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Editorial on the Research Topic

Intrinsically Motivated Open-Ended Learning in Autonomous Robots

Notwithstanding the important advances in Artificial Intelligence (AI) and robotics, artificial agents
still lack the necessary autonomy and versatility to properly interact with realistic environments.
This requires agents to face situations that are unknown at design time, to autonomously discover
multiple goals/tasks, and to be endowed with learning processes able to solve multiple tasks
incrementally and online.

Starting in developmental robotics (Lungarella et al., 2003; Cangelosi and Schlesinger, 2015),
and gradually expanding into other fields, intrinsically motivated learning (sometimes called
“curiosity-driven learning”) has been studied by many researchers as an approach to autonomous
lifelong learning in machines (Oudeyer et al., 2007; Schmidhuber, 2010; Barto, 2013; Mirolli and
Baldassarre, 2013). Inspired by the ability of humans and other mammals to discover how to
produce “interesting” effects in the environment driven by self-generated motivational signals not
related to specific tasks or instructions (White, 1959; Berlyne, 1960; Deci and Ryan, 1985), the
research in the field of intrinsically motivated open-ended learning aims to develop agents that
autonomously generate motivational signals (Merrick, 2010) to acquire repertoires of diverse skills
that are likely to become useful later when specific “extrinsic” tasks need to be performed (e.g.,
Barto et al., 2004; Baldassarre, 2011; Baranes and Oudeyer, 2013; Kulkarni et al., 2016; Santucci
et al., 2016).

This Research Topic aims to present state-of-the-art research on open-ended learning in
autonomous robots, with a particular focus on systems driven by intrinsic motivations (but not
limited to these systems), and augments the information presented at the Third International
Workshop on Intrinsically Motivated Open-ended Learning – IMOL2017, held in Rome, Italy, 4–
6 October 2017. Although the development of autonomous artificial agents is pursued via different
kinds of approaches, such as information theory (Klyubin et al., 2008; Martius et al., 2013),
epigenetic robotics (Lones et al., 2016), machine learning (Machado et al., 2017), and evolutionary
computation (Lehman and Stanley, 2011), intrinsically motivated open-ended learning is today a
mature field producing promising research.

The field nevertheless presents many open challenges, the main ones we mention here. A first
open issue of central importance for open-ended learning is how an agent should autonomously
generate goals and learn policies for achieving them, so that the policies are useful for solving many
new tasks that are unknown when the policies are learned. Another open challenge is to design
systems that use intrinsic motivations to support learning compact representations of environment
states, and hence of goals; in particular, learning compact representations that are relevant for
action. Another challenge involves the continuous/discrete representation of goals. It seems
plausible that low-level goals (e.g., related to postures that a robot might assume) are encoded in a
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continuous space, whereas high-level goals (e.g., touch, push,
hit, reach, grasp) are encoded in a discrete fashion so as to be
easily composed to achieve more complex goals. If this is the
case, what is the relation between these different types of goal
representations? A related problem is how to design architectures
that can suitably manage generating goals and learning the
related skills, and storing them at different levels of granularity.
Then there is the open problem of how to best re-use goals
and acquired skills to accomplish novel tasks (exploitation),
including how to use previous learning in order to efficiently
learn new goals and skills (“transfer learning“), and how to
form “chains” of interrelated, hierarchical skills (“curriculum
learning”), on the basis of intrinsically motivated processes.
Learning different tasks in an open-ended fashion tends to cause
catastrophic interference, which is another problem that needs
to be addressed. Other important challenges are related to the
interaction between intrinsic motivations and other forms of
“natural learning” such as social interaction: how this interaction
might be connected to the development of higher-level cognitive
skills, e.g., language.

The contributions collected for this Topic, reviewed below,
not only extend the core research in the field but also tackle
some of the open questions mentioned above, with a particular
focus on: the autonomous acquisition of skills and motor
behaviors; the analysis of architectures and learning signals
needed to perform sequences of different tasks; the interaction
of artificial agents with their environments through different
sensors and actuators; the formation and representation of
goals; and the interplay between intrinsic motivations and other
learning strategies such as imitation learning. Following is a
summary of how the contributions in this collection address
these challenges.

In Rayyes et al. the authors propose a system enabling a
robot to learn to reach to different points in space by exploiting
symmetry properties of the actuators to allow exploration to be
limited to only a small part of the configuration space. Maestre
et al. tackle skill learning at the level of object manipulation,
where low-level and high-level features are extracted through
task-agnostic interactions with the environment directed toward
learning affordances that, in turn, guide the robot to solve
assigned tasks. Baldassarre et al. propose a system that uses
intrinsic motivations to learn forward models and affordances,
here intended as the probabilities of achieving the goals of
the affordance-related actions. In particular, this work examines
how active-vision, which allows factoring the environment state
into pieces of information related to single objects, can support
such learning processes and also facilitate solving extrinsic
tasks involving multiple objects through one-step planning.
Learning progress might also be used as in the contribution
of Uchibe to train multiple skills in parallel. In particular, here
transfer learning techniques are combined with “mixture of
experts” strategies to develop multiple control modules that are
then used to solve control tasks with simulated agents. When
learning many different tasks, an agent might try to optimize
all of them simultaneously. Abdelfattah et al. leverage intrinsic
motivations to develop a method that can cope with multi-
objective Markov decision processes, and they compare it to
other state-of-the-art algorithms. In real environments, complex

tasks might need to be learned through exposure to sequences
of simpler tasks. This is a crucial issue for autonomous robotics,
which is tackled in the work of Duminy et al. using an active
learning approach. These authors propose a new algorithm that
allows a robot to autonomously discover how to combine pre-
defined primitive motor policies to learn increasingly complex
combinations of motor policies. In particular, while it is learning,
and agent is able to decide which outcome on which to focus
and which exploration strategy to apply, leveraging imitation
learning, goal babbling, and strategic learning techniques based
on intrinsic motivations.

When an agent can autonomously generate different kinds
of goals, task-specific reward functions might be complicated
to design since they require significant domain knowledge.
Intrinsic motivations might provide general, task-agnostic
reward functions able to exploit the inherent properties of
different goals. Moreover, as shown in Dhakan et al., these reward
functions can be used as building blocks to generate sequences
of tasks enabling more complex behaviors to be learned. A well-
known problem, mentioned above, related to learning multiple
tasks is that of catastrophic forgetting. This problem might be
even harder to tackle for artificial agents that have to perform life-
long learning in complex and unknown environments. Instead of
constraining the set of inputs at design time, in Parisi et al., the
authors propose a dual-memory self-organizing architecture with
two growing recurrent networks that in parallel learn episodic
memory and semantic memory, expanding their structures in
response to novel sensory experiences.

Vision plays an important role in many aspects related to
autonomous learning and exploration. de La Bourdonnaye et al.
followed a developmental perspective and built an artificial
system that learns to reach for objects in different locations
in the environment by leveraging a weakly-supervised stage-
wise procedure. Learning to reach is divided into three tasks:
learn to fixate objects, learn hand-eye coordination (learn to
fixate on the end-effector), and learn to use the previously
acquired knowledge to perform reaching to different locations.
Visuo-motor coordination is also tackled by Wijesinghe et al.,
where predictive models are used to guide a humanoid robot
in learning to track its hand and other movements in the
visual field without the use of any forward kinematics or
pre-defined visual feature descriptors. The use of prediction
in multi-sensory integration allows a better incorporation of
proprioceptive and visual cues and leads to the development
of emergent properties similar to those of human hand-eye
coordination. Task-agnostic motivations such as information
gain are used in the work of Dauce to drive action selection
and the exploration of visual inputs: promising results are
shown, highlighting how compression strategies might improve
both performance in visual recognition and efficiency of the
system thanks to reduced computational costs. Autonomous
exploration is the focus of Cohen-Lhyver et al. These authors
underline the important role of attention, which they claim
can be considered as a sort of intrinsic motivation. They
implemented this notion in a humanoid robot and showed how
two components (congruence and reduction of uncertainty) can
be used to explore new environments following audio-visual
inputs encoded at a semantic level.
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Similar to appealing to information gain, exploration drive
by “criticality” can be used to generate autonomous behaviors.
Aguilera and Bedia explore this connection through conceptual
models that exploit maximum entropy to drive agents toward
critical points (e.g., transition points between different kinds of
behaviors). Finally, Mahzoon et al. focus on the development
of social robots. Within a developmental perspective, these
authors address problems related to training real-world robots
by presenting two new algorithms that improve a robot’s
performance in terms of learning efficiency, complexity of the
learned behaviors, and predictability of the robot’s behavior.

In addition to the aforementioned 14 original research
articles, four additional papers have been published within this
Research Topic. The first is a methodological article in which
Yu et al. present an algorithm that takes into account the
constructive interplay between boredom and curiosity, giving
rise to effective exploration and forward model learning. The
second is a review article in which Khan et al. examine the
motivational systems used in computational models to build
agents capable of autonomous goal generation and task learning.
The authors then investigate how these strategies might be

transferred to multi-agent systems and swarms, highlighting the
current state-of-the-art and future key challenges. The last two
papers are perspective articles. In the first of these, Doncieux
et al. argue that a key issue for an agent performing open-ended

learning is not only the problem of maximizing the rewards
related to the different tasks, but also the problem of building
proper representations of the states and the actions describing the
tasks themselves. The authors present a conceptual framework
to address this crucial issue, underlining the central role of
intrinsic motivations. In the second article, Palm and Schwenker
analyse the use of reinforcement learning (RL) in the field of
developmental robotics, describing its strengths and weaknesses
with respect to some specific problems that arise in the field. The
authors suggest that multi-objective RL might face some of the
problems they listed and that leveragingmultiple motivations can
improve RL agents’ learning performance.
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Over the last 20 years, a significant part of the research in exploratory robotics partially

switches from looking for the most efficient way of exploring an unknown environment to

finding what could motivate a robot to autonomously explore it. Moreover, a growing

literature focuses not only on the topological description of a space (dimensions,

obstacles, usable paths, etc.) but rather on more semantic components, such as

multimodal objects present in it. In the search of designing robots that behave

autonomously by embedding life-long learning abilities, the inclusion of mechanisms of

attention is of importance. Indeed, be it endogenous or exogenous, attention constitutes

a form of intrinsic motivation for it can trigger motor command toward specific stimuli,

thus leading to an exploration of the space. The Head Turning Modulation model

presented in this paper is composed of two modules providing a robot with two different

forms of intrinsic motivations leading to triggering head movements toward audiovisual

sources appearing in unknown environments. First, the Dynamic Weighting module

implements a motivation by the concept of Congruence, a concept defined as an

adaptive form of semantic saliency specific for each explored environment. Then, the

Multimodal Fusion and Inference module implements a motivation by the reduction of

Uncertainty through a self-supervised online learning algorithm that can autonomously

determine local consistencies. One of the novelty of the proposed model is to solely

rely on semantic inputs (namely audio and visual labels the sources belong to), in

opposition to the traditional analysis of the low-level characteristics of the perceived data.

Another contribution is found in the way the exploration is exploited to actively learn the

relationship between the visual and auditory modalities. Importantly, the robot—endowed

with binocular vision, binaural audition and a rotating head—does not have access to

prior information about the different environments it will explore. Consequently, it will

have to learn in real-time what audiovisual objects are of “importance” in order to rotate

its head toward them. Results presented in this paper have been obtained in simulated

environments as well as with a real robot in realistic experimental conditions.

Keywords: multimodal perception, attention, motivation, active learning, binaural audition
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1. INTRODUCTION

One of the most critical and important task humans are able
to do is to explore unknown environments, topologically or
semantically, while being able to create internal representations
of them for localization in it and interaction with it. Such
cerebral representations, or maps as it is often referred to O’Keefe
and Nadel (1978) and Cuperlier et al. (2007), enable humans
and animals in general to gather and organize perceptual cues
(visual, acoustic, tactile, olfactory, proprioceptive. . . ) in semantic
components. In parallel, in the mobile robotics community,
exploration of unknown environments has been one of the most
important fields studied, back to the artificial turtles of Walter
(1951) and later to the vehicles of Braitenberg (1986). Indeed,
being able for a mobile robot to simultaneously (i) map the world
it is exploring, (ii) locate itself in it, and (iii) trigger relevantmotor
actions for further exploration (i.e., the three key tasks to perform
in an exploration scheme according to Makarenko et al., 2002),
has shown to be a hard, but critical for robots’ existence, problem
to solve. While many artificial systems have been implemented
with the sole purpose of exploring the most of an environment
with only efficiency as a goal (Smith et al., 1987; Henneberger
et al., 1991; Montemerlo et al., 2002; Carrillo et al., 2015), some
more recent algorithms emerged on the basis of the precursor
works of Berlyne (1950, 1965), who stated that Motivation is a
fundamental mechanism in spontaneous exploratory behaviors
in humans. Following this principle, exploration would not be
driven by a goal defined by an external agent (such as the
human experimenter) but rather by internal goals defined by the
robot itself, that is intrinsic motivations (Ryan and Deci, 2000;
Oudeyer and Kaplan, 2008). Amongst them are the motivations
by Curiosity, first mathematically modeled by Schmidhuber
(1991), by Uncertainty (Huang and Weng, 2002), by Information
gain (Roy et al., 2001), or by Empowerment (Capdepuy et al.,
2007). Intrinsic motivation has extensively been used during the
last 20 years in several powerful systems, in particular by Oudeyer
et al. (2007) with the development of the Independent Adaptive
Curiosity algorithm (IAC) and the later updated systems (R-
IAC, Baranes and Oudeyer, 2009 and SAGG-RIAC, Baranes
and Oudeyer, 2010). Systems based on such motivations to
explore/understand an environment incorporate in particular
the notion of reward, a principle that is of high importance in
learning in primates and humans (Rushworth et al., 2011). As
such, these systems are particularly suited for adaptive life-long
learning robots for they bring to them wider motivations to react
to their environments: instead of compelling the robot to “explore
as quickly as possible every inch of the room”, it becomes closer
to “just be curious”. But beyond the topological characteristics
of unknown environments, their content also provides valuable
information for the robots internal representation of the world
(object formation, their affordance, etc.). Then, while one of the
most predominant issue in driving topological exploration is
to decide what is the next point or area to explore, semantical
exploration can be also introduced to determine what is the
next component to discover. Such considerations are close
to attentional behaviors, which have also been extensively
studied (Downar et al., 2000; Hopfinger et al., 2000; Corbetta

and Shulman, 2002; Corbetta et al., 2008; Petersen and Posner,
2012).

Among others, saliency is known to be a key feature in
attention thanks to its sensitivity to discontinuity in perceived
data. A significant literature can be found on saliency-driven
exploration: eye saccades modelization (Itti et al., 1998; Oliva
et al., 2003; Le Meur and Liu, 2015), detection of auditory
salient events (Kayser et al., 2005; Duangudom and Anderson,
2007), or audiovisual objects exploration (Ruesch et al., 2008;
Tsiami et al., 2016). However, most of these models propose
either a solely off-line solution requiring prior training from large
databases, or an immutable saliency characterization of events.
Moreover, the fact that these models only deal with the low-level
characteristics of the perceived data leads often to an absence
of wider context inclusion, be it through a form of memory,
or through the semantics of the events. In addition, saliency
can somehow differ from importance, depending on the task to
accomplish: attention can be driven by behaviorally important
but not salient stimuli while, on the other hand, very salient
stimuli but showing no behavioral importance can be disregarded
by the attentional networks (Corbetta and Shulman, 2002;
Indovina and Macaluso, 2007). However, it is worth mentioning
the interesting feature of the multimodal model of salience
of (Ruesch et al., 2008) as the implementation of an additional
inhibition map to the ones already used for saliency. Such map
promotes the exploration of unknown parts of the environments
and avoids deadlock situations caused by local minima. This
has also to be brought close to the notion of motivations for
exploration mentioned above since a form of Curiosity is here
implemented.

In this paper is presented a computational system, The Head
Turning Modulation system (HTM), which aims at giving a
mobile robot endowed with binaural hearing, binocular vision
and a rotating head, the ability to decide which audiovisual
sources present in unknown environments are worth the robot’s
attention. The principle of attention mentioned in this paper is
based on the prime definition originating from James (1890):
“Everyone knows what attention is. It is the taking possession
by the mind, in clear and vivid form, of one out of what seem
several simultaneously possible objects or trains of thought”.
More particularly, the proposed HTM system is dedicated to
the implementation of an overt and endogenous (Driver and
Spence, 1998; Le Meur et al., 2006) attentional reaction: the
head turning. This reaction, known to be one of the attentional
behavior involved in the mechanism of attention reorientation to
unpredictable stimuli (Thompson andMasterton, 1978; Corbetta
et al., 2008; Corneil et al., 2008), aims at bringing the visual
sensors in front of the sources of interest hence enabling the
robot to gather and analyze additional data. In addition, the
HTM system provides the robot with an adaptive enough
online learning behavior so that it can endlessly integrates
new useful information to its self-created audiovisual database.
However, this learning relying intensively upon the triggering
of head movements, it is also necessary for the robot to
understand when this knowledge is robust and relevant enough,
thus not requiring further motor reaction. The HTM is part
of a much wider system, implemented as the TWO!EARS
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software1, which aims at providing a computational framework
for modeling active exploratory listening that assigns meaning
to auditory scenes. More precisely, it consists in perceiving
and analyzing a multimodal world through a paradigm that
combines a classical bottom-up signal-driven processing step
together with a top-down cognitive feedback. In there, the
HTM is in charge of building an internal semantic map of the
explored environment, made of localized audiovisual objects
coupled with their respective semantic importance, the so-called
congruence.

In comparison with other works, the proposed system is
described as a real-time (Huang et al., 2006) and online behavioral
unit, which is always able to learn new situations while also taking
advantage of its previous experience of the past environments.
In terms of architecture, the proposed system receives data
from several “experts” from the TWO!EARS software, i.e.,
computational elements specialized in very particular tasks, such
as the identification of sounds or images. It means that the
HTM system is placed right after these experts, and thus receives
already highly interpreted data. Two main parts constitute
the system: an attentional component, the Dynamic Weighting
module (Walther and Cohen-Lhyver, 2014), and a learning
component, theMultimodal Fusion & Inferencemodule (Cohen-
Lhyver et al., 2015). On the one hand, the DW module is
dedicated to the analysis of perceived audiovisual objects through
the concept of Congruence, defined as a semantic saliency
and rooted in the principle of optimal incongruity (Hunt,
1965). The DW module implements a form of motivation by
surprise for it favors unexpected audiovisual events. On the
other hand, the MFI module learns the association between
auditory and visual data in order to make the notion of
multimodal object arise from potentially erroneous data of
the aforementioned experts. The MFI module implements a
form of motivation by reduction of uncertainty for it aims
at consolidating as much as needed its knowledge about the
audiovisual objects that the robot encounters. This learning
serves two purposes. First, it might improve the robustness
and reliability of the classification (Droniou et al., 2015).
Secondly, it allows the system to perform missing information
inference (Bauer and Wermter, 2013), as when an object is
placed behind the robot thus having only access to the auditory
information.

The paper is organized as follows. To begin with, the overall
TWO!EARS framework, together with the notations used all
along the paper, are introduced in a first section. On this
basis, the overall HTM system is thoroughly presented in a
second section: after a short insight into the HTM system
architecture, the way the DW module and the MFI module
operate is formalized. This section also presents their respective
evaluation in simulated conditions. Then, the combination of the
two modules is investigated and the evaluation of the approach
in real experimental conditions, that is including a real robot
in a real environment, is made. Finally, a conclusion ends the
paper.

1http://www.twoears.eu

2. CONTEXT AND NOTATIONS

This section presents the context in which is rooted the proposed
HTM system. All the forthcoming development has taken
place inside a specific computational architecture aiming at
modeling an integral, multimodal, intelligent and active auditory
perception and experience. This model physically uses two
human-like ears and visual inputs to make a mobile robot able
to interactively explore unknown environments, see Two!Ears
(2016b). Among other applications, this modular architecture
targets evaluation of bottom-up audiovisual processing coupled
with top-down cognitive processes. The proposed HTM system
relies also on this top-down and bottom-up paradigm providing
the robot with a reliable internal representation of its audiovisual
environment. To begin with, a short overview of the overall
architecture is proposed in a first subsection. A second subsection
introduces the notations used all along the paper, together with all
the notions required to understand the HTM system.

2.1. Global Framework
All the forthcoming developments have been conducted inside
the multilayer TWO!EARS architecture, see Figure 1A. This
figure highlights two different pathways: first, a classical bottom-
up processing way, where raw data coming from the sensors
(microphones and cameras) are first analyzed (features extraction
step), processed (through some specialized pattern recognition
algorithms) and interpreted (representation and decisional
layers). All of the above is computed by dedicated Knowledge
Sources (KS). The main contribution of this architecture is
that all these layers are highly and dynamically parameterizable:
for instance, most of the feature extractions parameters (for
audio data, one could cite the number of Gammatone filters
used, their repartition on the frequency scale, etc.) can be
changed on the fly. In general, the decision to change parameters
comes from upper layers, resulting in a top-down pathway, also
involving decisions concerning the movement of the robot itself.
Such decisions concerning the robot actions are of particular
importance, especially when dealing with attention reorientation
and scene understanding for they add adaptability to new and
unpredictable events.

The HTM system inside the TWO!EARS architecture shown
in Figure 1B is implemented as a Knowledge Source (KS). It
gets data from other KSs available in the architecture through
a blackboard (Schymura et al., 2014) (which can be seen, with
a rough simplification, as a data structure), and provides as an
output a proposition for a motor command, together with an
interpreted representation of the robot’s world. One originality
of the approach is that the HTM system is placed behind other
KS, thus not working directly with the features extracted from the
raw audio and visual signals. All of the KSs the HTM relies upon
contribute to the scene analysis and are fused by the HTM into
a representation of the world that spans wider in time than the
one provided by the individual KSs. This representation is made
of all the unknown environments explored by the robot, each
of them being characterized by the audiovisual objects observed
there in an allocentric representation, coupled with an additional
semantic layer formalized through the notion of Congruence.
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FIGURE 1 | TWO!EARS architecture. (A) On the basis on audio and visual data, features are extracted to provide a compact description of the data. Several audio and

visual experts (or Knowledge Sources, KS) exploit these features to analyze the signals. Each KS is specialized in one task: recognition of one type of sound,

localization, separation, etc. All experts share their knowledge through a blackboard system, thus producing an internal representation of the world. On this basis, the

overall system (but also individual KSs) can decide to modulate either the feature extraction step, or the action of the robot. The proposed HTM system, implemented

as a KS, is–among others–responsible for this last modulation. (B) Focus on the implementation of the HTM system inside this architecture.

The data used by the HTM, together with their notations are
described in the following section.

2.2. Definitions and Notations
The HTM system only relies upon KSs outputs to analyze
the unknown environments the robot explores. These KSs
are classification experts specialized in the recognition of
audio or visual frames (Two!Ears, 2016a), classified in terms
of audio classes cai , with i = 1, . . . ,Na (such as cai ∈
{voice,barking,yelling, . . .}) or visual classes cv

k
, with

k = 1, . . . ,Nv (such as cv
k
∈ {DOG, BABY,MALE PERSON, . . .})

with Na and Nv the number of audio and visual classes,
respectively. All classifiers are mutually independent, each
providing a probability pai [t] and pv

k
[t] for the frame at

time t to belong to the class they represent. All these
probabilities are regrouped by modality in the two vectors
Pa[t] = (pa1[t], . . . , p

a
Na
[t]) and Pv[t] = (pv1[t], . . . , p

v
Nv
[t]). In

addition, the TWO!EARS architecture provides Nθ localization
experts (May et al., 2011; Ma et al., 2015), aiming at localizing
audio and/or visual events in the horizontal plane with respect to
the robot. Each of them outputs a probability paθu [t] and pvθu [t],
with u = 1, . . . ,Nθ , for an audio and/or visual event to originate
from the azimuth θau or θvu (by convention, θ = 0◦ corresponds
to an event placed in front of the robot). All these probabilities
are gathered into the audio and visual localization vectors
2

a[t] = (paθ1 [t], . . . , p
a
θNθ

[t]) and 2
v[t] = (pvθ1 [t], . . . , p

v
θNθ

[t]).

In practice, all these classifiers outputs are regrouped into a single
vector V[t] constituting the sole HTM system input, with

V[t] = (P[t],2[t]),

with P[t] = (Pa[t],Pv[t]) and 2[t] = (2a[t],2v[t]).
(1)

From V[t], the HTM model attempts to build a stable and
reliable internal representation of the world, environment by
environment. Such a representation is obtained by transforming
an audio and/or visual event 9j objectively present in the
environment at azimuth θ(9j) and belonging to the ground truth
audiovisual class c(9j) = {ca(9j),c

v(9j)}, into an object oj
perceived by the robot, i.e.,

9j = {θ(9j),c(9j)} −→ oj = {θ̂(oj), ĉ(oj)},

with θ̂(oj) =
{
θau , with u = argmaxi(p

a
θi
), if θau ≥ |θHTM − θFOV|

θvu , with u = argmaxk(p
v
θk
) otherwise

,

and ĉ(oj) = {̂ca(oj), ĉv(oj)},
(2)

where θHTM and θFOV represent the current azimuthal head
position and the field of view of the camera, respectively. Then,
an object oj is defined by its estimated angular position θ̂(oj) and
its estimated audiovisual class ĉ(oj) made of the estimated audio
class ĉa(oj) and estimated visual class ĉv(oj). Equation (2) also
indicates that the estimated angular position is obtained from
the audio localization experts when the objects are out of the
robot sight; otherwise, visual localization experts are exploited.
Because of localization and/or classification errors, the object
oj might differ from the corresponding 9j. As an example,
Figure 2 plots as a function of temporal frames experimental
data from three audio classifiers outputs corresponding to the
audio classes PIANO, SPEECH and BARKING. This figure shows
first that potential classification errors can obviously occur:
at time t = 7, the BARKING output probability reaches
about 98% while a piano sound is perceived by the robot.
Additionally, the data show the temporal dynamic audio experts
can exhibit: while the piano starts playing at time t = 3, the
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FIGURE 2 | Illustration of the audio classification experts on real perceived data. (Top) Probabilities of the frames to belong to the corresponding audio classes.

(Bottom) Time description of the audiovisual objects appearance.

corresponding audio expert becomes dominant a few frames
later only. This delay observed experimentally will justify later
technical implementation specifics.

At this point, the notion of object already constitutes more
than just a structure of data. In particular, the objects created by
the HTM system embed a short-term temporal smoothing of the
data P(oj) they are associated with, as

P(oj)[t] =
1

Nt

n= t∑

n= t−Nt

P(oj)[n], (3)

whereNt ≤ 10 is the number of frames during which data P have
been associated to oj. This temporal smoothing enables the robot
to take into account its past experience of the audiovisual data the
robot perceived and that have been associated with this object,
but also to lower the impact of the early potential erroneous
outputs from the classification experts. Indeed, experiments have
shown that most of them are prone tomakingmore errors during
the very first frames of perceived events. Thus, it is one of the
goal of the HTM system to make the object identical to the event,
even in the presence of classification errors. In all the following,
the internal representation e(l) of the l-th environment being
explored by the system is defined as the collection of the N(l)

objects inside, i.e., e(l) = {o1, . . . , oN(l)}. Note that N(l) evolves
along time all along the agent life on the basis of the perceived
data. Importantly, this definition of an environment—which will
be augmented later on in section 3.2.1)—aims at making the
difference between the topological and the semantic definition
of an environment (see section 1). While the robot, through
its navigation system, gets to know when a new topological
environment is being explored, the HTM analyzes its audiovisual
content in order to assess whether this environment is really
new or if it similar to a previously explored one (as explained in
section 3.2.1). In that case, this audiovisual similarity enables the
robot to apply previously self-created behavioral rules making its

reaction abilities way quicker. Then, one can define audiovisual
categories C(l)(cai ,c

v
k
) of this l-th representation with

C
(l)(cai ,c

v
k) = {oj ∈ e(l), ĉa(oj) = c

a
i and ĉ

v(oj) = c
v
k}. (4)

Once the events have been interpreted as objects within the
internal representation e(l) of the robot, the HTM system analyses
them through the notion of Congruence, described in the next
section.

3. THE HEAD TURNING MODULATION
SYSTEM

The Head Turning Modulation system is an attempt to provide
a binaural and binocular humanoid robot with the ability to
learn by its own how to react to unpredictable events and to
consequently trigger or inhibit head movements toward them.
Moreover, the system is endowed with a module that provides a
multimodal internal representation of the world through a real-
time learning paradigm that has no access to any prior knowledge
about the environments to be explored. This system, partially
introduced by the authors in Cohen-Lhyver et al. (2015), Cohen-
Lhyver et al. (2016), and Cohen-Lhyver (2017) is defined as a
model of attention supported by an object-based representation
of the world. This section will thus present separately the two
constitutive modules of the HTM system. An evaluation of each
of them will be presented in simulated conditions, while the
evaluation of the whole system, made in real conditions, will be
presented in section 4.

3.1. Architecture of the Proposed System
The overall architecture of the HTM system is depicted in
Figure 3. It exhibits two modules inside, each of them being
dedicated to one specific task. As outlined in section 2.2, the
HTM inputs are made of audio and visual classifiers outputs,
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FIGURE 3 | Architecture of the HTM system. It is made of two modules, dedicated to the estimation of the audiovisual class of an event and to the computation of its

importance. An additional element is in charge with the respective motor orders integration and decision.

which are used by the first module—the Multimodal Fusion
and Inference (MFI) module—to provide an estimation of the
audiovisual class ĉ(oj) = {̂ca(oj), ĉv(oj)} of the currently
analyzed frame. As will be shown later, such an estimation is
made possible by a top-town motor feedback that allows the
system to gather additional audio and visual data. On the basis
on the frame estimated classification, a second module—the
Dynamic Weighting (DW) module—is in charge of deciding
if the currently emitting object is of interest through the
computation of its congruence to the current environment. As a
result, this module also exploits the motor feedback to modulate
the robot attention. Since both modules require motor actions
for their operations, a supplemental element is in charge with
prioritizing them, depending on their respective motor activities
τDW and τMFI, see Figure 3. Motor decisions are taken by
using the localization experts providing an estimated angle of
the processed event. Finally, the overall HTM system outputs
a list of interpreted objects, i.e., an internal representation
of the explored environment, which can be used by other
KS in the TWO!EARS architecture for other tasks (modulating
the exploration depending on the objects in the environment,
deciding which object is of particular interest in the current
scenario on the basis on the DW module module conclusions,
exploiting the top-down architecture to refine the peripheral
processing steps, etc.). All of these modules are introduced in the
next subsections together with some intermediate illustrations
and evaluations of their functioning.

3.2. The Dynamic Weighting Module
The Dynamic Weighting module (DW module) is the attentional
part of the HTM system aiming at giving the robot an hypothesis
about a possible relevant audiovisual object that would present
an interest to it, in the scope of the exploration of unknown

environments. As already stated, this interest is formalized
through the new notion of Congruence, thereafter detailed.

3.2.1. Congruence: Definition and Formalization
Congruence is a notion that defines the relationship between
an audiovisual event to the environment it is occurring in.
It has to be brought next to the well-known and studied
notion of Saliency (Treisman and Gelade, 1980; Nothdurft,
2006; Duangudom and Anderson, 2007) that describes how
the perceived characteristics of a stimulus exhibit continuity,
or not, with its direct surrounding. Whereas saliency is based
on low-level characteristics of the signals (such as intensity,
frequencies, pitch, color, contrast, etc.), Congruence relies on a
higher representation of the audio and visual signals, namely the
audiovisual class they belong to (see section 2.2). Congruence
is thus defined as a semantic saliency for it relies on an already
interpreted representation of the perceived data. Since the robot
does not have any prior knowledge about the possible likelihood
of an audiovisual event to occur in an environment, the DW

module will only base its analysis on a posteriori probabilities,
that is computing statistics only on what has been observed so far
by the system, environment by environment. This probability of
an object oj to belong to a certain audiovisual category C

(l)(cai ,c
v
k
)

is thus defined as

p
(
oj ∈ C

(l)(cai ,c
v
k)
)
= p

(
C
(l)(cai ,c

v
k)
)
=

|C(l)(cai ,c
v
k
)|

N(l)
, (5)

where |C(l)(cai ,c
v
k
)| depicts the number of objects that have

already been associated to the audiovisual category C(l)(cai ,c
v
k
) (as

a reminder,N(l) corresponds to the number of objects detected so
far in the l-th environment). Still following the fact that no prior
knowledge is available for the robot, the system will compare this
a posteriori probability to a threshold K(l) = 1/N

C
(l) defined as
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the equiprobability of an object to belong to any of the categories
detected so far, where N

C
(l) is the number of different audiovisual

categories detected in the l-th environment. Such criterion has
been chosen so that minimal bias is introduced in order not
to promote any audiovisual category. The criterion K(l) evolves
through time: the more audiovisual classes observed, the lower
the criterion. Finally, the congruence decision follows:

oj ∈ C
(l)(cai ,c

v
k) is incongruent ⇔ p(C(l)(cai ,c

v
k)) ≤ K(l). (6)

All the “status of congruence”, that is whether they are
congruent or not, of the audiovisual categories detected by
the system in a given environment are then gathered into
a binary vector W(l) = {p(C(l)(cai ,c

v
k
)) ≤0,1 K

(l)},∀(i, k), with

≤0,1 a binary comparison operator. This vector of size |C(l)|
completes the definition of environments as they become
collections of objects e(l) coupled with their congruence status
W(l). In consequence, an audiovisual class can be incongruent
in an environment, but congruent in another. Since the robot
would explore unknown environments during its whole life, the
knowledge gained from previous explorations has to be reusable
for it might speed up the exploration of new ones. Following
a rule of strict inclusion of the sets of categories observed in
every environment explored so far by the robot, if the set of
categories detected during the exploration of an environment e(i)

has already been observed in a previous environment e(j), then
W(i) = W(j). This redefinition of an environment implies that
there is one instantiation of the DW module per environment.
In addition, even in the case where there has been a reuse of
information, the rules of Congruence are still computed as if the
current environment was a completely new one. Consequently, if
e(j) gets to differ at a point in time from e(i) and that there is no
other correspondence with other environments, the W(j) vector
computed in parallel from the beginning of the exploration of e(j)

will be from now on applied.

3.2.2. Motor Orders
Based on the congruence of all the objects, an active behavior is
defined: if an object oj is incongruent according to Equation (6),
then it is worth focusing on it. A head movement can
consequently be triggered in the direction of this object. At
the opposite, if p(C(l)(cai ,c

v
k
)) > K(l) the robot would inhibit

this movement. But such a binary motor decision has several
drawbacks, as demonstrated in Cohen-Lhyver et al. (2015).
Among others, it presents a high sensitivity to classification
errors, leading to erroneous motor decisions. Introducing a
temporal weightingwoj of each object oj, inspired by the temporal
dynamic of the Mismatch Negativity phenomenon (Näätänen
et al., 1978), filters out efficiently most of these errors.
These weights are computed thanks to two different functions,
depending upon the probability p(C(l)(cai ,c

v
k
)), along

woj [n] =

{
f •ω[n] = 1/(1+ 100 e−2n) if p

(
C(l)(cai ,c

v
k
)
)
≤ K(l),

f ◦ω[n] = (1/1+ 0.01 e2n)− 1 else,

(7)
where f •ω[n] and f ◦ω[n] are increasing positive and decreasing
negative functions dedicated to the weighting of incongruent and

congruent objects, respectively, and n a time index. Note that
n is systematically reset to 0 whenever the congruence status
of the object oj switches. From these weights, it is possible to
decide which object has to be focused on. Such a decision is
implemented through an adaptation of the GPR model (Gurney
et al., 2001a,b) of the basal ganglia-thalamus-cortex loop involved
in the motor order decision in humans. According to this
model, all possible motor actions are expressed as channels of
information which are by default inhibited by several afferent
external connections. Depending on the goal or on the perceived
stimuli, one of the channels is excited, thus promoting the
motor action it is representing. Inspired by this functioning, all
the objects perceived by the robot are similarly represented as
information channels having a dedicated activity τDW(oj). The
vector of canal activities τ DW can be then defined as

τ DW =
(
τDW(o1), . . . , τDW(oNl

)
)
, with τDW(oj) = −

p
(
C
(l)(cai ,c

v
k
)
)

K(l)
.

(8)
Thus, the higher the weight woj of an object, the lowest the

activity of its corresponding canal. The angle θ̂(oj) estimated by
the audio localization expert corresponding to the canal with the
lowest activity will then be selected as the winning motor order
θDW , i.e.,

θDW = θ̂(oj), with j = argmin
l

(
τDW(ol)

)
. (9)

If two different objects oj and ol have the same weight woj =
wol , then their corresponding channels τDW(oj) and τDW(ol) have
the same value. In such a case, the most recent object in the
representation is promoted, thus introducing a motivation by
novelty (Huang and Weng, 2002, 2004) (see also Walther et al.,
2005). Then, Equation (8) is slightly modified by introducing a
weight which is minimized for recently appeared objects, i.e.,

τDW(oj) = −
p
(
C(l)(cai ,c

v
k
)
)

K(l)
×

1

1t(oj)
, with 1t(oj) = t−temit(oj),

(10)
where 1t(oj) represents the time elapsed between the object
appearance temit(oj) (reset to t when the object starts emitting
again after having stopped previously) and current frame t. Note
that the temporal smoothing introduced by Equation (3) does
not influence the global reactivity to unexpected events, for the
dynamics of the smoothing has the same order of magnitude to
the dynamic of the weighting function in Equation (7).

3.2.3. Simulations and Evaluation of the DW Module
The DW module aims at controlling the head movements of an
exploratory robot through the notion of Congruence of perceived
audiovisual objects. Thus, what is expected from the DW module
is to either trigger movements toward important audiovisual
sources, and to also be able to inhibit them when necessary. To
illustrate this, simulations have been conducted on the basis of
the TWO!EARS architecture. Importantly, twelve audio classifiers
and ten visual classifiers are actually implemented inside the
software (Two!Ears, 2016a), making evaluation scenarios quite
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FIGURE 4 | Audiovisual sources toward which a head movement has been triggered (blue line) by the DW module, (dotted red line) by the naive robot. (Gray boxes)

audiovisual sources emitting sound. A source is focused on when the lines crosses the corresponding box.

limited. Thus, instead of simulating raw (audio and visual)
data used by real classifiers, their outputs pai [t] and pv

k
[t] are

rather simulated. Nevertheless, real conditions will be used later
to evaluate the overall HTM system in section 4. Note that
the forthcoming simulated localization experts are designed to
provide the exact object audio and visual localization, the focus
being put here on the congruence analysis performed by the DW

module.

3.2.3.1. Simulations
Multiple evaluation scenarios are proposed, each of them being
described by the number nS of different sources in the simulated
environment, the description of their azimuthal localization,
their temporal appearance and disappearance, and their ground
truth audiovisual classes c(9)–obviously, the HTM system does
not have access to any of these. The scenarios are also defined by
the maximal number of simultaneously emitting sound sources
nmax
sim . While this number never exceeds five in real extreme

experimental conditions, the simulations allow to incorporate up
to ten audiovisual sources. At every time step t of a simulation,
a vector P[t] = (Pa[t],Pv[t]), from Equation (1) is sent to the
HTM system. In the scope of the sole DW module evaluation, the
estimated audio and visual classes of an event is directly obtained
from P[t], i.e., on the KS outputs, according to a maximum a
posteriori (MAP) estimation, with

ĉ
a
MAP = c

a
i , i = argmax

l
(pal ) and ĉ

v
MAP = c

v
k, k = argmax

l
(pvl ).

(11)
Note that this audiovisual class estimation will be later provided
by the MFI module introduced in section 3.3, as shown
in Figure 3. However, because of the inevitable presence of
classification errors, the corresponding audio and/or visual
classes can be wrong (see Figure 2). It has been simulated
through the implementation of an error rate εP ∈ [0, 100]%.
At time t, a ground truth probability vector corresponding to
the simulated event is generated. With respect to εP, a “wrong”
classification expert index is randomly selected by drawing its
value from a uniform pseudorandom number generator. Then,
its associated probability is set to be the maximal value of the

whole vectors P[t]. In the end, this will allow to judge the
robustness of the approach to such classification errors.

Like proposed in Girard et al. (2002), the performance of
the system is partially evaluated in comparison with a virtual
“naive robot” noted Rn. In particular, Rn will systematically
turn its head toward any audiovisual source occurring in the
environment, independently of its importance. For now, the
simulations are made with an important restriction (explained
and justified later): all the sources are in the field of view of the
robot, i.e., the robot always has access to visual data.

3.2.3.2. Evaluation 1: head movements modulation by the

DW module
A rather complex environment is used in the following to
illustrate the functioning of the DWmodule: nS = 10 audiovisual
sources are present with a maximum of nmax

sim = 7 simultaneously
emitting sources. At first, let’s focus on the ability of the DW

module to modulate head movements by selecting only the
sources of importance through the congruence analysis. Here will
only be assessed the behavioral role conferred by the DW module
to the robot; in consequence the simulated classification experts
will be set as outputting perfect data, that is εP = 0 (evaluations
with higher error rates are made later in the paper).

Figure 4 exhibits one simulated environment, made of
sources (represented as gray boxes) emitting sound along time
(horizontal axis). Each source belongs to an audiovisual category
represented on the left axis. Some sources might have the same
audiovisual category: for instance, in this simulated scenario, the
environment is made of three different telephones ringing. In
addition to this “objects along time” description of the scene,
Figure 4 shows two different lines: both “pass” through objects,
indicating that the robot has decided to focus on them. The
blue line corresponds to the decision taken by the DW module,
while the red dashed one corresponds to Rn. Simulations show
that the DW module considers the audiovisual classes (RINGING,
telephone) and (MUSIC, loudspeaker) as congruent in
less than 100 time steps. This is because of their distribution
with respect to the other categories: in the beginning of the
simulation, objects belonging to these two categories are often
present, making them less important. Consequently, the robot
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FIGURE 5 | Head movements triggered by (blue) the DW module, (red) the

virtual naive robot. Every arrow points toward the position of a source and their

lengths depict the number of movements toward every pointed source. (Bars:)

number of movements triggered by the the MFI module (blue) and the virtual

naive robot (red). The light blue numbers correspond to the position of the

audiovisual sources.

will not turn its head toward those sources: there is no (motor)
attentional reaction anymore. On the other hand, the categories
(ALERT, siren), (SPEECH, male), (CRYING, female), and
(CRYING, male) are considered as incongruent, thus requiring
the robot to focus on them. Importantly, the actual meaning of
those sources is not used here to decide of a reaction: one could
have trade the congruent categories with the incongruent ones
without any change in the global reaction. Only the frequency of
apparition defined in Equation (5) is taken into account to decide
the importance of a source.

In comparison, the naive robot Rn turns its head every time a
source starts to emit sound: it is particularly noticeable between
t = 200 and t = 250 where a lot of movements can be observed.
The comparison between the two behaviors is highlighted in
Figure 5, where is depicted the total number of head movements
triggered to the audiovisual sources in the environment for the
DW module (blue) and naive robot (red). It appears that
a drastic modulation of the exploratory behavior is obtained:
using the DW module conducts to a reduction of 71.3% of the
number of head movements in comparison with the naive robot.
Furthermore, the DW module only triggers movements toward
five sources, instead of ten for the naive robot, thus showing how
Congruence—even with its simple and intuitive definition—can
provide an efficient filter for the attentional behavior of the robot.
Importantly, such a modulation allows the robot to use head
movements, and more generally its exploratory actions, for other
unrelated tasks. As long as no incongruent source is detected,
head movements are free to be used for anything else. But as
soon as an incongruent source pops up in the environment, the
DW module will drive the head toward this source: the robot
then puts its attention on it. In the end, this simple illustration
shows how important it is to be able to inhibit or trigger head
movements.

3.2.4. Conclusion and Limitations
The DW module is a crucial part of the HTM system in
charge with providing a semantic understanding of the unknown
environments the robot is supposed to explore. One of the
cornerstone of this module is to be able to work without prior
knowledge about the potential distribution of the audiovisual
sources occurring in these environments. Thus, the DW module
has to create congruence rules on the sole basis of what the robot
sees and hears, that is the audio and visual labels the classification
experts output. The behavior rules created are, firstly, adaptive
enough to always take into account new information, since the
congruence status of all the objects are computed every time a
new object is detected in the environment; and secondly, broad
enough to limit any bias possible in the interpretation of the
perceived information: an audiovisual class can be incongruent
in an environment but congruent in another one, as will be
illustrated in section 4. Moreover, by not creating any prior
behavioral rules (such as if-else statements) and by letting the
system continuously being sensitive to new information, the
DW module provides the robot with a life-long learning of the
environments composing the world it is living in. However, one
important limitation appears here: the DW module needs to have
access to a complete audiovisual information in order to compute
the congruence of any object appearing in the scene. Indeed,
in the situation where a source is placed behind the robot, it
would have to first turn its head toward it in order to get the full
audiovisual data, to then be able to take a decision on whether or
not a head movement is necessary. . .which is what can be called
a deadlock situation. This is why the previous illustration of the
DWmodule has used a setup where all the visual data were always
perceivable to the robot. Obviously, this is not a realistic context
at all. This is where the secondmodule of the HTM system comes
into play.

3.3. The Multimodal Fusion and Inference
Module
The Multimodal Fusion & Inference module (MFI module)
is in charge of providing the DW module with a complete
information about the audiovisual sources, even when they are
placed behind the robot. Moreover, the MFI module is able to
cope with classification errors, i.e., to provide a stable and reliable
estimation of the audiovisual classes of an object. This module
is based on an online self-supervised active learning paradigm
that enables the overall system to create knowledge about the
audiovisual classes that are present in the environments the robot
is exploring. Basically, the idea is to exploit head movements
to learn the relationship between the audio and visual classes
of the sources, making the robot becoming afterwards able to
infer a missing modality. To begin with, the learning paradigm
of the MFI module is described in a first subsection. Then, the
way motor orders are triggered to learn the association between
audio and visual classes is presented. An illustration of the MFI

module functioning together with new details concerning the
simulations, are then provided. A short discussion ends this MFI

module presentation.
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FIGURE 6 | Illustration of (A) the Multimodal Fusion and Inference module, (B) the Multimodal Self- Organizing Map. The M-SOM embeds one SOM per modality

used for the definition of an object (audio and vision in our case). The representation here depicts the two subnetworks as a map containing neurons split in two parts

defined by their own weights vectors, one part being dedicated to the mapping of audio data, the other to visual data.

3.3.1. The Multimodal Self-Organizing Map
The MFI module is based on a Self-Organizing Map
(SOM) Kohonen (1982) which is a learning algorithm relying
upon a low dimensional map on which is performed a vector
quantization of a high dimensional input matrix of data, while
allowing its categorization. The input data are here made of
classification experts outputs gathered in the vector P[t], see
Figure 6A and Equation (1). However, the traditional SOM
algorithm shows one important limitation: it is unable to cope
with missing data. In the case where an event originates from
behind the robot, visual classifier outputs will not be relevant:
the visual modality is missing. Then, two options can be chosen:
(i) remove the corresponding visual components of P[t], or
(ii) set the corresponding components to the same arbitrary
value. In the former case, this would imply a change in the data
dimensionality. In the latter case, this would create arbitrary
meaningful data which would be misinterpreted by the SOM.
Then, these two options do not offer any solution to missing data
inference. This is why it is proposed to transform a classical SOM
into aMultimodal-SOM in order to keep what makes it powerful
and usable with the constraints listed before. Interestingly,
Papliński and Gustafsson (2005) have developed a bio-inspired
system of interconnected SOMs allowing the learning of complex
multimodal data for classification purpose. But while this system
possesses interesting multimodal classification properties, it lacks
the essential capability of inferring missing information. More
recently, Bauer and Wermter (2013) and Schillaci et al. (2014)
have proposed original models based on the SOM paradigm.
But while they allow the multimodal learning of perceptual data
in an unsupervised way, their major drawbacks reside either in
their need of significant amount of data or in the time required
to converge to a stable representation of the processed data.

3.3.1.1. The subnetworks
Lets recall that a SOM is a map composed of I× J interconnected
rij nodes, or neurons. The proposed modification of the original
SOM consists in creating one SOM per modality, as shown in
Figure 6B. Thus, the M-SOM is made of two (interdependent)

maps, also composed by I × J interconnected r
a/v
ij nodes, of size

⌈
√
Na × Nv⌉×⌈

√
Na × Nv⌉ (where a/v stands for audio or visual

in a compact notation). This size has been selected to ensure that
there will be at least one node available per possible audiovisual
class combination, given that no prior information is available
about the plausible audiovisual classes the robot will perceive
during its life-long exploration. To each node is associated (i) a
weights vector wa

ij = (wa
ij(1), . . . ,w

a
ij(Na)) of sizeNa for the audio

subnetwork, and a weights vector wv
ij = (wv

ij(1), . . . ,w
v
ij(Nv))

of size Nv for the visual one, (ii) a (i, j) position in the map,

and (iii) connections χ(ij)→(kl) between the r
a/v
ij nodes and their

neighbors in the same map, where [i, k] ∈ [1, I] and [j, l] ∈ [1, J]
(with an exception for the nodes located at the edges of the
map where the connectivity is reduced). The weights vectors

w
a/v
ij associated to all the r

a/v
ij nodes will become, through the

iterative learning phase, the representatives of the different kinds
of vectors constituting the input matrix, and thus, of the different
audiovisual classes the input data capture.

3.3.1.2.Weights update
Traditionally, at every iteration nit of the original SOM algorithm
(the total number of iterations classically going from thirty to
thousands, given the complexity of the data to be processed),
the input matrix is parsed randomly until every vector has
been processed once (Kohonen, 2013). For every vector explored
the algorithm looks then for the closest weights vector wij
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associated to the node rij to the current input vector, in terms
of their Euclidean distance. The winning neuron, that is the
one presenting the closest distance to the input vector, is called
the Best Matching Unit (BMU). It will be the location in
the map where the propagation of the resemblance between
the input vector and the weights vector wBMU will start. This
propagation follows a Gaussian neighborhood function hij[nit]
(see Equation 14) of variance σ [nit] that defines the spread of
the propagation. The neighborhood function is modulated by
a factor α[nit], the learning rate, making the learning powerful
in the first iterations but almost non-existent in the last ones.
Spreading the resemblance to the BMU’s neighbors has two
effects: (i) lowering the distance between the BMU and the
input vector so that this neuron becomes more and more the
representative of the information coded by this vector, and (ii)
partially shaping the map around the BMU so that the closest
to the BMU in terms of distance, the closest also in terms of
information coded by the input vector. This leads to an self-
organized map where regions have emerged, regions that code
for similar categories. Once every vector of the matrix has been
explored, a new iteration of learning starts. At every iteration
nit is incremented making α[nit] and σ [nit] both decrease. Such
decreasing leads to the following behavior of the learning process:
at start, the propagation spreads largely in the SOM and the
learning rate is at its highest; at the end of the learning, the
propagation barely spreads around the BMU and the learning
rate is at its lowest.

Within theM-SOMhowever, several changes of the traditional
algorithm have been performed, changes that impact the way
weights are updated. First, an audiovisual BMU ravBMU is now
computed as the combination of the two (audio and visual)
subnetworks, according to

ravBMU = rIJ , with (I, J) = argmin
i,j

(
‖Pa − wa

ij‖ × ‖Pv − wv
ij‖
)
,

(12)
where ‖.‖ depicts the Euclidean distance between the vectors.
This combined audiovisual BMU is associated to the combined
weights vector wav

BMU = (wa
BMU ,w

v
BMU).

Secondly, the HTM does not have access to the whole matrix
of data: the robot gets one vector at a time, every time a frame is
analyzed by the set of KSs in the architecture. Thus, the iterative
process has been revisited accordingly to this online paradigm.
At every time step, the M-SOM will perform only 1 iteration
of learning with the current vector (that is, there is no infinite
memory of the past perceived data). However, the key principle of
augmenting the resemblance between the BMU and the current
vector, together with its spread, must be kept in order to reach
an organized map. Taking also into account the fact that the
audio classification experts from TWO!EARS get more and more
precise the longer they gather data from a same sound source, the
evolution of α[nit] and σ [nit] has been reversed. The first steps
of learning correspond to the minimum values of the learning
rate and the variance of the neighborhood function, so that less
importance is put to the very first classification experts data, and
more to the next ones, following also the definition of an object
(see section 2.2). Thirdly, still from the fact that the system does

not have access to the whole data to be processed, it is necessary
to adapt how the algorithm converges. Since the robot will always
get to explore new environments during its life, there is no priorly
known solutions to this learning problem. Consequently, instead
of trying to reach a global convergence of the overall M-SOM, the
MFI implements a local consistency (Chapelle et al., 2002; Zhou
et al., 2004) at the audiovisual-class level (see also section 3.3.1.4).
This local consistency enables the M-SOM to judge by itself
whenever the learning of a particular class can be stopped or
has to be continued. Thus, the value of the iteration nit, that will
have an impact on the values of α and σ , will be computed object
by object: every object has its own iteration value corresponding
to a certain degree in the learning process of the audiovisual
class it belongs to. The choice of implementing an iteration index
object by object instead of class by class, which would seem more
logical, comes also from the potentially erroneous behavior of the
classification experts during the first perceived audio or visual
frames associated to the objects (see section 2.2). Indeed, relying
directly on these outputs could promote, on the mid- to long-
term, the learning of false audiovisual classes that could hamper
the learning of the correct ones. The learning iteration nit is now
defined by

nit[t] = max
(
(Nit − n

oj
it [t])+ 1, 1

)

with n
oj
it [t] = tinit(oj)+ (t − tinit(oj)),

(13)

where tinit(oj) is the temporal index corresponding to the initial
time the object emitted sound in the current environment, and
Nit = 10 corresponds to the maximal number of iterations. The
value ofNit = 10 time steps has been defined experimentally with
respect to two factors: (i) a too low value would put too much
importance on the very first frames detected by the classifiers for
a given object, and (ii) a too high value would significantly delay
the local convergence of the learning for it would also delay the
moment α and σ would be high enough to make the learning
actually efficient.

Once ravBMU is found, all the weights vectors associated with
every node are then updated, as described above, and according
to

w
a/v
ij [t + 1] = w

a/v
ij [t]+ α[nit] hij[t, nit] ‖Pa/v[t]− w

a/v
ij [t]‖,

with hij[t, nit] = exp

(
−
‖ravBMU[t]− rij‖2

2σ [nit]2

)
,

(14)
where α ∈ [0.02, 0.9] represents the increasing learning rate (first
and last values from Kohonen, 1990), and hi,j[t, nit] → R is the
Gaussian neighborhood function of variance σ [nit].

3.3.1.3. Estimation of the audio and/or visual classes
Every time data P[t] are available from the KS, the M-SOM
proposes a corresponding estimated audio and visual classes ĉa

and ĉv, respectively. In the case where all the data are available,
then the corresponding classes can be estimated along

ĉ
a = c

a
i , i = argmax

l
wa

BMU(l), and ĉ
v = c

v
k, k = argmax

l
wv

BMU(l).

(15)
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Thus, the audiovisual class ĉall, estimated when all the modalities
are available, is given by ĉall = {̂ca, ĉv}. All the interest of
the M-SOM is its ability to provide both audio and visual
classes, even if a part the KS outputs are not available. Of
course, no learning is then performed, but it is the step
where the network is actually exploited for inference. In
the case where, for instance, the visual data are missing
(i.e., the event is out of the field of view of the robot),
then:

1. audio only is exploited to determine the winning
(audio) node raBMU in the audio map, whose associated
weight vector wa

BMU can be used to estimate the audio
class ĉa = cai , with i = argmaxl w

a
BMU(l) like in

Equation (15);
2. the winning (visual) node is deduced from audio by rvBMU =

raBMU : this is exactly where the learned interlink between
audio and visual data is exploited. The corresponding
visual class ĉv can then be deduced from the associated
weight vector wv

BMU along ĉv = cv
k
, with k =

argmaxl w
v
BMU(l).

In the end, the audiovisual class ĉmiss, estimated when one
modality is missing, is then given by ĉmiss = {̂ca, ĉv}. Of
course all the reasoning is identical when the other modality
is missing: the available data drive the missing modality for
inference.

3.3.1.4. Convergence and the inference criterion
A key principle in learning algorithms is their ability to converge
to one of the acceptable solutions of the problem to be solved.
However in the proposed context, different environments made
of possibly different audiovisual sources might be explored
during the robot life. Then, it is clearly impossible to define
one global good solution to the problem. Nevertheless, the
proposed M-SOM possesses a characteristic of local consistency
(see section 3.3.1.2). Within the classical SOM algorithm,
convergence means that the whole map is organized such that
the different nodes are grouped in meaningful entities that code
part of the input data. In the proposed M-SOM, it is proposed
that the algorithm always keeps a free part in the map, i.e., nodes
not coding for any audio or visual classes. This would allow the
network to include new audiovisual classes, discovered all along
the interaction with new environments during the robot life.
Looking for local consistencies, rather than reaching for global
convergence, is implemented through the definition of a criterion
for each audiovisual category already created, indicating how
much this category has been learned so far and if its learning
can be stopped. The multimodal learning performed by the MFI

module is supported by head rotations to the sources to be
learned. It allows to bring the visual sensors in front of them
in order to learn the association between the corresponding
audio and visual classes. But these head movements are no
longer useful once the M-SOM has enough knowledge about the
audiovisual classes, thus justifying the need to (i) inhibit these
head movements, and (ii) being able to judge when this amount
of knowledge is sufficient. Then, an inference ratio q(C(l)(cai ,c

v
k
))

for the audiovisual category C(l)(cai ,c
v
k
) is defined as

q
(
C
(l)(cai ,c

v
k)
)
=
∑n= t

n= 1 δmiss
i,k

[n− 1] δall
i,k
[n]

∑n= t
n= 1 δmiss

i,k
[n]

,

with δall/miss
i,k =

{
1 if ĉall/miss(oj) = {cai ,c

v
k
},

0 else.

(16)

This inference ratio is computed by comparing the number of
times the audiovisual category C(l)(cai ,c

v
k
) has been obtained (or

inferred) with one missing modality (δ
(miss)
i,k

= 1) at time n − 1

and confirmed at time n (δ
(all)
i,k

= 1) by a head movement with
all modalities available, with the total number of inference. Thus,
q(C(l)(cai ,c

v
k
)) captures the ability of the MFI module to infer

correctly a missing modality, category by category. The inference
ratio always lies between 0 and 1, where 1means that the category
has always been perfectly inferred. On this basis, q(C(l)(cai ,c

v
k
))

is compared to a criterion Kq ∈ R
+ = [0, 1]: if a modality

is missing, the MFI module will attempt to infer it, and as long
as the inference ratio of the corresponding audiovisual category
is lower than Kq, a head movement will be triggered toward
the corresponding source. Thus, the system grabs the missing
information and feeds the M-SOM, which can then learn the
audiovisual association. Of course, once the full audiovisual data
is obtained, a comparison with the previous inference is made
and the inference ratio is updated accordingly. If the inference
ratio gets higher than the criterion Kq, the learning is considered
as being good enough to trust the inference made by the MFI

module, and inhibit consequent head movements toward the
sources belonging to the corresponding audiovisual category.
Remark that the criterion Kq has an influence on the behavior
of the MFI module (Cohen-Lhyver, 2017). A low threshold allows
a quick confidence in the inference, thus freeing headmovements
for other tasks, whereas a high Kq value pushes the system to be
very careful about its inferences.

3.3.2. Motor Orders
As for the DW module, the MFI module is able to trigger head
movements toward sources of interest. This interest is now
formalized by the lack of confidence in the knowledge of the
audiovisual category a source might belong to. As previously
explained, turning the head toward a source might enable the
visual sensors to get the missing visual data, thus giving to
the MFI module the opportunity to learn the interlink between
the audio and visual modalities, but also to eventually
confirm/refute an inference. Like for the DW module, the head
movements modulation is inspired by the GPR model (see
section 3.2.2), but through a different expression of the activities
τMFI(oj) for the object oj with audiovisual category C

(l)(cai ,c
v
k
),

now given by

τMFI(oj) =
q(C(l)(cai ,c

v
k
))

Kq
× δ(i,k)(n),

with δ(i,k)(n) =
{
−1 if n < (tp = 10),
1 else,

(17)
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FIGURE 7 | Impact of the temporal persistence, introduced in Equation (17), (left) on the number of triggered head movements in a complex environment, and (right)

the behavior of the robot in a simplified case for illustration purposes. (Blue bars:) robot driven by the MFI module, (red bars) naive robot. Percentages depict the ratio

between the naive robot and the MFI module.

where n = t − tfoc(oj), with tfoc(oj) the first time the object
has been focused on by the MFI module. Then, the angle θ̂(ol)
estimated by the localization expert and corresponding to the
canal with the lowest activity is selected as the winning motor
order θMFI , i.e.,

θMFI = θ̂(ol), with l = argmin
j
(τMFI(oj)). (18)

The term δ(i,k)(n) in (17) introduces a form of temporal
persistence through a positive feedback loop, as observed in
the thalamus by Redgrave et al. (1999), Gurney et al. (2001a),
and Meyer et al. (2005). The value of tp = 10 has been set
experimentally after several comparisons and evaluations. The
impact of this persistence in a complex environment (eight
sources with five simultaneously emitting) is illustrated in the
left panel of Figure 7, where the blue bars depict the number
of head movements triggered by the MFI module, while the
red bars, by the naive robot Rn (these numbers are obviously
not affected by the temporal persistence applied to the MFI

module). The main point is that the temporal persistence tp
constitutes only a small part of the head movements control:
13.6% less head movements between tp = 1 and tp = 25.
The real benefits of temporal persistence is shown in Figure 7

(right): with tp = 1, the robot exhibits oscillations between two
sources, potentially damaging the internal representation of the
world (confusions in binaural cues computations, speed of the
movement. . . ). With tp = 25, a pervert effect of a too long
persistence is also shown: the system often ghosts completely
the (SINGING, female) source, preventing itself from learning
it.

3.3.3. Evaluation 2: Classification Rates of the mfi

module
The MFI module aims providing a corrected audiovisual
information from the classification experts. In order to assess
the contribution brought by this module, a good audiovisual
classification rate Ŵ(oj)[t] is defined by comparing the audio and

visual classes associated to all the objects detected by the system
with the ground truth, according to

Ŵ(oj)[t] = a×
t∑

k= ti

γ (oj)[k]

with γ (oj)[k] =
{
1 if ĉ(oj)[k] = c(9j)[k],
0 else,

(19)

with c(9j)[k] being the ground truth audiovisual class of the
event 9j captured as the object oj at time k in the internal
representation, and a = 1/[1, ..., (t − ti)+ 1] corresponding to
the elapsed time between the first time step ti when the MFI

module provided a classification of the object oj, and the current
time t. The overall good classification rate is given by applying a
sliding window on all Ŵ(oj) computed from the beginning of the
exploration, along

Ŵ̄MFI[t] =
1

Nc
obj
[t]

Nc
obj

[t]∑

j= 1

Ŵ(oj)[t] (20)

with Nc
obj
[t] the number of processed objects by the MFI module

at time t (this number could be inferior or equal to the total
number of objects present and emitting, noted Nobj). In parallel,
the same process is made for the naive robot Rn [knowing
that this one performs the fusion of the classification experts
themselves through a maximum a posteriori approach, along
Equation (11)], according to

Ŵ̄Rn [t] =
1

Nobj[t]

Nobj[t]∑

j= 1

Ŵ(oj)[t]. (21)

In addition, a measure of the classification performance of an
omniscient (thus unrealistic) robot is also computed, noted
Ŵ̄′

Rn
[t]. This robot has full access to every auditory and visual
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TABLE 1 | Simulation setup for Evaluation 2.

Evaluation 2

e(l) nS nmax
sim

T |C(l)| Kq εP

1 to 5 3 3 1000 2 0.8 0.1, 0.3, 0.5, 0.7, 0.9

6 to 10 5 5 1000 3 0.8 0.1, 0.3, 0.5, 0.7, 0.9

11 to 15 7 7 1000 4 0.8 0.1, 0.3, 0.5, 0.7, 0.9

16 to 20 10 10 1000 6 0.8 0.1, 0.3, 0.5, 0.7, 0.9

Each setup is repeated 5 times for a total of 100 simulations.

information, even when the objects are out of the sight of
the robot. The simulation setup is presented in Table 1.
Twenty different multisource environments are simulated, each
of them in possibly different conditions (number of sources,
number of simultaneously emitting sources, error rates, etc.).
The resulting good audiovisual classification rates are regrouped
in Table 2, mainly organized by increasing error rates εP =
{0.1, 0.3, 0.5, 0.7, 0.9}.

At first, let us consider the naive omniscient robot R
′
n. As

expected, it presents a mean good audiovisual classification
rate Ŵ̄R′

n
almost equal to 1 − εP for all tested conditions. In

contrast, the realistic naive robot Rn (having only access to the
data it is able to perceive) systematically exhibits lower rates
Ŵ̄Rn . Clearly, the main flaw of this robot is its incapacity to
perform any inference, which turns to be a critical capability
in multisource environments. In comparison, the proposed
MFI module outperforms both naive robots, for almost any
error rates and number of sources (except for only one case:
εP = 0.1 and nS = 10). The last column in Table 2

exhibits the ratio between the best naive robot Rn (given
by Ŵ̄′

Rn
[t = T]) and the MFI module: the greater εP, the

higher the ratio, except with εP = 0.9. In this case, the
error rate is anyway so high that the interest in exploiting
such corrupted data is almost null. However, even in very
challenging conditions involving a very high εP = 0.7 in a
multisource context, the MFI module provides on average a 2.4
times better good audiovisual classification rate than with the
classifier outputs.

3.3.4. Discussion
The proposed MFI module, mainly based on the M-SOM,
provides an online self-supervised active learning paradigm
to be able to process erroneous and/or missing data in the
particular context of the exploration of unknown environments.
The overall goal of the MFI module is thus to feed the DW

module with correct audiovisual classes the perceived objects
belong to, with respect to a very short learning time constraint
(down to a few seconds only). The active capabilities of the
MFI module is of very much importance here, for it enables
the intensive use of head movements to gather, whenever it
is necessary, and in real-time, additional data to refine the
knowledge the module has of the world under exploration.
A fundamental question arises with the problem of audio
and visual classes association when considering one-to-one

TABLE 2 | Good classification rates for different error rates and different numbers

of sources.

Evaluation 2: Results

εP nS — nmax
sim

Ŵ̄MFI[t = T] Ŵ̄
′
Rn

[t = T] Ŵ̄Rn
[t = T] ratio:

Ŵ̄MFI[t=T]

Ŵ̄
′
Rn

[t=T]

0.1 3 — 3 0.982 (0.027) 0.894 (0.021) 0.503 (0.073) 1.098

5 — 5 0.988 (0.025) 0.899 (0.012) 0.339 (0.039) 1.099

7 — 7 0.960 (0.023) 0.893 (0.016) 0.264 (0.021) 1.075

10 — 10 0.866 (0.047) 0.887 (0.018) 0.182 (0.014) 0.976

Mean 0.949 0.893 0.322 1.063

0.3 3 — 3 0.992 (0.020) 0.703 (0.042) 0.414 (0.055) 1.411

5 — 5 0.987 (0.022) 0.692 (0.017) 0.265 (0.014) 1.426

7 — 7 0.942 (0.028) 0.691 (0.014) 0.198 (0.017) 1.363

10 — 10 0.883 (0.041) 0.689 (0.011) 0.145 (0.014) 1.281

Mean 0.951 0.693 0.255 1.372

0.5 3 — 3 0.973 (0.026) 0.493 (0.020) 0.280 (0.031) 1.973

5 — 5 0.965 (0.043) 0.496 (0.021) 0.189 (0.034) 1.945

7 — 7 0.899 (0.048) 0.492 (0.018) 0.145 (0.019) 1.827

10 — 10 0.836 (0.042) 0.492 (0.018) 0.103 (0.010) 1.699

Mean 0.918 0.493 0.179 1.862

0.7 3 — 3 0.774 (0.087) 0.282 (0.030) 0.165 (0.028) 2.744

5 — 5 0.737 (0.105) 0.294 (0.014) 0.120 (0.023) 2.506

7 — 7 0.683 (0.133) 0.296 (0.016) 0.081 (0.012) 2.307

10 — 10 0.550 (0.117) 0.293 (0.016) 0.064 (0.011) 1.877

Mean 0.686 0.291 0.107 2.357

0.9 3 — 3 0.213 (0.060) 0.092 (0.019) 0.054 (0.019) 2.315

5 — 5 0.152 (0.064) 0.102 (0.012) 0.039 (0.007) 1.490

7 — 7 0.174 (0.075) 0.100 (0.009) 0.031 (0.005) 1.740

10 — 10 0.140 (0.066) 0.100 (0.009) 0.019 (0.006) 1.400

Mean 0.169 0.098 0.035 1.724

Every results is an average of 5 repetitions of every conditions with standard deviation in

parentheses, for a total of 100 simulations. Rn corresponds to the naive robot, and R
′
n

to the unrealistic omniscient robot. Values are rounded up to the third decimal.

audiovisual pairs, i.e., that each audio label is associated with
only one visual label, and vice and versa. In the evaluations
presented in this section, such pairing limitation was not
used: an audio label could have several visual correspondences,
such as SPEAKING, male, SPEAKING, female, or SPEAKING,
child. However, given these audiovisual labels examples, it
is not possible for the MFI module to create an information
that does not exist: from the audio label SPEAKING, it is
impossible to determine whether the corresponding visual label
is male, female, or child. The MFI module still outputs
an hypothesis corresponding, given how the M-SOM learning
algorithm works, to the most observed so far audiovisual pair.
Such limitation of the MFI module only comes from the limits
of the classification experts themselves: if the classifiers cannot
distinguish a female voice from a male one, nor would the
MFI module. Such a case will be shown and also discussed
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in section 4.4, when evaluating the whole system in real
environments.

3.4. Conclusion
The Head Turning Modulation system is composed with
two modules: the Dynamic Weighting module (DW) and the
Multimodal Fusion and Inference module (MFI), each of them
having been described in this section. The DW module is an
attentional component, working on the sole basis of observed
data in unknown environments, from which it enables the
robot to turn its head to audiovisual sources considered as “of
importance.” Coupled to it is the MFI module that learns the
relationship between the modalities that are used to define an
object (audition and vision in this case). Based on a Multimodal
Self-Organizing Map (M-SOM), the MFI module is able to create
the knowledge required by the DW module to work properly.
This knowledge consists in the fusion of multimodal data into
a corrected database of audiovisual categories, knowledge that
is created through online active self-supervised exploration of
the audiovisual sources appearing in the unknown environments.
Both modules can trigger head movements independently, and
their combination necessitates an adaptation of the motor orders
expressions of the modules.

The next section will present the results obtained in
real environments with the real robot embedding the whole
TWO!EARS software (including the integration of the HTM
system), and processing real audio and visual data.

4. COMBINATION OF THE TWO MODULES

The previous section was dedicated to the individual presentation
of each module constituting the HTM system, while providing
limited evaluations in simulated conditions. This section is now
concerned with the combination of the DW module and the MFI

module together, with their evaluation in realistic conditions,
i.e., on a real robot and with real audio and visual data. At
first, one have to deal with the fact that theses two modules are
both able to generate competitive head movements. The way
they are prioritized is described in a first subsection. Next, the
experimental setup is carefully described in a second subsection.
Then, experimental results are provided in a third subsection,
aiming at demonstrating the benefits of the overall system in the
audiovisual scene understanding.

4.1. Combined Motor Orders: Evaluation 3
It has been shown in section 3 that the DW module and the MFI

module both exploit head movements to better their respective
operations. Trying to make them able to work together then
requires a prioritization of them. On the one hand, the DW

module provides the robot with potential sources to be focused
on, on the basis of their computed congruence; on the other
hand, the MFI module aims at estimating audiovisual classes of
objects inside the environment, even with potential classification
errors and lack of data. It seems then obvious to set the priority to
the MFI module: having a reliable audiovisual classes estimation
system is required for the attentional module to take relevant

decisions. This prioritization introduces a new activity τ ′DW for
the DW module which is now defined, for an object oj, by

τ ′DW(oj) = τMFI(oj)− τDW(oj)× δ(τMFI(oj)),

with δ(x) =
{
1, if x ≥ 1,
0, otherwise.

(22)

On this basis, the motor order θHTM selected to drive the head is
computed along

θHTM = θ̂(ol), with l = argj1 ,j2 min(τ ′DW(oj1 ), τMFI(oj2 ))

where

{
j1 = argminl(τ

′
DW(ol)),

j2 = argmink(τMFI(ok)),

(23)

i.e., the object with the lowest DW module or MFI module activity
is selected. Such a modification of the motor activity expression
enables the MFI module to take over the lead on the DW module.
The evaluation of such a modification in the motor commands
decision system can be performed again in simulation, along
the same procedure as in the previous simulations, see Figure 8.
Let us consider an environment made of five objects, belonging
to three different audiovisual categories. Each of these objects
emit sounds along time, according to the time plot shown
in Figure 8 (bottom). Figure 8 (top) exhibits the three-phase
behavior of the motor decision algorithm. At the very beginning,
only the MFI module is responsible for the head movements: the
system is learning the association between audiovisual classes.
Little by little, the inference provided by the MFI module does
not need motor confirmation for some of the classes: the DW

module can now compute congruence of the corresponding
objects and potentially trigger head movements. In the end, all
the audiovisual classes are correctly learned by the MFI module,
letting the sole DW module in charge with head rotations. Of
course, the head movements triggered by the DW module are also
used to feed the M-SOM.

4.2. Experimental Setup and Data
Generation
The overall system has been evaluated in a realistic environment
by using a real robot integrating the whole TWO!EARS software
and evolving in a real room. In practice, two different robots
have been actually used: one mobile platform from LAAS-CNRS
(Toulouse, France) named JIDO, the other one from ISIR (Paris,
France) named ODI, see pictures in Figure 9. Both platforms
support a KEMAR HATS (Head And Torso Simulator), whose
necks have been motorized to control their head movements
in azimuth (Bustamante et al., 2016). A HATS is a manikin
endowed with two microphones placed inside two pinnae which
mimics the acoustic effect of the head (and torso) on the left and
right ear signals, thus producing a realistic binaural information,
close to what a human could actually hears. The servo control
of the head is ensured by a set including a motor, its gear
head, an encoder, and an Harmonica electronic controller from
ELMO, mounted inside the HATS. A ROS node dedicated to
the head control is in charge of controlling this motorization,
allowing real-time servoing of the head movements by using
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FIGURE 8 | Behavior of the combined modules in three phases. The testing environment is composed of five audiovisual sources and is willingly simple for illustration

purposes. (Top) Module ordering the head movement. (Bottom) Temporal course of the exploration of the environment; gray boxes depict the temporal course of

emitting sources.

FIGURE 9 | The two robotic platforms used in the project, both supporting a motorized KEMAR HATS. ODI has been used in this paper for the HTM evaluation. (A)

The ODI platform. (B) The ODI platform. (C) ODI, facing a loudspeaker with a QR code attached on it.

possibly different feedback control options like position or
velocity setpoints. In this paper, the positions deduced from
Equation (23) are directly sent to the ROS node to control
the head in position. These two robots are very much alike,
except for vision: the one used at ISIR for the experiments
used in this paper is only endowed with monocular vision.
However, as already argued, the HTM system is not dependent
on the way each modality works, but only on the identification
experts, be they dedicated to monocular or binocular vision for
instance.

Everything related to the platform and data acquisition is
handled by the ROS middleware, running directly on the robot:
navigation, obstacle avoidance, image and audio captures, etc.

Note that a dedicated ROS binaural processing node has been
developed during the project, so that most of the audio cues
required for sound localization, recognition and separation are
directly computed in real-time on the robot. State-of-the-art
ROS nodes dedicated to vision (acquisition and processing)
have also been used. All the data computed on the robot are
then transmitted to another computer running the TWO!EARS

framework thanks to a MATLAB-to-ROS bridge. This bridge has
been entirely designed to deal with the proposed bottom-up and
top-down approach of the project, so that all the ROS nodes can
be easily parameterized on the fly and in real time. Then, all the
steps required for the “cognitive” analysis (i.e., object localization,
recognition, fusion, etc.) runs under MATLAB.
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Experiments used in this paper have been conducted in
a pseudo-anechoic room populated with loudspeakers over
which QR codes have been attached to, see Figure 9C. These
are used by a ROS node to extract the visual labels of each
object directly and with a recognition rate similar to the one
obtained through the binocular vision of JIDO with the Line-Mod
algorithm Hinterstoisser et al. (2012). All the sounds emitted
from the loudspeakers belong to a database constituted of sounds
used to train the audio experts in recognition. In other terms,
all the sounds can be recognized by at least one expert in the
architecture. Then, the HTM has been evaluated in experimental
conditions by two scenarios: the first emphasizes the global
behavior of the system, while the second focuses on the fusion
and classification abilities of the MFI module. Whatever the
scenarios, they all works the following way: sounds are emitted
from one or multiple loudspeakers, possibly at the same time.
Depending on how the head of the KEMAR is turned, some
QR codes can be manually changed from one loudspeaker to
another to simulate an object movement in the environment. The
HTM system then gathers classification and localization results
coming from the audio and visual experts, and triggers some
head movements accordingly. A scenario is entirely described
by the number of different objects in the scene and by the time
description of their localization, appearance and disappearance,
exactly like in the previous simulations. Of course, ground truth
audio and visual classes of each object are known, thus allowing
a careful evaluation of the overall system performance. Note that
the audio experts used in the following experiments have been
set up by using data from a database recorded in a different
acoustic environment. Since they all rely on a prior learning step
exploiting these data, there will be a mismatch between their
learning and testing phase. The main consequence is mainly a
lower frame recognition rate, evaluated to about 37% for the
four classifiers used here, and that have been chosen amongst the
most performing ones (Two!Ears, 2016a). The same applies to
the localization algorithm, with less consequences: experiments
still show a good ability to localize sounds with a precision of
about 7.7◦ (including front-back confusion). Finally, the visual
recognition of QR codes works almost perfectly, while being quite
sensitive to changes in illuminations. Of course, both phenomena
are dealt with the HTM system, which has been entirely designed
to cope with recognition errors and lack of data, as show in the
next subsections.

4.3. Evaluation 4: Global Behavior
This first evaluation aims at demonstrating how the two modules
constituting the HTM system cooperate together in order the
exploratory robot an additional understanding of the world. The
evaluation consists in presenting to the system three successive
environments made of three to four objects, as summarized in
Table 3. The audiovisual sources of the environments are placed
around the robot and emit sound intermittently, according
to the time scenario shown in Figure 10 (bottom). Exactly
like in simulations, the real robot is compared to its naive
counterpartRn, turning its head toward every audiovisual events
regardless of their meaning. To begin with, the HTM builds a
first representation e(1). As shown in Figure 10, the robot starts

TABLE 3 | Experimental setup for Evaluations 4 & 5.

e(i) nS nmax
sim

c(9j ) θ (9j ) Kq

EVALUATION 4

1 3 1

dog barking n◦1 320◦

0.6dog barking n◦2 35◦

female speech 70◦

2 3 1

baby crying n◦1 70◦

0.6baby crying n◦2 35◦

female piano 320◦

3 4 1

baby crying n◦1 70◦

0.6
baby crying n◦2 35◦

dog barking 320◦

male speech 280◦

EVALUATION 5

1 5 1 female speech 320◦ 0.6

female piano 30◦

male speech 60◦

dog barking 90◦

baby screaming 280◦

by turning its head toward the first two audiovisual sources
(BARKING, dog and SPEECH, female), driven by the MFI

module since these audiovisual classes are brand new to it. As
already outlined in the previous subsection, the HTM tries to
learn the audiovisual association between these two classes. This
learning is done very quickly: one can observe at time index
t = 28 (corresponding to the “real” time 14 s) that the robot
turns its head to its resting state (blue line going at the top of the
figure), meaning that neither the DWmodule nor the MFImodule
requires a head movement toward the sources BARKING, dog:
these sources are not of interest anymore, and hearing the sound
BARKING is sufficient to infer the visual class dog. Nevertheless,
one can remark a glitch in the headmovement decision at t = 30,
as the last attempt of the MFI module to learn the BARKING,
dog audiovisual association. At t = 41 (20.5 s), the robot turns
its head again toward the source (SPEECH, female): with two
BARKING, dog for one SPEECH, female in e(1), the probability
for this last audiovisual category p(C(1)(SPEECH,female)) =
1/3 falls below K(1) = 1/2, thus making any object of this
audiovisual category incongruent. Then, the robot explores a
second environment. It is similar in terms of frequencies of
apparition of each audiovisual categories, even if their meaning
(at least, to us) is different: the two BARKING, dog are trade
for two CRYING, baby, while the category SPEECH, female is
replaced by PIANO, female. Logically, the obtained behavior
is similar: a quick learning of the audiovisual association allows
then the head to be controlled by the DW module on the basis
on congruency computations. Interestingly, the understanding
of this second environment by the DW module could appear as
counterintuitive in comparison with how humans might have
reacted by favoring the two objects CRYING, baby. This more
social reaction could nevertheless be handled by some additional
KS from the TWO!EARS architecture which could modulate the
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FIGURE 10 | (Top) Number of head movements triggered during the exploration of each environment by (blue) the HTMKS, (red) the virtual naive robot. Each arrow

points at a source and their length represent the number of movements. The light blue numbers correspond to the position of the sources. (Purple bars:) total number

of movements triggered by (dark) the MFI module, (light) the DW module (black numbers are their sum). (Red bars:) number of movements triggered by the virtual naive

robot. (Bottom) Movements triggered by (blue line) the HTMKS, and (dotted red line) the naive robot. (Gray boxes:) temporal course of the scenarios. The

semi-transparent red box at t = 116 highlights the significant wrongful discrepancy that occurred between the actual audiovisual class of the object and the

perception of the HTM (error that is corrected soon after, see text for more details). Additionally, the subfigure present in the delineated box at the bottom of e(2)

represents the evolution of K(2) together with the posterior probabilities of the two audiovisual classes observed in e(2) (in light blue for o1 and o3, in purple for o2). The

comparison of the all the p(oj ) and K(l) justifies the potential triggering of head movements by the DW module, as observed at t = 74 and t = 90.

overall reaction of the robot w.r.t. the current task (Ferreira
and Dias, 2014). Finally, a third environment is explored. It will
allow to demonstrate the benefits of reusing information between
the representation of environments, see section3.2.1. Indeed, the
scene begins with a CRYING, baby which does not trigger any
head movement: while being in a new environment, the HTM
system considers at this point that this third environment is
very likely to be the same as e(2) where this audiovisual class
was considered as congruent. Consequently, the congruence
computations of each audiovisual categories in the previous
environment can still be used, and no head movements toward
this now object is performed. However, as soon as a new object
eliminates the possibility to be in an environment similar to e(2)

pops up, a new representation e(3) is created. Thus, when the
source BARKING, dog appears in the scene, a head movement
is immediately triggered toward it, since it is incongruent in e(3).
Once again, a small glitch in the motor decision appears in t =
116, caused by the experts outputs and the signal non-stationarity

(a BARKING sound includes indeed some silence). Themovement
triggered at t = 118 is an error from the system since the
object CRYING, baby should have been considered as congruent.
The audio data perceived at this time is MALESPEECH, data
from a never encountered audio class, thus enjoining the MFI

module to trigger a head movement. From t = 119 and t =
122, the experts’ data changed and became of class CRYING,
dog, an audiovisual pair the MFI module never encountered
before, consequently still promoting the focus on the object.
However, at time t = 123, the correction of the MFI module
has been applied and the “correct” audiovisual class CRYING,
baby is now output by themodule. The DWmodule, in response,
analyses it and consider it as congruent in this environment, thus
inhibiting the head movement. Finally, the new source SPEECH,
male appears in the environment at t = 150 and the robot
is focused on it. Two (apparently) erroneous movements to the
resting position can be observed, at t = 153 and t = 157,
due to the discontinuity of the sound signal: the audio experts

Frontiers in Neurorobotics | www.frontiersin.org 18 September 2018 | Volume 12 | Article 6025

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cohen-Lhyver et al. The Head Turning Modulation System

FIGURE 11 | Results of the audiovisual classification (including the inference by the MFI module) obtained by (blue) the HTM system, (red) the naive robot. The two

numbers on the right correspond to the value at the end of the exploration.

did not detect any sound for these two frames (to give an idea:
argmax(Pa[t = 157]) = 0.176, whereas for the frame right
before, at t = 156, five components out of thirteen are lying
between pa = 0.403 and pa = 1.00). Going back to the
resting position when an object stops emitting sound is part
of the attempt of the overall HTM system to also inhibit the
head movements in order to free the head for other potential
purposes.

4.4. Evaluation 5: Fusion and Classification
After having performed numerous evaluation in simulated
conditions (see Table 2), this experiment is focused on the
evolution of the good audiovisual classification rate along
the exploration of a real environment. For that purpose, an
environment is set up with five different sources, as presented in
Table 3. The three audio classes populating the environment have
been selected because of their better experimental recognition
rate in the architecture. At each time step, the estimated
audiovisual classes provided by the overall HTM system is
compared to the ground truth, and for each object. The resulting
mean good estimation rate Ŵ̄MFI[t], computed over all objects,
is plotted against time in Figure 11 (blue line). The same
is done for the naive robot, with a mean good estimation
rate Ŵ̄′

Rn
[t] (red line in the same figure). As expected, the

proposed HTM system shows the best audiovisual classification
rate. Indeed, one can see in Figure 11 that the red line tends
to the rate Ŵ̄′

Rn
= 37.9% which is exactly the mean good

classification rate of the involved KS. In the same conditions,
the MFI module converges to Ŵ̄MFI = 69.6%. In the very
beginning of the experiment, both systems exhibit the same
performances: the different smoothing involved in the various
computations (of the KS outputs, in the motor decisions, etc.)

together with silences in the sounds presented to the robot can
explain this. But while the naive robot exhibits a constantly
decreasing good estimation rate of the audiovisual classes, the
MFI module remains relatively robust to the KS classification
errors.

A direct consequence of these good performances of the
HTM system can be observed in Figure 12 which plots an
histogram of all the audiovisual classes created by both systems
(expressed in terms of number of frames). The HTM system
is able to considerably narrow the possible audiovisual classes
existing in the environment: from 22 by the naive robot, the
HTM system narrows it down to only 5. However, one of the
class created is erroneous: PIANO, female has been mistaken
with PIANO, male, but only for a short period of time (two
frames, i.e., 1 s). This point has already been discussed in
section 3.3.4.

5. CONCLUSION

In this paper, a new system for the modulation of the exploratory
behavior of a robot has been proposed. Based on the new
notion of Congruence, it takes control of the head movements
of a platform to put the robot attention toward audiovisual
sources of interest. Additionally, it provides a robust description
of the unknown environments explored all along the robot’s
life and following an unsupervised paradigm. This enriched
representation consists, first, in the analysis of audiovisual
objects through their relationship to the environments they are
perceived in, and secondly, in how much the knowledge the
system has about their actual audiovisual class is reliable and
robust. Even in the case of classification errors by the audio
or visual classifiers in the overall architecture, the system is
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FIGURE 12 | Number and labels of the audiovisual classes created by (blue) the MFI module, and (red) the naive robot. (Left) Number of temporal frames (height of

bars) during which the audiovisual classes have been categorized. (Light blue rectangles:) Audiovisual classes the two systems have in common. (Right) Total number

of different audiovisual classes created.

then able to correctly infer the events’ audiovisual classes by
actively learning the interlink between the two modalities. All of
this is achieved by the two constitutive modules of the HTM,
namely the Dynamic Weighting module, and the Multimodal
Fusion & Inference module. Each of them is able to trigger
head movements that are used as an attentional reaction and as
an active reaction to the need for additional data, respectively.
Importantly, the extensive use of head movements is not limited
to the sole benefit of the HTM system: audio localization
algorithms such as (Nakashima andMukai, 2005; Hornstein et al.,
2006; Ma et al., 2017) relying also on head movements could be
connected to the HTM as a top-down feedback unit, thus taking
advantage from its motor commands to improve in parallel audio
localization performances. The active self-supervised and online
learning paradigm the MFI module relies upon, through the
use of the Multimodal Self- Organizing Map, quickly provides
the DW module with robust data while also offering inference
abilities whenever a modality is missing (occlusion of the object,
for instance). Whereas existing models provide audio-visual
inference (Alameda-Pineda andHoraud, 2015) aiming at binding
low-level cues of the audio and visual data streams, the MFI

module relies only on a higher level of representation of data,
a representation that could be used as a top-down feedback
to potentially enhance low-level audiovisual fusion algorithm.
Additionally, the choice of learning the cross-modal relationship
between auditory and visual data in an exclusively unsupervised
way can be debated as not being powerful enough (Senocak
et al., 2018). However, the results obtained here show significant
improvements in the quality of the audiovisual data provided

to the DW module without any inclusion of human knowledge.
The system performances have been evaluated in realistic
simulated conditions, but also on a real robot endowed with
binaural audition and vision capabilities. Importantly, the overall
architecture of the system, i.e., the TWO!EARS software, is made
available online as an open source software2. The same applies
for the proposed HTM system, entirely included inside this
architecture3.

One of the main limitation of the current implementation
is related to its high dependency to the localization experts.
Indeed, the overall motor reactions are currently guided by
each object azimuth localization, which have been shown
precise enough to provide relevant results. Hopefully, binaural
sound localization is a research topic by itself, and recent
developments in the field show very robust algorithms, even in
challenging acoustical conditions. Nevertheless, the robustness
to localization errors could be enhanced by using tracking
experts able to consolidate the sources position along time.
For now, the HTM system is still being developed with the
following improvements in mind. First, the definition of an
object is currently limited to its audio and visual labels, while
it could be enriched with additional information possibly
coming from other modalities (emotions, audio pitch, forms
and textures, etc.). Importantly, the proposed M-SOM has been
designed to easily incorporate such additional parameters in
the object definition: a subnetwork can be added for each of

2https://github.com/TWOEARS
3https://github.com/TWOEARS/audio-visual-integration
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them together with their respective weights vectors. Concerning
the Dynamic Weighting module, a significant improvement
can be made by including the computation of a temporal
habituation in order for the robot to not to be stuck in
a deadlock kind of situation, as in Figure 8 where, if the
scenario goes on forever, the robot would be keeping turning
its head toward the CRYING, male. Finally, the coupling of
the HTM system with other cognitive experts in the current
framework is still under investigation. So far, the current version
of the TWO!EARS software does not include others high- level
cognitive experts. Nevertheless, the entire HTM system has
been conceived with the idea that the motor exploration can
also be guided by cognitive elements other than the ones
implemented in the system. For instance, a model as the
one recently proposed by Lanillos et al. (2015) on attention

driven by social interaction, could easily be linked to the
HTM, both benefiting from each other: one congruent source
could still be focused because of its social interest, whereas a
socially non-interesting object could still be focused for its high
incongruence.
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Reinforcement learning (RL) aims at building a policy that maximizes a task-related reward

within a given domain. When the domain is known, i.e., when its states, actions and

reward are defined, Markov Decision Processes (MDPs) provide a convenient theoretical

framework to formalize RL. But in an open-ended learning process, an agent or

robot must solve an unbounded sequence of tasks that are not known in advance

and the corresponding MDPs cannot be built at design time. This defines the main

challenges of open-ended learning: how can the agent learn how to behave appropriately

when the adequate states, actions and rewards representations are not given? In this

paper, we propose a conceptual framework to address this question. We assume an

agent endowed with low-level perception and action capabilities. This agent receives an

external reward when it faces a task. It must discover the state and action representations

that will let it cast the tasks as MDPs in order to solve them by RL. The relevance of

the action or state representation is critical for the agent to learn efficiently. Considering

that the agent starts with a low level, task-agnostic state and action spaces based

on its low-level perception and action capabilities, we describe open-ended learning

as the challenge of building the adequate representation of states and actions, i.e., of

redescribing available representations. We suggest an iterative approach to this problem

based on several successive Representational Redescription processes, and highlight

the corresponding challenges in which intrinsic motivations play a key role.

Keywords: developmental robotics, reinforcement learning, state representation learning, representational

redescription, actions and goals, skills

1. INTRODUCTION

Robots need world representations in terms of objects, actions, plans, etc. Currently such
representations are carefully designed and adapted to the robot’s task (Kober et al., 2013). But
a general purpose robot capable of solving an unbounded number of tasks cannot rely on
representations hardwired at design time, because each may require a different representation.
To achieve the vision of a robot that can solve an open-ended series of tasks in an increasingly
efficient way, we consider an alternative paradigm: that the robot should discover the appropriate
representations required to autonomously learn each task.
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Representational redescription is the ability to discover new
representations based on existing ones. It is a key ability
of human intelligence (Karmiloff-Smith, 1995) that remains
a challenge in robotics (Oudeyer, 2015). In this paper, we
propose a unifying conceptual framework for addressing it.
We assume an agent endowed with low-level perception and
action capabilities which receives external rewards when it
faces a task. We also assume the agent is endowed with
reinforcement learning (RL) capabilities efficient enough to
let it learn to solve a task when cast as a Markov Decision
Process (MDP). From these assumptions, the main challenge
in our framework is determining how an agent can discover
the state and action representations that let it cast tasks as
MDPs, before solving them by RL (Zimmer and Doncieux,
2018).

In MDPs, states and actions are primitive components
considered given, and they are generally defined by the
human designer having a particular task and domain
in mind (see Figure 1). To make a step toward open-
ended learning, we propose a conceptual framework
for representational redescription processes based on a
formal definition of states and actions. Then we highlight
the challenges it raises, notably in terms of intrinsic
motivations.

2. THE REPRESENTATIONAL
REDESCRIPTION APPROACH

Our Representational Redescription approach is depicted in
Figure 2. We consider an agent endowed with low-level
perception and action capabilities, and which faces an open-
ended sequence of tasks. The agent receives some external
rewards from these tasks. The problem for this agent is to
determine how to use this reward to learn the corresponding task.
In an MDP, an RL algorithm explores the possible outcomes of
an action when executed in a particular state. As pointed out
by Kober et al. (2013), there is a need to appropriately define
the state and action spaces for an efficient learning process. To
do so, the possible alternatives are either to rely on a single
generic state and action space or to build them on-the-fly when
required. In this work, we do the latter and make the following
assumptions:

ASSUMPTION 1. A single state and action space cannot
efficiently represent all the decision processes required to solve the
tasks an open-ended learning system will be confronted to. To solve
the task k defined through a reward value rk(t), the agent needs to
build an MDP Mk.

ASSUMPTION 2. An open-ended learning process needs to build
these MDPs on-the-fly.

ASSUMPTION 3. The agent is endowed with some RL algorithms
to allow it to learn to solve the task, once the underlying MDP has
been fully defined.

3. CONCEPTUAL FRAMEWORK AND
BASIC DEFINITIONS

3.1. Markov Decision Processes
Decisions in robotics can be modeled with MDPs using
< Sk,Ak, pk,Rk >, where k is a task identifier1, Sk is the state
space, Ak is the action space, pk : Sk × Ak × Sk → R is a
transition function, where pk(st , at , st+1) gives the probability to
reach st+1 from st after having applied action at and Rk : Sk → R

is the reward function. A policy πk : Sk → Ak is a process that
determines which action to apply in any state.

In the proposed framework, the observed reward rk(t) is
distinguished from the reward function of the MDP Rk(t). The
agent may not know to what state the observed reward rk(t)
can be associated. It is actually part of the proposed open-
ended learning framework to interpret observed rewards and
associate them to states in order to build the reward function
Rk(t) required to learn how to maximize them.

The notations used here have been intentionally kept as simple
as possible. This framework can be easily extended to more
complex cases, including semi-MDPs, stochastic policies or other
definitions of the reward function.

3.2. States
DEFINITION 1. A state is a description of a robot context that
respects the constraints of its decision process.

Following (Lesort et al., 2018), a good state representation
should be (1) Markovian (i.e., the current state summarizes
all the necessary information to choose an action), (2) able to
represent the robot context well enough for policy improvement,
(3) able to generalize the learned value-function to unseen states
with similar features, and (4), low dimensional for efficient
estimation (Böhmer et al., 2015). State representation learning
approaches learn low dimensional representations without direct
supervision, i.e., exploiting sequences of observations, actions,
rewards and generic learning objectives (Lesort et al., 2018).

To bootstrap the open-ended learning process, we define S0 as
the state space containing the set of possible sensorimotor values.
This first state space may not be low dimensional, Markovian, or
structured enough for efficient exploration, thus motivating the
search for better adapted state spaces.

3.3. Reward Functions and Goals
A reward function may contain different kinds of information:
an indication of success in fulfilling a Human user defined task,
or in reaching an autonomously defined action goal (see next
section). It may also contain guidance to help reach the goal
(reward shaping).

Besides reward functions defined in R, the proposed
framework requires, for the description of actions, the definition
of boolean reward functions that will be called goal functions:

1A single state and action space can be used for several tasks and a single task could

be associated to multiple representations, but we use this notation to highlight the

dependency between tasks and MDPs that is central to this framework.
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FIGURE 1 | A typical MDP. The agent designer having a task in mind designs the MDP accordingly.

DEFINITION 2. A goal function, denoted R̂, does not contain
any shaping term and tells whether the goal associated to this
reward function is achieved or not.

A goal function is a specific reward function aimed at defining
the notion of success or failure required for action definition. The
task to solve does not need to be described with such a boolean
function.

DEFINITION 3. Goal states are states s for which R̂(s) = True.

3.4. Actions
In the proposed framework, actions are not systematically
predefined, but can be built on-the-fly. The design of the
corresponding algorithms requires to define what an action
actually is. The proposed definition relies on the notion of goal
function to add a purpose to a policy. Actions are framed within
different abstraction levels depending on the granularity of the
policy, as in the options framework (Sutton et al., 1999). Actions
are one of the main components of an MDP. An MDPMk needs
an action space Ak. Ak is an action space defined at an abstraction
level k. It relies on policies of level k−1, defined in anMDP k−1.
They can be used to build policies at the level k that can, in turn,
be used to build new actions for another MDP at the level k+ 1.

DEFINITION 4. Actions a ∈ Ak are the primitives of MDP Mk.
An action a is a policyπ relying on actions available at a lower level

and built to reach a goal state associated to a goal function R̂. The
action succeeds if the trajectory of the robot controlled by this policy
converges to a goal state of R̂; otherwise, it fails. An action is then
fully defined by the triplet: {π , R̂, tmax} where tmax is the maximum
amount of time after which the action is considered failed if no goal
state is reached.

If the level on top of which an MDP Mk is built is, itself, an
MDP, actions a ∈ Ak can be considered as macro-actions or
options.

The goal state of an action is frequently defined relative to a
particular initial state sinit , where sinit is the state of the agent
when the action is triggered, e.g., “Turning 90deg” or “moving
forward 1m.”

The definition of an action is hierarchically recurrent: an
action ak relies on a policy π that also relies on a set of lower level
actions {al, l < k}. To stop the recurrence, a specific set of actions
A0 is defined, that corresponds to the lowest level accessible by
the robot, i.e., motor commands. They are also actions, as motor
commands always have a goal (reaching a particular velocity or
position, for instance) that a low-level control process aims at
reaching and eventually staying at. As suggested by Harutyunyan
(2018, Chapter 5), we assert that it may not be necessary, or even
desirable, to have the same time-scale and discounting for lower
and higher level actions.
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FIGURE 2 | Overview of an open-ended learning process. The agent designer does not know the different tasks the agent will be facing, but designs the agent to let it

build the MDP to interpret a reward in its environment and find out how to maximize it.

3.5. Representational Redescription
In the proposed framework, open-ended learning needs to
build MDPs on-the-fly, including the state and action spaces.
Considering that the process starts from initial state and action
spaces (S0,A0), this particular feature is captured by the concept
of representational redescription.

DEFINITION 5. A representational redescription process is a
process that builds the state and action spaces enabling the
definition of an MDP able to (1) solve a given task defined by
observed reward values (2) in a particular domain and (3) with
a particular decision or learning process. To this end, it relies on
the representations of states and actions that have been previously
acquired and can thus be described as a process transforming

existing representations into new ones that are more fitted to the
context.

3.6. Motor Skills: Controlling Transitions
Between States
In an MDP, the set of provided actions is built to allow the robot
to move in the state space. If a state space is built on-the-fly, the
agent should be able to control it and move from one state to
another. With the proposed definitions, the open-ended learning
process needs to build actions to reach each part of the state space.
The notion of motor skill is defined to capture this process.

DEFINITION 6. A motor skill is an action generator: ξk : S
(i) ×

S(g) → Ak, where S
(i), S(g) ⊂ S2

k
. It is an inverse model defined in
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a particular action space Ak to reach a target state from an initial
state.

ξ (si, sg) is an action that, starting from si ∈ S(i), reaches

sg ∈ S(g) with the highest possible probability. The state sg is
the goal state of the corresponding action, and the corresponding
reward function is intrinsic (see section 3.8).

3.7. Open-Ended Learning
On the basis of the proposed definitions, we can define an
open-ended learning process as follows:

DEFINITION 7. An open-ended learning process builds the
MDPs required to solve the tasks that the agent faces. Task k is
defined through an observed reward value rk(t). Starting from an
initial state space S0, an initial action space A0 and a decision
or learning process P , the open-ended learning process aims at
building (1) state spaces, (2) action spaces and (3) motor skills to
control the state with appropriate actions. State and action spaces
need to fulfil the following features:

1. The state space should help interpret the reward occurences, i.e.,
learn Rk to model the observed rk;

2. The action space should allow control of the state space through
dedicated motor skills;

3. The state and action spaces should make the agent’s state
trajectory as predictable as possible;

4. From the state and action spaces, P should be able to converge
to a policy maximizing rk.

3.8. Intrinsic Motivations
Task-based rewards are not enough to drive a representational
redescription process. There is a need for other drives that
push the agent to explore and create new knowledge. This is
the role of intrinsic motivations (Oudeyer and Kaplan, 2009;
Baldassarre and Mirolli, 2013). In the context of open-ended
learning through representational redescription, we propose the
following definition:

DEFINITION 8. An intrinsic motivation is a drive that
complements drives associated with external task-based rewards to
build appropriate state and actions spaces as well as motor skills.

Intrinsic motivations play a critical role at different stages
of the proposed representational redescription process, for
instance:

• To organize learning and select in what order to learn skills
and build state spaces;

• To acquire relevant data for state representation learning
(before building an appropriate MDP);

• To build the skills required to control the state space (focusing
learning on areas that are within reach and ignoring the rest).

4. CHALLENGES

This section recasts the challenges of open-ended learning with
the proposed conceptual framework.

CHALLENGE 1. Interpreting observed reward: Building an
appropriate state space to interpret an externally provided reward,
i.e., build a state space Sk that allows easy modeling of the observed
reward value rk.

CHALLENGE 2. Skill acquisition: Controlling the displacements
in an acquired state space Sk by building the appropriate action
space Ak and skill ξk : S

(i) × S(g) → Ak, where S(i), S(g) ⊂ S2
k
,

to give the agent the ability to move from one state to another as
accurately as possible.

To address Challenge 1, state representations can be learned
from known actions (Jonschkowski and Brock, 2015) and,
likewise, to address Challenge 2, actions can be learned when the
state space is known (Rolf et al., 2010; Forestier et al., 2017).

CHALLENGE 3. Simultaneously learning state space, action space,
and policy: The state and action spaces are interdependent with
each other and with the policy. For open-ended learning, all need
to be learned jointly to solve a task, and doing so tractably is a
challenge.

CHALLENGE 4. Dealing with sparse reward: available state and
action spaces may not allow to easily obtain reward rk(t) associated
to Task k. This is particularly true at the beginning of the process,
when starting from (S0,A0): this is the bootstrap problem. The
challenge is to design an exploration process that converges toward
reward observations in a limited time.

A possibility to address the bootstrap problem is to rely
on a motor babbling approach (Baranes and Oudeyer, 2010;
Rolf et al., 2010). Another possibility would be to rely on a
direct policy search including an intrinsic motivation toward
behavior diversity and followed by a process to extract adapted
representations from it (Zimmer and Doncieux, 2018).

The next challenges are related to the unsupervised acquisition
of a hierarchy of adapted representations.

CHALLENGE 5. Detecting task change: In the case where tasks are
not explicitly indicated to the robot, detecting task change from k
to k+ 1 on the basis of observed rewards r.

The efficiency of a learning system is influenced by the order
of the tasks it is facing (Bengio et al., 2009).

CHALLENGE 6. Ordering knowledge acquisition and task
resolution: An open-ended learning system needs to be able to select
what to focus on and when. Does it keep learning representations
for task k (even if rk has momentarily disappeared), or does it focus
on a new task k+ 1 ?

CHALLENGE 7. Identifying the available knowledge relevant to
build the new representations MDPk: as the set of available MDPs
grows, it becomes a challenge to figure out what knowledge can help
to build a new and adapted representation, i.e., {MDPl,πl}l≤k =
{< Sl,Al, pl,Rl >,πl}l≤k.

CHALLENGE 8. Using transfer learning for speeding up state and
action spaces learning along time: as the number of tasks and
domains the agent can deal with grows, it becomes interesting
when facing a task k+ 1 to reuse the knowledge available to avoid
learning MDPk+1 and πk+1 from scratch.
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5. DISCUSSION

In contrast to many works in multitask learning (Zhao et al.,
2017; Riedmiller et al., 2018), we assume here that each task
should be solved with its own state and action representation, and
learning these representations is a central challenge. We adopt a
hierarchical perspective based on representational redescription
which differs from the hierarchical RL perspective (Barto and
Mahadevan, 2003) from the fact that we do not assume that
the lowest level is necessarily described as an MDP and we
assume that each intermediate level may come with its own
representation.

The proposed framework is related to end-to-end approaches
to reinforcement learning (Lillicrap et al., 2015; Levine et al.,
2016), but instead of black box approaches, it emphasizes
knowledge reuse through the explicit extraction of relevant
representations.

Open-ended learning is expected to occur in a lifelong
learning scenario in which the agent will be confronted
with multiple challenges to build the knowledge required
to solve the tasks it will face. It will not be systematically
engaged in a task resolution problem and will thus have to
perform choices that cannot be guided by a reward. Intrinsic

motivations are thus a critical component of the proposed
open-ended learning system. They will fill in multiple needs
of such a system: (1) a drive for action and state space
acquisition (Péré et al., 2018), (2) a selection of what to
focus on (Oudeyer et al., 2007) and (3) a bootstrap of the
process in the case of sparse reward (Mouret and Doncieux,
2012).
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This paper proposes Cooperative and competitive Reinforcement And Imitation Learning

(CRAIL) for selecting an appropriate policy from a set of multiple heterogeneous modules

and training all of them in parallel. Each learning module has its own network architecture

and improves the policy based on an off-policy reinforcement learning algorithm and

behavior cloning from samples collected by a behavior policy that is constructed by

a combination of all the policies. Since the mixing weights are determined by the

performance of the module, a better policy is automatically selected based on the

learning progress. Experimental results on a benchmark control task show that CRAIL

successfully achieves fast learning by allowing modules with complicated network

structures to exploit task-relevant samples for training.

Keywords: reinforcement learning, imitation learning, modular architecture, parallel learning,

entropy-regularization, multiple importance sampling

1. INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto, 1998; Kober et al., 2013) is an attractive learning
framework with a wide range of possible application areas. A learning agent attempts to find a
policy that maximizes its total amount of reward received during interaction with its environment.
Recently, such nonlinear function approximators as artificial neural networks are being used
to approximate a policy with the help of deep learning. Deep Reinforcement Learning (DRL),
which integrates both deep learning and reinforcement learning, has achieved several remarkable
successes in decision-making tasks, such as playing video games (Mnih et al., 2015) and the board
game Go (Silver et al., 2016, 2017).

However, DRL’s performance critically depends on its architectures, learning algorithms, and
meta-parameters (Henderson et al., 2018). On one hand, a shallow Neural Network (NN) with
fewer connection weights usually learns faster, but its performance may be limited. A deep and/or
wide NN with many network weights can represent any complex policy, but it usually needs
a huge amount of experiences to find an appropriate one. Since the motivation to use NNs is
to represent complicated nonlinear mapping from state to action, it is reasonable to select a
deep and wide NN as a function approximator. However, training data must be gathered by the
learning agent for reinforcement learning as opposed to the standard settings of the classification
problems of deep learning. Since a complicated NN policy whose many weights are initialized
randomly does not collect useful experiences to seek its goal, it is not promising to collect
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good experiences by itself, especially at the beginning of
the learning. Therefore, we have to find an appropriate
network architecture based on the task’s complexity. Although
an evolutionary method was applied to the problem of a
neural architecture search (Whiteson and Stone, 2006) for tiny
problems, experimenters usually manually prepare a learning
module with an appropriate network architecture depending on
the situation. Furthermore, it is crucial to select an appropriate
RL algorithm based on the given task. For instance, two
major types of algorithms exist: value-based reinforcement
learning and policy search methods, including policy gradient
reinforcement learning. Such value-based reinforcement learning
as Q-learning (Watkins andDayan, 1992) and SARSA (Rummery
and Niranjan, 1994) learns faster than vanilla policy search
methods such as REINFORCE (Williams, 1992) because value-
based reinforcement learning exploits the Bellman equation
under the Markovian assumption. The policy search methods
are robust and find a better stochastic policy even if the state
representation is deficient (Kalyanakrishnan and Stone, 2011).

In practice, experimenters test different combinations to select
the best one since their appropriate combination is unknown
in advance. Moreover, since the sequential testing of these
factors is very time-consuming, to eliminate the need for such
human hand-tuning, we proposed Cooperative and competitive
Learning with Importance Sampling (CLIS) (Uchibe and Doya,
2004, 2005). Here, the agent possesses multiple heterogeneous
learning modules and selects an appropriate module based
on the task and its experience. We consider a mechanism
by which an agent can best utilize its behavioral experiences
to train multiple learning modules with different network
architecture and learning algorithms. By exploiting task-relevant
experiences gathered by suboptimal but fast-learning modules, a
complicated module learns faster than when it was trained alone.
Unfortunately, CLIS is unstable in learning for several reasons.
One is the naive use of importance sampling to compensate for
the mismatch in the target and behavior policies. The other is
that the original CLIS adopts classical RL algorithms and linear
function approximators. In addition, the application of CLIS to
robot control is quite limited because it is implicitly assumed that
the action is discrete.

To overcome the problems raised by the study of CLIS, this
paper proposes Cooperative and competitive Reinforcement And
Imitation Learning (CRAIL), which extends CLIS to stabilize
learning processes and improve sampling efficiency. Similar
to CLIS, CRAIL maintains a set of multiple heterogeneous
policies, including hand-coded controllers, and collects samples
by a behavior policy constructed by the mixture distribution
of the policies. Because the mixing weights are computed
by the performance of the module, a better policy is
automatically selected based on the learning progress. Then
all the modules are trained simultaneously by two objective
functions. CRAIL introduces the following two components to
CLIS: (1) multiple importance sampling, and (2) policy learning
using a combination of temporal difference and behavior cloning
loss. Using multiple importance sampling stabilizes the learning
process of the policy search methods because the correction
factor, which is called the importance-sampling ratio, is

upper-bounded. One critical contribution of CRAIL is its
introduction of behavior cloning loss as well as temporal
difference learning. Based on the learning processes of multiple
modules, CRAIL dynamically updates the behavior policy that
will be used as the best expert policy. Unlike learning from
demonstrations, we can explicitly compute the behavior cloning
loss based on a behavior policy, which significantly improves
the policy updates. Furthermore, we use modern reinforcement
learning algorithms such as entropy-regularized RL because of
several advantages described later.

We compare CRAIL with CLIS on four benchmark control
tasks supported by the OpenAI gym (Brockman et al., 2016).
Experimental results indicate that by exploiting task-relevant
episodes generated by suboptimal, but fast-learning modules a
complex learning module trained with CRAIL actually learns
faster than when it is trained alone. Due to adding the behavior
cloning loss, CRAIL learns much faster than CLIS on all
the benchmark tasks. In addition, CRAIL effectively transfers
samples collected by the fixed hand-coded controller to train
policies implemented by neural networks.

2. RELATED WORK

Several reinforcement learning methods with multiple modules
have been proposed. Compositional Q-learning (Singh, 1992)
selects a learning module with the least TD-error, and
Selected Expert Reinforcement Learner (Ring and Schaul, 2011)
extends the value function to select a module with better
performance. Doya et al. (2002) proposed Multiple Model-based
Reinforcement Learning (MMRL), in which each module is
comprised of a state prediction model and the module with the
least prediction error is selected and trained. These approaches
are interpreted as the concept of “Mixture of Experts.” In
these approaches, the structure of each module is the same
and uses the same learning algorithm, while CRAIL enables
the use of heterogeneous learning modules that can be trained
concurrently. One interpretation is that the modules are spatially
distributed in their methods because they change the module
based on the current environmental state. On the other hand,
CRAIL temporarily distributes the modules because it switches
them due to the learning progress.

Some researchers integrated an RL algorithm with hand-
coded policies to improve the learning progress in its initial
stage. Smart and Kaelbling (2002) proposed an architecture
comprised of a supplied control policy and Q-learning. In the
first learning phase, a robot was controlled with the supplied
control policy developed by a designer. The second learning
phase begins to control the robot effectively when the value
function is approximated sufficiently. Xie et al. (2018) proposed
a similar approach to incorporate a prior knowledge, in which
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016) and a PID controller are used as off-policy learning and
a hand-coded policy, respectively. However, a limitation of their
approach is that it uses only one learning module. CRAIL is
a more general architecture for incorporating multiple prior
knowledge. In addition, it can automatically select an appropriate
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module depending on the learning progress. Sutton et al. (1999)
described the advantages of off-policy learning and proposed a
novel framework to accelerate learning by representing policies
at multiple levels of temporal abstraction. Although their method
assumed a semi-Markov decision problem and AVRL, CLIS can
use different learning algorithms.

