About this Research Topic
The Research Topic will be focussed on various implementation aspects for deep learning architectures. One particular interest is efficient on-line learning algorithms implemented in hardware. State-of-the-art deep convolutional neural networks have achieved remarkable performances by using the back-propagation algorithm to fine tune the weights of the connections between layers. The storage of billions of meticulously tuned weights (as done in state-of-the-art deep neural networks) is the main bottleneck for hardware implementation of deep neural networks. More importantly, the training of the deep learning neural networks is quite time consuming. Hence efficient online-learning algorithms are vital for the deployment of deep learning on dedicated hardware. Papers on this aspect of deep learning will be prioritised. Furthermore, most of the widely used deep learning models are convolutional neural networks, deep belief networks, and deep networks with stacked auto-encoders. We will also invite papers that realised such algorithms as custom hardware using state-of-the-art IC design techniques, where the power, speed and complexity are optimised for these applications. Lastly, since typical deep learning architectures are inspired by biology, while not exactly being neurophysiologically plausible, we will also encourage papers that attempt to close the loop between biology, algorithms, and hardware.
Relevant topics include:
• Non-spiking hardware implementations of deep learning (analogue, digital, mixed-signal implementations);
• Spiking hardware implementations of deep learning (analogue, digital, mixed-signal implementations);
• Neuromorphic sensors combined with deep learning neural networks;
• Hardware models of biology inspired learning, such as learning with Cortical Circuits.
The resulting collection of original research articles, reviews and commentaries will be a reference for deep learning in neuromorphic systems, fostering the research progress through discussions and new collaborations among the different researchers in our community.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.