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Electrical activity in the myocardium coordinates the contraction of the heart, and 
its knowledge could lead to a better understanding, diagnosis, and treatment of 
cardiac diseases. This electrical activity generates an electromagnetic field that 
propagates outside the heart and reaches the human torso surface, where it can 
be easily measured. Classical electrocardiography aims to interpret the 12-lead 
electrocardiogram (ECG) to determine cardiac activity and support the diagnosis 
of cardiac pathologies such as arrhythmias, altered activations, and ischemia. More 
recently, a higher number of leads is used to reconstruct a more detailed quantitative 
description of the electrical activity in the heart by solving the so-called inverse 
problem of electrocardiography. This technique is known as ECG imaging.

Today, clinical applications of ECG imaging are showing promising results in guiding 
a variety of electrophysiological interventions such as catheter ablation of atrial 
fibrillation and ventricular tachycardia. However, in order to promote the adoption 
of ECG imaging in the routine clinical practice, further research is required regarding 
more accurate mathematical methods, further scientific validation under different 
preclinical scenarios and a more extensive clinical validation
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Electrocardiographic Imaging Using
a Spatio-Temporal Basis of Body
Surface Potentials—Application to
Atrial Ectopic Activity
Steffen Schuler*, Andreas Wachter and Olaf Dössel

Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany

Electrocardiographic imaging (ECGI) strongly relies on a priori assumptions and

additional information to overcome ill-posedness. The major challenge of obtaining good

reconstructions consists in finding ways to add information that effectively restricts

the solution space without violating properties of the sought solution. In this work,

we attempt to address this problem by constructing a spatio-temporal basis of body

surface potentials (BSP) from simulations of many focal excitations. Measured BSPs

are projected onto this basis and reconstructions are expressed as linear combinations

of corresponding transmembrane voltage (TMV) basis vectors. The novel method was

applied to simulations of 100 atrial ectopic foci with three different conduction velocities.

Three signal-to-noise ratios (SNR) and bases of six different temporal lengths were

considered. Reconstruction quality was evaluated using the spatial correlation coefficient

of TMVs as well as estimated local activation times (LAT). The focus localization error was

assessed by computing the geodesic distance between true and reconstructed foci.

Compared with an optimally parameterized Tikhonov-Greensite method, the BSP basis

reconstruction increased the mean TMV correlation by up to 22, 24, and 32% for an

SNR of 40, 20, and 0dB, respectively. Mean LAT correlation could be improved by up

to 5, 7, and 19% for the three SNRs. For 0 dB, the average localization error could be

halved from 15.8 to 7.9mm. For the largest basis length, the localization error was always

below 34mm. In conclusion, the new method improved reconstructions of atrial ectopic

activity especially for low SNRs. Localization of ectopic foci turned out to be more robust

and more accurate. Preliminary experiments indicate that the basis generalizes to some

extent from the training data and may even be applied for reconstruction of non-ectopic

activity.

Keywords: ECG, inverse problem, spatio-temporal regularization, basis vectors, body surface potentials, atrial

ectopic beats

1. INTRODUCTION

Reconstructing the heart’s electrical activity from non-invasively measured body surface potentials
(BSP) is known as the inverse problem of electrocardiography (Pullan et al., 2010). The
ill-posedness of this problem can be overcome by introducing additional information—a technique
called regularization. Classical regularization methods such as Tikhonov regularization add the
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“information” that the solution must be of small signal energy
or smooth in space or time. However, they do not complement
the measurements with physiological information about the
spread of cardiac excitation, which could greatly improve the
uniqueness of the solution. For example, ambiguities can arise
between sources on two different regions oriented in parallel,
when body surface potentials are projected back onto the heart.
Incorporating information about the spatio-temporal coherence
of excitation spread, i.e., taking into account that excitation
waves can only gradually propagate across connected regions,
is expected to help resolve ambiguities. Several approaches have
been proposed to incorporate electrophysiological knowledge
(van Oosterom, 1999; Messnarz et al., 2004; Ghodrati et al., 2006;
Wang et al., 2010; Potyagaylo et al., 2014, 2016a; Cluitmans
et al., 2018). Cluitmans et al. (2017) reconstructed potentials
on the ventricular epicardium as sparse combinations of spatial
source basis vectors generated from simulations of many paced
beats. In this work, we use a related approach. However, we
suggest to create a basis of body surface potential patterns
instead of source patterns to condense the information to what
can possibly be measured on the body surface. Corresponding
basis patterns in source space are then obtained and combined
to express reconstructions. Furthermore, we use a spatio-
temporal basis instead of a spatial-only one, as we believe this
reduces ambiguities and increases the robustness to noise. We
demonstrate the method in an application to atrial ectopic
activity.

2. METHODS

The outline of this study is illustrated in Figure 1. First, fast
marching simulations of 200 ectopic foci are performed and
forward calculated to create basis vectors. Reconstructions are
then performed using these basis vectors for another set of 100
ectopic foci simulations. Here, the monodomain model is used
with three different conduction velocities (CV) and forward
calculated BSPs are corrupted with three different levels of
noise. Finally, reference reconstructions are obtained using the
Tikhonov-Greensite method and the same metrics are calculated
for both reconstruction methods.

2.1. Geometries
Figure 2 shows the geometries used for forward and inverse
calculations. They are the same as in Schuler et al. (2017),
which in turn are based on Figuera et al. (2016). The surface
meshes of the atria and torso consist of 4,800 and 844
nodes and have an average edge length of 3.4 and 27.0mm,
respectively. A subset of 173 torso nodes have been selected
as electrodes (blue spheres). Much finer tetrahedral meshes of
the atria were used for excitation simulations (142 k nodes,
average edge length: 0.9mm). Blue and red spheres on the
atria mark evenly distributed pacing locations used for fast
marching and monodomain simulations, respectively. Note that
pacing locations for both sets of simulations do generally not
coincide.

2.2. Fast Marching Simulations
For creating basis vectors, fast marching simulations of 200 paced
beats were performed. First, local activation times (LAT) ta were
computed by solving the eikonal equation with the fast marching
method (Pernod et al., 2011):

‖∇ta‖2 =
1

c

The CV was homogeneously set to c = 0.8m/s. A TMV
template was then aligned with LATs. Experiments with a
template based on the Courtemanche et al. cell model and a
step-function-like template (Figure 3) showed that basis vectors
created as described in section 2.5.1 are mainly determined by
the depolarization upstroke and it is not necessary to include the
repolarization. Therefore, we decided to use the step-function-
like template. The temporal sampling period was chosen to be
2ms.

2.3. Monodomain Simulations
As activity to be reconstructed, 100 paced beats were simulated
using the monodomain model:

∇ · (σmono∇Vm) = β

(
Cm

∂Vm

∂t
+ Iion

)

The monodomain conductivity σmono was chosen homogeneous
and isotropic and, together with the surface-to-volume ratio
β , was adjusted to obtain the desired CV. In order to study
what happens, if a wrong CV is assumed for the creation
of basis vectors, we varied the CV by ±50% of its baseline
value. Therefore, three different CVs were used for monodomain
simulations: 0.4, 0.8, and 1.2m/s. Ionic currents Iion across the
cell membrane were defined according to Courtemanche et al.
(1998). As for fast marching simulations, the temporal resolution
is 2ms.

2.4. Forward Calculation
According to bidomain theory, extracellular potentials φ are
related to volumetric TMVs Vm by:

∇ · ((σ i + σ e)∇φ) = −∇ · (σ i∇Vm) (1)

In this work, we assume isotropic, i.e., scalar intra- and extra-
cellular conductivities σ i and σ e, respectively. As this is a
special case of equal intra- and extra-cellular anisotropy ratios,
volumetric TMVs may be replaced by TMVs on the myocardial
surface (Yamashita and Geselowitz, 1985). For a homogeneous
torso with the same bulk conductivity as the heart σ , the potential
φ at an observation point can be calculated from surface TMVs
Vm by (Simms and Geselowitz, 1995):

φ = −
1

4πσ

∫

SH

σiVm d�H −
1

4π

∫

SB

φB d�B (2)

SH and SB are the surfaces bounding the myocardium and torso,
respectively. d�H and d�B are the solid angles subtended by
an area element on the corresponding surface as seen from an
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FIGURE 1 | Flowchart illustrating the outline of this study.

FIGURE 2 | Meshes of the atria and torso used for forward and inverse calculations. Blue spheres on the atria indicate 200 pacing locations used to create basis

vectors, while red spheres indicate 100 pacing locations used for monodomain simulations to be reconstructed. Torso electrodes are shown in blue. Red spheres on

the torso mark reference nodes.

observation point. By applying the boundary element method to
solve (2) for BSPs φ = φB, a lead field matrix A is obtained
that transforms surface TMVs to BSPs. Intracellular and bulk
conductivities are set to σi = 0.05 S/m, and σ = 0.2 S/m and
potentials are referenced toWilson’s central terminal. We assume
the following linear forward model:

bk = Axk + εk

where bk, xk and εk are BSPs, TMVs, and white Gaussian noise
for all nodes at a time step k, respectively. For fast marching
simulations used to create basis vectors, we do not add any noise.
For monodomain simulations, we consider three different signal-
to-noise ratios (SNRs): 40, 20, and 0 dB. It is assumed that each
electrode is affected by the same absolute noise power, which is set
to the average signal power of all electrodes divided by the SNR.
For solving the inverse problem, we assume perfect knowledge
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FIGURE 3 | TMV templates based on the Courtemanche et al. cell model (red)

and the step function (blue).

of A and thus neglect errors due to imperfect geometries and
conductivities.

2.5. Reconstruction Using Spatio-Temporal
BSP Basis
The following identifiers and terminology will be used in this
section:

N Number of atria nodes

M Number of torso electrodes

K Total number of time steps in training data (here: 200)

or to be reconstructed

L Basis length: odd number of time steps in each basis vector

(here: 1, 9, 17, 25, 33, 41)

P Basis dimension: number of basis vectors used for reconstruction

2.5.1. Creation of Basis Vectors
As in Cluitmans et al. (2017), we use the singular value
decomposition (SVD) to create basis vectors. In order to get a
spatio-temporal basis, we define an observation as the column-
wise concatenation of values at all nodes for all time steps within
a time window of length L. As we do not know the time delay
between the activity to be reconstructed and the activities used to
create the basis, we include all possible delays by continuously
time-shifting the window by a single time step. This way, a
total of K−L+1 observations are generated for each simulation.
Row-wise concatenation of all observations (all time shifts of all
simulations) then yields a data matrix D. Using xk to denote
TMVs for all nodes at a time step k, the TMV data matrix Dx

is thus given as:

Dx =







xT
1 xT

2 . . . xT
L

xT
2 xT

3 . . . xT
L+1

...
...

...

xT
K−L+1 xT

K−L+2 . . . xT
K




...
(repeat for all simulations)




By replacing x with b, a BSP data matrix Db can be constructed
in exactly the same way. From Axk = bk, it follows that the
whole TMV data matrix can be forward calculated using a block
diagonal lead field matrix Ã:

ÃDT
x = DT

b ⇔ Db = Dx Ã
T with Ã = IL ⊗ A (3)

IL is the L × L identity matrix and ⊗ denotes the Kronecker
product.
We now perform an SVD of the BSP data matrix:

Db = USVT

b (4)

The columns ofVb are spatio-temporal basis vectors of BSPs. We
now want to find the corresponding TMV basis vectors Vx, for
which holds:

Vb = Ã Vx (5)

Substituting (3) and (5) in (4) yields:

Dx Ã
T = USVT

x Ã
T ⇔ VT

x = (US)+Dx = S+UT Dx

(·)+ denotes the Moore–Penrose pseudoinverse. This shows that
the TMV basis can directly be calculated from the TMV data
matrix using an inversion ofUS, the scores matrix obtained from
the SVDof the BSP datamatrix. An inversion of Ã is not required.

2.5.2. Reconstruction in Terms of Basis Vectors
Now the BSPs of a patient show up. They will be called
B = [b1, b2, . . . , bK] in the following. Here, K is the total number
of time steps to be reconstructed. To reconstruct TMVs in terms
of a reduced number P of basis vectors, we first perform a least-
squares regression using BSP basis vectors. This results in the
optimal basis vector weightsW:

W = argmin
W

∥∥Vb

(
:, 1:P

)
W− B̃

∥∥2
F

(6)

‖ · ‖F denotes the Frobenius norm and B̃ are the “measured”
BSPs reshaped into the format of basis vectors. Using MATLAB
notation, they are given by:

B̃
(
:, k

)
= reshape

(
B
(
:, k:k+L−1

)
, LM, 1

)
for k = 1, 2, . . . ,

K−L+1

Since the columns of Vb form an orthonormal basis, the solution
to (6) is given by:

W = Vb

(
:, 1:P

)T
B̃ (7)

This can be seen as filtering the BSPs by projecting them onto
the P most important BSP basis vectors. The weights W are now
used to obtain the reconstructed TMVs X̃r as linear combination
of corresponding TMV basis vectors:

X̃r = Vx

(
:, 1:P

)
W
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Each column of X̃r contains the row-wise concatenation of all
time windows with length L. As final solution Xr , we therefore
extract the central time step of each window:

Xr = Vx

(
L−1
2 N+(1:N), 1:P

)
W

Corresponding BSPs can be obtained in the same manner:

Br = Vb

(
L−1
2 M+(1:M), 1:P

)
W = AXr

We would like to point out that creating the basis vectors in BSP
space instead of in source space, i.e., calculating the SVD of Db

instead of Dx, is the key step which makes it possible to perform
an unregularized least-squares regression without additional
constraints. If the basis vectors were created in source space,
they may still contain redundant information with respect to
BSPs and therefore a regularized regression would be necessary:

W = argmin
W

{∥∥Ã Vx

(
:, 1:P

)
W− B̃

∥∥2
F
+ λ

∥∥RVx

(
:, 1:P

)
W

∥∥2
F

}
,

where R is a regularization matrix. This would require inverting
a P×P matrix for every combination (P, λ), while only a fast
matrix multiplication (7) has to be computed for each P when
using the BSP basis.

2.5.3. Choice of Basis Dimension
Following the concept of the L-curve, the “optimal” basis
dimension is determined from the log-log graph of the residual
norm ‖Br−B‖F versus the corresponding basis dimension P (left
diagram in Figure 4). Instead of the maximal curvature, which
is not very pronounced in the resulting “L-curves,” we found
that the minimal absolute slope (blue circles) of a smoothing
spline fit is a good criterion for selecting the basis dimension.
To ensure that solutions are not underregularized, we set the
basis dimension 10% lower than at the point of minimal absolute
slope (red circles). The right diagram in Figure 4 shows that the
resulting basis dimension for one specific SNR depends linearly
on the basis length L.

2.6. Reference Reconstruction With
Tikhonov-Greensite
For comparison, reconstructions with the Tikhonov-Greensite
method (TikhGS) are performed (Greensite and Huiskamp,
1998). While standard Tikhonov methods regularize each time
step individually, TikhGS performs Tikhonov regularization
for the p most important temporal singular vectors of BSPs,
which helps to eliminate noise and generally leads to better
reconstructions, given the number of singular vectors used
is chosen appropriately. We apply the epi-endo projection
described in Schuler et al. (2017), which further improves the
solution. TikhGS is then used with simultaneous zero- and
second-order constraints:

B = USVT, V = V(:, 1:p)

XV = argmin
(XV)

{
‖A(XV)− BV‖2

F
+ λ‖L(XV)‖2

F
+ η‖XV‖2

F

}

X = (XV)V
T

In order to provide the reference method with the best possible
parameters, p was varied between 3 and 13 and regularization
parameters λ and η were optimized for each case individually to
maximize the mean of spatial TMV correlation with the ground
truth over the period of depolarization. The downhill simplex
method was used for optimization.

2.7. Post-processing and Metrics
2.7.1. Transmembrane Voltages
To assess the quality of reconstructed TMVs, the Pearson
correlation coefficient between reconstructions and the ground
truth is computed separately for each time step across all
nodes (spatial CC). As we want to quantify, how good the
depolarization is being reconstructed, we only calculate the
spatial CC for time steps between the first and the last activation
of each simulation, as defined by the ground truth.

2.7.2. Local Activation Times
Local activation times represent one of the most important
characteristic of cardiac excitation spread and are therefore
estimated from reconstructed TMVs. We use the “global
activation time” approach described in Dubois et al. (2012),
which is based on cross-correlating signals of nearby nodes to
find their time delay. The method has further been advanced in
Duchateau et al. (2017) to combine delay-based and deflection-
based activation times. In this work, however, we stick with the
delay-only formulation. The procedure is illustrated in Figure 5.
First, TMVs are oversampled to allow for a precise alignment
in time. As signal for cross-correlation, we then use a Gaussian
filtered version of the magnitude of the surface gradient of
TMVs: ‖∇Vm(t)‖2. Using a lowpass filtered time derivative as
described in Duchateau et al. (2017) yielded unsatisfactory results
for both TikhGS and the BSP basis reconstruction. This might
be explained by the fact that the spatial gradient of TMVs is
the source of body surface potentials according to (1). LATs are
finally estimated from the delays using least-squares regression
of a linear model. As LAT metric, we calculate the spatial CC
between LATs estimated for reconstructions and the ground
truth.

2.7.3. Ectopic Focus Localization
BSPs are directly proportional to the solid angle at ameasurement
point subtended by the depolarizationwavefront, which separates
regions of low and high TMVs (see Equation 2). For a given
noise level, the instantaneous SNR therefore rises with the size
of the depolarization wavefront and the excitation origin cannot
reliably be determined from the small signal at the very onset
of excitation. If the depolarization wavefront spreads too far
from the origin, however, the uncertainty of localizing the origin
within the depolarized region increases as well. As the CV is
not known beforehand, we therefore do not base the focus
localization on one specific time step, but use the temporal
mean of many time steps after excitation onset. If the TMV
waveform was a Heaviside step function, the TMV time integral
(and thus also its temporal mean) would be proportional
to reversed activation times. For other TMV waveforms, the
temporal mean still yields a valid activation “sequence,” as long
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FIGURE 4 | (Left) Exemplary “L-curves” for a basis length of L = 17. Black dots: original data points. Red curves: smoothing spline fits. Blue circles: Points of min.

absolute slope. Red circles: Points 10% left of min. slope points. (Right) Dependency of basis dimension on basis length.

FIGURE 5 | Delay-based LAT estimation. D is a difference matrix to obtain pair-wise delays from LATs.

as the TMV time integral is increasing (Schulze, 2015). Based
on the TMV waveform of the Courtemanche et. al. model
(Figure 3), we chose to calculate the mean over 200ms after
excitation onset. In general, this time should not be chosen
larger than the effective refractory period. In this work, the
time of excitation onset is assumed to be known. In practice,
it would have to be determined as the P wave onset. Having
obtained activation sequences, a template matching approach is
employed to detect the focus location: For every mesh node,
the zero-mean normalized correlation (ZNC) of the temporal
mean of TMVs Vm and the reversed geodesic distance field,
originating from the respective node and truncated at 3 cm, is
calculated. As the ZNC only measures similarity in shape, not
magnitude, the result is further weighted with (Vm −min{Vm}).
The maximum of this “focus measure” is finally detected as
focus. The method is illustrated in Figure 6 for both BSP
basis and TikhGS reconstructions. Correlating with the geodesic
distance fields can also be seen as a transformation to find
the center of mass of the TMV distribution on a curved
surface.

As localization error, the geodesic distance between the
true and reconstructed focus is evaluated. In contrast to the
Euclidean distance, this metric correctly yields large errors for
nearby points that are not directly connected via the geometry,
such as two points on the opposite side of the interatrial
region.

3. RESULTS

3.1. Basis Vectors and Singular Values
Figure 7 (left) depicts 3 time steps of exemplary TMV basis
vectors for a basis length of L = 17. It can be seen that the
spatial and/or temporal frequency increases with the basis vector
number and that spatial patterns evolve over time. The diagram
on the right shows that the larger the basis length, the more
basis vectors are needed to represent the same proportion of
information contained within all basis vectors.

3.2. Robustness to Noise
Metrics for reconstructions of monodomain simulations with the
same CV as used for basis creation are shown in Figure 8. For
all noise levels considered, BSP basis reconstructions perform
consistently better than TikhGS. Even a spatial-only basis
(L = 1) leads to an improvement. Increasing the basis length
further increases the correlation coefficients for both TMVs
and LATs, especially for low SNRs. This can also be seen
from Figure 9, where LATs for an ectopic focus near the left
inferior pulmonary vein are shown for different SNRs and
basis lengths. While the LAT map for L = 1 and 40 dB
already looks much like the ground truth, basis lengths of at
least L = 9 and L = 17 are needed for 20 and 0 dB,
respectively.
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FIGURE 6 | Ectopic focus localization illustrated for exemplary reconstructions with the BSP basis (L = 33) and TikhGS. CV = 0.8m/s. SNR = 0dB. Black spheres:

true focus, white spheres: reconstructed focus. Geodesic distance fields shown on the left are reversed and truncated at 3 cm (dark blue). Gray areas are not taken

into account for correlation.

FIGURE 7 | (Left) Examples of TMV basis vectors for L = 17. p: basis vector number. k: time step. Colors only visualize spatial morphology. (Right) Cumulative sum

of singular values for different basis lengths L.

3.3. Influence of Conduction Velocity
In theory, errors in the spatial dimension, i.e., the position of
the wavefront, increase linearly with time for a mismatch of
CV. Therefore it is expected that the reconstruction quality
deteriorates for large basis lengths if the CV used to create basis
vectors deviates from the actual CV. Figures 10A,B show the
metrics for a CV of 0.4 and 1.2m/s, respectively, while the CV
assumed for basis vectors remains at 0.8m/s. It can be seen
that there is now indeed an upper limit for the improvement
with increasing basis lengths. Results show a clear tradeoff
between the error due to a wrong CV for large basis lengths

and the error due to lower robustness to noise for small basis
lengths. Although the BSP basis reconstruction still outperforms
TikhGS in every case, it can be seen from comparison of
both figures that overestimating the true CV during basis
creation seems to be less problematic than underestimating
it. Figure 11 shows another interesting effect of wrong CVs.
If the CV is overestimated (top row), LATs estimated from
reconstructions with large basis lengths are smaller than true
LATs, suggesting a larger than actual CV. To a lesser extent,
the opposite effect can be seen for an underestimation (bottom
row).
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3.4. Ectopic Focus Localization
Localization errors are shown in Figure 12. The mean error
decreases with increasing basis length, even for CVs different
from 0.8m/s. For L = 41, it is approximately halved compared
to TikhGS (see Table 1). Another important improvement is the
reduction of the maximum localization error. While errors for
TikhGS range up to 90mm, the maximum error for L = 41
is 34mm. For a CV of 0.4m/s, however, there is an outlier for
L = 25 and L = 33. This case is illustrated on the right of
Figure 12C. For this ectopic focus at the orifice of the inferior
vena cava, the reconstruction first shows a false activity on the
nearby left atrium. Only after the excitation has further increased
in size, the reconstruction continues to show the activity at the
correct location. A better localization thus would have been
obtained for a later (or longer) time window used for calculating
the temporal mean.

In general, the BSP basis reconstruction largely resolves
ambiguities. In Figure 13A, this is demonstrated for a focus
on the anterior-septal wall of the left atrium. TikhGS and
a purely spatial basis fail to recover the activity at the
correct spot and show multiple activities on the right and
left atrium instead. Using a spatio-temporal basis, however,
leads to a reconstruction at the correct spot. Increasing the
basis length progressively increases the uniqueness of the
solution. An even better impression on where ambiguities
arise between sources can be obtained by taking a look
at the distributions of localization errors across the atria,
as shown in Figure 13B. For TikhGS, the largest errors
occur at the interatrial region, where left and right atrial
surfaces are very close to each other and oriented in parallel.
Using a BSP basis of sufficient length greatly reduces these
errors.

FIGURE 8 | Metrics for a CV of 0.8m/s. Colors represent different SNRs. Blue: 40 dB, red: 20 dB, yellow: 0 dB. Boxes: 25–75th percentile. Whiskers: 1.5 inter-quartile

range. Filled circles and lines represent the mean. (Left) Spatial CC of TMVs. (Right) Spatial CC of LATs.

FIGURE 9 | LATs for different SNRs and basis lengths L. CV = 0.8m/s.
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3.5. Effect of Non-conducting Region
In order to test, how much the reconstruction relies on the
excitation patterns in the training data, we added a non-
conducting scar region to one simulation. For that purpose,

the monodomain conductivity was set to zero in a circular
region with a diameter of 4 cm on the right atrium. The results
are shown in Figure 14. It can be seen that the reconstructed
wavefront propagates around the non-conducting region on the

A

B

FIGURE 10 | (A) Metrics for a CV of 0.4m/s. (B) Metrics for a CV of 1.2m/s. See caption of Figure 8 for details.

FIGURE 11 | LATs for different CVs and basis lengths L. SNR = 40dB.
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right atrium, even though the training data did not include such a
pattern. The basis created by including all time shifts of excitation
patterns in the data matrix therefore generalizes from individual
patterns.

4. DISCUSSION

We demonstrated that using a spatio-temporal basis of BSPs to
reconstruct TMVs improves the robustness to noise, resolves

ambiguities between sources and leads to better localization
of atrial ectopic foci than TikhGS. Of all possible solutions
fitting to measured BSPs, the proposed method selects the
one which is most probable with regard to the training
data used to create basis vectors. This approach allows us
to reconstruct hidden sources as well, given they occur in
conjunction with other, visible sources. Compared to simply
correlating measured BSPs with BSPs of many simulated beats
(Potyagaylo et al., 2016b), the new method has two main

A

C

B

FIGURE 12 | Localization errors for all 100 ectopic foci. See caption of Figure 8 for colors and markers. Outliers are shown as empty circles. (A) CV = 0.8m/s.

(B) 1.2m/s. (C) 0.4m/s. The outlier for CV = 0.4m/s and L = 33 is depicted on the bottom right. Black sphere: true focus, white sphere: reconstructed focus.

TABLE 1 | Localization errors in mm.

CV = 0.4m/s CV = 0.8m/s CV = 1.2m/s

TikhGS L = 41 TikhGS L = 41 TikhGS L = 41

SNR (dB) 20 0 20 0 20 0 20 0 20 0 20 0

Mean 10.1 12.8 4.4 5.9 13.8 17.5 5.2 7.6 14.5 17.3 7.7 10.0

90th percentile 19.9 23.5 8.3 10.9 33.6 35.0 10.0 13.1 36.4 31.1 17.3 18.4

Maximum 43.7 60.4 21.5 17.0 69.9 71.6 23.2 19.4 90.4 69.9 33.6 30.9
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A

B

FIGURE 13 | (A) Focus measure for a focus on the anterior-septal wall of the left atrium (CV = 0.8m/s, SNR = 0dB). Black sphere: true focus, white sphere:

reconstructed focus. (B) Distribution of localization errors across the atria for TikhGS and the BSP basis reconstruction (CV = 0.8m/s, SNR = 20dB, results for 0 dB

are qualitatively similar). Values were interpolated by minimizing the Laplacian at all nodes (Oostendorp et al., 1989).

FIGURE 14 | TMVs for a simulation containing a non-conducting scar region on the right atrium. SNR = 20dB. CV = 0.8m/s. Each time step was normalized by

subtracting the spatial mean and dividing by the spatial standard deviation (SD).

advantages: First, the basis generalizes to some extent from
the individual activities used as input and thus also allows
us to represent excitation patterns that were not among
the training data. Second, measured and simulated BSPs do
not have to be aligned in time, as the basis contains all
time shifts. Localization results obtained by correlating with
all BSP patterns in the training data and finding the one
with the maximum correlation coefficient are included in
the Supplementary Material. Although this approach works
comparably well if the CV matches the CV in the training data,
it performs considerably worse than the BSP basis reconstruction
for non-matching CVs.

One remaining question regarding the creation of basis
vectors is how to best set up the training data, so that each
basic activation pattern occurs equally often in the data matrix.
In the current geometry, the left and right atrium are only
connected by one bridge representing the Bachmann’s bundle.
This results in almost the same activation pattern on the
opposite atrium, once the excitation has passed the bridge.
This activation pattern (corresponding to pacing at the bridge)
occurs disproportionately often in the data matrix and will
therefore best be represented by the resulting basis vectors.
Reconstructions might therefore be biased toward this specific
pattern. In geometries with multiple bridges, this effect is not
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as pronounced. Limiting the information in the data matrix to
a time window around the beginning of excitations is expected to
optimize the basis for better reconstructions near the excitation
origin.

4.1. Limitations
There are several limitations of this study that need to
be acknowledged. The most important one is that atrial
conductivities were assumed to be homogeneous and
isotropic. Although we think this is a logical first step in
evaluating the new reconstruction method systematically,
its performance has to be studied with atrial anisotropy and
several atrial geometries. This has to be done in a future work.
However, exemplary reconstructions for four ectopic foci in
a highly anisotropic model of the atria are included in the
Supplementary Material. These results indicate that the method
improves reconstructions over TikhGS for anisotropic spread
of excitation as well, although the reconstruction quality does
decrease compared to the isotropic case. Another aspect not
considered is fibrosis, which may hamper the localization of
atrial ectopic foci (Godoy et al., 2018). Finally, further studies are
needed to evaluate the sensitivity to imperfect geometries and
conductivities.

4.2. Outlook
We are planning to study the new reconstruction method with
clinical measurements during (focal) ventricular tachycardia.

We hope to make use of scar-related information from late
gadolinium enhancement MRI during the creation of basis
vectors. For non-focal arrhythmias, it would be interesting to see

whether including non-focal activities in the basis is beneficial.
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Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart
from a dense array of body-surface electrocardiograms and a patient-specific heart-
torso geometry. Depending on how it is formulated, ECGI allows the reconstruction
of the activation and recovery sequence of the heart, the origin of premature
beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other
electrophysiological quantities of interest. Importantly, these quantities are directly and
non-invasively reconstructed in a digitized model of the patient’s three-dimensional
heart, which has led to clinical interest in ECGI’s ability to personalize diagnosis and
guide therapy. Despite considerable development over the last decades, validation of
ECGI is challenging. Firstly, results depend considerably on implementation choices,
which are necessary to deal with ECGI’s ill-posed character. Secondly, it is challenging
to obtain (invasive) ground truth data of high quality. In this review, we discuss the
current status of ECGI validation as well as the major challenges remaining for complete
adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for
the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow
improvement, or cost reduction. Future studies should focus on these aspects to
achieve broad adoption of ECGI, but only after the technical challenges have been
solved for that specific application/pathology. We propose ‘best’ practices for technical
validation and highlight collaborative efforts recently organized in this field. Continued
interaction between engineers, basic scientists, and physicians remains essential to
find a hybrid between technical achievements, pathological mechanisms insights, and
clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.

Keywords: ECG imaging, validation, electrocardiography, electrophysiology, experiment
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INTRODUCTION

Electrocardiographic imaging (ECGI) reconstructs the electrical
activity of the heart from a dense array of body-surface
electrocardiograms and a patient-specific heart-torso geometry.
Depending on how the problem is formulated, ECGI allows
the reconstruction of the activation and recovery sequence
of the heart, the origin of premature beats or tachycardia,
the anchors/hotspots of re-entrant arrhythmias and other
electrophysiological quantities of interest. Importantly, these
quantities are directly and non-invasively reconstructed in a
digitized model of the patient’s three-dimensional heart, which
allows personalized diagnosis and localized therapy guidance.

Over the past four decades, ECGI has seen considerable
development, from purely analytical studies (Rudy et al., 1979;
Figuera et al., 2016; Svehlikova et al., 2018), to torso tank (Oster
et al., 1997, 1998; Ramanathan and Rudy, 2001; Shome and
Macleod, 2007; Bear et al., 2018a) and large animal models (Liu
et al., 2012; Oosterhoff et al., 2016; Cluitmans et al., 2017; Bear
et al., 2018b) and finally application in humans (Ghanem et al.,
2005; Horáček et al., 2011; Haissaguerre et al., 2014; Schulze,
2015; Punshchykova et al., 2016). It is now increasingly used for
academic research and in clinical practice. Despite this progress,
validation of ECGI remains a significant challenge.

Mathematically, ECGI solves the inverse problem of
electrocardiography (i.e., to determine the cardiac electrical
source for a given body-surface potential distribution), a
problem fundamentally hindered by the fact that a multitude
of patterns of cardiac electrical activity can produce similar
body-surface potentials. The majority of these “inverse solutions”
are physically and physiologically unlikely; therefore, additional
constraints are imposed to stabilize the problem and select a
more realistic solution, a process that is called “regularization.”
Regularization that is based on physical and physiological a priori
information significantly improves the solvability and robustness
of inverse solutions from ECG recordings. ECGI is thus strongly
dependent on implementation choices, such as the cardiac source
model and the method of regularization. Both these components
need to be taken into account by the validation approach,
which is not always straightforward. A second aspect that makes
ECGI validation challenging is the difficulty in obtaining highly
detailed and localized invasive ground-truth data in in vivo
animals or humans. Finally, ECGI is strongly dependent on
the specific clinical application of interest, as each application
will yield a need for different quantitative parameters and their
validation.

The aims of this paper are:

(1) To review the current status of validation of ECGI, as
recent overviews on this topic are lacking (Sections Forms
of Validation, Cardiac Source Models, Technical Validation,
Pathological Validation, and Clinical (and Socioeconomic)
Validation);

(2) To highlight which challenges in ECGI validation remain
to facilitate clinical adoption; this includes commercial
and socioeconomic challenges (Section Clinical (and
Socioeconomic) Validation);

(3) To provide a consensus on the “best” ways to perform ECGI
validation in the future (Section Consensus on Designing a
Validation Study).

FORMS OF VALIDATION

Given the increased clinical use of ECGI over the recent past,
there is an associated need for ECGI validation. Validation studies
come in three different forms: technical, pathological, or clinical
validation (see Figure 1).

The first form evaluates the technical accuracy and
performance of ECGI for reconstructing the value of specific
electrophysiological quantities. The relevant quantities include
transmembrane voltage, electrograms, activation and recovery
times, and related features that can be quantified. The accuracy
of these features is not only influenced by the inverse or
regularization methods that are used, but also by the pre-
processing (e.g., techniques that filter or average the recorded
body-surface potentials or improve the geometrical accuracy,
methods to deal with poor quality signals, etc.) and post-
processing methods that are used to extract features that are not
directly available from inverse solutions (e.g., the calculation of
activation time or other temporal fiducials from a reconstructed
electrogram, or the use of phase mapping for rotor detection).
Technical validation studies seek to evaluate these quantifiable
features, generally irrespective of the underlying disease or
clinical setting.

The second category of ECGI validation studies is to define
the pathological accuracy and performance of ECGI, i.e., its
capability to extract features applicable to a specific pathology or
arrhythmia. For example, determining the origin of a premature
ventricular complex (PVC) requires a different approach than
determining the fractionation of local electrograms in myocardial
infarction, or determining the region of large repolarization
gradients in patients susceptible to ventricular fibrillation (VF).
For each of these types of validation, the exact value of the
reconstructed quantities may not be as important as their ability
to separate healthy from diseased states. For example, it may
matter less whether ECGI can determine the exact value of the
steepness of a repolarization gradient (which, for example, may
depend on mesh coarseness) as long as it can reliably differentiate
a proarrhythmic gradient from a normal gradient (Vijayakumar
et al., 2014).

The third category of validation studies evaluates the clinical
accuracy and performance of ECGI, i.e., its benefit in daily clinical
practice. The main focus of these studies is not the accuracy of
reconstructed or post-processed parameters, but their influence
on clinical decision making. For example, ECGI might provide
improved therapy outcomes in atrial fibrillation (AF) ablation,
improved workflow in the cardiac electrophysiology laboratory,
reduced radiation burden or procedural times, etc.

Although we divide validation into three distinct categories,
there is often overlap between them, particularly in the case
of “pathological” and “clinical” validation. Here we used these
categories to emphasize the difference between using ECGI
to investigate disease mechanisms (in which validation may
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FIGURE 1 | Describes the validation continuum, from purely technical studies to pathological/clinical validation and socioeconomic benefit studies. Whereas the
technical validation of ECGI is extensive, as is its use in disease mechanisms studies and validation of the true clinical benefit is still lacking.

focus on parameters directly reconstructed by ECGI) and using
ECGI for clinical applications (in which validation may focus
on indirect parameters such as patient outcome and reduced
procedure costs).

Each validation form has different requirements in terms of
data, metrics and analysis (Figure 1). In the remainder of this
review, we assess the current status of each validation form,
discuss the different issues surrounding validation, and provide
a consensus as to the best approach to overcome these challenges
to arrive at clinically relevant studies and applications.

CARDIAC SOURCE MODELS

Validating an ECGI formulation begins by defining the cardiac
source to be reconstructed. Many of the original ECGI
formulations approximated the cardiac source as either a single
or multiple equivalent dipoles (Bayley and Berry, 1962; Rudy
and Messinger-Rapport, 1988) or equivalent dipole layer (van
Oosterom, 2004). Despite these source models being “equivalent”
to the “ground truth” cardiac electrical activity they represent
(in the sense that the models each fully represent cardiac
electrical activity from a biophysical standpoint), there are no
obvious physiological links, making experimental and/or clinical
validation difficult.

Figure 2 illustrates the three current predominant cardiac
source models and the features that can be derived from them:
transmembrane voltage-based models, extracellular-potential
based models, and activation/recovery-based models. The
definition of an appropriate ground truth for comparison among
these cardiac source models can be difficult, particularly when
using experimental or clinical data sets. Often, investigators need
to be satisfied with a derived ground truth data (e.g., activation

times) or a ground truth hampered by error due to experimental
limitations.

Transmembrane Voltage-Based Model
Taking the transmembrane voltage (TMV, i.e., the potential
difference across the cell membrane of a cardiomyocyte, or a
continuum approximation of that quantity), as a cardiac source
model is the closest approximation to the true cardiac electrical
source. Transmural reconstructions of TMV are possible (He
et al., 2003; Wang et al., 2010; Potyagaylo et al., 2012), but a
reformulation from Geselowitz (assuming equal anisotropy ratios
of intracellular and extracellular conductivity tensors) also allows
for a reconstruction of TMV on the endo- and epicardial surfaces
(Simms and Geselowitz, 1995).

Reconstructions of TMV support identification of depolarized
and repolarized regions in the heart and their temporal
evolution. They also have the ability to outline areas of reduced
amplitude, or completely absent TMV, e.g., ischemic, fibrotic,
or border-zone areas. However, TMVs cannot be measured
directly in the clinical environment, and thus any validation
has to occur indirectly via the extracellular signals that TMV
distributions create. Extracellular potentials on the endocardial
and epicardial surfaces and activation and recovery times can
easily be calculated from TMV distributions and then measured
in experiments.

Impressed currents (i.e., the gradient of the TMV multiplied
by the intracellular conductivity) can also be seen as sources
of electrophysiological signals. In the original formulation,
the impressed currents are vector fields, thus increasing the
number of unknown properties by a factor of three. Thus, some
studies propose to reconstruct only the normal or the tangential
component of the impressed currents (Grace et al., 2017). For
the case of equal anisotropy ratios of conductivity, the impressed
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FIGURE 2 | Electrocardiographic imaging requires recording of body-surface potentials and the acquisition of a torso-heart geometry through computed
tomography (CT) or magnetic resonance (MR) imaging. The electrical characteristics of the heart can then be computed by employing one of the “source models,”
i.e., models of cardiac electrical activity that explain the recorded body-surface potentials. Globally, these source models are categorized as: transmembrane voltage
(TMV) models, surface-potential models (either epicardial-only or endo-epicardial surface), and activation/recovery-based models. It is possible to compute surface
potentials and electrograms from TMVs, and to compute activation and recovery sequences from electrograms, but not the other way around. Image in part
reproduced with permission from: Cluitmans (2016); Weiss et al. (2007), and Van Dam et al. (2009).

currents can also be replaced by an equivalent dipole layer with
equivalent current density distributions orthogonal to the surface
of the heart (Janssen et al., 2017) (also see the EDL model in
Section Activation/Recovery-Based Models).

An advantage of TMV or impressed current based solutions is
that a priori physiological knowledge about the action potential
propagation, available through various mathematical models, can
be used to constrain the reconstruction. The challenge in terms of
validation, on the other hand, is that TMVs or impressed currents
are difficult to obtain experimentally or clinically.

Extracellular Potential-Based Model
Potential-based models represent the cardiac source using
extracellular potentials on the heart surface. There are several
possible definitions of this cardiac surface, typically including
only the ventricular or atrial cavities. The most common
definition uses the epicardial surface, often artificially closed
across the valves and the base. The surface can also be defined
as both the endocardium and epicardium, leaving an opening
at the valves. Both versions are presented for the ventricles in
Figure 2. The key requirement for most methods is that the
surface encompasses all active electrical sources.

Two key features are directly available from a potential-based
model: electrograms and potential maps. Cardiac electrograms
are the change in potential over time at a single point on the
heart, and potential maps show the potential distribution over
the surface at a specific time point. One benefit of potential-based
models in terms of validation is that these features are much
more easily measurable than TMVs and can be recorded during
experimental or catheter-based procedures, even in humans.
Moreover, like TMVs, additional information contained within
the electrograms, such as activation and recovery processes,
can be extracted through post-processing. On the other hand,
while potential-based models can provide information on both
epicardial and endocardial surfaces (Rudy and Burnes, 1999),
direct reconstruction of transmural propagation is currently not
possible. Importantly, many potential-based implementations
of ECGI only provide epicardial reconstructions, without

endocardial or septal potentials. In general, the extracellular
approach (formulated either just epicardial or endocardial and
epicardial) is the basis of some commercial systems and as such
may currently have the highest clinical relevance of all source
formulations.

Activation/Recovery-Based Models
The purpose of activation/recovery-time based models is to
obtain the local times of activation or recovery directly,
without reconstruction of TMVs or extracellular potentials
as intermediate. As such they provide a highly stylized,
simplified sparse parameterization that captures key aspects of
the underlying biophysics. Activation times are described as
the time of arrival of the depolarization phase of an action
potential. Similarly, recovery times capture the timing of the
repolarization phase. Both quantities can be defined either
through the 3-dimensional (3D) myocardial wall (Han et al.,
2011), or on the heart surface, including both the epicardium
and endocardium (Erem et al., 2014). Examples of such methods
include the equivalent double layer (EDL) model and the 3D
cardiac electrical imaging (3DCEI) model:

• Equivalent Double Layer Model (EDL)
The macroscopic EDL model (Van Oosterom, 2001)
represents the entire electrical activity of the atria
or ventricles at any time instant (van Oosterom and
Jacquemet, 2005a). This source model stems from the
classic bioelectrical double layer as an equivalent source
of the currents generated at the boundary between active
and resting cells during depolarization, described by Wilson
et al. (1933). Initially, this current dipole layer model was
used to describe the activity at the front of a depolarization
wave propagating through the myocardium. Later, Salu
expressed the equivalence between the double layer at the
wave front and a uniform double layer at the depolarized
part of the surface bounding the myocardium (Salu, 1978),
based on solid angle theory (van Oosterom, 2002) (see
Figure 2). Later, Geselowitz showed, using a bidomain
model, that the actual current source distribution within
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the heart is equivalent to a double layer at the surface
of the myocardium with a strength proportional to the
local TMV (Geselowitz, 1989, 1992; van Oosterom and
Jacquemet, 2005b). The waveform of the TMV at each
location on the myocardial surface (both endocardium
and epicardium) is described by at least two parameters:
the local activation and recovery times. Consequently, the
source parameters of the EDL model also consist of the
activation and recovery times. More complex versions allow
as many as seven parameters (van Oosterom, 2004). One
challenge of this model is that the relationship between the
source parameters and the source strength is non-linear.
• 3D Cardiac Electrical Imaging (3DCEI)

While the EDL model allows estimating activation or
recovery times over the heart surface (including both
epicardium and endocardium), the 3DCEI model aims
to reconstruct cardiac activation and recovery process
throughout the entire 3D myocardium – including
epicardium, endocardium, and intramural tissues
(MacLeod et al., 2000; He et al., 2003). While 3DCEI is
applicable to both ventricles and atria, its main application
is for imaging the ventricular activation sequence (Han
et al., 2011) from the inversely reconstructed equivalent
current densities (He and Wu, 2001), or imaging the
ventricular repolarization process through reconstruction
of the activation-repolarization interval at each point within
the 3D ventricles (Wang et al., 2013). The relationship
between cardiac equivalent current density and local
activation time is established based on the “peak criteria”
reflecting the fundamental biophysics of cardiac activation
(MacLeod et al., 2000). This model has been evaluated
extensively in in vivo animal models with simultaneous
3D intracardiac mapping in rabbits (Han et al., 2011;
Duchateau et al., 2016) and in dogs (Cluitmans et al., 2017),
as well in scarred myocardial tissue (Wang et al., 2013).

To solve the inverse problem using these source models
usually requires an initial estimate of the activation and recovery
times, which is then improved through numerical iteration. An
advantage of these approaches is that a priori physiological
knowledge can be used to obtain very reasonable initial activation
and recovery times (Van Dam et al., 2009), thus reducing
convergence time and improving accuracy. At the same time, it
remains unclear how well the models perform when assumptions
of the underlying physiology are violated, e.g., when scar tissue
is present but is not incorporated in the model (Erem et al.,
2014). For normal healthy subjects and patients with idiopathic
PVC, this method has been shown to work well (Van Dam et al.,
2009). Current research focuses on developing initial estimate
algorithms that deal with inhomogeneous cardiac activation, e.g.,
when scar tissue is present.

TECHNICAL VALIDATION

Technical validation of ECGI is the most quantitative validation
approach, explicitly comparing the ECGI reconstruction to

ground truth to determine its absolute accuracy irrespective
of the underlying pathology. Technical validation encompasses
a broad range of cardiac source models, forward model
formulations, inverse methods, and pre- and post-processing
techniques. These studies are typically executed using either
analytical (Rudy et al., 1979) or simulated potentials (Dubois
et al., 2016; Figuera et al., 2016; Svehlikova et al., 2018),
ex vivo torso tank experiments (Oster et al., 1997; Shome and
Macleod, 2007; Bear et al., 2018a) and in vivo animal studies
(Liu et al., 2012; Oosterhoff et al., 2016; Cluitmans et al., 2017;
Bear et al., 2018b), with more limited results from humans
(Ghanem et al., 2005; Sapp et al., 2012; Erem et al., 2014; Schulze,
2015; Punshchykova et al., 2016). For simplicity, here we have
organized technical validation according to the different features
that may be extracted from ECGI, irrespective of source models.
These features provide scientists and clinicians with information
about cardiac electrical activity and can either be provided
directly by the cardiac source model chosen (i.e., electrograms
when using a potential-based approach) or extracted through
further post-processing of the ECGI-reconstructed signals (i.e.,
activation or phase mapping from electrograms), as summarized
in Figure 2.

Transmembrane Voltages
While validation of reconstructed TMVs is possible using
simulated data, it is nearly impossible experimentally and
clinically as the ground truth data can only be obtained through
optical mapping, monophasic action potentials recording, or
patch clamping. These are all techniques that are currently
difficult to obtain in vivo and the latter two are infeasible
over more than a very few sites in a whole heart. If these
data are available, they serve as the optimal approach for
comparing magnitude and shape of different phases, particularly
depolarization and repolarization. If these data are not available,
the focus of validation shifts to post-processed values of
TMPs, such as unipolar electrogram morphology, activation and
recovery isochrones, etc.

Electrograms
Electrograms are one of the most common features reconstructed
with ECGI, as they provide useful information to clinicians,
directly relatable to invasive recordings. Ground truth data is
available through simulations (Simms and Geselowitz, 1995;
Wang et al., 2010; Figuera et al., 2016; Janssen et al., 2017),
recordings obtained with epicardial, endocardial and transmural
electrode arrays (with upwards of 200 electrodes) in ex vivo
(Oster et al., 1997; Shome and Macleod, 2007; Bear et al., 2018b)
and in vivo (Zhang et al., 2005; Han et al., 2011; Liu et al.,
2012; Oosterhoff et al., 2016; Cluitmans et al., 2017; Bear et al.,
2018b) experimental models, and invasive mapping clinically
(Ghanem et al., 2005; Sapp et al., 2012; Punshchykova et al.,
2016). Most validation studies to date use a global evaluation
of the QRS, T, or QRS-T waveform reconstruction using
correlation and/or error metrics, to demonstrate the accuracy
in the overall topology and/or amplitude of electrograms
(example in Figure 3). Persistent challenges include assessing
spatial accuracy (Cluitmans et al., 2017; Bear et al., 2018b)
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FIGURE 3 | Top: epicardial geometry with reconstructed potentials from a canine in vivo study, for a sinus beat (A) and a LV-paced beat (B). White dots indicate the
position of invasive electrodes used for validation recordings. Bottom: recorded (red) and ECGI-reconstructed (black) electrograms for electrodes numbered in
geometry above. CC, correlation coefficient between recorded and reconstructed electrograms. RA, right atrijm; RV, right ventricle. Adapted with permission from
Cluitmans et al. (2017).

and the sensitivity of results to different sources of error,
i.e., cardiac motion (MacLeod et al., 2000; Cluitmans et al.,
2017). To date, while qualitative assessment of reconstructed
electrograms is often described, comprehensive quantification of
the presence/absence of detailed characteristics in reconstructed
electrograms has never been performed, including fractionation,
low/high amplitudes, epicardial/endocardial source, ST-
segment elevation, etc. The inaccurate reconstruction of these
characteristics is often missed using a global evaluation. Metrics
to quantify the presence of such local features are needed
as this information can be critical to the diagnosis and/or
treatment of particular pathologies (see Section Metrics for
Validation).

Unipolar electrograms on the cardiac surface are influenced
by what are known as “far-field” effects from electrical activity
in other parts of the myocardium, this influence varying with
electrode size and filtering techniques. Since ECGI electrogram

reconstructions may be even more sensitive to such effects given
the ill-posedness of the inverse problem, care is required in
interpreting validation results, especially if the surface model does
not include the endocardium or if validation measurements are
only available on either the endo- or the epicardium.

Potential Maps
In addition to electrograms, potentials can be visualized spatially
as potential maps that vary in time. Hence, validation is often
performed using the same data set as for electrograms through
global quantitative comparisons of reconstructed potential maps
to the ground truth signals, using correlation and error metrics
over time (Oster et al., 1997; Bear et al., 2018b). One limitation of
quantitative comparison is that during the early and late phases
of activation, only small regions of the heart are activated, leading
to distorted values of signal-to-noise and global error metrics (see
Figure 4). It remains unclear if specific characteristics during
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FIGURE 4 | Epicardial potential maps derived from ECGI (left) and recorded (right) epicardial electrograms at three instants during ventricular activation during
epicardial pacing from the anterior RV free wall (ECG shown left). During the early and late phases of activation, only small regions of the heart are activated, leading
to distorted values of error metrics such as correlation (right, showing different reconstruction approaches in different colors). Adapted with permission from Bear
et al. (2018b).

these time periods can be accurately reconstructed, such as the
initial site of activation (based on the location of epicardial
deepest negative potential) or regions of current sources (similar
to ST segment elevation). However, potential maps are only
beginning to be used in clinical practice (Jamil-Copley et al.,
2015) and assessment of individual electrograms for signal
amplitude, activation time or specific characteristics is currently
more clinically practical.

Activation/Recovery Maps
Activation and recovery time maps provide very
useful static isochrone images of the cardiac electrical
depolarization/repolarization sequence. These isochrones
may be used clinically to identify several quantities: (a) sites
of initiation of activation by focal arrhythmias, e.g., premature
ventricular contraction (PVC) origin; (b) delineation of reentry
circuits, e.g., macroreentrant atrial flutter (Shah et al., 1997),
or (c) abnormalities in propagation, such as areas with delayed
activation (Irie et al., 2015), or those with slow or abnormal
conduction, e.g., scar-related ventricular tachycardia substrate,
or (d) areas with recovery abnormalities, e.g., large recovery
gradients (Vijayakumar et al., 2014; Leong et al., 2017). To
date, the majority of validation studies have concentrated on
the accuracy of activation mapping (Oster et al., 1997; Zhang
et al., 2005; Han et al., 2011; Oosterhoff et al., 2016; Bear et al.,
2018b), with only a few studies assessing recovery (Van Dam
et al., 2009; Cluitmans et al., 2017). The earliest site of activation

of paced beats is often reconstructed and compared to the known
location of pacing, yielding a localization error. For example,
animal validation studies with pacing localization exist for
potential-based (Cluitmans et al., 2017; Bear et al., 2018b) and
activation/recovery-based approaches (Han et al., 2011; Liu et al.,
2012; Oosterhoff et al., 2016).

Apart from beat origins, validation studies of activation- and
recovery-time maps tend to assess global accuracy, providing
correlation and relative error metrics. This approach may
overlook other characteristics/abnormalities, such as steepness
of recovery gradients, or the presence/absence of conduction
block or localized changes in velocity of activation (conduction).
One study (Bear et al., 2018a) has recently demonstrated that
in left bundle branch block, ECGI can compress local activation
to create an artifactual “line of block,” which is not reflected in
correlation values (Figure 5).

One of the difficulties in activation/recovery map validation
is the need to derive the activation/recovery times from
electrograms and thus their dependence on the signal processing
method used. Most applications use the gold standard method for
deriving activation/recovery times from directly recorded signals
(defined as the time of minimum and maximum derivatives,
respectively, of the unipolar electrogram). However, these gold
standard methods are typically imprecise, both for actual
recordings and for ECGI-derived electrograms, and alternative
methods may be required (Erem et al., 2011; Duchateau
et al., 2016; Cluitmans et al., 2017). These methodology-linked
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FIGURE 5 | Validation of ECGI derived activation maps using an ex vivo torso
tank set up has demonstrated that, in electrical dyssynchrony, ECGi (right)
produces a “line of activation block” that is not present in recorded signals
(left) using an epicardial electrode sock [adapted with permission from Bear
et al. (2018a)].

variations in derivations of activation/recovery times may impact
overall performance estimate.

Phase Maps
Phase is a feature that was initially designed to decompose action
potential signals, the basic concept being to discard amplitude
and focus on the temporal sequence (resting state, activation,
refractory period, and repolarization). Between two consecutive
activations of the tissue, the phase will increase in a monotonic
way from−π to+π (or from 0 to 2 π if preferred). When applied
to optical mapping recordings of complex cardiac arrhythmia
(atrial and VF), phase is an effective feature in analyzing
spatiotemporal organization (Gray et al., 1996). The spatial
representation of the instantaneous phase allows one to identify
focal activity and/or local reentry using features computed
directly from the spatial organization of the phase signal (phase
divergence and phase singularities). Such representations have
sparked clinical interest in using phase mapping on electrical
recordings as a means of detecting organized stable drivers during
fibrillation, and potentially target them for ablation therapy
(Umapathy et al., 2010; Narayan et al., 2012; Haissaguerre et al.,
2013).

An efficient tool commonly used to convert time-varying
signals from the voltage domain to the phase domain is the
Hilbert Transform. This conversion from voltage to phase
does not meet the objective of having a monotonic signal
that ranges from −π to +π (or in general an interval of
2 π) between two consecutive cycles for signals with multiple
deflections, such as bipolar or noisy electrograms. For this
reason, electrograms are typically smoothed prior to conversion.
Depending on the filtering chosen for the preprocessing step,
the resulting phase maps may lead to over/under-estimation of
the extent of re-entrant cycles (Rodrigo et al., 2017). The lack
of methodological consensus on both the preprocessing and the
definition of spatially or temporally stable phase singularities
has resulted in ongoing debate over phase mapping techniques
(Vijayakumar et al., 2016; Kuklik et al., 2017). To minimize
such ambiguities, it is advisable to incorporate electrogram
characteristics and the time-domain activation sequence into the
analysis (as demonstrated in Figure 6).

Though applicable to the ventricles (Umapathy et al., 2010),
contemporary ECGI applications are most commonly atria based,
with validation using some clinical patient data (Metzner et al.,
2017) and, more extensively, simulated data (Dubois et al., 2016;
Figuera et al., 2016; Pedrón-Torrecilla et al., 2016; Kuklik et al.,
2017; Rodrigo et al., 2017). Validation using experimental data
is still needed. Phase can be validated in a similar manner to
electrograms, using correlation and relative error to assess the
global topology of the phase signals. However, phase signals
at a particular electrode are themselves not of clinical interest,
but rather the spatial distribution and temporal evolution
of phase that allows the detection of divergence/singularity
points. As such, in addition to correlation and relative error,
we support the use of error metrics that assess localization
accuracy of the divergence/singularity points or derived maps,
such as the weighted under-estimation or the weighted over-
estimation indicators (Figuera et al., 2016). Another useful
approach entails computing the Phase Locking Value (PLV),
which estimates the synchronicity between two signals, without
regard to the constant phase shift between them (Dubois et al.,
2016).

Dominant Frequency
In addition to phase, frequency is often used in the analysis
of atrial and VF, where localized sites of high (or dominant)
frequency (DF) serve as target ablation sites to eliminate AF
(Sanders et al., 2005) (as seen in Figure 6). Because the
conventional computation of frequency is done over a time
segment, DF produces time-averaged frequency information over
space. An absence in stability of the arrhythmia can lead to errors
in DF estimation. Metrics to assess stability can be computed,
such as the regularity (Everett et al., 2001; Sanders et al., 2005;
Sánchez et al., 2017), organization, or coupling indices (Faes
and Ravelli, 2007) and they indicate whether the activation is
regular/periodic. Sequential analysis can be used to track the
movement and determine the stability of DF sites over time
(Salinet et al., 2014). In addition, the presence of shape-related
and not only rhythm-related DF components can result in
incorrect identification of the activation rates in the atria. As with
phase, studies have reported controversial results, likely due to
the different approaches for signal processing, DF computation,
and interpretation. We refer readers to a review by Ng et al.
(2007). That explores the technical requirements and limitations
of dominant frequency analysis of AF signals.

Like phase mapping, current technical validation of ECGI
derived dominant frequency has been limited to the atria and
to the use of endocardial mapping measurements (Pedrón-
Torrecilla et al., 2016; Zhou et al., 2016) and simulations (Figuera
et al., 2016; Rodrigo et al., 2017) to provide ground truth data.
Validation of frequency-based estimates can be performed using
relative or absolute error, correlation to assess the global map
distribution, and, more importantly, error metrics to assess
localization of the region of dominant frequency, e.g., direction
of DF gradient, either from left atrium to the right atrium,
or weighted under/over-estimator indicators (Figuera et al.,
2016), as well as other metrics that may be derived such as
regularity/organization indexes.
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FIGURE 6 | During atrial (AF) or ventricular fibrillation, the mechanism of fibrillation can be assessed using phase and/or frequency mapping. (A) [adapted with
permission from Haissaguerre et al. (2014)], ECGI derived phase maps of ≥1000-ms-long AF window show reentry events involving the posterior upper right atrium;
sites 1–12 show the pre-phase electrograms around its core. By tracking phase singularities (PS) for reentrant activity of at least one full rotation, PS density maps
illustrate arrhythmogenic drivers that may be targets for ablation. (B) [adapted with permission from Pedrón-Torrecilla et al. (2016)], dominant frequency (DF) using
invasive CARTO (top) and non-invasive ECGI (bottom) in AF patients demonstrate good correspondence. Region of high DF (purple) identify arrhythmogenic drivers
that may be targets for ablation.