Our framework can be interpreted as learning from
demonstrations. Many previous studies can be found in this
field, and some recent studies such as (Gao et al., 2018; Hester
et al., 2018; Nair et al., 2018) integrated reinforcement learning
with learning from demonstrations by augmenting the objective
function. Our framework resembles those methods from the
viewpoint of the design of the objective function. The role of the
demonstrator is different because our framework’s demonstrator
is selected from multiple heterogeneous policies based on the
learning progress; previous studies assumed that it is stationary
and used it to generate a training dataset. Since CRAIL explicitly
represents the behavior policy, actions can be easily sampled from
it to evaluate the behavior cloning loss.

The most closely related study is Mix & Match (Czarnecki
et al., 2018), in which multiple heterogeneous modules are
trained in parallel. Mix & Match’s basic idea resembles CRAIL,
but it does not consider multiple reinforcement learning
algorithms; CRAIL adopts three learning algorithms for every
module. In addition, Mix & Match uses a mixture of policies
and optimizes the mixing weights by a kind of evolutionary
computation. Since Mix & Match needs multiple simulators,
it is sample-inefficient. The mixing weights are automatically
determined in the case of CRAIL.

3. METHODS

3.1. CRAIL’s Architecture
We investigate the standard Markov Decision Process (MDP)
framework, which is not known by an agent in the model-free
RL setting (Sutton and Barto, 1998). An MDP is formulated as
follows: (1) X is the state space and xt ∈ X denotes the state of
the environment at time t; (2) U is the action space and ut ∈ U

is the action executed by the agent at time t; (3) pe(x
′ | x, u) is

the state transition probability for x, x′ ∈ X and u ∈ U ; (4)
p0(x) is the initial state probability; and (5) r(x, u) is a reward
function. CRAIL has M learning modules as shown in Figure 1,
and each of which has state value function Vi(x;ψ i), state-action
value function Qi(x, u; θ i), and policy πi(u | x;φi), where ψ i, θ i,
and φi are the parameters, respectively. Vi and Qi are defined as
a discounted sum of the rewards given by

Vi(x) = E

[ ∞∑

t= 0

γ tr(xt , ut)

∣∣∣∣∣ x0 = x

]
,

Qi(x, u) = E

[ ∞∑

t= 0

γ tr(xt , ut)

∣∣∣∣∣ x0 = x, u0 = u

]
,

where γ ∈ [0, 1) is a discount factor that determines the relative
weighting of immediate versus later rewards. For simplicity, all
the modules share the same sensory-motor system.

FIGURE 1 | Architecture of Cooperative and Competitive Reinforcement And

Imitation Learning (CRAIL).

Algorithm 1 Stepwise CRAIL

1: Initialize all parameters of the learning modules.
2: Initialize empty replay buffer D.
3: repeat

4: x0 ∼ p0(·) ⊲ Draw an initial state.
5: for t = 0, . . . ,T − 1 do
6: ut ∼ π̄(· | xt), xt+1, rt ∼ pe(·, · | xt , ut).
7: Add batch data {xt , ut , rt , xt+1} to replay buffer D.
8: for i = 1, . . . ,M do ⊲ Update all the modules.
9: update the parameters by Algorithms 4 or 5.
10: end for

11: end for

12: until convergence

At each time step t, the agent selects an action based on the
following behavior policy:

π̄(ut | xt) =
M∑

i= 1

α(i | xt)πi(ut | xt;φi). (1)

Because the state value function evaluates the policy’s
performance, we use it to determine the mixing weight:

α(i | xt) =
exp(βVi(xt;ψ i))∑M
j= 1 exp(βVi(xt ,ψ j))

, (2)

where β is an inverse temperature. A low β value causes (most of)
the equiprobable selection of all the modules, while its high value
causes the selection of a module with the highest value when the
probability comes closest to one. Inverse temperature β plays an
important role at the early stage of learning concerning whether
to select optimistic modules that may have large initial values.
Algorithm 1 illustrates an overview of the learning process
of stepwise CRAIL. The agent maintains experience replay
buffer D to store state transition (x, u, r, x′) by behavior policy
π̄ .

As a special case for episodic tasks, we focus on episodic
CRAIL, which is basically identical to the original CLIS, as shown
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Algorithm 2 Episodic CRAIL/CLIS

1: Initialize all parameters of the learning modules.
2: Initialize empty replay buffer D.
3: repeat

4: for k = 1, . . . ,K do ⊲ Collect K episodes
5: x0 ∼ p0(·) ⊲ Draw an initial state.
6: i ∼ α(· | x0) ⊲ Select a module.
7: for t = 0, . . . ,T − 1 do
8: ut ∼ πi(· | xt), xt+1, rt ∼ pe(·, · | xt , ut).
9: end for

10: Add batch data {i, x0 :T , u0 :T−1, r0 :T−1} to replay
buffer D.

11: for i = 1, . . . ,M do ⊲ Update all the modules.
12: update the parameters by Algorithms 3, 4, or 5.
13: end for

14: end for

15: until convergence

in Algorithm 2. At the beginning of every episode, a module is
chosen by Equation (2) to generate a sequence of states, actions,
and rewards denoted by

h , [x1, u1, r1, . . . , xT , uT , rT],

where T denotes the number of steps called the horizon length.
This modification is useful from the viewpoint of numerical
stability when a hand-coded deterministic policy is used as
domain knowledge. For example, a Central Pattern Generator
(CPG) is widely used to generate rhythmic motions like walking
without rhythmic sensory inputs (Ijspeert, 2008), but it cannot be
represented by policy πi(u | x) because CPG has internal states
that are not observable by other modules. In this case, the module
has to cope with partially observableMDP tasks if the experiences
generated by the CPG-based controller are used for training.

3.2. Learning Algorithm in Each Module
Similar to CLIS, all the modules learn an optimal policy in
parallel on the samples from D collected by the behavior policy.
The learning algorithms used by CRAIL should be able to learn
from the experiences gathered by other modules, and therefore,
we adopt the following three methods as an off-policy RL
algorithm: REINFORCE (Williams, 1992), Soft Actor-Critic (Soft
AC) (Haarnoja et al., 2018), and Deterministic Policy Gradient
(DPG) (Lillicrap et al., 2016). We modify these algorithms by
incorporating behavior loss to update the policy to improve their
learning efficiency.

3.2.1. REINFORCE With Importance Sampling
Policy search methods that do not rely on the Bellman optimality
equation such as REINFORCE (Williams, 1992) have been
reevaluated because of their simplicity and robust performance
with non-Markovian tasks (Meuleau et al., 1999). REINFORCE is
essentially an on-policy method (Sutton and Barto, 1998) because
it estimates the gradient at a particular point in the policy space
by acting precisely in the manner of its corresponding policy
during learning trials. To use samples collected by the behavior

policy, we introduce importance sampling to the REINFORCE
algorithm (Meuleau et al., 2001) as an off-policy learning
algorithm. Note that REINFORCE is applicable for the episodic
CRAIL because it requires a set of sequences as a dataset.

REINFORCE evaluates sequence h by

Jπi (φi, h) = R(h) =
T∑

t= 1

γ t−1rt ,

where R(h) is called the return, which is defined as the discounted
sum of rewards along h. To update φi, REINFORCE adopts the
stochastic gradient ascent method with the gradient given by

∂Jπi (φi, h)

∂φi
= (R(h)− b)ρi(h)

T∑

t= 1

∂ lnπi(ut | xt)
∂φi

, (3)

where b is a baseline parameter for variance reduction and ρi(h) is
the importance-sampling weight ratio to account for the change
in the distribution, defined by

ρi(h) =
T∏

t=1
ρi(xt , ut) =

T∏

t=1

πi(ut | xt)
π̄(ut | xt)

, (4)

under the Markovian assumption. Unlike CLIS, CRAIL uses
multiple importance sampling in which the denominator in (4) is
the mixture distribution (1) and therefore ρi is upper-bounded.
Note that Equation (3) is slightly different from the standard
expression because the expected value with respect to all possible
sequences should be considered to exploit the baseline and
importance sampling. We will take expectations later to clarify
how the gradient of our method is different from the original one.

Although the gradient estimator (3) is sample-efficient, it is
close to zero when πi is far from π̄ . This situation is often
observed at the early stage of learning. To overcome this problem,
we introduce the following additional objective function given by
the KL divergence between the learning and behavior policies:

JBCi (φi, xt) = DKL(π̄(· | xt) ‖ πi(· | xt)). (5)

Minimizing (5) is behavior cloning, which is also known as
supervised imitation learning. However, our method is more
computationally efficient because we can draw samples from π̄

without interacting through the environment. Consequently, the
gradient to train the policy parameter is given by

∂Jπi (φi)

∂φi
= Eh∼D

[
∂Jπ ,RLi (φi, ·)

∂φi

]
− ηEx∼D

[
∂Jπ ,BCi (φi, ·)

∂φi

]
,

(6)
where η is a positive meta-parameter. When η = 0, Equation (6)
is identical to the original gradient estimator of REINFORCE
with importance sampling.

Finally, state value function Vi(x,ψ i) is also trained with the
Monte Carlo method because it is used to construct the behavior
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Algorithm 3 REINFORCE with importance sampling and
Imitation Learning

Require: dataset D
1: Sample a random minibatch of sequences h from D.
2: Evaluate gradient ∂Jπ ,RLi /∂φi.
3: Sample a random minibatch of states x from D and u from
π̄ , respectively.

4: Evaluate gradient ∂Jπ ,BCi /∂φi.
5: Update φi by the stochastic gradient ascent method with

Equation (6).
6: Update ψ i by minimizing Equation (7).

policy. When the number of sequences in D is denoted by K, the
loss function to optimize the state value function is given by

JVi (ψ i) =
1

2

K∑

k=1

T∑

t= 1

(
Vi(x

k
t )− Yk

t

)2
, (7)

where Yk
t is the target value defined as

Yk
t =

T∏

t′=t
ρ(xkt , u

k
t )

T∑

t′ = t

γ t′−trkt .

The update rule of the modified REINFORCE with importance
sampling is given in Algorithm (3).

3.2.2. Soft Actor-Critic and Imitation Learning
The original CLIS adopted SARSA (Rummery and Niranjan,
1994) with importance sampling (Precup et al., 2001) as an
off-policy value-based reinforcement learning algorithm. An
advantage is that the technique called eligibility traces (Sutton
and Barto, 1998) can be used to accelerate the speed of learning,
and it was experimentally shown that deep SARSA can achieve a
comparable performance to DQN even though it does not exploit
the method of experience replay and target network (Elfwing
et al., 2018). However, SARSA implicitly assumes that action
is discrete because the stochastic policy must be derived from
the state-action value function. Since we are interested in robot
control, action must be continuous. Therefore, we adopt Soft
Actor-Critic (Haarnoja et al., 2018) as an off-policy algorithm
using the value function. Soft Actor-Critic augments the reward
function to replace the max-operator with a differentiable one.
The reward function is assumed to be given by the following
form:

r̃(x, u) = r(x, u)+
1

α
H(πi(· | x)), (8)

where α is a positive meta-parameter and and H(π(· | x)) is the
(differential) entropy of policy πi. Assuming reward function (8),
an optimal state value function satisfies the following Bellman
optimality equation:

Vi(x) = max
πi

Eπi

[
r(x, u)−

1

α
lnπi(u | x)+ γEPT

[
Vi(x

′)
]]

.

(9)

The right hand side of Equation (9) is a constrained optimization
problem given by

max
πi

∫
duπi(u | x)

[
r(x, u)−

1

α
lnπi(u | x)+ γEPT

[
Vi(x

′)
]]

,

subject to
∫
duπi(u | x) = 1. In this case, we can analytically

maximize the right hand side of Equation (9) by a method
with Lagrange multipliers. Consequently, the optimal state value
function can be represented by

Vi(x) =
1

α
ln

∫
du
[
exp(αQi(x, u))

]
, (10)

and the corresponding optimal policy can be derived:

πi(u | x) =
exp

(
αQi(x, u)

)

exp(αVi(x))
, (11)

where state-action value function Q(x, u) is defined by

Qi(x, u) = r(x, u)+ γEPT

[
Vi(x

′)
]
. (12)

Note that the right hand side of Equation (10) uses the log-sum-
exp operator if the action is discrete, and it is characterized as the
“soft” max operator.

The learning algorithm of the Soft Actor-Critic is derived
from Equations (10)–(12). Since Equation (12) corresponds to
the Bellman optimality equation regarding the state-action value
function, it can be used to train parameter θ i by minimizing the
soft Bellman residual for all possible (x, u, x′) in buffer D:

JQi (θ i, x, u, r, x
′) =

1

2

{
Qi(x, u)−

(
r + γVi(x

′; ψ̄ i)
)}2

,

where Vi(x, ψ̄ i) and ψ̄ i respectively denote the target state value
network and an exponentially moving average of the parameter
vector, which stabilizes the learning used in DQN (Mnih et al.,
2015). Consequently, the loss function for training θ i is given by

J
Q
i (θ i) = E(x,u,r,x′)∼D

[
J
Q
i (θ i, ·, ·, ·, ·)

]
, (13)

where (x, u, r, x′) ∼ D means that the transition data are drawn
from D.

When the action is discrete, the optimal policy and the state
value function can be easily computed from the state-action value
function. However, it is intractable in the case of continuous
action because Equation (10) needs to evaluate the integral in
action space. Therefore, Haarnoja et al. (2018) recommended
that the state value function and policy also be separately
approximated. Based on the relation (11), the approximation
error of the state value function at state x is given by

JVi (ψ i, x) =
1

2

{
Vi(x)− Eu∼πi

[
Qi(x, ·)−

1

α
lnπ(· | x)

]}2
,

where the expectation is numerically computed through a Monte
Carlo simulation. The loss function for training ψ i is given by

JVi (ψ i) = Ex∼D
[
JVi (ψ i, ·)

]
. (14)

Frontiers in Neurorobotics | www.frontiersin.org 5 September 2018 | Volume 12 | Article 6141

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

Algorithm 4 Soft Actor-Critic and Imitation Learning

Require: dataset D, inverse temperature η, decay rate τ .
1: Sample a random minibatch of transitions (x, u, r, x′) from

D.
2: Evaluate gradient ∂JQi /∂θ i and update θ i by stochastic

gradient descent.
3: Sample a random minibatch of states x from D and u from
πi, respectively.

4: Evaluate gradient ∂JVi /∂ψ i and update ψ i by the stochastic
gradient descent.

5: Sample a random minibatch of states x from D and u from
π̄ , respectively.

6: Evaluate gradient ∂Jπi /∂φi and update φi by the stochastic
gradient descent.

7: Update the parameter of the target network by ψ̄ i ← τ ψ̄ i +
(1− τ )ψ i.

In the same way, policy parameter θ i is trained byminimizing the
Kullback-Leibler (KL) divergence between the left and right hand
sides of Equation (11):

Jπ ,RLi (φi, x) = DKL

(
πi(· | x) ‖

exp(αQi(x, ·))
exp(αVi(x))

)
, (15)

where we need samples drawn from πi to evaluate the KL
divergence. In addition to the KL divergence, we introduce the
behavior cloning loss defined as the KL divergence between the
learning and behavior policies:

Jπ ,BCi (φi, x) = DKL(π̄(· | x) ‖ πi(· | x)). (16)

Consequently, the loss function for training φi is given by

Jπi (φi) = Ex∼D
[
Jπ ,RLi (φi, ·)+ ηJ

π ,BC
i (φi, ·)

]
, (17)

where η is a positivemeta-parameter.When η = 0, Equation (17)
is identical to the original update rule of Soft Actor-Critic.
Note that Information projection (I-projection) is used in
Equation (15), and Moment projection (M-projection) is used
in Equation (16) (Kober et al., 2013). Although in principle
we can select any projection, we believe that Equation (16) is
appropriate for the behavior cloning loss because it is averaged
over several modes of the policy. In addition, Equation (15)
is appropriate because it concentrates on a single mode. πi
is usually implemented by a Gaussian policy with a single
mode, but exp(αQi(x, ·))/ exp(αVi(x)) may have multiple modes.
The update rule of the modified Soft Actor-Critic is given by
Algorithm 4.

3.2.3. Deterministic Policy Gradient and Imitation

Learning
Deterministic Policy Gradient (DPG) (Silver et al., 2014) and its
deep version (Lillicrap et al., 2016) are a well-known off-policy
reinforcement learning algorithm that can handle continuous
actions. Unlike Soft Actor-Critic, DPG does not approximate

Algorithm 5 Deterministic Policy Gradient and Imitation
Learning

Require: dataset D, inverse temperature η, decay rate τ .
1: Sample a random minibatch of transitions (x, u, r, x′) from

D.
2: Evaluate gradient ∂JQi /∂θ i and update θ i by the stochastic

gradient descent.
3: Sample a random minibatch of states x from D.
4: Evaluate gradient ∂Jπi /∂φi and update φi by the stochastic

gradient descent.
5: Update the parameter of the target network by θ̄ i ← τ θ̄ i +

(1− τ )θ i.

the state value function. The policy network can also be
simplified significantly because it does not need to approximate a
continuous probability density function.

The loss function to train Qi in DPG resembles that in Soft
Actor-Critic and is given by Equation (13) whose JQi (θ i, x, u, r, x

′)
is replaced with the following equation:

JQi (θ i, x, u, r, x
′) =

1

2

{
Qi(x, u)− (r + γQi(x

′,πi(x
′); θ̄ i))

}2
,

where θ̄ i denotes an exponentially moving average of the
parameter vector of the target state-action value network andπi is
a deterministic policy that maps x to u. DPG evaluates the policy
gradient at state x by

∂Jπ ,RLi (φi, x)

∂φi
=
∂Qi(x, u)

∂u

∣∣∣∣
u=πi(x)

∂πi(x)

∂φi
.

As a result, the policy gradient with behavior cloning loss is
computed by

∂Jπi
∂φi
= Ex∼D

[
∂Jπ ,RLi (φi, ·)

∂φi
− η

∂Jπ ,BCi (φi, ·)
∂φi

]
,

where Jπ ,BCi is the same function used by the modified Soft
Actor-Critic explained in section 3.2.3. The state value function
is simply computed by

Vi(x) = Qi(x,πi(x)).

The update rule of the modified DPG is given by Algorithm 5.
One limitation of DPG is that it does not have an explicit
exploration mechanism because policy πi represents a
deterministic function. Therefore, DPG usually introduces
a behavior policy that is implemented by an Ornstein-Uhlenbech
process (Lillicrap et al., 2016). On the other hand, CRAIL’s
behavior policy is dynamically constructed by mixing all of
the component policies. When DPG is selected as a learning
algorithm of CRAIL, at least one learning module with a
stochastic policy should be added to promote exploration and
discourage premature convergence.
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4. EXPERIMENTS

4.1. Comparison of CRAIL and CLIS
To investigate how CRAIL improves the learning speed, we
conducted several computer simulations with four MuJoCo-
simulated (Todorov et al., 2012) benchmark tasks: Hopper-
v2, Half-Cheetah-v2, Walker2d-v2, and Ant-v2, all of which
were provided by the OpenAI gym (Brockman et al., 2016)
(Figure 2). Hopper-v2 is a planar monopod, and Walker2d-
v2 and HalfCheetah-v2 are planar biped robots. Ant-v2 is a
quadruped robot that can move around a three-dimensional
environment. The observation and action spaces are shown in
Table 1, where the observation vector is used as a state vector.
The goal is to move forward as quickly as possible, and the
reward function is given by r(x, u) = vx − c‖u‖22, where vx is
the forward velocity and c is a robot-dependent constant. See
the supplementary materials of Duan et al. (2016) for the task
specifications.

We prepared two function approximators, Neural Network
(NN) and normalized Radial Basis Function (RBF), and Table 2

shows their network architectures. For example, the module
using the RBF networks represents Vi by 64 normalized radial

FIGURE 2 | MuJoCo-simulated environments: Hopper-v2, Walker2D-v2,

Half-Cheetah-v2, and Ant-v2.

TABLE 1 | Environments used in experiments and their state and action spaces.

Environment Observation space Action space

Ant-v2 R
111 [−1.0, 1.0]8

HalfCheetah-v2 R
17 [−1.0, 1.0]6

Hopper-v2 R
11 [−1.0, 1.0]3

Walker2d-v2 R
17 [−1.0, 1.0]6

basis functions by

Vi(x;ψ i) =
Ni∑

j= 1

ψi,jbi,j(x),

where Ni and ψi,j respectively denote the number of basis
functions and the j-th element of ψ i and bi,j(x) is the basis
function defined by

bi,j(x) =
ai,j(x)∑Ni

j′ = 1 ai,j′ (x)
, ai,j = exp

(
−‖s⊤i,j(x− ci,j)‖22

)
,

where ai,j is a Gaussian activation function with parameters
si,j and ci,j. Since si,j and ci,j were determined by a heuristic

TABLE 2 | Network architectures of approximator in the first and the second

experiments: For example, RBF module approximates Qi by 64 basis functions,

and NN module approximates two-layer feed-forward neural network consisting of

(400, 300) hidden units.

Approximator V Q π

RBF (64) (64) (64)

NN (64, 64) (400, 300) (400, 300)

FIGURE 3 | Architectures of neural networks used by Soft Actor-Critic: (A)

State value function network. (B) State-action value function network. (C)

Gaussian-policy network. We approximate both V and Q with feed-forward

neural networks. π is approximated by a Gaussian policy:

π (u | x) =N (u | µ, σ2I), where the mean µ is given by a neural network and

the log-standard deviation ln σ is parameterized by a global vector

independent of the state.

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2018 | Volume 12 | Article 6143

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

FIGURE 4 | Training curves on continuous control benchmarks: Performance was evaluated by cumulative rewards in 10 episodes for each learning module.

rule (Morimoto and Doya, 2001), Vi is interpreted as a linear
neural network. Therefore, the module with the RBF networks
is expected to learn faster than that with the nonlinear neural
networks. Figure 3 represents the architectures that approximate
πi,Vi and Qi needed by the Soft Actor-Critic. Each was
implemented by a feed-forward neural network with a Rectified
Linear Unit (ReLU) as a nonlinear activation function of the
hidden layers. In the first experiment, we chose three learning
algorithms, Soft Actor-Critic, Deterministic Policy Gradient, and
REINFORCE with importance sampling. We prepared 2× 3 = 6
modules as a result. To apply Algorithm 3 to this non-episodic
task, the horizon length T is set to 300.

CRAIL was given the above six modules for parallel training.
We also tested the six modules separately in addition to
CLIS as baseline performances, where CLIS also used multiple
importance sampling instead of an independent type because
the original CLIS worked very poorly due to the unboundedness
of the importance-sampling weight ratio. Note that the original
CLIS selects one learning module at the beginning of each
episode, and utilizes a truncated importance sampling ratio given
by

ρ̂i(h) = min

(
T∏

t=1

πi(ut | xt)
πselected(ut | xt)

,C

)
,

where πselected is the policy of the selected module and C is a
positive constant determined by the experimenters. Although
ρ̂i(h) is upper-bounded, it is not trivial to tune C in practice.
In addition, CLIS does not consider behavior cloning loss.
Therefore, CLIS evaluated in the experiments uses Equation (4)
as the importance weight. In this case, CLIS is identical to CRAIL
with η = 0. Each method was evaluated in ten simulation runs,
each of which was comprised of 2,000 episodes.

Figure 4 shows the learning performance of CRAIL, CLIS, and
the six component modules, and we found that CRAIL learned
faster than CLIS and the six modules trained separately on all the
benchmark tasks. On the other hand, the learning performance
of CLIS resembled that of the NN × SAC module. The RBF ×
SAC module showed the best learning curves on all the tasks
at the early stage of learning, but its performance saturated
before reaching a sufficient level because the normalized RBF
networks could not precisely approximate the value functions
and the policy as well as the neural networks. On the contrary,
the NN policies trained by SAC or DPG learned very slowly,
and their performance was much worse than RBF × SAC at the
early stage of learning. The modules trained by REINFORCE
needs a set of sequences, and therefore, they learned slower than
the actor-critic methods such as DPG and Soft AC. As a result,
the REINFORCE modules achieved worse performance, and
the probabilities remained low during learning. Figures 5A,B
respectively show the mixing weights {αi}6i=1 during the learning
of Ant-v2 computed by CRAIL and CLIS. The probability of
selecting the RBF × SAC module increased rapidly at the early
stage of learning in both cases. However, CRAIL tended to
gradually select the NN × SAC module after about four million
steps, and CLIS continued to choose the RBF × SAC module’s
policy most frequently until about six million steps.

4.2. Adaptation to Changes in the
Environment
Next, we experimentally tested the capability of adaptation to
changes in the environment by changing the mass of the body
of HalfCheetah-v2 from 6.36 (original) to 6.36 × 3 [kg] at the
5 millionth step. In this experiment, both CRAIL and CLIS
possessed the same six learning modules used in the previous
experiment. Each method was evaluated in ten simulation runs,
each of which was comprised of 2,000 episodes.
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FIGURE 5 | Probabilities for changing learning modules during learning process: (A) Results obtained by CLIS architecture. (B) Results obtained by CL without

importance sampling.

FIGURE 6 | Training curves on episodic Half-Cheetah-v2 task, in which body’s mass was changed at 5 millionth step.

Figures 6A,B respectively show the cumulative rewards and
module selection probability in each step. Note that the first
half of Figure 6A is identical to Figure 4C. When the mass was
changed at 5 millionth steps, the performance of the CRAIL,
CLIS, and NN policies decreased significantly. However, the RBF
policies maintained the pole without considerable deterioration
in performance compared with the NN policies because the
number of weights was smaller. In other words, the performances
of the NN policies deteriorated drastically because their policies
were fine-tuned for a particular weight. Therefore, the probability
of selecting RBF× SAC increased temporarily from about 5 to 6.5
million steps. CRAIL prevented the body from falling and trained
NN × SAC and NN × DPG by appropriately selecting RBF ×
SAC, as shown in Figure 6B.

4.3. Introducing a Fixed Policy
To investigate how CRAIL exploits a deterministic stationary
policy, we added a CPG-based policy as prior knowledge
to control HalfCheetah-v2 because periodic motion is quite
useful to generate walking behaviors and many previous
studies exist (Ijspeert, 2008) in this field. Since CRAIL uses
multiple importance sampling, it is straightforward to use the
deterministic policy as one of the sampling policies. Note that
the CPG-based policy has internal states because the oscillator
is implemented by a differential equation. Therefore, we selected

TABLE 3 | Network architectures of approximator in the third experiments: We

denote the hidden layer sizes of a two-layer feedforward neural network as (N, M).

Approximator V π

BASE (64, 64) (64, 64)

WIDE (64, 64) (400, 300)

DEEP (64, 64) (100, 50, 25)

For example, the WIDE module approximates Vi and πi by (64, 64) and (400, 300),

respectively.

the REINFORCE algorithm with importance sampling described
in section 3.2.1 and Algorithm 2 in this experiment because the
evaluation of deterministic policies with internal states is difficult
in stepwise update rules.

As learning modules, we prepared three network architectures
that are commonly seen in the literature (Henderson et al., 2018)
as shown in Table 3 to implement a stochastic policy. We used a
ReLU nonlinear activation function. Note that the REINFORCE
algorithm does not need Qi. In addition, a deterministic
stationary policy based on central pattern generators was
prepared as prior knowledge, which was implemented by the
modified Hopf oscillator (Uchibe and Doya, 2014). Since CRAIL
uses multiple importance sampling, it is straightforward to use
the deterministic policy as one of the sampling policies.
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FIGURE 7 | Training curves on Half-Cheetah-v2 task, in which fixed stationary policy was used as prior knowledge.

In addition to evaluate the CRAIL’s performance, we tested the

four modules separately. Figure 7A shows that CRAIL learned

much faster than the component modules trained alone. Since

REINFORCE learns very slowly due to its simplicity (Duan et al.,

2016), 500 iterations were insufficient to overcome the CPG-

based controller. Figure 7B shows the mixing weights during the

learning computed by CRAIL. The probability of selecting the

CPG-controller module increased rapidly at the early stage of

learning. Then, CRAIL tended to select the BASEmodule and the

probability of selecting it was the highest among the NNmodules
from about 90 to 170 iterations. Finally, the WIDE module was
frequently selected at the later stage of learning. The DEEP
module trained alone achieved the highest performance among
the three neural network policies. However, the probability
of selecting it remained low during learning. Note that the
original CLIS cannot utilize the deterministic policy because the
importance weight ratio becomes infinity.

5. DISCUSSION

This paper proposed modular reinforcement learning
(CRAIL), which collects task-relevant samples using multiple
heterogeneous policies. One interesting feature of CRAIL is that
a complex RL system can learn faster with the help of a simple RL
system that cannot achieve the best performance. Experimental
results also suggested that CRAIL efficiently adapted to changes
in the learning conditions because it automatically selected
simple modules with fewer parameters.

CRAIL implicitly assumes that state value functions are not
initialized optimistically. Suppose that the reward function is
always non-positive, and the state value functions are initialized
to zero. In this case, some modules that are not selected by
Equation (1) may have V values that are consistently higher
than the selected modules. In this case, CRAIL selects the worst
module if the inverse temperature is not tuned appropriately. As
one possible extension to overcome this difficulty, the mixing
weights are also trained by reinforcement learning in which the
value functions are used as priors.

In the current implementation, since all the learning modules
are prepared in advance CRAIL cannot obtain good performance
if all of them are inappropriate for the given task. To design
appropriate learning modules, we need to develop a mechanism

to add or delete learning modules based on the selection
probabilities calculated by Equation (1). If a simple learning
module has a low probability for a long time, it can be replaced
by a complicated module. This allows CRAIL to flexibly test
heterogeneous modules without increasing computational costs.
To overcome this problem, we consider an asynchronous version
of the algorithms.

We did not address the effects of computational costs on the
learning modules. Updating the parameters of the RBF networks
was accomplished considerably faster than for the deep neural
networks, but the modules with the RBF networks had to wait
until the modules with deep neural networks completed their
computations. In general, the sampling rate significantly affects
the original performance of a robot. For example, the robot
should reduce its moving speed when it uses a complex module.
However, the effects of the differences in sampling rates have not
been scrutinized.

One interesting future topic is the use of multiple meta-
parameters. CRAIL has some meta-parameters used in an
RL system, and their settings, such as the learning rate, the
inverse temperature that controls the randomness in action
selection, and the discount factor for future reward prediction,
are crucial to perform a task successfully. A possible scenario
is that when a small discount factor can be used in the
initial learning process, a module with a larger discount factor
can be selected as the learning progresses. We have not yet
identified the tasks and situations in which different discount
factors play an important role for accelerating the learning
speed, but in the future we will seek good examples for this
topic.
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In some manipulation robotics environments, because of the difficulty of precisely

modeling dynamics and computing features which describe well the variety of

scene appearances, hand-programming a robot behavior is often intractable. Deep

reinforcement learning methods partially alleviate this problem in that they can dispense

with hand-crafted features for the state representation and do not need pre-computed

dynamics. However, they often use prior information in the task definition in the form of

shaping rewards which guide the robot toward goal state areas but require engineering

or human supervision and can lead to sub-optimal behavior. In this work we consider

a complex robot reaching task with a large range of initial object positions and initial

arm positions and propose a new learning approach with minimal supervision. Inspired

by developmental robotics, our method consists of a weakly-supervised stage-wise

procedure of three tasks. First, the robot learns to fixate the object with a 2-camera

system. Second, it learns hand-eye coordination by learning to fixate its end-effector.

Third, using the knowledge acquired in the previous steps, it learns to reach the object

at different positions and from a large set of initial robot joint angles. Experiments in

a simulated environment show that our stage-wise framework yields similar reaching

performances, compared with a supervised setting without using kinematic models,

hand-crafted features, calibration parameters or supervised visual modules.

Keywords: deep reinforcement learning, weakly-supervised, stage-wise learning, manipulation robotics,

hierarchical learning

1. INTRODUCTION

In manipulation robotics, various tasks cannot be programmed by hand because dynamics
is hard to compute or/and hand-crafted features do not describe well enough the variety of
scene appearances. Deep reinforcement learning tackles both of these issues in that features are
automatically computed by optimization and dynamics is not required (Levine et al., 2016; Gu
et al., 2017; Riedmiller et al., 2018). In manipulation robotics, the success of a task is often defined
by a sparse reward (i.e., a positive signal is given to the robot only if the full task is successfully
completed) in a high-dimensional state space, which makes learning slow since in some high-
dimensional robotics tasks, it is very unlikely to get a first success when the initial states are far
from the targeted ones. Although the use of several agents in parallel has shown good performances
with a sparse only reward (Levine et al., 2017), it requires expensive resources and materials as well
as a simplified action space which are not always possible to get. Provided an expert knowledge
is available, learning by demonstration (Kober and Peters, 2009; Nair et al., 2017; Sermanet et al.,
2017) can also be used to guide the robot to sparse-reward areas. But it requires prior knowledge
on the optimal/sub-optimal behavior for a specific task.
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An alternative solution consists of using shaping rewards.
They allow to guide the exploration of the agent toward goal state
areas, i.e., the probability of receiving sparse rewards is increased.
Using shaping rewards leads to two main issues. First, they can
lead to sub-optimal policies (Popov et al., 2017) by biasing the
exploration process, e.g., the solution specified by the reward
function may not be optimal. Second, they generally require
tedious engineering work or other forms of supervision. For
instance, for manipulation tasks such as block stacking, reaching,
door pushing or pulling (Deisenroth et al., 2011; Chebotar et al.,
2017; Ghadirzadeh et al., 2017; Gu et al., 2017; Tsurumine et al.,
2017), an informative reward is computed based on a distance
measure between a current and a target pose. However, this
requires to know robot kinematics and target position (through
supervised visual tracking or measure). In a similar way, in
Levine et al. (2015, 2016) (for tasks such as placing wooden
rings or screwing bottle caps onto bottles), informative shaping
rewards have been computed using a distance measure between
current end-effector or manipulated object positions and their
corresponding target positions. However, they require knowledge
of kinematics or non-trivial visual modules. For similar tasks, a
more sophisticated set-up has been proposed in Finn et al. (2016):
the shaping reward is based on the distance between current
visual features and target features, both of them being computed
by an autoencoder. This requires to place the robot at the target
position and extract target visual features each time the target
location changes.

Another category of solutions to make learning with sparse-
only rewards tractable consists in decomposing the whole
problem into simpler sub-problems. For instance, assuming one
goal state is known, a mechanism of learning from easy missions
(Asada et al., 1996) can be used to learn very precise robotic
manipulation tasks such as inserting and turning a key in a lock
or assembling a gear onto an axle (Florensa et al., 2017). This
method consists in starting learning the task from initial states
close to the goal state and as far as learning improves, states
are initialized further and further. Nevertheless, this method
assumes the knowledge of a goal state and up to our knowledge,
has not been proven efficient yet for a multi target position
setting. Furthermore, hierarchical reinforcement learning can
be used to decompose complex tasks such as block stacking
into simpler sub-tasks. For instance, (Gudimella et al., 2017)
quickly learns a block stacking task using Concept Network
Reinforcement Learning (CNRL), a hierarchical framework
which decomposes the problem into sub-problems like reaching
the working area, grasping, reaching the second working area,
and stacking. However, these sub-tasks use shaping rewards
requiring kinematics and target pose knowledge. Besides, a
similar task is learned using another hierarchical reinforcement
learning framework called Scheduled Auxiliary Control (SAC-X)
(Riedmiller et al., 2018). This uses auxiliary rewards (sparse
for most of them) encouraging the robot to discover sub-goals
such as making objects closer, making an object higher or
lower than the other one, maximizing or minimizing the sum
of finger tactile sensors. One key aspect of this architecture is
that learning to achieve the sub-goals does not bias the learned

policy and is only used to explore more the environment.
However, some of these auxiliary rewards still require object
tracking in the images and are not necessarily adaptable to any
object.

In this paper, we consider the task of touching an object
with the end-effector palm and we propose to learn it by
decomposing the whole problem into simpler sub-problems
and by using minimal prior knowledge. In other terms, our
approach does not use kinematic models, hand-crafted features,
calibration parameters and supervised visual modules. The task
more precisely consists of reaching an object put on a table with
the end-effector palm at several object positions and from several
initial arm positions. This task can be considered and used as a
pre-grasping task because target arm joint angles for our task are
very close to target arm joint angles for grasping. The difficulty
of our task relies on the fact that the arm has to reach from
a large set of initial conditions (different object positions and
initial arm positions, see Figure 5) so that it frequently has to
substantially modify its orientation to reach the target with the
palm. In this paper, we extend our prior work de La Bourdonnaye
et al. (2018) to the more complex setting of multiple object
positions. Besides, we conduct additional experiments to study
of the influence of different reward terms. In this work, we have
taken inspiration from the human development (Fischer, 1980;
Carey et al., 1997) and developmental robotics (Hoffmann et al.,
2005). To grasp an object, humans usually fixate it first, and
then grasp it. This assertion does not mean that the only way to
localize an object is to bring it in the fovea. Indeed, expert jugglers
use information in the periphery of vision to detect juggling
balls (Huys and Beek, 2002) and a monkey study reported that
81% of the neurons of the parietal reach region encode location
in eye-centered coordinates (Batista et al., 1999). However, it
can be a sufficient tool if these neurons are deficient (in case
of widespread cortical atrophy Carey et al., 1997) and has the
advantage of being compact. The rationale of our method is that
an informative shaping reward for the object touching task can be
constructed from the knowledge of simpler anterior tasks learned
withminimal supervision.More precisely, the robot first learns to
fixate objects (de La Bourdonnaye et al., 2017) and its own end-
effector using a single deep reinforcement learning framework
with little prior knowledge in the goal specification. Based on
these two skills, an informative shaping reward is built, efficiently
guiding the robot toward goal state areas. Our experiments
show that learning this task with our weakly-supervised stage-
wise framework yields same reaching performances as with
a supervised reward, while learning with a sparse reward is
slow. Our contribution is the design of our weakly-supervised
framework which is efficient to learn to reach objects at several
object positions and from several initial arm positions in a single
shot.

The remainder is organized as follows. Section 2 presents
basics about deep reinforcement learning, our stage-wise
framework for reaching learning and the experimental protocol
designed to validate our framework. Section 3 describes the
results obtained and section 4 discusses the work from a broader
perspective.
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2. METHODS AND MATERIALS

This section presents the methods and the materials used in our
experiments.

2.1. Background
Our work uses deep reinforcement learning. This section
provides basics of reinforcement learning and the algorithm used
to learn the different stages.

2.1.1. Reinforcement Learning
Reinforcement learning (RL) is a class of algorithms used to
solve sequential decision making problems through learning. It
is distinguishable from the dynamic programming category in
that it does not require prior knowledge about dynamics and the
reward signal. Most RL algorithms are based on Markov decision
processes < S,A,R,T > where S is the set of states, A the set of
actions, T the transition model (T : S×A → S) and R the reward
function (R : S× A → R).

The source of learning comes from interaction between
the agent and the environment and is composed of tuples <

s, a, r, s′ > called transitions. s represents a state value and a the
action performed at state s. After the execution of the action a,
the agent receives a reward r and reaches a new state s′.

The goal of an RL agent is to adapt its behavior to maximize a
criterion linked to the future rewards. In the paper, we consider
the sum of discounted future rewards as a learning goal: J =∑∞

k= 0 rkγ
k, where γ ∈ [0, 1] is a discount factor and rk the

reward value at step k.
In our work, to optimize the criterion, we train a deterministic

policy π : S → A jointly with the state-action value function Q in
an actor-critic set-up:

Qπ (s, a) = Eπ

[ ∞∑

k= 0

rkγ
k

∣∣∣∣∣s, a
]
, (s, a) ∈ S× A. (1)

2.1.2. Deep Reinforcement Learning
The curse of dimensionality (Bellman, 1961), the problem of
representing RL functions with a large input space was explored
with neural networks a long time ago (Tesauro, 1994). However,
the use of neural networks for RL becamemore andmore popular
with the arrival of GPUs and the emergence of deep learning since
high-dimensional state spaces could be used without requiring
hand-crafted features. For instance, deep autoencoders were used
to reduce the state space (composed of raw image pixels) of a Q
function (Lange and Riedmiller, 2010) in an unsupervised way.
Furthermore, deep convolutional neural networks were utilized
to approximate the Q function (DQN: deep Q network) of an
agent playing Atari games and outperforming human players
(Mnih et al., 2015) directly from raw image pixels.

In our work, we use the DDPG algorithm (Lillicrap et al.,
2016) which can solve RL problems with a high-dimensional
state space and a continuous action space (like several other
candidate algorithms). This algorithm combines the off-policy
deterministic policy gradient algorithm (Silver et al., 2014) and
the DQN.

DDPG is an “actor-critic” algorithm updating the critic
Qφ with parameters φ and the deterministic policy πθ with
parameters θ as follows. At each time-step, we choose a mini-
batch of Nb transitions from a large memory buffer of size Ntrans

using a uniform distribution:

< si, ai, ri, s
′
i >i∈{1,..., Nb}∈ S× A× R × S.

The targets of theQφ neural network are computed using a TD(0)
update with a learning rate equal to 1:

∀i ∈ {1, . . . ,Nb}, yi = ri + γQφ′
(
s′i,πθ ′ (s′i)

)
. (2)

φ′ and θ ′ are the parameters of the target networks updated using
a rate parameter τ (t denotes a time-step):

φ′
t+1 = τφt + (1− τ )φ′

t , θ
′
t+1 = τθt + (1− τ )θ ′

t , (3)

The Qφ network updates its weights by minimizing the squared

error 1
2Nb

∑Nb
i= 1

(
yi − Qφ(si, ai)

)2
. Using target networks greatly

contributes to the learning stability of the neural networks and
using a memory buffer helps to satisfy the constraint of i.i.d
samples for learning with neural networks.

Using the Qφ network and the fact that the policy is
deterministic, the following policy gradient is derived:

∂Qφ

∂θ
≃

1

Nb

Nb∑

i= 1

∂Qφ
(
si,πθ (si)

)

∂a

∂πθ (si)

∂θ
. (4)

This update makes the policy select the actions that maximize
the Q function at the batch states. In addition to this algorithm,
we use the inverting gradient procedure of Hausknecht and
Stone (2016) to bound the actions. This method downscales the
gradient when the action computed by the policy approaches its
limit. When it exceeds its limit, the gradient is inverted. This
mechanism prevents the actions from becoming too large.

2.2. Overview
We describe here the stage-wise learning process (see Figures 1, 2
for a schematic view). For our work, we use a 7 DOF arm with
a pair of cameras as shown in Figure 1. The task consists of
touching an object on a table with the end-effector palm of the
robot. In the following, we use the notations:

• I = (Ileft , Iright) represents the images from the left and right
cameras.

• q = (qcamera , qrobot) represents the 3 camera joint angles (one
common tilt angle and two independent pan angles) and 7
robot arm joint angles.

• cb is a vector composed of 8 binary values associated with 8
areas of robot fingers. The 8 areas correspond to the proximal,
medial and distal areas of the three fingers, with the exception
of the proximal area of one finger which is linked to the palm.
One binary value becomes 1 when its associated area is in
contact with the object and 0 otherwise.

Our stage-wise learning framework is inspired by one of the
human ways to locate an object: one can stare an object to locate
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FIGURE 1 | Palm-touching learning process: (A) object fixation, (B) end-effector fixation and hand-eye coordination, (C) palm-touching.

FIGURE 2 | Overall scheme of the touching task learning procedure. Greek subscripts represent neural network parameters.

it. The main objective is to apply this principle with minimal
supervision. The proposed method involves three successive
tasks:

First, the robot learns from raw pixels to fixate the object
with a two-camera system. For this, we use (de La Bourdonnaye
et al., 2017) to learn to fixate an object with weak supervision.
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At the end of the fixation, the camera system coordinates qcamera
fix

implicitly encode the object position in 3D space.
Second, the robot learns a hand-eye coordination function

fη which maps robot joint coordinates to virtual camera
coordinates:

qcamera
virt = fη(q

robot). (5)

These virtual camera coordinates correspond to the camera
coordinates which would make the camera system look at the
end-effector. Finally, a reward signal using qcamera

fix and qcamera
virt

to make the end-effector close to the object is computed. It is
combined with a sparse reward, indicating if the end-effector
palm touches the object or not and a term penalizing end-effector
contacts with the table (which assumes that the robot has the
touching ability to distinguish the object from the table). In the
following, we describe each of the three steps.

2.3. Learning Binocular Object Fixations
In this part we describe the object fixation learning which the first
stage of our method.

2.3.1. Task Overview
We define object fixation as bringing the object at the center
of Ileft and Iright by moving the cameras. To learn it, we build
on our prior work (de La Bourdonnaye et al., 2017), which we
summarize below for sake of clarity.

The task is learned with the DDPG algorithm (Lillicrap et al.,
2016) using I and qcamera as states, and 1qcamera as actions. The
reward function is the sum of left and right camera components:

robj = rleft
obj

+ r
right

obj
. For each camera cam = left or right,

the reward function rcam
obj

is an affine decreasing function of the

distance between the image center xc and the estimated object
position xcam

obj
:

rcamobj = 2

1
2dmax − ||xc − xcam

obj
||2

dmax
∈ [−1, 1], (6)

with dmax being the maximal distance between the image center
and the object pixellic position.

An episodic set-up is used. For each episode, a random
object is put at a random location above the table. The episode
ends when a given number of transitions (Ne = 35) has
been reached. Section 2.3.2 describes how xobj is obtained with
minimal supervision.

2.3.2. Object Detection
The object detection mechanism involves a convolutional
autoencoder training step in which images of the environment
without object are encoded. To do this, we use two 10,000-sized
databases (one for each camera) of pictures captured without
object in the environment. The camera positions cover a regular
grid between joint limits which are set on purpose to keep the
table inside the field of view. After the image acquisition, two
autoencoders A

µ
left and A

µ
right are trained on each database using

ADAM (Kingma and Ba, 2015). Before training, the images are
converted for computational purposes from RGB 200 × 200 to
50× 50 grayscale images.

When the robot is learning to fixate objects, we assume that
the object is in the environment. It is detected as an anomaly
and localized in the images Ileft and Iright . Indeed, we assume
objects are badly reconstructed because they are not present
in the database images for autoencoder training so that the
reconstruction error intensity is higher at the object position. The
steps of object detection are presented in Figure 3.

After grayscale conversion and downsampling steps, the
autoencoder reconstruction error images |Ileft− Îleft| and |Iright−
Îright| are computed (Îcam = Aµcam (Icam)). From these error
maps, we extract the N points

{
x(i)

}
i∈{1,...,N} which have the

highest intensity.
{
L(i)

}
i∈{1,...,N} is the set of corresponding

luminances. Then, we compute a discrete probability distribution
using a kernel density estimator with a Gaussian kernel of zero
mean and unit variance:

∀i ∈ {1, . . . ,N}, p(i) =
1

N

N∑

j= 1

L(j)K(xi − xj), (7)

with K(xi − xj) = 1
2π exp−0.5||xi−xj||22 .

After that, the estimated object pixellic positions, respectively

xleft
obj

and x
right

obj
are at the maximal probabilities:

xcamobj = xargmax
i

(p(i)) (8)

This object detection principle only requires an autoencoder pre-
training step without object and the assumption that there is an
object in the scene subsequently. Note that the potential noise of
this object detection has been tackled using a learning method in
de La Bourdonnaye et al. (2017).

2.4. Learning a Hand-Eye Coordination
Function fη
We now describe how a similar framework can be used to learn
end-effector fixation and a robot hand-eye coordination function.

2.4.1. Task Overview
We model the hand-eye coordination function fη (see Equation
5) with a neural network. To learn it, we need to have a
database D of input-output pairs (qrobot , qcamera) where qcamera

makes the camera look at the end-effector. To produce such
samples, we learn to fixate the end-effector. For this, we use a
similar framework as the object fixation task. We use the DDPG
algorithm and a reward requiring weak supervision. The Markov
Decision Process is the same as for the object fixation with
the exception of the reward function. The latter involves the
end-effector detection xcam

eff
instead of xcam

obj
:

rcameff = 2
1
2dmax − ||xc − xcam

eff
||2

dmax
∈ [−1, 1]. (9)

The set-up is also episodic. For each episode, random arm joint
coordinates are generated using uniform distributions with fixed
limits. They are empirically set to provide a large variety of
reachable arm configurations.
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FIGURE 3 | Object detection computation scheme (de La Bourdonnaye et al., 2017).

During learning, training pairs (qrobot , qcamera) are added to
D when the reward rcam

eff
is above a fixed threshold. When the

number of samples inD is higher than the batch sizeNbf, we train
fη on random batches of D each time a new sample is added to D.

2.4.2. End-Effector Detection
We describe here how we detect the end-effector in the
image. Unlike de La Bourdonnaye et al. (2017) which uses
an autoencoder to localize the object, the end-effector image
position is computed using the difference in the image before
and after pre-defined end-effector finger moves (Metta and
Fitzpatrick, 2003). The idea is that the hand is segmented from
the rest of the scene because its appearance varies according
to finger moves. Then, this end-effector detection method only
requires to specify finger moves.

Figure 4 presents the different steps of the end-effector
detection:

• The images before (Icam
before

) and after (Icam
after

) the end-effector
moves are saved.

• The difference of images is calculated and the end-effector
position xcam

eff
is computed using a kernel density estimator

the same way xcam
obj

is calculated from the autoencoder
reconstruction error image.

Note that the end-effector detection is also filtered as in section
2.3.2.

2.5. Learning to Touch
In this section, we describe how the previous learned tasks help
to learn to touch the object.

2.5.1. Task Overview
The touching task consists of reaching with the end-effector palm
the object above the table at different reachable positions from a
large set of initial arm positions (see Figure 5 for a display of 8
randomly generated initial configurations). The goal of learning
to reach both at different target positions and from a large set
of initial robot joint angles is mainly motivated by the fact it
allows to learn policies that are more robust to perturbations in
the joint space (Rajeswaran et al., 2017). In addition, reaching
from different initial joint angles allows to reach from positions

with a badly oriented end-effector which is a challenging
task.

The objective of the task is defined by a sparse reward term
rsparse which indicates if there is palm-touching or not:

rsparse =

{
1, if success,

ptime ∈ R
−, otherwise.

(10)

Note that the negative term ptime ensures that the robot looks for
the quickest path to the goal. The state space S is composed of
the arm and camera joint angles q as well as eight binary tactile
sensors cb attached to the fingers of the Barrett Hand. Images are
not required here because we use a single object and consider that
the camera joint angles give sufficient information about the 3D
object position. However, they would be necessary if objects with
different shapes were used in the experiments. The actions are
variations of the robot joint angles: a = 1qrobot which are seven
real-valued scalars.

2.5.2. Reward Computation
To compute the touching reward function, we use the
object binocular fixation policy and the hand-eye coordination
function. After the execution of an object fixation step (using
the object fixation policy πψ ), we get the fixation camera angles
qcamera

fix which implicitly encode the object 3D position. After that,
using Equation (5) at each time-step, the hand-eye coordination
function fη gives us qcamera

virt which implicitly encodes the end-
effector 3D position. Then, a reward shaping term rshCam can be
computed:

rshCam =

{
0, if success,

ccam||qcamera
fix − qcamera

virt ||2 − ptime, otherwise.

(11)
with ccam ∈ R

−. rshCam represents an informative term which
depends on the distance between the virtual camera coordinates
and the camera coordinates which make the camera system
fixate the object. Thus, it encourages the end-effector to be
close to the object. Note that the slope ccam is chosen to ensure
shaping rewards are small compared with the non-zero sparse
reward.

Using these sole terms yields decent performances but we
observed that the robot was badly guided when it is close
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FIGURE 4 | End-effector detection computation scheme.

FIGURE 5 | Random examples of initial configurations.

to the table. Indeed, fewer moves are physically plausible and
the algorithm can take time to learn them. To accelerate this
selection, we propose a new tactile reward term rpenContact to
the reward function penalizing states where the end-effector is
in contact with the table:

rpenContact =





pcontact ∈ R
−, if contact between the

end-effector and the table,

0, otherwise.

(12)

Indeed, by applying penalties, we hope that the robot explores
areas where it is not in contact with the table, i.e., where it can
move without too many constraints to the goal. To compute this
term, we make the assumption that the robot knows from its
tactile sensors whether it is touching the table.

Finally, the reward function is built from the three previous
terms:

rproposedPen = rsparse + rpenContact + rshCam (13)

The relative effect of each of these terms is evaluated in the
experiments.
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2.6. Experiments
In this section, we describe the experimental protocol. The
objective of experiments is to evaluate learning performances
using the proposed reward function and other ones because
they allow to evaluate the relative impacts of each reward term.
Besides, we wish to evaluate whether our weakly supervised
reward can reach same performances as with a supervised
counterpart.

2.6.1. Different Reward Functions
The reward functions which will be used in our experiments are
listed below:

• rsparse =

{
1, if success,

ptime, otherwise.

This reward is described by Equation (10) and rewards
the robot only when the palm touches the object. Besides,
it penalizes each unsuccessful movement to encourage the
robot to quickly touch the object. Note that using such a
sparse reward means that we only dispense with the hand-eye
coordination information. Indeed, information brought by the
object fixation (the camera joint angles) is still present in the
state space.

• rproposedPen = rsparse + rpenContact + rshCam
This is the proposed reward function (described in Equation
13).

• rproposed = rsparse + rshCam
This is the proposed reward function without the penalties for
the contact between the end-effector and the table. This is used
to show the influence of the penalty in the learning procedure.

• rsparsePen = rsparse + rpenContact
We add to rsparse a term penalizing contacts of the end-effector
with the table.

• rsupervisedPen = rsparse + rpenContact +{
0, if success,

ccart||p− ptarget||2 + 0.0125, otherwise,

with ccart < 0. To build this reward, we give a 3-dimensional
end-effector target Cartesian pose ptarget for the shaping part
and we add a sparse reward as well as a term penalizing end-
effector contacts with the table. This reward is the closest to
the proposed rproposedPen but its shaping term requires forward
kinematics and 3D object pose information. Finally, the slope
ccart is chosen to make the shaping term take about the same
values as rshCam.

Note that we choose not to compare our reward function with a
Cartesian shaping reward without a sparse term. Indeed, for such
a reward function, a success would be to touch with the palm
from a specific orientation and position. In our case, a success
can be to touch with the palm in any position. The tasks are then
too different to be compared in terms of touching improvement.

2.6.2. Material
We describe here the material we use for our experiments.

Figure 6 presents the chosen virtual experimental platform
which is the realistic representation of one of our real robotic
platforms. The simulations use the Gazebo simulator with the

FIGURE 6 | Scheme of the robotic platform.

ROS (Quigley et al., 2009) middleware. The robotic platform is
composed of three entities:

• A two-camera pan-tilt system attached above the platform
• Two robotic arms attached on the left and right sides of the

platform. Note that we use only one arm in our experiments.
• A Barrett hand is attached to the arm that we use in the

experiments.

A table from the Gazebo object database is placed below the
cameras and in front of the bi-arm platform. This table is not
present when we learn the hand-eye coordination function. To
learn object fixation (de La Bourdonnaye et al., 2017), we use
some objects from the gazebo object database and several hand-
made ones with various shapes and colors (see Figure 7). We use
a blue-ball for the reaching experiments though the method does
not depend on this specific model since the robot learns to look
at any object.

2.6.3. Experimental Protocol
We describe how we compare the policies learned with different
reward signals for the touching task. The protocol contains a
training and a test phase.

2.6.3.1. Training phase
For training, we use the DDPG algorithm (Lillicrap et al., 2016)
and the previously defined reward functions. Learning happens
on Ntot bounded-length episodes of maximal size Nmax. Each
episode has an initial arm position and an object position. The
object position is uniformly chosen from a rectangular area of
reachable object positions on the table. The initial robot joint
angles are sampled from a set of uniform distributions (each one
corresponding to a robot joint angle). When an initial position
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FIGURE 7 | Training set for the object fixation task (de La Bourdonnaye et al., 2017).

leads to a collision between the arm and its environment, the
initial position is re-set until a collision-free position is sampled.

For the exploration, we use the Ornstein-Uhlenbeck process.
This correlates the noise ǫj(t) for a joint at time t with the noise
ǫj(t − 1) of the same joint at time t − 1 with the equation:

ǫj(t) = θjµj + (1− θj)ǫj(t − 1)+
(
ξj(t) ∼ N

(
0, σj

))
. (14)

θj is a factor trading-off the correlation with the previous noise
and the correlation with the equilibrium value µj and σj is
the standard deviation of the used Gaussian distribution. This
exploration procedure is particularly interesting in problems in
which the same action applied during several time-steps can be
the optimal behavior.

As the task requires a precise orientation of the end-effector,
the robot frequently blocks itself close to a reaching position. For
instance, the robot can touch the object with its fingers without
touching it with the palm. And, if the actions computed by the
policy make the end-effector move downward, the robot can be
blocked by the table despite exploration. Thus, to avoid these
situations, we handle the times when the robot is blocked without
succeeding in reaching.More precisely, when the robot is blocked
a backward action is taken, i.e., the robot goes back to a previous
contact-less position. This allows to more correctly discriminate
actions in the contact areas in the sense the robot is provided with
other chances of success.

Through the training experiments, we wish to compare
our reward requiring little supervision with other ones.
Consequently, for all the reward signals, in order to monitor
the learning progress, we specifically plot the reaching frequency
νreward over the episodes, reward referring to a specific reward
function. We average six experiments per setting and provide
confidence interval plots [mreward,Mreward] for each computed
average. mreward and Mreward are computed according to the
equations below:

mreward = νreward −
1.96σ reward

√
Nrun

, (15)

Mreward = νreward +
1.96σ reward

√
Nrun

, (16)

with Nrun being the number of runs per reward function and
σ reward the standard deviation of the reaching frequency for each
reward function.

Furthermore, we record N1 the number of episodes it took to
reach a first reaching success, N90 the number of RL iterations it

took to reach and remain above reaching performance of 90 % as
well as associated confidence intervals and standard deviations.
These variables are used to evaluate the learning velocity with
different reward functions.

2.6.3.2. Test phase
To evaluate the learned policies, we apply them without any
exploration noise on Ntot random episodes and we compute the
touching frequency νrewardtest . Moreover, for each reward signal, we
provide a confidence interval for the average touching frequency

and the standard deviation of the touching frequency σ νrewardtest .
Note that we do not apply the systematic backward motion used
in the training phase to deal with blocked situations. Instead,
when the robot is blocked, it just follows the learned policy.
Like in the training phase, the results are averaged over six
experiments per setting.

2.6.4. Implementation Details
For all the neural network algorithms, we use the caffe library (Jia
et al., 2014). A GPU (nvidia GeForce GTX Titan X) is used for
the experiments.

We use the same neural network architectures as in
de La Bourdonnaye et al. (2017) for the end-effector and object
fixation tasks. The hyperparameter values are also the same with
the exception of the number of iterations: 200, 000. The hand-eye
coordination function is a neural network with 2 fully connected
hidden layers of 10 and 5 neurons and a batch size Nbf of 32 is
used to learn it. For the episode initialization of the end-effector
fixation task, the seven arm joint angle distribution amplitudes
are 11, 46, 69, 92, 92, 86, and 0◦ if we consider the ascending order
in the kinematic chain i.e., from the base link to the end-effector.

For the touching task, the Q network has 3 fully connected
layers with 250, 200, and 1 neural units. The policy network
involves 3 fully connected layers with 200, 150, and 7 neural units.
The weights are updated using the Adam solver (Kingma and Ba,
2015). Tables 1, 2 provide values for the parameters used in the
experiments. For the Q update, the discount factor γ is equal to
0.99. For the episode initialization, the distribution limits are 23,
57, 80, 91, 103, 80, and 11◦.

3. RESULTS

Table 3 presents the final performances of the different policies
as well as the number of episodes it takes to get a first reaching
success and the number of RL iterations it takes to reach (and
remain above) an average reaching performance of 90 %. The
average reaching performance is obtained using exponential
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TABLE 1 | Parameter values.

Parameters Nmax Nb ccam ccart Ntrans Ntot (training) Ntot (test) pcontact ptime

Values 100 256 − 1
30 − 1

40 60,000 40,000 1,000 −0.01 −0.0125

TABLE 2 | Ornstein-Uhlenbeck process parameters.

Parameters θj , j ∈ {1, . . . , 7} µj , j ∈ {1, . . . , 7} σj , j ∈ {1, . . . , 4} σj , j ∈ {5, . . . , 7}

Values 0.8 0 0.01 0.04

TABLE 3 | Values featuring learning velocity (N1 and N90), final reaching frequency ( νrewardtest ) and associated standard deviations.

Reward rproposedPen rproposed rsupervisedPen rsparsePen rsparse

N1 95 ± 16 110 ± 19 105 ± 29 7505 ± 6918 8214 ± 4145

N90 (1.73 ± 0.25) × 106 (2.35 ± 0.17) × 106 (1.55 ± 0.13) × 106 N/A N/A

νrewardtest (%) 94.9 ± 1.3 90.7± 2.83 97.2 ± 0.67 59.9 ± 37.6 81.9 ± 17.3

σN1 20 23 36 8646 5180

σN90 312,911 172,129 165,160 N/A N/A

σ
νrewardtest (%) 1.64 3.53 0.84 47 21.6

smoothing: νreward
f

= (1 − ω)νreward
f

+ ωνrewardr , with νrewardr

and νreward
f

being the raw and smoothed frequencies and ω

the smoothing factor being equal to 0.003. Figure 8 shows the
experimental training curves as well as associated confidence
intervals. Note that this figure use exponential smoothing for
visualization purposes. We can notice several important facts:

• Learning the reaching task can work very well because
the robot reaches 90% of touching performances with the
reward functions using shaping terms (Videos of the policy
learned with our reward function can be consulted in the
Supplementary Material). This shows that the camera joint
angles integrated in the state space encode sufficiently well the
object position, which confirms the rationale of our method.

• With the use of sparse-only rewards, the probability of getting
the first success is low. It takes a lot of episodes to reach a first
success (from 7,505 episodes for the N1 values). Furthermore,
we cannot have a precise idea about the time when the first
success occurs because the standard deviations are very high.
Moreover, N90 values are not available for these two reward
settings because some of the runs were not successful at all.
Finally, as shown by Figure 8, the confidence intervals for
the average reaching frequency are very large, which means
that the average estimation is not precise at all for the sparse
reward settings. The only fact we can notice for these settings
is that it can work for a run and totally fails for another
one. Then, these reward functions do not ensure a reliable
learning.

• With a shaping term, the probability of having first successes
is much higher. The different N1 values for rproposedPen,
rproposed, rsupervisedPen are of the same order of magnitude,
are small, and exhibit low standard deviations. And our
weakly-supervised setting allows to approach similar reaching

FIGURE 8 | Evolution of the average reaching frequency during training for the

different reward functions.

performances compared with its supervised counterpart even
if the final reaching frequency is slightly lower. In addition,
Figure 8 shows that the confidence intervals of νsupervisedPen

and νproposedPen intertwine even if the bounds of νsupervisedPen

are generally higher. This shows that even if νsupervisedPen is
higher than νproposedPen most of the time, results are close.
Furthermore, we notice that three phases can be distinguished.
From 0 to about 5,000 episodes, the reward curves increase
with the same velocity. It corresponds to a phase in
which some initial positions are mastered without substantial
end-effector orientation changes. Indeed, for some initial
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positions, the robot has to change only a little its end-effector
orientation to reach a grasping posture. After 5,000 episodes,
there is a period of slow increase for the three settings and
from about 7,000 episodes, “harder” initial positions are more
and more mastered. We observe that the three settings start to
distinguish from each other and the term penalizing contacts
seems to be a decisive factor.

• Indeed, with a term penalizing contacts between the end-
effector and the table, learning becomes faster. To show this,
we can compare rproposedPen and rproposed: N90 is lower for

rproposedPen, ν
proposedPen
test is higher than ν

proposed
test , and Figure 8

shows that νproposedPen is always superior to νproposed after
10,000 episodes. Furthermore, in Figure 8 we notice that the
upper boundMproposed is generally inferior to the lower bound
mproposedPen. All of these observations show the supremacy of
rproposedPen over rproposed. It shows that penalizing contacts
between the end-effector and the table has an important
influence on learning performances. The reason is that it
is easier to experiment “good” moves in contact-less areas
given the robot can easily be blocked when it touches the
table.

4. DISCUSSION

4.1. Contributions
Our first contribution is the design of a stage-wise learning
framework to learn a complex reaching task. This framework
involves the DDPG algorithm though any deep RL algorithm
suitable to continuous action spaces could be used. Interestingly
the first two tasks are largely similar in their modeling: we use the
same MDPs with the exception of the reward function, the same
kernel density estimator for localizing the point of interest in the
image and the same filtering method to remove the detection
noise. The knowledge of the two tasks are then combined to
compute an informative shaping reward efficiently guiding the
robot toward reaching postures.

Our second contribution is to learn the task with only
weak supervision, i.e., without kinematics, calibration or pre-
processing blocks and to exhibit similar performances compared
with a fully supervised reward function. Furthermore, our
framework is applied on a challenging task with a large set of
initial configurations: several initial arm positions and several
object positions as shown in Figure 5.

4.2. Related Work
Our approach resembles some developmental robotics methods
which learn to reach using a hand-eye coordination function
and object fixation. However, they are usually paired with
supervision for the object and/or end-effector fixations (Nori
et al., 2007; Chinellato et al., 2011; Jamone et al., 2012; Law
et al., 2014) or computation of action primitives (Hoffmann
et al., 2005). In other terms, object or end-effector detection
use markers or simple blob-detection algorithms which would
not be valid for any kind of object. The contributions brought
by these papers are more related to the learning architecture
which is close to the one of infants whereas our work focuses

on reducing the amount of external information used for
learning.

The multi-target-position multi-initial-arm-position setting
has also been implemented on a simulated reaching task using
a 7 DOF manipulator (Lillicrap et al., 2016). However, there
were neither collision aspects nor orientation constraints for
the end-effector and a supervised shaping reward was used.
Lampe and Riedmiller (2013) learns an object grasping policy but
integrates the object position in a camera image in a relatively
low-dimensional state space, which requires a supervised visual
module. Popov et al. (2017) learns a brick grasping task from
several initial arm positions at several target positions. However,
for the arm initialization, the end-effector is always made
close to the object and its orientation adapted to a grasping
action.

4.3. Limitations
Our approach has certain limitations mainly related to the first
stages of the stage-wise framework. In the object fixation step,
even though learning is weakly-supervised, if the environment
varies, the approach in its current form needs the intervention
of a human user to learn again to encode the environment.
Besides, our approach constrains objects not to be present
in the scene when the environment is encoded. And finally,
the fixation cannot be applied on the object when the arm
is above the table. Concerning the hand-eye coordination
learning stage, the method implemented here requires an
immobile background tomake the end-effector detectionmethod
work. Note that this problem is solved in the literature by
correlating finger moves with detection changes in the image
Metta and Fitzpatrick (2003).

5. FURTHER RESEARCH

As further research, we wish to make the first and the second
stages of our framework robust respectively to environment
variations and moves in the background and also to be able to
fixate the object when the arm is above the table. A good hint for
this would be to achieve an open-ended learning framework in
which the learnings of the tasks presented in the paper overlap
and drive each other. For example, learning to reach an object
with the end-effector may first help the robot to acquire the
knowledge of what is an object and would consequently drive
the learning of object fixation. Second, it may help the robot to
acquire hand-eye coordination.

Furthermore, it would be interesting to learn other kinds of
manipulation tasks including complex ones such as inserting
a key in a lock with our framework. In principle, switching
from a task to another one would just require to switch from
a sparse reward to another one. However, some sparse rewards
are less likely to be reached that other ones, e.g., grasping
is less likely than palm-reaching. Consequently, our learning
frameworkmight not be directly applicable for too complex tasks,
and learning them with our framework would be achieved by
learning a curriculum of tasks, from the simplest to the most
complicated. Finally, we wish to adapt the framework to a real
robotic setting.
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The activity of many biological and cognitive systems is not poised deep within a

specific regime of activity. Instead, they operate near points of critical behavior located

at the boundary between different phases. Certain authors link some of the properties

of criticality with the ability of living systems to generate autonomous or intrinsically

generated behavior. However, these claims remain highly speculative. In this paper,

we intend to explore the connection between criticality and autonomous behavior

through conceptual models that show how embodied agents may adapt themselves

toward critical points. We propose to exploit maximum entropy models and their

formal descriptions of indicators of criticality to present a learning model that drives

generic agents toward critical points. Specifically, we derive such a learning model in an

embodied Boltzmann machine by implementing a gradient ascent rule that maximizes

the heat capacity of the controller in order to make the network maximally sensitive to

external perturbations. We test and corroborate themodel by implementing an embodied

agent in the Mountain Car benchmark test, which is controlled by a Boltzmann machine

that adjusts its weights according to the model. We find that the neural controller

reaches an apparent point of criticality, which coincides with a transition point of the

behavior of the agent between two regimes of behavior, maximizing the synergistic

information between its sensors and the combination of hidden and motor neurons.

Finally, we discuss the potential of our learning model to answer questions about the

connection between criticality and the capabilities of living systems to autonomously

generate intrinsic constraints on their behavior. We suggest that these “critical agents”

are able to acquire flexible behavioral patterns that are useful for the development of

successful strategies in different contexts.

Keywords: criticality, learning, boltzmann machine, Ising model, heat capacity

1. INTRODUCTION

In the field of cognitive science, the interest in developing models of intrinsic motivation is
unquestionable. The practical uses are related to the possibility of having more autonomous
artifacts. In recent years, a significant number of models and cognitive architectures have
been developed in the literature, pursuing various methods to get better intrinsically motivated
machines. However, most of these studies follow ad hoc rules or present many conceptual
weaknesses (Oudeyer and Kaplan, 2009). Therefore, it is a major research challenge to find new
methods for designing intrinsically motivated systems.
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One of the most intriguing intuitions in this field is the
one that considers that the best way for machines to acquire
skills completely on their own (and useful to pursue goals) is
by exploiting the sensorimotor patterns that they create during
their body-environment interactions. In this sense, they would be
able to quickly construct more complex behaviors using a second
level of learning from these patterns, so that they could combine
typical random exploration with goal-free exploration, handling
useful information obtained during their interactions with the
world.

This insight, initially proposed in Juarrero (1999), is the
complete opposite of the one that exists in artificial intelligence.
The traditional way of dealing with notions such as motivations,
autonomous goals, or intentional behavior implicitly assumes a
reductionist perspective about how the mind causes behaviors.
Engineers basically program “desires” within the artifacts as
specific instructions that are extrinsic to them. Considering
the fact that the actions generated from prior mental entities
imply the existence of a “homuncular assumption” underlying
every action. In this sense, intentional behavior and its causes
could be better understood as a dynamical process that takes
shape through the interactions between organisms and their
environments (Buhrmann et al., 2013). Thus, intentionality could
be described from a complex dynamical perspective that raises
profound implications in relation to the notions of causation and
intention in human action. This changes the view of how the
intentions that “one feels” exist as independent mental events,
proposing instead a new perspective where they result from the
self-organizing tendencies in the human-environment system.
Intentions to act, from this perspective, are best characterized
as dynamical processes that are embedded in the physical and
social history of a cognitive agent and are constrained to the set of
limited alternatives within the self-organized space that is defined
for particular agent-environment interactions. This idea has been
followed by several authors and has been exploited in the field of
autonomous robotics. In particular, some progresses have been
made in measuring how a robot could manage the information it
receives by applying information theory metrics (Der et al., 2008;
Martius et al., 2013; Wissner-Gross and Freer, 2013).

In this paper, we are interested in developing models with
intrinsic motivations that are generated through the exploitation
of the information in sensorimotor patterns. In particular, we
are interested in designing an embodied agent that generates
complex behavior by adapting to operate near critical points.
Criticality is a ubiquitous phenomenon in nature, both in
physical and biological systems. It refers to a distinctive set of
properties that are found at the boundary that separates regimes
with different dynamics: the transition between an ordered phase
and a disordered phase. Some of these properties include (i)
power-law divergences of some quantities that are described
by critical exponents and (ii) maximal sensitivity to external
perturbations (Salinas, 2001a,b). With regard to our interests,
it is known that self-organizing properties that allow us to
characterize “modes of critical behavior” are related to different
functional domains of cognitive activity (Van Orden et al., 2003,
2012; Dixon et al., 2012). This leads us to think that criticality
may be functionally useful in problem solving.

Most of the systems near critical points exhibit a wide range
of time scales in their dynamics, being maximally responsive
to certain external signals. For a system facing a problem,
critical states leave open different courses of action (configured
within a global state that is acutely context sensitive) that can
be simultaneously constrained in only one course of action in
an effective way. Hoffmann and Payton (2018) showed that
this type of self-organizing critical processes can even be used
to solve optimization problems with many local minima, in
a more efficient way when compared to other random search
methods.

It has also been conjectured that systems that show intentional
behavior should self-organize into critical states (Van Orden and
Holden, 2002; Van Orden et al., 2003), but, nevertheless, the
connection between self-organized criticality and intrinsically
generated behavior remains highly speculative. In general,
although evidence of criticality has been found using different
experimental methods, the connection between these indicators
and the properties of mechanistic models of critical activity
is thin (Wagenmakers et al., 2012). This makes it difficult to
assess the connection between criticality and other cognitive
phenomena, other than at the level of pure analogy. Interestingly,
in the past few years, large sets of biological data have allowed
the characterization–using maximum entropy models–of how
the behaviors of different biological systems (e.g., networks
of neurons, antibody segments, or flocks of birds) are poised
near a critical point within their parameter space (Mora and
Bialek, 2011; Tkacik et al., 2015). This has been a great step
toward the development of deeper theoretical principles that
lie behind the behavior of biological and cognitive systems.
However, going beyond the importance of these models in
explaining the emergence of criticality in specific experimental
data, we propose a complementary perspective to address the
development of “conceptual models” to explain how organisms
are driven toward critical behavior at a more abstract level and
what the behavioral correlates are when the agent adapts to
critical points.

With all of the above information, in this paper, we seek
to develop a mechanism that combines these two concepts:
criticality and models of intrinsic motivation. In the study of
cognitive processes, criticality always appears to be entangled
with other features of adaptive behavior (e.g., perception,
prediction, learning) in agents that interact with complex
environments. Here, we use conceptual modeling that allows us
to study this relationship in a neutral and abstract way.

Therefore, the aim of this paper is to propose a model that is
able to drive synthetic agents toward critical points to potentially
clarify what the contribution of criticality is in different contexts.
Instead of making assumptions about the underlying dynamics
of the elements of the agent’s controller or a fine-tuning of the
parameters of the system, our approach makes use of concepts
from statistical mechanics to exploit macroscopic variables that
drive the system to transition points between qualitatively
different regimes of behavior. Some authors have studied the
computational capabilities of recurrent neural networks that
operate near the edge of chaos, that is, the transition from ordered
to chaotic dynamics (Bertschinger and Natschläger, 2004). Here,
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we propose a conceptual model (a Boltzmann machine) that
allows us to exploit its statistical properties to derive a learning
rule to drive an embodied agent toward critical points of its
parameter space. Maximum entropy models have the advantage
of providing a formal description of the statistical distribution
of the system, which we will exploit to characterize the indices
of criticality and to derive rules that maximize these indices.
An abstract mechanism that drives the agents to near critical
points in different scenarios may help in understanding what
the contributions of criticality “by itself ” are or how criticality
is related to other phenomena.

The paper is organized as follows. First, we introduce a
Boltzmann machine as the simplest statistical mechanics model
of pairwise correlations between elements of a network and, then,
derive a learning model for driving the system toward critical
points. The model exploits the heat capacity of the system, a
macroscopic measure that works as a proxy for criticality (when
the heat capacity diverges, a Boltzmann machine is at a critical
point). Consequently, we test our learning model in an embodied
agent that controls a Mountain Car (a classic reinforcement
learning test bed) by finding that it is able to drive both the neural
controller and the behavior of the agent to a transition point in
the parameter space between qualitatively different behavioral
regimes. Finally, we discuss the possible applications of our
model to contribute to the development of deeper principles that
govern biological and cognitive systems.

2. DRIVING A NEURAL CONTROLLER
TOWARD A CRITICAL POINT

We propose a learning model for adjusting the parameters of a
Boltzmann machine in order to drive the system near states of
criticality. We take advantage of the fact that, at critical points,
derivatives of thermodynamic quantities such as entropy may
diverge (Mora and Bialek, 2011). An example of this is heat
capacity, whose divergence is a sufficient condition for criticality
(though not a necessary one). As discussed below, the heat
capacity of a system is related to the derivative of the entropy
of the system. If the heat capacity of the system diverges at a
critical point, this means that the system is maximally sensitive
to external perturbations, since very small perturbations push
the system into order or disorder. We hypothesize that actively
seeking to poise a system near a critical point may constitute
an intrinsic mechanism to adapt to different environments and
generate complex behaviors in different contexts.

We define our model as a stochastic artificial neural network
(i.e., a Boltzmann machine) (Ackley et al., 1985) that follows a
maximum entropy distribution:

P(σ ) =
1

Z
exp

[
β

∑

i

hiσi +
∑

i<j

Jijσiσj

]
(1)

where the distribution follows an exponential family P(σ ) =
1
Z e
−βE(σ ), Z is a normalization value, the energy E(σ ) of each

state is defined in terms of the bias hi and symmetrical couplings

Jij between pairs of units, and β = 1/(TkB), kB is Boltzmann’s
constant and T is the temperature of the system.

Throughout the paper, we simulate the network that updates
its state by applying Glauber dynamics to all the units within the
network in a sequential random order at each simulation step.
Glauber dynamics define the probability of the next state of a
neuron i as

P(σ ′i |σ ) =
1

1+ e−2βσ ′iHi
, Hi = hi +

∑

j

Jijσj (2)

where s is the state of the system at time t and s′ is the state at time
t + 1.

In order to know if the system is near a critical point, typically,
the divergence of certain quantities is measured. One of these
quantities is the heat capacity of the system, which is generally
defined as

C(σ ) = −β
∂S(σ )

∂β
= β2

(
〈E(σ )2〉 − 〈E(σ )〉2

)
(3)

where S(σ ) = −
∑

σ P(σ ) log(P(σ )), and the heat capacity is
defined in terms of the global energy of the system E(σ ) =
−

∑
i hiσi−

∑
i<j Jijσiσj, making it impractical to derive learning

rules based on local information. This will be important for
applying our learning rule to an embodied agent, where the
energy of the states of the environment is not directly accessible
to the system. Instead, we can find a more tractable indicator
of criticality by defining the heat capacity of the system from
the conditional entropy of each neuron that depicts transitions
between states. We define conditional entropy of a neuron i as

S(σ ′i |σ ) = −
∑

σ

P(σ )
∑

σ ′i

log(P(σ ′i |σ )) · P(σ
′
i |σ )

= −
∑

σ

P(σ )
(
βHi tanh(βHi)− log(2 cosh(βHi)

)
(4)

Thus, we define the heat capacity associated with the conditional
entropy of neuron i as

C(σ ′i |σ ) = −β
∂S(σ ′i |σ )

∂β
=

∑

σ

P(σ )

(
H2
i β

2

cosh(βHi)2

−β
(
E(σ )− 〈E(σ )〉)(βHi tanh(βHi)− log(2 cosh(βHi)

) )

(5)

which still contains terms that are dependent on the global energy
of the system E(σ ). In order to derive a learning rule based only
on local information, we can introduce individual temperatures
Ti for each neuron, which are associated with an individual
inverse temperature βi. In other words, instead of modifying the
temperature of the system as a whole, we introduce the possibility
of modifying “individual temperatures.” We use these quantities
to derive a simplified version of the heat capacity that can be
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FIGURE 1 | Values of C(σ ′
i
|σ ) (solid line) and C′ (dashed line) for an 8 × 8

lattice Ising model at different temperatures. We find that both quantities show

a peak around the critical temperature at β = log(1+
√
2)/2 (dotted line).

computed as an average of a function that is defined only by local
variables,

C′i = −βi
∂S(σ ′|σ )

∂βi
=

∑

σ

P(σ )

(
H2
i β

2
i

cosh(βiHi)2
+ βi (σiHi

−〈σiHi〉)
(
βiHi tanh(βiHi)− log(2 cosh(βiHi)

) )
(6)

and we compute the total approximated heat capacity as C′ =∑
i C
′
i. Note that the properties ofC

′ andC(σ ′i |σ ) can be different,
since we are neglecting the terms that reflect global interactions,
retaining only local interactions. However, we argue that the
simplified C′ may be a suitable indicator for driving a system to a
critical point.

As an example, we can compute the values of C(σ ′i |σ ) and C′

for the well known Ising model in a rectangular lattice, for which
the critical temperature is known to be at T = 2kB/ log(1 +√
2) for an infinite-size system. Note that, since C and C′ can

be defined as an average of the terms by multiplying P(σ ) in
equations, in practice it can be approximated by running a system
for several steps and computing the mean value of these terms.
We simulate an 8 × 8 periodic square lattice during 100,000
simulation steps. As seen in Figure 1, both C(σ ′i |σ ) and C′ have a
peak around the critical temperature, although the peak is more
pronounced in the case of C(σ ′i |σ ), showing how, at least in some
cases, a peak in C′ can be an indicator of proximity to a critical
point.

An earlier study (Aguilera and Bedia, 2018) used indirect
indicators as the distribution of correlations of the system to find
points of divergence of the heat capacity. Here, we try to directly
maximize the heat capacity by obtaining the relation between
parameter changes and the heat capacity. We define a learning
rule that adjusts the values of hi and Jij by using a gradient ascent
rule that maximizes the value of the simplified heat capacity C′,
with the intention of driving the system to critical points that are
depicted by a singularity of the heat capacity.

In order to simplify the notation, we define the quantities

Fi = Hi tanh(Hi) − log(2 cosh(Hi), Gi =
H2
i

cosh(Hi)2
+ σiHiFi, and

Ki = 〈σiHi〉. Using the derivatives of the probability distribution
in Equation 1, ∂P(σ )

∂hi
= (σi − 〈σi〉)P(σ ) and ∂P(σ )

∂Jij
= (σiσj −

〈σiσj〉)P(σ ), and the derivatives of Fi, Gi, and Ki, we derive the

learning rule that ascends the gradient ofC′i and drives the system
toward critical points as

∂C′i
∂hi
= 〈

∂Gi

∂hi
〉 + 〈σiGi〉 − 〈σi〉〈Gi〉 −

∂Ki

∂hi
〈Fi〉 − Ki(〈

∂Fi

∂hi
〉

+〈σiFi〉 − 〈σi〉〈Fi〉)
∂C′i
∂Jij
= 〈

∂Gi

∂Jij
〉 + 〈σiσjGi〉 − 〈σiσj〉〈Gi〉 −

∂Ki

∂Jij
〈Fi〉 − Ki(〈

∂Fi

∂Jij
〉

+〈σiσjFi〉 − 〈σiσj〉〈Fi〉) (7)

where

∂Fi

∂hi
=

Hi

cosh(Hi)2
,

∂Fi

∂Jij
=

Hiσj

cosh(Hi)2
,

∂Gi

∂hi
=

2Hi(1−Hi tanh(Hi))

cosh(Hi)2
+ σiFi + σiHi

∂Fi

∂hi
,

∂Gi

∂Jij
=

2Hiσj(1−Hi tanh(Hi))

cosh(Hi)2
+ σiσjFi + σiHi

∂Fi

∂Jij
,

∂Ki

∂hi
= 〈σi〉 + 〈σ 2

i Hi〉 − 〈σi〉Ki

∂Ki

∂Jij
= 〈σiσj〉 + 〈σ 2

i σjHi〉 − 〈σiσj〉Ki (8)

In the following section, we use this learning rule to drive the
neural controller of an embodied agent toward a critical point. In
order to do so, we need to take into account the environment
at the time of learning. If we consider two interconnected
Boltzmann machines (one being the neural controller and the
other being the environment), Equation 7 holds perfectly, and
we could design an adaptive controller that applies the rule to
the values of i and j that correspond to units of the neural
controller. In our case, the environment is not composed
of units of a Boltzmann machine. Instead, we connect the
Boltzmann machine of the neural controller to an environment
that is defined as a classic example from reinforcement learning.
Therefore, our learning rule will be valid as long as the statistics of
the environment can be approximated by a Boltzmann machine
with a sufficiently large number of units. Luckily, Boltzmann
machines are universal approximators (Montúfar, 2014).

3. EMBODIED MODEL: MOUNTAIN CAR

In order to evaluate the behavior of the proposed learning model,
we tested it in the Mountain Car environment (Moore, 1990).
This environment is a classical test bed in reinforcement learning
that depicts an underpowered car that must drive up a steep hill
(Figure 2). Since gravity is stronger than the car’s engine, the
vehicle must learn to leverage its potential energy by driving to
the opposite hill before the car is able to make it to the goal at
the top. We simulated the environment by using the OpenAI
Gym toolkit (Brockman et al., 2016). In this environment, the
horizontal position x of the car is limited to an interval of
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FIGURE 2 | (A) Mountain Car environment test from the OpenAI Gym toolkit. An underpowered car that must drive up a steep hill by balancing itself to gain

momentum. (B) Success rates of the Mountain Car environment with different kinds of sensors.

[−1.5π/3, 0.5π/3], and the vertical position of the car is defined
as y = 0.5(1 + sin(3x)). The velocity in the horizontal axis is
updated at each time step as vx(t + 1) = vx(t) + 0.001a −
0.0025 cos(3x), where a is the action of the motor, which can be
either −1, 0, or 1. The maximum velocity of the car is limited to
an absolute value of vmax.

We defined the neural controller of the car as a fully-
connected Boltzmann machine (without hidden neurons) that
contains six sensors and six neurons. Initially, we tested different
options of input: position, speed, and acceleration. For each
input, the value is separated into its horizontal and vertical
components, each input is discretized as arrays of three bits. Each
sensor unit is assigned a value of 1 if its corresponding bit is
active and a value of −1 otherwise. Two of the car neurons are
connected to the motors, defined as a = 1 if both neurons are
active, a = −1 if both neurons are inactive, and a = 0 otherwise.

In order to find critical points with maximum heat capacity,
we propose a learning rule intended to climb the gradient defined
by Equation 7 at a rate µ. Also, in order to avoid overfitting,
we add an L2 regularization term λ penalizing large values of hi
and Jij the parameters of the system. Finally, the learning rule is
described as:

hi ← hi + µ
∂C′i
∂hi
− λhi

Jij ← Jij + µ
∂C′i
∂Jij
− λJij

(9)

where µ = 0.02, λ = 0.002, and
∂C′i
∂hi

and
∂C′i
∂Jij

are the result of

Equation 7. The rule is applied to 20 different agents. Agents are
initialized in the starting random position of the environment.
Hidden and motor neurons are randomized, and the initial
parameters h and J are sampled from a uniform random interval
[−0.01, 0.01]. The agents are simulated for 1, 000 trials of 5, 000
steps, applying Equation 7 at the end of the trial for computing

the values of
∂C′i
∂hi

and
∂C′i
∂Jij

. Note that the agents are not reset at

the end of the trial. After training, the values of hi and Jij are kept
fixed for the rest of the analysis described in the paper.

We tested different types of inputs and values of vmax. The
inputs tested were 1) the horizontal position and vertical position

of the car I = {x, y}, 2) the horizontal speed and vertical speed of
the car I = {vx, vy}, and 3) the horizontal acceleration and vertical
acceleration of the car I = {ax, ay}. In all cases, horizontal and
vertical values are discretized as arrays of three bits and are fed to
the six sensor units. We tested seven values of vmax in the range
[0.04, 0.07] for the three types of inputs and the 20 agents, and we
measured the success of the agents as their ability to reach the top
of the agents in a trial of 50,000 steps after training (Figure 2B).
In order to select a case where the task is feasible but not too easy,
we chose I = {ax, ay} and vmax = 0.045 for the experiments
described below. The experimental results correspond to the 20
agents trained for this configuration.

4. RESULTS

In this section, we analyze the neural controller and the
behavioral patterns of the agents in relation to the possibilities
of their parameter space. In order to compare the agents with
other behavioral possibilities, we explore the parameter space
by changing the parameter β . Since the temperature of the
model has no physical significance, modifying the value of β is
equivalent to a global rescaling of the parameters of the agent
that transforms hi ← β · hj and Jij ← β · Jij, thus, exploring
the parameter space along one specific direction. For 21 values of
β that are logarithmically distributed in the interval [10−1, 101],
we compute 20 agents for a trial of 106 simulation steps, after
starting the agents from a random initial position (i.e., x in an
interval [0.4, 0.6]) and a run of 104 simulation steps to avoid the
initial transient. We use the results of these simulations for all the
calculations in this section.

4.1. Signatures of Criticality in the Neural
Controller
Firstly, we test whether the trained agents show signatures of
critical behavior, looking for a Zipf ’s law in the probability
distribution of the states of the neural controller and a peak
in its heat capacity. In order to test that the criticality arises
from the agent’s configuration and not just from dynamics of the
task, we compared the results of the trained agents with the 20
agents trained for maximizing the success in the task. In order
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to do so, we trained agents with a similar network by using a
microbial genetic algorithm (Harvey, 2009) that maximizes the
number of times an agent is able to climb the mountain during
the 5,000 steps (reseting the agent after each climb). By counting
the occurrence of each possible state of the 12 neurons of the
agents (including sensor, hidden, and motor neurons), we can
compute the probability distribution of the Boltzmann machine
P(σ ).

We observed that all agents approximately follow a Zipf ’s
law at β = 1 (Figure 3A) for almost three decades, which is
a good agreement for the limited size of the system (note that
the possible states of the system are limited to 212 states). All
trained agents showed a similar distribution close to Zipf ’s law.
In comparison, agents maximized to solve the task failed to show
a distribution that is consistent with Zipf ’s law.

Secondly, given that another indicator of critical points is
the divergence of the heat capacity of the system, we estimated
the heat capacity of hidden and motor neurons. From the data
generated from the simulation, we can estimate C(σ ′i |σ ) by
computing entropy S(σ ′i |σ ) from Equation 4. We use cubic
interpolation for estimating the function of S(σ ′i |σ ) with respect
to β and for estimating its derivative to compute C(σ ′i |σ ). We
observe in Figure 3B that the heat capacity peaks at around
the operating temperature (i.e., the temperature used during
training, β = 1). This, together with the Zipf ’s distribution,
suggests that the system is operating near a critical point. In
comparison, agents maximized to solve the task fail to present
a clear peak of the heat capacity at a specific temperature,
indicating that no significant transitions are taking place.

4.2. Behavioral Transitions in the
Parameter Space
What is implied when the agent drives its neural controller
near a critical point? It should be remarked here that our
agents are given no explicit goal. Instead, they only tend toward
behavioral patterns that maximize the heat capacity of their
neurons, independently of whether this behavior enables them
to reach the top of the mountain or not (in fact, only 12 of the
20 trained agents are able to climb to the top of the mountain).
In relation to this, we explore the effects of transiting the critical
point by observing the different behavioral modes of the agent in
the parameter space. The behavior of the car can be described just
by the position x and the speed v at different moments of time.

In Figures 4A–C, we can observe the behavior of the car for
β = {0.25, 1, 4} for a specific agent, for an interval of 4, 000
simulation steps, after an initial run of 10, 000 steps to remove the
initial transient. In this particular example, there is an asymmetry
in the behavior of the car, which only climbs the left mountain.
This asymmetry is provoked by the sign of the offset value hi of
motor units. If we compute the median and quartile values of y at
the trial for each value of β (Figure 4D) we observe that, slightly
below the operating temperature, there is a transition from not
being able to reach the top of the mountains to those that are able
to do so. Moreover, in all agents that are able to reach the top
of the mountain, the results are similar. Out of the agents that
are not able to reach the top, five display similar transitions in

the median value of height y and the median absolute velocity v
of the car. The remaining three agents fail to show a transition
in median values of basic behavioral variables, although this
does not preclude the possibility of another type of less evident
behavioral transition.

What has changed in this behavioral transition? We are
interested in knowing how these behavioral regimes are
qualitatively different.We explore this issue by using information
theory to characterize how different variables of the agent interact
at different points of the parameter space. Specifically, we are
interested in the relation between sensor, hidden, and motor
neurons, which determines the behavior of the agent in its
environment.

Are agents merely reactive to sensory inputs or is there a more
complex interplay between sensor, hidden, and motor units? In
order to answer this, we characterize the interaction between
variables by using measures from information theory. First, we
measured the values of entropy and mutual information between
S(X) and I(X;Y), where

S(X) = −
∑

x∈X
P(x) log(P(x)) (10)

I(X;Y) =
∑

x∈X

∑

y∈Y
P(x, y) log(

P(x, y)

P(x)P(y)
) (11)

and X and Y are random discrete variables. Entropy S(X)
measures the amount of information of each variable, whereas
mutual information I(X,Y) measures the amount of information
that overlaps between two variables due to their mutual
dependence. In Figures 5A,B, we observe the entropy and
mutual information for the variables S, H, and M for different
values of β .

By defining S, H, and M as the joint distributions of
sensor, hidden, and motor neurons, respectively, we analyze how
information is distributed among the three groups of variables.
We observe how the entropy of the hidden neuron H decreases
significantly in the transition around β = 1. Similarly, all
values of mutual information, especially between motors M and
sensors S, increase around β = 1. This suggests a transition
from independent variables showing unconstrained information
to highly correlated variables with high mutual dependencies.

We suspect that it is just in this transition point where
an agent can maximize its interactive capacities, combining
integration and segregation between variables. To check this, we
use information decomposition (Timme et al., 2014) to compute
synergies between variables X1 and X2 with respect to a third one
Y , defined as

9(Y;X1,X2) = I(Y;X1,X2)− I(Y;X1)− I(Y;X2)+ Imin(Y;X1,X2)

(12)
where Imin(Y;X1,X2), defined in Williams and Beer (2011), is
the redundant information that X1 and X2 share about Y . The
resulting synergy 9(Y;X1,X2) is able to capture information
about Y that is not available from eitherX1 andX2 alone but from
their interaction (the classical example is the relation between
the output and inputs of an XOR gate). In other words, the
intention is to measure howmuch information emerges from the
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FIGURE 3 | Signatures of criticality. (A) Ranked probability distribution function of the neural controllers of trained agents (solid line) vs. a distribution that follows a

Zipf’s law, (i.e., P(σ ) = 1/rank, dotted line) and the distribution of an agent optimized to solve the task (dashed line). We observe a good agreement between the

model and the Zipf’s law, suggesting critical scaling. (B) Heat capacity C(σ ′
i
|σ ) vs. β of trained agents (solid line), computed using Equation 4 for calculating the

entropy and deriving a cubic interpolation of the entropy function with respect to β. The heat capacity of trained agents is compared with the heat capacity of agents

tuned to maximize the ability to climb the mountain (dashed lines) The gray areas represent the error bars of the 20 agents for each value of β. The vertical dotted line

specifies the value of β = 1 where agents operate during training.

FIGURE 4 | Transition in behavioral regime of the agent. We show the behavior of an agent for an interval of 4, 000 steps with values of β of 0.25 (A), 1 (B), and 4 (C),

depicting the trajectories of the car in its phase space (x vs. v, top) and the evolution of the values of x (bottom). We observe that β = 1 is a transition point between

two modes of behavior. (D) Median vertical position of the car ỹ (solid line) and its upper and lower quartiles (gray area). We observe a transition near β = 1 where the

agent reaches the top of the mountain. Similar transitions are identified in 12 of the 20 simulated agents. The vertical dotted line specifies the value of β = 1 where the

agents operate during training.

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2018 | Volume 12 | Article 5567

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Aguilera and Bedia Exploring Criticality as a Generic Adaptive Mechanism

FIGURE 5 | Values of (A) entropy, (B) mutual information, and (C) synergistic information for variables S, H, and M. The gray areas represent the error bars of the 20

agents for each value of β. The vertical dotted line specifies the value of β = 1 where the agents operate during training.

interaction between variables instead of being contained in the
variables alone.

As we observe in Figure 5C, the synergy 9(S;H,M) between
motor and hidden neurons about sensor information and the
synergy 9(M; S,H) between sensor and hidden neurons about
sensor information peak at values of β lower than 1, while the
synergies of motor neurons with sensor neurons, 9(H; S,M)
peak at larger values of β . Since the environment of the agent
is completely deterministic, it seems adequate that larger values
of β (i.e., less random behavior) more effectively transmit
information from sensors to motors, while maximum interaction
between hidden and other neurons occurs at a point with a
lower β .

In conclusion, we propose a learning model that is designed
to drive an embodied agent close to critical points in its
parameter space, poising both the neural controller and the
behavioral patterns of the agent near a transition point between
qualitatively different regimes of operation. In the case of the
neural controller, we find that the Boltzmann machine shows
its peak capacity at a point around β = 1. Moreover, by
measuring entropy and mutual information between groups of
neural units, we find that the agent is poised at a transition
point between a regime with high entropy but low coordination
between units and a regime of high mutual entropy but low
entropy. By analyzing the synergistic interaction between sensor,
hidden, and motor units of the system, we find that interactions
between groups of neural units are maximized for the operating
temperature (although synergistic measures need to be taken
into account carefully, since there is an ongoing debate around
their formulation, Olbrich et al., 2015). We find a transition
at a point slightly under β = 1, which also coincides with a
point of transition between behavioral regimes in 12 of the 20
agents. These results suggest that the system may be exploiting
a critical point for maximizing the interaction between the
components of its neural controller, its sensory input, and its
motor behavior.

5. DISCUSSION

The rule described here has some similarities and differences
with respect to other work onmaximizing information quantities
in neural networks. Several measures have recently been

introduced and have been demonstrated to be viable and
powerful tools to express principles for driving autonomous
systems. They are measures that are independent of the specific
realization and domain invariants. We highlight, for example,
predictive information measures (also called excess entropy or
effective measure complexity) or methods that maximize entropy
reinforcement learning (optimizing policies that maximize both
the expected return and the expected entropy of the policy).
With respect to the above mentioned measures, our idea differs
in some aspects. On the one hand, predictive information is
applied at the behavioral level of the whole system (Martius
et al., 2013), whereas the learning rule that we propose is defined
at the neuronal level (similar to local learning principles like
the Hebb rule). Although our rule acts on the internal level, it
is linked to information theoretic quantities on the behavioral
level. On the other hand, the basic goal in conventional
reinforcement learning algorithms is to maximize the expected
sum of rewards combined with amore general maximum entropy
objective (Ziebart et al., 2008). By contrast, in our method
there is no reward that is maximized. Though such algorithms
have been successfully used in a number of approaches, our
method does not seek to optimize future rewards or maximize
behaviors.

At this point, we can reflect on our original questions.
Why do biological systems behave near criticality? What are
the benefits for a biological system to move toward this
special type of point? Also, more importantly, how can our
learning model help answer these questions? By reviewing the
relevant literature, one finds that interpretations of criticality
are too speculative in general. For example, Beggs (2008)
hypothesizes that neural systems that operate at a critical point
can optimize information processing and its computational
power.Mora and Bialek (2011) discuss the experimental evidence
of criticality in a wide variety of systems and propose that
criticality could provide better defense mechanisms against
predators (in animals), gain selectivity in response to stimuli
(in auditory systems, or improved mechanisms to anticipate
attacks (in immunological systems). Nevertheless, the reasoning
that gives support to these hypotheses is based more on
generic suggestions than on scientifically rigorous statements.
More detailed analyses are needed to test speculations, and
our opinion is that conceptual models of embodied criticality
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in natural systems can usefully demonstrate how transition
points in the parameter space of behavioral regimes can be
found and exploited to obtain functional advantages such as
those mentioned above. For this purpose, rather than citing
specific biological instances of critical phenomena, we used
an abstract framework for driving embodied agents to critical
points. Our model approaches a critical point as well but
remains at the disordered phase. Similar phenomena have been
observed in biological neural networks (Priesemann et al., 2014).
It has been proposed that information flow, generally, peaks
on the disordered side of critical phase transitions (Barnett
et al., 2013). More detailed studies of general mechanisms
that drive a system to criticality may help shed light on these
issues.

From the results obtained, what would be themain advantages
of using an abstract model to study criticality? On the one
hand, criticality generally appears to be entangled with other
capabilities that are developed by biological systems, and
interpretations about the advantages of criticality typically refer
to tangible benefits for the system (e.g., at an evolutionary
level, as the source of a new range of capabilities or better
mechanisms for surviving in open environments, etc.); it is
difficult to distinguish whether criticality is the cause or the
consequence of such effects. On the other hand, we believe that
the use of conceptual models such as those presented here allows
a more intriguing hypothesis to be tested. For example, our
general mechanism that drives an embodied neural controller
to criticality has the potential to capture the contribution of
criticality “by itself ” to the behavior of adaptive agents in different
scenarios, as well as the relationship between criticality and
other biological and cognitive phenomena. Furthermore, the
present model could be implemented in more complex embodied
setups, for example, involving specific tasks of adaptive behavior
that add environmental constraints (e.g., exploration, decision-
making, categorical perception) or biological requirements (e.g.,
an internal metabolism or other biological drives such as hunger
or thirst), and it could be used to observe how compliance with
these biological and cognitive requirements interplays with the
drive toward critical points in the neural controller of the agent.
We could, thus, explore how criticality can contribute to the
capabilities observed in natural organisms.

Finally, one of the most important conclusions we highlight
is that systems at critical points can solve problems for which
they were not programmed. This approach can be further linked
to the analysis of particular features in animal behavior that are
commonly interpreted without assuming a necessary pragmatic
perspective of analysis. For example, the role of “play” in humans
and other species. We observe certain similarities in the behavior
of the developed embodied agent and the notion of play. In
general, it is assumed that “solving a problem” is “being able
to find a solution.” In computational views of cognition, this
requires handling representations of the world between which
there is a configuration (the one in which the objective is reached)
that the systemmust find. On the contrary, “play” is precisely not

a problem requiring a solution. “Play” does not intend to solve a
specific problem. Over time, “play” self-structures processes that
are governed by the dialectics of expansion and contraction of
possibilities. Its freedom lies in the capability of players to acquire
and create novel nonarbitrary constraints during the processes
involved (Di Paolo et al., 2010). We think that this may be a good
metaphor for how the Mountain Car agent reaches the problem
solution.

There are also other studies in the field of “play” that
relate creativity, intrinsic motivations, and maximum entropy
measurements. For example, Schmidhuber (2010) addresses the
problem of how to model aspects of human player behavior
that are not explained by either rational or goal-driven decision
making behavior and without extrinsic reinforcement such as
game score. The author focuses on analyzing the relationship
between intrinsic motivation and creativity based on maximizing
intrinsic reward for the active creation and the discovery of
surprising patterns. In other exploratory studies (Guckelsberger
et al., 2017), it is found that metrics such as empowerment
can be useful to create specific models of intrinsic motivation
in game design. Empowerment (Klyubin et al., 2005, 2008)
quantifies the capacity of the agent to influence the world in a
way that this influence is perceivable via the agent’s sensors. These
types of analyses (Roohi et al., 2018) identify the correlations
between empowerment and challenge, attention, or engagement,
by hypothesizing that maximum entropy measurements can also
be used to create support tools for game designers.

In conclusion, we present, here, a model that does not address
any particular task but solves a problem. It is interesting to note
that it seems to exhibit intrinsic motivations but without being
externally imposed, since its behavior is reduced to exploiting
the criticality regime in which the system operates. Until now,
the traditional study of criticality in living systems has rested
on largely speculative grounds. The study of formal models
and the increasing amount of high quality data together with
advances in statistical mechanics models will make it possible to
link experimental evidence and data-driven models with general
conceptual models, paving the way for a rigorous exploration of
the governing that lie behind the behavior of biological organisms
in complex environments.
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In reinforcement learning, reward is used to guide the learning process. The reward

is often designed to be task-dependent, and it may require significant domain

knowledge to design a good reward function. This paper proposes general reward

functions for maintenance, approach, avoidance, and achievement goal types. These

reward functions exploit the inherent property of each type of goal and are thus

task-independent. We also propose metrics to measure an agent’s performance for

learning each type of goal. We evaluate the intrinsic reward functions in a framework

that can autonomously generate goals and learn solutions to those goals using a

standard reinforcement learning algorithm. We show empirically how the proposed

reward functions lead to learning in a mobile robot application. Finally, using the proposed

reward functions as building blocks, we demonstrate how compound reward functions,

reward functions to generate sequences of tasks, can be created that allow the mobile

robot to learn more complex behaviors.

Keywords: intrinsic reward function, goal types, open-ended learning, autonomous goal generation, reinforcement

learning

INTRODUCTION

Open-ended learning, still an open research problem in robotics, is envisaged to provide learning
autonomy to robots such that they will require minimal human intervention to learn environment
specific skills. Several autonomous learning frameworks exist (Bonarini et al., 2006; Baranes and
Oudeyer, 2010a,b; Santucci et al., 2010, 2016), most of which have similar key modules that include:
(a) a goal generation mechanism that discovers the goals the robot can aim to achieve; and (b) a
learning algorithm that enables the robot to generate the skills required to achieve the goals. Many
of the autonomous learning frameworks use reinforcement learning (RL) as the learning module
(Bonarini et al., 2006; Santucci et al., 2010, 2016). In RL, an agent learns by trial and error. It is not
initially instructed which action it should take in a particular state but instead must compute the
most favorable action using the reward as feedback on its actions. Formany dynamic environments,
however, it is not always possible to know upfront which tasks the agent should learn. Hence,
sometimes, it is not possible to design the reward function in advance. Open-ended learning aims
to build systems that autonomously learn tasks as acquired skills that can later be used to learn user-
defined tasks more efficiently (Thrun andMitchell, 1995;Weng et al., 2001; Baldassarre andMirolli,
2013). Thus, for an open-ended learning system, autonomous reward function generation is an
essential component. This paper contributes to open-ended learning by proposing an approach to
reward function generation based on the building blocks of maintenance, achievement, approach
and avoidance goals.
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Existing literature reveals two common solutions to address
the problem of the autonomous reward function design or at least
provides a level of autonomy in designing a reward function: (1)
Intrinsic motivation (Singh et al., 2005) and (2) reward shaping
(Ng et al., 1999; Laud and DeJong, 2002). Intrinsic motivation
is a concept borrowed from the field of psychology. It can be
used to model reward that can lead to the emergence of task-
oriented performance, withoutmaking strong assumptions about
which specific tasks will be learned prior to the interaction
with the environment. Reward shaping, on the other hand,
provides a positive or negative bias encouraging the learning
process toward certain behaviors. Intrinsic motivation, although
promising, has not been validated on large-scale real-world
applications, and reward shaping requires a significant amount of
domain knowledge thus cannot be considered as an autonomous
approach. As an alternative to these solutions, we propose reward
functions based on the various types of goals identified in the
literature. Although the concept of creating a reward function
using goals is not new, this approach is often overlooked and has
not been the main focus of the RL community. In our approach,
different reward functions are generated based on the type of the
goal, and since the reward functions exploit the inherent property
of each type of goal, these reward functions are task-independent.

Goals have been the subject of much research within the
Beliefs, Desires, Intentions community (Rao and Georgeff, 1995),
and the agent community (Regev and Wegmann, 2005). A
goal is defined as an objective that a system should achieve
(Van Lamsweerde, 2001), put another way, a goal is the state
of affairs a plan of action is designed to achieve. Goals range
in abstraction from high-level to low-level, cover functional
as well as non-functional aspects and can be categorized into
hard goals that can be verified in a clear-cut way to soft goals
that are difficult to verify (Van Lamsweerde, 2001). Examples
of types of goals include achievement, maintenance, avoidance,
approach, optimization, test, query, and cease goals (Braubach
et al., 2005). Instead of classifying goals based on types, Van
Riemsdijk et al. (2008) classify them as declarative or state-
based where the goal is to reach specific desired situation and
procedural or action-based where the goal is to execute actions.
State-based goals are then sub-classified into the query, achieve
and maintain goals, and action-based goals are sub-classified
into perform goal. RL is already able to solve some problems
where some of these kinds of goals are present. For example,
well-known benchmark problems such as the cart-pole problem
are maintenance goals, while others such as maze navigation
are achievement goals. Likewise, problems solved with positive
reward have typically approach goal properties, while problems
solved from negative reward have avoidance goal properties. The
idea of generating reward signals for generic forms of these
goals thus seems promising. Based on this logic we propose
a domain-independent reward function for each of the goal
types. This approach can be applied to the goal irrespective of
its origin, i.e., whether the goal is intrinsic, extrinsic or of a
social origin. In this paper though, we use the output of an
existing goal generation module for a mobile robot (Merrick
et al., 2016) to validate the proposed reward functions. We show
how the intrinsic reward functions bridge the gap between goal

generation and learning by providing a task-independent reward.
We further demonstrate how these primitive reward functions
based on the goal types can be combined to form compound
reward functions that can be used to learn more complex
behaviors in agents. Thus, the contributions of this paper are: (1)
A proposal for task-independent intrinsic reward functions for
maintenance, approach, avoidance and achievement goal types;
(2) Metrics for the measurement of the performance of these
reward functions with respect to how effectively solutions to
them can be learned; and (3) A demonstration of how these
primitive reward functions can be combined to motivate learning
of more complex behaviors.

The remainder of the paper is organized as follows. In section
Background and Related Work, we present a background on
the design of reward functions and the solutions for task-
independent reward functions found in the literature. In section
Primitive Goal-based Motivated Reward Functions, we detail
the proposed reward functions based on the goal types, and
the metrics we use to measure the agents’ performance using
those reward functions. In section Experiments for Maintenance,
Approach, Avoidance and Achievement Goal Types, we detail
experiments to examine the performance of reward functions
for maintenance, approach, avoidance, and achievement goal
types on a mobile “e-puck” robot. In section Demonstration of
how Primitive Goal-based Reward Functions can be Combined,
we demonstrate complex behaviors learned from compound
reward functions constructed from the autonomously generated
primitive functions for each goal type. Finally, in section
Conclusion and Future Work, we provide concluding remarks
and discuss directions for future work.

BACKGROUND AND RELATED WORK

In RL, an agent perceives the state of its environment with its
sensors and takes action to change that state. The environment
may comprise variables such as the robot’s position, velocity,
sensor values, etc. These parameters collectively form the state
of the agent. With every action that the agent executes in the
environment, it moves to a new state. The state of the agent at
time t can be expressed as:

St =
[
s1t , s

2
t , s

3
t , . . . , s

n
t

]

where each attribute sit is typically a numerical value describing
some internal or external variable of the robot, and n is the
number of attributes of the state. The agent takes an action At

to change the state of the environment from the finite set of m
actions:

A = { A1, A2,A3, . . . ,Am}

This state change is denoted by event Et , formally denoted as:

Et =
[
e1t , e

2
t , e

3
t , . . . , e

n
t

]

where an event attribute eit = sit − sit−1. That is,

Et = St − St−1 =
[
1(s1t − s1t−1), 1(s2t − s2t−1), . . . ,1(snt − snt−1)

]
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Thus, an event, which is a vector of difference variables, models
the transition between the states. An action can cause a number
of different transitions, and an event is used to represent those
transitions. Since this representation does not make any task-
specific assumption about the values of the event attributes, it can
be used to represent the transition in a task-independent manner
(Merrick, 2007).

Finally, the experience of the agent includes the states St it has
encountered, the events Et that have occurred and the actions
At that it has performed. Thus, the experience X is a trajectory
denoted as the following, and it provides the data from which the
goals can be constructed.

X = {S0, A0, S1, E1, A1, S2, E2, A2, S3, E3, . . .}

Design of Reward Functions
In RL, the reward is used to direct the learning process. A simple
example of a reward function is a pre-defined value assignment
for known states or transitions. For example:

r(St) =
{

1 if a paricular state St is reached
0 otherwise

(1)

A more specific, task-dependent example can be seen from the
canonical cart-pole domain in which a pole is attached to a cart
that moves along a frictionless track. The aim of the agent is to
maintain the pole balanced on the cart by moving the cart to the
right or left. The reward, in this case, depends on the attributes
specific to the task:

r(St) = −c2∗
(
G1 − s1t

)2 − c3∗(G2 − s2t )
2

(2)

where s1t is the position of the cart and s2t is the angle of the
pole with respect to the cart, G (with attributes G1–desired
position and G2–desired angle) is the goal state, and c2 and c3
are constants.

For an even more complex task like ball paddling, where a
table-tennis ball is attached to a paddle by an elastic string with
the goal to bounce the ball above the paddle, it is quite difficult
to design a reward function. Should the agent be rewarded for
bouncing the ball a maximum number of times? Should the agent
be rewarded for keeping the ball above the paddle? As detailed
in Amodei et al. (2016), the agent might find ways to “hack the
reward” resulting in unpredictable or unexpected behavior.

For some complex domains, it is only feasible to design “sparse
reward signals” which assign non-zero reward in only a small
proportion of circumstances. This makes learning difficult as the
agent gets very little information about what actions resulted in
the correct solution. Proposed alternatives for such environments
include “hallucinating” positive rewards (Andrychowicz et al.,
2017) or bootstrap with self-supervised learning to build a
good world model. Also, imitation learning and inverse RL
have shown reward functions can be implicitly defined by
human demonstrations, so they do not allow a fully autonomous
development of the agent.

“Reward engineering” is another area that has attracted the
attention of the RL community, which is concerned with the

principles of constructing reward signals that enable efficient
learning (Dewey, 2014). Dewey (2014) concluded that as artificial
intelligence becomes more general and autonomous, the design
of reward mechanisms that result in desired behaviors are
becoming more complex. Early artificial intelligence research
tended to ignore reward design altogether and focused on the
problem of efficient learning of an arbitrary given goal. However,
it is now acknowledged that reward design can enable or limit
autonomy, and there is a need for reward functions that can
motivate more open-ended learning beyond a single, fixed task.
The following sections review work that focus in this area.

Intrinsic Motivation
Reward modeled as intrinsic motivation is an example of an
engineered reward leading to open-ended learning (Baldassarre
and Mirolli, 2013). It may be computed online as a function
of experienced states, actions or events and is independent of a
priori knowledge of task-specific factors that will be present in
the environment. The signal may serve to drive acquisition of
knowledge or a skill that is not immediately useful but could be
useful later on (Singh et al., 2005). This signal may be generated
by an agent because a task is inherently “interesting,” leading
to further exploration of its environment, manipulation/play or
learning of the skill.

