About this Research Topic
Five decades after the foundation of these methodologies QM/MM approaches proved as a versatile and general framework to model exciting and challenging phenomena in physical and chemical sciences. In particular the combination of this successful strategy with other theoretical approaches such has simulation methods based on statistical mechanics or algorithms designed to characterize the underlying potential energy landscape greatly enhanced the scope but at the same time the complexity of this theoretical framework. For this reason research focused at extending and improving the capacities of this simulation strategy is still an active field in theoretical/computational chemistry, resulting in a broad range of highly specialized approaches further improving the applicability, accuracy and efficiency of the QM/MM methodology. As a consequence today’s application are not limited to the regime of (bio)organic systems but cover investigations of liquid and solid-state systems relevant to both life and material sciences as well.
This article collection aims to present an overview of present research activities focused on development and application of modern QM/MM formulations to demonstrate the broad range of capabilities of this celebrated methodology. Original research articles describing novel, methodical innovations in the field of QM/MM comprise welcome contributions as well as advanced applications to challenging research questions. Opinion articles and (mini)reviews are also of interest for this article collection, if they fit within the focus of the Research Topic.
Keywords: Hybrid Quantum Mechanical/Molecular Mechanical, QM/MM, Quantum Chemistry, Ab initio, First Principles, Density Functional Theory, Empirical Potentials, Molecular Mechanics, Force Field
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.