PATHOLOGICAL VALIDATION

The major goal of ECGI is to be useful as a clinical tool to
aid in diagnosis and therapy planning of specific pathologies
and/or arrhythmias by identifying the mechanisms underlying
these electrical disorders and their response to therapy. As
such, validation of ECGI to extract the information applicable
to a specific pathology/arrhythmia is essential. As mentioned
previously, the quantitative accuracy of the reconstructed
quantities may not be as important as their ability to separate
healthy and diseased states. However, ECGI needs to be accurate
enough to ensure that conclusions drawn from specific features
are not actually a misinterpretation of artifacts in the solution.
Moreover, clinicians typically want insight into the characteristics
of a pathology and not just a binary classification. Such depth
and detail are particularly important because conclusions drawn
from ECGI can lead to the identification and implementation
of costly, and potentially life-saving, treatment plans, such as
guiding ablation therapy or implanting ICD or CRT devices.

Here we identify some pathologies and/or arrhythmias for
which ECGI may be applicable, along with associated features
desired for clinical applications. For a summary of the results
from previous ECGI studies of arrhythmogenic substrates, we
refer the reader to the review by Rudy (2013).

Atrial Arrhythmias
One of the first extensively clinically explored applications of
ECGI was to identify the specific mechanisms of arrhythmia
onset and/or maintenance for ablation therapy in atrial
tachycardia (AT) and fibrillation (AF). ECGI is currently
used to determine the specific patterns underlying activation

during arrhythmia (i.e., focal vs. re-entrant) through phase
mapping (Cuculich et al., 2010; Roten et al., 2012) and
to localize the drivers of this activation using either the
estimated dominant frequency (Pedrón-Torrecilla et al., 2016),
and/or the divergence/singularity points through phase mapping
(Haissaguerre et al., 2013, 2014). These drivers have been found
to be correlated to the ablated regions in patients with successful
outcome (Haissaguerre et al., 2013; Zhou et al., 2016) and are now
being targeted directly in clinical validation studies (Haissaguerre
et al., 2014; Knecht et al., 2017). While these studies indicate
these drivers are targeting the arrhythmogenic substrates, one
cannot rule out the possibility of false-positive errors. Technical
validation has demonstrated that coarse patterns of DF (seen
in Figure 6), singularity points, rotor/focal source density, etc.,
can all be accurately localized with ECGI (Modre et al., 2003;
Haissaguerre et al., 2014; Dubois et al., 2016; Figuera et al., 2016;
Metzner et al., 2017), but the specific ECGI features that most
effectively localize the arrhythmogenic substrate(s) in AT/AF are
still under debate. Pathological validation of this kind is nearly
impossible as often multiple ablations are performed during a
procedure, and it is unclear if all, some, or only the last locations
identified the true arrhythmogenic substrate(s). As such, indirect
clinical validation studies that show improved patient outcome or
reduced procedural times are currently the best option.

Arrhythmogenic Substrate Identification
for Ventricular Arrhythmias
As with atrial arrhythmias, one of the primary goals of ECGI is the
identification and understanding of arrhythmogenic substrates
for the onset and maintenance of ventricular tachycardia (VT)
and fibrillation (VF) to aid in treatment planning, e.g., to guide
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pharmacologic therapy, ICD implantation, or catheter ablation.
Below we outline the major areas ECGI has been used for
substrate identification in VT and/or VF.

Premature Ventricular Contraction
Patients with isolated and monomorphic PVCs or focal VT can
be treated by ablating the focal source of these arrhythmias, which
typically involves long, invasive electrophysiological mapping to
localize these ectopic activities. By non-invasively localizing the
arrhythmogenic site or at least estimating a region of interest
prior to the catheterization procedure, ECGI can provide a useful
presurgical guideline for the operator, and substantially improve
the planning of the procedure and thus reduce procedure
times (Potyagaylo et al., 2013), an example of such guidance
is demonstrated in Figure 7. Focal idiopathic VTs and PVCs
in the absence of structural heart disease are one of the
most well validated pathologies for ECGI application, as the
arrhythmogenic substrate is clearly defined and one can define
accuracy using a simple localization error (Schulze, 2015).
For example, a commercial implementation of ECGI (ECVUE,
CardioInsight, Cleveland, OH, United States) has been used
to localize PVCs (Erkapic and Neumann, 2015). Their ECGI
implementation localized the ventricle of origin (LV vs. RV)
correctly in 95.2% of the cases, compared to only 76.6% with 12-
lead ECG. Sub-localization within the ventricles was accurate in
95.2% of the cases with ECGI, compared to 38.1% with 12-lead
ECG. Ablation success was similar in both groups, both acutely
and at 3-month follow up. Failure of this ECGI implementation
(which uses an epicardial surface source model) to localize PVCs
occurred mainly in sites near the septum, especially at the LVOT
or RVOT (Erkapic and Neumann, 2015). In a study using NEEES
(EP Solutions SA, Yverdon-les-Bains, Switzerland), PVCs were
localized in 20 patients; in 86% of the cases, the correct ventricular
segment was diagnosed (Wissner et al., 2017). In a preliminary
study with nine participants, the Vivo 12-lead ECGI system
was able to successfully localize PVCs (defined as location of
successful ablation) in 86% of the cases, whereas human-based
12-lead ECG localization of PVC had a 27% accuracy (Gordon
et al., 2014).

Future validation would ideally compare old and new methods
to these previous works, potentially using a common and broad
data set to prevent bias. An international working group called
the Consortium for ECG Imaging (CEI1) has recently emerged
that seeks to enhance progress through collaboration and shared
data repositories [EDGAR (Aras et al., 2015)], with first results
very recently published (Svehlikova et al., 2018).

Scar Related Ventricular Tachycardia Mapping
Sustained reentrant VT (and VT-induced VF) is often formed
by narrow channels of surviving tissue inside a myocardial
scar. Catheter ablation is an effective treatment for scar-related
VT that modifies the scar substrate, for example by destroying
the tissue site at which the VT circuit exits the scar (exit
sites) [ESC Guidelines Management Ventr Arrh/AHA 2017
VA/SCD guideline (Reddy et al., 2007; Kuck et al., 2010; Sapp

1http://www.ecg-imaging.org/workgroups/pvc-localization

et al., 2016)]. These scar substrates are currently identified by
catheter mapping, either during artificially induced VTs (by
programmed electrical stimulation), in which the morphology
and critical components of the VT circuit can be delineated, or
during native rhythm where the region of myocardial scar and
potential critical sites can be identified from the characteristics
of the measured electrograms (although less specific than VT
mapping). However, these procedures can be hindered by a lack
of inducible arrhythmia or, more frequently, by the presence of
multiple inducible arrhythmias and the patients’ hemodynamic
intolerance to the induced VTs. Additionally, native-rhythm
substrate mapping involves invasive procedures with access often
limited to the left endocardium. ECGI, due to its non-invasive
nature, has the potential to augment catheter mapping in both
enabling instantaneous reconstruction of a single PVC or a brief
episode of VT and thus to provide non-invasive identification of
scar substrates during native rhythm. For VT mapping, a small
number of human studies have investigated the use of ECGI
to map the exit sites and activation pattern of reentry circuits,
using both epicardial ECGI (Wang et al., 2011; Sapp et al.,
2012; Zhang et al., 2012) and more recently using epicardial-
endocardial and 3D ECGI (Tsyganov et al., 2017; Wang et al.,
2018). For substrate mapping, while the use of ECGI to delineate
myocardial scar has been validated using MRI or voltage mapping
(Cuculich et al., 2011; Wang et al., 2013; Horáček et al., 2015),
studies are just emerging to examine its ability to reveal local
abnormal electrograms, such as fractionated electrograms, that
are suggestive of potential central pathways forming the VT
circuit (Wang et al., 2018). In all of these studies, a significant
challenge arises from the difficulty to establish the clinical ground
truth for the exit sites and central pathway for VT; as a result,
most existing validation studies are limited to qualitative or semi-
quantitative evaluations. Validation studies should focus on the
ability of ECGI to localize the VT exit site, using a similar metric
to validations based on PVCs, as well as other critical sites, such
as central pathways within myocardial scar.

Ventricular Fibrillation
Instantaneous whole-ventricle mapping systems such as ECGI
open the possibility to also investigate VF mechanisms, by
looking at focal centers or anchors of VF activity (similar to AF).
Results from this field are only just emerging (Frontera et al.,
2018) and could be validated with approaches that are similar to
those applied in the AF field, including answering the question of
whether these key spots within reentrant loops are really useful
targets for ablation.

Wolf-Parkinson White Syndrome
Wolff-Parkinson-White (WPW) syndrome involves a long-
standing altered activation sequence, different from normal sinus
rhythm, as a result of abnormal conductive cardiac tissue between
the atria and the ventricles that provides a pathway for a reentrant
tachycardia circuit. Similar to focal VT and PVCs, localization
of WPW is a natural application of for ECGI as a means to
guide catheter ablation. However, the high rate of success in
WPW using conventional approaches (Fitzpatrick et al., 1994)
and relatively minor potential for incremental clinical benefit has

Frontiers in Physiology | www.frontiersin.org 10 September 2018 | Volume 9 | Article 130526

http://www.ecg-imaging.org/workgroups/pvc-localization
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01305 September 19, 2018 Time: 17:7 # 11

Cluitmans et al. Consensus on Validation and Opportunities of Electrocardiographic Imaging

FIGURE 7 | Example of ECGI-guided ablation in a patient. Top: 12-lead ECG recorded during ECGI (white background) and clinical recording during symptoms (pink
background), both with a sinus beat and subsequent premature ventricular complex (PVC). Bottom: Live view as visible to the cardiologist-electrophysiologist during
the ablation procedure when using the Carto 3 cardiac mapping system. The 3D anatomy as determined by the Carto catheter (white structures) is overlaid with the
activation map of the PVC as created pre-procedurally with ECGI (red-to-blue: early-to-late activation time; blue dot: PVC origin). The cardiologist can use this live
view during the procedure to navigate the catheter to the area suspected of the PVC origin. Adapted with permission from: Cluitmans et al. (2016).

limited motivation to a few studies (Berger et al., 2006; Ghosh
et al., 2008).

Risk Stratification for Ventricular
Arrhythmias
In addition to identifying the arrhythmogenic substrate for
ventricular arrhythmias, ECGI has more recently been proposed

as a tool for risk stratification for arrhythmia, particularly VF
and sudden cardiac death. By imaging and quantifying the
important substrates for arrhythmia such as conduction and
repolarization abnormalities, ECGI may be used for screening
of the general public to identify those at risk. Initial studies
have begun to identify these potential arrhythmogenic substrates,
such as the presence of slow discontinuous conduction and steep
dispersion of repolarization in the RVOT of Brugada patients
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(Zhang et al., 2015), the presence of repolarization abnormalities
in ARVC patients (Andrews et al., 2017), steepness of recovery
gradients (Vijayakumar et al., 2014), and recovery substrates in
sudden cardiac death survivors (Leong et al., 2017). However,
much work is still needed in this area not only to confirm these
substrates but also to develop and validate risk stratification
markers that identify them and to demonstrate clinical utility.

Heart Failure and Cardiac
Resynchronization Therapy
Cardiac Resynchronization Therapy (CRT) through biventricular
pacing can improve outcomes in patients with heart failure and
with low ejection fraction. However, the effect varies widely with
approximately a third of patients failing to respond. To improve
CRT response rates, recommendations emphasize attention to
low resolution electrical parameters from the 12-lead ECG (i.e.,
left bundle branch block and QRS duration ≥150 ms). However,
detailed understanding of the spatiotemporal excitation pattern
in the failing human heart and its relationship to a CRT response
are lacking. ECGI has been used to fill some of this gap,
providing new insights into the electrical substrates specific
to responders (Varma et al., 2007; Berger et al., 2011; Ghosh
et al., 2011; Ploux et al., 2013), including abnormal activation
patterns with slow conduction and/or line of block and electrical
dyssynchrony, both within and between the ventricles. With
knowledge of these substrates, new ECGI-derived criteria have
been developed, demonstrating improved responder selection
compared to the current standard metrics (Ploux et al., 2013).
Clinical validation of these metrics in the form of large-scale
multi-center trials is still required to demonstrate that these
metrics are capturing the correct electrical substrates. Technical
validation has demonstrated that the presence of functional
lines of block seen clinically in these patients may in fact
be an artifact of ECGI (Bear et al., 2018a) (see Figure 4).
Despite this, ECGI has reliably and accurately detected electrical
dyssynchrony, resynchronization by biventricular pacing, and
the site of latest activation, providing more information than
the 12-lead ECG. Further validation of ECGI methods in the
presence of heart failure and/or electrical dyssynchrony could
improve reconstructions to remove these artifacts and increase
the sensitivity and specificity of these markers, and possibly to
develop methods for targeted left ventricular lead placement.

CLINICAL (AND SOCIOECONOMIC)
VALIDATION

Electrocardiographic imaging validation studies in the past have
typically focused on the technical or pathological validation and
until recently, large-scale studies using ECGI clinically have not
been possible. With the commercialization of ECGI systems, their
use on a large scale in hospitals worldwide is now a possibility. As
such, this section will deal with the need for studies to address
the actual clinical benefit in terms of personalized understanding
of disease mechanisms and its potential to open new avenues
for therapy, improved patient outcome, and improved workflow.
As far as we know, the following systems are currently in

development for commercial purposes: the CardioInsightTM

Noninvasive 3D Mapping System (Medtronic), the Non-Invasive
Electrophysiological Mapping (NIEM) system (EP Solutions SA),
and the View Into Ventricular Onset (Vivo) system (Peacs,
Catheter Precision).

Clinical Application Domains
The potential applications of ECGI (and their validation)
fall into three major categories: (1) Personalized disease
understanding and diagnosis; (2) Therapy guidance; and (3)
Enabling innovations.

Personalized Disease Understanding
Many of the studies discussed in section “Pathological Validation”
have investigated disease mechanisms with ECGI and proposed
parameters that carry relevant clinical information. For example,
ECGI has been used to uncover repolarization gradients that
are more pronounced in symptomatic than asymptomatic LQTS
patients (Vijayakumar et al., 2014). Similarly, the more detailed
information provided by ECGI has demonstrated the presence
of larger ventricular electrical dyssynchrony in CRT responders
providing improved CRT patient selection compared to standard
12-lead ECG (Varma et al., 2007; Ploux et al., 2013). These
retrospective studies are important to help understand the
underlying disease mechanisms and define the parameters or
markers that may guide therapy. But to fully demonstrate that
this information carries value for an individual patient and could
guide therapy or patient selection requires further investigations
using large-scale prospective studies.

Therapy Guidance
Most clinical studies have aimed at using ECGI for therapy
guidance. To date the focus has been on demonstrating a
decrease in radiofrequency ablation and procedural times for
atrial arrhythmia substrates or PVC origin ablation therapy, as
pathological studies, discussed in sections “Atrial Arrhythmias”
and “Premature Ventricular Contraction,” have shown that
accurate localization of these substrates is feasible. A clinical
validation study for AF has reported that using ECGI to identify
ablation targets with phase mapping, as seen in Figure 6,
significantly reduced radio-frequency delivery (28 ± 17 vs.
65 ± 33 min) and thus procedure times for successful outcome,
compared to standard methods (Haissaguerre et al., 2014).
Likewise, for PVC localization, clinical validation has shown the
number of radiofrequency energy applications was significantly
lower in the group with CardioInsight-based localization (two
applications) in comparison with the control group (four
applications) and procedure times were shorter (Erkapic and
Neumann, 2015).

In order to be used in other pathologies, it is necessary
to overcome technical challenges that currently limit the
applicability of ECGI during invasive cardiac procedures
(e.g., the need to integrate defibrillation patches and 3-
dimensional mapping systems). ECGI might then guide therapy
by characterizing electrical substrate(s) in more detail than is
possible from the 12-lead ECG. For example, ECGI provides
detailed electrical activation patterns of the left (LV) and
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right ventricle (RV), which could guide CRT implantation by
suggesting the optimal placement of the LV lead (Ploux et al.,
2014; Bear et al., 2018a). ECGI may also enable risk stratification
and guide ICD implantation for sudden cardiac death by
imaging of activation and recovery abnormalities, both important
arrhythmogenic substrates (Vijayakumar et al., 2014).

For all of these applications, prospective clinical trials are also
needed to validate the clinical benefit. ECGI for AF is leading
the way, with one such multi-center trial currently underway
(AFACART2) aiming to evaluate the effectiveness of ECGI for
persistent AF mapping and ablation procedures in comparison
to conventional methods. Initial results recently published from
this trial have demonstrated a persistent AF termination success
of 72% (n = 118), with no significant difference among the 8
European centers in the study (Knecht et al., 2017).

Enabling Innovative Therapies
Electrocardiographic imaging carries the potential to permit
new and innovative therapies. A recent study has demonstrated
the feasibility of combining ECGI with non-invasive delivery
of ablative radiation, suggesting that clinicians may be able to
completely non-invasively target VT substrate with radiotherapy
(Cuculich et al., 2017). Accurate identification and localization
of arrhythmogenic myocardial substrate could facilitate further
progress in the development of safe, effective therapeutic
interventions.

Furthermore, studies are currently investigating the used of
ECGI with tagged MRI/CT or speckle-tracking echocardiography
(Dawoud et al., 2016). Combining non-invasive imaging of
electrical and mechanical function and their interaction in situ
could provide new insights that would be extremely valuable
for characterization of disease mechanisms and development
of treatment strategies. The wealth of information provided by
ECGI, and its non-invasive nature, might open the door to more
novel innovations.

Demonstration of Added Clinical Value
Improved Patient Outcome
One obvious goal of clinical validation studies is to show that
ECGI can improve patient outcome. This requires long-term,
large-scale (thus expensive) clinical trials to validate the findings
arising from small scale technical or pathological validation
studies; one such example is the AFACART study. These types
of studies are needed to prove patient benefit in terms of
reduced recurrence rates after such ECGI-guided procedures as
PVC ablation (Erkapic and Neumann, 2015) and AF ablation
(Haissaguerre et al., 2014) or improved CRT patient selection or
lead positioning (Ploux et al., 2013). There are many potential
reasons why ECGI may not improve patient outcome including:
(1) a lack of understanding of disease mechanisms, making it
difficult to specify how ECGI could prove useful (e.g., rotors in
AF or lack of response in CRT); (2) the lack of clinical need
(PVC ablation can often be performed without expensive or
complex mapping systems); and (3) the preliminary nature of
many studies seeking to show ECGI results prior to randomized

2https://clinicaltrials.gov/ct2/show/NCT02113761

control trials. Large, multi-center studies are currently being
designed or are underway to investigate the benefit of ECGI for
various diagnostic and therapeutic purposes.

Improved Workflow and Reduced Cost
Another improvement that could be provided by ECGI is
in workflow and (socio)economic cost. Such benefits are
particularly important if ECGI is to be considered as a
tool for risk stratification and general population screening.
The associated validation studies should focus on finding
the optimal balance between time and financial investment
(ECGI is more expensive and more time-consuming than a
standard ECG) vs. benefit for society. These benefits could
include: lower hospitalization rates with AF and VT ablation,
shorter procedural times (or lower variability of procedure
results, making hospital planning more reliable), socioeconomic
benefit due to improved patient selection for ICD therapy,
etc. Commercial implementations of ECGI are essential for
this and preferably include regulatory approval and financial
reimbursement. To our knowledge, Medtronic’s CardioInsight
system is the only FDA-approved ECGI implementation, and no
ECGI implementation is currently being reimbursed by health
care insurers.

Clinical Adoption
Clinical adoption of ECGI depends critically on technical,
pathological and clinical validation, but also on practicability,
demonstration of cost-effectiveness, and appropriate
reimbursement mechanisms. Additionally, if levels of
confidence or uncertainty were reported to clinicians for
ECGI reconstructions in individual cases (taking into account
levels of noise, defective electrodes, regions that are hard to
reconstruct, etc.) it might further improve clinical reliance on
ECGI results. In general it is not yet clear what is the best context
to apply ECGI to improve health care, and it is important to
realize that while such benefits might lie in improved diagnosis,
therapy guidance, or patient outcome, they may also result
from improved workflow (reduction of procedural times, less
variability in procedure duration) and reduced cost (shorter
or fewer hospitalizations). Whatever the focus, such studies
will cost time and money and will benefit from focused clinical
applications.

CONSENSUS ON DESIGNING A
VALIDATION STUDY

In designing and presenting a validation study, there are
many choices that can have a large impact of the validity
of the results. In this section, we provide a consensus on
the “best” approaches. This consensus is based on discussions
among the authors at recent conferences (Computing in
Cardiology [CinC] 2015–2017; Frontiers in Computational
Electrocardiology [FiCE] 2016; and the International Society for
Computerized Electrocardiology [ISCE] conference 2015), and
during other meetings.
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Data Selection
Data sets come in various forms: simulated, experimental (ex vivo
torso tank or in vivo animal model), and clinical as summarized in
Macleod and Brooks (2000). The ideal validation would include
data in more than one form (i.e., simulated and experimental),
and include multiple sources (i.e., multi-institutional clinical
and/or experimental data). Depending on a single data set can
lead to algorithms becoming biased or tuned to these data and
ultimately failing on other independent data. Validation using
in vivo animal and clinical models are particularly needed to
address the technical questions surrounding accuracy, feasibility,
and reliability. Using data from multiple sources/forms adds to
the rigor, reliability, and reproducibility of the results.

However, obtaining such data sets is often impossible for
individual labs due to the large costs and/or lack of available
facilities. Collaborative efforts have and will continue to help
overcome this problem. To enable such projects, an international
consortium has created an open platform for sharing data,
which is populated with datasets (14 datasets from 8 different
centers as of the submission of this manuscript). This database is
called the Experimental Data and Geometric Analysis Repository
(EDGAR3) and is hosted at the University of Utah, as described
in Aras et al. (2015). EDGAR has already supported a number
of cross-laboratory validation studies published in both journals
and relevant conferences (Chamorro-Servent et al., 2016;
Schulze et al., 2017; Cluitmans et al., 2018; Svehlikova et al.,
2018).

An essential requirement for the data sets of choice is to define
an appropriate ground truth, a goal that as described above is not
always easy with experimental or clinical data. We recommend
including the error of experimentally determined “ground truth”
whenever possible, to give context to validation studies, e.g., the
accuracy in localization of an ablation site.

Technical, Pathological or Clinical
Validation
Despite the distinction between technical, pathological, and
clinical validation in this review, in practice validation should
be seen more as existing on a continuum (see Figure 1). In
the early days, validation studies of a purely technical nature
were common, but with time, studies have included pathological
aspects; however, there are still only few published purely
clinical/socioeconomical validation studies. Given the increased
application of ECGI for clinical use, future validation studies
should contain aspects of at least two forms of validation,
if not all three, by giving a clinically oriented perspective to
results. For example, validation of a new formulation for ECGI
in a purely technical fashion might report that electrograms
are now reconstructed with a correlation slightly better than
previously reported methods. However, putting this result into
perspective in terms of quantifying, say, improved accuracy to
detect arrhythmogenic substrate for ablation targeting, and/or
improved patient outcome, would provide for a substantially
more powerful contribution.

3http://edgar.sci.utah.edu/

Metrics for Validation
To assess ECGI accuracy in technical validation studies, a variety
of metrics have been derived and reported. Each metric comes
with its own advantages and disadvantages, supporting the use of
several different metrics to carry out a useful evaluation. Here, we
discuss these metrics, their current uses and their limitations.

Global Comparisons
In general, it is important to quantify accuracy in both time
and space in a global sense; to quantify similarity in shape (e.g.,
temporal waveforms or spatial potential/activation distributions),
and amplitude (e.g., voltage). Metrics to quantify global accuracy
include:

• Correlation: this metric is often used in ECGI validation
as it quantifies the accuracy in shape regardless of any
amplitude inaccuracies. However, it may not be clear
to clinicians what the different values of correlation
correspond to in terms of diagnostic or therapeutic
accuracy. For example, electrode 5 in Figure 3 shows a
high correlation coefficient that does not reflect the fact
that the reconstructed electrogram misses the (clinically
informative) initial positive deflection shown by the ground
truth.
• Phase Locking Value (PLV): PLV estimates the average

synchronicity between two signals, without regard to the
constant phase shift between them (Dubois et al., 2016).
This is useful in the evaluation of phase, where the exact
synchronicity of the signals is less important.
• Relative or Absolute Error: these metrics are used to

quantify the accuracy in amplitude (or timing in the case
of activation maps). Relative error has the advantage of
defining the accuracy relative to the size of the feature
being measured, meaning it can be more clear whether
an absolute difference is very significant or not (e.g., an
absolute error of 2 mV is not very important when the
gold standard is 25 mV, but more substantial when it
is 4 mV). However, like correlation, relative error is less
meaningful to clinicians. Furthermore, relying on relative
error can badly miss critical similarities, e.g., a slight time
misalignment of activation could result in a large value of
squared error. Conversely, small abnormalities (e.g., a small
infarcted region or scar) that are missed in a reconstruction
may not significantly affect global relative error.

Local Comparisons
As discussed previously, correlation and/or relative/absolute
error correspond to accuracy on a global scale (Figures 3–5),
but neglect the accuracy of the finer, potentially more important,
characteristics. The following metrics have been developed to
quantify the accuracy of specific characteristics.

• Localization Error: this metric is used to define the accuracy
in localization of specific features (e.g., in space: site of
earliest activation; or in time: timing of first breakthrough).
While it is easy to interpret, it is not always the most
clinically relevant metric. For example, a 5 mm error in
PVC localization is more significant than a much larger
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error in distance, if the location is incorrectly identified
as the LV instead of the RV compared to when both
correct and incorrect sites are in the same chamber.
Some authors have quantified localization to a predefined
segment of the heart [e.g., segmentation according to
the AHA classification (Austen et al., 1975)] but these
indicators can also be misleading, for example if the correct
location lies just on one side of a segment boundary and the
reconstructed location is nearby but just on the other (Sapp
et al., 2017). Moreover, estimation of activation time and
site of first activation from reconstructed electrograms is
itself a difficult problem that is currently the topic of active
investigation by many groups (Erem et al., 2011; Duchateau
et al., 2016), including the CEI workgroup on Activation
and Recovery times4.
• Weighted under/over-estimation indicators (Figuera et al.,

2016): are used to assess the localization accuracy of larger
features such as the divergence/singularity points maps or
ischemic region detection. They define the percentage of
misjudged region (either positive or negative), by the ECGI
reconstruction. These indicators are highly dependent on
the size of the region being assessed, and like relative error
can miss critical similarities if the region reconstructed is
only slightly misaligned.

While each metric has its merits, the limitations mean it is
advisable to use all of these metrics with caution and ideally
none should be the only metric used in a technical validation
study. That is, for each feature, other clinically relevant, ideally
quantitative, comparisons are necessary. These should be based
on the characteristics of each feature one wants to reconstruct,
e.g., electrogram fractionation, ST-segment elevation, DF or
phase singularity points, etc.

Given the sensitivity of inverse reconstructions to noise and
model error (which could well be from physiological causes
such as respiratory or contractile motion), studies should report
the distribution of cumulative results across an ensemble of
beats, and not just a single case or a mean reconstruction.
For example, box plots showing the median, the quartiles and
outliers can be a better choice. More broadly, new metrics
will likely need to continue to be developed to achieve these
goals.

Reproducibility
A thorough description of all experiments and analyses is
essential to allow for reproducibility and reliable comparison to
other methods. Such descriptions include the full workflow, from
scanner settings to segmentation to therapy application to metric
calculation. Clinical study design should be fixed before being
executed and registered publicly (e.g., ClinicalTrials.gov). The
investigators may also choose to share the data and/or methods
used (e.g., via collaboration or the EDGAR database), allowing
other research groups to compare approaches and improve
accuracy.

4http://www.ecg-imaging.org/workgroups/activation-recovery-times-detection

Statistics
The statistical analysis performed for any validation study
depends on the form of validation, comparisons made, data set
used, and many other factors. The choice of statistical test must be
made with care. Unfortunately, many studies use a simple t-test,
missing potentially important information that may be obtained
by taking into account other dependent and independent factors
that can influence accuracy (e.g., subject, cardiac sequence, or
region of the heart for reconstruction), as well as by including
comparisons based on carefully designed metrics of effect size
as well as on more comprehensive distributional comparisons.
Incorporating these factors into the analysis may help reveal
the source of outliers, define regional accuracy, or provide an
indication of confidence in the results. In particular, including
effect size in addition to the more traditional mean or median-
based statistics allows the evaluation of the clinical relevance
of statistically significant differences, i.e., outcomes may fall in
statistically significantly different groups, based on means or
median, but overlap of distribution between those groups may
prevent reliable prediction on a per-patient level.

THE FUTURE OF ECGI

Electrocardiographic imaging has a rich history, from the first
model development and animal studies in the 1970s, through
extensive technical validation studies in computer simulations,
ex vivo torso tank and in vivo animal studies, to its more
recent human use to understand pathological mechanisms of
diseases and guide clinical procedures in patients. Continued
technical, pathological, and especially clinical validation will be
essential for full adoption of ECGI as clinical technique. We
have highlighted the accomplishments of the last decades, and
have given pointers to what remains to be done for specific
diseases and applications. Specifically, showing clinical benefit
is essential for the adoption of this powerful technique. Such
benefit may lie in patient outcome improvement, workflow
improvement, or cost reduction. Future studies should focus
on these aspects to achieve broad adoption of ECGI, but only
after the technical challenges have been solved for that specific
application/pathology. Importantly, one should realize that ECGI
remains a tool used for one half of patient treatment, with
the other half being the therapy given. If the therapy itself
is inadequate or incomplete, it should be no surprise that
the application of ECGI will not directly improve procedure
outcome. Similarly, if disease mechanisms are not completely
understood, the therapeutic value of ECGI-detected substrate is
limited. Continued interaction between engineers, basic scientists
and physicians remains essential to find a hybrid between
technical achievements, pathological mechanisms insights, and
clinical benefit.
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mapping of epicardial potentials: quantitative comparison with epicardial
contact mapping. Circ. Arrhythm. Electrophysiol. 5, 1001–1009. doi: 10.1161/
CIRCEP.111.970160

Sapp, J. L., Wells, G. A., Parkash, R., Stevenson, W. G., Blier, L., Sarrazin,
J. F., et al. (2016). Ventricular tachycardia ablation versus escalation of
antiarrhythmic drugs. N. Engl. J. Med. 375, 111–121. doi: 10.1056/NEJMoa15
13614

Schulze, W. (2015). ECG Imaging of Ventricular Activity in Clinical Applications.
Karlsruhe: KIT Scientific Publishing.

Schulze, W. H. W., Chen, Z., Relan, J., Potyagaylo, D., Krueger, M. W.,
Karim, R., et al. (2017). ECG imaging of ventricular tachycardia:
evaluation against simultaneous non-contact mapping and CMR-derived
grey zone. Med. Biol. Eng. Comp. 55, 979–990. doi: 10.1007/s11517-016-
1566-x

Shah, D. C., Jaïs, P., Haïssaguerre, M., Chouairi, S., Takahashi, A., Hocini, M.,
et al. (1997). Three-dimensional mapping of the common atrial flutter circuit
in the right atrium. Circulation 96, 3904–3912. doi: 10.1161/01.CIR.96.11.
3904

Shome, S., and Macleod, R. (2007). “Simultaneous high-resolution electrical
imaging of endocardial, epicardial and torso-tank surfaces under varying
cardiac metabolic load and coronary flow,” in Proceeding of the International
Confrence Functional Imaging and Modeling of the Heart (Berlin: Springer),
320–329. doi: 10.1007/978-3-540-72907-5_33

Simms, H. D. J., and Geselowitz, D. B. (1995). Computation of heart surface
potentials using the surface source model. J. Cardiovasc. Electrophysiol. 6,
522–531. doi: 10.1111/j.1540-8167.1995.tb00425.x

Svehlikova, J., Teplan, M., and Tysler, M. (2018). Geometrical constraint
of sources in noninvasive localization of premature ventricular
contractions. J. Electrocardiol. 51, 370–377. doi: 10.1016/j.jelectrocard.2018.
02.013

Tsyganov, A., Wissner, E., Metzner, A., Mironovich, S., Chaykovskaya, M.,
Kalinin, V., et al. (2017). Mapping of ventricular arrhythmias using
a novel noninvasive epicardial and endocardial electrophysiology
system. J. Electrocardiol. 51, 92–98. doi: 10.1016/j.jelectrocard.2017.
07.018

Umapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., et al.
(2010). Phase mapping of cardiac fibrillation. Circ. Arrhythm. Electrophysiol. 3,
105–114. doi: 10.1161/CIRCEP.110.853804

Van Dam, P. M., Oostendorp, T. F., Linnenbank, A. C., and Van Oosterom, A.
(2009). Non-invasive imaging of cardiac activation and recovery. Ann. Biomed.
Eng. 37, 1739–1756. doi: 10.1007/s10439-009-9747-5

Van Oosterom, A. (2001). Genesis of the T wave as based on an equivalent surface
source model. J. Electrocardiol. 34(Suppl.), 217–227. doi: 10.1054/jelc.2001.
28896

van Oosterom, A. (2002). Solidifying the solid angle. J. Electrocardiol. 35, 181–192.
doi: 10.1054/jelc.2002.37176

van Oosterom, A. (2004). ECGSIM: an interactive tool for studying the genesis of
QRST waveforms. Heart 90, 165–168. doi: 10.1136/hrt.2003.014662

van Oosterom, A., and Jacquemet, V. (2005a). A parameterized description of
transmembrane potentials used in forward and inverse procedures. Int. Conf.
Electrocardiol. 6, 5–8.

van Oosterom, A., and Jacquemet, V. (2005b). Genesis of the P wave: Atrial signals
as generated by the equivalent double layer source model. Europace 7(Suppl. 2),
21–29. doi: 10.1016/j.eupc.2005.05.001

Varma, N., Jia, P., and Rudy, Y. (2007). Electrocardiographic imaging of patients
with heart failure with left bundle branch block and response to cardiac
resynchronization therapy. J. Electrocardiol. 40(6 Suppl.), S174–S178. doi: 10.
1016/j.jelectrocard.2007.06.017

Vijayakumar, R., Silva, J. N. A., Desouza, K. A., Abraham, R. L., Strom, M.,
and Sacher, F. (2014). Electrophysiologic substrate in congenital long
QT syndrome: noninvasive mapping with electrocardiographic imaging
(ECGI). Circulation 130, 1936–1943. doi: 10.1161/CIRCULATIONAHA.114.01
1359

Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N., and Rudy, Y.
(2016). Methodology considerations in phase mapping of human cardiac
arrhythmias. Circ. Arrhythm. Electrophysiol. 9:e004409. doi: 10.1161/CIRCEP.
116.004409

Wang, L., Dawoud, F., Yeung, S. K., Shi, P., Wong, K. C., Liu, H., et al. (2013).
Transmural imaging of ventricular action potentials and post-infarction scars
in swine hearts. IEEE Trans. Med. Imaging 32, 731–747. doi: 10.1109/TMI.2012.
2236567

Wang, L., Gharbia, O. A., Nazarian, S., Horáěek, B. M., and Sapp, J. L. (2018).
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A continuing challenge in validating electrocardiographic imaging (ECGI) is the persistent

error in the associated forward problem observed in experimental studies. One possible

cause of this error is insufficient representation of the cardiac sources; cardiac source

measurements often sample only the ventricular epicardium, ignoring the endocardium

and the atria. We hypothesize that measurements that completely cover the pericardial

surface are required for accurate forward solutions. In this study, we used simulated and

measured cardiac potentials to test the effect of different levels of spatial source sampling

on the forward simulation. Not surprisingly, increasing the source sampling over the atria

reduced the average error of the forward simulations, but some sampling strategies were

more effective than others. Uniform and random distributions of samples across the atrial

surface were themost efficient strategies in terms of lowest error with the fewest sampling

locations, whereas “single direction” strategies, i.e., adding to the atrioventricular (AV)

plane or atrial roof only, were the least efficient. Complete sampling of the atria is needed

to eliminate errors from missing cardiac sources, but while high density sampling that

covers the entire atria yields the best results, adding as few as 11 electrodes on the

atria can significantly reduce these errors. Future validation studies of the ECG forward

simulations should use a cardiac source sampling that takes these considerations into

account, which will, in turn, improve validation and understanding of ECGI.

Keywords: ECG imaging, ECG forward simulation, cardiac source sampling, epicardial potentials, body-surface

potentials

1. INTRODUCTION

Electrocardiographic Imaging (ECGI) is a promising technology for diagnosing and treating
cardiac arrhythmias (Pullan et al., 2010; Rudy and Lindsay, 2015). Its goal is to compute some
formulation of cardiac sources from known patient torso geometry (typically extracted from
medical imaging) and body-surface potential mapping (BSPM) recordings (Barr et al., 1977;
Plonsey and Barr, 1987; Plonsey and van Oosterom, 1991; Gulrajani, 1998). This computation is
possible by first establishing a model of the ECG from knowledge of cardiac sources and geometry,
known as a numerical forward simulation (MacLeod and Buist, 2010) and then inverting this
process to solve the associated inverse problem (Pullan et al., 2010). Establishing well-validated
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ECG forward simulations is, therefore, critical to developing
ECGI as a technology.

The purpose of an ECG forward simulation is to predict
the electric potential response through a passive volume
conductor, i.e., the torso, from cardiac sources (MacLeod and
Buist, 2010). Cardiac sources are represented in the literature
in several ways, but the most common and most readily
measured method is a surface of potentials surrounding the
myocardium (Barr et al., 1977; Messinger-Rapport and Rudy,
1986; Plonsey and Barr, 1987; Plonsey and van Oosterom,
1991; Gulrajani, 1998). Predicting the resulting ECGs requires
solving a partial differential equation using numerical techniques,
such as boundary or finite element methods (BEM and FEM,
respectively) (Johnson et al., 1993; Johnson, 1997, 2015; MacLeod
and Buist, 2010).

Despite the existence of well-established methods of the ECG
forward simulation, previous validation studies have consistently
shown differences that were higher than might be expected
between simulated and measured body-surface potentials, such
as higher overall error and changes in extrema location (Ramsey
et al., 1977; Bear et al., 2015). The ECG forward problem is
well behaved, and we have sufficient confidence in all aspects
of the simulation and measurement protocols to expect errors
well below those reported. This disparity between confidence in
the simulation approaches and persistent errors in experimental
validation, along with the sensitivity of ECGI to model errors
due to its ill-posed nature (Pullan et al., 2010), provides powerful
motivation to explore possible explanations.

One as yet unexplored source of error in these studies is
insufficient cardiac source representation, i.e., either inadequate
coverage or spatial density of coverage of the cardiac sources. For
example, many experimental validation studies use an epicardial
sock electrode array to record cardiac surface potentials from the
animal heart (Ramsey et al., 1977; Stanley et al., 1986; Shome and
MacLeod, 2007; Bear et al., 2015). A common limitation of these
epicardial socks is that they position electrodes on the ventricles
only, ignoring the atria. Not only does such a set up exclude
measurement of atrial sources, but some ventricular sources, such
as locations either on the apex or at the base of the heart, lack
either adequate spatial coverage or stable mechanical contact
by sock electrodes. Such conditions are problematic as the
mathematical formulation of the ECG forward simulation with
potential sources assumes a complete and closed representative
surface that is adequately sampled; the compromises driven by
practical limitations in experiments suggest that missing sources
exist and they could have a significant impact on the predicted
potential values on the torso surface (Barr et al., 1977). Our
goal was to examine some aspects of this dilemma, using a
combination of experimental and numerical approaches.

In addition to experimental studies, we can also use
computer simulation to help answer questions about the effect
of cardiac sampling on the forward simulation. Simulation
methods such as pseudo-bidomain (Vigmond et al., 2003,
2008) and cellular automaton (Schulze et al., 2015) can
predict full pericardial potentials in a way that cannot be
measured experimentally due to regions of the epicardium being
inaccessible to measurement. Using simulated potentials together

with experimentally recorded values provides a more complete
evaluation of the effect of pericardial source sampling.

In this study, we tested the impact of cardiac source
representation of the atrial region on ECG forward simulations.
We hypothesize that, in the context of forward simulations
from epicardial potentials, measurements that completely cover
the heart are required for accurate prediction of the body-
surface potentials. To test this hypothesis, we used simulated and
measured cardiac potentials to determine the effect of different
levels of sampling on a typical forward simulation pipeline
(Burton et al., 2011). Our results support this hypothesis and
encourage us to propose some sampling strategies that may
minimize error resulting from incomplete sampling of cardiac
sources.

2. METHODS

We analyzed the effect of source representation coverage and
density of the atrial region of the heart on ECG forward
simulations by sampling the cardiac source with a range of
strategies, and then used those sources in our ECG forward
simulation pipeline. We tested these sampling strategies on
three different geometries and source models: (1) simulated
epicardial potentials using the CARP (Vigmond et al., 2003,
2008) cardiac propagation modeling software package, (2) a
second set of simulations provided in the EDGAR database
(Aras et al., 2015) by the Biomedical Engineering team a the
Karlsruhe Institute of Technology, KIT (Schulze et al., 2015), and
(3) one experimentally recorded dataset from the CardioVascular
Research and Training Institute (CVRTI) at the University of
Utah using a unique “cage” electrode (Milanic et al., 2014),
also available in the EDGAR database (Aras et al., 2015). We
then computed ECG forward simulations from subsampled
versions of the original sources, which we compared to FEM
simulations from our ground truth cardiac potential sources.
We also performed experiments in which we recorded source
potentials with a ventricular sock and an electrode plaque placed
on the atria and used these recorded potentials in our simulation
pipeline to compare the predicted body-surface potentials with
and without the additional atrial potential sources.

2.1. Datasets
2.1.0.1. CARP Dataset
The set of cardiac potentials generated using the CARP
(Vigmond et al., 2003, 2008) modeling software consisted of
simulated extracellular potentials using the pseudo-bidomain
method (Bishop and Plank, 2011) in an isolated rabbit ventricle
model previously described (Deo et al., 2009). The four pacing
profiles were sinus rhythm, left ventricle (LV) free wall pacing,
right ventricle (RV) free wall pacing, and apical pacing. The
heart geometry was then manually registered and scaled to a
human torso geometry of of dimensions ∼ 36 × 22 × 40 cm,
771 nodes, and an internodal distance of 24.6 mm (MacLeod
et al., 1995; Shome and MacLeod, 2007; Milanic et al., 2014). An
ellipsoidal cap was placed on a mesh of the epicardial surface
of the ventricles (to replicate a typical sock array) by fitting
a precomputed ellipsoid mesh to the points near the base of
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the ventricles and clipping it to cover the open region in the
sock. The combination of the sock mesh and the ellipsoid cap
formed a pericardial mesh of dimensions ∼ 6 × 6 × 7 cm
with 498 nodes with an average internodal spacing of 5.3 mm.
To compute the potentials on both the cap of the mesh and
the torso surface, we used the previously computed ventricular
surface extracellular potentials from both the endocardial and
epicardial surfaces and the FEM approach in SCIRun (http://
scirun.org, Parker et al., 1997; MacLeod et al., 2004) with the
Forward/Inverse Toolkit (Burton et al., 2011). This calculation
consisted of generating a tetrahedral mesh for the region between
the heart and torso surface, including the vertex locations for
the pericardial mesh with the ellipsoid cap. Then for each time
step, the endocardial and epicardial potentials were used to set
the Dirichlet boundary conditions along the cardiac surface and
Neumann boundary conditions on the torso surface to solve for
the potentials distribution throughout the homogeneous torso
volume. The potentials were extracted at the torso and pericardial
surfaces to use in the subsequent sampling tests described below.

2.1.0.2. KIT Dataset
The KIT geometric model of a single heart and torso geometry
was generated from a patient scan (Schulze et al., 2015) and is
available on the EDGAR database (http://edgar.sci.utah.edu, Aras
et al., 2015). The torso surface had the dimensions ∼ 47 × 30
× 35 cm, 2002 nodes, and an internodal distance of 19.0 mm.
The cardiac potentials computed from this model, also available
fromEDGAR, consisted of four activation profiles: septal, RV free
wall, LV free wall, and apical pacing. In contrast to the pseudo-
bidomain approach using CARP, the KIT investigators computed
cardiac potentials using a cellular automaton approach for the
activation sequence, and calculated first the transmembrane
potentials based on the activation times with a monodomain
simulation and the ten Tusscher electrophysiological model (ten
Tusscher and Panfilov, 2006; Loewe et al., 2015) and then the
extracellular potentials using the bidomain approach (Schulze
et al., 2015). As in the CARP dataset, we added an ellipsoidal
cap on a mesh of the epicardium to form a pericardial mesh of
dimensions ∼ 13 × 19 × 10 cm with 532 nodes with an average
spacing of 9.4 mm. We used the ventricular surface extracellular
potentials from both the endocardial and epicardial surfaces to
simulate the potential values on the ellipsoidal cap and the torso
surface using FEM, as described for the CARP dataset.

2.1.0.3. Utah Cage Dataset
The cage dataset available in EDGAR consists of measurements
from our group using a perfused, isolated canine heart
preparation placed inside a cylindrical cage of dimensions ∼

10 × 10 × 15 cm (600 electrodes, with average spacing of 10.7
mm) within a human torso-shaped electrolytic tank (dimensions
∼ 36 × 22 × 40 cm) instrumented with 192 surface electrodes
(average spacing of 40 mm MacLeod et al., 1995; Shome and
MacLeod, 2007; Milanic et al., 2014). For this study, we used
recorded signals from three activation profiles: sinus rhythm
and left and right ventricular pacing. The geometric model and
measured potentials are all available on the EDGAR database.We
used the cage electrodes as a pericardial source and compared

forward computed and measured torso-tank surface potentials.
We also generated simulated ground truth torso potentials from
the recorded cage potentials using FEM, just as for the other two
datasets.

2.2. Sampling Strategies
The main goal of the study was to evaluate the effect of source
representation in the forward solution by varying coverage and
sampling density of the signals representing that source. We used
five different incremental sampling strategies with each of the
datasets to analyze the specific effect of atrial sampling on the
simulated ECG, as shown in Figure 1. Sampling locations were
added to the atria in an increasing fashion: (1) starting near the
atrioventricular (AV) plane (closest to the ventricular sock) and
moving toward the atrial roof, (2) from the atrial roof to the AV
plane, (3) combining sites from the AV plane and atrial roof, (4)
adding sites in a uniformly distributed order, and (5) adding sites
in a randomly distributed order. The sampling locations were
added in nine iterations for the KIT dataset, seven for the CARP
dataset, and seven for the cage dataset.

In addition to testing a variable number of added electrodes
to the atria, we also tested the effect of adding a cluster of
electrodes, similar to a plaque electrode array, in a variety of
different locations (Figure 1): 22 for the KIT dataset, 34 for the
CARP dataset, and 72 for the cage datasets. The simulated plaque
was generated by picking the nearest electrodes to each of the
central locations. The number of plaque electrodes match the
number of electrodes added in each iteration explained above,
i.e., 11 for the KIT dataset, 15 for the CARP dataset, and 40 for
the cage datasets.

In addition to testing the effect of missing atrial source
samples, this study also evaluated the effect of missing ventricular
source samples. To test this, source samples were incrementally
removed from the basal region of the ventricles (Figure 1).
Sampling locations were removed in eight iterations for the KIT
dataset, six for the CARP dataset, and six for the cage datasets.

2.3. ECG Forward Simulation Pipeline
To simulate the body surface potentials from pericardial
surface potentials with various sampling strategies, we
first interpolated values from the sampled cardiac surface
mesh to the entire cardiac surface and then simulated the
torso surface potentials. For the interpolation step, we
used Laplacian interpolation (Oostendorp et al., 1989) to
estimate the values missing due to undersampling and for
the forward simulation we used the BEM, as implemented
in SCIRun (Parker et al., 1997; MacLeod et al., 2004) with
the Forward/Inverse toolkit (Burton et al., 2011). Similar to
the simulations and experiments that provided the ground
truth data, the torso was modeled as homogeneous outside the
heart.

We compared simulated torso potentials with those from
the ground truth data using several standard approaches. We
first visually compared potential maps of the results during
ventricular activation, identify similarities of the main features of
activation. The quantitative comparisons that followed consisted
of three standard error metrics, root mean square error (Ē),
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FIGURE 1 | Cardiac source sampling strategies tested. Recording locations were added from the AV plane of the heart to the atrial roof, from the roof to the AV plane,

a combination of the first two, uniform sampling, and random sampling of the atria. Black spheres indicate added atrial sampling locations.

relative root mean squared error (rRMSE), and correlation (ρ),
defined as follows:

Ē =
||8gt − 8s||

√
n

(1)

rRMSE =
||8gt − 8s||

||8gt||
(2)

ρ =
8T

gt8s

||8gt||||8s||
, (3)

where 8gt is a vector of the ground truth BSPM values, 8s is a
vector of the associated simulated BSPMs, and n is the number of
body surface electrodes.

2.4. Validation Experiments
With data acquired in experiments, we tested the sampling
strategy of placing a regularly spaced array of electrodes
on the atria to validate the prediction of our hypothesis.
In an in situ open-chest preparation (Aras, 2015; Aras
et al., 2016), we placed a cardiac sock with 247 electrodes
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around the ventricles and a plaque electrode array with 24
electrodes fixed to the atria on an accessible anterior epicardial
region near the AV plane. With the electrodes in place,
we recorded electrograms in sinus rhythm and as the heart
developed ventricular tachycardia through the duration of the
experiments.

Generating datasets for validation required the electrograms
from the experiments be placed inside a complete geometric
model of the torso. At the end of the experiments, we used
a manual digitizer (Microscribe, Solution Technologies,
Inc.) to capture the locations of anatomically distinct
landmarks. We identified correspondance points from a
previously generated geometric model of a human thorax,
resulting in two meshes of the heart surfaces with a set of
corresponding spatial reference points. These meshes were
then registered using a combination of the RANSAC (Fischler
and Bolles, 1981), Iterative closest point (ICP) (Besl and
McKay, 1992), and thin plate spline techniques, followed by
any necessary manual adjustments, implemented in MATLAB
and SCIRun. To process the electrogram recordings, we
isolated representative beats and performed baseline correction
and filtering with the default settings in PFEIFER (https://
www.sci.utah.edu/software/pfeifer.html; Rodenhauser et al.,
2018).

The resulting registered meshes and processed cardiac
surface recordings served as the input for our ECG forward
simulation pipeline. The forward computations of body
surface potentials also required closed surfaces, so we
integrated the cardiac sock and atrial plaque meshes into
an ellipsoidal cap similar to those described in section 2.1.
Laplacian interpolation was then used to estimate the missing
potential values on the cap. The resulting complete set of
cardiac potentials was used in the ECG forward simulation
pipeline, as explained in section 2.3. Torso potentials were
simulated from cardiac potentials, with and without the
additional plaque recordings, and compared using the metrics
explained in section 2.3. We compared the resulting metrics
to those from the simulated cardiac potentials described above
(Figure 1).

2.5. Ethics
All experiments were performed with approval from the
Institutional Animal Care and Use Committee at the University
of Utah and conform to the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication
No. 85-23).

2.6. Data Availability
Some of the data used in this study (KIT and cage datasests) are
available in the EDGAR database (http://edgar.sci.utah.edu), as
previously noted. The rabbit model used in the CARP dataset
was obtained from a third party, and requests for that data
should be directed to the CARP software team ( Deo et al.,
2009). The raw data collected or generated for this study will be
made available by the authors, without undue reservation, to any
qualified researcher.

3. RESULTS

Removing potentials from the atrial region of the cardiac
surface had a significant impact on the computed forward
simulations. For all pacing profiles and data sets, the errors in
computed body-surface potentials increased when atrial samples
were omitted. Furthermore, the errors grew monotonically with
reduced numbers of atrial sample sites. Our experimentally
recorded data also produced similar effects on the torso surface
to those observed with the simulated data.

Figures 2, 3 show representative tracings of the various
metrics over the course of ventricular activation with and without
atrial sampling. As shown, the rRMSE tracings of the forward
simulation using full pericardial sampling more closely match
those of the ground truth. The values of ρ computed from
pericardial potentials both with and without atrial sampling were
high during most of the time signals, but the minima were
reduced or eliminated when we included atrial sampling. The
mean ρ without atrial sampling was 0.94 compared to 0.99 with
atrial sampling. The rRMSE values showed a similar trend when
comparing the forward solution with and without full atrial
sampling; the maxima were reduced or eliminated when atrial
samples were included. In a few time steps, adding atrial sampling
produced a slight increase in rRMSE error, as seen in the KIT
(Figure 2) and cage experiment datasets (Figure 3). However, the
mean rRMSE was always reduced, with the total mean rRMSE
reduced from 0.54 to 0.08. The peak Ē with only ventricular
sampling ranged from 0.05 to 0.77 mV, while the peak Ē with full
sampling dropped substantially, ranging from 0.01 to 0.19 mV
and the peak Ē was reduced for each simulation by a mean of
0.40 mV.

Figure 4 shows the representative cases of the general effect
of excluding the potential sources in the atrial region. Comparing
the potential maps simulated from only ventricular sources to the
ground truth demonstrates qualitative differences, especially in
the right anterior region in the CARP and KIT datasets, and over
the entire anterior region with the cage datasets. However, there
were no qualitative differences in the location of the extrema.
The observed differences in the potential maps were reduced
when we used full sampling of the atrial surface. The areas
with the greatest differences were consistent across all activation
profiles, as were the improvements whenever we included atrial
sampling.

Increasing the number of recording locations on the atrial
surface systematically resulted in reduced error in the forward
simulations. Every dataset and activation profile showed a
progressive decrease in the peak rRMSE, except the apical
stimulation of the KIT dataset, which showed an increase in
the peak rRMSE from the previous iteration when adding 22
electrodes (from 11) near the AV plane (2.85 from 1.84). The
mean peak rRMSE over all datasets and activation profiles
decreased from 2.40 to 0.06. The mean rRMSE also progressively
decreased as atrial sampling increased in all datasets, with the
same exception of the apical stimulation of the KIT dataset,
which showed an increase in mean the rRMSE from the previous
iteration (0.30 from 0.27) when adding 22 electrodes (from 11).
The mean rRMSE decreased from 0.54 to 0.08.
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FIGURE 2 | Effects of removing atrial and some ventricular sampling over time on the sinus or septal activation profile for each dataset. Each row presents the error

for each dataset. Each column corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ). Each plot shows a tracing of the error over the

ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only sources, full pericardial sources, and when some ventricular sources are

removed from the basal region.

Figure 5 shows the mean peak rRMSE for each dataset.
An increase in the number of samples resulted in a near
asymptotic reduction in error, so that adding even a few
recording locations to the atrial surface provided a significant
reduction in error. Every sampling strategy we employed reduced
the mean peak rRMSE in a similarly asymptotic relationship,
but some strategies approached the minimum error with fewer
added electrodes. In general, the single-direction strategies, i.e.,
applying electrodes only to the atrial roof or the AV plane,
were less efficient than the more distributed approaches, i.e., the
uniform and random distributions. The approach that combined
adding electrodes to both the atrial roof and the AV plane was
usually more efficient in reducing the mean peak rRMSE than
the single-direction strategies. However, for the CARP dataset,
the combined approach was only more efficient than adding
electrodes to the atrial roof first. The specific order of most
efficient strategies varied based on the dataset and activation

profile. For example, the randomdistribution showed the greatest
reduction of mean peak rRMSE after one iteration for all but the
CARP dataset.

Figures 6,7 show how the peak rRMSE and the mean rRMSE,
respectively, were affected by the different activation profiles
when adding a limited number of recording electrodes to the
atria with various sampling strategies. In general, the uniform,
random, and combined distributions produced lower error for
each of the activation profiles than the remaining two strategies.
The uniform distribution produced the lowest error of any of the
strategies for most of the tested activation profiles. The random
distribution had the second lowest error for most activation
profiles and the combined approach was third lowest for most
activation profiles. Adding recording electrodes to the atrial roof
first generally had the highest error of any of sampling strategy,
both in terms of the mean and peak rRMSE. Though there
are some overall trends, there are noticeable anomalies in the
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FIGURE 3 | Effects of removing atrial and some ventricular sampling over time on the left ventricle simtulation activation profile for each dataset. Each row presents

the error for each dataset. Each column corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ). Each plot shows a tracing of the error

over the ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only sources, full pericardial sources, and when some ventricular sources

are removed from the basal region.

responses to sampling. For instance, the apical stimulation of the
CARP dataset had a noticeably higher mean and peak rRMSE for
all sampling strategies than the other activation profiles in the
same dataset. There are also cases with the CARP dataset in which
the AV plane or atrial roof strategies produced lower or similar
errors compared to the distributed strategies.

Simulated BSPM results from ventricular epicardial sources
with potentials from an additional simulated plaque array
placed in various locations showed a consistent reduction in
error when compared to the simulations with ventricle-only
sources. The mean rRMSE from all the plaque placements was
0.28 and the mean ρ was 0.97, compared to 0.40 and 0.95
with the ventricle-only sampling. The peak Ē was reduced
by a mean of 0.45 mV. The placement that resulted in the
lowest error was at the roof of the atria, yet there was
no other trend to predict the plaque location with lower
error.

When source samples were removed from the ventricular
sock, there was a general increase in error for most of the QRS
complex, as shown in Figure 2. By reducing the number of
ventricular leads by approximately 45% of the total added on
the atria (45, 34, and 121 for the CARP, KIT, and cage datasets,
respectively), the mean ρ dropped from 0.94 to 0.84, the mean
rRMSE increased from 0.16 to 0.28, and the peak Ē increased by
a mean of 0.40 mV.

Progressively reducing the number of ventricular samples also
generally increased the error, but not consistently. As shown in
Figure 8, using the KIT dataset, the mean peak rRSME decreased
initially, but then increased continuously as samples were
removed. The CARP dataset showed a increased continuously
as samples were removed, with the exception of the final step.
Results from the cage datasets showed a similar trend: an increase
in mean peak rRMSE with the first set of removed sources, a
reduction with the second, and then a fairly consistent mean
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FIGURE 4 | Effect of atrial region sampling on simulated BSPMs. Shown is the ground truth potential map and the forward simulation with sampling of the ventricles

only and with full coverage of the ventricles and atria. The cardiac/cage surface potentials with the two sampling methods are also shown. Results are from the same

representative beats shown in Figure 2 and at the time sample 25 ms into the QRS complex for the CARP dataset, 78 ms for the KIT dataset, and 18 ms for the cage

datasets.

peak rRMSE for the remaining steps. The plateau mean peak
rRMSE remained higher than for the full ventricular sampling
for the cage experiment dataset, yet it was slightly lower for the
cage simulation dataset. Themean rRMSE gradually increased for
the CARP and cage datasets as ventricle samples were remove.
However, for the KIT dataset, the mean rRMSE decreased slightly
for the first four iterations before dramatically increase for the
final stages. The mean ρ consistently dropped as samples were
removed for the CARP dataset and for all but one step in the
cage datasets. For the KIT dataset, the mean ρ increase slightly
for three iterations, then decrease for the remaining steps.