Intrinsic motivation can be used to model reward that can
lead to the emergence of task-oriented performance, without
making strong assumptions about which specific tasks will be
learned prior to the interaction with the environment. The
motivation signal may be used in addition to a task-specific
reward signal, aggregated based on a predefined formula, to
achieve more adaptive, and multitask learning. It can also be
used in the absence of a task-specific reward signal to reduce the
handcrafting and tuning of the task-specific reward thus moving
a step closer to creating a true task independent learner (Merrick
and Maher, 2009). Oudeyer and Kaplan (2007) proposed the
following categories for a computational model of motivation:
knowledge-based, and competence-based. In knowledge-based
motivation, the motivation signal is based on an internal
prediction error between the agent’s prediction of what is
supposed to happen and what actually happens when the agent
executes a particular action. In competence-based motivation,
the motivation signal is generated based on the appropriate level
of learning challenge. This competency motivation depends on
the task or the goal to accomplish. The activity at a correct level of
learnability given the agent’s current level of mastery of that skill
generates maximummotivation signal. Barto et al. (2013) further
differentiated between surprise (prediction error) and novelty
based motivation. Novelty motivation signal is computed based
on the experience of an event that was not experienced before
(Neto and Nehmzow, 2004; Nehmzow et al., 2013).

Intrinsically Motivated Reinforcement

Learning
Frameworks that combine intrinsic motivation with RL are
capable of autonomous learning, and they are commonly termed
intrinsically motivated reinforcement learning frameworks.
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Singh et al. (2005) and Oudeyer et al. (2007) state that
intrinsic motivation is essential to create machines capable of
lifelong learning in a task-independent manner as it favors the
development of competence and reduces reliance on externally
directed goals driving learning. When intrinsic motivation is
combined with RL, it creates a mechanism whereby the system
designer is no longer required to program a task-specific reward
(Singh et al., 2005). An intrinsically motivated reinforcement
learning agent can autonomously select a task to learn and
interact with the environment to learn the task. It results in
the development of an autonomous entity capable of resolving
a wide variety of activities, as compared to an agent capable of
resolving only a specific activity for which a task-specific reward
is provided.

Like in RL, in an intrinsically motivated reinforcement
learning framework, the agent senses the states, takes actions
and receives an external reward from the environment, however
as an additional element, the agent internally generates a
motivation signal that forms the basis for its actions. This
internal signal is independent of task-specific factors in the
environment. Incorporating intrinsic motivation with RL enables
agents to select which skills they will learn and to shift their
attention to learn different skills as required (Merrick, 2012).
Broadly speaking, intrinsically motivated reinforcement learning
introduces a meta-learning layer in which a motivation function
provides the learning algorithm with a motivation signal to focus
the learning (Singh et al., 2005).

Role of Goals to Direct the Learning
Where early work focused on generating reward directly from
environmental stimuli, more recent works have acknowledged
the advantages of using the intermediate concept of a goal to
motivate complexity and diversity of behavior (Merrick et al.,
2016; Santucci et al., 2016). It has been shown by Santucci
et al. (2012) that using intrinsic motivation (generated by
prediction error) directly for skill acquisition can be problematic
and a possible solution to that is to instead generate goals
using the intrinsic motivation which in turn can be used to
direct the learning. Further, it has been argued by Mirolli and
Baldassarre (2013) that a cumulative acquisition of skills requires
a hierarchical structure, in whichmultiple “expert” sub-structures
focus on acquiring different skills and a “selector” sub-structure
decides which expert to select. The expert substructure can be
implemented using knowledge-based intrinsic motivation that
decides what to learn (by forming goals), and the selector sub-
structure can be implemented using competence-based intrinsic
motivation that can be used to decide which skill to focus on.
Goal-directed learning is also shown to be a promising direction
for learning motor skills. Rolf et al. (2010) show how their system
auto-generates goals using inconsistencies during exploration to
learn inverse kinematics and that the approach can scale for a
high dimension problem.

Recently, using goals to direct the learning has even attracted
the attention of the deep learning community. Andrychowicz
et al. (2017) have proposed using auto-generated interim goals to
make learning possible even when the rewards are sparse. These
interim goals are used to train the deep learning network using

experience replay. It is shown that the RL agent is able to learn
to achieve the end goal even if it has never been observed during
the training of the network. Similarly, in a framework proposed
by Held et al. (2017), they auto-generate interim tasks/goals at
an appropriate level of difficulty. This curriculum of tasks then
directs the learning enabling the agent to learn a wide set of skills
without any prior knowledge of its environment.

Regardless of whether the goals are intrinsic, extrinsic, of
social origin, whether they are created to direct the learning or
generated by an autonomous learning framework, the approach
of using goal-based reward functions detailed in the next section
can be applied to them.

PRIMITIVE GOAL-BASED MOTIVATED

REWARD FUNCTIONS

The basis of our approach in this paper is a generic view of the
function in Equation (1) as follows:

r(St) =
{

1 if the goal is reached
1− ε otherwise

(3)

where ε is a non-negative constant. The remainder of this section
defines different representations of “goal” in Equation (3) and
representation of the meaning of “reached.”

Reward Function for the Maintenance Goal

Type
A maintenance goal monitors the environment for some desired
world state and motivates the agent to actively try to re-establish
that state if the distance between the desired state and the current
state goes beyond a set limit. For a maintenance goal, an agent’s
action selection should consider both triggering conditions as
well as the constraining nature of the goal (Hindriks and Van
Riemsdijk, 2007). The act of maintaining a goal can be never-
ending thus making the process continuous or non-episodic.

Consider G is the state that the agent desires to maintain.
The state is considered as maintained if the distance between the
current state and desired state is sufficiently small. The reward at
time step t can then be expressed as:

r(St) =
{

σ if d (St , G) < ρ

ϕ otherwise
(4)

where d(.) is a distance function, St is the current state, G is
the desired goal state and ρ is a defined distance threshold. The
reward for when the goal is maintained is σ and the reward for
other time steps is ϕ, with ϕ < σ in order to incentivize the agent
to find a shorter path to reach the goal state. σ is generally 0 or a
positive number to provide positive reinforcement.

We hypothesize that there are various ways in which an agent’s
performance can be measured with respect to a maintenance
goal. For example, the following metrics M evaluate the reward
function for the maintenance goal type. Each metric is assumed
to be measured over a fixed period T of the agent’s life.

• Number of Steps for Which the Goal is Maintained (M1).

This metric counts the total number of times the agent
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maintains the state for two or more consecutive steps during
a period T. Note that since the process of maintaining a
goal is continuous, we do not assume the end of a learning
episode at the first occurrence of the goal being maintained.
For such non-episodic processes, there may be a reason why
the maintained state is lost. Thus, this metric provides the
measurement of the agent’s ability to learn to regain the
maintenance goal.

M1 = count(t)
t=2...T

such that rt = 1 and rt−1 = 1

• Number of Steps the Goal is Accomplished (M2). This metric
provides an alternative to M1 and counts the total number
of steps for which the agent receives a positive reward. This
metric provides the measurement of the number of time
steps the agent managed to maintain the goal. A higher value
indicates ease of maintainability of a particular goal.

M2 = count(t)
t=1...T

such that rt = 1

• Average Number of Steps of Consecutive Goal Maintenance

(M3). This measures the length of time (on average) that
positive consecutive positive reward is received. This metric
also provides an indication of the ease of maintainability of a
particular goal. It is calculated by first calculating how many
times J a goal was reacquired (that is, how many times rt =
1 and rt−1 6= 1) and dividingM2 as follows:

M3 =
M2

J

• Longest Period of Goal Maintenance (M4). This metric finds
the length of the longest stretch for which the agent was able
to maintain the goal. This metric indicates the final ability
accomplished by the agent in maintaining the goal. Longer
stretches indicate better progress in learning to maintain the
desired goal state.

M4 = max
j=1...J

(length of maintenance period j)

Reward Function for the Approach Goal

Type
An approach goal represents the agent’s act of attempting to get
closer to the desired world state. The main difference between
an approach and maintenance goal lies in the condition of
fulfillment. An approach goal is fulfilled when the agent is
getting closer to the desired state whereas a maintenance state is
fulfilled when the desired state is maintained and not violated. An
approach attempt leads to a behavior that functions to shorten the
distance, either physically or psychologically between the agent
and the desired outcome (Elliot, 2008).

The reward function for the approach goal can be expressed
as:

r(St) =
{

σ if d (St , G) < d (St−1, G) and d (St , G) > ρ

ϕ otherwise
(5)

where d(.), the distance function is used to check the approach
attempt by comparing the distance between the current state
St and the desired goal state G with the distance between the
previous state St−1 and G. The second condition of the equation
ensures that the distance is more than the defined distance
threshold ρ so that “reached” means an approach attempt and
not “approach and achieve”. Same as in Equation (4), the reward
for when the goal is not reached is ϕ with ϕ < σ in order to
incentivize the agent to find a shorter path to the goal state.

The following metrics may thus be used to evaluate this
reward function for the approach goal type. Each metric is again
assumed to be measured over a fixed period T of the agent’s
life. Since the approach and avoidance functions (detailed in
section Reward Function for the Avoidance Goal Type) reward
the approach and the avoidance attempts irrespective of the
distance between the current and the goal state, the cumulative
reward for the agent is very high. In order to get a better sense of
the proportion of the reward gained per trial, we use percentage
in the following metrics.

• Number of Steps the Goal is Approached as a Percentage of

T (M5). This metric indicates the approachability of the goal,
i.e., how easy is it to approach the goal state?

M5 =
M2 × 100

T

• Number of Approach Attempts as a Percentage of T (M6).

The agent is considered to have made an approach attempt if
it receives a positive reward for two or more consecutive steps,
i.e., signifying that the agent attempted to approach the goal
state.

M6 =
M1 × 100

T

Reward Function for the Avoidance Goal

Type
An avoidance goal type is the opposite of the approach goal type.
Avoidance is a behavior where an agent stays away or moves
away from an undesirable stimulus, object or event (Elliot, 2008).
An avoidance goal is considered fulfilled as long as the agent
is away from the state that it wants to avoid, and it increases
the distance from the state that it wants to avoid. Considering
those definitions, the reward function for avoidance goal has two
expressions, one that fulfills the condition of moving away from
the goal state and other that fulfills the condition of staying away
from the goal state, however, in the applications either of the
other expressions can be used on their own.

r(St) =
{

σ if d (St , G) > d (St−1, G) and d (St−1, G) > ρ

ϕ otherwise

(6)
Similar to Equation (5), there are two conditions in Equation
(6). The first condition checks for the avoidance attempt, while
the second checks that the distance between the previous state
St−1 and the desired goal state G is above the defined distance
threshold ρ, i.e., the current state is not G. Same as in Equation
(4), the reward for when the goal is not avoided is ϕ with ϕ < σ.
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Both the metricsM5 andM6 are applicable to avoidance goals.
In addition, it is also possible to measure:

• Number of Times Goal Not Avoided (M7). This is a count of
a number of times the agent fails to avoid the goal state.

M7 = count(t)
t=1...T

such that d (St , G) < ρ

Reward Function for the Achievement Goal

Type
An achievement goal is a state of the world that the agent strives
to fulfill (Duff et al., 2006), i.e., the state that the agent wants
to bring about in the future. When this target state is reached,
the goal is considered as succeeded. The learning process can be
restarted with a same/different initial starting state making the
process episodic if required.

Similar to Merrick et al. (2016), we use the concept of an event
detailed in section Background and RelatedWork to represent an
achievement task. An event (given as Et = St −St−1) allows the
agent to represent a change in its environment. An achievement
goal defines changes in the event attributes eit that the agent
should bring about. Thus, the reward for the achievement goal
can be generated in response to the experience of event Et as:

r(St , St−1) =
{

σ if d (Et , G) < ρ

ϕ otherwise
(7)

where similar to Equations (4–6), ρ is the distance threshold,
σ is generally 0 or a positive number to provide positive
reinforcement and ϕ < σ in order to incentivize the agent to find a
shorter path to reach the goal state. The metricM2 is most useful
for measuring the performance of this goal type.

The next section uses the metrics proposed in this section to
evaluate the goal-based reward functions detailed by Equations
(4)–(7).

EXPERIMENTS FOR MAINTENANCE,

APPROACH, AVOIDANCE, AND

ACHIEVEMENT GOAL TYPES

We used Webots software to simulate an e-puck mobile robot.
E-puck is a small differential wheeled mobile robot with eight
proximity sensors, of which we used 6. The sensors are labeled
in a clockwise direction as Front-Right, Right, Rear-Right, Rear-
Left, Left, and Front-Left. The red lines in Figure 1A show the
direction in which the sensors detect an obstacle. A high sensor
reading indicates that an object is close to that sensor. Figure 1B
shows a 5 × 5m square flat walled arena that we use for our
experimentation with primitive goal-based reward functions.

The arena, the state, and the action space of the robot are the
same as detailed by Merrick et al. (2016). The state of the mobile
robot comprises nine parameters: left wheel speed, right wheel
speed, orientation, left sensor value, right sensor value, front-left
sensor value, front-right sensor value, rear-left sensor value, and
rear right sensor value, i.e., the state vector is [ωR

ω
L

θ sL sR sFL

sFR sRL sRR]. ωR and ω
L are the rotational velocities of the right

and the left wheels. Their range is –π to π radians per second.
θ is the orientation angle of the mobile robot. Its value ranges
from –π to π. For our experiments, we use binary values for the
proximity sensors with 0 indicating that there is no object in the
proximity of the sensor, and 1 indicates that the object is near.
The rotational velocities and orientation are discretized into nine
values making the state space quite large.

The action space comprises five actions: 1–increase the left
wheel speed by δ, 2–increase the right wheel speed by δ, 3–
decrease the left wheel speed by δ, 4–decrease the right wheel
speed by δ, and 5–no change to any of the wheel speeds. A fixed
value of π/2 was used as δ.

In this paper, we use the goals generated for the mobile robot
based experiment by Merrick et al. (2016). The main concept
of the experience based goal generation detailed in Merrick
et al. (2016) is that the agent must explore its environment
and determine if the experience is novel enough to be termed
a potential goal. Goal generation phase is divided into two
stages: experience gathering stage and the goal clustering stage. In
the experience gathering stage, the mobile robot moves around
randomly in its environment. The states experienced by the
robot are recorded. These recorded states form an input to the
goal clustering stage which uses simplified adaptive resonance
theory (SART) network (Baraldi, 1998). SART is a neural network
based clustering technique. It is capable of handling a continuous
stream of data thus solving the stability-plasticity dilemma. The
network layer takes a vector input and identifies its best match in
the network. Initially, the network starts with no clusters. As the
data is read, its similarity is checked with any existing clusters.
If there is close enough match, it is clustered together else a new
cluster is created. As the clusters are created, they are connected
to the input nodes (i.e., the recorded experience). The number
of clusters created will depend on the vigilance parameter of
the SART network. Higher vigilance produces many fine-grained
clusters whereas a low vigilance parameter produces a coarser
level of clusters. The goals generated by this phase form input
for the goal learning phase.

In the learning phase, the robot learns the skills to accomplish
the goals. For the goal learning, we use an RL algorithm called
Dyna-Q. Dyna-Q (Sutton and Barto, 1998) is a combination
of Dyna architecture with RL’s Q Learning algorithm. With
Dyna-Q, the Q-Learning is augmented with model learning,
thus combining both model-based and model-free learning. The
RL agent improves its Q value function using both the real
experiences with its environment and imaginary experiences
(also called planning process) generated by the model of the
environment. During the planning process, that is typically run
several times for every real interaction with the environment;
the algorithm randomly selects the samples from the model
(continuously updated using the real experiences) and updates
the Q value function. This reduces the number of interactions
required with the environment which are typically expensive,
especially for robotic applications. Themodel of the environment
for our experiments keeps track of the state s’ that the mobile
robot lands in when it takes a particular action a in the current
state s. The model also keeps track of the reward that the robot
receives during that transition. The state transitions for our
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FIGURE 1 | (A) e-puck proximity sensors (shown by the red directional lines). (B) A sample walled arena.

experiments are deterministic in nature, i.e., when the robot takes
action a in state s, it will always land in a state s’. The number of
iterations for model learning can be varied as required. We set
this parameter to 25, i.e., the algorithmwill attempt 25 actions for
model learning (using imaginary experiences) before attempting
one action with the real environment.

Maintenance Goal Learning Results
Merrick et al. (2016) used SART based clustering to generate
two sets of goals, namely, maintenance and achievement goals.
Table 1 lists the set of maintenance goals described by the ID,
goal attributes and the meaning of the goal as detailed byMerrick
et al. (2016). These goals are the actual states experienced by the
mobile robot. This same set of goals are used in section Approach
Goal Results and Avoidance Goal Results treated as approach
and avoidance type, respectively. Table 4 in section Achievement
Goals, lists the set of achievement goals generated by Merrick
et al. (2016).

Table 1 also shows the results of the experiments for these
goals treated as maintenance goals. The columns M1, M2, M3,

and M4 are the metrics detailed in section Reward Function for
the Maintenance Goal Type. The goals are states experienced
by the mobile robot treated as maintenance goal for these
experiments, i.e., the aim of the robot is to maintain these
goal states. The e-puck mobile robot simulation was run for
10 trials each of 25,000 steps for each of the 12 goals. Results
were averaged over 10 trials, and the standard deviation is
also shown in the table. Values of the parameters of Equation
(4) were as follows: ρ was 0.9, σ was 1, ϕ was −1 and
d was the Euclidian distance. The RL exploration parameter
epsilon was set to 0.15, and the decay schedule was linear.
When a trial ended, the end position and orientation of the e-
puck mobile robot became the start position and orientation
for the next trial. However, the RL Q table was reset after
each trial, so no learning was carried forward between the
trials.

Once the robot reaches the goal state, it maintains it until it
comes across adverse conditions, i.e., for G1 (move forward at
high speed), once the goal state is reached, the robot will maintain
that state while it is in the open space. However, once it reaches

a wall, it is not able to maintain the state. We consider that the
robot has learnt to attain the goal if the robot is able to reach
the goal state over and over again and remain in that state for
two time-steps or more. This is indicated by the column for
M1. This measure is high for G1, G2, G3, G4, G6, G7, G10, and
G12 indicating that the robot is able to maintain those goals.
However, that measure is very low for goal G5 and zero for
G8 which shows that the robot is not able to learn to maintain
those goal states. This is due to the lack of opportunity, i.e.,
the robot has to be in a specific situation to be able to learn to
maintain those goals. Those goals require the robot to be close to
a wall, the likelihood of which is small because of the size of the
arena.

The measure M1 for goal G9, which is a valid goal, is zero.
The mobile robot was not able to achieve that goal because of
the lack of opportunity. The required situation to learn that
goal would be that the robot should find itself in the bottom
left corner at a particular orientation. The measure M1 is zero
for G11 as well. The reason for that is because goal G11 is an
unreasonable goal. According to that state, the wall is close to
the Right and Front Left sensors but not Front Right. It is hard
to imagine a position of the mobile robot that represents such
state. The goals created by SART are the cluster centers. It appears
that this is an example of the clustering algorithm creating a
hybrid, unreasonable goal which could be either because the
granularity of the clusters is coarser than it should be, resulting
in the cluster centroid not being a correct representative of
the cluster or that invalid states experienced by the robot due
to noise. The column “Is Goal Valid?” is marked “No” in this
case.

Figure 2A shows a sample trajectory of the mobile robot for
G1. The trajectory is a two-dimensional plot of the path followed
by the mobile robot in the arena during the trial. The goal is
attained by maintaining a high speed at a particular orientation.
The robot receives a positive reward for the time steps that it
maintains the goal. It is only possible for the robot to attain G1

when it is in the open area of the arena. When it reaches the
wall, it is no longer able to maintain goal G1. The robot has to
learn to turn around and attain the goal again. This is evident
in Figure 2A that shows multiple straight stretches where the
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Table 1 | Experiments and results for maintenance goals.

ID Goal attributes Meaning of the goal M1 M2 M3 M4 Is goal valid?

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 37 ± 8 493 ± 91 14 ± 4 154 ± 7 Yes

G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 121 ± 25 568 ± 124 4 ± 1 88 ± 0 Yes

G3 (−2.4, −2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backward at high speed 88 ± 8 888 ± 179 10 ± 2 188 ± 9 Yes

G4 (−0.4, −0.4, −1.3, 0, 0, 0, 0, 0, 0) Move backward at low speed 192 ± 28 866 ± 110 4 ± 0 71 ± 0 Yes

G5 (0.0, 0.0, −2.8, 0, 1, 0, 0, 0, 0) Stop for obstacle in front 1 ± 1 3 ± 3 1 ± 0 5 ± 0 Yes

G6 (−0.4, −0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 142 ± 24 601 ± 106 4 ± 0 37 ± 1 Yes

G7 (−0.8, −0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 157 ± 26 848 ± 127 5 ± 0 53 ± 2 Yes

G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for obstacle behind 0 ± 0 0 ± 0 0 ± 0 0 ± 0 Yes

G9 (0.0, −0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 0 ± 0 0 ± 0 0 ± 0 2 ± 0 Yes

G10 (−1.9, −1.9, −2.2, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 162 ± 23 763 ± 105 4 ± 0 52 ± 2 Yes

G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for obstacle in front 0 ± 0 0 ± 0 0 ± 0 0 ± 0 No

G12 (1.2, 1.2, −2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate speed 100 ± 18 427 ± 85 4 ± 0 36 ± 1 Yes

FIGURE 2 | (A) Mobile robot trajectory for G1. (B) Mobile robot trajectory for G3. (C) Likelihood of the reward for G1, G3, and G12.

FIGURE 3 | (A) Trajectory for G12. (B) Simultation for a G12 run for 100,000 steps.

robot attainsG1, reaches the wall, tries to turn around and attains
the goal again. Figure 2B shows the trajectory of the mobile
robot for G3 (move backward at high speed) and Figure 3A

shows the trajectory for goal G12 (move forward at moderate
speed).

For goals G1, G3, and G12 the robot is only able to attain the
goals when it is in the open area of the arena. Figure 2C shows
the likelihood diagramwith the wall shown in orange. In the open
area of the arena shown in green, the robot is more likely to attain

the goal, i.e., to receive a positive reward. In the area close to the
wall (shown in yellow) the likelihood reduces. The probability of
the mobile robot to be in the green zone can be calculated as
follows for the environment with the size of the board 5 × 5m
and sensor range of e-puck 0.06m. If we were to discretize the
environment into squares of 0.06m, then there would be 83 ×
83, i.e., 6,889 squares in the grid. Green zone for G1, G3, and G12

will consist of 81× 81, i.e., 6,561 squares. If we were to randomly
select a square in the green zone, the probability would be (81
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× 81)/(83 × 83) = 95.23%. The orientation and wheel speeds
are divided into nine buckets each. Hence the probability of the
robot to be in a particular square with particular wheel speed and
orientation will be (81× 81)/(83× 83× 9× 9× 9)= 0.13%.

For G12 we let the simulation for one of the trials continue
for 100,000 steps, the trajectory of which is shown in Figure 3B.
The straight-line trajectory shows that the robot is maintaining
the goal of moving forward at a moderate speed, i.e., it is in the
region of opportunity (Figure 2C). When the robot reaches the
wall, it experiences states that it may not have experienced in the
past. However, it eventually learns to attain the goal of moving
forward at a moderate speed.

Figures 4A,B shows the trajectory for goal G5 (stop for an
obstacle in front) and G8 (stop for obstacle behind), respectively.
The robot does not learn to attain these goals. The obstacles in the
arena are the four walls hence the likelihood of the reward are the
areas closer to the wall. Considering the orientation for goals G5

andG8, the mobile robot has to be beside the top wall as shown in
green in Figure 4C. The probability of the mobile robot to be in
a particular square with the orientation required for G5 or G8 is
(81)/(83× 83× 9× 9× 9)= 0.002%. This lack of opportunity is
the reason why the robot does not learnG5 andG8 goals. In order
to confirm this hypothesis, we continued the experiments with
these two goals with the reduced arena size. The size of the arena
was reduced to 0.25 × 0.25m to increase the opportunity for the
mobile robot to be near a wall. In that arena, the probability of the
mobile robot to find itself in the required situation is increased by
the factor of 400 (20 × 20) to 0.65%, thus increasing its ability to
attain G5 and G8 goals.

Approach Goal Results
Table 2 shows the results of the experiments for the approach
goals. The 12 goals and their corresponding goal IDs, goal
attributes and the meaning of the goal, are the same as the goals
detailed in Table 1. The goals for these set of experiments will be
treated as approach goals, i.e., the aim of the robot is to approach
those goal states. Values of the parameters of Equation (5) and the
method in which experiments were conducted for the approach
goals were the same as detailed in section Maintenance Goal
Learning Results.

The design of the reward function for the approach goal type
is such that it rewards an approach attempt. Hence if the agent
is getting closer to the goal, it receives a positive reward. Goals,
when treated as approach goals, are relatively straightforward to
attain as seen in the M5 column in Table 2 (average number of
steps positive reward received as a percentage). In the case of
the goal G1, for instance, the agent receives a positive reward for
32.49% of the time steps. This is because the attempt to approach
the goal is rewarded irrespective of the distance between the
current state and the goal state. Results also show that all the
goals, when treated as approach type, are attainable (even the
invalid goals) indicating that it is possible to approach the goal
states of each of the 12 goals.

Avoidance Goal Results
Table 3 shows the results of the experiments for the avoidance
goals. The 12 goals and their corresponding goal IDs, goal
attributes, and the meaning of the goal, are the same as the goals
detailed in Table 1. The goal states for these experiments are
treated as avoidance goals, i.e., the aim of the robot is to avoid
those goal states. Values of the parameters of Equation (6) and the
method in which experiments were conducted for the avoidance
goals were the same as detailed in section Maintenance Goal
Learning Results.

The reward function for the avoidance goal type rewards the
attempt to avoid the goal, i.e., the agent is moving away from the
goal state. As it can be seen in the table, the goals, when treated as
avoidance goals, are relatively easy to attain. This is because the
attempt to avoid the desired goal state is rewarded irrespective of
the distance between the current state and the goal state. Based
on the M7 column (average number of times the goal state was
not avoided), it can be said that even the goals that are difficult to
attain due to lack of opportunity, when treated as maintenance
goals (for example, G5, G8, and G9), are easier to avoid when
treated as avoidance goals.

Achievement Goal Results
Table 4 lists the set of achievement goals generated by Merrick
et al. (2016). The goal ID, goal attributes, and the meaning of
the goal are the output of the SART based clustering as detailed
by Merrick et al. (2016). The goal state is not the actual state

FIGURE 4 | (A) Trajectory for G5. (B) Simultation for a G8. (C) Likelihood of the reward for G5 and G8.
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Table 2 | Experiments and results for approach goals.

ID M5 M6

G1 32.49% ± 0.64 7.56% ± 0.16

G2 34.66% ± 0.62 8.00% ± 0.21

G3 36.58% ± 0.41 8.39% ± 0.14

G4 35.88% ± 0.43 8.52% ± 0.11

G5 37.27% ± 0.88 8.84% ± 0.34

G6 37.25% ± 0.38 8.74% ± 0.19

G7 36.77% ± 0.57 8.76% ± 0.22

G8 37.15% ± 0.64 8.73% ± 0.22

G9 36.71% ± 0.98 8.60% ± 0.26

G10 36.12% ± 0.60 8.24% ± 0.23

G11 36.89% ± 0.86 8.74% ± 0.26

G12 33.58% ± 0.58 7.40% ± 0.17

experienced by the mobile robot but is an event as described by
eit = sit− sit−1. Thus, for an achievement goal type, the aim of the
mobile robot is to learn to achieve the transition described by that
event, for example, to learn to achieve goal aG5 listed in Table 4,
which is to increase speed of both wheels, the robot must learn to
increase its right wheel speed by 0.9 and left wheel speed by 0.6 in
a single transition of state. The goal is considered achieved when
the transition eit is reached regardless of what the state sit−1is.

Table 4 also shows the results of the experiments (with a
95% confidence interval) for the achievement goals. The e-puck
mobile robot simulation was run for 10 trials for each goal with
25,000 steps in each trial. Parameters of Equation (7) were same
as in the above experiments, i.e., ρ was set to 0.9, σ set to 1, ϕ set
to −1 and d was the Euclidian distance. Also, the RL exploration
parameter epsilon was set to 0.15 with a linear decay schedule.
For achievement goals too, when a trial was finished the next trial
started at the same position and orientation of the e-puck mobile
robot at which the previous trial ended. TheQ table, however, was
reset after each trial thus there was no learning carried forward
between the trials.

While the robot easily achieved goals aG1 and aG5, it could
either achieve other valid goals only a few times or not able to
achieve them at all. Goals aG2, aG8, aG10, aG11, aG13, and aG17

could be achieved only a few times whereas goals aG4, aG9, aG14,
aG16, and aG21 could not be achieved at all. The reason for that
is due to the lack of opportunity. For example, the mobile robot
must be near a wall for the event of detecting an obstacle at the
front or turning right to avoid an obstacle behind. The argument
made in section Maintenance Goal Learning Results regarding
reducing the size of the arena to increase the opportunity for
learning is valid here too.

Goals aG3, aG6, aG7, and aG15 could not be achieved due
to the granularity of discretization. For the experiments in this
paper, the wheel speed and orientation are discretized into nine
values ranging from –π to π. The wheel speed difference for the
events for those goals was too small hence when discretized; the
values returned are 0 resulting in no change to the wheel speed,
i.e., the event of the robot turning left, or right is not detected.
For example, consider aG7 where the goal is to turn right by

Table 3 | Experiments and results for avoidance goals.

ID M5 M6 M7

G1 36.67% ± 0.32 8.63% ± 0.14 45

G2 34.88% ± 0.67 8.05% ± 0.25 14

G3 32.61% ± 0.41 7.53% ± 0.16 12

G4 33.16% ± 0.53 7.62% ± 0.14 12

G5 35.60% ± 1.01 8.21% ± 0.30 1

G6 34.22% ± 0.94 7.95% ± 0.25 16

G7 33.46% ± 0.55 7.75% ± 0.22 13

G8 34.90% ± 0.84 8.11% ± 0.18 0

G9 35.54% ± 0.64 8.31% ± 0.17 0

G10 32.74% ± 0.75 7.52% ± 0.16 6

G11 35.46% ± 0.97 8.26% ± 0.33 0

G12 37.00% ± 0.77 8.56% ± 0.20 7

increasing the right wheel speed by 0.1 (also achieving the change
in orientation of −0.1). Discretization of the range of 2π radians
into 9 buckets gives the granularity of 0.7 radians, thus making
the change of 0.1 radians difficult to detect. This, however, does
not mean that the goal is invalid. It is a valid goal, just that, for the
robot to be able to learn a goal of such precise transition would
require experiments to be run with lower granularity values of
wheel speed and orientation, which in turn increases the state
space and the size of the Q table and drastically increases the time
to learn to achieve those goals.

Figure 5A shows the trajectory for aG5 (increase speed of both
wheels) for one of the trials. The robot learns to attain this goal.
In effect, this goal means that the robot has to keep increasing
the speed of its wheels. Attaining the maximum speed for both
wheels results in the robot not able to achieve the goal anymore
and thus receives a negative reward. The robot, however, is again
able to attain the goal. This continues until the end of the trial.

Figure 5B shows the trajectory for aG22 (turn left) for 25,000
steps. The robot is not able to learn to achieve that goal. The
trajectory, however, is surprising, showing long stretches of
straight line. We let that trial continue for 100,000 steps, the
trajectory for which is shown in Figure 5C. The robot still does
not learn to achieve the goal. This is because the change in the
wheel speed, due to the event (2.0 radians per second for the
left wheel speed), is too large for one-time step. In a single step,
the maximum change can only be π/2 radians as per the design
of the action set. Hence, the goal appears to be unreasonable.
The goals aG19 and aG20 too appear to be unreasonable for the
same reason, and as can be seen from Table 4, they too could
not be achieved. aG12 is unreasonable because goal attributes are
showing transition for Right and Front-Left sensors without any
transition for Front-Right. It is hard to imagine the location of the
mobile robot in the arena that will result in such an event. aG18

too appears unreasonable because considering the change to the
wheel speeds (1.2 and 0.5 radians per second), the transition in
the orientation (−0.1 radians) is too small.

Either such unreasonable events experienced by the robot
during the experience gathering stage in the experiments run by
Merrick et al. (2016) could be due to noise, delay in sensing or
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Table 4 | Experiments and results for achievement goals.

ID Goal attributes Meaning of goal M2 Is goal valid?

aG1 (0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0) Achieve no change 25000 ± 0 Yes

aG2 (0.0, 0.0, 0.0, 0, 0, 1, 0, 0, 0) Detect obstacle in front 43 ± 21 Yes

aG3 (−0.1, 0.0, 0.0, 0, 0, −1, 0, 0, 0) Turn left to avoid obstacle on the right 0 ± 0 Yes

aG4 (−0.6, 0.0, −0.1, 0, 0, 0, −1, 0, 0) Turn left to avoid obstacle on the right 0 ± 0 Yes

aG5 (0.9, 0.6, 0.0, 0, 0, 0, 0, 0, 0) Increase speed of both wheels 6521 ± 268 Yes

aG6 (−0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0) Turn left 0 ± 0 Yes

aG7 (0.1, 0.0, −0.1, 0, 0, 0, 0, 0, 0) Turn right 0 ± 0 Yes

aG8 (0.1, −0.4, 0.0, 0, 0, 0, 0, −1, −1) Turn right to avoid obstacle behind 54 ± 17 Yes

aG9 (−0.3, 0.4, −0.3, 0, 0, −1, −1, 0, 0) Turn left to avoid obstacle on the right 0 ± 0 Yes

aG10 (0.0, 0.5, 0.2, 0, 0, 1, 0, 0, 0) Turn left to detect obstacle on the right 29 ± 16 Yes

aG11 (−0.6, −0.8, −0.2, 0, 0, −1, 0, 0, 0) Turn right to avoid obstacle 10 ± 4 Yes

aG12 (0.0, 0.7, 0.3, 0, −1, 1, 0, 0, 0) Turn left to sense obstacle on right 0 ± 0 No

aG13 (0.2, −0.8, −0.4, 0, 0, 0, 0, 1, 0) Turn right to sense obstacle on left 12 ± 4 Yes

aG14 (0.0, 0.6, 0.1, 0, 0, 0, 0, 1, 1) Turn to detect obstacle behind 0 ± 0 Yes

aG15 (0.0, −0.1, 0.0, 0, 1, 1, 0, 0, 0) Turn right to sense obstacle in front 0 ± 0 Yes

aG16 (1.0, 0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn right to sense obstacle on left 0 ± 0 Yes

aG17 (0.7, 0.9, 0.3, 0.0, −1, 0, 0, 0, 0) Turn left to sense obstacle on left 18 ± 3 Yes

aG18 (1.2, 0.5, −0.1, 0, −1, 0, 0, 0, 0) Turn to avoid obstacle on left 0 ± 0 No

aG19 (0.2, 2.7, −0.2, 0, −1, 0, 0, 0, 0) Turn to avoid obstacle on left 0 ± 0 No

aG20 (−1.7, −0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on right 0 ± 0 No

aG21 (−0.7, −1.2, −0.3, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on left 0 ± 0 Yes

aG22 (1.4, 2.0, 0.2, 0, 0, 0, 0, 0, 0) Turn left 0 ± 0 No

FIGURE 5 | (A) Trajectory for aG5. (B) Trajectory for aG22 (run for 25,000 steps). (C) Simultation for a aG22 run for 100,000 steps.

that the mobile robot might have got stuck and then unstuck
to the wall resulting in an invalid event (et = st − st−1) or
that the unreasonable events were due to an error in clustering,
resulting in cluster centroid not being a correct representative of
the cluster. If latter was the case, then it requires reanalysis of
the generated clusters. Possible solutions to rectify the incorrect
representation of the cluster centroid could be to place a
minimum threshold on the cluster size or to shift the cluster
centroids to the nearest valid attribute value. In any case, those
goals appear unreasonable and are marked as invalid in the
table. Based on the findings of the above experiments, for the
experiments in the next section, we have removed the orientation
attribute from the RL state vector, reduced the size of the arenas
and, not used any of the invalid goals.

DEMONSTRATION OF HOW PRIMITIVE

GOAL-BASED REWARD FUNCTIONS CAN

BE COMBINED

Not all tasks can be represented as a single goal type. Consider
an example detailed in Dastani and Winikoff (2011), if the task
for a personal assistant agent that manages a user’s calendar is
to book a meeting, it can be represented as an achievement goal,
however people’s schedules change and hence to ensure that the
meeting invite remains in the calendar of all the participants, the
task is better modeled by a combination of goal types. The goal
can be represented as “achieve then maintain” where the aim is
to achieve the goal and then maintain it. As another example,
consider a wall following mobile robot. The robot has to first
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approach a wall and then maintain a set distance from the wall
either to its left or to its right side. This goal can be represented
as “approach then maintain” where the aim of the mobile robot is
to first approach the goal state (i.e., a wall to its left or right) and
then maintain it. We term this as a compound goal-based reward
function, as it can be built from multiple primitive goal-based
reward functions.

In this section, we demonstrate compound goal-based reward
functions constructed using if-then rules to trigger different
primitive reward functions in different states. In this paper,
the if-then rules are hand-crafted as we aim to demonstrate
that primitive reward functions can be combined to motivate
learning of complex behaviors. The question of how to do
this autonomously is discussed as an avenue for future work
in Section Autonomous Generation of Compound Reward
Functions and Conditions for Goal Accomplishment.

Experimental Setup
To demonstrate compound goal-based reward functions, we use
the e-puck robot in three new environments. The environments
are as shown in Figures 6A–C. The maze environment, shown
in Figure 6A, has walls to form a simple maze. In this
environment, the goal of the robot is to follow a wall.
That goal is actually a compound goal. In order to achieve
the goal, the robot has to learn primitive goals detailed
in Tables 1–4. The compound Function 1 details the if-then
rules to achieve this goal. The environment with obstacles,
shown in Figure 6B, has cylindrical and cuboid objects that
act as obstacles. The goal of the robot is to learn to avoid
obstacles. The compound Function 2 details the if-then rules
to achieve that goal. The third environment is shown in
Figure 6C is a circular arena with tracks. The goal of the
robot is to learn to follow a track which is detailed by
compound Function 3. Experiments were run for the following
goals expressed using compound goal-based reward functions.
The primitive reward functions shown in the if-then rules
(Function 1, Function 2 and Function 3) are the same as in
Tables 1–4.

We use the same Dyna-Q algorithm that is detailed in
section Experiments forMaintenance, Approach, Avoidance, and
Achievement Goal Types. Action selection was using the epsilon-
greedy method with epsilon parameter set to 0.1 throughout the
learning process. 10 trials were run for each of the experiment
with each trial consisting of 25,000 steps.

The state space for this robot is different from that in
section Experiments for Maintenance, Approach, Avoidance,
and Achievement Goal Types. In addition to the six distance
sensors as detailed in the experiments in section Experiments
for Maintenance, Approach, Avoidance, and Achievement Goal
Types, we also use the ground sensors for these experiments.
We label the three ground sensors as Ground-Left, Ground-
Centre, Ground-Right. The state of the mobile robot comprises of
following parameters: left wheel direction, right wheel direction,
left sensor value, right sensor value, front-left sensor value,
front-right sensor value, rear-left sensor value, rear right sensor
value, ground left sensor value, ground center sensor value and
ground right sensor value. The state is a vector represented

Function 1 | Wall following goal in the maze arena.

if obstacle on the left

aG17 – achieve turning left

elseif obstacle close on the left

G1 – maintain moving forward

elseif obstacle on the right

aG11 - achieve turning right

elseif obstacle close on the right

G1 – maintain moving forward

elseif obstacle at the front and left /*i.e,corner on the left */

achieve turning right

elseif obstacle at the front and right /*i.e,corner on the right */

achieve turning left

elseif obstacle at the front

aG11 - achieve turning right

elseif no obstacle nearby

G1 – maintain moving forward

end

Function 2 | Obstacle avoidance goal in the arena with obstacles.

if obstacle on the left

aG13 – achieve turning right

elseif obstacle on the right

aG4 - achieve turning left

elseif obstacle at the front and/or side

aG11 - achieve turning right

elseif obstacle at the back

G1 – maintain moving forward

elseif no obstacle anywhere nearby

G1 – maintain moving forward

end

Function 3 | Track following goal in the circular arena with tracks.

if the obstacle anywhere nearby

aG11 - achieve turning right

elseif track to the left

achieve turning left

elseif track to the right

achieve turning right

elseif on the track

G1 – maintain moving forward

end

by [ωR
ω
L sL sR sFL sFR sRL sRR sGL sGC sGR]. ω

R and ω
L

are the rotational velocities of the right and the left wheels
that are discretized to binary values with 1 indicating that the
wheel is moving forward and 0 indicating that it is moving
backwards. For the proximity sensors, we use binary values with
0 indicating that there is no object in the proximity of the sensor
and 1 indicates that the object is near. For ground sensors as
well, we use binary values with 0 indicating that the sensor is
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FIGURE 6 | (A) Maze arena. (B) Arena with obstacles. (C) A circular arena with tracks.

Table 5 | Results for compound goals.

ID Goal Description M1 M2 M3 M4

G1 Wall following 1373 ± 29 16833 ± 115 10 ± 0 78 ± 6

G2 Avoiding obstacles 747 ± 24 13613 ± 109 11 ± 0 81 ± 8

G3 Following a track 992 ± 24 14634 ± 127 9 ± 0 74 ± 8

detecting light color and 1 indicating that it is indicating dark
color.

The action space comprises of three values: 1–turn left, 2–
move forward, and 3–turn right.

Results
Table 5 shows the results of the wall following, obstacle
avoidance, and track following goals. Results were averaged
over 10 trials, and its standard deviation is shown. The metrics
used to measure agent’s performance are the same as the
ones defined in section Primitive Goal-based Motivated Reward
Functions however here themetricsM1,M2,M3 andM4 measure
cumulative reward gained by the agent for all the primitive goals
combined, i.e., the measurement for the compound goal-based
reward.

Figure 7 shows the trajectory for one of the trials of the
mobile robot learning to follow the wall using compound goal-
based reward function (Function 1). The function comprises of
a combination of achievement and maintenance goal types each
of which are triggered in a specific situation. When there is no
wall in the proximity, the robot is learning to move forward.
Once it is near the wall (either to the left or the right), it learns
to follow the wall on that side. When it reaches the edge of the
wall, it is not able to follow it around for the initial two or three
attempts however eventually learns to follow the wall around and
continues to follow the wall as shown in the zoomed-in section
of Figure 7. Trajectory labeled 4 in the zoomed-in section of
Figure 7 is the one where the agent follows the wall all the way
around.

Figure 8A shows the trajectory for one of the trials of the
mobile robot learning to avoid obstacles using the compound

goal-based reward function (Function 2). This function too
comprises a combination of achievement and maintenance goal
types each of which are triggered in a specific situation. When
there is no obstacle nearby, the robot has to learn to move
forward. When it is close to an obstacle, it has to learn to
turn right and when it has the obstacle at its back it has to
learn to move forward, thus moving away from the obstacle.
Figure 8B shows the trajectory for one of the trials of the mobile
robot learning to follow a track using the compound goal-based
reward function (Function 3). When the robot has a wall in
its proximity, it has to learn to turn right. When near the
track, it has to learn to turn toward the track such that it is
entirely on the track. Once on the track, it has to learn to move
forward.

CONCLUSION AND FUTURE WORK

This paper proposed reward functions for reinforcement
learning based on the type of goal as categorized by the
Belief Desire Intension community. The reward functions for
the maintenance, approach, avoidance, and achievement
goal types exploit the inherent property of its type,
making them task-independent. Using simulated e-puck
mobile robot experiments, we show how these intrinsic
reward functions bridge the gap between autonomous goal
generation and goal learning thus endowing the robot with
the capability to learn in an autonomous and open-ended
manner.

We present metrics to measure the agent’s performance.
The measurements show that using the proposed reward
functions; all the valid goals will be learnt, some slower than
the others due to the lack of opportunity. The goals that
are not learnt are either very difficult to learn, unreasonable
or invalid. The results also highlight the importance of
attributes used in the design of the state vector as it can
severely limit the learning opportunity, for example, usage
of orientation attribute in the state vector. Although, this
paper does not make any claim whether for or against any
goal generation techniques, in the future work, the findings
from this paper could be used to tune the goal generation
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FIGURE 7 | Trajectory for wall following goal in the maze arena.

FIGURE 8 | (A) Trajectory for obstacle avoidance goal in the arena with obstacles. (B) Trajectory for track following goal in the arena with tracks.

technique used by Merrick et al. (2016). We also show that
the maintenance goals are easier to learn than the achievement
goals. Approach and avoidance goals are even easier due to
their inherent nature. This is because, for the maintenance
goal, the agent is rewarded only when it can maintain the
distance below a certain threshold, whereas, for approach and
avoidance goals, the agent is rewarded for the approach or
the avoidance attempt irrespective of its distance from the
goal.

We further show how rather than treating the goal of
a single type, the agent can decide whether it wants to
maintain, approach, avoid or achieve the goal based on
the situation it is experiencing. This situation specific
goal type usage means the agent now knows what it
has to learn in a specific situation thus directing the
learning. A compound goal-based reward function can
be designed by chaining any number of primitive reward
functions. This raises following directions for future
work.

Autonomous Generation of Compound

Reward Functions
This paper demonstrated that primitive goal-based reward
functions could be combined using if-then rules to create
learnable compound reward functions. However, this raises a
question whether it is possible for an agent to self-generate
such rules or some other means of combining the primitive
reward functions. One potential solution could be for the agent
to autonomously determine the structure or regions in its state
space each of which relates to a primitive goal. Merrick et al.
(2016) have shown how the history of experienced states can be
used to generate the goals. In a similar fashion, a coarse level
clustering can be run on the experienced states to form these
regions in the state space. Once those regions are known, one
can then map the regions (primitive goal) with the goal state
(compound goal) to enable the generation of the if-then rules.
A formal framework is required for identifying complementary
or conflicting goals so that complementary goals can be formed
into compound reward functions and conflicting goals avoided.
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Conditions for Goal Accomplishment
We also saw in this work that the agents learn solutions to some
goals more effectively when they are in certain situations where
the conditions support learning of that particular goal. This
suggests that there is a role for concepts such as opportunistic
learning (Graham et al., 2012) to maximize the efficiency of
learning such that the agent only attempts goals that are feasible
in a given situation.
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Many real-world decision-making problems involve multiple conflicting objectives that

can not be optimized simultaneously without a compromise. Such problems are known

as multi-objective Markov decision processes and they constitute a significant challenge

for conventional single-objective reinforcement learning methods, especially when an

optimal compromise cannot be determined beforehand. Multi-objective reinforcement

learning methods address this challenge by finding an optimal coverage set of

non-dominated policies that can satisfy any user’s preference in solving the problem.

However, this is achieved with costs of computational complexity, time consumption,

and lack of adaptability to non-stationary environment dynamics. In order to address

these limitations, there is a need for adaptive methods that can solve the problem in an

online and robust manner. In this paper, we propose a novel developmental method that

utilizes the adversarial self-play between an intrinsically motivated preference exploration

component, and a policy coverage set optimization component that robustly evolves

a convex coverage set of policies to solve the problem using preferences proposed

by the former component. We show experimentally the effectiveness of the proposed

method in comparison to state-of-the-art multi-objective reinforcement learning methods

in stationary and non-stationary environments.

Keywords:multi-objective optimization, intrinsicmotivation, adversarial, self-play, reinforcement learning,Markov

process, decision making

1. INTRODUCTION

Reinforcement learning (RL) is a learning paradigm that works by interacting with the environment
in order to evolve an optimal policy (action selection strategy) guided by the objective to maximize
the return of a reward signal (Sutton and Barto, 1998). Recently, deep reinforcement learning (DRL)
benefit from the automatic hierarchical features extraction and complex functional approximation
of deep neural networks (DNNs) (LeCun et al., 2015). This has led to many breakthroughs (Mnih
et al., 2015; Silver et al., 2016, 2017) in solving sequential decision-making problems fulfilling the
Markov property [known as Markov decision processes (MDPs)]. While the majority of problems
addressed by DRLmethods involve only one objective of maximizing a scoring function (e.g., score
in an Atari game, or the game of Go), many real-world problems constitute multiple conflicting
objectives that cannot be optimized simultaneously without a tradeoff (prioritization) among the
defined objectives. Take a search and rescue task as an example in which a robot has to maximize

87

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00065&domain=pdf&date_stamp=2018-10-09
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sherif.abdelfattah@student.adfa.edu.au
https://doi.org/10.3389/fnbot.2018.00065
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00065/full
http://loop.frontiersin.org/people/320844/overview
http://loop.frontiersin.org/people/77616/overview


Abdelfattah et al. Evolving Robust Policy Coverage Sets

the number of victims found, minimize exposure to fire risk to
avoid destruction, and minimize the total task time. Another
example could be a patrolling drone aiming at maximizing
the area of the scanned region, maximizing the number
of detected objects of interest, and maximizing battery life.
Such problems are known as multi-objective Markov decision
processes (MOMDPs)1.

Multi-objective reinforcement learning (MORL) extends the
conventional RL paradigm to accept multiple reward signals
instead of a single reward signal, each one is dedicated to
an objective (Roijers and Whiteson, 2017). Basically, MORL
methods fall into two broad groups: single policy group, and
multiple policy group (Roijers and Whiteson, 2017). In the
former group, it is assumed that the user’s preference is defined
before solving the problem, therefore, it can be used to transform
it into a single objective problem using scalarization functions.
Albeit, this assumption can be difficult to satisfy inmany practical
scenarios. Alternatively, the latter group aims at finding a set of
optimal policies that can satisfy any user’s preference in solving
the problem. In order to achieve this, these methods perform
an intensive search process using an environment’s model to
find such a set of policies. This makes them difficult to operate
in an online manner and to efficiently adapt to non-stationary
dynamics in the environment.

In this paper, we do not assume the existence of an optimal
user’s preference beforehand, so we will consider the multiple
policy MORL approach. In order to deal with the limitations
of this approach, we look at the two building blocks of
these methods depicted in Figure 1: the preference exploration
component; and the policy coverage set optimization component.
Currently, preference exploration is achieved through random
exploration in evolutionary methods (Busa-Fekete et al., 2014),
or by systematic heuristic approaches such as the optimistic
linear support (OLS) (Roijers et al., 2014). However, these
approaches adopt exhaustive search scheme that can not adapt
efficiently to the non-stationary dynamics in the environment. In
order to overcome these limitations, our proposed intrinsically
motivated preference exploration component targets three
main characteristics. First, it actively explores preferences that
contribute to the large mass of uncertainty about the policy
coverage set’s performance. Second, it performs this exploration
automatically guided by an intrinsic reward signal. Third, it
can adapt to non-stationary dynamics in the environment by
revisiting the affected preference areas. While for the policy
coverage set optimization component, we utilize the concept of
policy bootstrapping using steppingstone policies. Basically, this
concept is based on the assumption that while there is a large
number of policies each is specialized for a specific preference,
there is a smaller number of steppingstone policies that can
bootstrap policies within intervals of preferences. By targeting
steppingstone policies instead of specialized policies during the
evolution of the policy coverage set, we can adapt robustly to
non-stationary dynamics in the environment.

1This should not be confused with mixed observability Markov decision processes

abbreviated similarly as MOMDPs.

FIGURE 1 | A block diagram for a multiple policy MORL approach

for solving MOMDPs.

In this paper, we address the MOMDP problem through
an adversarial intrinsically motivated self-play approach. Our
contribution comes into three folds. First, we propose a novel
preference exploration technique based on knowledge-seeking
intrinsic motivation. Second, we propose a novel algorithm for
fuzzy policy bootstrapping to developmentally evolve the policy
coverage set in MOMDP problems. Third, we experimentally
evaluate the performance of our proposed method using
common multi-objective environments in MORL literature and
comparing to the state-of-the-art MORL methods.

The rest of this paper is organized as follows. Section 2
introduces the background concepts. Section 3 reviews the
related literature. Section 4 describes our proposed method.
Section 5 illustrates our experimental design. Section 6 presents
the results and discusses the findings. Finally, section 7 concludes
the work and indicates the future work.

2. BACKGROUND

In this section, we are going to introduce the related background
concepts and the research problem definition.

2.1. Multi-Objective Optimization
In a multi-objective optimization problem there are multiple
objectives that are naturally in conflict with each other and can
not be optimized simultaneously without a compromise (Deb,
2014). The problem can bemathematically formulated as follows:

max (R1 (π) ,R2 (π) , . . . ,RM (π)) (1)

s.t. gj (π) ≤ 0, j = 1, 2, . . . , J

The aim is to optimize (maximize or minimize) a set of reward
functions

{
R1(π),R2(π), . . . ,RM(π)

}
, where each function is

dedicated to a single objective om (m = 1, 2, . . . ,M), the
parameter π ∈ 5 represents the policy parametrization (decision
variables) to be optimized over the parameters search space
5, and the set

{
g1(π), g2(π), . . . , gJ(π)

}
represents the defined

constraint functions of the problem.
In order to find the coverage set of policies that can satisfy any

user’s preference in solving the problem, a search procedure has
to find and rank policies based on the dominance over the defined
objectives.

Definition 2.1. Dominance: A solution (A) dominates solution
(B) if (A) is better than (B) for at least one objective and is equal
to (B) for all other objectives.

For further illustration of Definition 2.1, Figure 2 shows the
solution space for a two-objective problem. It can be noticed
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FIGURE 2 | The solution space of a two-objective problem. The red circles are

representing the set of non-dominated solutions known as the Pareto front.

that solutions (A) and (C) dominate solution (B), while the set
of solutions represented in red circles are the Pareto front of
non-dominated solutions in this problem.

Definition 2.2. Pareto Front: The Pareto front is the set of non-
dominated solutions that solves the multi-objective problem.

The Pareto front is represented by the red dots in the example
illustrated by Figure 2.

Definition 2.3. Preference: A preference is defined as a weight
vector with each weight element dedicated to a specific objective

Ew =
[
w1,w2, . . . ,wM

]T
, such that the sum of all the elements

equals one
∑M

m= 1 w
m = 1.

Definition 2.4. Scalarization Function: A scalarization function
h, transforms a vector of multiple objectives’ values into a single
objective scalar value given a preference as parameter oEw =
h(Eo, Ew).

When the scalarization function is linear or piecewise linear,
the front shaped by intersecting functions parametrized by
different preferences is the convex hull (CH).

Definition 2.5. Convex Hull: A convex hull is a subset of the
policy space (5) that contains optimal policies that can match
any user’s preference:

CH(5) =
{
π :π ∈ 5 ∧ ∃Ew ∀

(
π ′ ∈ 5

)
Ew · Erπ ≥ Ew · Erπ ′

}

We illustrate graphically the CH concept for a linear scalarization
function over two objectives in Figure 3. In Figure 3A, the two
axes indicate the normalized reward values for each objective.
The CH is represented by the convex solid line surface that

includes all the red dots. While the Pareto front is represented
by the non-convex surface drawn by dashed and solid lines that
includes all the red and blue points. The red dots represent
undominated policies that fall in the CH. The blue dots represent
the undominated policies that fall outside the CH and within the
Pareto front. The black dots represent dominated policies. Given
a linear scalarization function, Figure 3B shows the scalarized
reward output (a line) for each different preference. We depict
the first weight component (w1) on the x-axis (w2 = 1 − w1),
and the scalarized reward value on the y-axis. The set of optimal
policies that lie in the CH can be found in the surface represented
by black bold lines in Figure 3B. This upper surface is a piecewise
linear and convex function.

The CH surface can contain excess policies (Roijers et al.,
2013). Therefore, we can define a subset of it that contains the
minimal number of unique policies that solve the problem.

Definition 2.6. Convex Coverage Set: A convex coverage set
(CCS) is a subset of the CH that can provide for each preference
(Ew) a policy whose scalarized reward value is maximal:

CCS (5) ⊆ CH (5) ∧
(∀Ew) (∃π)

(
π ∈ CCS (5) ∧ ∀

(
π ′ ∈ 5

)
Ew · Erπ ≥ Ew · Erπ ′

)

2.2. Multi-Objective Markov Decision
Processes
Markov decision processes (MDPs) formulate a sequential
decision making framework in which an agent observes the
environment’s state (st) at time t, takes an action (at), transits to
a new state (st+1), and gets a reward value (rt+1) for being in the
new state (Papadimitriou and Tsitsiklis, 1987). A multi-objective
Markov decision process (MOMDP) extends this sequential
decision making framework by allowing a vector of reward
signals to be passed to the agent after transiting to the new
state (Roijers et al., 2013). The difference between a MDP and
MOMDP is depicted in Figure 4. The MOMDP formalism is
represented by a tuple

〈
S,A,Pss

′ , ER,µ, γ
〉
, where S is the state

space, A is the action space, Pss′ = Pr(st+1 = s′|st = s, at = a)
is the state transition probability, ER ∈ R

M ∀R : S × A × S′ →
r ∈ R is the vector of reward functions dedicated to M number
of objectives, µ = Pr(s0) is the probability distribution of initial
states, and γ ∈ [0, 1) is the discounting factor for the influence of
the future rewards.

The objective of the learning agent is tomaximize the expected
scalarized reward return starting from time t using a scalarization
function h given a user’s preference Ew:

REwt =
T∑

l= 0

γ lh (Ert+l+1, Ew) (2)

where T constitutes the time horizon which is equal to∞ in the
infinite time horizon scenario.

2.3. Problem Definition
Given aMOMDP problem formalism

〈
S,A,Pss

′ , ER,µ, γ
〉
, we need

to find the CCS with the minimal cardinality that maximizes the
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FIGURE 3 | Graphical representation of the Convex hull concept in comparison to the Pareto front using a two objective example. (A) Pareto front surface represented

by solid and dotted lines vs. Convex hull surface represented only by solid lines. (B) Convex hull surface in the weight space represented by the bold lines.

FIGURE 4 | Markov decision process (MDP) in comparison to multi-objective Markov decision process (MOMDP). (A) Markov decision process (MDP). (B)

Multi-objective Markov decision process (MOMDP).

scalarized reward return for any given set of preferences within a
T time horizon:

max REw
i

t = E[

T∑

j= 0

γ jh (Ert+j+1, Ewi)] (3)

min |CCS|

s.t. Ewi ∈W ∀Ewi ∈ R
M ,

M∑

m= 1

wm = 1

Where W is the set of all legitimate user’s preferences over the
defined objectives.

3. RELATED WORK

In this section, we explore the related work for multi-objective
reinforcement learning (MORL) and intrinsically motivated
reinforcement learning (IMRL), to highlight the contribution of
our paper.

3.1. Multi-Objective Reinforcement
Learning (MORL)
MORL methods address the MOMDP problem by two main
approaches: single policy approaches; and multiple policy

approaches (Roijers et al., 2013). If the user’s preference is
known before solving the problem, then a single policy can be
found by scalarizing the multiple reward signals and optimizing
the scalarized reward return using conventional single objective
reinforcement learning methods. However, this assumption
is rarely satisfied. Alternatively, the multiple policy approach
aims at exploring and ranking the non-dominated policies
in order to find the policy coverage set that can satisfy any
user’s preference for solving the problem. In the following
subsections, we review relevant literature for each of these two
approaches.

3.1.1. Single Policy Approaches
Lizotte et al. (2010) proposed a value iteration algorithm
for ranking actions in finite state spaces using a linear
scalarization function. Moffaert et al. (2013) proposed an
updated version of the Q-learning algorithm (Watkins and
Dayan, 1992) using the Chebyshev scalarization function to
solve an MOMDP grid-world problem. Castelletti et al. (2013)
utilized non-linear scalarization methods with a random weight
space exploration technique to optimize the operation of
water resource management systems. Perny and Weng (2010)
addressed the MOMDP problem using a linear programming
technique adopting the Chebyshev scalarization function.
Ogryczak et al. (2011) extended previously mentioned linear
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programming method by replacing the non-linear scalarization
with an ordered weighted regret technique for ranking actions.
Their technique estimates the regret value per each objective with
respect to a reference point, then actions are ranked using the
combined regret value overall objectives.

Alternatively to the scalarization approach, constrained
methods for the MOMDP problem have been introduced by
Feinberg and Shwartz (1995) and Altman (1999). These methods
optimize a single objective, while treating the other objectives as
constraints on the optimization problem.

3.1.2. Multiple Policy Approaches
A preference elicitation approach has been proposed by Akrour
et al. (2011) to incorporate an expert’s preference during the
policy learning process in an algorithm called preference-based
policy learning (PPL). Basically, the proposed algorithm needs
a parameterized formalism of the policy in order to sample
different trajectories by sampling from the parameter space,
then the expert provides his qualitative preference based on
the lately demonstrated trajectories, which is used to optimize
the policy’s parameters in a way that maximizes the expert’s
expected feedback. Similarly, Fürnkranz et al. (2012) proposed
a framework for ranking policy trajectories based on qualitative
feedback provided by the user. However, this methodology
requires reaching the Pareto front of optimal policies in the
beginning, then ranking trajectories samples from those policies
according to the user’s feedback.

An evolutionary computation method was introduced by
Busa-Fekete et al. (2014) in order to generate the set of non-
dominated policies shaping the Pareto front. Then, at each state,
they rollout actions from this Pareto optimal set and rank them
given the user’s feedback in order to identify the optimal action
to follow.

Roijers et al. (2014) proposed the Optimistic Linear Support
(OLS) algorithm which aims at evolving an approximate policy
coverage set by examining different possible weight vectors of
the defined objectives. For example, if there are two objectives in
the problem, it starts by examining the two corner preferences
(i.e., [0.1, 0.9], [0.9, 0.1]) and evolves two optimal policies for
those preferences through single-objective reinforcement learner
(i.e., Q-learning). Then, the algorithm is going to evaluate the
performance of the two evolved policies in terms of average
reward achieved given a threshold value (epsilon). The policy
that will exceed this value will be added to the coverage
set. Afterwards, the algorithm will try to find a mid-point
preference between each explored preference pairs and repeat the
performance evaluation against the defined threshold until no
more performance enhancements are achieved.

Gábor et al. (1998) introduced the Threshold Lexicographic
Ordering (TLO) algorithm which starts with a sample of
uniformly distributed preferences and for each of them it evolves
a policy by selecting at each state one of the optimal actions
(each dedicated with a specific single objective given its weight)
exceeding a threshold value or taking the action with the max
value if all actions are below the threshold value. Similarly, the
decision to add a policy to the coverage set is made given a specific
performance threshold value.

The two latter algorithms have been used in many of
MORL literature (Geibel, 2006; Roijers et al., 2015; Mossalam
et al., 2016) to find a coverage set of policies that solves
the MOMDP problem. It has to be noted that both of these
algorithms follow an iterative preference exploration approach
that require simulation on the environment assuming stationary
dynamics in order to evolve the policy coverage set. However,
our proposed method aims at evolving such coverage set in a
developmental and adaptive manner with stationary and non-
stationary environment’s dynamics.

3.2. Intrinsically Motivated Reinforcement
Learning (IMRL)
Inspired by the learning paradigms in humans and animals,
computational models for intrinsically motivated learning aim at
learning guided by internally generated reward signals. Ryan and
Deci (2000) defined intrinsic motivation as performing activities
for their inherit satisfaction instead of separable consequences.
They further explained that this is similar to humans performing
actions for fun or challenge rather than being directed to
perform it due to external pressure or rewards. Intrinsically
motivated reinforcement learning (IMRL) aims at extending
the conventional reinforcement learning paradigm by allowing
the learner agent to generate an intrinsic reward signal that
either can supplement the extrinsic reward signal or completely
replace it (Barto, 2013). Basically, this intrinsic reward signal
can provide assistance to the learning agent when dealing with a
sparse extrinsic reward signal, enhance the exploration strategy,
or completely guides it to achieve the task.

There are multiple drives to the intrinsic motivation in
literature such as curiosity, novelty, happiness, emotions, or
surprise (Singh et al., 2009). Despite of the differences between
their fitness functions, they are positioned around the same
assumption that the learning agent only needs to use its internal
and external state representations in order to calculate the
intrinsic reward signal. Therefore, the agent can generate such
a reward independent of external (task-specific) reward signals.
Schmidhuber (2010) describes the learning assumption of IMRL
as “maximizing the fun or internal joy for the discovery or
creation of novel patterns.” According to his perspective, a
pattern is a sequence of observed data that is compressible.
Compression here means that an encoding program can find a
compact representation of the data sequence that is sufficient
to regenerate the original sequence or predict any occurrence
within it given the predecessor occurrences (Ming and Vitányi,
1997). While the novelty of the pattern means that the learning
agent initially did not expect it but it could learn it. The pattern
discovering/creation progress can be projected into an intrinsic
reward for a conventional RL algorithm that acts to optimize it
and consequently encouraging the agent to discover/create more
novel patterns.

IMRL methods can be categorized differently based on
either a reward source perspective or an objective perspective.
For the reward source perspective categorization, Merrick and
Maher (2009) indicated that IMRL methods can fall into two
broad categories: methods that use both extrinsic and intrinsic
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reward signals; and methods that use only intrinsic reward
signals. Alternatively, Oudeyer and Kaplan (2009) proposed
a different categorization from an objective perspective. They
divided the IMRL literature into three main groups based on the
objective of the intrinsicmotivation learning process: knowledge-
based models, competency-based models, and morphological
models. We adopt a knowledge-based intrinsic motivationmodel
according to the objective categorization that falls into the
first category of the reward source perspective as it used both
extrinsic and intrinsic reward signals. Accordingly, we only
explore knowledge-based intrinsic motivation relevant literature
in this paper.

One of the early approaches to knowledge-based IMRL
was proposed by Schmidhuber (1991b) which included two
recurrent neural networks (RNNs): a model network, and a
control network. The model network aimed at learning to
model environmental dynamics in terms of predicting the state
transitions conditioned on action taken. While the control
network optimizes the action selection policy to explore states
space regions in which the model network has high marginal
uncertainty (prediction error). The control network is guided by
intrinsic reward represented by the model network’s prediction
error. This method is considered a category II as it works mainly
with intrinsic reward signals.

Pathak et al. (2017) proposed an intrinsically motivated
exploration technique following a predictive perspective. They
indicated two main objectives for the proposed technique.
First, to learn representative features that distill the state-space
features that are controllable by the agent capabilities from those
that are out of the agent’s control. Then, using these learned
representative features, they optimize a predictive model for the
state transition probability distribution. In order to achieve the
first objective, an inverse dynamics model was used to learn the
action taken based on the encoding (features) of the states before
and after taking the action, using the experience replay buffer.
The authors stated that this inverse dynamics inference technique
will discourage learning encodings (features) that cannot affect
or being affected by the agent’s actions. While for the second
objective, a forward dynamics model was proposed to predict
the next state encoding based on the current state encoding and
the action taken. The intrinsic reward was formulated as the
prediction error of the forward dynamics model and combined
with the extrinsic reward using summation. The learning agent
uses the combined version of the extrinsic and intrinsic rewards
to optimize the current policy.

Qureshi et al. (2018) targeted robotics domains for the
application of intrinsic motivation. The authors proposed an
intrinsically motivated learning algorithm for a humanoid robot

FIGURE 5 | Intrinsically motivated multi-objective reinforcement learning (IM-MORL) design scenarios. (A) The conventional MORL approach. (B) IM-MORL design

approach guided by the user’s preference. (C) IM-MORL design approach for learning the feasible preferences over multiple extrinsic rewards. (D) IM-MORL design

approach for learning both internal goals and preferences.
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to interact with a human given three basic events to represent
the current state of the interaction: eye contact, smile, and
handshake. Their algorithm is based on an event predictive
objective where a predictive neural network called Pnet is
learning to predict the coming event conditioned on the current
one and the action taken, while another controller network
called Qnet is optimizing the action selection policy guided only
with the intrinsic reward represented by the prediction error
of the Pnet. The authors showed that their proposed algorithm
outperformed a conventional reinforcement learning algorithm
using only extrinsic sparse reward signal in a real interaction
experiment with humans that lasted for 14 days.

One drawback of formulating the intrinsic reward based on
prediction error is that it encourages the action sampler (e.g.,
control network) to favor state space regions that involve noisy
observation or require further sensing capabilities beyond the
currently available to the agent, this might limit the learning
progress of the whole system in such situations.

In order to overcome this drawback, we need to change
the formulation of the intrinsic reward to depend on the
model’s improvement (e.g., prediction accuracy) rather than its
prediction error. Consequently, the learning agent will be bored
from state-space regions that either completely predictable (high
prediction accuracy) or completely unpredictable (due to noise
or lack of sufficient sensors) as for both scenarios the gradient of
the improvement will be small.

A first attempt to tackle this issue was proposed by
Schmidhuber (1991a), where the intrinsic reward was formulated
based on prediction reliability rather than the error. A
probabilistic inference model was optimized to learn the state
transition probability distribution conditioning on the taken
action, then four different metrics were proposed to estimate
the prediction reliability locally and globally based on the past

FIGURE 6 | The division of the linear scalarization of the preference space into

a finite set of regions based on the combination of fuzzy membership values of

the weight components.

interactions with the environment. A Q-learning algorithm was
adopted to optimize the action selection policy guided by the
reliability value as an intrinsic reward signal. The proposed
methodology was evaluated on a non-deterministic environment
with noisy state regions and compared with a random-search
exploration technique, results showed that the intrinsically
motivated agent was 10 times faster to decrease the prediction
error.

Oudeyer et al. (2007) proposed a developmental learning
system for robotics called intelligent adaptive curiosity (IAC).
The IAC system aims at maximizing the learning progress of the
agent represented by focusing the learning process on situations
that neither fully predictable nor fully unpredictable, as the
derivative of the progress will be small in both situations. The
novelty in this method comes in the division of the state space
into regions that share common dynamics and for each region,
the IAC evolves an expert predictive model (e.g., neural network)
to learn the state transition dynamics. The division of the state
space into regions was done in a developmental manner, so at
the beginning, there is only one region and when the number
of examples exceeds a specific threshold value (C1) then it is
split into two regions based on a second metric (C2) that aims
at minimizing the variance between samples in a specific region
(i.e., this is symmetric to density-based clustering techniques
Kriegel et al., 2011). The intrinsic reward is calculated using
the first derivative of the prediction error between times (t and
t + 1). Finally, a Q-learning algorithm is adopted to optimize
the action selection policy guided by the intrinsic reward. The
authors showed by experiments the effectiveness of the proposed
system in comparison to conventional exploration strategies.

Our propose intrinsically motivated preference exploration
component follows the same intrinsic reward formulation
approach as the last two methods based on the predictive model
improvement rather than the prediction error. However, we
extend the existing work to multi-objective scenarios.

4. METHODS

In comparison to the conventional MORL approach presented
in Figure 5A, we propose three possible scenarios in which
intrinsically motivated multi-objective reinforcement learning
(IM-MORL) approaches can be designed. In the first scenario, the
user can supply his/her preference over a defined set of intrinsic
motivation rewards, while the intrinsic motivation system can
utilize this preference to formulate a combined intrinsic reward
to guide the learning agent according to the user’s preference
(see Figure 5B). An example of this scenario is for a child

TABLE 1 | Configuration of the utilized triangular fuzzy membership functions.

Function A B C

Low 0.00 0.18 0.35

Medium 0.28 0.45 0.65

High 0.57 0.75 1.00
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that has multiple intrinsic motives, while his/her parent is
guiding his/her behavior by providing feedback that can form
an acceptable trade-off among these internal motives. While
in the second scenario, the environment will supply a vector
of extrinsic rewards and the task of the intrinsic motivation
system will be to learn the feasible preferences that could solve
the task and evolve a policy for each of them (see Figure 5C).
An example of this scenario is for a student who is given

curricula of learning courses and his/her mission is to find an
optimal strategy to maximize the total grade among all of them.
Finally, the intrinsic motivation can generate both the rewards
and preferences completely internally without depending on
any external source for each of them (see Figure 5D). This
scenario is similar to a human adult who is behaving in
a free-willed manner in order to learn a set of internally
generated goals, while evolving his/her prioritization among

FIGURE 7 | A flowchart diagram describing the RFPB algorithm workflow.
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them according to his/her current achievement level on each
goal.

Our proposed IM-MORL method follows the second
approach depicted in Figure 5C. We leave the other approaches
for future exploration. In this paper, the agent gets extrinsic
rewards from the environment and automatically explores
the preference space in order to evolve the optimum policy
coverage set that solves the MOMDP problem. This is achieved
through adversarial self-play between two main components:
the intrinsically motivated preference explorer; and the convex
coverage set optimizer. The former component explores
preferences for which there is no an optimum policy in the CCS,
while the latter component optimizes policies that can maximize
the scalarized reward return for preferences proposed by the
former component. Consequently, through this adversarial
interaction, the proposed method developmentally evolves the
CCS that converges to the optimal CCS to solve the problem.
We are going to describe each of these components in details as
follows.

4.1. Convex Coverage Set Optimizer
In order to respond to preferences proposed by the
preference exploration component, we propose a novel
convex coverage set optimization algorithm called robust
fuzzy policy bootstrapping (RFPB). The main assumption
of the RFPB algorithm is While there is a large number of
policies that can satisfy different preferences over the defined
objectives, a fewer number of steppingstone policies can be
used to solve the problem by bootstrapping specialized policies
that can fit any feasible preference. The concept of policy
bootstrapping from steppingstone policies achieves better
robustness to changes in the environment setup in comparison
to greedy policies optimized for a specific setup or user’s
preference.

The RFPB algorithm divides the linear scalarization of
the preference space into a finite number of regions each
is dedicated to a specific combination of fuzzy membership
values for the weight components in the preference. The
advantage of using fuzzy representation instead of alternative
heuristic discretization methods is that it enables automatic
categorization of the preference regions in terms of combinations
of different fuzzy membership functions without the need
to tailor specific rules for such categorization in the crisp
representation case.

For further explanation of this fuzzy representation, consider
the example in Figure 6. In this example, there are two defined
objectives: o1; and o2. Accordingly, the user’s preference can be
defined as a two-dimensional vector Ewi = [w1, w2], Ewi ∈ R

2

defining a tradeoff across these two objectives. If we define three
triangular membership functions (low, medium, and high) for
each weight component in the preference, we will end up with
(3× 3) nine combinations of membership values. Consequently,
the convex hull can be represented using these nine regions of the
weight space membership values. The shaded square in Figure 6

represents the region for the fuzzy membership combination
w1 = High, and w2 = Low.

In this paper, we use the triangular fuzzy membership
functions (Zadeh, 1996). Thus, there are three fuzzy membership
functions for each weight component including low, medium,
and high functions. The configuration of these sets is presented in
Table 1. Each combination of these fuzzy membership functions
gives a fuzzy preference region. As the weight components are
constrained to sum to one (Definition 2.3), the extreme regions
(low,low or high, high in the example presented in Figure 6) are
excluded from the set of legitimate regions.

After defining this fuzzy regions, the RFPB algorithm evolves
a single steppingstone policy for each region. A policy (pg) is
assigned to the fuzzy region (g) if there is no other policy that
dominates (pg) on the robustness metric (βg) for the region
(g). In this paper, we use the robustness metric defined in
Equation (4):

βk =
Ŵk

σ k
(4)

The logic behind this metric is that it calculates the robustness of
a policy (pk) as a tradeoff between its performance represented
by it average reward value (Ŵk) and its variability represented
by its standard deviation value (σ k). Therefore, this metric
favors stable policies that can serve as steppingstones to evolve
specialized policies within its fuzzy preference region. The
robustness metric utilizes the average and standard deviation of
the values generated by the scalarized reward function presented
in Equation (2) during the time period from deploying the
policy to the time of the preference region change. Moreover,
this metric is related to the problem definition in section 2.3
through assuring the robustness of the steppingstone policy
assigned for each preference region, therefore, the performance

TABLE 2 | Parameters configuration for the DNN predictive model.

Parameter Value

Layers Sigmoid(3), ReLU(32), ReLU(16), ReLU(8), Linear(1)

α 0.09

Dropout 0.3

Cost function Cross entropy

Optimizer ADAM

TABLE 3 | Parameters configuration for the utilized DDPG algorithm in the

exploration component.

Parameter Value

τ 0.001

γ 0.99

Actor α 0.0001

Critic α 0.001

Ornstein-Uhlenbeck Noise θ 0.15

Ornstein-Uhlenbeck Noise σ 0.2

Optimizer ADAM
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Algorithm 1 Scalarized Q-Learning (S-QL)

Input: A preference Ew.
1: if π init = φ then

2: Initialize Q(s, a) ∀ s ∈ S, a ∈ A(s) arbitrarily
3: else

4: Initialize Q(s, a) ∀ s ∈ S, a ∈ A(s) from π init

5: repeat

6: for each episode do
7: Initialize S
8: Take a from s using policy derived from Q (e.g.,
9: ǫ-greedy) , observe Er, s′
10: Calculate scalarized reward ρ = Ew · Er
11: Q(s, a)← Q(s, a)+α

[
ρ+γmaxa′Q(s

′, a′)−Q(s, a)
]

12: s← s′

13: until s is terminal

overall legitimate preferences can bemaximized as targeted in the
objective function.

Our proposed methodology adopts a scalarized version of Q-
learning for solving the MOMDP task using linear scalarization
given the weights vector as depicted in Algorithm 1. We refer to
this algorithm as Scalarized QL abbreviated as (S-QL).

As shown in Algorithm 2, when a new user’s preference (Ewt) is
introduced at the time (t), it is assigned a fuzzy representation
based on the membership functions that have the maximum
values for its weight components. Consequently, a region (gi)
is determined from the fuzzified representation of the convex
hull corresponding to the new preference. The new policy will
be bootstrapped from the non-dominated policy of the region
(gi). In the case that region (gi) was not explored before, the new
policy is bootstrapped from the policy that achieved the higher
robustness value over adjacent regions (gi−1) and (gi+1). The
two adjacent regions are determined by measuring the Euclidean
distance (see Equation 5) between the centroids vectors (i.e.,
the b components of the corresponding triangular membership
functions) of the current region and each of the remaining
regions, then, taking the top two nearest regions. In the case that
the adjacent regions were not explored, then the new policy is
initialized arbitrarily. The policy for the last preference (pwt−1 )
is compared to the current non-dominated policy of its fuzzy
region p(gj) based on the robustness metric (β). If it exceeds the
non-dominated policy, then it will take its position in the policy
repository (5) for that region.

EuclideanDistance(gi, gk) =

√√√√
M∑

m= 1

(gi
bm
− gk

bm
)2 (5)

The RFPB algorithm stores the past explored non-dominated
policies over the preference fuzzy regions in a policy repository
5. As mentioned previously, a non-dominated policy pk

outperforms, in terms of the robustness metric (βk), all explored
policies within its kth region. For each single non-dominated

policy pk, we store three basic parameters
〈
πk, gk, βk

〉
. Where

Algorithm 2 Robust Fuzzy Policy Bootstrapping (RFPB)

Input: Preferences at times t and t − 1 (−→w t ,
−→w t−1).

1: Get the fuzzy region of the new preference
FuzzyMembership(−→w t)→ gi

2: if p(gi) 6= ∅ then
3: p′ := p(gi)
4: else if p(gi−1) 6= ∅ and p(gi+1) 6= ∅ then
5: p′ := argmaxp∈{p(gi−1), p(gi+1)} β(p)

6: else if p(gi−1) = ∅ and p(gi+1) = ∅ then
7: p′ := φ

8: else

9: p′ := argp∈{p(gi−1), p(gi+1)} p 6= φ

10: Get the fuzzy region of the old preference
FuzzyMembership(−→w t−1)→ gj

11: if p(gj) 6= ∅ then
12: p(gj) := argmaxp∈{p(gj), pwt−1 } β(p)
13: else

14: p(gj) := pwt−1

15: Store p(gj) in 5

16: if p
′ = ∅ then

17: π
′
:= φ

18: else

19: π
′
:= π(p

′
)

20: Follow the Scalarized Q-Learning algorithm, S-QL(−→w t , π ′)

πk∈ R
N×L is the Q-value matrix for each state and action pair,

gk is the preference region assigned to the policy, and βk is the
robustness metric value calculated using Equation (4).

After bootstrapping, the RFPB algorithm will continue to
optimize the policy with regard to the new preference region
following the scalarized Q-learning (S-QL) algorithm depicted in
Algorithm 1.

For further insights on the RFPB algorithm, Figure 7 provides
a flowchart diagram that describes the processes involved in its
workflow.

4.2. Intrinsically Motivated Preference
Exploration
This component adopts a knowledge-based intrinsic motivation
approach (Oudeyer and Kaplan, 2009) to actively explore the
preference space. Mainly, this component includes two building
blocks. First, a predictive model, which is implemented as a
deep feed-forward neural network (see Table 2 for parameters
configuration), is trained in a supervised learning manner to
predicts the scalarized reward return (Equation 2) given a
preference fuzzy region. The input to the predictor is the
preference fuzzy region as one hot encoding vector (a binary
valued vector with the length equal to the number of regions
with only 1 value at the corresponding location of the current
region), while the output is the predicted return to be achieved
by the evolved CCS from the time of the preference proposal
(t − k) to the end time of the policy execution (t + j). Before
the beginning of the training process, there is a warming
up period to accumulate training set of 200 samples for

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2018 | Volume 12 | Article 6596

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Abdelfattah et al. Evolving Robust Policy Coverage Sets

the predictor. During this period, preferences are proposed
randomly (uniformly sampled) to the RFPB algorithm, which
is given a maximum number of 100 episodes to evolve a
corresponding policy and recording the resulting reward return
at the end. Afterwards, the predictor is initialized based on
this warm up data and the intrinsically motivated preference
exploration is activated.

The second building block is responsible for the adaptive
preference exploration. Mainly, it utilizes a reinforcement
learning algorithm that observes the current preference fuzzy
region as the state, takes an action with M dimensions
representing the weight components for the defined objectives,
and gets an intrinsic reward formulated as the difference (gain)
in prediction accuracy (ρ) of the predictive model for the
explored region (g) within the time period [t − k, t + j], as per
Equation (11). Basically, the reinforcement learning algorithm
works as an active learning trainer to the predictive model
and it is rewarded through maximizing the prediction accuracy
gain after sampling a new interaction with the RFPB algorithm

FIGURE 8 | A block diagram for the working mechanism of the proposed

method.

formulated as a tuple of (preference region, scalarized reward
return) and adding it to the training set of the predictive
model.

We utilized the deep deterministic policy gradient algorithm
(DDPG) as described in Lillicrap et al. (2016) for the
implementation of the reinforcement learning algorithm. The
implementation configuration for the DDPG algorithm is
presented in Table 3. The DDPG algorithm falls into the
actor-critic reinforcement algorithms, therefore, there are two
neural networks mainly involved in the learning process: the
actor network (µ) which is responsible for taking actions, and
the critic network (Q) which is responsible for estimating the Q-
value of each state-action pairs. Using (N) number of transitions
samples randomly from a previous transitions experience buffer,
the critic aims at minimizing the loss function (L), while the actor
is updated using the policy gradient (∇θµ J).

L =
1

N

N∑

n= 1

(yn − Q(sn, an|θQ))2 (6)

Where yn = rn + γQ′(sn+1,µ
′(sn+1|θµ′ )|θQ

′
)

∇θµ J ≈
1

N

N∑

n= 1

∇aQ(s, a |θQ) |s= sn ,a=µ(sn)∇θµµ(s |θµ) |sn

(7)

In addition to these two main networks, the DDPG uses the
concept of target networks (µ′,Q′), which are basically replicas
of the actor and critic networks but with an older version of
the parameters (weight) configuration. The logic behind this is
to enable stable learning by separating the network that is being
optimized from the one that is performing the exploration. The
parameters of the target networks are updated in proportional to
their current values and latest values of the actor-critic networks
using the τ parameter as follows:

θQ
′←τθQ + (1− τ )θQ

′
(8)

θµ′ ← τθµ + (1− τ )θµ′ (9)

FIGURE 9 | Layouts of the experimental environments. (A) The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource

gathering (RG) environment.
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FIGURE 10 | Comparing our IM-MORL with the RM-MORL agent in terms of reward prediction error averaged over 15 runs to assess the impact of intrinsically

motivated preference exploration. (A) The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource gathering (RG)

environment.
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TABLE 4 | Comparison results between our IM-MORL agent and RM-MORL

agent in terms of average prediction error with standard deviation in 100

percentage over 15 runs per each of the experimental environments.

Environment IM-MORL RM-MORL

SAR 16.4 ± 3.7 48.1 ± 4.2

DST 7.6 ± 2.9 38.7 ± 5.1

RG 9.2 ± 5.3 35.2 ± 6.3

Bold value indicates best results.

The actions are explored using the OrnsteinUhlenbeck stochastic
process, which generates temporally correlated exploration noise
to make smooth transitions between action values. Accordingly,
the preference exploration moves smoothly from one preference
region to its adjacent regions, while exploring the preference
space. The equation for this process is as follows:

dat = θ(µ− at)dt + σdWt (10)

Where θ , σ , and µ are parameters andWt represents the Wiener
process.

rintrinsic = 1(ρ
g
t , ρ

g

t+k) (11)

Figure 8 presents a block diagram for the interaction between the
two described components of the proposed method.

5. EXPERIMENTAL DESIGN

In this section, we describe our experimental design to evaluate
the proposed method.

5.1. Experiments
5.1.1. Assessing the Impact of the Intrinsically

Motivated Preference Exploration
Aim: The aim of this experiment is to assess the impact
of the intrinsically motivated preference exploration on the
performance of the reward prediction model, which reflects the
stability of the CCS performance.

Workflow: We compare our proposed intrinsically motived
agent with a randomly motivated agent that samples preference
uniformly from the M-dimensional weight space to train
both the reward predictive model and the CCS optimizer.
We execute 15 runs, each one lasts for 2,500 episodes per
each experimental environment. We refer to our proposed
agent as IM-MORL and the randomly motivated agent as
RM-MORL.

Evaluation Criteria: We calculate the average and standard
deviation of the prediction error of the reward predictive
model over the 15 runs, each with a different environment
setup (different distribution of objects), per each experimental
environment. The less the reward prediction error value, the
more effective the preference exploration strategy and the more
stable the performance of the resultant CCS.

5.1.2. Comparison to the State-of-the-Art MORL

Algorithms
Aim: This experiment aims at contrasting the performance of
our IM-MORL method with the state-of-the-art MORL methods
under both stationary and non-stationary environments.

Workflow: We compare our method with two well-known
and highly adopted methods in MORL literature (as described in
section 3): the Optimistic Linear Support (OLS) method (Roijers
et al., 2014); and the Threshold Lexicographic Ordering (TLO)
method (Gábor et al., 1998). We conduct this experiment in
two environment groups: stationary environments; and non-
stationary environments. In the former, the distribution of
objects in the environment is stationary per each run. While in
the latter, the distribution of objects is non-stationary as 25% of
them change their locations randomly every 100 episodes. For
each group, we execute 15 runs that differ in the distribution of
objects in the experimental environment. Each run is divided into
a training phase and a testing phase, each of them includes 2,500
episodes. The training phase allows each method to evolve its
CCS. While in the testing phase, we sample ten user preferences
uniformly, and every 250 episodes the preference changes to
evaluate the performance of the evolved CCS for each method.
Moreover, during the testing phase, the exploration component
in our proposed method is inactive, while the RFPB algorithm
keeps updating the CCS by replacing inferior steppingstone
policies with better ones based on the robustness metric defined
in Equation (4). For the parameter configuration of the OLS and
TLO algorithms we follow the same configuration in Roijers et al.
(2014) and Geibel (2006) respectively.

Evaluation Criteria: We evaluate the three comparative
methods over twomainmetrics. First, the sum ofmedian rewards
metric, which is calculated by taking the median reward value
for each preference, sum them for each run, then taking the
average of this sum over the 15 runs. This metric reflects the
overall performance of the evolved CCS for each comparative
method over the 15 independent runs executed. For visualizing
this evaluation, we show the average median value with standard
deviation for each sampled preference. Second, the hypervolume
metric which measures the coverage and diversity of the CCS.
The higher the value of this metric the better the CCS. We
followed the algorithm described in Beume et al. (2009) to
calculate the value of this metric.

5.2. Environments
We use three different multi-objective sequential decision-
making environments: search and rescue; deep-sea treasure; and
resources gathering. The two later environments are well-known
benchmarks in theMORL literature (Vamplew et al., 2011), while
the first environment is a new and firstly proposed in this paper.
The proposed environment poses an additional challenge of
stochastic state transition distribution. Figure 9 shows the layout
of the experimental environments.

5.2.1. Search and Rescue (SAR) Environment
This 9 × 9 grid world represents a SAR scenario that has fire
danger, obstacles, and human victims to be rescued. The agent’s
state is a tuple 〈X,Y , F,O,H〉, where X, Y are the coordinates of
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FIGURE 11 | Comparing the median reward values for each user preference averaged over 15 runs with standard deviation bars in the stationary environments. (A)

The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource gathering (RG) environment.
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the current location, and F, O, H are binary values indicating
whether a fire danger, an obstacle, or a human victim is in the
current location or not. Moving to an obstacle won’t change the
location while getting a time penalty. Each human victim die after
a random time ξi, i ∈ {1, 2, 3, . . . ,N} for N victims. The action
space is A =

{
MoveEast, MoveWest, MoveNorth, MoveSouth

}

with one square per each movement. There are three objectives
in this environment: maximizing the number of detected human
victims; minimizing exposure to fire risk; and minimizing the
overall task’s time. The agent gets a vector of three rewards Er =[
rvictim, rfire, rtime

]
, Er ∈ R

3. The victim reward function rvictim

is +3 for each detected victim and 0 elsewhere, the fire penalty
function rfire is −5 for each exposure and 0 elsewhere, and the
time penalty function rtime is always set to−1.

5.2.2. Deep Sea Treasure (DST) Environment
This is a 10 × 11 grid world. The agent controls a submarine
searching for an undersea treasure. The agent’s state is a tuple
of〈X,Y〉, where X, Y are the coordinates of the current position.
There are four actions tomove one square per each directionA ={
Left, Right, Up, Down

}
. All actions that result in leaving the grid

will not change the submarine’s position. Multiple treasures can

TABLE 5 | Comparing the OLS, TLO, and IM-MORL agents in terms of sum of

median reward values averaged over 15 runs in the stationary environments.

Environment OLS TLO IM-MORL

SAR 125.3 ± 2.5 124.7 ± 2.1 123.9 ± 4.5

DST 539.4 ± 2.8 536.7 ± 2.5 535.2 ± 4.5

RG 18.1 ± 2.8 17.5 ± 1.8 16.9 ± 1.2

Bold value indicates best results.

FIGURE 12 | A bar-chart comparing the normalized average hypervolume

values with standard deviation for the OLS, TLO, and IM-MORL agents

grouped by each stationary environment.

be found in this environment each with a different reward value.
It has two objectives. First, to minimize needed time to find the
treasure. Second, to maximize the treasure’s value. Accordingly,
the reward vector has two rewards Er =

[
rtime, rtreasure

]
, Er ∈ R

2,
where rtime is a time penalty of −1 on all turns and rtreasure is the
captured treasure reward which depends on the treasure’s value.

5.2.3. Resources Gathering (RG) Environment
In this 5× 5 grid world, the task is to collect resources (gold and
gems) and return home. The agent’s state is a tuple 〈X,Y ,G,Y ,E〉,
where X, Y are the coordinates of the current location, and
G,Y ,E are binary values indicating whether a gold resource, a
gem resource, or an enemy is in the current location or not.
The enemy attack may occur with a 10% probability. If an
attack happens, the agent loses any resources currently being
carried and is returned to the home location. The action space is
A =

{
MoveEast, MoveWest, MoveNorth, MoveSouth

}
with one

square per each movement. The objectives are to maximize the
resources gathered while minimizing enemy attacks. The rewards
vector is defined as Er = [ rresources, renemy] , Er ∈ R

2, with rresources

is+1 for each resource collected and renemy is−1 for each attack.

6. RESULTS AND DISCUSSION

In this section, we present and discuss the results of the two
experiments defined in our experimental design.

6.1. Assessing the Impact of the
Intrinsically Motivated Preference
Exploration
Figure 10 presents the comparison results between our
intrinsically motivated multi-objective reinforcement learning
(IM-MORL) agent and a randomly motivated mullti-objective
reinforcement learning (RM-MORL) agent, in order to assess the
effectiveness of intrinsic motivation in preferences exploration.
The results show the average prediction error over 15 runs for
the DNN prediction model described in section 4.2, which aims
at predicting the expected reward return per each preference
fuzzy region given the current performance of the CCS.

Figure 10A shows the prediction error results in the
search and rescue (SAR) environment. Our IM-MORL agent
significantly outperformed the RM-MORL with 33% less error
on average. Figure 10B shows the results in the deep sea treasure
(DST) environment. Similarly, our IM-MORL agent significantly
outperformed the RM-MORL with 21% less error on average.
Finally, Figure 10C shows that our IM-MORL agent significantly
outperformed the RM-MORL agent with 26% on average. We

TABLE 6 | Comparing the OLS, TLO, and IM-MORL agents in terms of average

hypervolume over 15 runs in the stationary environments.

Environment OLS TLO IM-MORL

SAR 0.73 ± 0.05 0.67 ± 0.05 0.65 ± 0.04

DST 0.82 ± 0.05 0.85 ± 0.06 0.75 ± 0.05

RG 0.55 ± 0.03 0.58 ± 0.04 0.48 ± 0.03

Bold value indicates best results.
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FIGURE 13 | Comparing the median reward values for each user preference averaged over 15 runs with standard deviation bars in the non-stationary environments.

(A) The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource gathering (RG) environment.
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conducted statistical significance t-test between the results of
the two agents and it showed that all of them are statistically
significant with p < 0.005. Table 4 summarizes these results in
terms of average prediction error and standard deviation.

These findings confirms the effectiveness of the proposed
intrinsically motivated preference exploration mechanism as it
succeeded to sample preferences that can enhance the prediction
performance of the predictive model reflecting the stability
of CCS policies. While the randomly motivated exploration
does not have this ability to guide the search process toward
the regions that need enhancements. Basically, it samples
preferences uniformly from the weight space without considering
the current performance levels of the predictive model or the
evolved CCS.

6.2. Comparison to the State-of-the-Art
MORL Methods
In this section, we present the results for comparing our IM-
MORL agent with agents running two of the state-of-the art
MORL methods namely OLS and TLO. As indicated in section
5.1.2, we compare between the three agents using two metrics:
the sum of median rewards over the ten uniformly sampled
user preferences; and the hypervolume metric. Firstly, we will
present the results for the stationary environments, then for the
non-stationary environments afterwards.

6.2.1. Comparison in Stationary Environments
Figure 11 depicts the median reward value for each user
preference results averaged over 15 runs with standard deviation
bars. While Table 5 summarizes the average and standard
deviation of the sums of median rewards for each run. For the
SAR environment shown in Figure 11A, the OLS agent achieved
an average of 125.3, followed by the TLO agent which achieved an
average of 124.7 , finally, our IM-MORL achieved an average of
123.9. Similarly, in the DST environment shown in Figure 11B,
the OLS agent achieved an average of 539.4, followed by the TLO
agent with an average of 536.7, and our IM-MORL agent achieved
and average of 535.2. Finally, Figure 11C shows the results in
the RG environment. The OLS and TLO agents achieved close
results of 18.1 and 17.5, respectively, while our IM-MORL agent
achieved an average of 16.9.

To asses the statistical significance of the results, we compare
the sum of median rewards for each run (15 independent values)
over the three comparative methods. We conducted the t-test of
statistical significance and found the results are not statistically
significant across the three methods (p > 0.05).

For the hypervolume metric, Figure 12 presents a bar-
chart for comparing results of the three agents grouped by
each experimental environment. To neutralize the effect of
different reward values per each environment, we show the
normalized value of the metric per each environment. In the
SAR environment,the OLS agent achieved the highest value of
0.73, followed by the TLO agent with value of 0.67, then our IM-
MORL agent with value of 0.65. While in the DST environment,
the TLO agent achieved the highest value of 0.85, followed by
the OLS agent with value of 0.82, then our IM-MORL agent
with value of 0.75. Similarly, in the RG environment, the TLO

agent achieved the highest value of 0.58, followed by the OLS
agent with value of 0.55, then our IM-MORL agent with value of
0.48.Table 6 summarizes these results. Similarly, the difference in
results was not statistically significant (p > 0.05) across the three
comparative methods.

6.2.2. Comparison in Non-stationary Environments
For the median reward values, Figure 13 presents the
comparison results between the three agents. While Table 7

summarizes the average and standard deviation of the sums
of median rewards for each run. A common finding in these
results is that the IM-MORL agent significantly outperformed
the two other agents over the three experimental environment.
In the SAR environment, the IM-MORL agent outperformed
the OLS and TLO agents by a magnitude of 35.3 and 38.7,
respectively. While in the DST environment, the IM-MORL
agent outperformed the OLS and TLO agents by a magnitude of
130.6 and 149.2, respectively. Finally, in the RG environment,
the IM-MORL agent outperformed the OLS and TLO agents
by a average magnitude of 3.1 and 3.5, respectively. All
the performance results achieved by IM-MORL agent were
statistically significant with p < 0.05 in comparison to the two
other agents.

The significant performance achieved by the IM-MORL agent
was emphasized by the normalized average hypervolume results
in comparison to the two other agents. Figure 14 depicts the
comparison results for the hypervolume metric showing the
average and standard deviation over the executed 15 runs
and grouped by the experimental environment. In the SAR
environment, the IM-MORL agents outperformed the OLS
and TLo agents by a average magnitude of 0.29 and 0.24,
respectively. While in the DST environment, the IM-MORL
agents outperformed the OLS and TLo agents by a average
magnitude of 0.34 and 0.39, respectively. Finally in the RG
environment, the IM-MORL agents outperformed the OLS
and TLo agents by a average magnitude of 0.34 and 0.27,
respectively. Conducting the statistical significance test for the
results showed that the IM-MORL significantly outperformed
the two other agents with p < 0.05. Table 8 summarizes these
results.

The finding from results in the non-stationary environments
indicate that the IM-MORL agent proved to be more robust
and adaptive to non-stationary dynamics in the environment
in comparison to the two other state-of-the-art MORL
agents. Mainly, there are two main reasons behind this
finding.

TABLE 7 | Comparing the OLS, TLO, and IM-MORL agents in terms of sum of

median reward values averaged over 15 runs in the non-stationary environments.

Environment OLS TLO IM-MORL

SAR 60.1 ± 5.6 56.7 ± 6.2 95.4 ± 4.1

DST 314.2 ± 3.9 295.6 ± 2.8 444.8 ± 3.4

RG 12.2 ± 1.2 11.8 ± 1.6 15.3 ± 1.7

Bold value indicates best results.
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FIGURE 14 | A bar-chart comparing the normalized average hypervolume

values with standard deviation for the OLS, TLO, and IM-MORL agents

grouped by each non-stationary environments.

TABLE 8 | Comparing the OLS, TLO, and IM-MORL agents in terms of average

hypervolume over 15 runs in the non-stationary environments.

Environment OLS TLO IM-MORL

SAR 0.52 ± 0.04 0.57 ± 0.03 0.81 ± 0.03

DST 0.53 ± 0.02 0.48 ± 0.04 0.87 ± 0.04

RG 0.31 ± 0.03 0.38 ± 0.02 0.65 ± 0.02

Bold value indicates best results.

The first reason is the adaptive preference exploration
mechanism of the IM-MORL agent, which is guided by the
intrinsic motivation to enhance the performance of the predictive
model. This intrinsic motive lead to actively learning the
preference areas that the current CCS is not addressing well.
During the training phase in the non-stationary environments,
this characteristic allowed the IM-MORL agent to re-explore
the affected preference regions after changes occur in the
environment, while the OLS and TLO agents lack this adaptive
preference exploration characteristic. Consequently, they did
not adapt sufficiently to the non-stationary dynamics in the
environment. An additional note on the performance in the non-
stationary is that training on diverse scenarios resulting from
changes in the objects location aided the exploration process,

which led to evolving better policies during the training phase
in comparison to the stationary environments case.

While the second reason is the robustness of the steppingstone
policies adopted by the IM-MORL agent to changes in the
environment, in comparison to the greedy specialized policies
adopted by the OLS and TLO agents. During the non-stationary
environments, bootstrapping new policies from steppingstone
policies optimized for preference regions adapted better than
bootstrapping from policies that were greedily optimized for
specific preferences.

7. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel multi-objective reinforcement
learningmethod that is adaptive in non-stationary environments.
The proposed method achieves this objective through
an adversarial self-play between an intrinsically motivated
preference exploration component and a robust policy coverage
set optimization component in order to developmentally evolve
the optimal convex coverage set that can solve the MOMDP
problem. We experimentally assessed the effectiveness of
the proposed intrinsically motivated preference exploration
and compared our method with two of the state-of-the-art
multi-objective reinforcement learning methods over stationary
and non-stationary environments. Results showed that there
is no statistical significance on the evaluation metrics values
in comparison to the two other state-of-the-art methods
within the stationary environment, while our proposed
method significantly outperformed them in the non-stationary
environments.

In the future work of this research, we will investigate how
to allow our IM-MORL method to achieve generalization and
transfer learning over a varying number of objectives and tasks
using hierarchical intrinsically motivated multi-objective policy
learning.
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We propose a biologically inspired model that enables a humanoid robot to learn how

to track its end effector by integrating visual and proprioceptive cues as it interacts with

the environment. A key novel feature of this model is the incorporation of sensorimotor

prediction, where the robot predicts the sensory consequences of its current bodymotion

as measured by proprioceptive feedback. The robot develops the ability to perform

smooth pursuit-like eye movements to track its hand, both in the presence and absence

of visual input, and to track exteroceptive visual motions. Our frameworkmakes a number

of advances over past work. First, our model does not require a fiducial marker to indicate

the robot hand explicitly. Second, it does not require the forward kinematics of the robot

arm to be known. Third, it does not depend upon pre-defined visual feature descriptors.

These are learned during interaction with the environment. We demonstrate that the use

of prediction in multisensory integration enables the agent to incorporate the information

from proprioceptive and visual cues better. The proposed model has properties that are

qualitatively similar to the characteristics of human eye-hand coordination.

Keywords: active efficient coding, developmental robotics, sensorimotor prediction, generative adaptive

subspace self-organizing map, reinforcement learning

INTRODUCTION

To perform complex manipulation tasks, conventional robotic systems require precise calibration,
which must be repeated when their physical configuration changes. In contrast, humans
learn manipulation skills autonomously, and automatically recalibrate in response to physical
configuration changes, e.g., due to growth and injury. Eye-hand coordination is a key skill required
for these tasks. It requires the integration of multiple sensory modalities, such as vision and
proprioception. Human infants appear to learn to develop a sense of themselves through observing
the temporal contingency and spatial congruency of the sensory (e.g., visual, auditory, and
proprioceptive) feedback received during self-produced motion, such as motor babbling (Rochat,
1998). One goal of cognitive developmental robots is to endow robots with this capability so that
they will not require any manual calibration before acting in a new environment (Asada et al.,
2009).

The mismatch between the motion of objects in the environment and the eye’s rotational
velocity creates retinal slip. During tracking motions, such as smooth pursuit, the brain attempts to
minimize this slip by adapting the eye rotational velocity. Motion in the environment is generated
by either self-motion (e.g., of the hand) or exteroceptive motion. When the hand moves, its motion
can be sensed via two sensory modalities: retinal slip caused by the relative motion between the
hand and eye and proprioceptive sensing of the position and movement of the arm. In contrast,
an external object moving in the environment only generates a retinal slip. Moreover, hand motion
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in total darkness only provides proprioceptive information to the
brain. In such conditions, the human brain has the ability to
generate eye movements to follow the hand or an external target
using smooth pursuit like eye movements.

In this paper, we propose a novel predictive model for learning
robotic visuomotor control. The proposed system model is
inspired by recent findings that neurons in the primary visual
cortex (area V1) are driven not only by visual but also by the
motor input. Activity in V1 was long believed to be driven only
by visual inputs. However, recent findings on visual perception in
awake mice have suggested that this is not true. For example, the
responses in V1 depend on behavioral state (Niell and Stryker,
2011). Experiments conducted in darkness revealed that motor
activity alone could trigger responses in V1 neurons (Saleem
et al., 2013). The development of V1 depends upon visuomotor
coupling (Attinger et al., 2017). Most relevant to this work is
the discovery of cells that respond to the mismatch between the
actual and predicted visual flow (Keller et al., 2012; Zmarz and
Keller, 2016). This suggests that visual areas predict the sensory
consequences of motor actions.

Our model takes in visual input from a camera and
proprioceptive inputs from the encoders of the robot arm, and
produces eye motor actions to track the moving robot hand.
The model is based upon the hypothesis that the brain utilizes
proprioceptive inputs to predict the visual consequences ofmotor
actions. In line with other work in predictive coding, we use the
term “predict” to refer to the process of generating an estimate
of one sensory input from the values of other inputs, which
may occur at the same time, rather than a more strict definition
where future values are estimated from past and present values.
The prediction is often used to generate a mismatch signal by
comparison with the actual input. For example, Srinivasan et al.
(1982) explain center-surround antagonism in the retina using
predictive coding, where the predicted intensity at the center
based on the surround is subtracted from the actual center
signal. Rao and Ballard (1999) predict lower level cortical outputs
from higher level cortical outputs. Zmarz and Keller (2016) find
mismatch neurons that respond to the difference between the
actual visual flow and the prediction of visual flow from self-
motion. Our model is most similar to the latter work, where
prediction is across sensory modalities.

There are several important novel attributes of the learning
methodology compared to similar work in the literature. First,
the learning does not depend on any fiducial visual marker to
identify the end effector of the robot. Second, the model does not
require the forward kinematics of the arm to be known. Third,
pre-defined visual feature descriptors are not required, but rather
are learned. Finally, our experimental results with this model
suggest that the use of prediction enables the model to better
integrate proprioception and vision.

The rest of the paper is organized as follows. In section
Related Work, we place our work into the context of past
work. Section Materials and Methods describes the model,
experimental setup and learning algorithms. Then in section
Results, we present experimental results comparing the tracking
performance. We also compare our model characteristics with
human psychophysical data. Finally, in section Discussion,

we further discuss the results presenting the corresponding
conclusions.

RELATED WORK

The problem of learning end effector tracking is a part of the
larger problem of autonomous learning of the body schema. The
body schema is a sensorimotor representation of the body that
can be used to direct motion and actions. It integrates multiple
cues, including proprioception, vision, audition, vestibular cues,
tactile cues, and motor cues, to represent the relations between
the spatial positions of the body parts. Knowledge of the body
schema can be used in a number of different tasks, e.g., end
effector tracking, reaching, posture control and locomotion.

The review by Hoffmann et al. (2010) classifies body schema
representations used in robotics into two classes: explicit and
implicit. Both have been used to address the problem of end
effector tracking. In the explicit approach (e.g., Bennett et al.,
1991; Hollerbach and Wampler, 1996; Gatla et al., 2007),
transformations between sensory and motor coordinates are
broken down into a chain of closed form transformations where
each link corresponds explicitly to part of the robot structure.
The work we present here falls into the class of implicit models,
where an implicit representation (e.g., a look up table or neural
network) is used.

Past work has often used a point representation of the end
effector, where artificial markers (e.g., color blobs) have been used
to enable easy identification of the end effector (Hersch et al.,
2008; Sturm et al., 2009). For example, a biologically inspired
model to learn visuomotor coordination for the robot Nao was
proposed in Schillaci et al. (2014). Learning occurred during
motor babbling, which is similar to how infants may learn early
eye-hand coordination skills. The proposed method used two
Dynamic Self Organizing Maps (DSOMs) to represent the arm
and neck position of the robot. The connections between the
DSOMs were strengthened if the robot was looking at a fiducial
marker positioned on the end effector. After learning, the robot
had the ability to track the end effector by controlling the neck
joints. One advantage of this model is that the method has
no assumption that the forward arm kinematics of the robot
is known. However, one limitation of the approach is that it
required a fiducial marker.

Subsequent work has relaxed the assumption that the end
effector is a point and removed the requirements for explicit
markers. However, it has still required hard-coded visual feature
descriptors. For example, an algorithm to learn the mapping
from arm joint space to the corresponding region in image
space containing the end effector was proposed in Zhou and Shi
(2016), based on a measure of visual consistency defined using
SIFT features (Lowe, 2004). This algorithm did not require prior
knowledge of the arm model, and was robust to changes in the
appearance of the end effector. Other marker-less approaches
have relied upon knowledge of a 3D CAD model of the end
effector (Vicente et al., 2016; Fantacci et al., 2017). Vicente
et al. (2016) eliminated calibration errors using a particle filter.
The likelihood associated with each particle was evaluated by
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comparing the outputs of Canny edge detectors applied to both
the real and simulated camera images. Fantacci et al. (2017)
extended this particle filter and 3D CAD model based approach
to estimate the end effector pose. The likelihood was evaluated
using a Histogram of Oriented Gradient (HOG) (Dalal and
Triggs, 2005) based transformation to compare the two images.
The approach to bootstrap a kinematic model of a robot arm
proposed in Broun et al. (2014) does not require a priori
knowledge of a CAD model, as it constructs a model of the end-
effector on the fly from Kinect point cloud data. However, it still
requires a hard-coded optical flow extraction stage to identify the
arm in the image through visuomotor correlation.

Some of the limitations in the aforementioned research (e.g.,
the requirement for a marker and/or hard-coded image features)
were addressed in our prior work (Wijesinghe et al., 2017), which
proposed a multisensory neural network that combined visual
and proprioceptive modalities to track a robot arm. Retinal slip
during the motion was represented by encoding two temporally
consecutive image frames using a sparse coding algorithm where
the basis vectors were learned online (Zhang et al., 2014). The
sparse coefficients were combined with proprioceptive input to
control the eye to track the arm. This paper extends our previous
idea by introducing a new model following the hypothesis that
the brain generates internal predictions for consequences of
actions.

MATERIALS AND METHODS

Our approach is based on the Active Efficient Coding (AEC)
framework (Zhao et al., 2012; Teulière et al., 2015), a
generalization of the efficient coding hypothesis to active
perception. Under the efficient coding hypothesis, the sensory
data is encoded efficiently by exploiting redundancies in the
statistics of the sensory input signals. In AEC, movements of the
sensory organs are also learned so that the inputs can be coded
efficiently. In the proposed model, visual, and proprioceptive
stimuli are jointly encoded. This perceptual representation is
used to generate eye movements for tracking the robot arm.
Simulation of the model is performed using the iCub humanoid
robot simulator, an open source robot simulator for the iCub
robot (Tikhanoff et al., 2008). We provide more detail in the
following subsections.

Model Architecture
Figure 1 illustrates the architecture of the proposed model,
which evolves in discrete time. We assume that each iteration
corresponds to 40ms.

At each iteration, the right eye of the iCub captures an image
with 320 × 240 pixel resolution. Two foveal subwindows are
extracted from the center of this image: a smaller 55 × 55 pixel
fine scale image, Ifine (t), and a larger 110 × 110 pixels coarse
scale subwindow, Icoarse (t), which is subsampled horizontally
and vertically by a factor of two. These subwindows cover 11o

and 22o, respectively, horizontally and vertically.
The visual stimuli are encoded using Generative Adaptive

Subspace Self Organizing Maps (GASSOMs) (Chandrapala and
Shi, 2015). Proprioceptive inputs include the arm position,

velocity, and acceleration (θa (t) ∈ R
4, θ̇a (t) ∈ R

4, θ̈a (t) ∈ R
4)

and the eye position and eye velocity (θe (t) ∈ R
2, θ̇e (t) ∈ R

2) as
reported by the motor encoders. The prediction module predicts
the sensory consequences of the arm and eye motions based
on proprioceptive inputs. This enables the model to reduce the
correlation between the visual features and the proprioceptive
inputs during self-motion. Finally, the visual and proprioceptive
inputs are integrated using an Artificial Neural Network (ANN)

to generate pan and tilt eye acceleration commands,
¨̂
θe (t) ∈ R

2 ,
enabling the right eye to track the robot arm. The “∧” symbol
is added to distinguish motor commands from proprioceptive
information.

Given the eye acceleration command, the eye velocity is
obtained by;

˙̂
θe (t + 1) = ˙̂

θe (t) + ¨̂
θe (t) . (1)

Equation (1) is similar to the model for the maintenance of
pursuit described in Lisberger (2010), where an efference copy
of the eye velocity command is fed back in order to determine
the current command for eye velocity in the immediate future.
This enables eye velocity to be maintained automatically. In our
model, both image motion and arm motion can drive changes in
eye velocity through the eye acceleration command.

The model presented here uses only afferent information
to determine the eye acceleration. In biological systems, both
afferent and efferent signals from the arm are involved in arm-eye
coordination control. For deafferented monkeys, smooth pursuit
eye movements disappeared while tracking a target moved by
active arm movements in darkness (Gauthier and Mussa Ivaldi,
1988). Steinbach (1969) found differences in ocular tracking of
active and passive hand motions, which suggest that efference
commands also play a crucial role. Gauthier and Mussa Ivaldi
(1988) and Gauthier et al. (1988) suggested that efferent signals
serve to synchronize the onsets of arm and eye motions, whereas
proprioceptive signals serve to couple the eye and hand motor
signals once movement has started. Subsequent experiments
have provided additional support for this hypothesis (Vercher
et al., 1996). Since we use only afferent information, the model
may provide an account for differences in performance once
movement has started. We leave the integration of an efference
copy to future extensions of the model.

During training, we control four degrees of freedom (DoF)
among the seven DoF in the iCub robot arm. The three joints in
the wrist are fixed, and the remaining four joints (the shoulder
pitch, shoulder roll, shoulder yaw, and the elbow joint) are
controlled. We fix the wrist angles so that the palm of the
iCub robot remains approximately parallel to the image plane.
As described below, one assumption of our approach is that
the retinal flow is uniform across both fine and coarse foveal
image regions. Keeping the wrist angle fixed ensures that the
image of the palm covers the foveal images when the gaze vector
intersects the center of the palm. Modifying the algorithm so
that the image region used to generate motor commands vary
in size automatically may enable the algorithm to allow all DoF
to vary. During testing, we allow the wrist to move (see section
Qualitative Evaluation of Performance).
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FIGURE 1 | The model takes as input images at two scales and proprioceptive readings from the encoders. The eye controller represented by the neural network

maps the perceptual representation to motor actions.

