIGURE 1 | Correlation plot for relationship between the three valid MSR
tasks. Coefficients represent Pearson correlations. All significant at p < 0.001.

FIGURE 2 | Distribution of MSR score in the sample of the study (n = 346).

size F(2, 343) = 50.94, p < 0.001, ηp
2 = 0.23. A post hoc Tukey

test showed that, as expected, “low math achievers” (M = 0.65,
SD = 0.15) performed significantly better (p < 0.001) than
students with a “potential learning disorder in math” (M = 0.50,
SD = 0.19), but significantly worse (p < 0.001) than students “not
at risk” (M = 0.79, SD = 0.16).

Table 2 presents the cross tabulation for performance
grouping at T1 (with NRS and TTR) and T2 (CMAS). Using
the MSR, 69% of students (compared to 66% with the TTR)
classified as “potential specific learning disorder in math” at T2
were identified at least as “low math achievers” at T1 and 42%
(compared to 31%) were already identified as “potential specific
learning disorder in math.” Only 3% of students identified as

FIGURE 3 | Correlation plot for relationship between MSR score and classical
mathematical tests (CMAS) (TTR at T1 and T2, and KRT). Coefficients
represent Pearson correlations. All significant at p < 0.001.

FIGURE 4 | Distribution of Combined mathematical ability score (CMAS) at T2
in the sample of the study (n = 346).

“potential specific learning disorder in math” with the MSR were
later classified as “not at risk” (compared to 7% with the TTR).

Multiple regression was used in order to determine
whether the MSR score would explain variance within
CMAS performance over and above the variance explained
by the TTR score at T1 (CMAS ∼TTR T1 + MSR). Results
indicate that together MSR and TTR at T1 explain 41% of the
variance within CMAS at T2 (R2 = 0.47, F(2, 343) = 151.5,
p < 0.001) with highly significant contributions from both
indicators (βTTR = 0.47, p < 0.001 and βNSR = 0.30, p < 0.001).
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FIGURE 5 | Boxplots for MSR score by CMAS performance group.

Performance on the MSR test thus explains additional variance
in mathematical ability on T2.

DISCUSSION

Children’s academic level at school entrance, i.e., their school
readiness, is very important for their future academic success
and professional career (Duncan et al., 2007). Detailed knowledge
about children’s early abilities allows optimal adaptation of
learning and instruction to their individual needs. It is therefore
critical to accurately and efficiently assess school starter’s abilities
in the core domains of schooling, such as mathematics.

The present study aimed to design a test that allows
teachers or any professional working with children (e.g., school
psychologists, speech therapists, school doctors) to assess young
children’s MSR when they enter formal schooling in a simple,
rapid and efficient manner. Such a MSR test should provide

insights into children’s numerical abilities at the beginning of
the 1st Grade by revealing their strengths and/or weaknesses,
thereby allowing for the anticipation of their later achievements
and/or problems in mathematics. The test aims to differentiate
between children with distinct math ability levels, focusing in
particular on the identification of children with performances
in the lower range. Importantly, it is not a neuro-psychological
test battery allowing full-fledged diagnosis but the test aims to
inform teachers and interested professionals about children’s
early mathematics skills to guide their future educational set-up
and/or orientation toward specific diagnosis and care measures
on a solid evidence basis.

The tasks included in the test systematically related to
theories of neuro-cognitive development as well as to academic
competence standards, thereby ensuring that children’s early
mathematical abilities are measured in a cognitively accurate
and valid manner. In addition, they are easy to use and can be
readily interpreted by teachers. The initial test version included
5 tasks assessing children’s mastery of visual number symbols:
identifying visual number symbols, writing numbers to dictation,
comparing visual number symbols, writing number symbols
resulting from the counting of visual collections, as well as
solving basic arithmetic problems. After carefully assessing the
internal consistency of the different tasks, the final and validated
test version retained three tasks: writing numbers to dictation,
comparing visual number symbols and solving basic arithmetic
problems. Internal consistency indeed indicated that the tasks
consisting in identifying visual number symbols and in writing
number symbols following the counting of visual collections
needed to be excluded. Those two tasks lacked sensitivity and
demonstrated a very low internal consistency. At the first stage
of test construction, it seemed important to include the number
identification task as it corresponds to a basic entry-level skill,
preceding the ability to read and understand visual symbolic
numbers. The same applies to the counting task, in which visual
collections that had to be counted consisted of 5 to 9 elements.
These type of tasks have been used in well-known diagnostic tests
such as the TEDI-Math (Van Nieuwenhoven et al., 2008). The
TEDI-Math is used for diagnosis of numerical learning disorders
from the end of the 2nd year of kindergarten to the end of
3rd Grade of elementary school. Yet, the fact that the number