Figure 9 illustrates representative cases of changes in
the predicted BSPMs as ventricle samples were reduced.

Most notably, removing ventricular sources produced greater
qualitative differences than could be generated by removing
the atrial sources (Figure 4). In each dataset, removing the
ventricular sources produced changes in the apparent location
of the extrema on the BSPM, or, as in the case of the simulated
cage dataset, removed an extremum. Interestingly, although an
extremum remained missing from the BSPMs, reducing the
sampling further actually otherwise improved the qualitative and
quantitative accuracy of the BSPM (Figures 8, 9). This result was
likely due to removing a more balanced distribution of potentials
in the more extreme sampling reduction.

Comparing forward simulations using experimentally
recorded cardiac sock potentials, with and without additional
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FIGURE 5 | Peak rRMSE of the forward simulation using different sampling strategies with increasing number of electrodes. The plots are the CARP, KIT, simulated

cage, and recorded cage datasets.

FIGURE 6 | Peak rRMSE of the forward simulation from different activation profiles using different sampling strategies. The plots are the CARP, KIT, simulated cage,

and recorded cage datasets.

atrial plaque recordings, showed that the using a plaque
electrode could alter the accuracy of the forward simulation.
The comparison showed a mean rRMSE of 0.21 and a mean ρ

of 0.98 across all experiments. Figure 10 shows a representative
comparison over time for each of the experiments. The RMS
values of the potential maps showed only minor variations,

and the rRMSE showed some time frames with high error,
most notably near the beginning of the QRS complex. The ρ

remained high throughout ventricular activation, except at the
beginning time instants (Figure 10, panels 1 & 2) Repeating
the same experiment with simulated results yielded similar
results.
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FIGURE 7 | Mean rRMSE of the forward simulation from different activation profiles using different sampling strategies. The plots are the CARP, KIT, simulated cage,

and recorded cage datasets.

FIGURE 8 | Peak rRMSE of the forward simulation in response to reduced ventricular sampling.

Repeating the same experiment with simulated data, i.e.,
comparing forward simulation using cardiac sock potentials
with and without an additional plaque, yielded similar results
(Figure 10). The mean rRMSE and ρ were 0.26 and 0.98,

respectively. The comparison of the BSPM over the time showed
different rRMSE and ρ profiles compared to the experimental
data, in that there peaks or dips near the middle of ventricular
activation in addition to near the beginning or the end
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FIGURE 9 | Effect of removing ventricular source sampling on simulated BSPMs. Shown is the ground truth potential map and the forward simulation with

progressively reduced sampling of the ventricles. The same representative beats and time samples are shown as in Figure 4.

(Figure 10). However, these profiles were similar, yet with a
lower amplitude, to the corresponding profiles in Figure 2

comparing the ventricle-only recordings to the ground truth
data.

Figure 11 shows the potential maps generated with
and without additional recorded electrograms from a
plaque based over the roof of the atria. The difference
between BSPMs was relatively minor overall, but the
region of greatest difference was in the right anterior
region. The right posterior region also showed observable
differences.

4. DISCUSSION

The goal of this study was to evaluate the hypothesis that
complete sampling of the cardiac surface is needed to accurately
perform forward simulations of body surface potentials based
on pericardial potentials, a hypothesis our results support.
Moreover, our findings indicate that the accuracy of the forward
simulation depends in subtle ways on the specific atrial sampling
strategies. Surprisingly, some strategies are more effective than
others even though they contain fewer points, indicating that
sampling location is as important as sampling number. The
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FIGURE 10 | Comparison of forward simulations with cardiac sock recordings to those with additional plaque electrode recordings over time on a representative beat.

Metrics from the experimental simulations and a similar comparison with simulated datasets are shown. Each row presents the error for each dataset. Each column

corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ).

results of this study could serve as guidance when carrying
out simulations or animal and human experiments to validate
electrocardiographic imaging approaches and may even impact
the ECGI strategy for dealing with missing samples.

The motivation for the study came from reports and our
own observations that forward simulations with ventricular
pericardial sources often produced errors that exceed
anticipated levels based on the relatively well-posed nature
of the electrocardiographic forward problem (Ramsey
et al., 1977; Bear et al., 2015). Previous, unreported results

from our group based on studies with torso-tank phantoms
(Shome and MacLeod, 2007) also produced a similar level of
error.

The results of this study indicate that, in general, any source
sampling added to the atrial region will reduce the error between
the measured potentials and computed forward simulation. Even
a relatively small number, e.g., 11–40, of additional source
samples produced a reduction in the overall error (Figures 5–7)
across every dataset and with every sampling strategy. Similarly,
simulations that included measurements from atrial plaque
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FIGURE 11 | Effect of additional atrial sampling from a plaque electrode array on the forward simulation. Time frame shown is from the same representative beats

shown in Figure 10 and is 30 ms into the QRS complex for Experiment A and 25 ms for the Experiment B.

electrodes also improved the agreement between ground truth
torso potentials and simulations.

Although all strategies for additional atrial sampling improved
the errors, we also sought specific strategies for picking the
sample locations in future validation experiments. Analysis of
the approaches we tested reveals that selecting evenly distributed
points, such as the random and uniform strategies, are likely
to produce greater accuracy with fewer added samples than
other strategies (Figure 5). The combined strategy (i.e., basal plus
atrial roof locations) also performed well, although not with the
CARP dataset. The distributed nature of these strategies is likely
a reason for their efficiency, because they reduce the need for
interpolation over large distances that is an either explicit or
implicit component of solving the forward problem.

Our analysis of the effect of various atrial plaque
configurations on the simulated torso potentials revealed
that the most valuable location may be at the roof of the atria, but
placements even slightly away from the roof had lower accuracy.
Therefore, it is difficult to identify and achieve the best location
of additional measurement sites, typically in the form of a plaque
electrode, in an experimental setting. Nevertheless, every plaque
placement reduced the overall error of the simulated BSPMs,
so it is likely that any plaque electrode placed on the atria will
improve the overall accuracy of the forward simulation.

In comparing our results to similar studies, we found that
eliminating the atrial sampling produced rRMSE and Ē values

in the simulated torso potentials similar to those reported as
early as the mid 1970s by Ramsey et al. (1977) and as recently
as by Bear et al. (2015). We eliminated or dramatically reduced
these errors by including sampling over the atria, which suggests
that the absence of atrial sampling contributed to the errors
in their studies. However, both these studies showed higher
qualitative differences in simulated BSPMs, e.g., differences in
extrema location, than we could account for by removing atrial
sampling locations, which suggests additional causes of error,
possibly from registration, segmentation, or addition missing
sampling.

One potentially significant additional source of error is in
missing ventricular sampling locations. Such undersampling of
the ventricle is possible even when using a ventricular sock
because parts of the epicardium may not be sufficiently sampled,
for example, because of poor electrode contact around the base
of the heart or a lack of electrode density in regions of high
spatial complexity of the potentials. Our results indicate that
eliminating sampling locations from the ventricle can produce
shifts in extrema locations, or remove them entirely, (Figure 9),
and, in general, will decrease the overall accuracy of the forward
simulations (Figures 2, 8). Removing ventricular samples can
increase the rRMSE even beyond that reported by Bear et al.
(2015). All these results suggest that adequate sampling of both
ventricles and atria is required to achieve the expected match
between measured and predicted torso potentials.
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The strategy of using more distributed sampling over the
atria did not always produce the lowest error in the forward
simulations (Figures 6, 7). The spatial variability of cardiac
potentials means that there are likely sampling configurations
that could reduce error more efficiently for specific geometries
and activation profiles, for example, those that combined AV
plane and atrial roof strategy produced the lowest error for
apical stimulation in the KIT dataset, but in no other example
(Figures 6, 7). Moreover, reducing error during different times
of the cardiac cycle could also motivate different sampling
strategies. There can be dramatic changes in the error and
correlation through the cardiac cycle, as seen in the late stages
of the CARP dataset sinus beat and cage datasets following
left ventricular stimulation (Figures 2, 3). In a similar vein, the
dramatic shift in error and correlation when the atria and basal
region of the ventricles were undersampled could be attributed
to incorrectly interpolating late activity near the AV plane over
the atrial surface. The reduction in sampling either removes
local potential extrema in this region, or could possibly remove
transition regions to cause the extrema to become larger with
the interpolation. In both these examples, we found that adding
samples near the AV plane of the atria reduced error more than
adding samples to the atrial roof (Figures 6, 7), which indicates
that strategies that sample the AV plane would be important
for late sinus activation or left ventricular activation. Therefore,
with some a priori knowledge about activation profile and the
regions of interest within the cardiac cycle, researchers could
design specific strategies to correctly record them.

Implementing many of the strategies we tested in an
experimental setting has many practical and logistical obstacles.
For example, placing uniformly distributed recording electrodes
on the epicardial surfaces of the atria is virtually impossible,
due to limited access to the active myocardium. A combined
approach including sampling near the atrial roof and near the
AV plane would be feasible using multiple plaque electrodes
and/or and a ventricle sock that extended over the base to the
atrial surface. Such sampling would likely be feasible in an in
situ animal preparations, although placement of the plaque would
remain a challenge due to the many vessels attached to the atria.
The isolated, perfused heart suspended in a torso-shaped tank
phantom (MacLeod et al., 1995; Shome and MacLeod, 2007;
Milanic et al., 2014), similar to the one used to acquire the cage
dataset, could provide the best option for recording full coverage
cardiac source potentials because the vessels supplying the heart
are gathered and fed through a small opening, and the rest of
the surrounding surface can be instrumented with electrodes. A
limitation of this approach is that the atria are not filled with
blood and so collapse to lie on the base of the ventricles and lack
both realistic shape and a stable surface for attaching electrodes.

Limitations to the study generally involved compromises in
capturing cardiac sources and the associated torso potentials.
By using fully simulated potentials, we could achieve levels
of coverage and resolution not possible with experiments but
with the caveat that these are simulations and reflect certain
assumptions and conditions. For example, we ignored any
electrical activation of the atria, assumed that the conductivity
of the atria was the same as for the torso, and greatly simplified

the atrial epicardial surface by replacing it with a parameterized
and smooth epicardial cap. Additionally, we did not account
for possible scar or fibrosis formation which would occur in
many disease states, possibly affecting any attempt to use these
strategies in patients. Another source of validation data was a set
of potentials from an isolated, perfused heart, captured with an
instrumented rigid cage surrounding the heart. This arrangement
provides full coverage of the heart and thus a complete source
model, but the distance between heart and cage electrodes causes
the signals to be smoother than on the epicardium and does
not reflect perfectly the ECGI application. Finally, we assumed
in this study that the only error would be due to insufficient
source sampling of the atrial region, and thus we ignored other
possible causes of error in source sampling, such as sampling
density, uncertainty in individual electrode locations, or any
other possible errors in capturing and representing the geometric
model. These additional sources of error may compound those
due to incomplete sampling over the atria.

This study focused specifically on the sampling of the atrial
region and how it generally affected the forward simulation,
but there are several additional, related questions that could be
addressed in future studies. For example, of great interest would
be a more direct spatial sensitivity analysis of the relationship
between the potentials on the cardiac surface and the torso, or
from the endocardial surface to the atria. Such results could
suggest sampling strategies that would be specialized for specific
regions of tissue, or types of activation. Other questions that
could be similarly explored relate to the shape, location, and
orientation of the heart, and how they might influence the
forward simulation. Inclusion of torso heterogeneity due to other
organs would affect the flow of current through the torso andmay
therefore affect the sampling strategies needed tomore accurately
predict BSPM. These questions and others could be the focus of
future studies to help fully understand the effect of discretizing
the cardiac electrical source with potential recordings.

This study illustrates the need to acquire adequate cardiac
source sampling in ECG forward simulations, as well as the
challenges in doing so. These findings also have implications for
solving and validating the inverse solutions required for ECGI.
Most mathematical formulations of ECGI solve for a subset
of the cardiac sources without any cost to accuracy, but they
are based on the assumption of a robust forward solution, i.e.,
that the relationship between the cardiac sources and the torso
potentials is represented accurately (Barr et al., 1977; Plonsey and
Barr, 1987; Plonsey and van Oosterom, 1991; Gulrajani, 1998).
Our results suggest that coverage of the atrial surface with at
least a schematic multielectrode cap could improve the resulting
ECGI solutions. Additionally, our results have implications for
how researchers validate ECGI methods using forward simulated
BSPM data (Erem et al., 2011; Wang et al., 2011). Our findings
suggest that the computed BSPMs used as inputs in these ECGI
pipelines may contain errors due to inadequate cardiac sampling.
Using BSPMs with such errors may bias the tuning of the
constraints in the ECGI inverse problem and even alter the levels
of accuracy achieved.

We conclude that complete sampling of the cardiac surface
potentials is required to create realistic source descriptions for
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validation experiments and simulations of ECGI. Ignoring or
crudely interpolating over sources on the atrial surfaces or even
parts of the ventricular surface will also reduce the accuracy of
simulations. Researchers can mitigate these effects by ensuring
that both the full ventricular epicardium and at least some
locations on the atria are sampled. Even modest coverage of
the atria can increase the accuracy of the resulting simulations
dramatically. Distributed sampling over the atrial will likely
produce the lowest error, yet may be a challenge to implement
experimentally. These efforts to improve source sampling will
also improve the accuracy of the ECG forward simulations, which
will further clarify the aspects of ECGI that need more research
and development.
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The electrocardiographic imaging inverse problem is ill-posed. Regularization has to

be applied to stabilize the problem and solve for a realistic solution. Here, we assess

different regularization methods for solving the inverse problem. In this study, we

assess (i) zero order Tikhonov regularization (ZOT) in conjunction with the Method of

Fundamental Solutions (MFS), (ii) ZOT regularization using the Finite Element Method

(FEM), and (iii) the L1-Norm regularization of the current density on the heart surface

combined with FEM. Moreover, we apply different approaches for computing the optimal

regularization parameter, all based on the Generalized Singular Value Decomposition

(GSVD). These methods include Generalized Cross Validation (GCV), Robust Generalized

Cross Validation (RGCV), ADPC, U-Curve and Composite REsidual and Smoothing

Operator (CRESO) methods. Both simulated and experimental data are used for this

evaluation. Results show that the RGCV approach provides the best results to determine

the optimal regularization parameter using both the FEM-ZOT and the FEM-L1-Norm.

However for the MFS-ZOT, the GCV outperformed all the other regularization parameter

choice methods in terms of relative error and correlation coefficient. Regarding the

epicardial potential reconstruction, FEM-L1-Norm clearly outperforms the other methods

using the simulated data but, using the experimental data, FEM based methods perform

as well as MFS. Finally, the use of FEM-L1-Norm combined with RGCV provides robust

results in the pacing site localization.

Keywords: inverse problem, Tikhonov regularization, L1-norm regularization, regularization parameter, method of

fundamental solutions, finite element method, generalized singular value decomposition, pacing site localization

1. INTRODUCTION

The non-invasive electrocardiographic imaging (ECGI) is an imaging technique that allows one to
non-invasively reconstruct the electrical activity of the heart using electrocardiograms and a patient
specific heart-torso geometry. This clinical tool is used by electrophysiologists to understand the
mechanisms underlying arrhythmias and to localize targets for ablation therapy, such as for atrial
fibrillation (Haissaguerre et al., 2013; Rudy, 2013). This technology is based on a mathematical
relationship defining the propagation of the electrical activity between the heart and the torso
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surface Ŵext . Given the extracellular electrical potential uH on the
epicardial heart boundary ŴH , the distribution of the electrical
potential uT in the torso domain�T and specifically at electrodes
distributed on the body surface Ŵext , could be obtained by solving
the following Laplace equation:





∇ · (σT∇uT) = 0, in �T ,

σT∇uT · nT = 0, on Ŵext ,

uT = uH, on ŴH .

(1)

where σT stands for the torso conductivity tensor and nT is the
outward unit normal to the torso external boundary Ŵext . This
is what we call a forward problem. Now, given a body surface
potential distribution and knowing that the flux of potential over
the body surface is zero, could we obtain the right distribution
of the electrical potential on the heart surface? This is what we
call an inverse problem in electrocardiography. In almost all of
the works reported in the literature, the mathematical approach
used for solving the inverse problem is based on a transfer matrix
which has been first formulated by Barr et al. (1977). The transfer
matrix can be computed using different approaches such as the
finite element method (FEM) (Wang et al., 2010; Zemzemi et al.,
2015) or the boundary elements method like in Stenroos and
Haueisen (2008); Stenroos (2009); Schuler et al. (2017); Ghosh
and Rudy (2009); Chamorro-Servent et al. (2017); Barr et al.
(1977), the method of fundamental solutions (MFS) (Wang and
Rudy, 2006) or mixed methods like the factorization of boundary
value method (Bouyssier et al., 2015) or finite element with
mixed element types (Wang et al., 2010). In this study, we are
only interested in FEM and MFS. Using any of these numerical
approaches, the governing Equation (1) can be reduced to a
matrix-vector system:

Ax = b, (2)

whereA is the transfer matrix, its form depends on the numerical
method used. The vector x is either the unknown epicardial
potentials on the surface of the heart in the case of the FEM
or a vector of weighting coefficients from which it’s possible to
reconstruct the epicardial potential in the case of MFS. Finally,
b represents either the body surface potentials (BSPs) for the first
case or a concatenation of the BSPs and a null vector representing
the non flux boundary condition for the second case.
Generally, the inverse problem of electrocardiography is known
to be ill-posed in the sense of Hadamard Hadamard (1923) which
means that a small perturbation of the Cauchy data may lead to
a high variation in the inverse solution. This could be explained
at the discrete level by the ill-conditioning of the transfer matrix
A and the measurement noise that we have in the vector b. To
overcome this, a regularization approach is often used to solve
Equation (2). However, this has led to a large variety of different
inverse algorithms being developed. To date, few studies have
attempted to compare the different methods available. Cheng
et al. (2003) looked at different regularization methods and
methods to compute the regularization parameter. Since this
work, many new methods have been developed.
A recent work by Barnes and Johnston (2016) compares

several regularization techniques but without changing either the
regularization operator or the numerical method defining the
transfer matrix. Finally, both of these studies were based purely
on simulated data, and their applicability to experimental or
clinical work is unknown.
In this work we compare not only different methods for
computing the transfer matrix, but also different regularization
operators and differentmethods for optimizing the regularization
parameter to assess how they perform on two sets of data:
simulated and experimental.

2. METHODS

To date, the regularization approach most commonly used
to solve the electrocardiographic imaging inverse problem is
the Tikhonov regularization defined by the following objective
function:

min
x

{
‖Ax− b‖2 + λ2‖Lx‖2

}
, (3)

where L is the regularization operator, λ is the regularization
parameter and ‖.‖ is the L2-norm. Here, L can be the identity
matrix (zero-order) or an approximation operator of a potential’s
derivative form (first or second order). Independent of the
numerical method used to compute the transfer matrix, the best
way to analyze the different methods to computing the optimal
regularization parameter is to use the GSVD of the couple {A, L}

for first or second order Tikhonov regularization and the singular
value decomposition of A for zero-order.

2.1. Generalized Singular Value
Decomposition
In the case where L = I, we use the Singular Value
Decomposition of them × n transfer matrix A, wherem ≥ n,m
is the number of torso nodes and n is the number of heart nodes.
Following Hansen (1998), we decompose A as follows

A = U6VT =

n∑

i=1

uiσiv
T
i , (4)

where U is a m × n orthonormal matrix containing the left
singular vectors of A,V is a n×n orthonormal matrix containing
the right singular vectors of A and 6 is a n × n diagonal matrix
with the singular values of A on its diagonal. Note that ui, vi and
σi are, respectively, the columns of U, V and the singular values
of A arranged in a decreasing order. In terms of the singular
value decomposition, the solution of the regularized problem
expressed by:

min
x

{
‖Ax − b‖2 + λ

2‖x‖2
}
, (5)

can be written as (Hansen, 1998):

x = A†b = (ATA + λ
2I)−1ATb =

n∑

i=1

σ
2
i

σ
2
i + λ

2

uTi b

σi
vi. (6)
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It can be shown that the two terms of (5) can be written as
(Johnston and Gulrajani, 1997):

ρ1(λ) = ‖Ax − b‖2 =

n∑

i=1

λ
4
µ
2
i

(λ2 + σ
2
i )

2
+ ‖r⊥‖2 (7)

and

η1(λ) = ‖x‖2 =

n∑

i=1

σ
2
i µ

2
i

(λ2 + σ
2
i )

2
, (8)

where ‖r⊥‖2 = ‖AxLSS − b‖2 is the residual of the least squares
solution xLSS and µi = uTi b.
In the case where L 6= I, the Generalized Singular Value
Decomposition of the pair {A, L} is defined by (Hansen, 2010):

A = PCZ−1, L = QSZ−1, (9)

where P and Q are, respectively, m × n and n × n orthogonal
matrices.C and S arem×n and n×n diagonal matrices satisfying
CTC + STS = I where diag(C) = {σ1...σn} and diag(S) =

{ν1...νn}. Diagonal elements of C and S satisfy 0 ≤ σ1 ≤ ... ≤

σn ≤ 1 and 1 ≥ ν1 ≥ ... ≥ νn ≥ 0. The matrix Z is non singular.
We define λ̄i = σi

νi
as the generalized singular values of the pair

{A, L}.
Using the generalized singular value decomposition, the solution
of the problem expressed by Equation (3) can be written as
(Chung et al., 2014):

x∗ = A#b = (ATA + λ
2LTL)−1ATb =

n∑

i=1

φi
pTi b

σi
zi, (10)

where 8 is a n × n diagonal matrix containing the filter factors
defined by:

φi =
λ̄
2
i

λ̄
2
i + λ

2
, for i = 1...n. (11)

It can be shown that the two terms of (3) can be written in terms
of generalized singular values as (Chung et al., 2014):

ρ2(λ) = ‖Ax∗−b‖2 =

n∑

i=1

(
λ
2

λ̄
2
i + λ

2

)2 (
pTi b

)2
+

m∑

i=n+1

(
pTi b

)2
,

(12)
and (Ghista, 2012)

η2(λ) = ‖Lx∗‖2 =

n∑

i=1

(
λ̄i

λ̄
2
i + λ

2

)2 (
pTi b

)2
. (13)

2.2. Regularization Techniques
Several regularization techniques can be applied to the ill-posed
inverse problem of electrocardiography. In this study, we focus
on two methods.

2.2.1. Zero Order Tikhonov Regularization
Using the zero order Tikhonov regularization, the objective
function can be expressed by (5). This type of regularization
places a constraint on the magnitude of the reconstructed
epicardial potentials which is known to provide a smooth
solution but may lead to the loss of meaningful information.

2.2.2. L1-Norm Regularization of the Current Density

Over the Heart Surface
Previous studies have shown that using the L1-Norm can provide
a better reconstruction when applied in different fields (Wolters
et al., 2004; Bai et al., 2007; Ding and Hei, 2008). In this
paper, we choose to apply the regularization scheme used in
Ghosh and Rudy (2009). Here, we penalized the L1-Norm of the
normal derivative of the solution. The potential normal derivative
represents the distribution of electrical flux over the epicardial
surface.

This will yield less smoothed potentials than zero-order
Tikhonov. The use of current density in the regularization of the
inverse problem in electrocardiography was first introduced by
Khoury (1994) and proved to provide significant improvement
in the inverse problem.
The objective function using L1-Norm based regularization is
given by:

min
x

‖Ax − b‖ + λ
2‖∇x.nH‖1, (14)

where nH is the outward unit normal to the epicardium surface.
Using the Finite Element Method, and thanks to the linearity of
the solution of problem (1) to its boundary conditions, we can
define the Dirichlet-To-Neumann operator D satisfying:




∂uT

∂n (p1)
...

∂uT

∂n (pn)


 = D



x1
...

xn


 , (15)

where D is an n-by-n matrix and the points (p1, p2, ..., pn) are
the coordinate tuples of the heart mesh vertices. Note that the
operator D is different from the gradient over the surface used
for the total variation regularization. In fact the gradient of x over
the heart surface (∇ŴH

x) is the tangential component of electrical
potential gradient (∇uT), whereas Dx is its normal component.
Thus one could write the 3D gradient of the potential on the
epicardial boundary as the sum of both components (∇uT =

(∇ŴH
x + Dx ). The operator ∇ŴH

depends only on the epicardial
surface ŴH, whereas, D depends on the whole torso domain �.
The objective function (14) can be expressed as follows:

min
x

‖Ax − b‖ + λ
2‖Dx‖1. (16)

The L1-Norm regularization of the current density leads to a
non-linear problem. Following Karl (2005), we can smoothly
approximate the L1-Norm of the derivative by:

‖Dx‖1 =

n∑

i=1

|⌊Dx⌋i| ≈

n∑

i=1

√
|⌊Dx⌋i|2 + β, (17)
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with β a small constant satisfying β > 0 and ⌊Dx⌋i the ith

component of the vector Dx.
This approximation leads to an interesting formulation of the L1-
Norm regularization problem in the form of a set of equations
whose resolution as β −→ 0 gives an estimate of the solution of
(16). The linear problem to be solved is then:

[
ATA + λ

2DTWβ (x)D
]
x = ATb, (18)

where Wβ (x) is a diagonal matrix called weight matrix,
expressed by:

Wβ(x) =
1

2
diag

[
1√

|⌊Dx⌋i|2 + β

]
. (19)

We notice that (19) has an effect on the variation of the normal
derivative penalty. In fact, when the local normal derivative is
too small, the weight goes to larger values imposing greater
smoothness on the solution. When the local normal derivative
is large, the weight goes to small values allowing larger gradients
in the solution in these regions.
The above formulation can be further simplified in a way that
it can be seen as a first-order Tikhonov regularization. In fact,
thanks to the diagonality ofWβ(x), (18) can be written such that:

[
ATA + λ

2DT
(√

Wβ (x)
)T (√

Wβ (x)
)
D

]
x = ATb, (20)

which leads to:
[
ATA + λ

2D̃T(x)D̃(x)
]
x = ATb, (21)

where D̃(x) =
√
Wβ (x)D.

Computationally, the Equation (21) is still non-linear since the
weighting matrixWβ(x) depends on the solution x. To overcome
this constraint, we suggest to use the zero-order Tikhonov
solution instead of the solution itself. Thus, the problem that we
solve is

[
ATA + λ

2D̃T(x0)D̃(x0)
]
x = ATb, (22)

where x0 is the zero-order Tikhonov solution determined by the
Finite Element Method.

2.3. Methods for Choosing Regularization
Parameter
In this section, we detail the formulation of several methods
used for choosing the optimal regularization parameter in terms
of, both, the singular value decomposition in the case of the
zero-order Tikhonov regularization and the generalized singular
value decomposition in the case of L1-Norm regularization of the
current density treated as a first-order Tikhonov regularization.
It’s fundamental for a good regularization parameter λ to satisfy
the Discrete Picard Condition (DPC) (Hansen, 1990). In other
words, this means that the singular values σi and the generalized
singular values λ̄ that are greater than λmust decay to zero slower
than the corresponding |uTi b| and |pTi b|, respectively.

2.3.1. U-Curve
The U-Curve is a plot of the sum of the inverse of η1(λ)

(respectively, η2(λ)) and the inverse of the corresponding
residual ρ1(λ) (respectively, ρ2(λ)) in the case where L = I

(respectively, L 6= I), in terms of λ on a log-log scale:





Ucurve(λ) =
1

ρ1(λ)
+

1

η1(λ)
, if L = I,

Ucurve(λ) =
1

ρ2(λ)
+

1

η2(λ)
, if L 6= I.

(23)

The U-Curve method was proposed by Krawczyk-Stańdo and
Rudnicki (2007) and Krawczyk-Stańdo and Rudnicki (2008) and
tested by Krawczyk-Stańdo and Rudnicki (2007), Krawczyk-
Stańdo and Rudnicki (2008), and Yuan et al. (2010) for the
selection of the regularization parameter in the inverse problem.
These works presented the method as a tool to determine the
interval to which the regularization parameter belongs, providing
a better computing efficiency.
According to Krawczyk-Stańdo and Rudnicki (2007) results,

Ucurve(λ) is strictly decreasing on the interval
[
0, δn

2/3
]
and

strictly increasing on the interval
[
δ
2/3
1 ,∞

]
where δ1 and δn

are, respectively, the biggest and the smallest singular values
(generalized singular value in the case where L 6= I). Thus,

Ucurve(λ) reaches a local minimum in the interval
[
δ
2/3
n , δ

2/3
1

]
.

If we have at least one non-zero singular value, we can ensure the
uniqueness of the Ucurve(λ) minimizer, λu, the optimum value
of λ.

2.3.2. ADPC
As mentioned above, the optimal regularization parameter
should satisfy the DPC. Therefore, ADPC is a regularization
parameter choice method based on this condition. The idea is
to look for the last index i before the DPC is no longer satisfied
(Chamorro-Servent et al., 2017). This means before σi becomes
smaller than |uTi bt| in a log-log scale where t is time. For

the sake of simplification, log(|uTi bt|) is fitted by a polynomial

pt(i, log(|u
T
i bt|)) of degree 5 to 7. Then, for each pt , we seek for

αt = σmaxi such that log(σi) ≥ pt . The ADPC regularization
parameter is then λ = median(αt).

2.3.3. CRESO
The Composite REsidual and Smoothing Operator (CRESO)
method was introduced by Colli-Franzone et al. (1985). It
chooses the parameter that corresponds to the first local
maximum of the derivative of the difference between the
constraint term and the residual term with respect to λ

2.





C(λ) = d
d(λ2)

(λ2
η1(λ) − ρ1(λ)), if L = I,

C(λ) = d
d(λ2)

(λ2
η2(λ) − ρ2(λ)), if L 6= I.

(24)
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In terms of the singular value decomposition, this can be written
as (Johnston and Gulrajani, 1997; Ghista, 2012):





C(λ) =
∑n

i=1

σ
2
i µ

2
i (σ

2
i − 3λ2)

(σ 2
i + λ

2)3
, if L = I,

C(λ) =
∑n

i=1

λ̄
2
i α

2
i (λ̄

2
i − 3λ2)

(λ̄2
i + λ

2)3
, if L 6= I.

(25)

where αi = pTi b, i = 1...n.

2.3.4. GCV
The Generalized-Cross Validation (GCV) (Wahba, 1977) is also
a well-known method to choose the regularization parameter. It
provides the optimal value of λ by minimizing the function:





G(λ) =
ρ1(λ)[

Trace(I − AA†)
]2 , if L = I,

G(λ) =
ρ2(λ)[

Trace(I − AA#)
]2 , if L 6= I.

(26)

The function G(λ) is, according toWahba (Wahba, 1977), equal
to the weighted linear combination of the m prediction errors
by leaving out, in each time, the kth data point, k = 1..m and
resolving the inverse problem by the use of them − 1 remaining
data points. The idea is that the optimum of the regularization
parameter provides the best prediction of a measurement as a
function of the others. In terms of singular value decomposition,
G(λ) is expressed by (Wahba, 1977; Chung et al., 2014):





G(λ) =

∑n
i=1

λ
4
µ
2
i

(σ 2
i + λ

2)2
+ ‖r⊥‖2

(
m −

∑n
i=1

σ
2
i

σ
2
i + λ

2

)2
, if L = I,

G(λ) =

∑n
i=1

λ
4
α
2
i

(λ̄2
i + λ

2)2
+
∑m

i=n+1 α
2
i

(
m −

∑n
i=1

λ̄
2
i

λ̄
2
i + λ

2

)2
, if L 6= I.

(27)

It’s known that the GCV method has good asymptotic properties
as n −→ ∞ (Craven andWahba, 1978; Golub et al., 1979; Lukas,
1993). However, it may not be reliable for small or medium values
of n and can give values of λ that are too small resulting in a very
noisy regularized solution.

2.3.5. RGCV
In Lukas (2006), a new method called Robust GCV (RGCV) is
proposed and proved to be more reliable than GCV for small
values of n and generally more accurate. The RGCV estimate is
defined by the minimizer of the following function:

R(λ) =
[
γ + (1 − γ )ξ (λ)

]
G(λ), (28)

where G(λ) is given by (26) and ξ (λ) is defined as:





ξ (λ) = Trace
[
(AA†)2

]
=
∑n

i=1

σ
4
i(

λ
2 + σ

2
i

)2 , if L = I,

ξ (λ) = Trace
[
(AA#)2

]
=
∑n

i=1

λ̄
4
i(

λ
2 + λ̄

2
i

)2 , if L 6= I.

(29)
Here, γ is called a robustness parameter, γ ∈ [0, 1].
The RGCV method is based on the average influence
1
m

∑m
i=1 ‖Axλ − Ax

[i]
λ

‖2, where ‖Axλ − Ax
[i]
λ

‖2 is a measure of

the influence of the ith data point on the regularized solution. It’s
trivial that, when γ = 1, R(λ) is reduced toG(λ). It can be shown
that the term (1 − γ )ξ (λ) penalizes the too small values of λ. In
fact, when λ → ∞, ξ (λ) → 0, so 1

γ
R(λ) becomes equivalent to

G(λ). Otherwise, if λ → 0, ξ (0) = n, so 1
γ
R(λ) ≫ G(λ) for small

values of γ which means that the smaller γ , the more robust is
the RGCV method (Lukas, 2006).

3. EXPERIMENTAL METHODS AND
SIMULATION PROTOCOLS

3.1. Data Sets
ECGI reconstructions were performed on two different sets of
data:

I Simulated data obtained by considering a realistic 3D
heart-torso geometry segmented from CT-Scan images as
illustrated in Figure 1 (see Zemzemi et al., 2014 for
more details). The propagation of the electrical wave
was computed using the monodomain reaction-diffusion
model. The transmembrane currents used to compute the
extracellular potential distribution throughout the torso were
computed by solving a static bidomain problem in an
homogeneous, isotropic torso model (Boulakia et al., 2010).
Synchronized electrical potential on the epicardium and on
the body surface were extracted in order to test the inverse
methods. The torso mesh contained 2,873 nodes and the heart
mesh 519 nodes.

II Experimental data were obtained using an ex-vivo pig heart
perfused in Langendorff mode suspended into a human-
shaped torso tank. The heart was paced by 2 ms pulses at 2 Hz,
with constant current amplitudes 2x the diastolic threshold,
on the left and right ventricular epicardial surface, mimicking
ectopic activity. Epicardial ventricular electrograms were
recorded using a 108-electrode sock (of which 93 were used)
simultaneously with torso potentials from 128 electrodes
embedded in the tank surface as it appears in Figure 2.

Tank and sock unipolar electrograms were recorded at 2
kHz (BioSemi, the Netherlands) and referenced to a Wilson’s
central terminal defined using tank electrodes. A multi-lead
signal averaging algorithm was used to remove noise and non-
synchronized p-waves on recordings. Inmost cases, retrograde
VA conduction was present with P-waves only present during
the non-analyzed ST-segment. The tank mesh contains 1,177
nodes and the epicardium 761 nodes. For the application
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FIGURE 1 | (A) Two slices of the CT-scan images. (B) Torso geometry

showing the epicardium (heart-torso interface 6) (red), lungs (yellow), bones

(blue) and torso external boundary Ŵext (green).

FIGURE 2 | (A) The heart-human-shaped torso tank model used for the

experimental data simulations. The heart consists of 761 nodes and 1,518

elements and the tank contains 1,177 nodes and 2,350 elements. (B) The

heart geometry covered by the sock consisting of 108 electrodes (blue points).

of described inverse methods, potential recordings need to
be available for all the mesh nodes. To do so, a linear
interpolation was applied to the ex-vivo recordings. More
details about the ex-vivo experimental protocol can be found
in Bear et al. (2018).

For all the carried out tests using the L1-Norm regularization, β
is kept fixed and equal to 10−5.

3.2. Choice of the Robustness Parameter
The choice of γ for the RGCV tests is based on the study
made by Barnes and Johnston (2016). In fact, they proved that
applying RGCV with γ = 0 gives a good approximation
of the optimal regularization parameter, especially when using
realistic geometries and potential measures. To justify this choice,
Figure 3 represents a plot of the RGCV criterion in terms of the
parameters λ and γ where the color map defines the value of
the RGCV function and the red marks correspond to the local
minima . We observe that the local minima are almost reached at
the same λ value except the case where γ = 1 corresponding to

FIGURE 3 | The RGCV criterion plotted in terms of λ and γ . The red markers

are the grid points where RGCV(λ,γ ) is minimum when γ is fixed.

the GCV. For organization reasons, we present here only a graph
realized using experimental data at a specific time step, but we
observe the same behavior for all the other cases. This confirms
the fact that for the inverse problem of electrocardiography,
RGCV is not sensitive to γ when γ ∈ [0, 0.5].

3.3. Evaluation Criteria
To assess the accuracy of the results obtained by the different
approaches, we define the relative error (RE) and the correlation
coefficient (CC):

RE =

√∑n
i=1(x

c
i − xei )

2

∑n
i=1(x

e
i )
2

(30)

CC =

∑n
i=1

[
xci − x̄c

] [
xei − x̄e

]
√∑n

i=1(x
c
i − x̄c)2

∑n
i=1(x

e
i − x̄e)2

(31)

where xc and xe denote, respectively, the computed epicardial
potential and the known one. n is either the number of epicardial
nodes or the total number of time steps. In the first case, x̄c and
x̄e are the spatial mean values of xc and xe over the n epicardial
nodes. Otherwise, x̄c and x̄e are the temporal mean values of
xc and xe over the n time steps. The means and the standard
deviations of RE and CC are then computed and represented as
bar graphs. The accuracy of pacing sites localization is measured
by the geodesic distance between real and estimated pacing sites.

4. RESULTS

4.1. Epicardial Potential Reconstruction
4.1.1. Simulated Data
First, we assessed regularization techniques and numerical
methods using simulated data. The five regularization parameter
choice criteria described above were assessed using all the
suggested numerical methods: MFS, FEM-ZOT, and FEM-L1
which make 15 different algorithms.
Figure 4 presents the mean and the standard deviation of the
spatial REs and CCs of the reconstructed potentials by the
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different numerical tests. ForMFS, GCV gives the best estimation
of the optimal regularization parameter in terms of relative
error (0.24 ± 0.15) and correlation coefficient (0.98 ± 0.04).
we notice an improvement by 10% comparing to RGCV and
CRESO methods. These 3 techniques outperform with different
grades ADPC and U-Curve which seem to be unsuitable for MFS
resolution.
For all the runned simulations using FEM, GCV and ADPC fail
to compute the optimal regularization parameter. In fact, GCV
tends to be flat for small values of λ which make it difficult to
pick a minimum. RGCV is suggested to help with this difficulty.
We observe here that it outperforms U-Curve by nearly 30%

using the zero order Tikhonov and 20% using the L1-norm

regularization of the current density while it gives similar results
to CRESO in terms of both spatial RE and CC.
Figure 4 shows also the accuracy of L1-norm regularization in
the reconstruction of epicardial potential maps. We observe that
it provides the minimum of mean relative error (0.21± 0.2 ) and
the maximum of spatial correlation coefficient (0.99 ± 0.04).
Figures 5, 6 show simulated epicardial potential maps (A) and
reconstructed ones using FEM-ZOT (B) and FEM-L1-Norm (C)
at the stimulation sample time and at 212 ms, after the electrical
pacing leading to a reentry arrythmia, respectively. It can be seen
that L1-Norm regularization provides a better reconstruction
compared to the zero-order Tikhonov regularization especially
on the regions where we have a potential leap. This fits exactly

FIGURE 4 | Bar graphs of means of relative errors and correlation coefficients with the standard deviations for simulated data.

FIGURE 5 | Simulated (A) and reconstructed epicardial potential distributions on the epicardium at the stimulation sample time using FEM-ZOT (B) with the optimal

regularization parameter (RGCV), L1-Norm (C) with the optimal regularization parameter (RGCV).

Frontiers in Physiology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 170858

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Karoui et al. Inverse Problem in Electrocardiography

FIGURE 6 | Simulated (A) and reconstructed epicardial potential distributions on the epicardium at 212ms after stimulation using FEM-ZOT (B) with the optimal

regularization parameter (RGCV) and L1-Norm (C) with the optimal regularization parameter (RGCV).

with the role of the L1-Norm regularization which is a better way
to detect the gradient changes compared to Zero order Tikhonov.

4.1.2. Experimental Data
Preprocessing of the experimental data revealed the existence
of a few localized sites of ischemia produced due to electrode
pressure on the epicardium. This produced monophasic action
potential-like signals. These electrodes were identified when the
potential was greater than a fixed threshold equal to 50% of the
maximum signal magnitude in the plateau phase, 250 ms after
pacing. This choice is based on observations of the QT interval
in order to eliminate the ischemic signals. This leads us to run
two sets of comparisons, with all the working electrodes and
after removing the above threshold electrodes. We observe that
results after thresholding are better than those obtained with
ischemic signals. For the sake of clarity, we present here only
results after thresholding. Figure 7 shows the mean and standard
deviation of spatial RE and CC. We observe a degradation of
the metrics for the three models of experimental data (RV, LV,
and BiV). This can be explained by different factors, the subject
of section 4.4. In Figure 7, we observe that using MFS, all the
methods demonstrated similar trends in RE mean values. It
shows also that GCV outperforms the other methods in terms
of spatial correlation coefficient. For FEM, GCV and ADPC
have always difficulties in computing the optimal value of the
regularization parameter while RGCV, CRESO and U-Curve
perform the same with a mean relative error near to 0.95 for all
the three paced rhythms. Regarding the performance, there is not
a clear difference among all the methods.
For the sake of completeness, statistical detailed results of RE and
CC in time and space on the reconstructed potential for all cases
are reported in the Supplementary Material.

4.2. Localization of Pacing Sites
For the localization of pacing sites, we used three different
experiments, two of them provide LV, RV, and BiV pacing
data sets and the other one has only RV and LV models. In
summary, we have 3 cases of LV pacing, 3 cases of RV pacing
and 2 cases of BiV pacing. In Figure 8 (respectively, Figure 9)

(top), we show measured and reconstructed potential maps right
at the pacing sample time in an LV-pacing (respectively, RV-
pacing) case. The detected pacing sites are marked by bigger red
crosses than the actual pacing site and the length of the green
segment between them represents the geodesic distance. For the
sake of comparison, only the simulation using the regularization
parameter technique providing the better localization is selected
for the figures. The case where the reconstructed epicardial
potential do not allow us to extract the pacing sites are reported
in Table 1 as non applicable (N.A) cases.

For the LV-pacing (respectively, RV-pacing) case , we observe
that L1-norm regularization of the current density combined
with RGCV provides the best localization with an error of
0.45 cm (respectively, 2.15 cm). It outperforms FEM-ZOT
2.55 cm (respectively, 2.16 cm) and MFS 0.83 cm (respectively,
3.15 cm) that give similar approximations. We also plot in the
bottom of the figure the time course of the electrical potential at
the actual pacing site position detected from the measured data.
For LV-pacing case, MFS, (respectively FEM-ZOT and FEM-L1)
present temporal relative error and correlation coefficient
equal to (0.83, 0.72) (respectively (0.86, 0.75), (0.8, 0.72)).
For the RV-pacing case, MFS, (respectively FEM-ZOT and
FEM-L1) present temporal relative error and correlation
coefficient equal to (1.05, 0.3) (respectively (1.12, 0.40),
(1.01, 0.33)).

For both LV and RV-pacing we observe that none of the
methods is clear-cut.

In the case of a bi-ventricular pacing (BiV), not all the
methods were able to locate both pacing sites. Only MFS-
ZOT combined with GCV, FEM-ZOT and FEM-L1 with RGCV
succeed to detect the two pacing sites with more-less good
accuracy. Figure 10 presents the real and estimated pacing sites
and their electrograms for a BiV pacing rhythm for which all
the methods work. The Figures 10B–D show the results for the
BiV pacing sites. Errors of localization of the LV pacing site
are 1.3 cm for FEM-L1, 1.8 cm for FEM-ZOT and 2.3 cm for
MFS. The bottom row of each panel represents the reconstructed
electrograms in the real pacing sites using the specified method.
The temporal relative errors and correlation coefficients for LV
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FIGURE 7 | Spatial mean relative errors and correlation coefficients and their standard deviations for reconstructed epicardial potentials with all the algorithms for

three paced rhythms: (A) Biv, (B) RV, and (C) LV.
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FIGURE 8 | Real (A) and the estimated LV pacing sites (top) and its electrograms (bottom) using MFS-ZOT (B), FEM-ZOT (C), and FEM-L1 (D), respectively.

FIGURE 9 | Real (A) and the estimated RV pacing sites (top) and its electrograms (bottom) using MFS-ZOT (B), FEM-ZOT (C), and FEM-L1 (D), respectively.

are (0.80, 0.71) using FEM-L1, (0.86, 0.75) with FEM-ZOT and
(0.83, 0.72) usingMFS. As shown in Figure 10B, MFS nearly fails
to detect the left ventricular pacing site. The epicardial potential
in the whole left ventricle is almost in the same range. For the RV
pacing site, results are nearly the same as for the LV pacing site.
The performance in terms of pacing site localization of the 15
algorithms on the set of the experimental data are reported
in Table 1 where we provide the mean values and standard
deviations of pacing sites localization errors for the three cases,
LV, RV, and BiV. We remark that, L1-norm regularization of the
current density combined with RGCV parameter choice method

outperforms all the other methods with minimum errors and
more stable standard deviations.

4.3. Limitations
4.3.1. The Imperfect Knowledge of the Transfer Matrix
It’s important to mention that in this work, the use of simulated
data provides an optimal knowledge of the transfer matrix A,
which is not the case of experimental data. It explains somehow
the degradation of the results using the experimental data. To
assess the impact of the transfer matrix, we computed a relative
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TABLE 1 | Mean errors and standard deviations of localization of pacing sites for

the 2 paced rhythms RV, LV using the 3 numerical methods MFS-ZOT, FEM-ZOT,

and FEM-L1 combined with the regularization parameter choice methods.

CRESO GCV RGCV UCurve ADPC

RV MFS-ZOT 2.8± 1.2 2.4± 1.1 1.9± 0.9 2.4± 0.8 2.5± 0.8

FEM-ZOT 2.7± 0.8 N.A 2.7± 0.9 2.0± 0.1 N.A

FEM-L1 1.9± 0.5 N.A 1.8± 0.3 1.8± 0.4 N. A

LV MFS-ZOT 1.7± 0.7 2.1± 0.3 2.0± 1.1 1.3± 0.6 2.1± 0.2

FEM-ZOT 2.1± 0.4 N.A 2.8± 1.0 3.0± 0.2 N.A

FEM-L1 1.3± 0.5 N.A 1.2± 0.6 1.3± 0.6 N.A

BiV

MFS-ZOT 2.5/N.A 2.3/1.5 0/N.A 2.3/N.A 2.7/2.0

FEM-ZOT 1.8/N.A N.A 1.8/2.1 2.5/N.A N.A

FEM-L1 2.5/N.A N.A 1.3/1.4 1.4/N.A N.A

For BiV, values are the geodesic distances (LV/RV). N.A means that one could not extract

the pacing site from the reconstructed signals. Highlighted values are the best localization

errors.

error defined by:

REd =
‖Axex − b‖

‖b‖
(32)

where xex is the exact solution whether it’s the simulated
epicardial potential or the measured one.
The REd is almost equal to zero using the simulated transfer
matrix. However, it increases for the experimental data to reach,
for some time steps, REd ≈ 0.9. Although this issue is out of
the scope of this paper, the degradation can be due to different
factors like the measurement errors and geometrie’s inaccuracy
due to the fact that the heart is moving during the experiment, but
also to the mathematical modeling of the physical phenomenon
which is reduced to the Laplace equation. These hypotheses make
the issue subject to further analyzes.

4.3.2. Experimental Protocols
Obviously, the experimental conditions have a very important
impact on the quality of the data that we obtain from
experiments. One of the limitations of this study is the dataset
of epicardial signals. In fact, the experimental protocol described
in Bear et al. (2018) indicates that the epicardial surface is not
totally covered with electrodes which provides less information
and biased results. Further studies should be done in this context.
The protocols we have set until now do not include endocardial
stimulation, this is one of the limitation of our work. Of course,
if we have to evaluate the methods against endocardial and
septal stimulations we have to make use of a W-shape geometry
of the ventricles including endocardial, epicardial and septal
surfaces instead of a nut-shape geometry that only represents the
epicardial surface.

5. DISCUSSION AND CONCLUSION

In this paper, we numerically assessed 15 different algorithms
for the resolution of the inverse problem of electrocardiography
based on the Generalized Singular Value Decomposition of the
pair {Transfer matrix, Regularization matrix} combined with
different regularization parameter choice methods. Although the
L1-Norm of the normal derivative regularization method has

been presented before (Khoury, 1994; Ghosh and Rudy, 2009)
to solve the ECGI inverse problem, there are two novelties in
this paper: First, the non quadratic scheme was solved using the
generalized singular values decomposition, whereas, in Ghosh
and Rudy (2009) authors use an iterative method. Second, the
regularization method was combined with five regularization
parameter choice methods to assess its performance on simulated
and experimental data. In Barnes and Johnston (2016), authors
used only ZOT regularization and compared results only on
simulated data. In this paper and in the majority of the studies
looking for the ECGI inverse solution, the problem is formulated
in terms of electrical potential. There are other approaches, where
the problem is formulated in terms of propagating wave front
(Cuppen and Van Oosterom, 1984; Huiskamp and Greensite,
1997). In Van Dam et al. (2009), the activation and recovery
times and the transmembrane potentials are constructed. Other
approaches are interested in constructing directly dominant
frequencies on the heart surface and torso surfaces (Pedrón-
Torrecilla et al., 2016; Beltrán-Molina et al., 2017).

The evaluation of the different approaches studied in this
paper is based on the reconstruction of the epicardial potential
maps and the localization of pacing sites. For that, we
used 3 different cardiac paced rhythms: left-ventricular, right-
ventricular and bi-ventricular pacing.

Unlike the work presented by Barnes and Johnston (2016),
this study considered two types of transfer matrices: MFS and
FEM and two different approaches of regularization: zero-order
Tikhonov and L1-Norm. This study demonstrated that, when
using the MFS discretization approach, the GCVmethod is more
appropriate and optimal than RGCV and the other parameter
choice methods. Otherwise, for the FEM approach, the RGCV
gives the best results using simulated data. But also, GCV and
ADPC provide very weak results with FEM, this is mainly due to
the fact that the minimization criteria in both cases chooses the
regularization parameter λ at the lower bound of the provided
interval.

However, for the experimental data, all the methods perform
nearly the same with a slight difference in terms of both spatial
and temporal relative error and correlation coefficient when
comparing the epicardial potential distribution. We think that
this is mainly due to the magnitude of the recorded potentials but
also to the noise and other experimental uncertainties. Results
show, also, that L1-Norm regularization of the potential normal
derivative yields generally the best solution. For the purpose
of benchmarking, the represented algorithms were evaluated
against the data set used in the paper (Figuera et al., 2016). Results
are reported in the Supplementary Material. They show similar
performance for the sinus rhythm model using the L1-norm
regularization of the current density. This last regularization has a
better performance for the atrial fibrillation models compared to
all the ZOT based methods but weaker results than the Bayesian
approach (Serinagaoglu et al., 2005; Figuera et al., 2016). This
should be subject of several further studies.

Regarding the pacing site localization, Table 1 show clearly
that the estimation of pacing sites is more accurate using L1-
norm regularization than other methods with minimum errors
and less variance despite the fact that it depends of the epicardial
potential reconstruction. This is due to the use of L1-Norm
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FIGURE 10 | Real (A) and the estimated BiV pacing sites with its electrograms using the numerical methods (B) MFS-ZOT, (C) FEM-ZOT, and (D) FEM-L1. In each

panel, LV and RV pacing sites (top) with their electrograms (bottom) are represented using the mentioned numerical method.

regularization that preserves the spatial gradient changes in the
solution which is not the case for the L2-Norm regularization that
tends to give smoother solutions. Despite the good performance
of the methods in the case of LV and RV, they have faced
difficulties in localizing two pacing sites for the BiV pacing and
localize in some cases only one pacing site nearly equidistant
to the two real ones. Some limitations of this study have been
explored such as the imperfect knowledge of the transfer matrix
and the noise in the ground truth data that could lead to biased
results. This explains the degradation of the RE and CCmetrics in
terms of electrical potential for the experimental data compared
to the simulated model.
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The accurate generation of forward models is an important element in general research

in electrocardiography, and in particular for the techniques for ElectroCardioGraphic

Imaging (ECGI). Recent research efforts have been devoted to the reliable and fast

generation of forward models. However, these model can suffer from several sources of

inaccuracy, which in turn can lead to considerable error in both the forward simulation of

body surface potentials and even more so for ECGI solutions. In particular, the accurate

localization of the heart within the torso is sensitive to movements due to respiration

and changes in position of the subject, a problem that cannot be resolved with better

imaging and segmentation alone. Here, we propose an algorithm to localize the position

of the heart using electrocardiographic recordings on both the heart and torso surface

over a sequence of cardiac cycles. We leverage the dependency of electrocardiographic

forward models on the underlying geometry to parameterize the forward model with

respect to the position (translation) and orientation of the heart, and then estimate these

parameters from heart and body surface potentials in a numerical inverse problem. We

show that this approach is capable of localizing the position of the heart in synthetic

experiments and that it reduces the modeling error in the forward models and resulting

inverse solutions in canine experiments. Our results show a consistent decrease in

error of both simulated body surface potentials and inverse reconstructed heart surface

potentials after re-localizing the heart based on our estimated geometric correction.

These results suggest that this method is capable of improving electrocardiographic

models used in research settings and suggest the basis for the extension of the model

presented here to its application in a purely inverse setting, where the heart potentials

are unknown.

Keywords: electrocardiographic imaging, inverse problems, respiration, ECGI, forward problem,

electrocardiography, heart tracking

1. INTRODUCTION

Subject-specific solutions to the forward problem of electrocardiography, that is, producing a
mathematical model that can estimate body surface potential maps (BSPMs) from knowledge of
cardiac electrical activity and an individualized thoracic volume conductor model, is important
in a number of settings. These include tools for understanding and pedagogy about the
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ECG (van Oosterom and Oostendorp, 2004), methods to guide
interventions such as ablation through simulation (Trayanova,
2011), and solutions to the corresponding inverse problem
of characterizing cardiac electrical activity from body surface
measurements (commonly known as ElectroCardioGraphic
Imaging, ECGI) (Pullan et al., 2010). The forward solution
is known, from electrostatic theory, to be quasistatic and to
depend only on the geometry of the torso and of the organs
inside of it and their respective conductivities. Moreover, under
specific assumptions about the electrical source models on the
heart this relationship can be accurately modeled as linear.
However, forward solutions depend on the underlying geometry,
since it specifies the boundary conditions for the underlying
partial differential equation, and even though this sensitivity is
well-behaved, it is particularly critical when solving the ECGI
inverse problem, since that inverse problem is ill-posed and
very sensitive to errors in the forward model. Thus methods to
improve forward modeling have received considerable attention
in the ECGI community (Coll-Font et al., 2016a) and there is
open discussion about, for example, what is the “best” forward
model to use, which source models better characterize the
electrical activity of the heart, how many, and which, organs
should be included in the geometry, and how their respective
conductivities should be estimated (Ferguson and Stroink, 1997;
Ramanathan and Rudy, 2001a,b; Weber et al., 2011; Jones et al.,
2013; Bear et al., 2015; Dehaghani, 2015; Potyagaylo et al., 2016;
Punshchykova et al., 2016).

However, there is an additional challenge that is often
ignored in this discussion: the positions of the organs within
the torso, including the heart, are not static; rather they vary
due to respiration and to changes in position of the subject.
The sensitivity of forward solutions to these variations have
been studied (Geneser et al., 2008; Swenson et al., 2011) but
overcoming it remains challenging. It cannot be resolved a
priori with better segmentation and it is not always possible to
address by procedural mechanisms such as requiring the patient
to retain breath-hold position. This challenge also appears in
many phantom and animal experiments, such as validation of
ECGI (MacLeod et al., 2000; Erem et al., 2014; Bear et al., 2015;
Cluitmans and Volders, 2017), where the true position of the
heart is not only unknown but subject to several experimental
uncertainties and might change from beat to beat.

Here we address this limitation by attempting to use the
changes in ECG due to changes in heart position—in other
words, the manifestation of the problem itself—as the source of
a solution. Specifically, since changes in position of the heart
produce changes in the distribution of body surface potentials,
we investigate whether that very variation can be used to track
these positional changes and thus “correct” the forward model.
In this paper we describe a method to estimate and correct
for the translation and rotation of the heart for each heartbeat.
We evaluate our accuracy in doing so by examining geometric
accuracy in a controlled simulation and to what extent estimating
these geometry changes leads to decreased errors in accuracy
of both forward model body surface potential calculations and
of associated inverse solutions. We report results for both
synthetic experiments and in the context of three different

physical experiments carried out with canine hearts suspended
in a human torso-shaped tank phantom.

Our work builds on previous reports relating changes in
geometry—and thus changes in forward models—to changes in
the ECG. The classical studies described the changes in ECGs
from patients as a function of the respiratory cycle. These studies
showed that the changes can be characterized as a continuous
displacement of the maxima and minima of the body surface
potential maps (BSPM) (Amoore et al., 1988), have different
effects along the PQRST sequence (Adams and Drew, 1997;
Madias, 2006), and are subject specific (Nelwan et al., 2001).
More systematic experiments on animal models and synthetic
data provided methods to estimate the average BSPM and the
variance that can occur due to movement of the heart in a subject
(MacLeod et al., 2000; Swenson et al., 2011). More recently,
cardiac magnetic resonance imaging allowed characterization of
the relationship between standard clinical metrics of the ECG
and changes in the heart geometry (Lyon et al., 2017) and,
specific to ECGI, Cluitmans et al. explored the effects of these
geometry errors on inverse solutions (Cluitmans and Volders,
2017).

Closer to our work, there have been a few reports attempting
to track the changes in position of the heart using BSPM.
Shvelikhova et al. estimated the vertical position of the heart
by characterizing its electrical activity with a moving dipole
whose position was tracked from the ECG (Svehlikova et al.,
2011). Recently, Rodrigo et al. proposed to pre-compute a set
of candidate forward models and then used a metric derived
from the L-curve in Tikhonov regularization to select the “best”
candidate forward model (Rodrigo et al., 2017, 2018). These
approaches produce an optimization problem to be solved
that is computationally tractable, but require pre-computation
of a set of forward models from which to choose, or have
very strong assumptions about the form of the source and
geometry models, which may limit their generalization. In
any case they are complementary to the method described
here.