In the following, we describe the model components in more
detail.

Visual and Proprioceptive Features
The model encodes the visual stimuli in two stages. In the first
stage, each foveal image is divided into a 10× 10 array of 10× 10
pixel overlapping patches, x1,s,i(t) ∈ R

100, with a stride of 5 pixels,
where s indexes scale and i ∈ {1, 2, . . . , P} indexes the patch
(P = 100). The subscript “1” indicates the stage.

Patches are encoded using GASSOMs (Chandrapala and Shi,
2015). The GASSOM is a probabilistic generative extension of
the Adaptive Subspace Self OrganizingMap (ASSOM) (Kohonen,
1996). It assumes that each input vector x1,s,i(t) is generated by
one of N = 256 nodes. The generating nodes evolve according
to a first order Markov process. Each node is associated with
a two dimensional subspace spanned by basis vectors specified
by the orthogonal columns of the matrix B1,s,n ∈ R

100×2. The
input is generated by the node by choosing a Gaussian distributed
vector lying on the subspace plus a small noise vector lying in
the orthogonal complement of the subspace. Using the algorithm
described in Chandrapala and Shi (2015), both the transition
matrix of the Markov process and the node subspaces are learned
so as to maximize the likelihood of the input sensory data. The
learned transition matrices have high self-transition probability,
which implies that the node generating input t − 1 is likely to
generate the input at time t, a property we refer to as “slowness.”

The output of the GASSOM is the set of projections of the
input vector onto the N subspaces.

p1,s,n,i(t)=BT
1,s,n x1,s,i(t). (2)

When the eye is viewing the end effector, these projections change
in a regular manner, which depends upon the movement of the
arm and the eye.

Each node at each scale has an associated prediction
module, which predicts the projection of the input at time t,
p1,s,n,i (t), given the input at time t − 1, p1,s,n,i(t − 1) and the
proprioceptive signals encoding the arm/eye position/velocity
(θa (t) , θ̇a (t) , θe (t) , θ̇e (t)). Figure 2 indicates the projections of
the patch x1,s,i at times t and t − 1 and the corresponding
transformation in the subspace. The prediction module assumes
the transformation can be modeled as a linear mapping, where
the predicted projection at time t is given by;

p̂1,s,n,i (t)=
[
αs,n βs,n

γs,n δs,n

]
p1,s,n,i (t − 1) , (3)

where the α, β , γ and δ parameters for each scale s and
node n depend upon the arm/eye position/velocity. These
parameters are computed using a neural network with four
inputs (θa (t) , θ̇a (t) , θe (t) , θ̇e (t)), one hidden layer containing
25 hidden units with tanh activations, and four linear output
neurons. Since all patches share the same α, β , γ , and δ

parameters, we are assuming that the retinal flow is uniform
across the foveal images. By performing the prediction in the
projected subspace, rather than the original high dimensional
pixel space, we simplify the task of prediction.

The parameters of the 512 (2 scales × 256 nodes) neural
networks are learned online using stochastic gradient descent,
where the weights are updated every iteration. Since each foveal
image contains 100 patches, we average the gradients of the
prediction error across the 100 patches, and update the weights
of each neural network with the average gradient.

The second GASSOM encodes the concatenated vectors
p1,s,n,i(t) and p̂1,s,n,i(t) corresponding to all the nodes n ∈
{1, 2, . . . , 256} in the first GASSOM. Hence, the input vector
to the second GASSOM is x2,s,i(t) ∈ R

1024 for a given scale
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FIGURE 2 | (A) Projections at time t and t− 1 for a given node n, scale s and patch i. (B) The transformation matrix projecting current projection at time t, given the

projection at time t− 1 with the proprioceptive input.

s and patch i. The second GASSOM also contains M =
256 nodes, each with an associated 2-dimensional subspace
spanned by the columns of the matrix B2,s,m ∈ R

1024×2 where
m ∈ {1, 2, . . . , 256} indexes the node. As in Equation (2), the
projections are computed by;

p2,s,m,i(t) = BT
2,s,m x2,s,i(t). (4)

Both the transition matrix and the node subspaces are learned
online as the iCub behaves in the environment.

From the projections p2,s,m,i(t) ∈ R
2 at each node, we

compute a feature vector φs(t) ∈ R
256 for each scale of the foveal

image by computing the average squared length of the projections
over all the patches.

φs (t) =




1
P

∑P
i=1

∥∥ p2,s,1,i(t)
∥∥2

1
P

∑P
i=1

∥∥ p2,s,2,i(t)
∥∥2

. . .
1
P

∑P
i=1

∥∥ p2,s,256,i(t)
∥∥2


 . (5)

The final feature representation of the visual stimuli is the
concatenation of the feature vectors at the two scales.

φv (t) =
[

φfine (t)
φcoarse (t)

]
. (6)

The proprioceptive feature vector φp (t) ∈ R
16 concatenates

the arm position, velocity and acceleration measurements from
the encoders, θa (t) , θ̇a (t) , θ̈a (t) ∈ R

4 and the eye position
and velocity θe (t) , θ̇e (t) ∈ R

2. Each proprioceptive input is
normalized by subtracting the mean and dividing by the standard
deviation computed over the training data set.

Eye Motor Controller
The eye controller maps the visual φv (t) ∈ R

512 and
proprioceptive φp (t) ∈ R

16 feature vectors to an eye acceleration

command
¨̂
θe(t) using the artificial neural network shown in

Figure 1. Only one network is shown, corresponding to the

generation of the acceleration command for one axis (pan or tilt).
The other axis is controlled by a network with the same structure,
but different weights.

Each neural network has 11 output neurons, corresponding
to 11 possible acceleration actions, ai ∈ A for i ∈ {0, 1, . . . , 11},
where;

A = {−1.6,−0.8,−0.4,−0.2,−0.1, 0, 0.1, 0.2, 0.4, 0.8, 1.6} deg/sample2.

(7)
The outputs of each neural network, πk,i (t) where k ∈ {pan, tilt}
and i ∈ {0, 1, . . . , 11} encode the probabilities that the actions are
chosen at each time t. Mathematically;

P
[ ¨̂
θ e,k (t) = ai

]
= πk,i (t) , (8)

where
¨̂
θe (t) =

[
¨̂
θ e,pan (t)

¨̂
θ e,tilt (t)

]T
. The eye acceleration

command is generated by sampling from this probability
distribution.

Within the neural network, the visual input first passes
through a single fully connected 50 neuron hidden layer and
the proprioceptive input first passes through two fully connected
25 neuron hidden layers with tanh activations before the two
pathways are combined at the output layer, which is fully
connected with a softmax output non-linearity. Mathematically;

πk,i(t) =
exp(zk,i(t)/τ )∑11
j=1 exp(zk,j(t)/τ )

, (9)

where τ = 1 is a temperature parameter. The vector, zk (t) ∈ R
11,

is given by;

zk (t) = WT
k,2 tanh

(
WT

k,1φv (t)
)
+WT

k,5 tanh
(
WT

k,4 tanh
(
WT

k,3φp (t)
))

,

(10)
where Wk,1 ∈ R

512×50,Wk,2 ∈ R
50×11,Wk,3 ∈ R

16×25,Wk,4 ∈
R
25×25 and Wk,5 ∈ R

25×11 are weight matrices. Our
implementation includes constant bias terms at all layers, which
we have not shown explicitly in the notation to avoid clutter.
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The weights of the eye motor controller are learned online as
the iCub behaves in the environment, using the natural actor-
critic reinforcement learning algorithm (Bhatnagar et al., 2009).
The network generating the probabilities described above is the
actor (policy) network. The actor-critic algorithm also requires
a second network to approximate the value function, which
depends upon both φv (t) and φp (t). We use a single layer
linear network with 528 inputs feeding into a single linear output
neuron for the critic network.

The instantaneous reward is given by;

r (t) = −
1

2
(efine (t) + ecoarse (t)) , (11)

where;

es (t) =
1

P

∑P

i=1
max
n

∥∥ p1,s,n,i(t)− p1,s,n,i(t − 1)
∥∥2, (12)

for s ∈ {fine, coarse}. This reward penalizes changes in the patch
projections, which should be constant if the image of the end
effector is stabilized.

Training and Testing Environment
Training runs for a total of 400,000 iterations. It interleaves
two different types of sessions (Figure 3), each lasting 5,000
iterations at a time. For both session types, the environment
contains a planar object mapped with a natural image texture
chosen at random from the (Olmos andKingdom, 2004) database
of size 2142 × 1422 pixels located at 0.4–0.8m distance in
front of the iCub. When placed directly in front of the robot,
the plane subtends 136◦ of visual angle horizontally and 118◦

of visual angle vertically. The texture is changed every 500
iterations. In session type 1, the arm remains stationary in a
position where it is outside the field of view of the robot. Only
the textured plane, which moves randomly horizontally and
vertically, is visible. In session type 2, the robot arm babbles
so that the end effector moves randomly in front of the iCub.
Depending on the eye and arm position, the center of the
eye gaze may fall on the robot arm or on the resting plane.
If the eye gaze falls on the center of the palm of the iCub,
the hand fills both the coarse and fine scale foveal windows,
but this is not always the case. This training setup is intended
to mimic a general environment, where an agent is exposed
to both self-generated and exteroceptive motion in the visual
environment.

In session type 2, we use motor babbling to generate the visual
and proprioceptive data for the learning algorithm. The arm
babbles around a home pose θha = [−82o 22o 40o 90o], which is
chosen so that the center of the iCub’s hand falls on the image
center of the right eye when its pan and tilt angles are zero.

The arm moves through a randomly generated trajectory (θ̂a (t)
in Figure 1) in the arm joint space. The babbling trajectory is
generated by feeding a set of via points sampled from a uniform
distribution [θha,i − 12o, θha,i + 12o] for i ∈ {1, 2, 3, 4} into
the “mstraj” function of the Robotics Toolbox (Corke, 2017) to
generate a trajectory consisting of linear segments connected by
polynomial blends.

In session type 1, the planar object follows a trajectory created
by first generating an arm trajectory as described above, and then
moving the plane so that its center point follows the same angular
trajectory as the center of the iCub’s hand. This ensures that the
statistics of the visual motion induced by the plane are similar to
the statistics of those induced by the hand.

The eye rotational angles are restricted to ±40o and ±30o in
pan and tilt, respectively. The rotational velocity of the eye is also
limited to ±3 deg/sample in both pan and tilt. During training,
we reset the eye position to a “home” position θhe = [0o 0o] and
the velocity to zero every 500 iterations. This ensures the eye
orientation does not drift off so far that the eye never sees the
hand. For each trajectory during testing, we initialize the eye
velocity to zero and the eye position so that the gaze vector
intersects the center of the palm.

We chose this method of random babbling and trajectory
generation for its simplicity. There are a number of ways we
can make the motion more biologically realistic, e.g., through
the use of dynamic movement primitives (Schaal, 2006) for
trajectory generation, or through the use of goal babbling (von
Hofsten, 2004) to choose the via points. The use of dynamic
movement primitives would alter the statistics of the image
motion induced by the hand, which might change the smooth
pursuit performance. The use of goal babbling might improve the
speed of learning (Baranes and Oudeyer, 2013). These would be
interesting extensions of the model to investigate. However, we
do not expect their incorporation to change the main qualitative
findings we report here.

For the sake of simplicity in our simulations, we use the iCub
robot simulator to take into account the kinematics of the iCub
robot as well as to model the geometry and appearance of the
visual environment. We do not take into account the dynamics of
the robot, nor do we incorporate a biologically realistic model for
the eye movement dynamics. Rather, in each iteration, we move
the robot arm to the configuration determined by the random
babbling arm motion via position control. We assume that the
eye velocity command is executed perfectly, by determining the
location of the eye in the next iteration as the sum of the encoder
measurement of the current position plus the velocity command
in Equation (1), and move the eye there via position control. The
images taken by the iCub in the new arm/eye positions determine
the next visual input to the model. The proprioceptive input is
determined from the motor encoders and their first and second
differences in time. We believe that incorporating more realistic
models of arm and eye dynamics are a natural next step. If these
models aremore biologically realistic, themodelmay give a better
quantitative account of the performance of human subjects.

RESULTS

Learned Visual Representation
The basis vectors in the first stage GASSOM are analogous
to the receptive fields of orientation-tuned simple cells in the
human primary visual cortex (Chandrapala and Shi, 2015). As
shown in Figures 4A,B, the basis vectors of the first GASSOM
are tuned to specific orientations and spatial frequencies. The
basis vectors corresponding to fine and coarse scales have similar
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FIGURE 3 | The two-session types used in training, In session type 1, the arm rests in a fixed position outside the field of view of the robot while a textured plane

moves in the background. In session type 2, the arm babbles in front of the robot with the textured plane remains stationary.

characteristics. The corresponding basis vectors associated with
a node in the first GASSOM have a phase difference close
to 90o to represent the two orthogonal basis vectors. We
initialize these basis vectors with the basis vectors learned on
natural images. In addition, the parameters corresponding to
the first GASSOM are fixed during the visual representation
learning.

The predictionmodule predicts the projections at time t of the
first stage GASSOM given the projections at time t − 1 and the
proprioceptive inputs. We evaluate the accuracy of the prediction
module using the average cosine similarity between p̂1,s,n,i(t)
and p1,s,n,i(t). For this test, the eye and the arm are moved
independently of each other. The eye velocities are sampled
from Gaussian distributions fitted to the distribution of the eye
velocity during training in both pan and tilt directions. The
standard deviations of the fits are σθ̇e,pan

= 0.7337 deg/sample

(r2 = 0.982) and σ θ̇e,tilt
= 0.6387 deg/sample (r2 = 0.989).

Arm trajectories are generated in a similar way to the training.
In order to maintain the gaze on the robot hand, we execute
a saccade to bring the eye gaze back to the center of the
hand once the eye gaze drifts outside of the arm region. We
evaluate the predictors over 10,000 iterations. The basis vectors
from the subspaces with the highest and lowest average cosine
similarity for two scales are outlined in green and blue in
Figures 4A,B.

We fit a two-dimensional Gabor function to each basis
vector to identify the factors influencing the prediction accuracy.
Figures 4C,D show that the average cosine similarity of a
predictor is related to the spatial frequency ( 1

λ
; where λ is the

spatial wavelength) of the basis vector. Higher spatial frequencies
have a lower cosine similarity for predictors in both fine
and coarse scales. Intuitively, basis vectors with higher spatial
frequencies are more sensitive to retinal motion than those
with low spatial frequencies. The transformations associated with
higher spatial frequency basis vectors aremore difficult to predict.
The cluster of data points close to 1

λ
= 0 in Figures 4C,D are

basis vectors whose fitted Gabor functions had very long spatial
wavelengths. These typically corresponded to basis vectors with
main support near the edges of the patch.

The second stage GASSOMs jointly encode the actual and
predicted projections onto the subspaces of the first GASSOM.
If the predictions from knowledge of the proprioception are
accurate, there should be little difference between the actual
and predicted projections. Differences between the two arise
due to exteroceptive motion, which cannot be predicted from
proprioception, as well as inaccuracy in the predictor. The basis
vectors in the second GASSOM encode these differences and
inherit orientation and spatial frequency tuning from the first
stage. Encoding only the residual motion after prediction helps
to reduce correlation between the visual and proprioceptive cues.

We examine the tuning of the basis vectors in the second
GASSOM using drifting two-dimensional cosine gratings in 10×
10 pixel image patches. For this test, we fix the proprioceptive
input to zero self-motion. We record the responses from the
subspaces of the second GASSOM to all combinations of motion,
spatial frequency and orientation, where spatial wavelengths
varied from 3 to 20 pixels, motion from −2 to 2 deg/sample,
orientation from 0◦ to 180◦. For each subspace, we determine
the preferred tuning from the combination that resulted in the
maximum magnitude response.

The tuning characteristics for the fine scale basis vectors are
provided in Figures 5A,B. Here, we also present the tuning
statistics corresponding to a model without the prediction
module shown in Figures 5C,D. The majority of the basis
vectors are tuned to zero velocity for both architectures as
shown in Figures 5A,C. The tuning velocities of the architecture
with, without prediction have a variance of 0.3660, 0.4286
(deg/sample)2 . The tuning orientations are distributed close
to a uniform distribution as shown in Figures 5B,D. The KL
divergence with the uniform distribution of orientations for the
architecture with, without prediction is 0.0113, 0.0397. Hence,
the two architectures prefer zero retinal slip for all the tuning
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FIGURE 4 | (A,B) One out of each pair of basis vectors spanning the 256 subspaces in the fine (A), and coarse (B) scale GASSOMs. The basis vectors are shown as

a 16× 16 array of 10× 10 images. In each subplot, the twenty six basis vectors of the subspaces with the highest (lowest) average cosine similarity between the

predicted and actual outputs are outlined in green (blue). (C,D) Scatter plots of the average cosine similarity of the prediction vs. best-fit spatial frequency for the fine

(C), and coarse (D) scale basis vectors.

orientations. For the architecture with prediction, the variance of
the tuning velocities is lower compared to the other architecture.

Learning the Eye Motor Controller
The eye controller is tested by evaluating the tracking
performance for a set of 10 different arm trajectories, each lasting
1,000 iterations. The trajectories are generated in the same way
as in training. The performance is measured by computing the
root mean squared error (RMSE) between the target and actual
eye velocities.

We compare the performance of the system in three different
scenarios. In all cases, the robot attempts to track the end
effector of the robot. In the first case, the model is driven by
both visual and proprioceptive stimuli. In the second case, the
model is purely driven by vision, with illusory proprioceptive

input being provided that suggests that the arm is fixed
at the resting position outside the field of view used in
training session type 1. In the third case, the model is purely
driven by proprioception, with the visual feature φv(t) replaced
by the expected value computed over time E[φv(t) ]. This
approach allows us to compare the three cases by providing
the same visual stimuli (the robot hand) in distinct scenarios.
Figure 6 depicts the learning progress recorded at 6 checkpoints
occurring every 80,000 iterations. The RMSE for both pan
and tilt angular velocities are averaged over 30 different trials
comprising 10 trajectories and 3 different training trials. The
learning curves in Figure 6 illustrate that in steady state, using
both visual and proprioceptive stimuli is much more accurate
than using either stimuli alone. This is typical of multimodal
integration.
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FIGURE 5 | Tuning statistics for the second stage GASSOM. (A,B) (Velocity, Orientation) statistics for the architecture with the prediction module. (C,D) (Velocity,

Orientation) statistics for the architecture without prediction. The majority of the basis vectors in the second GASSOM are tuned in to zero retinal slip in both cases.

Comparison With Psychophysical
Experiments
In this section, we compare the eye movements generated by
the model to that of the human oculomotor system using an
experimental protocol similar to that described in Vercher et al.
(1993), which is illustrated in Figure 7. Vercher et al. measured
the frequency responses of the human oculomotor plant during
visual tracking for five subjects (4 males and 1 female) in two
different cases. In the first case, the subject was tracking a target
moving in a sinusoidal trajectory as shown in Figure 7A. In the
second case, the target trajectory was controlled by the subject
using his/her arm while tracking the corresponding target with
the eyes as shown in Figure 7B. The eye movements in these two
cases were compared to understand the role of proprioception in
oculomotor control.

In our experiment, with the model to generate comparable
data, we use the end effector of the robot arm as the target.
The end effector is moved in a sinusoidal trajectory between
−6o and +6o in the pan direction with respect to the eye. The
frequency of the motion varies from 0.5 to 2Hz in 0.5Hz steps.
Sample trajectories generated by the model at 1Hz frequency are
shown in Figure 8. We fit a sine function to the eye velocity to

compute the velocity gain and phase difference with reference
to the target trajectory. The eye trajectory in Figure 8A shows a
higher gain and a lower phase delay compared to the trajectory
in Figure 8B. Hence, the addition of proprioceptive information
improves the velocity gain in comparison to vision alone. The
addition of proprioception also reduces the phase delay. Our
system is also able to move the eye solely with the proprioceptive
input as illustrated in Figure 8C.

We compare the results of our model with human
performance, by extracting the frequency response data from
Figures 2, 3 in Vercher et al. (1993), which show the eye
velocity gains and phase delays averaged across the five subjects.
Figure 9 compares the frequency responses. The model and
human data have qualitative similarities. According to the gain
plots in Figures 9A,C, both responses have a higher gain in
the presence of both vision and proprioception. In addition,
proprioception combined with vision has a lower phase delay
as shown in Figures 9B,D. For the subjects in this study, both
efferent and afferent information is available during tracking
of the self-moved target, whereas our model only includes
afferent information from proprioception. Vercher et al. (1996)
studied the role of proprioception in eye-hand coordination
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FIGURE 6 | Learning curves corresponding to three testing scenarios. The

performance for pan and tilt angular velocities are averaged. The black solid

line shows the learning curve corresponding to the system using both visual

and proprioceptive inputs to track the robot hand. The red dashed line shows

the learning curve corresponding to the system using the pure visual input to

track the robot hand. The blue dash-dot line shows the learning curve

corresponding to the system using pure proprioceptive input.

by comparing the behavior between deafferented and control
subjects. The deafferented subjects showed little difference in
performance between tracking a self-moved target and an
external target. This highlights the importance of proprioception
as a non-visual signal for smooth pursuit control.

Qualitative Evaluation of Performance
To observe the tracking performance qualitatively, we generate
a video comparing the eye trajectories as the arm moves
randomly for the three different combinations of cues1 This
video demonstrates the performance by projecting the gaze
position to an image frame obtained from a fixed camera for
three different testing cases. The right eye camera is moving
differently in all three testing cases. Relating the gaze to a
reference camera frame makes it easier to compare the different
cases. From the video, the pure proprioception based tracking
underperforms in comparison to the other two cases. This is
consistent with the velocity gain and phase delay responses in
Figure 9.

The performance in the video can be summarized by
projecting the gaze vectors to the end effector coordinate system.
The origin of this coordinate system is located on the palm
of the robot end effector. Figure 10 shows distributions of the
intersections between the eye gaze direction and the plane
passing through the origin parallel to the palm surface over the
entire tracking trajectory as two-dimensional heat maps, one for
each of the testing cases. In comparison to Figures 10A,B, 10C

shows larger variability in the gaze position on the end effector.

1The video is available online at https://youtu.be/PPb7KwWefBI

This is consistent with the poorer tracking performance for
proprioception alone than in the other two cases. The model
does not explicitly define a precise end effector location to be
tracked. Since only acceleration commands are generated, the
gaze position can drift. Thus, the mean gaze position projected
to the palm varies across different training trials for the three
different testing cases.

We also illustrate the system’s robustness to changes in the
visual appearance of the robot end effector qualitatively through
an accompanying video2 We change the appearance by moving
the wrist and fingers of the iCub with sinusoidal joint trajectories.
No information about finger and wrist motion is provided to
the system. When eye acceleration is driven by vision alone, the
eye drifts away faster from the end effector. The changes in the
appearance of the end effector introduce visual perturbations,
which are challenging to follow in comparison to changes due
to translation of the end effector. For the other two cases,
the proprioceptive inputs, which are not altered due to the
changes in the visual appearance of the robot end effector,
enable the robot to maintain the gaze on the palm for a longer
time.

Importance of the Prediction Module
To identify the role of the prediction module in the proposed
model, we compare the performance of three different models.
Figure 11A shows a general architecture that covers the three
models compared in this study. The three models differ only in
their visual pathways. The proprioceptive features and the eye
controller neural network are identical. Figure 11B illustrates
the prediction based visual pathway proposed in this paper. The
pathway in Figure 11C has a very similar structure, except that
the prediction module is removed. Comparing these two models
enables us to identify the benefit of the prediction module.
The pathway shown in Figure 11D is the sparse coding based
visual representation used in our earlier work (Wijesinghe et al.,
2017).

To compare the performance, each model is tested for 20
different testing trials (10 different trajectories for each of the two
training scenario types). Figure 12 shows the RMSEs between
the target and actual eye velocities. We perform paired sample
t-tests to compare the RMSE of the model with prediction with
the RMSEs of the other two. The effect size is also computed
according to the Cohen’s d formula. The Differences between the
performance of the models in Figures 11B,C are not statistically
significant for vision and proprioception (p= 6.27× 10−1, effect
size = −0.0876) nor vision alone (p = 4.40 × 10−1, effect
size= 0.1619). The model with prediction performs significantly
better for proprioception alone (p = 6.16 × 10−10, effect size
= 4.2334). We have similar findings for the Sparse Coding
based model in Figure 11D. Differences in performance are not
significant for vision and proprioception (p= 7.29× 10−2, effect
size = 0.6531) nor vision alone (p = 1.49 × 10−1, effect size
= −0.4611). The model with prediction performs significantly
better with proprioception alone (p = 5.94 × 10−15, effect size
= 4.7588).

2The video is available online at https://youtu.be/RsGTmbb0cf0

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2018 | Volume 12 | Article 66115

https://youtu.be/PPb7KwWefBI
https://youtu.be/RsGTmbb0cf0
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wijesinghe et al. Predictive Multisensory Integration

FIGURE 7 | Psychophysical experiment (Vercher et al., 1993). (A) The target was controlled externally. The subject was asked to track the target using direct visual

input. (B) The target was controlled by the subject using a lever. The subjects simultaneously tracked the target ulitlizing both visual and proprioceptive inputs.

FIGURE 8 | Eye velocity trajectories corresponding to the eye responses for different sensory modalities: (A) Vision and Proprioception, (B) Vision, (C) Proprioception.

Each figure contains a trajectory (red) indicating the target velocity, the respective eye velocity (blue) and the sinusoidal fit (black) for the eye velocity.

These results demonstrate that the proposed prediction
based model exhibits superior performance compared to models
without prediction. We attribute this to reduced correlation
between the visual and proprioceptive features in the prediction-
based model.

DISCUSSION

In this article, we propose a model based on the Active Efficient
Coding (AEC) framework that enables a robot to learn to track
its end effector using a combination of visual and proprioceptive
cues. Rather than simply concatenating the two sets of features,

the proposed model predicts visual consequences of actions,
which removes information correlated with proprioception from
vision. The model enables a robot to learn to track an object
for three cases: using both visual and proprioceptive cues
corresponding to the typical case of end effector tracking,
using only visual cues corresponding to tracking of an external
independently moving object, and using pure proprioception
corresponding to tracking of the end effector in darkness.

The incorporation of prediction is motivated by recent studies
on neural responses in V1 of mice during locomotion (Niell
and Stryker, 2011; Keller et al., 2012; Attinger et al., 2017).
These studies suggest that the responses of cells in the V1
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FIGURE 9 | The frequency response of the human oculomotor system compared with the frequency response of the proposed model. (A) The velocity gain of the

proposed system. (B) The phase delay of the proposed system. (C) The velocity gain of the human oculomotor system. (D) The phase delay of the human oculomotor

system.

FIGURE 10 | The heat map illustrating the distribution of eye gaze intersection with a plane parallel to the palm of the robot hand. The robot hand is superimposed to

each image to have a qualitative comparison: (A) Vision and Proprioception (B) Vision (C) Proprioception.

depend upon predictions of the sensory consequences of motor
actions. In fact, locomotion improves the encoding of visual
stimuli (Dadarlat and Stryker, 2017). In our model, the visual

representation encodes the residual motion after removing the
predicted effects of self-motion from the observed visual flow.
We show that the proposed prediction module has the ability
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FIGURE 11 | (A) A general architecture representing all of the architectures compared in this study. (B) The prediction based visual pathway proposed in this paper.

(C) The visual pathway without the prediction module. (D) A Sparse Coding based visual pathway.

FIGURE 12 | The RMSE (mean ± standard deviation) of the eye velocity

compared to a target velocity for three different architectures and three

different combinations of sensory modalities. For the paired t-test

comparisons, no mark indicates differences are not statistically significant (p >

0.05), ***indicates statistical significance (p < 0.001).

to predict the visual sensory consequences of proprioceptive
inputs (Figure 4). Specifically, the visual sensory consequences
for subspaces with low spatial frequency basis vectors in the first

stage GASSOM are easier to predict compared to higher spatial
frequencies.

The incorporation of learning into both the perception
and action components of the perception-action loop in
this model allows the sensory representation and the action
generation network to co-adapt as the agent behaves in
the environment. We characterized the performance of the
eye controller both quantitatively and qualitatively. Using
both visual and proprioceptive sensory stimuli to drive
eye motion results in more accurate tracking of the end
effector compared to using either sensory stimulus alone.
Moreover, the inclusion of proprioception also makes the
model more robust to changes in the appearance of the end
effector.

We compare predictions of our model with findings from
human psychophysical experiments studying the contribution
of proprioception to human oculomotor control. Our results
in Figure 9B suggest that incorporating proprioception reduces
phase delay. This characteristic of the human oculomotor system
has been found repeatedly. First, early work analyzing self-
moved targets showed that the information about arm motion
plays an important role in self-motion tracking (Steinbach and
Held, 1968). The eye motion lagged behind target motion less
for active arm motions than passive arm motions. Second,
active and passive hand motion tracking along with tracking of
external visual targets were qualitatively compared in Mather
and Lackner (1980). External target tracking used a larger
number of saccades per cycle and had larger latency compared
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to the oculomotor tracking of the hand. The external target
tracking was more challenging since the target motion was
unpredictable. Third, experiments conducted by Gauthier et al.
(1988) quantitatively compared eye tracking of an external
object and of the subject’s hand. The average latency when
the eye tracked an external object (150 ± 30ms) was much
longer than the average latency when the eye tracked the
hand (30 ± 10ms). This delay was also prominent in the
onset of smooth pursuit eye motions (Domann et al., 1989).
Finally, Chen et al. (2016) showed that eye precedes a target
controlled by the finger in congruent pursuit in comparison to
opposite movements. However, our model does not exhibit this
property.

Our results qualitatively agree with multiple psychophysical
studies showing that proprioception can also change the velocity
gain of the human oculomotor plant. During eye tracking
of an external object, the eye velocity saturated at very low
velocities around 40 deg/s compared to 100 deg/s during eye
tracking of the hand (Domann et al., 1989). As shown in
Figure 9A, velocity gains are larger at higher frequencies when
the robot tracks its hand compared to an external object. Our
model demonstrates that with the assistance of proprioception,
the model is capable of maintaining a higher tracking gain
for high frequency stimuli. This property is qualitatively
consistent with the human oculomotor system (Vercher et al.,
1993).

Human eye motion is mainly driven by visual stimuli.
However, non-visual signals can also drive eye motion in
certain tasks (e.g., in the darkness). Figure 8C illustrates
that for our model proprioception alone has the capability
to elicit eye movements. Several articles have studied the
contribution of non-visual signals to oculomotor control. First,
Steinbach (1969) showed that proprioceptive inputs alone were
sufficient to generate smooth pursuit eye movements. Second,
smooth pursuit movements generated by non-visual stimuli
were studied in Berryhill et al. (2006). Tracking a pendulum
in the darkness, proprioceptive stimuli had a velocity gain
close to 0.3. On the other hand, with direct visibility of the
pendulum, the subject had the ability to track the pendulum
more accurately with a velocity gain of 0.7. Our model
exhibits similar qualitative changes in visual vs. proprioceptive
gain.

Although ourmodel exhibits similar qualitative characteristics
as human oculomotor tracking, it does not match quantitatively.
In particular, the velocity gain of the model is much higher
than that of the human oculomotor system (Figure 9). This
mismatch may arise because we assume in our simulations that
the eye velocity command generated by the model is executed
perfectly by the eye. A more realistic model would include
processing and propagation delays, a more realistic model of
the neural control of eye velocity, as well as a dynamical model
of the physical oculomotor plant. For example, the cerebellum
is a part of the neural circuit for eye-hand coordination for
oculomotor control (Miall et al., 2001), but this is not reflected
in the proposed model. We anticipate that the incorporation
of these elements into future extensions of the model would
degrade the velocity gain observed during tracking, bringing

the model simulations into closer quantitative agreement with
human performance.

This work can be extended in several directions. First, the
model could be extended to include saccadic eye movements.
Tracking targets with the eyes typically consists of a combination
of pursuit and saccadic eye movements. For example, the
majority of the eye movements when humans tracking the arm
in darkness are saccades (Dieter et al., 2014).

Second, new sensory modalities might be added to the
proposed model. The proposed model is only a first step toward
integrating cross-sensory prediction. While a straightforward
extension might be to add additional inputs to the predictor
network, consideration of the problem of adding new sensory
modalities raises a number of intriguing questions. For
example, which sensory inputs should be predicted from
which others? Here we have considered prediction in only
one direction. Another question is how to deal with the
different possible combinations of sensory cues that might be
available.

Third, the arm trajectory generation could be made more
biologically realistic, e.g., through the use of dynamical
movement primitives for trajectory generation (Schaal, 2006),
or through the use of goal babbling to choose the via points
(von Hofsten, 2004). In this work, we used random babbling
and trajectory generation for its simplicity. The use of dynamic
movement primitives would alter the statistics of the image
motion induced by the hand, which might change the smooth
pursuit performance, e.g., the final steady state error in Figure 6

or the shape of the frequency response curves in Figure 9. The use
of goal babbling might improve the speed of learning (Baranes
and Oudeyer, 2013). These would be interesting extensions of
the model to investigate. However, we do not expect that their
incorporation to change the main qualitative findings we report
here, e.g., the ordering of the degradation in performance and
proprioceptive or visual cues are removed.

Finally, the model might be integrated into a more
comprehensive framework for hand-eye coordination that would
include other tasks, such as reaching. In a sense, reaching is
the inverse of the problem studied here. Our model generates
commands to change eye gaze based on visual information and
arm motion. Visually guided reaching involves the generation
of an arm motion command to move the end effector to a
visual target. The required mappings, e.g., between gaze direction
and/or visual target location and end effector motion are often
learned using a motor babbling process similar to that used here,
where the end effector is tracked as the arm moves (Burger
et al., 2018). In other cases, gaze is controlled to bring the target
object or end effector to the image center (Huelse et al., 2010;
Jamone et al., 2012; Savastano and Nolfi, 2013). In these works,
the problem of tracking the end effector/target was simplified by
attaching a marker to the end effector/target. Since our model
does not require explicit markers, it might be used to relax
some of the assumptions made by prior work. Because the
location of the eye gaze drifts on the palm area (Figure 10),
gaze direction does not directly correspond to a specific position
on the end effector in trajectories generated by the model.
However, the model could be used to generate data to learn an
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approximate mapping between gaze direction and end effector
position.
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Learning (inverse) kinematics and dynamics models of dexterous robots for the entire

action or observation space is challenging and costly. Sampling the entire space is

usually intractable in terms of time, tear, and wear. We propose an efficient approach

to learn inverse statics models—primarily for gravity compensation—by exploring only

a small part of the configuration space and exploiting the symmetry properties of

the inverse statics mapping. In particular, there exist symmetric configurations that

require the same absolute motor torques to be maintained. We show that those

symmetric configurations can be discovered, the functional relations between them

can be successfully learned and exploited to generate multiple training samples from

one sampled configuration-torque pair. This strategy drastically reduces the number of

samples required for learning inverse statics models. Moreover, we demonstrate that

exploiting symmetries for learning inverse statics models is a generally applicable strategy

for online and offline learning algorithms. We exemplify this by two different learning

approaches. First, we modify the Direction Sampling approach for learning inverse

statics models online, in a plain exploratory fashion, from scratch and without using a

closed-loop controller. Second, we show that inverse statics mappings can be efficiently

learned offline utilizing lattice sampling. Results for a 2R planar robot and a 3R simplified

human arm demonstrate that their inverse statics mappings can be learned successfully

for the entire configuration space. Furthermore, we demonstrate that the number of

samples required for learning inverse statics mappings for 2R and 3R manipulators can

be reduced at least by factors of approximately 8 and 16, respectively–depending on the

number of discovered symmetries.

Keywords: symmetries, inverse statics models, inverse dynamics models, efficient learning, direction sampling,

goal babbling

1. INTRODUCTION

The learning of motor capacities and skills has always been a core topic of the developmental
approach to robot cognition (Asada et al., 2001), as mastering the body is fundamental for any
embodied agent. Since the seminal work on human motor control in the 1990th (Wolpert and
Kawato, 1998; Wolpert et al., 1998), it is widely believed that forward and inverse models play a
crucial role in the motor control architectures. Numerous learning schemes have been proposed
during the last decades for exploratory learning of robot forward and inverse kinematics, where in
the developmental context exploratory learning without the initial constraint of a particular task or
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trajectory is the main focus. Note that in the latter case more
specialized schemes can be applied both for kinematics (D’Souza
et al., 2001) and dynamics (Peters and Schaal, 2008; Meier et al.,
2016) and the learning problem is locally convex which simplifies
the task significantly. Motor control for the entire configuration
space, however, remains a major challenge because sampling the
entire action or observation space is usually very costly and the
non-convexity of the model (e.g., due to kinematic redundancy)
poses additional problems.

Efficiency is one of the major challenges in learning (inverse)
kinematics and dynamics models. Reducing the number of
required samples to learn these models in practical experiments
is beneficial regarding time and hardware costs. We therefore
propose symmetry-based exploration to effectively reduce the
number of required samples. This can be done by exploiting the
mapping properties to learn a model that is valid for the entire
action/observation space. For example, it is a particular property
of inverse statics maps (ISMs) (i.e., the map that assigns a
required static torque to maintain a desired joint configuration of
the robot) that multiple configurations require the same absolute
static torque to be maintained. We denote this configuration
set as symmetry set. We exploit the functional relation between
configurations in the symmetry set to show that learning ISMs
can be done very efficiently by exploring only one configuration
and learning the corresponding symmetric configurations. To
this aim, we propose a scheme to discover and learn symmetries,
and then we exploit these symmetries to drastically reduce
the number of required samples regardless of the particular
learning scheme. The paper demonstrates the generic nature of
the symmetry concept to accelerate the learning process through
exploiting symmetries with different learning schemes online and
offline.

Learning ISMs has previously been done offline only and by
using a feedback-controller to collect samples and to enhance an
already existing model (e.g., Luca and Panzieri, 1993; Xie et al.,
2008). In this paper, Direction Sampling (Rolf, 2013), which has
been previously proposed as an extension of Goal Babbling (Rolf
et al., 2011) to learn inverse kinematics (IK), is modified to learn
ISMs also online, from scratch and without using any controller
in a plain exploratory fashion. Learning ISMs in an exploratory
fashion is challenging as the straightforward application of
random torques bears the risk to destroy any manipulator if
no further safety layers are present and to respect joint-wise
torque limits alone does not solve this problem, other than in
kinematics, where joints limits can be enforced easily and without
endangering the robot hardware. Hence, the exploration may
yield inadmissible torques which result in accelerating the robot
manipulator and the robot hitting its joint limits1. Consequently,
the learner will be disturbed because of the resulting invalid
training sample consisting of inadmissible torque which is not
corresponding to the joint limits’ configuration where the robot
settles in. To avoid this situation, torque combination limits must
be considered in addition to the joint-wise torque limits. We

1Obviously, in practical applications, a software joint limit is employed to avoid

reaching the hardware joint limit.

therefore explore and learn the set of admissible static torques
to overcome this issue as explained in detail in section 5.1.

These aforementioned challenges also illustrate more
restrictions and difficulties of learning ISMs in comparison
to learning IK. For example, the application of a torque
produces dynamics, other than in the kinematics domain where
application of a joint command can be treated as instantaneously
effective, because the underlying joint controllers hide and
control the dynamics. Furthermore, the training samples
in IK are always valid samples since the end-effector pose
always corresponds to a valid robot configuration even when
the robot hits its joint limits, which is not the case in ISMs.
Moreover, IK usually maps from Cartesian (observation) space
to configuration (action) space, i.e., from a lower dimensional
space to a higher dimensional one, while the dimensions of
observation and action spaces in ISMs are usually identical
since ISMs map from configuration (observation) space to
motor (action) space. Learning the mapping between spaces
with identical dimensions is more difficult as both dimensions
scale with the number of DoFs. Consequently, more samples are
required to learn the model in contrast to IK. Hence, exploiting
symmetries and exploring only a small part of the configuration
space is also motivated to mitigate the curse of dimensionality
problem. It reduces the number of required samples as the
efficiency factor increases for higher DoFs. For instance, it
increases to 8 for a 2R planar manipulator and to 16 for a 3R
robot manipulator as illustrated in section 7.

The remainder of the paper is structured as follows:
Section 2 reviews related work. Section 3 introduces the concept
of symmetries. Section 4 explains symmetry discovery and
symmetry exploitation in learning. Section 5 addresses learning
ISMs online and explains the proposed Constrained Direction
Sampling. Lattice sampling is introduced briefly in section 6.
Section 7 presents experimental results and the efficiency gained
by exploiting symmetries for learning ISMs which is illustrated
by Constrained Direction Sampling (online) and a batch learning
technique using lattice sampling for a 2R and a 3R manipulators.
Section 8 concludes the work.

2. RELATED WORK

Our main goal is increasing the efficiency of learning models,
in particular for learning inverse statics. As learning ISMs has
been done previously only offline, we modified the Direction
Sampling method (Rolf, 2013) for learning ISMs online as
well. This paper therefore discusses three major points: learning
efficiently, learning inverse statics models, and online goal-
directed approaches. This section presents the previous related
work.

2.1. Learning Efficiently
Various approaches have previously been proposed for tackling
the efficiency problem of learning. Some previous research
proposed exploring the observation space instead of the action
space to avoid the curse of dimensionality. For instance, learning
IK by exploring the observation space (Cartesian space) and
learning only one configuration for each pose to mimic infants
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efficient sensorimotor learning (e.g., Rolf et al., 2011; Rolf and
Steil, 2014; Rayyes and Steil, 2016) instead of learning forward
kinematics mappings by exploring the higher dimensional action
space (configuration space) e.g., Motor Babbling (Demiris and
Meltzoff, 2008).

Other research proposed that online learning of inverse
models can be done in part of the workspace only in order
to increase the efficiency and reduce the number of required
samples (Rolf et al., 2011; Baranes and Oudeyer, 2013), since
online learning approaches have the tendency to require more
samples than offline methods. Efficient exploration by efficient
sampling (active policy iteration) was proposed in Akiyama et al.
(2010), however it has been proposed for batch learning only.
Efficient learning has been also addressed for solving different
tasks (e.g., Şimşek and Barto, 2006) based on Markov Decision
Process and reward function. In this paper, we propose symmetry-
based exploration to learn ISMs for the entire configuration
space effectively by exploring a small part of it and exploiting
the symmetries of ISMs which reduces the number of required
samples. The proposed strategy is applicable for online and
offline learning schemes.

2.2. Learning Inverse Statics Models
Compensating forces and torques due to gravity is very important
for advanced model-based robot control. The gravitational terms
of the inverse dynamics models are usually computed either
by estimating inertial parameters of the links or from CAD
data of the robot. However, if no appropriate model exists e.g.,
for advanced complex robots or for soft robots, or if no prior
knowledge on the inertial parameters of the links is available,
learning these gravitational terms is a promising option. Previous
research on learning ISMs has been done offline using a closed-
loop controller to collect training data and often to enhanced
existing (parametric) models (e.g., Luca and Panzieri, 1993; Xie
et al., 2008). Early data-driven gravity compensation approaches
are based on iterative procedures for end-point regulation (De
Luca and Panzieri, 1994; De Luca and Panzieri, 1996). Recent
works (Giorelli et al., 2015; Thuruthel et al., 2016b) have
proposed data-driven learning techniques to control the end-
point of continuum robots in task space. Where ISMs map
between the desired end effector poses and the cable tensions.
However, feedback controllers and inefficient Motor Babbling
were implemented to obtain the training data and to learn ISMs
offline only. In contrast, we propose learning ISMs online, in an
exploratory fashion, from scratch and without using a closed-
loop controller. Besides, we exploit the symmetry properties of
ISMs to learn ISMs efficiently online and offline for the entire
configuration space.

2.3. Goal Babbling and Direction Sampling
Various schemes have been proposed to replicate human
movement skill learning and human motor control based on
internal models (Wolpert et al., 1998), i.e., learning forward
models (e.g., Motor Babbling Demiris and Meltzoff, 2008),
and inverse models (e.g., distal teachers Jordan and Rumelhart,
1992 and feedback error learning; Gomi and Kawato, 1993). In
contrast to Motor Babbling where the robot executes random

motor commands and the outcomes are observed, there is
evidence that even infants do not behave randomly but rather
demonstrate goal-directed motion already few days after birth
(von Hofsten, 1982). They learn how to reach by trying to reach
and they iterate their trails to adapt their motion. Hence, Goal
Babbling was proposed and inspired by infant motor learning
skills for direct learning of IKwithin a few 100 samples (Rolf et al.,
2010, 2011). Various other schemes were proposed for learning
IK e.g., direct learning of IK (D’Souza et al., 2001; Thuruthel et al.,
2016a) and incremental learning of IK (Vijayakumar et al., 2005;
Baranes and Oudeyer, 2013).

To apply Goal Babbling, a set of predefined targets, e.g., a set
of positions to be reached, is required and then used to obtain
the IK which is valid only in the predefined area. Direction
Sampling (Rolf, 2013) has been proposed as an extension of
Goal Babbling, to overcome the need for predefined targets
and gradually discover the entire workspace. The targets are
generated while exploring and the IK is learned simultaneously.
In previous work, we already illustrated the scalability of online
Goal Babbling with Direction Sampling in higher dimensional
sensorimotor spaces up to 9-DoF COMAN floating-base (Rayyes
and Steil, 2016). Goal Babbling has also been extended to learn
IK in restricted areas (Loviken and Hemion, 2017) and to
other domains e.g., speech production (Moulin-Frier et al., 2013;
Philippsen et al., 2016) and tool usage (Forestier and Oudeyer,
2016). Besides, it has been also applied to soft robots (Rolf
and Steil, 2014). However, it is striking that none of these
schemes have been extended or transferred to learn the forward
or inverse dynamics. As Goal Babbling shows high scalability
and adaptability in "learning while behaving" fashion, we focus
in this paper on learning ISMs, as a first step in the direction
of exploratory dynamics leaning, by modifying the previously
proposed Direction Sampling based on online Goal Babbling.

3. INVERSE STATIC MODELS AND
SYMMETRIC CONFIGURATIONS

In this section, we first explore fundamental properties of ISMs,
subsequently devise the concept of symmetries and then define
the notion of primary and secondary symmetric configurations
which are finally illustrated with a 2R planar manipulator. We
will use the term torques instead of generalized actuator forces as
our main target are manipulators with revolute joints only.

3.1. Properties of Inverse Statics Maps
ISMs map from configuration space, which constitutes the
observation space, to motor space, which represents the action
space. The dimensionality of the domain and codomain in ISMs
are therefore identical. ISMs are many-to-one mappings, i.e.,
multiple configurations require the same torque to bemaintained
as illustrated in Figure 1.

We aim to learn the map G which assigns to each joint
configuration q ∈ Qp a torque τ ∈ Ts required to maintain this
configuration:

G :Qp → Ts, G(q) = τ (1)
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FIGURE 1 | Characteristics of ISMs. The same torque is required to maintain

different configurations.

Qp is the set of permissible configurations while Ts is the set
of required static torques to maintain these configurations. G
typically associates each member of the set Ts with more than one
member of the domain Qp. There typically exist respective level
sets

Lτ =
{
q :G(q) = τ

}
(2)

with cardinalities |Lτ | > 1 for admissible torque vectors τ ∈ Ts.

3.2. Symmetric Configurations
We define the concept of symmetries as following:

Consider two level sets Lτ i and Lτ j where

τ i = Υ τ j,Υ = diag (δ1, . . . , δn) , (3)

δk = ±1,
n∑

k= 1

δk < n

i.e., the elements in τ i and τ j differ w.r.t. their sign. Here, n
denotes the number of DoFs and diag (δ1, . . . , δn) denotes a
diagonal matrix with δ1, . . . , δn on its main diagonal. We define
L̆τ as

L̆τ =
2n⋃

k= 1

Lτ k
(4)

L̆τ is the union of all level sets fulfilling Equation (3), i.e., the
union of the level sets which have the same absolute value of the
elements in the torque vector.

Two classes of configurations in these level sets can be
distinguished. Primary symmetric configurations, also denoted
as primary symmetries, constitute those pairs of configurations
qr , qs ∈ L̆τ for which

Mr,sqr + Nr,sqs = dr,s (5)

holds – where dr,s ∈ R
n and Mr,s,Nr,s ∈ R

n×n are constant
(in particular independent of the choice of τ ). The set of all
configurations in L̆τ which are directly or transitively related
by Equation (5) is called the set of primary symmetries (SPS)
denoted by S ⊂ L̆τ .

Secondary symmetric configurations, also denoted as
secondary symmetries, constitute those configurations in L̆τ for
which at least one of dr,s,Mr,s,Nr,s is a function of q and/or τ .

3.2.1. Symmetric Configurations of a Planar 2R

Manipulator
To exemplify the idea of primary symmetries and secondary
symmetries, Figure 2A shows all symmetric configurations of a
2R planar robot. There are 16 configurations which need the same
absolute static torque to be maintained and they can be separated
into two disjoint sets SA (blue) and SB (red) of 8 configurations
each.

The set SA constitutes a set of primary symmetries. The
symmetric configurations in SA are also geometrically symmetric
as illustrated in Figure 2A, it is therefore, easy to find the
functional relation between them with the linear equation given
in Equation (5). Similarly, the set SB constitutes a set of primary
symmetries as well. These two sets are secondary symmetric to
each other as SA and SB have identical absolute static torques.
The secondary symmetries occur by relating configurations from
SA with those from SB, however; there is no simple closed form
functional relations between these two sets. We will therefore
consider only primary symmetries in our experimental results.

For visualization purposes, we use component-wise level sets
for the 2R planar manipulator (cf. Figure 2A) as defined below
and illustrated in Figure 2B:

Lτ1 =
{
q :G(q) = [τ1, τ2]

T , τ2 ∈ R

}
,

L−τ1 =
{
q :G(q) = [−τ1, τ2]

T , τ2 ∈ R

}
(6)

Lτ2 =
{
q :G(q) = [τ1, τ2]

T , τ1 ∈ R

}
,

L−τ2 =
{
q :G(q) = [τ1,−τ2]

T , τ1 ∈ R

}
(7)

L±τ1 and L±τ2 fix one component of τ while the other one is not
restricted. All pairwise intersection points of component-wise
level sets L±τ1 and L±τ2 constitute symmetric configurations as
they have the same absolute values of the elements in the torque
vectors and hence fulfill Equations (2, 3).

Note that the component-wise level set is different from the
level set which is defined in Equation (2). The component-wise
level set fixes only one component of τ , while the level set in
Equation (2) fixes all components of τ . Based on Equations (2–4),
the level sets for the 2R robot illustrated in Figure 2A are:

L̆τ =
22⋃

k= 1

Lτ k

Lτ 1 =
{
q :G(q) = [+τ1,+τ2]

T
}

Lτ 2 =
{
q :G(q) = [+τ1,−τ2]

T
}

Lτ 3 =
{
q :G(q) = [−τ1,+τ2]

T
}

Lτ 4 =
{
q :G(q) = [−τ1,−τ2]

T
}





(8)
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FIGURE 2 | (A) Symmetric configurations of a 2R planar robot which require the same absolute static torque to be maintained. Configuration pairs in each

configuration set illustrated in blue SA (and red SB, respectively) are primary symmetric to each other in the same set. The two sets are secondary symmetric to each

other. Note that the manipulator is stretched out to the right in its zero configuration and that the gravity vector points downwards into negative y-direction.

(B) Component-wise level sets Lτ1 ,Lτ2 ,L−τ1 ,L−τ2 of the 2R planar manipulator. The 16 intersection points constitute symmetric configurations. Their colors and

numbers correspond to the configurations shown in Figure 2A. The numbers are based on Equation (11).

Each level set comprises 4 configurations corresponding to 4
points in the pairwise intersections of the component-wise level
sets in Figure 2B. Therefore, the symmetric configurations form
the union of the level sets L̆τ and the pairwise intersections of

component-wise level sets
⋂22

i=1 Lτi .
Like the configurations in Figure 2A, the 16 intersection

points in Figure 2B can be separated into the two disjoint sets
SA and SB indicated by the color of the points. The numbers
indicate the corresponding torque (intersection point) for each
configuration in Figure 2Awhich fulfill Equation (11) as well.We
can also derive the required torque for each joint geometrically
from Figure 2A and relate it with Figure 2B. Following the right-
hand rule, we can detect the sign of the torque for each joint.
In this setup, the zero configuration is where the arm stretched
out to the right. Every torque of a joint whose link is located on
the right side of a virtual vertical line/plane will have a positive
sign. For instance, for q1 in SB (red), we can imagine a vertical
line passing through the origin and a second vertical line passing
through the second joint axis. Both links are on the right side of
the lines so their torques are positive. On the contrary, both links
of q8 in SB (red) are on the left side of the imaginary vertical lines.
So their torques are negative.

4. ACCELERATING LEARNING BY
EXPLOITING SYMMETRIES

Each torque vector τ with identical absolute values of its
elements corresponds to a non-singleton set L̆τ of configurations.
Hence, functional relations between the configurations in L̆τ

can be exploited to generate training data and associate each
configuration in L̆τ with its applied torque vector Υ

′
τ by

observing just one configuration from L̆τ where

Υ
′ = diag (δ1, . . . , δn) (9)

δk = ±1,
n∑

k= 1

δk ≤ n

Before symmetric configurations can be exploited in this way,
they need to be discovered and the functional relations between
them need to be learned or inferred. Symmetric configurations
can be discovered by applying suitable torque profiles to the
manipulator (cf. section 4.1). Once a number of nsym functional
relations is determined, each applied motor command τ i

generates a sample (qi, τ i) as well as nsym − 1 further samples
(qj,Υ

′
iτ i), i 6= j obtained by evaluating the previously established

functional relations between symmetric configurations which are
explained in section 4.2. Increasing the efficiency by exploiting
symmetries and limiting the exploration to only one part of
configuration space is explained in section 4.3.

4.1. Discovering Symmetric Configurations
For symmetry discovery, sequences of suitable torque profiles
are applied with the same absolute starting and ending torque
values.Algorithm 1 shows the required steps for discovering the
symmetries associated with a single torque vector τ

∗.
Let τ

pr denote a torque profile. Starting from the home
configuration qhome, a number npr of torque profiles τ

pr
i are

generated using splines (cf. Figure 3) and applied sequentially,
where τ

pr
i is the ith torque profile. Each torque profile has k =

1, .., nsi time steps. These torques profiles are applied with start

and end-point constraints on their derivatives, i.e., τ̇
pr
i [1] =

τ̇
pr
i [nsi ] = 0, which is required to obtain a smooth trajectory.

For each torque profile τ
pr
i , τ

pr
i [1] = Υ

′
τ
∗ ∧ τ

pr
i [nsi ] = Υ

′
τ
∗

holds. Probability distributions pn and pτ are utilized to draw
nsi samples and to generate intermediate torques in each profile,
respectively.

After successful application of a torque profile, τ
p
i [nsi ] is

applied as long as the manipulator has not settled yet, i.e., τ
p
i [nsi ]
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FIGURE 3 | Examples of torque profiles for symmetry discovery. First, a torque spline is applied with the same initial and terminal absolute torque values.

Subsequently, a constant torque is commanded until the manipulator settles at a configuration.

FIGURE 4 | Joint trajectories resulting from applying sequences of torque profiles according to Figure 3. Red crosses indicate that the joint limits have been reached

and the manipulator returned to its home configuration. Black dots indicate the end of a profile where τ
pr
i
[nsi ] is applied until the manipulator has settled down in this

configuration i.e., the manipulator has stopped moving. The corresponding configurations are entered into L̆′τ (cf. Algorithm 1).

is applied until the manipulator stops moving. By reverting
to the same torque magnitude at the end of each profile but
applying different intermediate torques, a primary or secondary
symmetric configuration can be reached. If the manipulator
settles in a valid configuration, this configuration q is recorded
and added to the discovered set L̆′τ (if is not already contained
in it) associated with the torque Υ

′
τ
∗ and the sequence is

continued with the next profile. If the manipulator reaches its
joint limits during or after application of a torque profile, it
goes back to its home configuration qhome and the sequence is
continued with the next profile. The discovered symmetries are
marked as primary symmetries if they can be related according to
Equation (5).

Figure 3 shows exemplary torque profiles and
Figure 4 shows two joint trajectories resulting from the
application of such torque profiles. 5 and 4 symmetric
configurations are discovered, respectively including the
initial configurations. Note that npr depends on the

geometrical structure and the number of joints of the
robot.

4.2. The Functional Relations Between
Symmetric Configurations
The functional relations between the primary symmetries
according to Equation (5) can be determined by established
multiple linear regression techniques (cf. e.g., Draper and Smith,
1998). These learned relations can then be utilized to compute
the symmetric configurations for each observed q with the
corresponding τ required to maintain it.

When some geometrical information about the manipulator is
available andwhen the primary symmetries are also geometrically
symmetric to each other, then the functional relations between
them are easily inferred utilizing the functional relations of
geometrical symmetries.

For example, the functional relations between primary
symmetries for the 2R planar robot illustrated in
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Algorithm 1 Symmetry Discovery using Torque Profiles

1: function DISCOVERSYM(τ ∗, qmin, qmax, npr , pn, pτ )

2: L̆
′
τ = ∅

3: for i = 1, . . . , npr
4: settled = false
5: nsi = sample probability distribution pn
6: τ

pr
i = generate Torque Profile (τ ∗, pτ , nsi )

7: for j = 1, . . . , nsi
8: apply torque τ

pr
i [j]

9: observe current configuration q

10: if q exceeds joint limits
11: go home
12: settled = true
13: break

14: end if

15: end for

16: while¬settled
17: apply torque τ

pr
i [nsi ]

18: observe current configuration q

19: if q exceeds joint limits
20: go home
21: settled = true
22: elseif robot has settled in q

23: add q to L̆
′
τ

24: settled = true
25: end if

26: end while

27: end for

28: return L̆
′
τ

29: end function

Figure 2A are given in Equations (10, 11) according
to Equation (5) and applying elementary geometric
considerations:

S = {q1, q2, q3, q4, q5, q6, q7, q8} (10)

q1 = [q1, q2]

q2 = [q1,−q∗ − q1]

q3 = [−q1, q∗ + q1]

q4 = [−q1,−q∗ + q1]

q5 = [q1 + π , q∗ − q1]

q6 = [q1 + π ,−q∗ − q1]

q7 = [−q1 − π , q∗ + q1]

q8 = [−q1 − π ,−q∗ + q1]

q∗ = q1 + q2





(11)

S is the set of primary symmetries, {q1, q2, ...q8} are the
symmetric robot configurations, q1, q2 are the robot joint angles
and q∗ is a virtual joint angle illustrated in Figure 5.

FIGURE 5 | The physical and virtual joint angles of a 2R manipulator to

calculate the set of primary symmetries S.

FIGURE 6 | BCTS in the configuration space for a 2R planar manipulator.

4.3. Increasing Efficiency by Exploiting
Symmetries
4.3.1. Bijective Configuration-Torque Set (BCTS)
Owing to the symmetry properties of ISMs, only a fraction
of the configuration space needs to be explored. We denote
this subspace as bijective configuration-torque set (BCTS). The
BCTS is a set of configurations which contains exactly one unique
configuration q for each admissible absolute static torque τ .
BCTS is determined based on the set of primary symmetries. For
example, Figure 6 illustrates the BCTS (green area) for the 2R
planar robot (cf. Figure 2A) which is determined based on the
set of primary symmetries S given in Equations (10, 11).

As configurations outside the BCTS are symmetric to
those inside the BCTS, ISMs can be learned for the entire
configuration space by exploringmerely theBCTS and exploiting
the functional relations between symmetries. Constraining the
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exploration to discover the BCTS only increases the efficiency of
learning and decreases the number of required samples to learn
ISMs as we explore non-symmetric samples only.

For the 2R planar robot shown in Figure 2A, the currently
achievable reduction factor r w.r.t. required samples is r = 8
as the primary symmetry set has cardinality 8, while exploiting
secondary symmetries would further increase r up to 16. For
the 3R simplified human arm (Babiarz et al., 2015) illustrated in
Figure 9, the cardinality of the primary symmetry set increases
to r = 16. Exploiting secondary symmetries would again yield
far higher reduction factors depending on the properties of the
manipulator, however, we currently have no means to exploit
them.

5. LEARNING INVERSE STATIC MODELS
ONLINE

In order to learn ISMs for the entire configuration space online,
from scratch, in a plain exploratory fashion and without using
a feedback controller , we employ Direction Sampling (Rolf,
2013). However, to apply it successfully for bootstrapping ISMs,
several modifications to the original scheme are necessary. We
therefore propose Constrained Direction Sampling. First, the
constraint in form of the set of statically admissible torques is
introduced.

5.1. Set of Static Torques (SST)
In the established Goal Babbling and Direction Sampling (Rolf
et al., 2011; Rolf, 2013; Rayyes and Steil, 2016), exploratory noise
is added in the action space in order to explore and learn new
configurations. However, adding this exploratory noise to motor
commands (torques) in ISMs may yield inadmissible torques.
Consequently, the robot will accelerate and hit its joint limits
which results in invalid training samples (inadmissible torques
which don’t correspond to the joint limits’ configuration where
the robot settles in).

In order to avoid such situations, the set of statically
admissible torques (SST) should be estimated beforehand or
learned and the exploration should be constrained to the SST.
Therefore, we modify Goal Babbling and Direction Sampling in
this paper to limit the exploration to this set with applying the
nearest neighbor strategy. These modified approaches are termed
Constrained Goal Babbling and ConstrainedDirection Sampling,
respectively.

The set of statically admissible torques (SST) is defined as:

Ts =
{
τ |∃q ∈ Qp : τ − G(q) = 0

}
(12)

Each time the robot hits its joint limits during the learning
process, the corresponding torque is marked as inadmissible and
the SST estimate is updated accordingly. Delaunay triangulation
is used to estimate the SST boundary. Exploratory noise
(cf. Equation 14) will be added to the static torque and the
nearest neighbor algorithm is employed to assign each invalid
torque to a valid one before execution. Figure 7A shows the
SST (blue points) for a 2R planar manipulator with specific joint
limits and illustrates that applying the original Goal Babbling

and adding explanatory noise might result in torques outside the
SST i.e., inadmissible torques. After applying Constrained Goal
Babbling, the exploration is limited to the SST as illustrated in
Figure 7B; this avoids generating invalid training samples and
avoids the robot hitting its joints limits as well. To save time,
this exploration can be performed in conjunction with symmetry
discovery as detailed in section 5.4.

5.2. Constrained Direction Sampling for
Learning ISMs
Originally, Direction Sampling was proposed in Rolf (2013)
to learn IK. In this paper, we modify Direction Sampling
to learn ISMs by incorporating SST constraints and the
nearest neighbor strategy. Moreover, our approach can be
applied to robots with both prismatic and revolute joints.
Algorithm 2 shows the individual steps of the Constrained
Direction Sampling. The initial inverse estimate Ĝ(q) at
time instant t = 0 yields some constant default torque
Ĝ(q) = τ

home corresponding to some comfortable default
configuration (home posture) qhome (cf. line 2 in Algorithm 2).
The robot starts exploring from its home posture qhome and
the targets are generated along a random direction ∆q as given
in Equation (13):

q∗t = q∗t−1 +
ε

‖wT∆q‖
·∆q (13)

where q∗t is the currently generated target, q∗t−1 is the previous
one, w is a weighting vector as the joint space may be
noncommensurate if both prismatic and revolute joints occur
(here w = 1 as we consider revolute joints only), ε is the step-
width between the generated targets, and t indicates the time-
step. qhome is selected as a target with some probability phome≪1.
The agent tries to reach and maintain each generated target
q∗t using the online Goal Babbling basic scheme (GBSCHEME,
cf. Algorithm 2) as following: The current inverse estimate for
each generated target q∗t represents the motor torque τ̂

∗
t required

to maintain this target. Correlated exploratory noise σ (Rolf
et al., 2011) is added to discover and learn new configurations
as specified in Equation (14) (cf. line 15 in Algorithm 2):

τ
+
t = τ̂

∗
t + σ (q∗t , t) (14)

τ
+
t is the torque which is applied to the robot if τ

+
t ∈ Ts

holds or (if τ
+
t /∈ Ts) it will be assigned to the nearest valid

one (cf. line 16 in Algorithm2), the outcome (q+t ) is then
observed (cf. line 19 in Algorithm 2) and the inverse estimate is
updated immediately (cf. line 21 in Algorithm 2). In simulation,
a full dynamic simulation based on the forward dynamics model
(Craig, 1986) of the robot is required.

The robot tries to explore along the desired direction until its
actual direction of motion deviates from the intended one more
than ϕ degrees. For ϕ = π

2 , Equation (15) holds (cf. line 7 in
Algorithm 2):

α = (q∗t − q∗t−1)
T(q+t − q+t−1) < 0 (15)

where q+t is the currently observed configuration, q+t−1 is the
previously observed one, q∗t is the generated target and q

∗
t−1 is the
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FIGURE 7 | Discovered SST of a 2R planar manipulator with specific joint limits (A) with original Goal Babbling, (B) with Constrained Goal Babbling.

Algorithm 2 Constrained Direction Sampling

1: procedure DS( τ
home, qhome, SST)

2: initialize the learner with Ĝ(qhome) = τ
home

3: choose random direction ∆q

4: for N number of samples

5: generate target q∗t according to Equation (13)
6: GBSCHEME(q∗t )
7: if α < 0
8: go to q+t−1
9: choose new direction ∆q

10: end if

11: end for

12: end procedure

13: procedure GBSCHEME(q∗t )
14: estimate static torque τ̂

∗
t required to maintain q∗t

15: add exploratory noise σ :
τ
+
t = τ̂

∗
t + σ (q∗t , t)

16: if τ
+
t /∈SST

17: set τ+t = τm where {τm ∈ Ts : ∀τn ∈ Ts

dist(τ+t , τm) 6 dist(τ+t , τn)}
18: end if

19: execute τ
+
t and observe q+t

20: compute weight wdir
t

21: learner←− (τ+t , q
+
t ,w

dir
t )

22: end procedure

previously generated one. In this case, the agent will return to its
previous configuration q+t−1 to avoid drifting and start following
a new randomly selected direction again (Rolf, 2013; Rayyes and
Steil, 2016).
One criterion of the weighting scheme, which has been previously
proposed in Rolf et al. (2011), is adopted in order to favor training
samples:

wdir
t =

1

2
(1+ cos∢(q∗t − q∗t−1, q

+
t − q+t−1)) (16)

wdir
t is the direction criterion which evaluates whether the

observed configuration and the generated target align well. This
speeds up learning along the desired direction which is favorable
in goal-directed algorithms. However, other weighting schemes
could be selected as well.

5.3. Local Linear Map
As an incremental regression mechanism is required for online
learning, a Local Linear Map (LLM) (Ritter, 1991) is employed.
However, some modifications are necessary for exploiting
symmetries. In this case, the learner must deal with scattered
samples. Due to the initialization techniques of the standard
LLM, receiving non-neighboring samples results in inconsistent
outcomes. A further modification to gain more efficiency and
reduce the number of required samples is proposed.

We will first explain the standard LLM algorithm for learning
ISMs, and then the proposed modifications:

5.3.1. LLM for Learning ISMs
The inverse estimate Ĝ(q) is initialized with a first local

linear function Ĝ
(1)
(q) which is centered around a prototype

vector qp
(1) = qhome corresponding to the initial static

torque τ
home. M different new local linear functions Ĝ

(i)
(q) are

added incrementally during learning, centered around prototype
vectors qp

(i) and active only if new data is received in their
close vicinity determined by a radius d. Let ̺i denote a local
configuration vector given by Equation (17):

̺i =
(q∗ − qp

(i)

d

)
(17)

The inverse estimate Ĝ(q) is updated continuously and comprises

a weighted linear sum of the linear functions Ĝ
(i)
(̺i). The weights

are given by a Gaussian responsibility function GR(q) as shown
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in Equation (18).

Ĝ(q∗) =
1

N(q∗)

M∑

i=1
GR(̺i) · Ĝ

(i)
(̺i)

GR(̺) = exp
(
− ||̺||2

)

N(q∗) =
M∑

i=1
GR(̺i)

Ĝ
(i)
(̺i) =W(i) · ̺i + o(i),





(18)

N(q∗) normalizes the Gaussian responsibility functions in the
inverse estimate.

The first linear function Ĝ
(1)
(q) is initialized with qp

(1) =
qhome, o(1) = τ

home, W(1) = 0, and Ĝ
(1)
(q) = τ

home. A new

local linear function Ĝ
(i+1)

(q) will be added when the learner
receives a new training sample qnew at distance of at least d to all
existing prototypes (i.e., dist(qnew, qp

(i)) > d). The corresponding

prototype vector is added (qp
(i+1) = qnew). The offset o

(i+1) of

Ĝ
(i+1)

(q) is initialized with the inverse estimate before adding
the new function in order to avoid abrupt changes in the inverse
estimate function, i.e., the insertion of the new function will not
change the local behavior of Ĝ(q) at qnew. The weighting matrix
W(i+1) represents the slope of the linear function after inserting
the new sample:

o(i+1) = Ĝ(qnew).

W(i+1) =
∂Ĝ(q)

∂q
= J(q)





(19)

where J(q) is the Jacobian matrix of the inverse estimate (Rolf
et al., 2011).

The parameter update is done at each step using a gradient
descent with learning rate η in order to minimize the weighted
squared error Et given in Equation (21) as following:

W
(i)
t+1 =W

(i)
t − η ·

∂Et

∂W(i)

o
(i)
t+1 = o

(i)
t − η ·

∂Et

∂o(i)





(20)

Et = wdir
t ‖τ

+
t − τ̂

+
t ‖

2 (21)

Note that the execution of τ
+
t will result in q+t and the

corresponding torque estimated by the learner for q+t is denoted
by τ̂

+
t . Hence, the goal is to minimize the error between the

executed and the estimated torques in order to improve the
estimation accuracy.

The connections between the prototypes are organized and
distributed based on an Instantaneous Topological Map (ITM)
described in Jockusch and Ritter (1999) which is particularly
suited to online map construction.

5.3.2. LLM Modifications
In this paper, two main modifications are implemented:

First, if the received new sample has a distance >2d to all
existing prototypes, That causes a disproportionate change in the
inverse estimate results due to the initialization techniques when
inserting new functions (cf. Equation 19). The standard LLM
therefore failed to approximate the model because of receiving
non-neighboring samples when utilizing symmetries. To avoid
such situations, the added function will be initialized with the
new sample as given in Equation (22):

o(i+1) = τnew

W(i+1) = 0

}
(22)

Second, the LLM approach updates the inverse estimate
instantaneously and it therefore requires a lot of samples to
converge. However, data acquisition is very costly in terms of
time, tear, and wear. In order to reduce the number of required
samples, multiple gradient descent steps are performed for each
new sample until the error Et stabilizes. Hence, each training
sample has more influence on the inverse estimate update,
and consequently, the number of required samples is reduced
significantly.

5.4. The General Scheme for Symmetry
Discovery and Learning ISMs
Figure 8 illustrates the required steps for symmetry discovery
by generating torque profiles and for symmetry exploitation
with online learning ISMs. In the discovery phase, first a target
torque τ is selected. Subsequently, Algorithm 1 is applied to
discover symmetric configurations. Multiple linear regression is
then performed using the output of Algorithm 1 to update the
functional relations between primary symmetries. The applied
torque profiles and observed joint angles are exploited to update
the estimates of the SST and optionally theBCTS (cf. section 4.3).
When a sufficient number of primary symmetries nsym ≥ nmin

of symmetries has been discovered, the learning phase begins
and the functional relations between the primary symmetries
are exploited to generate nsym training samples based on one
applied training torque vector. nmin is set here to the number
of geometrical symmetries. Constrained Direction Sampling
(cf. Algorithm 2) or any other online (or batch) learning
approach can be applied to obtain the ISM. The learning phase
is terminated if a desired validation error emax (i.e., the torque
RMSE threshold) is reached. emax is determined based on the
torque limits and the required accuracy for accomplishing the
task. eval is the training torque RMSE which is evaluated at
each iteration (i.e., predefined number of samples) on randomly
chosen training samples from the current iteration.

6. BATCH LEARNING

Lattice sampling is implemented to sample the BCTS and collect
training data. A feed-forward network with n neurons in the
hidden layer is implemented to learn ISMs in a batch learning
fashion.
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FIGURE 8 | Flowchart of the SST and SPS discovery as well as the ISM learning phase. The estimated SST is used to generate admissible torque samples and the

SPS is used to generate nsym training samples from one recorded sample.

A lattice Ls is the set of points which is characterized by an
elementary unit cell. This elementary unit cell can be described
by m vectors given in Equation (23) and is replicated over
m-dimensional space.

Ls =
m∑

i=1
λi · pi, 0 6 λi 6 1 (23)

The vectors pi are called also generators of the lattice (Cervellera
et al., 2014).

7. EXPERIMENTAL RESULTS

This section presents experimental results for learning ISMs for
a 2R planar robot and a 3R simplified human arm (Babiarz
et al., 2015). The results show the efficiency gained by exploiting
symmetries and demonstrate that exploiting symmetries is
a generally applicable strategy which can be utilized with
offline/online learning algorithms.Moreover, we demonstrate the
efficiency gained by implementing LLM with multiple gradient
descent steps (cf. section 5.3.2) for a 2R planar robot.

7.1. Exploiting Symmetries With
Constrained Direction Sampling - Online
Learning
7.1.1. 2R Planar Manipulator
Constrained Direction Sampling was employed to explore the
BCTS and learn the ISM for the entire configuration space of
the 2R planar robot (cf. Figure 2A) for which, each link length
is 25 cm. Figure 10 shows the learned area of the configuration
space (blue area) by exploring merely the BCTS (red area) and
exploiting the symmetries.

FIGURE 9 | Structure of the 3R simplified human arm with 25 cm link length.

After the training phase, the robot tries to reach and maintain
66 configuration targets regularly distributed on a grid in the
BCTS. All targets were maintained well with an RMSE of
0.0053 Nm which represents the difference between the learner
output, i.e., the estimated torque and the actual required static
torque. Compared to the minimum and maximum static torques
(−18.4, 24.5) Nm and (−6, 6.2) Nm for the first and second
joints, respectively, the observed RMSE is negligibly small.
Figure 11 illustrates the results in the configuration space. The
red crosses indicate the targets, and the blue circles represent the
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FIGURE 10 | Explored configurations (red) and learned configurations (blue) for the 2R robot by exploiting symmetries using Constrained Direction Sampling and LLM.

FIGURE 11 | Test performance for the 2R robot. The ISM is learned utilizing Constrained Direction Sampling and LLM with an RMSE of 0.0053 Nm. The boundary of

the BCTS is indicated by the black parallelogram, the red crosses indicate the test targets, and the blue circles represent the observed configurations.

observed configurations which illustrate the good performance
as well; the boundary of the BCTS is indicated by the black
parallelogram. Subsequently, the robot tries to maintain another
90 targets scattered over the entire configuration space. The
performance was also very good, the robot managed to achieve
all targets very accurately with an RMSE of 0.0052 Nm as shown
in Figure 12.

Efficiency gained by iterating gradient descent step in LLM:
In the experiment, LLM with a single gradient descent step
per sample was implemented first with Constrained Direction
Sampling. At least 540 iterations (each iteration consists of 100
samples) were required to discover the entire BCTS and achieve

an RMSE of 0.0053 Nm. By increasing the number of iterations,
the performance accuracy is increased as shown in Figure 13.
The blue line represents the RSME of the torque evaluated for
different numbers of iterations. The RMSE was 0.0024 Nm after
3000 iterations.

A significant reduction in the number of required samples
was observed by iterating multiple gradient descent steps in
LLM (LLMit) with Constrained Direction Sampling. Only 30
iterations were required to learn the ISM and achieve the same
accuracy, i.e., test RMSE of 0.0053 Nm. Hence, the number of
required samples are decreased by a factor of 18. The robot
performance is tested on 84 targets scattered over the entire
configuration space as shown in Figure 12B.
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FIGURE 12 | Constrained Direction Sampling results for the 2R planar robot utilizing (A) LLM with 540 iterations (B) LLMit with 30 iterations. Torque RMSE is

0.0052 Nm. The green area is the discovered BCTS, the red crosses are the test targets, and the blue circles represent the real observed configurations.

FIGURE 13 | Torque RMSE for Constrained Direction Sampling with LLMit (red) and LLM (blue).

The average training time required in each iteration for
updating the LLMit is 3 min and 0.2 min for the LLM. Hence,
the time cost per iteration for LLMit is 15 times higher. However,
LLM requires 18 times the number of samples required for LLMit .
As data acquisition is costly and moving the robot to the sampled
configurations is very time-consuming, the overall efficiency with
LLMit is much higher than with LLM.

The torque RMSEs for different numbers of iterations (red
line) are shown in Figure 13. As we can see from the figure, the
torque RMSE converges much faster for LLMit than LLM.

7.1.2. 3R Robot Arm
Constrained Direction Sampling with LLMit is implemented
to learn the ISM for the 3R manipulator (cf. Figure 9). After
exploring theBCTS, the robot performance is tested on 64 targets
regularly distributed on a grid in the configuration space. At least

140 iterations were required to achieve an RMSE of 0.26 Nm.
The minimum and maximum torques for the first, the second,
and the third joints are (−24.4, 24) Nm, (−24.2, 24.2) Nm, and
(−12.4, 12.2) Nm, respectively. The achieved accuracy is very
good compared to the torque limits.The results are illustrated in
the configuration space as shown in Figure 15A.

7.2. Exploiting Symmetries With Lattice
Sampling - Batch Learning
7.2.1. 2R Planar Manipulator
To demonstrate the general applicability of symmetry
exploitation, we investigate batch learning to learn the ISM
of the 2R robot (cf. Figure 2A) based on a lattice sampling
approach. Lattice sampling was performed to collect training
samples in the BCTS. A feed-forward neural network with
one hidden layer consisting of 18 neurons was used in a batch
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FIGURE 14 | Learning ISMs with exploiting symmetries with batch learning (A) for the 2R planar manipulator with an RMSE of 0.0051 Nm (B) for the 3R manipulator

with an RMSE of 0.009 Nm. The green area represents the discovered BCTS, the border of the BCTS is indicated by the black lines, the test targets are visualized by

red crosses and the blue circles indicate the real configurations.

FIGURE 15 | Learning ISMs with exploiting symmetries (A) online with Constrained Direction Sampling (B) offline with Lattice Sampling. The torque RMSE is

0.028 Nm. The green area represents the discovered BCTS, the border of the BCTS is indicated by the black cube, the test targets are visualized by red crosses and

the blue circles indicate the real configurations.

learning fashion. Only 255 samples in the BCTS were required to
learn the ISM for the entire configuration space with almost the
same testing torque RMSE of 0.0051 using the same 90 testing
targets as in section 7.1.1. The result is illustrated in Figure 14A.

Lattice sampling was then performed for the entire
configuration space without exploiting symmetries. 2040
samples were required to achieve approximately the same RMSE
of 0.005Nm. The number of required samples to learn the ISM of
the 2R robot was reduced by a factor of 8 by exploiting primary
symmetries. This factor corresponds well to the number of 8
primary symmetries for the 2R robot.

7.2.2. 3R Robot Manipulator
We did the same experiment as in section 7.1.2 utilizing lattice
sampling and a feed-forward neural network with 18 neurons
in the hidden layer in offline learning fashion. Only 65 training
samples in the BCTS were required to achieve approximately the
same accuracy with RMSE of 0.28 Nm. The good performance

of the robot is also illustrated in Figure 15B. To illustrate
the efficiency gained by using symmetries, Lattice sampling
was implemented without exploiting symmetries. 855 samples
were required to explore the entire configuration space with
approximately the same RMSE of 0.03 Nm. The number of
required samples to learn the ISM of the 3R robot was reduced
by a factor of 16.13 which matches the number of 16 primary
symmetries well. To achieve higher accuracy, 600 samples with 30
hidden neurons were required to achieve an RMSE of 0.009 Nm.
The result is demonstrated in Figure 14B.

7.3. Discussion
The number of required samples to learn ISMs for 2R and 3R
manipulators were reduced by a factor of 8 and 16, respectively,
resulting from exploiting primary symmetries and constraining
the exploration to the BCTS only. Hence, exploiting symmetries
can drastically increase learning efficiency – regardless whether
offline or online learning schemes are considered – by reducing

Frontiers in Neurorobotics | www.frontiersin.org 14 October 2018 | Volume 12 | Article 68135

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rayyes et al. Learning ISMs Symmetry-Based Exploration

the number of required samples by a factor which approximately
equals the number of discovered primary symmetries in the
presented experiments. Further efficiency gains can be expected
if secondary symmetries are exploited as well.

Note that the number of samples in batch learning is lower
than that required in the presented online learning approach.
Nevertheless, even batch learning approaches can greatly benefit
from a significant reduction in the number of required samples
by exploiting symmetries. However, online learning techniques
such as Goal Babbling and Direction Sampling, which generate
targets on the fly and update the learner at each step
simultaneously, best fit the concepts of gradual exploration as
well as “learning while behaving” – hence they best reflect human
developmental aspects in robot learning.

8. CONCLUSION AND OUTLOOK

We showed that inverse statics mappings of discretely-actuated
serial manipulators can be learned very accurately, if the
problems arising from exploratory learning in the torque domain
are properly addressed. To learn ISMs online and from scratch,
we constrained the Direction Sampling approach and improved
the LLM learner. Naturally, these modifications may be useful
also in other contexts and comprise a contribution to increase
efficiency of any learning scheme employing these methods.
Moreover, we demonstrated that the efficiency of learning
inverse statics mappings can be further increased significantly
by exploiting inherent symmetries of the mapping, a concept
that we formalized properly and which as well is relevant
beyond the particular exploratory learning application. To
demonstrate its generality, we successfully integrated it into
online Constrained Direction Sampling and a more standard
batch learning approach based on lattice sampling. The presented
results indicated that factors of at least 8 and 16 w.r.t. the number
of samples can be achieved for a 2R and a 3R robot, respectively.
Thus, exploiting symmetries is a promising strategy to increase
the efficiency of learning both online and offline, and it is rather a
general strategy and not limited to learning ISMs only, but it can
be exploited in other functions or mappings.

We initially considered the particular problem of learning
the inverse statics model as a rather simpler subproblem of
the general inverse dynamics exploratory learning. However, it
appears that it already displays some major difficulties of torque-
based exploratory learning. And it requires substantial effort to
be tackled. That led to the novel approaches on symmetries and
the learning methods presented in this paper, which all have their
right in itself and provide useful tools beyond the ISM learning
alone. It is not obvious though, how to make the next step toward
general inverse dynamics exploratory learning without relying
on a pre-defined closed-loop controller, because that requires to

suggest a general way to automatically choose target trajectories
in the joint space that are safe, but representative and increasingly
complex, while all other problems of efficiency and ambiguity still
remain.

Currently, our approach is limited to primary symmetries as
the functional relations between secondary symmetries prove

to be challenging. Furthermore, elasticity as well as nonlinear
friction effects are currently not considered. This sheds some light
on more direct and natural extensions for future work, which
we are working on. The proposed symmetry-based exploration
is being (i) implemented in the real application, (ii) generalized
to learn primary and secondary symmetries for discretely-
actuated serial manipulators with arbitrary geometrical and
inertial properties, (iii) extended to incorporate link and joint
flexibility as well as nonlinear friction effects, which will pave
the way for thorough experimental evaluation on a robot with
variable stiffness actuators and (iv) implement a dictionary with
a fixed budget to update LLM using a sub-data set instead
of the current sample only. Furthermore, due to the same
dimensionality of action and observation spaces, the efficiency
advantage of Goal Babbling is less pronounced for learning
ISMs than learning IK. However, this disadvantage is partially
compensated by the efficiency gained by exploiting symmetry
properties of ISMs and limiting the exploration to BCTS only.
In our recent work (Rayyes et al., 2018), we additionally lay
the foundation for increasing the scalability by learning IK and
the inverse statics ISx and ISMs simultaneously. ISx maps from
Cartesian space to the motor space. Hence, ISMs can be inferred
by relating IK and ISX .
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Artificial autonomous agents and robots interacting in complex environments are required

to continually acquire and fine-tune knowledge over sustained periods of time. The ability

to learn from continuous streams of information is referred to as lifelong learning and

represents a long-standing challenge for neural network models due to catastrophic

forgetting in which novel sensory experience interferes with existing representations

and leads to abrupt decreases in the performance on previously acquired knowledge.

Computational models of lifelong learning typically alleviate catastrophic forgetting in

experimental scenarios with given datasets of static images and limited complexity,

thereby differing significantly from the conditions artificial agents are exposed to. In

more natural settings, sequential information may become progressively available over

time and access to previous experience may be restricted. Therefore, specialized

neural network mechanisms are required that adapt to novel sequential experience

while preventing disruptive interference with existing representations. In this paper, we

propose a dual-memory self-organizing architecture for lifelong learning scenarios. The

architecture comprises two growing recurrent networks with the complementary tasks

of learning object instances (episodic memory) and categories (semantic memory). Both

growing networks can expand in response to novel sensory experience: the episodic

memory learns fine-grained spatiotemporal representations of object instances in an

unsupervised fashion while the semantic memory uses task-relevant signals to regulate

structural plasticity levels and develop more compact representations from episodic

experience. For the consolidation of knowledge in the absence of external sensory

input, the episodic memory periodically replays trajectories of neural reactivations. We

evaluate the proposed model on the CORe50 benchmark dataset for continuous object

recognition, showing that we significantly outperform current methods of lifelong learning

in three different incremental learning scenarios.

Keywords: lifelong learning, complementary learning systems, self-organizing networks, continuous object

recognition, catastrophic forgetting

138

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00078
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00078&domain=pdf&date_stamp=2018-11-28
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:parisi@informatik.uni-hamburg.de
https://doi.org/10.3389/fnbot.2018.00078
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00078/full
http://loop.frontiersin.org/people/177202/overview
http://loop.frontiersin.org/people/181/overview
http://loop.frontiersin.org/people/731/overview
http://loop.frontiersin.org/people/21776/overview


Parisi et al. Dual-Memory Recurrent Self-Organization

1. INTRODUCTION

Artificial autonomous agents and robots interacting in dynamic
environments are required to continually acquire and fine-tune
their knowledge over time (Thrun and Mitchell, 1995; Parisi
et al., 2018a). The ability to progressively learn over a sustained
time span by accommodating novel knowledge while retaining
previously learned experiences is referred to as continual or
lifelong learning. In contrast to state-of-the-art deep learning
models that typically rely on the full training set being available
at once (see LeCun et al., 2015 for a review), lifelong learning
systems must account for situations in which the training data
become incrementally available over time. Effective models of
lifelong learning are crucial in real-world conditions where an
autonomous agent cannot be provided with all the necessary
prior knowledge to interact with the environment and the direct
access to previous experience is restricted (Thrun and Mitchell,
1995). Importantly, there may be no distinction between training
and test phases, which requires the system to concurrently
learn and timely trigger behavioral responses (Cangelosi and
Schlesinger, 2015; Tani, 2016).

Lifelong machine learning represents a long-standing
challenge due to catastrophic forgetting or interference,
i.e., training a model with a new task leads to an abrupt
decrease in the performance on previously learned tasks
(McCloskey and Cohen, 1989). To overcome catastrophic
forgetting, computational models must adapt their existing
representations on the basis of novel sensory experience while
preventing disruptive interference with previously learned
representations. The extent to which a system must be flexible
for learning novel knowledge and stable for preventing the
disruption of consolidated knowledge is known as the stability-
plasticity dilemma, which has been extensively studied for both
computational and biological systems (e.g., Grossberg, 1980,
2007; Mermillod et al., 2013; Ditzler et al., 2015).

Neurophysiological evidence suggests distributed
mechanisms of structural plasticity that promote lifelong
memory formation, consolidation, and retrieval in multiple
brain areas (Power and Schlaggar, 2016; Zenke et al., 2017a).
Such mechanisms support the development of the human
cognitive system on the basis of sensorimotor experiences
over sustained time spans (Lewkowicz, 2014). Crucially, the
brain must constantly perform two complementary tasks: (i)
recollecting separate episodic events (specifics), and (ii) learning
the statistical structure from the episodic events (generalities).
The complementary learning systems (CLS) theory (McClelland
et al., 1995; Kumaran et al., 2016) holds that these two
interdependent operations are mediated by the interplay of the
mammalian hippocampus and neocortex, providing the means
for episodic memory (specific experience) and semantic memory
(general structured knowledge). Accordingly, the hippocampal
system exhibits quick learning of sparse representations from
episodic experience which will, in turn, be transferred and
integrated into the neocortical system characterized by a slower
learning rate with more compact representations of statistical
regularities.

Re-training a (deep) neural architecture from scratch
in response to novel sensory input can require extensive
computational effort. Furthermore, storing all the previously
encountered data in lifelong learning scenarios has the general
drawback of large memory requirements. Instead, Robins (1995)
proposed pseudo-rehearsal (or intrinsic replay) in which previous
memories are revisited without the need of explicitly storing
data samples. Pseudo-samples are drawn from a probabilistic
or generative model and replayed to the system for memory
consolidation. From a biological perspective, the direct access to
past experiences is limited or restricted. Therefore, the replay of
hippocampal representations in the absence of external sensory
input plays a crucial role in memory encoding (Carr et al.,
2011; Kumaran et al., 2016). Memory replay is argued to
occur through the reactivation of neural patterns during both
sleep and awake states (e.g., free recall; Gelbard-Sagiv et al.,
2008). Hippocampal replay provides the means for the gradual
integration of knowledge into neocortical structures through
the reactivation of recently acquired knowledge interleaved
with the exposure to ongoing episodic experience (McClelland
et al., 1995). Consequently, the periodic replay of previously
encountered samples can alleviate catastrophic forgetting during
incremental learning tasks, especially when the number of
training samples for the different classes is unbalanced or when a
sample is encountered only once (Robins, 1995).

A number of computational approaches have drawn
inspiration from the learning principles observed in biological
systems. Machine learning models addressing lifelong learning
can be divided into approaches that regulate intrinsic levels of
plasticity to protect consolidated knowledge, that dynamically
allocate neural resources in response to novel experience, or
that use complementary dual-memory systems with memory
replay (see section 2). However, most of these methods are
designed to address supervised learning on image datasets of
very limited complexity such as MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky, 2009) while not scaling up to incremental
learning tasks with larger-scale datasets of natural images and
videos (Kemker et al., 2018; Parisi et al., 2018a). Crucially,
such models do not take into account the temporal structure
of the input which plays an important role in more realistic
learning conditions, e.g., an autonomous agent learning from
the interaction with the environment. Therefore, in contrast to
approaches in which static images are learned and recognized in
isolation, we focus on lifelong learning tasks where sequential
data with meaningful temporal relations become progressively
available over time.

In this paper, we propose a growing dual-memory (GDM)
architecture for the lifelong learning of spatiotemporal
representations from videos, performing continuous object
recognition at an instance level (episodic knowledge) and at a
category level (semantic knowledge). The architecture comprises
two recurrent self-organizing memories that dynamically adapt
the number of neurons and synapses: the episodic memory learns
representations of sensory experience in an unsupervised fashion
through input-driven plasticity, whereas the semantic memory
develops more compact representations of statistical regularities
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embedded in episodic experience. For this purpose, the semantic
memory receives neural activation trajectories from the episodic
memory and uses task-relevant signals (annotated labels) to
modulate levels of neurogenesis and neural update. Internally
generated neural activity patterns in the episodic memory
are periodically replayed to both memories in the absence of
sensory input, thereby mitigating catastrophic forgetting during
incremental learning. We conduct a series of experiments
with the recently published Continuous Object Recognition
(CORe50) benchmark dataset (Lomonaco and Maltoni, 2017).
The dataset comprises 50 objects within 10 categories with image
sequences captured under different conditions and containing
multiple views of the same objects (indoors and outdoors,
varying background, object pose, and degree of occlusion). We
show that our model scales up to learning novel object instances
and categories and that it outperforms current lifelong learning
approaches in three different incremental learning scenarios.

2. RELATED WORK

The CLS theory (McClelland et al., 1995) provides the basis
for computational frameworks that aim to generalize across
experiences while retaining specific memories in a lifelong
fashion. Early computational attempts include French (1997)
who developed a dual-memory framework using pseudo-
rehearsal (Robins, 1995) to transfer memories, i.e., the training
samples are not explicitly kept in memory but drawn from a
probabilistic model. However, there is no empirical evidence
showing that this or similar contemporaneous approaches (see
O’Reilly and Norman, 2002 for a review) scale up to large-scale
image and video benchmark datasets. More recently, Gepperth
and Karaoguz (2015) proposed two approaches for incremental
learning using a modified self-organizing map (SOM) and a SOM
extended with a short-term memory (STM). We refer to these
two approaches as GeppNet and GeppNet+STM, respectively.
In GeppNet, task-relevant feedback from a regression layer is
used to select whether learning in the self-organizing hidden
layer takes place. In GeppNet+STM, the STM is used to store
novel knowledge which is occasionally played back to the
GeppNet layer during sleep phases interleaved with training
phases. This latter approach yields better performance and faster
convergence in incremental learning tasks with the MNIST
dataset. However, the STM has a limited capacity, thus learning
new knowledge can overwrite old knowledge. In both cases,
the learning process is divided into the initialization and the
actual incremental learning phase. Furthermore, GeppNet and
GeppNet+STM require storing the entire training dataset during
training. Kemker and Kanan (2018) proposed the FearNet model
for incremental class learning inspired by studies of memory
recall and consolidation in the mammalian brain during fear
conditioning (Kitamura et al., 2017). FearNet uses a hippocampal
network capable of immediately recalling new examples, a PFC
network for long-term memories, and a third neural network
inspired by the basolateral amygdala for determining whether
the system should use the PFC or hippocampal network for a
particular example. FearNet consolidates information from its

hippocampal network to its PFC network during sleep phases.
Kamra et al. (2018) presented a similar dual-memory framework
for lifelong learning that uses a variational autoencoder as
a generative model for pseudo-rehearsal. Their framework
generates a short-term memory module for each new task.
However, prior to consolidation, predictions are made using an
oracle, i.e., they know which module contains the associated
memory.

Different methods have been proposed that are based on
regularization techniques to impose constraints on the update
of the neural weights. This is inspired by neuroscience findings
suggesting that consolidated knowledge can be protected from
interference via changing levels of synaptic plasticity (Benna
and Fusi, 2016) and is typically modeled in terms of adding
regularization terms that penalize changes in the mapping
function of a neural network. For instance, Li and Hoiem (2016)
proposed a convolutional neural network (CNN) architecture
in which the network that predicts the previously learned tasks
is enforced to be similar to the network that also predicts the
current task by using knowledge distillation, i.e., the transferring
of knowledge from a large, highly regularized model to a smaller
model. This approach, known as learning without forgetting
(LwF), has the drawbacks of highly depending on the relevance of
the tasks and that the training time for one task linearly increases
with the number of old tasks. Kirkpatrick et al. (2017) proposed
elastic weight consolidation (EWC) which adds a penalty term
to the loss function and constrains the weight parameters that
are relevant to retain previously learned tasks. However, this
approach requires a diagonal weighting over the parameters
of the learned tasks which is proportional to the diagonal of
the Fisher information metric, with synaptic importance being
computed offline and limiting its computational application to
low-dimensional output spaces. Zenke et al. (2017b) proposed to
alleviate catastrophic forgetting by allowing individual synapses
to estimate their importance for solving a learned task. Similar
to Kirkpatrick et al. (2017), this approach penalizes changes to
the most relevant synapses so that new tasks can be learned with
minimal interference. In this case, the synaptic importance is
computed in an online fashion over the learning trajectory in the
parameter space.

In general, regularization approaches comprise additional
loss terms for protecting consolidated knowledge which, with a
limited amount of neural resources, leads to a trade-off on the
performance of old and novel tasks. Other approaches expand
the neural architecture to accommodate novel knowledge. Rusu
et al. (2016) proposed to block any changes to the network trained
on previous knowledge and expand the architecture by allocating
novel sub-networks with a fixed capacity to be trained with the
new information. This prevents catastrophic forgetting but leads
the complexity of the architecture to grow with the number
of learned tasks. Draelos et al. (2017) trained an autoencoder
incrementally using the reconstruction error to show whether
the older digits were retained. Their model added new neural
units to the autoencoder to facilitate the addition of new MNIST
digits. Rebuffi et al. (2017) proposed the iCaRL approach which
stores example data points that are used along with new data
to dynamically adapt the weights of a feature extractor. By
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combining new and old data, they prevent catastrophic forgetting
but at the expense of a higher memory footprint.

The approaches described above are designed for the
classification of static images, often exposing the learning
algorithm to training samples in a random order. Conversely,
in more natural settings, we make use of the spatiotemporal
structure of the input. In previous research (Parisi et al., 2017),
we showed that the lifelong learning of action sequences can
be achieved in terms of prediction-driven neural dynamics with
internal representations emerging in a hierarchy of recurrent
self-organizing networks. The networks can dynamically allocate
neural resources and update connectivity patterns according to
competitive Hebbian learning by computing the input based
on its similarity with existing knowledge and minimizing
interference by creating new neurons whenever they are required.
This approach has shown competitive results with batch learning
methods on action benchmark datasets. However, the neural
growth and update are driven by theminimization of the bottom-
up reconstruction error and, thus, without taking into account
top-down, task-relevant signals that can regulate the plasticity-
stability balance. Furthermore, the model cannot learn in the
absence of external sensory input, which leads to a non-negligible
degree of disruptive interference during incremental learning
tasks.

3. PROPOSED METHOD

The proposed architecture with growing dual-memory learning
(GDM) comprises a deep convolutional feature extractor
and two hierarchically arranged recurrent self-organizing
networks (Figure 1). Both recurrent networks are extended
versions of the Gamma-GWR model (Parisi et al., 2017) that
dynamically create new neurons and connections in response
to novel sequential input. The growing episodic memory
(G-EM) learns from sensory experience in an unsupervised
fashion, i.e., levels of structural plasticity are regulated by the
ability of the network to predict the spatiotemporal patterns
given as input. Instead, the growing semantic memory (G-SM)
receives neural activation trajectories from G-EM and uses
task-relevant signals (input annotations) to modulate levels
of neurogenesis and neural update, thereby developing more
compact representations of statistical regularities embedded
in episodic experience. Therefore, G-EM and G-SM mitigate
catastrophic forgetting through self-organizing learning
dynamics with structural plasticity, increasing information
storage capacity in response to novel input.

The architecture classifies image sequences at an instance
level (episodic experience) and a category level (semantic
knowledge). Thus, each input sample carries two labels which
are used for the classification task at the different levels of
the network hierarchy. For the consolidation of knowledge
over time in the absence of sensory input, internally generated
neural activity patterns in G-EM are periodically replayed to
bothmemories, therebymitigating catastrophic forgetting during
incremental learning tasks. For this purpose, G-EM is equipped
with synapses that learn statistically significant neural activity

in the temporal domain. As a result, sequence-selective neural
activation trajectories can be generated and replayed after each
learning episode without explicitly storing sequential input.

3.1. Gamma-GWR
The Gamma-GWR model (Parisi et al., 2017) is a recurrent
extension of the Grow-When-Required (GWR) self-organizing
network (Marsland et al., 2002) that embeds a Gamma memory
(Principe et al., 1994) for representing short-term temporal
relations. The Gamma-GWR can dynamically grow or shrink in
response to the sensory input distribution. New neurons will be
created to better represent the input and connections (synapses)
between neurons will develop according to competitive Hebbian
learning, i.e., neurons that co-activate will be connected to each
other. The Gamma-GWR learns the spatiotemporal structure of
the input through the integration of temporal context into the
computation of the self-organizing network dynamics.

The network is composed of a dynamic set of neurons, A, with
each neuron consisting of a weight vector wj and a number K of
context descriptors cj,k (wj, cj,k ∈ R

n). Given the input x(t) ∈ R
n,

the index of the best-matching unit (BMU), b, is computed as:

b = argmin
j∈A

(dj), (1)

dj = α0‖x(t)− wj‖2 +
K∑

k=1

αk‖Ck(t)− cj,k‖2, (2)

Ck(t) = β · wt−1
b

+ (1− β) · ct−1
b,k−1

, (3)

where ‖·‖2 denotes the Euclidean distance, αi and β are constant
factors that regulate the influence of the temporal context,wt−1

b
is

the weight vector of the BMU at t − 1, and Ck ∈ R
n is the global

context of the network with Ck(t0) = 0.
The activity of the network, a(t), is defined in relation to the

distance between the input and its BMU (Equation 2) as follows:

a(t) = exp(−db), (4)

thus yielding the highest activation value of 1 when the network
can perfectly predict the input sequence (i.e., db = 0).
Furthermore, each neuron is equippedwith a habituation counter
hj ∈ [0, 1] expressing how frequently it has fired based on a
simplified model of how the efficacy of a habituating synapse
reduces over time (Stanley, 1976). Newly created neurons start
with hj = 1. Then, the habituation counter of the BMU, b, and
its neighboring neurons, n, iteratively decrease toward 0. The
habituation rule (Marsland et al., 2002) for a neuron i is given
by:

1hi = τi · κ · (1− hi)− τi, (5)

with i ∈ {b, n} and where τi and κ are constants that control
the monotonically decreasing behavior. Typically, hb is decreased
faster than hn with τb > τn.

The network is initialized with two neurons and, at each
learning iteration, a new neuron is created whenever the activity
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FIGURE 1 | (A) Illustration of our growing dual-memory (GDM) architecture for lifelong learning. Extracted features from image sequences are fed into a growing

episodic memory (G-EM) consisting of an extended version of the recurrent Grow-When-Required network (section 3.2). Neural activation trajectories from G-EM are

feed-forwarded to the growing semantic memory (G-SM) that develops more compact representations of episodic experience (section 3.3). While the learning process

of G-EM remains unsupervised, G-SM uses class labels as task-relevant signals to regulate levels of structural plasticity. After each learning episode, internally

generated neural activation trajectories are replayed to both memories (green arrows; section 3.4); (B) The architecture classifies image sequences at instance level

(episodic experience) and at category level (semantic knowledge). For the purpose of classification, neurons in G-EM and G-SM associatively learn histograms of class

labels from the input (red dashed lines); (C) To enable memory replay in the absence of sensory input, G-EM is equipped with temporal synapses that are

strengthened (thicker arrow) between consecutively activated best-matching units (BMU).

of the network, a(t), in response to the input x(t) is smaller
than a given insertion threshold aT . Furthermore, hb must be
smaller than a habituation threshold hT in order for the insertion
condition to hold, thereby fostering the training of existing
neurons before new ones are added. The new neuron is created
halfway between the BMU and the input. The training of the
neurons is carried out by adapting the BMU b and the neurons
n to which the b is connected:

1wi = ǫi · hi · (x(t)− wi), (6)

1ci,k = ǫi · hi · (Ck(t)− ci,k), (7)

with i ∈ {b, n} and where ǫi is a constant learning rate (ǫn < ǫb).
Furthermore, the habituation counters of the BMU and the
neighboring neurons are updated according to Equation (5).
Connections between neurons are updated on the basis of neural
co-activation, i.e., when two neurons fire together (BMU and

second-BMU), a connection between them is created if it does not
exist. Each connection has an age that increases at each learning
iteration. The age of the connection between the BMU and the
second-BMU is reset to 0, whereas the other ages are increased
by a value of 1. The connections with an age greater than a given
threshold can be removed, and neurons without connections can
be deleted.

For the purpose of classification, an associative matrix H(j, l)
stores the frequency-based distribution of sample labels during
the learning phase, so that each neuron j stores the number of
times that an input with label l had j as its BMU. As a result, the
predicted label ξj for a neuron j can be computed as:

ξj = argmax
l∈L

H(j, l), (8)

where l is an arbitrary label. Therefore, the unsupervised
Gamma-GWR can be used for classification without requiring
the number of label classes to be predefined.
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3.2. Episodic Memory
The learning process of growing episodic memory G-EM is
unsupervised, thereby creating new neurons or updating existing
ones to minimize the discrepancy between the sequential input
and its neural representation. In this way, episodic memories
can be acquired and fine-tuned iteratively through sensory
experience. This is functionally consistent with hippocampal
representations, e.g., in the dentate gyrus, which are responsible
for pattern separation through the orthogonalization of incoming
inputs supporting the auto-associative storage and retrieval of
item-specific information from individual episodes (Yassa and
Stark, 2011; Neunuebel and Knierim, 2014).

Given an input image frame, the extracted image feature
vector (see section 4.1) is given as input to G-EM which
recursively integrates the temporal context into the self-
organizing neural dynamics. The spatial resolution of G-EM
neurons can be tuned through the insertion threshold, aT , with a
greater aT leading tomore fine-grained representations since new
neurons will be created whenever a(t) < aT (see Equation 4). The
temporal depth is set by the number of context descriptors, K,
with a greaterK yielding neurons that activate for larger temporal
windows (longer sequences), whereas the temporal resolution is
set by the hyperparameters α and β (see Equations 2 and 3).

To enable memory replay in the absence of external sensory
input, we extend the Gamma-GWR model by implementing
temporal connections that learn trajectories of neural activity in
the temporal domain. Such temporal connections are sequence-
selective synaptic links which are incremented between two
consecutively activated neurons (Parisi et al., 2016). Sequence
selectivity driven by asymmetric connections has been argued
to be a feature of the cortex (Mineiro and Zipser, 1998), where
an active neuron pre-activates neurons encoding future patterns.
Formally, when the two neurons i and j are consecutively
activated at time t− 1 and t, respectively, their temporal synaptic
link P(i,j) is increased by 1P(i,j) = 1. For each neuron i ∈ A,
we can retrieve the next neuron v of a prototype trajectory by
selecting

v = argmax
j∈A\i

P(i,j). (9)

Recursively generated neural activation trajectories can be used
for memory replay (see section 3.4). During the learning phase,
G-EM neurons will store instance-level label classes ξ I for the
classification of the input (see Equation 8). Furthermore, since
trajectories of G-EMneurons are replayed toG-SM in the absence
of sensory input, G-EMneurons will also store labels at a category
label lC. Therefore, the associative matrix for each neuron j is of
the form H(j, lI , lC).

3.3. Semantic Memory
The growing semantic memory G-SM combines bottom-
up drive from neural activity in G-EM and top-down
signals (i.e., category-level labels from the input) to regulate
structural plasticity levels. More specifically, the mechanisms
of neurogenesis and neural weight update are regulated by the
ability of G-SM to correctly classify its input. Therefore, while
G-EM iteratively minimizes the discrepancy between the input

sequences and their internal representations, G-SM will create
new neurons only if the correct label of a training sample cannot
be predicted by its BMU in G-SM. This is implemented as an
additional constraint in the condition for neurogenesis so that
new neurons are not created unless the predicted label of the
BMU (Equation 8) does not match the input label.

G-SM receives as input activated neural weights from G-EM,
i.e., the weight vector of a BMU in G-EM, wEM

b
, for a given input

frame. As an additional mechanism to prevent novel sensory
experience from interfering with consolidated representations,
G-SM neurons are updated (Equations 6 and 7) only if the
predicted label for the BMU in G-SM matches in the input label,
i.e., if the BMU codes for the same object category as the input.
In this way, the representations of an object category cannot be
updated in the direction of the input belonging to a different
category, which would cause disruptive interference.

As a result of hierarchical processing, G-SM neurons code
for information acquired over larger temporal windows than
neurons in G-EM. That is, one G-SM will fire for a number
KSM + 1 of neurons fired in G-EM (where KSM is the temporal
depth of G-SM neurons). Since G-EM neurons will fire for
a number KEM + 1 of input frames, G-SM neurons will
code for a total of KSM + KEM + 1 input frames. This is
consistent with established models of memory consolidation
where neocortical representations code for information acquired
over more extended time periods than the hippocampus (e.g.,
Kumaran and McClelland, 2012; Kumaran et al., 2016), thereby
yielding a higher degree of temporal slowness.

Temporal slowness results from the statistical learning of
spatiotemporal regularities, with neurons coding for prototype
sequences of sensory experience. By using category-level signals
to regulate neural growth and update, G-SM will develop more
compact representations from episodic experience with neurons
activating in correspondence of semantically-related input, e.g.,
the same neuron may activate for different instances of the same
category and, because of the processing of temporal context,
the same object seen from different angles. However, specialized
mechanisms of slow feature analysis can be implemented that
would yield invariance to complex input transformations such
as view invariance (e.g., Berkes and Wiskott, 2005; Einhäuser
et al., 2005). View invariance of objects is a prominent property
of higher-level visual areas of themammalian brain, with neurons
coding for abstract representations of familiar objects rather than
for individual views and visual features (Booth and Rolls, 1998;
Karimi-Rouzbahani et al., 2017). Neurophysiological studies
evidence that distributed representations in high-level visual
regions of the neocortex (semantic) are less sparse than those
of the hippocampus (episodic) and where related categories are
represented by overlapping neural codes (Clarke and Tyler, 2014;
Yamins et al., 2018).

3.4. Memory Replay
Hippocampal replay provides the means for the gradual
integration of knowledge into neocortical structures and
is thought to occur through the reactivation of recently
acquired knowledge interleaved with the exposure to ongoing
experiences (McClelland et al., 1995). Although the periodic
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replay of previous data samples can alleviate catastrophic
forgetting, storing all previously encountered data samples has
the general drawback of large memory requirements and large
retraining computational times.

In pseudo-rehearsal (or intrinsic replay), memories are drawn
from a probabilistic or generative model and replayed to the
system for memory consolidation (Robins, 1995). In our case,
however, we cannot simply draw or generate isolated and
randomly selected pseudo-samples from a given distribution
since we must account for preserving the temporal structure
of the input. Therefore, we generate pseudo-patterns in terms
of temporally-ordered trajectories of neural activity. For this
purpose, we propose to use the asymmetric temporal links of
G-EM (section 3.2) to recursively reactivate sequence-selective
neural activity trajectories (RNATs) embedded in the network.
RNATs can be computed for each neuron in G-EM for a given
temporal window and replayed to G-EM and G-SM after each
learning episode triggered by external input stimulation.

For each neuron j in G-EM, we generate a RNAT, Sj, of length

λ = KEM + KSM + 1 as follows:

Sj = 〈wEM
s(0),w

EM
s(1), ...,w

EM
s(λ)〉, (10)

s(i) = arg max
n∈A\j

P(n,s(i−1)), i ∈ [1, λ], (11)

where P(i,j) is the matrix of temporal synapses (as defined by
Equation 9) and s(0) = j. The class labels of the pseudo-patters
in Sj can be retrieved according to Equation (8).

The set of generated RNATs from all G-EM neurons is
replayed to G-EM and G-SM after each learning episode, i.e., a
learning epoch over a batch of sensory observations. As a result
of computing RNATs, sequence-selective prototype sequences
can be generated and periodically replayed without the need of
explicitly storing the temporal relations and labels of previously
seen training samples. This is conceptually consistent with
neurophysiological studies evidencing that hippocampal replay
consists of the reactivation of previously stored patterns of neural
activity occurring predominantly after an experience (Kudrimoti
et al., 1999; Karlsson and Frank, 2009).

4. EXPERIMENTAL RESULTS

We perform a series of experiments evaluating the performance
of the proposed GDM model in batch learning (section 4.2),
incremental learning (section 4.3), and incremental learning
with memory replay (section 4.4). We analyze and evaluate
our model with the CORe50 dataset (Lomonaco and Maltoni,
2017; see section 4.1), a recently published benchmark for
continuous object recognition from video sequences. We
reproduce three experimental conditions defined by the CORe50
benchmark (section 4.5) showing that our model significantly
outperforms state-of-the-art lifelong learning approaches. For
the replication of these experiments, the source code of the GDM
model is available as a repository1.

1GDMmodel: https://github.com/giparisi/GDM

4.1. Feature Extraction
The CORe50 comprises 50 objects within 10 categories with
image sequences captured under different conditions and
multiple views of the same objects (varying background, object
pose, and degree of occlusion; see Figure 2). Each object
comprises a video sequence of approximately 15 s where the
object is shown to the vision sensor held by a human operator.
The video sequences were collected in 11 sessions (8 indoors, 3
outdoors) with a Kinect 2.0 sensor delivering RGB (1027 × 575)
and depth images (512× 242) at 20 frames per second (fps) for a
total of 164,866 frames. For our experiments, we used 128× 128
RGB images provided by the dataset at a reduced frame rate of
5hz. The movements performed by the human operator with
the objects (e.g., rotation) are quite smooth and reducing the
number of frames per second has not shown significant loss of
information.

For a more direct comparison with the baseline results
provided by Lomonaco and Maltoni (2017) who adopted the
VGG model (Simonyan and Zisserman, 2014) pre-trained on
the ILSVRC-2012 dataset (Russakovsky et al., 2014), our feature
extraction module consists of the same pre-trained VGG model
to which we applied a convolutional operation with 256 1 × 1
kernels on the output of the fully-connected hidden layer to
reduce its dimensionality from 2048 to 256. Therefore, G-
EM receives a 256-dimensional feature vector per sequence
frame. Such compression of the feature vectors is desirable
since the Gamma-GWR uses the Euclidean distance as a metric
to compute the BMUs, which becomes weakly discriminant
when the data are very high-dimensional or sparse (Parisi
et al., 2015). Furthermore, it is expected that different pre-
trained models may exhibit a slightly better performance
than VGG, e.g., ResNet-50 (He et al., 2015; see Lomonaco
and Maltoni, 2018 for ResNet-50 performance on CORe50).
However, here we focus on showing the contribution of context-
aware growing networks rather than comparing deep feature
extractors.