TABLE 2 | Cross table for CMAS performance groups with MSR and TTR T1 performance groups.

MSR and TTR T1 performance groups

Potential specific learning low math Not at risk
disorder in math achievers

MSR TTR1 MSR TTR T1 MSR TTR T1 Row total

CMAS performance
groups

Potential specific learning
disorder in math

11 (42) 8 (31) 7 (27) 9 (35) 8 (31) 9 (35) 26

low math achievers 9 (15) 10 (16) 19 (31) 19 (31) 34 (55) 33 (53) 62

Not at risk 8 (3) 17 (7) 35 (14) 27 (11) 215 (83) 214 (83) 258

Column total 28 35 61 55 257 256 346

Values represent counts with row percentages in brackets.
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identification task was not a sensitive measure at the beginning
of 1st Grade is not surprising considering that children in
kindergarten (from 4-to-6-year-olds) revealed remarkably good
knowledge of visual number symbols. They are thus able to
estimate, compare, add and subtract 2-digit numbers, based on
their approximate number sense (Gilmore et al., 2007; Mejias and
Schiltz, 2013). Concerning the present counting task, it appeared
to be much simpler than the task proposed in the TEDI-Math,
in which the child must provide an answer based on a detailed
understanding of elaborate language instructions.

Considering the final version of the MSR task comprising
the three tasks “number writing,” “number comparison,” and
“arithmetic problem solving” a PCA indicated that the final
test can be characterized by a single dimension involving basic
number skills. The three internally consistent tasks of the MSR
test (as all corrected item-total correlations were greater than
0.25) were not redundant, indicating that all subtests contribute
to the measure of early mathematical abilities. Performance
on all three tasks thus contributed relevant information to
explaining individual differences in early mathematical abilities,
which are considered to be essential scaffolds for later formal
arithmetical abilities. It was indeed proposed that mathematical
abilities develop quasi-hierarchically, with more mature and
complex mathematical knowledge building up on more basic
skills (Claessens et al., 2009; Jordan et al., 2009; Claesens and
Engel, 2013; Watts et al., 2014; Aunio and Räsänen, 2016).
The test thus notifies about the mastery of visual symbols, by
providing information about children’s abilities to write numbers
to dictation (i.e., referring to transcoding abilities; e.g., Molfese
et al., 2006), to compare Arabic digits (i.e., referring to number
magnitude representations and place-value understanding; e.g.,
Nosworthy et al., 2013; Brankaer et al., 2017) and to solve basic
arithmetic problems (i.e., referring to basic computational skills;
e.g., Jordan et al., 2006).

The scores in the MSR test were distributed over the entire
performance range, going from very low (0.03) to perfect (1.0).
This indicates that the difficulty level of the test is well adapted
to capture the performance of all children attending 1st Grade.
Critically, children’s performances on the MSR test at school
entrance predicted their mathematical performances 1 year later,
yielding a correlation of 0.56 with a combined measure of two
CMAS. Moreover, the 42% of children, who were identified as
“potential specific learning disorder in math” since they scored
below 7% in the MSR test (i.e., 3% of the total group), also
achieved below 7% 1 year later in 2nd Grade. In comparison,
only 31% of the children were accurately classified based on
the TTR1. The present test therefore allows to anticipate later
mathematics achievements, which in turn facilitates early actions
specifically adapted to a child’s profile. Especially, those children
scoring below 7% run the risk of significantly falling behind
if no specifically dedicated measures are taken. They should
therefore be oriented toward further psychological support and
special needs education, if the specific learning disorder in math
is confirmed by classical neuro-psychological test procedures.
Nevertheless, a certain number of classification errors can arise
with the novel MSR test, as with the more established tests
TTR and KRT. These might reflect for instance math problems

arising after the first assessment point T1, or measurement noise
occurring at T1 or T2 and which leads to performances that do
not truly reflect children mathematical abilities (i.e., tiredness,
lack of concentration or lack of motivation during test taking).