In this paper we describe the formulation and experimental
validation of our approach. Specifically we reverse the role
of geometric assumptions and cardiac surface potentials with
respect to the traditional inverse problem of electrocardiography;
instead of estimating the electrical sources of the heart from the
ECG measurements and the geometry, we correct the geometric
model (e.g., translations and rotations of the heart) assuming
knowledge of the electrical measurements on both the heart
and the body surface (Coll-Font, 2016; Coll-Font et al., 2016b,
2017). Direct application of this approach is relevant to a
variety of phantom and animal studies where measurements
can be made on both surfaces. A future extension might allow
use of only a limited set of heart surface potentials such as
those acquired during catheter procedures. Future application to
ECGI would require estimating both heart surface potentials as
well as geometry correction parameters and, while preliminary
results are positive, success clearly depends on establishing the
validity and limitations of the geometry correction approach
in its own right, which we attempt to do in the current
paper.
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In the following we describe in section 2 how our method is
applied to this type of data, we present the experiments we used
for validation and the corresponding results obtained sections 3
and 4, respectively, discuss their implications in section 5, and
summarize our conclusions in section 6.

2. METHODS

The work presented here assumes the availability of a nominal
discretized surface model for the heart and torso geometries;
however we do not assume that the position of the heart
within the torso is accurately known. The torso is treated as
homogeneous in the experiments reported here but this is not
required by the method as long as the geometry of any other
organs included in the model is known. The electrical activity of
the heart is modeled as a time series of potentials on a surface that
surrounds the ventricles. (Again, extension to alternative source
models would be straightforward). We further assume that we
have available potentials measured on the heart and torso surfaces
at multiple time instances, denoted xb(t) and yb(t), respectively,
where we index time within a beat by t and heartbeats by b. Under
these assumptions, the electrical forward model is represented in
the form of a forward matrix (denoted A) with the heart at some
reasonable position in the torso volume. We refer to the matrix
A that corresponds to this nominal position in the sequel as the
“nominal” forward solution. We note that this nominal position
will be used as a starting point in our iterative algorithm but that
there is no requirement that it be particularly accurate; we assume
that a nominal model computed from imaging scans will provide
a reasonable “initial guess.” With these assumptions, we have the
following putative nominal relationship between heart and body
surface potentials (MacLeod and Buist, 2010):

yb(t) = Axb(t). (1)

Our work assumes that the heart can change position at every
heartbeat b; thus Equation (1) must be extended to reflect the
corresponding changes in the forward model. We postulate an
equivalent sequence of forward models, A(pb), parameterized by
a joint position and orientation parameter vector pb, that relates
the position of the heart to the measured body and heart surface
potentials.

yb(t) = A(pb)xb(t). (2)

We chose a specific parameterization that effectively
characterizes the expected translation and rotation of the
heart due to respiration. In particular, although the respiratory
movement of the heart is subject specific, there are common
features that can be leveraged to describe it: the heart translates
vertically and undergoes rotation around a tethering point on the
left atrium (Netter, 2006; Coll-Font et al., 2011; Aras et al., 2015).
Based on this description, we defined translation parameters
using a standard coordinate system (from the EDGAR database
formulation; Aras et al., 2015), and defined rotations with respect
to two anatomical references: one is an anchor point placed at
the centroid of the atria and the other a septal axis that crosses
the heart through the septum from that atrial anchor point to the

FIGURE 1 | Depiction of the parameterization of the translation and rotation

coordinates. Left: Standard orthogonal projection views of the torso and heart

for three different position/angle combinations. Translation coordinate axes are

defined following the convention presented in the EDGAR repository (Aras

et al., 2015). The magenta box shows the translation bounding box for the

assumed anchor point. As described in the text, the translation and angle

constraints are defined such that the heart geometry can never intersect the

torso surface. Right: Rotation angles defined on the heart. Pitch (θ ): the angle

formed between the Z axis and the septal axis. Yaw (φ): the angle that the

septal axis projected on the X/Y plane forms with the X coordinate. Roll (ρ): the

rotation of the heart around the septal axis.

apex (see Figure 1 for illustration). Based on these references the
rotation angles are defined as:

• Pitch (θ): the angle formed between the Z axis and the septal
axis.

• Yaw (φ): the angle formed between the septal axis projected on
the axial plane and the X axis.

• Roll (ρ): the rotation of the heart around the septal axis.

Once this parameterization is defined, the generation of
forward matrices requires moving the heart to the position and
rotation described by the parameters pb and then computing
the corresponding forward matrix with an appropriate forward
solver.

The implicit function A(pb) defined in this formulation is a
manifold in the space of matrices. It is a non-linear, continuous
and smooth function—i.e., small variations in the position of
the heart will lead to small changes in the forward matrix—and
hence it can be used in an optimization framework. Specifically,
we need to solve an optimization problem that searches for
the translation and rotation parameters of the heart—within
some reasonable bounds—that minimize the error between ECG
potentials synthesized using Equation (2) and the potential
measurements on both surfaces. The main assumption in this
optimization problem is that the dominant error observed in
the synthesized potentials is caused by errors in the position
and orientation of the heart and that other sources of error can
be modeled as additive white Gaussian noise or are negligible.
This results in a non-linear least-squares problem over the
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six-dimensional vector pb, restricted in each dimension to a
hyper-rectangle as in Equation (3).

min
pb

∑

t

‖yb(t)− A(pb)xb(t)‖
2
2

st.pb ∈ 4

(3)

were the norm is taken over both time and space. The hyper-
rectangle constraint, illustrated in Figure 1 and denoted as 4,
was defined a priori to prevent any intersection between the heart
geometry and the torso surface.

This constrained non-linear optimization problem can be
solved with any off-the-shelf solver. In the particular case of these
experiments, we used MATLAB’s default iterative solver of the
fmincon function1, which implements an Interior-Point method
with numerically approximated gradients and Hessians..

We note that in this problem the solution is constrained to
lie on a non-linear manifold induced by the parameterization
in a high-dimensional subset of matrices restricted to be
approximations to the underlying PDE. Thus the problem is
difficult to analyze mathematically and, in particular, we have
no guarantee that it is well-posed2. However these restrictions
imposed on the solution are highly constraining. Thus we believe
it is reasonable to hypothesize that solutions are stable. Our
experimental results, as reported below, support this hypothesis.

3. EXPERIMENTS

The immediate purpose of the work presented here is to
determine if in fact the translation and rotation of the heart
estimated by our proposed algorithm can reduce the effects of
model errors present in the numerical and physical experiments
we studied. To that purpose, we both created synthetic data
to model respiratory movement and employed data recorded
during three different torso-tank canine experiments conducted
at the Cardiovascular Research and Training Institute (CVRTI),
University of Utah.

Synthetic Data:

We generated synthetic respiratory motion influenced data
using the sock2 heart and body surface geometry described
below and the potentials from a single beat on the epicardial
surface recorded with an electrode mesh, also as described
below. Starting from a nominal position inside the homogeneous
torso model, we moved the heart to 10 different positions and
orientations following a respiratory-like trajectory described in
(Coll-Font et al., 2011).3 For each of these positions/orientations,
we synthesized one heartbeat of BSPM using a forward model

1Beyond the default configuration, we set the function and objective tolerance at

10−6 and extended the function evaluations to 1010

2In theory rotational symmetries of the heart geometry could produce non-

uniqueness of the parameterization itself, but this is not a practical concern with a

realistic heart shape, and in addition in the setting under study here we have access

to the potentials on both surfaces, so that even rotational symmetries are removed

modulo a highly improbable symmetry in the heart surface potentials as well as its

geometry.
3The respiratory-like trajectory was interpolated from a time series of sagittal MRI

scans of the torso at different phases of the respiratory cycle

computed from that geometry using the Boundary Element
Method (BEM) provided with the SCIRun software system
(SCI-Institute, 2014)4 and added independent Gaussian noise
to achieve an SNR = 30 dB. We then fed the epicardial and
body surface data and the (incorrect) nominal forward model
into our algorithm and attempted to estimate the corrected
position and orientation of the heart for each of the 10 beats. We
repeated this procedure 10 times for different realizations of the
pseudorandom noise.

Experimental Data:

Data was generously provided to us from canine experiments
that had been carried out for previous studies with applicable
IACUC approval. These experiments consisted of unipolar
recordings of potentials on or near the epicardial surface
of an explanted canine heart measured simultaneously with
similar recordings on the surface of a torso-shaped tank in
which the heart was suspended (MacLeod et al., 1995a,b). The
tank was filled with conductive medium. The homogeneous
conducting medium and the availability of unipolar recordings
on both surfaces match the assumptions described in section
2. During the experiment, the suspended heart was kept alive
through retrograde perfusionwith blood from a “support” animal
that provided circulation through the left anterior descending
(LAD) artery. This setting allowed the experimenters to both
pace the heart at different locations, through electrodes placed
intramurally or on the heart surface, and to induce ischemia by
either accelerating the pacing rate or by occluding the LAD. At
the end of the experiment, the heart was vertically raised from its
position during the experiment and the 3D coordinates of several
electrodes were digitized and used to register the heart geometry
to its estimated position within the tank. This registration
procedure includes the measured vertical displacement of the
heart, thus assuming that it was raised and lowered into the tank
with no inclination with respect to the tank geometry. Note that
buoyancy effects and tension from electrical cables and blood
supply tubing might introduce error in the geometry that is not
corrected by the registration.

We used this measured geometry to construct our nominal
forward model, again computed with the SCIRun BEM solver,
and then used the recorded potentials on both surfaces over
multiple beats in the method described above to estimate the
position and orientation of the heart on a beat-by-beat basis.

Two different experimental methods were used to record
the heart surface potentials. In one experiment, the heart was
enclosed in a small wire cage with electrodes on the cage itself. In
the other two, a mesh, or “sock,” that had been wired with a large
number of electrodes was stretched around the heart surface and
tightly tied around the ventricles. Figure 2 shows visual examples
of the apparatus during an experiment. These two heart surface
potential measurement approaches have respective benefits and
drawbacks. The cage electrodes are placed at some distance

4The SCIRun BEM solver is a standard BEM implementation for potential sources

on an interior closed (epicardial) surface and measurements on an bounding

closed (torso) surface, based on the classical “solid angle” integrations. Boundary

conditions are the known epicardial potentials and an insulating boundary on the

body surface; electrodes are treated as point electrodes with infinite impedance.
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FIGURE 2 | Pictures of the recording devices on the heart using a cage geometry (Left), a sock geometry (Middle), and the entire experimental apparatus (Right).

from the heart and thus measure its electrical activity over a
rather broad area, resulting in considerable spatial smoothing
of potential distributions compared to measuring them directly
on the heart surface. In contrast, the sock electrodes measure
more local, spatially resolved, electrical activity. However, the
sock is flexible and hard to fix in place on the heart surface,
and its geometry is sensitive to contraction, swelling of the heart,
and any other changes in heart shape, and in addition may be
displaced during any interventions. Moreover the sock moves
as the heart moves, and the heart was not securely fixed in a
consistent, repeatable, and accurately measurable location during
the entire experiment. In contrast the position of the cage is easier
to both measure and maintain throughout the experiment. Thus
sock recordings are more prone to error in the geometric model,
including time-varying errors, than are cage recordings. Another
technical limitation of the sock is that the electrodes only cover
the ventricles, leaving an opening around the atria. In order to
use BEM forward solvers, the heart geometry must form a closed
surface, thus requiring the generation of “extra” nodes closing the
geometry for which there are no actual measurements available.
By contrast the cage has electrodes that completely surround the
heart surface.

Two views of the nominal geometries are shown for the three
experiments are shown in green (torso) and black (heart) in
Figure 8.

3.1. Additional Details for the Experimental
Datasets
Wenote that these three experiments were carried out at different
times on three different animals, one using the cage and two using
socks; for clarity we label these experiments in what follows as
cage, sock1, and sock2. We describe further details about each of
these experiments next.

cage: In this experiment the electrical activity of the heart
was measured with a cage geometry containing 599 electrodes
surrounding the heart and with 192 electrodes on the tank
surface. The experimental procedure consisted of recordings
during a series of ventricular pacings at four different sites
followed by three series of ischemic episodes, as described above,
all during sinoatrial pacing.

sock1: The sock used was outfitted with 247 electrodes and
again there were 192 electrodes on the tank surface. Extra nodes,
with no corresponding measurements, were added to the sock
geometry to close the surface above the base of the ventricles,
leading to a total of 337 nodes in the epicardial geometry mesh
model. Ischemic interventions were interleaved with control
periods; in this experiment there were 4 such ischemic episodes.
All heartbeats during the experiment were paced at the sinoatrial
node.

sock2: The sock, epicardial mesh model, and tank had the
same dimensions as in sock1. The interventions consisted of an
ischemic experiments with sinoatrial pacing followed by a series
of ventricular pacings at five different locations. The specific
sequence of interventions was: two initial series of sinoatrial
paced control recordings, a series of ventricular pacings at various
locations, and then a sequence of two ischemic interventions
interleaved with control recordings, all under sinoatrial pacing.
One important difference between this experiment and the others
is that, after the first of the two initial series of control recordings,
the heart was raised above the top of the tank and needle
electrodes were inserted into the myocaridal wall (to be used for
the ventricular pacing), and then the heart was lowered to the
original nominal position. This difference plays a significant role
in the results reported below.

Preprocessing: Before using the experimental data in both
synthetic and experimental settings, we extracted the QRS
complex from each heartbeat of both heart and torso surface
recordings and applied a moving average filter of length 20 ms
to both sets of signals to reduce noise. In the synthetic setting,
only the heart surface recordings from one beat were used, while
in the experimental setting all the data from both surfaces were
used.

3.2. Computational Procedure and
Validation Details
We applied our geometry correction method to estimate the
rotation and translation of the heart for each synthesized
or recorded heartbeat. Given those estimated parameters we
computed a corrected forward matrix for each heartbeat,
synthesized the corresponding corrected BSP using the measured
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FIGURE 3 | Bottom: RMSD of the nominal heart (red dots) vs. corrected (blue dots) for all respiratory phases. Top: corresponding true heart geometry (green) and

corrected (red) for one repetition.The horizontal axis is normalized respiratory phase on a scale from −1 to 1.

heart potentials as described in Equation (2), and computed
two sets of inverse solutions using the synthesized / measured
BSP and both the nominal and corrected forward matrices.
We calculated inverse solutions using a zero’th order Tikhonov
regularization solver (Equation 4).

min
xb(t)

‖yb(t)− Abxb(t)‖
2
2 + λ2‖xb(t)‖

2
2 (4)

where the norm was taken over both space and time within a
single QRS. We used the L-curve method with 100 lambdas
equally spaced between 10−6 to 1 on a logarithmic scale. We
computed each point of the L-curve using all time instances
within a beat to determine a single regularization parameter (λ)
(Hansen, 2007) per beat.

Given these results, we calculated the relative error for beat
b as the sum squared differences across all electrodes (l) and
time instances (t) between measured BSP (yb(l, t)) and BSP
synthesized using the corrected geometry (ŷb(l, t)) divided by the
sum-of-squares of the measured BSP (Equation 5).

relErrb =

∑
l

∑
t(yb(l, t)− ŷb(l, t))

2

∑
l

∑
t yb(l, t)

2
(5)

To show the degree of improvement, we also computed the
BSP relative error using the nominal geometry in the same
fashion. Similarly, we computed the relative errors for the
estimated cage/sock potentials for both corrected and nominal
geometries. In the case of the synthetic experiment, where the
true heart geometry was available, we also computed the root-
mean-squared error (RMSD) between the true and corrected
geometries as the square root of the average sum-of-squares of
per-node errors (thus combining translation and rotation errors)
across all nodes on the heart.

4. RESULTS

In the synthetic experiments, as described above, we calculated
the misplacement after correction at each time instant. The

average RMSD after correction was 0.1 ± 0.04mm, compared to
an average error of 13.7 ± 8mm before correction. To illustrate
this result we plot the evolution of the RMSD and true and
corrected heart geometries as a function of respiratory phase in
Figure 3. As expected, the error of the nominal heart increased
when approaching maximum inhale position, reaching 22.7 mm.
This increase in error corresponds to the vertical displacement
and slight rotation of the heart geometry. On the other hand, the
RMSD for the corrected geometries was close to 0mm for most
beats with a maximum RMSD of 0.19mm. This small RMSD can
be observed in the almost indistinguishable true and corrected
geometries shown in the figure.

We obviously cannot calculate actual misplacement for the
three canine experiments, but we can study the differences
between measured and synthesized signals both before and after

correction. We plot these results in terms of relative error, as
described above, in the form of histograms in Figure 4. To
make comparisons easier, we used color to allow us to report

all results for a single experiment on one plot. We report errors
for both nominal geometries (top row of panels) and corrected
geometries (bottom row) and for both errors in body surface
potentials (left panels) and reconstructed EGMs (right). Color
designates the specific experiment as shown in the legend. Each

bar in the histogram shows the number of beats with relative
error in the bin designated by the value on the horizontal axis
at the position of the bar. So, for example, the red bars in
the top left panel show that relative errors in the body surface
potentials for the nominal geometry were distributed between 0
and 0.25, while after correction, in the bottom left panel, they
were concentrated very close to zero, indicating the improvement
after the correction.

From the top-left panel, we see that for the synthetic

experiment the relative error between nominal and uncorrected
forward-computed BSPM is rather evenly distributed between
0.0 and 0.17. For the cage experiment the relative error is in
the same range and very stable across heartbeats—the average
± standard deviation BSPM relative error was 0.1 ± 0.01. For
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FIGURE 4 | Histograms of relative errors for forward-computed BSPM (Left) and inverse-computed cardiac electrograms (EGM) (Right) potentials for all four

experiments. Top row shows the relative error computed using the nominal geometry, bottom row using the corrected geometry. Data is shown from all four

experiments in each panel: synthetic (red), cage (blue), sock1 (green), and sock2 (yellow).

sock1 the relative error was again stable across all the recorded
heartbeats but larger in magnitude (0.79 ± 0.06). In contrast for
sock2 although the mean relative error was similar to sock1, the
variability was considerably larger (0.8± 0.25).

In the case of the inverse-computed EGM solutions, shown in
the right column of the same row, the first notable observation
about results from the nominal geometry is that the range of
relative errors is, as might be expected due to ill-posedness,
much higher than for the BSP. However within this range we
note similar differences among results for the four experiments:
a uniform distribution for synthetic data (0.76 ± 0.06), lower
mean error and small variability for the cage data (0.5 ± 0.03),

higher mean error but again small variability for the sock1 data
(1.3 ± 0.39), and much higher variability for the sock2 data
(3.8 ± 6.8). We also can observe that here the mean error for
sock2 was also higher than for sock1, in contrast to the results

for the BSP’s.
The bottom panels indicate a clear reduction in the relative

error when geometry correction is applied. Numerically, the
improvement in BSP relative error—measured as the difference

between corrected and nominal relative error— was 0.07 ± 0.04
for synthetic, 0.02 ± 0.005 for cage, 0.1 ± 0.02 for sock1, and
0.3±0.11 for sock2. The corresponding improvement in inverse-

computed heart potential relative error was 0.067 ± 0.06, 0.02 ±
0.01, 0.4 ± 0.4, and 3 ± 6.4, respectively. Thus we see that the
improvement is more pronounced for the inverse solutions than
for the synthesized BSP, and greater in sock2. We also note that
in general the improvement in inverse solutions, on average,
accounted for much of the error we found using the nominal
models.

We show some illustrative potential maps taken as a snapshot
at the QRS peak to give more insight into these summary
results in Figure 5, which shows isopotential maps on the body
and heart surfaces for representative beats. Maps of measured
potentials are shown in the top row, maps of the nominal
potentials in the middle, and maps of the corrected potentials

in the bottom. The columns correspond to different example
cases. The left column shows the heartbeat whose improvement
in BSP relative error is closest to the median relative error of
0.18 across all three canine experiments, while themiddle column
shows the heartbeat with smallest relative error improvement,
0.006, and the right column shows the heartbeat with the biggest
improvement, 0.56, again across all beats in all experiments.
The median beat was sinoatrially paced and from sock2, the
beat with biggest improvement is a ventricularly paced beat, also
from sock2, and the smallest improvement beat comes from the
cage experiment. Visually, the geometry correction provides a
noticeable improvement for the “biggest” example beat, moderate
improvement for themedian example, and no obvious change for
the “smallest” example.

Since the results for sock2 were significantly more dramatic
than those for sock1 we examined the results from that
experiment more carefully, as reported in Figure 6. We divided
this experiment into into 11 consecutive stages that correspond
to different control, pacing, and intervention epochs, briefly
described in the table at the bottom of Figure 6. The errors
summarized in the whisker plots at the top of the figure have
considerable variability across all beats and interventions and
decrease when using the corrected geometry. This decrease is
more pronounced in the EGM inverse solutions, which appear to
be very sensitive to the variations in the geometry. One noticeable
result is that the first sequence of sinoatrial pacings—before the
insertion of the needles—shows smaller relative error using the
nominal geometries and correcting the geometry does not yield
much improvement.

In Figure 7, we show heart potential maps at peak QRS
of a representative beat for each of the above stages of this
experiment, as indicated by the headers using the codes from
the table in Figure 65. We note that in all stages after the

5In each case the illustrated beat was selected as the beat with BSP relative error

closest to the median of each group
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FIGURE 5 | Potential maps of representative examples across all real experiments at QRS peak. The left column corresponds to the beat closest to the median BSP

across all three canine experiments of the relative error improvement (0.18 in sock2), the middle column to the smallest improvement (0.006 in cage) and the right

column to the biggest improvement (0.56 in sock2) across all experiments. Each row shows the BSP and EGM maps of the measured potentials (A), maps

synthesized with the nominal geometries (B) and maps synthesized with the corrected geometry (C).

insertion of the needles the inverse maps are more similar
to the originals when the corrected geometry is used, and
that the ventricularly paced beats show the most noticeable
improvement.

Looking at the reconstructed geometries themselves, in
Figure 8 we illustrate the torso-tank geometries (in green), the
nodes of the nominal heart geometry (in black) and the nodes of
all corrected heart geometries (all other colors), from the three
canine tank experiments. The behavior of the solutions varies
depending on the experiment, although they cluster around
a central location in each. As expected, the cage experiment
does not show much change from the nominal geometry. The
root mean square distance (RMSD) between the nodes of the
nominal and corrected geometries is 4.5 ± 0.8 mm. On the
other hand, the sock experiments show considerable variability
across heartbeats. Specifically, sock1 has an RMSD of 22.6 ± 4.8
mm and sock2 51.3 ± 4.8 mm. The average translation and
rotation of the θ angle—pitch of the heart—of the corrected
hearts with respect to the nominal position are 20.3 mm and
19.1◦ for sock1 and 37.2 mm and θ = 51.8◦ for sock2.
Importantly, the heart in sock2 has an estimated pitch rotation
of ∼ 50◦ after the insertion of the needles with respect to
before the needles were inserted. To illustrate this change,
Figure 8 shows the median estimated position and orientation
of the heart before and after insertion of the needles in this
experiment.

5. DISCUSSION

The results presented above support the hypothesis that our
method does improve the quality of the forward models. The
method reliably corrected the heart geometry for the synthetic

experiment, where ground truth was known, and provided
considerable improvement in relative error of the inverse
solutions. Moreover, although there is still unexplained error
after applying our geometry correction to the real experiments,
the estimated translations and rotations of the heart provide
considerable improvement in both the synthesized BSP and
all inverse solutions, in terms of both relative error and
visual features of potential maps. In addition we note that
inverse solutions improved notably even in some cases when
the reduction in BSP error was small. The improvement was
particularly strong for the sock2 experiment, in which the broad
spread of the error distribution of the inverse solutions with the
nominal geometry was reduced to a much more concentrated
one, similar to what was seen with sock1, after the correction.

We also observe that the positions of the heart estimated by
this method are not randomly distributed throughout the torso,
but rather show a physically meaningful structure: in particular,
the largest correction factor is rotation near the anchor point
above the atria. Moreover, the large rotation in sock2 appears
only after the insertion of the needles, suggesting that the needle
cables could have been pulling the apex in an upwards direction.
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FIGURE 6 | Summary of results for sock2. Top: whisker plots show relative error of BSPM (Left) and EGM (Right). Blue whiskers correspond to relative error

computed using the nominal geometry and orange using the corrected geometry. Bottom: the table contains a brief description of the type of intervention and

summary statistics of the results.

By contrast, the small change in the cage geometry experiment
confirms the stability of the algorithm when the geometry
is already accurate.These results suggest that the algorithm is
detectingmeaningful changes in position and orientation and not
just overfitting to the noise.

On the other hand, there are some characteristics of the
solutions in the sock experiments that are not consistent with
the experimental setup. In particular there is a beat-to-beat
variability around the central position that exceeds what might
be expected, and the heart appears to be translated toward the
edge of the bounding box of the optimization, well beyond
what the experimental apparatus would permit. We believe
that these errors are introduced by unmodeled sources of
noise such as error in the shape of the heart and the lack
of measurements around the atrial surface.6 Perhaps future
developments, including estimating shape deformations as well
as translation and rotation, as well as better characterization of

6The sensitivity of the solutions to the lack of measured data on the atria

can be taken as another indication that solutions are indeed sensitive to the

measurements, that is, that the problem is reasonably well-posed.

the missing measurements (as was done in the cage experiment)
could reduce these effects.

We also observe that although sock2 showed considerable

variability in the relative error of inverse solutions, the variability
of the estimated position of the heart was relatively small

(standard deviation of RMSD is 5.7 mm after the insertion

of the needles). In fact, sock1 showed much less variability in

inverse solution relative error despite a similar standard deviation
in RMSD (5.8 mm). The main difference between these two
experiments was, however, in rotation correction, which was

much larger for sock2, suggesting that rotation accuracy is a
rather important factor in geometry model errors for ECGI.

In order to avoid constraining this approach to a specific
forward solver, we used a black-box optimization method to
solve Equation (3). For specific forward solvers and definitions
of the geometry transformation, it should be possible to derive
the corresponding gradients and Hessians for A(pb) such as
in (Babaeizadeh and Brooks, 2007; Babaeizadeh et al., 2007)
where we previously described how to compute Jacobians of both
BEM and FEM models with respect to translation; Jacobians
for rotation should also be possible to compute based on this
work via the chain rule and appropriate rotation matrices.These
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FIGURE 7 | Representative examples of each stage of the sock2 experiment. Each row shows EGM maps at QRS peak of the measured potentials (A), synthesized

with the nominal geometries (B) and synthesized with the corrected geometry (C). Each column corresponds to a representative solution from each stage of the

experiment, as described in the table in Figure 6.

analytical derivations should speed up the optimization and
reduce the current computational demands of the method.
However in the current work, since the computational demands
were modest and easily within the scope of the Matlab solver we
employed, and since as noted we preferred to be as general as
possible in our presentation, we leave working out the details
of such an approach to future work. However in cases with
more densely sampled geometries, inclusion of more organs, or
more complex source models, it might be necessary to explore
alternative optimization approaches that are computationally
less demanding. For example, in addition to analytically-based
derivative computation, it may be useful to approximate the
geometry with a smaller mesh or interpolate the manifold
of forward matrices A(pb) with a continuous function that
provides simpler analytic gradients and faster computation (Coll-
Font, 2016). A second algorithmic consideration is that we are
solving a non-linear optimization problem, which can have local
minima. We have observed in our experiments to date that the
nominal position of the heart is a good initial guess for global
convergence using convex optimization solvers. However, this
might not be applicable to all geometries and heartbeats and
could be addressed, for example, by restarting the algorithm with
different initial guesses or using global optimization techniques.
An example of the latter that also addresses computational
efficiency challenges is the class of Bayesian Optimization
methods (Coll-Font et al., 2017), which carry out smart sampling
of the unknown objective function based on a probabilistic
representation that approximates it.

We want to point out that we used the zero-th order Tikhonov
inverse method because it is so widely used for ECGI and
its behavior is well-understood. However, this method tends

to produce overly smooth inverse solutions with high relative
error, even for ideal geometries, which may impact numerical
results. Future work using other inverse methods might provide
a better understanding of the interplay between regularization
methods and geometry errors. Moreover, in settings where
our simplified geometry assumptions—homogeneous torso and
epicardial surface model—do not hold, we speculate that inverse
solutions might show greater sensitivity to the accuracy of the
position of the heart and thus benefit even more from the
methods presented here.

A significant challenge for validation of our methodology is
the lack of datasets with a reliable measurement of the real time-
varying (e.g., from respiration) position of the heart. All existing
ECGI datasets that we are aware of assume a static heart geometry
and only provide a measure of its position at the beginning or
the end of the experiment. Thus, existing datasets either have
a highly accurate nominal geometry—which is not generally
representative of clinical practice—or have geometry errors that
pose a challenge to most ECGI methods. To better validate the
method presented here, it would be helpful in the future to
generate datasets with a continuous measure of the position of
the heart using an external measurement modality such as with
ultrasound.

Finally, an important follow-up to this work will be to
incorporate estimation of the heart potentials along with the
geometric changes, thus allowing extension of the scope of
this method to clinical ECGI settings. Our initial work on
this approach indicates that such an extension is possible
and may provide useful results (Coll-Font, 2016; Coll-
Font et al., 2017); a more extensive evaluation is currently
underway.
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FIGURE 8 | Left: Close-up of the nominal torso (green) and heart (black) geometries. The hearts corrected with the algorithm are overlaid in a different color per

heartbeat. Top geometry is cage, middle is sock1 and bottom is sock2. Right: Median position of the heart in sock2 before the insertion of the needles (top) and

after the insertion of the needles (bottom).

6. CONCLUSIONS

In this work, we have introduced an approach to correct for
the position and orientation of the heart inside the torso based
purely on changes in electrocardiographic recordings along with
an initial, nominal, geometry. We have shown that this approach
can improve the forward models for both forward and inverse
estimation of potentials and that it can provide useful insight for
current experimental procedures used to validate ECGI methods.
Moreover, the algorithm may be a first step toward solving the
problem of joint estimation of the potential distribution on the
heart and the heart’s position and orientation within the torso.

We also add that our method may have implications beyond
improving forward models in ECGI since the ability to non-
invasively track the position of the heart might impact a number
of other clinical problems, for example, improving catheter
registration in ablation procedures.
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Electrocardiographic imaging aims at reconstructing cardiac electrical events from

electrical signals measured on the body surface. The most common approach relies on

the inverse solution of the Laplace equation in the torso to reconstruct epicardial potential

maps from body surface potential maps. Here we apply a method based on a parameter

identification problem to reconstruct both activation and repolarization times. From an

ansatz of action potential, based on the Mitchell-Schaeffer ionic model, we compute

body surface potential signals. The inverse problem is reduced to the identification of the

parameters of the Mitchell-Schaeffer model. We investigate whether solving the inverse

problem with the endocardium improves the results or not. We solved the parameter

identification problem on two different meshes: one with only the epicardium, and one

with both the epicardium and the endocardium. We compared the results on both the

heart (activation and repolarization times) and the torso. The comparison was done on

validation data of sinus rhythm and ventricular pacing. We found similar results with both

meshes in 6 cases out of 7: the presence of the endocardium slightly improved the

activation times. This was the most visible on a sinus beat, leading to the conclusion

that inclusion of the endocardium would be useful in situations where endo-epicardial

gradients in activation or repolarization times play an important role.

Keywords: ECGI, endocardium, parameter optimization, gradient descent method, Mitchell-Schaeffer, endo-

epicardial gradients

1. INTRODUCTION

Electrocardiographic imaging aims at reconstructing cardiac electrical events from electrical signals
measured on the body surface. The most common approach relies on the inverse solution of
the Laplace equation in the torso to reconstruct epicardial potential maps from the body surface
electrical potential maps (BSPM) (Wang and Rudy, 2006). This technique requires a regularization
strategy to deal with the ill-posedness of the problem, for example Tikhonov regularization.
However, as this regularization is applied to potential patterns, it suppresses the steep voltage
gradients that characterize activation wavefronts. This leads to prominent errors such as artefactual
block lines in the reconstructed activation map (Duchateau et al., 2017; Ravon et al., 2017).
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Other methods have been designed to reconstruct directly
the activation times (van Oosterom and Oostendorp, 1992;
Liu et al., 2006). While Liu et al. (2006) look for the three-
dimensional activation sequence in the ventricular muscle,
van Oosterom and Oostendorp (1992) reconstruct activation
on both the epicardium and the endocardium. van Dam et al.
(2009) proposed a method that solved both the activation and
the repolarization. Based on an equivalent double layer model,
it updates activation and repolarization times alternatingly.
Ghodrati et al. (2006) developed two methods to reconstruct
epicardial information. One optimizes the position of the
depolarization front at each time. The second reconstructs
epicardial potentials with a regularization term based on the
estimation of the wavefront behavior. These approaches still
rely on a Tikhonov-like regularization technique. Recently,
studies that reconstruct both the activation and the recovery,
with a novel regularization technique, have been published
(Cluitmans et al., 2017, 2018). The regularization is done through
an electrophysiological input and the potentials on the torso
are sparsely represented to deal with the ill-posedness of the
problem. Others used a probabilistic approach to find parameters
(Rahimi et al., 2016; Dhamala et al., 2018). The former used
the two-variable Aliev-Panfilov model (Aliev and Panfilov,
1996) to model the AP. Their aim was to probabilistically
personalize a model parameter using machine learning methods.
The estimation was made on a whole-heart 3D model, from
BSPMs or extracellular potentials. In the latter the parameters
of the model are assumed and the behavior of the wavefront
is optimized. The same group worked on regularizing both the
spatial and the temporal propagation of action potential (Wang
et al., 2010). The method relies on a two-variable propagation
model with fixed parameters in a volumetric myocardium.
It was then improved in Ghimire et al. (2017). Note that
in these studies constraints in the spatial distribution are
considered.

In a previous study (Ravon et al., 2017) we introduced
a new technique that aims at recovering directly both the
activation and repolarization maps on the epicardium. The
general idea consists in looking for an ansatz of an action
potential (AP) under the form of a function v(P; t) parameterized
by a small number of parameters P, e.g., less than three. The
upstroke of this AP is supposed to be at t = 0. From
the knowledge of the activation times τ (x) on the heart, we
can map the AP to a space- and time-dependent function
Vm(t, x) = v(P; t − τ ). In addition, the parameters P may
have space-dependent values distributed on the surface, which
enriches the model, but increases the number of unknown
parameters. Then this transmembrane voltage function Vm(t, x)
is projected to body surface potential signals. The method
searches for the parameters P and activation map τ that
realize the best fit to the target body surface signals on a
given time interval. It amounts to solving a nonlinear least
squares parameter identification problem with a small number
of (possibly distributed) parameters. We previously represented
the action potential as the product of two logistic functions, as
proposed by Van Oosterom and Jacquemet (2005). The final
parameter identification problem (Ravon et al., 2017) consisted

of identifying three distributed parameters, given the BSPM of
a complete ventricular activation and repolarization sequence
(i.e., a QRST waveform). This method was demonstrated to
give a better range of activation times (ATs) and a smoother
AT distribution than a solution based on the Laplace equation
with Tikhonov regularization of order zero. However, it only
reconstructed APs on the epicardium. In general, large and
physiologically very relevant differences in AT and repolarization
time (RT) can exist across the wall. Therefore, in this study we
investigated whether including the endocardium improves the
results.

To this aim, we tested our method on in silico data with
and without important transmural gradients. The parameter
identification problem was solved either on the epicardium only,
or on both the epicardium and endocardium. We found that the
quality of the reconstructed activation and repolarization maps
(in terms of correlation coefficients) was similar when transmural
gradients were small, but that inclusion of the endocardium
improved the solution in a case where these gradients were
important.

As compared to Ravon et al. (2017), we also changed the
representation of the AP from the product of two logistic
functions to the solution of the two-variable ionic model
of Mitchell and Schaeffer (2003), to have a more relevant AP
shape without increasing the number of parameters.

We resorted to a discretize-then-optimize strategy: we first set
the direct problem that maps the parameters P and activation
map τ to the voltage Vm(t, x), and then to the BSPM φT.
This problem was discretized using triangulated surfaces. The
parameters were identified in the discrete problem using a
gradient descent method on a discrete least squares cost
function.

2. MATERIALS AND METHODS

2.1. Mapping the Parameters to the
Transmembrane Voltage
The parameterization was based on the two-current model
proposed by Mitchell and Schaeffer (2003). This model describes
the dynamics of two functions: the voltage v and an auxiliary
variable h. Both quantities are dimensionless and scaled between
0 and 1, and solve the following ordinary differential equations:

v′ =
hv2(1− v)

τin
−

v

τout
, (1)

h′ =
1− h

τopen
if v < vgate, and h′ =

−h

τclose
if v > vgate. (2)

The five parameters were originally chosen as (Mitchell and
Schaeffer, 2003): τin = 0.3 ms, τout = 6 ms, τopen = 120 ms,
τclose = 150 ms, and vgate = 0.13. The steady state for this model
is (v, h) = (0, 1). The voltage v takes the shape of an AP if we set
the initial condition as

(
v(0), h(0)

)
= (0.15, 1), see the red curve

in Figure 1.
The function v(t) defined for t ≥ 0 as the solution of the initial

value problem (1)-(2) with
(
v(0), h(0)

)
= (0.15, 1) was completed

by 0 for t < 0. It was our ansatz of an AP, denoted by v(P; t)
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for t ∈ R, and in general P = {τin, τout, τopen, τclose, vgate}. For
instance, the blue curve in Figure 1 is the graph of v(P, t − τ ) for
an activation time τ = 50 ms and the default values for P stated
above.

In practice, the parameters τin and τopen define the upstroke
of the AP, and were fixed with their default values τin =

0.3 ms and τopen = 120 ms. Similarly, the parameter vgate
defines the excitability threshold and was fixed at vgate = 0.13.
Hence, only the parameters τout and τclose were searched as
unknown parameters, because they are directly related to the
AP duration. τclose can be seen as the plateau phase duration
whereas τout is linked to the speed of the repolarization. τout
also has a small impact on the amplitude of the voltage
v.

In addition, we rescaled the voltage v by a factor A, so as to
fit the scaling of the measured BSPM. Hence, we considered the

FIGURE 1 | Red curve: voltage v(P, t) with the default parameters P. Blue

curve: TMP Vm(t) = v(P; t− τ ) with τ = 50 ms.

mapping

P : = (A, τout, τclose︸ ︷︷ ︸
P

, τ ) ∈ R
4 7→ Vm(x, t) = Av (P, t − τ) . (3)

The parameter τ was distributed on the heart surface by the
design of the method. Meanwhile, the parameters A, τout, and
τclose may be constant or distributed. Since AP duration varies
across the heart surface, we would rather consider varying
distributed parameters τout and τclose.

2.2. Projecting the Transmembrane Voltage
to the Body Surface Potential Map
Afterwards, we mapped the transmembrane voltage Vm(x, t) to
extracellular potentials φe(x, t) as in Potse et al. (2009):

Vm(x, t) 7→ φe(x, t) = Vm(t)− Vm(x, t), (4)

where Vm(t) was a fixed spatial average of Vm(x, t), Vm(t) =
1
|S|

∫
S Vm(x, t)ds(x) where S is the heart surface (epicardium

only, or epicardium and endocardium). The rationale of the
formula is a rewriting of the bidomain model coupled with the
hypothesis that conductivity tensor fields in both extra- and
intra-cellular domains are homogeneous and isotropic. Here
the ratio of conductivities was hidden in the factor A. Finally,
we projected the extracellular potentials φe(x, t) to the body
surface potentials φT(y, t) for any point y on the torso surface as
follows:

φe(x, t) 7→ φT(y, t) =

∫

S

1

4π‖x− y‖
φe(x, t)ds(x), (5)

This amounted to approximating the solution of the Laplace
equation outside the heart domain, assuming it is an infinite
homogeneous medium (Malmivuo and Plonsey, 1995;
Macfarlane et al., 2010).

2.3. Discrete Surfaces and Approximations
In practice, the endocardial and epicardial surfaces were
discretized by two separate triangular meshes (Figure 2) with

FIGURE 2 | Left: epicardium-only mesh (Mesh1); middle: endocardial and epicardial mesh (Mesh2); right: refined mesh of Mesh2. Right posterior oblique view.
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vertices denoted by (xi)i=1...NH . The endocardial surface included
the surface of the free wall and the septum (Figure 2, middle).

For the sake of computational simplicity, the mappings (4)
and (5) were replaced by their discrete counterparts:

φe(xi, t) =
1

NH

NH∑

k=1

Vm(xk, t)− Vm(xi, t),

φT(y, t) =

NH∑

i=1

1

4π‖xi − y‖
φe(xi, t), (6)

where Vm(xi, t) was given by the mapping (3) for given
parameters A ∈ R,

(
τout(xi)

)
i
∈ R

NH ,
(
τclose(xi)

)
i
∈ R

NH and(
τ (xi)

)
i
∈ R

NH . Hence there are 1 + 3NH parameters to be
identified.

2.4. The Parameter Identification Problem
We looked for the parameter setP = (A, τout, τclose, τ ) ∈ R

1+3NH

that minimized the least squares error

J(P)=
1

2

Tmax∑

k=1

NT∑

j=1

∣∣∣
(
φT(yj, tk)− φT(tk)

)
−

(
φ⋆(yj, tk)− φ⋆(tk)

)∣∣∣
2
,

(7)
where (yj)j=1...NT were the NT electrode locations on the body
surface, (tk)k=1...Tmax

was the time sequence of interest, (φ⋆(yj, tk))
were the measured BSPMs, and (φT(yj, tk)) were the BSPMs
computed according to equations (6). For each time tk, the

spatial averages φT(tk) and φ⋆(tk) were defined by φT(tk) =
1
NT

∑NT
j=1 φT(yj, tk) and φ⋆(tk) = 1

NT

∑NT
j=1 φ⋆(yj, tk). Potentials

are given up to a constant. This constant can be a reference
electrode on the torso, theWCT or the mean of all the electrodes.
We chose the mean. As Wilson’s Central Terminal it was also a
way to reduce noise. Moreover, it rescaled the data around their
mean value.

The total number of data elements is finally TmaxNT , which
may be compared to the number of unknown parameters 1 +

3NH . This nonlinear least squares problem was solved by the
gradient descent method with the RMSprop update (Tieleman
and Hinton, 2012). This is an adaptive learning rate method: at
each iteration, the update reads:

κ : = γ κ + (1− γ )∇PJ ⊗∇PJ in R
1+3NH , (8)

P : = P− η∇PJ ⊘ (κ◦1/2 + 10−7) in R
1+3NH , (9)

with κ ∈ R
1+3NH an intermediate variable, η ∈ R the

learning rate and γ = 0.9. The learning rate was not fixed, an
optimal value for η was chosen at each iteration in the range[
10−5, 102

]
. In equations 8 and 9 the operators ⊗, ⊘, and ◦

denote the Hadamard product, division, and power, respectively.
The gradient of the cost function J with respect to the unknown
parameters P was calculated analytically.

For the gradient descent method, an initial guess was required.
We arbitrarily chose A = 10, the default values τout,i = 6 ms
and τclose,i = 150 ms for all i, and τi constant τi = τ0 ∈ R.
Since the initialization was the same for all the nodes, the initial

torso potentials were zero. The optimization ended when the cost
function J and its gradient remained constant. The code was in
Matlab and not parallel. Computational time was quite long and
similar for all the cases, namely about one day. A more flexible
stopping criterion and parallelism would reduce computational
time.

2.5. Validation Data
In order to create testing data, simulations were run on an
anatomically realistic 3D geometry of the torso, including
heart, blood vessels, lungs, and skeletal muscle (Figure 3).
Each organ had its own conductivity. Propagating AP were
generated using a monodomain reaction-diffusion model with
a TNNP membrane model (Ten Tusscher et al., 2004) on an
anisotropic heart model at 0.2 mm resolution. To compute φT the
computed transmembrane current density in the myocardium
was projected on an inhomogeneous heart-torso model with
anisotropic skeletal muscle layer at 1 mm resolution and
the potential field φT was found by solving an anisotropic
Laplace problem using a finite-difference method (Potse, 2018).
Boundary conditions did not match between the monodomain
model and the Laplace equation. This approach leads to
slightly different extracellular potentials within a few hundred

FIGURE 3 | Heart-torso mesh used for the computation of validation data.

The 252-electrode body surface mapping set is shown. Red electrodes mark

two locations used in Figure 8.
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micrometers from the surface only (Potse et al., 2006). All
simulations were performed with a recent version of the
Propag-5 software (Krause et al., 2012) on a BullX cluster
machine.

We had access to the activation times on the epicardium
and the endocardium (named reference ATs in the following).
Repolarization times were computed from extra-cellular
potentials as the time with highest positive slope during the
repolarization phase.

3. RESULTS

On the same model anatomy, seven different simulations were
run: one sinus rhythm (SR) and six different pacing cases.
The description of the cases can be found in Table 1. For all
the cases, we solved the parameter identification problem on
the epicardium-only mesh (Mesh1) and on the epicardium and
endocardium mesh (Mesh2). Mesh1 and Mesh2 had 641 and 534
vertices respectively. We will describe the results in detail for two
cases: right-ventricular pacing and sinus rhythm.

3.1. Epicardial Ventricular Pacing
The reconstructed activation maps in case of right-ventricular
pacing were of the same quality on both meshes. In particular
the late ATs were not well reconstructed in both cases (first
row, dark blue part in Figure 4). The correlation coefficient
(CC) and relative error (RE) between ATs were close for both
meshes, about 0.7 and 0.3 respectively. However, Figure 5 shows
that a part of the reference ATs between 120 and 160 ms was
less well reconstructed with Mesh1 than with Mesh2. For both
meshes some reference ATs between 100 and 150 ms were not
well reconstructed (Figure 5, left, black box). These points were
located between the two valves, where the reconstruction is
more difficult. The pacing site was better localized with Mesh1
(11.4 mm from the actual position, geodesic distance) than with
Mesh2 (16 mm), as shown in Figure 12. For Mesh2 we also
calculated CC for the points on the epicardium (CC = 0.72) and
on the endocardium (CC = 0.77). With the endocardium we did
not improve the accuracy on the epicardium compared to the
results with the epicardium only.

The benefit of considering the endocardium was to look
for gradients of depolarization between the endocardium and
epicardium. For each point on the epicardium, we selected the
closest point on the endocardium and computed the delay in

TABLE 1 | Description of the 7 cases.

Case Description

1 Epicardial ventricular pacing

2 Sinus rhythm

3 Endocardial ventricular pacing

4 Epicardial ventricular pacing (near apex)

5 Endocardial ventricular pacing (near apex)

6 Pacing on the basis of the pulmonary vein

7 Pacing on the septum, halfway up to the right ventricle

the activation. Figure 6 presents box plot of these delays for the
7 cases. Delays existed in the reference ATs (first box) and the
delays we obtained were smaller on average. We also obtained
large delays (more than 20 ms and up to 135) that were not
consistent with the actual ones.

On both meshes, the quality of repolarization maps was less
good than the activation maps (Figure 4, second row). The CC
was slightly better with Mesh1 (0.55 vs. 0.51). It was highlighted
on the scatter plot, especially for the earlier RTs (Figure 5, right).

Figure 7 shows the evolution in time of the CC between the
measured BSPM and the reconstructed ones. Reconstructed torso
potentials were computed from equation (3), (4), and (5) with
the optimized parameters and the corresponding mesh Mesh1
or Mesh2. On both meshes, the behavior was similar: at the
beginning and the end of the simulation the reconstruction was
less accurate. As shown by Figure 8, after 400 ms, measured
and reconstructed BSPMs are close to zero, which explained
that the CC dropped. On average, the CC was 0.88 with Mesh1,
and 0.9 with Mesh2. On both electrodes, depolarization, and
repolarization phases were quite well fitted for the two meshes.
There were just slight differences between the reconstructed
BSPMs. We also calculated the root mean square error (RMSE)
between the measured BSPMs and the reconstructed ones
(Figure 9). Two peaks can be seen: one corresponding to the
depolarization phase and the second to the repolarization phase.
They were mainly due to the amplitude: the optimized amplitude
did not allow to fit the signals on all the electrodes (Figure 8).
RMSE was similar for the 2 meshes.

3.2. Sinus Rhythm
It is well known that the QRS duration is shorter in sinus
beat than in a paced beat. Moreover, there were multiple
breakthroughs in the myocardium. For these reasons it was
harder to obtain a satisfying reconstruction than in the pacing
cases. For both meshes the reconstructed total activation time
was longer than the actual. The CC and RE were better with the
endocardium than without, but still not as good as in the pacing
cases (Figure 10, left). For Mesh2 we also calculated CC for the
points on the epicardium (CC = 0.64) and on the endocardium
(CC = 0.57).With the endocardiumwe improved the accuracy on
the epicardium (CC = 0.64) compared to the results with Mesh1
(CC = 0.49).

We also looked at the delays between endocardium and
epicardium (Figure 6). These were similar on the reference ATs
for the SR and RV pacing case (first and third boxes). Since the
total activation time (TAT) is smaller in a sinus beat, the relative
values of these gradients to the TAT were more important than
in RV pacing. We reconstructed different delays for this two
cases. The delays were not reconstructed as well for the SR as
for the pacing cases. Indeed as shown in Figure 11, there was a
gradient of activation on the left ventricular free wall that we did
not recover. Similarly there were delays in the activation of the
septum that we did not reconstruct.

CC and RE for the repolarization times were better with
Mesh1: 0.51 and 0.18 respectively with the endocardium and 0.68
and 0.1 without (Figure 10, right). Indeed with the endocardium
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FIGURE 4 | Activation, repolarization and APD90 maps of the RV pacing case. Left: reference ATs; middle: optimized ATs from Mesh1; right: optimized ATs from

Mesh2. Right posterior oblique view.

the range of RTs wasmuch larger, from t = 108ms to t = 628ms,
whereas the actual range was from t = 259 ms to t = 393 ms.

Finally we compared the signals on the torso. As in the pacing
case, CC and RMSE evolved in the same way for both meshes,
with close values over time. In both cases the CC dropped after
350 ms because reconstructed T waves sometimes ended later
than the real ones. In the simulation the heart was almost at
rest after 350 ms, which was not the case with our optimized
parameters. On average, the CC was 0.83 with Mesh1, and 0.87
withMesh2.

3.2.1. Sensitivity to the Initialization
In order to test if the method was sensitive to the initialization,
we solved the inverse problem with two other triplets. The
results we previously presented were obtained from the triplet
(τi, τout,i, τclose,i) = (60, 6, 150). The second and third triplets
were (75, 5, 130) and (75, 6, 15) respectively. The results are
presented in Table 2. The three initializations ended with very
close results: CC for ATs and RTs were in the same range, as well
as for the BSPM. Moreover, for the three triplets, the method

gave a better accuracy of the ATs with Mesh2, while RTs were
better reconstructed with Mesh1. Changing the initial ATs did
not improve the accuracy on the reconstructed ATs. Finally, the
reconstructed torso potentials were very close to each other for
the three initializations (CC between 0.83 and 0.9). Especially, the
QRS complex and the T wave were fitted in the same way.

3.3. All the Cases
We present the results for all the cases in Table 3. A box plot
representation can be found on Supplementary Material, as well
as activation, repolarization, and APD90 maps for all the cases.
In cases 4 and 6 CC of ATs were better with Mesh2. In all others
cases, CC were similar for both meshes. In all cases, solving the
inverse problem with Mesh2 gave at least as accurate ATs on
the epicardium as with Mesh1. Optimized RTs were better with
Mesh2 in only 2 cases: pacing on the basis of the pulmonary vein
(case 6) and pacing on the septum (case 7). Figure 6 shows the
delays in activation. On average we reconstructed smaller delays
in all cases.
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FIGURE 5 | Scatter plot of the ATs (left) and RTs (right) for the RV pacing case. For each point, the x coordinate is the reference AT (resp. RT) and the y coordinate is

the corresponding reconstructed AT (resp. RT). The dashed lines represent the linear fitting. The black box on the left exhibits ATs that were badly reconstructed with

both meshes.

FIGURE 6 | Delays in ATs between endocardium and epicardium for the 7

cases. Box plot represent the median and the first and third quartiles.

Whiskers represent the extreme values. Optimized ATs are AT given by the

inverse method with Mesh2.

Concerning the reconstructed BSPMs, averaged CC and
RMSE are given in Table 3. Except in case 7, the averaged CC
were very similar for both meshes. They kept very close values

FIGURE 7 | Correlation coefficient of the BSPM, RV pacing case.

over time.We observed the same behavior for the RMSE in all the
cases. The lower averaged CC in case 7 with Mesh2 was due to a
shorter total activation time: late ATs were not well reconstructed.

A statistical T-test was performed on the CC for ATs, RTs,
and BSPM. The resulting p-values were 0.5, 0.41, and 0.28
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FIGURE 8 | Potentials on the torso, RV pacing case. The locations of the 2 electrodes are marked in red in Figure 3.

FIGURE 9 | Root mean square error of the BSPM, RV pacing case.

respectively, showing no significant differences between the two
meshes.

We computed the geodesic distance between the actual
pacing site locations and the one given by the inverse solution
for cases 1, 4, and 6 (epicardial pacing). For endocardial
pacing (cases 3, 5, and 7) we computed the distance between
actual and reconstructed breakthrough on the epicardium.

From the optimization, the pacing site (or breakthrough) was
identified as the mesh node with the earliest AT (resp. on the
epicardium). We added a visual validation to exclude irrelevant,
isolated, early ATs. Results can be found in Figure 12. In
most of the cases, the distance was smaller with Mesh1 than
Mesh2. However, except for case 6, the identified site with
Mesh2 was a neighbor of the actual site. So the differences
in the mesh density could explain the smaller distances with
Mesh1.

We looked at the AP duration. For the 7 cases the reference
APD90 varied between 225 and 285 ms. A difference was
clearly visible between the endocardium and the epicardium.
We were not able to reproduce this difference with Mesh2.
However, APD90 were similar on the epicardium for
both meshes. Our method tended to reconstruct maximal
APD90s much higher than 285 ms, especially in cases 1,
2, and 7.

4. DISCUSSION

We presented a new ECGI method designed to recover both
the depolarization and the repolarization sequence, by solving
a parameter identification problem. We hypothesized that this
method would work better when both the endocardium and
epicardium are included in the model, since important and
physiologically relevant differences in both depolarization and
repolarization timing exist between these surfaces. Therefore,
we tested the method on two different heart meshes: the one a
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FIGURE 10 | Scatter plot of the ATs (left) and RTs (right) for the SR case. For each point, the x coordinate is the reference AT (resp. RT) and the y coordinate is the

corresponding reconstructed AT (resp. RT). The dashed lines represent the linear fitting.

FIGURE 11 | Activation maps on Mesh2, SR case. Left: reference activation map, right: reconstructed activation map.

closed surface of the epicardium alone, and the other including
both epicardium and endocardium. Tests were performed using
in silico data for a sinus beat and six different ventricularly
paced beats. Results were very similar for both meshes in
6 cases: all the characteristics we looked at were of the
same good quality. The presence of the endocardium slightly
improved the ATs on the epicardium. In contrast, for the
RTs the effect of including the endocardium was variable.

In two other cases (sinus rhythm, case 2, and septal pacing
case 7), the reconstruction of AT with Mesh1 was poor.
In the sinus rhythm case, inclusion of the endocardium
(Mesh2) improved the reconstruction substantially. This was
the only case where endo-epicardial gradients, with respect
to the total activation time, were significant. In all cases,
the repolarization times were better reconstructed with the
epicardium only.
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We showed that our method was not sensitive to the
initialization. Especially the choice for τout and τclose did not
impact the reconstruction of ATs, since these two parameters
play a role only during the repolarization. Similarly, imposing
global instead of distributed parameters will not worsen ATs
reconstruction. The quality of the estimation of the Mitchell-
Schaeffer parameters can only be seen through RTs and APD90
reconstructions. CC for RTs were smaller than the ones for ATs
which may suggest that the reconstruction of τout and τclose was
less precise than ATs reconstruction. APD90 maps confirmed
that, on a same case, we can overestimate as well as underestimate
APD90 on large areas.

In general, our method underestimated AT delays between
endocardium and epicardium (Figure 6). A possible explanation
is that from the torso surface the two heart surfaces are too
close to be seen separately. The endocardial activity is masked

TABLE 2 | Comparison of different initializations for the sinus rhythm case. Each

triplet is of the form (τi , τout,i , τclose,i ).

Heart Torso

ATs RTs BSPM Reduction of J (%)

Initialization Mesh CC CC CC

(60, 6, 150) Mesh1 0.49 0.68 0.83 ± 0.25 87

Mesh2 0.6 0.51 0.87 ± 0.17 83

(75, 5, 130) Mesh1 0.44 0.65 0.9 ± 0.12 83

Mesh2 0.51 0.54 0.87 ± 0.16 81

(75, 6, 150) Mesh1 0.48 0.65 0.84 ± 0.26 86

Mesh2 0.59 0.57 0.89 ± 0.12 82

by the epicardial one, even in the case of endocardial pacing.
The problems we solved, withMesh1 orMesh2, were actually the
same; we ended with similar results. It may also explain why we
did not reconstruct APD differences between the epicardium and
the endocardium.

Another possible explanation is the difference in density
between the two meshes. We chose to have about the same
number of nodes in each mesh, so that the difference in the
number of parameters to identify could not alone explain the
results. However, it implied that Mesh2 was coarser than Mesh1.
A test was made on a refined mesh of Mesh2 (Figure 2, right).
This third mesh had 1328 nodes and a density similar to the
one of Mesh1. We solved the inverse problem on this mesh for
the ventricular pacing case 1. The results we obtained were very
similar to those with Mesh2: the CC for ATs was 0.79 (0.77 for
Mesh2) and the average CC for the BSPM was 0.86 (0.9 for
Mesh2). This test may suggest that the density of the mesh does
not have an impact on the results.

We solved the inverse problem with a constant factor A

over the whole heart. However, this factor (proportional to the
amplitude of the AP) may not be constant, e.g., in the case of
ischemia. We attempted to consider a distributed factor, more
relevant from a physiological point of view. In that case the
method was not converging, or converged to both positive and
negative amplitudes.

So far we did not add noise to the testing data. Even if the
models to create the data and to solve the inverse problem are
different, it would be helpful to assess the robustness of the
method.

Validation data were created from a volumetric heart mesh
with amuch higher density thanMesh1 andMesh2. The reference

TABLE 3 | Results for the 7 cases.

Heart Torso

ATs RTs BSPM

Case Mesh CC RE CC epi CC RE CC epi CC RMSE Reduction of J (%)

1 Mesh1 0.72 0.3 0.55 0.14 0.88 ± 0.19 0.06 ± 0.05 90

Mesh2 0.77 0.28 0.72 0.51 0.15 0.5 0.9 ± 0.1 0.07 ± 0.06 86

2 Mesh1 0.49 0.47 0.68 0.1 0.83 ± 0.25 0.04 ± 0.04 87

Mesh2 0.6 0.42 0.64 0.51 0.18 0.5 0.87 ± 0.17 0.05 ± 0.05 83

3 Mesh1 0.86 0.22 0.7 0.16 0.89 ± 0.17 0.15 ± 0.09 88

Mesh2 0.85 0.23 0.89 0.61 0.19 0.69 0.86 ± 0.26 0.15 ± 0.1 87

4 Mesh1 0.67 0.32 0.75 0.14 0.84 ± 0.23 0.16 ± 0.13 78

Mesh2 0.74 0.31 0.67 0.54 0.19 0.44 0.81 ± 0.24 0.16 ± 0.13 79

5 Mesh1 0.73 0.28 0.76 0.13 0.84 ± 0.26 0.12 ± 0.1 87

Mesh2 0.72 0.29 0.72 0.7 0.14 0.75 0.85 ± 0.24 0.12 ± 0.1 87

6 Mesh1 0.66 0.35 0.67 0.17 0.74 ± 0.44 0.15 ± 0.14 74

Mesh2 0.77 0.23 0.74 0.7 0.15 0.7 0.75 ± 0.47 0.14 ± 0.13 77

7 Mesh1 0.4 0.42 0.38 0.17 0.88 ± 0.13 0.05 ± 0.05 87

Mesh2 0.45 0.41 0.43 0.57 0.13 0.48 0.58 ± 0.47 0.08 ± 0.06 89

Case 1: epicardial ventricular pacing. Case 2: sinus rhythm. Case 3: endocardial ventricular pacing. Case 4: epicardial ventricular pacing (near apex). Case 5: endocardial ventricular

pacing (near apex). Case 6: pacing on the basis of the pulmonary vein. Case 7: pacing on the septum.