4.2. Batch Learning
In the batch learning strategy, we trained the architecture
on the entire training data at once and subsequently tested
its classification performance at instance and category level.
Following the same evaluation scheme described by Lomonaco
and Maltoni (2017), we used the samples from sessions #3, #7,
#10 for testing and the samples from the remaining 8 sessions
for training. We compare our results to the baseline provided by
Lomonaco andMaltoni (2017) using fine-tuning on a pre-trained
VGG network (VGG+FT). To better assess the contribution of
the temporal context (TC) for the task of continuous object
recognition, we performed batch learning experiments with 3
different model configurations:

• GDM: We trained the model using TC and tested it on novel
sequences. For each input frame, an object instance and an
object category are predicted.

• GDM (No TC): We trained and tested the model without TC
by setting K = 0, i.e., the computation of the BMU is reduced
to b = argminj∈A ‖x(t)− wj‖2.
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FIGURE 2 | The CORe50 dataset designed for continuous object recognition: (A) Example frames of the 10 categories (columns) comprising 5 object instances each,

(B) Example frames for one object instance from the 11 acquisition sessions showing different background, illumination, pose, and degree of occlusion. Adapted from

Lomonaco and Maltoni (2017).

• GDM (No TC during test): We trained the model with TC but
tested on single image frames by setting K = 0.

The training hyperparameters are listed in Table 1. Except
for the insertion thresholds aEMT and aSMT , the remaining
parameters were set similar to Parisi et al. (2017) for the
incremental learning of sequences. Larger insertion thresholds
will lead to a larger number of neurons. However, the best
classification performance will not be necessarily obtained by the
largest number of neurons. In G-EM, the neural representation
should be characterized by a sufficiently high spatiotemporal
resolution for discriminating between similar object instances
and replaying episodic experience in the absence of sensory
input. Conversely, regulated unsupervised learning in G-SM will
lead to a more compact, overlapping neural representation with
a smaller number of neurons while preserving the ability to
correctly classify its input. The number of context descriptors
(KEM, KSM) is set to 2. This means that G-EM neurons
will activate in correspondence of 3 image frames and G-
SM neurons in correspondence of 3 G-EM neurons, i.e., a
processing window of 5 frames (1s of video at 5fps). Additional
experiments showed that increasing the number of context
descriptors does not significantly improve the overall accuracy.
This is because a small number of context descriptors will
lead to learning short-term temporal relations which are useful
for temporal slowness, i.e., neurons that activate for multiple
similar views of the same object (where different views of
the object are induced by object motion). Neurons with a
higher temporal depth will learn longer-term temporal relations
and, depending on the difference between the training and
test set, training with longer sequences may result in the
specialization of neurons to the sequences in the training
set while failing to generalize. Therefore, convenient values
for KEM and KSM can be selected according to different
criteria and properties of the input, e.g., number of frames per
second, smoothness of object motion, desired degree of neural
specialization.

TABLE 1 | Training hyperparameters for the G-EM and G-SM networks (batch

and incremental learning).

Hyperparameters Value

Insertion thresholds aEM
T

= 0.3, aSM
T

= 0.001

Habituation counters hT = 0.1, τb = 0.3, τn = 0.1, κ = 1.05

Temporal depth KEM = 2, KSM = 2

Temporal context α = [0.67, 0.24, 0.09], β = 0.7

Learning rates ǫb = 0.5, ǫn = 0.005

TABLE 2 | Comparison of batch learning performance for instance-level and

category-level classification.

Accuracy (%) Accuracy (%)

Approach (Instances) (Categories)

VGG + FT (Lomonaco and Maltoni, 2017) 69.08 80.23

Proposed GDM (No TC) 70.42 83.54

Proposed GDM (No TC during test) 72.56 87.32

Proposed GDM 79.43 93.92

We show the accuracy for the pre-trained VGG with fine-tuning (VGG+FT) and the

proposed GDM for three different configurations: (i) growing networks with temporal

context (TC), (ii) without TC, and (iii) without TC during test. Best results in bold.

The classification performance for the 3 different
configurations is summarized in Table 2, showing instance-
level and category-level accuracy after 35 training epochs
averaged across 5 learning trials in which we randomly shuffled
the batches from different sessions. The best results were
obtained by GDM using temporal context with an average
accuracy of 79.43% (instance level) and 93.92% (category level),
showing an improvement of 10.35 and 13.69%, respectively,
with respect to the baseline results (Lomonaco and Maltoni,
2017). Without the use of temporal context, the accuracy is
comparable to the baseline showing a marginal improvement of
1.34% (instance level) and 3.31% (category level). Our results
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FIGURE 3 | Batch learning on the CORe50: numbers of neurons (A), update rates (B), and classification accuracies (C) of G-EM and G-SM through 35 training

epochs averaged across 5 learning trials.

demonstrate that learning the temporal relations of the input
plays an important role for this dataset. Interestingly, dropping
the temporal component during the test phase, i.e., using single
image frames for testing on context-aware networks, shows
a slightly better performance (2.14 and 3.78%, respectively)
than training without temporal context. This is because trained
neural weights embed some temporal structure of the training
sequences and, consequently, the context-free computation
of a BMU from a single input frame will still be matched to
context-aware neurons.

Figure 3 shows the number of neurons, update rate, and
classification accuracy for G-EM and G-SM (with temporal
context) through 35 training epochs averaged across 5 learning
trials. It can be seen that the average number of neurons created
in G-EM is significantly higher than in G-SM (Figure 3A). This
is expected since G-EM will grow to minimize the discrepancy
between the input and its internal representation, whereas
neurogenesis and neural update rate in G-SM are regulated by
the ability of the network to predict the correct class labels of
the input. The update rate (Figure 3B) is given by multiplying
the fixed learning rate by the habituation counter of the neurons
(ǫi · hi), which shows a monotonically decreasing behavior. This
indicates that, after a number of epochs, the created neurons
become habituated to the input. Such a habituation mechanism
has the advantage of protecting consolidated knowledge from
being disrupted or overwritten by the learning of novel sensory
experience, i.e., well-trained neurons will respond slower to
changes in the distribution and the network will create new
neurons to compensate for the discrepancy between the input
and its representation.

4.3. Incremental Learning
In the incremental learning strategy, the training samples of
different object categories become progressively available over
time, i.e., each mini-batch contains all the instances of an object
category from all the 8 training sessions. Each category batch is
shown once to the model and samples from that category are not
shown again during the learning of new categories. Therefore,
the model must incrementally learn new object instances and
categories without forgetting previously learned ones. For a direct

comparison with our previous experiment, the hyperparameters
for the incremental learning experiment are the same as for the
batch learning strategy (Table 1).

Figure 4 shows the number of neurons, update rate, and
accuracy over 10 epochs (i.e., the 10 object categories) averaged
across 5 runs of randomly shuffled object categories. The variance
from the mean values (shaded areas in Figure 4) shows that
the order of exposure to object categories can affect the final
result. In general, the number of neurons increases over time
(Figure 4A) and, in contrast to the batch learning strategy where
neurogenesis is particularly strong during the initial training
epochs (Figure 3A), in this case new neurons are progressively
created in response to the exposure of the model to novel object
classes. Similarly, the update rate for both networks (Figure 4B)
does not monotonically decrease over time but rather stays
quite stable in correspondence to novel sensory experience.
Since newly created neurons are not well trained, the update
rate will be higher at the moment of neural insertion and
progressively decrease as the newly created neurons become
habituated. The overall accuracy decreases with the number of
object categories encountered, showing a higher sensitivity of the
model with respect to the order in which the object categories
are presented (Figure 4C). The average classification accuracy
for the incremental learning strategy is 75.93% ± 2.23 (instance
level) and 85.53% ± 1.35 (category level), showing a decrease
of 3.5% and 8.39%, respectively, compared to the batch learning
performance. This suggests that an additional mechanism such as
memory replay is required to prevent the disruptive interference
of existing representations.

Figure 5 shows a comparison of the effects of forgetting
during the incremental learning strategy in terms of the overall
accuracy on the categories encountered so far and the accuracy
on the first encountered category as new categories are learned.
For the object instances, we compare the overall accuracy
(Figure 5A) with the accuracy on the first 5 encountered
instances (i.e., 1 category; see Figure 5B), showing that for the
latter the accuracy drops to 69.25%±4.31 (compared to 75.93%±
2.23). For the object categories (Figures 5C,D), the accuracy on
the first encountered category drops to 79.53%± 5.23 (compared
to 85.53% ± 1.35). Overall, these results suggest that memory
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FIGURE 4 | Incremental learning: numbers of neurons (A), update rates (B), and classification accuracies (C) over 10 categories averaged across 5 learning trials.

The shaded areas show the standard deviation.

FIGURE 5 | Comparison of the effects of forgetting during incremental learning with and without memory replay at an instance level (A,B) and category level (C,D).

Each category contains 5 instances. The plots show the average accuracies on the categories encountered so far (A,C) and the accuracies on the first encountered

category (B,D) as further new categories are learned. The shaded areas show the standard deviation.

replay is an important feature for the reactivation of previously
learned neural representations at the moment of learning from
novel sensory experience with the goal to prevent that classes that
have been encountered at early stages be forgotten over time.

4.4. Incremental Learning With Memory
Replay
In this learning strategy, we trained the model as described
above with progressively available mini-batches containing
1 object category each. Here, however, after each learning
episode (i.e., a training epoch over the mini-batch), the model

generates a set of RNATs, Sj (Equations 10 and 11) from the
G-EM neurons. Thus, the number of RNATs of length λ = 5
is equal to the number of neurons created by G-EM. The set of
RNATs is replayed to G-EM and G-SM in correspondence of
novel sensory experience to reinforce previously encountered
categories. Since the growing self-organizing networks store
the global temporal context, Ck(t), over the training iterations
(Equation 3) for learning the temporal structure of the input,
each RNAT is fed into G-EM and G-SM as a single sample
batch and the global temporal context is reset to zero after one
epoch. It is expected that, by periodically replaying RNATs when
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new categories are encountered, knowledge representations
will consolidate over time and, consequently, significantly
alleviate catastrophic forgetting for sustained learning
periods.

The benefit of using memory replay is shown in Figure 5

where we compare the overall accuracy on all the categories
encountered so far to the accuracy on the first encountered
category over the number of encountered categories. At
an instance level (Figures 5A,B), incremental learning with
memory replay improves the overall accuracy to 82.14% ± 2.05
(from 75.93% ± 2.23) and accuracy on the first 5 instances
to 80.41% ± 1.35 (from 69.25% ± 2.01). At a category
level (Figures 5C,D), the overall accuracy increases to 91.18% ±
0.25 (from 85.53% ± 1.35) and the accuracy on the first
encountered category to 89.21% ± 3.37 (from 79.53% ± 5.23)
Overall, our results support the hypothesis that replaying RNATs
generated from G-EM mitigates the effects of catastrophic
forgetting.

4.5. Continuous Object Recognition
We evaluate our model with the 3 incremental learning scenarios
proposed by the CORe50 benchmark for the task of continuous
object recognition:

New Instances (NI): New instances of the same class and from
different acquisition sessions become progressively available and
are shown once to the model. Therefore, all the classes to be
learned are known. For all the classes, the model is trained
with the instances of a first session and subsequently with the
remaining 7 sessions. (Here, the term classes is used for object
categories.)

New Classes (NC): Training samples from novel different
classes become available over time, thus the model must deal
with the learning of new classes without forgetting previously
learned ones. Each training batch contains all the sequences of
a small group of classes and memory replay is possible across
batches. The first batch includes 10 objects while the remaining
8 batches contain 5 objects each. The test set includes samples
from all the classes and the model is required to classify samples
that have not been seen yet (except for the last evaluation
step).

New Instances and Classes (NIC): New instances and classes
become available over time, requiring the model to consolidate
knowledge about known classes and to learn new ones. The
first batch includes 10 classes and the subsequent batches 5
classes each, with only one training sequence per class included
in the batches. This scenario comprises 79 batches, maximizing
the categorical representation in the first batch and randomly
selecting the remaining 78 batches.

For each scenario, we compute the average accuracy over
10 configurations of randomly shuffled batches. The results for
the NI, NC, and NIC scenarios compared to other approaches
are listed in Table 3. It can be seen that our proposed method
with memory replay produces state-of-the-art results for this
benchmark dataset, showing an average accuracy of 87.94, 86.14,
and 87.06% for the NI, NC, and NIC scenarios, respectively.
These results represent a large increase in accuracy over 20%
for each scenario with respect to the previous best results, i.e., a

TABLE 3 | Accuracy on the CORe50 incremental learning scenarios.

Method Avg. Acc. (%) Std. Dev. (%)

NEW INSTANCES (NI)

Proposed GDM (with replay) 87.94 1.72

Proposed GDM 74.87 2.54

Cumulative (Lomonaco and Maltoni, 2017) 65.15 0.66

LwF (Li and Hoiem, 2016) 59.42* 2.71

EWC (Kirkpatrick et al., 2017) 57.40* 3.80

Naïve (Lomonaco and Maltoni, 2017) 54.69 6.18

NEW CLASSES (NC)

Proposed GDM (with replay) 86.14 2.03

Proposed GDM 73.02 2.91

Cumulative 64.65 1.04

iCaRL (Rebuffi et al., 2017) 43.62* 0.66

CWR (Lomonaco and Maltoni, 2017) 42.32 1.09

LwF 27.60* 1.70

EWC 26.22* 1.18

Naïve 10.75 0.84

NEW INSTANCES AND CLASSES (NIC)

Proposed GDM (with replay) 87.06 2.13

Proposed GDM 72.57 2.96

Cumulative 64.13 0.88

CWR 29.56 0

LwF 28.94* 4.30

EWC 28.31* 4.30

Naïve 19.39 2.90

Results denoted with * indicate the re-implementation of the method by Lomonaco and

Maltoni (2017). Best results in bold.

cumulative approach reported by Lomonaco andMaltoni (2017).
The authors reported results using 3 methods with pre-trained
CNN models and 128 × 128 images: (i) a naïve approach which
consists of continuous stochastic gradient descent training as
new batches become available, (ii) a proposed CopyWeights with
Re-init (CWR) method that skips layers fc6 and fc7 of the
CNN (for details, see Lomonaco and Maltoni, 2017; page 7),
and (iii) a cumulative approach where the learning is carried
out by considering the current batch and all the previous
ones.

Ours and previously reported experiments show that lifelong
learning is a very challenging task and that the overall
performance of some approaches can differ significantly
according to the specific learning strategy. Furthermore, a more
direct comparison of the model’s behavior is hindered by the
fact that the other methods do not comprise recurrent neural
dynamics that account for learning the temporal structure of the
input which, in this case, is a clear advantage (see Table 2) since
the temporal relations of the input can be exploited for more
robust learning and prediction.

The experiments reported for all the 3 incremental learning
scenarios were conducted with the test set containing samples
from all the seen classes (except for the last evaluation step).
Such an evaluation scheme was selected to keep the test set
consistent across all the scenarios (Lomonaco and Maltoni,
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2017). However, in a more realistic lifelong learning scenario,
the model should be able to deal with unknown classes during
sequence retrieval. In our case, the model will always predict
an output label in correspondence to a retrieved sequence.
Instead, it would be convenient to design a novelty detection
mechanism for unseen classes so that the system will output
a predicted label provided that the input sequence produces a
sufficient level of neural activity (Marsland et al., 2002; Parisi
et al., 2015).

5. DISCUSSION

5.1. Summary
We proposed a growing dual-memory architecture with self-
organizing networks for the lifelong learning of spatiotemporal
representations from image sequences. The GDM model
can perform continuous object recognition at an instance
level (episodic experience) and at a category level (semantic
knowledge). We introduced the use of recurrent self-organizing
networks, in particular of extended versions of the Gamma-
GWR, to model the interplay of two complementary learning
systems: an episodic memory, G-EM, with the task of learning
fine-grained spatiotemporal representations from sensory
experience and a semantic memory, G-SM, for learning
more compact representations from episodic experience.
With respect to previously proposed dual-memory learning
systems, our contribution is threefold. First, in contrast
to the predominant approach of processing static images
independently, we implement recurrent self-organizing
memories for learning the spatiotemporal structure of the
input. Second, as a complementary mechanism to unsupervised
growing networks, we use task-relevant signals to regulate
structural plasticity levels in the semantic memory, leading to
the development of more compact representations from episodic
experience. Third, we model memory replay as the periodic
reactivation of neural activity trajectories from temporal synaptic
patterns embedded in an episodic memory. Our experiments
show that the proposed GDM model significantly outperforms
state-of-the-art lifelong learning methods in three different
incremental learning tasks with the CORe50 benchmark
dataset.

5.2. Growing Recurrent Networks With
Memory Replay
The use of growing networks leads to the dynamic allocation
of additional neurons and connections in response to novel
sensory experience. In particular, the Gamma-GWR (Parisi et al.,
2017) provides the basic mechanism for growing self-organizing
memories with temporal context for learning the spatiotemporal
structure of the input in an unsupervised fashion. Different
models of neural network self-organization have been proposed
that resemble the dynamics of Hebbian learning and plasticity
(Fritzke, 1995; Kohonen, 1995; Marsland et al., 2002), with
neural map organization resulting from unsupervised statistical
learning. For instance, in the traditional self-organizing feature
map and its dynamic variant (e.g., Kohonen, 1995; Rougier
and Boniface, 2011, the number of neurons is pre-defined.

Empirically selecting a convenient number of neurons can be
tedious for networks with recurrent dynamics, especially when
dealing with non-stationary input distributions (Strickert and
Hammer, 2005). To alleviate this issue, growing self-organizing
networks for temporal processing have been proposed, for
instance the Gamma-GNG (Estévez and Vergara, 2012) that
equips neurons with a temporal context. However, the Gamma-
GNG grows at a constant, pre-defined interval and does not
consider whether previously created neurons have been well
trained before creating new ones. This will lead to scalability
issues if the selected interval is too short or, conversely, to
an insufficient number of neurons if the interval is too large.
Therefore, we extended the Gamma-GWR which can quickly
react to changes in the input distribution and can create new
neurons whenever they are required.

From a biological perspective, there has been controversy over
whether in human adults detectable amounts of new neurons
can grow. Recent research has suggested that hippocampal
neurogenesis drops sharply in children (Sorrells et al., 2018)
and becomes undetectable in adulthood, whereas other studies
suggest that hippocampal neurogenesis sustains human-
specific cognitive function throughout life (Boldrini et al.,
2018). Neurophysiological studies evidence that, in addition
to neurogenesis, synaptic rewiring by structural plasticity
has a significant contribution on memory formation in
adults (Knoblauch et al., 2014; Knoblauch, 2017), with a major
role of structural plasticity in increasing information storage
efficiency in terms of space and energy demands. While the
mechanisms for creating new neurons and connections in
the Gamma-GWR do not resemble biologically plausible
mechanisms of neurogenesis and synaptogenesis (e.g., Eriksson
et al., 1998; Ming and Song, 2011; Knoblauch, 2017), the GWR
learning algorithm represents an efficient computational model
that incrementally adapts to non-stationary input. Crucially, the
GWR model creates new neurons whenever they are required
and only after the training of existing ones. The neural update
rate decreases as the neurons become more habituated, which
has the effect of preventing that noisy input interferes with
consolidated neural representations. Alternative theories suggest
that an additional function of hippocampal neurogenesis is the
encoding of time for the formation of temporal associations in
memory (Aimone et al., 2006, 2009), e.g., in terms of temporal
clusters of long-term episodic memories. This represents an
interesting research direction for the modeling of temporal
associations in the Gamma-GWR.

For mitigating catastrophic forgetting during incremental
learning tasks, the proposed model generates recurrent
neural activity trajectories (RNATs; Equation 10) after each
learning episode. The set of generated RNATs is periodically
replayed to both networks in correspondence of novel sensory
experience for the consolidation of knowledge over time.
This is consistent with biological evidence suggesting that
the reactivation of hippocampal representations and their
frequent replay to the neocortex are crucial for memory
consolidation and retrieval (see Carr et al., 2011 for a review).
The process of replaying previously seen data without
explicitly storing data samples is referred to as intrinsic
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replay (Robins, 1995) and has the advantage of fewer memory
requirements with respect to explicitly storing training samples.
In our approach, the episodic memory G-EM embeds the
temporal structure of the input through the implementation of
temporal synapses that are strengthened between consecutively
activated neurons (Equation 9). Therefore, RNATs comprise
prototype sequence snapshots that can be generated without
the need of explicitly storing the training sequences. Our
reported results show that the use of RNATs yields a
significantly improved overall accuracy during incremental
learning.

In this work, we have focused on regulating the mechanisms
of neurogenesis and neural update, whereas we have not
investigated the removal of old connections and isolated
neurons. At each learning iteration of the Gamma-GWR, old
connections exceeding a given age threshold and neurons
without connections can be deleted. Removing a neuron from
the network means that the knowledge coded by that unit is
permanently forgotten. Therefore, a convenient maximum age
of connections must be set to avoid catastrophic forgetting.
In incremental learning scenarios, it is non-trivial to define
a convenient age threshold for connections to be removed
since data samples become available over time and neurons
coding for consolidated knowledge might not fire for a large
number of iterations. Mechanisms of intrinsic memory replay
as modeled in this paper could be used to prevent the deletion
of consolidated knowledge. For instance, the periodic replay
of episodic representations would prevent the networks from
deleting relevant knowledge also when external sensory input
does not activate those representations for sustained periods of
time.

Conceptual similarities can be found between our model
and the adaptive resonance theory (ART) in which neurons
are iteratively adapted to a non-stationary input distribution
in an unsupervised fashion and new neurons can be added
in correspondence of dissimilar input (see Grossberg, 2012 for
a review). The primary intuition of the ART model is that
learning occurs via the interaction of top-down and bottom-
up processes, where top-down expectations act as memory
templates or prototypes which are compared to bottom-up

sensory observations. Similar to the GWR’s activation threshold,

the ART model uses a vigilance parameter to produce fine-
grained or more general memories. Despite its inherent ability
tomitigate catastrophic forgetting during incremental learning, it
has been noted that the results of some variants of the ARTmodel
depend significantly upon the order in which the training data are
processed. However, an extensive evaluation with recent lifelong
learning benchmarks has not been reported. Therefore, ART-
based models represent an additional complementary approach
to growing self-organizing models.

6. CONCLUSION

Lifelong learning represents a fundamental but challenging
component of artificial systems and autonomous agents. Despite
significant advances in this direction, current models of lifelong
learning are far from providing the flexibility, robustness,
and scalability exhibited by biological systems. In this paper,
we contribute to extending dual-memory models for the
processing of sequential input which represents more realistic
experimental settings compared to learning from static image
datasets. In the future, it would be interesting to extend
this model to the multisensory domain, e.g., where neural
representations can be continually learned from audio-visual
streams (Parisi et al., 2016, 2018b). The proposed architecture
can be considered a further step toward more flexible lifelong
learning methods that can be deployed in embodied agents
for incrementally acquiring and refining knowledge over
sustained periods through the active interaction with the
environment.
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What motivates an action in the absence of a definite reward? Taking the case of

visuomotor control, we consider a minimal control problem that is how select the

next saccade, in a sequence of discrete eye movements, when the final objective is

to better interpret the current visual scene. The visual scene is modeled here as a

partially-observed environment, with a generative model explaining how the visual data

is shaped by action. This allows to interpret different action selection metrics proposed in

the literature, including the Salience, the Infomax and the Variational Free Energy, under a

single information theoretic construct, namely the view-based Information Gain. Pursuing

this analytic track, two original action selection metrics named the Information Gain

Lower Bound (IGLB) and the Information Gain Upper Bound (IGUB) are then proposed.

Showing either a conservative or an optimistic bias regarding the Information Gain, they

strongly simplify its calculation. An original fovea-based visual scene decoding setup

is then proposed, with numerical experiments highlighting different facets of artificial

fovea-based vision. A first and principal result is that state-of-the-art recognition rates

are obtained with fovea-based saccadic exploration, using less than 10% of the original

image’s data. Those satisfactory results illustrate the advantage of mixing predictive

control with accurate state-of-the-art predictors, namely a deep neural network. A

second result is the sub-optimality of some classical action-selection metrics widely

used in the literature, that is not manifest with finely-tuned inference models, but

becomes patent when coarse or faulty models are used. Last, a computationally-effective

predictive model is developed using the IGLB objective, with pre-processed visual

scan-path read-out from memory, bypassing computationally-demanding predictive

calculations. This last simplified setting is shown effective in our case, showing both

a competing accuracy and a good robustness to model flaws.

Keywords: intrinsic motivation, foveated vision, saccadic eye movements, active inference, information gain,

convolutional neural networks (CNN), active vision

1. INTRODUCTION

In complement with goal-oriented activity, animal motor control also relates to the search for
sensory cues in order to better interpret its sensory environment and improve action efficacy. This
resorts to choosing relevant viewpoints, i.e., selecting body placement and/or sensors orientation
in order to capture a sensory signal that should help disambiguate the current scene. The center of
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sight, in particular, is constantly and actively moving during all
waking time. This permanent visual scanning is principally done
with high-speed targeted eye movements called saccades (Yarbus,
1967), that sequentially capture local chunks of the visual scene.
This makes the oculo-motor activity an essential element of man
and animal behavior, underlying most of daily displacements,
movements, instrumental and social interactions.

Scene decoding through action (or “active perception”) has
attracted strong interest in robotics and artificial vision, for the
important redundancy present in the sensory data allows to
envisage energy-efficient sensors, scanning little portions only of
the total sensory scene. The opportunity to neglect large parts of
the sensory scene shouldmainly be considered when the energy is
scarce, as it is the case for drones and robots. It is also relevant in
computer vision, where mega-pixel images appeals for selective
convolutions, in order to avoid unnecessary matrix products. The
example of animal vision thus encourages a more parsimonious
approach to robotic and computer vision, including the control
of the sensory flow. Optimizing the sensor displacements across
time may then be a part of robotic control, in combination with
goal-oriented operations.

Changing the viewpoint can be seen as a way to leverage
ambiguities present in the current visual field. In Aloimonos et al.
(1988), the authors show that some ill-posed object recognition
problems becomewell-posed as soon as several views on the same
object are considered. A more general perspective is developed in
Bajcsy (1988), with a first attempt to interpret active vision in the
terms of sequential Bayesian estimation:

The problem of Active Sensing can be stated as a problem of

controlling strategies applied to the data acquisition process which

will depend on the current state of the data interpretation and the

goal or the task of the process.

thus providing a roadmap for the development of active sensory
systems.

Work on active vision control is quite scarce until the late
2000’s. On the machine learning side, an example of fovea-based
visuo-motor control was addressed in Schmidhuber and Huber
(1991), with a direct policy learning from gradient descent by
using BPTT through a pre-processed forward model. On the
biological side, early models from the late nineties consider
the case of fovea-based image encoding, ending up in the
simplified “pyramidal” focal image encoding model (Kortum
and Geisler, 1996). Active vision models were however largely
dominated by the salience models (Itti and Koch, 2000, 2001;
Itti and Baldi, 2005), that were shown consistent with the
preferred fixation zones observed in humans. Motor control
were however generally bypassed in that case, putting the focus
on characterizing the attractiveness of fixation zones rather
that explaining the scene decoding process when changing gaze
orientation.

In contrast, global scene understanding implies to consider
the visual scan-path as a sequential sampling of an underlying
(covert) sensory scene, given a generative model. Two parallel
research tracks adopted and refined this last idea over the last
20 years. On the one side, a predictive approach to active vision

was originally developed in (Najemnik and Geisler, 2005). It
globally complies with the predictive coding framework (Rao
and Ballard, 1999) with the current posterior estimate used to
anticipate future sensations. Here, appropriate samples should
be selected that maximize the expected decoding accuracy, that
resorts to reduce the number of possible interpretations of the
underlying scene, i.e., reduce the expected posterior entropy (see
Najemnik and Geisler, 2005, 2009; Butko and Movellan, 2010;
Friston et al., 2012). It also generalizes to the case of multi-view
selection in object search and scene recognition (Potthast et al.,
2016). A second research track insists on the formal contribution
of action in the encoding of the (future) sensory field. This resorts
to consider action as a code that is later on revealed (decoded)
by sensing the effect of action at the visual field (Klyubin et al.,
2005; Tishby and Polani, 2011). As such it may be optimized so as
to maximize the action read-out capability, allowing to improve
both the policy and the data model in the course of learning
(Schmidhuber, 2007; Mohamed and Rezende, 2015; Houthooft
et al., 2016).

Those different approaches interestingly conduct to develop
different action selection policies that do not appear mutually
compatible in the first place. The decoding accuracy objective
encourages actions that provide a consistent belief update,
measured at the log likelihood of the data after sampling. This
implies to avoid surprising data and prefer actions that bring out
a sensory input that is consistent with the initial guess (Friston,
2010). This approach may be referred as the “conservative”
approach to action selection. Conversely,the “maximum effect”
principle encourages actions that are well discriminated, i.e., that
have a visible effect on the sensors. This is formally quantified by
the “empowerment” information gain objective (Klyubin et al.,
2005; Tishby and Polani, 2011), or by themore informalmeasures
of surprise, like the “Salience” metric (Itti and Baldi, 2005),
or the different “curiosity” metrics, like the ones proposed in
Schmidhuber (1991), Oudeyer and Kaplan (2008), and Pathak
et al. (2017). This second approach may be referred as the
“progressive” approach to action selection.

Active vision is thus in need for clarification, in order to
develop more effective and principle-grounded action-selection
controllers in open environments. This article is an attempt to set
the ground for such a unifying framework, making easier both a
formal and quantitative comparisons between the different action
selection metrics at stake. A fovea-based visuo-motor control
setup is used for illustration, that consists in choosing the next
saccade in a sequential visual scene decoding task.

A general active scene decoding framework is first developed
in section 2.1, under predictive control assumptions, with a
generative model explaining how the observed data is shaped
by action. Stemming from a partially observed probabilistic
framework, the current observation is interpreted as the
realization of a mixed emission density made of a controlled
emitter (i.e., the actuator state) and an uncontrolled one (i.e.,
the latent state of the environment). Then, when combined
with a chain rule-based sequential update, it is shown how
the (unobserved) latent state shall be inferred from both the
current observation and past inferences memory. Given that
“mixed” generative model, a generic active inference framework

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2018 | Volume 12 | Article 76154

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Daucé Active Fovea-Based Vision

is developed in section 2.2, with classical action selection metrics
recast, showing a clear formal separation between the “Accuracy-
based,” “Innovation-based,” and “Conservation-based” action-
selection metric families.

Section 3 gathers both formal and simulation results,
providing a comprehensive and consistent interpretation of
most existing metrics as maximizing the view-based Information
Gain, either in an “optimistic” or in a “pessimistic” fashion.
The connection between action-selection metrics and the
Information Gain is first formally unfolded in section 3.1. It
is shown that a rather straightforward approximation of the
Information Gain, known as the Compression Improvement,
provides both a general setup to interpret most classic objective
functions, and a baseline to provide new effective and principle-
grounded objective functions, namely the Information Gain
Lower Bound (IGLB) and the Information Gain Upper Bound
(IGUB). Then an actual implementation of a sequential fovea-
based scene decoding setup is developed in section 3.2,
allowing to quantitatively compare those different metrics, and
propose new avenues toward parsimonious active vision through
computationally-effective model-based prediction.

2. PRINCIPLES AND METHODS

We consider here a scene decoding task where an agent has to
estimate its environment state, here called the “sensory scene,”
from sensory samples. The visual scene is organized in objects
(or objects parts), whose presence and position is continuously
checked by visual inspection. Then, decoding a visual scene
through saccades consists in identifying the ensemble through
the sequential foveation of parts of the scene only.

2.1. A Mixed Generative Model
The active inference approach relies on a longstanding history of
probabilistic modeling in signal processing and control (Kalman,
1960; Baum and Petrie, 1966). The physical world takes the form
of a random process that is the cause of the sensory stream.
This process is not visible in itself but only sensed through
(non reliable) sensors, providing a sequence of observations over
time. The inference problem consists in identifying the cause of
the observations (i.e., the state of the environment), given the
generative model. The result of the inference is itself a probability
density over the hidden states (the posterior probability), that
is obtained through inverting the model (from the observations
toward the hidden states).

2.1.1. One Scene, Many Views
A feedback control framework is composed of an actor and an
environment. The actor and the environment interact according
to a feedback loop. The actor can act on the environment through
its effectors, and sense the state of the environment through its
sensors. The state of the environment as well as the state of the
agent can change over time. The state of the environment is
described by a state vector s ∈ S . The signal x that is measured on
the sensors is called the sensory field. It is interpreted as a measure
made by the sensors, that is causally related to the current state s.

We consider here an organization of the environment
in objects (or object parts), whose presence and position
is continuously checked by sensori-motor inspection. In a
(discrete) Markovian framework, the state s in which the physical
system is found at present depend both on its previous state
(say s0) and on a preceding motor command a. The transition
from s0 to s is reflected in a transition probability that embodies
the deterministic and non-deterministic effects of the command
a in the form of a conditional probability:

s ∼ Pr(S|a, s0) (1)

The signal x measured on the sensors is interpreted as an effect
of the current state s. Once again the deterministic and non-
deterministic effects are reflected in a conditional probability:

x ∼ Pr(X|s) (2)

that is said the sensory emission process. The combination of
(1) and (2) is the generative process that is the cause of the
sensory field. Consider now the cause s of the current visual
field x is both the object identity o, its position in the peripheral
space y, and the current body orientation u, i.e., s = (y, o, u),
with x ∼ Pr(X|y, o, u) the sensory emission. Here each variable
accounts for a distinct degree of freedom responsible for the
sensory emission.

Then we propose to split the generative process in two parts,
namely the controlled generative process and the uncontrolled
generative process. This separation is consistent with the “hidden
state”/“hidden control” distinction stated in Friston et al. (2012).
The controlled emitter is u while the uncontrolled emitter is
(y, o). Moreover, for greater simplicity, (y, o) is here reduced to a
single variable z = (y, o), so that the generic uncontrolled state
z may report for every possible composition of object identity
in space (or more generally every composition of a pose and an
identity). The controlled emitter u refers to the state of a motor
apparatus, e.g., to the spatial distribution of the different mobile
segments of an articulated body. The uncontrolled latent emitter
z refers to the remaining part of the physical world, i.e., the
“environment.”

This restricted setup, that separates a body and an
environment in the form of two independent processes, provides
a substantial simplification to the estimation problem at stake
(see Appendix A in Supplementary Material). The controlled
transition is assumed to be relatively “fast” in comparison with
the uncontrolled one (for e.g., saccades can be realized in a
100–200 ms interval). Consistently with the “end-effector”
ballistic control setup (Mussa-Ivaldi and Solla, 2004), the motor
command a is thus assimilated with a setpoint (or posture) u in
the actuator space. Under that perspective, the motor command
acts on the sensors position and orientation so as to achieve a
certain perspective (or view) over the external scene, here called
a viewpoint.

Finally, both x (the view) and z (the latent state) are
the realization of a generative model parametrized by u (the
viewpoint), i.e.,

x, z|u ∼ Pr(X|Z, u), Pr(Z) (3)
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with Pr(Z) the prior, and each different motor command
u providing a different sample over the same underlying
distribution. With that respect, the action u is also interpreted
as a sampling operation.

2.1.2. Sequential Bayesian Inference
With a generative model comes the possibility to infer the latent
state of the physical system from the observation using Bayes
rule:

Pr(Z|x, u) =
Pr(x|Z, u)Pr(Z)

Pr(x|u)
(4)

with Pr(Z|x, u) the posterior probability (over the latent states),
whose order 2 moment informs on the estimation accuracy :
the narrower the distribution, the more accurate the latent state
prediction.

In a visual scene decoding task, a single latent state z is
observed through a series of viewpoints u, u′, u′′, ... This sequence
of observations should ultimately provide a final estimate q̂(Z),
with a single cause ẑ dominating the other ones, allowing to reach
a final decision. The chaining of the posterior to the role of the
prior in the next inference step is a classical property of sequential
Bayesian inference. When generalized to many observations:

(x|u), (x′|u′), ..., (x(n)|u(n)), the final posterior q(n)(Z) writes:

q(n)(Z) ∝ Pr(x|Z, u)× Pr(x′|Z, u′)× ...× Pr(x(n)|Z, u(n))× Pr(Z)

(5)

which allows to approach the latent state z frommany samples of
(3), each sample providing more evidence. When the sampling is
done incrementally (Wald, 1945), the u’s and x’s do not need to be
stored in the process. At step n, only q(n−1) (the current “belief”)
needs to be memorized to estimate q(n), i.e.,

q(n)(Z) ∝ Pr(x(n)|Z, u(n))× q(n−1)(Z) (6)

2.2. Active Vision and Predictive Control
Consider an agent having to estimate its environment state z

from sampling it from different viewpoints.We here suppose that
a generative model p is given to the agent. Depending on the
current viewpoint u, a different view x is observed at the sensors.
So, each different command u provokes a different observation,
and thus a different estimation of the latent state. It is thus worth
to question what is the optimal choice for u in order to maximize
the accuracy of the posterior estimate? That turns to minimize
the number of samples so as to provide an accurate estimate.
This approach to inference is called active sampling in Friston
et al. (2012), for the choice of u determines the sensory sample x
that is observed, conditioning the final posterior estimate. It was
originally developed by Najemnik and Geisler (2005) to the case
of human visual search modeling (finding a target feature in an
image, i.e., the “find Waldo” task).

A baseline sampling strategy is to choose u at random and
condition the posterior estimate on this random action. More
elaborate strategies consider the past observations to choose the
most promising action û. The knowledge about past observations
being here absorbed in single posterior distribution q(n−1), the

problem turns out to design a controller C which, given a context
q(n−1), sets up an action û = C(q(n−1)). Here the role of the
controller is not to achieve a goal-oriented task, but to render the
estimation of the latent state more accurate. The controller is said
perception-driven.

The design of such a controller is not straightforward. On
contrary to classical control, there is not definite setpoint z∗ to
which the controller is supposed to drive the external process
(through model inversion for instance). By design, the actual
latent state z is not visible as such and can not be compared to
the inferred posterior. In order to estimate how good a motor
command is, one needs to provide an estimate of the value-
of-action (regarding scene understanding). There is currently
no consensus about what a good value is regarding the scene
decoding task.

A general strategy is thus to establish an action selectionmetric,
taking either the form of an objective function f or a loss ℓ, that
conveys a quantitative estimation of the action’s contribution to
the inference accuracy (resp. imprecision). Once the objective
function established, a simple control strategy is to choose the
action that maximizes the objective (resp. minimizes the loss),
i.e.,:

û = argmin
u∈U

ℓ(u)

/
argmax
u∈U

f (u) (7)

Many such objective functions are proposed in the literature.
They are generally referred as an intrinsic motivation (Oudeyer
and Kaplan, 2008) by contrast with the extrinsic motivation that
relates to the classical rewards in reinforcement learning (Sutton
and Barto, 1998). Several such intrinsic reward candidates have
been developed in recent years in the scene decoding context.
Some of them are presented in the next paragraphs. The original
formulas have been recast to show their formal correspondences,
but also highlight some manifest differences between them.

2.2.1. Accuracy-Based Action Selection
Given a generative model p(X,U,Z), like the one described in
section 2.1, the predictive approach to perception-driven control
(Najemnik and Geisler, 2005) relies on predicting an accuracy
measure A(x, u; q(n−1)) to choose action. The accuracy tells how
good the model is at predicting z (here the target position) when
viewing x at position u, knowing q(n−1) (the estimated posterior
at step n− 1).

If the agent has to choose an action u ∈ U , knowing only
q(n−1), the predicted accuracy attached to u is:

Ā(u; q(n−1)) = E
z∼q(n−1)(Z),x∼p(X|z,u)

[
A(x, u; q(n−1))

]

=
∑

z∈Z
q(n−1)(z)

∫

X

A(x, u; q(n−1))p(x|z, u)dx

and the optimal action to choose is:

û = argmax
u∈U

Ā(u; q(n−1)) (8)

In order to render the computation tractable, a sample is
generally used to estimate the predicted accuracy, i.e., Ep[f (x)] ≃
f (x̃), with x̃ ∼ p(x).
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The accuracy metric used in the original paper was an ad-hoc
one (Najemnik and Geisler, 2005), but turned out to be consistent
with minimizing the posterior entropy (Najemnik and Geisler,
2009), i.e.,:

A(x, u; q(n−1)) = −H(q(n)) =
∑

z∈Z
q(n)(z) log q(n)(z)

with: q(n)(z) ∝ p(x|z, u)× q(n−1)(z), so that:

û = argmin
u∈U

E
z∼q(n−1)(Z),x∼p(X|z,u)

[
H(q(n))

]

which makes sense for a low entropy of the posterior is expected
when the estimated posterior accuracy is high.

This approach to optimal visual sampling was further on
linked to an “Infomax” principle(posterior Mutual Information
maximization) in Butko and Movellan (2010), taking:

AINFOMAX(x, u; q(n−1)) ≡ I(Z; x|u; q(n−1)) = H(q(n−1))− H(q(n))

(9)

with H(q(n−1)) ≡ H(Z|q(n−1)) and H(q(n)) ≡ H(Z|x, u; q(n−1)),
which also turns out to minimize H(q(n)) solely for H(q(n−1))
is independent of u. The Infomax (or posterior entropy
minimization) approach generally makes sense for it implicitly
relies on the chaining from q(n−1) to q(n), that considers that if
p(x|Z, u) is consistent with q(n−1)(Z), then the issued posterior
entropy should be lower than if p(x|Z, u) is at odd with q(n−1)(Z).
The model is expected to choose the action that may confirm
the initial assumption, though there is no formal comparison
between q(n−1) and q(n). It is thus potentially vulnerable to
model outliers with q(n) having both a low entropy and being
inconsistent with q(n−1).

2.2.2. Innovation-Based Action Selection
Another quantity of interest is the so-called Bayesian surprise
or Salience (Itti and Baldi, 2005) defined as the Kullback-Leibler
divergence between an actual view x and amodel z. In the original
“bottom-up” setup, only local statistics are formed over small
image patches of a given image, with u the index of a patch and
p(z|x, u) the features inferred from the data actually observed at
u. For each patch u, the Salience of the actual view x given the
model is:

S(x, u) = KL(p(Z|x, u)||p(Z))

with KL(p1||p2) =
∑

z p1(z) log
p1(z)
p2(z)

the Kullback-Leibler

divergence between p1 and p2, interpreted here as a measure of
the inconsistency between a (viewpoint independent) model p
and the data. A high salience reflects a strong inconsistency with
the model, while a low salience reflects a strong consistency with
the model. According to Itti and Baldi, the regions that have a
high Bayesian surprise are the ones that attract the sight the most.
The calculation of S(x, u) at each location u forms a saliency map
that is then considered as a prediction of where the sight will most
likely be attracted (high values most probably attract the sight,
low values less probably do). The saliency model has a strong

explanatory power and provides among the best fit with the
actual preferred fixation zones observed in humans. Its scalability
moreover provides straightforward applications in image and
video compression (Wang et al., 2003; Guo and Zhang, 2010).

Generalized to the sequential setup, the saliency metric
becomes:

S(x, u; q(n−1)) = KL(q(n)||q(n−1)) (10)

with q(n−1) considered as the data model and q(n) the posterior
estimated at (x, u), knowing q(n−1). Through maximizing the
KL divergence between the previous and the current scene
interpretation, the Saliency objective is found here to promote
the most conflicting observation regarding previous assumptions,
entailing finding innovative interpretations of the current scene.

Put in a predictive form, it gives:

û = argmax
u∈U

E
z∼q(n−1) ,x∼p(X|z,u)

[
KL(q(n)||q(n−1))

]

with the predictive Saliency promoting alternate future
interpretations regarding the current interpretation. This entails
searching for model inconsistencies or model contradicting
predictions, making the Saliency a model consistency check
metric.

2.2.3. Conservation-Based Action Selection
At last, the Variational Free Energy based (VFE) active inference
setup (Friston, 2010; Friston et al., 2012) considers the general
tendency of the brain to counteract surprising and unpredictable
sensory events through minimizing the VFE with action (see
Appendix B in SupplementaryMaterial). In our sequential setup,
it writes:

F(x|u) = − log p(x|u)+ KL(q(Z)||p(Z|x, u)) (11)

From the predictive perspective, stemming from q(n−1) as the
current scene interpretation, Friston et al. (2017) propose a
predictive VFE that writes in our sequential setup like :

F̄(u; q(n−1)) = E
z∼q(n−1)(Z),x∼p(X|z,u)[
− log p(x|u; q(n−1))+ KL(q(n−1)||q(n))

]
(12)

with q(n) the predicted posterior and KL(q(n−1)||q(n)) quantifying
the scene interpretation update made by interpreting the scene
with q(n) instead of q(n−1). It is said the “epistemic cost”1. In that
setup, minimizing the Free-Energy is consistent with minimizing
KL(q(n−1)||q(n)) estimated as:

KL(q(n−1)||q(n)) = E
z∼q(n−1)(Z)

[
log q(n−1)(z)− log q(n)(z)

]

Put in a predictive form, the selection of action finally relies on
reducing the predicted log ratio, i.e., :

û = argmin
u∈U

E
z∼q(n−1)(Z),x∼p(X|z,u)

[
log q(n−1)(z)− log q(n)(z)

]

(13)

1or negative epistemic value.
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which may minimize the epistemic cost2.
On contrary to the Infomax objective (section 2.2.1),

minimizing the epistemic cost selects the predicted posterior
having the highest consistency with the current posterior, which
may prevent from model inconsistencies that may incidently
“hack” the posterior entropy (see section 2.2.1). Minimizing
KL(q(n−1)||q(n)) thus corresponds to a conservative approach to
the scene interpretation that is minimally vulnerable to outliers,
i.e., that minimizes the risk of a conflicting interpretation.

The epistemic cost is moreover at odd with the Saliency
objective (section 2.2.2) seeking the maximal inconsistency
between the cumulated posterior and the current posterior.
It is obvious here that the Free Energy minimization and
the Saliency maximization are antithetic objectives, and no
consensus is currently observed in the literature about which
objective should prevail (though Infomax generally preferred
in scene decoding and saliency/surprise preferred in sparse
reinforcement learning).

3. RESULTS

3.1. View-Based Information Gain Metrics
The structure of the problem (many views on the same scene)
implies that different observations should share a common
information corresponding to the actual (covered) sensory scene.
We take here benefit of the viewpoint-based variational encoding
setup (seen in section 2.2.3 and Appendix B in Supplementary
Material) to propose a new quantification themutual information
shared across different sensory fields, locally estimated with
a view-based Information Gain metric. It is shown here that
a rather straightforward approximation of the information
gain, known as the Compression Improvement, provide both
a general setup to interpret most classic objective functions,
and a baseline to provide new effective and principle-grounded
objective functions.

3.1.1. Definitions

3.1.1.1. View-based mutual information and information

gain
The sharing of information between two sensory fields x|u and
x
′|u′ should be quantified by their Mutual Information. The
general idea is that two samples may provide more insight about
the hidden sensory scene than a single one (three samples should
provide even more, etc.). Consider x|u as the initial sensory
sample and x′|u′ as an additional sample providing new evidence
about how interpret the initial view x. The view-based mutual
information writes:

I((X|u); (X′|u′)) = H(X|u)−H(X|u,X′, u′) (14)

≃ EX,X′
[
− log p(X|u)+ log p(X|u,X′, u′)

]
(15)

with :

(i) p(x|u′, x′, u) ,
∑

z
p(x|z, u)p(z|x′, u′) the post-sample

likelihood, i.e., the retrospective likelihood of having

2It is to be noticed that the Kullback-Leibler divergence is here absorbed in the

general expectation over the x’s and the z’s.

seen x at u knowing now that x
′ is observed at u

′,
and

(ii) − log p(x|u) + log p(x|u′, x′, u) the post-sample Information
Gain (see also Tishby and Polani (2011)), that is a local
estimator of the views mutual information at X = x and
X′ = x

′, given the model p:

IG(x, u, x′, u′) = − log p(x|u)+ log p(x|u′, x′, u) (16)

3.1.1.2. Conditional reconstruction cost
Stemming from the sequential Bayes posterior update formula:

p(z|x, u, x′, u′) =
p(x|z, u)p(z|x′, u′)

p(x|u, x′, u′)
(17)

It can be shown that the negative log likelihood of x after seeing
both x and x

′ is bounded from above by:

− log p(x|u, x′, u′) ≤ −
∑

z

q′(z) log p(x|z, u)
p(z|x′, u′)

q′(z)

= Ez∼q′
[
− log p(x|z, u)

]
+ KL(q′(Z)||p(Z|x′, u′))

(18)

= − log p(x|u, x′, u′)+ KL(q′(Z)||p(Z|x, u, x′, u′))
(19)

, F(x|u, x′, u′)

which establishes F(x|u, x′, u′) as the post-sample conditional
reconstruction cost (or conditional Free Energy – the two are
synonyms), with q′(z) expectedly approaching p(z|x, u, x′, u′)
after optimization. From a variational perspective, the passing
from q(Z) ≃ p(Z|x, u) to q′(Z) ≃ p(Z|x, u, x′, u′) is the
variational posterior update, and the passing from F(x|u) toward
F(x|u′, x′, u) is the reconstruction cost update.

3.1.1.3. Compression improvement
An approximation of the Information Gain (IG), known as the
Compression Improvement (CI) was proposed in Schmidhuber
(2007) and Houthooft et al. (2016). In our view-based setup, it
writes :

CI(x, u, x′, u′) = F(x|u)− F(x|u, x′, u′) (20)

There comes the possibility to optimize the next sampling u
′

through maximizing the CI as a proxy for the IG. It happens
to be equivalent with minimizing the post-sample Free Energy,
consistently with Friston et al. (2012)’s intuition.

3.1.2. The Sequential Information Gain and Its

Approximations
Extending now to the sequential setup, the contribution of u(n)

in understanding the scene is measured by a change in the
reconstruction cost F before and after reading x(n)|u(n).

• Before reading x(n), the reconstruction cost at x(n−1) writes:

F(x(n−1)|u(n−1); q(n−2)) = Ez∼q
[
− log p(x(n−1)|z, u(n−1))

]

+ KL(q||q(n−2)) (21)

= − log p(x(n−1)|u(n−1); q(n−2))

+ KL(q||q(n−1)) (22)
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• After reading x(n), it writes:

F(x(n−1)|u(n−1), x(n), u(n); q(n−2)) = Ez∼q′
[
− log p(x(n−1)|z, u(n−1))

]

+ KL(q′||q(n;n−2)) (23)

= − log p(x(n−1)|u(n−1); q(n;n−2))

+ KL(q′||q(n)) (24)

with :

q(n;n−2)(Z) ∝ p(Z|x(n), u(n))q(n−2)(Z) (25)

Before reading x(n), the optimal reconstruction cost is attained at
q = q(n−1). After reading x

(n), the optimal reconstruction cost
is attained at q′ = q(n). From subtracting (23) from (21), the CI
writes :

CI(n) =Ez∼q
[
− log p(x(n−1)|z, u(n−1))

]
+ KL(q||q(n−2))

+ Ez∼q′
[
log p(x(n−1)|z, u(n−1))

]
− KL(q′||q(n;n−2))

(26)

Knowing that q and q′ are free parameters, taking q = q′ provides
a strong simplification of the above formula, further on referred
as the approximate CI:

C̃I
(n) = KL(q||q(n−2))− KL(q||q(n;n−2)) (27)

= Ez∼q
[
log p(z|x(n), u(n))

]
+ c (28)

with c a constant. The information gain is here
approached with the opposite of the cross-entropy cost

C̃I
(n) = −H(q(Z), p(Z|x(n), u(n)))+ c.

3.1.2.1. Information gain lower bound (IGLB)
Maximizing the CI however provides no formal guarantee the
IG will be maximized. The reconstruction cost is indeed an
upper bound of the negative log evidence, but the difference
of two reconstruction costs is neither an upper bound or a
lower bound of the IG (so that it may either underestimate or
overestimate the IG). It happens that, contrarily to the original
CI formula (Equation 26), the approximate CI (Equation 28)
provides ways to establish firm bounds regarding the Information
Gain estimate. Taking for instance q = q(n−1) (the pre-sample
posterior), and subtracting (24) from (22), the approximate CI
writes:

C̃I
(n)

q=q(n−1) = − log p(x(n−1)|u(n−1); q(n−2))

+ log p(x(n−1)|u(n−1); q(n;n−2))

− KL(q(n−1)||q(n)) (29)

making the approximate CI objective a lower bound of the
IG (Equation 16), for it underestimates the IG by an amount
equal to KL(q(n−1)||q(n)), thus providing a principled objective to

optimize action, with a simple objective function defined here as
the Information Gain Lower Bound (IGLB):

C̃I
(n)

q=q(n−1) , IGLB(x(n), u(n), q(n−1))

= Ez∼q(n−1)
[
log p(z|x(n), u(n))

]
+ c (30)

It is maximal when p(Z|x(n), u(n)) ≃ q(n−1)(Z), i.e., when the
current posterior p(Z|x(n), u(n)) and the past cumulated posterior
q(n−1) are highly consistent.

If now u is at choice before sampling x, it is sensible to
maximize the predicted IGLB to maximize the code consistency,
i.e.,:

û = argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))
[
log p(z|x, u)

]
(31)

The amount of the underestimation, i.e., KL(q(n−1)||q(n)) defines
the epistemic cost (see section 2.2.3) as the IGLB bias, that should
be minimized through action (see Equation 12). Minimizing this
termmeans reducing the underestimation made about the future
information gain before posterior update. This means searching
for “accurate” Information Gains approximations, rather than
maximizing the Information Gain itself, that links the IGLB with
“safe” or “conservative” action selection policies.

At last, the IGLB objective containing both the IG objective
and the (negative) epistemic cost, maximizing the IGLB is
expected to both promote high information gains and prevent for
conflicting predictions, making it a “conservative” information-
seeking objective.

3.1.2.2. Information gain upper bound (IGUB)
For completeness, instantiating q with q(n) gives a different
objective that writes:

C̃I
(n)

q=q(n) = − log p(x(n−1)|u(n−1); q(n−2))

+ log p(x(n−1)|u(n−1); q(n;n−2))+ KL(q(n)||q(n−1))
(32)

making it an upper bound of the IG that overestimates the
information gain by an amount equal to KL(q(n)||q(n−1)).

If now u is at choice before sampling x, maximizing the
approximate CI gives:

û = argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))

[
Ez′∼q(n) log p(z

′|x, u)
]

= argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))

[
−H(q(n)(Z), p(Z|x, u))

]
(33)

= argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))
[
−H(q(n))− KL(q(n)(Z)||p(Z|x, u))

]
(34)

that interestingly combines the Infomax objective (Equation 9)
with a consistency objective. This mixed objective is further on
referred as the Information Gain Upper Bound (IGUB):

IGUB(x, u, q(n−1)) , −H(q(n))− KL(q(n)(Z)||p(Z|x, u))+ c
(35)
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The IGUB bias, i.e., KL(q(n)||q(n−1)), interestingly fits the Saliency
objective (Equation 10), allowing to interpret the Saliency as
the amount of the overestimation made after posterior update by
considering (28) instead of (26).

Maximizing the Saliency is here interpreted as promoting
the most optimistically biased Information Gain approximation,
irrespectively of the Information Gain itself, making it a “risk-
seeking” (rather than information seeking) objective, that links
with exploratory behavior. At last, the IGUB objective containing
both the IG objective and the Saliency, maximizing the IGUB is
expected to both promote high information gains and promote
conflicting predictions, making it an “optimistic” information-
seeking objective.

To conclude, remarkable here is the fact that both the
Saliency objective, the Infomax objective and the Free Energy
epistemic cost show a consistent inclusion in a more general
approximate Information Gainmaximization principle. The final
set of metrics to be compared in next section are finally displayed
in Table 1.

3.2. Fovea-Based Visual Scene Decoding
We now turn to an actual implementation of a saccadic visual
scene decoding setup. The image (i.e., the visual scene to decode)
is analyzed through a finite sequence of local foveated visual
samples. The control problem consists in choosing the next
saccade, given the past observations and the current scene
interpretation. The final decoding means identifying to which
category the image belongs to (here the label of the MNIST digits
dataset). In that setup,

• The viewpoint u is defined as the current gaze orientation
on the image (i.e., the central fixation setpoint in pixel
coordinates),
• The view x|u is a retinocentric visual sample measured at

position u, with central magnification and peripheral blurring,
• The latent state z (visual scene interpretation) is the category of

the image (here a digit label), to be guessed from several visual
samples.

3.2.1. Fovea-Based Vision

3.2.1.1. Pyramidal fovea-based visual observation
In superior vertebrates, two principal tricks are used to minimize
sensory resource consumption in scene exploration. The first
trick is the foveated retina, that concentrates the photoreceptors

at the center of the retina, with a more scarce distribution at
the periphery (Osterberg, 1935). A foveated retina allows both
treating central high spatial frequencies, and peripheral low
spatial frequencies at a single glance (i.e., process several scales
in parallel). The second trick is the sequential saccadic scene
exploration, already mentioned, that allows to grab high spatial
frequency information where it is necessary (serial processing).

The baseline vision model we propose relies first on learning
local foveated views on images. Consistently with (Kortum and
Geisler, 1996; Wang et al., 2003), we restrain here the foveal
transformation to its core algorithmic elements, i.e., the local
compression of an image according to a particular focus. Our
foveal image compression thus rests on a “pyramid” of 2D
Haar wavelet coefficients placed at the center of sight. Taking
the example of the MNIST dataset3 (see Figure 1A), we first
transform the original images according to a 5-levels wavelet
decomposition (see Figure 1B). We then define a viewpoint u =
(i, j, h) as a set of 3 coordinates, with i the row index, j the column
index and h the spatial scale. Each u generates a visual field made
of three wavelet coefficients xi,j,h , x|(i, j, h) ∈ R

3, obtained from
an horizontal, a vertical and an oblique filter at location (i, j) and
scale h. The multiscale visual information xi,j , x|(i, j) ∈ R

15

available at coordinates (i, j) corresponds to a set of 5 coefficient
triplets, namely:

xi,j = {xi,j,5, x⌊i/2⌋,⌊j/2⌋,4, x⌊i/4⌋,⌊j/4⌋,3, x⌊i/8⌋,⌊j/8⌋,2, x⌊i/16⌋,⌊j/16⌋,1}
(36)

(see Figure 1C), so that each multiscale visual field owns 15
coefficients only (to be compared with the 784 pixels of the
original image). Figure 1D displays a reconstructed image from
the 4 central viewpoints at coordinates (7, 7), (7, 8) (8, 7) and
(8, 8).

3.2.1.2. Algorithms
A generic sequential scene decoding setup is provided in
algorithms 1 and 2. A significant algorithmic add-on when
compared with formula (8) is the use of a dynamic actions set :
U . At each turn, the new selected action ũ is drawn off from U , so
that the next choice is made over fresh directions that have not yet
been explored. This implements the inhibition of return principle
stated in Itti and Koch (2001). A second algorithmic add-on is the

3http://yann.lecun.com/exdb/mnist

TABLE 1 | Action selection metrics summary.

Name Value Equation # Interpretation

Infomax H(q(n−1))− H(q(n)) (9) Posterior mutual information maximization

Saliency KL(q(n)||q(n−1)) (10) Posterior inconsistency maximization

VFE − log p(x(n)|u(n);q(n−1))+ KL(q(n−1)||q(n)) (11) Prior inconsistency minimization

Compression Improvement E
z∼q(n−1)

[
− log p(x(n−1)|z, u(n−1))

]
+ KL(q(n−1)||q(n−2)) (26) (approximate) Information Gain maximization

+E
z∼q(n)

[
log p(x(n−1)|z, u(n−1))

]
− KL(q(n)||q(n;n−2))

IGLB E
z∼q(n−1)

[
log p(z|x(n), u(n))

]
+ c (30) (pessimistic) Information Gain maximization

IGUB E
z∼q(n)

[
log p(z|x(n), u(n))

]
+ c (35) (optimistic) Information Gain maximization
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FIGURE 1 | A–C Foveal “pyramidal” encoding from image. (A) An original MNIST sample is recast on a 32× 32 grid. (B) It is then decomposed in a five levels Haar

wavelets decomposition issuing a total of 1024 wavelet coefficient. (C) Then, for each gaze orientation (i, j) ∈ {0, ..., 15}2, 3× 5 wavelet coefficients are read out at

coordinates (i, j), (⌊ i2 ⌋, ⌊
j
2 ⌋), (⌊

i
4 ⌋, ⌊

j
4 ⌋), (⌊

i
8 ⌋, ⌊

j
8 ⌋) and (⌊ i

16 ⌋, ⌊
j
16 ⌋) in level descending order. (D) Example image reconstruction from reading 60 central coefficients

at coordinates (7,7), (7,8), (8,7) and (8,8), issuing a 92% compression rate.

Algorithm 1 Prediction-Based Policy

Require: p (emission density), ρ (prior), A (objective function),
U (actions set)
for z, u ∈ Z ,U do

predict: x̃z,u ∼ p(X|z, u)
r(z, u)← A(z, u, x̃z,u, p, ρ)

end for

return ũ = argmax
u∈U

〈ρ, r(:, u)〉

Algorithm 2 Scene Exploration

Require: p (emission density), ρ0 (initial prior), A (objective), U
(actions set)
ρ ← ρ0
while H(ρ) > Href do

choose: ũ← Prediction-Based Policy(p, ρ,A,U)
read: xũ
update: odd← log p(xũ|Z, ũ)+ log ρ

ρ ← softmax(odd) {the posterior becomes the prior of the

next turn}
U ← U \ {ũ}

end while

use of a thresholdHref to stop the evidence accumulation process
when enough evidence has been gathered. This threshold is a
free parameter of the algorithm that sets whether we privilege a
conservative (tight) or optimistic (loose) threshold. The stopping
criterion needs to be optimized to arbitrate between resource
saving and decoding accuracy.

The actual saccade exploration algorithm moreover adapts
algorithm 2 the following way. The process starts from a loose
assumption based on reading the root wavelet coefficient of the
image, from which an initial guess ρ0 is formed. Then, each
follow-up saccade is defined as the gaze end-orientation (i, j) ∈
[0, .., 15]2. The posterior calculation rests on up to 5 coefficient

triplets (see Equation 36). After selecting gaze orientation (i, j),
all the corresponding coordinates (i, j, h)’s are discarded from U

and can not be reused for upcoming posterior estimation (for the
final posterior estimate may be consistent with a uniform scan
over the wavelet coefficients).

3.2.1.3. Baseline generative model
A generative model is learned for each u = (i, j, h) (making
a total of 266 data models) over the 55,000 examples of the
MNIST training set. For each category z and each viewpoint u,
a generative emission model is built over parameter set 2z,u =
(ρz,u,µz,u,6z,u),
so that:

∀z, u, x̃z,u ∼ p(X|z, u) = B(ρz,u)×N (µz,u,6z,u) (37)

with B a Bernouilli distribution and N a multivariate Gaussian.
The role of the Bernouilli is to “gate” the multivariate Gaussian
model in the high frequencies, where digit deformations is
reflected in an alternating presence or absence of pixels for high
level coefficients and at the periphery, allowing to discard the
“white” triplets from the Gaussian moments calculation. Each
resulting emission density p(X|Z, u) is a mixture of Bernouilli-
gated Gaussians over the 10 MNIST labels. On the inference
side, the posterior is explicitly calculated using Bayes rule, i.e.,
q(Z|x, u) = softmax log p(x|Z, u), issuing about 92% recognition
rate on the MNIST test set when combining the 266 log
likelihoods of each wavelet triplet of the full images with
Equation (5), a typical recognition rate for shallow models.

3.2.2. Metrics Comparison

3.2.2.1. Baseline model and decoding compression
Different examples of a sequential scene decoding are presented
in Figure 2 for one MNIST sample using algorithm 2 and
different objective functions. Note that several coefficient triplets
are read at each end-effector position (i, j) (see Figure 1C). There
is for instance a total of 5 triplets read out at the initial gaze
orientation, and between 1 and 4 triplets read-out for each
continuing saccade (not shown).
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FIGURE 2 | Scene exploration through saccades in the foveated vision model. (Top left) Original MNIST sample to be decoded, with corresponding label. (Left

panel) Course of saccades for different action selection metrics. Leftmost is the metric name. For each row, the number of thumbnail images reflects the number of

saccades. The scene decoding reads from left to right: more wavelet coefficients are grabbed at each step, visually reflected in an increased reconstruction neatness.

On overlay is the corresponding history of visual fixations (with rainbow time color code). The total number of saccades can vary for the different policies. Over the final

thumbnail is the number of saccades and the final response. All decoding steps are shown except when n > 10. (Right panel) corresponding posterior update in

function of the number of decoding steps, for 0 ≤ n ≤ 15 (y-logarithmic scale, one color per competing label). Baseline model (Equation 37); Href = 10−4.

Last, the decoding compression rate is defined as the proportion
of wavelet coefficients that are bypassed for reaching decision. In
Figure 2 first row for instance, a total of 25 coefficient triplets
is actually read-out from 7 saccades (not shown), representing
about 10% of the total 256 coefficient triplets, issuing a 90%
compression rate. The left-hand side of Figure 3 shows how the
classification rates vary in function of the average compression
rate, for different objective functions and recognition threshold
Href ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. The objectives are also
compared with a random baseline policy. The classification rates
monotonically increase with a decreasing recognition threshold.
Considering 92% as the upper bound here, a near optimal
recognition rate is obtained at Href = 10−5 for the CI objective.
Though all objectives functions show a consistent increase of the
classification rate with decreasing Href, the CI-based policy here
overtakes the others policies. The Infomax and the VFE-based

policies behave in a close-by fashion, and then the Salience-based
policy provides a less effective scene decoding. All scene decoding
policies provide elevated compression rates, with a close to
optimal classification obtained at around 85% compression of
the original data. It must be noticed that still a correct 90%
classification rate can be obtained with a random policy at around
70% compression rate, reflecting a strong redundancy in the
original images.

3.2.2.2. Convolutional neural network
A convolutional neural network (CNN) was designed in order
to provide a more effective inference and facilitate comparison
with state-of-the-art classifiers (see Figure 4). It is made of five
convolution layers having each a distinct input corresponding
to the five hierarchical levels of the wavelet decomposition.
The CNN is biasless, uses a (2,2) stride for the convolutions
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FIGURE 3 | Objective functions comparison. The classification rates and average compression rates are processed after 10,000 sequential scene decoding sessions

on the MNIST test set, with different objective (or loss) functions and different values of Href. The classification rate is shown in function of the decoding compression

rate. (Left) Baseline model, with recognition threshold Href varying from 10−5 up to Href = 10−1 (from left to right). (Right) CNN model, with recognition threshold

varying from Href = 10−2 up to Href = 1 (from left to right).

FIGURE 4 | Hierarchical convolutional neural network for scene decoding. The CNN is composed of four convolutional layers and one fully connected layer. The input

wavelet hierarchical organization is reflected in scale-dependent input inlay, consistently with stride-2 convolutional spatial integration.

without max-pooling, promoting neighbour independence in the
convolutional computation track. Rectified Linear Units are used
in all layers, except for the final layer owning linear units.

The network was trained during about 106 epochs with
Tensorflow4 on a laptop. Sparse foveal-consistent inputs are
used for the training. For each training example, many gaze
orientation (i1, j1), ..., (in, jn) are chosen at random, mimicking
a n-views foveal visual scan, with n randomly set from interval
{1, .., 256}. The multi-level input maps are then fed with
the corresponding wavelet coefficients triplets, “pyramidally”

4https://www.tensorflow.org

distilled from h = 5 to h = 0. The final network is expected to
perform recognition on randomly compressed images, for which
some wavelet coefficients are kept and some wavelet coefficients
are discarded. With standard parameter tuning [Adam optimizer
– Kingma and Ba (2014) – with a learning rate equal to 10−4],
the network attains a 99% recognition rate on the test set with
non-compressed wavelet transformed inputs (full information
case).

The cross-entropy loss used in training allows to interpret
the network output as approaching the data log-likelihood
(up to a constant), i.e., CNN(xi,j) ≃ log p(xi,j|Z, (i, j)) + c.
For decoding a scene, the input layers are initialized at zero
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and progressively filled with new wavelet coefficients obtained
during the scene exploration. The output is updated by adding
supplementary data at the input only, complementing the data

that was previously read, with exp
[
CNN(x(1 : n)|u(1 : n))

]
∝

p(x(1 : n)|Z, u(1 : n)) ∝ p(Z|x(1 : n), u(1 : n)) = q(n). The posterior
update is thus implemented from the data. There is no recurrence,
sequential accumulation or memory implemented in the network
(like in Equation 6).

Following algorithm 2 with the CNN as the approximate
cumulated posterior estimator, the decoding efficacy is shown for
different objective functions on the right-hand side of Figure 3,
with Href ∈ {1, 0.3, 0.1, 0.03, 0.01}. It is to be noted the CNN
is only used for estimating the q(n)’s posterior distributions,
with the baseline Bernouilli-gated multivariate Gaussian model
(Equation 37) used on the predictive/generative side. A clear
decoding improvement is obtained when compared with the left-
hand side of Figure 3, with higher classification rates with less
signal, attaining about 98,8% correct classification with less than
8% of the original image. Still, the general good performances of
the decoder blurs the differences between the different policies.
All objectives appear here equally good at effectively decoding the
scene (except for the random action selection policy).

3.2.2.3. Faulty model and failure robustness
Predictive policies are known to heavily rest on the generative
models, that makes them sensible to model flaws. Resistance
to model flaws is thus a property that should be prioritized
when acting in unknown or coarsely modeled environments,
or in the course of learning. In contrast with CNN-based
optimal decoding, a failed probabilistic model was designed
by simply setting ρu,z = 1 in Equation (37). This tends to
overestimate the signal strength at high frequencies, predicting
a dense signal in effectively sparse regions. The classification
accuracies are presented on Figure 5A for the different objective
functions considered here. In complement to the Compression
Improvement (Equation 26), the two variants referred as the
IG Lower Bound (Equation 30) and the IG Upper Bound
(Equation 35) are also considered.

The faulty model allows here to nicely separate the different
metrics with regards to their optimistic vs. conservative flavor.
While the CI is here barely better than a random sampling,
its conservative and optimistic variants, respectively, do clearly
better and clearly worst than random exploration. The VFE loss
and the Saliency objectives, as expected, amplify this effect with a
strong robustness to model flaws for the VFE loss and, at reverse,
a strong sensitivity to model flaws for the Saliency objective. The
Infomax also falls here in the optimistic category for its blindness
to sequential consistency makes it update the posterior the wrong
way.

3.2.3. Scaling Up IG Computation
The scaling of the model needs to be addressed when large
control spaces are considered. All predictive policies rely on a
mixed encoding setup that implies to consider all u’s and all z’s in
the prediction, which scales likeO(|U |×|Z|2) when the predicted
posterior is needed in the objective/loss calculation, which is the

case for the Infomax, the Saliency, the VFE the CI and the IGUB
(algorithm 1), andO(|U |× |Z|) in the IGLB case for it can bypass
the post-sample posterior calculation. A quadratic cost may still
be considered too heavy in real-case applications, implying to
consider cheaper setups.

• A first simplification, referred as the “sharp” IGLB in
Figures 5B,C, only samples a single z
from q(n−1), i.e.

ẑ = argmax
z

q(n−1)(z)

with ẑ the current guess, making the predictive policy scale like
O(|U |) for the main loop of algorithm 1 is now over the u’s
only.
• An additional simplification can be obtained when

considering the IGLB objective alone (Equation 30), for
it is, on contrary to all other objectives, independent of the
context q(n−1). For a given model p, and for every guess
ẑ ∈ Z , all the predictive log posteriors log p(ẑ|x̂ẑ,u, u) can
be pre-processed using the mode of the predicted visual field
x̂ẑ,u = argmax

x

p(x|ẑ, u) as a sample. This results in a set

of class-consistent action maps providing, for each u ∈ U ,
the expected log posterior value log p(ẑ|x̂ẑ,u, u), given ẑ

(Figure 6, first row). Then, for each guess ẑ, a class-specific
visual exploration strategy can be pre-processed, following
a log-posterior descending order over the u

′s, from higher
IGLB values of toward lower IGLB values (brownish toward
whitish in Figure 6). |Z| saccade trajectories of size |U |
are then calculated offline and stored in ordered lists, with
a O(|U | × |Z|) memory load but only ≃ O(1) readout
computational cost. In practice, the viewpoint selected at step
n depends on the current guess ẑ, with on-the-fly trajectory
switch if the guess is revised during the course of saccades.
This strategy is referred a the pre-processed trajectories in
Figures 2, 5B,C.
• For comparison, a generic trajectory was also computed using

IGLB(u) = Ez∼p(Z)
[
log p(z|x̂z,u, u)

]
(38)

with a uniform prior over the z′s, i.e., p(z) = 1
|Z| . It is referred

a the generic trajectory in Figures 2, 5B,C.This strategy is
useful in the absence of a definite guess (uniform initial prior
for instance).

The action maps allow to analyze in detail the class-consistent
orientations (that appear brownish) as opposed to the class-
inconsistent orientations (pale orange to white). First to
be noticed is the relative scarceness of the class-consistent
orientations. A small set of saccades is expected to provide most
of the classification information while the rest of the image
is putatively uninformative (or even misleading if whitish). A
second aspect is that the class-relevant locations are all located
in the central part of the images, so there is very few chance
for the saccades to explore the periphery of the image where
little information is expected to be found. This indicates that the
model has captured the essential concentration of class-relevant
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FIGURE 5 | Method comparisons. (A) Objective functions comparison in a faulty model (see Figure 3). (B) Information Gain-based computational schemes

compared on the baseline model. (C) Information Gain-based computational schemes compared on the faulty model. The recognition threshold varies from

Href = 10−5 up to Href = 10−1 (from left to right).

FIGURE 6 | Action maps and pre-processed trajectories. Upper row (except rightmost map) color-coded pre-processed guess-consistent action maps for

ẑ ∈ {0, .., 9}, and u ∈ {0, .., 15}2, using the baseline generative model, from low (whitish) to high (brownish) log posteriors. Upper row, rightmost map:

Class-independent expected IGLB map. Lower row: Corresponding pre-processed visual scan-path (the red “+” provides the initial gaze orientation). Only the 5 first

saccades are shown, with average class prototype in the background. The rightmost background image is the average over all classes.

information in the central part of the images for that particular
training set.

The different simplification strategies are compared in
Figures 5B,C over the baseline and the faulty models. Both
the sharp IGLB and the pre-processed trajectories are shown
consistent with the CI objective on Figure 5B, despite their
considerably lower computational cost, while the generic
trajectory strategy appears less effective. Interestingly, those
computational simplifications also remain valid when robustness
to model flaws is considered (Figure 5C). Both the sharp IGLB
and the pre-processed trajectories allow to reach both robustness
and effective classification rates at considerably lower cost than
the “smooth” IGLB.

4. CONCLUSION

Stemming from the fovea-based scene decoding problem, a
generic predictive action selection framework was presented
which, accordingly with (Najemnik and Geisler, 2005), rests on a
predictive accuracymetric to choose action. An “active” inference
approach is also considered, which, accordingly with Friston et al.
(2012), optimizes sensory samples selection through action. In

our case, the visual field is interpreted under a mixed emission
model for the visual data is both generated by the viewpoint and
the scene constituents. This allows to unify the many objective
functions proposed in the literature under a singlemetric referred
as the Compression Improvement (CI) in Schmidhuber (2007),
that is shown to provide a consistent interpretation for most of
the objective functions used in perception-driven control.

Two variants of the CI objective are then proposed, using
either the pre-sample or the post-sample posterior in the
approximation. In the pre-sample case, it is shown to be
an Information Gain Lower Bound objective that always
underestimate the actual Information Gain. The IGLB objective
is said conservative for it should prevent from searching
for conflicting visual data that may challenge the current
interpretation. On the other hand, it is expected to lower the risk
of failed interpretation in the case of a (erroneous) conflicting
predictions. Conversely, in the post-sample case, the approximate
CI is shown to always overestimate the actual Information
Gain, making it the Information Gain Upper Bound objective
(IGUB)—or “optimistic” IG objective. Following the IGUB is
expected to perform a more thorough scene exploration for it
may preferentially head toward conflicting visual data that may
challenge the current interpretation. On the other hand, it is also
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expected to increase the risk of failed interpretation in the case of
(erroneous) conflicting predictions.

Remarkable is the fact that both the Saliency objective, the
Infomax objective and the Free Energy epistemic cost, that are
classic metrics of the literature, show a consistent inclusion in
a more general approximate Information Gain maximization
principle. Using for instance the Variational Free Energy (Friston
et al., 2015) as a loss (instead of the IGLB) is expected to bias the
action selection in an even more conservative way. Conversely,
using the Saliency objective (Itti and Baldi, 2005) instead of the
IGUB is expected to bias the action selection in an even more
optimistic way, subsequently increasing the risk of a failed scene
interpretation.

The presented numerical experiments thus highlight different
aspects of the setup. A first and principal result is that state-
of-the-art recognition rates are obtained with sequential fovea-
based computation using less than 10% of the original signal.
This strong input compression is made possible for the visual
data owns lot of redundancies that are not used at their best
in computer vision, doing useless computations over large parts
of the visual scene. The satisfactory results obtained in that
case reflect the advantage of mixing a predictive controller
with accurate state-of-the-art predictors, here a deep neural
network.

A second result is the sub-optimality of many action selection
metrics used in literature, like the “Infomax” (Butko and
Movellan, 2010) and the “Salience” objectives (Itti and Baldi,
2005), when the scene decoding setup is considered. Their sub-
optimality is not manifest with finely-tuned generative models,
but becomes patent when a coarse of faulty model is used.
This may appear counter-intuitive at first sight for the Infomax
objective is vastly dominant in predictive control (Najemnik and
Geisler, 2009), while the Salience objective provides among the
best predictions for human fixation zones (Itti and Baldi, 2005).
The mixed performances of the Salience objective in predictive
control may however be attenuated when learning is considered.
Heading toward inconsistently modeled places is indeed a
sensible behavior when the model is immature. This entails
maximizing predictions errors, which is a relevant principle
long considered in sparse reinforcement learning (Schmidhuber,
1991; Oudeyer and Kaplan, 2008; Pathak et al., 2017). This
trade-off reflects amore general contradiction between exploiting
at best the current knowledge from past observations vs.

challenging the current interpretation to leverage conflicting
facts, a variant of the exploration/exploitation trade-off.

Last, a notorious drawback of the predictive setup is its
computational cost scaling with the size of the actions sets,
that may grow combinatorially fast with increasing degrees
of freedom. Real-world predictive control is thus in need for
computationally-effective predictive models, here attainable with
the Information Gain Lower Bound (IGLB) objective, that,
though maximizing the Information Gain in approximation,
allow for low-complexity calculation when replacing the exact
posterior with a single guess in the prediction. In discrete latent
spaces, it is thus possible to pre-process guess-specific offline
trajectories, allowing to bypass computationally-demanding
predictions. This strongly simplified setup is shown efficient in
our case, showing both competitive decoding compression rates
and good robustness to model flaws.

IG-driven fovea-based sequential processing may finally be
useful in the case of high dimensional input data (like in e.g.,
computer vision), and should be tested on more challenging
computer vision setups. It is also to be determined how far
IG-based action selection may extend to more general partially
observed environments, and whether they could challenge more
established actions selection strategies in open-ended control
setups.
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Motivation is a crucial part of animal and human mental development, fostering

competence, autonomy, and open-ended development. Motivational constructs have

proved to be an integral part of explaining human and animal behavior. Computer

scientists have proposed various computational models of motivation for artificial agents,

with the aim of building artificial agents capable of autonomous goal generation.

Multi-agent systems and swarm intelligence are natural extensions to the individual

agent setting. However, there are only a few works that focus on motivation theories in

multi-agent or swarm settings. In this study, we review current computational models of

motivation settings, mechanisms, functions and evaluation methods and discuss howwe

can produce systems with new kinds of functions not possible using individual agents.

We describe in detail this open area of research and the major research challenges it

holds.

Keywords: intrinsic motivation, artificial intelligence, cognitive development, swarms, multi-agent systems,

exploration, curiosity

INTRODUCTION

Artificial intelligence has come a long way toward developing intelligent systems. We are in
an era where autonomous cars are on the verge of roaming the streets, chess programs can
beat grandmasters, and handheld devices understand and translate speech in real-time. However,
we are still far from developing artificial agents capable of demonstrating, human-like adaptive
behavior, and open-ended learning. Research areas such as autonomous mental development
(Thomaz and Breazeal, 2006) and developmental cognitive robotics (Asada et al., 2009) aim to
address these challenges.

One of the important features of the artificial agents of the future will be their ability to
gain knowledge and learn skills without explicit feedback from humans as well as adapt the
behavior according to external and internal needs. As described in Russell and Norvig (2016),
agent behavior can be guided by goals and utilities. In this paper we define motivation as
a mechanism that generates goals as an intermediary between sensation and action selection
in an agent. These “motivated” agents will use their acquired knowledge and skills to build
increasingly complex repertoires of behaviors. Computational models of motivations have been
proposed, drawing inspiration and insight from biological (Gatsoulis and Mcginnity, 2015), neural
(Gottlieb et al., 2016), and evolutionary (Singh et al., 2010) perspectives. Computational models of
motivation enables artificial agents to gather knowledge, seek competence, and select goals based
on a combination of their individual experiences, preferences, and environmental characteristics
(Merrick and Shafi, 2011). While the general concept of motivation is broad and has many facets,
in our paper we focus on how motivation has been defined in artificial agents. Essentially a human
and animal trait, researchers have used various notions, mathematical models, and frameworks to
define motivation for artificial agents.
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Inspired by insights from human psychology, these
motivational models propose to incorporate open-ended
learning, autonomous skill acquisition, and progressive learning
in artificial agents. However, the current computational models
of motivation have seldom been extended and explored in
the social context- where multiple artificial agents exist,
communicate and interact. Multi-agent systems and swarms are
two examples of such contexts.

Multi-agent systems are a logical extension of the single
agent idea. Studies involving multi-agent systems include the
communication and behavior (Panait and Luke, 2005) among
multiple artificial agents. With combined goals, actions, domain
knowledge, and interactions (Stone and Veloso, 2000), these
systems pose unique challenges that are absent in single agent
settings. They can be robust and scalable, while introducing
complexity in cooperation and communication, and capable of
providing a platform to build social intelligence for artificial
agents (Dautenhahn, 1995).

The term “Swarm intelligence” was first coined by Beni
and Wang (1993). As they explained (Beni, 2004), a machine
can be defined as “intelligent” if it demonstrates behavior
which is “neither random nor predictable.” Following this
definition, an intelligent swarm was defined as a group of non-
intelligent agents that can collectively demonstrate intelligent
behavior. Swarm intelligence is inspired by behavior occurring
in insects, birds, fish and other organisms in nature. These
biological systems have existed for millennia, and they have
been efficiently solving complex problems through apparently
simple rules. The current approach to swarm intelligence is a
culmination of observations and findings from both biologists
(Beekman et al., 2008) and computer scientists (Brambilla et al.,
2013).

In this paper, we review the state of the art of the
computational models of motivation and present a
comprehensive review of this research. We talk about the
various aspects of the current works and discuss the scope of
extending them to multi-agent systems and swarms. This article
has the following main contributions:

1. We review existing computational models of motivation,
based on their setting, mechanism, function, and evaluation
methods. This provides a structured overview of the existing
research and a framework in which to introduce multi-agent
systems and swarms to the study of computational motivation.

2. We characterize the open area of research that involves
computational models of motivation in a social context,
specifically, multi-agent systems, and swarms. We do this by
examining motivation on the traditional axes of competence
and knowledge, while introducing a new axis of social vs.
individual agents.

3. Finally we determine the major challenges and benefits
of designing computational motivation for multi-agent and
swarm settings.

In the related works section, we discuss the existing surveys
on computational models of motivation and justify the position
of this survey. In the next section, we present the main
contribution of this paper. It starts with a discussion on

motivation and intrinsic motivation (IM), then provides a
structural summary of the current works on computational
models of intrinsic motivation. It concludes by presenting
an outlook and summary on computational motivation in a
social context. In the discussion section, we discuss the social
side of intrinsic motivation from various aspects, present the
major research challenges in that context, and conclude the
paper.

RELATED WORK

A number of surveys have been produced in the area of
computational motivation. This section discusses the focus of
each of the existing surveys and justifies the need for a new survey
studying computational motivation in a social context.

Oudeyer and Kaplan (2007) provided a typology of
computational approaches to motivation. They assumed
that any particular Computational Reinforcement Learning
(CRL) framework could be used to realize motivation signals.
Hence, their typology is based on the formal definition of the
reward used in a framework. Characterizing a robot by having a
number of sensor channels and motor channels, they classified
motivation models into the following categories:

1. Knowledge-based: Knowledge-based systems use “measures
that are related to the capacity of the system to model
its environment” (Mirolli and Baldassarre, 2013b). The
knowledge, for example, can be computed from the past
sensorimotor values. Once the knowledge is acquired, the
difference between the estimated knowledge and the actual
perceived value can be used to design the reward. For example,
the intrinsic reward can be proportional to the improvement
of the prediction. In this case, the robot will be “intrinsically
motivated” to maximize prediction progress, i.e., to minimize
the prediction errors. In essence, knowledge-based models put
the emphasis on how much an artificial agent “knows” about
the environment.

2. Competence-based: In these models, the reward for intrinsic
motivations is designed based on what an agent “can do” with
respect to a particular goal or task. In these models, intrinsic
rewards are associated with an agent’s ability to reach a certain
state or perform a certain activity. For example, a robot can
be rewarded proportionally to the progress in learning a
task, driving it toward goals that are rapidly improvable and
deterring it from situations that are too difficult or too easy to
gain enough competence.

In the survey section, we will use these categories as the
baseline from which we introduce motivation in a social
context. A related review (Oudeyer et al., 2007) describes
a robot as having two modules—a learning machine and
meta-learning machine. While the learning machine learns
to predict the sensorimotor consequences of an executed
action, the meta-learning machine learns to predict the
errors of the learning machine. The prediction made by
the meta-predictor is used as an intrinsic reward. The
authors divided the existing approaches in three categories
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based on how these predictions are exploited to generate
intrinsic motives. These are error maximization (Thrun,
1995; Huang and Weng, 2002; Barto et al., 2004; Marshall
et al., 2004), progress maximization (Herrmann et al., 2000;
Kaplan and Oudeyer, 2003), and similarity-based progress
maximization (Schmidhuber, 1991). This survey provides an
effective classification of the computational motivation models
by distinguishing between learning and meta-learning with a
focus on how agents can explore environments to gather effective
information.

While the previously mentioned surveys discussed the
mechanisms of intrinsic motivation, they do not provide a
clear insight on the functional roles of motivation. (Mirolli
and Baldassarre, 2013a,b) focus on the knowledge-based and
competence-based models of intrinsic motivation from the
functional aspect. They argued that “the ultimate function of
intrinsic motivation is to support the cumulative learning of
skills rather than knowledge.” They have analyzed some of the
knowledge-based mechanism regarding their contribution to
competence acquisition. They argue that to facilitate cumulative
skill acquisition based on intrinsic motivation, one has to
focus on the hierarchy and modularity of the skill organization
framework. In this framework, knowledge-based reward signals
can act at a lower level to learn the world-model, while
competence-based signals can work as a selector deciding which
skill is to learn.

Schmidhuber (2010) proposed a typology of intrinsic
motivation from a different perspective. He pointed out that
most of the intrinsically motivated systems have the following
components:

1. A model/encoder/predictor that captures the sensory inputs,
internal states, reinforcement signals and actions.

2. An intrinsic reward scheme that determines the learning
progress of the model.

3. A reinforcement learner that maximizes the future expected
reward.

Hence, this typology can be created considering the types of
these components. A set of companion questions for each of the
components is added and answering the questions can help build
a detailed topology. Schmidhuber presented a general, theoretical
framework that one can use to build a typology of intrinsically
motivated systems. This typology is based on the consideration
that intrinsic motivation will always be implemented through
reinforcement signals.

Barto (2013) provides an overview of intrinsic motivation
with regard to Reinforcement Learning (RL). He highlighted
the suitability of RL to capture the principles of motivation
in artificial systems by connecting drive theory with reward
maximization. Barto pointed out that RL framework “does not
care” where the reward signal is coming from. This makes
it possible to introduce an “intrinsic reward” which would
be generated from within the organism but won’t affect the
whole RL mechanism. Hence it can naturally accommodate
intrinsic motivation. In addition to that, he highlighted that
intrinsic reward signals can mimic the evolutionary success of
organisms.

Computational models of motivations were surveyed as a
part of computational value systems (Merrick, 2017). Value
systems define behavioral responses of intelligent beings with
regard to the external environment. The term “computational
value systems” extends the idea toward artificial agents such as
robots. A brief summary on the implementation of motivated
reinforcement learning as value systems is provided. Merrick
(Merrick, 2013) further reviews the existing novelty-based
models of intrinsicmotivation with a focus on building combined
motivation models and integrated learning architecture.

In a more recent work (Roohi et al., 2018), application of
intrinsic motivation in player modeling and game testing was
reviewed. This work concludes that while a few parameters of
intrinsic motivation are frequently implemented in the existing
works, some important features are generally overlooked. They
also point out the need for more complex motivational models
and better ways to evaluate them. The purpose of our paper
is to extend the existing views on intrinsic motivation beyond
individual agents to multi-agent and swarm settings.

A summary of the existing surveys is presented in Table 1.
It is evident from the table that there is no recent survey on
computational intrinsic motivation that provides insight into its
use in a social context. Till now, the most commonly referred
to survey of intrinsic motivation is the typology provided by
Oudeyer and Kaplan (2007). Their seminal work provides a
comprehensive view of a formal framework for motivation. It
provides a review of the then existing computational models of
IM. Since their work in 2007, intrinsic motivation has become
one of the most attractive research areas in cognitive science and
autonomousmental development.Moreover, with the emergence
of areas such as deep learning (Sigaud and Droniou, 2016; Wong,
2016) on autonomous mental development (Lake et al., 2017),
computational models of motivation have become relevant in
newer dimensions. In this survey, we categorize the existing
approaches and argue the benefits of extending them to social
settings- specifically multi-agent or swarm settings.

SURVEY: FROM MOTIVATION IN
INDIVIDUAL AGENTS TO MOTIVATION IN
SOCIAL SETTINGS

In the Motivation and Intrinsic Motivation from a Psychological
Perspective section, we introduce motivation from a
psychological perspective. The next section focuses specifically
on intrinsic motivation, as it has been used in computational
settings. In the Computational Motivation in Swarm and
Multi-Agent Settings section, we survey the current approaches
into multi-agent and swarm settings and discuss the possible
extensions.

Motivation and Intrinsic Motivation From a
Psychological Perspective
Ryan and Deci (2000a) succinctly defined motivation “to be
motivated means to be moved to do something.” Motivation is
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TABLE 1 | Summary of reviews on intrinsic motivation in artificial agents and

contribution of our survey.

Survey Comment

Oudeyer and Kaplan, 2007 Provides typology based on motivation

theory

Oudeyer et al., 2007 Categorizes existing approaches based on

learning and meta-learning

Highlights difference between

knowledge-based vs. competence-based

motivation models

Schmidhuber, 2010 Provides typology based on reward theory

Barto, 2013 Discusses intrinsic motivation with relation

to reinforcement learning

Merrick, 2017 Intrinsic motivation is surveyed as a part of

computational value systems

Roohi et al., 2018 Intrinsic motivation is surveyed as a tool to

build player models in computer games

In this study Introduces computational motivation in a

social context

the mechanism that makes humans and animals commit various
tasks.Motivation shapes our behavior throughout our life. On the
simplest terms, motivation may seem like a straightforward tool
that helps an organism to survive. However, a little deliberation
can show us the depth, variety and effect of motivation on a
grander scale. For example, motivations vary in degree and in
type for different people. In a classroom situation, two students
doing their homework can be motivated by completely different
influences. One of the students may finish the homework for
getting high scores in tests, and the other may do it as she finds
the subject highly intriguing. Furthermore, a third student may
be influence by a combination of both of these motivations, along
with a multitude of others.

Researchers from various fields have tried to explain
motivation from their respective view. A plethora of concepts
on the definition, function, and characteristics of motivation is
provided by ethologists (Epstein, 1982), psychologists (Ryan and
Deci, 2000a) neuroscientists (Watts and Swanson, 2002; Daw and
Shohamy, 2008), and behavioral neuroscientists (Berridge, 2004),
among others. The psychological perspective is particularly
relevant to our survey. We only provide a brief overview of
the psychological theories here. A comprehensive review can be
found in Savage (2000).

One of the most influential theories of motivation in
psychology is the drive concept, most productively formulated
by Hull (1951, 1952). The drive theory states that behavior of
an organism is motivated by drives such as hunger and thirst.
These drives arise as a response to reduce physiological needs
and they motivate behavior which results in the necessary deficit.
The theory of drive is centered on the concept of “homeostasis”
(Cannon, 1932), where “bodily conditions are maintained in
approximate equilibrium despite external perturbations.” This
theory, which says motivated behavior is a response to encounter
changes in equilibrium condition, has influenced many other
theories on motivation. Moreover, as described by Savage

(Savage, 2000), the theory of drive is an attractive option tomodel
motivational systems for artificial agents. The reason for this is
the reduction of drive can be translated to a system’s reward
mechanism which monitors different variables and respond
appropriately (i.e., reduce the deficit in the particular need) when
they change. However, because drive theory only explains a
subset of animal and human behaviors, other theories have been
proposed.

Another motivational theory (Toates, 1986), defines
motivation as a multiplicative combination of internal state
and an incentive factor. According to this, motivation in an
organism will arise as an interaction between an internal state
of the organism (e.g., thirst) and an external incentive factor
(availability of drinking water). Other motivational theories
include the hedonic theories, which state we seek pleasurable
activities and keep away from the unpleasant ones.

The shortcomings of the drive theory of motivation become
evident if we consider certain human and animal behavior.
Human infants perform activities that are not driven toward
reducing needs such as hunger or thirst. In one experiment
(Harlow et al., 1950), a group of monkeys spontaneously
attempted to solve a complex puzzle without any specific
reward. Likewise, humans perform various activities such as
painting, traveling, and playing sports, which do not directly
bring any obvious external rewards. This kind of curious and
exploratory behavior are not well-modeled by the drive theory
of motivation. White (1959) and Berlyne (1960, 1966) pointed
out the abundance of such intrinsically rewarding activities that
are driven by curiosity, play and exploration and in absence of
explicit reward. This is where the notion of intrinsic motivation
gets introduced. Intrinsic motivation is defined as themechanism
that encourages organisms to perform an activity “for the inherent
satisfaction rather than some separable consequence” (Deci and
Ryan, 1985). Intrinsically motivated activities are conducted for
the fun and challenge rather than achieving external rewards.

As soon as we introduce the notion of intrinsic motivation,
the next question is- “what are the factors that make an activity
intrinsically motivating?” Psychologists have proposed quite a
few theories in this context. Influenced by drive theory, some
psychologists proposed these activities are caused by “drive for
exploration” (Montgomery, 1954) and “drive to manipulate”
(Harlow et al., 1950). However, as criticized by White (1959),
these approaches have shortcomings. Indeed, these exploratory
activities are not homeostatic, in contrast to what drive theory
has proposed. An alternative stream of the idea to explain
intrinsicallymotivated activities is that of “optimal level theories”.
Dörner and Güss (2013) conducted an experiment that involved
rats going through various stimulating activities. The experiment
provided some key ideas toward intrinsic motivation. It was
observed that if animals continue getting a certain level of
environmental complexity, they become used to it and eventually
gets bored. If they are provided with a slightly complex stimulus,
they become curious again. However, if they encounter a stimulus
which is too complex compared to their current situation, it
confuses them and they tend to avoid it. In effect, an animal
will be intrinsically motivated by the activities and stimuli that
are optimally difficult and sit in the middle between familiarity
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and extreme novelty. Berlyne (1960) explored similar notions.
As pointed out by Barto (2013), optimal level theories have
important applications in varied areas such child development,
architecture, city planning, music, and so on.

Deci and Ryan (1985) further presented the Cognitive
Evaluation Theory (CET). CET states that intrinsically
motivating activities are the ones that satisfy innate psychological
needs such as competence, autonomy and relatedness. In
classroom situations, factors such as competence, autonomy and
self-determination facilitate intrinsic motivation whereas threats,
deadlines, competitions, and tangible rewards diminish intrinsic
motivation (Ryan and Deci, 2000a). Berlyne (1966) suggested
novelty, incongruity, surprise and complexity as underlying
factors that affect intrinsic motivation. As we will see in the latter
part of this paper, these factors are extensively used in modeling
computational intrinsic motivation.

We have detailed the psychological theories behind
intrinsically motivated activities and their distinction from
extrinsic motivations. A relevant question after this discussion
can be- what are the effectual differences between intrinsic and
extrinsic motivation and why would one be interested in intrinsic
motivation? One answer to this was provided by Baldassarre
(2011). He argued that from an evolutionary perspective,
extrinsic motivations guide learning of skill, knowledge and
behavior which directly increases the “fitness” (defined as
survival and reproductive chances) of an individual, whereas
intrinsic motivation produces behavior that increase the fitness
only at a later stage. We believe this aspect makes intrinsic
motivation more complex and interesting. If we want to build
human-like artificial intelligent systems, we need to implement
mechanisms inducing intrinsic motives and learn skills and
knowledge that may not seem useful now. This is where we need
to connect the psychological concepts with the computational
models.

Structuring Existing Approaches to
Computational Motivation
In this section, we provide a review of the current computational
models of motivation from four different aspects: setting,
mechanism, function and evaluation. We base our discussion on
the concept of an agent which can sense the state of its world,
reason about this state and act.While the motivationmechanism,
i.e., how motivation is defined, is central to the broader idea, the
peripheral concepts are quite relevant as well. Figure 1 illustrates
these concepts, which are further defined in the sections below.
The significance of each of these aspects is described in the
relevant section, followed by the salient features in the existing
work.

Setting
The first aspect we examine is the settings in which
computational models of motivation are used. By setting,
we mean the artificial intelligence framework into which
computational motivation has been embedded. Examples
include learning and planning settings. In Table 2, we list a cross-
section of the areas where computational models of motivation

FIGURE 1 | Visualization of the relationship between Setting, Mechanism,

Function, and Evaluation. The setting is the artificial intelligence framework

wrapped around the motivation mechanism. The motivation mechanism

influences the action of the agent, which together produces a measurable

function.

TABLE 2 | Settings in which computational models of motivation are used.

Settings References

Reinforcement

Learning

Barto et al., 2004; Simşek and Barto, 2006; Schembri

et al., 2007; Sequeira et al., 2011; Kompella et al., 2012;

Baldassarre and Mirolli, 2013; Metzen and Kirchner,

2013; Di Nocera et al., 2014; Frank et al., 2015; Hester

and Stone, 2015

Deep Learning Mohamed and Rezende, 2015; Kulkarni et al., 2016;

Achiam and Sastry, 2017; Zhelo et al., 2018

Hierarchical

Structure

Schembri et al., 2007; Baranes and Oudeyer, 2010;

Baldassarre and Mirolli, 2013; Santucci et al., 2013;

Frank et al., 2015; Kulkarni et al., 2016

Active Learning Oudeyer et al., 2007; Baranes and Oudeyer, 2009,

2010, 2013; Kompella et al., 2017; Pathak et al., 2017

Motion Planning Frank et al., 2015

Affordance

Discovery

Hart et al., 2008; Hart, 2009

Goal

Discovery/Goal

Generation

Salgado et al., 2016; Santucci et al., 2016; Kompella

et al., 2017

Multiple skill

learning

Santucci et al., 2013

Attention

Allocation

Di Nocera et al., 2014; Gatsoulis and Mcginnity, 2015

are used. The rows of the table are not mutually exclusive—a
single reference can be present in multiple rows.

In Reinforcement Learning (RL), an agent learns from
experience as it deals with a sequential decision problem.
The agent interacts with an “environment” which contains a
“critic” that provides the agent with rewards by evaluating
the behavior. Through trial-and-error, the agent maximizes
the reward over time. With the introduction of intrinsically
motivated reinforcement learning (IMRL; Singh et al., 2010),
the reward is designed to be a combination of extrinsic reward
and intrinsic reward. While the extrinsic rewards are closely
related to the environment itself, the intrinsic reward is used to
introduce the effect of factors that are considered to underlie
intrinsic motivation. These include novelty, surprise, incongruity
etc., which are relative to the agent’s learning and memory. With
this approach, the intrinsic reward is brought to the fore. Though
it may not be directly related to the task the agent is supposed to
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accomplish, these reward can provide the agent with information
that are useful to improve performance (Sorg et al., 2010). This
philosophy is in line with the psychological perspectives on
intrinsic motivation. Deep neural networks have been used to
provide “rich representations” for high-dimensional RL tasks
successfully (Mnih et al., 2016). IMs mechanisms have been used
as reward functions in Deep Reinforcement Learning (DRL).
Intrinsic Motivation in DRL showed improved performance
in challenging environments with sparse rewards by providing
efficient exploration strategies.

Many of the computational models of IM have organized
their structures hierarchically. Typically, a two-level or two-
module structure is used. This approach makes it possible to
compartmentalize IM from sensorimotor learning. For example,
the upper level module generates IM based goals while the lower
level explores the environment for reaching particular goal and
necessary actions.

In many real-word scenarios, reinforcement learning agents
suffer due to the extremely sparse nature of extrinsic rewards.
Besides, in an open-ended learning scenario where we would
want an agent to learn from the large sensorimotor space by itself.
This calls for active learning approaches which can guide an agent
by organized and constrained exploration. Intrinsic motivation
is used in active learning as a heuristics that helps to maximize
learning progress.

Real-world scenarios pose similar problems to artificial agents
in many of the other fronts as well. These agents need to be
able to plan their motion by finding a path among arbitrary
and previously unknown obstacles. Exhaustive searching is
computationally expensive- this makes the agents slow, which
is quite the opposite of the features we would like to see in a
humanoid robot.

Another related trait is an organism’s ability to perceive its
environment and interact with it. In real world, this would
translate to a robot’s ability to navigate and using tools in
appropriate manner by itself. This resulted in to apply intrinsic
motivation to discover object utilities and use them accordingly.

A hallmark of human intelligence is the ability to self-
determine goals to achieve particular skills. To be truly
autonomous, an artificial system has to discover and select
goals on its own. Based on the complexity of these goals, the
system may need to decompose it into sub-goals. These sub-
goals may not have any tangible rewards at a certain time.
Thus, goal discovery and identification from a large space and
working toward that by identifying sub-goals become a complex
proposition. Intrinsic motivation can be useful in this regard.

While skill acquisition for artificial agents is a complex issue
itself, it gets more complicated with the presence of multiple
learnable skills. While for humans it is intuitive to choose to learn
skills in terms of increasing need and complexity, this is difficult
for artificial agents. Closely related to this is the ability to focus
attention on a task that is learnable and useful. Computational
models of motivation can be used in these cases as well.

The settings listed in Table 2 denote fields which carry
significant importance in autonomous mental development. A
true autonomous human-like autonomous agent must be able
to plan its motions in the continuous space while taking into

TABLE 3 | Reward mechanisms in computational models of motivation.

Mechanism Reference

Prediction error Barto et al., 2004; Metzen and Kirchner, 2013

Empowerment Salge et al., 2014; Mohamed and Rezende, 2015

Learning

Progress/Information

Gain/KL

Divergence

Oudeyer et al., 2007; Baranes and Oudeyer, 2009;

Kompella et al., 2012; Frank et al., 2015; Hester and

Stone, 2015

Curiosity Kompella et al., 2012; Di Nocera et al., 2014; Frank

et al., 2015; Pathak et al., 2017; Zhelo et al., 2018

Novelty Metzen and Kirchner, 2013; Gatsoulis and Mcginnity,

2015; Hester and Stone, 2015; Salgado et al., 2016

Surprise Schembri et al., 2007; Hamann, 2015; Achiam and

Sastry, 2017

consideration its own constraints. Throughout its lifetime, it
will encounter novel objects and will have to learn about the
affordances of objects and how to manipulate them. To acquire
competence, it needs to be able to identify goals by itself, learn
to compose multiple skills into more complex ones, and allocate
attention to learnable situations. As we have predicted, this table
provides us with aspects that are fundamental to designmachines
that help an artificial agent appear to think and act like a human.

Mechanism
As we said earlier, in this paper we view the motivation
mechanism as a goal generator. It takes the agent’s sensations of
its world state, and memories of past sensations, as inputs and
generates goals that in turn influence action selection. These goals
have been expressed in different ways in the literature, ranging
from explicit goal structures to implicit utility feedback.

In this section, we describe a number of computational models
of intrinsic motivation with respect to the specific nature of the
motivation mechanism. A list of possible formal mechanisms
of intrinsic motivations was provided in Oudeyer and Kaplan
(2007). The list in Table 3 mostly concurs with that typology.
The intrinsic reward mechanism works as a part of the organism
itself in the reinforcement learning framework. Rewards based on
novelty, curiosity and uncertainty are defined with respect to the
visited states. Hester and Stone (2015) measured novelty as the
distance of the unexplored region of states from the previously
visited states. The intrinsic reward is given as proportional to
this distance. This motivates the agent to explore the state-actions
that are the most different from the ones that are already visited.

Using prediction error is inspired by dopamine neurons. In
its most basic form, the reward for an event is proportional to
the error that was made for a certain event. As agents make
prediction of future events based on current ones, this intrinsic
reward can enable an agent to focus on an event that has a
larger error associated with it. As an agent repeatedly learns more
about the event and achieves more success, the intrinsic reward
decreases.

Empowerment is a measure of the causal influence an
agent has on the perceived world (Klyubin et al., 2005).
In computational motivational models, empowerment is
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typically implemented as a measure of maximizing information
or minimizing uncertainty. This provides the agents with
adaptability to deal with dynamic environments.

Learning progress or information gain is another highly used
reward measure. In this case, the system generates rewards if
predictions improve over time, i.e., it tries to minimize prediction
errors. By doing this, an agent can focus on states or activities
that offer the highest progress. Using learning progress as a
reward measure is a robust solution to changing environments.
Moreover, learning progress based mechanism result in strategies
that autonomously progress from simpler to more complex tasks
(Gottlieb et al., 2016).

Curiosity is one of the most widely used measurements
of computational intrinsic motivation. In effect, curiosity is
defined as a function of learning progress or prediction error.
In curiosity-driven exploration, agents are intrinsically rewarded
to explore regions which shows higher learnability. Curiosity-
driven agents are demonstrated to learn even in situations
without any extrinsic rewards (Pathak et al., 2017).

Novelty can be an effective mechanism to implement
intrinsic motivation. By encouraging agents to explore states
that are highly different than the already visited ones, efficient
exploration can be achieved.Measuring novelty typically involves
a comparison between the current stimuli and the previous ones.
Furthermore, it can also include factors such as habituation,
which involves the temporal effects of similar stimuli on novelty.

Surprise is defined as the difference between expectation
and outcome. In that case, prediction error can be used as a
measurement of surprise and intrinsic rewards. In some other
models, surprise is defined as the degree of not expecting an
incident.

Some of the implementations have combined the
aforementioned reward measures and defined their own
(Baranes and Oudeyer, 2010; Sequeira et al., 2011; Hester and
Stone, 2015).

Function
In this category, we provide a list of functions that result from the
implementation of a motivation mechanism in artificial agents.
We opted for this aspect with the idea that it would complement
the settings that we described previously.

One of the major functions imparted by intrinsic motivation
is that of efficient exploration. Agents demonstrate features
such as achieving significant states with sparse and delayed
rewards, scalability in computationally extensive scenarios. In
case of autonomous self-organization, agents could discover their
sensorimotor skills by virtue of intrinsic motives without any
explicit guidance. It was also shown that computational models
of intrinsic motivations foster progressive learning. Intrinsically
motivated agents initially spend time in easier situations and then
allocate attention to situations with increasing difficulty. This
tendency is directly related to the next function of composing
complex task by learning simpler tasks first. Artificial agents
with intrinsic motivations were significantly faster in completing
complex tasks.

The features are listed in Table 4. Various autonomous
activities feature prevalently here, with exploratory actions

TABLE 4 | List of functions resulted from computational models of intrinsic

motivation.

Function References

Efficient

Exploration

Frank et al., 2015; Hester and Stone, 2015; Mohamed

and Rezende, 2015; Kulkarni et al., 2016; Salgado et al.,

2016; Santucci et al., 2016; Achiam and Sastry, 2017;

Pathak et al., 2017

Autonomous

self-organization

Oudeyer et al., 2007

Progressive

learning

Oudeyer et al., 2007; Hester and Stone, 2015

Task composition Schembri et al., 2007

TABLE 5 | Methods used to evaluate computational models of intrinsic motivation.

Evaluation methods References

Comparison with extrinsic

reward

Cameron and Pierce, 1994; Barto et al., 2004; Di

Nocera et al., 2014; Hester and Stone, 2015

Goal accomplishment Kulkarni et al., 2016

Comparison with random

and least tried states

Frank et al., 2015

Comparison with greedy

approach

Sequeira et al., 2011

Comparing single and

multiple intrinsic rewards

Sequeira et al., 2011

Analyzing performance over

time

Gatsoulis and Mcginnity, 2015

topping the list. This concurs with the very nature and definition
of motivated behavior. Intrinsic motivation is supposed to foster
exploration and curious behavior that may or may not aid
immediate competence and skill acquisition. This demonstrates
that existing implementations of computational motivation,
irrespective of the settings or reward mechanism, introduces
exploratory actions in artificial agents.

Evaluation Methods
The behavior of an agent comprises the sequences of actions
it performs. Evaluating the behavior of an agent driven by
computational motivation is not a straightforward task. In
case of a motivated agent, we not only want to measure
the completion rate for a particular task, but also intend to
observe, and measure, the effect of the intrinsic reward on
the agent’s behavior, organization, and long-term competence
and knowledge acquisition. The evaluation methods used in the
existing literature are listed in Table 5.

As a baseline, many of the proposals compare the intrinsically
motivated behavior with that of extrinsic reward only. While
this largely demonstrates the effectiveness of intrinsic rewards,
one may fail to understand the particular influences of intrinsic
motivation if it is not extended further. Similar evaluation
approaches include comparing intrinsically motivated behavior
with random or greedy method. Novel tools to aid the research
in computational intrinsic motivation are proposed by groups of
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researchers from various fields (Natale et al., 2013; Stafford et al.,
2013; Taffoni et al., 2013).

Computational Motivation in Swarm and
Multi-agent Settings
While the previous sections examined literature on
computational models of motivation, here we focus on the
concept of motivation in a social context. This can be a swarm
of robots, particles in an optimisation setting, or a multi-agent
setting. By providing a summary of the existing works, we point
out the fact that in these cases, computational motivation has
been used in a limited capacity, almost identical to that of single
agent scenarios. We then discuss few of the possible extensions
of computational motivation that can be applicable to swarm
and multi-agent settings.

Merrick (2015) demonstrated the effects of motive profiles in
game-playing agents. With the help of two-player game settings,
it was shown that power, achievement, and affiliation motives
can lead to various emergent behaviors. Moreover, in case of
evolutionary algorithm for creating motivated agents, it was
shown that motivated agents were more diverse and achieve
higher incentive than their non-motivated versions. Evolutionary
models of intrinsically motivated agents were simulated in a
multi-agent setting in by Shafi et al. (2012). A static incentive
model was used to generate agents that change their motives over
time.

Hardhienata et al. (2012, 2014a,b) incorporate achievement,
power, affiliation and leadership motivation in a Particle Swarm
Optimization (PSO) setting. The application area the agents are
tested in is task allocation. Incentives are defined as distance of
the agent from the task and the number of agents around the task.
The incentive value, along with motive profiles, help inform an
agent which task and neighborhood to choose. Their work shows
the effect of motivational profiles on an established algorithm
such as PSO and task allocation.

Klyne and Merrick (2016) used computational models of
motivation to generate dynamic fitness functions for PSO. The
convergence of the swarm on the generated fitness function
is tested in a workplace hazard mitigation scenario. The two
approaches to model motivation in this framework were novelty
and curiosity. Curiosity was implemented via K-Means neural
network. The results showed this approach is more applicable
for decentralized data sources. In case of a centralized source,
background subtraction was used. This is an image processing
technique to detect novel objects in successive image frames.
Evaluation metrics include ability of goal generation and
convergence of swarm once the goal is generated. In some cases,
the generated fitness function has too many local maxima for the
swarm to converge on the right place.

Saunders and Gero (2004) used flocking and a social force
model to design curious agents. These agents perform evaluations
of environments which are designed to prompt exploration, e.g.,
art galleries. Interestingness is modeled using the Wundt curve:
the most interesting situations are the ones that have moderate
novelty. Situations are measured with hedonistic values and
agents will move toward stimuli having higher value. Their results

showed that these curious agents spend significantly more time in
environments which were designed “better.” Linkola et al. (2016)
used novelty to create a group of creative and curious agents. A
society of homogenous agents is created, with each one having an
individual memory. The behavior of the population is modeled
via iterations. In each iteration, each agent creates a candidate
artifact bases on the current location and memory. The agents
then collectively decide which of the candidate artifacts can be
added the repository. The agents are self-critical and have veto
power. As the results show, self-criticism lowers the amount of
collaborative effort in evaluating candidate artifacts while veto
power increases novelty. Galvao et al. (2015) implement the
notion of novelty search (Lehman and Stanley, 2011) in PSO.

Table 6 summarizes the existing work that incorporates
motivation in multi-agent and swarm settings using the headings
of setting, mechanism, and function introduced in the previous
section. As the settings column demonstrates, most of the works
have been implemented in PSO and game-theoretic settings.
Moreover, in many of these works the focus was on the function
rather than the motivation mechanism. As a result, they lack
a detailed analysis of the implications of motivation being
implemented in a social context. This is where our proposals of
the newer settings and possibilities come in.