In line with previous studies in preschoolers (Duncan et al.,
2007; Aunio and Niemivirta, 2010; Pagani et al., 2010; Romano
et al., 2010) the present results confirm that early numeracy
performances are a good predictor of later more elaborate math
performance. Mastery of the Arabic number system is a major
challenge in math skill acquisition, as it emerges from the
progressive association of numerical meaning to visual symbols,
which takes place over a 2–3 year period from age 3 onward
(see Thevenot and Fayol, 2018, for a review). This corresponds
to the 3rd and 4th stage of the von Aster and Shalev (2007; see
also Kaufmann et al., 2014), referring to the mastery of Arabic
number representation and their ordering on a mental number
line, respectively. From a formal point of view, these acquisitions
classically emerge through explicit academic learning during
kindergarten and are subsequently reinforced in primary school.
Since approximately 30 years (with the widespread use of digital
displays), implicit learning of visual number symbols also often
occurs in children’s home environment (Thevenot and Fayol,
2018). The more children are exposed to informal learning
opportunities at home, the better they perform on basic number
skill tasks (Melhuish et al., 2008; Benavides-Varela et al., 2016).
Accordingly, some of the children scoring below 25% may
be those lacking informal number activities, therefore lagging
behind peers, who experience more informal numerical activities
in their early home environment (see Ramani and Siegler,
2014, for a review). Activities that include Arabic numbers have
been shown to help these children overcome their gap (e.g.,
Ramani and Siegler, 2008; Siegler and Ramani, 2008). Apart from
lacking numerical stimulation, some children scoring below 7%
may additionally suffer from specific learning disorder in math,
therefore requiring even more targeted follow-ups. The MSR does
not allow disentangling these two problem sources. Yet in either
case, it is important to be able to efficiently and reliably identify
children as soon as possible.

As opposed to existing tools (i.e., exhaustive test batteries,
minimal screeners), our MSR test aims to assess children’s early
mathematical abilities, while being easy to administer as well as
readily interpretable by any early childhood professional such
as teachers, school psychologists, speech therapists, and school
doctors. The present test version is, however, limited to (pre)-
school curricula including explicit instruction of number symbols
up to 10 and using French as instruction language. In future
studies norms should be collected in French-speaking countries
with similar curricula. Furthermore, it will be important to
address potential performance influences due to children’s socio-
economic and (multi-)lingual environment (e.g., Mejias and
Schiltz, 2013; Van Rinsveld et al., 2015).

In sum, the MSR test offers a tool that is short (approximately
15 min), can be administered individually or collectively in the
classroom setting and allows to reliably evaluate early mathematic
abilities, encompassing writing numbers to dictation, comparing
visual number symbols, and solving basic arithmetic problems.
It complements the existing studies based on math school

Frontiers in Psychology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 1173290

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01173 May 23, 2019 Time: 17:34 # 9

Mejias et al. Assessing Numerical School Readiness

readiness of preschool children (Blair and Razza, 2007; Duncan
et al., 2007; Pagani et al., 2010), by providing a test that can be
administered by those teachers and/or health professionals that
are accompanying the children throughout the two first years
of elementary school. Since the MSR test has proven to be an
efficient predictor of children’s proficiency in classical math tests
administered 1 year later, it can be used to detect children who are
at risk of performing low in mathematics. Empirically validated
curricula and specialized neuro-psychological diagnostics and
interventions can then be applied depending on the child’s ability
level (Wilson et al., 2006; Butterworth and Laurillard, 2010;
Clements and Sarama, 2011; Kucian et al., 2011; Skwarchuk et al.,
2014; Iuculano et al., 2015).
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