Frontiers in Physiology | www.frontiersin.org 10 January 2019 | Volume 9 | Article 194687

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ravon et al. The Endocardium in ECGI

FIGURE 12 | Left: Box plots of the geodesic distances between actual and identified pacing sites. Middle and right: actual (sphere), identified with Mesh1

(pentagram) and Mesh2 (square) pacing locations. Red: case 1, blue: case 3, green: case 4, black: case 5, cyan: case 6, magenta: case 7. We obtained a p-value of

0.74.

values (AT, RT) were the values on the mesh nodes. In contrast,
the inverse problem on a surface leads to values that contain
information averaged over a considerable volume. This may
explain why the delays between reconstructed ATs were smaller
than the delays between the reference ATs.

4.1. Comparison With Other Methods
Currently, most ECGI methods are based on a Laplace problem
for the potential in the torso. Using the MFS (Wang and Rudy,
2006) or boundary-element models (Sapp et al., 2012; Bear
et al., 2018) these methods reconstruct instantaneous potential
patterns on the surface of the heart. These methods use Tikhonov
or similar forms of regularization to counter the ill-posedness
of this problem. This form of regularization leads to smooth
solutions for the potential distribution, while the actual pattern,
especially in case of an activation wavefront, is characterized
by steep gradients. This leads to unrealistic solutions for the
activation pattern, featuring large areas that appear to be
activated nearly simultaneously, separated by artefactual lines of
conduction block (Duchateau et al., 2017; Ravon et al., 2017).
Various methods have been proposed to counter this effect,
e.g., by reconstructing AT maps from local delays estimated
from the whole signal morphology (Duchateau et al., 2017) or
by simply smoothing the activation map (Bear et al., 2018).
The latter method claims that it does not wipe out true block
lines, as well as the artefactual ones, without any validation
yet. The method that we proposed here does not require
such postprocessing. It imposes a predefined action potential
waveform, parameterized in terms of AT and parameters of
the Mitchell-Schaeffer model, and does not require further
regularization. We have previously shown that our method

leads to more realistic activation maps than the MFS (Ravon
et al., 2017). In the larger sample of this study we also did
not observe the clustering of AT that is typical for MFS
methods.

A similar parameter optimization approach, also in terms of
endocardial and epicardial AT and RT, was used by van Dam
et al. (2009). In contrast to our method it still relied on a
(Laplacian) regularization of the AT field, and ahead of the
parameter estimation phase it performed an initial estimate based
on an exhaustive search. On the other hand, it used a more
realistic volume conductor model that took the boundedness and
inhomogeneity of the torso into account. Unlike ourmethod they
showed that the choice of the initial estimates had an impact on
the quality of the inverse procedure. This importance had also
been reported by Potyagaylo et al. (2016) and Erem et al. (2014).

Others have worked on the impact of the endocardium in
the case of atrial fibrillation Schuler et al. (2017). Considering
that atria are very thin, they imposed similar TMP values on the
epicardium and the endocardium. Due to the greater thickness
of the ventricles, this hypothesis would not be suitable in our
study. In a previous study (Potyagaylo et al., 2014) the same
group proposed a local regularization of the two surfaces to
localize ectopic beats. The regularization parameter can differ
between the endocardium and the epicardium. It was a way
to better distinguish endocardial events from epicardial events.
This approach might be applicable in our case with two different
factorsA.

4.2. Conclusion
Our parameter optimization method reconstructs accurate
activation times and, to a lesser extent, repolarization times. In
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some cases inclusion of the endocardium in the solution helps to
improve the reconstruction of activation times, while in general
it does not improve the reconstruction of repolarization times.
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Electrocardiography on the
Endocardium Using a Single Layer
Source
Alexander Kalinin*, Danila Potyagaylo and Vitaly Kalinin

EP Solutions SA, Yverdon-les-Bains, Switzerland

The inverse problem of electrocardiography consists in reconstructing cardiac

electrical activity from given body surface electrocardiographic measurements. Despite

tremendous progress in the field over the last decades, the solution of this problem

in terms of electrical potentials on both epi- and the endocardial heart surfaces

with acceptable accuracy remains challenging. This paper presents a novel numerical

approach aimed at improving the solution quality on the endocardium. Our method

exploits the solution representation in the form of electrical single layer densities on the

myocardial surface. We demonstrate that this representation brings twofold benefits:

first, the inverse problem can be solved for the physiologically meaningful single layer

densities. Secondly, a conventional transfer matrix for electrical potentials can be split into

two parts, one of which turned out to posess regularizing properties leading to improved

endocardial reconstructions. The method was tested in-silico for ventricular pacings

utilizing realistic CT-based heart and torso geometries. The proposed approach provided

more accurate solution on the ventricular endocardium compared to the conventional

potential-based solutions with Tikhonov regularization of the 0th, 1st, and 2nd orders.

Furthermore, we show a uniform spatio-temporal behavior of the single layer densities

over the heart surface, which could be conveniently employed in the regularization

procedure.

Keywords: inverse ECG problem, transfer matrix, Tikhonov regularization, single layer potential, endocardial

surface

1. INTRODUCTION

Non-invasive electrocardiographic imaging (ECGI) is a novel imaging modality which is based on
numerical reconstruction of cardiac electrical activity using the so-called body surface potential
maps (BSPM) and patient-specific heart and torso geometries (Ramanathan et al., 2004). The
ultimate goal of the ECGI is to allow non-invasive panoramic cardiac mapping in a beat-to-beat
mode, thus facilitating diagnostics and treatment planning for non-sustained, aperiodic or
non-tolerable cardiac arrhythmia.

A mathematical problem underlaying ECGI is known as the inverse problem of ECG. This
problem can be formulated in several ways with respect to the unknown physical values that are
sought after. Its early formulation concerned pericardial (also called epicardial) potentials, which
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by definition neglect electrophysiological processes ongoing on
the inner heart walls (Franzone et al., 1978; Rudy and Messinger-
Rapport, 1988). Mathematically, this is a Cauchy problem for the
Laplace equation, a classical example of ill-posed problem: even
small amount of noise in the Cauchy boundary data can lead
to arbitrary high errors in the solution (Kubo, 1994; Takeuchi
and Yamamoto, 2008). Therefore, special regularizing algorithms
must be used in order to obtain a stable solution approximation.

With this respect, significant progress has been recently
made in the development of numerical algorithms for solving
the inverse problem of ECG in terms of epicardial potentials,
which is reflected in a constantly increasing number of clinical
applications of the ECGI. This methodology was successfully
used for optimizing cardiac resynchronization therapy, guiding
catheter ablation of origins of focal atrial and ventricular
tachycardia, detecting macro-reentrant circuits and electrical
rotors in patients with reentrant ventricular tachycardia, atrial
flutter and atrial fibrillation (Guillem et al., 2013; Erkapic et al.,
2014; Shah et al., 2014; Dubois et al., 2015; Varma, 2015; Rodrigo
et al., 2017). Moreover, Cuculich et al. demonstrated the way
ECGI can provide a support for guiding non-invasive ablation
of cardiac arrhythmia (Cuculich et al., 2017).

Unfortunately, epicardial imaging bears one significant
limitation of potentially losing electrophysiologically relevant
information about cardiac electrical activity on the cardiac
endocardium and, especially, on the interventricular and
interatrial septum. To overcome this drawback, one can
consider reconstructing electrical potentials on both epicardial
and endocardial heart surfaces. Formally, this statement
results in the same Cauchy problem for the Laplace equation.
Due to a more complex non-convex geometry of the epi-
endocardial heart surface compared to its relatively simple
“convex hull” (epicardium/pericardium), the inverse problem
for endo-epicardial reconstruction becomes even worse
conditioned.

Nevertheless, solution of the endo-epicadial inverse problem
was employed for detection of origins of focal ventricular
tachycardia (Revishvili et al., 2015; Wissner et al., 2016),
determination of electrical rotors in atrial fibrillation (Metzner
et al., 2017), exploring morphology of unipolar epicardial and
endocardial electrograms in the right ventricular outflow tract
in patients with Brugada syndrome (Rudic et al., 2016), analysis
of excitation patterns in reentrant ventricular tachycardia
(Tsyganov et al., 2017) and atrial flutter (Wissner et al., 2018). In
these studies, a numerical algorithm based on a combination of
Tikhonov and iterative regularization was used (Bokeriya et al.,
2008; Kalinin, 2011).

Alternative to the potential-based statement, the problem
can also be formulated in terms of surface electrical layer
source models. The most prominent example of such statement
is the equivalent double layer (EDL) defined on both epi-
and endocardial surfaces of the heart (van Oosterom, 2014).
According to the bidomain model (Tung, 1978), the EDL is
proportional to the transmembrane potential when the body
electrical conductivity as well as the extracellular and intracellular
myocardial conductivities are considered to be isotropic and
the sum of the extracellular and intracellular conductivities is

equal to those of the body (Geselowitz, 1989; Kalinin et al.,
2017). This electrophysiological meaning was shown to be
highly beneficial for construction of ECGI-specific regularization
techniques (Berger et al., 2006, 2011; van Dam et al., 2009).

In contrast to the surface EDL source model, the electrical
sources inside the myocardium cannot be reconstructed
unambiguously (Geselowitz, 1989; Kalinin et al., 2017). However,
employement of proper regularization schemes targeting
intramural transmembrane potentials or current densities was
reported to overcome this rather theoretical limitation delivering
promising results (see for example He et al., 2003; Skipa, 2004;
Schulze et al., 2013; Wang et al., 2013; Xu et al., 2014; Zhou et al.,
2016).

Overall, despite the efforts and progress made in the
ECGI field, non-invasive reconstruction of the local cardiac
activity on both epi- and endocardium of the heart remains
a challenging task for clinical, mathematical and engineering
research. Furthermore, it is evident that, irrespectively of the
source model under consideration, effectiveness of Tikhonov
regularization method strongly depends on the choice of a
regularization operator R. In addition to the simplest option, i.e.,
using an identity matrix, the surface Laplacian L as well as an
operatorDmapping the electrical potential on the cardiac surface
to its normal derivative or the transmural gradient were used for
the ECGI applications (Horácek and Clements, 1997; Erem et al.,
2014; Wang et al., 2016). However, the problem of an optimal
choice of the regularization operator in Tikhonov regularization
is still open.

In this article, we describe a novel numerical approach
for treating the epi-endocardial reconstruction problem by
introducing an alternative source model formulation, the
single layer density. We consider this problem from three
interrelated perspectives. From the numerical algebraic
point of view, we introduce the involved transfer matrices
associated to the boundary elements method. Furthermore,
we investigate regularizing properties of the inverse single
layer operator for Tikhonov regularization. Finally, we
investigate spatio-temporal behavior of the single layer density
source model, which can be employed in the regularization
procedures.

2. METHODS

In this paper we use the geometry notation reported in Figure 1.
Let Ŵ0 be a body surface and Ŵ1 be a surface of ventricles (or
atria) circumpassing both epi- and endocardial parts. Let� ⊂ R

3

be a body domain bounded from the outside by the surface Ŵ0

and from the inside by surface Ŵ1, with outward unit normal
vectors. Let �M ⊂ � represent the myocardial domain bounded
by Ŵ1 with inward unit normal vectors. Surfaces Ŵ0 and Ŵ1 are
supposed to be sufficiently smooth.

In the physical model considered here, the electrical field is
originated by the electrical sources situated in the myocardium
domain �M only. We neglect electrical sources in the human
body domain � and consider the body domain as a passive
volume conductor. This body domain � includes extracardiac
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organs as well as the cardiac chambers filled with the blood.
Moreover, for those time moments when the ventricles/atria are
in the resting state the atrial/ventricular myocardium can be also
considered as a passive volume conductor.

The commonly used approach for the mathematical
description of myocardial electrical activity is based on so
the called bidomain model. Within this model, myocardial
tissue is considered to consist of homogenized intracellular
and extracellular spaces. The set of accompanying differential
equations establishes the relationship between the intra- and
extracellular potentials taking into account cell membrane
properties and ionic concentrations (see e.g., Tung, 1978;
Bourgault et al., 2009). The electrical conductivity in the intra-
and extracellular media are provided in tensor form reflecting
faster excitation propagation along the myocardial fibers than
across them. In this work, we employed the bidomain model
with isotropic cardiac electrical conductivity values and a
homogeneous torso model to simulate the electrical potentials
throughout the geometry volume for ectopic ventricular stimuli.
The potentials obtained on the body surface, the body surface
potential maps (BSPM), were then used as the input for
validating the proposed approach of non-invasive reconstruction
of cardiac electrical activity. This, so-called forward problem
of ECG, was solved with the CHASTE software (Mirams et al.,
2013), which provided the reference transmembrane potentials
in the heart and electrical potentials in the whole geometry
volume.

For biological tissues frequencies under the conventional
assumptions the Maxwell equations, describing propagation of
electromagnetic fields in the body volume conductor, can be
simplified to the quasi-static form (Gulrajani, 1998). It allows
temporal separation of the cardiac sources, meaning that one
can solve the inverse problem of ECG for distinct time instants
t0, t1, . . . , tM independently from each other.

Furthermore, the inverse problem of ECG can be treated using
direct and indirect regularization approaches. The direct way is
the computation of the harmonic function value on Ŵ1 without

FIGURE 1 | Physical model underlying the inverse ECG problem.

considering myocardial electrical sources. The indirect way
consists of presenting the electrical potential on Ŵ1 as a potential
of the myocardial sources. It is well known that an endless
number of the sources distributions in the myocardium domain
can generate the same potential in the passive volume conductor
domain. Therefore, they use an “effective” unique representation
of the electrical sources in form of sources on the myocardial
surface. In this article we consider the direct and the indirect
ways for numerical solving the inverse electrocardiography
problem.

2.1. Computational Method for the Inverse
Potential Problem: A Conventional
Approach
The inverse problem of ECG in terms of electrical potentials for
the geometry depicted in Figure 2 reads to find a function u(x) in
� such that

1u(x) = 0, x ∈ �, (1)

u(x) = ϕ(x), x ∈ Ŵ0, (2)

∂u(x)

∂n
= 0, x ∈ Ŵ0, (3)

where ϕ(x) is the measured BSPM. Problem (1)–(3) is known
as the Cauchy problem for the Laplace equation. Its solution is
unique, however, the problem is ill-posed: even a small amount
of noise in the boundary conditions can lead to an arbitrary high
error in the solution.

To solve the problem a direct boundary element method
(BEM) can be used. Accordingly, the problem (1)–(3) is

FIGURE 2 | Schematic geometric relationships of the inverse potential

problem in the internal statement. � is the passive volume conductor domain,

�M is the myocardial domain, Ŵ0 is the body surface, Ŵ1 is the myocardial

surface (endo- and epicardial surface), En its unit normal vector directed inward,

Pi , i = 1..N0 + N1 are collocation points used in direct boundary element

method, N0 is the number of collocation points on the Ŵ0, N1 is the number of

collocation points on Ŵ1.
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reformulated as a boundary integral equation based on the third
Green’s identity: for any given point P ∈ Ŵ0 ∪ Ŵ1 and harmonic
function u in domain �

c(P)u(P)+

∫

Ŵ0∪Ŵ1

u(Q)
∂G(P,Q)

∂n
dŴ =

∫

Ŵ0∪Ŵ1

∂u(Q)

∂n
G(P,Q) dŴ, (4)

where Q ∈ dŴ is the integration variable and

G(P,Q) =
1

|P − Q|
(5)

is the inverse Euclidean distance between P and Q, c(P) is the
solid angle at the point P.

Next step is to establish a system of linear algebra equations
suitable for numerical calculations from the continues statement
(4). This step is called discretization. We use the following
discretization scheme: (a) approximation of the surfaces Ŵ0

and Ŵ1 by the triangular meshes, (b) approximation of the

functions u(x) and ∂u(x)
∂n by series of linear basis functions, and

(c) computation of the single and double layer type integrals
over basis functions. Computation of such integrals over basis
function is most important step. Fortunately, it is well studied,
see e.g., Dunavant (1985), Davey and Hinduja (1989), and van
Oosterom (2012). Full details of the discretization process are
described in the Appendix A.

After the discretization we get the following system of linear
equations:

H00u0 +H01u1 = G01q1

H10u0 +H11u1 = G11q1
(6)

where u0, u1 are electrical potentials on the surfaces Ŵ0 and Ŵ1

respectively, q1 is the normal derivative of the electrical potential
on the surface Ŵ1, matricesGij arise from the discretization of the
surface integrals corresponding to the single layer

∫

Ŵj

∂u(Q)

∂n
G(PŴi ,Q) dŴQ, (7)

while matrices Hij arise from the discretization of the surface
integrals corresponding to the double layer

∫

Ŵj

u(Q)
∂G(PŴi ,Q)

∂n
dŴQ, (8)

Finally, i is the index of the surface containing the point P, j is
that of the surface containing Q.

In Figure 3 we provide the plots of the singular values’ decay
of the matrices above. In agreement with the boundary element
theory, matrices G11, H00 and H11 are well-conditioned and can
be inverted without regularization.

From the system (6) we can get the transfer matrix u1 →

u0 (relating EP to BSPM, EP stands for endo- and epicardial
potentials):

(
−H01 + G01G

−1
11 H11

)
u1 =

(
H00 − G01G

−1
11 H10

)
u0, (9)

in short form

Au1 = f0, (10)

where f0 is known right-hand side of Equation (9). In the
following, we call the inverse ECG problem statement (1)–(3) the
internal statement and Equation (9) the internal equation.

In order to find the normal derivative of the potential on Ŵ1 let
us introduce the Dirichlet-Neumann mapping matrix u1 → q1
relating EP to its normal derivative on the heart. This matrix can
be derived from the system (6) in the form

(
G11 −H10H

−1
00 G01

)−1 (
H11 −H10H

−1
00 H01

)
u1 = q1, (11)

or

Du1 = q1 (12)

Note that representations (9) and (11) require inversion of well-
conditioned matrices only. Matrices A and D are well known in
the literature (e.g., see Yun et al., 1997; Gulrajani, 1998).

Matrix A is ill-conditioned, therefore the numerical solution
of Equation (10) requires suitable regularization techniques.
The commonly used approach is the Tikhonov regularization
method:

uλ
1 = argmin(‖Au1 − f0‖

2
2 + λ2‖Ru1‖

2
2), (13)

where uλ
1 is the regularized solution, λ2 is the regularization

parameter and R is the regularization operator. Minimization
problem (13) has the closed-form solution:

uλ
1 = (ATA+ λ2RTR)−1AT f0. (14)

Regularization operator R can be taken, for example, as R =

I11 (identity matrix) for 0 order, R = D for 1th order and as a
Laplace-Beltrami (“surface Laplacian”) operator Lu1 = 1Ŵ1u1
(see for example Huiskamp, 1991) for the 2nd order Tikhonov
regularization.

2.2. Computational Method for the Inverse
Potential Problem: A Single Layer
Approach
In this section we will formulate an alternative representation of
the u1 → u0 transfer matrix and propose a new statement of
the inverse problem in terms of the equivalent single layer (ESL).
Geometry notations for this statement are depicted on Figure 4.

Although the cardiac electrical potential u(x) is not a
harmonic function in the domain �M , we can define another
function û harmonic in �M whose boundary values on Ŵ1 are
equal to those of u(x), the solution of problem (1)–(3). The
function û can be defined as the unique solution of the following
Dirichlet problem for the Laplace equation:

1û(x) = 0, x ∈ �M , (15)

û(x) = u(x), x ∈ Ŵ1. (16)
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FIGURE 3 | SVD plot of the considered matrices, (A) is ill-conditioned matrices, (B) is well-conditioned matrices.

FIGURE 4 | Schematic geometric relationships of the inverse potential

problem in the external statement. �M is the myocardial domain, Ŵ0 is the

body surface, Ŵ1 is the myocardial surface (endo- and epicardial surface), En is

unit normal vector, Pi , i = 1..N0 + N1 are collocation points used in direct

boundary element method, N0 is the number of collocation points on the Ŵ0,

N1 is the number of collocation points on Ŵ1.

The idea under this definition is following. With the function
û(x) harmonic in the domain �M we force the electric sources
to be only on the endo- and epicardial surface. And with
the condition û(x) = u(x) on Ŵ1 we can link such sources
densities with the actual electrical potential u(x). To derive such
relationships we use boundary element method.

For any given point P ∈ Ŵ1 and harmonic function û in
domain �M the third Green’s identity gives us the following
boundary integral equation

ĉ(P)û(P) +

∫

Ŵ1

û(Q)
∂G(P,Q)

∂n
dŴQ

=

∫

Ŵ1

∂ û(Q)

∂n
G(P,Q) dŴQ, P ∈ Ŵ1. (17)

Moreover, for any point P ∈ Ŵ0 and harmonic function û
in domain �M the third Green’s identity give us the following
boundary integral equation

∫

Ŵ1

û(Q)
∂G(P,Q)

∂n
dŴQ =

∫

Ŵ1

∂ û(Q)

∂n
G(P,Q) dŴQ, P ∈ Ŵ0,

(18)
Applying the same discretization as in section 2.1 we get the

following algebraic system:

Ĥ11û1 = Ĝ11q̂1

Ĥ01û1 = Ĝ01q̂1.
(19)

where û1 is a vector containing values of function û(x) at the
points on the surface Ŵ1, q̂1 is a vector containing values of

function ∂ û(x)
∂n on Ŵ1, matrices Ĝij arise from the discretization

of the surface integrals corresponding to the single layer

∫

Ŵj

∂ û(Q)

∂n
G(PŴi ,Q) dŴQ, (20)

matrices Ĥij arise from the discretization of the surface integrals
corresponding to the double layer

∫

Ŵj

û(Q)
∂G(PŴi ,Q)

∂n
dŴQ, (21)

i is the index of the surface with the fixed point P, j is the index of
the surface with points of integration Q.

We can express the unknown variable q̂1 from the first
equation and obtain a new matrix-vector identity for the variable
û1

Ĥ01û1 = Ĝ01Ĝ
−1
11 Ĥ11û1 (22)

Using (16) we can write (22) as

Ĥ01u1 = Ĝ01Ĝ
−1
11 Ĥ11u1. (23)
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Let us compare matrices Ĝ01, Ĝ11, Ĥ01, and Ĥ11 with matrices
G01, G11, H01, and H11 defined in section 2.1. All matrices are
determined only by the same surfaces Ŵ0 and Ŵ1. However,
normal vectors to the surface Ŵ1 were directed outwards related
to the domain � and inwards related to the domain �M . Taking
into account these facts it is easy to demonstrate that

Ĝ01 = G01, (24)

Ĝ11 = G11, (25)

Ĥ01 = H01, (26)

Ĥ11 = H11 − 4πI11, (27)

where I11 is the identity matrix.
Now we can rewrite (23) using the matrix defined in section

2.1:

H01u1 = G01G
−1
11 (H11 − 4πI11)u1 (28)

or

4πG01G
−1
11 u1 =

(
−H01 + G01G

−1
11 H11

)
u1 (29)

Comparing (29) with (9) we can see that the right hand side of
the Equation (29) is the same as the left hand side of the Equation
(9). Therefore

4πG01G
−1
11 u1 =

(
H00 − G01G

−1
11 H10

)
u0 (30)

or in short form

4πG01G
−1
11 u1 = f0. (31)

Equation (31) is a new representation of the u1 → u0 transfer
matrix. In this article we call this approach the external statement
of the inverse problem and transfer matrix (30) the external form
of the transfer matrix.

MatrixG11 is well-conditioned (see Figure 3), so we can define
a new function

w1 ≡ G−1
11 u1 (32)

and new equation for the function w1

4πG01w1 = f0. (33)

Matrices G11 and G01 are discretizations of the single layer
integral operators. Therefore, the function w1 has a physical
meaning of electrical sources in form of single layer on the
myocardial surface. In this paper we call function w1 the
equivalent single layer (ESL) density. Equation (33) allows us to
solve the inverse ECG problem in terms of the ESL.

Furthermore, we propose two methods for regularizing the
inverse potential problem. The first method consists of the ESL
computation by solving the Equation (33) and reconstruction of
the potential u1 from the obtained ESL by formula u1 = G11w1.

MatrixG01 is ill-conditioned, therefore the numerical solution
of Equation (33) requires suitable regularization algorithms. The
Tikhonov regularization method of 0th order consists in solving

wλ
1 = argmin(4π‖G01w1 − f0‖

2
2 + λ2‖w1‖

2
2), (34)

whose solution reads

wλ
1 = (GT

01G01 + λ2I11)
−1GT

01f0, (35)

and next we compute

uλ
1 = G11w

λ
1 , (36)

where wλ
1 , u

λ
1 are the regularized solutions in terms of the ESL

and potentials respectively, λ2 is the regularization parameter.
The second method relies on solving the transfer Equation

(10) using Tikhonov regularization method with constraints on
the ESL, i.e., using inverse ESL matrix G−1

11 as regularization
operator:

uλ
1 = argmin(‖Au1 − f0‖

2
2 + λ2‖w1‖

2
2), (37)

or

uλ
1 = argmin(‖Au1 − f0‖

2
2 + λ2‖G−1

11 u1‖
2
2), (38)

with solution:

uλ
1 = (ATA+ λ2G−1

11

T
G−1
11 )

−1AT f0. (39)

2.3. Experimental Methods and Evaluation
Protocols
Accuracy of the numerical algorithms for solving the inverse
problem of ECG was tested on realistic in-silico data of cardiac
electrical activity. Computer tomography (CT) scans of three
patients were used for obtaining the personalized anatomy of the
torso and heart surfaces.

These patients were examined in Bakulev National Medical
Research Center of Cardiovascular Surgery (Moscow, Russia)
in 2017 year. The study was performed in accordance with
principles of the Declaration of Helsinki. The protocol of
the study was approved by local ethics committee of Bakulev
Research Center. All patients provided written informed consent
to the CT scanning procedures and agreed to data retrieval,
analysis and publication.

A patient-specific anatomical model was comprised of a
biventricular cardiac model and a homogeneous torso model.
Data processing steps included segmentation of the torso and the
ventricles CT volumemodels, generation of the polygonal surface
meshes (“Amycard 01 C” software, EP Solutions SA) and creation
of tetrahedral final element meshes (“Gmsh” software Geuzaine
and Remacle, 2009).

The bidomain model with the strong heart-torso coupling
and TNNP cellular model (ten Tusscher et al., 2004) were used
for simulation of a myocardium electrical activity. Transmural
and apico-basal cellular heterogeneities were simulated using the
approaches proposed in Keller et al. (2012) and ten Tusscher
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and Panfilov (2006), respectively. Simulations of cardiac electrical
activity were performed with the methodology described in
Ushenin et al. (2017) using the Cardiac CHASTE software
(Mirams et al., 2013). In each anatomical patient model,
these finite-element calculations resulted in the transmembrane
potentials in the myocardial volume, while the electrical
potentials were simulated at each node of the tetrahedral meshes.
The torso surface potentials were used as the input for testing the
proposed inverse routines.

We simulated three focal type electrical activation patterns.
The focal origins were in the lateral wall of the left ventricle
(LV) for the patient heart 1, in the right ventricular apex (RVA)
for the patient heart 2 and in the right ventricular outflow tract
(RVOT) for the patient heart 3. A “virtual” rectangular current
pulse of −50µA with a duration of 3 ms applied to an area of
6 mm was used for initiation of a cardiac excitation. “Virtual”
action potential signals and local unipolar electrograms on the
ventricular surface as well as the body surface ECGwere obtained
as a result of the simulation.

The first part of the evaluation protocol included computation
of the ESL (function w1) from the simulated electrical potential
u1 on the myocardial surface according to the formula (32) and
comparison of this function’s morphology in space and time with
the transmembrane action potentials.

The second part of the evaluation protocol included an actual
testing of the proposed algorithms for the solution of the inverse
problem. For this, the BSPM were distorted by an additive
Gaussian noise of 50 dB SNR and used for reconstruction of
the electrical potential on the endocardial and epicardial surface
of the ventricles. The reconstructed local unipolar electrograms
on the myocardial surface were compared to the references
electrograms obtained from the simulations.

We used the following metrics to estimate solution quality:

rex =
1

M

M∑

i=1

√∑N1
j=1(u1(xj, ti)− unum1 (xj, ti))2

√∑N1
j=1 u1(xj, ti)

2
(40)

cct =
1

N1

N1∑

i=1

cc(u1(xi, t), u
num
1 (xi, t)), (41)

where u1(x, t) is the given solution, unum1 (x, t) is the inverse
reconstruction, cc(·, ·) – is the correlation coefficient, M is the
number of time instances, N1 number of nodes in the heart
triangular mesh.

The quantity rex provides the spatial error of the solution
for each instant ti, whereas cct shows the accuracy of the
reconstructed electrogram at each node on the heart mesh. These
errors are calculated separately for epicardial and endocardial
surfaces of the heart ventricles.

We tested the following inverse numerical scheme:

1. Tikhonov solution of the equation Au1 = f0 with the
conventional EP transfer matrix A and three types of
constraints: 0th order ‖u1‖

2
2 ≡ ‖I11u1‖

2
2, 1st order ‖

∂u1
∂n ‖

2
2 ≡

‖Du1‖L2 and 2nd order ‖1Ŵ1u1‖
2
2 ≡ ‖Lu1‖

2
2.

2. Tikhonov solution of the equation 4πG01w1 = f0, u1 = G11w1

with the ESL transfer matrix G01 and the constraint ‖w1‖
2
2 ≡

‖I11w1‖
2
2, see Equation (34).

3. Combination of these two approaches, i.e., Tikhonov solution
of the equation Au1 = f0 with conventional EP matrix A but
with the new type of constraint ‖w1‖

2
2 ≡ ‖G−1

11 u1‖
2
2 for the

ESL, see Equations (37), (38).

We found the value of the regularization parameter λ thanks
to the L-Curve method (Hansen, 2000).

3. RESULTS

3.1. Properties of the ESL (Function w1)
Figure 5 shows the distribution of the ESL (function w1(x, t))
on the heart surface for several time instants of the cardiocycle.
Figure 6 shows ESL as time signals at several points of the
ventricular surface. The ESL in space as well as in time domains
looks like a sparsed function and well reflects the fronts of
myocardial depolarization and repolarization.

The ESL signals shape has a form of bipolar spike associated
with time moments of myocardial depolarization and low-
amplitude wave associated with myocardium repolarization.
Depolarization part of the signal has similar morphology at
all points of the myocardial surface with the first peak being
positive and the second one negative (see Figure 6B). Duration
of depolarization spike varied from 12 to 22 ms, its magnitude
varied from 0.5 to 1.2 mC/m2.

The repolarization waves were positive in 91% of ESL
signals and negative in 2% of the signals. In 7% of the
signals the repolarization waves were biphasic with the first
negative half-wave. Duration of the repolarization waves varied
from 18 to 27 ms, their magnitude varied from 0.05 to
0.2 mC/m2.

The zero-crossing value between positive and negative peaks
of the signals matched with depolarization time moment
(see Figure 6C). The mean difference between that zero
point of the single layer density signal and maximal slope
of transmembrane action potential (TMP) up-stroke was
1.3± 2.4 ms.

The time moment of maximum positive monophasic
repolarization waves in ESL signals corresponded to 91±4% level
of TMP repolarization (see Figure 6C). Biphasic and negative
repolarization waves were also associated with repolarization
phase of TMP, but reliable identification of connections between
the moment of their appearance and the level of myocardial
repolarization requiresmore data and further analysis. Therefore,
ESL signals can be potentially used for detection of depolarization
and repolarization of the myocardium. However, development of
this method requires further investigations.

3.2. Accuracy of the Inverse Solutions
Table 1 shows results of the numerical experiments. The first
column in the table shows the type of equation used, the second
column shows the regularization constraint and the last columns
show the rex and cct metric values (see (40), (41)) separately
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FIGURE 5 | Distribution of the ESL density (function w1) on the heart surface for the fixed time moments of cardiocycle. Cardiac excitation was initiated in the apical

area. LV, left ventricle; RV, right ventricle; RVOT, right ventricle outflow tract.

for the LV, RVA and RVOT simulations and epicardial and
endocardial surfaces.

Electrical signals from the several epicardial and endocardial
sites of the ventricles were selected as representative examples
in order to provide visual evaluation of their morphology (see
Figure 7). The center of LV lateral wall (Epi LV lateral), the
apical region (Epi LV apex), anterior-lateral zone of the RVOT
(Epi RVOT) and the center of RV lateral wall (Epi RV lateral)
were taken on the epicardial surface. The center of LV lateral
wall (Endo LV lateral), the central zones of the left (Septum LV)
and the right sides (Septum RV) of the ventrical septum and the
center of RV lateral wall (Endo RV lateral) were taken on the
endocardial surface.

In Figure 7we present the results of the inverse reconstruction
of the electrograms in the defined above points on the heart
surface. Figure 7A shows results of reconstruction with the
conventional EP transfer matrix A and Tikhonov regularization
of the 2nd order. Figure 7B shows results of reconstruction with
the ESL transfer matrix G01 and Tikhonov regularization of 0th
order.

All algorithms demonstrated similar accuracy on the
epicardial surface, but their accuracy on the endocardial surface
was significantly different.

On the endocardial surface algorithm in terms of EP with
conventional transfer matrix A and 0th order regularization
demonstrated poor accuracy. The reconstructed electrograms
have near-zero magnitude and poor correlation with the
references electrograms. Algorithms with the 1st order
regularization provided poor accuracy in terms of relative
error, but the reconstructed electrograms correlated better with
the reference signals (see Table 1). Algorithm with the 2nd order
regularization showed slightly better results in comparison to 1st

order. However, this algorithm did not allow to reconstruct the
electrograms morphology with acceptable quality. In particular,
reconstructed electrograms at the Endo LV lateral, RV lateral
and Septum RV sites has opposite polarity at QRS part and at
the Endo LV lateral site has opposite polarity at ST part than the
reference electrograms (see Figure 7A). Detailed metrics values
are given in the Table 1.

Both algorithms in terms of ESL significantly improved
the accuracy on the endocardial surface. These algorithms
showed low relative error and high correlation coefficient.

The morphology of endocardial electrograms on the LV and
RV lateral walls of the ventricles as well as at RVOT were
reconstructed with enough accuracy. The electrograms on the
LV and RV ventricular septum were more smoothed, but the
basic elements of their morphology (polarities of the electrogram
waves) were reconstructed correctly.

Activation and recovery times are commonly used in the
clinical practice as one of the important outputs of non-
invasive cardiac imaging. Some numerical results in detection
of activation and repolarization times from electrograms
reconstructed by the proposed ESL algorithm are given in the
Supplementary Material 1.

4. DISCUSSION

Non-invasive cardiac electrical mapping on both epi- and
edocardial surfaces of the heart can provide more detailed
information about cardiac electrical activity. However, this
methodology is more challenging compared to the non-invasive
epicardial mapping. In previous works the problem of endo-
epicardial mapping was attacked in two directions. The former
was to extend the inverse electrocardiography problem in
terms of epicardial potentials to a problem in terms of
epicardial and endocardial potentials. The second one was to
reconstruct cardiac electrical activity on the epicardium and
endocardium in terms of the EDL or in terms of intramural
“equivalent” electrical sources related to cardiac transmembrane
potentials.

In this article, we introduced a novel representation of
cardiac sources in terms of the ESL potential. This approach,
in a sense, combines these two directions. Utilizing EDL for
representation of cardiac electrical activity was motivated by
the following reasons. First, it is well known that the electrical
potential on the cardiac surface can be understood as a
sum of two components: so-called “near field,” reflecting local
myocardial electrical activity and so-called “far field,” which
is generated by electrical sources at remote segments of the
heart. This fact leads to certain difficulties in interpretation
of local unipolar electrograms with respect to depolarization
and repolarization times. In contrast, EDL allows detecting
the local electrical activity of the myocardium with greater
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FIGURE 6 | Example of ESL and transmembrane action potential signals (simulation data). Cardiac excitation was initiated in the apical area. (A) is locations of the

points where the signal was computed, (B) is transmembrane action potentials (left panel) and the ESL signals (right panel), (C) is merged transmembrane action

potentials and ESL signals. Notation mC/m2 is the millicoulomb per square meter, the unit for an electrical charge density.

precision. Secondly, EDL signals have higher level of regularity in
comparison to local unipolar electrograms. This trait of EDLmay
provide additional opportunities for regularization of the inverse
problem.

Our results of the presented in-silico experiments showed
that the ESL representation of cardiac electrical activity
has also some attractive properties. ESL density correlated
well with the local electrical activity of the myocardium.

ESL density as time signals can be used for detection of
activation and recovery times, calculating activation and
recovery intervals and reconstruction of activation and
recovery sequences. Note that detection of repolarization
sequences by local electrograms meets some methodological
difficulties (Cluitmans et al., 2017). However, repolarization
abnormalities can be an important substrate of reentrant atrial
and ventricular arrhythmias. Therefore, possible application of
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TABLE 1 | Results of the inverse reconstruction.

Equation Reg LV lateral RV apex RVOT

Epi Endo Epi Endo Epi Endo

rex cct rex cct rex cct rex cct rex cct rex cct

INTERNAL STATEMENT IN TERMS OF EP

Au1 = f0 ‖u1‖
2
2 6.7e−1 0.89 9.6e−1 0.19 9.0e−1 0.85 9.7e−1 0.12 6.8e−1 0.85 9.5e−1 0.33

Au1 = f0 ‖
∂u1
∂n ‖22 6.3e−1 0.91 17.8e−1 0.45 13.8e−1 0.86 27.2e−1 0.24 7.6e−1 0.87 15.9e−1 0.40

Au1 = f0 ‖Lu1‖
2
2 6.2e−1 0.91 14.6e−1 0.52 7.8e−1 0.84 19.7e−1 0.32 8.0e−1 0.87 15.7e−1 0.46

EXTERNAL STATEMENT IN TERMS OF ESL

G01w1 = f0 ‖w1‖
2
2 6.2e−1 0.91 4.3e−1 0.83 6.0e−1 0.84 7.6e−1 0.69 7.6e−1 0.87 7.7e−1 0.75

COMBINED STATEMENT IN TERMS OF EP AND CONSTRAINT ON ESL

Au1 = f0 ‖w1‖
2
2 6.2e−1 0.91 4.4e−1 0.83 6.1e−1 0.84 7.6e−1 0.69 7.6e−1 0.87 7.8e−1 0.75

FIGURE 7 | Given (red curves) and inverse reconstructed electrograms (blue curves) in different point of epicardial and endocardial surface for the simulation of the

pacing from the RVOT. (A) Is the reconstruction with the conventional EP transfer matrix A and Tikhonov regularization of 2nd order, (B) is the reconstruction with the

ESL transfer matrix G01 and Tikhonov regularization of 0 order.

ESL for detection of repolarization abnormalities seems to be
promising.

Moreover, ESL density is a temporally localized function
exhibiting very similar morphology for all ventricular sites. These
ESL features can be potentially used for narrowing down the
set of admissible solutions in construction of regularization
methods.

Note, these results were obtained for the myocardial
model with isotropic electrical conductivities. The proposed
approach for ESL computation does not require assumptions
of myocardium anisotropy. Therefore, it can be translated
directly to the more realistic anisotropic model of the
myocardium. However, ESL been computed this way may
slightly differ from the “physical” single layer density in
case of the media with anisotropic electrical conductivity.

To emphasize this fact, we used the term “equivalent” single
layer density (ESL). However, we suppose that investigation
of electrophysiological meaning of representation of cardiac
electrical activity in form of electrical single layer for the more
realistic anisotropic model requires more precise mathematical
definition of electrical single layer and more complex
algorithm for its computation. We address this task to further
research.

The most common discretization method for the inverse
potential problem, i.e., for reducing the boundary value problem
for Laplace equation to a system of linear algebraic equations
is BEM (Yun et al., 1997; Gulrajani, 1998 and description in
section 2.1). It this work we proposed an alternative BEM scheme
for assembling the transfer matrix, which is closely related to
the ESL representation of the cardiac electrical field. Though we
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considered this method in the context of the endo-epicardial
potential inverse problem, this approach can be used for the
reconstruction of electrical potentials on the epicardial surface
only, in contrast to the EDL.

Moreover, the presented derivation of the ESL transfer matrix
allowed to identify the intrinsic structure of the conventional
one, that can be split into two matrices: a well-conditioned G11

and ill-conditioned G01, whereby their elements are the inverse
euclidean distances not depending on the solid angles involved
by EDL computations.

A technical benefit of the splitting lies in this simple structure
allowing greater numerical precision of the two matrices. In
particular, the novel way for construction of the transfer matrix
does not require calculation of normal vectors, thus eliminating
possible mesh-related artifacts. Furthermore, a simple structure
of ill-conditioned matrix G01 provides an alternative basis for
regularization approaches.

The above results were obtained for the simplified torso model
with homogeneous electrical conductivities. We suppose that
the translation of the reconstruction algorithm to the clinical
practice requires more realistic human torso model with different
electrical conductivities of the internal organs. In that cases the
structure of the transfer matrix for the inverse problem in terms
of ESL will be more complex. Identification of its structure is a
task for further research.

We also presented a two-step method for solving the inverse
potential problem including computation of the ESL density as
an intermediate step. This method has some formal similarities
with the method of fundamental solutions (MFS). The MFS
was proposed for solving the inverse problem in the epicardial
statement and showed promising results (Wang and Rudy, 2006).
Briefly, MFS is based on computation of values of “virtual”
point electrical sources placed outside of the domain of interest
and subsequent computation of the cardiac electrical potential
as a linear combination of these electrical sources. The MFS
also allows usage of meshless construction of the transfer
matrix. However, in contrast to the ESL on the myocardial
surface, the electrical sources do not have a physiological
meaning, i.e., they cannot be used for evaluating the local
electrical activity of the myocardium. Next, in contrast to the
ESL matrix G11, the MFS matrix mapping electrical source
values to the electrical potential on the cardiac surface is ill-
conditioned. Thus, this matrix cannot be used as a regularization
operator.

The most interesting and unexpected result was, in our
opinion, obtained in the investigation of regularization effects
of the ESL density on the heart. We first tested the 0th
order Tikhonov regularization for the inverse problem in
the ESL statement. Then, we used G−1

11 as a regularization
operator for the conventional EP statement of the inverse
problem. We found that both schemes provided significantly
more accurate solutions compared to the other Tikhonov
regularizations.

Still, the regularizing properties of the inverse single
layer operator require further investigation and theoretical
explanation. It is worth noting that the ESL regularization
increased the accuracy predominately on the endocardial surface

of the heart. We can hypothesize that independence of the
ESL from solid angles contributed to the accuracy increase for
the complex “w-shape” geometry of the endocardial surface.
Nevertheless, a detailed mathematical interpretation of the
obtained results as well as a more general challenge of developing
an optimal regularization operator for the inverse ECG problem
is a subject for further investigations.

As our conceptual approach targeted an improved
reconstruction of the electrogram itself, further efforts should
be undertaken to quantify ESL advantages in estimation of
derived parameters, such as activation times, frequency maps
etc. The presented work focused solely on a mathematical
description of the novel ESL formulation and its simulation-
based proof-of-concept, making thorough in silico and clinical
evaluation needed in order to translate our findings into practical
benefits.

5. CONCLUSIONS

In this article, we proposed a novel statement of the inverse
problem of ECG which is based on a representation of
the electrical potential on the cardiac surface as ESL on
the same surface. The results of in-silico experiments using
personalized cardiac models demonstrated that the introduced
ESL density well correlates with local electrical activity of the
myocardium.

The reconstruction method was considered in two basic
versions. The first version included assembling of a transfer
matrix mapping the ESL density to the body surface potentials
using the BEM and solving the matrix equation with Tikhonov
regularization of 0th order. The second version used the
conventional transfer matrix mapping EP on the cardiac surface
to the BSPM and then applied Tikhonov regularization imposing
constraints based on the single layer operator on the heart. The
results demonstrated that both versions provided more accurate
solution on the ventricular endocardial surface compared to the
classical approach with Tikhonov regularization of 0th, 1st, and
2nd orders.

The proposed modifications in the solution scheme may
improve non-invasive reconstruction of cardiac electrical
activities on the endocardial part of the heart.

6. LIMITATIONS

We used only limited numerical simulations cases for testing
feasibility of the proposed method. In our future work, we intend
to extensively study performance of the presented approach
in both in silico and clinical setups. Forward and inverse
simulations were performed for a homogeneous torsomodel with
an isotropic heart. While heart anisotropy affects both heart and
torso surface potentials, it does not influence the relationship
between the ESL source model and EP on the heart surface.
The ESL variable obtained this way may slightly differ from
the “physical” single layer density in case of the media with
anisotropic electrical conductivity. To emphasize this fact, we
used the term “equivalent” single layer density.
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Only ventricular focal activation patterns were considered in

the present work. Further studies should include more complex

excitation propagation patterns as well as a comparative analysis

between the derived (e.g., activation times) clinically relevant

parameters.
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Electrocardiography provides some information useful for ischemic diagnosis. However,

more recently there has been substantial growth in the area of ECG imaging, which

by solving the inverse problem of electrocardiography aims to produce high-resolution

mapping of the electrical and magnetic dynamics of the heart. Most inverse studies

use the full resolution of the body surface potential (BSP) to reconstruct the epicardial

potentials, however using a limited number of torso electrodes to interpolate the BSP is

more clinically relevant and has an important effect on the reconstruction which must

be quantified. A circular ischemic lesion on the right ventricle lateral wall 27mm in

radius is reconstructed using three Tikhonov methods along with 6 different electrode

configurations ranging from 32 leads to 1,024 leads. The 2nd order Tikhonov solution

performed the most accurately (∼80% lesion identified) followed by the 1st (∼50%

lesion identified) and then the 0 order Tikhonov solution performed the worst with a

maximum of ∼30% lesion identified regardless of how many leads were used. With an

increasing number of leads the solution produces less error, and the error becomes more

localised around the lesion for all three regularisation methods. In noisy conditions, the

relative performance gap of the 1st and 2nd order Tikhonov solutions was reduced,

and determining an accurate regularisation parameter became relatively more difficult.

Lesions located on the left ventricle walls were also able to be identified but comparatively

to the right ventricle lateral wall performed marginally worse with lesions located on

the interventricular septum being able to be indicated by the reconstructions but not

successfully identified against the error. The quality of reconstruction was found to

decrease as the lesion radius decreased, with a lesion radius of <20mm becoming

difficult to correctly identify against the error even when using >512 torso electrodes.

Keywords: ECGI, ventricle, torso electrodes, inverse problem, ventricular ischemia, regularisation methods

INTRODUCTION

Cardiovascular disease is the most common cause of morbidity and mortality in developed
countries. Although atrial arrhythmias are more common, ventricular arrhythmias are the more
lethal arrhythmias accounting for around 50% of all sudden cardiac deaths (Huikuri et al., 2001). It
is well known thatmyocardial ischemia predisposes to ventricular tachyarrhythmias and fibrillation
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(Ghuran and Camm, 2001), and early and effective diagnosis of
myocardial ischemia is most essential for proper treatment of
patients with cardiac ischemia in order to save their lives.

Electrocardiography (ECG) provides some information useful
for ischemic diagnosis. Conventionally, a standard 12-lead ECG
is widely used to detect abnormalities in the heart electrical
activity, therefore, provides a convenient way for detection of
myocardial ischemia (Sejersten et al., 2007). However, due to
a low-level reflection of spatial-temporal electrophysiological
dynamics of the heart of the 12-lead ECG, there are some
limitations in its use for ischemic diagnosis, especially in the
detection of the ischemic lesion in the heart (Alday et al., 2016).

The newly developed ECG imaging (ECGI) modality provides
a promising technology for high-resolution mapping of the
electrical and magnetic dynamics of the heart in normal and
pathological conditions (Ramanathan et al., 2003; Intini et al.,
2005; Rudy, 2017). This approach uses an array of networked
electrodes to directly reconstruct the electrophysiological activity
of the heart by using the full body surface potential (BSP)
and solving the inverse problem in electrocardiography.
The inverse problem in electrocardiography is generally ill-
posed, this leads to having to use regularisation methods
in order to try and constrain the solution (Brooks and
Macleod, 1997; Gulrajani, 1998). These regularisation methods
have been found to perform differently depending on the
heart electrical excitation activity being reconstructed (Figuera
et al., 2016; Alday, 2016). Each regularisation method as
well as assessing the reconstruction performance has an
associated computational cost that requires to be extensively
evaluated.

In this work we aim to evaluate the use of ECGI imaging
to detect ischemic lesion using a virtual ventricle-torso model.
While ECGI may not provide an alternative to conventional
imaging techniques (Daly and Kwong, 2013; Carrascosa and
Capunay, 2017; Carvalho et al., 2017), it is important to
fully evaluate the ECGI technique to assess its strengths
and weaknesses and assess how much information could be
potentially recovered.

Previous works in to localising ischemia using ECGI has
shown the relative performance of two types of Tikhonov
regularisation, however the possible effects of using a limited
number of electrodes have not been investigated (Messnarz
et al., 2004; Ruud et al., 2009). For more clinical relevance in
computational ECGI studies, a limited number of recording
electrodes should be used, which will have a substantial effect
on the overall reconstructed heart surface potential (HSP). As
well as HSP’s, transmembrane potentials (TMP) have also been
explored using a number of methods and frameworks to localise
ischemia (Messnarz et al., 2004; Jiang et al., 2009; Wang et al.,
2013). A study using a limited number of electrodes developed
an optimised 64 electrode layout (Jiang et al., 2009). In this work
for simplicity, a grid like structure was used for the each of the
electrode layouts (see Figure 2).

The focus of this paper is to evaluate the strengths and
weaknesses in the performance of the variant regularisation in
localising ischemia in combination with different numbers of
recording electrodes. Specifically, it aims to evaluate the ECGI

ability to reconstruct the ischemic lesion on a ventricle, in order
to (i) provide an assessment on the relative performance in
regularisation techniques in reconstructing the ischemic lesion;
(ii) to compare to how changing the number of electrodes
mapping the BSP will affect the accuracy of ischemic lesion
reconstruction; (iii) compare the performance of the ECGI
varying the size and location of the ischemic lesion; (iv) quantify
effects of signal noise on the performance of the regularisation
techniques. Further to this, a particular focus has been put on
how the error in the detection results manifests itself when using
a limited number of electrodes.

This paper is organised as follows. Methods describes the
mathematical models used in the computational experiments, the
setup and the performance metrics used. Results are split into 3
sections; General Epicardial Potential Reconstructions, Location,
Noise and Sensitivity and Lesion Size. These results are then
discussed in the following Discussion along with the Limitations
and Conclusion.

METHODS

Forward Problem
The biophysically detailed human ventricular and torso model
developed in our previous study (Ni, 2016) was used in this
study to simulate the electrical excitation waves in the heart.
Full in depth details about the cellular model for the electrical
action potentials of the endocardial, midcardial and epicardial
ventricular cells, and anatomical structure of the ventricles
and torso model can be found in previous studies (Adeniran
et al., 2011; Alday et al., 2016; Ni, 2016) which was well
validated by the simulated 12-leads ECGs which matched to
experimental data. In simulations, the 3D ventricular model was
paced at the empirically determined activation sites, mimicking
the coupling between the Purkinje fibre network and the
ventricles across the endo-surface of ventricular walls (Adeniran
et al., 2013; Ni, 2016). The timing of excitation stimulus
to the individual activation sites was predetermined, with
which the generated ventricular excitation sequence matched to
experimental observations and was validated by the simulated
12-lead ECG (Keller et al., 2010; Adeniran et al., 2011; Ni,
2016).

Figure 1 shows the formulation of the forward problem used
in this study, including the anatomical geometry of the ventricle
and torso meshes used. The ventricle mesh contains 2,499 nodes
(5,000 triangular elements) and a male torso mesh contains
of 6,923 nodes (13,842 triangular elements), both meshes were
down sampled from more detailed geometries used in previous
studies (Adeniran et al., 2011, 2013) to reduce the computational
time involved in this study. A homogenous torso (isotropic
conductivity, i.e., no heterogeneous conductivity introduced by
organs such as liver, lungs, ribs, kidneys) is used to create
the transfer matrix A in this study considering non-significant
effects of these tissues on the ECG (Ramanathan and Rudy,
2001). This also reduces the potential sources of noise to
allow comparison of the different regularisation methods. In
clinical practice it has been shown that the noise level hides
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FIGURE 1 | Workflow for performing the forward problem. Transfer matrix (A) constructed using a 6,923-node male torso geometry and 2,499-node ventricle

geometry, xt and yt are matrices filled with the epicardial ventricular potentials and torso potentials at each time t, respectively. Ventricular electrical excitations were

simulated using a biophysically accurate 3D computer model of the human ventricles (Ni, 2016). The electrical action potentials on the epicardial surface are extracted

and mapped onto the ventricular mesh representing the epicardial surface. Body surface potentials on the torso are then computed using the boundary element

method (Stenroos and Haueisen, 2008).

FIGURE 2 | Workflow for the inverse problem. Multi-lead ECG’s using the various electrode configurations to the torso potential results from the forward problem. The

BSP for the torso is then interpolated from the multi-lead ECG’s. This interpolated BSP is then used as the torso potentials in the inverse solution to produce the

epicardial potentials on the ventricle.

the effect of the torso heterogeneity on the inverse solution
(Zemzemi et al., 2015).

In simulations, the ischemic lesion model was idealised as
a fully transmural circular zone with a 27mm radius, unless
otherwise stated in the section Location, Noise, and Sensitivity
where the size of the ischemic lesion is varied. Similar to previous
studies (Jie et al., 2010; Jie and Trayanova, 2011) these lesions
consisted of two zones: a central zone and a boundary zone. The
central zone consisted of 80% of the radius of the lesion from
the centre and the boundary zone the remaining 20%. In the
central and boundary zones, cellular electrical remodelling in ion

channels and intercellular electrical coupling due to myocardial
ischemia were simulated in the same way as in the study of Wang
et al. (2013). The parameters associated with the ion channel
alteration describing the ischemic zone decrease linearly from
central zone to the edge of the boundary zone. As compared
to the normal ventricular AP, the ischemic-induced remodelling
in ion channel properties resulted in substantial abbreviation in
the APD of the ventricular cells (the normal, boundary ischemic
zone and central ischemic zone on the right ventricle epicardial
myocytes, were 274, 228, and 150ms, respectively), a markedly
depolarised resting potential (by 10 and 18mV in the border and
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central ischaemic zone, respectively), and a dramatic reduction in
the upstroke velocity of the AP as seen in our previous study (Ni,
2016).

For this study the main lesion placement is on the right
ventricle lateral wall (RV LAT). The electrical action potentials
on the epicardial surface are extracted and mapped onto the
triangulated ventricular mesh representing the epicardial surface.
This is done to limit the sources of noise to the sources we
can control and quantify and to reduce the computational time.
Body surface potentials on the torso are then computed using the
boundary element method (Stenroos and Haueisen, 2008) and
are used to solve the matrix equation shown in Figure 1.

Inverse Problem
The complete inverse workflow is shown in Figure 2. The
electrode configurations on the torso body surface evaluated in
this study are 32, 64, 128, 512, and 1,024 electrodes. The multi-
lead ECG’s produced by using different electrode configurations,
and a linear interpolation algorithm were used to reconstruct the
BSP (Oostendorp et al., 1989). The interpolated BSP is then used
in the in inverse solution to produce the epicardial potentials
from which the ischemic lesion zone can be computed from.

The inverse problem in this study can be represented by the
following linear model

kt=Art , (1)

where kt is the torso potential at time t (6,923 × 1 matrix) after
reconstruction via interpolation from the torso electrodes, A is
the transfer matrix formulated entirely from the geometry of
the two meshes (Barr et al., 1977) and rt is the reconstructed
epicardial potential at time t (6,923 × 1 matrix). As mentioned
previously, this is generally an ill-posed problem which means
that simply solving it without any regularisation using an
ordinary least squares linear regression will likely lead to a
solution dominated by errors. Thus, regularisation techniques are
needed to constrain the solution. In this work three regularisation
methods were evaluated: 0 order Tikhonov, 1st order Tikhonov
and 2nd order Tikhonov.

Tikhonov regularisation
The ordinary least squares solution which seeks to minimise the
sum of the squared residuals can be written compactly as

‖Art − kt‖
2
2 , (2)

where ‖ .‖22 is the Euclidean norm. In order to penalise
undesirable solutions and give preference to desirable solutions
a regularisation term is added to the minimisation to form the
Tikhonov regularisation (Benning and Burger, 2018).

‖Art − kt‖
2
2 + λt

2 ‖Lrt‖
2
2 , (3)

Where λt is the regularisation parameter at time t and the matrix
L is the regularisation operator. For each Tikhonov method the
Matrix L takes a different form

zero order L= I,

first order L= ∇ ,

second order L= ∇2 ,

where I is the identity matrix, ∇ is the gradient operator, and ∇2

is the Laplacian. Each method favours and penalises the solution
in different ways with the gradient operator favouring relatively
flat solutions and the laplacian penalising rough solutions in a
second derivative sense. The solution to the inverse problem at
each time step can then be written as

r̂t =

(
A
T
A+ λt

2
L
T
L

)−1
A
T
kt , (4)

where r̂t is the newly reconstructed epicardial potential. By
plotting the log of magnitude term (‖Lrt‖

2
2 ) vs. the error term

(‖Art − kt‖
2
2) yields in most cases an L shaped trade off graph

which can be used to identify the most optimal choice for
the variable lambda (Hansen, 1992). This optimal λt is found
by locating the corner of the L curve, this corner varies in
sharpness depending solution and in this study an iterative
method (Castellanos et al., 2002; Cultrera and Callegaro, 2016)
was used to locate it. In Equation (4), λt would need to be worked
out for each time step, requiring an L curve at every time step
and thus is quite computationally expensive. In this work the
time instants were stacked together into a single matrix R and
K. This allows the computation of just a single λ globally that is
independent of time giving the following solution:

R̂ =

(
A
T
A+ λ2L

T
L

)−1
A
T
K , (5)

This approach means that the λt value is not fully optimised
for each individual time instant. Testing of using both the
single λt for each time instant against the global method for
λ determination resulted in the a very small improvement
(<0.1) in the average relative difference mean star (RDMS) score
(Equation 6) along with a substantial increase in computational
time and so the global method was chosen.