Figure 2 hypothesizes about the new functions that we may
achieve in motivated agents if augment the field with new
multi-agent and swarm settings. The two extremes of the
vertical axis in Figure 2 represent the knowledge-based and
competence-based mechanisms of intrinsic motivation. As we
pointed out earlier, this is the most general categorization of
the computational models, which covers a range of detailed
mechanisms discussed in Section Mechanism. In the upper part
of the vertical axis, we have the knowledge-based models which
produce exploratory functions and acquire knowledge about the
surrounding environment or the world. In the lower part, we
have the competence-based models which function to improve
skills. On the other hand, the horizontal axis represents an
expanded view of possible e agent settings. On the right-hand
side, we have individual agent settings. On the left side, we
introduce multi-agent and swarm settings. We hypothesize that
these settings will see motivated agents performing new functions
including leadership, for example leading agents that do not have
intrinsic motives, and scaling and communication functions. By
this we mean that extension to the multi-agent settings permits
intrinsically motivated agents to scale to problems that cannot be
solved by a single agent.

In addition to enabling new functions, we hypothesize a
range of ways that motivation may be embedded in multi
agent or swarm settings. For example, motivation may be
distributed among multiple agents or it may be shared. In the
first case, the motivation mechanism of each agent is processed
and acted upon by itself. The group behavior rules, such as
flocking, will still affect the emergent behavior. In case of
shared motivation, agents will interact with each other while
constructing the motivated behavior. The underlying assumption
in this case is that the interpersonal factors, such as aligning
one’s goal to a friend’s interests, will play an important factor
to determine the group behavior. With the introduction of
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TABLE 6 | A summary of the work using motivation in social context in terms of their setting, function and mechanism.

Setting Function Mechanism Reference

Various Games Game theoretic analysis Motive Profiles Merrick, 2015

Prisoner’s Dilemma Game theoretic analysis Motive Profiles Shafi et al., 2012

PSO Task Allocation Motive Profiles Hardhienata et al., 2012, 2014a,b

PSO Generating dynamic fitness function Curiosity Novelty Klyne and Merrick, 2016

Flocking, Social Force Model Design Evaluations Curiosity Saunders and Gero, 2004

Multi-agent systems Generating Creative Artifacts Novelty Linkola et al., 2016

PSO Grammatical Swarm Novelty Galvao et al., 2015

FIGURE 2 | Expanding the view of settings for computational models of motivation also expands possible functions.

this concept, we can explore notions such as conformity,
divergence and living up to the expectations of others. These
concepts have been investigated in human psychology (Fishbach
et al., 2016) but not yet in the computational motivation
research.

Moreover, all agents in a group may have the same motives
or they may have different motives. While some agents in a
group can be motivated to improve personal knowledge and
competence, others can pursue that knowledge for gaining
control over the group. This can result in homogeneous and
heterogeneous groups of motivated agents. Some of the existing
works investigated the effects of different motives but only
a few looked into heterogeneously motivated artificial agents
coexisting as a group. Likewise, all agents may be motivated
agents or only a subset of agents may be motivated, and others
may not possess such models. These variants are illustrated in
Figure 3.

DISCUSSION

In this section, we discuss the challenges associated with
computational modeling of intrinsic motivation in social context
and conclude the paper.

Research Challenges
There are quite a few challenges that emerge as we ponder
the notion of multiple or swarms of agents equipped with
computational motivation. We discuss these challenges from
the four aspects we had described in section Structuring
Existing Approaches to Computational Motivation- settings,
rewards, functions, and evaluation. Combining these aspects
with the possible extensions discussed in section Computational
Motivation in Swarm and Multi-Agent Settings, we present a
set of research challenges. These research challenges encapsulates
our discussion in the previous sections and provide an overview
of the future research involving computational motivation in a
social context.

Settings to Accommodate the Social Context
Most of the existing works on computational motivation have
used PSO or flocking as setting. Though they provide a structured
base to investigate motivation, they are too limited in many
ways. Human and animal motivation mechanisms involves
interaction patterns that are significantly more complex than
these restricted settings. We feel eventually there will be a need
to generate more flexible, complex, and accommodating multi-
agent settings. Settings such as Belief-Desire-Intention (BDI)
architecture (Rao and Georgeff, 1991), game theory (Parsons
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FIGURE 3 | Visualization of different possible multi-agent settings: (A) Multi-agent setting with homogeneous agents and decentralized motivation mechanisms (B)

Multi-agent settings with homogeneous agents using a centralized motivation mechanism (C) Heterogeneous society with a subset of motivated agents (D)

Heterogeneous society with agents using different motivation mechanisms.

and Wooldridge, 2002), multi-agent reinforcement learning
(Busoniu et al., 2008), and swarm intelligence (Brambilla et al.,
2013) can be useful in this context. Researchers from these
respective areas will have to identify the existing properties and
extend the architecture to accommodate computational models
of motivation.

As the notion of multiple motivated agents is introduced,
quite a few features for these settings can be proposed. These
were not applicable to single agents, but pertinent in multi-agent
scenarios. As discussed previously, we might have a homogenous
set of agents equipped with the same motivation mechanism.
Many of the current works are exploring this line of work where
each agent or particle in a swarm has the same motivation.
However, there can be a heterogeneous setting where the agents
can be motivated through varying mechanisms of motivation.
For example, one agent can act as an informed individual and
the other members of the group can be following that agent
for achieving a goal or skill. Though there are current works
that propose and measure the effectiveness of various motive
profiles, there is no study that focuses on a swarm of agents that
are equipped with different forms of computational motivation.
Another related open area of research will consist of scenarios
that will be able to accommodate a temporal change of the
motivation mechanism. Imagine a scenario where agents start
with having affiliation motive as the primary driving factor but
changes to power motives after gaining certain knowledge or
skillset.

Novel Mechanisms and Rewards
The current work on the computational models of motivation
is largely comprised of translating the psychological theories
of motivation into mathematical and computational models.
Motivation can have many facets and dimensions when it is
compounded by social factors such as presence of and interaction
with other individuals. There are some works on various motive
profiles, as we discussed in the earlier sections. However, the
social theories of motivation are yet to be generally implemented
as computational models.

Psychological studies in organizational behavior, student
motivation and performance reveal interesting facts about the
mechanism of intrinsic motivation in social contexts. It has
been observed that support for competence, relatedness and
autonomy helps increase children’s intrinsic motivation (Ryan
and Deci, 2000b). In an educational environment involving high-
school students, the authors showed that optimal challenge and
performance feedback facilitates competence while relatedness
is increased by meaningful parental involvement and peer
acceptance (Dörner and Güss, 2013). If we want to model
motivation in a social context, we would need to utilize the
psychological studies and introduce novel reward mechanisms
such as relatedness, feedback and autonomy support.

The next generation of computational models would need
to implement, and in many ways, extend and augment the
psychological theories. Motivated artificial agents can provide
both psychologists and computational intelligence researchers
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with an avenue of proposing and evaluating various psychological
theories. A swarm of motivated agents in a simulated
environment can be used to model and predict motivational
tendencies such as curiosity and novelty. This can be an
alternative to questionnaire-based analysis that typically takes
place in psychological studies.

Functions
The existing works have shown the inception of various emergent
functional behavior as a result of computational motivation
mechanism. With multiple agents, the emergent functions are
more versatile, complex and significant. This is due to the
fact that within a social context the agents are interacting
not only with the environment but also within themselves.
Factors such as shared goals and conflicting motivations can
lead to interesting emergent behaviors in swarms and multi-
agent systems. Seemingly simple and primitive rules can be
combined to produce complex behavior patterns. One challenge
of the future research would be to devise mechanism to generate
such behaviors from the primitive rules and through motivation
mechanisms. For example, one can think of a flock of agents
swarming through an environment by virtue of the intrinsic
motivation values. In this case, we will need to design, estimate,
and adapt the effects of motivational mechanisms on individual
agent as well as on the group behavior. While it would have been
relatively simpler to achieve this in an individual agent setting,
it would be much more complex in case of multiple interacting
agents. It will be interesting and useful to observe the effect
of different motivation mechanisms on this mapping between
primitive rules and emergent behavior.

Evaluating Behaviors
As we have pointed out already, evaluating the consequences
of implementing motivation (especially intrinsic motivation)
is not quite straightforward. The state-of-the-art single agent
architectures still suffer from a lack of widely accepted behavior
metrics capable of measuring the effects of computational
motivation. With multiple motivated agents, the challenge of
measuring emergent motivated behavior becomes increasingly
complex. It would be a challenge to determine behavior metrics
that can embody the motivated behavior of multiple interacting
agents.

We emphasize on the evaluation as it has significant
implications involving the motivation mechanism and expected

behavior. A causal relation between the motivation mechanism
and behavior can be used to generate artificial agents with
intended motive profiles and tune them as need be. The current
proposals do not establish a rigorous or mathematical relation
between the motivation parameters (e.g., reward measures) and
the corresponding behavior (e.g., skills acquired). As more
complex scenarios involving multiple agents are introduced, this
becomes even more challenging. If the next generation of these
proposals can determine the relation between the controlling
parameters and emergent behavior more rigorously, we will
be able to derive more applications of the motivated agents.
Determining appropriate behavior metrics will play a significant
part in this regard.

CONCLUSION

Motivated artificial agents are designed to acquire knowledge
and skills in an open-ended setting. These features can provide
new horizons in artificial intelligence, machine learning
and computational intelligence in general. In this survey,
we have summarized the implementations of motivation in
artificial agents. We provided definitions, background, and
state-of-the-art of the field of computational motivation. We
have provided a new typology through which the current
research can be categorized through four main aspects:
setting, mechanism, function, and evaluation method.
Through a systematic discussion, we demonstrated the fact
that there is limited work using computational motivation
in multi-agent and swarm settings. Following a detailed
discussion on this topic, we presented the major research
challenges for achieving societies of multiple motivated
agents. We believe our contribution in this paper will help
researchers to further identify and explore these open research
topics.
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We aim at a robot capable to learn sequences of actions to achieve a field of complex

tasks. In this paper, we are considering the learning of a set of interrelated complex tasks

hierarchically organized. To learn this high-dimensional mapping between a continuous

high-dimensional space of tasks and an infinite dimensional space of unbounded

sequences of actions, we introduce a new framework called “procedures”, which enables

the autonomous discovery of how to combine previously learned skills in order to learn

increasingly complex combinations of motor policies. We propose an active learning

algorithmic architecture, capable of organizing its learning process in order to achieve

a field of complex tasks by learning sequences of primitive motor policies. Based on

heuristics of active imitation learning, goal-babbling and strategic learning using intrinsic

motivation, our algorithmic architecture leverages our procedures framework to actively

decide during its learning process which outcome to focus on and which exploration

strategy to apply. We show on a simulated environment that our new architecture is

capable of tackling the learning of complex motor policies by adapting the complexity of

its policies to the task at hand. We also show that our “procedures” enable the learning

agent to discover the task hierarchy and exploit his experience of previously learned skills

to learn new complex tasks.

Keywords: intrinsic motivation, goal-babbling, multi-task learning, interactive learning, active learning, active

imitation learning, hierarchical learning, procedures

1. INTRODUCTION

Recently, efforts in the robotic industry and academic field have been made for integrating robots
in previously human only environments. In such a context, the ability for service robots to
continuously learn new tasks, autonomously or guided by their human counterparts, has become
necessary. They would be needed to carry out multiple tasks, especially in open environments,
which is still an ongoing challenge in robotic learning. The range of tasks those robots need to learn
can be wide and even change after the deployment of the robot. These tasks can also require the
execution of complex policies, such as sequences of primitive policies.

Learning to associate a potentially unbounded sequence of policies to a set of infinite tasks is
a challenging problem for multi-task learning, because of the high-dimensionality of the policy
and state spaces, of multi-task learning, and of the unbounded, continuous and loosely specified
environments.
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To address these challenges, we examinemethods for robots to
learnmotor policy sequences, methods for multi-task learning, as
well as heuristics for learning in high-dimensionalmappings such
as active learning based on intrinsic motivation, social guidance
and strategic learning.

1.1. Learning Motor Policy Sequences
In this article, we tackle the learning of complex policies to
complete high-level tasks. More concretely, in this study, we
define the policies as a sequence of primitive policies. As we wish
to get rid of any a priori on the maximum complexity of the
policy needed to complete any task, the sequence of primitive
policies can be unbounded. The learning agent thus learns to
associate to any outcome or effect on the world, an a priori
unbounded sequence of primitive policies. We review in this
paragraph works in compositionally of primitives from the robot
learning perspective.

A first approach to learning motor policies is to use via-
points such as in Stulp and Schaal (2011), Reinhart (2017) or
parameterized skills such as in da Silva et al. (2012). The number
of via-points or parameters is a way to define the level of
complexity of the policies, but these works use a fixed and finite
number of via-points. A small number of via-points can limit
the complexity of the policies available to the learning agent,
while a high number can increase the number of parameters
to be learned. Another approach is chain primitive actions
into sequences of policies. However, this would increase the
difficulty for the learner to tackle simpler tasks which would be
reachable using less complex policies. Enabling the learner to
decide autonomously the complexity of the policy necessary to
solve a task would allow the approach to be adaptive, and suitable
to a greater number of problems.

Options Sutton et al. (1999) and (Machado et al., 2017)
introduced in the reinforcement learning framework (Sutton and
Barto, 1998) offer temporally abstract actions to the learner.
These options represent a temporal abstraction of policies
as explained in Sutton (2006). Chains of options have been
proposed as extensions in order to reach a given target event.
Learning simple skills and planning sequences of policies instead
of learning a sequence directly has been shown to simplify the
learning problem in Konidaris and Barto (2009). They are a
way to represent policy probability density in a goal-oriented
way. However, each option is built to reach one particular task
and they have only been tested for discrete tasks and actions,
in which a bounded number of options were used. We would
like to reuse this idea of temporal abstraction and goal-oriented
representation to create unbounded policy sequences.

1.2. Multi-Task Learning by a Hierarchical
Representation
Indeed, an essential component of autonomous, flexible and
adaptive robots will be to exploit temporal abstractions, i.e., to
treat complex tasks of extended duration, that is to treat complex
tasks of extended duration (e.g., making a drawing) not as a
single skill, but rather as a sequential combination of skills (e.g.,
grasping the pen, moving the pen to the initial position of the
drawing, etc.) Such task decompositions drastically reduce the

search space for planning and control, and are fundamental to
making complex tasks amenable to learning. This idea can be
traced back to the hypothesis posed in Elman (1993) that the
learning needs to be progressive and develop, starting small.
It has been renamed as curriculum learning in Bengio et al.
(2009), as formalized in terms of order of the training dataset:
the examples should not randomly presented but organized in
a meaningful order which illustrates gradually more concepts,
and gradually more complex ones. For multi-task learning in
the reinforcement framework, it has been studied as hierarchical
reinforcement learning as introduced in Barto and Mahadevan
(2003), relying on task decomposition or task hierarchy.

Indeed, the relationships between tasks in task hierarchy
in Forestier and Oudeyer (2016); Reinhart (2017) have been
successfully exploited for learning tool use or learning inverse
models for parameterized motion primitives, allowing the robot
to reuse previously learned tasks to build more complex ones.
As opposed to classical methods enabling robots to learn tool-
use, as (Brown and Sammut, 2012) or (Schillaci et al., 2012),
which consider tools as objects with affordances to learn using
a symbolic representation, (Forestier and Oudeyer, 2016) does
not necessitate this formalism and learns tool-use using simply
parameterized skills, leveraging on a pre-defined task hierarchy.
Barto et al. (2013) showed that building complex actions made of
lower-level actions according to the task hierarchy can bootstrap
exploration by reaching interesting outcomes more rapidly.
Temporal abstraction has also proven to enhance the learning
efficiency of a deep reinforcement learner in Kulkarni et al.
(2016).

On a different approach (Arie et al., 2012) also showed
composing primitive actions through observation of a human
teacher enables a robot to build sequences of actions in order
to perform object manipulation tasks. This approach relies on
neuroscience modeling of mirror neuron systems. From the
computational neuroscience point of view for sequence-learning
task with trial-and- error, Hikosaka et al. (1999) suggested that
procedural learning proceeds as a gradual transition from a
spatial sequence to a motor, based on observations that the brain
uses two parallel learning processes to learn action sequences:
spatial sequence (goal-oriented, task space) mechanism and
motor sequence (policy space) mechanism. Each of the acquired
motor sequences can also be used as an element of a more-
complex sequence.

We would like to extend these ideas of representations
of tasks as temporal abstraction and as hierarchies, and to
exploit the dual representation of tasks and actions sequences
in this paper. Instead of a pre-defined task hierarchy given
by the programmer, our robot learner should be able to learn
hierarchical representations of its task space to more easily use
acquired skills for higher-level tasks.

1.3. Active Motor Learning in
High-Dimensional Spaces
In order to learn sequences of primitive policies for multi-task
learning, beyond the specific methods for learning sequences
of policies and multi-task learning, we would like to review
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the methods for learning high-dimensional mappings. More
specifically, while the cited works above have outlined the
importance of the organization and order of the training data,
we would like to examine how this organization can be decided
online by the robot learner during its learning process, instead of
being left to the designer or programmer.

To address the challenge of multi-task motor learning, we
will take the point of view of continual learning, also named
life-long or curriculum Bengio et al. (2009) learning, that
constructs a sophisticated understanding of the world from
its own experience to apply previously learned knowledge and
skills to new situation with more complex skills and knowledge.
Humans and other biological species have this ability to learn
continuously from experience and use these as the foundation
for later learning. Reinforcement learning, as described in Sutton
and Barto (1998), has introduced in a framework for learning
motor policies from experience by autonomous data sampling
through exploration. However, classical techniques based on
reinforcement learning such as Peters and Schaal (2008) and
Stulp and Schaal (2011) still need an engineer to manually
design a reward function for each particular task, limiting their
capability for multi-task learning.

1.3.1. Intrinsic Motivation
More recent algorithms have tried to replace this manually
defined reward function, and have proposed algorithms using
intrinsic reward, using inspiration from intrinsic motivation,
which is first described in developmental psychology as triggering
curiosity in human beings Deci and Ryan (1985), and has
more recently been described in terms of neural mechanisms
for information-seeking behaviors (Gottlieb et al., 2013). This
theory tries to explain our ability to learn continuously, although
we do not have a clear tangible goal other than survival and
reproduction, intrinsically motivated agents are still able to
learn a wide variety of tasks and specialize in some tasks
influenced by their environment and development, even in some
tasks that are not directly useful for survival and reproduction.
Psychological theories such as intrinsic motivation have tried
to explain these apparently non-rewarding behaviors and have
been successfully inspired learning algorithms (Oudeyer et al.,
2007; Schmidhuber, 2010). More recently, these algorithms have
been applied for multi-task learning and have successfully driven
the learner’s exploration through goal-oriented exploration as
illustrated in Baranes and Oudeyer (2010) and Rolf et al. (2010).
Santucci et al. (2016) has also proposed a goal-discovering robotic
architecture for intrinsically-motivated learning to discover goals
and learn corresponding policies, providing the number of goals
is preset. Intrinsic motivation has also been coupled with deep
reinforcement learning in Colas et al. (2018) to solve sparse or
deceptive reward problems to reach a single goal.

However for multi-task learning, especially when the
dimension of the outcome space increases, these methods
become less efficient (Baranes and Oudeyer, 2013) due to the
curse of dimensionality, or when the reachable space of the robot
is small compared to its environment. To enable robots to learn a
wide range of tasks, and even an infinite number of tasks defined
in a continuous space, heuristics such as social guidance can help

by driving its exploration toward interesting and reachable space
fast.

1.3.2. Social Guidance
Indeed, imitation learning has proven very efficient for learning
in high-dimensional space as demonstration can orient the
learner toward efficient subspaces. Information could be
provided to the robot using external reinforcement signals
(Thomaz and Breazeal, 2008), actions (Grollman and Jenkins,
2010), advice operators (Argall et al., 2008), or disambiguation
among actions (Chernova and Veloso, 2009). Furthermore,
tutors’ demonstrations can be combined with autonomous robot
learning for more efficient exploration in the sensori-motor
space. Initial human demonstrations have successfully initiated
reinforcement learning in Muelling et al. (2010) and Reinhart
(2017). Nguyen et al. (2011) has combined demonstrations with
intrinsic motivation throughout the learning process and shown
that autonomous exploration is bootstrapped by demonstrations,
enabling the learner to learn mappings in higher-dimensional
spaces. Another advantage of introducing imitation learning
techniques is to include non-robotic experts in the learning
process (Chernova and Veloso, 2009).

Furthermore, tutor’s guidance has been shown to be more
efficient if the learner can actively request a human for help
when needed instead of being passive, both from the learner or
the teacher perspective (Cakmak et al., 2010). This approach is
called interactive learning and it enables a learner to benefit from
both local exploration and learning from demonstration. One of
the key elements of these hybrid approaches is to choose when
to request human information or learn in autonomy so as to
diminish the teacher’s attendance.

1.3.3. Strategic Learning
This principle of a learner deciding on its learning process is
generalized as strategic learning, as formalized in Lopes and
Oudeyer (2012). Simple versions have enabled the learner to
choose which task space to focus on (Baranes and Oudeyer,
2010), or to to change its strategy online (Baram et al., 2004). In
Nguyen and Oudeyer (2012), the algorithm SGIM-ACTS enabled
the robot learner to both choose its strategy and target outcome.
Owing to its ability to organize its learning process, by choosing
actively both which strategy to use and which outcome to focus
on, . They have introduced the notion of strategy as a method of
generating actions and outcome samples This study considered
2 kinds of strategy: autonomous exploration driven by intrinsic
motivation and imitation of one of the available human teachers.
The SGIM-ACTS algorithm relies on the empirical evaluation of
its learning progress. It showed its potential to learn on a real
high dimensional robot a set of hierarchically organized tasks in
Duminy et al. (2016). This is why we consider to extend SGIM-
ACTS to learn to associate a large number of tasks tomotor policy
sequences.

However, these works have considered a policy space at fixed
dimensionality, thus policies of bounded complexity. We would
like to extend these methods for unbounded sequences of motor
primitives and for larger outcome spaces.
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1.4. Can Tutors’ Demonstrations Help
Learn Sequences of Policies and Task
Hierarchies?
In this work in multi-task learning, we want to enable a robot
learner to achieve a wide range of tasks that can be inter-
related and complex. Based on the state of the art, we base
our framework on a parallel representation of sequences of
policies as temporal abstraction and sequences of outcomes,
as well as a representation of task hierarchies. We will use
heuristics of intrinsic motivation, social guidance and strategic
learning to enable the robot to learn the high-dimensional
mapping between sequences of primitive policies and outcomes,
via the learning of the task hierarchies. Thus we will propose a
framework for representing hierarchical relationships between
tasks and propose a learning algorithm that enables the
emergence of such a representation. We will examine the
performance of our robot learner for all the tasks defined
in the experimental setups according to the point of view
of multi-task learning, and we will examine more precisely
the performance of our robot learner in the most complex
tasks to assess whether it was able to increase its skills. We
allow the robot to use sequences of actions of undetermined
length to achieve these tasks. The learning algorithm has to
face the problem of unlearnability of infinite task and policy
spaces, and the curse of dimensionality of sequences of high-
dimensionality policy spaces. We developed in Duminy et al.
(2018) a new framework called “procedures” (see section 2.2)
which proposes to combine known policies represented in a
goal-oriented way. This framework showed its ability to improve
the learning process of autonomous learners in preliminary
experiments.

In this article, we would like to confirm these results
by statistical analysis, and most of all, show that interactive
strategies can further bootstrap the learning process of such
autonomous learners and to help the robot to learn a relevant
representation of the hierarchies of tasks. In the next section,
we detail our methods based on the procedures framework
and the proposed learning algorithm. We will describe in
section 3 an experiment, on which we have tested our
algorithm, and we will present and analyze the results in
section 4.

2. OUR APPROACH

Inspired by developmental psychology, we combine interactive
learning and autonomous exploration in a strategic learner,
which learning process is driven by intrinsic motivation.
This learner also takes task hierarchy into account to reuse
its previously learned tasks while adapting the complexity
of its policy sequence to the complexity of the task at
hand.

In this section, we formalize our learning problem, introduce
a goal-oriented representation of sequence of policies and explain
the principles of the algorithm SGIM-PB, which is an extension
of SGIM-ACTS for learning motor policy sequences of unlimited
size. Then, combining it with this “procedures” framework,

we developed a new algorithm called Socially Guided Intrinsic
Motivation with Procedure Babbling (SGIM-PB) capable of
determining a task hierarchy representation to learn a set of
complex interrelated tasks using adapted policy sequences.

2.1. Problem Formalization
In our approach, an agent can perform motions through the use
of primitive policies πθ , parameterized by θ ∈ P ⊂ R

n. It can
also perform policy sequences, which are potentially unbounded
sequences of primitive motor policies executed sequentially.
The policy space P

N = ∪i∈NP i is the combination of all
subspaces P i corresponding to each number of primitives, and
is a continuous space of infinite dimensionality. Those policies
have an effect on the environment, which we call the outcome
ω ∈ �. The agent is then to learn the mapping between the
policy space P

N and �: it learns to predict the outcome ω of
each policy πθ (the forward model M), but more importantly,
it learns which policy to choose for reaching any particular
outcome (an inverse model L). The outcomes ω can be of
composite nature and thus be split in subspaces �i ⊂ � of
different dimensionality. Policy sequences are represented by
concatenating the parameters of each of its primitive policies in
the execution order.

We take the trial and error approach, and suppose that � is
a metric space, meaning the learner has a means of evaluating a
distance between two outcomes d(ω1,ω2).

2.2. Procedures
As this algorithm tackles the learning of complex hierarchically
organized tasks, exploring and exploiting this hierarchy could
ease the learning of the more complex tasks. We define
procedures as a way to encourage the robot to reuse
previously learned tasks, and chain them to build more
complex ones. More formally, a procedure is defined as a
succession of previously known outcomes (ω1,ω2, ...,ωn ∈
�) and is noted (ω1,ω1, ...,ωn). The procedure space is
thus simply �N. The definition of the procedure space only
depends on the outcome space. But the valid procedures,
representing the real dependencies between tasks, depend
on each application case. Thus the learning agent can
explore the procedure space to test which procedures are
valid.

Executing a procedure (ω1,ω1, ...,ωn) means building the
policy sequence π corresponding to the succession of policies
πi, i ∈ J1, nK (potentially policy sequences as well) and
execute it (where the πi reach best the ωi ∀i ∈ J1, nK

respectively). An example illustrates this idea of task hierarchy
in Figure 1. As the subtasks ωi are generally unknown from
the learner, the procedure is updated before execution (see
Algorithm 1) to subtasks ω′i which are the closest tasks
reached by the learner (by executing respectively π ′1 to
π ′n). When the agent selects a procedure to be executed,
this latter is only a way to build the policy sequence
which will actually be executed. So the agent does not
check if the subtasks are actually reached when executing a
procedure.

Frontiers in Neurorobotics | www.frontiersin.org 4 January 2019 | Volume 12 | Article 87184

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duminy et al. SGIM-PB

FIGURE 1 | Illustration of a procedure or task hierarchy. To make a drawing

between points (xa, ya) and (xb, yb), a robot can recruit subtasks consisting in

(ωi ) moving the pen to (xa, ya), then (ωj ) moving the pen to (xb, yb). These

subtasks will be completed respectively with policies πi and πj . Therefore to

complete the complete this drawing, the learning agent can use the sequence

of actions (πi ,πj ).

Algorithm 1 Procedure adaptation

Input: (ω1, ...,ωn) ∈ �n

Input: inverse model L
1: for i ∈ J1, nK do

2: ω′i ←Nearest-Neighbor(ωi) // get the nearest outcome
known from ωi

3: π ′i ← L(ω′i) // get the known policy sequence that reached
ω′i

4: end for

5: return π = π ′1...π ′n

If the procedure given can not be executed by the robot,
because at least one of the subtasks space is not reachable, then
the procedure is abandoned and replaced by a random policy
sequence.

2.3. Socially Guided Intrinsic Motivation
With Procedure Babbling
The SGIM-PB algorithm is the last achievement of a series of
increasingly complex architectures that we have been developing
for autonomous open-ended learning. It is an extension of
SGIM-ACTS (Nguyen and Oudeyer, 2012), using the same
interest model and memory based inverse model, but it can
in addition perform sequences of motor policies. In this study,
we limited our learning algorithm to the case of procedures of
size 2 (sequences of 2 outcomes only) as we wish to prove the
bootstrapping effect of the representation via procedures, before
tackling the challenges of exploring a high-dimensional space of
procedures �N. This still allows the learning agent to use a high
number of subtasks because of the recursivity of the definition
of procedures. Our learning algorithm, called SGIM-PB, starts
from scratch, it is only provided with the primitive policy

space and outcome subspaces dimensionalities and boundaries.
The procedural spaces are also predefined, as all the possible
composition of outcome subspaces (�i,�j) with �i,�j ⊂ �.
Then its aim is to learn how to reach a set of outcomes as
broad as possible, as fast as possible. This means it has to learn
both the possible outcomes to reach and the policy sequences
or procedures to use for that. In order to learn, the agent can
count on different learning strategies, which are methods to
build a policy or procedure from any given target outcome.
It also need to map the outcome subspaces and even regions
to the best suited strategies to learn them. In this algorithm,
the forward and inverse models are memory based and consist
only of the cumulative data, mappings of policies, procedures
and their respective reached outcomes obtained through all the
attempts of the learner. So they are learned by adding new data in
the learner’s memory.

The SGIM-PB algorithm (see Algorithm 2, Figure 2) learns
by episodes, where it starts by selecting an outcome ωg ∈ �

to target and an exploration strategy σ based on its progress
as in most competence-based intrinsic motivation algorithms
(Baranes and Oudeyer, 2010; Forestier and Oudeyer, 2016) and
as detailed in section 2.3.2.

In each episode, the robot starts from the same position before
executing a policy, and primitives are executed sequentially
without getting back to this initial position. Whole policy
sequences are recorded with their outcomes, but each step
of the policy sequence execution is also recorded. These data
enable the robot to select parts of the policy sequences, thus
helping it to optimize the size of policy sequences it executes
with respect to the outcomes at hand. The way these data are
generated depend on the strategy chosen. We consider two
autonomous exploration strategies (policy space exploration and
procedural space exploration) and two which we call socially
guided exploration (mimicry of a policy teacher and mimicry of
a procedural teacher).

2.3.1. Episodes Using Exploration Strategies
In an episode under the autonomous policy space exploration
strategy (line 3 on Algorithm 2), the learner tries to optimize
the policy πθ to produce ωg by choosing between random
exploration of policies and local optimization, following the
SAGG-RIAC algorithm (Baranes and Oudeyer, 2010) [Goal-
Directed Policy Optimization (ωg)]. This choice is stochastic and
based on the closeness of the goal outcome to already known
outcomes, local optimization having a higher probability to be
selected if the goal outcome neighborhood contains close known
outcomes. Random exploration builds a random policy sequence
recursively, starting by a random primitive policy, and adding
more random primitives according to a probability of 1/αn, α =
2 being a constant and n the size of the already built policy
sequence. Local optimization uses local linear regression. This
is a slightly modified version of the SGIM-ACTS autonomous
exploration strategy which interpolates from the known policies
reaching an outcome close to ωg .

In an episode under the autonomous procedural space
exploration strategy (line 5 on Algorithm 2), the learner builds
a size 2 procedure (ωi,ωj) such as to reproduce the goal
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outcome ωg the best using Goal-Directed Optimization [Goal-
Directed Procedure Optimization(ωg)]. The procedure built is
then modified and executed, following Algorithm 1.

In an episode under the mimicry of a policy teacher strategy
(line 7 on Algorithm 2), the learner requests a demonstration
πθd from the chosen teacher. πθd is selected by the teacher as the

Algorithm 2 SGIM-PB

Input: the different strategies σ1, ..., σn
Initialization: partition of outcome spaces R←

⊔
i{�i}

Initialization: episodic memoryMemo← ∅

1: loop

2: ωg , σ ← Select Goal Outcome and Strategy(R)
3: if σ = Autonomous policy space exploration strategy then
4: Memo← Goal-Directed Policy Optimization(ωg)
5: else if σ = Autonomous procedural space exploration

strategy then
6: Memo← Goal-Directed Procedure Optimization(ωg)
7: else if σ = Mimicry of policy teacher i strategy then
8: (πθd ,ωd) ← ask and observe demonstrated policy to

teacher i
9: Memo←Mimic Policy(πθd )
10: else if σ = Mimicry of procedural teacher i strategy then
11: ((ωdi,ωdj),ωd) ← ask and observe demonstrated

procedure to teacher i
12: Memo←Mimic Procedure((ωdi,ωdj))
13: end if

14: Update L with collected dataMemo
15: R ← Update Outcome and Strategy Interest

Mapping(R,Memo,ωg)
16: end loop

closest from the goal outcome ωg in its demonstration repertoire.
This repertoire is built in advance in practice for our experiments,
by recording policies and their reached outcomes. The learner
then repeats the demonstrated policy [Mimic Policy (πθd )]. It is a
strategy directly also available in the SGIM-ACTS algorithm.

In an episode under the mimicry of a procedural teacher
strategy (line 10 on Algorithm 2), the learner requests a
procedural demonstration of size 2 (ωdi,ωdj) which is built by
the chosen teacher according to a preset function which depends
on the target outcome ωg . Then the learner tries to reproduce the
demonstrated procedure by refining and executing it, following
Algorithm 1 [Mimic Procedure (ωdi,ωdj)].

In both autonomous exploration strategies, the learner uses
a method, Goal-Directed Optimization, to optimize its input
parameters (procedure for the procedure exploration and policy
for the policy exploration) to reach ωg best. This generic method
either creates random inputs, if the goal outcome ωg is far from
any previously reached one, or performs local optimization based
on linear regression.

2.3.2. Interest Mapping
After each episode, the learner stores the policies and modified
procedures executed along with their reached outcomes in its
episodic memory. It computes its competence in reaching
the goal outcome ωg by computing the distance d(ωr ,ωg)
with the outcome ωr it actually reached. Then it updates
its interest model by computing the interest interest(ω, σ ) of
the goal outcome and each outcome reached (including the
outcome spaces reached but not targeted): interest(ω, σ ) =
p(ω)/K(σ ), where K(σ ) is the cost of the strategy used and
the empirical progress p(ω) is the difference between the best
competence before the attempt and the competence for the
current attempt.

FIGURE 2 | SGIM-PB architecture: number between brackets link parts of the architecture with corresponding lines in Algorithm 2, the arrows show the data

transfer between the different blocks.
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The learning agent then uses these interest measures to
partition the outcome space � into regions of high and low
interest. For each strategy σ , the outcomes reached and the
goal are added to their partition region. Over a fixed number
of measures of interest in the region, it is then partitioned into
2 subregions so as maximize the difference in interest between
the 2 subregions. The method used is detailed in Nguyen and
Oudeyer (2014). Thus, the learning agent discovers by itself how
to organize its learning process and partition its task space into
unreachable regions, easy regions and difficult regions, based on
empirical measures of interest. This corresponds to line 15 on
Algorithm 2.

The choice of strategy and goal outcome is based on the
empirical progress measured in each region Rn of the outcome
space�. This corresponds to the line 2 of Algorithm 2. ωg , σ are
chosen stochastically (with respectively probabilities p1, p2, p3),
by one of the sampling modes:

• mode 1: choose σ and ωg ∈ � at random;
• mode 2: choose an outcome region Rn and a strategy σ with

a probability proportional to its interest value. Then generate
ωg ∈ Rn at random;
• mode 3: choose σ and Rn like in mode 2, but generate a goal
ωg ∈ Rn close to the outcome with the highest measure of
progress.

In the start of the learning process, as the robot has no outcome
and interest measure to guide this choice, the first mode doing
random exploration is automatically selected. At this state, the
partition regions consist of the whole outcome subspaces.

The learner can compute nearest neighbors to select policies
or procedures to optimize (when choosing local optimization in
any of both autonomous exploration strategies and when refining
procedures) or when computing the competence to reach a
specific goal, it actually uses a performance metric (1) which also
takes into account the complexity of the policy chosen:

perf (ωg) = d(ω,ωg)γ
n (1)

where d(ω,ωg) is the normalized Euclidean distance between the
target outcome ωg and the outcome ω reached by the policy, γ is
a constant and n is equal to the size of the policy (the number of
primitives chained).

2.4. Summary
To summarize, we have formalized in this section the problem of
multi-task learning as the learning of an inverse model between
a composite space of continuous set of outcomes and a space
of policies of infinite dimension. The aim is to learn a mapping
between outcomes (sometimes referred to as tasks) and policy
sequences. The learning agent is provided with a set of predefined
tasks via a space of outcomes it can observe and a metric to assess
the performance of its trials. It can interact with the environment
via primitive policies in a predefined space. We then introduced
the framework of procedures as a goal-directed representation
of sequences of primitive policies. To show that procedures can
bootstrap the learning of policy sequences, we have proposed
SGIM-PB as a learning algorithm that leverages several data

collection strategies : goal-babbling for autonomous exploration,
exploration of procedures, and social guidance to bootstrap the
learning. SGIM-PB learns to reach an ensemble of outcomes, by
mapping them to policies. As ameans, we propose with SGIM-PB
to take advantage of the dependencies between tasks. It explores
the procedure space to learn these dependencies. Combining
these procedures with the learning of simple policies to complete
simple tasks, it can build sequences of policies to achieve complex
tasks.

We expect the robot to organize its learning process,
beginning by learning low-level tasks by exploring the policy
space or by imitating the policy teachers. Once it has a good
mastery of these low-level tasks, it can take advantage of the
dependencies between tasks by exploring the procedural space or
imitating the procedural teachers. It thus gradually improves its
competence in high-level tasks.

The formalization and algorithmic architecture proposed
can apply to multi-task motor learning problems in static
environments. The requirements for an experimental setup are:

• to define the primitive policies of the robot in a finite
dimensional space.
• to define the different outcomes the user is interested in. This

requires (1) defining the variables from the sensors needed
and a rough range of their values (we do not need a precise
estimation as the algorithm is robust to overestimations of
these ranges, see Nguyen and Oudeyer, 2014) (2) a measure
for the robot to assess its own performance such as a distance,
as in all intrinsic motivation based algorithms. This measure
is used as an “internal reward” function. Contrarily to classical
reinforcement learning problems, this reward function is not
fine tuned to the specific goal at hand, but is a generic function
for all the goals in the outcome space. We use a normalized
Euclidean distance for all the outcomes in our experiments,
in an attempt to show that the specification of tasks for our
learning algorithm does not require a fine-tuning as with
other reinforcement learning algorithms. We believe that our
framework is also applicable to other distance measures. This
definition of tasks is probably themost constraining condition,
and does not yet scale up well to physical robots in the real
world.
• the environment and robot can reset to an initial state, as in

most reinforcement learning algorithms.

3. EXPERIMENT

In this study, we designed an experiment with a simulated
robotic arm, which can move in its environment and interact
with objects in it. We considered a setup with multiple tasks
to learn, with tasks independent of each other and tasks that
are interdependent. For interdependent tasks, we were inspired
by tool use examples such as the setup proposed in Forestier
et al. (2017). Our robot can learn an infinite number of tasks,
grouped as 6 hierarchically organized types of tasks. The robot is
capable of performing policy sequences of unrestricted size (i.e.,
consisting of any number of primitives), with primitive policies
highly redundant and of high dimensionality.
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3.1. Simulation Setup
The Figure 3 shows environmental setup (contained in a cube
delimited by (x, y, z) ∈ [−1; 1]3). The learning agent is a planar
robotic arm of 3 joints with the base centered on the horizontal
plane, able to rotate freely around the vertical axis (each link has
a length of 0.33) and change its vertical position. The robot can
grab objects in this environment, by hovering its arm tip (blue in
the Figure 3) close to them, which position is noted (x0, y0, z0).
The robot can interact with:

• Floor (below z = 0.0): limits the motions of the robot, slightly
elastic which enable the robot to go down to z = −0.2 by
forcing on it;
• Pen: can be moved around and draw on the floor, broken if

forcing too much on the floor (when z <= −0.3);
• Joystick 1 (the left one on the figure): can be moved inside a

cube-shaped area (automatically released otherwise, position
normalized for this area), its x-axis position control a video-
game character x position on the screen when grabbed by the
robot;
• Joystick 2 (the right one on the figure): can be moved inside

a cube-shaped area (automatically released otherwise, position
normalized for this area), its y-axis position control a video-
game character y position on the screen when grabbed by the
robot;
• Video-game character: can be moved on the screen by using

the two joysticks, its position is refreshed only at the end of a
primitive policy execution for the manipulated joystick.

The robot grabber can only handle one object. When it touches a
second object, it breaks, releasing both objects.

The robot always starts from the same position before
executing a policy, and primitives are executed sequentially
without getting back to this initial position. Whole policy
sequences are recorded with their outcomes, but each step of the
policy sequence execution is also recorded. This is done so as to
enable the robot to select parts of policy sequences when it can,
thus helping it to optimize the size of policy sequences it executes
with respect to the outcomes at hand.

3.2. Experiment Variables
In this part, we formalize the parameters of the outcome space
� and the policy space P

N. The distance used to compare two
policies together or two outcomes together is the normalized
euclidean distance.

3.2.1. Policy Spaces
The motions of each of the three joints of the robot are encoded
using a one-dimensional Dynamic Movement Primitive (DMP)
which are, as in Pastor et al. (2009), defined by the system:

τ v̇ = K(g − x)− Dv+ (g − x0)f (s) (2)

τ ẋ = v (3)

τ ṡ = −αs (4)

where x and v are the position and velocity of the system; s is the
phase of the motion; x0 and g are the starting and end position of

the motion; τ is a factor used to temporally scale the system (set
to fix the length of a primitive execution); K and D are the spring
constant and damping term fixed for the whole experiment; α
is also a constant fixed for the experiment; and f is a non-linear
term used to shape the trajectory called the forcing term. This
forcing term is defined as:

f (s) =
∑

i wiψi(s)s∑
i ψi(s)

(5)

where ψi(s) = exp(−hi(s − ci)
2) with centers ci and widths hi

fixed for all primitives. There are 3 weights wi per DMP.
The weights of the forcing term and the end positions are

the only parameters of the DMP used by the robot. The starting
position of a primitive is set by either the initial position of the
robot (if it is starting a new policy sequence) or the end position
of the preceding primitive. The robot can also set its position
on the vertical axis z for every primitive. Therefore, a primitive
policy πθ is parameterized by:

θ = (a0, a1, a2, z) (6)

where ai = (w
(i)
0 ,w

(i)
1 ,w

(i)
2 , g(i)) corresponds to the DMP

parameters of the joint i, ordered from base to tip, and z is
the fixed vertical position. Thus, the primitive policies space is
P = R

13. When combining two or more primitive policies
(πθ0 ,πθ1 , ...), in a policy sequence πθ , the parameters (θ0, θ1, ...)
are simply concatenated together from the first primitive to
the last. The total policy space, P = (R13)N is of unbounded
dimension.

3.2.2. Outcome Subspaces
The outcome subspaces the robot learns to reach are
hierarchically organized and defined as:

• �0: the position (x0, y0, z0) of the end effector of the robot in
Cartesian coordinates at the end of a policy execution;
• �1: the position (x1, y1, z1) of the pen at the end of a policy

execution if the pen is grabbed by the robot;
• �2: the first (xa, ya) and last (xb, yb) points of the last

drawn continuous line on the floor if the pen is functional
(xa, ya, xb, yb);
• �3: the position (x3, y3, z3) of the first joystick at the end of a

policy execution if it is grabbed by the robot;
• �4: the position (x4, y4, z4) of the second joystick at the end of

a policy execution if it is grabbed by the robot;
• �5: the position (x5, y5) of the video-game character at the end

of a policy execution if moved.

The outcome space is a composite and continuous space
� = ∪5i=0�i, with subspaces of 3 to 4 dimensions. A quick
analysis of this setup highlights interdependencies between tasks:
controlling the position of the pen comes after controlling the
position of the end effector; and controlling the position of
the video-game character comes after controlling the positions
of both joysticks, which in turn comes after controlling the
position of the end effector. In our setup, the most complex
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FIGURE 3 | Experimental setup: a robotic arm, can interact with the different objects in its environment (a pen and two joysticks). Both joysticks enable to control a

video-game character (represented in top-right corner). A gray floor limits its motions and can be drawn upon using the pen (a possible drawing is represented).

task is controlling the position of the video-game character. This
task should require a sequence of 4 actions : move the end-
effector to initial position of the joystick 1, move joystick 1,
then move the end-effector to the initial position of joystick
2, and move joystick 2. Besides, there are independent tasks:
the position of the pen does not really depend on the position
of the video-game character. Therefore, the inter-dependencies
can be grouped into 2 dependency graphs. With this setup,
we test if the procedures found by the robot can distinguish
between dependent and independent tasks, and can compose
tools uses.

The robot will choose at every episode a goal to reach in
the outcome space �. In the beginning of its learning process,
we expect the robot to make good progress in the easy tasks in
�0 then �1,�3,�4 using Autonomous policy space exploration
and Mimicry of policy teacher strategies. Once it has a good
mastery of the easy tasks, it will concentrate on the more difficult
tasks, and will benefit from procedures most, using Autonomous
procedural space exploration and Mimicry of procedural teacher
strategies.

In our multi-task learning perspective, we will examine how
well the robot performs for each of the tasks in these subspaces.
We will particularly examine its performance for the tasks of�5,
which we consider the most complex tasks.

3.3. The Teachers
Our SGIM-PB learner can actively learn by asking teachers to
give demonstrations of procedures or policies (strategies Mimic
procedural teacher andMimic policy teacher).

To help the SGIM-PB learner, procedural teachers were
available so as to provide procedures for every complex outcome
subspaces�1,�2,�3,�4 and�5. As�0 is the simplest outcome
space in our setup, the base of its task hierarchy, we decided
to build the preset functions for these procedural teachers up
from �0. Each teacher was only giving procedures useful for its
own outcome space, and was aware of its task representation.
When presented with an outcome outside its outcome space of
expertise, it provides a demonstration for a newly drawn random
target outcome in its outcome space of expertise. They all had a
cost of 5. The rules used to provide procedures are the following:

• ProceduralTeacher1 (ω1g ∈ �1): (ω1,ω0) with ω1 ∈ �1 equals
to the pen initial position and ω0 ∈ �0 equals to the desired
final pen position ω1g ;
• ProceduralTeacher2 (ω2g = (xa, ya, xb, yb) ∈ �2): (ω1,ω0)

with ω1 ∈ �1 equals to the point on the z = 1.0 plane above
the first point of the desired drawingω1 = (xa, ya, 1), andω0 ∈
�0 equals to the desired final drawing point, ω0 = (xb, yb, 0);
• ProceduralTeacher3 (ω3g ∈ �3): (ω3,ω0) with ω3 =

(0, 0, 0),ω3 ∈ �3 and ω0 ∈ �0 equals to the end effector
position leading to the desired final position of the first joystick
ω3g ;
• ProceduralTeacher4 (ω4g ∈ �4): (ω4,ω0) with ω4 =

(0, 0, 0),ω4 ∈ �4 and ω0 ∈ �0 equals to the end effector
position leading to the desired final position of the second
joystick ω4g ;
• ProceduralTeacher5 (ω5g = (x, y) ∈ �5): (ω3,ω4) with
ω3 = (x, 0, 0),ω3 ∈ �3 with x corresponding to the desired
x-position of the video-game character, ω4 = (0, y, 0),ω4 ∈
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�4 with y corresponding to the desired y-position of the
video-game character.

We also added policy teachers corresponding to the same
outcome spaces to bootstrap the robot early learning process. The
strategy attached to each teacher has a cost of 10. Each teacher
was capable to provide demonstrations (as policies executable
by the robot) linearly distributed in its outcome space. All those
teachers consist of demonstrations repertoires built by drawing
sparse demonstrations from a random policy learner trained a
huge amount of time (1,000,000 iterations):

• MimicryTeacher1 (�1): 15 demonstrations;
• MimicryTeacher2 (�2): 25 demonstrations;
• MimicryTeacher3 (�3): 18 demonstrations;
• MimicryTeacher4 (�4): 18 demonstrations;
• MimicryTeacher5 (�5): 9 demonstrations;

These costs were chosen so as to encourage the robot to rely on
itself as much as possible to reduce the teacher load. The costs
of 10 for a policy teacher strategy and 5 for a procedural teacher
are arbitrary. Their difference comes from our belief that giving a
procedure takes less time to the teacher than providing it with a
detailed demonstrated motor policy.

3.4. Evaluation Method
To evaluate our algorithm, we created a benchmark dataset
for each outcome space �i, linearly distributed across the
outcome space dimensions, for a total of 27,600 points. The
evaluation consists in computing the normalized Euclidean
distance between each of the benchmark outcome and their
nearest neighbor in the learner dataset. Then we compute
the mean distance to benchmark for each outcome space.
The global evaluation is the mean evaluation for the 6
outcome spaces. This evaluation is repeated across the
learning process at predefined and regularly distributed
timestamps.

Then to asses our algorithm efficiency, we compare its results
with 3 other algorithms:

• SAGG-RIAC: performs autonomous exploration of the policy
space PN guided by intrinsic motivation;
• SGIM-ACTS: interactive learner driven by intrinsic

motivation. Choosing between autonomous exploration
of the policy space P

N and mimicry of one of the available
policy teachers;
• IM-PB: performs both autonomous exploration of the

procedural space and the policy space, guided by intrinsic
motivation;
• SGIM-PB: interactive learner driven by intrinsic motivation.

Choosing between autonomous exploration strategies (either
of the policy space or the procedural space) and mimicry
of one of the available teachers (either policy or procedural
teachers).

For each run for all algorithms, we let the algorithm perform
arbitrarily 25,000 iterations (policy sequences executions or
learning episodes). The value of γ for this experiment is 1.2. The

probabilities to choose either of the sampling mode of SGIM-
PB are p1 = 0.15, p2 = 0.65, p3 = 0.2. The code run for this
experiment can be found in https://bitbucket.org/smartan117/
sgim_iclr.

4. RESULTS

4.1. Distance to Goals
The Figure 4 shows the global evaluation of all the tested
algorithms, which corresponds to the mean error made by
each algorithm to reproduce the benchmarks with respect
to the number of complete policy sequences tried. Random,
SGIM-ACTS, SGIM-PB were run 20 times while IM-PB and
SAGG-RIAC was run 10 times on this setup so as to obtain
statistically significant differences between SGIM-PB and the
other algorithms, according to the Student’s t-test on two
algorithms : p = 3 ∗ 10−16 < 0.1 when compared with
random, p = 0.01 for SAGG-RIAC, p = 1 ∗ 10−9 for SGIM-
ACTS. The complete results for Student’s t-test are reported in
Table A1 in the Annex. The algorithms capable of performing
procedures (IM-PB and SGIM-PB) have errors that drop to
levels lower than the their non-procedure equivalents (SAGG-
RIAC and SGIM-ACTS). The t-test comparing the final errors
of IM-PB and SGIM-PB vs. SAGG-RIAC and SGIM-ACTS gives
a strong difference with p = 9e − 4 < 0.1. Moreover, this
difference starts since the beginning of the learning process
(shown on Figure 4). It seems that the procedures bootstrap
the exploration, enabling the learner to progress further. Indeed,
the autonomous learner IM-PB learner, the upgraded version of
SAGG-RIAC by the use of procedures, has significantly better
performance.

We can also see that the SGIM-PB algorithm has a very quick
improvement in global evaluation owing to the bootstrapping
effect of the different teachers. It goes lower to the final
evaluation of SAGG-RIAC (0.17) after only 500 iterations. This
bootstrapping effect comes from the mimicry teachers, as it is
also observed for SGIM-ACTS which shares the same mimicry
teachers.

If we look at the evaluation on each individual outcome space
(Figure 5), we can see that the learners with demonstrations
(SGIM-PB and SGIM-ACTS) outperform the other algorithms,
except for the most simple outcome space �0, which does not
require sequences of actions, and the outcome space �5. In
the case of �5, the difference with IM-PB is not significative
(IM-PB seems a bit better but the difference is not significative
with p > 0.1). The results for Student’s t-test are reported in
Table A1 in the Annex. This exception for �5 is due to the
fact that IM-PB practiced much more on this outcome space
(1500 iterations where it chose goals in �5 against 160 for
SGIM-PB). SGIM-PB and SGIM-ACTS are much better than the
other algorithms on the two joysticks outcome spaces (�3 and
�4) (with respectively p=7e-4 and 1e-5). This is not surprising
given the fact that those outcome spaces require precise policies.
Indeed, if the end-effector gets out of the area where it can
control the joystick, the latter is released, thus potentially ruining
the attempt. So on these outcome spaces working directly on
carefully crafted policies can alleviate this problem, while using

Frontiers in Neurorobotics | www.frontiersin.org 10 January 2019 | Volume 12 | Article 87190

https://bitbucket.org/smartan117/sgim_iclr
https://bitbucket.org/smartan117/sgim_iclr
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duminy et al. SGIM-PB

FIGURE 4 | Evaluation of all algorithms (final standard deviation shown in caption).

FIGURE 5 | Evaluation of all algorithms per outcome space (for �0, all evaluations are superposed).

procedures might be tricky, as the outcomes used don’t take
into account the motion trajectory but merely its final state.
SGIM-PB was provided with such policies by the policy teachers.
Also if we compare the results of the autonomous learner
without procedures (SAGG-RIAC) with the one with procedures
(IM-PB), we can see that it learns less on any outcome space
but �0 (which was the only outcome space reachable using

only single primitive policies and that could not benefit from
using the task hierarchy to be learned) and especially for �1,
�2 and �5 which were the most hierarchical in this setup.
More generally, it seems than on this highly hierarchical �5,
the learners with procedures were better. So the procedures
helped when learning any potentially hierarchical task in this
experiment.
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4.2. Analysis of the Sampling Strategy
Chosen for Each Goal
We further analyzed the results of our SGIM-PB learner. We
looked in its learning process to see which pairs of teachers and
target outcomes it has chosen (Figure 6). It was capable to request
demonstrations from the relevant teachers depending on the task
at hand, except for the outcome space �0 which had no human
teachers and therefore could not find a better teacher to help
it. Indeed, for the outcome space �2, the procedural teacher
(ProceduralTeacher2) specially built for this outcome space was
greatly chosen.

We wanted to see if our SGIM-PB learner adapts the
complexity of its policies to the working task. So we looked which
policy space would be chosen by the local optimization function
(used inside the policy space exploration strategy) for the�0,�1

and�2 subspaces (chosen because they are increasingly complex)
on their respective evaluation benchmarks. We compared those
results with the same obtained by the IM-PB learner to see if the
teachers had an effect on the complexity of policies produced.
Figure 7 shows the results of this analysis.

4.3. Length of the Sequence of Primitive
Policies
As we can see on those three interrelated outcome subspaces
(Figure 7), the learner is capable to adapt the complexity of its
policies to the outcome at hand. It chooses longer policies for the
�1 subspace (policies of size 2 and 3 while using mostly policies
of size 1 and 2 for �0) and even longer for the �2 subspace
(using far more policies of size 3 than for the others). It shows
that our learner is capable to correctly limit the complexity of
its policies instead of being stuck into always trying longer and
longer policies. Also, if we look at the policy complexity of the
IM-PB learner, we see it was also capable to correctly limit its
complexity (especially on �0 where it used even more single-
primitive policies than SGIM-PB). However, we can see that our
SGIM-PB learner, owing to the teacher strategies available to it,
had a smaller spread on the size of policy sequences distribution
for each of the three outcome spaces.

We also wanted to see if our SGIM-PB algorithm had
discovered the task hierarchy of this experiment. We hoped it
would correctly assess which procedural space is adapted to each
of the complex outcome subspaces (all subspaces except �0 as
it cannot benefit from procedures to be reached). So we looked
which procedural space was selected by the local optimization
function (used inside the procedural space exploration strategy)
for each of the outcome subspaces on their respective evaluation
benchmarks. For assessing those results, we compared them with
those obtained by the IM-PB learner on the same process.

As we can see on left column of Figure 8 and Figure A1,
our SGIM-PB learner successfully chooses the procedural spaces
most adapted for each complex outcome subspace (the same as
those we used to build the procedural teachers). For instance,
to move the video character (task �5), the robot mainly uses
subtasks �4 (position of the second joystick) and �3 (position
of the first joystick). To move the position of the first joystick
(task �3), subtasks �0 (position of the end-effector) and �3

(position of the first joystick) are used. The same way, task �4

recruits subtasks �0 and �4. Thus by recursively, the robot
has built a hierarchical representation that task �5 depends on
subtasks (�0,�4,�0,�3). This means it was successfully able
to discover and exploit it. By comparison, the IM-PB learner
was only capable to identify useful procedural spaces for the �1

and �2 outcome subspaces. For both those outcome subspaces,
it identified the one procedural space mainly used by SGIM-
PB learner and another one (�2,�0) which can also be useful
to learn to reach those outcome subspaces, though arguably
less efficient. Indeed, using a policy moving the pen (in �1) is
enough for the first component of procedures used to reach �1

and �2, and it can lead to less complex policy sequences than
using one drawing on the floor (in �2). If we look at the result
for the outcome subspaces �3 and �4, the IM-PB learner was
incapable to identify adapted procedural spaces. The absence of
a policy teacher to guide it could explain the IM-PB learner poor
results on those outcome subspaces. Also, compared to the great
focus of the SGIM-PB learner on this outcome subspaces, IM-PB
results were more dispersed, indicating its difficulty to select an
adapted procedural space. As those outcome subspaces require
precise policies and are less adapted to procedures, this difficulty
is understandable. By looking at the results of both learners, we
can see that the procedural teachers had a profound impact on the
choice of adapted procedures for each outcome subspaces, and
clearly guided its whole learning process by helping it discover
the task hierarchy of the experimental setup.

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion
With this experiment, we show the capability of SGIM-PB to
tackle the learning of a set of multiple interrelated complex tasks.
It successfully discovers the hierarchy between tasks and uses
sequences of motor policies to learn a wider range of tasks. It
is capable to correctly choose the most adapted teachers to the
target outcome when available. Though it is not limited in the
size of policies it could execute, the learner shows it could adapt
the complexity of its policies to the task at hand.

The procedures greatly improved the learning capability of
autonomous learners, as shows the difference between IM-PB
and SAGG-RIAC. Our SGIM-PB shows it is capable to use
procedures to discover the task hierarchy and exploit the inverse
model of previously learned tasks. More importantly, it shows it
can successfully combine the ability of SGIM-ACTS to progress
quickly in the beginning (owing to the mimicry teachers) and the
ability of IM-PB to progress further on highly hierarchical tasks
(owing to the procedure framework).

5.2. Contributions
In this article, we aimed to enable a robot to learn sequences of
actions of undetermined length to achieve a field of outcomes. To
tackle this high-dimensionality learning between a continuous
high-dimensional space of outcomes and a continuous infinite
dimensionality space of sequences of actions, we used techniques
that have proven efficient in previous studies: goal-babbling,
social guidance and strategic learning based on intrinsic
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FIGURE 6 | Choices of teachers and target outcomes of the SGIM-PB learner.

FIGURE 7 | Number of policies selected per policy size for three increasingly more complex outcome spaces by the SGIM-PB (on the left) and IM-PB (on the right)

learners.

motivation. We extended them with the procedures framework
and proposed SGIM-PB algorithm, allowing the robot to babble
in the procedure space and to imitate procedural teachers. We
showed that SGIM-PB can discover the hierarchy between tasks,
learn to reach complex tasks while adapting the complexity of
the policy. Although the representation of actions and tasks
are predefined, we described a developmental process involved
in the emergence of representations of tasks highlighting their
relationships. The study shows that:

• procedures allow the learner to learn complex tasks, and adapt
the length of sequences of actions to the complexity of the task
• social guidance bootstraps the learning owing to

demonstrations of primitive policy in the beginning, and
then to demonstrations of procedures to learn how to
compose tasks into sequences of actions

• intrinsic motivation can be used as a common criteria for
active learning for the robot to choose both its exploration
strategy, its goal outcomes and the goal-oriented procedures.

Our contributions in the field of cognitive robotics are
to highlight (1) the relevance of a parallel representation
of sequences in the action and the task space, through
a goal-oriented temporal abstraction (2) the importance
of a hierarchical representation of tasks in multi-task
learning problems, and (3) the efficiency of active
strategical learning in curriculum learning. An intrinsically
motivated robot can learn how to collect data in an
organized and meaningful order, from simple to more
complex tasks. We have presented a developmental process
involved in the emergence of representations of action and
tasks.
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FIGURE 8 | Task hierarchy discovered by the SGIM-PB (left side) and IM-PB (right side) learners for the outcome spaces �1, �3, �5: this represents for each

complex outcome space the percentage of time each procedural space would be chosen. See Appendix A for the complete figure on Figure A1.

5.3. Future Work
However a precise analysis of the impact of each of the different
strategies used by our learning algorithm could give us more
insight in the roles of the teachers and procedures framework.
Also, we aim to illustrate the potency of our SGIM-PB learner
on a real-world application. We are currently designing such an
experiment with a physical robotic platform.

Besides, the procedures are defined as combinations of any
number of subtasks but the algorithm we submitted only
uses procedures as combinations of 2 subtasks. Because of
the recursive definition of procedures, the robot can still have
representations of complex tasks as composed of numerous
subtasks. However, in order to have a direct representation of an
unbounded number of tasks, it could be a next step to see if the
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learning algorithm can handle the curse of dimensionality of a
larger procedure space, and explore combinations of any number
of subtasks. Moreover, the algorithm can be extended to allow
the robot learner to decide on how to execute a procedure. In
the current version, we have proposed the “refinement process”
to infer the best policy. We could make this refinement process
more recursive, by allowing the algorithm to select, not only
policies, but also lower-level procedures as one of the policy
components.
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APPENDIX

FIGURE A1 | Task hierarchy discovered by the SGIM-PB (left side) and IM-PB (right side) learners: this represents for each complex outcome space the percentage of

time each procedural space would be chosen.
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TABLE A1 | Student’s t-test on two samples for comparing SGIM-PB with each of the algorithms and for comparing the procedure algorithms (SGIM-PB and IM-PB) to

algorithms without the procedure framework (SGIM-ACTS, SAGG-RIAC and random).

Global Task0 Task 1 Task 2 Task 3 Task 4 Task 5

SGIM-PB vs. random t –33 9 –27 –15 –32 –50 –57

p 3e-16 5e-8 9e-15 4e-11 4e-16 6e-19 5e-20

SGIM-PB vs. SAGG-RIAC t –3 9 –10 –2 –44 –46 –84

p 1e-2 6e-8 1e-8 3e-2 4e-18 2e-18 1e-22

SGIM-PB vs. IM-PB t –11 –4 –4 –5 –5 –3 1

p 3e-9 4e-4 1e-3 1e-4 9e-5 3e-3 0.2

SGIM-PB vs. SGIM-ACTS t –12 5 –3 –3 –0.5 –3 –18

p 1e-9 2e-4 2e-3 1e-2 6e-2 1e-2 2e-12

(SGIM-PB, IM-PB) vs. t –2.5 9 –5 –2 –4 –5 –8

(random, SAGG-RIAC, SGIM-ACTS) p 2e-2 1e-12 3e-6 7e-2 6e-4 3e-6 4e-11

We tested the difference of the distances to goal at the end of the learning (t = 25,000) for the global evaluation and for each task type. Negative values for t mean that SGIM-PB

makes lower error. The non-significative results (p > 0.1) are highlighted.
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This paper presents the Homeo-Heterostatic Value Gradients (HHVG) algorithm as a

formal account on the constructive interplay between boredom and curiosity which gives

rise to effective exploration and superior forward model learning. We offer an instrumental

view of action selection, in which an action serves to disclose outcomes that have intrinsic

meaningfulness to an agent itself. This motivated two central algorithmic ingredients:

devaluation and devaluation progress, both underpin agent’s cognition concerning

intrinsically generated rewards. The two serve as an instantiation of homeostatic and

heterostatic intrinsic motivation. A key insight from our algorithm is that the two

seemingly opposite motivations can be reconciled—without which exploration and

information-gathering cannot be effectively carried out. We supported this claim with

empirical evidence, showing that boredom-enabled agents consistently outperformed

other curious or explorative agent variants in model building benchmarks based on

self-assisted experience accumulation.

Keywords: curiosity, boredom, goal-directedness, intrinsic motivation, outcome devaluation, satiety, homeostatic

motivation, heterostatic motivation

1. INTRODUCTION

In this study, we present an instrumental view of action selection, in which an action serves to
disclose outcomes that have intrinsic meaningfulness—i.e., that hold epistemic values—to an agent
itself. The implication of this statement is twofold: (1) for agents whose innate goal appeals to their
own knowledge gain, the occurrence of curiosity rests upon the devaluation of known knowledge
(and hence goal-directedness); (2) boredom—consequential to devaluation—and curiosity entail a
mutually reinforcing cycle for such kind of (meaningful) disclosure to ensue.

Animal studies have shown that learning stimulus-response (S-R) associations through action-
outcome reinforcement is but one facet of instrumental behavior. Internally, animals may build
models that assign values to reappraise experienced outcomes. This expands the landscape of
instrumental behavior to include the stimulus-outcome-response (S-O-R) learning system—or
goal-directed learning (Balleine and Dickinson, 1998). Goal-directed behavior is known in both
empirical and computational approaches to support adaptive and optimal action selection (Adams
and Dickinson, 1981; Adams, 1982; Mannella et al., 2016). Central to such behavioral adaptiveness
is devaluation. This means for a given action-outcome pair the associated reinforcing signal is no
longer monotonic. Instead, an outcome value will change with reappraisals in accordance with an
agent’s internal goal.

One classic paradigm of devaluation manipulates an agent’s level of satiation based on
food accessibility, leading to altered behavioral patterns. In the context of epistemic disclosure,
an analogy can be drawn between devaluation and the emergence of boredom, in which
one’s assimilation of knowledge reduces the value of similar knowledge in future encounters.
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The relationship between boredom and outcome devaluation
has a long history in psychological research. Empirical findings
indicated that boredom is reportedly accompanied by negative
affective experiences, suggesting that experienced outcomes are
intrinsically evaluated and considered as less valuable (Perkins
and Hill, 1985; Vodanovich et al., 1991; Fahlman et al., 2009; van
Tilburg and Igou, 2012; Bench and Lench, 2013).

Psychophysiological studies also demonstrated that boredom
plays an active role in eliciting information-seeking behaviors.
Subjects showing higher levels of reported boredom are
accompanied by increased autonomic arousal, such as heart rate
and galvanic skin response. These findings are in line with our
key notion that boredom intrinsically and actively drives learning
behaviors (Berlyne, 1960; London et al., 1972; Harris, 2000). Note,
however, that this notion is contested and a matter of unsettled
debate (e.g., Eastwood et al., 2012; Fahlman et al., 2013;Merrifield
and Danckert, 2014; Danckert et al., 2018). It is therefore worth
pointing out that boredommay be accompanied by a low arousal
state (Barmack, 1939; Geiwitz, 1966; Mikulas and Vodanovich,
1993; Pattyn et al., 2008; Vogel-Walcutt et al., 2012).

A finding by Larson (1990) invites the speculation that
a task set may interact with boredom, thereby modifying
a subject’s behavioral pattern to follow either low or high
arousal states. This means boredom may merely signal a
state of disengagement. Whether an agent’s cognitive resources
can be freely allocated to re-engage another task inherently
depends upon the existence of a prohibiting condition. Larson’s
(1990) participants, who reported boredom and were later
rated with low scores in creative writing, were by design
not allowed to disengage from the essay-writing task. Other
theories, on the other hand, suggested that boredom is associated
with increase in creativity (Schubert, 1977, 1978; Harris,
2000).

We thus postulate that, in the absence of any a priori
cognitive or behavioral constraints, a state of boredom is followed
by an attempt to diversify one’s experience. That is, boredom
begets exploration. This is in line with Vodanovich and Kass’s
(1990) notion of boredom in “inspiring a search for change and
variety” and Zuckerman’s (2008) “sensation-seeking.” Sensation-
seeking (Zuckerman, 1971, 2008; Kass and Vodanovich, 1990;
Dahlen et al., 2005) is categorized as a personality trait, tightly
linked to boredom susceptibility (Zuckerman et al., 1978).
High sensation seekers get bored more easily, suggesting that
individuals susceptible to boredom are predisposed to seek novel
sensations. As a result, a learner who is also a novelty-seeker may
have a world model that generalizes better. In our framework,
receiving novel sensations is formalized as planning to visit states
where an agent can effectively learn faster (i.e., the agent gets
bored quicker). This effect is then treated as an intrinsic reward,
prompting an agent to continue experiencing the state before the
reward is depleted.

A recent computational modeling tapped into a similar theme
(Gomez-Ramirez and Costa, 2017), where boredom facilitates
exploration. However, our work differs from that of Gomez-
Ramirez and Costa (2017) in that our model permits a simple
form of agency (by having an action policy) and focuses on
learning. Additionally, their exploration may favor predictable

state space, whereas our agent will treat high predictability as an
intrinsically non-rewarding state.

Finally, in psychology studies, the term boredom usually
comes under two distinct constructs: a state of boredom and
boredom proneness (Elpidorou, 2014, 2017; Mugon et al.,
2018). Boredom proneness is regarded as the psychological
predisposition of an individual to experience boredom which
poses a systematic impact on one’s social and psychological well-
being. By contrast, a state of boredom is seen as a transient,
regulatory signal that prompts one’s behaviors into alignment
with its goal-directedness (Elpidorou, 2017). In this sense,
our model conceptually encompasses the function of the state
boredom regulatory signal.

Curiosity, irrespective of being a by-product of external goal-
attainment or an implicit goal in and of an agent itself, is often
ascribed as a correlate of information-seeking behavior (Gottlieb
et al., 2013). Behaviors exhibiting curious quality are observed
in humans and animals alike, suggesting an universal role of
curiosity in shaping one’s fitness in terms of survival chance.
Though the exact neural mechanism underlying the emergence
of curious behavior still remains obscure, current paradigms
have their focus on (1) novelty disclosure and (2) uncertainty
reduction aspects of information-seeking (Bellemare et al., 2016;
Friston et al., 2017; Ostrovski et al., 2017; Pathak et al., 2017).
Indeed, both aspects can be argued to improve agent’s fitness in
epistemic landscape if the agent elects to incorporate the novelty
or uncertainty.

Both boredom and curiosity are tightly connected to the
notion of intrinsic motivation. Specifically, the occurrence of
boredom and curiosity can be mapped to homeostatic and
heterostatic motivations, respectively. The homeostatic and
heterostatic motivations as two important classes of intrinsic
motivation have been extensively reviewed in Oudeyer and
Kaplan (2009). Simply, a homeostatic motivation drives a system
to compensate perturbations in order to reach some equilibrial
state. A heterostatic motivation is the opposite of a homeostatic
motivation. A system that is driven by heterostatic motivations
will self-perturb out of its equilibrium. In our formalism,
predictive model learning and policy learning, each respectively
induces boredom and curiosity, suggesting that the two classes of
motivation can in fact be complementary when the two learning
tasks are carried out concurrently. Our contribution thus pertains
to the reconciliation of homeo-heterostatic motivations.

2. MARKOV DECISION PROCESS

In what follows, we briefly review preliminaries for the ensuing
algorithm. We focus on well-established themes surrounding
typical reinforcement learning, including Markov Decision
Process and value gradients as a policy optimisation technique.

In Markov Decision Process (MDP) one considers the tuple
(S,A,R, P,π , γ ). S and A are spaces of real vectors whose
member, s ∈ S and a ∈ A, represent states (or sensor values)
and actions. R is some reward function defining the mapping
R : S × A → R. The probabilities associated with states and
actions are given by the forward model P(S′|A = a, S = s) and
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the action policy π(A|S = s). Throughout the paper we use the
‘prime’ notation, e.g., s′, to represent one time step into the future:
s
′ = s(t + 1).
The goal of MDP is to optimally determine the action policy

π∗ such that the expected cumulative reward over a finite (or
infinite) horizon is maximized. Considering a finite horizon
problem with discrete time, t ∈ [0,T], this is equivalent to

π∗ = argmaxπ Ea∼π
[∑T

t=0 γ
tR(s(t), a(t))

]
, where γ ∈ [0, 1]

is the discount factor.
Many practical approaches for solving MDP often resort

to approximating state-action value q(a, s) or state value v(s)
functions (Sutton and Barto, 1998; Mnih et al., 2013; Heess et al.,
2015; Lillicrap et al., 2015). These value functions are given in the
Bellman equation

v(s) = Eπ(a|s)
[
R(a, s)+ γ q(a, s)

]

= Eπ(a|s)
[
R(a, s)+ γEP(s′|a,s)[v(s

′)]
]

(1)

When differentiable forwardmodel and reward function are both
available, policy gradients can be analytically estimated using
value gradients (Fairbank and Alonso, 2012; Heess et al., 2015).

3. HOMEO-HETEROSTATIC VALUE
GRADIENTS

This section describes formally the algorithmic structure and
components of the Homeo-Heterostatic Value Gradients, or
HHVG. The naming of HHVG suggests its connections with
homeostatic and heterostatic intrinsic motivations. A detailed
review on homeostatic and heterostatic motivations are given in
Oudeyer and Kaplan (2009). Briefly, a homeostatic motivation
encourages an organism to occupy a set of predictable,
unsurprising states (i.e., a comfort zone). Whereas, a heterostatic
motivation does the opposite; curiosity belongs to this category.

The algorithm offers a reconciliation between the two
seemingly opposite qualities and concludes with their
cooperative nature. Specifically, the knowledge an organism
maintains about its comfort zone helps instigate outbound
heterostatic drives. In return, satisfying heterostatic drives
broadens the organism’s extent of comfort zone. As a
consequence, the organism not only improves its fitness in
terms of homeostatic outreach but also becomes effectively
curious.

3.1. Nomenclature and Notations
It is instructive to overview the nomenclature of the algorithm.
We consistently associate homeostatic motivation with the
emergence of boredom, which reflects the result of having
incorporated novel information into one’s knowledge, thereby
diminishing the novelty to begin with. This is conceptually
compatible with outcome devaluation or induced satiety in
instrumental learning. Devaluation progress is therefore referred
to as one’s epistemic achievement. That is, the transitioning
of a priori knowledge to one of having assimilated otherwise
unknown information. The devaluation progress is interpreted as

FIGURE 1 | Intuitive understanding of the Homeo-Heterostatic Value Gradients

(HHVG) algorithm. (A) The algorithm can be interpreted as the cooperative

interplay between a thrower (kid; blue) and a catcher (dog; red). The thrower is

equipped with a forward model that estimates its aiming and is controlled by

an action policy. Without knowing the thrower’s policy, the catcher

(meta-model), in order to make good catches, infers where the thrower is

aiming on average. (B) The catcher is interested in novel, unpredicted throws.

Whenever the catcher improves its predictive power some intrinsic reward

(devaluation progress) is generated. (C) As the catcher progresses further,

similar throws become highly predictable, thus inducing a sense of boredom.

(D) To make the interplay interesting again, the thrower is driven to devise new

throws, so that the catcher can afford to make further progress. By repeating

(A,B) the thrower has attempted diverse throws and known well about its aim.

At the same time, the catcher will assume a vantage point for any throw.

an instantiation of intrinsic reward. The drive to maintain steady
rewards conforms to a heterostatic motivation.

The notation L(·) consistently denotes loss functions
throughout the paper; any variables on which the loss function
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depends are always made explicit. There are occasions where we
abbreviated the loss function to avoid clutters. A definition such
as Lmm(ψ) : = L(a, s;ψ , θ) is then given upon first appearance.
Here, the subscript mm indicates meta-model. One may tell in
this example that the symbols a, s, and θ on the right hand side
are temporarily omitted. This means the optimisation procedure
for the meta-model concerns only the parameter ψ . Similarly,
this applies to Lfm, Lvf , and Lap, where the subscripts stand for
forward model, value function, and action policy. The symbol N
is reserved for Normal distribution.

3.2. Intuition
An intuitive understanding of HHVG is visualized in Figure 1.
Imagine the interplay between a thrower and their counterpart—
a catcher. The catcher anticipates where the thrower is aiming
and makes progress by improving its prediction. The thrower, on
the other hand, keeps the catcher engaged by devising novel aims.
Over time, the catcher knows well what the thrower is capable of,
whilst the thrower has attempted a wide spectrum of pitches.

In the algorithm, the thrower is represented by a forward
model attached to a controller (policy) and the catcher a “meta-
model.” We unpack and report them individually. Procedural
information is summarized in Algorithm 1.

3.3. Forward Model
We start by specifying at current time the state and action
sample as s and a. The forward model describes the probability
distribution over future state S′, given s, a, and parameter θ .

P(S′|A = a, S = s; θ) (2)

The entropy associated with S′, conditioned on s and a, gives
a measure of the degree to which S′ is informative on average.
We referred to this measure as one of interestingness. Note
this is a different concept from the “interestingness” proposed
by Schmidhuber (2008), which is the first-order derivative of
compressibility.

3.4. Boredom, Outcome Devaluation, and
Meta-Model
Boredom, in common understanding, is perhaps not unfamiliar
to most people under the situation of being exposed to certain
information which one has known well by heart. It is the opposite
of being interested. In the current work, we limited the exposure
of information to those being disclosed by one’s actions.

To mark the necessity of boredom, we first identify the
limitation of a naive instantiation of curiosity; then, we show that
the introduction of boredom serves to resolve this limitation.

Consider the joint occurrence of future state S′ and action A:
P(S′,A|S = s; θ ,ϕ). This can be derived from the product rule
of probability using P(S′|A = a, S = s; θ) (as shown Equation 2)
and action policy π(A|S = s;ϕ), parametrised by ϕ (action policy
is revisited in section 3.6).

A naive approach to curiosity is by optimizing the action
policy, such that A is predictive of maximum interestingness (see
section 3.3) about the future.

However, this naive approach would certainly lead to the agent
behaving habitually and, as a consequence, becoming obsessive

Algorithm 1Homeo-heterostatic value gradients

1: Variables

outer loop time t
gradient step counter ℓ, i, j, k
state st : = s(t) and action a

t
: = a(t)

learning rate λθ , λψ , λν , λϕ

discount factor γ
experience pool D

2: Models and parameters

forward model P(S′|s, a; θ)
meta-model Q(S′|s;ψ)
value approximator v(s; ν)
action policy π(A|s;ϕ)

3: Objectives

forward-model learning Lfm(θ)
meta-model learning Lmm(ψ) ⊲ Eq.4
value learning Lvf (ν) ⊲ Eq.6
policy learning Lap(ϕ) ⊲ Eq.8

4: for t = 0 . . .T do

5: From s
t , sample action a

t ∼ π(·|st;ϕ)
6: Perform a

t and advance to st+1

7: Insert tuple
(
s
t , at ,π(at|st), st+1

)
into D

8: Sample D and train forward model:
9: Lfm(θ) : = L(s′, a, s; θ) = ‖s′ − f (a, s; θ)‖2 ⊲ Eq.14
10: θ (ℓ+1)← θ (ℓ) − λθ∇θLfm(θ

(ℓ))
11: Value learning (M updates, see Algorithm 2)
12: Sample D and perform devaluation:
13: ψ (i+1)← ψ (i) − λψ∇ψLmm(ψ

(i))
14: Sample D and train action policy:

15: evaluate R
(i+1)
ψ = Lmm(ψ

(i))− Lmm(ψ
(i+1))

16: evaluate v′ = v(s′; ν(j+M))
17: w← π(a|s;ϕ(k))/π(a|s;ϕ(<k))
18: ϕ(k+1)← ϕ(k) + λϕ∇ϕwLap(ϕ

(k)) given R
(i+1)
ψ , v′

Algorithm 2 Fitted Policy Evaluation [cf. Heess et al. (2015)]

1: Given

outer loop time t
experience pool D
value function v(s; ν(j))
gradient step counter i, j, k

2: Clone parameter ν̃ ← ν(j)

3: form = 1 . . .M do

4: Sample
(
s
τ , aτ ,π(aτ |sτ ;ϕ(<k)), sτ+1

)
from D (τ < t)

5: Evaluate R
(i+1)
ψ = Lmm(ψ

(i))− Lmm(ψ
(i+1))

6: y = R
(i+1)
ψ + γ v(sτ+1; ν̃)

7: w = π(aτ |sτ ;ϕ(k))/π(aτ |sτ ;ϕ(<k))
8: Apply updates ν(j+m) ← ν(j+m−1) −

∇ν w2
(
y− v(s; ν(j+m−1))

)2

9: Every C updates, ν̃ ← ν(j+m)

about a limited set of outcomes. In other words, a purely
interestingness-seeking agent is a darkroom agent (see section
3.7; also Friston et al., 2012 for related concept).
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Such obsession with limited outcomes poses a caveat—the
agent has no recourse to inform itself about prior exposure
of similar sensations. If the agent is otherwise endowed with
this capacity, namely, by assimilating previous experiences into
summary statistics, an ensuing sense of boredom would be
induced. The induction of boredom essentially causes the agent
to value the same piece of information less, thus changing the
agent’s perception toward interestingness. If the agent were to
pursue the same interestingness-seeking policy, a downstream
effect of boredom would drive the agent to seek out other
information that could have been known. This conception
amounts to an implicit goal of devaluating known outcomes.

To this end, we introduce the following meta-model Q to
represent a priori knowledge about the future. Note that Q
is a conditional probability function over S′ and is not to be
confused with a state-action value function q(a, s) in MDP. The
meta-model, parametrised by ψ , is an approximation to the true
marginalization of joint probability P(S′,A|S = s; θ ,ϕ) over A:

Q(S′|S = s;ψ) ≈ P(S′|S = s; θ ,ϕ)

=
∑

A

[
P(S′,A|s; θ ,ϕ)

]

=
∑

A

[
P(S′|A, s; θ)π(A|s;ϕ)

]
(3)

We associate the occurrence of boredom, or, synonymously,
outcome devaluation, with minimizing the devaluation objective
with respect to ψ . The devaluation objective is given by the
Kullback-Leibler (KL) divergence:

Lmm(ψ) : = L(a, s;ψ , θ)
= DKL

[
P(s′|a, s; θ)

∥∥Q(s′|s;ψ)
] (4)

3.5. Devaluation Progress, Intrinsic
Reward, and Value Learning
Through the use of KL-divergence in Equation 4, we emphasize
the complementary nature of devaluation in relation to a
knowledge-gaining process. That is to say, devaluation results in
information gain for the agent. This, in fact, can be regarded as
cognitively rewarding and, thus, serves to motivate our definition
of intrinsic reward.

One rewarding scenario happens when Q(S′|s;ψ) has all
the information there is to be possessed by A about S′. A is
therefore rendered redundant. One may speculate, at this point,
the agent could opt for inhibiting its responses. Disengaging
actions potentially saves energy which is rewarding in biological
sense. This outcome is in line with the “opportunity cost model”
proposed by Kurzban et al. (2013). In their model, boredom is
seen as a resource regulatory signal which drives an agent to
disengage the current task and curb the computational cost. As
a consequence, the occurrence of boredom may encourage re-
allocation of computational processes to alternative higher-value
activities (Kurzban et al., 2013).

Alternatively, the agent may attempt to develop new
behavioral repertoires, bringing into S′ new information (i.e.,

novel outcomes) that is otherwise unknown to Q. The ensuing
sections will focus on this line of thinking.

From Equation 4, we construct the quantity devaluation
progress to represent an intrinsically motivated reward. The
devaluation progress is given by the difference between KL-
divergences before and after devaluation [as indicated by the
superscript (i+ 1)]:

R
(i+1)
ψ (a, s) : = L(a, s;ψ (i), θ)− L(a, s;ψ (i+1), θ)

= Lmm(ψ
(i))− Lmm(ψ

(i+1)),
(5)

Here, we write R
(i+1)
ψ (a, s) in accordance with notational

convention in reinforcement learning, where reward is typically
a function of state and action. Subscript ψ indicates the
dependence of R on meta model parameter.

Having established the intrinsic reward, value learning is
such that the value function approximator v(s; ν) follows the
Bellman equation v(s) = Ea[R(a, s) + γEs′ [v(s

′)]]. In practice,
we minimize the objective with respect to ν:

Lvf (ν) : = L(s′, a, s; ν)

=
∥∥y− v(s; ν)

∥∥2

y = R
(i+1)
ψ (a, s)+ γ v(s′; ν̃)

(6)

3.6. Policy Optimisation
We define action policy at state S = s as the probability
distribution over A with parameter ϕ:

π(A|S = s;ϕ) (7)

Our goal is to determine the policy parameter ϕ that
maximizes the expected sum of future discounted rewards. One
approach is by applying Stochastic Value Gradients (Heess et al.,
2015) and maximizes the value function. We thus define our
policy objective as follows (notice the negative sign; we used a
gradient update rule that defaults to minimization):

Lap(ϕ) : = L(s′, a, s; θ ,ψ (i),ψ (i+1), ν,ϕ)

= −Ea∼π(·|s;ϕ)
[
R
(i+1)
ψ (a, s)+ γEs′∼P(·|a,s;θ)

[
v(s′; ν)

]]

(8)

3.7. Remarks on Homeostatic and
Heterostatic Regulations
Oudeyer and Kaplan (2009) outlined the distinctions between
two important classes of intrinsic motivation: homeostatic and
heterostatic. A homeostatic motivation is one that can be
satiated, leading to a certain equilibrium behaviorally; whereas a
heterostatic motivation topples the agent, thus preventing it from
occupying habitual states.

Our algorithm entails regulations relating to both classes
of intrinsic motivation. Specifically, the devaluation objective
(Equation 4) realizes the homeostatic aspect due to its connection
with induced satiety. On the other hand, the devaluation progress
(Equation 5) introduced for policy optimisation instantiates a
heterostatic drive to agent’s behavioral pattern.
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Heterostasis is motivated by the agent pushing itself toward
novelty and away from devalued, homeostatic states (as revealed
at the end of this section in Equation 13). This statement is shown

formally by replacing the reward R
(i+1)
ψ (a, s) in Equation 8, with

Equation 5. We then arrived at the following form involving
expected KL-divergence:

− Ea∼π(·|s;ϕ)
[
DKL[P(s

′|a, s; θ)‖Q(s′|s;ψ (i))]

− DKL[P(s
′|a, s; θ)‖Q(s′|s;ψ (i+1))]

]

− Ea∼π(·|s;ϕ)Es′∼P(·|a,s;θ)
[
v(s′; ν)

]

= −
{
I(S′ :A|S = s;ψ (i),ϕ, θ)− I(S′ :A|S = s;ψ (i+1),ϕ, θ)

+ Ea∼π(·|s;ϕ)Es′∼P(·|a,s;θ)
[
v(s′; ν)

]}
(9)

Notice that the expected devaluation progress becomes the
difference between conditional mutual information I before
(ψ (i)) and after devaluation (ψ (i+1)).

Assume, for the moment, that the agent is equipped with
devaluation capacity only. In other words, we replace the
devaluation progress and fall back on devaluation objective,
R : = Lmm(ψ) (cf. Equation 5). The agent is now interestingness-
seeking with homeostatic regulation.We further suppose that the
dynamics of ψ and ϕ evolve in tandem, which gives

I(S′ :A|S = s;ψ (i),ϕ(k))→ I(S′ :A|S = s;ψ (i+1),ϕ(k))

→ I(S′ :A|S = s;ψ (i+1),ϕ(k+1))

→ I(S′ :A|S = s;ψ (i+2),ϕ(k+1))→ . . .

(10)
In practice, the nature of devaluation and policy optimisation
often depends on replaying agent’s experience. Taking turn
applying gradient updates to ψ and ϕ creates a self-reinforcing
cycle that drives the policy to converge toward a point mass. For
instance, if the policy is modeled by some Gaussian distribution,
this updating scheme would result in infinite precision (zero
spread).

For curiosity, however, such parameter dynamics should not
be catastrophic if we subsume the homeostatic regulation and
ensure the preservation of the relation given in Equation 11:

I(S′ :A|S = s;ψ (i+1),ϕ(k)) ≤ I(S′ :A|S = s;ψ (i),ϕ(k))

≤ I(S′ :A|S = s;ψ (i+1),ϕ(k+1))

⇒ −I(S′ :A|S = s;ψ (i+1),ϕ(k))+ I(S′ :A|S = s;ψ (i),ϕ(k))

≤ I(S′ :A|S = s;ψ (i+1),ϕ(k+1)) (11)

This equation holds because the devaluation process on average
has a tendency to make A less informative about S′, after
which A is perturbed to encourage a new S′ less predictable
to Q. By rearranging the equation such that the left hand
side remains positive, we have arrived at a lower bound on
I(S′ :A|S = s;ψ (i+1),ϕ(k+1)) which recovers the expected
devaluation progress.

Equation 12 summarizes the argument associated with
Equations (10, 11).

ϕ(k+1) = argmax
ϕ(k)

[
I(S′ :A|S = s;ψ (i),ϕ(k))

− min
ψ̄ (i)

I(S′ :A|S = s; ψ̄ (i),ϕ(k))

]

6= argmax
ϕ(k)

[
min
ψ (i)

I(S′ :A|S = s;ψ (i),ϕ(k))

]
(12)

Finally, we offer an intuition on how policy optimisation
gives rise to heterostatic motivation. This is made clear from the

optimized target I(S′ :A|S = s;ψ (i+1),ϕ(k+1)), found on the right
hand side of Equation 11. It is instructive to re-introduce the true
marginalization P(S′|S = s; θ ,ϕ) from Equation 3; write:

I(S′ :A|S = s;ψ (i+1),ϕ(k+1)) =
∑

a

π(a|s;ϕ(k+1))

∑

s′

P(s′|s, a; θ) log
P(s′|a, s; θ)

Q(s′|s;ψ (i+1))
=
∑

a

π(a|s;ϕ(k+1))

∑

s′

P(s′|s, a; θ) log
P(s′|a, s; θ)

P(s′|s; θ ,ϕ(k+1))
P(s′|s; θ ,ϕ(k+1))
Q(s′|s;ψ (i+1))

= I(S′ :A|S = s;ϕ(k+1))+ DKL

[
P(s′|s; θ ,ϕ(k+1))‖Q(s′|s;ψ (i+1))

]

(13)

Simply, the optimized policy is such that the agent increases
the conditional mutual information and is pushed away (via
increasing the KL-divergence) from its homeostatic state Q.

4. IMPLEMENTATION CONSIDERATIONS

This section presents practical considerations when motivating
the aforementioned agent using neural networks. These
considerations were mainly for the ease of calculating
KL-divergence analytically.

4.1. Forward Model
We assumed that the state follows some Gaussian distribution
with mean s and covariance6. The future state is described by its
mean s

′ according to the deterministic mapping s
′ = f (a, s; θ),

where a is the action sampled from policy. f represents a neural
network with trainable parameter θ :

f (a, s; θ) = As+

(∑

ι

aιB
ι

)
s+ Ca+ o (14)

A, B, and C are approximations of Jacobian matrices and o a
constant, all depending on θ . B is a three-way tensor indexed by
ι along the first axis. This treatment is similar to Watter et al.
(2015) (also cf. Karl et al., 2016), except that we considered a
bilinear approximation and that, in the following sections, we
used only the mean states in a deterministic environment.
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The above formalism follows that s′ has covariance matrix
E[s′s′⊺] = J6J

⊺, where J =
(
A+

∑
ι aιB

ι
)
. The transition

probability is then given by

P(S′|A = a, S = s; θ) = N
(
f (a, s; θ), J6J

⊺
)

(15)

The model parameter θ represented four fully connected layers
of width 512; the four layers were complemented by a residual
connection, which was a single fully connected layer. We used
rectified linear units (ReLU) as output nonlinearities. Next, four
fully connected, linear layers each mapped the 512-dimensional
output into vectors of dimension 16, 32, 8, and 1. These vectors
were then reshaped into tensors and used as A, B, C, and o.

4.2. Meta Model
Our meta model was defined as a Gaussian distribution Q(S′|S =
s;ψ) = N (µ′,6′;ψ), where the mean µ

′ and covariance
matrix 6

′ are outputs of a neural network parametrized by ψ .
Specifically, to construct the covariance matrix, we used the fact
that the eigendecomposition of a positive semi-definite matrix
always exists. This then means we can use neural networks to
specify an orthogonal matrix H and a diagonal matrix D, such
that the covariance matrix is equivalent to:

6
′ = HDH

⊺, D = diag(d)

H = I − 2
uu

⊺

‖u‖2
,

(16)

where d is a positive-valued vector that specifies the diagonal
elements of D. The second line of Equation 16 shows how an
orthogonal matrix can be built from a real-valued vector u, called
Householder vector (Tomczak andWelling, 2016). I is an identity
matrix.

The network architecture used to compute µ′, d, and
u consisted of three trainable layers, each of which was
identically structured. Three fully connected layers with ReLU
activation functions, complemented by a residual connection,
were followed by a linear, fully connected output layer. The
output layer for d used a Softplus nonlinearity to ensure positive
values.

We can, of course, let the neural network output a full matrix
X and have 6

′ = XX
⊺. However, our method is less costly when

scaling up the problem dimension.

4.3. Policy and Value Functions
Both the policy and value functions were identically structured
in terms of network architecture. They consisted of four fully
connected layers with ReLU activation functions, complemented
by a residual connection. This was then followed by a linear
output layer. The outputs for the policy network were treated as
logits of a categorical distribution over action space.

5. EXPERIMENT

One testable hypothesis that emerges from our previous
remark—that boredom gives rise to novelty seeking policy (cf.
KL-divergence term in Equation 13)—is that boredom helps

improve agent’s forward model learning. This is because novelty
seeking essentially implies diversity in agent’s experience. In other
words, a boredom-driven curious agent must exhibit a tendency
toward exploration and against perseveration. This tendency is
critical when the agent was not given a training set (on which
it based its forward model learning) but has to self-assist in
accumulating one from scratch.

Briefly, an agent that tends to explore would appear to
accumulate experience that reflects a more complete picture of
the environment and, therefore, leads to a more accurate forward
model. By contrast, if an agent perseverates, it can only afford
to occupy a limited set of states, leaving its forward model an
inadequate representation of the environment.

The primary goal and purpose of the ensuing experiments is
thus to illustrate, with and without boredom, (1) the extent to
which an agent explores and perseverates, and (2) the forward
model performance.

To this end, we motivated a model pruning hierarchy on
which the comparisons above were based. The model pruning
hierarchy, as summarized in Table 1 and section 5.3, provides
a principled way to assess agent’s behavior by progressive
degrading model components. As a result, the difference between
a boredom agent and a boredom-free curious agent or non-
curious agent can be highlighted.

Explorativeness and perseveration were assessed qualitatively
using Coverage Rate (CR) and Coverage Entropy (CE), reported
in section 6. CR simply counts the number of states an agent
has visited amongst all possible states. CE focuses on weighing
the number of time steps a state was being occupied. CR
thus indicates the proportion of the environment explored
by the agent. Whereas, a CE curve declining over time
indicates the agent tends to perseverate around a limited state
space.

Forward model performance was assessed based on validation
error. The validation set was sampled from the oracle dataset
(see section 5.2). Contrary to self-assisted data accumulation,
the oracle dataset was acquired by uniformly sampling the state-
action grid. This dataset is therefore an idealized case to learn the
best possible forward model.

TABLE 1 | Model pruning hierarchy that helps highlight the contribution of

boredom and curiosity in regulating agent’s exploration and perseveration.

Oracle P/RW PG/GR PG/IRS C/PE C/B

FM X X X X X X

AP © X X X X

IR © X X

VF X X

MM X

Ticks mark the existence or dependence of trainable network components; circles indicate

independent intervention. Top row: P/RW, random-walk policy; PG/GR, policy gradients

with rewards drawn from a Gaussian distribution; PG/IRS, policy gradients with intrinsic

reward samples; C/PE, curiosity using forward model error; C/B, curiosity from boredom.

First column: FM, forward model; AP, action policy; IR, intrinsic rewards; VF, value function

approximator; MM, meta-model.

Frontiers in Neurorobotics | www.frontiersin.org 7 January 2019 | Volume 12 | Article 88205

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu et al. Boredom-Driven Curiosity

FIGURE 2 | Environmental configuration. The red cross represents an

attractor, whilst black triangles repellers. Vector plots indicate the forces

exerted if the agent assumed the positions with zero velocities. The initial

position is set at the blue letter “A.” This configuration remains identical cross

all model variants and test runs.

Overall, we set the following constraints on training and
environment conditions: (1) agent is responsible for assembling
its own training set from scratch; (2) the probability of visiting
different states is not uniformly distributed if the agent will
commit to random walk; (3) the amount of time to accumulate
training data points is limited.

5.1. Training Environment
Our agents were tested in a physics simulator, free of stochasticity,
built to expand the classical Mountain Car environment (e.g.,
“MountainCar-v0” included in Brockman et al., 2016) into two-
dimensional state space. The environment is analogous to the
Mountain Car in ways that it has attractors and repellers that
resemble hill- and valley-like landscapes (Figure 2). The presence
of both structures serves as acceleration modifier to the agent.
This makes state visitation biased toward attractors. Therefore,
the acquisition of an accurate forward model necessitates
planning visits to the vicinity of repellers.

The states an agent can occupy were defined as the tuple
(x, y, ẋ, ẏ) in continuous real space. Positions (x, y) ∈ [0, 1]2

were bounded in a unit square, whereas velocities (ẋ, ẏ) were not.
Boundary condition resets x and y to zero velocities. However, it
is possible for the agent to slide along the boundaries if its action
goes in the direction parallel to the nearby boundary. We note
that being trapped in the corners is possible; though an agent
could potentially get itself unstuck if appropriate actions were
carried out.

Agent’s action policy was represented by a categorical
distribution over accelerations in x and y directions. The
distribution was defined on the interval [−2.0, 2.0]2, evenly
divided into a 11 × 11 grid. When an action is selected,

the corresponding acceleration is modified according to forces
exerted by the attractors and repellers.

Unlike the classical Mountain Car, our environment does not
express external rewards, nor does it possess any states that are
indicative of termination. Agents were allowed a pre-defined time
limit (T = 30, 000 steps; Data Accumulation Phase or DAP) to
act without interruption. Agent’s experiences in terms of state
transitions were collected in a database, which was sampled from
for training at each step. During DAP, learning rates for model
parameters remained constant. After DAP (or post-DAP), agent
entered an action-free stage lasted for T = 30, 000, during which
only sampling from own experience pool for forward model
training was performed. Learning rate scheduling scheme was
implemented at post-DAP.

An implementation of our training environment is available
online 1.

5.2. Oracle Dataset
To contrast with self-assisted data accumulation, we constructed
an oracle dataset. This dataset assumed unbiased state occupancy
and action selection. We acquired the dataset by evenly dividing
the state-action space into a 49 × 49 × 11 × 11 × 11 × 11
grid. Each state-action pair was passed to the physics simulator
to evaluate the next state. The resultant tuple (s, a, s′) then
represents one entry in the dataset. The training, testing, and
validation sets were prepared by re-sampling the resulting dataset
without replacement according to the ratio 0.8, 0.16, and 0.04.

A class of model referred to as Oracle, which consists of a
forward model only (Table 1), was trained on this dataset. The
Oracle model does not need to learn an action policy, as actions
are already specified in the oracle dataset. The Oracle model was
trained for 60, 000 epochs. During training, the learning rate was
scheduled according to test error. Benchmarking was performed
on the validation set as part of model comparisons (see section
5.4).

The oracle dataset differs from the ones that are populated
by an agent as it explores. For instance, some locations in the
state space are essentially inaccessible to our agent due to the
force exerted by the repellers. These locations greatly inform
forward model learning, however, but are only present in the
oracle dataset and available to the Oracle model.

5.3. Model Pruning
We defined five variants of our boredom-driven curious agent.
With each variation, the agent receives cumulative reductions
in network components. Theses reductions are summarized as
model pruning hierarchy in Table 1.

The reason that we motivated model comparisons based on
model pruning is to emphasize the contribution of boredom and
curiosity in regulating agent’s explorativeness and perseveration.
Overall, as model pruning progresses the agent was deprived
of functional constructs like devaluation progress, intrinsic
motivation, and planning. Eventually, the agent lost the ability to
contextualize action selection and became a random-walk object.
This corresponds to an ǫ-greedy policy with ǫ = 1. A random-
walk agent is explorative but it cannot be considered curious

1https://github.com/arayabrain/MountainCar2D

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2019 | Volume 12 | Article 88206

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu et al. Boredom-Driven Curiosity

in the sense that no principled means are applied to regulate
explorative behaviors. With the model variants detailed below
we intended to demonstrate the impact boredom and intrinsic
motivation have on regulating exploration and, as a consequence,
on forward model learning.

5.3.1. Boredom-Driven Curiosity (C/B)
The first agent variant retained all distinctive components
introduced in Section 3. The meta-model provides the
devaluation progress as intrinsic rewards, whilst the value
function enables the agent to plan actions that are intrinsically
rewarding in the long run.

5.3.2. Predictive Error-Driven Curiosity (C/PE)
The C/PE variant tests whether the induction of boredom is
a constructive form of intrinsic motivation. This is achieved
by removing the meta-model, thereby requiring an alternative
definition of intrinsic reward. We replaced the devaluation
progress with learning progress defined by mean squared errors
of the forward model:

R
(ℓ+1)
θ

: = Lfm(θ
(ℓ))− Lfm(θ

(ℓ+1))

Lfm(θ) : = L(s′, a, s; θ)
: = ‖s′ − f (a, s; θ)‖2 (17)

The construction of learning progress is one typical approach to
intrinsic motivation and curiosity (Schmidhuber, 1991; Pathak
et al., 2017).

5.3.3. Policy Gradients, Intrinsic Reward Samples

(PG/IRS), Gaussian Rewards (PG/GR)
Next, we examined how reward statistics alone influences policy
update and, as a consequence, model learning. The value function
was removed at this stage to dissociate policy learning from any
downstream effects of value learning.

One distinctive feature of devaluation progress is that it
entails time-varying rewards — depending on the amount of
time over which an agent has evolved in the environment. We
hypothesized that the emergence of curious policy is associated
with reward dynamics over time. That is to say, if one perturbs
themagnitudes and directions of the policy gradients with reward
statistics appropriate for the ongoing time frame, the agent
should exhibit similar curious behaviors. Nevertheless, we argue
that such treatment is only sensible given virtually identical
initial conditions. Specifically, all agent variants shared the
same, environmental configuration, initial position, and network
initialization.

To this end, we prepared a database for intrinsic reward
samples. During C/B performance, all reward samples were
collected and labeled with the corresponding time step.
Afterwards, the PG/IRS agents randomly sampled from the
database in a temporally synchronized manner and applied
standard policy gradients.

The PG/IRS was contrasted with the PG/GR variant. Their
difference lies in that a surrogate reward was used in place of
the database. We defined the surrogate reward as a Gaussian
distribution with time-invariant parameters, in which the mean

µ = 0 is under the assumption of equilibrium devaluation
progress and the standard deviation σ = 0.01, as derived from
the entire database.

5.3.4. Random-Walk Policy (P/RW)
Finally, we constructed a random-walk agent. All network
components, apart from the forward model, were removed. This
agent variant represents the case without intrinsic motivation
and is agnostic to curiosity. Broadly speaking, the agent was
still explorative due to its maximum entropy action policy. We
regarded this version as the worse case scenario to contrast with
the rest of the variants.

5.4. Model Comparisons
All model variants were compared on the basis of validation
error given the oracle dataset. We performed 128 runs for
each of the six variants (Oracle, C/B, C/PE, PG/IRS, PG/GR,
and P/RW). All variants, across all runs, were assigned to
identical environmental configuration (e.g., initial position,
attractor/repeller placements). Network components, whenever
applicable, shared identical architecture and were trained with
consistent batch size and learning rate. Model parameters
followed the Xavier initialization (Glorot and Bengio, 2010).
During post-DAP, learning rate scheduling was implemented
such that a factor 0.1 reduction was applied upon a 3000-epoch
loss plateau.

6. RESULTS

In this section, we offered qualitative and quantitative assessment
of agent’s behavioral pattern and performance across different
agent variants. As established previously, an agent’s performance
in modeling its own environment necessarily depends on both
explorative and non-perseverative behaviors. The overall picture
being delivered here is that the boredom-driven curious agent
(abbrev. C/B) exhibited stronger tendency toward exploration
(Figures 3A,B) and against perseveration (Figures 3C,D). In
accordance with our prediction, the forward model performance
was significantly better for the boredom agent, as compared with
other curious or non-curious variants (Figure 4 and Tables 2, 3).

We first characterized individual agent variants’ qualities of
being i) explorative and ii) perseverative. Active exploration
is one defining attribute of curiosity (Gottlieb et al., 2013),
simply because it differentiates between uncertain and
known situations, thus giving rise to effective information
acquisition. This, however, should be complemented with
suppressed perseveration; namely, to prevent oneself from being
permanently or dynamically captured—i.e., by the corners or the
attractor.

The two qualities can be distinguished, as shown in Figure 3,
by respective measures of Coverage Rate (CR) and Coverage
Entropy (CE). The two measures were computed by first turning
the state space into a 50 × 50 grid, ignoring velocities. CR keeps
track of whether or not a grid cell has been visited and, at each
time step, corresponds to the proportion of visited grid cells. A
CR curve increasing over time indicates that an agent would be
exploring new grid cells.
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FIGURE 3 | Coverage Rate (CR) and Coverage Entropy (CE) by agent variants. The two measures were computed by first turning the state space into a 50× 50 grid,

ignoring velocities. CR then marks over time whether or not a cell has been visited. Whereas, CE treats the grid as a probability distribution. Starting with maximum

entropy, CR cumulatively counts the number of times a position is being visited. Entropy was calculated at each time step using the normalized counter. (A) Overview

of CR shows the distinction between curious and non-curious agents. Curiosity caused the agents to explore faster. (B) Close-up on the curious agent variants, which

were equally explorative. (C) Overview of CE shows agents with different levels of perseverance. The P/RW variants were captured by the attractor, whilst the PG/GR

variants were prone to blockage. (D) Close-up on curious agents, which were characterized by higher CE due to attractor avoidance and more frequent repeller

visitation attempts. Shaded regions represent one standard deviation.

CE, on the other hand, accounts for the number of time
steps an agent revisited one grid cell. This then gives an
empirical probability distribution at each time step that reports
the likelihood of finding an agent occupying a grid cell. A
concentrated probability distribution means an agent only paid
visit to a small set of grid cells and, as a result, the probability
distribution has low entropy.

Because (state) visitation bias was inherent in our training
environment, naturally, agents occupying a subset of states
would cause CE to reduce faster than those who attempted
to escape. The C/B, C/PE, and PG/IRS variants were regarded
as curious and intrinsically motivated. Our results showed

that these variants were predominantly explorative and non-
perseverative. By contrast, the P/RW agent, albeit explorative,
had no principled means to escape the potential well. However,
if t → ∞ the P/RW should be able to explore further
by chance. The PG/GR variant, on the other hand, exhibited,
intermediate explorativeness and extreme perseverance with
disproportionately high variance. We attributed this behavior
to the detrimental effects of inappropriately informative reward
statistics.

Next, we benchmarked forward model performance of
individual variants by their validation loss and error percentage.
We reported DAP and post-DAP performances separately as a
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FIGURE 4 | Benchmarking model variants with oracle dataset. Performances were reported in error percentage (also, see Table 2). (A) Performance as a function of

time during Data Accumulation Phase (DAP). (B) Close-up on curious variants (C/B, C/PE, and PG/IRS), as well as policy gradients (PG/GR) informed by surrogate

reward statistics. The C/PE and PG/IRS variants performed similarly, but differed significantly from C/B (Table 2). (C) Performance over time during post-DAP. (D)

Close-up on post-DAP performances for curious variants and PG/GR.

function of time in Figure 4. Error percentage was calculated
as the percent ratio between root mean squared loss and the
maximum pair-wise Euclidean distance in the validation set. This
ratio can be summarized by ‖s′

k
− f (ak, sk; θ)‖/maxi,j ‖Di−Dj‖,

where D is the validation set and (s′
k
, ak, sk) ∈ D.

The Oracle model, trained under the supervision of oracle
training set, reached an error percentage of 0.84% for
both DAP and post-DAP, amounting to approximately 30%
improvement over the terminal performance of the C/B variant.
All variants considered curious (C/B, C/PE, and PG/IRS)
had similar performances during DAP. In particular, the
PG/IRS, which received independent intervention from the ‘true’
reward distributions achieved marginally lower performance

but indistinguishable from the C/PE variant. This outcome
was observed for both DAP and post-DAP, suggesting intrinsic
reward samples derived from C/B contributed favorably even to
the standard policy gradients algorithm.

Though without the ability to approximate value function, the
PG/IRS variant underperformed in benchmarking, as compared
with the value-enabled, C/B variant. Using non-parametric test,
the difference was detected for DAP (p = 0.0006) and post-DAP
(p = 6.4E-8), respectively. Similar observations were also made
for comparisons between C/B and C/PE, at p = 0.0029 (DAP)
and p = 5.9E-5 (post-DAP). Overall, this suggested significant
differences in the experiences accumulated across agent variants.
The aforementioned statistics were reported in Tables 2, 3.
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TABLE 2 | Summary statistics on validation loss and error percentage as

benchmarking scores.

Agent
DAP Post-DAP

MSE

loss

(SD)

Mean

Percent

Error (SD)

MSE

loss

(SD)

Mean

Percent

Error (SD)

Oracle
0.0008 0.8430 0.0008 0.8428

(2.3E-5) (0.0123) (2.2E-5) (0.0114)

C/B
0.0033 1.7181 0.0017 1.2420

(0.0006) (0.1357) (0.0001) (0.0488)

C/PE
0.0035 1.7611 0.0019 1.2882

(0.0006) (0.1464) (0.0003) (0.0916)

PG/IRS
0.0035 1.7637 0.0020 1.2976

(0.0006) (0.1418) (0.0003) (0.0902)

PG/GR
0.0048 2.0559 0.0030 1.6288

(0.0017) (0.3026) (0.0008) (0.2140)

P/RW
0.6663 22.2734 0.6615 22.1453

(0.3904) (10.0085) (0.3864) (10.0775)

Apart from the Oracle model, a trend of declining scores can be observed as the agent

degraded fromC/B to P/RW, indicating the contribution of boredom and curiosity in model

learning. Key: DAP, Data Accumulation Phase; SD, standard deviation. For agent codes,

see Table 1.

TABLE 3 | Non-parametric statistical tests comparing terminal performance at

DAP and post-DAP for curious model variants.

Mann-Whitney U-Test (n = 128,α = 0.025, Bonferroni corrected)

Validation loss DAP (T = 30, 000) Post-DAP (T = 60, 000)

C/B < C/PE
Statistics 6558.0 5911.0

p-value 0.0029 5.9E-5

C/B < PG/IRS
Statistics 6275.0 5062.0

p-value 0.0006 6.4E-8

Following Table 2, even though the boredom score came close to other curious variants

(C/PE and PG/IRS), the boredom variant still outperformed the other two on statistical

grounds.

7. LIMITATION

One obvious limitation of the proposed method is scalability.
We imposed Gaussian assumption on the forward model and
meta-model because this lends the KL-divergence between the
two to have a closed form solution. However, this solution
depends on both matrix inversion and log-determinant, whose
computational complexity normally falls around an order of
3 when using Cholesky decomposition. To circumvent this
limitation, the intrinsic reward (devaluation progress) may be
replaced with one based on (forward model) prediction error at
the expense of lesser curiosity.

The Gaussian assumption also puts limitations on the
expressiveness of the models. This can be slightly relaxed

to admit Gaussian mixture models. KL-divergence between
Gaussian mixture models is not tractable but can nonetheless
be approximated (e.g., Hershey and Olsen, 2007). Alternatively,
employing normalizing flows (Rezende and Mohamed, 2015)
also allows expressive models. Calculating KL-divergence in this
case is typically resorted to Monte Carlo approximation. These
are potential extensions that can be applied to the current work
in the future.

8. CONCLUSION

We have provided a formal account on the emergence
of boredom from an information-seeking perspective and
addressed its constructive role in enabling curious behaviors.
Boredom thus motivates an instrumental view of action
selection, in which an action serves to disclose outcomes that
have intrinsic meaningfulness to an agent itself. This is, a
bored agent must seek out information worth assimilating
into itself. This led to the central claim of this study—
pertaining to the superior data-gathering efficiency and hence
effective curiosity. We supported this claim with empirical
evidence, showing that boredom-enabled agents consistently
outperformed other curious agents in self-assisted forward
model learning. Our results solicited the interpretation that
the relationship between homeostatic and heterostatic intrinsic
motivations can in fact be complementary; therefore, we have
offered one unifying perspective for the intrinsic motivation
landscape.

Our proposed method is general in formalization and
sits comfortably with existing MDP problems. Our future
work is then to apply the method to more complex
problems, such as embedding into a robot for real-world
scenarios.
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Joint attention related behaviors (JARBs) are some of the most important and basic

cognitive functions for establishing successful communication in human interaction. It

is learned gradually during the infant’s developmental process, and enables the infant to

purposefully improve his/her interaction with the others. To adopt such a developmental

process for building an adaptive and social robot, previous studies proposed several

contingency evaluation methods, by which an infant robot becomes able to sequentially

learn some primary social skills. These skills included gaze following and social

referencing, and could be acquired through interacting with a human caregiver model

in a computer simulation. However, to implement such methods to a real-world robot,

two major problems, that were not addressed in the previous research, have remained

unresearched: (1) dependency of histogram of the observed events by the robot to each

other, which increases the error of the internal calculation and consequently decreases

the accuracy of contingency evaluation; and (2) unsynchronized teaching/learning phase

of the teaching-caregiver and the learning-robot, which leads the robot and the caregiver

not to understand the suitable timing for the learning and the teaching, respectively. In

this paper, we address these two problems, and propose two algorithms in order to

solve them: (1) exclusive evaluation of policies (XEP) for the former, and (2) ostensive-cue

sensitive learning (OsL) for the latter. To show the effect of the proposed algorithms,

we conducted a real-world human-robot interaction experiment with 48 subjects, and

compared the performance of the learning robot with/without proposed algorithms. Our

results show that adopting proposed algorithms improves the robot’s performance in

terms of learning efficiency, complexity of the learned behaviors, predictability of the

robot, and even the result of the subjective evaluation of the participants about the

intelligence of the robot as well as the quality of the interaction.