Performance Metrics
Two performance metrics are used in this study, firstly to
quantify the overall quality of the epicardial reconstruction and
secondly to quantify the quality of the ischemic lesion detection.

Relative Difference Mean Star
In this study the relative difference mean star (RDMS) quantifies
the amount of error between the reconstructed potentials, x̂, and
the real potentials, x, as in previous inverse studies (Figuera et al.,
2016; Gharbalchi et al., 2016):

RDMS =

√√√√∑

n

((
xn∥∥x2
∥∥

)
−

(
x̂n∥∥x̂2
∥∥

))2

. (6)

This produces a more representative error score then a standard
percentage error produces, allowing for better comparison
of performance between solutions. There are two ways of
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calculating this score spatially, in which case you sum over the
geometry for each time step, or temporally, in which case you
sum over the timesteps for each element in the mesh. Both
methods were tested however, the spatial method is the one
used throughout this study. This was chosen as it produced
more stable error and the average RDMS over all time steps
produced a value that represented the data more accurately when
visually assessing the epicardial solutions. When comparing
RDMS values for different solutions, a lower RDMS value will
indicate a better solution.

Ischemic Lesion Detection
To detect the ischemic lesion, a threshold approach was
implemented in a similar way as previous studies (Wang et al.,
2013). Due to the changes in action potential discussed earlier,
leads to a lower potential in the central and boundary regions
when compared to the surrounding tissue was produced. Thus,
if the potential of an element was below a threshold wthreshold,
then that element was classified as ischemic, else, the element
was classified as healthy. To calculate the threshold value the
following formula was used

wthreshold =w−Q (w− wmin) , (7)

where w is the average epicardial potential and wmin is the
minimum epicardial potential and Q is a threshold factor which
unless stated otherwise is equal to 0.4. Brief sensitivity analysis
on the factor Q is shown in section titled Location, Noise
and Sensitivity. Three more metrics can be calculated using
this threshold which can help evaluate the performance of the
ischemic lesion detection.

(i) Percentage of ischemic lesion correctly identified as
ischemic (CI).

(ii) Percentage of ischemic lesion incorrectly identified as
healthy (IH).

(iii) To allow meaningful comparison against (i) and (ii), the
area of the ventricle geometry incorrectly identified as
ischemic is also displayed as a percentage the total ischemic
lesion area (II).

In this study there are 6 variables are considered in total:

(i) The order of the Tikhonov regularisation (0, 1st 2nd).
(ii) The number of leads used to reconstruct the BSP (32, 64,

128, 256, 512, 1,024).
(iii) The location of the lesion (Right ventricle lateral wall,

left ventricle anterior, lateral and posterior wall and
interventricular septum).

(iv) The level of gaussian added noise measured as a signal
to noise ratio (SNR) in decibels (dB) to the BSP before
interpolation (10, 20, 30, and 40 dB).

(v) The sensitivity of Equation (7), to the factor Q, which will
affect the choice of threshold potential used to classify an
area as ischemic or healthy (0.3, 0.4, and 0.5 which unless
stated otherwise Q= 0.4).

(vi) The size of the ischemic lesion (14, 20, and 27mm).

FIGURE 3 | (A) Mean RDMS against lead layout, (B) 128 lead layout RDMS

vs. timestep for the 3 Tikhonov solutions.

RESULTS

General Epicardial Potential
Reconstruction
Figure 3A shows themean RDMS (which was calculated spatially
and then averaged over all timesteps) for different lead layouts
using an increasing number of leads up to 1,024 leads. It can
be seen here that all three solutions as expected perform better
as the number of leads increases. Both the 1st and 2nd order
Tikhonov solutions outperformed the 0 order regardless of how
many leads were used. When lead numbers are smaller (less
<256) the 2nd order Tikhonov solution clearly outperforms the
1st order solution, however as the lead number increases the
difference in mean RDMS between solutions would seem to
decrease. At 128 leads the RDMS of the overall 2nd order solution
seems to stabilise and not improve greatly as the number of leads
increases. Error bars plotted show ±1 standard deviation in the
mean RDMS.

For the 128 lead solutions the RDMS is plotted against
timestep in Figure 3B. The RDMS for the 0 order Tikhonov
solution is fairly constant but displays the same characteristics
as both the 1st and 2nd order solutions. All solutions show an
increasing RDMS as the ventricle depolarises and repolarises
while stabilising at a lower RDMS during the plateau phase of
the action potentials (AP). These characteristics are present more
prominently in the 1st and 2nd order results. If we compare
these characteristics with the timesteps shown in Figure 4 there
is a correlation between the spatial complexity of the epicardial
potential and the RDMS. It can be seen that the 2nd order
solution outperforms the 1st order solution which would indicate
that the ischemic lesion detection algorithm will perform more
accurately.
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FIGURE 4 | Snapshots showing the comparison between real and reconstructed epicardial excitation pattern. Both anterior and right lateral view of the ventricle were

shown for over a period of 400ms. (A) Real epicardial potential patterns at different timings. (B) Reconstructed epicardial potential pattern at different timings by using

128 leads and the 2nd order Tikhonov regularisation method.

Figure 4A shows the how the real solution varies over time
from two different viewpoints. The first is the anterior view and
the second the right lateral view which faces the lesion head
on. The full ischemic lesion is clearly visible in the timesteps
between 100 and 250ms, with the maximum range of potential
between the ischemic area and the rest of the ventricle occurring
at 100ms. Figure 4B shows the timesteps for the reconstructed

solution solved using a 2nd order Tikhonov regularisation. This
was chosen as in Figure 3A it was shown to have performed
well comparatively and as 128 lead has greater clinical relevance
then a larger number (>128) of lead layouts. At 50ms when
the spatial complexity of the real solution is high, we can see
how the increased error leads to a pattern that is similar but
not very accurate. However, at 100ms we can clearly make out
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FIGURE 5 | Reconstructed epicardial excitation pattern from the right lateral view of the ventricle at 100ms. Each regularisation column has two sub columns, (Left)

is the reconstructed epicardial potential and (Right) is a “traffic light” diagram coloured according the ischemia detection results. Green areas represent the successful

identification of the ischemic lesion, yellow areas are ischemic which were not identified, and red areas indicate areas incorrectly identified as ischemic.

the presence of an ischemic lesion and general location, but
definition is lost in the shape.

Ischemic Lesion Reconstruction
Figure 5 shows the exemplar results at 100ms and applying
the formula for the threshold ischemic detection described in
section Ischemic lesion Detection for all possible combinations
of regularisation method and number of leads reconstructing
the BSP. This diagram should be viewed in conjunction with
Figure 6. It can be seen that the positioning of the correctly
identified ischemic lesion in green is generally toward the bottom
left of the ischemic lesion. Taking both the green and yellow areas
together will show the real ischemic lesion, taking the green and
red areas together will show the reconstructed ischemic lesion
and taking the red and yellow areas together shows the error in
the detection.

Much like the results in Figure 3, further confirmation that
the increase in leads brings about an increase in the correctly

identified ischemic area. It is important to note that the “traffic
light” diagrams shown in Figure 5 only shows the right lateral
view of the ventricle as that is view most pertinent to this study.
However, by looking at the other angles of the ventricle a varying
amount of red misidentified ischemic lesions on other parts on
the ventricle will be seen depending on the configuration being
evaluated. This data is represented in Figures 6–8 as best as
possible, however the full ventricle animations are included in the
Supplementary Material.

Using Figures 5, 6A together it can be seen that for the 0
order Tikhonov solution regardless of the number of leads the
CI (green) never goes above 30%. However, as number of leads
increase the II (red) decreases. The lead layouts from 32 to
256 leads show that even though around 30% of the lesion is
detected the II area dominates the overall solution and so even
reliably learning the position of the lesion is not possible. The
512 and 1024 lead layouts show much reduced II at 17% and
13%, respectively, this means that by using this configuration it
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FIGURE 6 | The traffic light data from the ischemic lesion detection visualised as a bar chart. (A) 0 order Tikhonov, (B) 1st order Tikhonov, and (C) 2nd order

Tikhonov. Green bars represent the successful identification of the ischemic lesion (correctly ischemic—CI), yellow bars are ischemic which were not identified and

shown as healthy (incorrectly healthy—IH) and red bars indicate areas incorrectly identified as ischemic (incorrectly ischemic—II). All area values are represented as a

percentage of the real circular lesion. Please note that some bars go above the height of the y axis, bar numbers are present on each bar to aid with this fact.

is possible to learn the rough position of the lesion, but nothing
about the size and/or shape of the lesion.

Figures 6B,C show at below 128 leads there are not enough
leads to accurately map the torso BSP, leading to results that
show little CI (green) and very large II (red). Above 128 leads,
the results show that increasing the number of leads generally
reduces the amount of II. The best ratio of CI:II occur in the 1,024
lead layout solutions for all the regularisation methods. Using
Figure 7 it can be seen that as the II decreases as the number
of leads increases, the remaining II is more localised around the
real lesion. At leads configuration <512 leads it can be seen that
a lesion on the inside wall of the left ventricle is erroneously
detected in addition to the correct lesion.

Although Figure 5 shows similar results between the 1st and
2nd order Tikhonov solutions in detecting the ischemic lesion,
it can be seen that the 2nd order solution outperform the 1st
order solutions when considering the full ventricle. This is due
the presence of the ischemic lesion on the inside wall of the right
ventricle. Figure 8 shows that the 1st order solution struggles
to detect any of the inner wall lesion even at 1,024 leads thus
leading to a CI of approximately 50%. The 2nd order solution
does however perform better in identifying the inner wall lesion,

which allows it to reach a CI of around 80% of the total real
lesion.

Location, Noise, and Sensitivity
Location
In addition to the right ventricle lateral wall location used so far,
4 more locations were also tested. The locations tested in this
study are the left ventricle anterior wall (LV ANT), left ventricle
lateral wall (LV LAT), left ventricle posterior wall (LV POS),
and the interventricular septum (IV SEP). The lesion size was
kept constant at 27mm while only the location and the number
of leads were changed. Figure 9 shows the results of 12 lead
ECG taken under healthy conditions, and the different ischemic
lesion locations. All lesion locations are represented in the first
column in Figure 10A, the following columns show the ischemic
detection result in each case. As Figure 10A only shows one
single view of the three-dimensional ventricle, and due to the
limited space available for figures, Figure 10B shows the results
of the detection as a bar graph using the data taken from the full
geometry.

Using Figure 9 we can see the changes to the ECG profiles
for different lesion locations on a 12 lead ECG. The black line
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FIGURE 7 | 3D ventricle detection results for 1st and 2nd order Tikhonov

solutions for 128, 256, and 512 leads. Green areas represent the successful

identification of the ischemic lesion, yellow areas are ischemic which were not

identified, and red areas indicate areas incorrectly identified as ischemic.

is the control case with no lesion present and the coloured lines
represent different lesion location over the ventricle. The most
prominent change in the profile comes in either an elevated or
depressed ST segment, along with both an increase or decrease in
the T wave amplitude and then to a lesser degree increases to the
amplitudes of the R and S peaks. These changes are consistent
with those seen in previous studies (Jie et al., 2010; Hampton,
2013; Perez Alday et al., 2016; Roffi et al., 2016).

Figure 10 shows the equivalent results using the ECGI
method, the LV ANT location shows less II error for equivalent
number of lead results comparatively with both LV LAT and LV
POS. Using the 256 leads LVANT results we can see that although
only 16% was CI, the II error is comparatively low, from the
diagram this can be seen as the reconstructed lesion being placed
too high on the left ventricle, and thus a high number of leads
were then needed to correctly position the lesion further. For
the LV LAT and LV POS cases only by using 1,024 leads would
lead to successful identification of the lesion position without
misidentifying the lesion elsewhere on the ventricle due to error.
Similar results were achieved in comparison to the location
used with Figures 5, 6 identifying ∼80% of the lesion and high
lead values. Reconstructions involving the lesion located on the
IV SEP performed the worst comparatively having extremely

high II error even when using 1,024 leads. Ninety-one percent
of the lesion was CI, however this result becomes less useful
when viewed along with the II error (240%) which is located
on a large percentage of the inside walls of both the left and
right ventricle.

Electrograms can be used to indicate and localise ischemia
practically through identifying ST elevations. However, whilst ST
elevations present in anatomical contiguous leads may strongly
suggest ischemia ST elevations are not unique to ischemia and
can be caused by a number of other conditions. Localisation
of the ischemia can be inferred to regions such as anterior,
lateral, apical and septum by observing which leads display the
elevations. Using the ECGI technique with more electrodes we
are able to learn additional information such as indication of the
size, the shape, and location of the lesion.

Noise and Sensitivity
The effects of both noise and our chosen threshold factor Q in
Equation (7) were evaluated. The results of 4 different signal to
noise ratios measured in decibels and 3 choices for the factor Q
are shown in Figure 11A using a lesion on the LV ANT location
and 512 leads to interpolate the BSP. As in previous studies, the
results show that noise does have a detrimental effect on the
performance of the regularised solutions particularly at low SNR
(10 dB) leading to low CI and high II. However, over 50% CI
is achievable when noise levels reduce as shown by the 20–40
dB columns in Figure 11A. At 10 dB, the II error increase in
the case of lesion on the LV ANT location tended to manifest
itself increasingly around the top of the left ventricle, thus no real
assessment of shape could be made. This same trend occurs to a
lesser extent for the detection results using 20–40 dB as the SNR
increases.

Figure 11B shows the results with the addition including
20 dB of noise on the relative performance of the 3
regularisation methods using the 256-electrode layout. The order
in performance is the same as when not including noise, with the
2nd order Tikhonov performing best, followed by the 1st and 0
orders, respectively. The 2nd order Tikhonov again outperforms
the 1st order in terms of identifying the lesion on the inside wall
which leads to the two results CI. However, as can be seen in
Figure 11B, conversely the 1st order performs better at detecting
the lesion on the epicardial wall displaying a more accurate
shape and detecting more CI area. At low electrode numbers
(<256) with noise included made finding the optimal lambda
value using the L curve method more difficult, with the corner
of the curve becoming less pronounced and harder to locate. The
2nd order Tikhonov in particular produced L curves which were
comparatively more difficult to determine the optimal lambda
value compared to the 0 and 1st order Tikhonov solutions.

The Q factor sensitivity is shown in both the rows of
Figure 11A and represented as error bars in Figure 11B. As
expected using a higher Q factor (0.5) leads to using a lower
threshold and thus a smaller area is identified as ischemic, this
lead to lower a CI and II in all cases by around 10%. Conversely,
using a lower Q factor of 0.3 leads to a higher threshold and
thus a larger area is identified as ischemic, this lead to a small
increase in the CI however in most cases the II error increased
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by more thus leading to a poorer overall detection result. The
change in Q factor resulted in an either an increased/decreased
area detected, this effect was distributed evenly across the both
the correct region and the erroneous regions.

Lesion Size
Four different sized lesions (labelled A-D) were centred in
the same location on the right ventricular lateral wall as in
the previous. The radii of the lesions are 27, 20, 14, and
8mm. Figures 12A–C shows the results of the reconstruction
of different sized lesions using the 2nd order Tikhonov
regularisation, after the previous sections results showed that
most accurate. The 512 lead configuration was chosen to
display as this configuration as in the previous analysis it
showed the similar results to the 1,024 lead configuration but
with fewer leads. The 8mm radius lesion however could not
be reconstructed to any degree even with the highest lead
configuration.

The II error increased as the size of the lesion decreased.
Thus, there is an increase in the overestimate in ischemic area as
the lesion size decreases. Comparison using the charts shown in
Figure 6 is not worthwhile in this case as the size of the individual
triangular elements of the mesh start to have a large effect on the
analysis as the lesion size becomes smaller. However, a limited
comparison can made in much the same way as in Figure 6,
using only the incorrectly ischemic (II) measurement as shown
in Figure 12D. The percentages were calculated in all cases using
the 27mm lesion area as a reference, this allows results between
the solutions to be plotted on the same axis. Figure 12D shows
the results of incorrectly ischemic error, for all 3 lesion sizes taken
from over the whole ventricle geometry. It can be seen that there
is an increase in the II error as the lesion size decreases.

DISCUSSION

In this study, we implemented a ventricle-torso model developed
in our previous study to investigate ischemic lesion detection on
the ventricle. We quantified the quality of lesion identification
while changing the number of leads used to reconstruct the
BSP. Effects of 3 different regularisation methods on the lesion
detection were also investigated. Smaller investigations into the
effect of lesion location and size were also quantified.

Main Findings
The main findings of this study are that regardless of
regularisation technique at least 128 leads are required to
reconstruct the ischemic lesion to a level where a location could
be established although to reduce the erroneous identification
to only localised around the real lesion >256 leads are needed.
Using a 0 order Tikhonov solution did not perform well
regardless of the number of leads. Using a low number of
electrodes (<256), the misidentified ischemic area around the
ventricle is large (>70% of the real lesion size), thus this would
not produce a solution accurate enough to even identify a
rough location for the lesion. At high lead numbers (>256) the
misidentified ischemic lesion area reduces in size and are more
localised as seen in Figure 7 to the lesion and so a successful

accurate location could be identified using these configurations.
Further optimisation of the lead positioning could allow for more
accurate reconstructions at lower leads numbers (Jiang et al.,
2009).

Using the 1st order Tikhonov solution gives a good solution
for the outer lesion area, even outperforming the 2nd order,
but fails to identify the lesion on the inner wall, thus leading
to solutions which at maximum identify about 53% of the total
lesion area.With increasing number of leads the solution produce
less error, and the error becomesmore localised around the lesion
in contrast to lower leads solutions. The 2nd order Tikhonov
solution proved to be the best of the three regularisationmethods,
both in terms of error and amount of correctly identified ischemic
lesion. It also outperformed the 1st order solution identifying
more successfully the inner wall ischemic lesion leading to
around 80% lesion area identification. This agrees with previous
work to localise ischemia which show results in which the 2nd
order Tikhonov performs better (Messnarz et al., 2004; Ruud
et al., 2009) and this still stands when using a limited number
of recording electrodes with no noise.

Varying the location of the lesion showed that ischemic lesion
detection performs more accurately for LV ANT location and LV
POS then LV LAT, with solutions achieving lower comparative
II error using the same number of leads. This follows along with
what was expected as the distance between the ventricle and torso
is smaller here along with being more aligned with the layout
of the leads which are heavily skewed mainly towards the front
and back of the torso. Finally, the lesion located on the IV SEP
showed comparatively less accurate results, this is expected as
the outer walls of the ventricle shield and mask the effect of the
lesion on the BSP to a certain degree. Although results indicated
that a lesion on the inner walls of the geometry was present, it
would not be accurate enough to successfully identify the lesion
size and location. Amore accurate BSPmeasurement is needed to
improve the solution to a successful level, requiring either more
leads or a more accurate interpolation method.

The addition of noise causes the solutions to reduce in
detection accuracy. The 2nd order solution proves to be more
accurate when looking at both the inner and outer walls of the
ventricle, however if the criteria was changed to only recognise
the outer epicardial layer the 1st order solution proved to be
better. The addition of noise caused noticeable change in the
sharpness of the L curve used to optimise the selection of the
regularisation parameter lambda in combination with a limited
number of electrodes. The 2nd order solution in particular was
most affected by this. As the choice of lambda value has such
a pivotal role in the ECGI workflow, determining the optimal
value needs to be accurate and clear, perhaps another method
(Golub et al., 1979; Pei et al., 2015; Barnes and Johnston,
2016; Chung and Español, 2017) would prove to be more
useful in high noise low recording electrode configurations.
Taking ST-integral of the BSP electrograms instead of just
one timestep as used in this study could also help reduce
the effect of measurement noise as employed in a previous
study (Jiang et al., 2009).

As expected the smaller the lesion size the less accurate the
lesion reconstruction becomes. Using this current setup accurate
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FIGURE 8 | Inner wall lesion detection. (A) 1st order Tikhonov 1,024 leads (B) 2nd order Tikhonov 1,024 leads.

FIGURE 9 | Twelve lead ECG using BSP produced with the human ventricle-torso model. Simulation using healthy control conditions (black) and 5 ischemic lesion

locations (5 colours). The y axis has been normalised between 1 and −1.

lesion detection was achieved at a lesion size of 20mm and above
using 512 leads. Decreasing lesion size also caused an increase in
the overestimate of the lesion size when reconstructed. However,

the 14mm lesion was detected but along with a substantial area
of incorrect regions that should have been detected as healthy
areas of the ventricle as seen in Figure 12C. Therefore, this
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FIGURE 10 | Variable location ischemic lesion detection results using traffic light representation. (A) Location vs. number of leads diagram showing the “traffic light”

representation of the ischemic lesion detection results, a head on lesion view is shown for each location. First column shows the location of the ischemic lesion on the

ventricle, remaining columns show a head on lesion view of the results (B) A bar chart visualizing the “traffic light” data taken from the whole geometry as views in (A)

only show a single view. Please note that some bars go above the height of the y axis, bar numbers are present on each bar to aid with this fact.

setup is not well suited for detecting lesions of that size or
smaller. As a benchmark the 14mm lesion was reconstructed
without the use of recording electrodes and thus no interpolation
and similar results were achieved but with slightly less error
(∼6% using the same scale as Figure 12D) and so even with

a perfect BSP reconstruction 14mm lesions cannot be detected
accurately using this workflow. Further study is needed to see
if using a more detailed mesh (>5,000 triangles) would allow
for a more accurate reconstruction of the smaller lesion. Using
a more detailed mesh increases the complexity of the problem,
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FIGURE 11 | Noise and sensitivity analysis on the lesion detection results and Tikhonov regularisation performance results including 20 dB SNR. (A) Signal to Noise

ratio (10, 20, 30, 40 dB) vs. lesion threshold algorithm sensitivity with the lesion located on the left ventricle anterior wall. (B) Detection results using the 3 different

regularisation techniques constructed from BSP’s containing noise at 20 dB SNR using 256 electrodes layout. (C) Bar chart visualizing the “traffic light” data taken

from (A) over the whole geometry. Bar height represents data taken from the Q = 0.4 in Equation (7) with error bars on the bar showing results of setting Q from 0.3 to

0.5. (D) Bar chart visualizing the “traffic light” data taken from (B) over the whole geometry.
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FIGURE 12 | (A–C) Three different lesion sizes reconstructed with the 2nd

order Tikhonov solution and 512 leads. (D) Bar chart showing the areas

incorrectly identified as ischemic in each solution as a percentage of the 27mm

lesion area for comparison. Right lateral wall view and lesions have radius (A)

27mm, (B) 20mm, (C) 14mm.

as well as its “ill-posedness” and so more accurate results are not
guaranteed.

LIMITATIONS

There are a number of limitations with this study which should be
considered when interpreting the results. Firstly, a global method
was used to produce a single lambda value for the regularisation
across all timesteps to generate the RDMS values shown in
Figure 4. An individual timestep approach was implemented but
the results provided only a marginal improvement whilst also
requiring substantially more computing time. There are other
regularisation methods (Figuera et al., 2016; Benning and Burger,
2018) which may or may not improve the solution however
these have not been tested in this study. The shape of the
lesion is idealised to be circular for computational/modelling
simplicity, it is not yet clear how more complex/multiple lesions
will perform. The smoothing properties of inverse regularisation
methods may impact these complex shapes differently and will
have to be further investigated. This study has not been tested
and validated in a clinical setting, however computer modelling
provides a direct comparison between results computed from
solving the forward and inverse problem which can then be used
as a basis for clinical studies. Finally, clinically electroanatomic
mapping (EAM) studies have shown that using general unipolar
electrogram thresholds can be unreliable in detecting scar,
as unipolar voltages show large variations even in non-scar
locations and are effected by tissue fat (Nguyên et al., 2017).

Bipolar electrograms have been shown to be more reliable
(Codreanu et al., 2008) and so further study is warranted to
test and evaluate the use of different metrics to evaluate ECGI
reconstructions.

CONCLUSION

A ventricle-torso model was used to investigate the use of ECGI
as a tool to detect ischemic lesions. We quantified the quality
of lesion identification while changing the number of leads
used to reconstruct the BSP. The results show that the 2nd
order Tikhonov is the best of the three regularisation methods
tested in this study, showing and detecting a circular ischemic
lesion of 27mm with lead numbers >256. At >256 leads the
2nd order Tikhonov showed not only a higher % of lesion
detected but a reduced and more localised error around the
lesion itself. Further to this, the 2nd order Tikhonov proved
to be more accurate identifying the lesion on the inner wall of
the ventricle. This superior inner wall detection still proved to
be the case when noise was added into the workflow, however
the relative performance gap between then 1st and 2nd order
Tikhonov is reduced. The combination of both noise and a
limited number of recording electrodes produced “L curves” with
a less pronounced corner when viewed comparatively against
their no noise counterparts. Lesions on the left ventricle walls
were also able to be identified but comparatively to the right
ventricle lateral wall performed marginally worse, with lesions
located on the interventricular septum being able to be indicated
by the reconstructions but not successfully identified against the
error.
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Background: Non-invasive electrocardiographic imaging (ECGI) is a promising tool to
provide high-resolution panoramic imaging of cardiac electrical activity noninvasively
from body surface potential measurements. Current experimental methods for ECGI
validation are limited to comparison with unipolar electrograms and the relatively low
spatial resolution of cardiac mapping arrays. We aim to develop a novel experimental set
up combining a human shaped torso tank with high-resolution optical mapping allowing
the validation of ECGI reconstructions.

Methods: Langendorff-perfused pig hearts (n = 3) were suspended in a human torso-
shaped tank, with the left anterior descending artery (LAD) cannulated on a separate
perfusion. Electrical signals were recorded from an 108-electrode epicardial sock and
128 electrodes embedded in the tank surface. Simultaneously, optical mapping of
the heart was performed through the anterior surface of the tank. Recordings were
made in sinus rhythm and ventricular pacing (n = 55), with activation and repolarization
heterogeneities induced by perfusion of hot and cold solutions as well as Sotalol through
the LAD. Fluoroscopy provided 3D cardiac and electrode geometries in the tank that
were transformed to the 2D optical mapping window using an optimization algorithm.
Epicardial unipolar electrograms were reconstructed from torso potentials using ECGI
and validated using optical activation and repolarization maps.

Results: The transformation and alignment of the 3D geometries onto the 2D optical
mapping window was good with an average correlation of 0.87 ± 0.10 and error of
7.7 ± 3.1 ms with activation derived from the sock. The difference in repolarization
times were more substantial (error = 17.4 ± 3.7 ms) although the sock and optical
repolarization patterns themselves were very similar (correlation = 0.83 ± 0.13).
Validation of ECGI reconstructions revealed ECGI accurately captures the pattern
of activation (correlation = 0.79 ± 0.11) and identified regions of late and/or
early repolarization during different perfusions through LAD. ECGI also correctly
demonstrated gradients in both activation and repolarization, although in some cases
these were under or over-estimated or shifted slightly in space.

Frontiers in Physiology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 146121

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00146
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.00146
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00146&domain=pdf&date_stamp=2019-02-26
https://www.frontiersin.org/articles/10.3389/fphys.2019.00146/full
http://loop.frontiersin.org/people/363671/overview
http://loop.frontiersin.org/people/70705/overview
http://loop.frontiersin.org/people/482193/overview
http://loop.frontiersin.org/people/688223/overview
http://loop.frontiersin.org/people/27381/overview
http://loop.frontiersin.org/people/577323/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00146 February 23, 2019 Time: 16:32 # 2

Bear et al. Optical Imaging in a Torso Tank

Conclusion: A novel experimental setup has been developed, combining a human-
shaped torso tank with optical mapping, which can be effectively used in the validation
of ECGI techniques; including the reconstruction of activation and repolarization
patterns and gradients.

Keywords: ECGI, validation, optical mapping, torso tank, inverse problem

INTRODUCTION

Non-invasive electrocardiographic imaging (ECGI) is a
promising tool to provide high-resolution panoramic imaging
of cardiac electrical activity noninvasively from body surface
potential measurements (Rudy, 2013). While ECGI has seen
considerable development over the past four decades, the
inverse problem is ill-posed, highly sensitive to noise, and
can have many (both physiological and non-physiological)
solutions. As such, a multitude of methods have been, and are
still being developed to overcome this (such as regularization)
(Tikhonov and Arsenin, 1977; Colli-Franzone et al., 1985a;
Wang and Rudy, 2006). Given this ill-posed nature, robust
validation is essential for the complete adoption of this powerful
technique clinically. Such validation needs to be as close as
possible to the conditions of clinical applications, and for
applications to arrhythmia, due to their dynamic nature,
simultaneous body surface potential mapping (BSPM) and
intracardiac recordings is needed.

One of the advantages often cited of ECGI is the ability to
map the ventricular surface at a high-resolution, theoretically
only limited by the epicardial mesh created. The majority of
validation studies to date have evaluated ECGI methods using
an ex vivo torso tank (Oster et al., 1998; Bear et al., 2018a),
in vivo large animal models (Oosterhoff et al., 2016; Cluitmans
et al., 2017; Bear et al., 2018b), or in patients (Ghanem et al.,
2005; Sapp et al., 2012). While there are often several hundred
electrodes in the arrays used to provide ground truth data,
the spatial resolution (number of electrodes per unit area)
is typically lower than that of the cardiac mesh used for
ECGI reconstructions. While this means the gross abilities of
ECGI to reconstruct cardiac activity can be evaluated, they
may not be reliable to assess the accuracy of high-resolution
spatial and temporal features such as slow conduction, line of
block and/or repolarization gradients. For example, the ability
to accurately depict repolarization gradients may be clinically
relevant as these have been linked to patients susceptible to
ventricular fibrillation (Vijayakumar et al., 2014). No previous
study has attempted to validate the accuracy of ECGI to
capture gradients in either activation or recovery, possibly
because the resolution of ground truth recordings are not
high enough.

Currently the only means to validate ECGI at high-resolution
is through the use of computational models. This approach has
the obvious, significant strength of not requiring the expense
and extensive infrastructure of experimental studies, meaning
modifying conditions or changing parameters is substantially
easier. However, like all data sources, computational models
have their limitations including the ability to accurately reflect

cardiac pathologies when the ionic mechanisms are unknown
and the fact that this approach often commits an “inverse
crime” by neglecting the effect of any errors in the problem
formulation and using the same problem formulation for
both the forward and inverse solutions (Macleod and Brooks,
2000). Validation for ECGI is most ideally performed using
an integrative approach with multiple forms of data, and
having an experimental or clinical source of high resolution
ground truth data would enable this (Cluitmans et al., 2018).
The validation of ECGI also depends on its formulation and
chosen underlying cardiac source to be reconstructed. The
most common formulations use the epicardial extracellular
potentials as the cardiac source model (Sapp et al., 2012;
Cluitmans et al., 2017; Bear et al., 2018b) which can be compared
directly to the signals measured using epicardial mapping
techniques. Alternative formulations using transmembrane
potential based models, however, require post-processing of the
inverse solutions in order to validate against the extracellular
potentials measured by an electrode array. The post-processing
method chosen may affect the perceived accuracy of the inverse
methods used and to date direct validation of reconstructed
transmembrane potentials cannot be performed using
experimental data.

Optical mapping overcomes the limitations of current
ECGI experimental validation setups, enabling high spatial
resolution mapping (in the order of 0.5 mm) of cardiac action
potentials (Efimov et al., 2004). To date, optical mapping has
never been used in the validation of ECGI reconstructions,
possibly because the optical mapping window is defined by
a 2D surface, and comparing this to ECGI reconstructions
based on a 3D cardiac model is a technical challenge.
Furthermore, this technique is limited to ex vivo models
and requires a transparent medium between the camera and
cardiac surface.

The aim of this study was to develop a novel experimental set
up combining a human shaped torso tank with optical mapping
allowing the validation of ECGI reconstructions. The preliminary
results presented in this paper aim to demonstrate the application
of this setup to validate ECGI reconstructions of activation and
repolarization abnormalities and gradients.

MATERIALS AND METHODS

This study was carried out in accordance with the
recommendations of the Directive 2010/63/EU of the European
Parliament on the protection of animals used for scientific
purposes and approved by the local ethical committee of
Bordeaux CEEA50.
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Experimental Setup
Pigs (n = 3; 30–40 kg) were pre-medicated with acepromazine
(0.1 mg/kg) and ketamine (20 mg/kg), anaesthetized with
propofol (1 mg/kg) and maintained under isofluorane, 2%, in
air/O2 (50/50) after intratracheal intubation. The thorax was
opened and heparin (2 ml) infused intravenously. 1.5 L of blood
was collected during intravenous infusion of Voluven. Cardiac
arrest was induced with cold cardioplegia introduced into the
aortic root. The heart was rapidly excised and immersed in ice-
cold Tyrode’s solution. The aorta was cannulated and the heart
perfused in Langendorff mode with blood oxygenated with 95/5%
O2/CO2, pH 7.4, temperature 37◦C.

An epicardial electrode sock (108 electrodes) was attached
to the heart (Figure 1A) and bipolar pacing leads were fixed
to the right atria (RA) and ventricles with hooks (∼2 mm
between electrodes tips). The left anterior descending artery
(LAD) was freed above the first diagonal branch for a distance
of 5 mm. A cannula was introduced through a small incision,
and held in place with a ligature. The cannula was connected
to the main perfusion system via a miniature heat exchanger.
After instrumentation, perfusion was changed to 100% Tyrode’s
solution containing (mM) NaCl, 128; NaHCO3, 28; NaH2PO4,
0.5; MgCl2, 0.7; glucose, 11; KCl, 4.7; CaCl2, 1.5. The solution was
oxygenated with 95/5% O2/CO2 and kept at pH 7.4, temperature
37◦C. The heart was transferred to a human-shaped torso tank
made from clear plastic with 256 electrodes embedded in the
surface (Figure 1B).

The anterior epicardial surface was imaged using optical
mapping through the chest of the torso tank (Figure 1C).
Prior to imaging, the heart was mechanically-uncoupled using
blebbistatin (15 µM), and stained with the voltage-sensitive dye,
Di-4-ANBDQBS (10 µM). The epicardial surface was illuminated
with monochromatic LEDs at 627 nm (Cairn Research Ltd.,
Kent, United Kingdom). Optical images (100 × 100 pixels) of
signals passed through a 715 nm long-pass filter were acquired
using a Micam Ultima CMOS camera (SciMedia USA Ltd.,
Costa Mesa, CA, United States) with a spatial resolution of
700 µm/pixel.

Electrophysiological Recordings
The heart was paced by 2 ms pulses at 2 Hz, with constant
current amplitudes 2× the diastolic threshold, on either the
left (LV) or right (RV) ventricular epicardial surface, mimicking
ectopic activity, and during RA pacing representing normal sinus
rhythm. Regional activation and repolarization heterogeneities
were introduced through cooling then heating of the LAD
perfusate to various temperature (min 21◦C; max 40◦C), as well
as through local perfusion of Sotalol (10 mg/mL) from Sigma-
Aldrich (Zwijndrecht, Netherlands). Recordings were taken
in these different states during sinus rhythm and ventricular
pacing. In total 55 different sequences were obtained across
the three hearts.

Electrical and optical signals were measured simultaneously
for each sequence. Tank and sock unipolar electrograms were
recorded at 2 kHz (BioSemi, Netherlands) and referenced
to a Wilson’s central terminal defined using tank electrodes.

Optical mapping signals were acquired simultaneously at a frame
rate of 1 kHz

Geometric and Optical Alignment
3D angiographic fluoroscopy (Artis, Siemens) was used at the end
of each experiment to obtain the exact location and orientation of
the epicardium (mean edge length 4 ± 1 mm), perfusion beds
and electrodes with respect to the tank (Figure 2A). To align
the electrical and optical maps, a perspective projection based
on a 3D camera position XCOP and a 3D focal center point
XFOC (Figure 2C) was used to project the torso and sock 3D
electrode locations (E3D) onto the 2D optical mapping frames
(Ê2D) (Figure 2B)

Ê2D = E3D P (XCOP,XFOP)

Where P is the projection matrix. The camera and focal points
were first optimized by minimizing the mean Euclidean distance
between projected electrodes positions (Ê2D) and their true 2D
locations (E2D) visible in optical images (Figures 2C,D).

minXCOP,XFOP J = minXCOP,XFOP

∑
‖ Ê2D − E2D ‖

2

n

Where J is the cost function and n the number of electrodes
used in the optimization. This proved to be insufficient due to
error in identifying electrodes points in 2D and 3D, therefore a
second optimization step was performed minimizing the mean
absolute difference in activation times (AT) derived from sock
electrodes and optical maps for a single activation sequence:

minXCOP,XFOP J =
∑∣∣ATsock − AToptical

∣∣2
n

To validate the final projection, activation maps (that were not
used in the optimization process) derived from sock electrograms
and optical mapping signals were compared across all sinus
rhythm and pacing sequences (methods described below). The
same projection matrix was then applied on the epicardial
and LAD geometries, to define their 2D locations in optical
mapping window. As the posterior sock electrodes and epicardial
surface were not visible in this window, they were removed
for all comparisons.

Signal Processing
Tank and sock channels in which signals were absent as a result of
lead fracture or poor electrode contact were immediately evident
on visual inspection and were discarded. Electrical signals were
temporally aligned to optical maps by a square wave output
generated by the optical mapping setup during camera operation
that was recorded directly by the BioSemi system. Optical
signals were filtered using spatial averaging (kernel 2.1 mm) and
temporal averaging (kernel 1.5 ms). A data mask was defined
by removing optical signals with an amplitude less than 20% of
the maximum signal, removing unconnected components and
using a dilation erosion technique to smooth the edges (Laughner
et al., 2012). A multi-lead signal averaging algorithm was used to
remove remaining noise in both electrical and optical recordings
(Aström et al., 2000).
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FIGURE 1 | Experimental setup demonstrating (A) the pig heart perfused in Langendorff mode with an 108-electrode sock placed over the ventricles and the LAD
cannulated on a separate perfusion, (B) the human shaped torso tank with 256 electrodes embedded in the surface that the heart is suspended within, and (C) the
optical mapping that is performed through the anterior surface of the torso.

Electrocardiographic imaging electrograms were
reconstructed from tank potentials to experiment-specific
epicardial surfaces derived from fluoroscopy scans using the
method of fundamental solutions (Wang and Rudy, 2006) with
Tikhonov regularization (Tikhonov and Arsenin, 1977) and
the CRESO method (Colli-Franzone et al., 1985b) to define the
regularization parameter.

Activation/depolarization times (AT) were defined from
recorded sock electrograms as the time of minimum derivative
(dV/dT) of the intrinsic deflection, for optical action potentials
as the maximum dF/dT during the action potential upstroke
and for ECGI signals by fitting a global activation field to
electrogram delays between electrograms (Duchateau et al.,
2016). Recovery/repolarization times (RT) were defined from
recorded sock and ECGI-derived electrograms as the time
of maximum dV/dT of the T-wave, a widely used for
experimental and clinical electrophysiological studies using
unipolar electrograms (Coronel et al., 2009; Lux and Gettes,
2011). For optical signals, repolarization was defined as the
time of minimum dF/dT, an index shown to closely match the
maximum dV/dT of electrograms (Potse et al., 2009).

Data Analysis
The minimum dV/dT of recorded electrograms has been shown
to very closely match the maximum dV/dT of the action
potential upstroke as measured from a floating micro electrode
within 1 mm of the small unipolar electrode (Millar et al.,
1985; Haws and Lux, 1990). Therefore, transformation and

alignment of the 3D geometries into the 2D optical mapping
frame were first validated by comparing recorded sock and
optical activation maps during sinus rhythm and pacing. As
with ATs, a relationship exists between RTs derived from
unipolar electrograms and action potentials. RT recorded by
sock electrodes were also compared their optical equivalents.
Optical activation and repolarization maps were then used
to validate ECGI reconstructions. Quantitative comparison of
marker timings was performed by defining the nearest optical
pixel to each sock electrode and heart mesh node using the
Euclidean distance. Activation and RT at these locations directly
compared using a root mean square error (RMSE) and Pearson’s
correlation coefficient (CC).

Statistical analysis was conducted using GraphPad Prism 7.04.
For each metric, the significance of differences was tested using
paired t-tests with p < 0.05 defined as significant. Data are
expressed as mean± SD unless otherwise stated.

RESULTS

Sock and Optical Electrical Alignment
Activation Maps
Figure 3 (left) presents an example of an aligned optical and
sock activation map during a sinus rhythm sequence with
cold perfusion through the LAD marked in black. Sock ATs
are represented as spheres with the optical mapping activation
underneath. Below, three representative electrograms (top) and

Frontiers in Physiology | www.frontiersin.org 4 February 2019 | Volume 10 | Article 146124

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00146 February 23, 2019 Time: 16:32 # 5

Bear et al. Optical Imaging in a Torso Tank

FIGURE 2 | Model creation and optical alignment: (A) Meshes are created
from 3D angiographic fluoroscopy scans of the epicardial surface (red), sock
electrodes (yellow), torso surface (peach), and tank electrodes (blue). (B)
Example of sock (yellow) and torso (red) electrode identification using the
optical mapping field of view. (C) Optimization of the camera position (COP)
and focal point (FOC) for the perspective projection of the 3D geometries into
2D using the identified sock/torso electrodes. (D) Example of the final
projection of 3D sock electrodes (yellow) and mesh (blue) onto the 2D optical
mapping field of view.

action potentials (bottom) are presented with sock (blue) and
optical (red) derived AT markers over the QRS.

The pattern of activation derived from sock and optical signals
were very similar, as quantified by a correlation of 0.96 and
RMSE of 6.1 ms. The larger differences (>5 ms) in ATs were seen
when electrograms, action potentials or both had fractionated
or shallow intrinsic deflections. This indicates poor electrode
contact or fluorescence and naturally making AT calculation
more prone to error. The examples in Figure 3 show that despite a
4–7 ms difference in marker placement, the upstroke of the action
potential is well aligned with the sock electrograms downslope.

For all experiments, the transformation and alignment of the
3D sock onto the 2D optical mapping window was good as
presented in Figure 4, with an average correlation of 0.87 ± 0.10
and RMSE of 7.7 ± 3.1 ms across all activation sequences. There
was no significant difference between pacing and sinus rhythm
signals for correlation or RMSE (p > 0.99).

Repolarization Maps
Sock and optical derived repolarization maps were then
compared. In Figure 3 (right), the sock and optical repolarization
maps are shown for the same sinus rhythm sequence as
the activation map (left) described previously. Like activation,
the repolarization pattern derived by each technique was the

same with late repolarization seen in the LAD perfusion bed.
However, the difference in individual RT marker placement were
substantially more diverse than with ATs, with differences up
to 20 ms. This is seen in the three example electrogram and
action potentials presented in Figure 3. The first demonstrates
that the negative dF/dT peak in the optical action potentials
corresponds very well with the T-wave upstrokes in the
equivalent electrogram. In second two electrodes, though the
T-wave upstroke and action potential repolarization curves align
temporally, external factors such as poor contact/fluorescence,
noise or movement may have substantially shifted marker
placement in either or both electrograms and action potentials.

Qualitative comparison of RTs across all sequences
demonstrated that sock and optical repolarization patterns were
similar, as quantified by high correlation values (0.83 ± 0.13),
not significantly different than for ATs (p = 0.27). However,
the alignment of markers was significantly less accurate than
for ATs (p < 0.05), with RMSE of 17.4 ± 3.7 (Figure 4). There
was no significant difference between experiments (p > 0.05),
nor between pacing and sinus rhythm signals for correlation or
RMSE (p > 0.99).

Optical Mapping for ECGI Validation
Activation Times and Conduction Block
ECGI-derived AT were compared to those derived from the
optical action potentials. Figure 5 presents two cases during RV
pacing with (1) normal perfusion and (2) cold perfusion through
the LAD marked in black. In both cases, ECGI captured the
general pattern of activation. However, the timing of the earliest
activated region was approximately 15–20 ms after the true onset
of activation in both cases as measured with optical mapping.
This resulted in a large region of tissue with nearly the same
activation time, making it less clear how to define the earliest
activation site from ECGI reconstructions.

The advantage of the high-resolution optical mapping is
demonstrated by looking at the gradient across the border of
the LAD perfusion bed (black box). In the plots on the right we
present the ECGI (red) and optical (black) AT within this box
against their distance from the black star. In case 2, the cold
perfusion creates a line of conduction block across the border of
the LAD perfusion bed. ECGI accurately reconstructed the AT on
either side of this border, but the conduction block is now seen as
a smooth activation wavefront.

Quantitative comparison of optical and ECGI activation maps
were performed across the entire data set. Using correlation
and RMSE, as presented in Figure 6. The majority of cases
produced very high correlation (median = 0.83) and low RMSE
(1median = 9.6 ms). Qualitative analysis of the three cases with a
correlation near 0.5 demonstrated similar activation patterns but
shifted slightly in space.

Repolarization Times and Gradients
Overall, ECGI did not reconstruct repolarization maps as
accurately as ATs, with significantly lower correlation and
higher RMSE values (Figure 6). Qualitative comparison of
repolarization maps showed that despite this, ECGI accurately
identifies regions of late and/or early repolarization during
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FIGURE 3 | Optical activation (left) and repolarization (right) map with equivalent sock (spheres) timings overlaid during a sinus rhythm sequence with cold perfusion
through the LAD (black). Sock electrograms and optical action potentials (normalized) are shown at three electrode locations demonstrating the range in differences
between AT and RT markers.

FIGURE 4 | Correlation and RMSE between optical and sock derived activation (AT) and repolarization (RT) times for all sequences with mean and SD overlain.
∗represents a significant difference between AT and RT results (p < 0.05).

perfusion of hot and cold solution and Sotalol into the LAD.
Figure 7 presents three representative examples of optical
(left) and ECGI (right) repolarization maps during (1) sinus
rhythm, (2) in sinus rhythm with cold perfusion through the
LAD (black) to create a gradient in repolarization, and (3)
during LV pacing with cold Tyrode’s with Sotalol perfusion
through the LAD to augment the gradient. In each example,
ECGI clearly distinguishes the regions of early and late

repolarization, although the timings are smoothed compared to
the optical maps.

The reconstruction of the repolarization gradient across the
LAD perfusion bed was assessed by plotting the RTs within
the black box against distance from the yellow star (right). In
the first case, ECGI accurately shows there is no repolarization
gradient. In the second and third cases ECGI captures the existing
repolarization gradients though in both cases the gradient is
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FIGURE 5 | Optical (left) and ECGI (middle) derived activation maps during RV pacing with (1) normal and (2) cold perfusion through the LAD (black). Plots of ATs
inside the black box against distance from the star are presented (right) for each sequence derived from optical (black; ∗) and ECGI (red; o) signals.

FIGURE 6 | Correlation and RMSE between optical and ECGI derived activation (AT) and repolarization (RT) times with mean and SD overlain. ∗Represents a
significant difference between AT and RT results (p < 0.05).

shifted by approximately 10 mm toward the base and is steeper
than the ground truth.

DISCUSSION

This study presents a novel experimental setup combining body
surface mapping from a human shaped torso tank with optical
mapping of large animal hearts suspended inside. The results of

this study have validated the methods for accurately transforming
and aligning the 3D epicardial surface onto the 2D optical
mapping window. Furthermore, we have demonstrated the setup
can be used effectively in the validation of ECGI reconstructed
activation and repolarization patterns and gradients.

Accuracy of Optical Alignment
In order to use the developed experimental setup for ECGI
validation, alignment of the 2D optical mapping window
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FIGURE 7 | Optical (left) and ECGI (middle) derived repolarizations maps derived from (1) sinus rhythm with normal and (2) cold perfusion through the LAD (black)
and (3) LV pacing with cold Tyrode’s and Sotalol perfusion through the LAD. Plots of RTs inside the black box against distance from the star are presented (right) for
each sequence derived from optical (black; ∗) and ECGI (red; o) signals.

with the 3D epicardial mesh derived from fluoroscopy is
critical. Many metrics used for ECGI validation are distance-
based measurements, where error in the alignment of the
“ground truth” would impact the result e.g., localization error
of VT exit sites (Wang et al., 2016), premature ventricular

contractions (Van Dam et al., 2009), focal discharges and
rotor cores (Figuera et al., 2016). In addition, quantitative
comparisons of action potentials or activation maps using
correlation and RMSE could be dramatically affected by
spatial inaccuracies.
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In this study, we have developed and validated an optimization
method to define the transformation and alignment of the 3D
epicardial mesh into the 2D optical window based on markers
visible in the both dimensions and one activation pattern derived
from recorded sock electrograms and optical mapping (Figure 2).

Comparison of all optical and sock activation maps for
each experiment demonstrated that this provides a reliable
and robust transformation (Figure 3). On the other hand,
repolarization maps showed a larger discrepancy in marker
placement between optical and sock signals. As with activation
markers, a relationship exists between RT derived from unipolar
electrograms and action potentials. However, unlike with ATs
this relationship is very sensitive to conditions (Steinhaus, 1989)
and has experimentally shown differences in RTs with a standard
error from 11 to 26 ms (Wyatt et al., 1981). One explanation
for the difference seen here is the fact that the optical signals
at the wavelengths used in this study represents an average
over a significant depth (up to 4 mm) and lateral distance.
Likewise, unipolar electrograms represent the integration of
activity through the heart, and particularly the myocardial wall.
Although the dF/dt max gives the “true” epicardial activation
time [ADD REF to Walton et al. Biophys J 2012], there will
still be some blurring, which could play a role in RT marker
placement. It is unknown what effects transmural gradients
in repolarization play on marker placement for these signals.
The large differences seen might also simply be due to the
increased inaccuracy in computation of repolarization compared
to activation where small movement, ischemia, and signal noise
affects the smoothness/duration of the T-wave resulting in
larger errors in marker placement using automated algorithms.
Futhermore, there exists several methods to compute RT from
both optical action potentials and unipolar electrograms. While
we have chosen indices that have been shown to correlate well
from simulation studies (Potse et al., 2009) alternative indices,
such as the max d2V/dT2 typically used for optical mapping
signals (Laughner et al., 2012), may result in a closer match.

Optical Mapping for ECGI Validation
Once the transformation and alignment were defined, ECGI
reconstructed activation and repolarization patterns were
validated using the optical maps. This is the first study to use
optical mapping for the validation of ECGI reconstructions.
Several previous studies have evaluated similar ECGI methods
using epicardial sock recordings of various resolution to define
the ground truth (Bear et al., 2018a,b). In a recent study using
the same torso tank model presented here, ECGI was shown to
reconstruct activation maps with a correlation of 0.68± 0.25 and
RMSE = 13.4± 5.3 ms in LBBB (Bear et al., 2018a), comparable to
the results seen using optical mapping as the reference. The only
other studies to report quantitative accuracy of activation maps
derived using potential-based ECGI methods have used in vivo
experimental models. The first in dogs using a 103 non-uniformly
spaced electrodes reported a mean correlation values of 0.82
(Cluitmans et al., 2017). The second in pigs using a 239-electrode
sock array a mean correlation of 0.78 (Bear et al., 2018b). Despite
the differences between these studies in spatial resolution for the
ground truth recordings, the results are remarkably similar. This

corroboration with previous ECGI validation studies provides
further validation of the accurate alignment of the 2D and 3D
mapping domains.

Very few studies have evaluated the reconstruction of RT
using ECGI, and the only previous experimental study directly
comparable to ours in terms of methodology was the study
recently performed by Cluitmans et al. (2017) using the in vivo
dog model. Like activation, despite validation being based
on lower resolution ground truth data, the correlation values
reported between measured and reconstructed repolarization
maps match almost exactly to those seen in this study.

Rather than in the simple comparison of activation and
recovery maps, the real benefit of high-resolution optical
mapping for ECGI validation is seen in the ability to compare
high-resolutions features. Here we have demonstrated one such
application in the comparison of activation and repolarization
gradients, which has never been previously attempted. It was
demonstrated that ECGI reveals the gradients present in both
activation and repolarization, although these could be under-
and over-estimated, and in some cases shifted slightly in space.
For activation maps, underestimation of the gradient may be
a reflection of the algorithm used on ECGI signals for marker
placement which spatially smooths the activation map. While
this typically improves ECGI activation map reconstruction in
normal hearts (Duchateau et al., 2016; Bear et al., 2018b), it
may also smooth a line of conduction block into a region of
slow conduction as seen in Figure 5. In contrast, the over-
estimation of recovery gradients seen in Figure 7 is likely
due to that same problem that produces artefactual jumps in
AT that has previously been noted in ECGI validation studies
(Duchateau et al., 2016, 2018). This data and experimental
setup will help us to further develop new algorithms to
improve activation and repolarization marker detection in the
presence of heterogeneities.

In addition to repolarization gradients, this set up will be
useful in the validation of ECGI for fibrillation, where an
adequate spatial resolution is paramount to the accurate detection
of focal sources and rotor cores (Roney et al., 2017); the
optimization of parameter selection for ECGI algorithms, such
as the choice of regularization parameter; and to evaluate ECGI
formulations using transmembrane potentials as the cardiac
source, which previously could not be achieved with post-
processing of the signals.

Limitations
The results presented should be considered in light of limitations
inherent in the study. First, the field of view of the optical
mapping window was limited to approximately 10 cm × 10 cm,
only capturing the anterior surface of the heart. While
validation of any ECGI algorithm would ideally compare the
reconstructions for the entire cardiac surface used, typically the
region of interest for high resolution would fit inside this window
(e.g., regions of myocardial infarction), and lower resolution
mapping of the rest of the heart can be achieved using a
traditional electrode sock as has been used in this study.

Another limitation of optical mapping is the necessity of
electro-mechanical uncoupling. This removes a condition that
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is present in clinical applications, and that might impact
ECGI reconstruction accuracy particularly during repolarization.
However, removing contraction is also an advantage as it enables
one to assess the efficacy of ECGI reconstructions without motion
artefact. Furthermore, methods are currently being developed to
enable optical mapping to counteract motion artefacts, and these
methods could be integrated into the system in the future. The
use of optical mapping for ECGI validation is limited to using
an ex vivo model and thus a torso tank with uniform isotropic
electrical properties. This is not the case in vivo and can result
in validation studies reporting better results than are seen using
an in vivo model. However, like with removing contraction from
the heart, torso tank models also allow us to assess the efficacy
of a different ECGI formulation when the forward problem is
accurately formulated.

Finally, the n number for this study is low, and does not allow
insight into inter-heart variability.

CONCLUSION

We have demonstrated a novel experimental setup combining
BSPM from a human shaped torso tank with optical mapping

of large animal hearts suspended inside that can be used in the
validation of ECGI reconstructed activation and repolarization
patterns and gradients.
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Althoughmodel-based solution strategies for the ECGI were reported to deliver promising

clinical results, they strongly rely on some a priori assumptions, which do not hold true for

many pathological cases. The fastest route algorithm (FRA) is a well-established method

for noninvasive imaging of ectopic activities. It generates test activation sequences on

the heart and compares the corresponding test body surface potential maps (BSPMs)

to the measured ones. The test excitation propagation patterns are constructed under

the assumption of a global conduction velocity in the heart, which is violated in the

cardiac resynchronization (CRT) patients suffering from conduction disturbances. In

the present work, we propose to apply dynamic time warping (DTW) to the test and

measured ECGs before measuring their similarity. The warping step is a non-linear

pattern matching that compensates for local delays in the temporal sequences, thus

accounting for the inhomogeneous excitation propagation, while aligning them in an

optimal way with respect to a distance function. To evaluate benefits of the temporal

warping for FRA-based BSPMs, we considered three scenarios. In the first setting,

a simplified simulation example was constructed to illustrate the temporal warping

and display the resulting distance map. Then, we applied the proposed method to

eight BSPMs produced by realistic ectopic activation sequences and compared its

performance to FRA. Finally, we assessed localization accuracy of both techniques in ten

CRT patients. For each patient, we noninvasively imaged two paced ECGs: from left and

right ventricular implanted leads. In all scenarios, FRA-DTW outperformed FRA in terms

of LEs. For the clinical cases, the median (25–75% range) distance errors were reduced

from 16 (8–23)mm to 5 (2–10)mm for all pacings, from 15 (11–25)mm to 8 (3–13)mm

in the left, and from 19 (6–23)mm to 4 (2–8)mm in the right ventricle, respectively.

The obtained results suggest the ability of temporal ECG warping to compensate for

an inhomogeneous conduction profile, while retaining computational efficiency intrinsic

to FRA.

Keywords: ECG imaging, fastest route algorithm, FRA, dynamic time warping, inverse problem of ECG, CRT,

inhomogeneous excitation propagation
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1. INTRODUCTION

Due to the aging population, increase in unhealthy lifestyle
and advances in acute management of myocardial infarction,
heart failure is becoming the world leading cause of death.
Thereby congenital and acquired ventricular dysfunction result
in poor short- and mid-term prognosis, making cardiac
resynchronization therapy (CRT) the first choice of care to
decrease hospitalization and improve the quality of life for

heart failure patients. However, around 30% of CRT candidates
fail to respond to this treatment, which leads to increasing
morbidity and involved medical insurance costs (Daubert et al.,
2016). In general, patient-specific optimization of CRT treatment
and selection, being essential for improved success rates, can

be accomplished only upon knowledge of underlying cardiac
substrate and electrophysiological properties.

Invasive acquisition of individual heart model parameters

is laborious, associated with risks and, therefore, prohibitive
for many CRT candidates. For these candidates, the ECG
imaging (ECGI) technique represents a noninvasive alternative
(Gulrajani, 1998; Pullan et al., 2001). Based on a patient-specific
geometry, ECGI maps measured body surface potentials to
activation times on the cardiac anatomy. Although there has
recently been a distinct interest raise from both engineering and
clinical communities, this technology has not yet found its niche
in the clinical work-flow (Cluitmans et al., 2018). For this, known
technical issues have to be solved and clear clinical benefits have
to be defined in cooperation with physicians. Furthermore, the
validation of ECGI is extremely challenging, which is mostly due
to the lack of invasively obtained high quality data.

In a nutshell, ECG imaging consists in solving an ill-posed
problem of finding cardiac sources configurations causing the
observed body surface potential maps (BSPMs) (Cluitmans et al.,
2018). Different approaches to ECGI, or inverse problem of
ECG, could deliver information on the earliest activation site
(Erem et al., 2014a; van Dam et al., 2016; Giffard-Roisin et al.,
2017; Yu et al., 2018), isochronal, isopotential, or phase maps
(van Dam et al., 2009a; Revishvili et al., 2015; Wang et al., 2016;
Rodrigo et al., 2017), and substrate characterization (Rudy, 2013;
Sohns et al., 2018). One way to tackle the inverse problem is the
classical regularization by imposing appropriate regularization
constraints (Brooks et al., 1999). Another, model-based, approach
consists in employing a realistic excitation propagation model
and fitting the model parameters to match the measured BSPMs.
In van Dam et al. (2009a) the nonlinear inverse problem was
solved based on the action potential wave forms specified by
two parameters at each cardiac node, activation and recovery
times. The initial estimation for this task was provided by a
physiologically inspired fastest route algorithm. Wang et al.
developed a Bayesian framework for coupling personal data
with the prior model based on the unscented Kalman filter for
integration of the nonlinear action potential’s dynamics (Wang
et al., 2011). Performance of an artificial network optimizing
cellular-automaton excitation parameters in a 3-D heart was
presented in Li and He (2001) and Liu et al. (2008). Parameter
tuning in a more complex bidomain model was evaluated
in terms of simulated ECG similarities with the measured

12-lead signals in heart-failure patients (Potse et al., 2014).
Dhamala et al. (2017) introduced a computational framework
featuring spatially adaptive coarse-to-fine optimization of cardiac
excitation properties to match the measured ECGs. The work by
Giffard-Roisin et al. (2017) aimed at noninvasive estimation of
the global conduction velocity and activation onset by regressing
the measured BSPMs from a simulated database.

Despite being one of the most straightforward among
the existing model-based inverse strategies, the fastest route
algorithm (FRA) has demonstrated a number of encouraging
simulation as well as clinical results in imaging of ectopic and
normal activation sequences (van Dam et al., 2009a; van Dam
et al., 2016; Oosterhoff et al., 2016; Janssen et al., 2018). For
a patient-specific cardiac geometry, FRA simulates excitation
patterns starting from every node of the discretized heart mesh.
The obtained activation sequences are converted to the BSPMs by
solving a linear forward problem of ECG for the corresponding
volume conductor model. This is followed by a full-search
step resulting in the activation sequence associated to the
BSPMs with the highest correlation compared to the measured
electrocardiograms. Depending on the clinical application, the
best sequence can be either used independently, e.g., for
estimation of the excitation origin (Potyagaylo, 2016; Potyagaylo
et al., 2016a,b), or followed by an iterative nonlinear least-squares
(NLLS) procedure (van Dam et al., 2009a; Erem et al., 2014b).
The NLLS itself is a severely ill-posed optimization problem with
multiple local minima, which makes it extremely sensitive to the
initial estimate (Modre et al., 2002; Janssen et al., 2018).

For a global conduction velocity (CV), an initialization
provided by FRA was shown to be robust with respect to the
forward modeling errors in an in silico study in Potyagaylo et al.
(2016a). For the calculation of the FRA activation sequences,
transmural cardiac connections are assigned with half the value
for propagation speed in the direction tangential to the heart
surface (van Dam et al., 2009a). While this model aims at taking
into account a slower transmural wave propagation, it can neither
fully compensate for anisotropic excitation nor tackle differences
in the local CVs due, for instance, to scar. Furthermore, the NLLS
optimization step was demonstrated to be highly sensitive with
respect to the assumed propagation velocity used within FRA
(Erem et al., 2014b).

To overcome the above-mentioned limitations of the standard
FRA approach, we propose to apply dynamic time warping
(DTW) to the BSPMs. The simulated BSPMs are adjusted
and aligned with the measured signals. After the alignment,
euclidean “distances” between warped simulated test potentials
and recorded BSPMs are calculated. The cardiac mesh node
associated with the excitation pattern corresponding to the
smallest error is considered the sought-after activation origin. In
the sequel, we denote this method as FRA-DTW.

2. MATERIALS AND METHODS

To demonstrate superior performance of the proposed strategy,
we first consider a simplified focal excitation scenario with an
artificially introduced region of slow CV and provide an ECG
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signal warping example. Then, we compare performance of
FRA-DTW against the standard correlation-based FRA for eight
realistic simulation cases of ectopic excitation used in Janssen
et al. (2018). We analyze localization errors (LEs) and visualize
both correlation and DTW-based distance maps for studying
possible reconstruction ambiguities.

Finally, we performed clinical evaluation and comparison
of both techniques using isolated univentricular left and right
ventricular (RV and LV, respectively) pacing in 10 patients (n =
10) with previously implanted CRT devices. For the first time,
we quantitatively estimate performance of FRA and time warping
applied to FRA-generated BSPMs on the CRT patients.

2.1. Source Model and Fastest Route
Algorithm (FRA)
In this study equivalent dipole layer (EDL) is used. For
equal anisotropy ratios in intra- and extracellular electrical
conductivity tensors the cardiac current sources were shown to
behave like an EDL (Geselowitz and Miller, 1983; Yamashita and
Geselowitz, 1985; Geselowitz, 1989). The EDL has an orientation
normal to the heart surface, encompassing both endo- and
epicardium, and is proportional to the surface transmembrane
potentials (TMP) (van Oosterom and Jacquemet, 2005; van Dam
et al., 2009a,b).

Furthermore, this source model allows a linear relationship
between the TMP and BSPMs given by a transfer (also known
as forward, or lead-field) matrix A, which depends solely on the
volume conductor model. For the depolarization phase, when
the cardiac cells can be assumed to be either at rest or activated,
electrical activity of the heart is fully described by the activation
times τ (Ex). Then, the expression for body surface potentials at
time t reads as follows (Huiskamp and Van Oosterom, 1988;
Janssen et al., 2018):

y(t) =

∫

Sh

H(t − τ (Ex))A(Ex) dEx (1)

where A(Ex) is the lead-field for Ex, i.e., the potentials generated
by an infinitesimal source at location Ex on the heart surface
dSh, and H(t) is the Heaviside step function characterizing “on”
and “off” states of the cellular activity. For the present work,
the transfer matrix A was calculated by means of the boundary
element method (BEM).

The inverse problem of ECG associated with (1) consists
in finding the depolarization (activation) times τ (Ex) on the
heart surface. Due to its intrinsic ill-posedness, this nonlinear
optimization problem has multiple local minima and is,
therefore, highly sensitive to the initial estimate (Modre et al.,
2002; Erem et al., 2014b). With this respect, the fastest route
algorithm (FRA) was reported to provide a physiologically
meaningful initialization for (1) (van Dam et al., 2009a). In
essence, FRA is a, possibly multi-foci, search, where each cardiac
node is considered as an initial focus. For computation of
the corresponding test activation sequences, a times matrix T
based on the adjacency graph of the triangulated heart mesh
is used. Although a global conduction velocity is assumed for
calculation of T, the transmural wavefront speed is set to be twice

less than those along the heart surface, which mimics cardiac
transmural anisotropy. For each cardiac node, the respective
BSPMs are compared to the measured signals on the basis of
correlation coefficient (CC), providing a correlation map on the
heart surface. The sequence resulting in the highest correlation
is taken as the initialization for (1). However, the best activation
pattern can be effectively used together with the accompanying
correlation map in order to estimate the solution uncertainty and
illustrate reconstruction ambiguities (Potyagaylo et al., 2016a;
Janssen et al., 2018).

Despite its simplicity, FRA has proven to be a robust method
delivering a physiologically meaningful solution approximation
for (multi-foci) excitation patterns (Oosterhoff et al., 2016;
Potyagaylo et al., 2016a; van Dam et al., 2016). Nonetheless, FRA
gets computational very expensive when it accounts for regions
with a local different CV. Consequently information on their
anatomical location needs to be incorporated explicitly into the
activation model given by the matrix T. In these cases, FRA
scales the global CV (0.8m/s for this work) in order to match the
QRS complex duration, which can apparently result in a distorted
CC distribution and a misleading solution. To alleviate this FRA
drawback, we propose to apply temporal warping to the test and
measured BSPMs before calculating their mismatch.

2.2. Dynamic Time Warping (DTW)
Dynamic time warping (DTW) is an algorithm for measuring
similarity between time series that may vary in velocity, even
if there were acceleration or deceleration phases in one of the
signals. We hypothesized that local CV differences reduces the
accuracy of FRA performance, which can at least be partially
compensated by the nonlinear time warping of the simulated
BSPMs in the FRA-DTWmethod.

Within the FRA formulation all test activation sequences
are linearly temporally scaled to match the reference BSPMs
duration. This results in a particular case for the dynamic time
warping, where both reference Y and test Ỹ ECG sequences have
the same length of Tms, i.e., Ỹ ,Y ∈ R

P×T with P being the
number of electrodes. Outlining the general approach, a local
distance measure c(̃y, y) between their elements is introduced
first. Each element represents body surface potentials for one
time instance recorded at P positions. In this way, we align the
whole temporal BSPMsmatrices simultaneously for all electrodes
positions. Then, a cost matrix C ∈ R

T×T is constructed by local
costs for all element pairs from Ỹ and Y . Provided C, the goal
of the DTW algorithm is to find an optimal temporal alignment
between Ỹ and Y , i.e., such an alignment that runs through the
two-dimensional matrix C along the path of the lowest total
cost. In other words, DTWminimizes the body surface potentials
mismatch by a proper reordering of the temporal indices.

More formally, a warping path p = (p1, . . . , pL) with pl =
(nl,ml) ∈ [1,T] × [1,T] and l ∈ [1, L] is defined by assigning
the elements ỹnl in Ỹ to the elements yml

in Y . While nl
and ml take the values of temporal indices, L denotes the
number of path elements which is in general greater than the
sequences’ length T. This is the case when at least one element
in one sequence is matched to multiple elements in the other
sequence (Müller, 2007).
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Furthermore, a feasible warping path is specified to satisfy
some common sense observations: boundary, monotonicity and
step size conditions have to be met. The boundary condition
means that the first index from the first sequence must be
aligned with the first index of the second sequence (and possibly
following indices), i.e., p1 = (1, 1). Furthermore, the last index
of the first sequence must be aligned with the last index of the
second one (and possibly previous indices), i.e., pL = (T,T). The
monotonicity condition applies to both positional arguments of
p: n1 ≤ n2 ≤ . . . ≤ nL andm1 ≤ m2 ≤ . . . ≤ mL and reflects the
requirement of a proper time progression. The third condition
restricts the step size in each index: pl+1 − pl ∈ (1, 0), (0, 1), (1, 1)
for l ∈ [1, L − 1], meaning that every index in both arrays must
get a pair from the other sequence.

Under these conditions, the total cost function cp(Ỹ ,Y) is
formed by a sum of distances between elements from Ỹ and Y
with the path indices (nl,ml):

cp(Ỹ ,Y) =

L∑

l=1

c(̃ynl , yml
) =

L∑

l=1

c(Ỹ(:, nl),Y(:,ml)) (2)

and the DTW algorithm minimizes the total cost among all
feasible paths (Müller, 2007):

cp∗ (Ỹ ,Y) = min
{
cp(Ỹ ,Y) | p is a warping path

}
(3)

Obviously, the number of all possible paths cp through a
two-dimensional grid C is very large. In order to reduce the
computational complexity, we used a dynamic programming
algorithm for calculating the optimal path p∗. For this purpose,
the accumulated cost matrix D ∈ R

T×T is introduced as follows:

D(n,m) = cp∗ (Ỹ(:, 1 : n),Y(:, 1 :m)) (4)

The matrix D contains optimal costs for all temporal
subsequences in Ỹ and Y and its element D(T,T) is equal
to the optimal cost function value cp∗ (Ỹ ,Y). Furthermore, it can
be shown that the matrix elements satisfy the following identity
(Müller, 2007):

D(n,m) = min
{
D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)

}

+ c(̃yn, ym) (5)

Extending the matrix by an additional row and column and
settingD(0, :) = D(:, 0) = ∞ andD(0, 0) = 0 facilitates recursive
calculation of D.

Provided the accumulated cost matrix D, an optimal warping
path p∗ = (p1, . . . , pL) is computed in the reverse manner by
starting from the index pL = (T,T):

pl−1 =





(1,m− 1), if n = 1

(n− 1, 1), ifm = 1

argmin
{
D(n− 1,m− 1),

D(n− 1,m), D(n,m− 1)
}

otherwise

(6)

Apparently, the optimal warping path depends on the choice of
a cost function c(̃ynl , yml

) being the only algorithm’s parameter.
For this study, we used the euclidean norm as the distance
function, i.e., c(̃ynl , yml

) = ‖̃ynl − ỹml
‖L2 . Similar to Giffard-

Roisin et al. (2018), both test and measured BSPMs signals were
normalized beforehand in order to reduce the influence of torso
inhomogeneities on the ECG amplitude. To this end, we scaled
all BSPMs signals column-wise by subtracting the mean and
component-wise scaling to unit variance (preprocessing scale
function from sciki-learn (Pedregosa et al., 2011) was used). For
a pseudo-code of the employed inverse pipeline the reader is
referred to the Appendix A.

Same as within standard FRA methodology, for each cardiac
node we computed the corresponding test activation sequence
and the associated test BSPMs. Then, each test BSPMs sequence
in pair with the reference BSPMs were temporally warped
by computing the optimal path cost (3). As minimizing the
cost function cp in (3) is equivalent to maximization of 1/cp,
for the sake of consistency with the standard FRA approach
searching for the maximum correlation, we used the reciprocal
(or inverse) distance function 1/cp for visualization. Calculated
for test BSPMs relating to each cardiac node, the obtained
reciprocal distances 1/cp can be displayed on the heart surface.
By analogy with the FRA-based correlation maps, the resulting
inverse distance maps can be employed as an uncertainty
quantification tool.

2.2.1. Simplified Simulation Case of Slow CV Area
First, we provide a simulation example based on a realistic
human geometry. For the considered heart mesh, the activation
times matrix T was computed as utilized by FRA. Next, a node
on the lateral LV wall was selected to be the ectopic focus,
the one to be noninvasively localized . Additionally, a region
with 20 mm radius about 60 mm from the selected focus in
which the CV was reduced by a factor of three. According
to this modification in CV, the activation times were created,
see Figure 1A. The corresponding BSPMs from this activation
sequence was computed. For both FRA and FRA-DTW the
unaltered times matrix T was used. For FRA the correlation map
was used to estimate the focus, for FRA-DTW the reciprocal
distance as similarity measure was used. In Figure 1B, the FRA-
based correlation map is visualized together with the true and
localized origins shifted by 31 mm in the direction opposite to
the location of the slow CV area relative to the reference focus.
In contrast to that, the nonlinear temporal warping was able to
account for this modeling error, which is reflected in the exact
onset reconstruction provided by the inverse cost map shown
in Figure 1C.

To illustrate temporal warping of the ECG signals, the ECG
channel with the lowest correlation (88%) is shown. Figure 2A
depicts both reference and test signals together with their
nonlinear alignment, whilst Figure 2B visualizes the optimally
warped signals. As mentioned previously, the duration of an
optimal warping path cp∗ is generally larger than the signals’
length due to the fact that multiple elements of one sequence can
be aligned with the same element of the other one. Obviously,
no temporal shifts can compensate for amplitudes mismatch due
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FIGURE 1 | (A) Modified ectopic excitation sequence starting from the node marked by the white marker with the reduced CV in the area centered at the black dot

and enclosed by the black line. (B) Correlation map generated by the standard FRA with the reconstructed onset marked by the black point. It is worth noting that a

relatively large area exhibits upper percentile of the high correlation coefficient values, implying higher solution ambiguity and, thereby, weakening the prediction

(C) Distribution of the DTW-based inverse distance function (dimensionless due to the ECG scaling). The black point overlaps the reference origin, meaning that the

temporal warping could account for the excitation delay and resulted in the exact inverse localization. Notably, only a few heart nodes corresponded to the upper

percentile of the inverse distance.

to a complex nonlinear relationship (1) connecting activation
times on the heart to the body surface potentials. However, the
difference in a local conduction speed was accounted for by the
warping function.

2.3. Realistic Simulations of Ectopic
Excitation
After the proof-of-concept provided by the manually constructed
and, certainly, oversimplified simulation case, we conducted
a comparison between FRA and FRA-DTW and evaluated
performance of the latter for realistic excitation patterns. For
this study eight ectopic activation sequences presented in Janssen
et al. (2018) were used.

In short, the excitation propagation patterns were simulated
with the monodomain model and the BSPMs were then
generated for a realistic finite-element volume conductor with
an anisotropic heart model. In Janssen et al. (2018), the authors
investigated the influence of bidomain conductivity tensors in
the forward modeling on the quality of inverse reconstructions
obtained with the EDLmodel. In the present work, only the most
realistic case is considered, the model with unequal anisotropy
ratio in the intra- and extracellular spaces.

In Janssen et al. (2018) FRA was used to compute an initial
estimate for solving the subsequent NLLS (1). As the final
solution was shown to heavily depend on the initialization, the
goal of this study was to determine, whether the FRA with
incorporated temporal warping is able to provide an improved
estimate compared to its standard version. The focus locations
considered for this study listed: “two foci on both sides of the
septal wall, two left ventricular free wall foci, two foci on the right
ventricular free wall, and two beats originating from a basal part
of the ventricles close to the septal wall” (Janssen et al., 2018).

2.4. Clinical Data
The implanted biventricular pacemaker leads position are exactly
known from CT scans, providing ideal ECGI validation data

for single paced activation sequences from the LV and RV for
each patient. Therefore, we enrolled in this study 10 patients
(n = 10) from 54 to 70 years (median 65; 25–75% range 59–
64; 8 male) with previously implanted CRT devices. Among
them nine patients had a left bundle branch block (LBBB) QRS
morphology of the intrinsic rhythm, and seven of them had a
LV scar with low conduction velocity zones after myocardial
infarction. These LV zones were not taken into account in the
inverse procedure.

The study was reviewed and approved by the Ethical
Committee of Almazov National Medical Research Center
in Saint Petersburg, Russia. Written informed consent was
obtained from each patient after detailed description and
explanation of the study before the procedures. This single-
center cross-sectional study was performed in accordance with
the Good Clinical Practice guidelines and Helsinki declaration
for biomedical research.

2.4.1. ECG and CT Data
A total maximum number of 240 body surface electrodes
were applied on the patient’s torso and connected to the
multichannel Amycard 01C EP system ECG amplifier (EP
Solutions SA, Switzerland). CRT device in each patient was
programmed and continuous ECGs of isolated RV/LV pacing
from implanted leads at rate not more than 90 bpm were
recorded during 10 sec. The pacing amplitude and duration
were selected individually based on the originally established
parameters of the CRT device. The original parameters were
set up 2–3 months prior to the procedure during a regular
check-up based on standard criteria in the clinical practice.
According to the results of an automatic threshold test in
the CRT device, the minimal spike amplitude and duration
have been selected to have stable effective capture during
RV and LV pacing. All measurements were performed during
breath hold. Immediately after recording of the multichannel
ECG, all patients underwent cardiac CT imaging with applied
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FIGURE 2 | (A) ECG signals from the reference BSPMs, which was computed from the activation sequence with locally modified CV value, and the test BSPMs

generated by the standard FRA under the assumption of a global CV. The signals differ only on the time interval corresponding to the wavefront passing through the

low CV region. (B) Temporally warped ECG sequences with the path length L.

body surface electrodes. The obtained CT data was imported
into Amycard 01C EP system software in DICOM format to
reconstruct polygonal meshes of the torso, lungs and detailed
epi-endocardial ventricular heart models based on the semi-
automatic segmentation.

2.4.2. Anatomical Models
For our inverse calculations, a piece-wise heterogeneous volume
conductor model was used with thorax, lungs and ventricular
blood masses as regions with an electrical conductivity deviating
from that of the torso. Following the guidelines commonly
accepted in the ECGI community, the assigned electrical
conductivity values were 0.6, 0.04 and 0.2 Sm/m for bloodmasses,
lungs and ventricles, respectively (see e.g., Modre et al., 2002;
van Dam et al., 2009a).

2.4.3. Quality Metrics
In order to estimate the inverse routine performance, the
distances were computed between the known pacemaker
locations and noninvasively identified earliest excitation sites. All
estimated LV and RV pacemaker lead positions were localized for
the epi- or endocardial heart surfaces, respectively. The geodesic
distance was considered as a more reliable quality measure
for curved surfaces, and for endocardial solutions separated
from a pacemaker by the septal wall. As a supplementary
metric targeting the misclassified ectopic origins, we analyzed
whether the overall earliest activation site was found on the
same (endo- or epicardial) cardiac surface as the corresponding
pacemaker lead.

In addition, we performed a bias-corrected and accelerated
bootstrap analysis (in accordance to Efron and Tibshiran
correction) in order to check the stability, variability, and
robustness of the estimated ECGI accuracy and provide
more confidence to the results of this study. We used 2.5
and 97.5 percentile interval for the calculation of the 95%
confidence intervals for reference limits in all continuous

TABLE 1 | Localization error for the realistic ectopic simulations.

Activation pattern Localization

error FRA, mm

Localization

error FRA-DTW, mm

Left side of septum (1) 0 0

Right side of septum (2) 11 7

Base LV near septum (3) 15 0

Base RV near septum (4) 18 4

LV epicardial free wall (5) 20 14

LV endocardial free wall (6) 12 19

RV endocardial free wall (7) 6 6

RV epicardial free wall (8) 14 7

variables. Bootstrap was performed with 1,000 replications
for each variable with a Mersenne twister as a random
number generator.

3. RESULTS

3.1. ECGI for Realistic Simulations of
Ectopic Excitation
A summary of LEs delivered by both FRA and FRA-DTW for
the considered eight excitation patterns is shown in Table 1. The
order of appearance is the same as in the original work (Janssen
et al., 2018). As seen from the table, temporal alignment of the
FRA-simulated test BSPMs resulted in lower LEs in seven cases.
In Figure 3 shows the correlation maps obtained with FRA and
inverse distance maps yielded from subsequent time warping
for the excitation patterns 3 and 6. Although for pattern 6 the
localization error from FRA-DTW is slightly higher than that of
FRA, the focus was still correctly classified to originate from the
endocardial wall.
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FIGURE 3 | ECGI results for realistic simulated patterns 3 and 6. For pattern 3, the combination of FRA with subsequent time warping exhibited the highest error

decrease from 15 to 0mm. For this activation sequence, the onset reconstructed by FRA-DTW and marked by the black point coincides with the true focus. Pattern 6

was the only case among the considered eight, where the localization error provided by FRA-DTW was higher than that from the standard FRA.

3.2. ECGI of Single Pacings in CRT Patients
The main accuracy characteristics are provided in Table 2. For

all 10 patients, median (25–75% range) accuracy for FRA was

16 (8–23)mm and 5 (2–10)mm for FRA-DTW algorithm. The
median accuracy for FRA in the LV was 15 (11–25)mm and
8 (3–13)mm for FRA-DTW algorithm, while in the RV the
values were 19 (6–23)mm for FRA and 4 (2–8)mm for FRA-
DTW. There was a significant difference in accuracy values
calculated with FRA and FRA-DTW algorithms for LV, RV, and
both LV and RV, which is shown in Figures 4A–C. It can also be
seen from Figures 5A,B displaying the histograms that represent
overall accuracy distributions for both algorithms. 95% bootstrap
confidence intervals were also more narrow for LEs based on
FRA-DTW compared to FRA algorithm. Furthermore, FRA-
DTWwas able to detect the correct (epi / endo) surface of an early
activation for all LV pacings and one RV, whereas FRA detected
the correct surface in four LV cases and wrongly associated all
RV paced sequences to the epicaridal part of the heart surface
(Figure 6). However, there was no significant difference in this
accuracy feature between the RV and LV in every algorithm.
For two patients, FRA-DTW resulted in a lower localization
error in the RV septum compared to FRA. The LEs were
reduced from 20–8 mm to 9–3 mm, respectively. Exemplarily,

performance results from both methods for the cases featuring
maximal and minimal LEs in the RV and LV are displayed
in Figure 7.

4. DISCUSSION

In the presented work, the fastest route algorithm (FRA) was
modified to account for local differences in conduction velocities.
The dynamic timewarping formatching simulated andmeasured
BSPMs proved to increase robustness and accuracy of FRA. The
improvements were shown both in simulation data as well as
in a small CRT patient population with known inhomogeneous
conduction velocity within the ventricular myocardium.

As within the standard FRA-based inverse procedure
(van Dam et al., 2009b), for each cardiac mesh node activation
sequences are generated with FRA, and the corresponding
simulated test BSPMs are computed for a patient specific
volume conductor model. Then, instead of correlation-based
comparison between simulated and measured ECGs, the signals
are temporally warped on the basis of an associated cost, or
distance, function. To evaluate possible benefits of the warping
step, we benchmarked this strategy against the CC-based FRA
routine in three scenarios.

Frontiers in Physiology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 183138

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Potyagaylo et al. ECG Adapted Fastest Route Algorithm

TABLE 2 | Main characteristics of ECGI accuracy for FRA and FRA-DTW algorithms. m, mean; SD, standard deviation; M, median; LQ, lower quartile; UQ, upper quartile;

min, minimum; max, maximum, ratio of correctly detected early activation site’s surface-R (in percents). For the localization error characteristics, 95% bootstrap

confidence interval (CI) is provided in parentheses.

Accuracy features, mm

(95% bootstrap CI)

LV RV LV + RV

FRA FRA-DTW FRA FRA-DTW FRA FRA-DTW

m 17 (12–22) 8 (5–12) 16 (10–22) 4 (3–6) 17 (13–21) 6 (5–9)

SD 9 (3–11) 6 (4–8) 10 (6–12) 3 (2–4) 9 (7–11) 5 (3–7)

M 15 (12–23) 8 (3–13) 19 (6–24) 4 (2–8) 16 (10–22) 5 (3–9)

LQ (25%) 11 (7–15) 3 (1–9) 6 (3–20) 2 (1–4) 8 (2–14) 2 (1–4)

UQ (75%) 25 (14–33) 13 (7–20) 23 (18–31) 8 (4–9) 23 (18–31) 10 (6–14)

min 7 1 3 1 3 1

max 33 20 31 9 33 20

R 40 100 0 10 20 55

FIGURE 4 | Box and whisker plots of LEs for FRA and FRA-DTW for the LV (A), RV (B), and all considered pacings (C). The Wilcoxon signed-rank test was performed

to compare localization accuracy provided by the two ECGI algorithms. A p < 0.05 was considered as statistically significant due to the relatively small sample size.

FIGURE 5 | Histograms of LEs for the LV (A), and RV (B) pacings. The curves represent fitted normal distributions.
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FIGURE 6 | Histograms of the epi-endocardial early activation site’s surface identification in the LV (A) and RV (B).

FIGURE 7 | ECGI results for single pacings in CRT patients: FRA based CC maps (A) and FRA-DTW based inverse distance maps (B). The white dot marks a

pacemaker lead position projected on the cardiac surface, while the black point labels the reconstructed excitation origin. In the cases of minimal LEs for both LV and

RV (first and third columns), the FRA-DTW method localized the onset at the same mesh node as the pacemaker lead. The accuracy of FRA was 8 and 16mm,

respectively. The cases, featuring maximal LEs for FRA-DTW, resulted in 16 and 16mm for FRA.

First, FRA-DTWwas able to correct the localization error due
to slower CV in a small heart region for a simple simulation case.
Though this construct was purely artificial and did not represent
a physiologically meaningful simulation, it served as a proof-of-
concept that the excitation delays can be accounted for by BSPMs
warping in the temporal domain.

In the next model-to-model comparison, the LEs were on
average reduced by 5 mm when using the DTW-FRA algorithm
vs. the standard FRA algorithm (Table 1). Previously, the authors
examined three setups with respect to cardiac anisotropy used
in the forward modeling: isotropic model, anisotropic model
with equal anisotropy ratios in the extra- and intracellular
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spaces and an unequal anisotropy ratios case. For our purpose,
we compared FRA to its warping modification only for the
most realistic case of BSPMs produced by an anisotropic heart
with unequal anisotropy ratios in the extra- and intracellualr
domains. For seven cases, FRA-DTWperformed similar or better
than the original FRA. For a focus on the endocardial LV
wall, FRA-DTW correctly identified endocardium as the onset
origin, but resulted in a higher localization error compared
to FRA. However, the ambiguity area, which can be taken
as a region exhibiting the upper percentile of a similarity
measure, was generally smaller for the reciprocal distance maps
delivered by FRA-DTW method compared to the FRA-based
CC maps.

Finally, we applied both methodologies to twenty paced
activation sequences in ten CRT patients. The Wilcoxon non-
parametric test suggested superior performance of FRA-DTW,
yielding p = 0.0076 and 0.038 for LV and RV pacings,
respectively. Importantly, the warping step improved localization
accuracy for two cases with RV leads implanted in a septal
area. An interesting aspect of all FRA related methods is
the automatic detection of an early activation zone, which
usually requires an additional sophisticated post-processing
step for potential-based ECGI solutions (Duchateau et al.,
2017). At the same time, both methods suffered from a low
classification rate with respect to the correct cardiac surface
for the RV pacings. We believe this issue to be due to the
limited thickness of the RV wall, as no significant association
was found between clinical characteristics, pacing modalities,
number of body surface electrodes on one side and ECGI
localization accuracy on the other. This fact can be considered
as an indirect representativity evidence of the original clinical
data set. We performed a bootstrap analysis for a robuster
estimation of the obtained LEs because of a relatively small
original sample size with the unknown distribution parameters
in accordance to recommendations from Adèr (2008). In
addition, bootstrap allowed us to use a resampling approach to
mimic the process of obtaining new data sets, so that we can
evaluate the variability of our assessment without generating
additional samples. The bootstrap analysis showed that LE
variability was significantly lower for the FRA-DTW algorithm,
indicating its greater robustness against outliers. The bootstrap
also helps to estimate LEs in the population, making results more
predictable for clinical work. Furthermore, univentricular LV
and RV pacings are the optimal ECGI validation data for single
ectopic activation sequences. Thus, obtained results show the
potential of the proposed methodology to significantly improve
noninvasive detection of focal arrhythmia sources in clinical
practice (Duchateau et al., 2018).

However, despite these promising results, it remains unclear
how to relate an optimal warping path to the actual excitation
in the heart. With this respect, we intend to perform further
research by adding the optimization step in solving the
NNLS problem using both initializations. FRA procedure in
combination with time warping could compensate for the
uniform excitation assumption of FRA. An example of explicit
scar removal from the heart geometry for the EDL inverse
model was presented by Oostendorp et al. (2002). Sapp et al.

showed that the quality of potential-based ECG imaging
of epicardial pacing sites in ventricular tachycardia patients
deteriorates over myocardial scar or slowly conducting tissue
(Sapp et al., 2012). Interestingly, the data from this study was
recently reused by Zhou et al. investigating performance of
a data-driven Bayesian method (Zhou et al., 2018). Though
overall LEs were reduced by this novel approach, its accuracy
was still suffering in cases when a pacing was performed
in the scar region. These observations suggest potential
improvements from combining ECGI in general, and FRA or
other model-based approaches in particular, with anatomical
substrate information.

Nonetheless, even in the absense of the underlying substrate
data, ECGI was reported to provide important insights on
the electrical excitation in CRT patients with varied LV
pathology (Jia et al., 2006). A recent study by Bear et al.
further demonstrated the ability of ECGI to accurately detect
electrical dyssynchrony and identify the latest activation
site with 9.1 ± 0.6 mm in Langendorff-perfused pig hearts
(Bear et al., 2018). As a representative of model-based
approaches, an offline created database of realistic forward
simulations with different EP setups was shown to facilitate
estimation of clinically relevant parameters, such as pacing
configuration and CV profile (Giffard-Roisin et al., 2018).
Such an offline strategy aiming at the real-time performance
is computationally efficient, whilst enjoying an essential
extensibility with every suitable clinical case. Our future
efforts will be focused on deploying imaging modalities
together with personalized biophysical computer models and
ECG imaging.

5. CONCLUSIONS

In this work, we quantitatively assessed FRA performance
on CRT patients. An important enhancement of the FRA
method, a temporal warping of FRA-generated BSPMs
sequences, was introduced. Using FRA-DTRW reduced the
LE by approximately a factor of two, demonstrating a significant
accuracy improvement for clinical data of CRT patients with a
complex etiology.

6. LIMITATIONS

Evaluation of ECGI accuracy using CRT devices is intrinsically
limited to the LV lateral wall, RV apex and septum, while
other anatomical regions cannot be tested in the same
manner. For drawing clinically relevant conclusions, another
study with a larger sample size should be considered for
a detailed representativity evaluation of the data used. The
presented bootstrap analysis models potential outcomes of
such a study and, therefore, serves as a reference point for
future investigations.

The lack of late gadolinium enhancement MRI data
in patients with previous myocardial infarction did not
allow us to quantify the influence of this factor on the
tested algorithms.
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A. APPENDIX: PSEUDO-CODE FOR
EMPLOYED PIPELINE

Some datasets of ventricular ectopic excitation, though simulated
with a cellular automaton, could be found on the open ECGI
validation platform EDGAR. For dynamic time warping, the
authors used a Python implementation available under https://
github.com/pierre-rouanet/dtw. The fastest route algorithm is
based on Dijkstra’s shortest path routine, for which multiple
numeric realizations are freely available.

To systematize the inverse processing flow applied, we provide
its pseudo-code in the following:

Algorithm 1 *

Inverse distance map 1/cp calculation

Input: BSPMs matrix Y , transfer matrix A, functions FRA and
DTW
[m, n] = size(A)
cp = zeros(n, )
Y = (Y − mean(Y , axis = 0))/std(Y , axis = 0)
z-normalization of each BSPMs column
for i = 1, . . . , n do

τi ← FRA(i) FRA-based activation times due to the onset
at the cardiac node i
Ỹ = A ∗ TMP(τi) test BSPMs due to cardiac node i using
formula (1)
Ỹ = (Ỹ −mean(Ỹ , axis = 0))/std(Ỹ , axis = 0)
disti, pi ← DTW(Ỹ ,Y)
the optimal path pi itself is not further used
cp(i) = disti

end for

return 1/cp
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The electrocardiographic imaging (ECGI) inverse problem highly relies on adding

constraints, a process called regularization, as the problem is ill-posed. When there

are no prior information provided about the unknown epicardial potentials, the Tikhonov

regularization method seems to be the most commonly used technique. In the Tikhonov

approach the weight of the constraints is determined by the regularization parameter.

However, the regularization parameter is problem and data dependent, meaning that

different numerical models or different clinical data may require different regularization

parameters. Then, we need to have as many regularization parameter-choice methods

as techniques to validate them. In this work, we addressed this issue by showing that

the Discrete Picard Condition (DPC) can guide a good regularization parameter choice

for the two-norm Tikhonov method. We also studied the feasibility of two techniques:

The U-curve method (not yet used in the cardiac field) and a novel automatic method,

called ADPC due its basis on the DPC. Both techniques were tested with simulated

and experimental data when using the method of fundamental solutions as a numerical

model. Their efficacy was compared with the efficacy of twowidely used techniques in the

literature, the L-curve and the CRESO methods. These solutions showed the feasibility

of the new techniques in the cardiac setting, an improvement of the morphology of the

reconstructed epicardial potentials, and in most of the cases of their amplitude.

Keywords: inverse problem, Tikhonov, regularization, electrocardiography, MFS, ill-posed, ECG, body surface

potentials

INTRODUCTION

Cardiovascular diseases causes 17.9 million deaths every year, accounting for 31% of all global
deaths. Electrocardiographic imaging (ECGI) is a non-invasive technique that reconstructs
epicardial potentials and epicardial activation maps by combining body surface measurements
with respective epicardial and body geometries. In a recent manuscript comparing the non-invasive
ECGI with prior invasive techniques (Duchateau et al., 2018), the authors summarized the use of
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ECGI in different pre-clinical and clinical settings. While
(Duchateau et al., 2018) highlights the favorable outcome
of ECGI for treatment response prediction of cardiac
resynchronization and ablation guidance for atrial fibrillation
and ventricular tachycardia; it also states the need of further
work on the ECGI inverse problem to improve its accuracy.

The ECGI inverse problem of computing epicardial potentials,
8E, from the body surface measured potentials, 8T , (MacLeod
and Brooks, 1998; Ramanathan et al., 2004; Oostendorp et al.,
2011; Wang et al., 2011; Oosterom van, 2012; Haissaguerre
et al., 2013; Rudy, 2013; Cochet et al., 2014; Dubois et al., 2015;
Shah, 2015) is an ill-posed problem (MacLeod and Brooks, 1998;
Milanič et al., 2014; Cluitmans et al., 2015; Shah, 2015; Figuera
et al., 2016). By introducing additional information, by using
regularization techniques, we can overcome this ill-posedness
(MacLeod and Brooks, 1998; Milanič et al., 2014; Cluitmans et al.,
2015; Shah, 2015; Figuera et al., 2016).

Two recent manuscripts (Milanič et al., 2014; Figuera
et al., 2016) studied the performance of different regularization
techniques and concluded that due to the little differences among
the more than 13 techniques used in each study, the most
likely method to solve the ECGI problem in absence of prior
information about the epicardial potentials was the two-norm
Tikhonov regularization technique.

The two-norm Tikhonov regularization method (from now
on referred to as Tikhonov) constrains the solution to be
smooth or to have a small signal energy resolution. The
Tikhonov regularization parameter weights the residual norm
against the solution norm. Its role is to find a balance between
solutions based on the body surface potential measurements
and solutions that are constrained too much. Parameter-choice
methods therefore became very data dependent (Hansen, 2010).
Finally, regularization parameters that may perform well for
a determined numerical model, may perform poorly when
changing key factors of the model, such as the discretization
or the boundary conditions (Hansen, 2010; Chamorro-Servent
et al., 2016a,b). Then, for solving different clinical problems
(different data) and different numerical models, it is preferable
to have several automatic parameter-choice algorithms available
(Hansen, 2010; Chamorro-Servent et al., 2016a,b).

In many cases, the regularization parameter, α, from
the Tikhonov method is selected manually. This is done
by subjectively choosing the value that provides the best
results from a sequence of regularization parameters. The
procedure becomes user dependent and time consuming
and less likely reproducible. Several automatic methods
have been suggested to overcome this problem. These
include: (i) Strategies requiring prior knowledge of the
noise (such as unbiased predictive risk estimator method, the
discrepancy principle method, or the normalized cumulative
periodogram), and (ii) strategies that do not need a priori
information (such as zero-crossing method, Composite
Residual and Smoothing Operator, L-curve, generalized cross-
validation) (Hansen, 2010). For the ECGI, we will focus on
the latter. In addition, from this latter group, we will focus
on regularization parameter-choice methods that can easily
be extended to the new goals (i.e., methods that not only

consider information about the residual norm but also about
the solution norm). This choice is due to the recent interest
in improving the ECGI inverse solution by introducing
physiological-based prior information on the regularization
term (Figuera et al., 2016; Duchateau et al., 2018).

The automatic regularization parameter-choice method
previously used in the ECGI literature, when using the
method of fundamental solution (MFS) (Rudy, 2004;
Wang and Rudy, 2006), without prior information, is the
Composite Residual and Smoothing Operator (CRESO)
technique (Colli-Franzone et al., 1985). The CRESO method
has been found to provide the minimum root-mean-
square error (RMSE) between the computed epicardial
potentials (8E) and the measured ones (Rudy, 2004).
When other numerical models were used to solve the
ECGI problem (such as the Boundary Element method),
the community has commonly used the L-curve method
to find the regularization parameter (Milanič et al., 2014;
Cluitmans et al., 2015; Figuera et al., 2016).

Both the CRESO and the L-curve methods have shown
efficacy in the wide inverse problems’ bibliography (Ruan
et al., 1999; Rudy, 2004; Wang and Rudy, 2006; Hansen,
2010; Milanič et al., 2014; Cluitmans et al., 2015; Figuera
et al., 2016). However, it becomes challenging to find an
automatic regularization parameter-choice method for
Tikhonov regularization that is suitable for all ill-posed
inverse problems (Hansen, 2010). The CRESO and the L-
curve techniques may require a priori information and/or
manual adjustment (Rudy et al., 2006), due to an over-
regularization of the solution. In addition, the convergence
of the L-curve has failed in some cases, when the generalized
Fourier coefficients of the data decayed at the same rate
or a lower rate than the singular values (SVs) of the
operator (Vogel, 1996).

PC Hansen showed that a necessary mathematical condition
for the existence of a meaningful solution for Tikhonov
regularization is the Discrete Picard Condition (DPC) (Hansen,
1990, 2010). DPC says exactly that “a good regularization
parameter avoids SVs decaying to zero faster than the respective
Fourier coefficients of the data.” The DPC has been used as
a visual verification tool when studying the suitability of a
regularization parameter for Tikhonov in several fields (Hansen,
1990, 2010; Chamorro-Servent et al., 2011), including ECG
(Greensite et al., 1998). However, to the best of our knowledge
an automatic DPC-based method does not exist yet.

Finally, the U-curve method has been introduced to overcome
some drawbacks caused by the L-curve method in other fields
(Krawzyck-Stando and Rudnicki, 2007; Chamorro-Servent et al.,
2011; Chen et al., 2016), such as: (i) its non-convergence, (ii)
the over smoothing of its solution, (iii) its lack of computational
robustness when dealing with large scale problems. The L-curve
computational cost has already been questioned in the ECGI
setting (Figuera et al., 2016).

The target of this paper is to show the feasibility of
the U-curve method, never used in the cardiac inverse
problem setting, and to develop a new automatic DPC-
based method, named ADPC. Both techniques are validated
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when using the MFS with simulated and experimental
data. Their efficacy (in terms of amplitude and morphology
preservation of the reconstructed potentials and dV/dT
patterns) is compared with the existent L-curve and
CRESO methods.

As a first step, we present the MFS and the Tikhonov
regularization method, we summarize the role of the
DPC in the Tikhonov regularization, and we introduce
the different regularization parameter-choice methods.
Afterwards, we describe the in-silico and experimental data,
as well as the statistical analysis performed to compare the
results. Later, we summarize the main results obtained.
Finally, we draw conclusions and discuss the issues and the
limitations raised.

METHODS

The Method of Fundamental Solution (MFS)
and l2-Norm Tikhonov Regularization
In the MFS (Wang and Rudy, 2006), the potential expression
is defined as a linear combination of the Laplace fundamental
solutions over a discrete set of virtual source points. The
necessary virtual source points are located outside of �, where
� is the domain of interest, specifically the volume conductor
enclosed by the body surface (ΓT) and the epicardial surface
(ΓE) . The potential 8 for xǫ� is stated as 8(x) = a0 +∑NS

j=1 f
(∣∣x− yj

∣∣) aj, where the
(
yj

)
j=1..NS

are the NS fixed

locations of the virtual sources points
(
yj /∈ �

)
, and the(

aj
)
j=1..NS

are their respective coefficients. Here, f stands for

the Laplace fundamental solution, f
(
x, yj

)
= 1

4πr , where

r =
∣∣x− yj

∣∣ is the 3D Euclidean distance. The NS =

NT + NE virtual sources locations are fixed by deflating
the

(
xEi

)
i=1,2,··· ,NE

locations at ΓE (by a numerical factor

0.8) and inflating the
(
xTi

)
i=1,2,··· ,NT

electrodes locations at

ΓT (by a factor 1.2), relatively to the geometrical center of
the heart. This deflation and inflation schemes are based
on (Wang and Rudy, 2006).

The potentials on ΓE , 8E =
(
8

(
xEi

))
i=1,··· ,NE , can be

also expressed by the equation above as 8
(
xEi

)
=

a0 +
∑NS

j=1 f
(∣∣xEi − yj

∣∣)aj, where the only unknowns are

the coefficients of the virtual sources
(
a0, a1, · · · , aNS

)
. Such

coefficients are found in (Wang and Rudy, 2006) by imposing on
ΓT the Dirichlet (8 = 8T) and the zero-flux or homogeneous
Neumann (∂n8 = 0) boundary conditions in an equivalent
weight. This is done by using potential definition and the values
of its normal derivatives, and it yields to solve the linear system

8

(
xTi

)
= a0 +

∑NS

j=1
f
(
|xTi − yj|

)
aj =8T ,

∂n8

(
xTi

)
= a0 +

∑NS

j=1
∂ni f

(
|xTi − yj|

)
aj =0

where 8T = (8i)i=1,··· ,NT
are the potentials recorded on the(

xTi
)
i=1,2,··· ,NT

torso electrodes locations.

This system can be written in a matrix notation as
Ma = b, being

M =




1 f
(
|xT1 − y1|

)
· · · f

(
|xT1 − yNS|

)

...
. . .

...

1 f
(
|xTNT

− y1|
)

· · · f
(
|xTNT

− yNS |

)

0 ∂n1 f
(
|xT1 − y1|

)
· · · ∂n1 f

(
|xT1 − yNS |

)

...
. . .

...

0 ∂nNT
f
(
|xTNT

− y1|
)

· · · ∂nNT
f
(
|xTNT

− yNS |

)




,

a =
(
a0, a1, · · · , aNS

)T
ǫR1+Ns and b =




8T

0


 ǫR2NT .

Then, finding the sources coefficients (aǫR1+Ns ) results in
solving a quadratic minimization problem

J (a,α) =
1

2

∥∥Ma− b
∥∥
2

+
α2

2
‖a ‖2 ,

where α > 0 is the Tikhonov regularization parameter.
The Tikhonov solution can be defined in terms of singular

values (SV) decomposition of M (M = USVT), by equaling the
gradient of J (a,α) to zero and writing I = VVT

∇Ja (a,α) =
1

2
∇

((
Ma− b

)T (
Ma− b

)
+ α

2IaTa
)

=

(
MTM

)
a−MTb+α2Ia = 0,

aα =

(
MTM + α2I

)−1
MTb =

∑min(2∗NT,NS+1)

i=1

σ 2
i

σ 2
i + α2

uTi bvi =
∑min(2∗NT,NS+1)

i=1

σ 2
i

σ 2
i + α2

uTi b

σi
vi,

where σi are the SVs (the elements of the diagonal matrix S) in
descending order, σ1 ≥ · · · ≥ σmin(2∗NT,NS+1 ).

Once the Tikhonov regularization problem has been solved,
we can calculate the epicardial potentials, 8

(
xEi

)
.

Discrete Picard Condition (DPC)
The DPC is satisfied “if the so-called Fourier coefficients of the
right-hand side (when expressed in terms of the generalized
SV decomposition coefficients),

∣∣uTi b
∣∣, decay to zero faster

than the respective generalized SVs, σi’s.” In other words, the
regularization parameter must be used to control the undesired
high-frequency oscillations that contaminate the solution.

The Picard plot (Hansen, 1990, 2010), depicts the
∣∣uTi b

∣∣ and
σi-values against their respective quotient in a same logarithmic
scale plot.

In ill-posed problems the solution coefficients

∣∣uTi b
∣∣

σi
increase

for larger values of the index i. Hence, the computed solutions

(aα =
∑min(2∗NT,NS+1)

i=1
σ 2
i

σ 2
i +α2

uTi b

σi
vi above) are completely

dominated by the smallest SVs. In these cases, if we want
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to calculate a satisfactory solution by means of Tikhonov
regularization, the DPC must be fulfilled (Vogel, 1996; Hansen,
2010). The DPC allows to balance how well the regularized
solution approaches the unknown (i.e., the exact solution). The
σi above the regularization parameter α (useful SVs) must decay
to zero less quickly than the corresponding right-hand side
coefficients,

∣∣ uTi b
∣∣. In other words, the DPC says that an ill-

conditioned system must be regularized if a suitable solution is

to be obtained and a solution based on a vector

∣∣uTi b
∣∣

σi
that only

increases is generally not useful.

Automatic Regularization Techniques
Composite Residual and Smoothing

Operator (CRESO)
The CRESO method (Colli-Franzone et al., 1985) was presented
as a practical method but has turned out to be extensively
accepted as the preferred parameter choice-method in widely ill-
posed bioelectric inverse problems (Ruan et al., 1999). It chooses
the parameter value which produces the first local maximum of
the difference between the derivative of the regularization term
and the derivative of the residual term

C (α) =

{
d

d
(
α2

)
(
α2 ‖a (α)‖2

)
−

d

d
(
α2

)
∥∥Ma (α) − b

∥∥2 , α > 0

}

L-Curve
The L-curve has become the best-known method for assessing
a regularization parameter-value in widely ill-posed problems
fields (Hansen, 1990; Hansen and O’Leary, 1993; Ruan et al.,
1999). It is defined in terms of

L (α) =
{(∥∥Ma (α) − b

∥∥ , ‖a (α)‖
)
, α > 0

}

If we plot the L-curve, it has a L-shape and we can choose the
regularization parameter value by using Hansen and O’Leary’s
criterion (Hansen, 1990; Hansen and O’Leary, 1993). This
criterion chooses the α-value corresponding to the point of
maximum curvature on the log-log plot of the L-curve.

U-Curve
TheU-curve (Krawzyck-Stando and Rudnicki, 2007) is defined as
the log-log scale plot of the sum of the inverse of the regularized
solution norm ‖a (α)‖ and the respective residual error norm∥∥Ma (α) − b

∥∥, for α > 0

U (α) =
1

∥∥Ma (α) − b
∥∥2 +

1

‖a (α)‖2

The U-curve plot has a U-shape. The optimum regularization
parameter is the value for which the U-curve achieves its
minimum. And the sides of the U-curve correspond to the
regularization values for which either the solution norm or
the residual norm dominates. When dealing with large scale
problems, the U-curve is computationally efficient. This is
due to its a priori interval definition where the appropriate
regularization parameter is located (Krawzyck-Stando and
Rudnicki, 2007; Chamorro-Servent et al., 2011; Chen et al., 2016).

ADPC: A New Regularization Parameter

Choice Method
As mentioned previously, an optimal regularization value, α,
for Tikhonov method, when dealing with l2-norm constraints,
must fulfill the DPC (Hansen, 1990, 2010). This means that the
σi above the suitable α must not decay to zero faster than the
corresponding

∣∣uTi b
∣∣, to avoid the computed Tikhonov solutions

(aα) from being entirely dominated by the smallest SVs.
Based on the DPC, we performed an automatic regularization

parameter-choice algorithm (Figure 1):

1. We computed the SV decomposition of the MFS matrix, M,
to find the SVs (σ i) and the left singular vectors (ui).

2. For each time step, tk (ms), we calculated the log(
∣∣uTi btk

∣∣ )

and log(
∣∣uTi btk

∣∣ / σ i) and we fit both of them by two

polynomials p
(
i, log

(∣∣uTi btk
∣∣) )

tk
and q

(
i, log

∣∣uTi btk
∣∣ / σ i

)
tk

of degree from 5 to 7, where k = 1, · · · ,Nt are the time
instants. Hence, we obtained: pt1 ,··· ,ptNt and qt1 ,··· ,qtNt , two
polynomials set for each time step tk.

3. For each pair of polynomials at each time step, tk, we found:
αtk = σmax{i} (σ0 ≥ σ1 ≥ · · · ≥ σr > 0) , such that DPC
was fulfilled.

4. The suitable ADPC regularization parameter was defined as:
α = median

(
αtk

)
.

Steps two and three of this algorithm consists in the lower
limit that any suitable Tikhonov regularization value can attain
to still fulfill the DPC. Step three consists of looking for the
index i, which corresponds to the last SV, before the small
SVs coefficients start to dominate the solution. That means,
previously log (σi) starts to decrease faster than log(

∣∣uTi btk
∣∣ ).

The fitting of the log(
∣∣uTi btk

∣∣ ) and log(
∣∣uTi btk

∣∣ / σ i) by two
polynomials in step two is done to simplify the automatic
achievement of the optimal index i (in step three).

In-silico and Experimental Data
A total of sixteen datasets were used to test our algorithms, eight
in-silico data and eight experimental data. In both cases, body
surface potentials and epicardial potentials were provided.

In-silico Data
To test the effect of the new approaches described and to
compare them with previous ones, eight in-silico different
activation patterns were used (Duchateau et al., 2017). This
included, one single site pacing in the right ventricular free
wall, three single sites pacing in the left ventricular (lateral
endocardial wall, mid wall, and lateral epi) and four single
spiral waves. A monodomain reaction-diffusion model was
simulated in a realistic 3D model of the human ventricles
to mimic the propagating activation (Duchateau et al., 2017).
The Ten Tusscher et al. model for the human ventricular
myocyte (Ten Tusscher et al., 2004) was used to compute
the transmembrane ionic currents. These currents were used
to calculate the extracellular potential distribution all over the
torso, by solving a static bidomain problem in a torso mode
at 1mm resolution (Potse et al., 2009). The torso model had
heterogeneous conductivity, with anisotropic skeletal muscle,
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FIGURE 1 | Flowchart illustrating the algorithm.

lungs, and intracavitary blood. The heart model comprised of
right and left ventricles at 0.2mm spatial resolution. From the
rule-based fiber orientation derived an anisotropic conduction in
the heart model. Both, heart and thoracic anatomies were based
on MRI data (Figure 2). In-silico 8T and 8E every 1ms were
provided by these simulations.

Experimental Data
To test how much the regularization parameter-choice depended
on the datasets chosen and to facilitate later comparison with
other possible algorithms, we decided to use, in addition to
the simulated data, eight datasets from the Experimental Data
and Geometric Analysis Repository (EDGAR) (Aras et al., 2015)
hosted by the SCI Institute at the University of Utah and freely
distributed. The purpose of EDGAR is to share and collate
electrocardiological data, specifically for the validation and
advancement of ECGI problems among a worldwide consortium
of academic institutions.

In the EDGAR data used, both potentials from the body
surface and epicardial were simultaneously measured. The

data selected for this study was: Sinus rhythm and paced
beats from (i) a canine experiment (paced from the epicardial
left ventricular apex) (Aras et al., 2015; Cluitmans et al.,
2017) and (ii) from a pig experiment (Aras et al., 2015;
Bear et al., 2015). And a control and three myocardial
ischemia from a canine experiment, where the high right
atrium was paced while an occlusion to the LAD induced
ischemia (Aras et al., 2015).

In (Cluitmans et al., 2017), a computed tomography scan
was first performed to localize the electrodes and epicardial
surface, second, the body-surface potentials were recorded
with 192 electrodes simultaneously to 67 electrodes implanted
around the epicardium via a thoracotomy. In Bear et al. (2015)
epicardial electrodes were placed with a custom-made elastic
sock containing 239 unipolar silver-wire electrodes (5-to 10-mm
spacing) drawn over the ventricles, after which the thorax was
closed, and air expelled. Flexible strips (BioSemi, Amsterdam,
The Netherlands) containing 184 electrodes (30- to 45-mm
spacing) were attached to the body surface. Epicardial and
body surface potentials were bandlimited (0.05–1,000Hz) and
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FIGURE 2 | Geometries and meshes of the in-silico used data. (A) Body surface and heart geometries, and body surface mesh. (B) Heart geometry and mesh.

recorded simultaneously at 2 kHz using separate acquisition
systems (UnEmap, Auckland Uniservices Ltd, Auckland, New
Zealand and ActiveTwo, BioSemi, respectively). Magnetic
resonance imaging from the heart and thorax were acquired by
placing contrast markers on the sock and body surface strips
to localize the electrodes. Finally, the signals were temporally
aligned by identifying the onset of a short burst of square 2ms
pulses recorded simultaneously on a single channel in both
the systems.

Statistical Analysis
We computed the potentials on the epicardium for the diverse
regularization parameters choices.

Afterwards, correlation coefficients (CCs) and relative root-
mean squared errors (rRMSEs) were computed over the time
steps as specified below.

CC =

∑NL∗

i=1

(
8TEi − 8TEi

) (
8CEi − 8CEi

)
√∑NL∗

i=1

(
8TEi − 8TEi

)2 √∑NL∗

i=1

(
8MEi − 8MEi

)2

rRMSE =

√√√√√
∑NL∗

i=1

(
8CEi − 8TEi

)2

∑NL∗

i=1

(
8TEi

)2

where 8TE were the target potentials and 8CE the computed
ones. For the in-silico data, the8TE were the simulated epicardial
potentials and the 8CE the reconstructed ones at the same
NL∗ = NLE locations. In the case of the experimental data, the
8TE were the potentials measured on the heart, and 8CE the
reconstructed at the NL∗ = NLS closest epicardial locations.

Lastly, we showed the respective boxplots to allow their
comparison. For the in-silico data, we also computed the dV/dT
patterns and the correspondent correlation coefficients and the
relative root-mean squared errors. We showed them in a table
in the format [Median, (min, max)]. The highest correlation
coefficients (CC) represents the best morphology and the lowest
relative root mean-square error (rRMSE) represents the best
amplitude of the reconstructed potentials.

RESULTS

In-silico Data
Some of the effects related to the regularization parameter
choice methods for a single site pacing in the midwall left
ventricle in-silico dataset are depicted in Figures 3, 4 below.
The reconstructed potentials by the different regularization
parameter-choice methods are plotted against the in-silico
heart potentials in Figures 3A–E. Next to each subplot an
arrow marks, on the heart geometry, the location where the
potentials are shown. In addition, Figures 3F shows the DPC
plot depicting the resulting regularization parameter values on
horizontal lines.

The activation time (AT) maps for the single site pacing in the
midwall left ventricle in-silico dataset are shown in Figure 4.

Similarly, Figures 5, 6 depict the same results for a single spiral
wave with increased transverse conductivity. In addition, in the
Supplementary Material, we included the dV/dTmaps of the six
additional in-silico datasets.

We can see on both DPC plots (Figures 3F, 5F) that the
ADPC regularization parameter was chosen just before the SVs
(σ i ) start to decay faster than the respective

∣∣uTi btk
∣∣. That

moment corresponds to the moment just before
∣∣uTi btk

∣∣ /σi starts
to increase fast. If we look at the values of the solution vectors,∣∣uTi btk

∣∣ /σi , and we try to find a minimum, followed by a
significant growth in the moving average; the point where the
average grows above the minimum by a certain factor, locate the
points were the high frequencies starts dominating. It is well-
known than when high frequencies dominate, any error, artifact,
or noise will start to dominate the solution. Our regularization
parameter must therefore be chosen just before this starts
to happen.

The statistics for the eight simulations datasets are shown
on Figure 7 and Table 1. They compile the effect of the choice
of the regularization parameter, on the reconstructed potentials
(boxplots Figure 7) and on the dV/dT maps (Table 1). The
relative root-mean squared errors give an estimate of the
amplitude difference and the correlation coefficients give an
estimate of the similarity of potential patterns or electrogram
morphologies between measured and reconstructed data. We
are interested in the highest correlation coefficients (best
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FIGURE 3 | (A–E) On the right: reconstructed potentials provided by the different regularization parameters against the in-silico heart potentials. On the left: arrows on

the 3D in-silico/reference AT map correspond to the spatial heart locations where each respective potential is shown. The arrow on the 3D map of figure (C) shows

the single site pacing in the left ventricle lateral midwall. (F) DPC plot for tk = 100ms with the different computed regularization parameter values drawn as horizontal

lines. The legend included in (F) serves the respective DPC plot, as well as the (A–E) potential plots discussed in this figure.

morphology) and the lowest relative root-mean squared errors
(best amplitude). With the boxplots, we included statistics
referring to all the 501-time steps where the heart potentials
were simulated (Figures 7A,C) and the ones referring only to
the 200-time steps where the dV/dT maps were reconstructed
(Figures 7B,D). Finally, in the Supplementary Material, we
included the boxplots of the reconstructed potentials for each
individual dataset.

The L-curve provided a clearly over-regularized solution for
the singular single pacing in the right ventricle and for three of
the single spiral waves inhibiting the computation of some of the
dV/dT maps.

EXPERIMENTAL DATA

Like Figures 3, 5, the Figure 8 shows the reconstructed potentials
for the paced pig experiment referred to in section Experimental
data against the measured potentials, and the DPC with the
different regularization values chosen.

For the geometries of Figure 9A from the paced dog
described in section Experimental data, the Figures 9B–E

show: (B) the reconstructed heart potentials against
the measured ones in a marked heart point, (C) the
statistics boxplots of the correlation coefficients (CC),
(D) the statistics boxplots relative root-mean square errors
(rRMSE) and (E) the DPC plot holding the different chosen
regularization values.