Keywords: contingency evaluation, developmental robot, ostensive cue, human-robot interaction, joint attention
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1. INTRODUCTION

Joint attention related behaviors (JARBs) include basic social

skills, such as following the gaze of others, pointing, intention

sharing, and social referencing. Humans gradually learn these
social skills during their developmental process in infancy and

childhood (Scaife and Bruner, 1975; Adamson, 1995; Corkum
and Moore, 1995), and become able to establish interaction
with others. Consequently, children become able to learn
more social skills, such as language communication and mind
reading (Moore and Dunham, 2014). The importance of JARBs
in human infant development (Tomasello et al., 1995) has made
it one of themost popular research topics in the fields of cognitive
science and developmental psychology (Butterworth and Jarrett,
1991; Mundy et al., 2000; Tomasello, 2009).

Additionally, owing to the important role of such behaviors in
achieving successful communication with humans, some robotic
research has focused on the study of JARBs in the development of
communicative robots (Imai et al., 2003; Breazeal, 2004; Kanda
et al., 2004; Kaplan and Hafner, 2006).

On the other hand, in the field of developmental robotics,
several studies based on synthetic approaches have tried to
explore and/or reproduce the developmental process of the
human infant, as well as to create autonomous developmental
robots. See Asada et al. (2009) for a review of these efforts.
Some of these research has been done on proposing learning
mechanisms based on the intrinsic motivation of the robot that
enables open-ended development (Oudeyer et al., 2007; Barto,
2013; Nehmzow et al., 2013), and some on dynamic Bayesian
networks to evaluate the contingency of the observed events,
which enables the robot to plan suitable action(s) to achieve
its goal utilizing the evaluated contingency (Degris et al., 2006;
Jonsson and Barto, 2007; Mugan and Kuipers, 2012).

Other studies (Nagai et al., 2003; Triesch et al., 2006) have
tried to explain the developmental process of the JARBs of
the human infant by using an infant robot. They have focused
on the causality of the infant robot’s observations, actions
and consequent experiences during interaction with a human
caregiver. They showed that learning of the causal sensorimotor
mapping from gaze patterns of the caregiver to the motor
commands of the robot lead the robot to acquire a primitive
JARBs, such as gaze following. However, the robot had a priori
knowledge of the set of sensory and motor variables to be
associated in order to acquire such a sensorimotor mapping.

Sumioka et al. proposed an informational measure based
on transfer entropy (Schreiber, 2000), by which the robot
become able to automatically distinguish the set of sensory-motor
variables for the sensorimotor mapping without such a priori
knowledge (Sumioka et al., 2010). Additionally, their presented
method could evaluate the contingency of a sequence of events,
so that the robot became able to learn a sequence of sensorimotor
mapping. The contingency of such sequence was defined as
contingency chain (c-Chain). By using computer simulation, they
showed that evaluating the c-Chains of the events led their infant
robot model to learn JARBs consisted of sequences of actions,
such as social referencing behavior. The social referencing was
defined as looking back at the caregiver’s face after producing

the gaze-following behavior. Hereafter, we refer to robot’s learned
behavior as a complex skill if it consists of more than two
sequences of actions (such as social referencing behavior), and
otherwise refer to it as a simple skill (such as gaze-following
behavior).

However, numerous time steps were required for the
contingency evaluations of previous work (Sumioka et al.,
2010), especially for complex skills, which resulted in the robot
not being able to acquire complex skills in the real-world
implementation (Sumioka et al., 2013). Mahzoon et al. (2016)
proposed a new informational measure based on what they called
transfer information, which enabled the local evaluation of the
contingency among the variable values. They realized a fast
contingency evaluation, evenwith a small number of sample data.
They showed that their infant robot model could acquire simple
and complex skills within short periods of interaction with the
caregiver model, in a computer simulation environment.

Nevertheless, to implement the proposed method on a real-
world robot, two basic issues are still remained: First, the
synchronization problem of the robot’s learning phase with the
human caregiver’s teaching phase in the real-world interaction
was not considered. As a result, the efficiency of the learning
process was decreased and therefore unexpectedly delayed.
Although understanding and detecting the teaching phase of the
human caregiver is not a simple issue, some research on “natural
pedagogy” has reported the phenomena of teaching/learning
timing of the human caregiver/infant (Csibra and Gergely, 2009)
and addressed “ostensive cues” as the key signals of efficient
teaching/learning in humans. In this paper, we propose a new
algorithm for robot learning inspired by these phenomena,
namely ostensive-cue sensitive learning (OsL), to overcome the
synchronization problem. Second, there was overestimation of
the contingencies related to actions/observations that occur
simultaneously with the usage of a learned behavior. This is
due to the confusion of the robot about the cause of the
consequent event; the robot could not distinguish whether the
reason for the event was the usage of the learned behavior
or simply the previous atomic action/observation. To solve
this problem, we propose another new algorithm, the exclusive
evaluation of policies (XEP), following which the robot evaluates
contingencies, so that the calculations related to the atomic
variables are separated from those of the learned behaviors.

To evaluate the performance of each proposed algorithm
in a real-world environment, we conducted human–robot
interaction experiments under four conditions: (1) the previous
method (Mahzoon et al., 2016), i.e., the robot uses neither of the
proposed algorithms; (2) the robot uses only the OsL; (3) the
robot uses only the XEP; and (4) the proposed method, i.e., the
robot uses both the OsL and XEP. Each condition was consisted
of 12 subject experiments, and each experiment was taken 800
time steps, i.e., approximately 40 min of interaction with the
robot. The performances of the systems was compared in terms
of the speed, coverage, and reliability of simple and complex skill
acquisition.

In addition, as described in Moore and Dunham (2014) and
Tomasello (2009), contingent and intelligent behavior of the
infant “induces” the caregiver to change its behavior, and teach
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new concepts to the infant. This inherent tendency of the human
caregiver leads to a potential for the open-ended learning and
development of the infant, even an infant robot (Oudeyer et al.,
2007). In our experiment, to evaluate if/how the human subjects
feel regarding the infant robot’s such intelligence, we conducted
a subjective evaluation during the experiment. We asked the
subjective opinion of the caregivers about the intelligence of
the robot as well as the quality of the interaction. For this, we
provided seven questions, each designed with a five-level Likert
scale answer. To see the effect of the proposed algorithms on the
subjective evaluation, we conducted a statistical analysis of the
answers. The result of the analysis is discussed in section 4.5.

2. PROBLEM SETTING AND
CONTINGENCY EVALUATION

2.1. Interaction Environment
A face-to-face interaction between a human caregiver and an
(infant) robot is assumed as our experimental environment
(Figure 1). There is a table between them and one or more
objects are placed on the table. The human caregiver plays and
interacts with the robot (based on their own strategy, if any) and
can move the position of the objects on the table. The robot
discretizes time. At each time step t, the robot observes the
environment and stores the observed data in the sensory variables
S
t = (St1, S

t
2, · · · , StNS

)T , where NS denotes the number of sensory
variables. We also refer to these by “state variable” in this paper.
After the observation, it sends action commands to its joints and
saves them to the action variables A

t = (At
1,A

t
2, · · · ,At

NA
)T ,

where NA denotes the number of action variables, which would
be equal to the number of the joints of the robot. Next, the robot
observes the result of the taken action, and saves the resultant
observations to the resultant variables: Rt = (Rt1,R

t
2, · · · ,RtNR

)T

for the values of the resultant observation before taking the
action, and R

t+1 = (Rt+1
1 ,Rt+1

2 , · · · ,Rt+1
NR

)T for after taking the
action, where NR denotes the number of the resultant variables.
In the remainder of this section, we summarize and introduce
the basic idea of the contingency evaluation mechanism of our
previous work (Mahzoon et al., 2016).

2.2. Finding and Reproducing Contingency
Assume that in time step t, the robot observes sti and rt

k
, takes

the action atj , and as result, observes rt+1
k

; here, sti , a
t
j , r

t
k
, and

rt+1
k

indicate the values of the variables Sti , A
t
j , R

t
k
, and Rt+1

k
,

respectively. The quaternion e = (sti , a
t
j , r

t
k
, rt+1

k
) represents

such an experience of the robot, and is simply denoted as
experience in this paper. An experience e contains information
about “when (sti), what to do (a

t
j ), for which transition (r

t
k
to rt+1

k
).”

During the interaction with the human, the robot evaluates
the “contingency” of its experiences, which will be described
later, and distinguishes the “contingent” ones. After finding the
contingent experience(s), the robot tries to “reproduce” it by
acquiring a suitable sensorimotor mapping that enables the robot
to take suitable action atj in the specific state sti to reproduce

the specific transition of rt
k
to rt+1

k
. Inspired by previous works

on human infant behaviors concerning the process of finding

FIGURE 1 | Problem setting of the face-to-face interaction of the robot with a

human caregiver. They sit across a table, and there are some objects on the

table. The robot can produce actions such as moving head and hands as

illustrated with the arrows in the figure. During the interaction with the human,

the sensory data, taken actions, and resultant observations are stored in the

sensory, action, and resultant variables, respectively (S, A, and R).

and reproducing interaction contingencies (Watson, 1972), even
with a contingently responsive robot (Movellan and Watson,
2002), in our work, the ability to reproduce the contingency of
an interaction is considered to be one of the most essential social
skills for an interactional robot, which makes it able to interact
properly with the interacting human.

To evaluate the contingency of the experiences, the robot
updates and saves histograms of the values of the variables in each
step of the interaction, and calculates the following probabilities.
Assume there are two discrete-time stochastic processes X and Y ,
which can be approximated by stationary Markov processes. The
transitions of the processes from time t to t+1 can be represented
by the transition probabilities p(xt+1|xt) and p(yt+1|yt), where
the notifications xt , yt and xt+1, yt+1 indicate the values of the
processes at times t and t + 1, respectively. The contribution
of a specific value of process Y , such as yt , on the transition of
the process X from a specific value such as xt to a specific value
xt+1 can be estimated using transfer information (Mahzoon et al.,
2016):

Iy→x = log
p(xt+1|xt , yt)
p(xt+1|xt)

. (1)

For an experience e, the transfer information can be adopted as
follows to evaluate the contingency of the experience, i.e., the
contribution of the action atj in state sti to the transition of rt

k
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to rt+1
k

, or in other words the joint contribution of the state and
action in experience e:

CJ(e) = I(si ,aj)→rk = log
p(rt+1

k
|sti , a

t
j , r

t
k
)

p(rt+1
k

|rt
k
)

. (2)

Additionally, the single contributions of the state and action in
experience e can be calculated as follows:

CS(e) = Isi→rk = log
p(rt+1

k
|sti , r

t
k
)

p(rt+1
k

|rt
k
)
, (3)

CA(e) = Iaj→rk = log
p(rt+1

k
|atj , r

t
k
)

p(rt+1
k

|rt
k
)

. (4)

The purpose of the robot is to evaluate the joint contribution in
experiences to know if the action atj in state sti specifically leads to

the consistent result rt+1
k

, and acquire a sensorimotor mapping

of sti to atj . However, the value of Equation (2) can be also large

when the value of the single contribution of either the state or
action becomes large. Therefore, the joint contribution needs
to be compared with the single contributions to distinguish the
experiences in which the transition to rt+1

k
is due to both sti and

atj , and not simply one of them. It can be estimated as follows:

SC̃J(e) = CJ(e)− CS(e)

= log
p(rt+1

k
|sti , a

t
j , r

t
k
)

p(rt+1
k

|sti , r
t
k
)

, (5)

AC̃J(e) = CJ(e)− CA(e)

= log
p(rt+1

k
|sti , a

t
j , r

t
k
)

p(rt+1
k

|atj , r
t
k
)
, (6)

where SC̃J(e) and
AC̃J(e) compare the joint contribution with the

single contribution of the state and action, respectively. Finally,
themeasure named synergistic contribution of contingencies (ScC)
is proposed as follows to distinguish the “contingent” experiences,
i.e., the experiences in which the combination of the state and
the action is the cause of the transition, but not either of them is
individually the cause:

C̃J(e) = min{SC̃J(e),
A C̃J(e)}. (7)

When the value of C̃J(e) of a specific experience e becomes larger
than a specific threshold CT for a predefined duration, such as θ

time steps, the robot distinguishes it as a contingent experience
(or simply, a contingency) and acquires the sensorimotor
mapping (sti , a

t
j ). Then, it starts to “reproduce" the found

contingency by “using” the acquired sensorimotor mapping. The
sensorimotor mapping learned based on the experience e is
denoted as the policy π . During interaction with the human,
the robot may acquire several different policies. Note that θ is a
parameter to determine how carefully the observed contingency
is judged to be stable.

2.3. Evaluating the Contingency Chain
After the acquisition of a new m-th policy πm, the robot adds
a new Boolean variable Sπm to the set of state variables, which
indicates whether the policy πm was used. It takes the value 1 if π
was used, and 0 otherwise. To avoid confusion, we also denote the
value of the Sπm with π̄m when it takes the value 0, and with πm

when it is 1. Then, the robot continues updating the histograms
of the variables as well as calculating the contingency of the
experiences, including the new state variable Sπm . Using this
method, the robot becomes able to evaluate the contingency of
the c-Chains, and as a result, evaluate the contingency related to
the new behavior of the caregiver who observed the contingency
reproduction of the robot. In previous work (Mahzoon et al.,
2016), an example of such a c-Chain was the consistent response
of the caregiver to the social referencing behavior of the robot: the
robot found that after using the gaze-following skill, if it looks
at the caregiver’s face, the caregiver will look at the face of the
robot as an acknowledgement. Moreover, they showed that in
a more complex simulation environment, the robot acquires a
longer sequence of actions, up to five sequences.

3. PROPOSED METHOD

In this section, after discussing the two essential weak points
of the previous work (Mahzoon et al., 2016) and our solution
for each of them, we describe the mechanism of our proposed
method.

3.1. Ostensive-Cue Sensitive Learning
(OsL)
The first problem of previous work is the synchronization of
the teaching phase of the human caregiver with the learning
phase of the infant robot. Learning under the non-synchronized
environment decreases the learning efficiency of the robot, and
causes significant delays in the learning progress. Although
distinguishing the teaching phase of the human by the robot
seems to be a difficult issue owing to the probable variety of types
of teaching in different human subjects, there are several reports
in the fields of cognitive science and developmental psychology
regarding how human infants treat the synchronization problem
and increase the efficiency of learning from adults (see a
review Csibra and Gergely, 2011).

Csibra and Gergely addressed the “natural pedagogy”
as a human communication system for generic knowledge
transmission between individuals (Csibra and Gergely, 2009).
They proposed that human infants are “prepared to be at the
receptive side of natural pedagogy” and sensitive to learn from
the ostensive cues of human adults, such as mutual eye contact
between the adults and the infant, or adults’ infant-directed
speech (motherese). From this statement, we hypothesize that the
human adult may inherently or adaptively output the ostensive
cues when it tries to teach something to the human infant, or
even to the infant robot. Based on this hypothesis, we propose
the OsL algorithm for the infant robot as follows: (1) The robot
stops moving when it observes an ostensive cue from the human
and continues the observation of the human until the signal
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disappears. This is because the ostensive cue acts as a signal
(from our hypothesis) that informs the robot about the human’s
teaching phase, and notifies the robot to synchronize with it;
(2) The robot counts the histogram of the consequent experiences
right after the disappearance of the ostensive cue η times (i.e.,
the learning weight parameter of the OsL algorithm) instead of
one time in order to emphasize such experiences. This is because
(from our hypothesis) after the ostensive signals, the human
would be in the teaching phase and the experiences right after
the ostensive cues probably contain more informative concepts
compared with other experiences. Using OsL, we expect the robot
to increase the efficiency of learning and, as a result, the speed of
skill acquisition.

3.2. Exclusive Evaluation of Policy (XEP)
The second problem of the previous work is the overestimation
of the transition probabilities of the single contingencies, which
leads to an underestimation of SC̃J and/or

AC̃J , i.e., Equations (5)
and (6), when the robot uses an acquired policy. This leads
to the underestimation of the ScC of some experiences, i.e.,
C̃J : Equation (7). The reasons for the overestimation and the
underestimation are as follows. Assume that the robot acquired
its newm-th policy πm based on the contingent experience em =
(sti , a

t
j , r

t
k
, rt+1

k
). Before the robot starts to use πm, i.e., using the

sensorimotor mapping (sti , a
t
j ), the

SC̃J and
AC̃J of the experience

em can be written by the transition probabilities calculated based
on the histograms of the variables before acquiring and using πm,
i.e., pbef, as follows:

SC̃bef
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

pbef(rt+1
k

|sti , r
t
k
)

, (8)

AC̃bef
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

pbef(rt+1
k

|atj , r
t
k
)
. (9)

However, when the robot starts to use πm, the probability
of taking action atj in state sti increases. This fact increases

the value of the transition probabilities (1) p(rt+1|sti , r
t
k
) and

(2)p(rt+1|atj , r
t
k
), i.e., the numerator of the single contingencies:

Equations (3) and (4); and the denominator of SC̃J and AC̃J :
Equations (5) and (6). The reasons are (1) for p(rt+1|sti , r

t
k
):

in state sti , the probability of taking action atj increases owing

to the usage of πm, which is a contingent skill and leads the
transition to rt+1

k
with high probability; and (2) for p(rt+1|sti , r

t
k
):

the probability of having been in state sti when the action atj is

taken increases owning to the usage ofπm. Assume that the values
of the transition probabilities p(rt+1|sti , r

t
k
) and p(rt+1|atj , r

t
k
) after

the usage of πm, i.e., denoted by paft, increase by factors of α and
β , respectively, compared to pbef:

paft(rt+1
k

|sti , r
t
k) = α. pbef(rt+1

k
|sti , r

t
k) ; α > 1 (10)

paft(rt+1
k

|atj , r
t
k) = β . pbef(rt+1

k
|atj , r

t
k) ; β > 1 (11)

Assuming that the value of the transition probability
p(rt+1

k
|sti , a

t
j , r

t
k
) does not change before and after the usage

of πm (because the usage of πm as a sensorimotor mapping
(sti , a

t
j ) is included in the condition part of the transition

probability), the values of SC̃J and
SC̃J for the experience em after

the usage of πm can be written as:

SC̃ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

α. pbef(rt+1
k

|sti , r
t
k
)

= SC̃ bef
J (em)− logα ; α > 1, (12)

AC̃ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

β . pbef(rt+1
k

|atj , r
t
k
)

= AC̃ bef
J (em)− logβ ; β > 1. (13)

Therefore, ScC of the experience em after the usage of the πm will
become:

C̃ aft
J (em) = min{SC̃ bef

J (em)− logα, AC̃ bef
J (em)− logβ}

< C̃ bef
J (em). (14)

To avoid such an underestimation, we propose to separate the
contingency evaluations related to the acquired policies and
atomic variables, namely the XEP algorithm. In this algorithm,
the system adds an extra variable for each sensory and action
variable to the system, denoted by Ŝ ti and Ât

j . When an acquired

policy πm is used, the system sets the values of Ŝ ti and Ât
j to don’t

care. Therefore, the histogram of the values of these variables,
denoted by ŝti and âtj , are counted only if an acquired policy has

not been used. Using the histogram of these variables for the
calculation of the transition probabilities of Equations (10) and
(11), which are denoted by p̂, causes them not to increase even
after usage of the policy πm:

p̂ aft(rt+1
k

|sti , r
t
k) = paft(rt+1

k
|ŝti , r

t
k)

= pbef(rt+1
k

|sti , r
t
k), (15)

p̂ aft(rt+1
k

|atj , r
t
k) = paft(rt+1

k
|âtj , r

t
k)

= pbef(rt+1
k

|atj , r
t
k). (16)

Therefore, when the XEP algorithm is used, the value of SC̃J and
AC̃J for the experience em, which are denoted by SĈJ and

AĈJ ,
after the usage of πm will be:

SĈ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

p̂ aft(rt+1
k

|sti , r
t
k
)

= SĈ bef
J (em), (17)

AĈ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

p̂ aft(rt+1
k

|atj , r
t
k
)

= AĈ bef
J (em). (18)

As the result, the ScC of the experience em when the XEP
algorithm is used, which is denoted by ĈJ , after the usage of πm
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will be:

Ĉ aft
J (em) = min{SĈ aft

J (em),
AĈ aft

J (em)}

= Ĉ bef
J (em). (19)

With respect to Equation (19) and Inequation (14), it can
be concluded that the XEP algorithm is able to solve the
underestimation problem of the previous work (Mahzoon et al.,
2016), and is expected to increase the accuracy of the contingency
evaluation1.

3.3. Mechanism
Figure 2 shows the schema of the proposed system. It consists
of two main parts: the Contingency Detection Unit (CDU) and
the Action Producing Unit (APU). The APU is responsible for
determining the output action in each time step, while the CDU
evaluates the contingency of the experiences. At each time step t,
the robot observes the environment and stores the results of the
current observation in St and Rt (bottom part of the figure). They
are sent to the APU, and the APU decides about the outputting
action for each joint of the robot At , based on the input data
S
t and R

t . After taking the action, the robot again observes the
environment, and stores the resultant observation in the resultant
variable Rt+1 (bottom part of the figure). Simultaneously, in each
time step, the CDU gets the values of all of the variables, and
evaluates the contingency of the experiences. If the CDU detects
an experience as a contingent one, it adds a new Contingency
Reproducer (CR in Figure 2) to the APU, which enables the APU
to reproduce the found contingency. In the remainder of this
section, each component of the CDU and APU are explained in
detail.

3.3.1. Contingency Detection Unit (CDU)
In each time step, the CDU (1) evaluates the contingency of the
experiences, and (2) if a contingent experience is detected, it adds
a new CR to the APU, which enables the robot to reproduce the
found contingency. The CDU consists of three components: the
Contingency Evaluator, Ostensive Signal Detector (OS-D), and
the Skill Usage Detector (SU-D).

3.3.1.1. Contingency Evaluator
This unit calculates the contingencies of the experiences based on
the histograms of the experiences, using the method described in
section 2.2. If the experience e = (sti , a

t
j , r

t
k
, rt+1

k
) is distinguished

as a contingent one, it adds a new CR to the APU, which contains
the values of the variables of the found contingent experience
e, i.e., sti , a

t
j , r

t
k
and rt+1

k
. After that, the Contingency Evaluator

continues the evaluation of the contingencies, including the c-
Chains (see section 2.3), as well as the process of adding further
CRs to the system.

3.3.1.2. OS-D
The OS-D gets the current state of the robot (Sti and Rt

k
). If it

detects that these variables include an ostensive cue from the

1For the same reason, the system also uses the extra variables Ŝ ti and Ât
j when the

robot has used the policy in the previous time step, i.e., when Sπm = 1.

FIGURE 2 | System schema of the proposed mechanism, consisting of two

main parts: Contingency Detection Unit (CDU) and Action Producing Unit

(APU). Contingency Reproducer (CR), Reaction Producer (RP), and Action

Selector compose the APU, while the Contingency Evaluator, Ostensive Signal

Detector (OS-D) and Skill Usage Detector (SU-D) form the CDU. The new

components of the proposed mechanism are shown with the darker color

(OS-D and SU-D). V, X, and Aπ indicates the controlling signals described in

section 3.3.1. In each time step, the robot outputs the action At based on its

current states St and Rt, and observes the resultant transition of the

environment, i.e., Rt+1.

human, it sends the stop signal V to the Contingency Evaluator
as well as the Action Selector. This signal causes the Contingency
Evaluator to pause counting the histograms, and the Action
Selector to make the robot to keep looking at the human and
stop its movement. Additionally, it sends the learning weight
parameter η (see section 3.1) to the Contingency Evaluator.
When the ostensive cue disappears, the stop signal V is canceled
simultaneously, which makes the Contingency Evaluator and
Action Selector restart their functions. In this paper, mutual eye
contact with the human caregiver is implemented as the only
ostensive cue of the interaction.

3.3.1.3. SU-D
The SU-D gets the information regarding the usage of the policies
in each time step from the Action Selector, and informs the
Contingency Evaluator if any policy has been used at the current
moment. To this end, the SU-D gets the values of the Boolean
variable Aπm from the the Action Selector, which indicates if the
m-th policy is currently used, and sends the Boolean signal X to
the Contingency Evaluator, which is calculated as follows:

X =
Nπ∨

m=1

Aπm , (20)
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where Nπ denotes the number of the policies that the robot
has acquired until now. If the value of the signal X is true, the
Contingency Evaluator sets the value of the extra variables Ŝ ti and
Ât
j to don’t care, as described in section 3.2.

3.3.2. Action Producing Unit (APU)
As shown in Figure 2, the APU is equipped with three
components, the Reaction Producers (RP), Contingency
Reproducers (CR), and Action Selector. At the beginning of the
interaction, the APU contains no CRs and selects the actions
of the robot at each time steps from the suggested actions of
the RPs, denoted by A∗

1′ to A∗
n′ in Figure 2 where n′ indicates

the number of RPs in the system. Continuing the interaction
with the caregiver leads the CDU to find contingent experiences
and add CRs to the APU, which include specific sensorimotor
mappings, as described in section 3.3.1. Similar to the RPs,
the CRs send their suggested actions to the Action Selector,
denoted by A∗

1 to A∗
n in Figure 2, where n indicates the number

of CRs acquired by the robot. Therefore, after adding CRs to the
system, the Action Selector needs to choose the outputting action
command to each joint of the robot from all of the candidates:
Am ∈ {A∗

1 ,A
∗
2 , · · · ,A∗

n,A
∗
1′ ,A

∗
2′ , · · · ,A

∗
n′} where m indicates the

m-th joint of the robot.

3.3.2.1. Contingency Reproducer (CR)
The CR gets the current state of the robot and outputs its
suggested action to the Action Selector, based on its sensorimotor
mapping. Additionally, it sends the reliability Z to the Action
Selector, which indicates the certainty of the transition to the
expected state if the Action Selector selects its suggested action
as the output action of the robot. Assume the m-th CR was
added to the system based on the contingent experience em =
(sti , a

t
j , r

t
k
, rt+1

k
). If the current state Sti and Rt

k
are the same as sti

and rt
k
of the CR, it outputs the candidate action atj to the Action

Selector. Otherwise, it does not send any candidate. In this paper,
the CR sends the ScC of the experience em, i.e., ĈJ(em), as its
reliability Zm to the Action Selector.

3.3.2.2. Reaction Producer (RP)
The RP gets the current state of the robot and outputs a pre-
programmed reaction, which is sent to the Action Selector as the
suggested action of the RP. Also it sends a constant value αm as its
reliability Zm to the Action Selector, where m indicates the m-th
RP. For the sake of simplicity, in this paper we considered only
one RP for the system, which outputs a random action for any
input state.

3.3.2.3. Action Selector
The Action Selector chooses the output action for each joint
of the robot at each time step. A soft-max action selection was
utilized to choose the output from the candidates. Assume that
for the j-th joint of the robot, the number of RPs and CRs
which send the candidate action to the Action Selector, namely
inputting components, are NR

j and NC
j , respectively. At each

time step, the probability of selecting the suggested action of the
inputting component i for the joint j is calculated based on their

reliability as follows:

P
j
i =

exp (Zi/τ )∑
k∈NR

j +NC
j
exp(Zk/τ )

, (21)

where Zi indicates the reliability of the inputting component i,
and τ is a temperature constant. Note that if Zi is less than the
omission threshold CO, the Action Selector does not consider

the inputting component i in Equation (21) and P
j
i for that

component is set to zero. This mechanism enables the robot to
have a chance to omit any acquired skill, whichmight be acquired
owing to the noise, lack of sufficient experiences, or other error
factors. We set CO = CT − ε, where the CT is the skill acquisition
threshold (see section 2.2), and ε is a constant value. Additionally,
when more than two CRs with the same suggested action and
different c-Chain length exist in the inputting components, the
Action Selector considers only the one with the longer c-Chain
length as the inputting component, and ignores the others, i.e.,

sets their P
j
i values to zero.

When the suggested output of them-th CR with the policy πm

is selected as the output, the Action Selector sets the value of the
Boolean variable Aπm to 1. It sends Aπm to the SU-D in each time
step to inform the SU-D about the usage of the skills. Also, when
the Action Selector gets the stop signal V from the OS-D, it stops
outputting new action commands to the joints of the robot until
the stop signal disappears.

4. EXPERIMENT AND RESULT

In this section, the results of the real-world robot experiment
with human subjects are reported. To evaluate the effect of
the proposed methods, i.e., the XEP and OsL algorithms,
the performances of four different learning mechanisms are
compared, of which the CDU consists of (1) neither the SU-
D nor the OS-D, (2) only the SU-D, (3) only the OS-D, and
(4) both the SU-D and the OS-D. In the remainder of this
paper, they are referred to as the previous method, XEP method,
OsL method, and proposed method, respectively. This study was
carried out in accordance with the recommendations of the ethics
committee for research involving human subjects at the Graduate
School of Engineering Science, Osaka University. The protocol
was approved by the ethics committee for research involving
human subjects at the Graduate School of Engineering Science,
Osaka University. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

4.1. Subjects, Apparatus, and Procedure
Figure 3 shows the environment of the experiment, which was
designed based on the concepts explained in section 2.1 and
Figure 1. The human subject was asked to sit opposite the
humanoid infant robot and interact with it naturally, as when
he/she interacts with a human infant. The subject was asked to
play with the robot using a toy on the table and draw the attention
of the robot to the toy by teaching the current position of the
toy as well as the name, color, shape, or other features of it. It is
explained to the subject that the robotmay learn some social skills
from the behavior of the subject, and start to use them. When
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FIGURE 3 | The environment of the subject experiment. The subjects were

asked to teach the current position of the toy to the robot. Also, they were

asked to push a button of the keyboard to express that they are smiling and

praising the robot at the moment. The consent for publication of this image

was obtained from the participant of this image by using a written informed

consent.

the robot uses a learned skill, the LEDs on the face of the robot
turn on temporarily. The subject was asked to praise the robot
by hitting a specific key on the keyboard when the robot finds
the toy by using an acquired skill, i.e., when the LEDs turn on.
Additionally, he/she was asked to change the position of the toy
around every 20 s. The experiment was conducted for 800 time
steps, i.e., around 40–50 min of interaction. After every 200 steps,
i.e., around 10 min, the experiment was paused and the subject
was asked to answer a simple questionnaire about the interaction,
which may take <2 min (see section 4.5).

Twelve sessions were conducted for each four conditions
described in section 4 using different human subjects, i.e., totally
48 adults: 30 males and 18 females. Before the main experiment,
a test phase of 2 min was conducted to make everything clear
for the subject. In this experiment, each time step was set to 2–
2.5 s based on the complexity of the robot’s internal calculations.
Additionally, when the robot used a complex skill, the LEDs were
set to temporally flash with frequency of f = 2Hz instead of just
turning on; but the subject was not told about it.

4.2. Variables and Parameters
In this experiment, the number of objects was set to 1, and the
position of the object on the table was quantized to 3 regions:
left side, right side, and the middle of the table. Based on our
experience, the other parameters were set as follows: for the CDU,
(CT , θ , η) = (0.7, 5, 2), and for the APU, (αm, τ , ε) = (0, 0.4, 0.1).

Table 1 shows the initial variables used in this experiment. For
the perception S, two variables were prepared: the gaze direction
of the caregiver (S1) and the observation of the object (S2). S1
takes the values f1, f2, and f3 when the robot recognizes that the
caregiver is looking at the left, right, and the middle of the table,
respectively. It takes the value fr when the robot detects that the
caregiver is looking at it, and the value fφ when the robot cannot
detect the direction of the gaze of the caregiver. S2 takes the value
o when the robot detects the object, and oφ when no object is
detected. A motion capture system was utilized to detect the gaze

TABLE 1 | Variables of the robot for the experiment.

Type Variable name Symbol Elements

S Caregiver’s gaze direction C S1 = {f1, f2, f3, fr , fφ }
Object Os S2 = {o,oφ }

A Gaze shifting G A1 = {g1, g2, g3, gc}
Hand Gesture H A2 = {h1, h2, h3, h4}

R Frontal face of caregiver F R1 = {r̄1, r1}
Profile of caregiver P R2 = {r̄2, r2}
Object Or R3 = {r̄3, r3}
Praise from caregiver W R4 = {r̄4, r4}

direction of the caregiver as well as the position of the object in
each time step.

For the actions of the robot A, two variables were prepared:
gaze shift (A1) and the hand gesture of the robot (A2). A1 takes
the values g1, g2, and g3 when the robot shifts its gaze and looks
at the left, right, and the middle of the table, respectively. It takes
the value gc when the robot looks at the caregiver’s face. A2 takes
the values h1, h2, h3, and h4, which indicate the different types
of hand gestures known by the robot. In this experiment, each
values of the hj were implemented as a different degree of the
pitch of the robot’s arm.

For the resultant perception R, four Boolean variables were
considered: the frontal face of the caregiver (R1), the profile (face)
of the caregiver (R2), the observation of the object (R3), and the
praise from the caregiver(R4). They take the value 1 if the frontal
face, the face in profile, the object and the smile of the caregiver
are observed by the robot. Otherwise, they take the value 0. To
avoid confusion, the values of R1, R2, R3, and R4 are also denoted
with r1, r2, r3, and r4 when they take 1, and with r̄1, r̄2, r̄3, and
r̄4 when they are 0, respectively. In the experiment, to detect the
values of R1, R2, and R3, the motion capture system was utilized,
while the praise from the caregiver, i.e., R4, was expressed by the
caregiver hitting a specific key on the keyboard. Also, to avoid
confusion of the variables and to facilitate further discussions,
each variable is mentioned with the symbol indicated in Table 1

in the remainder of the paper.

4.3. Developmental Process of Social Skill
Acquisition
Before the statistical comparison of performance of the different
methods, we first show the developmental process of social
skill acquisition by the robot using some examples from the
experimental results of three subjects. Tables 2–4 show the
acquired skills by the robot during the experiment with these
subjects, namely sbj-A, sbj-B, and sbj-C, respectively. While
the robot utilized the previous method in the case of sbj-A,
it used the proposed method for the case of sbj-B and sbj-C.
Additionally, Figure 4 shows the time course of the evaluated
amount of contingencies related to each acquired skills indicated
in Tables 2–4 .

In these tables, the “ID” column indicates the ID of the
contingency reproducer (CR),“Step” indicates the time-step
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TABLE 2 | Acquired social skills by the robot for the sbj-A.

ID Step Level Label rt st at rt+1 Interpreted function

π1 101 1 Gaze-Following-2 r̄3 f2 g2 r3 Gaze Following

(middle)

π2 340 1 Gaze-Following-1 r̄3 f1 g1 r3 Gaze Following

(right)

π3 370 1 Gaze-Following-0 r̄3 f0 g0 r3 Gaze Following

(left)

π4 519 2 Looking-Back-2 r̄4 π1 gc r4 Looking Back

(after Gaze-Following-2)

TABLE 3 | Acquired social skills by the robot for sbj-B.

ID Step Level Label rt st at rt+1 Interpreted Function

π1 191 1 Gaze-Following-2 r̄3 f2 g2 r3 Gaze Following

(middle)

π2 295 1 Gaze-Following-1 r̄3 f1 g1 r3 Gaze Following

(right)

π3 418 1 Gaze-Following-0 r̄3 f0 g0 r3 Gaze Following

(left)

π4 485 2 Looking-Back-0 r̄4 π3 gc r4 Looking Back

(after Gaze-Following-0)

π5 611 2 Looking-Back-1 r̄4 π2 gc r4 Looking Back

(after Gaze-Following-1)

π6 655 2 Looking-Profile-0 r̄2 π3 gc r2 Finding Profile

(after Gaze-Following-0)

TABLE 4 | Acquired social skills by the robot for the sbj-C.

ID Step Level Label rt st at rt+1 Interpreted Function

π1 100 1 Gaze-Following-2 r̄3 f2 g2 r3 Gaze Following

(middle)

π2 129 1 Gaze-Following-0 r̄3 f0 g0 r3 Gaze Following

(left)

π3 134 1 Frontal-Face r̄1 oφ gc r1 Finding Frontal Face

π4 220 1 Gaze-Following-1 r̄3 f1 g1 r3 Gaze Following

(right)

π5 372 2 Looking-Back-1 r̄4 π4 gc r4 Looking Back

(after Gaze-Following-1)

π6 512 1 Hand-Motion r̄3 f1 h2 r3 Finding Object by Hand

π7 610 2 Looking-Back-2 r̄4 π1 gc r4 Looking Back

(after Gaze-Following-2)

π8 622 2 Looking-Back-0 r̄4 π2 gc r4 Looking Back

(after Gaze-Following-0)

π9 720 3 Check-Again-1 r̄3 π5 g1 r3 Check Again the Object

at which that the CR was acquired, “Level” indicates the
length of the c-Chain of the acquired CR, “Label” shows the
symbol of the CR which may be used to refer to it by the
subsequent CRs (and also it is used in Figure 4 to indicate
each CR), the column of “rt , st , at , and rt+1” indicate the
experience e on which the CR was created, and finally, the
interpretation of the CR is given based on the behavior of
the robot when it uses the CR in the column of “Interpreted
Function.”

In Figure 4, the graphs of the simple and complex skills are
separated: the top part (Figures 4A–C) for the simple skills and
the bottom part (Figures 4D–F) for the complex ones. Each
column of the figure indicates the result of each subject: from the
left to right for sbj-A, sbj-B, and sbj-C, respectively. In each graph,
the threshold of the contingency acquisition CT is shown with
the horizontal dotted gray line, and the hatched area indicates
the values less than the threshold; while the vertical dashed lines
indicate the time-step that each CR was acquired (the color is the
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FIGURE 4 | Developmental process of the acquisition of social skills by the robot: a comparison among three participants (sbj-A, sbj-B, and sbj-C). For each subject,

the process was shown for simple skills (top three graphs) and complex skills (bottom three graphs). The horizontal axes indicate the time step of the experiment

(ends at 800, which is equal to around 40 min.), while the vertical axes labeled contingency indicate the amount of the calculated contingency using equation (7). Each

sub-figure include the time courses of contingency for some sample set of experience e, which are mentioned with a name such as Gaze-Following or Looking-Back

in the legend of the figures. Ct indicated the threshold for the contingency of e to be acquired as a skill. The vertical dotted lines indicate the timing of the acquisition of

a e as a skill, where its color represents which experience is acquired. Note that 2 lines (red and blue) in (E) and 3 lines (blue, green, and red) in (F) are overlapped, but

represent contingency for different experiences. (A) Simple skills for sbj-A. (B) Simple skills for sbj-B. (C) Simple skills for sbj-C. (D) Complex skills for sbj-A.

(E) Complex skills for sbj-B. (F) Complex skills for sbj-C.

same as that of the corresponding CR indicated in the legend
of the graphs). Note that the order of the CRs at the legend
of the graphs are the same as the order in which they were
acquired. Also, the colors of the lines for Gaze-Following and
Looking-Back are set based on their corresponding directions:
red, blue, and green for the left, right, and the middle of the table,
respectively.

According to the first row of Table 2, in the case of the sbj-
A, where the robot was using the previous method, the robot
acquired its first CR π1 at t = 101, which for the inputs (r̄3, f2),
outputs the action g2 to observe r3. In other words, this CR
indicates that when the robot recognizes that the human subject
is looking at the middle of the table (f2), if the robot shifts its
gaze to the same position, i.e., the middle of the table (g2), then

the robot can find the object (transition of r̄3 to r3). Using this
CR, the robot can produce the gaze following behavior (to the
middle of the table). It is noted by the symbol Gaze-Following-
2 (where the number indicates the position of the table) and
the time course of the calculated contingency of the experience
related to Gaze-Following-2, i.e., eGF2 = (f2, g2, r̄3, r3), is shown
in Figure 4A with the green line. From the beginning of the
interaction, the contingency of Gaze-Following-2 goes higher
than the threshold CT (the vertical dashed line), and after a while
[namely, after experiencing the eGF2 more than θ (=5) times],
it is acquired as the first CR of the robot. The vertical green
dashed line around t = 100 in Figure 4A shows the timing of the
acquisition of this CR, which corresponds to the value of “Step" in
π1, Table 2. As shown in the figure, the value of the contingency
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of Gaze-Following-2 was 0.98 at the acquisition time, while it
decreases to 0.25 at the end of the experiment.

Following the time courses of the other contingencies in
Figure 4A we can see that the robot acquired gaze-following
skill to the right and left side of the table at t = 340 and
t = 370, respectively (blue and red lines, corresponding with
π2 and π3 of Table 2, respectively). After the acquisition of the
skills, the robot starts to use them as described in section 3.3.2.3.
At t = 519, the robot found a contingent relationship between
using Gaze-Following-2 and being praised by the human, and
acquired new CR with a level of 2 (the green line in Figure 4D

and π4 in Table 2). This CR tells the robot that after using the
gaze following to the middle of the table (st = π1), if it shifts
gaze to the human (at = gc), then the robot would be praised by
the human (transition of rt = r̄4 to rt+1 = r4). In this paper,
we refer to this behavior as looking back behavior (Looking-
Back). Acquisition of the Looking-Back-2 would be due to the
specific praising behavior of the human during the experiment
(see section 4.1). This CR shows that the robot develops the
acquired skills (such asGaze-Following-2) tomore complex ones
(such as Looking-Back-2), which enables the robot to have longer
interaction sequence with the human subject.

However, in the case of the sbj-A, the implemented
method was the previous method. As described in section 3.2,
the previous method has no mechanism to prevent the
underestimation of contingencies after the acquisition of the
CRs. Therefore, in Figures 4A,D, the contingency of the acquired
CRs decreased after the acquisition of each CRs. As result, the
contingency of the Gaze-Following-2 and Gaze-Following-0

(green and red lines) become less than the omission threshold
CO (=0.6), i.e., 0.1 lower than the threshold CT in the graphs,
and the Action Selector would stop using them. Additionally, a
smaller value of the contingencies reduces the value of Z, which
leads the Action Selector to use the CRs with less probability (see
Equation 21). Therefore, in the previous method, although the
robot could acquire simple and complex skills, it may not be able
to use them properly.

Table 3, Figures 4B,E show the result of the experiment of sbj-
B, in which the proposed method was implemented on the robot.
Compared with the case of the sbj-A (which the previous method
was implemented), the contingency of the Gaze-Followings do
not decrease to less than (or close to) the omission threshold
and, as a result, the robot could acquire more complex skills
(two Looking-Backs and one Looking-Profile). Considering the
probable irregular behavior of the human against the robot
or the noise of the environment in the real-world interaction,
preventing the underestimation of the contingencies seems to
be very important, as shown in this example. Note that if the
subjects had praised the robot when the robot found the object
by using the Gaze-Following skill with high probability, the
value of the contingency of Looking-Back is theoretically 4
with respect to Equation (7); assuming that the numerator of
Equations (5) and (6) are approximately 1 due to the accurate
praising behavior of the caregiver, while the denominator of
Equation (5) is 0.25 because if the robot chooses the gaze
action gc from the four possible ones g1,g2,g3, and gc it would
be praised, and the denominator of Equation (6) is at most

0.25 because it is equal to the probability that the robot had
found the object before the robot takes the action gc. During the
experiment, although both the sbj-A and sbj-B seemed to praised
the robot with same manner, the contingency of the Looking-

Back-2 (green line in Figure 4D) for the sbj-A became 0.76 at
the end of the experiment, while in the case of the sbj-B, it
became 3.99 for both Looking-Back-0 and Looking-Back-1 (red
and blue lines in Figure 4E), which is very close to the value of
the theoretical calculation. Note that the overlap of the Looking-
Backs is due to the small number of the experiences related to the
Looking-Backs, which makes the transition probabilities of their
contingency evaluation very close to each other.

Following the time courses of Figure 4E, finally a new
complex skill Looking-Profile-0 is acquired. This CR (see π6 of
Table 3) causes the robot to look at the human (gc) after following
its gaze (π3) to find human’s face in profile (transition of r̄2 to r2).
This skill was specific to the sbj-B; it seems that he tended to show
his face in profile to the robot when the robot succeeded to find
the object by using the Gaze-Following skills, probably because
he was concentrating to push the correct button of the keyboard
to praise the robot while the keyboard was on the right side of
the table in the case of the sbj-B. The acquisition of this kind of
subject-specific skills shows that the proposedmechanism has the
potential of evaluating various kind of human behaviors based on
the different interaction manner of the subjects.

Figures 4C,F show the result of another subject, i.e., sbj-C,
which the robot was implemented with the proposed method.
The result shows more complex and interesting process of the
contingency evaluation, acquisition, and omission by the robot.
The details of the acquired skills are listed in Table 4. After
acquiring the gaze-following skill to the middle and the left side
of the table (Gaze-Following-2 andGaze-Following-0, the green
and red lines in Figure 4C), the robot acquired a skill named
Frontal-Face (the black line), which makes the robot to look at
the human (gc) to find his/her frontal face (r1), when no object
was detected (oφ) at t = 134 (see π3 inTable 4). However, finding
the frontal face of the human is due to the single effect of the
action gc, but not the joint effect of the state oφ and action gc
(see section 2.2 for the details of the single and joint effects).
Therefore, as shown in the figure, the contingency of the Frontal-
Face was reduced to less than the omission threshold and as
a result, the Frontal-Face would not be selected by the Action
Selector anymore. The acquisition and omission of this CR shows
an example of how the proposed mechanism may acquire a non-
contingent skill, use it, update the consequent of the usage of the
skill, and finally recognize it as a non-contingent one and stop
using it.

After the Frontal-Face, the robot acquired Gaze-Following-

1, developed it to Looking-Back-1, and acquired another non-
contingent skill named Hand-Motion, which indicates that the
robot can find the object by hand gesture h2. Since there seemed
to be no relation between finding the object and the hand gestures
of the robot, therefore the contingency of the Hand-Motion was
reduced to less than the omission threshold after a while. Then,
the robot acquired Looking-Back-2 and Looking-Back-0, and
finally acquired another complex skill with the level of 3, named
“Check Again”: Check-Again-1. This CR informs the robot after
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using Looking-Back-1 (π5), if it looks at the right side of the table
(g1), it can find the object again (r3). In other words, when the
robot detects that the human is looking at the right side of the
table, it follows the gaze of the human and looks at the right side
using Gaze-Following-1 to find the object (π4 in Table 4), then
looks back at the human using Looking-Back-1 to be praised
(π5 in the table), and then, looks at the right side again using
Check-Again-1 to see the object, again (π9 in the table).

To summarize this section, we compared a result of one of
the best cases of the previous method (sbj-A) with two cases
from our proposed method: the case of sbj-B, in which the robot
had a moderate performance and the case of sbj-C, in which
the robot had a higher performance. In the cases of sbj-B and
sbj-C, the robot was able to prevent the underestimation of the
contingencies which occurred after the acquisition of the CRs in
the previous method. This underestimation can be seen in the
case of sbj-A. As a result, the robot could acquire more complex
skills in these cases. This was due to the contribution of the XEP
algorithm. Moreover, the averages of the time steps spent for the
acquisition of simple and complex skills were smaller in these
cases. This was due to the contribution of the OsL algorithm.
The faster skill acquisition also resulted in the acquisition of
more complex skills, concerning the limitation of the time in the
real-world experiment.

4.4. Quantitative Analysis of Performance
In this section, the effect of the proposed algorithms on the
performance of the system was explored. As the measure of the
performance analysis, (1) the coverage of Gaze-Following, (2)
the coverage of Looking-Back, (3) the time required to learn
Gaze-Following, (4) the time required to learn Looking-Back, (5)
the number of the acquired non-contingent skills, and (6) the
number of the expected transition, was elected and the mean of
each performance measure was compared among the experiment
conditions. For each performance measure, a 2 × 2 ANOVA
was conducted with two between subject factors OsL (0 or 1)
and XEP (0 or 1), where 1 indicates that the algorithm was
adopted and 0 indicates it was not. Also, a post-hoc power analysis
was conducted to determine the observed power (1 − β) of the
test, computed using α = 0.05. In the following three sections,
the definition of each performance measure, the result of the
statistical tests, and the discussion about the result was proposed,
respectively.

4.4.1. Performance Measure
For (1) the coverage of Gaze-Following and (2) the coverage
of Looking-Back, the coverage of the acquired Gaze-Following
and Looking-Back were calculated in terms of percentage,
respectively, where 100% means that the robot learned the skill
related to all positions: left, right, and middle of the table. With
respect to the instructions of the experiment, the subjects would
try to draw the attention of the robot to the object; therefore,
the contingency of the Gaze-Following is expected to exist in
the interaction, and had to be learned by the robot. Moreover,
praising process of the caregiver would lead to the existence
of the contingency of Looking-Back in the interaction and had
to be learned by the robot, as well. Therefore, the coverage of

Gaze-Following and Looking-Back seems be fair and adequate
for comparing the learning performance of the systems; for the
simple and the complex skills, respectively.

For (3) the time required to learn Gaze-Following and (4)
the time required to learn Looking-Back, the average time steps
required for learning Gaze-Following and Looking-Back for all
three positions, i.e., left, right, and middle of the table; was
considered, respectively. If a skill was not acquired, the value was
set to 800, i.e., the total time of the experiment. These measures
show the learning speed of the system, specifically the learning of
the simple and complex skills, respectively.

On the other hand, the OsL uses weighted learning, which
may increase the acquisition of the non-contingent skills; and
the XEP may compensate it by increasing the accuracy of the
contingency evaluation. For that, (5) the number of the acquired
non-contingent skills, was considered to be compared among the
conditions. These skills were defined as the ones apart fromGaze-
Following, Looking-Back, Looking-Profile, and Check-Again.
This measure is expected to reflect the non-efficiency of the
learning mechanism of the robot.

Finally, the predictability of the learned skills was compared
to evaluate the usability of the acquired skills of the robot. It
was denoted as (6) the number of the expected transition; and
calculated by the average number of the successful expected
transitions of the environment conducted by utilizing the learned
behaviors. For instance, if the Gaze-Following was used and as
a result the robot could find the object, it was counted as a
successful expected transition.

4.4.2. Result of Comparison and Test
The result of the performance comparison and ANOVA was
summarized in Figure 5. In each graph of the figure, the average,
and the standard deviation of the data gathered from the subject
experiment was plotted. Additionally, the effect of each algorithm
on the performance measure was denoted with the asterisk on
the top left side of each figure, indicating the obtained p-value
for the main effect of each algorithm by ANOVA2. The result
of the mentioned two-way ANOVA for each of the performance
measure is as follows.

For the coverage of Gaze-Following (Figure 5A), the ANOVA
revealed a main effect of OsL, F(1, 44) = 8.57, p = 0.005, η2p =
0.163, with 1 − β = 0.846, indicating that with using the OsL
algorithm the coverage of Gaze-Following was higher (M =
92.1%, SD = 9.6) than the case that the OsL was not used
(M = 74.8%, SD = 35.8). The significance was not confirmed
neither for the main effect of XEP F(1, 44) = 1.24, p = 0.27, nor
for the interaction between the OsL and XEP, F(1, 44) = 0.14,
p = 0.71. Note that according to Figure 5A, the coverage of
Gaze-Following was 69% (SD = 33) using the previous method,
which increased to 81% (SD = 39) by applying the XEP, 94%
(SD = 13) with the OsL, and 100% (SD = 0) using both of
them as in the proposed method. The result of ANOVA for the
coverage of Looking-Back (Figure 5B) showed a main effect of
OsL, F(1, 44) = 25.4, p < 0.001, η2p = 0.366, with 1 − β =

2The p-values are denoted by ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, and ns, not

significant, in the figures of this paper.
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FIGURE 5 | Performance comparison of the four systems: (A) the number of learned skills labeled Gaze-Following, (B) the number of learned skills labeled

Looking-Back (looking back), (C) spent time steps to acquire Gaze-Following, (D) spent time steps to acquire Looking-Back, (E) the number of the skills which is

suppose to be not contingent but acquired, and (F) the number of transitions where the robot succeeded in observing a result as expected by using the acquired

skills. At the top left side of each graph, significant levels of main effects in two-way ANOVA with OsL (Ostensive-cue sensitive Learning) and XEP (Exclusice Evaluation

of Policy) as between-subject factors are mentioned. The p-values are denoted by ***p < 0.001, **p < 0.01, *p < 0.05, and ns, not significant. Note that any

interactions were not confirmed with the ANOVA.
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0.999, indicating that the mean coverage of Looking-Back was
greater when the OsL algorithm was adopted (M = 59.3%,
SD = 27.8) than the cases that the OsL was not used (M = 22.1%,
SD = 33.4). Also, the main effect of XEP yielded an F ratio of
F(1, 44) = 21.7, p < 0.001, η2p = 0.333, where 1 − β = 0.998,
indicating that the mean coverage of Looking-Back was higher
by using the XEP algorithm (M = 58.0%, SD = 35.8) than the
cases that the XEP was not adopted(M = 23.4%, SD = 26.6).
These main effects were not qualified by an interaction between
OsL and XEP, F(1, 44) = 0.29, p = 0.59. Note that as mentioned
in Figure 5B, the low performance of the previous method was
improved from 3% (SD = 10) to 75% (SD = 25) by using the
proposed method.

For the time required to learn Gaze-Following (Figure 5C),
the main effect of OsL was confirmed with the ANOVA, F(1, 44) =
25.9, p < 0.001, η2p = 0.370, with 1 − β = 0.999, indicating that
the mean time required for the acquisition of Gaze-Following
was faster when the OsL algorithm was adopted (M = 282,
SD = 113) compared to the cases that the OsL was not used
(M = 518, SD = 200). However, the significance was shown
neither for the main effect of XEP, F(1, 44) = 2.45, p = 0.125, nor
for the interaction between the OsL and XEP, F(1, 44) = 0.371,
p = 0.55. Note that as mentioned in Figure 5C, the time required
to learn Gaze-Following became less than the half in the proposed
method compared with the previous method, i.e., decreased from
568 steps (SD = 183) to 260 steps (SD = 120).

In the case of the time required to learn Looking-Back
(Figure 5D), the result of ANOVA revealed a main effect of OsL,
F(1, 44) = 8.72, p = 0.005, η2p = 0.165, with 1 − β = 0.854,
indicating that the mean time for the learning of the Looking-
Back was faster by using OsL (M = 684, SD = 89) than not
using the OsL (M = 748, SD = 85). Also, the main effect of
XEP yielded an F ratio of F(1, 44) = 17.6, p < 0.001, η2p = 0.286,
where 1 − β = 0.989, suggesting that the mean time required
to learn Looking-Back was faster when the XEP algorithm was
adopted (M = 670, SD = 100) compered with the cases which
the XEP was not used (M = 760, SD = 54). The significance
was not confirmed for the interaction between the OsL and XEP,
F(1, 44) = 0.013, p = 0.91. Note that the average time spent for the
acquisition of the first Gaze-Following and Looking-Back skills
by the robot using the proposed method was 8 min and 25 min
with the standard deviation 5 and 7 min, respectively.

The result of the ANOVA for the number of the acquired non-
contingent skills (Figure 5E) showed neither the main effect of
OsL, F(1, 44) = 0.68, p = 0.41, nor the main effect of XEP,
F(1, 44) = 1.53, p = 0.22, nor the interaction between the OsL and
XEP, F(1, 44) = 1.21, p = 0.28. As mentioned in the figure, when
only the OsL algorithm was utilized, it increased from 2.2 (SD =
2.0) to 3.3 (SD = 2.3), while adopting the XEP decreased it to 1.9
(SD = 2.3) with the proposed method. However, no significant
effects of either of the algorithms were found in the result of the
ANOVA for this measure. Finally, for the number of the expected
transition (Figure 5F), the ANOVA revealed amain effect of OsL,
F(1, 44) = 9.28, p = 0.004, η2p = 0.174 with 1 − β = 0.875,
indicating that the mean number of the expected transition was
grater when the OsL algorithm was adopted (M = 72.8%, SD =
17.6) than the cases that the OsL was not used (M = 53.7%, SD =

26.5). Also the main effect of XEP was supported by the ANOVA,
F(1, 44) = 5.51, p < 0.023, η2p = 0.111, where 1 − β = 0.669,
which suggests that the mean number of the expected transition
was grater by using the XEP (M = 70.6%, SD = 23.7) compared
with the cases that the XEP was not implemented (M = 55.9%,
SD = 22.9). It is not confirmed for the interaction between the
OsL and XEP, F(1, 44) = 0.003, p = 0.96. Note that according
to the figure, the proposed method increased the number of the
expected transition from 47% (SD = 25) to 80% (SD = 15).

4.4.3. Discussion
The OsL algorithm improved the coverage of Gaze-Following
while both of the XEP andOsL algorithms improved the coverage
of Looking-Back. Therefore, the XEP seems to be effective
on learning complex skills, such as Looking-Back, while the
OsL is useful to learn both complex and simple skills, such
as Gaze-Following. The reason for these are considered to
be the increased accuracy of the contingency evaluation (for
XEP), and synchronizing the teaching/learning phases of the
caregiver/robot (for OsL). Thus, adopting both of them will
lead to the highest performance in terms of the coverage of the
skill acquisition. For the Gaze-Following skill, the OsL improved
the time required to learn Gaze-Following. For the Looking-
Back skill, both the XEP and OsL algorithms improved the
time required to learn Looking-Back. The OsL seems to be
effective on the time required to learn Gaze-Following and the
time required to learn Looking-Back due to the synchronization
problem described in section 3.1, while in the case of XEP,
increasing the accuracy of the contingency evaluation, and as
a result, the number of the acquired Looking-Backs seems to
be the reason of the improvement. Thus, adopting both the
algorithms will produce the best performance of the learning
speed for the robot. The OsL uses weighted learning, which may
increase the acquisition of the non-contingent skills, and the XEP
may compensate it by increasing the accuracy of the contingency
evaluation. However, we could not conclude anything because no
significant effects of either of the algorithms and their interaction
were found. Both the XEP and OsL improved the number of the
expected transition. Therefore, using both of the algorithms are
suggested to improve the predictability of the robot’s behavior.

The most significant contribution of the current paper is
building a real humanoid robot that could acquire complex social
skills through sub-hour face-to-face interaction with a human
while the previous work focused on the computer simulation
or needed enormous interaction steps corresponding to several
hours in the real world (Sumioka et al., 2010; Mugan and
Kuipers, 2012; Mahzoon et al., 2016). It is worth noting that
the proposed mechanism still succeeded in reproducing some
infant developmental processes for social behavior resembling
gaze following (Butterworth and Jarrett, 1991) and social
referencing (Tomasello et al., 1995) as reported in the previous
work (Sumioka et al., 2010; Mahzoon et al., 2016), although it is
limited to involving the superficial similarities. Furthermore, it
is also worth noting that the proposed mechanism could adapt
to the behavioral changes in human, that is the emergence of
a rewarding response to the behavioral changes in the robot,
by extending the previously acquired skills. These features
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provide us with a research platform for further investigations
of the flexible or variable developmental mechanism of human-
like social skills in a dynamic and open-ended environment.
However, since the current implementation was still limited to
skills represented by combinations of several action and sensory
variables, how to treat more rich variables formore complex skills
will be the important future work.

4.5. Subjective Evaluation
4.5.1. Questionnaire and Result of Test
To evaluate whether the skill acquisition processes of the robot
utilizing different algorithms make a difference in the subjective
opinion of the participants about the quality of the interaction
as well as the feeling about the intelligence of the robot, we
conducted a subjective evaluation using a questionnaire. It
consisted of seven questions, which were designated with Q1–
Q7. The answers were proposed as five-level Likert scale, where
5 presented strongly agree and 1 presented strongly disagree.
Additionally, to evaluate the transition of the answers over
time, we administered the questionnaire every 200 steps, i.e.,
approximately every 10 min.

Figure 6 shows the average and standard deviation of the
answers (described as score) to each question over time for
each condition of the experiment. The statement used for each
question is brought in the caption of the figure. A mixed-design
three-way MANOVA was conducted with three independent
variables (IVs) and seven dependent variables (DVs), to indicate
the effect of using each algorithm (XEP and OsL) as two between
subjects variables and also the course of time (hereafter denoted
with “Time”) as a within subjects variable on the score of the
questions (score of each questionnaire Q1–Q7) as DVs of the
test. The XEP and OsL indicated whether the corresponding
algorithms were used in the experiment while the Time indicated
the time that the questionnaire was taken and the score was
obtained, which were consisted of four levels, i.e., 10, 20, 30,
and 40 min. Also, a post-hoc power analysis was conducted to
determine the observed power (1−β) of the test, computed using
α = 0.05.

The result of the test suggested a significant multivariate effect
of all three IVs, XEP (Wilk’s 3 = 0.677, F(7,38) = 2.59, p =
0.027, η2p = 0.323, 1 − β = 0.826), OsL (Wilk’s 3 = 0.635,

F(7,38) = 3.12, p = 0.011, η2p = 0.365, 1 − β = 0.899) and

Time (Wilk’s 3 = 0.179, F(21,24) = 5.26, p < 0.001, η2p =
0.821, 1 − β = 1.000) across the DVs. However, no significant
interaction was revealed in the result of the multivariate test.
In the follow-up univariate ANOVAs, while several main effects
were revealed, no interaction between the factors was confirmed.
The result of the test was summarized in Table 5, where only
the revealed significance was mentioned. In this table, for the
within subjects variable Time, except of Q3 and Q5, the result
of Mauchly’s test indicated that the assumption of sphericity had
been violated, therefore the degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity. Note that the
univariate ANOVAs were conducted using Bonferroni adjusted
alpha levels of .007 concerning the number of the questions, i.e.,
.05/7. Also, to facilitate the discussion, the result of the univariate

ANOVAs were summarized in the top left side of each graphs
in Figure 6, indicating the p value of the main effect for the
independent variables. As shown in the figure, it was revealed that
the XEP algorithm was effective to increase the score of perceived
intention (Q1), expected reaction (Q2), and human enjoyment
(Q4), while the OsL algorithm was also effective to increase these
scores in addition to the other twos; robot enjoyment (Q3) and
robot’s conformation (Q6). Also, this figure and Table 5 showed
that the variable Time had main effect on all DVs, except of Q7.

To indicate how the scores were changed in the course of
time, the post hoc multiple comparison using Dunnett’s method
was conducted for the variable Time, using Bonferroni adjusted
alpha levels of .007 concerning the number of the questions,
i.e., .05/7. In this comparison, the score at Time=10min was
compared with the others, i.e., Time = 20, 30, and 40min. The
result of the comparison was summarized in Table 6. As shown
in the table, for all of the questions mentioned in the table,
the score was significantly increased from Time = 10 min to
all of the other Times, except for one case, i.e.m, for Time =
20 min in Q5. In other words, it was revealed that compared
to the first subjective evaluation (i.e., at Time = 10 min), the
evaluation of the perceived intention (Q1), expected reaction
(Q2), robot enjoyment (Q3), human enjoyment (Q4), and robot’s
conformation (Q6) were significantly increased after the second
evaluation (i.e., at Time = 20 min), while the evaluation for
robot’s mind (Q5) was significantly increased after the third
evaluation (i.e., at Time= 30 min).

4.5.2. Discussion
The factor of time was effective on the improvement of all
of the question items, except for human conformation (Q7).
The improvement of the scores from 10 to 20 or 30 min
indicated that, in course of time, the robot even with neither
of the proposed algorithms seemed to became looking more
positive in many aspects, understanding human’s intention (Q1),
reacting as human expected (Q2), having its own mind (Q5), and
conforming its behavior to human’s behavior (Q6), and enjoying
interaction (Q3) while human became enjoying interaction (Q4).
This suggests that the basic developmental algorithm of the skill
acquisition worked properly based on the subjective criteria.

The XEP and OsL algorithm were both effective on improving
the score of some questions. Meanwhile, they improved
the learning performance of skills necessary to follow the
human’s instruction, which is Gaze-Following and Looking-
Back. Therefore, the human subjects seemed to feel that the
robot understood his/her intention (Q1) of instruction, reacted
as he/she expected (Q2), and consequently he/she could praise
the robot more often which would make the interaction more
enjoyable for the human (Q4). On the other hand, only the OsL
had the main effect on the scores of robot’s enjoyment (Q3) and
robot conformation (Q6). It is considered to be sub-effects of
the stopping behavior of the robot toward the human adopted in
the OsL, which could represent the robot’s attitude to positively
follow the human’s behavior. However, the results of the ANOVA
for Q5 and Q7 had no significant effect of either of the proposed
algorithms. A post hoc interview revealed that some subjects
found negative meaning in the word “human conformation”
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FIGURE 6 | Mean scores of questionnaire. (A) Q1: The robot understood my intention, (B) Q2: The robot reacted as I expected, (C) Q3: The robot looks like it is

enjoying the interaction, (D) Q4: I enjoyed the interaction, (E) Q5: I felt that the robot had its own mind and behaved based on it, (F) Q6: The robot conformed its

behavior to my behavior, and (G) Q7: I conformed my behavior to robot’s behavior. Each sub-figure includes four comparisons in each time step (t = 10, 20, 30, and

40 min) among four conditions of learning method: previous work, learning only with Ostensive-cue sensitive Learning (only-OsL), learning only with Exclusive

Evaluation of Policies (only-XEP), and learning both with the OsL and XEP (proposed). At the top left side of each graph, significant levels of main effects in the

follow-up univariate ANOVA with Time as within-factor and OsL and XEP as between-subject factors are mentioned. The p-values are denoted by ***p < 0.001/7,

**p < 0.01/7, *p < 0.05/7, and ns, not significant, considering Bonferroni correction concerning the number of the questions, i.e., 7 question items. Note that any

interactions were not confirmed with the ANOVA.
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TABLE 5 | Result of the follow-up univariate ANOVA for the questionnaire.

Item Factor df1 df2 F(df1,df2) p η
2
p 1 − β

Q1 XEP 1 44 10.7 0.002 0.196 0.949

OsL 1 44 11.5 0.001 0.208 0.963

Time 2.01 88.5 47.8 0.000 0.521 1.000

Q2 XEP 1 44 9.41 0.004 0.176 0.917

OsL 1 44 12.0 0.001 0.215 0.969

Time 2.53 111 38.3 0.000 0.465 1.000

Q3 OsL 1 44 10.0 0.003 0.186 0.934

Time 3 132 24.2 0.000 0.355 1.000

Q4 XEP 1 44 14.6 0.000 0.249 0.989

OsL 1 44 7.96 0.007 0.153 0.862

Time 2.32 102 12.1 0.000 0.215 1.000

Q5 Time 3 132 11.8 0.000 0.211 1.000

Q6 OsL 1 44 15.2 0.000 0.256 0.992

Time 2.04 89.7 26.7 0.000 0.378 1.000

Only the significant factors are mentioned for each question items, considering Bonferroni adjusted alpha levels of .007 (i.e., .05/7) concerning the number of the questions, i.e., 7

questions. The degree of freedom for the factor and the error for the F-test was denoted with df1 and df2, respectively. The result of the F-test [F (df1,df2 )], p-value (p), effect size (η
2
p )

and the power of the test (1− β) were denoted as well.

TABLE 6 | Result of the multiple comparison with Dunnett’s method for the variable Time considering Bonferroni adjusted alpha levels of 0.007 (i.e., 0.05/7) concerning

the number of the questions, i.e., 7 questions.

Item M1 SD1 T2 M2 SD2 p Cohen’s d 1 − β

Q1 2.54 1.17 20 3.31 0.75 0.000 0.787 1.000

30 3.77 0.78 0.000 1.231 1.000

40 4.08 0.90 0.000 1.482 1.000

Q2 2.33 1.08 20 3.10 0.86 0.000 0.792 1.000

30 3.60 0.87 0.000 1.297 1.000

40 3.79 0.80 0.000 1.529 1.000

Q3 2.58 0.92 20 3.04 0.80 0.001 0.532 0.950

30 3.38 0.82 0.000 0.912 1.000

40 3.60 0.87 0.000 1.140 1.000

Q4 3.22 1.19 20 3.81 0.84 0.000 0.566 0.970

30 3.88 0.91 0.000 0.609 0.985

40 4.06 1.00 0.000 0.759 0.999

Q5 2.83 1.02 20 3.19 0.76 0.051 0.389 0.752

30 3.40 0.79 0.001 0.616 0.987

40 3.67 0.95 0.000 0.845 1.000

Q6 2.77 1.17 20 3.31 0.80 0.001 0.540 0.956

30 3.77 0.69 0.000 1.040 1.000

40 3.92 0.85 0.000 1.122 1.000

In the comparison, the Time = 10 was compared with the others. In the columns of the table, the question item (Item), the mean and SD of the scores for the question at Time = 10 (M1

and SD1, respectively), the time that compared with (T2), the mean and SD of the scores for T2 (M2 and SD2, respectively), the p-value of the comparison (p), the effect size (Cohen’s

d) and the power of the test (1− β) were indicated.

(Q7). Also, the meaning of “mind” in Q5 might largely vary
among the subjects. These might mean that they are difficult to
be directly used as subjective measures.

In sum, we compared the result of the subjective evaluation of
the participants in different conditions of the experiment related
to their opinion about the quality of the interaction as well as the
intelligence of the robot. The result showed a significant effect

of the OsL and XEP algorithm on the evaluation. As described
in section 1, when a caregiver recognizes a contingent and
intelligent reply from an infant, he/she usually changes his/her
behavior to teach a new concept to the infant. Assuming that
the increase in the result of the evaluation expressing the higher
level of such recognition, we can conclude that the proposed
algorithms are significantly effective in inducing the caregiver to
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change his/her behavior and teach the infant robot a new concept.
Consequently, the OsL and XEP could successfully contribute to
an increase in an open-ended development of the infant robot.
However, the items of the questionnaire applied in this part
were not completely independent and there were correlation
among some of them. Since a set of questionnaire to evaluate
how the impression of the subjects about the robot was changed
along with its development is not established yet, studying and
inventing a suitable set with a factor analysis for such evaluation
is an important future work of this field.

5. CONCLUSION

In this paper, we proposed two novel algorithms to improve
the performance of the social skill learning of an infant
robot during interaction with a human caregiver: namely
the Ostensive-cue sensitive Learning (OsL) and the Exclusive
Evaluation of Policies (XEP) algorithms. The OsL was inspired
by the natural pedagogy of the human being and proposed
a synchronized weighted learning mechanism based on the
ostensive signals of the caregiver. The XEP algorithm proposed
a way to improve the accuracy of the contingency evaluation
by separating the histogram of the contingencies related to the
acquired policies and atomic variables. The OsL was expected
to increase the learning speed of the robot, while the XEP was
expected to improve the accuracy of the contingency evaluation,
especially those related to the acquired policies (i.e., complex
skills).

The results of our humanoid robot experiment with human
subjects showed that the OsL was effective in increasing the
learning speed of the simple and complex skills, and consequently
increasing the number of learned skills by the robot; while the
XEP increased the accuracy of the contingency evaluation and
was effective in increasing the coverage of complex skills as well
as the time-steps required for the learning. These improvements
resulted in enabling the infant robot and the human subject to
predict each others’ behavior. As a result, statistical analysis of
the experiment showed a significant effect of both algorithms on
increasing the number of the expected transition of the infant
robot, the subjective evaluation of the human participants about
the quality of the interaction and the intelligence of the robot.
Since the level of the recognition of the human caregiver about
the intelligence of the robot has an impact on the teaching

tendency of the caregiver, the increase in the subjective evaluation
can be expressed as a contribution of the proposed algorithms
on increasing the opportunity of the open-ended development of
the infant robot. Finally, the proposed mechanism of this paper
enabled the robot to learn some primitive social skills within a
short time-step of a real-world interaction with a human subject:
simple skills such as the Gaze-Following behavior after 8 min,
and complex skills such as Looking-Back behavior after 25 min.

However, the variables utilized in this work were assumed to
be quantized, and themodality of the sensory and action variables
of the robot were still few. Utilizing dynamic quantization
methods such as that proposed in the previous work (Mugan
and Kuipers, 2012) could be a way to treat continuous
variables. Meanwhile, the way to dynamically adapt the learning
parameters of the system to the developmental change in
quantization level would be an important topic. Research on
this topic will propose an insight about the developmental
models, which may be compared with the model of human
infant. Moreover, adding more modalities to the variables, such
as the voice of the caregiver to the sensory variables, and
speaking/uttering ability to the action variables of the robot
could increase the complexity of the interaction as well as
that of acquired skills by the robot. Nevertheless, treating with
the probable huge varieties of the caregiver’s behavior will be
one of the challenging issues for the implementation of the
developmental robot in such an environment. These problems
are needed to be considered as the main topics of the future work.
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Research on artificial development, reinforcement learning, and intrinsic motivations

like curiosity could profit from the recently developed framework of multi-objective

reinforcement learning. The combination of these ideas may lead to more realistic artificial

models for life-long learning and goal directed behavior in animals and humans.
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INTRODUCTION

Reinforcement learning (RL) is a well-established learning paradigm, first consolidated in the book
of Sutton and Barto (1998) after the early years of artificial neural networks and machine learning,
with strong roots in the mathematics of dynamical programming (Bellman, 1957) and in the early
behavioral psychology of Pavlovian conditioning and learning (Rescorla and Wagner, 1972).

In recent years, plausible neural mechanisms for all essential components of RL have been found
in the brain, in particular in the basal ganglia, but also in frontal cortical areas, perhaps involved in
different versions of RL (Wiering and van Otterlo, 2012), which have been developed not only from
a technical, but also from a neuroscientific motivation; overviews are given in Farries and Fairhall
(2007), Botvinick et al. (2009), Chater (2009), Maia (2009), Joiner et al. (2017), and Wikenheiser
and Schoenbaum (2016).

Also in recent developments of robotics, artificial agents, or artificial life, in particular when
the focus is on learning interesting “cognitive” abilities or behaviors or on child-like “artificial
development” (Oudeyer et al., 2007), the framework of RL is often used. If it is understood to
include its continuous version, actor critic design (Bertsekas and Tsitsiklis, 1996; Prokhorov and
Wunsch, 1997) reinforcement learning is a very general approach encompassing applications from
Go-playing (Silver et al., 2016) to motor control (Miller et al., 1995; Kretchmara et al., 2001;
Todorov, 2004; Schaal and Schweighofer, 2005; Lendaris, 2009; Riedmiller et al., 2009; Wong and
Lee, 2010; Little and Sommer, 2011).

Here we are considering RL in the context of robotics or rather of artificial agents that learn to
act appropriately in a simulated or real environment. Most often this involves continuous state and
action spaces which cannot simply be discretized (Lillicrap et al., 2015). So usually the RL paradigm
is combined with a neural network approach to represent the reward predicting function (Sutton
and Barto, 1998; Oubbati et al., 2012, 2014; Faußer and Schwenker, 2015).

In this context there are a number of issues that this framework cannot easily accommodate:

1. the learning of several partially incompatible behaviors,
2. the balance between exploration and exploitation,
3. the development and integration of “meta-heurictics” like “curiosity” or “cautiousness,”
4. the problem of finding a “state space” and its partial observability,
5. the simulation of apparently changing strategies in animal behavior.
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In reaction to the first issue one might argue that RL is just
for one particular behavior, not for the combination of several
behaviors; for this one would need to combine several instances
of RL. Of course, one could also argue that each animal has
just one behavior which maximizes its chance of survival and
apparent particular behaviors or motives driving it must be
subordinate to this ultimate goal, similarly in economic decision
making the ultimate goal is financial utility (money) and it would
be irrational to follow other rewards from time to time (as in
the fairy tale of Hans im Gück). All this has been debated at
length (e.g., Simon, 1955, 1991; Tisdell, 1996; Gigerenzer and
Selten, 2002; Kahneman, 2003; Dayan and Niv, 2008; Dayan and
Seymour, 2009; Glimcher et al., 2009; Chiew and Braver, 2011)
leading to considerable doubts in a simple utilitarian view in
economy and practically to various approaches extending basic
RL, often in a hierarchical fashion (Barto et al., 2004; Botvinick
et al., 2009). Even a human or robot Go-player has not only to
consider Go strategies, but also (on a lower level) to control his
arm movements when taking and placing a piece.

The balance between exploration and exploitation has been
widely discussed in classical RL and even before that (e.g.,
Feldbaum, 1965). It has lead to various, often stochastic,
amendments to the original basic method (Wiering and van
Otterlo, 2012) without a convincing general solution that works
well in most applications. This problem has also inspired more
general approaches in more complex scenarios which add special
“meta-objectives” like “curiosity” or “cautiousness” to the RL
scheme (perhaps first by Schmidhuber, 1991), which again points
toward a multi-objective approach. Recently these ideas are
discussed in particular in the context of autonomous “cognitive”
agents and their “artificial development” (Weng et al., 2001;
Lungarella et al., 2003; Barto et al., 2004; Oudeyer et al., 2007).

In biology and human psychology or sociology it is clear that
the state space (i.e., the total relevant state of the world) is far
from being observable by the senses of the individual animal
or human. It might even be doubted whether there is such a
state at all. At least it is often asking too much to assume that
the individual possesses a representation of the set or space of
all possible states. Such scenarios are even outside the usual
relatively broad POMDP (partially observable Markov decision
process, see Kaelbling et al., 1996) formalism, so biologically
motivated realizations of RL often rest on relatively simple
versions of RL that don’t require knowledge of a “state” in the
sense of physics, but just rely on sensory and reward input.

Also the last issue is clearly at variance with the basic model of
classical RL. However, when we consider the creation of artificial
autonomous agents or artificial animals an obvious potential
answer to all of these issues comes to mind: Such an agent or
animal usually has several different, sometimes conflicting goals
or motivations (e.g., food, drink, and sex) which cannot simply be
combined linearly to form one general objective (Liu et al., 2015).

It therefore seems natural to use different instances of RL
on different simplified state spaces, which contain incomplete
information on different aspects of the physical state of the world,
with different objectives or reward functions in different contexts
or situations and somehow select the most important ones to
determine the agent’s behavior in each concrete situation. This

means that one has to consider multiple objectives and their
interaction in decision making. This problem is studied by a
growing research community under the heading of “multiple
objective reinforcement learning” (MORL).

The framework of MORL can be used to address and alleviate
the 5 problems mentioned above. In fact, it is directly motivated
from problems 1 and 5. The dilemma between exploration
and exploitation (problem 2) is greatly alleviated by the simple
observation that behavior guided by exploitation of one objective
usually can be considered as exploration for all other objectives.
The development of meta-heuristics or “intrinsic motivations”
(issue 3) can be very useful also in technical applications; for
the MORL framework advocated here the point is simply to put
intrinsic motivations like curiosity or cautiousness side-by-side
with the basic “extrinsic” motivation(s). Concerning the state-
space (problem 4), in many practical applications a real “state-
space” is unknown or at best partially observable. In this case
the best one can do is to obtain a sufficiently rich approximate
representation for it based on sensory data and reinforcement
signals, and more such signals are certainly better than less for
this purpose.

REPRESENTING THE STATE SPACE

In order to obtain an approximate state representation by
learning from experience, one can use a neural network, typically
a multilayer perceptron (MLP) or “deep network” or methods
of reservoir computing (Maass et al., 2002; Jaeger and Haas,
2004) for continuous temporal dynamics, or a combination of
both. In complex control problems (Koprinkova-Hristova and
Palm, 2010) such a representation is often called a “forward
model.” So the agent (biological or artificial) tries to learn a “state
representation network,” i.e., a (typically recurrent) network that
predicts the next state from a representation of the current state,
which integrates sensory input information over time and can
be used as input to the evaluation or critic network in the
usual situation where the current sensory input is insufficient to
determine the “state” of the environment; see for example (Sutton
and Barto, 1981; Schmidhuber, 1991; Dayan and Sejnowski, 1996;
Herrmann et al., 2000; Gläscher et al., 2010). Such a network can
be used as the basis for a second network representing the quality
or value function in reinforcement learning or actor-critic design.

The use of neural networks or parameterized approximators
as estimators of the state-value or state-action-value function
is a way to deal with large or continuous action and state
spaces. The approximating function may be a linear or nonlinear
function of their parameters, but linear approximators show
limitations in their expressive power, while convergence of
learning is quaranteed. Nonlinear approximators, typically
neural networks, are universal approximators (Cybenko, 1989),
but often show instable behavior during learning. During the
last years increasingly complex networks are used in RL for
large and continuous state spaces; in addition to classical
multilayer perceptrons or radial basis function networks, also
trainable recurrent neural networks (Hagenbuchner et al., 2017)
or echo-state-networks (Scherer et al., 2008; Oubbati et al.,
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2012, 2013, 2014; Koprinkova-Hristova et al., 2013) are used,
and particular methods have been developed to improve the
stability of learning (Hafner and Riedmiller, 2011; Silver et al.,
2014; Faußer and Schwenker, 2015; Lillicrap et al., 2015;
Parisi et al., 2017). Recently, deep neural networks such as
autoencoders and convolutional neural networks have been
applied for representation learning and used in combination
with RL methods to learn complex decision task from raw data
(Lillicrap et al., 2015; Mnih et al., 2015; Mossalam et al., 2016;
Srinivasan et al., 2018).

In any case it is practically important for MORL to use one
and the same network as a basis to create a sufficiently rich
representation in order to train all different objectives (critics and
actors) as outputs of the last layer (Mossalam et al., 2016).

Based on the sensory input alone, but also on such an
approximate state representation, it often will not be possible to
predict the expected reward or the next state with certainty. In
a neural network for classification, for example, this uncertainty
will be expressed by submaximal activation of several output
neurons and these activations may be interpreted as a posteriori
probabilities of the various outcomes (states or values); the
uncertainty in estimating the expected reward is often measured
by its variance. Beyond variance, there are various formalisms
for calculating measures of certainty or uncertainty from these
probabilities, often in terms of information theory (Palm, 2012),
and several approaches to incorporate measures of uncertainty,
or of “novelty” or “surprise” into the choice of appropriate
actions in reinforcement learning (e.g., MacKay, 1992; Sporns
and Pegors, 2003; Little and Sommer, 2011; Tishby and Polani,
2011; Sledge and Príncipe, 2017); much of this is reviewed
and discussed by Schmidhuber (1997) or Schmidhuber (2003)
also in relation to the exploration-exploitation dilemma (Dayan
and Sejnowski, 1996; Auer, 2002; Tokic and Palm, 2012; Tokic
et al., 2013). Again these practically important considerations
point toward MORL, for example in the direction of additional
“meta-objectives” like curiosity or cautiousness (Wiering and
Schmidhuber, 1998; Uchibe and Doya, 2008; Oubbati et al.,
2013). It is often useful to consider at least two versions of the
primary objective, namely its expected value and an estimate of
the value that can at least be obtained with a reasonably high
probability (e.g., the 5-percentile).

The MORL idea transforms the original problem of
learning one behavior that is useful in all circumstances
into a problem of designing an appropriate architecture for
learning and decision making that combines several (probably
hierarchically organized) instances or stages of classical RL
and possibly other methods of learning or decision making
(Oubbati and Palm, 2010).

MULTI-OBJECTIVE REINFORCEMENT
LEARNING

A framework for studying these problems in the restricted realm
of reinforcement learning, which has recently gained increasing
popularity, is called MORL (see Roijers et al., 2013; Liu et al.,
2015). We would like to propose to use this framework as a

starting point to tackle the broader architectural problem in some
concrete scenarios, which occur quite naturally in many technical
optimization and control problems and have been elaborated
in the MORL community, some examples (Deep Sea Treasure,
Bonas World, Cart Pole, Water Reservoir, Resource Gathering,
Predator Prey) are described in Drugan et al. (2017) and the
literature cited therein; see also Vamplew et al. (2011).

The difference of MORL to classical RL is quite simple: If

we think in terms of actor-critic design, where essentially an

evaluation of the agent’s actions is learned in a POMDP and

where this evaluation function may be learned by a neural

network, now we just have a vector of evaluations instead of

a single value (in the output layer of the network). Similarly

there is now an actor for each component of the evaluation

vector suggesting an appropriate action for that particular value,

objective, or motive. This model clearly leads to the problem how
to combine the different objectives and suggested actions in order
to decide on the next action. This problem has been discussed
thoroughly in the MORL community; for an overview see Liu
et al. (2015) and Drugan et al. (2017) and we will contribute a
few ideas on this issue in terms of the computational architecture.
The most common idea is to combine the different reward values
into a weighted sum and take the best action for this combination.
More complex methods consider the so-called pareto-front, well-
known from classical multi-objective optimization. In fact, much
of the discussion on optimal decision making for multiple
objectives and methods for finding the pareto-optimal solutions
(Das and Dennis, 1998; Miettinen, 1999; Mueller-Gritschneder
et al., 2009; Motta et al., 2012) can be useful for MORL
(see Van Moffaert and Nowé, 2014; Pirotta et al., 2015;
Vamplew et al., 2017).

Once the most appropriate action has been determined
and carried out, each of the actors and critics is able to
learn something from its outcome leading to a modification
of the corresponding neural networks, usually through
backpropagation of the expected reward update or
temporal difference.

From introspection, but also from behavioral animal
experiments one gets the impression that each of these motives
enters the final evaluation and decision with its own weight or
“urgency” that may vary with time, depending on the agent’s
needs, which implies that there is no fixed “trading relation”
between the different motives and their corresponding reward
values, so they cannot be reduced to just one value. Modeling
artificial agents in this wider framework entails some new
problems and tasks, which may also lead to new interesting
research projects and interactions with behavioral biologists
and psychologists.

Here we describe the basic theoretical framework for
this approach:

1. Given n motives, n current predicted values (v1, . . . , vn),
and n “urgency weights” (w1, . . . ,wn) for them, how do we
combine them to one value that should be maximized by
the next action? There are different more or less obvious
ideas for this (see e.g., Boutilier, 2002; Castelletti et al., 2002;
Natarajan and Tadepalli, 2005; Wiering and De Jong, 2007)
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also motivated by modeling animal behavior, or reflecting
the introspective difference between positive and negative
rewards, or between goal seeking and pain avoidance, themost
obvious and simple being the weighted sum v =

∑
i wivi. At

the opposite extreme we would follow the one objective that
has maximal wivi, or we could consider a minimal value for
some objectives as a constraint in maximizing the weighted
sum of the others. Here the “higher” motives like curiosity are
put side-by-side with “lower” ones like “hunger,” whichmay be
psychologically somewhat unsettling, but might actually work.
We first encountered this idea in the work of Dörner (2001),
see also Bach (2009) and Bach (2012).

2. For each of the motives, in addition to defining the
corresponding rewards ri we have to model their “urgency
function” wi(t). This may involve a dynamical system model
of the agent’s body and as such may be considered as part of
the world model. In particular, it will use the corresponding
rewards ri(t) as inputs. In extreme cases wi may even be
constant or it may simply integrate the incoming rewards as

ẇi(t) = a− bri(t) or τ ẇi(t) = −wi(t)− bri(t)+ a

but much more is easily conceivable, for instance involving
thresholds at which the urgency changes drastically. The
development of such dynamical models of urgency may be an
interesting line of research also in modeling animal behavior.
Actually, the simple integration model was probably first
introduced informally by Lorenz (1978).

3. It is now possible to introduce some more “cognitive” motives
like “curiosity” (see also Pisula, 2009), for which we have to
define ri(t) and wi(t). For example for curiosity it is natural to
define surprising events as rewarding, where surprise may be
defined as − log p relative to a probabilistic world model that
the agent may have learnt (Palm, 2012). More concretely, if in
world state x the agent receives the observation o(x), or the

state description d(x) (Palm, 2012), which has the probability
p(x) = p(d(x)) in his current model, then his surprise is
− log p(x). Then again wi(t) can be defined for example by an
integration model.

4. Finally we have to decide for the optimal action. Given our
estimates for the temporal rewards and urgencies of the
different motives and also our momentary combined reward,
we can usemethods ofmulti-objective or of plain optimization
to find the optimal action. As a starting point we can use
the actor outputs for the individual motives and perhaps try
their combinations. Practical methods for finding a reasonable
solution to the optimization problem in short time are also
discussed in the literature on RL and MORL (Handa, 2009;
Kooijman et al., 2015; Brys et al., 2017; Parisi et al., 2017;
Vamplew et al., 2017).

This leads to an extended RL-architecture, which may be
biologically more realistic. Such amore complex architecture also
offers interesting additional possibilities for improving behaviors
by learning: The existence of more objectives compared to just
one, generates a richer representation of (the value of) the
current situation, which can be used also to improve the sensory-
based world model. It also gives a new perspective on the
exploration-exploitation dilemma, since following exploitation
of one objective may serve as exploration of the others. We
have presented a basic layout of such a multi-objective agent
architecture and started some preliminary experiments on it
(Oubbati et al., 2013, 2014), but we believe that much more can
and should be done in this direction.
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Our daily environments are complex, composed of objects with different features.

These features can be categorized into low-level features, e.g., an object position

or temperature, and high-level features resulting from a pre-processing of low-level

features for decision purposes, e.g., a binary value saying if it is too hot to be grasped.

Besides, our environments are dynamic, i.e., object states can change at any moment.

Therefore, robots performing tasks in these environments must have the capacity to

(i) identify the next action to execute based on the available low-level and high-level

object states, and (ii) dynamically adapt their actions to state changes. We introduce

a method named Interaction State-based Skill Learning (IS2L), which builds skills to

solve tasks in realistic environments. A skill is a Bayesian Network that infers actions

composed of a sequence of movements of the robot’s end-effector, which locally adapt

to spatio-temporal perturbations using a dynamical system. In the current paper, an

external agent performs one or more kinesthetic demonstrations of an action generating

a dataset of high-level and low-level states of the robot and the environment objects.

First, the method transforms each interaction to represent (i) the relationship between

the robot and the object and (ii) the next robot end-effector movement to perform at

consecutive instants of time. Then, the skill is built, i.e., the Bayesian network is learned.

While generating an action this skill relies on the robot and object states to infer the next

movement to execute. This movement selection gets inspired by a type of predictive

models for action selection usually called affordances. The main contribution of this

paper is combining the main features of dynamical systems and affordances in a unique

method to build skills that solve tasks in realistic scenarios. More precisely, combining the

low-level movement generation of the dynamical systems, to adapt to local perturbations,

with the next movement selection simultaneously based on high-level and low-level

states. This contribution was assessed in three experiments in realistic environments

using both high-level and low-level states. The built skills solved the respective tasks

relying on both types of states, and adapting to external perturbations.

Keywords: skill building, action generation, learning from demonstration, affordances, motor control, state,

Bayesian inference, closed-loop
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1. INTRODUCTION

Autonomous robots are expected to help us in our daily tasks. In
tasks involving objects, these robots must perform actions that
result in a change of the object states, e.g., changing an object
position or increasing its temperature. Therefore, in order to
solve these tasks a robot must possess a repertoire of actions
producing expected changes, called effects. The variability of
environments to perform a task makes hard for a robot designer
to foresee all the possible situations the robot can face and
predefine an action for each case. For example, during the last
DARPA Robotic Challenge (Atkeson et al., 2018) several robots
failed to perform a trial due to the execution of built-in actions
under incorrect circumstances. Therefore, it is plausible to think
that a robot must develop its own behavioral capacities through
interactions with the environment and learn when to use them.

Based on this principle, in our previous work (Maestre et al.,
2017) we developed a method for a robot to build its own
skills. A simulated Baxter robot endowed with our method
executed an exploration of a static environment learning to
push an object to specific positions of the environment. More
precisely, the robot built a sensorimotor skill that generated
actions producing different effects in the object states.We defined
state as a feature that is relevant for a task, e.g., the object position;
sensorimotor skill, or just skill, as the process transforming robot
and object states into robot motor commands; and action as a
sequence of movements of the robot’s end-effector inferred in a
closed-loop by a skill. The skill was implemented as a Bayesian
Network (BN), a graphical representation of dependencies for
probabilistic reasoning (Pearl, 1988). The exploration of the
environment performed by the robot generated a dataset of
robot-object interactions, henceforth interactions, that was used
to learn both the network structure and the CPDs. The results
showed that it was possible to build the skill through simple
interactions with the object. However, both the exploration
and the environment were constrained: the exploration was
performed using predefined movements of a fix length in a
two-dimensional environment that could be only modified by
the robot actions. Besides, the generated push actions produced
rough trajectories. Therefore, it was necessary to scale up the
method for a robot to solve tasks in more realistic environments
in which: (i) the robot environment is three-dimensional and
dynamic, i.e., the object states can change at any moment
independently of the robot actions; (ii) the task requires the use
of complex actions, i.e., pick-and-place an object; (iii) action
selection also implies abstract states, e.g., an object is hot or
grasped; and (iv) actions are continuous and must adapt to
changes in the environment.

In the current paper we introduce an extension of our

previous method named Interaction State-based Skill Learning

(IS2L), which builds skills to reproduce effects on objects in

realistic environments. The main features of the method are
threefold: first, themethod generates continuous actions in three-
dimensional environments that locally adapt to spatio-temporal
perturbations (Gribovskaya et al., 2011), similarly to Khansari-
Zadeh and Billard (2014) and Paraschos et al. (2017). Spatial
perturbations are those related to changes of the spatial values of

a state. For example, changes of the initial position of the robot’s
end-effector w.r.t. the object position before the execution of an
action, or changes of the object position during the execution.
Temporal perturbations are those related to a change of the
duration of an action, i.e., if the robot’s end-effector gets stuck
or delayed during the execution of the action. The adaptation
to these spatio-temporal perturbations is performed through a
data augmentation of the available interactions using a dynamical
system called diffeomorphism (Perrin and Schlehuber-Caissier,
2016). This method proposes to apply a deformation to the
motion space that generates a vector field converging to the
expected trajectory to execute. And thus a robot action can
recover from a perturbation executing the motion described by
the vector field.

Second, a skill built with our method generates actions
simultaneously relying on the low-level and high-level states
of both the robot and the environment objects during the
interactions. High-level states are those representing higher level
concepts related to action selection, e.g., an object color or shape
(Montesano et al., 2008). Low-level states are those related to
the execution of an action, e.g., an object position (Calinon
et al., 2010). An interaction is represented as a sequence of
high-level and low-level states and the next robot movement
to perform at different instants of time. Therefore, the action
generation consists in, given an effect to reproduce and both types
of states, choosing the next movement to perform among all the
possible ones. Namely, the BN selects the movement with highest
posterior probability. This movement selection gets inspired by
a type of predictive models for action selection usually called
affordances (Jamone et al., 2016; Zech et al., 2017). An affordance
is initially defined as the actions an agent can afford to execute
through direct perception of an object (Gibson, 1966, 1986). In
robotics, it has been defined as the acquired relation of applying
an action on an object to obtain an effect (Sahin et al., 2007).

Third, the method builds complex trajectories using imitation
learning (Billard and Calinon, 2016), in which an external agent
performs one or more kinesthetic demonstrations of an action
generating a dataset of low-level states of the robot and the
environment objects.

The main contribution of this paper is combining the main
features of dynamical systems and affordances into a single
method to build skills that solve tasks in realistic scenarios.
More precisely, combining the low-level movement generation
of the dynamical systems, to adapt to local perturbations, with
the next action selection simultaneously based on high-level and
low-level states.

Three experiments, of increasing complexity, were executed
to assess the feasibility of the method to generate skills using
both low-level and high-level states. In the first experiment, the
robot pushed an object to a final position in different mazes,
only using the object position (low-level states). In the second
experiment, the robot grasped a croissant and released it in a
pan using as information the object positions (low-level states)
and if the croissant was grasped at an instant of time (high-
level state). Finally, in the third experiment the robot had to heat
the croissant to a certain temperature (high-level state) turning
a stove on and off pressing a button (high-level state). These
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experiments were directly performed by a physical Baxter robot,
showing that the method is able to generate skills to solve tasks in
realistic environments.

The remainder of this paper is organized as follows. Section
2 describes the background and works related to our method.
Section 3 describes IS2L. Section 4 describes the experiments
and obtained results. Section 5 provides some conclusions to this
study and identifies some possible future research lines.

2. RELATED WORK

There is certainly a lack of works in the robotics literature
combining action selection (using high-level states) with adaptive
action execution (using low-level states). To the best of the
authors’ knowledge, Kroemer et al. (2012) is the only work
combining these features. In this work, a pouring task experiment
is executed, in which a robotic arm grasps a watering can and
pours water into a glass. The main objective of this experiment
is to use affordance knowledge to learn predictive models
mapping subparts of objects to motion primitives based on direct
perception. The main different between our work and the one
presented by Kroemer et al. consists in that they focus on the low-
level features of an object, i.e., its shape acquired using a point
cloud, to select the next action to apply; whereas our work uses
a simpler low-level representation of the object, i.e., its location
represented as a position, combined with other high-level object
features for the action selection. A positive aspect of their work
is that the method directly uses a sensor information as input,
providing richer object information, which can help to generate
accurate interactions with the objects. However, in order to
handle high-level features the method should be combined with
anothermethodworking in parallel, adding a relevant complexity
to the symtem.

The remainder of the section introduces works related to
either selecting the next action to perform (based on predictive
models) or building a skill to reproduce an action (based on
imitation learning and motor control techniques) using either
anthropomorphic robots or robotics arms.

2.1. Selecting the Next Action To Perform
In the works introduced in this section action selection either
relies on affordance knowledge or are based on non-linear
mappings from raw images to robot motor actions. Actions are
usually considered as built-in knowledge, externally tailored by
a designer, and they are executed in an open-loop. These works
are only robust to spatial perturbations before the execution of
an action, i.e., to the object position, not adapting the action
to spatial and/or temporal perturbations during its execution.
This offline spatial adaptation is usually externally hard-coded
by the experiment designer. This low adaptation capability can
result in the inability to scale up the executed experiments to
realistic setups.

The works depicted in Table 1 are categorized based on the
classification available in Jamone et al. (2016). The relevant
categories for the current work are Pioneering works representing
those first studies where the initial insights to learn the relation
between objects and actions were identified; Representing the

effects is the category with more related works, including
IS2L, and extends the previous action-object relations to take
into account the corresponding effect; Multi-object interaction
represents affordances among several objects; and finally Multi-
step prediction represents the use of affordances in high-level task
planners to solve complex tasks.

The goal of the pioneering works (Krotkov, 1995; Fitzpatrick
and Metta, 2003; Metta and Fitzpatrick, 2003; May et al., 2007)
was identifying affordances observing the result obtained when
applying an action on an object, e.g., rollability. Posterior works
(Fitzpatrick et al., 2003; Stoytchev, 2005) made the first attempts
to learn the relation between the action and the obtained result,
trying to choose the best action to reproduce it. However, actions
and effects were very simple. In contrast, the works representing
the effects focus on learning an inverse model to reproduce a
previously observed effect on an object. Dearden and Demiris
(2005), Demiris and Dearden (2005), and Hart et al. (2005) are
the first works to propose representing the forward and inverse
models using Bayesian Networks (BN) in this context, used to
play imitation games. Inspired by the previous works, Lopes et al.
(2007), Montesano et al. (2008), Osório et al. (2010), and Chavez-
Garcia et al. (2016) define an affordance as a BN representing
the relation between action, object and effect. They provide built-
in grasp, tap, and touch actions to also play imitation games.
Similarly, other works also use built-in actions using different
methods to learn affordances, as classification techniques (Ugur
et al., 2009, 2011; Hermans et al., 2013), regression methods
(Kopicki et al., 2011; Hermans et al., 2013; Hangl et al., 2016),
neural networks (Ridge et al., 2010), dynamical BN (Mugan
and Kuipers, 2012), among others. Multi-object interactions has
gathered many research attention during the last years, mainly
focused on the use of tools to reproduce effects on objects.
Jain and Inamura (2011), Jain and Inamura (2013), Goncalves
et al. (2014), and Goncalves et al. (2014) use a BN to model
affordances to push and pull objects using tools with different
features, whereas Dehban et al. (2016) and Dehban et al. (2017)
use Denoising Autoencoders. Conversely to tool use, Szedmak
et al. (2014) proposes to model the interactions of 83 objects with
different features assisted by a human expert. In the previous
works a repertoire of built-in actions was available for the
affordance learning. Nevertheless, a couple of works by Ugur and
his collaborators built this repertoire beforehand (Ugur et al.,
2012, 2015a). In these works a built-in generic swipe action is
available, which executes a trajectory of a robot’s end-effector
from a fixed initial position to the position of a close object.
Therefore, for different object positions different trajectories are
built. Nevertheless, the shape of these trajectories does not differ
much among them, because of the use of the same heuristic
to generate them. Other works in the same vein are Finn
et al. (2016), Finn and Levine (2017), and Ebert et al. (2017),
which use a deep learning technique called convolutional LSTM
(Hochreiter and Schmidhuber, 1997) in order to predict the
visual output of an action. These works build a repertoire of
continuous push actions based on an exploration performing
thousands of interactions of a robotic arm with a set of objects
(seeWong, 2016 for a recent survey about applying deep learning
techniques in robotics).
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TABLE 1 | Comparison of actions used within the affordance literature, where *represents ambiguous information.

Type Publication Affordance

learning

method

AA OffSP OnSP TP PA RA

Pioneering

works

Krotkov, 1995 – – No No No Yes Poke

May et al., 2007 – – No No No No Random

Metta and Fitzpatrick, 2003,

Fitzpatrick and Metta, 2003

– – Object position No No Yes Tap

Fitzpatrick et al., 2003 PI – Object position No No Yes Tap

Stoytchev, 2005 DT – Object position No No No Random

Representing

the effects

Demiris and Dearden, 2005 BN – Object position No No No Random

Hart et al., 2005 DRN – Object position No No Yes Grasp

Lopes et al., 2007,

Montesano et al., 2008,

Osório et al., 2010

BN – Object position No No Yes Grasp, Tap, Touch

Ugur et al., 2009, 2011 SVM – Object position No No Yes Push

Ridge et al., 2010 NN – No No No Yes Push

Kopicki et al., 2011 LWPR – Object position No No No Push

Ugur et al., 2012, 2015a SVM – Object position No No No Grasp, Hit, Drop, Tap

Mugan and Kuipers, 2012 DBN – Object position No No Yes Grasp

Hermans et al., 2013 SVR – Object position

and orientation

No No Yes Push

Finn et al., 2016,

Finn and Levine, 2017

LSTM – Object position

and orientation

No No No Push

Ebert et al., 2017 LSTM – Object position

and orientation

No No Yes,

No

Lift, Push

Hangl et al., 2016 MMR – Object position

and orientation

No No Yes Push, Flip

Chavez-Garcia et al., 2017 GBN – Object position No No Yes Push, Grasp

This work BN LH Object position Yes Yes No Push, Grasp, Press

Multi-object

interaction

Jain and Inamura, 2013 BN – Object position No No Yes Push, Pull

Goncalves et al., 2014 BN – No* No No Yes Tap, Push, Pull

Dehban et al., 2016, 2017 DA – No* No No Yes Push, Pull

Multi-step

predictions

Omrčen et al., 2008,

Krüger et al., 2011

NN – Object position

and orientation

No No Yes Poke, Push, Grasp

Ugur et al., 2015b,

Ugur and Piater, 2015

SVM – Object position No No Yes Pick, Place, Poke,

Stack

Antunes et al., 2016 BN – No* No No Yes Grasp, Release, Pull

Works are categorized based on the classification available in Jamone et al. (2016) (see column Type). They are described based on the following features: Affordance learning

method, AA, Action adaptation; OffSP, Offline Spatial Perturbation; OnSP, Online Spatial Perturbation; TP, Temporal Perturbation; BA, Built-in actions; RA, Repertoire of actions. The

affordance learning methods are PI, Probabilistic Inference; DT, Decision Tree; BN, Bayesian Network; DRN, Relational Dependency Network; SVM, Support Vector Machine; NN, Neural

Network; LWPR, Locally Weighted Projection Regression; DBN, Dynamic Bayesian Network; SVR, Support Vector Regression; LSTM, Long Short-termMemory; MMR, MaximumMargin

Regression; GBN, Gaussian Bayesian Network; DA, Denoisy autoencoder.

2.2. Reproducing an Action
A robot can learn from demonstration all the actions required
to reach a task goal. This section presents some of the most
relevant works building skills, also called motion primitives,
reproducing an action from one or more demonstrations.
In Table 2 there is a comparison of these works. The
variables selected for the comparison represent the capability
of a skill to adapt to low-level (L) and high-level states
(H), together with the main features studied within the
motor control literature: mechanisms to be robust to spatio-
temporal low-level perturbations, the stability of a motion
primitive, the number of examples needed for the learning,

and the combination of different primitives to reproduce an
unseen action.

Paraschos categorizes motion primitives as trajectory-based
representations, which typically use time as the driving force
of the movement requiring simple controllers, and state-based
representations, which do not require the knowledge of a time
step but often need to use more complex, non-linear policies.
Paraschos et al. (2017, p. 2). On the one hand, trajectory-based
primitives are based on dynamical systems representing motion
as time-independent functions. The principal disadvantage of
dynamical systems is that they do not ensure the stability of
the system. In order to address this issue, an external stabilizer
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TABLE 2 | Comparison of methods generating adaptive skills.

Type Publication MP learning

method

AA Spatial

perturbation

Temporal

perturbation

TD St NE C

Trajectory-based Ijspeert et al., 2002,

Ijspeert et al., 2013

DMP L Final position No Yes Yes 1 No

Pastor et al., 2009,

Kober et al., 2010

DMP L Final position

and velocity

No Yes Yes 1 No

Muelling et al., 2013 MoMP L Final position

and velocity

No Yes Yes 1 Yes

Paraschos et al., 2013,

Paraschos et al., 2017

ProMP L All positions

and velocities

Yes No Yes M Yes

Perrin and Schlehuber-Caissier, 2016 Diffeomorphism L Final position Yes No Yes 1 No

State-based Calinon et al., 2007 GMR-DS L No Yes No No M –

Calinon et al., 2010,

Calinon et al., 2011

HMM + GMR L Final position Yes No No M –

Khansari-Zadeh and Billard, 2011,

Khansari-Zadeh and Billard, 2014,

Kim et al., 2014

SEDS L Final position Yes No Yes M –

Calinon, 2016 TP-GMM L All positions

and orientations

Yes No Yes M –

This work IS2L HL All positions Yes No No M Yes

Works are categorized based on the classification available in Paraschos et al. (2017) (see column Type). They are described based on the following features: MP, Motion primitive; AA,

Action adaptation; SP, Spatial perturbation; TP, Temporal perturbation; TD, Time-dependency; St, Stable; NE, Number of examples; C, Combination of MPs.

based on time to generate stable motion is used (e.g., DMPs,
Ijspeert et al., 2002, 2013; Pastor et al., 2009; Muelling et al.,
2013). Therefore, actions are always executed following a specific
time frame. A more recent approach called ProMP (Paraschos
et al., 2013, 2017) avoids the previous constraint by generating
time-independent stable primitives.

On the other hand, state-based motion primitives are time-
independent by definition, in which the states use continuous
values and are represented by Gaussian functions. For a specific
position of the robot’s end-effector, weights are computed
using Hidden Markov Models (HMM) to identify the next
state based on the current state. Once the state is available,
the motion is computed using Gaussian Mixture Regression
(GMR). The initial works (Calinon et al., 2007, 2010, 2011)
do not generate stable actions, but it has been solved in
posterior studies by a method called Stable Estimator of
Dynamical Systems (SEDS) (Khansari-Zadeh and Billard, 2011,
2014; Kim et al., 2014), which ensures stability through a
computation of Lyapunov candidates (Slotine and Li, 1991).
However, SEDS can only handle spatial perturbations at the
final position of the demonstrated trajectories. This feature
is improved in Calinon (2016) handling spatial perturbations
at any position of the trajectory, through the generation
of a set of waypoints around the trajectory with different
reference frames.

As aforementioned, works in the literature focus on either
selecting the next action to perform a task based on high-
level states using predefined or constrained actions; or in the
reproduction with local adaptation of the trajectories of a
complex action using low-level object states. Therefore, the skills
built by IS2L are unique to infer actions with local adaptation
simultaneously based on both types of states.

3. INTERACTION STATE-BASED SKILL
LEARNING (IS2L)

This section explains the method Interaction State-based Skill
Learning (IS2L). Given several examples of a robot performing an
action, i.e., producing a specific effect, on an object, the method
creates a skill that generates actions reproducing the effect on
the object. These actions can cope with local changes in the
position of the object. At the left side of Figure 1 a flowchart
of the steps of the method is available. The method is based
on the interactions between the robot’s end-effector performing
the action and the object. An interaction represents a sequence
of the robot and object states during a period of time. More
precisely, at each instant of time the high-level states of the robot
and the object, and the low-level state representing the relative
position of the object with respect to the robot, called relation
state, are represented.

Each interaction is composed as a sequence of (i) high-level
states of the robot and the object, and (ii) the low-level state
representing the relative position of the object with respect to
the robot, called relation state, at different instants of time. Robot
actions and object effects represent the difference of these states
between two consecutive instants of time. The main advantage of
this approach is that themethod does not build skills reproducing
an interaction in a specific scenario. These skills use the most
relevant information during the interactions, i.e., high-level states
and relation states, to infer actions under similar robot-object
interactions with local adaptation to perturbations.

A skill is a BN that, given an effect to reproduce and a relation
state, infers the next robot movement to perform (see the next
sections for further details). In order to simultaneously handle
high-level and low-level states, the BN uses discrete values,
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FIGURE 1 | On the left, a flowchart of the steps of the method. On the right, an initial kinesthetic demonstration of a trajectory pushing an object. At the top-left

corner, the setup of the experiment. At the top-right corner, the demonstration performed by a co-author of this paper. At the bottom-left, the object was pushed

certain distance and orientation. At the bottom-right, top-view graphical representation of the action. The red arrow represents the demonstrated trajectory, and the

blue circle represents the final position of the object. Although the reference frame of the setup is located in the base of the robot, in order to facilitate the visual

comprehension of the setup the reference frames are depicted in different places.

although the inferred robot action is continuous. In the current
paper, the set of actions a robot can perform is composed of push,
grasp, release, set and press.

3.1. Initial Available Information
Some available information is needed to execute the method.
First, interactions must represent the relevant states to
perform different actions on objects. IS2L relies on a previous
developmental stage identifying these states that E. J. Gibson
calls differentiation (Gibson, 2000, 2003), which is out of the
scope of our work (a recent and relevant approach is available in
Jonschkowski and Brock, 2015; Jonschkowski et al., 2017).

Second, some a priori information is needed to build a
skill. A BN is a graphical representation of dependencies for
probabilistic reasoning, in which the nodes represent random
variables and the lack of arcs represent conditional independence
relationships between the variables (Pearl, 1988). More precisely,
a BN is a directed acyclic graph, i.e., a collection of nodes
or vertices joined by directed edges without directed cycles.
Besides the structure, which provides qualitative information
about the probabilistic dependencies between the variables, a BN
also encodes quantitative information about the strength of these
dependencies through Conditional Probabilistic Distributions
(CPDs). In the current work, the structure represents the
knowledge that an interaction is based on the relative position
of the end-effector and an object, and the actual values of
the interaction are stored as CPDs. In our previous work
(Maestre et al., 2017) a simulated Baxter robot executed an

exploration of a static environment identifying the BN structure
and CPDs to push an object in different directions. The results
demonstrated that the BN structure is task- and environment-
agnostic. Therefore, in the current paper the structure is
provided. And thus building a skill consists in learning the
correct CPDs to reproduce an effect. Second, in our previous
work we also identified a generic discretization configuration to
discretise the relation states (explained at the end of section 3.2).

Finally, a dataset of interaction demonstrations, D, must
be available to build skills (at the right side of Figure 1, a
demonstration of a push action). For the aforementioned list of
possible actions, the low-level states represent at each instant of
time the end-effector position, xt , and the object position, yt ;
whereas the high-level states represent at each instant of time the
discrete gripper openness (open/closed),Gt , and object high-level
states, Ht , representing different object features1. Therefore, an
interaction, ϒxygh, is represented as:

xt = end effector position

Gt = gripper state

yt = object position

Ht = high-level object states

ϒxygh = {(x0, y0,G0, h0), ..., (xT , yT ,GT , hT)}

(1)

1In the mathematical formalization uppercase variables represent states

with discrete values, whereas lowercase variables represent states with

continuous values.
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FIGURE 2 | (A) Example of the computation of a vicinity. The trajectory is performed in the Cartesian X-Y plane, and the figure represents the top view of the setup.

The trajectory is represented with a red arrow, and the object with a blue circle. The red stars represent the waypoints selected to compute the vicinity of the trajectory.

For each of them, a set of end-effector positions is generated, represented by the pink points. (B) Example of the computation of movements from new positions of

the end-effector. Each gray arrow represents the next movement, from a position, to be executed by the end-effector in order to reproduce the demonstrated

effect. (C) Example of the computation of a continuous relation state (black arrow) a position of the vicinity of the trajectory (selected with a blue circle). (D) Example of the

(Continued)
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FIGURE 2 | discretization of a block of information, i.e., discretizaton of both the continuous relation state and movement (gray arrow) into a distance and an

orientation. In this case, the discrete relation state has values d21 and o10, whereas the discrete movement has values d2 and o11. (E) Example of the inference of a

movement by the skill. A neighbor of the previous block of information is depicted, being its relation state represented as a purple vector (d21, o9) and its movement

as a red vector (d2, o9). (F) Initial and final instants (from left to right) of the reproduction of the demonstrated effect.

An effect is defined as an expected variation of the object
states, 3̂f , in between two instants of time, t and t-1, and it is
associated to a label, e. The effect can be reproduced multiple
times, and thus it is not related to any specific instant of time. In
the current work the expected variation can be related to either
a variation of the object position or a variation of the high-level
object states:

e ≡ 3̂f = yt − yt−1 ∨Ht −Ht−1

where the subscript t represents an instant of time.
Therefore, a dataset of interactions is represented as:

D = (e, {ϒk
xygh}) (2)

where k represents one of the K interactions available.

3.2. Skill Generation
Once the dataset of interactions is available the method to build
the skill starts, which is composed of two processes:

• Dataset augmentation and transformation: first, the dataset of
interactions, D, is extended and transformed into a repertoire,
R, of discrete blocks of information (section 3.2.1).

• Skill building: second, the skill is built based on the dataset of
blocks, i.e., the CPDs of the BN are learned (section 3.2.2).