The statistics boxplots for the different reconstructions
of each paced heart and sinus rhythm datasets
described in section Experimental data can be found
all separately depicted in the Supplementary Material.
Figure 10 also includes the separated statistic boxplots
for the control and the three myocardial ischemia
from a canine experiment described also in section
Experimental data.

Finally, Figure 11 compiles the statistic boxplots for the
different reconstructions of all the paced and sinus rhythm
datasets together (A,B) and the control and myocardial ischemia
together (C,D).
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FIGURE 4 | For the same dataset employed in Figure 3—three different views of the AT maps reconstructed from the heart potentials from: (A) In-silico reference

data, (B) CRESO solution, (C) L-curve solution, (D) U-curve solution, and (E) ADPC solution. RV and LV are denoted in the in-silico AT map for reference.

DISCUSSION

Two newmethods were introduced to calculate the regularization

parameter of the two-norm Tikhonov regularization method
(referred in the manuscript as Tikhonov regularization method)

when using the MFS for ECGI: The U-curve (a method never
used before in cardiac applications) and the ADPC (a new
automatic developed method based on DPC).

The reason for this study came about from the limitations
found when using the most common parameter-choice methods
(the L-Curve and the CRESO) for the ECGI MFS setting.

We focused on the introduction and validation of new
automatic regularization parameter-choice methods, combining
information not only about the residual norm but also about
the solution norm. This choice is based on the idea of later
introducing the physiologically-based prior information on the

regularization term in order to improve the ECGI inverse
problem, as shown in recent manuscripts (Figuera et al., 2016;
Cluitmans et al., 2017; Duchateau et al., 2018; Schuler et al.,
2018). To introduce the physiologically-based prior information,
regularization techniques need to adjust its solution norm
constraint on this information. We did not compare methods
that only considered the information of the residual norm
(ignoring the solution norm information), such as the cited
generalized cross validation, which also did not compute a
suitable regularization parameter when dealing with highly
correlated errors (Hansen, 1992).

The ADPC algorithm presented here provides a suitable
regularization parameter due to the behavior of the SVs of the
ECGI MFS problem (decaying slower for the higher SVs and
faster for the lower ones such as in Figures 3, 5, 8, 9). The fact
that the ADPC parameter choice is based on the necessary DPC
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FIGURE 5 | (A–E) On the right: reconstructed potentials provided by the different regularization parameters against the in-silico heart potentials. On the left: arrows on

the 3D in-silico/reference AT map correspond to the spatial heart locations where each respective potential is shown. (F) DPC plot for tk = 100ms with the different

computed regularization parameters values drawn as horizontal lines. The legend included in (F) serves the respective DPC plot, as well as the (A–E) potential plots

discussed in this figure.

fulfillment for any regularization parameter for the Tikhonov
regularization method (Hansen and O’Leary, 1993; Hansen,
2010) ensures an optimal solution for highly ill-posed problems.
In addition, the DPC plot gives us a valuable indication of the
over-regularization level of a solution. This is perfectly shown
by the location of the regularization parameters in the DPC
chart and the relationship of this location with their respective
reconstructed potentials and the dV/dT patterns (Figures 3–6).
In the first DPC plot (Figure 3F) the CRESO, the L-curve and U-
curve parameters are located fairly above the moment the SVs
start to decay faster, and this results in a wider QRS (losing
also the S-wave in most of cases) on the respective potentials
along the time plot (Figures 3A–E). The U-curve method and
notably the ADPC method seem to better localize the pacing
on the LV lateral midwall (Figure 4). In the in-silico examples
included in this manuscript and the Supplementary Material,
the L-curve method provided the most over-regularized solution.
In the cases of the single spiral wave (Figure 5), the L-curve
parameter is located even higher on the DPC plot, and it
results in an extremely over-regularized reconstruction of the
potentials along time (losing both, the morphology, and the
amplitude of the reconstructed potentials). This therefore causes
the inhibition of the computation of the corresponding dV/dT

map (data not shown in Figure 6 or highlighted in Table 1 as
NA∗). Finally, regarding the dV/dT maps in Figure 6 we can
clearly see the improvement of the ADPC solution against the
CRESO solution. The dV/dT maps of each singular simulation
dataset, reconstructed by the different methods, are included in
the Supplementary Material of this manuscript.

Regarding the single site pacing simulations statistics
(Figures 7A,B): (i) The correlation coefficients (CC) best center
tendency is achieved by the ADPC method followed by the U-
curve method. In addition, the correlation coefficients of these
two methods and specially of the ADPC, have a larger upper
spread out. While the ADPC has the smallest variability, it has
some lower outlayers in the same range where the resulting
interquartile values of othermethods vary (being the interquartile
the height of the boxes, 1st−3rd quartile). The outlayers indicate
values greater than the 1.5 interquartile ranges away from the
25th percentiles. The L-curve solution has the worst correlation
coefficients center tendency and the CRESO solution has a center
tendency similar to the U-curve, but with higher variability.
(ii) The relative root-mean squared errors (rRMSE) best center
tendency is also achieved by the ADPC method followed by
the U-curve and the CRESO method, but again the CRESO
method shows a higher variability error. The L-curve solution
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FIGURE 6 | For the same dataset employed in Figure 5—three different views of the dV/dT maps reconstructed from the heart potentials from: (A) in-silico reference

data, (B) CRESO solution, (C) U-curve solution and (D) ADPC solution. The L-curve inhibited the dV/dT map computation. RV and LV are denoted in the in-silico AT

map for reference.

also shows the worst performance in terms of relative root-mean
squared error (lowest center tendency and highest variability).
Finally, the upper outlayers from the ADPC resulting relative
root-mean squared errors are located out of the other methods
interquartile values. However, all these outlayers come from the
in-silico LV lateral endocardial data as can be observed in the
single simulations’ boxplots of the Supplementary Material.

In the case of the single spiral simulations’ statistics
(Figures 7C,D): (i) The correlation coefficients (CC) best
center tendency is achieved through the ADPC method. In
addition, its distribution is also more focused in the upper
values. However, the U-curve and the CRESO methods provide
close results for correlation coefficients for the spirals than
for the single site pacing simulations. Again, the ADPC
has some outlayers inside the other methods’ value ranges.
The L-curve solution has the worst correlation coefficient
center tendency and the highest variability, meaning that its
performance (compared with the other methods solutions) is
even worse than for the single site pacing simulations. (ii)
The relative root-mean squared errors’ (rRMSE) better center
tendency is also achieved by the ADPC method followed
by the U-curve and the CRESO methods. Here, the L-curve

method has less upper outlayers but its center tendency
(around 1) continues being the worst, and its correlation
coefficients are higher distributed and are worse than the
other methods.

In terms of the in-silico data dV/dT patterns statistics
(Table 1): (i) In the single site pacing in-silico datasets, the highest
correlation coefficients (CC) and lowest relative root-mean
squared errors (rRMSE) are achieved by the ADPC, followed by
the U-curve. The L-curve over-regularized some of the solutions
that inhibit the computation of the respective activation time
maps. (ii) In the case of the spirals in-silico datasets, the ADPC
also provided the highest correlation coefficients and the lowest
relative root-mean squared errors, followed by the U-curve.
However, differences between the ADPC, the U-curve and the
CRESOmethods here are more significant in terms of correlation
coefficients (morphology) than in terms of relative root-mean
squared errors (amplitude), where the results are closer. Finally,
the L-curve also inhibited some dV/dTmap computations for the
spirals in-silico data.

In the case of the EDGAR datasets, we found fewer differences
between the different regularization parameter choice methods
for the paced and sinus rhythm datasets (Figures 8, 9, 11A,B and
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FIGURE 7 | Boxplots of the correlation coefficients (CC) and the relative root-mean squared errors (rRMSE) between the reconstructed potentials and the respective

in-silico heart potentials: (A,B) for the single site pacing simulations, (C,D) for the spiral simulations. (A,C) for all the 501-time steps where the heart data was

simulated. (B,D) for the 200-time steps where we calculate the dV/dT maps. The red crosses denote the outlayers.

respective separated boxplots in the Supplementary Material).
However, in the case of the pig experiment described in section
Experimental data (Figure 9) we could not impose compliance
with the zero-flux or homogeneous Neumann conditions on
the MFS solutions [such as in Wang and Rudy (2006) and

the rest of the datasets of this manuscript]. This was due
to some problems encountered when computing the normal
directions for the geometries provided. In Figure 8D, we can
see that singular values start to decay faster to zero quite late
(meaning that the problem is less ill-posed than for other
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TABLE 1 | Median [min, max]% differences of (A–C) the correlation coefficients and (B–D) the relative root-mean squared errors between each reconstructed dV/dT

patterns and the dV/dT pattern resulting from the in-silico heart potentials.

(A) (B)

CORRELATION COEFFICIENTS (CC) RELATIVE ROOT-MEAN-SQUARED ERROR (rRMSE)

CRESO L-Curve U-curve ADPC CRESO L-Curve U-curve ADPC

0.7735 NA* 0.8343 0.7948 0.5006 1 0.4272 0.3780

0.7691 NA* 0.8307 0.9039 0.5801 1 0.5274 0.4395

0.7817 0.8215 0.8498 0.8961 0.6063 0.5803 0.2419 0.2009

0.8224 0.8387 0.8702 0.9091 0.3248 0.3107 0.2915 0.2665

(C) (D)

CORRELATION COEFFICIENTS (CC) RELATIVE ROOT-MEAN-SQUARED ERROR (rRMSE)

CRESO L-Curve U-curve ADPC CRESO L-Curve U-curve ADPC

0.8505 0.8317 0.8733 0.9053 0.3062 0.3187 0.2904 0.2683

0.8535 NA* 0.8704 0.8902 0.2019 1 0.1977 0.2134

0.8320 NA* 0.8531 0.8971 0.2717 1 0.1985 0.1683

0.8371 NA* 0.8386 0.8266 0.44 1 0.4654 0.321

(A,B) For the single site pacing. (C,D) From the in-silico heart potentials for the spirals. NA*, Not applicable because the computation of the dV/dT patterns is inhibited due to the

over-regularized solution provided by L-curve. The best results are highlighted in bold.

examples). This agrees with our previous work (Chamorro-
Servent et al., 2016b) where we showed that not applying the zero
flux or Neumann conditions resulted in a less ill-posed problem,
less dependent on the regularization choice. Therefore, minor
differences between applying different regularization parameter-
choices methods were found as expected in terms of the solutions
for the pig datasets. The results for these datasets are not
fully comparable with the rest of the manuscript due to this
change on the numerical MFS problem solved. Instead, the
results of Figure 9, fully comparable in terms of correlation
coefficients (CC), continues to show an improvement on the
U-curve and the ADPC solutions against the CRESO and the
L-curve. Nevertheless, the authors of these datasets specified
in their readme file that they had a un-solved issue with the
amplitude of the recorded potentials. We therefore prefer not
to draw conclusions on the resulting amplitudes (relative root-
mean squared error or rRMSE) for the canine paced and sinus
rhythm datasets. But in terms of the morphology of potentials,
the ADPC continues to be the most stable method. For the four
datasets, the ADPC keeps the potentials morphology (correlation
coefficients) comparable or better than the CRESO method (the
gold standard) does.

Finally, referring to the control and the three myocardial
ischemia datasets from the canine EDGAR experiments, the data
recorded was quite noisy, as shown in the recorded potentials
snapshot of the Supplementary Figure 10. This resulted in
poor (very high) relative root mean square errors (rRMSE).
However, this is not due to an amplitude problem of the
reconstructed potentials (see the Supplementary Material) but
due to the existent noise. Nevertheless, we can see an upper
and better central tendency from the U-curve and the ADPC
correlation coefficients (CC) compared to the other methods,

when reconstructing the ischemia datasets (Figures 10B–D from
manuscript). This is less appreciated in the summary of the
statistics, when the control case in Figure 11C is included.

In conclusion, this study shows the feasibility of the U-curve
and the ADPC techniques in the ECGI inverse problem setting,
when using the MFS as a numerical method. The new techniques
result in an improvement of the morphology of the reconstructed
epicardial potentials and in the in-silico cases of their amplitude.
The ADPC seems to be the most stable method to keep the
morphology of potentials.

LIMITATIONS

This study provides results for the ECGI MFS problem, such
as described in Wang and Rudy (2006). The empirical lower
threshold of the ADPC and the median choice works well due
to the behavior of the decay of the singular values of the MFS
matrix (see Figures 3F, 5F, 8D, 9E). However, it is well-known
that parameter-choice methods are problem dependent (Hansen,
2010). Note for example that the authors in Milanič et al. (2014),
Cluitmans et al. (2015), Figuera et al. (2016) found suitable results
through the L-curve method when using the BEM as a numerical
model, which is not always the case when using the MFS instead.

As explained in the discussion, we focused on automatic
methods that can be extended to include physiologically-
based prior information. Nevertheless, for the cases where
physiologically-based prior information of the solution could not
be provided, it can be interesting to compare our methods with
the generalized cross validation method.

A finer discretization of the AT for visualization, would be
more sensible and provide more continuous data. In addition

Frontiers in Physiology | www.frontiersin.org 12 March 2019 | Volume 10 | Article 273156

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Chamorro-Servent et al. Improving ECGI: New Regularization Techniques

FIGURE 8 | Results for the paced beat of the pig experiment (Bear et al., 2015). (A–C) From the left to the right: location of the epicardium where the potentials were

compared (marked with an arrow above the recorded activation pattern). Reconstructed potentials against the measured ones for all the time steps and all the

parameter-choice methods such as indicated in the legend below. Respective zoom (of the reconstructed potentials against the measured ones) at the tk interval

comprised between 343 and 1,161ms. (D) DPC plot at tk = 472ms with the different regularization parameters values holding on horizontal lines following the legend.

to improving the AT maps accuracy, methods such the one
described in Duchateau et al. (2017) can be used.

While we anticipate in section U-curve that the U-curve
method is computationally cheaper than the L-curve (due

to its prior interval) (Krawzyck-Stando and Rudnicki, 2007;
Chamorro-Servent et al., 2011; Chen et al., 2016), we need further
studies, in terms of the computational burden of the whole
parameter choice method.
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FIGURE 9 | (A) Geometries of the canine paced heart EDGAR datasets (Cluitmans et al., 2017). (B) Reconstructed potentials for the different regularization

parameter-choice methods against the measured ones for a point of the epicardium marked with an arrow on its geometry. (C) Correlation coefficients (CC) between

the reconstructed potentials and the respective measured heart potentials. (D) Relative root-mean squared errors (rRMSE) between the reconstructed potentials and

the respective measured heart potentials. (E) DPC plot at tk = 35ms with the different regularization parameters values holding on horizontal lines following the legend.

If anyone wanted to use the new ADPC or the U-curve
method, with other numerical problems such as the BEM,
the FEM or even the MFS with different placement of the
virtual source points such as (Chamorro-Servent et al., 2016a),
or different boundary conditions such as (Chamorro-Servent
et al., 2016b), we recommend repeating this study before
drawing further conclusions. A clear example of this is shown
with the results from the pig experiments (Figures 8, 11A,B),
where we did not impose to the solution compliance with
the zero-flux or homogeneous boundary conditions, and we
found fewer differences between the methods, in agreement
with (Chamorro-Servent et al., 2016b).

Finally, the ADPC method and the L-curve based on the
mathematical solution of a problem with l2-norm constraints

(Hansen, 2010) such as the one presented here, and may not
perform as well when using constraints based on another norm
(for example the l1-regularization norm) (Hansen, 2010). If l1-
norm prior-information needs to be added, then the ADPC
method will not work because it is based on the DPC. PCHansen,
the author of DPC (Hansen, 1990, 2010) has explained this issue
well in his work. The poor performance of ADPC or L-curve in
l1-regularization approaches is not due to a lack of robustness of
the DPC or the method, but due to a misusage. The mathematical
basis of both, the condition and the method, is the l2-norm
Tikhonov solution definition. The DPC is a condition that must
fulfill any regularization parameter for the l2-norm Tikhonov
approach. In the latter, i.e., cases involving other regularization
norm terms, the U-curve method may provide better results.
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FIGURE 10 | The statistics boxplot show the correlation coefficients (CC) and relative root mean-square errors (rRMSE) for the reconstructions with the different

regularization parameter-choice algorithm against the respective in-silico heart potentials. EDGAR canine experiments: (A) control, (B–D) myocardial ischemia’s

(datasets number 16, 39, and 54 from the referred EDGAR experiments). The red crosses denote the outlayers.

OUTLOOK

This study assumed that no a priori physiologically information
about the epicardial potentials were available, while studying
regularization parameter-choice methods that can be adjusted

to problems introducing different l2-norm constraints. Due to
the increasing number of work that proposes the incorporation
electrophysiological knowledge (Figuera et al., 2016; Cluitmans
et al., 2017; Duchateau et al., 2018; Schuler et al., 2018), it
would be interesting to see how the U-curve and ADPC adapted

Frontiers in Physiology | www.frontiersin.org 15 March 2019 | Volume 10 | Article 273159

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Chamorro-Servent et al. Improving ECGI: New Regularization Techniques

FIGURE 11 | The statistics boxplots show: (A,C) the correlation coefficients (CC) and (B,D) the relative root mean-square errors (rRMSE) for the reconstructions with

the different regularization parameter-choice algorithm against the respective in-silico heart potentials. EDGAR experiments: (A,B) paced and sinus rhythm dog and

pig experiments together, (C,D) Control and myocardial ischemia datasets canine experiments from Utah together (ischemia datasets number 16, 39, and 54 from the

referred EDGAR experiments) The red crosses denote the outlayers.

methods perform when including electrophysiological prior
knowledge into a l2-norm constraint.

The reader may observe that the ADPC and the U-curve
continued to preserve the morphology for experimental data
and specifically for high noisy data, such as the control
and the three myocardial ischemia datasets from the canine
EDGAR experiments (Figure 10 and Supplementary Figure 10).
However, it will be interesting to develop a noise robustness
study for the in-silico data, both including noise on the measured
datasets and on the geometric locations of the electrodes.
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Background: Non-invasive cardiac mapping—also known as Electrocardiographic

imaging (ECGi)—is a novel, painless and relatively economic method to map the electrical

activation and repolarization patterns of the heart, providing a valuable tool for early

identification and diagnosis of conduction abnormalities and arrhythmias. Moreover,

the ability to obtain information on cardiac electrical activity non-invasively using ECGi

provides the potential for a priori information to guide invasive surgical procedures,

improving success rates, and reducing procedure time.

Previous studies have shown the influence of clinical variables, such as heart rate,

heart size, endocardial wall, and body composition on surface electrocardiogram (ECG)

measurements. The influence of clinical variables on the ECG variability has provided

information on cardiovascular control and its abnormalities in various pathologies.

However, the effects of such clinical variables on the Body Surface Potential (BSP) and

ECGi maps have yet to be systematically investigated.

Methods: In this study we investigated the effects of heart size, intracardiac

thickness, and heart rate on BSP and ECGi maps using a previously-developed 3D

electrophysiologically-detailed ventricles-torso model. The inverse solution was solved

using the three different Tikhonov regularization methods.

Results: Through comparison of multiple measures of error/accuracy on the ECGi

reconstructions, our results showed that using different heart geometries to solve the

forward and inverse problems produced a larger estimated focal excitation location.

An increase of ∼2mm in the Euclidean distance error was observed for an increase

in the heart size. However, the estimation of the location of focal activity was still able to

be obtained. Similarly, a Euclidean distance increase was observed when the order of

regularization was reduced.

For the case of activation maps reconstructed at the same ectopic focus location but

different heart rates, an increase in the errors and Euclidean distance was observed when

the heart rate was increased.
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Conclusions: Non-invasive cardiac mapping can still provide useful information about

cardiac activation patterns for the cases when a different geometry is used for the inverse

problem compared to the one used for the forward solution; rapid pacing rates can

induce order-dependent errors in the accuracy of reconstruction.

Keywords: ECGi, non-invasive mapping, body surface potential, heart rate, cardiac hyperthrophy

INTRODUCTION

Cardiovascular disease is a major contributor to reduced quality
of life and mortality worldwide (Benjamin et al., 2017). Cardiac
conditions such as heart failure, myocardial infarction, and
hypertrophic/dilated cardiac myopathy are related to electrical
dysfunction (i.e., arrhythmia) and typically result in reduced
cardiac output. Diagnosis and treatment of these conditions
presents a significant healthcare challenge, in part due to
their dual electrophysiological-structural components. Short-
and long-term adaptation of cardiac structure and ion channel
expression, which includes reversible and irreversible remodeling
associated with disease, further compounds the challenge. For
example, cardiac hypertrophy, which is an important risk factor
of heart failure and sudden cardiac death (Vriesendorp et al.,
2015), is characterized by abnormal thickening of the heart
muscle, usually resulting from increases in cardiac cell size,
in order to compensate for inhibited contractile performance
(Shimizu and Minamino, 2016). The particular manifestation of
electrical dysfunction may therefore vary over the time-course
of the condition; the ability to accurately map the electrical
activity of the heart non-invasively over this whole period can
offer significant advantages for the long-term management of
such conditions.

Electrocardiographic imaging (ECGi) is a novel, painless and
(relatively) economic method to map the electrical activation and
repolarization patterns of the heart (Ghosh et al., 2011; Alday
et al., 2016; Bear et al., 2016; Perez Alday et al., 2016; Zhang
et al., 2016), and presents the possibility to better understand
cardiac excitation patterns and provide a priori information
to guide invasive surgical procedures, improving success rates
and reducing procedure time (Silva et al., 2009; Dubois et al.,
2015; Zhang et al., 2016). Based on solving the inverse problem
of electrocardiography, with the heart acting as an electrical
source inside the volume conductor of the body, ECGi aims to
reconstruct the electrical activity on the surface of the heart using
body surface potential (BSP) maps obtained from torso surface
multi-array electrocardiogram (ECG) systems (Macfarlane et al.,
2010; Rudy, 2013; Perez-Alday et al., 2017b). It depends on 3D
heart and torso structures and therefore requires reconstructions
of patients’ cardiac and torso anatomy, which are typically
acquired using the clinical imaging technologies of Magnetic
Resonance Imaging (MRI) or Computed Tomography (CT). Due
to the expense of these modalities, it may not be desirable to
attain structural information from a patient repeatedly over the
course of structural adaptions. However, the potential impact of
using out-of-date structural information when performing ECGi
is unclear.

In addition, previous studies have shown the influence of
clinical variables, such as respiration (Langley et al., 2010;
Baumert et al., 2013), body composition, (Zemzemi et al.,
2015), and heart rate and body position (Appel et al., 1989;
Goldenberg et al., 2006) on the ECG measurement. Based on
these insights, adjusted ECG parameters (e.g., corrected QT
interval) have improved the detection of patients at increased
risk of cardiac arrhythmias (Kabir et al., 2016). It follows that
such variables may also influence interpretation of BSP and
ECGi data, but the nature of these relationships have yet to be
systematically investigated.

The aim of this study was therefore to assess the effect
of varying cardiac structure and electrical pacing rate on
the accuracy of ECGi reconstructions. An in silico approach
was used to provide clean and controllable data to compare
reconstructions attained at multiple pacing rates and with
underlying hypertrophic and dilated cardiac anatomy under
sinus rhythm and ectopic focal excitation.

METHODS

The in silico approach utilized idealized, electrophysiologically
heterogeneous human bi-ventricle models to simulate electrical
excitation in control, dilated and hypertrophied conditions
(sections “Virtual Bi-ventricle Models” to “Ventricular
Simulation Protocols”). Ventricular activation was then
combined with a heterogeneous torso model and the forward
problem was solved to produce simulated BSP maps (section
“Simulated Body Surface Potential”). The inverse solution,
using multiple regularization approaches, was applied to the
simulated BSP maps in order to produce ECGi epicardial
potential reconstructions and compute activation patterns
(section “Inverse Solution”). Multiple measures were used to
quantify and compare results obtained under the different
conditions (section “Analysis Methods”).

Virtual Bi-Ventricle Models
Idealized human bi-ventricle geometries were constructed as
structured finite difference grids, wherein the left and right
ventricles (LV and RV, respectively) were modeled as thick- and
thin-walled truncated ellipsoids, respectively. A control (normal)
geometry was constructed in order to have physiologically-
accurate ventricular wall thicknesses (12–15 and 3–5mm for
LV and RV, respectively; Ho and Nihoyannopoulos, 2006; Ho,
2009) and volumes (∼150–210mL for the LV in human males;
Alfakih et al., 2003; Clay et al., 2006), and the overall size and
ventricular curvature were qualitatively matched against multiple
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existing human ventricle datasets (Seemann et al., 2006; Benson
et al., 2011; Keller et al., 2011). From this, two more geometries
were created by increasing either the wall thickness or the short
axis diameter by 50%. In total three cases were considered:
(i) normal, (ii) thick-walled (hypertrophied), and (iii) dilated
ventricles (Figure 1A). A spatial resolution of 1x = 1y = 1z
= 0.5mm was used, which gave ∼2 × 106 nodes in tissue, to
facilitate high-throughput generation ofmultiple datasets for BSP
and ECGi analysis. Measurements of the LV volume, LV wall
thickness, and RV wall thickness from the developed geometries
are given in Table 1.

In each case, a simple ruled-based model was implemented
to assign myocardial fiber orientations (Figure 1Ci) using a
standard approach based on rules proposed by Streeter et al.
(1969). A value of the helix angle, α, was assigned to each node
of the grid, given by

α = R(1− 2d)n, (1)

where R is the transmural rotation (varying from +R at the
endocardium to –R at the epicardium), d is the normalized

transmural depth (varying from 0 at the endocardium to 1 at the
epicardium), and n determines the transmural variation in helix
angle (e.g., n = 1 is linear, n = 3 is cubic). For all simulations
in this study, R was set to 60◦, giving a transmural rotation in
helix angle of 120◦, similar to that observed in existing human
ventricular datasets (Seemann et al., 2006; Benson et al., 2010),
and n was set to 1 (Benson et al., 2008). The transverse angle
was assumed to be 0◦ as it has been shown to be constantly
around 0◦ throughout the ventricles (Seemann et al., 2006), and
no sheetlet structure was incorporated, as this has been suggested
to show great variability between hearts (Benson et al., 2008). A
small degree of smoothing was applied where the right ventricle
joins the ventricular septum, to ensure a smooth transition in
helix angles.

Single Cell Model of Human Ventricles
To simulate the action potential (AP) of human ventricular
myocytes, the 2006 version of the Ten Tusscher et al. model
was used (Ten Tusscher and Panfilov, 2006), which accounts
for distinct electrophysiological differences in cells from the

FIGURE 1 | Computational models of the human ventricles and torso. (A) An open view of geometries representing (i) normal/control, (ii) thick-walled, and (iii) dilated

human ventricles with the epicardial (blue), mid-myocardial (green), and endocardial (red) segmented regions shown. (B) Single cell ventricular action potentials

representing (i) transmural (TM) heterogeneity in cells from the endocardium (ENDO), mid-myocardium (MCELL), and epicardium (EPI), (ii) apico-basal (AB)

heterogeneity (shown for EPI cells), and (iii) short single cell action potentials used in this study. All models are uncoupled single cells paced at a cycle length of

1,000ms. (C) (i) Fiber orientation (normalized z component of primary fiber; red and blue indicate parallel to the long axis of the heart from apex to base, green

indicates perpendicular to the long axis of the heart); (ii) Heart-torso model used to compute the (iii) body surface potential.
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TABLE 1 | A summary of dimensions in developed idealized ventricular

geometries.

Control Thick-walled Dilated

LV wall volume (mL) 196.56 249.77 255.29

LV wall thickness (mm) 12.00 18.00 12.00

RV wall thickness (mm) 4.00 6.00 4.00

ventricular endocardium (ENDO), mid-myocardium (MCELL),
and epicardium (EPI; Figure 1Bi). The bi-ventricle models
were segmented into 40% ENDO, 30% MCELL, and 30% EPI
cells (Figure 1A), similar to previously used ratios (Adeniran
et al., 2011, 2017). The existing transmural heterogeneity was
increased by adjusting the ENDO:EPI:MCELL ratio of rapid
delayed rectifier potassium current, IKr, maximal conductance to
1.0:1.6:1.0 (Adeniran et al., 2011;Whittaker et al., 2017). This was
based on transmural measurements of hERG mRNA expression
(Szabó et al., 2005), and was necessary to reproduce the longer AP
of ENDO compared to EPI cells (Glukhov et al., 2010; Boukens
et al., 2015). Furthermore, a linear gradient in the conductance
of transient outward potassium current, Ito, and slow delayed
rectifier potassium current, IKs, was introduced along the apex-
base (AB) axis (Keller et al., 2011; Alday et al., 2016). Briefly,
maximal conductance of Ito and IKs were reduced by a maximum
of 50% in basal cells relative to apical cells in order to reproduce
apico-basal heterogeneity (Figure 1Bii), giving a roughly 50ms
longer AP duration in basal cells than in apical cells (Szentadrassy
et al., 2005). Themaximal conductance of current x from cell type
y, gx,y, was given by

gx,y = gBase,y +
(
gApex,y − gBase,y

)
· fAB, (2)

fAB =
z − zBase

zApex − zBase
, (3)

where gApex,y and gBase,y are maximal values of the conductance
of cell type y at the apex and base, respectively, f AB is a gradient
factor which depends linearly on the value of the z co-ordinate
which lies along the AB axis (varying from 1 at the apex to 0 at the
base), and zBase and zApex are the values of the z coordinate at the
apex and base, respectively. No electrophysiological differences
were incorporated between the LV and RV (Keller et al., 2011).

Modeling Action Potential Propagation
The monodomain equation was used to describe the propagation
of APs in the bi-ventricle geometries:

∂V

∂t
= ∇ (D∇V) −

Iion

Cm
, (4)

where V is the transmembrane voltage, D is the global
conductivity tensor, Iion is the total ionic current, and Cm is
the membrane capacitance. Equation (4) was solved numerically
using a finite-difference PDE solver based on the explicit
forward Euler method, using an operator splitting technique
and an adaptive time step with minimum and maximum time
steps of 1tmin=0.02ms and 1tmax=0.2ms, respectively (Benson

et al., 2010). As axially-symmetric anisotropy was assumed,
two principal values of the diffusion coefficient were required:
D||, the longitudinal value of the conductivity which describes
propagation in the fiber direction, and D⊥, the transverse value,
which describes propagation orthogonal to fibers. The diffusion
tensor can thus be written as

D = D⊥I+ (D|| − D⊥)AA
T, (5)

where I is the identity matrix, A is a unit vector giving the fiber
direction, and AT is the transpose of A.

The longitudinal value of the conductivity, D||, was set to 0.18
mm2ms−1 in this study, which gave a conduction velocity of 70
cms−1 in the fiber direction (Benson et al., 2007), in agreement
with experimental measurements of conduction velocity along
fibers in human ventricular tissue (Taggart et al., 2000). An
anisotropic conductivity ratio of D||:D⊥ = 4:1 was used (Benson
et al., 2007; Whittaker et al., 2017).

Ventricular Simulation Protocols
Sinus rhythm activation of the ventricles was elicited by
stimulating a series of 28 localized patches (with diameters of∼9–
12mm) in quick succession along the endocardial wall (stimulus
amplitude and duration−52 pA/pF and 1ms, respectively, where
the wavefront was initiated in the intra-ventricular septum before
spreading from apex to base throughout the left and right
ventricles. This gave a total activation time of ∼65ms in the
control geometry, in good agreement with the classic results of
Durrer et al. (1970). For studying the effects of ectopic activity
in the ventricles, four prescribed locations which could be easily
identified in each of the geometries were chosen as “ectopic
stimulus” sites: (i) the right ventricular lateral wall (RV-LAT), (ii)
the intra-ventricular septum (SEP), (iii) the left ventricular lateral
wall (LV-LAT), and (iv) the left ventricular apex (LV-Apex). In
each case, localized −52 pA/pF stimuli of 1ms duration were
applied over 5 mm.

Simulated Body Surface Potential
The ventricular model was placed into a previously developed
biophysically-detailed computational three-dimensional heart-
torso model which accounts for the distinct structures of the
lungs, liver, blood masses, stomach, spleen, kidneys, ribs and
spinal cord, and the respective electrical conductivities (Perez-
Alday et al., 2015) (Figure 1Cii). This model has been previously
used to develop an algorithm to diagnose atrial ectopic origin
from multi lead ECG systems and ventricular ischemia (Alday
et al., 2016; Perez-Alday et al., 2017a). Details of the torso model
development, validation and simulation protocols can be found
in Perez-Alday et al. (2015). Briefly, the heart-torso algorithm
previously developed was used to solve the forward problem
and obtain BSP maps (Figure 1Ciii) in each of the cases. The
potential on the surface of the body was obtained from the 3D
ventricular model using Salu’s approach (Salu, 1980), utilizing
the Boundary Element Method and Green’s identities to solve the
Poisson equation (Macfarlane et al., 2010).
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Inverse Solution
An inverse solution was developed, extending previously
published preliminary work (Alday et al., 2016). Briefly, and
based on prior work from Ramanathan and Rudy (2001),
surface to surface torso-heart matrix was calculated using Barr’s
approach, where an equivalent potential distribution on a closed
surface is used to build the homogenous heart-torso matrix (Barr
et al., 1977); note therefore that, whereas the forward problem
is solved on a heterogeneous torso, the inverse solution is
provided on a homogeneous torso model. From the BSP maps, a
previously developed inverse problem algorithm using Tikhonov
regularization using Generalized Single Value Decomposition
(GSVD) numerical approach was used to obtain the activation
on the surface of the heart (Hansen, 1998). The potentials on the
surface, x, were obtained by solving Equation (6):

x = min
x

{
∣∣∣∣Zx− y

∣∣∣∣
2
+ λ2 ||Rx||}, (6)

where Z is the transfer matrix, y represents the BSP vector, λ is the
regularization parameter obtained using the L-curve (Hansen,
1992), and R is the regularization operator. Zero (Identity matrix,
R = I), First (Gradient operator, R = ∇ ), and Second (Laplace
operator, R = 1) order Tikhonov were used to regularize the
solution. The GSVD technique was used to solve Equation (6)
in each case.

As an ill-posed problem, noisy signals can have an important
effect on the reconstructed maps. Whereas it is common in
modeling studies of ECGi to include additional white noise, this
was not performed in this study for the bulk of our analysis.
Please see “Discussion: Limitations” for further details on the
inclusion of noise and its impact.

Analysis Methods
Epicardial potentials were reconstructed from the BSP obtained
at each instant of time for each geometry and activation case.
Activation maps were calculated by computing maximal negative
slope at each node at each time step (Gage et al., 2017).
An example of original and reconstructed epicardial potential
snapshots and the corresponding activation maps is shown in
the Section S1 in Supplementary Material. To quantify the
differences between the BSP and reconstructed activation maps
for each of the geometry cases, three difference methods were
used (Bear et al., 2015, 2018b):

1) Voltage root mean squared (RMS):

RMS =

√∑N
i=1∅

2
i

N
;

2) Relative RMS error (rRMSe):

rRMSe =

√√√√
∑N

i=1 (∅i
′ −∅i)2∑N

i=1 (∅i
′)2

;

3) Pearson correlation coefficient (PCC):

PCC =

∑N
i=1 (∅i

′ −∅i)(∅i
′ −∅i)√∑N

i=1 (∅i
′ −∅i)

2
(∅i

′ −∅i)
2
,

where N is the number of elements in the mesh (torso
or epicardial elements), ∅ is the potential reconstructed or
measured and∅

′ is the original simulated potential, while∅ and
∅

′ are the mean potential values across all elements of the mesh.
RMS gives an estimation of the variability of the signal. rRMSe
gives an estimation of the variability between two methods.
PCC is the measure of the correlation between two variables.
The analysis was performed at each temporal snapshot of the
ventricular activation.

To investigate the focus location accuracy of the inverse
solutions, the Euclidean distance (ED) was calculated at the
center of the earliest activation: | |ED| | =

√
(r′ − r)2, where r is

the center of activation of the reconstructed potential in the 3D
Euclidean space and r′ is the center of activation of the original
simulated data. The Euclidean distance was calculated for all the
ectopic cases and a median value is reported in this study.

Investigating the Effect of Using the
Incorrect Geometry for ECGi
The impact of using only an initial patient anatomical
reconstruction when performing ECGi, which doesn’t capture
any structural remodeling which may have occurred between
the time of the scan and any present measurements, was
investigated: Ectopic ventricular activation was simulated on
all three geometries (control, thick-walled, and dilated; section
“Virtual Bi-ventricle Models”) and used to solve the forward
problem and produce BSP maps; the ECGi reconstruction was
performed using only the control geometry, representing the
initial patient scan. Quantification of errors and correlations were
performed by comparing the reconstruction with the control
geometry activation for each matched ectopic location, such that
geometrical differences don’t have to be accounted for.

Investigating the Effect of Heart Rate on
ECGi
The effect of heart rate on the epicardial reconstructions
obtained using the three Tikhonov regularization methods was
assessed for focal excitations using the control geometry paced
at basic cycle lengths (BCL) of 1,000, 750, 500, 300, and 150ms
[corresponding to pacing rates of 60, 80, 120, 200, and 400
Beats per Minute (BPM), respectively]. Shortening of the AP
(Figure 1Biii) induced by a five-fold increase in the conductance
of IKr and IKs was employed to sustain the most rapid excitation
rate (BCL = 150ms). All other data were produced using the
control AP models.

RESULTS

First, the impact of the different geometries (control, thick-
walled, and dilated) on simulated BSP under control pacing
conditions were compared to illustrate recapitulation of
activation pattern and ECG differences observed under these
conditions in the in silico framework (section “Simulated Body
Surface Potential Under Different Conditions”). Then, the
potential errors induced by using out-of-date and inaccurate
cardiac anatomical reconstructions when performing ECGi was
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assessed (section “Effects of Wall Thickness and Heart Size on
Non-invasive Cardiac Maps”). Finally, we investigated the effect
of heart rate on the accuracy of reconstructed activation patterns
using the different regularization approaches (section “Effects of
Heart Rate on Non-invasive Cardiac Maps”).

Simulated Body Surface Potential Under
Different Conditions
The effects of the different geometries on the BSP were
quantified by comparing the thick-walled and dilated geometries
vs. the control during ventricular activation (Figure 2). Small
differences were observed in the BSP maps at different instants
of time (Figure 2A), quantitative measurements are plotted
for comparison. A similar RMS was obtained for the three
cases which produced relatively small rRMSe values (Figure 2B).
However, the largest values were observed early during the
activation sequence (first 75ms). A good agreement between the
signal was observed for both cases (average PCC> 0.8), however,
at mid activation time (between 125 and 175ms) the values
dropped significantly, with the dilated condition resulting in the
smallest correlation.

Effects of Wall Thickness and Heart Size
on Non-invasive Cardiac Maps
Data are illustrated for a single ectopic site only (RV-LAT—
Figure 3) and summarized for all sites (Table 2). During the
initial excitation phase (75ms), similar small RMS and rRMSe
values were observed for the three cases (Figure 3). During the
mid and later activation times, RMS and rRMSe values weremore
dependent on the order of the regularization than the geometry,
with First and Second order giving the smallest errors. Similarly,
PCC values were considerably larger using First and Second order
compared to the Zero order, and the Zero order displayed the
most unique and geometry-dependent temporal evolution. The
general increase in correlation over the time of the activation
sequence is attributed to the increase in area of active tissue. RMS,
rRMSe, and PCC were similar for all three heart geometries,
although in general the control geometry exhibited the smallest
errors and largest correlation and the dilated geometry exhibited
the largest errors and smallest correlation (Figure 3; Table 2).

The calculated ED, measuring the error in correlation between
real and identified focus location, varied for each geometry
using the three Tikhonov methods (Figure 4A). Smaller values
were observed for the Second order method (compared to Zero
and First) and the control geometry (compared with thick and
dilated, with dilated giving the largest values). However, the
differences observed between geometries was less significant than
that between methods.

Effects of Heart Rate on Non-invasive
Cardiac Maps
The EDwas calculated and compared for each different heart rate
and Tikhonov method (Figure 4B). The Second order method in
all the cases produced the smaller ED values. A marked increase
in the ED was observed when the heart rate was increased for

all methods, which also resulted in convergence of the solutions
obtained using the different methods at the most rapid rate.

The reconstructed activation patterns were compared across
the different pacing rates; illustrative data for the LV-LAT site
are shown in Figure 5 and data from all ectopic sites are
summarized in Table 3. At the slowest pacing rates (BCL= 1,000
and 750ms), corresponding to normal heart rates in healthy
patients (60 and 80 BPM, respectively), the Zero order method
resulted in the larger rRMSe values and lower PCC values and
contained the most noise. Both the First and Second order
methods resulted in lower rRMSe values and larger PCC values
over the temporal range of excitation (Figure 5—BCL = 1,000
and 750ms), with the Second order in general performing the
best, in congruence with the ED values (Figure 4B). The PCC for
all methods in general increased over the time of the activation.
At the most rapid rates (Figure 5—BCL = 300 and 150ms),
the temporal evolution of the PCC for First and Second order
reversed, decreasing over the activation time, whereas the Zero
order remained largely flat. The initial larger correlation for
First and Second order compared to the slow pacing rates did
not correspond to small ED and therefore was not a result of
accurate reconstruction of the initial phase of excitation. The
differences between the methods decreased at these rapid rates,
largely due to an increase in the errors associated with First and
Second order with no corresponding change to the Zero order
solution (Figure 5, BCL = 150 and 300ms). In all conditions,
the Zero order approximation presented the most noise, but the
reconstruction at the rapid excitation rates was more stable and
comparable with the Second and First order (Table 3).

DISCUSSION

Summary
In this study, we used an in silico approach to evaluate the
impact of different ventricular anatomical morphologies and
heart rate on the accuracy of epicardial reconstructions attained
through the application of the inverse solution to the BSP.
We have demonstrated that the different cardiac anatomical
states resulted in small but measurable differences in the
BSP (Figure 2). Furthermore, we demonstrated that differences
between actual underlying cardiac anatomy (i.e., the heart
model on which electrical activation was simulated) and the
reconstructed anatomy (i.e., the heart model on which the inverse
solution was applied) led to errors in the reconstruction of
both epicardial potential maps and activation patterns (Figure 3;
Table 2). However, the location of the ectopic focal excitation
was still largely correctly estimated, even with the incorrect
geometry used for reconstruction (Figure 4). Moreover, we
have demonstrated an important heart rate dependency of
the correlation coefficients and reconstruction errors (Figure 5;
Table 3). In general, the Second order regularization approach
produced the smallest errors and largest correlation.

Clinical Importance
ECGi is a powerful and rapidly developing approach to non-
invasively map patients’ cardiac electrical activity in the clinic.
The method aims to overcome some of the numerous challenges
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FIGURE 2 | Comparison of simulated BSP obtained from the three different geometries during ventricular activation. (A) BSP obtained for control case, the

thick-walled and dilated geometry during simulated ectopic activation initiated in the right ventricular lateral wall (RV-LAT) at different instants of time: (i) 25ms, (ii)

75ms, (iii) 125ms, and (iv) 175ms. (B) (i) RMS for each case and (ii) rRMSe and (iii) PCC calculated vs. the control case.

related to effective non-invasive characterization of human
anatomy and electrophysiology. Previous studies have shown the
usefulness of this non-invasive method to provide information
to guide ablation procedures (Dubois et al., 2015; Rodrigo
et al., 2017) and identify potential patients for whom cardiac
resynchronization therapy would be successful (Silva et al.,
2009; Rudy, 2013; Bear et al., 2018a). In addition, current
studies have merged this ECGi technology with computational
models to provide patient-specific models in order to predict
the efficacy of specific therapies (Boyle et al., 2018; Huntjens
et al., 2018). Due to the influence of inhomogeneities inside
the torso on the BSP, recent studies have also focused on
the understanding of the forward problem and its relation
with the inverse solution (Bear et al., 2015, 2018b; Zemzemi
et al., 2015). Furthermore, the ill-posed nature of the problem
requires different mathematical constraints and regularization
methods to be used to find the most accurate physical and
physiological solution (Oster and Rudy, 1992); recent studies

have investigated the accuracy of these inverse methods (Bear
et al., 2018b).

Despite these important works, there are still many questions
in the field of ECGi which must be addressed in order to further
develop the approach and improve its clinical and research
impact. In this study, we provide analysis of the impact of
electro-anatomical variability pertaining to differences in cardiac
anatomy and heart rate on the accuracy of ECGi reconstructions
obtained using different regularization methods. These analyses
provide important insights for the interpretation of clinically
obtained ECGi reconstructions over the time-course of an
electro-anatomically dynamic condition such as heart failure.

Wall Thickness and Heart Size

Previous studies have investigated the influence of tissue
inhomogeneities on the BSP and reconstructed solution, which
were shown to have a small impact on the reconstructed
signal (Ramanathan and Rudy, 2001; Zemzemi et al., 2015).
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FIGURE 3 | Effects of heart geometry on the reconstructed epicardial potentials. (A) Original simulated ectopic activation initiated in the right ventricular lateral wall

(RV-LAT) on all three geometries. (B) Reconstructed activation maps using Zero, First and Second order Tikhonov regularization using different geometries for the

forward problem but the control/normal geometry for the inverse problem. Activation patterns were computed as the time of maximum negative first derivative dV/dt

at each location. (C) RMS, rRMSe, and PCC calculated to quantify the differences between the reconstructed activation patterns using Zero (black), First (blue) and

Second (red) order Tikhonov regularization.

TABLE 2 | A summary of the effects of geometry on RMS, rRMSe, and PCC of reconstructed activation maps using the three different regularization methods.

Tikhonov order Metrics Control – mean

(SD)

Dilated – mean

(SD)

Thick – mean

(SD)

Zero order RMS 3.45 (0.60) 3.74 (0.43) 3.65 (0.62)

rRMSe 3.09 (0.57) 3.94 (0.45) 3.33 (0.63)

PCC 0.673 (0.108) 0.570 (0.152) 0.603 (0.120)

First order RMS 3.03 (0.59) 3.27 (0.46) 3.12 (0.45)

rRMSe 2.34 (0.87) 2.77 (0.78) 2.98 (0.64)

PCC 0.794 (0.210) 0.754 (0.213) 0.773 (0.120)

Second order RMS 2.48 (0.59) 2.68 (0.48) 2.63 (0.44)

rRMSe 1.97 (0.64) 2.65 (1.26) 2.39 (0.93)

PCC 0.869 (0.106) 0.769 (0.121) 0.778 (0.140)

FIGURE 4 | Euclidean distance vs. (A) geometry and (B) BCL. Euclidean distances were calculated for each geometry case and BCL for Zero (black), First (Blue), and

Second (red) order Tikhonov regularization. For (B), only control geometry was used. Data are the mean for all ectopic sites.

Effects such as an enlargement of the heart and thickening
of the cardiac wall (associated with various disease states, e.g.,
heart failure) are not necessarily included in the geometrical
transfer matrix, and have not been fully studied. In this
study, we first compared the BSP activation maps obtained

by modifying the size of the ventricles. This was used as
the baseline comparison between BSP prior to obtaining the
inverse solution. Using RMS, rRMSe, and PCC to quantify
the similarity or differences between the BSP observed under
these different conditions demonstrated that cardiac anatomy
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FIGURE 5 | Effects of the heart rate on the reconstructed activation maps. (A) 3D activation maps at different basic cycle lengths (BCLs): 150, 300, 500, 750, and

1,000ms; activation time is given as the maximum negative slope of each local membrane potential. (B) RMS, rMSe and PCC measure calculated using Zero (black),

First (blue), and Second (red) order Tikhonov regularization of an ectopic activation starting on the middle of the left ventricle (LV-LAT).

TABLE 3 | A summary of the effects of heart rate on reconstructed activation maps using the three different regularization methods.

Tikhonov order Metrics BCL 1,000 ms BCL 750 ms BCL 500 ms BCL 300 ms BCL 150 ms

Zero order RMS 3.85 (0.55) 3.96 (0.62) 3.53 (0.65) 3.67 (0.59) 3.78 (1.02)

rRMSe 7.64 (2.3) 7.81 (1.75) 8.31 (1.41) 8.77 (2.23) 8.70 (0.71)

PCC 0.646 (0.190) 0.628 (.154) 0.626 (0.119) 0.629 (0.103) 0.623 (0.107)

First order RMS 2.74 (0.39) 3.61 (0.61) 4.16 (0.66) 4.59 (0.63) 4.20 (0.61)

rRMSe 2.82 (0.96) 2.94 (1.01) 3.14 (0.93) 4.91 (1.46) 4.92 (1.06)

PCC 0.820 (0.169) 0.789 (0.106) 0.757 (0.280) 0.713 (0.122) 0.686 (0.130)

Second order RMS 1.89 (0.31) 2.11 (0.61) 2.20 (0.62) 2.68 (0.55) 2.82 (0.51)

rRMSe 2.43 (1.06) 2.44 (1.01) 2.92 (0.83) 3.98 (1.40) 4.17 (1.89)

PCC 0.862 (0.138) 0.839 (0.213) 0.813 (0.148) 0.789 (0.107) 0.705 (0.160)

had a measurable effect on the details of the BSP but did not
significantly alter the primary spatio-temporal features of normal
activation (Figure 2).

Then, we observed how modifying the anatomy of the
ventricles in the forward solution but not in the inverse approach
had an effect on the accuracy of reconstructed ectopic activation.
Larger RMS and rRMSe values were observed when comparing
BSP error values vs. reconstructed error values (Figure 3;
Table 2). Mostly, the first part of the activation (first 75ms)
produced the most significant differences. However, it was still
possible to identify the origin of ectopic activation, albeit with a
small error (Figure 4A).

These results therefore indicate that it may not be necessary
to repeat a cardiac CT/MRI when repeating ECGi in a patient
who has undergone anatomical remodeling since their first ECGi
procedure, which could significantly reduce the cost of long-term
treatment. Some consideration may still be required to determine
appropriate electrode positions—especially if the torso, as well as
the heart, has undergone anatomical changes.

Heart Rate

Heart rate had a regularization approach-dependent effect on
the accuracy of reconstructed activation patterns: In the case of
the First and Second order the PCCs were larger at slow rates
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but significantly decreased when the heart rate was increased,
exhibiting a negative temporal evolution over the activation
period. In the case of Zero order, the values, even though not
larger than the First or Second order in any case, remained similar
when the heart rate increased and stable over the activation
time at rapid rates (Figure 5; Table 3). The ED also showed an
important dependency on the heart rate, increasing when the
heart rate increased (Figure 4B). Therefore, these data indicate
that the accuracy of inverse solutions in general decreases
at rapid pacing rates. The underlying cause of this order-
dependent difference in the rate-dependence of the solution
is discussed in the next section, “On the Rate-Dependence of
Time-Independent Solutions.”

Differences in the quality of reconstruction at fast rates may
have particular clinical importance: higher rates may present
the most clinically interesting results, for example exposing
concealed abnormalities (Leong et al., 2018), yet produce the
poorest reconstructions using ECGi. This may also indicate
that rapid arrhythmias such as tachycardia or fibrillation could
present the greatest challenges for reconstruction, additional to
the spatial complexity of the excitation pattern itself.

On the Rate-Dependence of
Time-Independent Solutions
We observed that the accuracy of the solution using both First
and Second order methods was rate-dependent, resulting in
larger errors and smaller correlations at rapid rates; a feature not
observed using the Zero order method (Figures 4, 5; Table 3).
This rate dependence raises an interesting question: given that
the solutions to the inverse problem of electrocardiography use
a quasi-static approximation, how does a temporal effect such as
pacing rate modify the quality of the solution?

This can be explained by examining the differences between
the regularization methods: A primary difference between the
Zero order and First and Second order approaches is that the
Zero order approach does not include any neighbor interaction
(as it uses the identity matrix as the regularization operator)
whereas the First and Second order do account for this
interaction and result in smoothed signals (due to the use of
the Gradient and Laplace operator for First and Second order,
respectively). Spatial heterogeneities in voltage will therefore be
smoothed using First and Second order but not Zero. Following
that this approach distinction correlates with whether or not the
reconstruction exhibits rate-dependence, we propose that spatial
gradients observed at rapid rates, not present at slower pacing
rates, may account for this observation.

In a previous preliminary study in the atria (Alday et al.,
2016) we presented the hypothesis that this was primarily
due to shortening of the AP morphology at rapid rates,
resulting in a short excitation wavelength and therefore the
simultaneous presence of both depolarization and repolarization
wavefronts from a single excitation, significantly enhancing
spatial gradients at temporal snapshots during the activation.
An alternative explanation is that it is the presence of regions
of tissue still active from the previous excitation at the
time of the stimulus which lead to these enhanced spatial

gradients. We tested which of these hypotheses was more
likely to underlie the observation by comparing the control
data at pacing cycle lengths of 300 and 1,000ms with new
simulations at those cycle lengths in which the AP duration
has been significantly shortened (Figure 1Biii): this captures
the shorter wavelength associated with rapid control pacing
while simultaneously imposing that the previous excitation is
no longer or only minimally present in the tissue at the time
of excitation.

The RMS and PCC of First and Second order reconstructions
associated with both the pacing rates using the short AP model
were comparable to the slow pacing rate using the control AP
model, and differed from the rapid pacing rates (Figure 6; Section
S2 in Supplementary Material). In particular, the shorter AP
models did not reproduce the negative temporal evolution and
general lower PCC observed at the rapid rates using the control
AP. These data indicate that, contrary to our original hypothesis,
these increased errors were not caused by the short excitation
wavelength (where it would be expected that all short AP models
reproduced these features) but were rather caused by the presence
of the previous excitation; the only condition which reproduced
the lower correlation and large errors was the one in which large
areas of still active tissue remained at the time of excitation
(Figure 6C). The temporal evolution of the PCC also indicates
that it is the presence of two large and distinct regions of active
tissue, rather that multiple depolarization and repolarization
wavefronts, which induces the reconstruction errors: the initial
large PCC observed at rapid rates for control, which contrasts
with the less accurate estimation of the focal location (i.e.,
increased ED), is a result of accurate reconstruction of the
large area of active tissue from the previous excitation; as the
area of active tissue from the present excitation grows, the
correlation decreases due to inaccurate reconstruction of two
large regions. There is no large impact on the PCC at the time
the previous excitation’s depolarization wavefront terminates at
full activation; rather, the lower correlation remains until the
tissue repolarizes.

Limitations
These types of studies are key to fully translate ECGi
technology into clinical settings. However, they are difficult
or impossible to perform in control and experimental
settings, and the accuracy of the forward and inverse
solution is still under study (Bear et al., 2015, 2018b).
Computational modeling offers an important tool to study,
understand and provide insights into the effects of cardiac
arrhythmias and clinical variables (Colman et al., 2013,
2017). Unfortunately, there are still several limitations that
need to be addressed. The forward model lacks several
inhomogeneities which may have an important effect on
the BSP measured and therefore in the reconstructed
signal, as we used a homogeneous torso approach for
the inverse reconstruction. However, previous studies
have shown that the effects of inhomogeneities in the
inverse solution are small (Ramanathan and Rudy, 2001);
(Zemzemi et al., 2015).

Frontiers in Physiology | www.frontiersin.org 10 April 2019 | Volume 10 | Article 308172

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Perez Alday et al. Clinical Variables on Non-invasive Mapping

FIGURE 6 | RMS, rRMSe, and PCC of the reconstructed activation maps using (A) short and (B) normal AP durations at fast (BCL = 300ms; upper panel) and slow

(BCL = 1,000ms; lower panel) pacing rates, for the Zero (black), First (blue), and Second (red) order Tikhonov regularization methods. (C) Corresponding snapshots

of propagation at time t = 30ms after stimulus of the LV-LAT ectopic site. The control geometry was used in all cases.

Another limitation is the idealized ventricular models used,
which lacked the complex anatomy andmicrostructure of the real
human ventricles (Stephenson et al., 2017). However, these were

implemented to facilitate investigation of the effects of changing
the size and wall thickness of the ventricles on non-invasive
mapping. We used standard approaches to model cellular and
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ventricular electrophysiology, the general limitations of which
have been addressed in detail elsewhere (Benson et al., 2011).

Due to both the BSP and inverse solution being computed
using simulations, it is important to ensure that “inverse crime,”
where the inverse method exactly inverts the forward method,
is avoided. We ensure that this is the case through the use
of Salu’s method for the forward problem and Barr’s for the
inverse solution; thus, whereas the forward problem is solved
by computing the electric field which arises as a result of
currents in the cardiac tissue, the inverse solution uses an
equivalent potential distribution on a closed surface. These
independent methods, utilizing two different matrices, ensure
that it is not possible for the inverse solution to exactly invert the
forward solution.

Only ventricular activation was considered for comparison
between different rates and geometries, disregarding potential
analysis of the repolarization patterns, which may themselves
provide substantial diagnostic information. Future investigation
of the effects of anatomical reconstruction inaccuracies and
heart rate on the reconstruction of repolarization patterns may
therefore provide valuable information. However, the present
study was focused on identifying the location of ectopic pacing
sites, relevant in particular for guiding ablation therapy, and
therefore requires only activation patterns to be reconstructed.

There are multiple further factors which will be relevant
for clinical studies but not accounted for in the idealized and
controlled in silico experiments of the present study. Whereas
the geometry of the heart was considered, this was not combined
with analysis of its location, its mechanical movement, or
electrode location errors, all of which have been previously
shown to be important factors influencing the accuracy of the
reconstruction (Swenson et al., 2011; Cluitmans and Volders,
2017; Cluitmans et al., 2017; Coll-Font and Brooks, 2018).
Furthermore, we did not investigate whether the effect of
heart rate was influenced by the geometry, treating these
analyses as separate; such investigation may provide further
important insight.

In addition, the inverse problem of electrocardiography is
an ill-posed problem and therefore noisy signals can have
an important effect of the reconstructed maps. Whereas, the
simulated data in this study and used for our analyses did
not include noise, we performed further simulations in which
white noise was included. These data demonstrated that noise
increased ED and decreased correlation, but the differences
between conditions were maintained, indicating that whereas
noise has an important impact on the activation maps and
ED, our observations about different geometries and pacing
rate are maintained (Section S3 in Supplementary Material;
Figures S4–S7, and Tables S1, S2). Also, the results obtained
in this study are of the same order of magnitude observed
in previous studies (Wang et al., 2010; Bear et al., 2018b);
(Tate et al., 2018).

CONCLUSION

The systematic analysis revealed that the effect of size, thickness,
and heart rate can manifest in the BSP and ECGi in
different ways, with varying sensitivities and success rates in
inferring the clinical variables from non-invasive information.
We observed a rate dependence in the ability of different
Tikhonov regularization methods to successfully reproduce
cardiac electrical activity. Our results show that the ECGi
approach gives the most accurate results when used with
geometries depicting the current state of the patient’s heart, but
if a single image of the patient’s heart is obtained, for example
at the start of treatment, the ECGi approach still gives useful
and reasonably accurate information relating to underlying
electrophysiological abnormalities. In addition, clinical variables
such as heart rate need to be accounted for when solving the
inverse solution, in particular due to the increase in errors
observed at rapid pacing rates.
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