3.2.1. Dataset Augmentation and Transformation
The dataset of interactions, D, represents one or more
interactions producing an effect on an object. This sections
explains the initial interaction augmentation and their posterior
transformation into a sequence of blocks of information. A block
of information, B, represents the relation of some high-level
states to some low-level states at an instant of time to reproduce
an effect on an object. More concretely, each block is a triple
composed of (i) the relation state at an instant of time, δ, (ii)
the high-level states of the robot and the object at that instant,
H, and (iii) the next movement of the end-effector to execute
reproducing an effect in an object, (3xt ,3gt):

B = (δ,H, (3xt ,3Gt))

R = {B}

where3 represents a difference of value of a variable between two
instants of time, t and t-1.

Once R is available the CPDs can be learned, reproducing
the same actions that were demonstrated and captured in
D. However, with the current dataset if the robot faces an
unobserved relation state, for example due to noise in the
actuators of the robot or external forces, the BN would not be

able to infer any movement. Namely, the skill is not yet robust to
spatio-temporal perturbations.

It would be highly expensive to record interactions of the
robot reproducing an effect from very similar relation states.
Therefore, the method generates an augmentation of the blocks
in D addingdifferent but close relation states. The approach is
inspired from Calinon et al. (2010), where a set of Gaussians
is computed along a demonstrated trajectory describing end-
effector movements converging to the trajectory. IS2L computes
a sampling of positions of the end-effector around the trajectory
of the demonstrated interaction generating the new relations
states, called vicinity (Step 1). Then, for each new relation
state of the vicinity an end-effector movement is computed
using a dynamical system (Step 2), and a new discrete block of
information is stored into R (Steps 3 and 4).
Step 1: Computing New Relation States Using a Vicinity. A vicinity
is computed for the trajectory of each demonstrated interaction.
First, the trajectory is reduced to a set of equidistant waypoints
(represented as red stars in the Step 1 of the Figure 2). The
number of waypoints is computed based on the length of the
trajectory. The higher the number of waypoints, the more precise
the representation of the demonstration. However, a very high
number of waypoints can affect the speed in which the BN infers
a movement, because of the size of the CPDs. For each waypoint
a vicinity is created, i.e., a sampling of unobserved end-effector
positions. A vicinity is represented as a cubic grid centered in the
waypoint with side size Q, and composed of P x P x P equidistant
positions, P and Q being preset values. For each position of a
vicinity, i.e., for each new end-effector position, a relation state
is computed.
Step 2: Computing End-effector Movements for the New
Relation States. Similarly, for each position of the vicinity the
correspondingmovement of the end-effector is computed using a
vector field. This field generates a vector, i.e., a movement, for any
position of the end-effector. End-effector positions close to the
trajectory generate similar movements to the trajectory, whereas
far end-effector positions generate movements less similar to
those of the trajectory, mainly oriented to its end. Therefore, only
those positions in the vicinity of the trajectory are relevant to
reproduce an effect. An example of a vector field is depicted in
the Step 2 of Figure 2.

In the current work, vector fields are generated using a

dynamical system called diffeomorphism (Perrin and Schlehuber-
Caissier, 2016). This method proposes to apply a deformation

to the motion space in order to fit a simple trajectory
to a demonstrated interaction trajectory. More precisely, the
approach aims to minimize a defined distance between both
trajectories using a diffeomorphic matching algorithm. This
dynamical system has a parameter to compute the tendency to
reproduce the demonstrated trajectory. As the possible actions
generated by our method share similar features, i.e., they are
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based on interactions of a gripper and an object, the parameter
value is empirically preset.
Step 3: Creating The Blocks of Information. Once both the
new relation states and the robot movements are available, the
new blocks of information are created. To that end, the high-
level states related to each waypoint of the trajectory, W, are
correlated to the relation states and movements created in the
corresponding vicinity, V. Therefore, for each position of V a
new block is created, composed of (i) the robot and object high-
level states at waypoint W, (ii) the relation state computed from
that position and (iii) the robot movement computed from the
same position.
Step 4: Discretizing the Blocks of Information. The BN needs
discrete information to infer a discrete movement. Therefore,
each block of information is discretized before being stored
into R. As the high-level information is already discrete, only
the relation states and the movements are discretized. Both
are vectors defined in a three-dimensional Cartesian space,
composed of a distance, an orientation and an inclination.
However, vector discretization in the Cartesian coordinates is
complex, due to the range of each axis is [−∞,∞]. For this
reason these vectors are transformed to spherical coordinates
before being discretized. A vector in spherical coordinates is
composed of a distance, with range [0,∞], an orientation, with
range, [−π ,π] and an inclination, with range [0,π]. In the
current work, the range of the distance is limited to the maximal
reach distance of the robot’s end-effector, i.e., 0.5. The values
for the orientation and inclination are predefined based on
experience, i.e., their ranges are divided into a preset number
of bins of the same size. However, the distance size is task-
agnostic because it determines the accuracy of the movements.
For the available set of actions the distance of each movement
is computed w.r.t. to the distance between two positions in
the vicinity:

minimal distance bin size =
Q

P − 1
(3)

3.2.2. Building the Skill
Once the discrete repertoire of blocks, R, is available, the skill is
built. As aforementioned, a skill, φ, is a BN that infers discrete
movements, 3X, to reproduce a discrete effect, E, on an object.
Each movement is generated w.r.t to both the discrete relation
state, δ, and the discrete high-level robot and object states, H,
at certain instant of time. In parallel to the inference of the
movement, the method also infers the next open/close action of
the end-effector based on the robot high-level state, if the skill is
related to the grasp action.
Movement and gripper actions are independently inferred:

(3Xt ,3Gt) = φ(E, δ,H)

3Xt = argmax
3Xt

P(3Xt | E, δ,H)

3Gt = argmax
3Gt

P(3Gt | E, δ,H)

(4)

A discrete movement is described using three discrete values, i.e.,
the distance, the orientation and the inclination:

3Xt = (3distXt ,3orienXt ,3inclinXt)

Although it is possible that there is a weak dependency among
these values, in order to speed up the computation of amovement
we consider that these values are independent. And thus the
inference of a movement consists in the individual inference of
each one of them:

3Xt = ( argmax
3distXt

P(3distXt | E, δ,H),

argmax
3orienXt

P(3orienXt | E, δ,H),

argmax
3inclinXt

P(3inclinXt | E, δ,H))

(5)

A relevant feature of our method is that skills directly combine
information from different demonstrations. More precisely,
the discrete repertoire of blocks, R, can contain information
of one or more interactions, i.e., they have been computed
based on trajectories of different demonstrations. The blocks of
information generated from the different trajectories are stored
into the same repertoire of blocks. And thus the related skill
can infer movements combining information from different
demonstrations (see Figure 3). It may happen that for the
same relation state more than one movement have been stored
in the same repertoire. These cases are directly handled by
the probability distributions of the BN, calculating different
probabilities for each movement.

FIGURE 3 | Example transforming two interactions into blocks of information

stored in the same repertoire, used to build a skill reproducing the same effect

from two different initial relation states (in order to facilitate the comprehension,

only low-level states are used). Each block is represented as a tuple (relation

state, movement), e.g., r1, m1. The figure represents a top-view in a table-top

scenario similar to the demonstration in Figure 1. The blue circle represents

an object. The robot pushes the object to the right from two initial positions of

its end-effector. More precisely, the trajectory of two interactions, A (red) and B

(green), reproduce the same effect from two different initial relation states. Each

trajectory is split up into few blocks stored in the same dataset. In this case,

the trajectory A is split up in blocks 1, 2, and 3; and the trajectory B in blocks 4

and 5. All blocks are mutually independent from temporal and spatial point of

views. Namely, with this dataset our method is able to build a skill inferring the

next movement to push the object to the right from 5 different relation states.
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3.3. Reproducing an Effect on an Object
When a skill is available, the inference and execution of
each movement is performed within a perception-action cycle
(Kugler and Turvey, 1987; Warren, 1988). In a continuous loop,
the perceptual information acquired by the robot’s sensors is
transformed into high-level and relation states and provided as
input to the BN, which infers a movement. Then, the movement
is executed by the robot using its inverse kinematic model.
This execution generates a displacement of the position of the
robot’s end-effector, which can modify the robot’s environment.
If the effect has not been reproduced, or a maximum number of
movements executed, a new iteration of the cycle is executed.

It may happen, depending on the vicinity parameters, that
while reproducing an effect the end-effector moves to a position
whose relation state is not stored into the repertoire of blocks,
and thus the skill would not infer any movement and the effect
would not be reproduced. Instead of identifying a task-dependent
discretization configuration to cover all the possible relation
states, movements are computed as the mean value of a set
of relation states, 4. This set consists of the nearest neighbors
relation states of the current relation state, including itself. For
each dimension of the vector state (the distance d, the orientation
o and the inclination c) the neighbors are the previous and the
next relation bins based on the discretization configuration:

mean relation state = [(

i+N∑

a=i−N

da)/(N ∗ 2)

+1, (

i+N∑

u=i−N

ou)/(N ∗ 2)+ 1, (

i+N∑

q=i−N

cq)/(N ∗ 2)+ 1]

where f, g, h represents the number of the current bin, and N
represents the number of neighbors at each side of the current
bin. An example of this computation only using a distance and
an orientation is available in the movement inference of Figure 2.
In this example the current relation state is d21 and o10. For one
neighbor, N=1, the ranges of nearest neighbors would be [d20,
d21, d22] for the distance, and [o9, o10, o11] for the orientation.
And thus the computed mean relation state [(d20 + d21 +
d22) / 3, (o9 + o10 + o11) / 3] would be used, together with the
high-level states to infer the next movement.

Once a discrete movement has been inferred it is transformed
into a continuous movement to be executed by the robot end-
effector. This process simply selects the mid value of the range
corresponding to each dimension composing the movement. For
example, for the movement (d2, o11) the function computes the
mid value for the bins d2 and o11.

4. EXPERIMENTAL FRAMEWORK

Three experiments, of increasing complexity, were executed to
assess the feasibility of the method to generate skills using
both low-level and high-level states (see Table 3). In the first
experiment, the robot pushed an object to a final position in
different mazes, only using the object position (low-level states).
In the second experiment, the robot grasped a croissant and

released it in a pan using as information the object positions (low-
level states) and if the croissant was grasped at an instant of time
(high-level state). Finally, in the third experiment the robot had
to heat the croissant to a certain temperature (high-level state)
turning a stove on and off pressing a button (high-level state).

Figure 4 shows the set of objects used for the experiments.
The positions of the objects were acquired using an OptiTrack
motion capture system2, composed of 4 cameras located at the
ceiling, over the robotic setup. This system generated a virtual
representation of each object, providing its center position, using
markers located on it. The reference frame of the experimental
setup was located at the base of the robot, and thus the object
positions were relative to itself.

The validation of the method was performed on a physical
Baxter robot. Each gripper of the robot had a different
configuration: on the left gripper, the fingers of the gripper were
in the farthest position, in order to grasp big objects; on the right
gripper, the fingers were in a intermediate position, in order to
grasp smaller objects. Both grippers had finger adapters in order
to facilitate the corresponding targeted actions. The execution of
the robot relied on ROS Indigo Igloo and our kinematic library3.
Videos of the experiments are available online4.

4.1. A Priori Knowledge
One or more demonstrations were performed for each one
of the skills used in the experiments, i.e., push, set, grasp,
release and press. As aforementioned in the Step 1 of section
3.2.1, the accuracy of an action is based on the number of
positions, P, and the size of the vicinity, Q, used to transform
the demonstrations for the CPD learning. Based on these values
two BNs with different levels of accuracy were learned using the
available demonstrations (see Figure 5C): (i) a coarse-grained
BN inferring bigger movements (around 6 cm) with P equal
to 8 positions and Q equal to 40 cm, approaching the end-
effector to the object; (ii) a fine-grained BN inferring small and
more accurate movements (around 2.5 cm) with P equal to
7 positions and Q equal to 20 cm. These values were chosen
based on experience. The fine-grained generator was used if
the end-effector was close to an object (arbitrarily preset to
10 cm), whereas the coarse-grained generator was used in any
other case. The gripper state was either open if its openness
value was in its top half range, i.e., 50 or more over 100, or
closed otherwise. Figures 5A,B show the structure of the learned
BNs for the push and grasp skills. Some nodes represent the
robot and object state before the execution of the movement:
the nodes distance, orientation, inclination represent the relation
state; and the node grasped represents if the object is grasped.
The other nodes represent the movement to perform: the
nodes move_dist, move_orien and move_inclin represent the
end-effector movement; whereas next_openness represents the
openness of the end-effector grippper.

For the discretization configuration, the distance had a range
of [0, M], whereM represents the longest distance of a movement

2http://optitrack.com/
3https://github.com/cmaestre/baxter_kinematics
4https://www.youtube.com/playlist?list=PL2drYAFCMtzf4AC_ZRZjk8lNv2Zs9fh5Z
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TABLE 3 | Skills, objects and object states used in the experiments (LL and HL stand for low-level and high-level states, respectively).

ID Experiment Skills Objects Object LL Object HL Robot LL Robot HL

1 Solving a Maze
Push

Set

Cylinder

Cake
X X

2

Grasping a Croissant

with Spatio-temporal

Perturbations

Grasp

Release

Croissant

Pan

Dish

Button

X X X

3 Heating a Croissant

Grasp

Release

Press

Croissant

Pan

Dish

Button

X X X X

of the robot, in this case 50 cm. This range was discretized in bins
of the same size, which size is computed as in Equation 3. Finally,
both the orientation and the inclination were split up in 16 bins
of the same size.

4.2. Experiments
4.2.1. Experiment 1: Solving a Maze

4.2.1.1. Experimental Setup
A table of 180 × 80 × 75 cm of width, length, and height,
respectively, was located in front of the Baxer robot (see
Figure 6). The setup of this experiment consists of two mazes of
different configurations. The objects to push, i.e., the cylinder for
the first maze and the cake for the second maze, have different
sizes, shapes and weights.

4.2.1.2. Description
The task consisted in pushing an object through a maze to a final
position. In these experiments the experiment designer chose the
next action to execute and the distance tomove the object, i.e., the
effect to reproduce. Therefore, the goal of this experiment was to
validate that the generated skills were able to reproduce an effect
only relying on the object and gripper positions, i.e., low-level
states. Besides, the experiments also validated the reproduction
of different effects for the same skill, e.g., pushing an object to the
right different distances.

In order to reproduce the sequence of actions different skills
were demonstrated to the robot. First, a set of demonstrations
were executed to push an object to the left, to the right, close
to the robot, and far from the robot. Before executing each
push action it is necessary to set the robot’s end-effector on one
side of the object, e.g., to push it to the right the end-effector
must be located at the left of the object. Therefore, a set of
demonstrations were executed to move the end-effector from the
object to one of its sides (for example the C-D action on the top
of Figure 8).

4.2.2. Experiment 2: Grasping a Croissant With

Spatio-Temporal Perturbations

4.2.2.1. Experimental Setup
The scenario comprised a toy-like kitchen and other objects on
it (see Figure 7). The kitchen, located in front of the robot, was

composed of four stoves, a dish, a pan, a croissant and a switch
button. The switch button turned on and off the stoves. This
scenario was also used in the Experiment 3.

4.2.2.2. Description
Two tests were carried out in order to validate reproducing effects
using simultaneously both low-level features, i.e., the robot and
object position, and high-level states, i.e., the openness state of the
end-gripper. Also, the tests had to validate the robustness of the
skills with respect to spatio-temporal perturbations of the low-
level states. In the first test, the robot had to grasp a croissant
and release it inside a pan. The position of the croissant changed
during the grasp action whereas the pan position changed during
the release action (see Figure 9a). The second test consisted in
grasping the croissant. During the execution of the grasp action
either the position of the end-effector was externally modified or
the croissant position changed (see Figure 9b). In both tests the
designer produced the perturbations.

4.2.3. Experiment 3: Heating a Croissant

4.2.3.1. Description
The objective of this experiment was to show that skills built
by IS2L can be used to perform a multi-step task in a realistic
scenario, simultaneously relying on high-level and low-level
states of both the robot and the objects. The task consisted in
heating a croissant in a pan until reaching a specific temperature.
The high-level states of the objects were:

• Stove number 4 : on (red) or off (black).
• Croissant: cold (yellow), hot (salmon) or grasped (green).
• Button: pressed or not pressed.

The different state colors were visually represented during the
experiment in a screen next to the robot (see Figure 10). Initially,
the stove was off, the button was not pressed, the croissant was cold
and located in the dish, over the stove 1 (which was always off). If
the croissant was in the pan, the pan was over the stove 4, and the
stove was on, the temperature of the croissant changed from cold
to mid temperature after few seconds; and from mid temperature
to high temperature again after few seconds.

The available repertoire of actions were pressing the button,
grasping the croissant, and releasing the croissant from the dish
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FIGURE 4 | Set of objects used in the experiments, i.e., a cylinder, a croissant, a cake, a button, a dish and a pan, respectively. For each object a photo (at the top)

and its representation captured by the OptiTrack system (at the bottom) are provided. The light yellow marker in each structure represents the center position of the

object acquired by the robot.

to the pan, and vice versa. Before the grasp and press actions the
end-effector was randomly located over the setup, in a range of
20–40 cm of height, in order to show that actions can be inferred
from different initial positions of the end-effector. The sequence
of actions to reach the task goal was:

1. Push the button to turn the stoves on.

2. Grasp the croissant.

3. Release it into the pan.

4. When the croissant is hot grasp it again.

5. Release it back into the dish.

6. Turn the stove off.

In order to show that the skills built using our method
can be directly combined with a task planner, before running
the experiment a STRIPS planner with PDDL-like problem
specification, called PyDDL5, was executed to compute the action
order needed to solve the task. Then, the skills were built
and associated to each action. Once the skills were available,
a task manager executed them based on the action order and
the object states. The task manager was also in charge of
changing the colors of the screen representing the different
object states.

5https://github.com/garydoranjr/pyddl
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FIGURE 5 | (A,B) BNs obtained from the demonstration to push and grasp an object. (C) Corresponding vicinities computed from the same demonstrations using

the previous BNs.

4.3. Results
Experiment 1
The results obtained for both mazes are depicted in Figure 8.
In both cases, the robot was able to solve the maze, showing
a high precision for the push actions. Therefore, the skills
built by IS2L can reproduce effects only based on the robot
and object positions, i.e., low-level states. Besides, a skill could
reproduce different results of the same effect, e.g., pushing
different distances an object. Meaning these skills are task-
agnostic and they can be used in different tasks.

At the top of the Figure, J shows the actions executed to solve
the first maze. These actions are: (A-B) the robot set the end-
effector behind the cylinder, (B-C) the robot pushed the cylinder
far, (C-D) the robot set the end-effector at the left of the cylinder,
(D-E) the robot pushed the cylinder to the right, (E-F) the robot
set the end-effector in front of the cylinder, (F-G) the robot pushed
the cylinder close, (G-H) the robot set the end-effector at the right
of the cylinder, (F-G) the robot pushed the cylinder to the left.
All the actions accurately reproduced the expected effect, except
setting the arm at the back (A-B) and in front of the cylinder
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FIGURE 6 | Setup of the mazes used in Experiment 1. At the top, for the first maze, and at the bottom, for the second maze. In both cases, from left to right, the

physical setup and the expected distances to push the corresponding object in order to solve the maze.

FIGURE 7 | Setup used in Experiments 2 and 3. On the left, an image of the

setup from the robot’s point of view. On the right, example of the setup

acquired by the motion capture system from the same point of view used for

the image. The yellow markers represent the position of each object.

(E-F), due to reaching the kinematic limits of the right arm of
the robot.

At the bottom of the Figure, F shows the actions executed to
solve the second maze. These actions are: (A) the robot pushed
the cylinder to the right, (A-B) the robot set the end-effector at the
back of the cylinder, (B-C) the robot pushed the cylinder far, (C-
D) the robot set the end-effector at the right of the cylinder, (D-E)
the robot pushed the cylinder to the right, a different distance
than A. Similarly, the less accurate actions (A and B) were those
reaching the kinematic limits of the robot’s arm.

Experiment 2
In both tests the grasp and release actions reproduced
the expected effects using both high-level and low-level
states. Besides, the skills were robust to the spatio-termporal
perturbations, adapting the ongoing actions to the new object and
end-effector positions.

Figure 9 shows the trajectories generated in the tests. At the
top, the actions and the perturbations for the first test: (A-B) the
robot tried to grasp the croissant, but its position changed from

stove 3 to stove 1, (B-C) the robot adapted the actions and grasped
it, (C-D) the robot executed the release action the croissant into
the pan, (D-E) the pan position changed from the stove 4 to the
stove 1, and the robot adapted its action, (E-F) the robot released
the croissant in the pan. The action A-B shows a curve of the
action from the end-effector random initial position toward the
croissant position, until the latter changes, and a brusque change
of direction appears. Similarly, the action C-D follows a trajectory
from the croissant position to the pan position. Then, there is
an abrupt change in the action direction when the pan position
is changed.

At the bottom of the Figure, the actions and the perturbations
for the second test: (A-B) from a random initial position over
the kitchen the end-effector moved toward the croissant position
until its moved from stove 1 to the stove 3, (B-D) the robot action
adapted to the new position moving the end-effector far from
the robot until the end-effector position was moved farthest than
the croissant position, (D-E) the end-effector moved back to the
croissant position until the croissant was moved to the stove 4,
(E-H) the action again adapted moving toward the right until
the end-effector was moved closed to the stove 1, (H-K) again
the action adapted to the new end-effector position and moved
toward the stove 3 whereas the end-effector was located on top
of it, (K-L) finally the croissant is grasped. The trajectories of the
arm are depicted, where the external changes in the position of
the end-effector are identified as long orange arrows. It is very
difficult to differentiate the actions due to the high number of
changes produced.

Experiment 3
Figure 11 shows the number of effects reproduced in 10 runs of
the experiment. Six runs completely reproduced all the effects
to solve the task, showing that the skills were able to solve a
multi-step task in a realistic environment simultaneously using
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FIGURE 8 | (a) Actions solving the first maze. From A to I, screenshots of the execution of the task. Finally, in J, virtual representation of the actions executed.

(b) Actions solving the second maze. From A to E, screenshots of the execution of the task. Finally, in F, virtual representation of the actions executed.

the low-level and high-level states of both the robots and the
different objects within the scenario. Three times the robot was
not able to properly release the croissant from the pan to the

dish. The release actions mainly failed because these actions did
not move the end-effector high enough and the markers of the
croissant and the pan touched each other, displacing the pan
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FIGURE 9 | (a) Actions of the first spatio-temporal test, composed of grasping the croissant and releasing it into the pan. In this case, the spatial perturbation

consists in changing the position of the pan during the release action. (b) Actions of the second spatio-temporal test, in which the robot tries to grasp the croissant.

Both spatial and temporal perturbations are present, changing the position of the croissant, and externally moving the robot’s end-effector, respectively. The orange

arrows represent externally generated long movements of the end-effector. At the right side of the robot there is a screen showing the distance, orientation and

inclination of the object w.r.t. the robot end-effector.
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FIGURE 10 | Actions of a successful execution of the task heating the croissant. From A to E, screenshots pushing the button, grasping the croissant, and putting it

into the pan. In F, virtual representation of these actions. From G to K, screenshots grasping again the croissant, putting it back into the dish, and pressing the button.

In L, virtual representation of these actions.

and the dish, sometimes making the croissant fall from the end-
effector. In one occasion the robot grasped the croissant from
one of its extremes and this felt back to the dish. Figure 10
shows the actions of a successful execution of the task heating
the croissant: (A-B) from a random initial position the robot
pressed the button turning the stove 3 on, (C-D) from another
random position the robot grasped the croissant, (D-E) the
croissant was released in the pan, (G-H) from another random
initial position the grasp action is executed once the croissant
is hot, i.e., when the color in the screen changes from yellow
to salmon, (I-J) the croissant is released back in the dish, (J-K)

from another initial position the stove is turn off after the
button is pressed. In general, the actions pressing the button
were quite accurate. Also, the grasping actions were quite robust.
The first release action (D-E) initially moved the end-effector
up a high distance from the dish position, avoiding touching
the dish markers. However, in the second release action, from
the pan to the dish, the movements were lower, producing the
objects to touch each other. New demonstrations showing the
second release action with a higher height would generate a
higher release action, importantly improving the success ratio of
the experiment.

Frontiers in Neurorobotics | www.frontiersin.org 17 July 2019 | Volume 13 | Article 56254

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Maestre et al. Action Generation Adapted to Interaction States

FIGURE 11 | Results of 10 runs of the Experiment 3. The horizontal axis represents the number of action successfully executed of those listed in Experiment 3 (see

section 4). A run is successful if the 6 actions are executed reproducing the expected effects.

It is relevant to mention that just after the D-E action, and
although the croissant was cold, we forced the task planner to
execute the grasping action G-H. However, the skill was not able
to infer any movement because it was built with the croissant
temperature state as hot. Few seconds later when this state was
reached the grasp action started.

5. DISCUSSION AND CONCLUSIONS

In the current paper we introduced a method named Interaction
State-based Skill Learning (IS2L) that builds skills to reproduce
effects on objects in realistic environments. These environments
are three-dimensional and dynamic, i.e., the object states can
change at any moment independently of the robot actions.
Solving a task in these environments requires the use of complex
actions, i.e., pick-and-place an object, that action selection also
implies abstract states, e.g., an object is hot or grasped, and
actions must be continuous and must adapt to changes in the
environment. Therefore, a skill built with our method generates
continuous actions that adapt to spatio-temporal perturbation,
i.e., it generates in a closed-loop a sequence of movements of
the robot’s end-effector that adapts to changes of the object
position. The skill was implemented as a Bayesian Network
(BN). In our previous work (Maestre et al., 2017) we identified
a task-agnostic BN structure useful for the action generation.
Therefore, building the skill consists in learning the Conditional
Probabilistic Distributions (CPDs) of the BN.

Before building the skill the experiment designer creates a
dataset of one or more kinesthetic demonstrations of robot-
object interactions producing an effect on an object. An
interaction is represented as a sequence of high-level and low-
level states and the next robot movement to perform at different
instants of time. This dataset is used to learn the CPDs allowing
the BN to infer the next robot movement for some specific high-
level and low-level states. The inference of the this movement is

inspired by the affordances action selection. Once this dataset
is available the skill building starts, composing two processes:
first, the demonstrated interactions are transformed into a
repertoire of blocks of information, which represent the previous
relationship between the high-level and low-level states and
the robot movement. This repertoire is augmented with new
relationships to make actions robust to perturbations, using a
dynamical system called diffeomorphism. The BNs use discrete
values for this relationship, and thus the augmented repertoire
of blocks is discretized. In the second process, once this discrete
repertoire is available a skill is built, i.e., the CPDs of the
BN are learned. This skill infers discrete movements that are
afterwards transformed into continuous movements using some
simple heuristics.

The main contribution of this paper is a combination of the
main features of dynamical systems and affordances in a unique
method to build skills that solve tasks in realistic scenarios. More
precisely, combining the low-level movement generation of the
dynamical systems, to adapt to local perturbations, with the
next movement selection simultaneously based on high-level and

low-level states.
It is relevant to remark that for each experiment two BNs with

different levels of accuracy were learned: a coarse-grained BN

inferring bigger movements approaching the end-effector to the
object, and a fine-grained BN inferring small and more accurate
movements. This design decision was made to speed up the
action execution, although only using the fine-grained BN would
have been enough to generate the action. The minimal object
distance to switch from the coarse-grained BN to the fine-grained
one was set from experience, although it could be automatically
identified based on a trial-and-error approach executing the same
action few times (under similar conditions) and analyzing the
quality of the obtained effect.

The learning of the BNs was fast and straightforward.
However, depending on the size of the CPDs the movement

Frontiers in Neurorobotics | www.frontiersin.org 18 July 2019 | Volume 13 | Article 56255

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Maestre et al. Action Generation Adapted to Interaction States

inference was slow, and thus the movements of the robot
although smooth were not as realistic as expected. Each BN
structure is generated based on the corresponding dataset, and
it represents different dependencies between the nodes based
on the data available. The BN structures of the push and grasp
skills identify the dependencies of the movement to perform with
respect to the nodes describing the robot and object state before
the execution of the movement, i.e., the relation state and the
object being grasped. However, the dependency related to the
openness of the gripper is only identified for the grasp skill, due
to for the push skill the gripper remains closed.

Defining an action as a sequence of pairwise movements
generated quite smooth trajectories. The interaction
demonstrations were simple to generate, and to combine,
providing a simple and flexible way of creating the initial dataset.
The execution of these actions may produce some robot-object
relation states unseen during the demonstrations, due to the
noise generated by the robot joints. The method is robust to
these situations thanks to the data augmentation, generating
many different relation states around the demonstrations.

Although the quantity of a priori information needed to build
the skills may look relevant, we have explained that in most cases
the same values are useful for tasks sharing common abstract
features, i.e., a gripper interacting with an object. Therefore, once
a correct value is found for a variable this can be used for many
different experiments.

A Baxter robot performed three experiments solving tasks
of increasing complexity, using both low-level and high-level
states. These experiments demonstrated that the method is able
to generate skills useful for task solving in realistic environments.
However, it is relevant to mention some aspects that can limit the
scaling up of our method to more complex scenarios. The size of
the CPDs grows exponentially when new states become relevant
for a task, because of the curse of dimensionality. For example,
if grasping objects of specific size, color and/or orientation.
Similarly, performing tasks involving more than one object
would generate the same dimensionality issue. This constraint
has been already solved in Goncalves et al. (2014) reducing the
dimensionality of the information provided to the BN using the

Principal Component Analysis (PCA) technique. This approach
would allow the BN to handle more information. However,
the use of PCA or other dimensionality reduction techniques
could complicate the identification of the proper BN structure.
Another possible limitation is related to the complexity of
the tasks. It would be necessary to test if tasks requiring high
accuracy, e.g., putting a key in a keyhole and turning it, could
be accomplished with the current task-agnostic parametrization
of the method. Mainly with the proposed discretization
configuration. Possibly new heuristics for the distance
discretization would be necessary to generate more accurate
robot movements.

Some possible improvements to the method would be to
exploit all the information the dynamical system provides about
the next movement, i.e., the orientation, velocity and acceleration.
Currently, only the orientation is used by our method with a
constant velocity. Extending the method to use the velocity and
acceleration would result in more complex actions, e.g., poke.
Also w.r.t. the dynamical system, adding areas to avoid to the
generated vector fields, called repellers, would provide to the
method an obstacle avoidance capacity, allowing the use of the
method in more realistic environments.
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We propose an architecture for the open-ended learning and control of embodied

agents. The architecture learns action affordances and forward models based on

intrinsic motivations and can later use the acquired knowledge to solve extrinsic tasks by

decomposing them into sub-tasks, each solved with one-step planning. An affordance

is here operationalized as the agent’s estimate of the probability of success of an action

performed on a given object. The focus of the work is on the overall architecture while

single sensorimotor components are simplified. A key element of the architecture is

the use of “active vision” that plays two functions, namely to focus on single objects

and to factorize visual information into the object appearance and object position.

These processes serve both the acquisition and use of object-related affordances, and

the decomposition of extrinsic goals (tasks) into multiple sub-goals (sub-tasks). The

architecture gives novel contributions on three problems: (a) the learning of affordances

based on intrinsic motivations; (b) the use of active vision to decompose complex

extrinsic tasks; (c) the possible role of affordances within planning systems endowed with

models of the world. The architecture is tested in a simulated stylized 2D scenario in which

objects need to be moved or “manipulated” in order to accomplish new desired overall

configurations of the objects (extrinsic goals). The results show the utility of using intrinsic

motivations to support affordance learning; the utility of active vision to solve composite

tasks; and the possible utility of affordances for solving utility-based planning problems.

Keywords: open-ended learning, intrinsic motivations, affordance learning, goal-based planning, utility-based

planning, active-vision, attention

1. INTRODUCTION

This work proposes an architecture for the control and learning of embodied agents. The
architecture has been developed within an open-ended learning context. Figure 1 shows a typical
scenario used in such a context1: the scenario is used here to test the proposed architecture. The
general structure of the scenario involves two phases (Baldassarre, 2011; Seepanomwan et al., 2017):

1This and more complex versions of the scenario involving autonomous robots have been developed within the EU funded

project “GOAL-Robots – Goal-based Open-ended learning Autonomous Robots,” www.goal-robots.eu.
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(a) a first intrinsic motivation phase where the agent is not
given any task and should freely explore the environment to
autonomously acquire as much general-purpose knowledge as
possible; (b) a second extrinsic motivation phase where the agent
has to solve one ormore tasks assigned externally within the same
environment (extrinsic tasks). Importantly, the extrinsic phase
can furnish an objective measure of the quality of the algorithms
used by the agent to autonomously learn during the intrinsic
phase. In the intrinsic phase of the specific scenario used here,
the agent can perceive objects and explore and learn the effects
of certain pre-wired actions (e.g., “move in space” or “change
object color”). In the extrinsic phase, the agent is required to use
the knowledge acquired in the intrinsic phase to solve extrinsic
tasks: first the agent has to memorize the state of some objects
set in a certain configuration (goal; notice how this is a handy
way to allow the agent to store the goal in a format suitable for
its processes); then the objects are “shuffled” into a different state
(“initial state”); last the agent has to bring the objects back to the
goal state.

Facing the challenges posed by the scenario requires different
functions. The functions used by the architecture proposed here
are summarized in Figure 2. The figure shows that during the
intrinsic phase the architecture uses intrinsic motivations to
learn action affordances and forward models, and during the
extrinsic phase it uses affordances and forward models to plan
and solve the extrinsic tasks. Importantly, in both phases active
vision allows the agent to focus on a single object per time,
in particular to elicit object-centered intrinsic motivations, to
learn or activate the affordances and the forward models related
to specific objects, and to parse the extrinsic goal into simpler
sub-goals each achievable with 1-step planning. These processes
are now considered more in detail. For each process we now
highlight the relevant concepts and literature and introduce the
open problems faced here (section 4 compares the architecture
with other specific models proposed in the literature). We then
illustrate the three main contributions of the work.

1.1. Links to the Literature and Open
Problems
The proposed architecture has been developed within the area
of developmental and autonomous robotics called open-ended
learning (Thrun and Mitchell, 1995; Weng et al., 2001). Open-
ended learning processes allow robots to acquire knowledge (e.g.,
goals, action policies, forward models, and inverse models, etc.)
in an incremental fashion by interacting with the environment.
These learning processes are strongly inspired by the exploration
processes seen in animals, in particular in humans and especially
in children (Asada et al., 2001; Lungarella et al., 2003). Although
open-ended learning processes can involve both social and
individual mechanisms (Baldassarre and Mirolli, 2013a), here
we only focus on individual learning processes supporting an
autonomous acquisition of knowledge.

A central concept in open-ended learning is the one of
intrinsic motivations (IMs). These are mechanisms for driving
autonomous learning (White, 1959; Ryan and Deci, 2000;
Oudeyer and Kaplan, 2007; Baldassarre and Mirolli, 2013a). The

utility and adaptive function of IMs reside in that they can
produce learning signals, or trigger the performance of behaviors,
to drive the acquisition of knowledge and skills that become
useful only in later stages with respect to the time in which
they are acquired (Baldassarre, 2011). There are various IM
mechanisms, some based on the novelty or surprise of the stimuli
(Baldassarre and Mirolli, 2013b; Barto et al., 2013), and others
based on the agent’s competence, i.e., its capacity to successfully
accomplish a desired outcome (Mirolli and Baldassarre, 2013).

While various works use IMs as a means to directly guide
the autonomous learning of skills (e.g., Schmidhuber, 1991b;
Oudeyer et al., 2007), recently they have been used in connection
to goals. In particular, surprise or novelty IMs can be used to
generate goals, and the goal accomplishment rate can be used
to measure competence (Barto et al., 2004; Santucci et al., 2012,
2016; Baranes and Oudeyer, 2013). By goal here we refer to
an internal representation of the agent having the following
properties (cf. Fikes and Nilsson, 1972; Bratman, 1987): (a) the
representation refers to a possible future state/state-trajectory (or
set of states/state-trajectories) of the world; (b) the representation
can be re-activated on the basis of internal processes in the
absence of that state/state-trajectory in the world; (c) if the
agent “activates”/“commits” to the goal, the goal motivates the
performance of some behaviors, in particular the performance
of behaviors that tend to push the environment toward the goal
state; (d) when the environment reaches (or is close to) the goal
state, learning signals or motivations to act in a certain way can
be generated; (e) a sub-goal is a goal that is not pursued per se
but as a means to achieve a desired “final” goal. The architecture
presented here, as usually done in the robotic literature on
affordances (see below), assumes the agent is given a set of actions
and the capacity to recognize if the performance of those actions
leads to their desired effects (goals): the challenge for the robot is
indeed to use intrinsic motivations to learn which actions can be
successfully accomplished on which objects (object affordances).

Much research on open-ended learning has focused on
the autonomous acquisition of knowledge during “intrinsically
motivated” phases. On the other side, only a few works (e.g.,
Schembri et al., 2007; Santucci et al., 2014; Seepanomwan et al.,
2017) have focused on how such knowledge can be exploited later
to solve “extrinsic tasks,” namely tasks that produce a material
utility to the agent (or to its user in the case of robots, Baldassarre,
2011). The work presented here focuses on problems involving
both the intrinsic and extrinsic phases. Although the intrinsic
and extrinsic learning processes are often intermixed in realistic
situations, separating them can help to clarify problems and
to develop algorithms, most notably to use the performance in
the extrinsic phase to measure the quality of the knowledge
autonomously acquired in the intrinsic phase.

In the extrinsic phase, we consider a test that requires
solving a complex task formed by multiple sub-tasks each
involving a specific object. The reason why we focus on
these types of complex tasks is that: (a) they are involved in
most sensorimotor non-navigation robotics scenarios requiring
object-manipulation; (b) active perception (see below) can be
extremely useful to tackle these scenarios. A possible strategy
to solve complex tasks is based on planning (Ghallab et al.,
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FIGURE 1 | Example scenario used to test the open-ended learning architecture proposed here. (A) Intrinsic phase: initial configuration of the environment containing

nine 2D “objects.” Each object has a certain position and color (the “object state”). In this phase the agent can autonomously explore the objects for a certain time to

acquire as much knowledge and skills as possible. (B) Extrinsic phase: example of a task that the agent has to solve, requiring to either move objects or change their

colors to bring the “environment” to the state of the “goal image”; the agent has to be able to do this on the basis of the knowledge and skills acquired during the

intrinsic phase. Note that in these images the objects are set on the vertices of a 3× 3 regular grid, although during exploration and extrinsic-task solving they can

occupy any non-overlapping position with their center within the white square frame.

FIGURE 2 | Main functions (gray boxes) and their relations (arrows with labels) implemented by the architecture proposed here. The dashed and dotted frames

contain the main functions used in the intrinsic phase and extrinsic phase, respectively. During the intrinsic phase intrinsic motivations support the autonomous

learning of affordances and forward models; during the extrinsic phase, affordances and forward models support planning to accomplish extrinsic tasks (bold arrows).

Importantly, in the two phases active vision supports these processes (thin arrows): to generate intrinsic motivations linked to objects; to learn affordances and forward

models related to objects; and to plan based on parsing the goal into object-related sub-goals.

2004), directed to assemble sequences of sub-goals/skills leading
to accomplishing the overall complex goal. In this work we
focus on a class of tasks where the sub-tasks are (cf. Korf,
1985; Russell and Norvig, 2016): (a) independent between them,
meaning that the accomplishment of one of them does not
require the previous accomplishment of another; (b) serializable,
meaning that the accomplishment of each sub-goal does not
violate other already accomplished sub-goals; (c) can be achieved
with a single action available to the agent. An example of such

a task in the domain considered here, involving two sub-goals,
is: “turn the red circle into a blue circle and move the red
square to a desired x-y position.” This type of task can be
solved with repeated single-step planning processes. The use of
this simple class of problems allows us to focus on the issues
illustrated below.

In order to study the relations between affordances (see
below) and planning, we focus here on two types of planning
strategies investigated in the literature on planning (Ghallab et al.,
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2004; Russell and Norvig, 2016). The first type involves goal-
based planners that have to decide which actions to perform
to accomplish a desired future condition (goal). The second
type involves utility-based planners that have to decide between
alternative conflicting goals having a different desirability and
pursued in uncertain conditions (here the stochasticity of the
environment is due to the fact that actions succeed only with a
certain probability).

As mentioned above, an important dimension of the focus of
this work concerns affordances. This concept was first proposed
within the psychological literature to refer to the actions that a
given condition or object “offers” to an agent given its current
body state (Gibson, 1979). The concept has been later used in the
developmental-robotics literature to refer to the dyadic relational
concept for which a certain condition or object allows performing
a certain action on it (Stoytchev, 2005; Sweeney and Grupen,
2007). The interest of affordances for autonomous robotics, as
we will also show here, resides in the fact that they can represent
a simple and efficient mechanism to rapidly decide which actions
can be performed, with some potential utility, on the objects
available in the environment.

In the literature, the concept of affordance has occasionally
been broadened to refer to various elements relevant for
planning. For example, affordances have been associated with
three functions linking three critical elements of behavior
(Montesano et al., 2008; Ugur et al., 2011): an Object (O), the
Action (A) to perform on it, and the resulting Effect (E). The
three functions, denoted here as F, C and I, get as input two
of the three elements and return the remaining one as output:
(a) forward model, E = F(O,A); (b) relevance, O = C(A,E);
(c) inverse model, A = I(O,E). With respect to planning, these
functions can play various roles. “Forward models” can be used
to support forward planning, as here, because they allow the
agent to predict the effect of performing a given action A on
a certain object O and check if the obtained effect E matches
a desired goal/sub-goal (G). “Relevance” checking (Russell and
Norvig, 2016) allows the agent to search actions for which the
effect fulfills the goal and then to search for relevant objects (on
which the actions can be applied) to accomplish the goal (the
function C has also been used often in the affordance literature to
perform sheer object recognition based on how objects respond
to actions, e.g., see Fitzpatrick et al., 2003; Castellini et al., 2011;
Nguyen et al., 2013; Ugur and Piater, 2014). “Inverse models” can
be used to directly perform actions, with the caveat that the object
does not represent the whole state of the environment as required
by proper inverse models (this is not further discussed here).
These broad definitions of affordance are important to highlight
the triadic relational nature of affordances, involving not only
object/conditions and actions but also action effects. On the other
hand, such definitions overlap to a certain degree with other
concepts used in the computational literature and this decreases
their utility.

Here we contribute to the investigation of the possible
functions of affordances for autonomous agents by assuming
a restricted definition of them. This definition allows us to
evaluate the utility of affordances within planning systems and
also to contribute to clarifying the relation between the concept

of affordance used in psychology and in robotics. Informally,
the definition is this: an affordance is an agent’s estimated
probability that a certain action performed on a certain object
successfully accomplishes the desired outcome associated with the
action (“goal”). Formally, the definition of affordance used in this
work is as follows:

An affordance is an agent’s estimated probability Pr(s′
b,o
∈ G|a, sb,o)

that if it performs action a on the object o when the object and own

body b are in state sb,o then the outcome will be a state s′
b,o

belonging

to a set of goal states G to which the action is directed.

We illustrate the features of this definition and its differences and
links with other definitions. (a) The definition is more specific
than other definitions that often have vague features. (b) The
states sb,o refer to a certain object and the agent’s body so the
definition is closely linked to the original idea of affordance
as founded on the body-object relation. Moreover, the focus
on “b” and “o” differentiates the concept from the transition
models (linking current state and action to future states) used
in the reinforcement learning literature (Sutton and Barto,
2018) as these use atomic/whole-state representations; instead,
such reference links the definition to the preconditions used in
symbolic planning operators that use structured representations
capturing the relations between different entities (here “o”
and “b”; Russell and Norvig, 2016). (c) The definition is
centered on the concept of “object,” intended here as a limited
portion of matter that is physically detached from the rest to
the environment. This is very important as in the literature
on affordances objects are crucial for manipulation tasks, an
important class of robotic tasks alongside navigation tasks. As
discussed below, the focus on objects makes attentional processes
very useful for the acquisition and use of affordances. (d)
Importantly, the definition is grounded on the link between
the action and its goal, i.e., the possible effects that the action
is expected to produce on the object; for example, a “grasping
action” might have the goal “hand envelops the object.” This is
important as often in the computational literature on affordances
it is assumed that the agent is able to check the success of an
action performed on a certain object (e.g., that “the object rolls”
if pushed) without fully recognizing that such a check needs a
reference state/event with which to compare the action outcome;
that is, it needs a goal. (e) The goal can be abstract in the sense
that it encompasses different states sb,o. In particular, it can be
abstract with respect to the elements of the environment other
than the object and body. Sometimes the goal might even be
abstract with respect to the body features; for example different
robots with different actuators could all be able to “grasp” a
certain object. In some cases, the goal might abstract altogether
from the body and involve more than one object, in particular
some relation between them; for example the goal might require
piling “object A on object B” (in this case the affordance is that
A is “pileable” on B). The “o” in the definition might even go
beyond “objects” and include broader affordances; for example
Ugur et al. (2007) studied the “traversability” of a portion of
environment in a navigation task. (f) There can bemany different
possible goals G, and actions to pursue them, that an agent
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can perform on a given object; for example a robot can “push,”
“grasp,” or “lift” a given object to accomplish different goals. (g)
The definition, based on a probability, takes into account the
uncertain nature of the environment where the performance of
actions does not necessarily produce the desired outcomes. (h)
The definition assumes a binary success/failure of the action,
for example based on the use of a threshold (e.g.: “the object
is considered as reached if the distance between the object and
the hand-palm after action execution is smaller than 2 cm”).
An alternative definition, assuming that suitable distance metrics
could be applied to the object/body states, could state that the
affordance is accomplished in a continuous degree related to the
final distance of the state achieved by the action and the reference
goal-state (e.g.: “a reaching action toward an object brought the
hand 5 cm close to it”). Here we will use the first definition
related to probability-based binary affordances. Within this, we
will consider two types of affordances. The first, called here
deterministic affordances, where objects allow or not the agent to
accomplish the goal (e.g., an object could be “movable” or “non-
movable”): in this case the affordance probability is equal to 0 or
1. The second, called here stochastic affordances, can accomplish
the goal only with a certain probability, for example an object
might be “movable” with a probability of 0.7 and another one
with a probability of 0.3.

We now introduce a pivotal feature of our system, the
use of active vision (Ballard, 1991; Ognibene and Baldassare,
2015). Agents with active vision: (a) use a visual sensor that
returns information related to only a limited portion of the
scene; (b) actively direct the sensor on relevant regions of
space (“overt attention”). These assumptions reflect fundamental
principles of organization of the visual system of primates
(Ungerleider and Haxby, 1994) and in artificial systems they
allow the reduction of visual information processing and an
easier analysis of spatial relations between scene elements
(Ognibene and Baldassare, 2015). Here active vision is used
to extract information on objects, very important for three
processes: intrinsic motivations, affordance processing, and
planning. Regarding intrinsic motivations, we shall see that
our system relates them to objects and on this basis decides
on which object to invest exploration and learning. Regarding
affordances, we have seen above that most works in the literature
use setups structured so that the system can gather information
on affordances related to single objects (e.g., see Fitzpatrick
et al., 2003). The system proposed here uses active vision to
focus on single objects and detect their affordances. Regarding
planning, the classic AI planners usually employ structured
knowledge representations of states and actions (“operators”)
expressed with propositional logic or first order logic; this
type of representation is very important as it allows systems
to “reason” about objects and their relations, and “almost
everything that humans express in natural language concerns
objects and their relationships” (Russell and Norvig, 2016).
For our focus on embodied systems, we instead use here
factored knowledge representations based on feature vectors, in
particular image features. However, active vision allows the
system to identify single objects, and this information allows
the system to parse overall goal images into object-related

sub-goals that can be pursued one by one. The planning
processes considered here are akin to those used within the Dyna
systems of reinforcement learning literature where planning is
implemented as a reinforcement learning process running within
a world model rather in the actual environment (Sutton, 1990;
Baldassarre, 2002; Sutton and Barto, 2018). Some caveats on the
approach used here to visually isolate objects are due.We simplify
the task by not considering cluttered scenarios. Moreover, we
use simple bottom-up attention processes to control gaze. These
simplifications allow us to develop the overall architecture of
the system, but in future work some of the components of the
system could be substituted by more sophisticated components,
in particular for object segmentation and detection (Yilmaz et al.,
2006; Zhang et al., 2008; LeCun et al., 2015) and for a smarter
“top-down” control of gaze depending on the agent’s information
needs (Ognibene et al., 2008, 2010; Dauce, 2018).

1.2. Contributions of the Work
A first contribution of this study is on how intrinsic motivations
can support efficient learning of affordances, in particular when
an attention mechanism focusing on objects is used. There are
some previous studies linking affordance learning to intrinsic
motivations and active learning (Ugur et al., 2007; Nguyen et al.,
2013), but they did not investigate how intrinsic motivations can
be used to learn object affordances when the visual sensors access
only one object at a time. To face this condition, we will propose
a mechanism that compares the estimated learning progress from
acting on the currently seen object with the progress that it could
gather by acting on other objects. The mechanism is inspired
by the concept of opportunity cost used in economics, referring
to the value of the opportunities that are lost by allocating a
certain resource (here a unit of learning time) to a certain activity
(Buchanan, 2008).

A second contribution of this work is the study of how the
introduction of the attention mechanism, extracting information
about the single object and about the object appearance/location
impacts (a) the affordance learning process and (b) the second
extrinsic phase where planning is needed to accomplish an
extrinsic complex goal. The first issue has only been indirectly
studied in the literature on affordances where models often
assume pre-processing mechanisms to extract information on
specific objects (see also the “OAC – Object Action Compound”
framework pivoting on object information; Krüger et al., 2011).
The second issue is important as attention is a key means to
detect objects in humanoid robots (Camoriano et al., 2017) and
information on objects is pivotal for both affordance detection
(e.g., Montesano et al., 2008) and for planning. Regarding
planning, attention can be used to refer to single objects, and
then to reason about their relations, as typically done when
using structured representations (Russell and Norvig, 2016). In
particular, in the intrinsic phase the architecture presented here
can use attention to identify different objects in the environment
and learn affordances related to them. Then in the extrinsic phase
it can use attention to parse the whole goal state into object-
related sub-goals that can then be more easily accomplished one
by one.
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A third contribution of this work concerns the relationship
between affordances and planning. In particular we will face the
problem of what could be the utility of affordances, defined as the
probability estimate of action success, within a planning system
that is endowed with refined components implementing forward
models and relevance checking. Are affordances still useful in such
conditions? The importance of this problem derives from the
fact that psychology shows that affordances are very important in
real organisms. One might thus wonder if they can still furnish
relevant functions within sophisticated systems endowed with
the capacity of planning. In this respect, we will propose that: (a)
affordances can play a role in forward planning as they support
fast selection of relevant actions within the system’s controller in
a way similar to the way they are used to act in the environment,
akin to the role of the “preconditions” of STRIPS-like operators
in symbolic planning (Fikes and Nilsson, 1972); (b) affordances,
when capturing the expected probability of action success, can
play an important role in utility-based planning agents, the most
sophisticated form of rational agent (Russell and Norvig, 2016).

The rest of the paper is organized as follows. Section 2
illustrates the experimental setup, and the architecture and
functioning of the system. Section 3 shows the results of the
tests. Section 4 compares the system proposed here to other
systems proposed in the literature. Finally, section 5 draws the
conclusions and illustrates open problems that might be tackled
in the future.

2. METHODS

2.1. Experimental Setup: Overview
The experimental scenario (Figure 1) consists of a black 2D
working space containing different objects. Objects have different
shapes (squares, circles, and rectangles) and colors (red, green,
and blue). Section 2.2 describes the scenario and objects in
more detail.

Each test consists of two phases: the intrinsic phase and the
extrinsic phase. In the intrinsic phase the agent is free to interact
with the objects for a certain time to autonomously acquire
knowledge on them, in particular on their affordances and on
forward models related to them (Figure 1A). In the extrinsic
phase an overall goal state, with specific desired location and
color of the objects in the working space, is presented to the
agent that memorizes an image of it. The objects are then set in a
different state and the agent has to re-create the goal state based
on knowledge acquired in the first phase (Figure 1B).

The agent (section 2.3) is endowed with a simulated camera
sensor that can look at different sub-portions of the working
space, and is able to select and perform four actions on the
object that is at the center of its camera. The actions can
move the object to a new position or change its texture to a
particular color (red/green/blue); different objects afford only
a subset of these actions. As often assumed in the affordance
literature, action execution is based on pre-programmed
routines implementing the effect of the action that is selected
and triggered.

Three versions of the system are implemented and compared:
IGN, FIX and IMP. The three systems differ in the IM

mechanisms they use to support affordance learning: FIX uses a
mechanism taken from the literature (Ugur et al., 2007) whereas
IGN and IMP use new mechanisms. Section 2.4 describes the
three systems in detail. In the extrinsic phase, the knowledge
acquired by the three systems in the intrinsic phase is tested with
problems requiring goal-based or utility-based planning.

2.2. Working Space and Objects
The working space is formed by a 150 × 150 pixel square. The
points of the working space are encoded as a 3D binary array
where the first 2 dimensions encode the x-y pixel position, and
the third dimension encodes the color (RGB). The color of
the working space background is black. All objects are initially
located on the vertexes of a 3 × 3 regular grid (white square
in Figure 1).

Each object presents the following attributes: (a) center: x-y
coordinates; (b) color: three values for red, green, and blue; (c)
shape: either square, circle, or rectangle. Assuming the working
space has a side measuring 1 unit, the circle has a diameter
measuring 0.1 units, the square has a side measuring 0.1 units,
and the rectangle has sides measuring 0.6 and 0.16 units.

As a consequence of the actions performed by the agent, the
position and color of the objects can change. This defines the
possible affordances of objects: “movable,” “greenable,” “redable,”
and “bluable.” Each object has a specific subset of affordances, for
example a blue circle is “movable” and “redable.” In some tests,
affordances are stochastic in the sense that the related actions can
produce an effect only with a certain probability.

2.3. The System Architecture
The system controller consists of three different components
(Figure 3): (a) the perception component implements a “bottom-
up attention” mechanism that leads the system to scan the
environment based on its salient features (color blobs of objects)
and also observes the action effects in the environment by
looking at portions of the scene that are changed by the actions
(section 2.3.1); (b) the action component executes actions on
the objects based on pre-wired routines (section 2.3.2); (c) the
predictor component is formed by the predictors for affordances
and forward models that support action selection in both the
intrinsic and extrinsic phases (section 2.3.3). In the following
sections we describe the different components in more detail.

2.3.1. The Perception Component: Attention and

Effect Detection
The perception component is responsible for the attention
processes supporting visual exploration of both the environment
and, in the extrinsic phase, the goal image. The perception
component implements two attention processes: an inner
attention process operating in parallel with an outer attention
process. The outer attention scans the environment on the basis
of two bottom-up processes both affecting gaze (they sum up):
the first process is sensitive to the saliency of objects, and the
second process is sensitive to the changes of the appearance of
objects produced by actions. The inner attention scans the goal
image on the basis of either the saliency of objects or by having
the same focus as the one of the outer attention process. All these
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FIGURE 3 | System architecture: main components.

attentional processes are activated when needed on the basis of
intrinsic motivations or planning processes, as we now illustrate
more in detail.

Attention actively guides a RGB visual sensor (a pan-tilt
camera) returning an image centered on the current attention
focus and sufficient to always cover the whole working space
independently of the gaze pointing. The central part of such an
image, called focus image, forms the main input of the system.
This focus image has a size of 0.14 × 0.14 (recall the scene is
1 × 1) and usually covers only one specific object. The whole
image is used with a lower resolution (here in gray scale) to form
a peripheral image that is used to drive the bottom-up attention
processes now illustrated (cf. Ognibene and Baldassare, 2015).

The first type of bottom-up attention process, the saliency-
based one, is driven by the most “salient” elements in the
peripheral image, here the activation of pixels corresponding to
objects. This process is implemented as follows. First a random
noise (ǫ ∈ [−0.05, 0.05]) is added to each pixel of the peripheral
image and the resulting image is smoothed with a Gaussian
filter. Then the pixel with the maximum activation is used as the
focus of attention (but if a change happens the second bottom-
up attention mechanism also intervenes, see below). Thanks to
the Gaussian smoothing, the focus falls around the center of the
focused object, which thus becomes wholly covered by the focus
image. The noise fosters exploration as it adds randomness to
the saliency of objects, thus leading the system to explore the
different objects.

Note that in the future more sophisticated approaches might
be used to ensure that the focus-image involves only the
focused object of interest (e.g., object-background segmentation
approaches). Moreover, other mechanisms might be used to
ensure a more efficient scan of the environment (e.g., inhibition
of return might be used to avoid scanning the same location
multiple times). These mechanisms are not considered here for

simplicity and because the focus of this research is on the effects
of attention, rather than on the mechanisms for its control.

The second bottom-up attention process, sensitive to changes,
is directed to detect the effects of actions. The process works
as follows. Firstly the system focuses on the portion of space
where a change in the periphery image takes place (this mimics
some processes of primates for which a reflex focuses attention
on changes happening in the environment (Comoli et al., 2003;
Gandhi and Katnani, 2011; Sperati and Baldassarre, 2014). To
this purpose, the system computes the “change image” given
by the pixel-by-pixel absolute difference between the whole
periphery image after and before the performance of the action:
both images are taken with the same initial gaze before the next
attentional movement but the “after-image” is taken after the
action performance (e.g., leading to displace the object). The
change image is smoothed with a Gaussian filter and summed up
to the salience-based attention image described above to guide
the gaze displacement to the maximally activated pixel of the
“sum image.” This process leads the system to look at the object
that has been changed by the action, e.g., the object that has been
changed in color or displaced in space (in the latter case, the
system gazes the position where the object is moved, and not
the position where it disappears, due to the object saliency that is
not present where it disappears). After this attentional movement
on the changed object is performed, the system compares the
focus image (involving only the area covering the object) and
the object position (given by the gaze direction) before and
after performing the attentional movement itself: this allows the
system to decide if the performed action was successful or not
(presence of affordance). The focus image comparison is based
on the L1 norm of the difference between the vectors of the
two images before and after action performance, divided by the
number of dimensions of the vectors: if this measure is higher
than τi = 10−5 then the focus image is considered to have
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changed. The position comparison is based on the L1 norm of
the difference between the vectors of the two (x,y) focus positions
before and after action performance, divided by 2: if this measure
is higher than τp = 0.02 then the position of the object is
considered to have changed.

An affordance is considered to be in place if: (a) an effect is
detected; (b) the effect is the one related to the performed action
(e.g., the object is displaced by the action “move,” or the object
is made green by the action “change object color to green”). This
information is used to train the affordance predictors. The focus
image and object position after the action execution are used to
train the effect predictors.

2.3.2. The Action Component
The system is equipped with four actions: move object, change
object color to green, change object color to red, and change
object color to blue. The move action can displace objects in
the environment if they have the affordance for this effect. The
move action is parametric: it affects the target object (object
under focus) on the basis of two parameters corresponding to
the object desired x-y location. During the intrinsic phase, the
desired location is randomly generated within the working space
(excluding positions that cause object overlapping). During the
extrinsic phase, the target location corresponds to the location
of the “sub-goal” that the system is currently attempting to
accomplish (see section 2.4.3). The color-changing actions are
non-parametric: they simply change the color of the target object
into the desired one if the object has the affordance for the
corresponding effect. Only one color-change action might have
been considered if parameterized with the color (this would have
been a discrete parameter vs. the continuous parameters of the
move action). We chose a non-parametric version of the color
actions to develop the features of the system working for both
parametric and non-parametric actions.

2.3.3. The Predictor Component: Forward Models

and Affordances
The predictor component is formed by 16 predictors (these
are regressors), 4 for each of the 4 actions: (a) the affordance
predictor predicts the object affordance (i.e., the probability that
the action effect takes place when the action is performed); (b)
the learning-progress predictor predicts the learning progress of
the affordance predictor when applying the action to the target
object, and is used to generate intrinsic motivations based on the
learning progress of the affordance predictors; (c) the what-effect
predictor predicts the focus image of the object resulting after
the action performance; (d) the where-effect predictor predicts the
object position resulting after the action performance. Given the
simplicity of the stimuli, the predictors are implemented here as
simple perceptrons but more sophisticated models might be used
to face more challenging scenarios. All the predictors are trained
during the intrinsic exploration phase and are now explained
more in detail.

The affordance predictors estimate the affordance probability
Pr(s′

b,o
∈ G|a, sb,o) of each action/goal related to different objects.

Each predictor gets as input the focus image (whose pixels
are each mapped onto (0, 1) and unrolled into a vector) and

returns, with one output sigmoid unit, the prediction of the
action success. Each predictor is trained with a standard rule
and a learning target 0 or 1, encoding respectively the failure
or success of the action to produce its desired effect, i.e., the
presence/absence of the affordance (the learning rate used varied
in the different tests, see section 3).

Each learning-progress predictor gets as input the focus image
and returns, with a continuous linear output unit, the learning
progress of the associated affordance predictor. The predictor is
updated with where the target for learning is the difference in
the output of the corresponding affordance predictor, computed
before and after the action is performed and before the affordance
predictor is updated.

Each of the what-effect predictors gets as input the focus image
and predicts, with sigmoidal output units, the focus image after
the action performance. The predictor is updated with rule with a
target corresponding to the observed focus image after the action
is performed.

Each of the where-effect predictors gets as input the initial (x,
y) position of the target object and the desired (x, y) position
of the object depending on the sub-goal, and predicts, with two
linear units, the predicted object (x, y) position after the action
performance [x and y coordinates are each mapped to the range
(0, 1)]. The predictor is updated with a where the target for
learning is the object position after the action is performed.

2.4. The Intrinsic-Phase Learning
Processes and the Extrinsic-Phase
Planning
In this section we first present the motivation signals
(section 2.4.1) and the algorithm for learning affordances
and forward models (section 2.4.2) used by the three versions
of the system (IGN, FIX, and IMP) during the intrinsic phase.
Then we describe the two algorithms of the attention-based goal
planner (section 2.4.3) and the attention-based utility planner
(section 2.4.4) used in the extrinsic phase.

2.4.1. IM Signals
In the intrinsic phase, the system autonomously explores the
objects in the environment to learn affordances and train its
predictors. The exploration process is driven by IMs related to
the knowledge acquired by the affordance and learning-progress
predictors. Depending on how the IMs are implemented, we have
three versions of the system: FIX, IGN, and IMP.

The FIX system uses an IMmechanism for affordance learning
like the one used by Ugur et al. (2007). This work studies
a mobile robot that learns the “traversability” affordance in a
maze scattered with obstacle-objects. A Support Vector Machine
(SVM) is used to classify the view of the obstacle-objects to
estimate the presence/absence of the affordance. The system
estimates the novelty, and hence the interest, of the current view
of the objects on the basis of its distance from the hyperplane
used by the SVM to classify the affordance presence/absence. If
this distance is below a fixed threshold, the view is considered
interesting and so the system performs the exploratory action of
trying to traverse the maze. The system observes if the affordance
holds, and uses its observation to train the SVM.
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In our case, as a measure of how interesting the current
object is we consider the Shannon entropy of the estimated
affordance probability:

H(p) = −
n∑

i=1
Pr(xi)logb(Pr(xi)) = −p log2 p−

(
1− p

)
log2

(
1− p

)

(1)

where we considered b = 2 as the basis of the logarithm; xi
are the two events s′

b,o
∈ G and s′

b,o
/∈ G corresponding to

the presence or absence of the affordance, having respectively
a probability Pr(s′

b,o
∈ G) = p and Pr(s′

b,o
/∈ G) = 1 − p.

The use of this formula is justified by the fact that entropy is a
measure of ignorance (uncertainty) of the system: the uncertainty
is minimal when p = 0 or p = 1, and maximal when p = 0.5 (the
value of the entropy is here normalized so that H(p) ∈ (0, 1), in
particular H(0) = H(1) = 0 and H(0.5) = 1). The weights of the
affordance predictors are initialized to 0, resulting in an initial
sigmoid activation of 0.5 and an ignorance of 1.

Following Ugur et al. (2007), the current object is considered
interesting, and hence worth exploring, when the entropy is
above a threshold th (here th = 0.3, which corresponds to
an ignorance value, i.e., affordance predictor output, of 0.947
or 0.053). Ignorance (entropy) thus represents the IM signals
that drive exploration of objects. Since we have more than one
action, for a given focused object we consider the action with
maximum ignorance for that object. This mechanism is simple
and interesting, but it also has some limitations when applied
to multiple objects and actions as it leads to an evaluation of
how interesting potential experiences are in a fixed way. In
particular, all objects with an ignorance above the threshold will
be considered equally interesting. Moreover, after the ignorance
related to an object decreases below the threshold the agent will
stop exploring it independently of the fact that it might still have
some exploration time available.

The IGN system (IGN stands for “IGNorance”) is a first
version of our system that is directed to overcome the limitations
of the IMmechanism of FIX. The newmechanism uses a dynamic
threshold th. This threshold is continuously adjusted as a leaky
average of the IM signal, IM (here IM = H), related to the objects
explored one after the other in time:

tht = tht−1 + ν(−tht−1 + IMt−1) (2)

where t is a trial and ν the leak coefficient (ν = 0.3 in
the deterministic environment and ν = 0.1 in the stochastic
environment). When objects are explored and predictors are
trained, the ignorance of objects, and hence the IM signal related
to them, will decrease and so will th. By comparing the highest
action-related entropy of an object with th the system will be
able to trigger the exploration action or to pass to explore more
interesting objects. When the system decides to not explore the
object, then the leaky average gets IMt−1 = 0 as input. This
implies that when objects are considered not interesting, the
threshold progressively decreases so that some objects become
interesting again.

A limitation of the IM mechanisms of IGN is that it is not
able to cope with stochastic environments where the success

of an action is uncertain (e.g., when the agent tries to move
an object, the object moves only with a certain probability). In
this case, the affordance predictor will tend to converge toward
the corresponding probability p and so objects with stochastic
affordances will always remain interesting.

The IMP system (IMP stands for “IMProvement”) overcomes
the limitations of IGN by suitably coping with stochastic
environments. The motivation signal used by IMP is
implemented as the absolute value of the learning-progress
predictor output (let’s call this LP). Similarly to IGN, th is
computed as a leaky average of the IM signal, namely with
Equation (2) where IM = LP (ν = 0.1 in all tests). In particular,
as for IGN the expected learning progress of the action with
the highest LP is compared with th. This makes the system
explore the current object if it promises a learning progress
that is higher than the learning progress for other objects,
represented by th. The learning-progress predictor weights are
initialized to random values within (−0.00075,+0.00075) so
that the motivation signal is non-zero for all objects when the
intrinsic phase starts. The distinction between IGN and IMP
reflects the distinction between prediction error and prediction
error improvement within the literature on IMs, justified as here
by the need to face deterministic or stochastic environments
(Schmidhuber, 1991a; Santucci et al., 2013).

The mechanism of the leaky average threshold, used in
IGN and IMP, allows the agent to indirectly compare the
relative levels of how interesting different objects are, and
to focus the exploration effort on the most interesting of
them notwithstanding the fact that different objects are in
focus at different times due to the presence of the active
vision mechanisms. This is a novel general mechanism
that allows the integration of attention (targeting different
objects) and IMs (returning an interest of the object).
Here the mechanism is used for the learning of object
affordances but its generality allows its use also for the
acquisition of other types of knowledge in the presence of
focused attention.

2.4.2. Intrinsic Phase: Learning of Affordances and

World Model
The intrinsic phase allows the system to autonomously explore
the objects by looking at and acting upon them. Based on the
observed consequences of actions, this allows the system to train
the predictors, including those related to affordances. At each
step of the phase, the system performs a number of operations
as illustrated in Algorithm 1. This algorithm is used by both the
goal-based planner and the utility-based planner.

The algorithm is based on the following operations and
functions: (a) the Scan function focuses the system visual sensor
on an object based on the bottom-up attention mechanism
and returns the image and position of the object; (b)
SelecActionWithHighestIM selects the action with the highest IM
and computes its motivation signal; (c) ExecuteAction executes
the selected action as illustrated in section 2.3.2 if the motivation
signal is higher than the threshold; (d) ScanEffect looks where
a change in the environment has happened (e.g., at the new
position occupied by the object after the move action, or at
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Algorithm 1: Intrinsic phase: one step of learning of affordances and forward models

1: (object_image, object_position)← Scan(environment)
2: (action, motivation_signal)← SelectActionWithHighestIM(action_list, predictors, object_image, object_position)
3: if (motivation_signal ≥motivation_threshold) then
4: ExecuteAction(action, object_image, object_position)
5: (new_object_image, new_object_position)← ScanEffect(new_environment, environment)
6: affordance←...
7: Affordance(action, new_object_image, new_object_position, object_image, object_position)
8: UpdateWeights(affordance_predictor, action, object_image, affordance)
9: UpdateWeights(affordance_predictor, action, object_image, affordance, improve_predictor) ⊲ Only IMP
10: if (affordance = TRUE) then
11: UpdateWeights(effect_predictors, action, object_image, object_position,...
12: new_object_image, new_object_position)
13: end if

14: motivation_threshold← LeakyAverage(motivation_threshold, motivation_signal) ⊲ Only IGN/IMP
15: else

16: motivation_threshold← LeakyAverage(motivation_threshold, 0) ⊲ Only IGN/IMP
17: end if

the object that changed its color after a change-color action),
and returns the resulting new object image and position; (e)
Affordance compares the past and new state of the target object
and returns a Boolean value (affordance) for the affordance
presence/absence; (f) UpdateWeights updates the connection
weights of the predictors of the performed action as illustrated in
section 2.3.3: the affordance predictor is updated on the basis of
the affordance presence/absence; in the case of IMP, the learning-
progress predictor is also updated on the basis of the affordance
predictor output before and after the action performance (and
hence the predictor update); in the case of the presence of
the affordance (action success), the effect predictor learns to
predict the effects of the performed action; (g) LeakyAverage,
present in the case of IGN/IMP, updates the threshold according
to Equation (2) and uses as input either the IM signal of the
performed action, or zero if no action was executed.

2.4.3. Extrinsic Phase, Pursuing the Overall Goal:

Goal-Based Planner
During the extrinsic phase, the system is tested for its capacity
to accomplish an “overall goal” based on the knowledge acquired
during the intrinsic phase. Such an overall goal is assigned to the
agent through the presentation of a certain desirable spatial/color
configuration of some objects in the environment. The agent
stores the goal as an image (“goal image”). The configuration of
the objects is then changed and the task of the agent is to act on
the environment to arrange it according to the goal image.

Importantly, the agent scans the goal image through a
second “inner” attention mechanism similar to the “outer”
attention mechanism used to scan the external environment.
This inner attention mechanism is important to parse the goal
image into sub-goals, each corresponding to the configuration
of a single object in the goal image, one per saccade. These
sub-goals are then pursued in sequence to accomplish the
overall goal.

The operations taking place in one step of this process
are shown in detail in Algorithm 2. The pseudo-code of

the algorithm highlights the effects of the factorization of
information on objects, related to their state and position, based
on the attention mechanisms. A new sub-goal is selected either
in the case that the previous sub-goal has been accomplished
(in which case the Boolean variable sub_goal_active = FALSE)
or if a time out elapses in the unsuccessful attempt to pursue
it (here the time out is equal to 8 iterations of the algorithm).
The agent uses the function Scan to identify a new target sub-
goal: this function scans the goal-image with the saliency-based
attention mechanism and returns the new sub-goal image and
focus location (sub_goal_image and sub_goal_position).

Next, the agent checks if the sub-goal has not
been accomplished yet. To this purpose, the function
ScanEnvironmentWithSameFocusAsSubGoal drives the outer
attention focus (targeting the environment) to the position
corresponding to the inner attention focus (targeting the
goal image) and returns the corresponding focus image
(focus_image). Then the function GoalNotAchievedCheck
compares the sub_goal_image and the focus_image to check that
the sub-goal has not been achieved yet, in particular it sets the
variable sub_goal_active to FALSE or TRUE if they, respectively,
match or mismatch (the match holds if the Euclidean distance
between the vectors corresponding to the two images is below a
threshold τ = 0.01).

If the sub-goal has not yet been accomplished, the system

scans the environment to find a new object and then the function

ActionPlanning checks if at least one action is able to accomplish

the sub-goal by acting on the focused object. To this purpose, the

function uses the effect predictors to predict the effect of each

action and then compares it with the sub-goal (this happens if the

Euclidean distances are below 0.0035 for the sub-goal image and

the object image, and below 0.01 for their position coordinates).

Depending on the result of the planning, the function sets the

Boolean variable sub_goal_achievable to TRUE or FALSE and

possibly returns the action to be executed to achieve the sub-goal.

These processes, based on the forward models, are an important
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Algorithm 2: Extrinsic phase: one step of goal-based planning

if time_out OR (NOT sub_goal_active) then ⊲ Select non-achieved sub-goal
(sub_goal_image, sub_goal_position)← Scan(goal)
focus_image← ScanEnvironmentWithSameFocusAsSubGoal(environment)
sub_goal_active← GoalNotAchievedCheck(sub_goal_image, focus_image)

end if

if (sub_goal_active = TRUE) then
(object_image, object_position)← Scan(environment) ⊲ Select object
(sub_goal_achievable, action)← ActionPlanning(predictors, action_list,...

sub_goal_image, sub_goal_position, object_image, object_position) ⊲ Plan action
if (sub_goal_achievable = TRUE) then

ExecuteAction(action, object_image, object_position, action) ⊲ Perform action
focus_image← ScanEnvironmentWithSameFocusAsSubGoal(environment)
sub_goal_active← GoalNotAchievedCheck(sub_goal_image, focus_image)

end if

end if

part of the algorithm as they implement a one-step forward
planning process.

Lastly, if a potentially successful action has been identified, it
is executed and then the system checks again if the sub-goal has
been accomplished. If so, sub_goal_active is set to FALSE so that
a new sub-goal is chosen in the next iteration.

Importantly, the ActionPlanning function could possibly
check all actions. Affordances (i.e., the predictors estimating
Pr(gj|aj, oi)) can be employed to avoid this. In particular, the
check can be limited only to those actions having an affordance
for the current object (here when Pr(gj|aj, oi) > 0.5). This
allows affordances, which are computed fast through 1-output
neural networks, to speed up the planning search by reducing the
number of more computationally expensive operations involving
the prediction of action effects (new object image and position)
and their comparison with the sub-goal. Here actions are only 4,
but this advantage increases with the number of actions available
to the agent.

2.4.4. Extrinsic Phase, Pursuing the Overall Goal:

Utility-Based Planner
In the case of utility planning, different “sub-goals” deliver a
different value if accomplished. In cases where the agent has a
limited amount of resources available to accomplish the goals
(e.g., time or energy to perform actions), it should first invest
such resources in the accomplishment of the most valuable sub-
goals (for simplicity, we assume here a constant cost per action
and a negligible cost of reasoning with respect to acting, as often
done in utility-based planning, Russell and Norvig, 2016). Notice
that in utility planning “sub-goals” are directed to accomplish the
overall objective of utility maximization rather than an overall
goal intended as a particular state of the environment.

The utility-based planner works as shown in Algorithm 3.
When the Boolean variable max_utility_estimatation is TRUE,
the planner evaluates the value of the possible sub-goals it
can achieve with the available object-action combinations and
stores an estimate of its value in the variable potential_utility,
otherwise it acts in the world. Various mechanisms could be
used to set and keep the system in the evaluation mode: here

for simplicity we gave the system a certain amount of iterations
before performing an action, but more flexible mechanisms
might be used (e.g., passing to act when the estimates stabilize).
To perform this evaluation, the system performs the sub-goal
seeking, object seeking, and one-action planning processes as
done in Algorithm 2. However, instead of executing the planned
actions the system only updates the potential_utility if the current
goal-object couple has a higher utility than it: this ensures that the
potential utility estimation tends to approximate the value of the
most valuable sub-goals. The utility of the sub-goal-object couple,
given the found action, is computed as:

U = Pr(s′b,o ∈ G|a, sb,o)× V(s′b,o) (3)

where Pr(s′
b,o
∈ G|a, sb,o) is the affordance (expected probability

of accomplishing the desired sub-goal) and V(s′
b,o
) is the value of

the sub-goal. The actual update of the potential utility is based on
a leaky average (based on Equation 2 using a leak rate ν = 1.0;
a value lower than this might be used for having a more reliable
but slower process).

When the max_utility_estimation is set to FALSE, the system
starts to perform actions in the environment. This is similar
to what is done in Algorithm 2, the difference being that now
the system executes actions only if the expected utility of the
current subgoal-object is higher than the potential utility. For
each chosen action, this potential utility is decreased with the
leaky average using 0 as input and a leak rate ν = 0.1. This
ensures that the potential utility progressively decreases so that
the system initially works on most valuable sub-goals-object
couples and then engages with less valuable ones.

3. RESULTS

To test the performance of the systems, different tests were
run with both deterministic and stochastic environments.
Performance in the intrinsic phase was measured by evaluating
the quality of the output of the predictors when receiving as input
each one of the nine focused images corresponding to the nine
possible objects (Figure 1).
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Algorithm 3: Extrinsic phase: one step of utility-based planning

if (time_out OR (NOT sub_goal_active)) then ⊲ Select non-achieved sub-goal
(sub_goal_image, sub_goal_position)← Scan(goal)
focus_image← ScanEnvironmentWithSameFocusAsSubGoal(environment)
sub_goal_active← GoalNotAchievedCheck(sub_goal_image, focus_image)

end if

if (sub_goal_active = TRUE) then
(object_image, object_position)← Scan(environment) ⊲ Select object
(sub_goal_achievable, action)← ActionPlanning(predictors, action_list,...

sub_goal_image, sub_goal_position, object_image, object_position) ⊲ Plan action
if (sub_goal_achievable = TRUE) then

object_utility← ComputeUtility(object_affordance, sub_goal_value)
if (max_utility_estimatation = TRUE) then ⊲ Computing the maximum possible utility

if (object_utility ≥ potential_utility) then
potential_utility← LeakyAverage(potential_utility, object_utility) ⊲ Increase utility expectation

end if

else ⊲ Acting if high utility is attainable
if (object_utility ≥ potential_utility) then

ExecuteAction(object_image, object_position, action)
end if

potential_utility← LeakyAverage(potential_utility, 0) ⊲ Decrease utility expectation
end if

sub_goal_active = FALSE
end if

end if

3.1. Deterministic Environment
In the deterministic environment two tests were run to test the
goal-based planner. The first, called the base test, involved all
nine objects each affording all four actions. The purpose of this
test is to compare the different intrinsic motivation mechanisms
driving affordance acquisition. During the intrinsic phase of this
test, the objects are initialized as in Figure 1A and the system
explores them. Afterwards, in the extrinsic phase the system is
tested in five different conditions involving different goal images
and environment settings (Figure 4). The first scenario contains
only one object, a blue square that has to be changed to green.
In each subsequent scenario one additional object is introduced
to increase the scenario difficulty: scenario 2 introduces a green
rectangle that has to be changed to red; scenario 3 introduces a
red square that has to be moved; scenario 4 introduces a green
circle that has to be changed to blue; finally, scenario 5 introduces
a red circle that has to be moved.

The second test, called the late object test, involves an
intrinsic phase where some objects, not initially present, are
introduced after the system has acquired knowledge on objects
introduced initially. Then the system is tested with the extrinsic
phase scenarios as in the base test (Figure 4). The purpose
of this test is to evaluate how the systems perform when,
during the intrinsic phase, new knowledge is added to already
acquired knowledge, a situation very common in open-ended
learning conditions.

Affordance predictor learning rates were α = 0.01 in the
IGN and IMP systems and α = 0.002 in the FIX system. The
learning rates of the learning-progress predictors were set to

α = 0.005. The leaky average of the intrinsic motivation was
updated with a leak rate ν = 0.3 in the IGN system and ν = 0.1
in the IMP system. The results of these tests are presented in the
following sections.

3.1.1. Base Test
In the base test, all the nine objects afford all the four actions with
the exception of those not causing any change (Table 1).
Intrinsic phase. The intrinsic phase of the base test was run 10
times, each lasting 6,000 steps, for each system, IGN, FIX and
IMP. All three systems learned a good estimate of the affordances
of the nine objects (Figure 5; the true values to estimate are either
0 or 1). The affordance predictions after learning were closer to
the true values for the IGN and IMP systems compared to the FIX
system. The variance of the predictions was lower in the FIX and
IGN systems compared to the IMP system Figure 5A.

These results offer a first validation of the idea that the IMP
and ING systems, using a dynamic threshold for evaluating the
interest of the current object in terms of its potential return of
information, outperform the FIX system previously proposed in
the literature. The reason is that the IMP and IGN systems can
decide to explore or ignore an object based on the possibility of
learning more from other objects, rather than in absolute terms
as in FIX.
Extrinsic phase. The test of the extrinsic phase was repeated 10
times for each system, for each extrinsic scenario, and for each of
the 10 repetitions of the intrinsic phase. The results show that
the three systems succeeded in accomplishing the tasks in the
majority of times (Table 2).
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FIGURE 4 | The five different scenarios (goal image and initial environment setup) used to test the systems in the extrinsic phase. The scenarios involve an increasing

number of objects. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. (E) Scenario 5.

TABLE 1 | Base test: affordance probabilities for all objects and actions.

Object Move action

prob.

Turn green

prob.

Turn red

prob.

Turn blue

prob.

1 Red square 1.0 1.0 0.0 1.0

2 Green square 1.0 0.0 1.0 1.0

3 Blue square 1.0 1.0 1.0 0.0

4 Red circle 1.0 1.0 0.0 1.0

5 Green circle 1.0 0.0 1.0 1.0

6 Blue circle 1.0 1.0 1.0 0.0

7 Red rectangle 1.0 1.0 0.0 1.0

8 Green rectangle 1.0 0.0 1.0 1.0

9 Blue rectangle 1.0 1.0 1.0 0.0

Completion time in the IMP system showed an approximately
quadratic dependency on the number of sub-goals (Figure 6)
and also an increasing variance. The other two systems
showed similar results. This test suggests that in a more
complex environment with more objects, the system would
be incapable of completing tasks within a reasonable
amount of time. The reason for the poor scaling is mainly
due to the simple bottom-up attention mechanism used
here to guide attention, which uses a random exploration

to find the objects needed to accomplish a certain sub-
goal. A top-down mechanism capable of avoiding multiple
explorations of the same objects would supposedly lead to
a linear dependence of the completion time on the number
of sub-goals.

3.1.2. Late-Object Tests
Three late-object tests were run. The features of the tests are
summarized in Table 3. In the first test the six red-green-blue
square and circle objects are present from the start of the
simulation and have all affordances, while the red-green-blue
rectangle objects are introduced late, have move affordance set
to 0 (not movable) and the color affordances set to 1 (“greenable,”
“redable,” and “blueable”). In the second test, the square objects
are present from the start and afford all actions, the circle objects
are present from the start and do not afford any action, and the
three rectangle objects are introduced late and afford all actions.
In the third test, the square and rectangle objects are present from
the start and afford all actions, while the three circle objects are
introduced late and do not afford any action. The three tests were
run for 10,000 steps each and late objects were introduced after
2000 steps.

In the first late-object test, all three systems successfully
learned the affordances of all objects, including the non-movable
rectangles introduced late (Figures 7–9). After the intrinsic
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FIGURE 5 | Base test: affordance predictions (y-axis) after 6,000 learning steps for the four actions (four graphs) and nine objects (x-axis) averaged over 10 trials in

the base test, for the IGN, FIX, and IMP systems. Mid-line of boxes shows median values, boxes show quartiles, and bars show the min-max range. The target values

that the predictors had to estimate were 0 or 1. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

phase, the predictions of object affordances were correct for all
three systems, except the “move” action affordances of the late
objects 7 and 8 in the FIX system, which also showed the highest
variance, followed by the IMP system (Figure 10).

Performance in the five extrinsic phase test scenarios (Table 4)
was low for the FIX system compared to the IGN and IMP
systems, and was highest for IMP.

In the second and third late-object test, the three systems
differed in their behaviors while learning the affordances during
the intrinsic phase, but all presented a similar performance
when tested in the extrinsic phase, so we report the data related
to them in Supplementary Material. In the second late-object
test, the IGN and IMP systems first learned the affordances
of objects introduced early in the simulations, and then
focused and learned the affordances of the objects introduced
late (Supplementary Figures 1, 2). Instead, the FIX system did

not have such efficient focus (Supplementary Figure 3). After
learning, the affordance predictions were correct for the IGN and
IMP systems (with a higher variance for the IMP system) whereas
the FIX system was less accurate and had a higher variance
(Supplementary Figure 4).

Regarding the extrinsic-phase tests (Table 5), all three systems
were successful in the first three scenarios, but failed in the
fourth and fifth scenarios, showing that the different quality
of affordances acquired in the intrinsic phase did not affect
the performance in these particular tests. All systems failed the
extrinsic phase scenario 4 and 5, involving an additional circle
each, because in the late-object tests 2 and 3 the circle objects do
not afford any action and so their state cannot be changed.

The first and second late-object tests confirm that the IGN and
IMP systems outperform the FIX system in learning affordances
as they can decide to explore a certain object on the basis of
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TABLE 2 | Base test: success of the extrinsic-learning process for the three

systems IGN, FIX, and IMP.

Extrinsic-phase scenarios

System 1 2 3 4 5

IGN 1.0 1.0 1.0 1.0 0.9

FIX 1.0 1.0 1.0 1.0 0.8

IMP 1.0 1.0 1.0 1.0 0.9

For each of the 10 intrinsic-phase runs and each of the 5 extrinsic-phase scenarios, the

extrinsic-phase test was repeated 10 times: the figures reported here represent the portion

of “successful” intrinsic-phase runs leading to > 90% successful extrinsic-phase tests.

a comparison between its expected information gain and the
information gain expected on average from other objects.

In the third late-object test, none of the systems successfully
learned to focus on, and predict accurately, the lack of affordances
of the late circle objects (Supplementary Figures 5–7). As a
consequence, after learning, the affordance predictions of
such objects were inaccurate (far from 0) (object numbers
4, 5 and 6) and showed high variance for most objects
(Supplementary Figure 8). This result can be explained
by the fact that the predictions for the novel objects are
bootstrapped from previously learned affordances of similar
objects, in particular based on the color that causes synergies
when it involves objects with same present/absent affordance,
and interference in the opposite case. A mechanism of
replay of past experience would possibly overcome this
problem as it would intermix experience related to the
different objects, allowing the neural-network predictors
to disentangle the present/absent affordances of similar
objects.

During the extrinsic phase (Table 6), all the three systems
successfully accomplished the goal in the first three scenarios but
not in the last two.

3.2. Stochastic Environment
3.2.1. Learning of Stochastic Affordances
The stochastic environment used stochastic affordances for some
objects and actions whereas the other affordances were as in the
deterministic environment (Table 7).

The intrinsic phase was run 10 times each for 10,000 steps.
The plots show the average performance over 10 trials. The leaky
average of the maximum utility estimation was updated with
a leak rate ν = 0.1 in both the IGN and IMP systems. The
learning rate of the affordance predictors was set to α = 0.001
and the learning rate of the learning-progress predictors was set
to α = 0.0005.

After learning, all three systems showed a good capacity to
predict the affordances, but the IMP system was more accurate
than the IGN and FIX systems as it could better employ
the available learning time to accumulate more knowledge
(Figure 11). In particular: (a) it learned better to estimate
affordances, with a probability equal to 1.0 (Figures 11A,C) or
0.0 (Figures 11B–D); (b) it correctly learned the 0.8 probability
for the change-color-to-blue action (Figure 11D).

FIGURE 6 | Completion times (y-axis) for the IMP system in the different

extrinsic-phase scenarios involving an increasing number of objects (x-axis).

Data refers to 100 simulations (10 runs of the extrinsic-phase test for each of

the 10 runs of the intrinsic-phase learning process). For each scenario, the

mid-line of boxes shows median values, boxes show quartiles, and bars show

the min-max range. The dashed line shows a quadratic fit:

y = ax2 + bx = 1.364x2 − 0.808x.

TABLE 3 | The structure of the three late-object tests.

Objects types:

Late-test number Squares Circles Rectangles

Start Start Late

1 Move: 1 Move: 1 Move: 0

Color: 1 Color: 1 Color: 1

Start Start Late

2 Move: 1 Move: 0 Move: 1

Color: 1 Color: 0 Color: 1

Start Late Start

3 Move: 1 Move: 0 Move: 1

Color: 1 Color: 0 Color: 1

“Start/Late”: objects that are present form the start of training/introduced later.

“Move/Color”: type of affordances. “1/0”: presence/absence of the affordances.

Both the FIX and IGN systems fail to learn accurate affordance
probabilities as they get high motivation signals for exploring
stochastic objects even when there is no more knowledge to
be gained on them. Only the IMP system is able to focus on
different objects depending on the actual learning progress they
can furnish.

As the IMP system learned affordance probabilities better than
IGN and FIX, we ran the extrinsic-phase tests illustrated in the
next section using only such a system.

3.2.2. Goal-Based Planning vs. Utility-Based Planning
The goal-based planner and the utility-based planner were
compared by running an extrinsic-phase test in a stochastic
environment with the four objects indicated in Table 8. The four
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FIGURE 7 | First late-object test, IGN system. Affordance prediction for the four actions (4 graphs) and nine objects (lines in each graph) averaged over 10 trials. Red

lines refer to red objects, green dashed lines to green objects, and blue dotted lines to blue objects. Markers on lines represent the shape of objects, where squares

refer to square objects, circles to circular objects, and stars to rectangular objects. Note that an object of a color does not have the affordance to be turned to the

same color (e.g., a red object cannot be turned red) as this involves no change. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

objects were assigned different values and the actions required
for accomplishing each sub-goal had different probabilities of
success (those corresponding to the affordances learned in the
intrinsic phase). This resulted in a different expected utility of
the objects.

The test was run 20 times for each of the 10 simulations of
the intrinsic phase using different action budgets available to
the system (1 to 5 actions). A small action-budget constraint
introduces the need of deciding which actions to perform based
on their expected utility.

The results show that the utility-based planner performed
significantly better than the goal-based planner when it could rely
on a small number of actions, and showed a statistical trend to
do so for a higher number of actions (Figure 12). This shows an
advantage of affordances for planning when the system knows the
utility of different alternative sub-goals.

The smaller difference between the models in utility for a
higher number of actions is expected due to the fact that if
all goals can be accomplished, independently of their utility,
the order of their accomplishment does not matter. However,
reality, offering a very large number of alternative (sub-)goals
with respect to the actions that can be performed, is similar to
the case of the experiment where the system has only 1 or 2
actions available, so utility-based planning is very important in
such conditions.

3.2.3. Learning of Forward Models in the Stochastic

Environment
Having illustrated the utility-planning experiment, it is now
possible to show that IMP outperformed IGN and FIX not
only in terms of the quality of learned affordances but also in
terms of the quality of the learned forward models. To this
purpose, we compared the performance of the utility-planner
using affordances and forward models trained with either one
of the IGN/FIX/IMP mechanisms for 4,000 executed actions, a
time not sufficient to fully learn the forward models. Figure 13
shows the performance (overall gained utility) of the three utility
planners using a maximum of 1, 2, or 3 actions and averaged
over 100 repetitions of the experiment. The results show that IMP
has a higher performance than IGN and FIX in all conditions; in
particular, it is statistically better than FIX with 2 and 3 actions
(p < 0.05), and better than IGN with 3 actions (p < 0.05).

The better performance of IMP could be due to either worse
affordances or worse forward models of IGN and FIX. To
ascertain this, we repeated the experiment using forward models
trained for a time allowing convergence (10,000 executed actions)
for all the three systems. In this case the three systems showed
a similar performance (data not reported). This indicates that
the better performance of IMP in the previous experiment was
due to better forward models. A possible explanation of this
is that there is a correlation between the difficulty of learning
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FIGURE 8 | First late-object test, FIX system. Red lines refer to red objects, green dashed lines to green objects, and blue dotted lines to blue objects; markers on

lines represent the shape of objects, where squares refers to square objects, circles to circular objects, and stars to rectangular objects. (A) Move. (B) Turn green. (C)

Turn red. (D) Turn blue.

the predictors estimating the affordance-probabilities and the
predictors implementing the what-effect forward models as they
share the same input (object image). So the effective decisions of
IMP on which experiences to focus on to learn affordances also
benefit the learning of the forward models. On the other hand,
even if affordances of IGN and FIX have a lower quality than IMP
(section 3.2.1), this does not negatively affect their performance
as such lower quality does not impair the utility-based ranking of
the object-related sub-goals.

3.2.4. Affordances Allow the Reduction of the

Forward Planning Search
We have seen that a potential benefit of affordances for planning
is the possibility of reducing the number of actions that should
be checked during the generation of the forward trajectories. To
validate this idea, we ran again the previous extrinsic-phase test
(section 3.2.2) but without constraining the number of actions
that the system could perform. In particular, we compared two
systems, a first one checking all available actions and a second one
restricting the forward-model-based search to only those actions
having an affordance ≥ 0.5 (here this value excludes from the
search all non-afforded actions). The results show that the use of
affordances allows a significant reduction of the mean number of
actions checked (Figure 14).

Consider that in realistic situations, the number of actions
that can be performed in a certain condition is very high.

Moreover, often several actions can be performed in sequences
to accomplish a certain (sub-)goal, a situation not investigated
here. In this case, the possible reduction based on affordances of
the branching factor due to actions is even more important.

4. OTHER RELEVANT MODELS IN THE
LITERATURE

The architecture presented here integrates functionalities that
have been investigated in isolation in other computational
systems. In this section we review the systems that are more
closely related to the system presented here, and compare their
main features.

Many works have focused on intrinsic motivations as a means
to solving extrinsic challenging tasks where a long sequence
of skills is required to solve a task or maximize a specific
reward function (“sparse reward,” e.g., Santucci et al., 2014).
Instead, fewer works on open-ended learning have focused on
intrinsic motivations for the autonomous acquisition of skills
that are assembled in sequences in a later “extrinsic phase.”
For example, Schembri et al. (2007) and Kulkarni et al. (2016)
present two reinforcement learning systems that undergo two
separated learning phases. In the second extrinsic phase, both
systems use reinforcement learning to solve complex tasks by
assembling sequences of skills acquired in the first phase. In the
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FIGURE 9 | First late-object test, IMP system. Affordance prediction for the four actions (4 graphs) and nine objects (lines in each graph) averaged over 10

simulations. Red lines refer to red objects, green dashed lines to green objects, and blue dotted lines to blue objects; markers on lines represent the shape of objects,

where squares refers to square objects, circles to circular objects, and stars to rectangular objects. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

intrinsic phase, the first system learns the skills on the basis
of reinforcement learning guided by intrinsic motivations and
reward functions found by a genetic algorithm that uses the
performance in the extrinsic phase as fitness. Instead, during the
intrinsic phase the second system learns the skills on the basis of a
mechanism generating skills when the agent’s action causes “two
objects to interact.” Although these systems employ the idea of
the two phases to develop and test open-ended learning systems,
they do not investigate how they could learn affordances in the
intrinsic phase and their possible use for planning.

Seepanomwan et al. (2017) investigates how a robot can
exploit knowledge acquired with open-ended learning in an
intrinsic phase to accomplish user-defined goals in a later
extrinsic phase. In a first intrinsic phase the robot autonomously
generates multiple “goals/outcomes” related to moving a ball in
different positions on a table. In a following extrinsic phase the
system reuses the acquired goals and skills to directly accomplish
new goals (assigned to it by a user) or to more quickly learn
the skills to do so. To this purpose, the system performs a one-
step backward planning search by searching for the best skill to
perform on the basis of the similarity of the user’s goal with the
goals of all skills. Contrary to here, the system can solve only
simple but not compound tasks, can interact with only one object
at a time since it does not have an attention system, and the initial

condition is identical in each trial (the environment is “reset”
after each skill performance).

Planning represents a central theme in artificial intelligence
(Ghallab et al., 2004; Russell and Norvig, 2016). Here we only
considered few aspects of planning relevant to face the issues
related to open-ended learning and exploitation of affordances.
Investigating the possible roles of affordances with planning,
we have seen that when forward planning is used affordances
allow the agent to short-list the available actions. Interestingly
(cf. Russell and Norvig, 2016), until the late 90’s the research
on planning mainly focused on backward planning because this
revealed more efficient than forward planning generating a wide
search branching as many actions are applicable to each state.
Later, forward planning became popular again, thanks to general-
purpose heuristics that allowed the reduction of the search
breadth based on domain-independent general heuristics, for
example focusing only on the “positive effects” (usually denoting
the action success) while ignoring the “delete effects” (usually
involved in the violation of other sub-goals). This suggests that
the common use of forward planning by organisms (Wikenheiser
and Redish, 2015) might rely on affordances for pruning relevant
actions: affordances hence are so important for organisms (Thill
et al., 2013) because they not only support an efficient action but
also planning.
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FIGURE 10 | First late-object test: affordance predictions after learning. Plotted as in Figure 5. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

The work presented here has multiple links with the
autonomous/developmental robotics literature on affordances.
In an early work, Stoytchev (2005) was among the first to propose
the idea of a robot using affordances related to different objects
(in this case tools) to evaluate their effects. Affordances, stored
in a table, regarded the effects that actions could produce on
different tools. Among other things, the work established the
importance of focusing on objects rather than on the whole
“state” of the environment for processing affordances.

Regarding the link between affordance acquisition and open-
ended learning, Ugur et al. (2007) was among the first to use
intrinsic motivations to support the acquisition of affordance
knowledge. In particular, it investigated a mobile robot that had
to learn to evaluate the “traversability” of a set of obstacle-
objects in front of it. The robot scanned different possible
directions of movement and decided to attempt to move along
one of them if its ignorance with respect to the possible

success in doing so was above a certain threshold. This aimed
to invest the time and energy of the agent on learning the
more uncertain affordances. Here we compared this mechanism
with a more sophisticated mechanism where the ignorance for
the current object and more uncertain affordance is compared
with the estimated average ignorance for the other objects and
affordances on which exploration time and energy might be
alternatively invested.

The link between affordances and the possible relations
between the elements of the object/action/effect triad was
investigated by Montesano et al. (2008). The work equated
affordances with the relations between such three elements
and represented them with a Bayesian network within a
probabilistic framework. Here we assumed a restricted definition
of affordances, more closely linked to the initial definition, and
this allowed us to investigate their relations with the elements
involved in planning. Building on the probabilistic framework
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TABLE 4 | First late-object test: success of the three systems IGN, FIX, and IMP

in the five extrinsic scenarios.

Extrinsic-phase scenario

System 1 2 3 4 5

IGN 1.0 0.4 0.4 0.4 0.1

FIX 0.8 0.0 0.0 0.0 0.0

IMP 1.0 0.9 0.9 0.9 0.6

Data as in Table 2.

TABLE 5 | Second late-object test: success of the three systems IGN, FIX, and

IMP in the five extrinsic scenarios.

Extrinsic-phase scenario

System 1 2 3 4 5

IGN 1.0 1.0 1.0 0.0 0.0

FIX 0.9 0.9 0.7 0.0 0.0

IMP 1.0 0.9 0.9 0.0 0.0

Data as in Table 2.

TABLE 6 | Third late-object test: success of the three systems IGN, FIX, and IMP

in the five extrinsic scenarios.

Extrinsic-phase scenario

System 1 2 3 4 5

IGN 0.8 0.8 0.7 0.0 0.0

FIX 0.9 0.9 0.8 0.0 0.0

IMP 1.0 0.9 0.8 0.0 0.0

Data as in Table 2.

TABLE 7 | Stochastic environment: affordance probabilities for all objects and

actions.

Object Move action

prob.

Turn green

prob.

Turn red

prob.

Turn blue

prob.

1 Red square 0.6 0.7 0.0 0.8

2 Green square 1.0 0.0 1.0 0.8

3 Blue square 1.0 0.7 1.0 0.0

4 Red circle 0.6 0.7 0.0 0.8

5 Green circle 1.0 0.0 1.0 0.8

6 Blue circle 1.0 0.7 1.0 0.0

7 Red rectangle 0.6 0.7 0.0 0.8

8 Green rectangle 1.0 0.0 1.0 0.8

9 Blue rectangle 1.0 0.7 1.0 0.0

of the work by Montesano et al. (2008), Gonçalves et al. (2014)
propose to model affordances as the interaction between tools
and objects based on their physical (geometrical) properties.

The link between affordances and planning was investigated
in Ugur et al. (2009, 2011). The authors equated affordances

to the forward models, in particular to the triad <object-
features, action, effect>, where actions are pre-coded behaviors
for moving or lifting objects and effects are clustered with a
support vector machine. In a first phase the system learns the
affordances and in a second phase the system is assigned a
goal and plans the course of actions to pursue it based on a
breadth-first forward search over actions and states until it finds
a state similar to the goal. In Mar et al. (2015) a robot explored a
pulling action performed with a rake-like tool to retrieve a target
object. This allowed the robot to learn a mapping (through a
support vector machine) between the pose of the tool in space
and the affordances intended as the class (produced with a k-
means clustering) of the possible “action parameters-retrieval
effect” concatenated feature vector. For a given tool pose, this
allowed the robot to select related affordance (action-effect class)
and then to select the action parameters corresponding to the
highest effect. This system shares some resemblance with the
utility planner used here with the difference that in Mar et al.
(2015) affordances support the selection of actions based on
the amount of the expected desired (continuous) effect, whereas
in our system they support the selection of actions based on
their probability of producing the desired effect (which can be
present/absent).

The affordance concept used here is analogous to the one
of “preconditions” used in STRIPS-based planning operators.
Preconditions establish if the operator is applicable or not to
the current environment state (Fikes and Nilsson, 1972; Russell
and Norvig, 2016). A similar concept is the “initiation set” of
options in the reinforcement learning literature. The initiation
set encompasses the states in which the action policy of the
option can be performed (Sutton et al., 1999). Both concepts
are deterministic. Instead, in utility-based reasoning actions
produce desired effects only with a certain probability (Russell
and Norvig, 2016). We think this action-success probability is
the concept of artificial intelligence that is more similar to the
concept of affordance used here.

Some of the relations between attention, affordances and
intrinsic motivations were investigated in Nguyen et al. (2013)
and Ivaldi et al. (2014). They proposed a robotic system endowed
with a bottom-up attention system to detect the various objects
available in the scene. Intrinsic motivations related to knowledge
acquisition (3D object recognition) were used by the robot to
decide which strategy to use (autonomous vs. social) to decide
on which object to focus the learning resources. The work did
not investigate, as here, the specific effects of a restricted focus
of attention on the intrinsic-motivation mechanisms supporting
affordance learning.

A last field of research related to this work involves active
vision (Ballard, 1991). This literature is relevant as many
action affordances tend to involve objects and a controllable
visual sensor with a limited perceptual scope is a means to
isolate information on specific objects (not considering here the
important problem related to the fact that objects have different
sizes and this requires an adjustable visual scope). Previous
works (Ballard, 1991; Ognibene and Baldassare, 2015) have
shown how such systems decrease the computational burden
required by processing too wide visual images, and research on
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FIGURE 11 | Stochastic environment: affordance predictions after learning. Plotted as in Figure 5. (A) Move. (B) Turn red. (C) Turn red. (D) Turn blue.

TABLE 8 | Utility planning test: Objects in the utility planning test and their

corresponding values, probability of goal-accomplishing action success and

expected utility.

Object Value P(action success) Expected utility

Blue circle 1 0.7 0.7

Green square 1 0.8 0.8

Red rectangle 2 0.7 1.4

Red square 4 0.6 2.4

state-of-the-art deep neural networks applied to vision problems
is confirming the utility of an attentional focus (Xu et al., 2015).
Here we use active vision in a different way to extract information
on single objects, factored into information about the object state
and its location in space. As mentioned in the introduction, this
is a fundamental operation representing a first important step
from a factored (featured-based) representation of the world state

to a structured representation, allowing to reason on the state
and relations between objects, typically used in classic planning
(Russell and Norvig, 2016). Although this does not still allow the
performance of the complex logic-based reasoning of classical
planning, it allows the parsing of the whole goal into specific
solvable object-centered sub-goals in the extrinsic phase.

We started to explore the factorization of a scene by an active
vision system endowed with controllable restricted visual sensors
in a camera-arm robot interacting with simple-shaped 2D objects
as those used here (Ognibene et al., 2008, 2010). The sensor of
this system was controlled not only with a bottom-up attention
component, as here, but also by a top-down component able to
learn to find a desired target-object by reinforcement learning:
the latter component might be integrated into the current model
in the future. The system was developed to accomplish only one
extrinsic task, rather than multiple ones as here, and did not deal
with open-ended learning. A system developed starting from the
previous ones (Sperati and Baldassarre, 2014), again endowed

Frontiers in Neurorobotics | www.frontiersin.org 21 July 2019 | Volume 13 | Article 45279

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Baldassarre et al. Open-Ended Learning: Affordance, Attention, and Planning

FIGURE 12 | Performance of the goal-based planner and the utility-based

planner. Each bar is the average utility over 10 repetitions of the intrinsic-phase

training and 20 runs of the extrinsic-phase test. Statistical significance was

computed with a double-tailed t-test (Mid-line of boxes shows median values,

boxes show quartiles, and bars show the min-max range, of the

intrinsic-phase repetitions): *p < 0.05; **p < 0.01; and ***p < 0.001.

with a bottom-up and a top-down attention component, is
instead able to self-generate and learn tasks based on intrinsic
motivations. This system has been further developed to self-
generate and encode multiple visual-target goals, and to learn
the camera-controller to find them (Sperati and Baldassarre,
2018). These systems have functionalities complementary with
those of the system presented here, so they might be suitably
integrated in the future to have a system able to: (a) self-generate
goals and use them to drive the learning of the attention and
motor skills to accomplish them through intrinsic motivations
(previous systems) and (b) develop affordances and re-use the
previously acquired skills to solve complex extrinsic tasks (system
proposed here).

5. CONCLUSIONS AND FUTURE WORK

This work has focused on a possible specific instance of the
concept of affordance intended as the probability of achieving a
certain desired outcome associated to an action, by performing
such action on a certain object. We investigated here three issues
related to this concept: (a) within an open-ended autonomous
learning context, how can intrinsic motivations guide affordance
learning in a system that moves the attention of a visual
sensor over different objects; (b) how can such an attention
process support the decomposition of complex goals (tasks),
involving multiple objects, into separated sub-goals related to
single objects; (c) what could be the added value of affordances
in planning systems already having sophisticated forward models
of the world. For each issue we presented possible advancement

FIGURE 13 | Stochastic environment: quality of forward models acquired.

Statistical significance is based on a double-tailed t-test (Mid-line of boxes

shows median values, boxes show quartiles, and bars show the min-max

range, of the ten intrinsic-phase repetitions). *p < 0.05; **p < 0.01.

FIGURE 14 | Average number of actions to check for accomplishing each

sub-goal in the case of affordance-based restricted and nonrestricted planning

search. Statistical significance is based on a double-tailed t-test (Mid-line of

boxes shows median values, boxes show quartiles, and bars show the

min-max range, of the intrinsic-phase successful repetitions). ***p < 0.001.

with respect to the state of the art (section 4), and showed their
advantages in specific experiments (section 3). Several aspects of
the system could however be improved in future work.

Regarding the first issue, we proposed a mechanism to
use intrinsic motivations (system IGN) to improve previously
proposed ways (Ugur et al., 2007) with which a system endowed
with a mechanism focusing on only one object/condition per
time can decide whether or not to invest energy to explore it. The
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proposed mechanism is quite general and could in principle be
used for any decisionmaking process supported by a collection of
information from the environment based on selective attention.
The proposed solution is based on an adjustable variable storing
the opportunity cost of the current choice, i.e., the value that
the system looses by selecting the current option rather than
alternative ones (Buchanan, 2008). The presented experiments
support the effectiveness of this mechanism.

With respect to intrinsic motivations, in the case of
deterministic scenarios where the system knows in advance that
the affordance probability is either 0 or 1, the value of actions on
the current object and the cost of alternatives was here estimated
in terms of intrinsic motivations measuring the system ignorance
(system IGN). This is not possible in stochastic scenarios where
the affordance probability can be any value ranging in (0, 1), so
we proposed an intrinsic motivation tied to the improvement,
rather than the level, of the probability estimation (system
IMP). This solution, building on previous works on intrinsic
motivations (e.g., Schmidhuber, 1991a; Santucci et al., 2013),
led to a faster learning of affordance probabilities in our tests.
However, an open problem of this solution, known in the
literature (Santucci et al., 2013), is the fact that error improvement
signals, as those used to compute intrinsic motivation in IMP,
are small with respect to noise as they are equivalent to a
derivative in time (vs. error signals used by IGN-like systems).
This makes them more unstable: future work should face
this problem.

Another important aspect related to autonomous learning
driven by intrinsic motivations is that here, for the sake of
focussing the research, the current system learns affordances on
the basis of pre-wired actions and goals (expected outcomes
of affordances). In a fully autonomous open-ended learning
agent such actions and goals should instead be autonomously
learned. Much literature has focused on the autonomous
learning of actions and, more recently, of goals (e.g., Kulkarni
et al., 2016; Santucci et al., 2016; Forestier et al., 2017;
Cartoni and Baldassarre, 2018; Nair et al., 2018). Future
work should thus aim to integrate the autonomous learning
of affordances with the autonomous learning of actions
and goals.

Regarding the second issue, related to the advantage
for planning of having an attention system focusing on
objects, we showed how the parsing of the scene into objects
allows the solution of non-trivial planning problems on the
basis of relatively simple one-step planning mechanisms.
This agrees with previous proposals, such as the “object
action compound” framework (Krüger et al., 2011; see
also Montesano et al., 2008) stating the importance of
representing information based on objects. Future work
should investigate the advantage of object-centered attention
andmulti-step planning.

Although the introduction of focused visual sensors
(attention) facilitates the parsing of the scene into objects,
it also makes decision making more difficult. Indeed, the system
has to look at different objects, and store information on them,
to decide on which object to act or not. We have seen that
the information to store can for example involve either the

expected information gain, as requested by intrinsic motivations,
or the utility of sub-goals, as requested by the solution of a
utility-based problem. Here we have proposed a first solution
to this problem that requires low computational resources
(scanning objects in sequence, computing their expected utility,
updating a variable that stores the maximum expected utility
encountered this far, and deciding to act on the current object
depending on how its utility compares with the maximum
expected utility). This mechanism proved effective in tests.
However, other more efficient (but also computationally more
expensive) mechanisms could be used, in particular based
on a memory of the specific utility of the different scanned
objects. This information could be indexed by the different
positions that have been visually inspected in the scene so
that the information itself is readily usable to guide top-down
attention processes and actions on specific target objects
(Ognibene and Baldassare, 2015).

Regarding the third and last issue, related to the possible
added value of affordances in planning systems, we showed
that affordances as defined here can be useful in goal-based
planning systems as they allow a search focused on actions
that can be used in the current context. In section 4 we
mentioned that this function is similar to that played by
preconditions in STRIPS-based planning and by the “initiation
set” in reinforcement-learning options. We have also seen that
a second function that affordances can play, in particular for
utility-based planning problems, is for weighting the importance
of alternative goals based on the probability to accomplish
them. The definition used to this purpose, Pr(s′

b,o
∈ G|a, sb,o)

can be related to one of internal models of the transition
function Pr(s′|a, s) used in model-based reinforcement-learning
systems (Sutton and Barto, 2018). These models take into
consideration stochastic environments rather than deterministic
ones, as usually done in symbolic planning; but on the other
hand they use atomic representations, s, of whole states, rather
than information on single objects and their relations as
done in symbolic planning using structured representations
(Russell and Norvig, 2016). In this respect, the concept of
affordances used here, pivoting on sb,o, starts to integrate
the two approaches as it focuses on single objects (the body
and the target object), and at the same time it considers
probabilities of their states (specifically encoded with factored
representations, such as pixels images, as commonly done in
robotic reinforcement learningmodels,Wiering and VanOtterlo,
2012). Future work could further develop this integration
(e.g., see Konidaris et al., 2018).

Overall, we think that showing how attention can support a
representation of information centered on objects rather than
on whole states, and the implications of this for autonomous
affordance learning and planning, is a very important issue to
which this work contributed.

We conclude by discussing how the system might scale
up to more complex scenarios. The overall architecture is
expected to scale up well to more complex environments but
the implementation of its components should be enhanced to
such purpose. For the sake of simplicity here we developed
the model components in a way that was sufficient to tackle
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a simple environment featuring a black background and non-
overlapping objects. A realistic environment with a rich texture
and several possibly-overlapping objects would produce cluttered
images. To face this condition the system should be endowed
with object segmentation capabilities (Zhang et al., 2008)
or robust object recognition algorithms such as deep neural
networks (LeCun et al., 2015). Interestingly, some of these
latter algorithms have started to use attention mechanisms to
improve object recognition (Maiettini et al., 2018): future work
might investigate the links between these mechanisms and the
attention processes presented here. More powerful deep learning
models might also be used to implement the predictors used
in the architecture. A last critical component is the simple
bottom-up attention mechanism used to identify objects, and,
as expected, this was limited (it scaled worse than linearly with
the number of objects). The component could be enhanced
with the addition of more sophisticated top-down attention
mechanisms able to drive attention on the basis of the current
knowledge on the identity and position of objects in the scene
(Rasolzadeh et al., 2010; Sperati and Baldassarre, 2014, 2018;
Ognibene and Baldassare, 2015).

A final general feature of the system that should be addressed
in future work is the fact that the information flows between
the several components of the architecture are managed by
a hard-coded central algorithm using time flags and in some
cases symbolic representations. This feature is shared by most
architectures of this type. An alternative approach would be
to follow the design of real brains where the information
flows between components is continuous and has a distributed
nature. An example of this is given in Baldassarre et al. (2013)
proposing an architecture for goal-based open-ended learning
where components are implemented on the basis of leaky-neuron
neural networks. This strategy has the advantage of a higher
biological realism (relevant when brain modeling is the research

objective) and for having a higher tolerance to noise affecting
the timing of events. On the other side it has the disadvantages
of making it more difficult to tune the whole system and also
to use some learning algorithms that require a precise timing
of events.
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